1 //===- HexagonInstrInfo.h - Hexagon Instruction Information -----*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file contains the Hexagon implementation of the TargetInstrInfo class.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #ifndef LLVM_LIB_TARGET_HEXAGON_HEXAGONINSTRINFO_H
14 #define LLVM_LIB_TARGET_HEXAGON_HEXAGONINSTRINFO_H
15 
16 #include "MCTargetDesc/HexagonBaseInfo.h"
17 #include "llvm/ADT/ArrayRef.h"
18 #include "llvm/ADT/SmallVector.h"
19 #include "llvm/CodeGen/MachineBasicBlock.h"
20 #include "llvm/CodeGen/TargetInstrInfo.h"
21 #include "llvm/CodeGen/ValueTypes.h"
22 #include "llvm/Support/MachineValueType.h"
23 #include <cstdint>
24 #include <vector>
25 
26 #define GET_INSTRINFO_HEADER
27 #include "HexagonGenInstrInfo.inc"
28 
29 namespace llvm {
30 
31 class HexagonSubtarget;
32 class MachineBranchProbabilityInfo;
33 class MachineFunction;
34 class MachineInstr;
35 class MachineOperand;
36 class TargetRegisterInfo;
37 
38 class HexagonInstrInfo : public HexagonGenInstrInfo {
39   const HexagonSubtarget &Subtarget;
40 
41   enum BundleAttribute {
42     memShufDisabledMask = 0x4
43   };
44 
45   virtual void anchor();
46 
47 public:
48   explicit HexagonInstrInfo(HexagonSubtarget &ST);
49 
50   /// TargetInstrInfo overrides.
51 
52   /// If the specified machine instruction is a direct
53   /// load from a stack slot, return the virtual or physical register number of
54   /// the destination along with the FrameIndex of the loaded stack slot.  If
55   /// not, return 0.  This predicate must return 0 if the instruction has
56   /// any side effects other than loading from the stack slot.
57   unsigned isLoadFromStackSlot(const MachineInstr &MI,
58                                int &FrameIndex) const override;
59 
60   /// If the specified machine instruction is a direct
61   /// store to a stack slot, return the virtual or physical register number of
62   /// the source reg along with the FrameIndex of the loaded stack slot.  If
63   /// not, return 0.  This predicate must return 0 if the instruction has
64   /// any side effects other than storing to the stack slot.
65   unsigned isStoreToStackSlot(const MachineInstr &MI,
66                               int &FrameIndex) const override;
67 
68   /// Check if the instruction or the bundle of instructions has
69   /// load from stack slots. Return the frameindex and machine memory operand
70   /// if true.
71   bool hasLoadFromStackSlot(
72       const MachineInstr &MI,
73       SmallVectorImpl<const MachineMemOperand *> &Accesses) const override;
74 
75   /// Check if the instruction or the bundle of instructions has
76   /// store to stack slots. Return the frameindex and machine memory operand
77   /// if true.
78   bool hasStoreToStackSlot(
79       const MachineInstr &MI,
80       SmallVectorImpl<const MachineMemOperand *> &Accesses) const override;
81 
82   /// Analyze the branching code at the end of MBB, returning
83   /// true if it cannot be understood (e.g. it's a switch dispatch or isn't
84   /// implemented for a target).  Upon success, this returns false and returns
85   /// with the following information in various cases:
86   ///
87   /// 1. If this block ends with no branches (it just falls through to its succ)
88   ///    just return false, leaving TBB/FBB null.
89   /// 2. If this block ends with only an unconditional branch, it sets TBB to be
90   ///    the destination block.
91   /// 3. If this block ends with a conditional branch and it falls through to a
92   ///    successor block, it sets TBB to be the branch destination block and a
93   ///    list of operands that evaluate the condition. These operands can be
94   ///    passed to other TargetInstrInfo methods to create new branches.
95   /// 4. If this block ends with a conditional branch followed by an
96   ///    unconditional branch, it returns the 'true' destination in TBB, the
97   ///    'false' destination in FBB, and a list of operands that evaluate the
98   ///    condition.  These operands can be passed to other TargetInstrInfo
99   ///    methods to create new branches.
