1//===- HexagonPatterns.td - Selection Patterns for Hexagon -*- tablegen -*-===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8
9// Table of contents:
10//     (0) Definitions
11//     (1) Immediates
12//     (2) Type casts
13//     (3) Extend/truncate
14//     (4) Logical
15//     (5) Compare
16//     (6) Select
17//     (7) Insert/extract
18//     (8) Shift/permute
19//     (9) Arithmetic/bitwise
20//    (10) Bit
21//    (11) PIC
22//    (12) Load
23//    (13) Store
24//    (14) Memop
25//    (15) Call
26//    (16) Branch
27//    (17) Misc
28
29// Guidelines (in no particular order):
30// 1. Avoid relying on pattern ordering to give preference to one pattern
31//    over another, prefer using AddedComplexity instead. The reason for
32//    this is to avoid unintended conseqeuences (caused by altering the
33//    order) when making changes. The current order of patterns in this
34//    file obviously does play some role, but none of the ordering was
35//    deliberately chosen (other than to create a logical structure of
36//    this file). When making changes, adding AddedComplexity to existing
37//    patterns may be needed.
38// 2. Maintain the logical structure of the file, try to put new patterns
39//    in designated sections.
40// 3. Do not use A2_combinew instruction directly, use Combinew fragment
41//    instead. It uses REG_SEQUENCE, which is more amenable to optimizations.
42// 4. Most selection macros are based on PatFrags. For DAGs that involve
43//    SDNodes, use pf1/pf2 to convert them to PatFrags. Use common frags
44//    whenever possible (see the Definitions section). When adding new
45//    macro, try to make is general to enable reuse across sections.
46// 5. Compound instructions (e.g. Rx+Rs*Rt) are generated under the condition
47//    that the nested operation has only one use. Having it separated in case
48//    of multiple uses avoids duplication of (processor) work.
49// 6. The v4 vector instructions (64-bit) are treated as core instructions,
50//    for example, A2_vaddh is in the "arithmetic" section with A2_add.
51// 7. When adding a pattern for an instruction with a constant-extendable
52//    operand, allow all possible kinds of inputs for the immediate value
53//    (see AnyImm/anyimm and their variants in the Definitions section).
54
55
56// --(0) Definitions -----------------------------------------------------
57//
58
59// This complex pattern exists only to create a machine instruction operand
60// of type "frame index". There doesn't seem to be a way to do that directly
61// in the patterns.
62def AddrFI: ComplexPattern<i32, 1, "SelectAddrFI", [frameindex], []>;
63
64// These complex patterns are not strictly necessary, since global address
65// folding will happen during DAG combining. For distinguishing between GA
66// and GP, pat frags with HexagonCONST32 and HexagonCONST32_GP can be used.
67def AddrGA: ComplexPattern<i32, 1, "SelectAddrGA", [], []>;
68def AddrGP: ComplexPattern<i32, 1, "SelectAddrGP", [], []>;
69def AnyImm: ComplexPattern<i32, 1, "SelectAnyImm", [], []>;
70def AnyInt: ComplexPattern<i32, 1, "SelectAnyInt", [], []>;
71
72// Global address or a constant being a multiple of 2^n.
73def AnyImm0: ComplexPattern<i32, 1, "SelectAnyImm0", [], []>;
74def AnyImm1: ComplexPattern<i32, 1, "SelectAnyImm1", [], []>;
75def AnyImm2: ComplexPattern<i32, 1, "SelectAnyImm2", [], []>;
76def AnyImm3: ComplexPattern<i32, 1, "SelectAnyImm3", [], []>;
77
78
79// Type helper frags.
80def V2I1:   PatLeaf<(v2i1    PredRegs:$R)>;
81def V4I1:   PatLeaf<(v4i1    PredRegs:$R)>;
82def V8I1:   PatLeaf<(v8i1    PredRegs:$R)>;
83def V4I8:   PatLeaf<(v4i8    IntRegs:$R)>;
84def V2I16:  PatLeaf<(v2i16   IntRegs:$R)>;
85
86def V8I8:   PatLeaf<(v8i8    DoubleRegs:$R)>;
87def V4I16:  PatLeaf<(v4i16   DoubleRegs:$R)>;
88def V2I32:  PatLeaf<(v2i32   DoubleRegs:$R)>;
89
90def SDTVecLeaf:
91  SDTypeProfile<1, 0, [SDTCisVec<0>]>;
92def SDTVecVecIntOp:
93  SDTypeProfile<1, 3, [SDTCisVec<0>, SDTCisVec<1>, SDTCisSameAs<1,2>,
94                       SDTCisVT<3,i32>]>;
95
96def HexagonPTRUE:      SDNode<"HexagonISD::PTRUE",      SDTVecLeaf>;
97def HexagonPFALSE:     SDNode<"HexagonISD::PFALSE",     SDTVecLeaf>;
98def HexagonVALIGN:     SDNode<"HexagonISD::VALIGN",     SDTVecVecIntOp>;
99def HexagonVALIGNADDR: SDNode<"HexagonISD::VALIGNADDR", SDTIntUnaryOp>;
100
101def ptrue:  PatFrag<(ops), (HexagonPTRUE)>;
102def pfalse: PatFrag<(ops), (HexagonPFALSE)>;
103def pnot:   PatFrag<(ops node:$Pu), (xor node:$Pu, ptrue)>;
104
105def valign: PatFrag<(ops node:$Vt, node:$Vs, node:$Ru),
106                    (HexagonVALIGN node:$Vt, node:$Vs, node:$Ru)>;
107def valignaddr: PatFrag<(ops node:$Addr), (HexagonVALIGNADDR node:$Addr)>;
108
109// Pattern fragments to extract the low and high subregisters from a
110// 64-bit value.
111def LoReg: OutPatFrag<(ops node:$Rs), (EXTRACT_SUBREG (i64 $Rs), isub_lo)>;
112def HiReg: OutPatFrag<(ops node:$Rs), (EXTRACT_SUBREG (i64 $Rs), isub_hi)>;
113
114def IsOrAdd: PatFrag<(ops node:$A, node:$B), (or node:$A, node:$B), [{
115  return isOrEquivalentToAdd(N);
116}]>;
117
118def IsPow2_32: PatLeaf<(i32 imm), [{
119  uint32_t V = N->getZExtValue();
120  return isPowerOf2_32(V);
121}]>;
122
123def IsPow2_64: PatLeaf<(i64 imm), [{
124  uint64_t V = N->getZExtValue();
125  return isPowerOf2_64(V);
126}]>;
127
128def IsNPow2_32: PatLeaf<(i32 imm), [{
129  uint32_t NV = ~N->getZExtValue();
130  return isPowerOf2_32(NV);
131}]>;
132
133def IsPow2_64L: PatLeaf<(i64 imm), [{
134  uint64_t V = N->getZExtValue();
135  return isPowerOf2_64(V) && Log2_64(V) < 32;
136}]>;
137
138def IsPow2_64H: PatLeaf<(i64 imm), [{
139  uint64_t V = N->getZExtValue();
140  return isPowerOf2_64(V) && Log2_64(V) >= 32;
141}]>;
142
143def IsNPow2_64L: PatLeaf<(i64 imm), [{
144  uint64_t NV = ~N->getZExtValue();
145  return isPowerOf2_64(NV) && Log2_64(NV) < 32;
146}]>;
147
148def IsNPow2_64H: PatLeaf<(i64 imm), [{
149  uint64_t NV = ~N->getZExtValue();
150  return isPowerOf2_64(NV) && Log2_64(NV) >= 32;
151}]>;
152
153class IsULE<int Width, int Arg>: PatLeaf<(i32 imm),
154  "uint64_t V = N->getZExtValue();" #
155  "return isUInt<" # Width # ">(V) && V <= " # Arg # ";"
156>;
157
158class IsUGT<int Width, int Arg>: PatLeaf<(i32 imm),
159  "uint64_t V = N->getZExtValue();" #
160  "return isUInt<" # Width # ">(V) && V > " # Arg # ";"
161>;
162
163def SDEC1: SDNodeXForm<imm, [{
164  int32_t V = N->getSExtValue();
165  return CurDAG->getTargetConstant(V-1, SDLoc(N), MVT::i32);
166}]>;
167
168def UDEC1: SDNodeXForm<imm, [{
169  uint32_t V = N->getZExtValue();
170  assert(V >= 1);
171  return CurDAG->getTargetConstant(V-1, SDLoc(N), MVT::i32);
172}]>;
173
174def UDEC32: SDNodeXForm<imm, [{
175  uint32_t V = N->getZExtValue();
176  assert(V >= 32);
177  return CurDAG->getTargetConstant(V-32, SDLoc(N), MVT::i32);
178}]>;
179
180class Subi<int From>: SDNodeXForm<imm,
181  "int32_t V = " # From # " - N->getSExtValue();" #
182  "return CurDAG->getTargetConstant(V, SDLoc(N), MVT::i32);"
183>;
184
185def Log2_32: SDNodeXForm<imm, [{
186  uint32_t V = N->getZExtValue();
187  return CurDAG->getTargetConstant(Log2_32(V), SDLoc(N), MVT::i32);
188}]>;
189
190def Log2_64: SDNodeXForm<imm, [{
191  uint64_t V = N->getZExtValue();
192  return CurDAG->getTargetConstant(Log2_64(V), SDLoc(N), MVT::i32);
193}]>;
194
195def LogN2_32: SDNodeXForm<imm, [{
196  uint32_t NV = ~N->getZExtValue();
197  return CurDAG->getTargetConstant(Log2_32(NV), SDLoc(N), MVT::i32);
198}]>;
199
200def LogN2_64: SDNodeXForm<imm, [{
201  uint64_t NV = ~N->getZExtValue();
202  return CurDAG->getTargetConstant(Log2_64(NV), SDLoc(N), MVT::i32);
203}]>;
204
205def NegImm8: SDNodeXForm<imm, [{
206  int8_t NV = -N->getSExtValue();
207  return CurDAG->getTargetConstant(NV, SDLoc(N), MVT::i32);
208}]>;
209
210def NegImm16: SDNodeXForm<imm, [{
211  int16_t NV = -N->getSExtValue();
212  return CurDAG->getTargetConstant(NV, SDLoc(N), MVT::i32);
213}]>;
214
215def NegImm32: SDNodeXForm<imm, [{
216  int32_t NV = -N->getSExtValue();
217  return CurDAG->getTargetConstant(NV, SDLoc(N), MVT::i32);
218}]>;
219
220def SplatB: SDNodeXForm<imm, [{
221  uint32_t V = N->getZExtValue();
222  assert(isUInt<8>(V) || V >> 8 == 0xFFFFFF);
223  V &= 0xFF;
224  uint32_t S = V << 24 | V << 16 | V << 8 | V;
225  return CurDAG->getTargetConstant(S, SDLoc(N), MVT::i32);
226}]>;
227
228def SplatH: SDNodeXForm<imm, [{
229  uint32_t V = N->getZExtValue();
230  assert(isUInt<16>(V) || V >> 16 == 0xFFFF);
231  V &= 0xFFFF;
232  return CurDAG->getTargetConstant(V << 16 | V, SDLoc(N), MVT::i32);
233}]>;
234
235
236// Helpers for type promotions/contractions.
237def I1toI32:  OutPatFrag<(ops node:$Rs), (C2_muxii (i1 $Rs), 1, 0)>;
238def I32toI1:  OutPatFrag<(ops node:$Rs), (i1 (C2_cmpgtui (i32 $Rs), (i32 0)))>;
239def ToZext64: OutPatFrag<(ops node:$Rs), (i64 (A4_combineir 0, (i32 $Rs)))>;
240def ToSext64: OutPatFrag<(ops node:$Rs), (i64 (A2_sxtw (i32 $Rs)))>;
241def ToAext64: OutPatFrag<(ops node:$Rs),
242  (REG_SEQUENCE DoubleRegs, (i32 (IMPLICIT_DEF)), isub_hi, (i32 $Rs), isub_lo)>;
243
244def Combinew: OutPatFrag<(ops node:$Rs, node:$Rt),
245  (REG_SEQUENCE DoubleRegs, $Rs, isub_hi, $Rt, isub_lo)>;
246
247def addrga: PatLeaf<(i32 AddrGA:$Addr)>;
248def addrgp: PatLeaf<(i32 AddrGP:$Addr)>;
249def anyimm: PatLeaf<(i32 AnyImm:$Imm)>;
250def anyint: PatLeaf<(i32 AnyInt:$Imm)>;
251
252// Global address or an aligned constant.
253def anyimm0: PatLeaf<(i32 AnyImm0:$Addr)>;
254def anyimm1: PatLeaf<(i32 AnyImm1:$Addr)>;
255def anyimm2: PatLeaf<(i32 AnyImm2:$Addr)>;
256def anyimm3: PatLeaf<(i32 AnyImm3:$Addr)>;
257
258def f32ImmPred : PatLeaf<(f32 fpimm:$F)>;
259def f64ImmPred : PatLeaf<(f64 fpimm:$F)>;
260def f32zero: PatLeaf<(f32 fpimm:$F), [{
261  return N->isExactlyValue(APFloat::getZero(APFloat::IEEEsingle(), false));
262}]>;
263
264// This complex pattern is really only to detect various forms of
265// sign-extension i32->i64. The selected value will be of type i64
266// whose low word is the value being extended. The high word is
267// unspecified.
268def Usxtw:  ComplexPattern<i64, 1, "DetectUseSxtw", [], []>;
269
270def Aext64: PatFrag<(ops node:$Rs), (i64 (anyext node:$Rs))>;
271def Zext64: PatFrag<(ops node:$Rs), (i64 (zext node:$Rs))>;
272def Sext64: PatLeaf<(i64 Usxtw:$Rs)>;
273
274def azext: PatFrags<(ops node:$Rs), [(zext node:$Rs), (anyext node:$Rs)]>;
275def asext: PatFrags<(ops node:$Rs), [(sext node:$Rs), (anyext node:$Rs)]>;
276
277def: Pat<(IsOrAdd (i32 AddrFI:$Rs), s32_0ImmPred:$off),
278         (PS_fi (i32 AddrFI:$Rs), imm:$off)>;
279
280
281// Converters from unary/binary SDNode to PatFrag.
282class pf1<SDNode Op> : PatFrag<(ops node:$a), (Op node:$a)>;
283class pf2<SDNode Op> : PatFrag<(ops node:$a, node:$b), (Op node:$a, node:$b)>;
284
285class Not2<PatFrag P>
286  : PatFrag<(ops node:$A, node:$B), (P node:$A, (not node:$B))>;
287class VNot2<PatFrag P, PatFrag Not>
288  : PatFrag<(ops node:$A, node:$B), (P node:$A, (Not node:$B))>;
289
290// If there is a constant operand that feeds the and/or instruction,
291// do not generate the compound instructions.
292// It is not always profitable, as some times we end up with a transfer.
293// Check the below example.
294// ra = #65820; rb = lsr(rb, #8); rc ^= and (rb, ra)
295// Instead this is preferable.
296// ra = and (#65820, lsr(ra, #8)); rb = xor(rb, ra)
297class Su_ni1<PatFrag Op>
298  : PatFrag<Op.Operands, !head(Op.Fragments), [{
299            if (hasOneUse(N)){
300              // Check if Op1 is an immediate operand.
301              SDValue Op1 = N->getOperand(1);
302              return !isa<ConstantSDNode>(Op1);
303            }
304            return false;}],
305            Op.OperandTransform>;
306
307class Su<PatFrag Op>
308  : PatFrag<Op.Operands, !head(Op.Fragments), [{ return hasOneUse(N); }],
309            Op.OperandTransform>;
310
311// Main selection macros.
312
313class OpR_R_pat<InstHexagon MI, PatFrag Op, ValueType ResVT, PatFrag RegPred>
314  : Pat<(ResVT (Op RegPred:$Rs)), (MI RegPred:$Rs)>;
315
316class OpR_RI_pat<InstHexagon MI, PatFrag Op, ValueType ResType,
317                 PatFrag RegPred, PatFrag ImmPred>
318  : Pat<(ResType (Op RegPred:$Rs, ImmPred:$I)),
319        (MI RegPred:$Rs, imm:$I)>;
320
321class OpR_RR_pat<InstHexagon MI, PatFrag Op, ValueType ResType,
322                 PatFrag RsPred, PatFrag RtPred = RsPred>
323  : Pat<(ResType (Op RsPred:$Rs, RtPred:$Rt)),
324        (MI RsPred:$Rs, RtPred:$Rt)>;
325
326class AccRRI_pat<InstHexagon MI, PatFrag AccOp, PatFrag Op,
327                 PatFrag RegPred, PatFrag ImmPred>
328  : Pat<(AccOp RegPred:$Rx, (Op RegPred:$Rs, ImmPred:$I)),
329        (MI RegPred:$Rx, RegPred:$Rs, imm:$I)>;
330
331class AccRRR_pat<InstHexagon MI, PatFrag AccOp, PatFrag Op,
332                 PatFrag RxPred, PatFrag RsPred, PatFrag RtPred>
333  : Pat<(AccOp RxPred:$Rx, (Op RsPred:$Rs, RtPred:$Rt)),
334        (MI RxPred:$Rx, RsPred:$Rs, RtPred:$Rt)>;
335
336multiclass SelMinMax_pats<PatFrag CmpOp, PatFrag Val,
337                          InstHexagon InstA, InstHexagon InstB> {
338  def: Pat<(select (i1 (CmpOp Val:$A, Val:$B)), Val:$A, Val:$B),
339           (InstA Val:$A, Val:$B)>;
340  def: Pat<(select (i1 (CmpOp Val:$A, Val:$B)), Val:$B, Val:$A),
341           (InstB Val:$A, Val:$B)>;
342}
343
344multiclass MinMax_pats<InstHexagon PickT, InstHexagon PickS,
345                       SDPatternOperator Sel, SDPatternOperator CmpOp,
346                       ValueType CmpType, PatFrag CmpPred> {
347  def: Pat<(Sel (CmpType (CmpOp CmpPred:$Vs, CmpPred:$Vt)),
348                CmpPred:$Vt, CmpPred:$Vs),
349           (PickT CmpPred:$Vs, CmpPred:$Vt)>;
350  def: Pat<(Sel (CmpType (CmpOp CmpPred:$Vs, CmpPred:$Vt)),
351                CmpPred:$Vs, CmpPred:$Vt),
352           (PickS CmpPred:$Vs, CmpPred:$Vt)>;
353}
354
355// Bitcasts between same-size vector types are no-ops, except for the
356// actual type change.
357multiclass NopCast_pat<ValueType Ty1, ValueType Ty2, RegisterClass RC> {
358  def: Pat<(Ty1 (bitconvert (Ty2 RC:$Val))), (Ty1 RC:$Val)>;
359  def: Pat<(Ty2 (bitconvert (Ty1 RC:$Val))), (Ty2 RC:$Val)>;
360}
361
362// Frags for commonly used SDNodes.
363def Add: pf2<add>;    def And: pf2<and>;    def Sra: pf2<sra>;
364def Sub: pf2<sub>;    def Or:  pf2<or>;     def Srl: pf2<srl>;
365def Mul: pf2<mul>;    def Xor: pf2<xor>;    def Shl: pf2<shl>;
366
367def Smin: pf2<smin>;  def Smax: pf2<smax>;
368def Umin: pf2<umin>;  def Umax: pf2<umax>;
369
370def Rol: pf2<rotl>;
371
372def Fptosi: pf1<fp_to_sint>;
373def Fptoui: pf1<fp_to_uint>;
374def Sitofp: pf1<sint_to_fp>;
375def Uitofp: pf1<uint_to_fp>;
376
377
378// --(1) Immediate -------------------------------------------------------
379//
380
381def Imm64Lo: SDNodeXForm<imm, [{
382  return CurDAG->getTargetConstant(int32_t (N->getSExtValue()),
383                                   SDLoc(N), MVT::i32);
384}]>;
385def Imm64Hi: SDNodeXForm<imm, [{
386  return CurDAG->getTargetConstant(int32_t (N->getSExtValue()>>32),
387                                   SDLoc(N), MVT::i32);
388}]>;
389
390
391def SDTHexagonCONST32
392  : SDTypeProfile<1, 1, [SDTCisVT<0, i32>, SDTCisVT<1, i32>, SDTCisPtrTy<0>]>;
393
394def HexagonJT:          SDNode<"HexagonISD::JT",          SDTIntUnaryOp>;
395def HexagonCP:          SDNode<"HexagonISD::CP",          SDTIntUnaryOp>;
396def HexagonCONST32:     SDNode<"HexagonISD::CONST32",     SDTHexagonCONST32>;
397def HexagonCONST32_GP:  SDNode<"HexagonISD::CONST32_GP",  SDTHexagonCONST32>;
398
399def TruncI64ToI32: SDNodeXForm<imm, [{
400  return CurDAG->getTargetConstant(N->getSExtValue(), SDLoc(N), MVT::i32);
401}]>;
402
403def: Pat<(s32_0ImmPred:$s16), (A2_tfrsi imm:$s16)>;
404def: Pat<(s8_0Imm64Pred:$s8), (A2_tfrpi (TruncI64ToI32 $s8))>;
405
406def: Pat<(HexagonCONST32    tglobaltlsaddr:$A), (A2_tfrsi imm:$A)>;
407def: Pat<(HexagonCONST32    bbl:$A),            (A2_tfrsi imm:$A)>;
408def: Pat<(HexagonCONST32    tglobaladdr:$A),    (A2_tfrsi imm:$A)>;
409def: Pat<(HexagonCONST32_GP tblockaddress:$A),  (A2_tfrsi imm:$A)>;
410def: Pat<(HexagonCONST32_GP tglobaladdr:$A),    (A2_tfrsi imm:$A)>;
411def: Pat<(HexagonJT         tjumptable:$A),     (A2_tfrsi imm:$A)>;
412def: Pat<(HexagonCP         tconstpool:$A),     (A2_tfrsi imm:$A)>;
413// The HVX load patterns also match CP directly. Make sure that if
414// the selection of this opcode changes, it's updated in all places.