100   ///
101   /// Note that removeBranch and insertBranch must be implemented to support
102   /// cases where this method returns success.
103   ///
104   /// If AllowModify is true, then this routine is allowed to modify the basic
105   /// block (e.g. delete instructions after the unconditional branch).
106   bool analyzeBranch(MachineBasicBlock &MBB, MachineBasicBlock *&TBB,
107                      MachineBasicBlock *&FBB,
108                      SmallVectorImpl<MachineOperand> &Cond,
109                      bool AllowModify) const override;
110 
111   /// Remove the branching code at the end of the specific MBB.
112   /// This is only invoked in cases where analyzeBranch returns success. It
113   /// returns the number of instructions that were removed.
114   unsigned removeBranch(MachineBasicBlock &MBB,
115                         int *BytesRemoved = nullptr) const override;
116 
117   /// Insert branch code into the end of the specified MachineBasicBlock.
118   /// The operands to this method are the same as those
119   /// returned by analyzeBranch.  This is only invoked in cases where
120   /// analyzeBranch returns success. It returns the number of instructions
121   /// inserted.
122   ///
123   /// It is also invoked by tail merging to add unconditional branches in
124   /// cases where analyzeBranch doesn't apply because there was no original
125   /// branch to analyze.  At least this much must be implemented, else tail
126   /// merging needs to be disabled.
127   unsigned insertBranch(MachineBasicBlock &MBB, MachineBasicBlock *TBB,
128                         MachineBasicBlock *FBB, ArrayRef<MachineOperand> Cond,
129                         const DebugLoc &DL,
130                         int *BytesAdded = nullptr) const override;
131 
132   /// Analyze loop L, which must be a single-basic-block loop, and if the
133   /// conditions can be understood enough produce a PipelinerLoopInfo object.
134   std::unique_ptr<PipelinerLoopInfo>
135   analyzeLoopForPipelining(MachineBasicBlock *LoopBB) const override;
136 
137   /// Return true if it's profitable to predicate
138   /// instructions with accumulated instruction latency of "NumCycles"
139   /// of the specified basic block, where the probability of the instructions
140   /// being executed is given by Probability, and Confidence is a measure
141   /// of our confidence that it will be properly predicted.
142   bool isProfitableToIfCvt(MachineBasicBlock &MBB, unsigned NumCycles,
143                            unsigned ExtraPredCycles,
144                            BranchProbability Probability) const override;
145 
146   /// Second variant of isProfitableToIfCvt. This one
147   /// checks for the case where two basic blocks from true and false path
148   /// of a if-then-else (diamond) are predicated on mutally exclusive
149   /// predicates, where the probability of the true path being taken is given
150   /// by Probability, and Confidence is a measure of our confidence that it
151   /// will be properly predicted.
152   bool isProfitableToIfCvt(MachineBasicBlock &TMBB,
153                            unsigned NumTCycles, unsigned ExtraTCycles,
154                            MachineBasicBlock &FMBB,
155                            unsigned NumFCycles, unsigned ExtraFCycles,
156                            BranchProbability Probability) const override;
157 
158   /// Return true if it's profitable for if-converter to duplicate instructions
159   /// of specified accumulated instruction latencies in the specified MBB to
160   /// enable if-conversion.
161   /// The probability of the instructions being executed is given by
162   /// Probability, and Confidence is a measure of our confidence that it
163   /// will be properly predicted.
164   bool isProfitableToDupForIfCvt(MachineBasicBlock &MBB, unsigned NumCycles,
165                                  BranchProbability Probability) const override;
166 
167   /// Emit instructions to copy a pair of physical registers.
168   ///
169   /// This function should support copies within any legal register class as
170   /// well as any cross-class copies created during instruction selection.
171   ///
172   /// The source and destination registers may overlap, which may require a
173   /// careful implementation when multiple copy instructions are required for
174   /// large registers. See for example the ARM target.
175   void copyPhysReg(MachineBasicBlock &MBB, MachineBasicBlock::iterator I,
176                    const DebugLoc &DL, MCRegister DestReg, MCRegister SrcReg,
177                    bool KillSrc) const override;
178 
179   /// Store the specified register of the given register class to the specified
180   /// stack frame index. The store instruction is to be added to the given
181   /// machine basic block before the specified machine instruction. If isKill
182   /// is true, the register operand is the last use and must be marked kill.
183   void storeRegToStackSlot(MachineBasicBlock &MBB,
184                            MachineBasicBlock::iterator MBBI,
185                            Register SrcReg, bool isKill, int FrameIndex,
186                            const TargetRegisterClass *RC,
187                            const TargetRegisterInfo *TRI) const override;
188 
189   /// Load the specified register of the given register class from the specified
190   /// stack frame index. The load instruction is to be added to the given
191   /// machine basic block before the specified machine instruction.
192   void loadRegFromStackSlot(MachineBasicBlock &MBB,
193                             MachineBasicBlock::iterator MBBI,
194                             Register DestReg, int FrameIndex,
195                             const TargetRegisterClass *RC,
196                             const TargetRegisterInfo *TRI) const override;
197 
198   /// This function is called for all pseudo instructions
199   /// that remain after register allocation. Many pseudo instructions are
200   /// created to help register allocation. This is the place to convert them
201   /// into real instructions. The target can edit MI in place, or it can insert
202   /// new instructions and erase MI. The function should return true if
203   /// anything was changed.
204   bool expandPostRAPseudo(MachineInstr &MI) const override;
205 
206   /// Get the base register and byte offset of a load/store instr.
207   bool getMemOperandsWithOffsetWidth(
208       const MachineInstr &LdSt,
209       SmallVectorImpl<const MachineOperand *> &BaseOps, int64_t &Offset,
210       bool &OffsetIsScalable, unsigned &Width,
211       const TargetRegisterInfo *TRI) const override;
212 
213   /// Reverses the branch condition of the specified condition list,
214   /// returning false on success and true if it cannot be reversed.
215   bool reverseBranchCondition(SmallVectorImpl<MachineOperand> &Cond)
216         const override;
217 
218   /// Insert a noop into the instruction stream at the specified point.
219   void insertNoop(MachineBasicBlock &MBB,
220                   MachineBasicBlock::iterator MI) const override;
221 
222   /// Returns true if the instruction is already predicated.
223   bool isPredicated(const MachineInstr &MI) const override;
224 
225   /// Return true for post-incremented instructions.
226   bool isPostIncrement(const MachineInstr &MI) const override;
227 
228   /// Convert the instruction into a predicated instruction.
229   /// It returns true if the operation was successful.
230   bool PredicateInstruction(MachineInstr &MI,
231                             ArrayRef<MachineOperand> Cond) const override;
232 
233   /// Returns true if the first specified predicate
234   /// subsumes the second, e.g. GE subsumes GT.
235   bool SubsumesPredicate(ArrayRef<MachineOperand> Pred1,
236                          ArrayRef<MachineOperand> Pred2) const override;
237 
238   /// If the specified instruction defines any predicate
239   /// or condition code register(s) used for predication, returns true as well
240   /// as the definition predicate(s) by reference.
241   bool ClobbersPredicate(MachineInstr &MI, std::vector<MachineOperand> &Pred,
242                          bool SkipDead) const override;
243 
244   /// Return true if the specified instruction can be predicated.
245   /// By default, this returns true for every instruction with a
246   /// PredicateOperand.
247   bool isPredicable(const MachineInstr &MI) const override;
248 
249   /// Test if the given instruction should be considered a scheduling boundary.
250   /// This primarily includes labels and terminators.
251   bool isSchedulingBoundary(const MachineInstr &MI,
252                             const MachineBasicBlock *MBB,
253                             const MachineFunction &MF) const override;
254 
255   /// Measure the specified inline asm to determine an approximation of its
256   /// length.