415
416def: Pat<(i1 0),        (PS_false)>;
417def: Pat<(i1 1),        (PS_true)>;
418def: Pat<(i64 imm:$v),  (CONST64 imm:$v)>,
419     Requires<[UseSmallData,NotOptTinyCore]>;
420def: Pat<(i64 imm:$v),
421         (Combinew (A2_tfrsi (Imm64Hi $v)), (A2_tfrsi (Imm64Lo $v)))>;
422
423def ftoi : SDNodeXForm<fpimm, [{
424  APInt I = N->getValueAPF().bitcastToAPInt();
425  return CurDAG->getTargetConstant(I.getZExtValue(), SDLoc(N),
426                                   MVT::getIntegerVT(I.getBitWidth()));
427}]>;
428
429def: Pat<(f32ImmPred:$f), (A2_tfrsi (ftoi $f))>;
430def: Pat<(f64ImmPred:$f), (CONST64  (ftoi $f))>;
431
432def ToI32: OutPatFrag<(ops node:$V), (A2_tfrsi $V)>;
433
434// --(2) Type cast -------------------------------------------------------
435//
436
437def: OpR_R_pat<F2_conv_sf2df,      pf1<fpextend>,   f64, F32>;
438def: OpR_R_pat<F2_conv_df2sf,      pf1<fpround>,    f32, F64>;
439
440def: OpR_R_pat<F2_conv_w2sf,       pf1<sint_to_fp>, f32, I32>;
441def: OpR_R_pat<F2_conv_d2sf,       pf1<sint_to_fp>, f32, I64>;
442def: OpR_R_pat<F2_conv_w2df,       pf1<sint_to_fp>, f64, I32>;
443def: OpR_R_pat<F2_conv_d2df,       pf1<sint_to_fp>, f64, I64>;
444
445def: OpR_R_pat<F2_conv_uw2sf,      pf1<uint_to_fp>, f32, I32>;
446def: OpR_R_pat<F2_conv_ud2sf,      pf1<uint_to_fp>, f32, I64>;
447def: OpR_R_pat<F2_conv_uw2df,      pf1<uint_to_fp>, f64, I32>;
448def: OpR_R_pat<F2_conv_ud2df,      pf1<uint_to_fp>, f64, I64>;
449
450def: OpR_R_pat<F2_conv_sf2w_chop,  pf1<fp_to_sint>, i32, F32>;
451def: OpR_R_pat<F2_conv_df2w_chop,  pf1<fp_to_sint>, i32, F64>;
452def: OpR_R_pat<F2_conv_sf2d_chop,  pf1<fp_to_sint>, i64, F32>;
453def: OpR_R_pat<F2_conv_df2d_chop,  pf1<fp_to_sint>, i64, F64>;
454
455def: OpR_R_pat<F2_conv_sf2uw_chop, pf1<fp_to_uint>, i32, F32>;
456def: OpR_R_pat<F2_conv_df2uw_chop, pf1<fp_to_uint>, i32, F64>;
457def: OpR_R_pat<F2_conv_sf2ud_chop, pf1<fp_to_uint>, i64, F32>;
458def: OpR_R_pat<F2_conv_df2ud_chop, pf1<fp_to_uint>, i64, F64>;
459
460// Bitcast is different than [fp|sint|uint]_to_[sint|uint|fp].
461def: Pat<(i32 (bitconvert F32:$v)), (I32:$v)>;
462def: Pat<(f32 (bitconvert I32:$v)), (F32:$v)>;
463def: Pat<(i64 (bitconvert F64:$v)), (I64:$v)>;
464def: Pat<(f64 (bitconvert I64:$v)), (F64:$v)>;
465
466// Bit convert 32- and 64-bit types.
467// All of these are bitcastable to one another: i32, v2i16, v4i8.
468defm: NopCast_pat<i32,   v2i16, IntRegs>;
469defm: NopCast_pat<i32,    v4i8, IntRegs>;
470defm: NopCast_pat<v2i16,  v4i8, IntRegs>;
471// All of these are bitcastable to one another: i64, v2i32, v4i16, v8i8.
472defm: NopCast_pat<i64,   v2i32, DoubleRegs>;
473defm: NopCast_pat<i64,   v4i16, DoubleRegs>;
474defm: NopCast_pat<i64,    v8i8, DoubleRegs>;
475defm: NopCast_pat<v2i32, v4i16, DoubleRegs>;
476defm: NopCast_pat<v2i32,  v8i8, DoubleRegs>;
477defm: NopCast_pat<v4i16,  v8i8, DoubleRegs>;
478
479
480// --(3) Extend/truncate -------------------------------------------------
481//
482
483def: Pat<(sext_inreg I32:$Rs, i8),  (A2_sxtb I32:$Rs)>;
484def: Pat<(sext_inreg I32:$Rs, i16), (A2_sxth I32:$Rs)>;
485def: Pat<(sext_inreg I64:$Rs, i32), (A2_sxtw (LoReg $Rs))>;
486def: Pat<(sext_inreg I64:$Rs, i16), (A2_sxtw (A2_sxth (LoReg $Rs)))>;
487def: Pat<(sext_inreg I64:$Rs, i8),  (A2_sxtw (A2_sxtb (LoReg $Rs)))>;
488
489def: Pat<(i64 (sext I32:$Rs)), (A2_sxtw I32:$Rs)>;
490def: Pat<(Zext64 I32:$Rs),     (ToZext64 $Rs)>;
491def: Pat<(Aext64 I32:$Rs),     (ToZext64 $Rs)>;
492
493def: Pat<(i32 (trunc I64:$Rs)), (LoReg $Rs)>;
494def: Pat<(i1 (trunc I32:$Rs)),  (S2_tstbit_i I32:$Rs, 0)>;
495def: Pat<(i1 (trunc I64:$Rs)),  (S2_tstbit_i (LoReg $Rs), 0)>;
496
497let AddedComplexity = 20 in {
498  def: Pat<(and I32:$Rs, 255),   (A2_zxtb I32:$Rs)>;
499  def: Pat<(and I32:$Rs, 65535), (A2_zxth I32:$Rs)>;
500}
501
502// Extensions from i1 or vectors of i1.
503def: Pat<(i32 (azext I1:$Pu)), (C2_muxii I1:$Pu, 1, 0)>;
504def: Pat<(i64 (azext I1:$Pu)), (ToZext64 (C2_muxii I1:$Pu, 1, 0))>;
505def: Pat<(i32  (sext I1:$Pu)), (C2_muxii I1:$Pu, -1, 0)>;
506def: Pat<(i64  (sext I1:$Pu)), (Combinew (C2_muxii PredRegs:$Pu, -1, 0),
507                                         (C2_muxii PredRegs:$Pu, -1, 0))>;
508
509def: Pat<(v2i16 (sext V2I1:$Pu)), (S2_vtrunehb (C2_mask V2I1:$Pu))>;
510def: Pat<(v2i32 (sext V2I1:$Pu)), (C2_mask V2I1:$Pu)>;
511def: Pat<(v4i8  (sext V4I1:$Pu)), (S2_vtrunehb (C2_mask V4I1:$Pu))>;
512def: Pat<(v4i16 (sext V4I1:$Pu)), (C2_mask V4I1:$Pu)>;
513def: Pat<(v8i8  (sext V8I1:$Pu)), (C2_mask V8I1:$Pu)>;
514
515def Vsplatpi: OutPatFrag<(ops node:$V),
516                         (Combinew (A2_tfrsi $V), (A2_tfrsi $V))>;
517
518def: Pat<(v2i16 (azext V2I1:$Pu)),
519         (A2_andir (LoReg (C2_mask V2I1:$Pu)), (i32 0x00010001))>;
520def: Pat<(v2i32 (azext V2I1:$Pu)),
521         (A2_andp (C2_mask V2I1:$Pu), (A2_combineii (i32 1), (i32 1)))>;
522def: Pat<(v4i8 (azext V4I1:$Pu)),
523         (A2_andir (LoReg (C2_mask V4I1:$Pu)), (i32 0x01010101))>;
524def: Pat<(v4i16 (azext V4I1:$Pu)),
525         (A2_andp (C2_mask V4I1:$Pu), (Vsplatpi (i32 0x00010001)))>;
526def: Pat<(v8i8 (azext V8I1:$Pu)),
527         (A2_andp (C2_mask V8I1:$Pu), (Vsplatpi (i32 0x01010101)))>;
528
529def: Pat<(v4i16 (azext  V4I8:$Rs)),  (S2_vzxtbh V4I8:$Rs)>;
530def: Pat<(v2i32 (azext  V2I16:$Rs)), (S2_vzxthw V2I16:$Rs)>;
531def: Pat<(v4i16 (sext   V4I8:$Rs)),  (S2_vsxtbh V4I8:$Rs)>;
532def: Pat<(v2i32 (sext   V2I16:$Rs)), (S2_vsxthw V2I16:$Rs)>;
533
534def: Pat<(v2i32 (sext_inreg V2I32:$Rs, v2i8)),
535         (Combinew (A2_sxtb (HiReg $Rs)), (A2_sxtb (LoReg $Rs)))>;
536
537def: Pat<(v2i32 (sext_inreg V2I32:$Rs, v2i16)),
538         (Combinew (A2_sxth (HiReg $Rs)), (A2_sxth (LoReg $Rs)))>;
539
540// Truncate: from vector B copy all 'E'ven 'B'yte elements:
541// A[0] = B[0];  A[1] = B[2];  A[2] = B[4];  A[3] = B[6];
542def: Pat<(v4i8 (trunc V4I16:$Rs)),
543         (S2_vtrunehb V4I16:$Rs)>;
544
545// Truncate: from vector B copy all 'O'dd 'B'yte elements:
546// A[0] = B[1];  A[1] = B[3];  A[2] = B[5];  A[3] = B[7];
547// S2_vtrunohb
548
549// Truncate: from vectors B and C copy all 'E'ven 'H'alf-word elements:
550// A[0] = B[0];  A[1] = B[2];  A[2] = C[0];  A[3] = C[2];
551// S2_vtruneh
552
553def: Pat<(v2i16 (trunc V2I32:$Rs)),
554         (A2_combine_ll (HiReg $Rs), (LoReg $Rs))>;
555
556
557// --(4) Logical ---------------------------------------------------------
558//
559
560def: Pat<(not I1:$Ps),      (C2_not I1:$Ps)>;
561def: Pat<(pnot V2I1:$Ps),   (C2_not V2I1:$Ps)>;
562def: Pat<(pnot V4I1:$Ps),   (C2_not V4I1:$Ps)>;
563def: Pat<(pnot V8I1:$Ps),   (C2_not V8I1:$Ps)>;
564def: Pat<(add I1:$Ps, -1),  (C2_not I1:$Ps)>;
565
566def: OpR_RR_pat<C2_and,         And, i1, I1>;
567def: OpR_RR_pat<C2_or,           Or, i1, I1>;
568def: OpR_RR_pat<C2_xor,         Xor, i1, I1>;
569def: OpR_RR_pat<C2_andn,  Not2<And>, i1, I1>;
570def: OpR_RR_pat<C2_orn,    Not2<Or>, i1, I1>;
571
572def: AccRRR_pat<C4_and_and,   And,       Su<And>, I1, I1, I1>;
573def: AccRRR_pat<C4_and_or,    And,       Su< Or>, I1, I1, I1>;
574def: AccRRR_pat<C4_or_and,     Or,       Su<And>, I1, I1, I1>;
575def: AccRRR_pat<C4_or_or,      Or,       Su< Or>, I1, I1, I1>;
576def: AccRRR_pat<C4_and_andn,  And, Su<Not2<And>>, I1, I1, I1>;
577def: AccRRR_pat<C4_and_orn,   And, Su<Not2< Or>>, I1, I1, I1>;
578def: AccRRR_pat<C4_or_andn,    Or, Su<Not2<And>>, I1, I1, I1>;
579def: AccRRR_pat<C4_or_orn,     Or, Su<Not2< Or>>, I1, I1, I1>;
580
581multiclass BoolvOpR_RR_pat<InstHexagon MI, PatFrag VOp> {
582  def: OpR_RR_pat<MI, VOp, v2i1, V2I1>;
583  def: OpR_RR_pat<MI, VOp, v4i1, V4I1>;
584  def: OpR_RR_pat<MI, VOp, v8i1, V8I1>;
585}
586
587multiclass BoolvAccRRR_pat<InstHexagon MI, PatFrag AccOp, PatFrag VOp> {
588  def: AccRRR_pat<MI, AccOp, VOp, V2I1, V2I1, V2I1>;
589  def: AccRRR_pat<MI, AccOp, VOp, V4I1, V4I1, V4I1>;
590  def: AccRRR_pat<MI, AccOp, VOp, V8I1, V8I1, V8I1>;
591}
592
593defm: BoolvOpR_RR_pat<C2_and,                    And>;
594defm: BoolvOpR_RR_pat<C2_or,                      Or>;
595defm: BoolvOpR_RR_pat<C2_xor,                    Xor>;
596defm: BoolvOpR_RR_pat<C2_andn,      VNot2<And, pnot>>;
597defm: BoolvOpR_RR_pat<C2_orn,       VNot2< Or, pnot>>;
598
599// op(Ps, op(Pt, Pu))
600defm: BoolvAccRRR_pat<C4_and_and,   And, Su<And>>;
601defm: BoolvAccRRR_pat<C4_and_or,    And, Su<Or>>;
602defm: BoolvAccRRR_pat<C4_or_and,    Or,  Su<And>>;
603defm: BoolvAccRRR_pat<C4_or_or,     Or,  Su<Or>>;
604
605// op(Ps, op(Pt, !Pu))
606defm: BoolvAccRRR_pat<C4_and_andn,  And, Su<VNot2<And, pnot>>>;
607defm: BoolvAccRRR_pat<C4_and_orn,   And, Su<VNot2< Or, pnot>>>;
608defm: BoolvAccRRR_pat<C4_or_andn,   Or,  Su<VNot2<And, pnot>>>;
609defm: BoolvAccRRR_pat<C4_or_orn,    Or,  Su<VNot2< Or, pnot>>>;
610
611
612// --(5) Compare ---------------------------------------------------------
613//
614
615// Avoid negated comparisons, i.e. those of form "Pd = !cmp(...)".