257   unsigned getInlineAsmLength(
258     const char *Str,
259     const MCAsmInfo &MAI,
260     const TargetSubtargetInfo *STI = nullptr) const override;
261 
262   /// Allocate and return a hazard recognizer to use for this target when
263   /// scheduling the machine instructions after register allocation.
264   ScheduleHazardRecognizer*
265   CreateTargetPostRAHazardRecognizer(const InstrItineraryData *II,
266                                      const ScheduleDAG *DAG) const override;
267 
268   /// For a comparison instruction, return the source registers
269   /// in SrcReg and SrcReg2 if having two register operands, and the value it
270   /// compares against in CmpValue. Return true if the comparison instruction
271   /// can be analyzed.
272   bool analyzeCompare(const MachineInstr &MI, Register &SrcReg,
273                       Register &SrcReg2, int64_t &Mask,
274                       int64_t &Value) const override;
275 
276   /// Compute the instruction latency of a given instruction.
277   /// If the instruction has higher cost when predicated, it's returned via
278   /// PredCost.
279   unsigned getInstrLatency(const InstrItineraryData *ItinData,
280                            const MachineInstr &MI,
281                            unsigned *PredCost = nullptr) const override;
282 
283   /// Create machine specific model for scheduling.
284   DFAPacketizer *
285   CreateTargetScheduleState(const TargetSubtargetInfo &STI) const override;
286 
287   // Sometimes, it is possible for the target
288   // to tell, even without aliasing information, that two MIs access different
289   // memory addresses. This function returns true if two MIs access different
290   // memory addresses and false otherwise.
291   bool
292   areMemAccessesTriviallyDisjoint(const MachineInstr &MIa,
293                                   const MachineInstr &MIb) const override;
294 
295   /// For instructions with a base and offset, return the position of the
296   /// base register and offset operands.
297   bool getBaseAndOffsetPosition(const MachineInstr &MI, unsigned &BasePos,
298                                 unsigned &OffsetPos) const override;
299 
300   /// If the instruction is an increment of a constant value, return the amount.
301   bool getIncrementValue(const MachineInstr &MI, int &Value) const override;
302 
303   /// getOperandLatency - Compute and return the use operand latency of a given
304   /// pair of def and use.
305   /// In most cases, the static scheduling itinerary was enough to determine the
306   /// operand latency. But it may not be possible for instructions with variable
307   /// number of defs / uses.
308   ///
309   /// This is a raw interface to the itinerary that may be directly overriden by
310   /// a target. Use computeOperandLatency to get the best estimate of latency.
311   int getOperandLatency(const InstrItineraryData *ItinData,
312                         const MachineInstr &DefMI, unsigned DefIdx,
313                         const MachineInstr &UseMI,
314                         unsigned UseIdx) const override;
315 
316   /// Decompose the machine operand's target flags into two values - the direct
317   /// target flag value and any of bit flags that are applied.
318   std::pair<unsigned, unsigned>
319   decomposeMachineOperandsTargetFlags(unsigned TF) const override;
320 
321   /// Return an array that contains the direct target flag values and their
322   /// names.
323   ///
324   /// MIR Serialization is able to serialize only the target flags that are
325   /// defined by this method.
326   ArrayRef<std::pair<unsigned, const char *>>
327   getSerializableDirectMachineOperandTargetFlags() const override;
328 
329   /// Return an array that contains the bitmask target flag values and their
330   /// names.
331   ///
332   /// MIR Serialization is able to serialize only the target flags that are
333   /// defined by this method.
334   ArrayRef<std::pair<unsigned, const char *>>
335   getSerializableBitmaskMachineOperandTargetFlags() const override;
336 
337   bool isTailCall(const MachineInstr &MI) const override;
338   bool isAsCheapAsAMove(const MachineInstr &MI) const override;
339 
340   // Return true if the instruction should be sunk by MachineSink.
341   // MachineSink determines on its own whether the instruction is safe to sink;
342   // this gives the target a hook to override the default behavior with regards
343   // to which instructions should be sunk.
344   bool shouldSink(const MachineInstr &MI) const override;
345 
346   /// HexagonInstrInfo specifics.
347 
348   unsigned createVR(MachineFunction *MF, MVT VT) const;
349   MachineInstr *findLoopInstr(MachineBasicBlock *BB, unsigned EndLoopOp,
350                               MachineBasicBlock *TargetBB,
351                               SmallPtrSet<MachineBasicBlock *, 8> &Visited) const;
352 
353   bool isAbsoluteSet(const MachineInstr &MI) const;
354   bool isAccumulator(const MachineInstr &MI) const;
355   bool isAddrModeWithOffset(const MachineInstr &MI) const;
356   bool isBaseImmOffset(const MachineInstr &MI) const;
357   bool isComplex(const MachineInstr &MI) const;
358   bool isCompoundBranchInstr(const MachineInstr &MI) const;
359   bool isConstExtended(const MachineInstr &MI) const;
360   bool isDeallocRet(const MachineInstr &MI) const;
361   bool isDependent(const MachineInstr &ProdMI,
362                    const MachineInstr &ConsMI) const;
363   bool isDotCurInst(const MachineInstr &MI) const;
364   bool isDotNewInst(const MachineInstr &MI) const;
365   bool isDuplexPair(const MachineInstr &MIa, const MachineInstr &MIb) const;
366   bool isEarlySourceInstr(const MachineInstr &MI) const;
367   bool isEndLoopN(unsigned Opcode) const;
368   bool isExpr(unsigned OpType) const;
369   bool isExtendable(const MachineInstr &MI) const;
370   bool isExtended(const MachineInstr &MI) const;
371   bool isFloat(const MachineInstr &MI) const;
372   bool isHVXMemWithAIndirect(const MachineInstr &I,
373                              const MachineInstr &J) const;
374   bool isIndirectCall(const MachineInstr &MI) const;
375   bool isIndirectL4Return(const MachineInstr &MI) const;
376   bool isJumpR(const MachineInstr &MI) const;
377   bool isJumpWithinBranchRange(const MachineInstr &MI, unsigned offset) const;
378   bool isLateInstrFeedsEarlyInstr(const MachineInstr &LRMI,
379                                   const MachineInstr &ESMI) const;
380   bool isLateResultInstr(const MachineInstr &MI) const;
381   bool isLateSourceInstr(const MachineInstr &MI) const;
382   bool isLoopN(const MachineInstr &MI) const;
383   bool isMemOp(const MachineInstr &MI) const;
384   bool isNewValue(const MachineInstr &MI) const;
385   bool isNewValue(unsigned Opcode) const;
386   bool isNewValueInst(const MachineInstr &MI) const;
387   bool isNewValueJump(const MachineInstr &MI) const;
388   bool isNewValueJump(unsigned Opcode) const;
389   bool isNewValueStore(const MachineInstr &MI) const;
390   bool isNewValueStore(unsigned Opcode) const;
391   bool isOperandExtended(const MachineInstr &MI, unsigned OperandNum) const;
392   bool isPredicatedNew(const MachineInstr &MI) const;
393   bool isPredicatedNew(unsigned Opcode) const;
394   bool isPredicatedTrue(const MachineInstr &MI) const;
395   bool isPredicatedTrue(unsigned Opcode) const;
396   bool isPredicated(unsigned Opcode) const;
397   bool isPredicateLate(unsigned Opcode) const;
398   bool isPredictedTaken(unsigned Opcode) const;
399   bool isPureSlot0(const MachineInstr &MI) const;
400   bool isRestrictNoSlot1Store(const MachineInstr &MI) const;
401   bool isSaveCalleeSavedRegsCall(const MachineInstr &MI) const;
402   bool isSignExtendingLoad(const MachineInstr &MI) const;
403   bool isSolo(const MachineInstr &MI) const;
404   bool isSpillPredRegOp(const MachineInstr &MI) const;
405   bool isTC1(const MachineInstr &MI) const;
406   bool isTC2(const MachineInstr &MI) const;
407   bool isTC2Early(const MachineInstr &MI) const;
408   bool isTC4x(const MachineInstr &MI) const;
409   bool isToBeScheduledASAP(const MachineInstr &MI1,
410                            const MachineInstr &MI2) const;
411   bool isHVXVec(const MachineInstr &MI) const;
412   bool isValidAutoIncImm(const EVT VT, const int Offset) const;
413   bool isValidOffset(unsigned Opcode, int Offset,
414                      const TargetRegisterInfo *TRI, bool Extend = true) const;