616// These cannot form compounds (e.g. J4_cmpeqi_tp0_jump_nt).
617
618def: OpR_RI_pat<C2_cmpeqi,    seteq,          i1, I32,  anyimm>;
619def: OpR_RI_pat<C2_cmpgti,    setgt,          i1, I32,  anyimm>;
620def: OpR_RI_pat<C2_cmpgtui,   setugt,         i1, I32,  anyimm>;
621
622def: Pat<(i1 (setge I32:$Rs, s32_0ImmPred:$s10)),
623         (C2_cmpgti I32:$Rs, (SDEC1 imm:$s10))>;
624def: Pat<(i1 (setuge I32:$Rs, u32_0ImmPred:$u9)),
625         (C2_cmpgtui I32:$Rs, (UDEC1 imm:$u9))>;
626
627def: Pat<(i1 (setlt I32:$Rs, s32_0ImmPred:$s10)),
628         (C2_not (C2_cmpgti I32:$Rs, (SDEC1 imm:$s10)))>;
629def: Pat<(i1 (setult I32:$Rs, u32_0ImmPred:$u9)),
630         (C2_not (C2_cmpgtui I32:$Rs, (UDEC1 imm:$u9)))>;
631
632// Patfrag to convert the usual comparison patfrags (e.g. setlt) to ones
633// that reverse the order of the operands.
634class RevCmp<PatFrag F>
635  : PatFrag<(ops node:$rhs, node:$lhs), !head(F.Fragments), F.PredicateCode,
636            F.OperandTransform>;
637
638def: OpR_RR_pat<C2_cmpeq,     seteq,          i1,   I32>;
639def: OpR_RR_pat<C2_cmpgt,     setgt,          i1,   I32>;
640def: OpR_RR_pat<C2_cmpgtu,    setugt,         i1,   I32>;
641def: OpR_RR_pat<C2_cmpgt,     RevCmp<setlt>,  i1,   I32>;
642def: OpR_RR_pat<C2_cmpgtu,    RevCmp<setult>, i1,   I32>;
643def: OpR_RR_pat<C2_cmpeqp,    seteq,          i1,   I64>;
644def: OpR_RR_pat<C2_cmpgtp,    setgt,          i1,   I64>;
645def: OpR_RR_pat<C2_cmpgtup,   setugt,         i1,   I64>;
646def: OpR_RR_pat<C2_cmpgtp,    RevCmp<setlt>,  i1,   I64>;
647def: OpR_RR_pat<C2_cmpgtup,   RevCmp<setult>, i1,   I64>;
648def: OpR_RR_pat<A2_vcmpbeq,   seteq,          i1,   V8I8>;
649def: OpR_RR_pat<A2_vcmpbeq,   seteq,          v8i1, V8I8>;
650def: OpR_RR_pat<A4_vcmpbgt,   RevCmp<setlt>,  i1,   V8I8>;
651def: OpR_RR_pat<A4_vcmpbgt,   RevCmp<setlt>,  v8i1, V8I8>;
652def: OpR_RR_pat<A4_vcmpbgt,   setgt,          i1,   V8I8>;
653def: OpR_RR_pat<A4_vcmpbgt,   setgt,          v8i1, V8I8>;
654def: OpR_RR_pat<A2_vcmpbgtu,  RevCmp<setult>, i1,   V8I8>;
655def: OpR_RR_pat<A2_vcmpbgtu,  RevCmp<setult>, v8i1, V8I8>;
656def: OpR_RR_pat<A2_vcmpbgtu,  setugt,         i1,   V8I8>;
657def: OpR_RR_pat<A2_vcmpbgtu,  setugt,         v8i1, V8I8>;
658def: OpR_RR_pat<A2_vcmpheq,   seteq,          i1,   V4I16>;
659def: OpR_RR_pat<A2_vcmpheq,   seteq,          v4i1, V4I16>;
660def: OpR_RR_pat<A2_vcmphgt,   RevCmp<setlt>,  i1,   V4I16>;
661def: OpR_RR_pat<A2_vcmphgt,   RevCmp<setlt>,  v4i1, V4I16>;
662def: OpR_RR_pat<A2_vcmphgt,   setgt,          i1,   V4I16>;
663def: OpR_RR_pat<A2_vcmphgt,   setgt,          v4i1, V4I16>;
664def: OpR_RR_pat<A2_vcmphgtu,  RevCmp<setult>, i1,   V4I16>;
665def: OpR_RR_pat<A2_vcmphgtu,  RevCmp<setult>, v4i1, V4I16>;
666def: OpR_RR_pat<A2_vcmphgtu,  setugt,         i1,   V4I16>;
667def: OpR_RR_pat<A2_vcmphgtu,  setugt,         v4i1, V4I16>;
668def: OpR_RR_pat<A2_vcmpweq,   seteq,          i1,   V2I32>;
669def: OpR_RR_pat<A2_vcmpweq,   seteq,          v2i1, V2I32>;
670def: OpR_RR_pat<A2_vcmpwgt,   RevCmp<setlt>,  i1,   V2I32>;
671def: OpR_RR_pat<A2_vcmpwgt,   RevCmp<setlt>,  v2i1, V2I32>;
672def: OpR_RR_pat<A2_vcmpwgt,   setgt,          i1,   V2I32>;
673def: OpR_RR_pat<A2_vcmpwgt,   setgt,          v2i1, V2I32>;
674def: OpR_RR_pat<A2_vcmpwgtu,  RevCmp<setult>, i1,   V2I32>;
675def: OpR_RR_pat<A2_vcmpwgtu,  RevCmp<setult>, v2i1, V2I32>;
676def: OpR_RR_pat<A2_vcmpwgtu,  setugt,         i1,   V2I32>;
677def: OpR_RR_pat<A2_vcmpwgtu,  setugt,         v2i1, V2I32>;
678
679def: OpR_RR_pat<F2_sfcmpeq,   seteq,          i1, F32>;
680def: OpR_RR_pat<F2_sfcmpgt,   setgt,          i1, F32>;
681def: OpR_RR_pat<F2_sfcmpge,   setge,          i1, F32>;
682def: OpR_RR_pat<F2_sfcmpeq,   setoeq,         i1, F32>;
683def: OpR_RR_pat<F2_sfcmpgt,   setogt,         i1, F32>;
684def: OpR_RR_pat<F2_sfcmpge,   setoge,         i1, F32>;
685def: OpR_RR_pat<F2_sfcmpgt,   RevCmp<setolt>, i1, F32>;
686def: OpR_RR_pat<F2_sfcmpge,   RevCmp<setole>, i1, F32>;
687def: OpR_RR_pat<F2_sfcmpgt,   RevCmp<setlt>,  i1, F32>;
688def: OpR_RR_pat<F2_sfcmpge,   RevCmp<setle>,  i1, F32>;
689def: OpR_RR_pat<F2_sfcmpuo,   setuo,          i1, F32>;
690
691def: OpR_RR_pat<F2_dfcmpeq,   seteq,          i1, F64>;
692def: OpR_RR_pat<F2_dfcmpgt,   setgt,          i1, F64>;
693def: OpR_RR_pat<F2_dfcmpge,   setge,          i1, F64>;
694def: OpR_RR_pat<F2_dfcmpeq,   setoeq,         i1, F64>;
695def: OpR_RR_pat<F2_dfcmpgt,   setogt,         i1, F64>;
696def: OpR_RR_pat<F2_dfcmpge,   setoge,         i1, F64>;
697def: OpR_RR_pat<F2_dfcmpgt,   RevCmp<setolt>, i1, F64>;
698def: OpR_RR_pat<F2_dfcmpge,   RevCmp<setole>, i1, F64>;
699def: OpR_RR_pat<F2_dfcmpgt,   RevCmp<setlt>,  i1, F64>;
700def: OpR_RR_pat<F2_dfcmpge,   RevCmp<setle>,  i1, F64>;
701def: OpR_RR_pat<F2_dfcmpuo,   setuo,          i1, F64>;
702
703// Avoid C4_cmpneqi, C4_cmpltei, C4_cmplteui, since they cannot form compounds.