415   bool isVecAcc(const MachineInstr &MI) const;
416   bool isVecALU(const MachineInstr &MI) const;
417   bool isVecUsableNextPacket(const MachineInstr &ProdMI,
418                              const MachineInstr &ConsMI) const;
419   bool isZeroExtendingLoad(const MachineInstr &MI) const;
420 
421   bool addLatencyToSchedule(const MachineInstr &MI1,
422                             const MachineInstr &MI2) const;
423   bool canExecuteInBundle(const MachineInstr &First,
424                           const MachineInstr &Second) const;
425   bool doesNotReturn(const MachineInstr &CallMI) const;
426   bool hasEHLabel(const MachineBasicBlock *B) const;
427   bool hasNonExtEquivalent(const MachineInstr &MI) const;
428   bool hasPseudoInstrPair(const MachineInstr &MI) const;
429   bool hasUncondBranch(const MachineBasicBlock *B) const;
430   bool mayBeCurLoad(const MachineInstr &MI) const;
431   bool mayBeNewStore(const MachineInstr &MI) const;
432   bool producesStall(const MachineInstr &ProdMI,
433                      const MachineInstr &ConsMI) const;
434   bool producesStall(const MachineInstr &MI,
435                      MachineBasicBlock::const_instr_iterator MII) const;
436   bool predCanBeUsedAsDotNew(const MachineInstr &MI, unsigned PredReg) const;
437   bool PredOpcodeHasJMP_c(unsigned Opcode) const;
438   bool predOpcodeHasNot(ArrayRef<MachineOperand> Cond) const;
439 
440   unsigned getAddrMode(const MachineInstr &MI) const;
441   MachineOperand *getBaseAndOffset(const MachineInstr &MI, int64_t &Offset,
442                                    unsigned &AccessSize) const;
443   SmallVector<MachineInstr*,2> getBranchingInstrs(MachineBasicBlock& MBB) const;
444   unsigned getCExtOpNum(const MachineInstr &MI) const;
445   HexagonII::CompoundGroup
446   getCompoundCandidateGroup(const MachineInstr &MI) const;
447   unsigned getCompoundOpcode(const MachineInstr &GA,
448                              const MachineInstr &GB) const;
449   int getDuplexOpcode(const MachineInstr &MI, bool ForBigCore = true) const;
450   int getCondOpcode(int Opc, bool sense) const;
451   int getDotCurOp(const MachineInstr &MI) const;
452   int getNonDotCurOp(const MachineInstr &MI) const;
453   int getDotNewOp(const MachineInstr &MI) const;
454   int getDotNewPredJumpOp(const MachineInstr &MI,
455                           const MachineBranchProbabilityInfo *MBPI) const;
456   int getDotNewPredOp(const MachineInstr &MI,
457                       const MachineBranchProbabilityInfo *MBPI) const;
458   int getDotOldOp(const MachineInstr &MI) const;
459   HexagonII::SubInstructionGroup getDuplexCandidateGroup(const MachineInstr &MI)
460                                                          const;
461   short getEquivalentHWInstr(const MachineInstr &MI) const;
462   unsigned getInstrTimingClassLatency(const InstrItineraryData *ItinData,
463                                       const MachineInstr &MI) const;
464   bool getInvertedPredSense(SmallVectorImpl<MachineOperand> &Cond) const;
465   unsigned getInvertedPredicatedOpcode(const int Opc) const;
466   int getMaxValue(const MachineInstr &MI) const;
467   unsigned getMemAccessSize(const MachineInstr &MI) const;
468   int getMinValue(const MachineInstr &MI) const;
469   short getNonExtOpcode(const MachineInstr &MI) const;
470   bool getPredReg(ArrayRef<MachineOperand> Cond, unsigned &PredReg,
471                   unsigned &PredRegPos, unsigned &PredRegFlags) const;
472   short getPseudoInstrPair(const MachineInstr &MI) const;
473   short getRegForm(const MachineInstr &MI) const;
474   unsigned getSize(const MachineInstr &MI) const;
475   uint64_t getType(const MachineInstr &MI) const;
476   InstrStage::FuncUnits getUnits(const MachineInstr &MI) const;
477 
478   MachineBasicBlock::instr_iterator expandVGatherPseudo(MachineInstr &MI) const;
479 
480   /// getInstrTimingClassLatency - Compute the instruction latency of a given
481   /// instruction using Timing Class information, if available.