704
705def: Pat<(i1 (setne I32:$Rs, anyimm:$u5)),
706         (C2_not (C2_cmpeqi I32:$Rs, imm:$u5))>;
707def: Pat<(i1 (setle I32:$Rs, anyimm:$u5)),
708         (C2_not (C2_cmpgti I32:$Rs, imm:$u5))>;
709def: Pat<(i1 (setule I32:$Rs, anyimm:$u5)),
710         (C2_not (C2_cmpgtui I32:$Rs, imm:$u5))>;
711
712class OpmR_RR_pat<PatFrag Output, PatFrag Op, ValueType ResType,
713                  PatFrag RsPred, PatFrag RtPred = RsPred>
714  : Pat<(ResType (Op RsPred:$Rs, RtPred:$Rt)),
715        (Output RsPred:$Rs, RtPred:$Rt)>;
716
717class Outn<InstHexagon MI>
718  : OutPatFrag<(ops node:$Rs, node:$Rt),
719               (C2_not (MI $Rs, $Rt))>;
720
721def: OpmR_RR_pat<Outn<C2_cmpeq>,    setne,          i1,   I32>;
722def: OpmR_RR_pat<Outn<C2_cmpgt>,    setle,          i1,   I32>;
723def: OpmR_RR_pat<Outn<C2_cmpgtu>,   setule,         i1,   I32>;
724def: OpmR_RR_pat<Outn<C2_cmpgt>,    RevCmp<setge>,  i1,   I32>;
725def: OpmR_RR_pat<Outn<C2_cmpgtu>,   RevCmp<setuge>, i1,   I32>;
726def: OpmR_RR_pat<Outn<C2_cmpeqp>,   setne,          i1,   I64>;
727def: OpmR_RR_pat<Outn<C2_cmpgtp>,   setle,          i1,   I64>;
728def: OpmR_RR_pat<Outn<C2_cmpgtup>,  setule,         i1,   I64>;
729def: OpmR_RR_pat<Outn<C2_cmpgtp>,   RevCmp<setge>,  i1,   I64>;
730def: OpmR_RR_pat<Outn<C2_cmpgtup>,  RevCmp<setuge>, i1,   I64>;
731def: OpmR_RR_pat<Outn<A2_vcmpbeq>,  setne,          v8i1, V8I8>;
732def: OpmR_RR_pat<Outn<A4_vcmpbgt>,  setle,          v8i1, V8I8>;
733def: OpmR_RR_pat<Outn<A2_vcmpbgtu>, setule,         v8i1, V8I8>;
734def: OpmR_RR_pat<Outn<A4_vcmpbgt>,  RevCmp<setge>,  v8i1, V8I8>;
735def: OpmR_RR_pat<Outn<A2_vcmpbgtu>, RevCmp<setuge>, v8i1, V8I8>;
736def: OpmR_RR_pat<Outn<A2_vcmpheq>,  setne,          v4i1, V4I16>;
737def: OpmR_RR_pat<Outn<A2_vcmphgt>,  setle,          v4i1, V4I16>;
738def: OpmR_RR_pat<Outn<A2_vcmphgtu>, setule,         v4i1, V4I16>;
739def: OpmR_RR_pat<Outn<A2_vcmphgt>,  RevCmp<setge>,  v4i1, V4I16>;
740def: OpmR_RR_pat<Outn<A2_vcmphgtu>, RevCmp<setuge>, v4i1, V4I16>;
741def: OpmR_RR_pat<Outn<A2_vcmpweq>,  setne,          v2i1, V2I32>;
742def: OpmR_RR_pat<Outn<A2_vcmpwgt>,  setle,          v2i1, V2I32>;
743def: OpmR_RR_pat<Outn<A2_vcmpwgtu>, setule,         v2i1, V2I32>;
744def: OpmR_RR_pat<Outn<A2_vcmpwgt>,  RevCmp<setge>,  v2i1, V2I32>;
745def: OpmR_RR_pat<Outn<A2_vcmpwgtu>, RevCmp<setuge>, v2i1, V2I32>;
746
747let AddedComplexity = 100 in {
748  def: Pat<(i1 (seteq (and (xor I32:$Rs, I32:$Rt), 255), 0)),
749           (A4_cmpbeq IntRegs:$Rs, IntRegs:$Rt)>;
750  def: Pat<(i1 (setne (and (xor I32:$Rs, I32:$Rt), 255), 0)),
751           (C2_not (A4_cmpbeq IntRegs:$Rs, IntRegs:$Rt))>;
752  def: Pat<(i1 (seteq (and (xor I32:$Rs, I32:$Rt), 65535), 0)),
753           (A4_cmpheq IntRegs:$Rs, IntRegs:$Rt)>;
754  def: Pat<(i1 (setne (and (xor I32:$Rs, I32:$Rt), 65535), 0)),
755           (C2_not (A4_cmpheq IntRegs:$Rs, IntRegs:$Rt))>;
756}
757
758// PatFrag for AsserZext which takes the original type as a parameter.
759def SDTAssertZext: SDTypeProfile<1, 2, [SDTCisInt<0>, SDTCisSameAs<0,1>]>;
760def AssertZextSD: SDNode<"ISD::AssertZext", SDTAssertZext>;
761class AssertZext<ValueType T>: PatFrag<(ops node:$A), (AssertZextSD $A, T)>;
762
763multiclass Cmpb_pat<InstHexagon MI, PatFrag Op, PatFrag AssertExt,
764                      PatLeaf ImmPred, int Mask> {
765  def: Pat<(i1 (Op (and I32:$Rs, Mask), ImmPred:$I)),
766           (MI I32:$Rs, imm:$I)>;
767  def: Pat<(i1 (Op (AssertExt I32:$Rs), ImmPred:$I)),
768           (MI I32:$Rs, imm:$I)>;
769}
770
771multiclass CmpbN_pat<InstHexagon MI, PatFrag Op, PatFrag AssertExt,
772                     PatLeaf ImmPred, int Mask> {
773  def: Pat<(i1 (Op (and I32:$Rs, Mask), ImmPred:$I)),
774           (C2_not (MI I32:$Rs, imm:$I))>;
775  def: Pat<(i1 (Op (AssertExt I32:$Rs), ImmPred:$I)),
776           (C2_not (MI I32:$Rs, imm:$I))>;
777}
778
779multiclass CmpbND_pat<InstHexagon MI, PatFrag Op, PatFrag AssertExt,
780                      PatLeaf ImmPred, int Mask> {
781  def: Pat<(i1 (Op (and I32:$Rs, Mask), ImmPred:$I)),
782           (C2_not (MI I32:$Rs, (UDEC1 imm:$I)))>;
783  def: Pat<(i1 (Op (AssertExt I32:$Rs), ImmPred:$I)),
784           (C2_not (MI I32:$Rs, (UDEC1 imm:$I)))>;
785}
786
787let AddedComplexity = 200 in {
788  defm: Cmpb_pat  <A4_cmpbeqi,  seteq,  AssertZext<i8>,  IsUGT<8,31>,  255>;
789  defm: CmpbN_pat <A4_cmpbeqi,  setne,  AssertZext<i8>,  IsUGT<8,31>,  255>;
790  defm: Cmpb_pat  <A4_cmpbgtui, setugt, AssertZext<i8>,  IsUGT<32,31>, 255>;
791  defm: CmpbN_pat <A4_cmpbgtui, setule, AssertZext<i8>,  IsUGT<32,31>, 255>;
792  defm: Cmpb_pat  <A4_cmphgtui, setugt, AssertZext<i16>, IsUGT<32,31>, 65535>;
793  defm: CmpbN_pat <A4_cmphgtui, setule, AssertZext<i16>, IsUGT<32,31>, 65535>;
794  defm: CmpbND_pat<A4_cmpbgtui, setult, AssertZext<i8>,  IsUGT<32,32>, 255>;
795  defm: CmpbND_pat<A4_cmphgtui, setult, AssertZext<i16>, IsUGT<32,32>, 65535>;
796}
797
798def: Pat<(i32 (zext (i1 (seteq I32:$Rs, I32:$Rt)))),
799         (A4_rcmpeq I32:$Rs, I32:$Rt)>;
800def: Pat<(i32 (zext (i1 (setne I32:$Rs, I32:$Rt)))),
801         (A4_rcmpneq I32:$Rs, I32:$Rt)>;
802def: Pat<(i32 (zext (i1 (seteq I32:$Rs, anyimm:$s8)))),
803         (A4_rcmpeqi I32:$Rs, imm:$s8)>;
804def: Pat<(i32 (zext (i1 (setne I32:$Rs, anyimm:$s8)))),
805         (A4_rcmpneqi I32:$Rs, imm:$s8)>;
806
807def: Pat<(i1 (seteq I1:$Ps, (i1 -1))), (I1:$Ps)>;
808def: Pat<(i1 (setne I1:$Ps, (i1 -1))), (C2_not I1:$Ps)>;
809def: Pat<(i1 (seteq I1:$Ps, I1:$Pt)),  (C2_xor I1:$Ps, (C2_not I1:$Pt))>;
810def: Pat<(i1 (setne I1:$Ps, I1:$Pt)),  (C2_xor I1:$Ps, I1:$Pt)>;
811
812// Floating-point comparisons with checks for ordered/unordered status.
813
814class T3<InstHexagon MI1, InstHexagon MI2, InstHexagon MI3>
815  : OutPatFrag<(ops node:$Rs, node:$Rt),
816               (MI1 (MI2 $Rs, $Rt), (MI3 $Rs, $Rt))>;
817
818class Cmpuf<InstHexagon MI>:  T3<C2_or,  F2_sfcmpuo, MI>;
819class Cmpud<InstHexagon MI>:  T3<C2_or,  F2_dfcmpuo, MI>;
820
821class Cmpufn<InstHexagon MI>: T3<C2_orn, F2_sfcmpuo, MI>;
822class Cmpudn<InstHexagon MI>: T3<C2_orn, F2_dfcmpuo, MI>;
823
824def: OpmR_RR_pat<Cmpuf<F2_sfcmpeq>,  setueq,         i1, F32>;
825def: OpmR_RR_pat<Cmpuf<F2_sfcmpge>,  setuge,         i1, F32>;
826def: OpmR_RR_pat<Cmpuf<F2_sfcmpgt>,  setugt,         i1, F32>;
827def: OpmR_RR_pat<Cmpuf<F2_sfcmpge>,  RevCmp<setule>, i1, F32>;
828def: OpmR_RR_pat<Cmpuf<F2_sfcmpgt>,  RevCmp<setult>, i1, F32>;
829def: OpmR_RR_pat<Cmpufn<F2_sfcmpeq>, setune,         i1, F32>;
830
831def: OpmR_RR_pat<Cmpud<F2_dfcmpeq>,  setueq,         i1, F64>;
832def: OpmR_RR_pat<Cmpud<F2_dfcmpge>,  setuge,         i1, F64>;
833def: OpmR_RR_pat<Cmpud<F2_dfcmpgt>,  setugt,         i1, F64>;
834def: OpmR_RR_pat<Cmpud<F2_dfcmpge>,  RevCmp<setule>, i1, F64>;
835def: OpmR_RR_pat<Cmpud<F2_dfcmpgt>,  RevCmp<setult>, i1, F64>;
836def: OpmR_RR_pat<Cmpudn<F2_dfcmpeq>, setune,         i1, F64>;
837
838def: OpmR_RR_pat<Outn<F2_sfcmpeq>, setone, i1, F32>;
839def: OpmR_RR_pat<Outn<F2_sfcmpeq>, setne,  i1, F32>;
840
841def: OpmR_RR_pat<Outn<F2_dfcmpeq>, setone, i1, F64>;
842def: OpmR_RR_pat<Outn<F2_dfcmpeq>, setne,  i1, F64>;
843
844def: OpmR_RR_pat<Outn<F2_sfcmpuo>, seto,   i1, F32>;
845def: OpmR_RR_pat<Outn<F2_dfcmpuo>, seto,   i1, F64>;
846
847
848// --(6) Select ----------------------------------------------------------
849//
850
851def: Pat<(select I1:$Pu, I32:$Rs, I32:$Rt),
852         (C2_mux I1:$Pu, I32:$Rs, I32:$Rt)>;
853def: Pat<(select I1:$Pu, anyimm:$s8, I32:$Rs),
854         (C2_muxri I1:$Pu, imm:$s8, I32:$Rs)>;
855def: Pat<(select I1:$Pu, I32:$Rs, anyimm:$s8),
856         (C2_muxir I1:$Pu, I32:$Rs, imm:$s8)>;
857def: Pat<(select I1:$Pu, anyimm:$s8, s8_0ImmPred:$S8),
858         (C2_muxii I1:$Pu, imm:$s8, imm:$S8)>;
859
860def: Pat<(select (not I1:$Pu), I32:$Rs, I32:$Rt),
861         (C2_mux I1:$Pu, I32:$Rt, I32:$Rs)>;
862def: Pat<(select (not I1:$Pu), s8_0ImmPred:$S8, anyimm:$s8),
863         (C2_muxii I1:$Pu, imm:$s8, imm:$S8)>;
864def: Pat<(select (not I1:$Pu), anyimm:$s8, I32:$Rs),
865         (C2_muxir I1:$Pu, I32:$Rs, imm:$s8)>;
866def: Pat<(select (not I1:$Pu), I32:$Rs, anyimm:$s8),
867         (C2_muxri I1:$Pu, imm:$s8, I32:$Rs)>;
868
869// Map from a 64-bit select to an emulated 64-bit mux.
870// Hexagon does not support 64-bit MUXes; so emulate with combines.
871def: Pat<(select I1:$Pu, I64:$Rs, I64:$Rt),
872         (Combinew (C2_mux I1:$Pu, (HiReg $Rs), (HiReg $Rt)),
873                   (C2_mux I1:$Pu, (LoReg $Rs), (LoReg $Rt)))>;
874
875def: Pat<(select I1:$Pu, F32:$Rs, f32ImmPred:$I),
876         (C2_muxir I1:$Pu, F32:$Rs, (ftoi $I))>;
877def: Pat<(select I1:$Pu, f32ImmPred:$I, F32:$Rt),
878         (C2_muxri I1:$Pu, (ftoi $I), F32:$Rt)>;
879def: Pat<(select I1:$Pu, F32:$Rs, F32:$Rt),
880         (C2_mux I1:$Pu, F32:$Rs, F32:$Rt)>;
881def: Pat<(select I1:$Pu, F64:$Rs, F64:$Rt),
882         (Combinew (C2_mux I1:$Pu, (HiReg $Rs), (HiReg $Rt)),
883                   (C2_mux I1:$Pu, (LoReg $Rs), (LoReg $Rt)))>;
884
885def: Pat<(select (i1 (setult F32:$Ra, F32:$Rb)), F32:$Rs, F32:$Rt),
886         (C2_mux (F2_sfcmpgt F32:$Rb, F32:$Ra), F32:$Rs, F32:$Rt)>;
887def: Pat<(select (i1 (setult F64:$Ra, F64:$Rb)), F64:$Rs, F64:$Rt),
888         (C2_vmux (F2_dfcmpgt F64:$Rb, F64:$Ra), F64:$Rs, F64:$Rt)>;
889
890def: Pat<(select (not I1:$Pu), f32ImmPred:$I, F32:$Rs),
891         (C2_muxir I1:$Pu, F32:$Rs, (ftoi $I))>;
892def: Pat<(select (not I1:$Pu), F32:$Rt, f32ImmPred:$I),
893         (C2_muxri I1:$Pu, (ftoi $I), F32:$Rt)>;
894
895def: Pat<(vselect V8I1:$Pu, V8I8:$Rs, V8I8:$Rt),
896         (C2_vmux V8I1:$Pu, V8I8:$Rs, V8I8:$Rt)>;
897def: Pat<(vselect V4I1:$Pu, V4I16:$Rs, V4I16:$Rt),
898         (C2_vmux V4I1:$Pu, V4I16:$Rs, V4I16:$Rt)>;
899def: Pat<(vselect V2I1:$Pu, V2I32:$Rs, V2I32:$Rt),
900         (C2_vmux V2I1:$Pu, V2I32:$Rs, V2I32:$Rt)>;
901
902def: Pat<(vselect (pnot V8I1:$Pu), V8I8:$Rs, V8I8:$Rt),
903         (C2_vmux V8I1:$Pu, V8I8:$Rt, V8I8:$Rs)>;
904def: Pat<(vselect (pnot V4I1:$Pu), V4I16:$Rs, V4I16:$Rt),
905         (C2_vmux V4I1:$Pu, V4I16:$Rt, V4I16:$Rs)>;
906def: Pat<(vselect (pnot V2I1:$Pu), V2I32:$Rs, V2I32:$Rt),
907         (C2_vmux V2I1:$Pu, V2I32:$Rt, V2I32:$Rs)>;
908
909
910// From LegalizeDAG.cpp: (Pu ? Pv : Pw) <=> (Pu & Pv) | (!Pu & Pw).
911def: Pat<(select I1:$Pu, I1:$Pv, I1:$Pw),
912         (C2_or (C2_and  I1:$Pu, I1:$Pv),
913                (C2_andn I1:$Pw, I1:$Pu))>;
914
915
916def IsPosHalf : PatLeaf<(i32 IntRegs:$a), [{
917  return isPositiveHalfWord(N);
918}]>;
919
920multiclass SelMinMax16_pats<PatFrag CmpOp, InstHexagon InstA,
921                            InstHexagon InstB> {
922  def: Pat<(sext_inreg (select (i1 (CmpOp IsPosHalf:$Rs, IsPosHalf:$Rt)),
923                               IsPosHalf:$Rs, IsPosHalf:$Rt), i16),
924           (InstA IntRegs:$Rs, IntRegs:$Rt)>;
925  def: Pat<(sext_inreg (select (i1 (CmpOp IsPosHalf:$Rs, IsPosHalf:$Rt)),
926                               IsPosHalf:$Rt, IsPosHalf:$Rs), i16),
927           (InstB IntRegs:$Rs, IntRegs:$Rt)>;
928}
929
930let AddedComplexity = 200 in {
931  defm: SelMinMax16_pats<setge,  A2_max,  A2_min>;
932  defm: SelMinMax16_pats<setgt,  A2_max,  A2_min>;
933  defm: SelMinMax16_pats<setle,  A2_min,  A2_max>;
934  defm: SelMinMax16_pats<setlt,  A2_min,  A2_max>;
935  defm: SelMinMax16_pats<setuge, A2_maxu, A2_minu>;
936  defm: SelMinMax16_pats<setugt, A2_maxu, A2_minu>;
937  defm: SelMinMax16_pats<setule, A2_minu, A2_maxu>;
938  defm: SelMinMax16_pats<setult, A2_minu, A2_maxu>;
939}
940
941def: OpR_RR_pat<A2_min,   Smin, i32, I32, I32>;
942def: OpR_RR_pat<A2_max,   Smax, i32, I32, I32>;
943def: OpR_RR_pat<A2_minu,  Umin, i32, I32, I32>;
944def: OpR_RR_pat<A2_maxu,  Umax, i32, I32, I32>;
945def: OpR_RR_pat<A2_minp,  Smin, i64, I64, I64>;
946def: OpR_RR_pat<A2_maxp,  Smax, i64, I64, I64>;
947def: OpR_RR_pat<A2_minup, Umin, i64, I64, I64>;
948def: OpR_RR_pat<A2_maxup, Umax, i64, I64, I64>;
949
950let AddedComplexity = 100 in {
951  defm: MinMax_pats<F2_sfmin, F2_sfmax, select, setogt, i1, F32>;
952  defm: MinMax_pats<F2_sfmin, F2_sfmax, select, setoge, i1, F32>;
953  defm: MinMax_pats<F2_sfmax, F2_sfmin, select, setolt, i1, F32>;
954  defm: MinMax_pats<F2_sfmax, F2_sfmin, select, setole, i1, F32>;
955}
956
957let AddedComplexity = 100, Predicates = [HasV67] in {
958  defm: MinMax_pats<F2_dfmin, F2_dfmax, select, setogt, i1, F64>;
959  defm: MinMax_pats<F2_dfmin, F2_dfmax, select, setoge, i1, F64>;
960  defm: MinMax_pats<F2_dfmax, F2_dfmin, select, setolt, i1, F64>;
961  defm: MinMax_pats<F2_dfmax, F2_dfmin, select, setole, i1, F64>;
962}
963
964def: OpR_RR_pat<A2_vminb,  Smin, v8i8,  V8I8>;
965def: OpR_RR_pat<A2_vmaxb,  Smax, v8i8,  V8I8>;
966def: OpR_RR_pat<A2_vminub, Umin, v8i8,  V8I8>;
967def: OpR_RR_pat<A2_vmaxub, Umax, v8i8,  V8I8>;
968
969def: OpR_RR_pat<A2_vminh,  Smin, v4i16, V4I16>;
970def: OpR_RR_pat<A2_vmaxh,  Smax, v4i16, V4I16>;
971def: OpR_RR_pat<A2_vminuh, Umin, v4i16, V4I16>;
972def: OpR_RR_pat<A2_vmaxuh, Umax, v4i16, V4I16>;
973
974def: OpR_RR_pat<A2_vminw,  Smin, v2i32, V2I32>;
975def: OpR_RR_pat<A2_vmaxw,  Smax, v2i32, V2I32>;
976def: OpR_RR_pat<A2_vminuw, Umin, v2i32, V2I32>;
977def: OpR_RR_pat<A2_vmaxuw, Umax, v2i32, V2I32>;
978
979// --(7) Insert/extract --------------------------------------------------
980//
981
982def SDTHexagonINSERT:
983  SDTypeProfile<1, 4, [SDTCisSameAs<0, 1>, SDTCisSameAs<0, 2>,
984                       SDTCisInt<0>, SDTCisVT<3, i32>, SDTCisVT<4, i32>]>;
985def HexagonINSERT:    SDNode<"HexagonISD::INSERT",   SDTHexagonINSERT>;
986
987let AddedComplexity = 10 in {
988  def: Pat<(HexagonINSERT I32:$Rs, I32:$Rt, u5_0ImmPred:$u1, u5_0ImmPred:$u2),
989           (S2_insert I32:$Rs, I32:$Rt, imm:$u1, imm:$u2)>;
990  def: Pat<(HexagonINSERT I64:$Rs, I64:$Rt, u6_0ImmPred:$u1, u6_0ImmPred:$u2),
991           (S2_insertp I64:$Rs, I64:$Rt, imm:$u1, imm:$u2)>;
992}
993def: Pat<(HexagonINSERT I32:$Rs, I32:$Rt, I32:$Width, I32:$Off),
994         (S2_insert_rp I32:$Rs, I32:$Rt, (Combinew $Width, $Off))>;
995def: Pat<(HexagonINSERT I64:$Rs, I64:$Rt, I32:$Width, I32:$Off),
996         (S2_insertp_rp I64:$Rs, I64:$Rt, (Combinew $Width, $Off))>;
997
998def SDTHexagonEXTRACTU
999  : SDTypeProfile<1, 3, [SDTCisSameAs<0, 1>, SDTCisInt<0>, SDTCisInt<1>,
1000                  SDTCisVT<2, i32>, SDTCisVT<3, i32>]>;
1001def HexagonEXTRACTU:   SDNode<"HexagonISD::EXTRACTU",   SDTHexagonEXTRACTU>;
1002
1003let AddedComplexity = 10 in {
1004  def: Pat<(HexagonEXTRACTU I32:$Rs, u5_0ImmPred:$u5, u5_0ImmPred:$U5),
1005           (S2_extractu I32:$Rs, imm:$u5, imm:$U5)>;
1006  def: Pat<(HexagonEXTRACTU I64:$Rs, u6_0ImmPred:$u6, u6_0ImmPred:$U6),
1007           (S2_extractup I64:$Rs, imm:$u6, imm:$U6)>;
1008}
1009def: Pat<(HexagonEXTRACTU I32:$Rs, I32:$Width, I32:$Off),
1010         (S2_extractu_rp I32:$Rs, (Combinew $Width, $Off))>;
1011def: Pat<(HexagonEXTRACTU I64:$Rs, I32:$Width, I32:$Off),
1012         (S2_extractup_rp I64:$Rs, (Combinew $Width, $Off))>;
1013
1014def: Pat<(v4i8  (splat_vector anyint:$V)), (ToI32 (SplatB $V))>;
1015def: Pat<(v2i16 (splat_vector anyint:$V)), (ToI32 (SplatH $V))>;
1016def: Pat<(v8i8  (splat_vector anyint:$V)),
1017          (Combinew (ToI32 (SplatB $V)), (ToI32 (SplatB $V)))>;
1018def: Pat<(v4i16 (splat_vector anyint:$V)),
1019          (Combinew (ToI32 (SplatH $V)), (ToI32 (SplatH $V)))>;
1020let AddedComplexity = 10 in
1021def: Pat<(v2i32 (splat_vector s8_0ImmPred:$s8)),
1022         (A2_combineii imm:$s8, imm:$s8)>;
1023def: Pat<(v2i32 (splat_vector anyimm:$V)), (Combinew (ToI32 $V), (ToI32 $V))>;
1024
1025def: Pat<(v4i8  (splat_vector I32:$Rs)), (S2_vsplatrb I32:$Rs)>;
1026def: Pat<(v2i16 (splat_vector I32:$Rs)), (LoReg (S2_vsplatrh I32:$Rs))>;
1027def: Pat<(v4i16 (splat_vector I32:$Rs)), (S2_vsplatrh I32:$Rs)>;
1028def: Pat<(v2i32 (splat_vector I32:$Rs)), (Combinew I32:$Rs, I32:$Rs)>;
1029
1030let AddedComplexity = 10 in
1031def: Pat<(v8i8 (splat_vector I32:$Rs)), (S6_vsplatrbp I32:$Rs)>,
1032     Requires<[HasV62]>;
1033def: Pat<(v8i8 (splat_vector I32:$Rs)),
1034         (Combinew (S2_vsplatrb I32:$Rs), (S2_vsplatrb I32:$Rs))>;
1035
1036
1037// --(8) Shift/permute ---------------------------------------------------
1038//
1039
1040def SDTHexagonI64I32I32: SDTypeProfile<1, 2,
1041  [SDTCisVT<0, i64>, SDTCisVT<1, i32>, SDTCisSameAs<1, 2>]>;
1042
1043def HexagonCOMBINE:  SDNode<"HexagonISD::COMBINE",  SDTHexagonI64I32I32>;
1044
1045def: Pat<(HexagonCOMBINE I32:$Rs, I32:$Rt), (Combinew $Rs, $Rt)>;
1046
1047// The complexity of the combines involving immediates should be greater
1048// than the complexity of the combine with two registers.