482   unsigned nonDbgBBSize(const MachineBasicBlock *BB) const;
483   unsigned nonDbgBundleSize(MachineBasicBlock::const_iterator BundleHead) const;
484 
485   void immediateExtend(MachineInstr &MI) const;
486   bool invertAndChangeJumpTarget(MachineInstr &MI,
487                                  MachineBasicBlock *NewTarget) const;
488   void genAllInsnTimingClasses(MachineFunction &MF) const;
489   bool reversePredSense(MachineInstr &MI) const;
490   unsigned reversePrediction(unsigned Opcode) const;
491   bool validateBranchCond(const ArrayRef<MachineOperand> &Cond) const;
492 
493   void setBundleNoShuf(MachineBasicBlock::instr_iterator MIB) const;
494   bool getBundleNoShuf(const MachineInstr &MIB) const;
495 
496   // When TinyCore with Duplexes is enabled, this function is used to translate
497   // tiny-instructions to big-instructions and vice versa to get the slot
498   // consumption.
499   void changeDuplexOpcode(MachineBasicBlock::instr_iterator MII,
500                           bool ToBigInstrs) const;
501   void translateInstrsForDup(MachineFunction &MF,
502                              bool ToBigInstrs = true) const;
503   void translateInstrsForDup(MachineBasicBlock::instr_iterator MII,
504                              bool ToBigInstrs) const;
505 
506   // Addressing mode relations.
507   short changeAddrMode_abs_io(short Opc) const;
508   short changeAddrMode_io_abs(short Opc) const;
509   short changeAddrMode_io_pi(short Opc) const;
510   short changeAddrMode_io_rr(short Opc) const;
511   short changeAddrMode_pi_io(short Opc) const;
512   short changeAddrMode_rr_io(short Opc) const;
513   short changeAddrMode_rr_ur(short Opc) const;
514   short changeAddrMode_ur_rr(short Opc) const;
515 
516   short changeAddrMode_abs_io(const MachineInstr &MI) const {
517     return changeAddrMode_abs_io(MI.getOpcode());
518   }
519   short changeAddrMode_io_abs(const MachineInstr &MI) const {
520     return changeAddrMode_io_abs(MI.getOpcode());
521   }
522   short changeAddrMode_io_rr(const MachineInstr &MI) const {
523     return changeAddrMode_io_rr(MI.getOpcode());
524   }
525   short changeAddrMode_rr_io(const MachineInstr &MI) const {
526     return changeAddrMode_rr_io(MI.getOpcode());
527   }
528   short changeAddrMode_rr_ur(const MachineInstr &MI) const {
529     return changeAddrMode_rr_ur(MI.getOpcode());
530   }
531   short changeAddrMode_ur_rr(const MachineInstr &MI) const {
532     return changeAddrMode_ur_rr(MI.getOpcode());
533   }
534 
535   MCInst getNop() const override;
536 };
537 
538 } // end namespace llvm
539 
540 #endif // LLVM_LIB_TARGET_HEXAGON_HEXAGONINSTRINFO_H
541