1049let AddedComplexity = 50 in {
1050  def: Pat<(HexagonCOMBINE I32:$Rs, anyimm:$s8),
1051           (A4_combineri IntRegs:$Rs, imm:$s8)>;
1052  def: Pat<(HexagonCOMBINE anyimm:$s8, I32:$Rs),
1053           (A4_combineir imm:$s8, IntRegs:$Rs)>;
1054}
1055
1056// The complexity of the combine with two immediates should be greater than
1057// the complexity of a combine involving a register.
1058let AddedComplexity = 75 in {
1059  def: Pat<(HexagonCOMBINE s8_0ImmPred:$s8, anyimm:$u6),
1060           (A4_combineii imm:$s8, imm:$u6)>;
1061  def: Pat<(HexagonCOMBINE anyimm:$s8, s8_0ImmPred:$S8),
1062           (A2_combineii imm:$s8, imm:$S8)>;
1063}
1064
1065def: Pat<(bswap I32:$Rs),  (A2_swiz I32:$Rs)>;
1066def: Pat<(bswap I64:$Rss), (Combinew (A2_swiz (LoReg $Rss)),
1067                                     (A2_swiz (HiReg $Rss)))>;
1068
1069def: Pat<(shl s6_0ImmPred:$s6, I32:$Rt),  (S4_lsli imm:$s6, I32:$Rt)>;
1070def: Pat<(shl I32:$Rs, (i32 16)),         (A2_aslh I32:$Rs)>;
1071def: Pat<(sra I32:$Rs, (i32 16)),         (A2_asrh I32:$Rs)>;
1072
1073def: OpR_RI_pat<S2_asr_i_r,  Sra, i32,   I32,   u5_0ImmPred>;
1074def: OpR_RI_pat<S2_lsr_i_r,  Srl, i32,   I32,   u5_0ImmPred>;
1075def: OpR_RI_pat<S2_asl_i_r,  Shl, i32,   I32,   u5_0ImmPred>;
1076def: OpR_RI_pat<S2_asr_i_p,  Sra, i64,   I64,   u6_0ImmPred>;
1077def: OpR_RI_pat<S2_lsr_i_p,  Srl, i64,   I64,   u6_0ImmPred>;
1078def: OpR_RI_pat<S2_asl_i_p,  Shl, i64,   I64,   u6_0ImmPred>;
1079def: OpR_RI_pat<S2_asr_i_vh, Sra, v4i16, V4I16, u4_0ImmPred>;
1080def: OpR_RI_pat<S2_lsr_i_vh, Srl, v4i16, V4I16, u4_0ImmPred>;
1081def: OpR_RI_pat<S2_asl_i_vh, Shl, v4i16, V4I16, u4_0ImmPred>;
1082def: OpR_RI_pat<S2_asr_i_vh, Sra, v2i32, V2I32, u5_0ImmPred>;
1083def: OpR_RI_pat<S2_lsr_i_vh, Srl, v2i32, V2I32, u5_0ImmPred>;
1084def: OpR_RI_pat<S2_asl_i_vh, Shl, v2i32, V2I32, u5_0ImmPred>;
1085
1086def: OpR_RR_pat<S2_asr_r_r, Sra, i32, I32, I32>;
1087def: OpR_RR_pat<S2_lsr_r_r, Srl, i32, I32, I32>;
1088def: OpR_RR_pat<S2_asl_r_r, Shl, i32, I32, I32>;
1089def: OpR_RR_pat<S2_asr_r_p, Sra, i64, I64, I32>;
1090def: OpR_RR_pat<S2_lsr_r_p, Srl, i64, I64, I32>;
1091def: OpR_RR_pat<S2_asl_r_p, Shl, i64, I64, I32>;
1092
1093// Funnel shifts.
1094def IsMul8_U3: PatLeaf<(i32 imm), [{
1095  uint64_t V = N->getZExtValue();
1096  return V % 8 == 0 && isUInt<3>(V / 8);
1097}]>;
1098
1099def Divu8: SDNodeXForm<imm, [{
1100  return CurDAG->getTargetConstant(N->getZExtValue() / 8, SDLoc(N), MVT::i32);
1101}]>;
1102
1103// Funnel shift-left.
1104def FShl32i: OutPatFrag<(ops node:$Rs, node:$Rt, node:$S),
1105  (HiReg (S2_asl_i_p (Combinew $Rs, $Rt), $S))>;
1106def FShl32r: OutPatFrag<(ops node:$Rs, node:$Rt, node:$Ru),
1107  (HiReg (S2_asl_r_p (Combinew $Rs, $Rt), $Ru))>;
1108
1109def FShl64i: OutPatFrag<(ops node:$Rs, node:$Rt, node:$S),
1110  (S2_lsr_i_p_or (S2_asl_i_p $Rs, $S),  $Rt, (Subi<64> $S))>;
1111def FShl64r: OutPatFrag<(ops node:$Rs, node:$Rt, node:$Ru),
1112  (S2_lsr_r_p_or (S2_asl_r_p $Rs, $Ru), $Rt, (A2_subri 64, $Ru))>;
1113
1114// Combined SDNodeXForm: (Divu8 (Subi<64> $S))
1115def Divu64_8: SDNodeXForm<imm, [{
1116  return CurDAG->getTargetConstant((64 - N->getSExtValue()) / 8,
1117                                   SDLoc(N), MVT::i32);
1118}]>;
1119
1120// Special cases:
1121let AddedComplexity = 100 in {
1122  def: Pat<(fshl I32:$Rs, I32:$Rt, (i32 16)),
1123           (A2_combine_lh I32:$Rs, I32:$Rt)>;
1124  def: Pat<(fshl I64:$Rs, I64:$Rt, IsMul8_U3:$S),
1125           (S2_valignib I64:$Rs, I64:$Rt, (Divu64_8 $S))>;
1126}
1127
1128let Predicates = [HasV60], AddedComplexity = 50 in {
1129  def: OpR_RI_pat<S6_rol_i_r, Rol, i32, I32, u5_0ImmPred>;
1130  def: OpR_RI_pat<S6_rol_i_p, Rol, i64, I64, u6_0ImmPred>;
1131}
1132let AddedComplexity = 30 in {
1133  def: Pat<(rotl I32:$Rs, u5_0ImmPred:$S),          (FShl32i $Rs, $Rs, imm:$S)>;
1134  def: Pat<(rotl I64:$Rs, u6_0ImmPred:$S),          (FShl64i $Rs, $Rs, imm:$S)>;
1135  def: Pat<(fshl I32:$Rs, I32:$Rt, u5_0ImmPred:$S), (FShl32i $Rs, $Rt, imm:$S)>;
1136  def: Pat<(fshl I64:$Rs, I64:$Rt, u6_0ImmPred:$S), (FShl64i $Rs, $Rt, imm:$S)>;
1137}
1138def: Pat<(rotl I32:$Rs, I32:$Rt),           (FShl32r $Rs, $Rs, $Rt)>;
1139def: Pat<(rotl I64:$Rs, I32:$Rt),           (FShl64r $Rs, $Rs, $Rt)>;
1140def: Pat<(fshl I32:$Rs, I32:$Rt, I32:$Ru),  (FShl32r $Rs, $Rt, $Ru)>;
1141def: Pat<(fshl I64:$Rs, I64:$Rt, I32:$Ru),  (FShl64r $Rs, $Rt, $Ru)>;
1142
1143// Funnel shift-right.
1144def FShr32i: OutPatFrag<(ops node:$Rs, node:$Rt, node:$S),
1145  (LoReg (S2_lsr_i_p (Combinew $Rs, $Rt), $S))>;
1146def FShr32r: OutPatFrag<(ops node:$Rs, node:$Rt, node:$Ru),
1147  (LoReg (S2_lsr_r_p (Combinew $Rs, $Rt), $Ru))>;
1148
1149def FShr64i: OutPatFrag<(ops node:$Rs, node:$Rt, node:$S),
1150  (S2_asl_i_p_or (S2_lsr_i_p $Rt, $S),  $Rs, (Subi<64> $S))>;
1151def FShr64r: OutPatFrag<(ops node:$Rs, node:$Rt, node:$Ru),
1152  (S2_asl_r_p_or (S2_lsr_r_p $Rt, $Ru), $Rs, (A2_subri 64, $Ru))>;
1153
1154// Special cases:
1155let AddedComplexity = 100 in {
1156  def: Pat<(fshr I32:$Rs, I32:$Rt, (i32 16)),
1157           (A2_combine_lh I32:$Rs, I32:$Rt)>;
1158  def: Pat<(fshr I64:$Rs, I64:$Rt, IsMul8_U3:$S),
1159           (S2_valignib I64:$Rs, I64:$Rt, (Divu8 $S))>;
1160}
1161
1162let Predicates = [HasV60], AddedComplexity = 50 in {
1163  def: Pat<(rotr I32:$Rs, u5_0ImmPred:$S), (S6_rol_i_r I32:$Rs, (Subi<32> $S))>;
1164  def: Pat<(rotr I64:$Rs, u6_0ImmPred:$S), (S6_rol_i_p I64:$Rs, (Subi<64> $S))>;
1165}
1166let AddedComplexity = 30 in {
1167  def: Pat<(rotr I32:$Rs, u5_0ImmPred:$S),          (FShr32i $Rs, $Rs, imm:$S)>;
1168  def: Pat<(rotr I64:$Rs, u6_0ImmPred:$S),          (FShr64i $Rs, $Rs, imm:$S)>;
1169  def: Pat<(fshr I32:$Rs, I32:$Rt, u5_0ImmPred:$S), (FShr32i $Rs, $Rt, imm:$S)>;
1170  def: Pat<(fshr I64:$Rs, I64:$Rt, u6_0ImmPred:$S), (FShr64i $Rs, $Rt, imm:$S)>;
1171}
1172def: Pat<(rotr I32:$Rs, I32:$Rt),           (FShr32r $Rs, $Rs, $Rt)>;
1173def: Pat<(rotr I64:$Rs, I32:$Rt),           (FShr64r $Rs, $Rs, $Rt)>;
1174def: Pat<(fshr I32:$Rs, I32:$Rt, I32:$Ru),  (FShr32r $Rs, $Rt, $Ru)>;
1175def: Pat<(fshr I64:$Rs, I64:$Rt, I32:$Ru),  (FShr64r $Rs, $Rt, $Ru)>;
1176
1177
1178def: Pat<(sra (add (sra I32:$Rs, u5_0ImmPred:$u5), 1), (i32 1)),
1179         (S2_asr_i_r_rnd I32:$Rs, imm:$u5)>;
1180def: Pat<(sra (add (sra I64:$Rs, u6_0ImmPred:$u6), 1), (i32 1)),
1181         (S2_asr_i_p_rnd I64:$Rs, imm:$u6)>;
1182
1183// Prefer S2_addasl_rrri over S2_asl_i_r_acc.
1184let AddedComplexity = 120 in
1185def: Pat<(add I32:$Rt, (shl I32:$Rs, u3_0ImmPred:$u3)),
1186         (S2_addasl_rrri IntRegs:$Rt, IntRegs:$Rs, imm:$u3)>;
1187
1188let AddedComplexity = 100 in {
1189  def: AccRRI_pat<S2_asr_i_r_acc,   Add, Su<Sra>, I32, u5_0ImmPred>;
1190  def: AccRRI_pat<S2_asr_i_r_nac,   Sub, Su<Sra>, I32, u5_0ImmPred>;
1191  def: AccRRI_pat<S2_asr_i_r_and,   And, Su<Sra>, I32, u5_0ImmPred>;
1192  def: AccRRI_pat<S2_asr_i_r_or,    Or,  Su<Sra>, I32, u5_0ImmPred>;
1193
1194  def: AccRRI_pat<S2_asr_i_p_acc,   Add, Su<Sra>, I64, u6_0ImmPred>;
1195  def: AccRRI_pat<S2_asr_i_p_nac,   Sub, Su<Sra>, I64, u6_0ImmPred>;
1196  def: AccRRI_pat<S2_asr_i_p_and,   And, Su<Sra>, I64, u6_0ImmPred>;
1197  def: AccRRI_pat<S2_asr_i_p_or,    Or,  Su<Sra>, I64, u6_0ImmPred>;
1198
1199  def: AccRRI_pat<S2_lsr_i_r_acc,   Add, Su<Srl>, I32, u5_0ImmPred>;
1200  def: AccRRI_pat<S2_lsr_i_r_nac,   Sub, Su<Srl>, I32, u5_0ImmPred>;
1201  def: AccRRI_pat<S2_lsr_i_r_and,   And, Su<Srl>, I32, u5_0ImmPred>;
1202  def: AccRRI_pat<S2_lsr_i_r_or,    Or,  Su<Srl>, I32, u5_0ImmPred>;
1203  def: AccRRI_pat<S2_lsr_i_r_xacc,  Xor, Su<Srl>, I32, u5_0ImmPred>;
1204
1205  def: AccRRI_pat<S2_lsr_i_p_acc,   Add, Su<Srl>, I64, u6_0ImmPred>;
1206  def: AccRRI_pat<S2_lsr_i_p_nac,   Sub, Su<Srl>, I64, u6_0ImmPred>;
1207  def: AccRRI_pat<S2_lsr_i_p_and,   And, Su<Srl>, I64, u6_0ImmPred>;
1208  def: AccRRI_pat<S2_lsr_i_p_or,    Or,  Su<Srl>, I64, u6_0ImmPred>;
1209  def: AccRRI_pat<S2_lsr_i_p_xacc,  Xor, Su<Srl>, I64, u6_0ImmPred>;
1210
1211  def: AccRRI_pat<S2_asl_i_r_acc,   Add, Su<Shl>, I32, u5_0ImmPred>;
1212  def: AccRRI_pat<S2_asl_i_r_nac,   Sub, Su<Shl>, I32, u5_0ImmPred>;
1213  def: AccRRI_pat<S2_asl_i_r_and,   And, Su<Shl>, I32, u5_0ImmPred>;
1214  def: AccRRI_pat<S2_asl_i_r_or,    Or,  Su<Shl>, I32, u5_0ImmPred>;
1215  def: AccRRI_pat<S2_asl_i_r_xacc,  Xor, Su<Shl>, I32, u5_0ImmPred>;
1216
1217  def: AccRRI_pat<S2_asl_i_p_acc,   Add, Su<Shl>, I64, u6_0ImmPred>;
1218  def: AccRRI_pat<S2_asl_i_p_nac,   Sub, Su<Shl>, I64, u6_0ImmPred>;
1219  def: AccRRI_pat<S2_asl_i_p_and,   And, Su<Shl>, I64, u6_0ImmPred>;
1220  def: AccRRI_pat<S2_asl_i_p_or,    Or,  Su<Shl>, I64, u6_0ImmPred>;
1221  def: AccRRI_pat<S2_asl_i_p_xacc,  Xor, Su<Shl>, I64, u6_0ImmPred>;
1222
1223  let Predicates = [HasV60] in {
1224    def: AccRRI_pat<S6_rol_i_r_acc,   Add, Su<Rol>, I32, u5_0ImmPred>;
1225    def: AccRRI_pat<S6_rol_i_r_nac,   Sub, Su<Rol>, I32, u5_0ImmPred>;
1226    def: AccRRI_pat<S6_rol_i_r_and,   And, Su<Rol>, I32, u5_0ImmPred>;
1227    def: AccRRI_pat<S6_rol_i_r_or,    Or,  Su<Rol>, I32, u5_0ImmPred>;
1228    def: AccRRI_pat<S6_rol_i_r_xacc,  Xor, Su<Rol>, I32, u5_0ImmPred>;
1229
1230    def: AccRRI_pat<S6_rol_i_p_acc,   Add, Su<Rol>, I64, u6_0ImmPred>;
1231    def: AccRRI_pat<S6_rol_i_p_nac,   Sub, Su<Rol>, I64, u6_0ImmPred>;
1232    def: AccRRI_pat<S6_rol_i_p_and,   And, Su<Rol>, I64, u6_0ImmPred>;
1233    def: AccRRI_pat<S6_rol_i_p_or,    Or,  Su<Rol>, I64, u6_0ImmPred>;
1234    def: AccRRI_pat<S6_rol_i_p_xacc,  Xor, Su<Rol>, I64, u6_0ImmPred>;
1235  }
1236}
1237
1238let AddedComplexity = 100 in {
1239  def: AccRRR_pat<S2_asr_r_r_acc,   Add, Su<Sra>, I32, I32, I32>;
1240  def: AccRRR_pat<S2_asr_r_r_nac,   Sub, Su<Sra>, I32, I32, I32>;
1241  def: AccRRR_pat<S2_asr_r_r_and,   And, Su<Sra>, I32, I32, I32>;
1242  def: AccRRR_pat<S2_asr_r_r_or,    Or,  Su<Sra>, I32, I32, I32>;
1243
1244  def: AccRRR_pat<S2_asr_r_p_acc,   Add, Su<Sra>, I64, I64, I32>;
1245  def: AccRRR_pat<S2_asr_r_p_nac,   Sub, Su<Sra>, I64, I64, I32>;
1246  def: AccRRR_pat<S2_asr_r_p_and,   And, Su<Sra>, I64, I64, I32>;
1247  def: AccRRR_pat<S2_asr_r_p_or,    Or,  Su<Sra>, I64, I64, I32>;
1248  def: AccRRR_pat<S2_asr_r_p_xor,   Xor, Su<Sra>, I64, I64, I32>;
1249
1250  def: AccRRR_pat<S2_lsr_r_r_acc,   Add, Su<Srl>, I32, I32, I32>;
1251  def: AccRRR_pat<S2_lsr_r_r_nac,   Sub, Su<Srl>, I32, I32, I32>;
1252  def: AccRRR_pat<S2_lsr_r_r_and,   And, Su<Srl>, I32, I32, I32>;
1253  def: AccRRR_pat<S2_lsr_r_r_or,    Or,  Su<Srl>, I32, I32, I32>;
1254
1255  def: AccRRR_pat<S2_lsr_r_p_acc,   Add, Su<Srl>, I64, I64, I32>;
1256  def: AccRRR_pat<S2_lsr_r_p_nac,   Sub, Su<Srl>, I64, I64, I32>;
1257  def: AccRRR_pat<S2_lsr_r_p_and,   And, Su<Srl>, I64, I64, I32>;
1258  def: AccRRR_pat<S2_lsr_r_p_or,    Or,  Su<Srl>, I64, I64, I32>;
1259  def: AccRRR_pat<S2_lsr_r_p_xor,   Xor, Su<Srl>, I64, I64, I32>;
1260
1261  def: AccRRR_pat<S2_asl_r_r_acc,   Add, Su<Shl>, I32, I32, I32>;
1262  def: AccRRR_pat<S2_asl_r_r_nac,   Sub, Su<Shl>, I32, I32, I32>;
1263  def: AccRRR_pat<S2_asl_r_r_and,   And, Su<Shl>, I32, I32, I32>;
1264  def: AccRRR_pat<S2_asl_r_r_or,    Or,  Su<Shl>, I32, I32, I32>;
1265
1266  def: AccRRR_pat<S2_asl_r_p_acc,   Add, Su<Shl>, I64, I64, I32>;
1267  def: AccRRR_pat<S2_asl_r_p_nac,   Sub, Su<Shl>, I64, I64, I32>;
1268  def: AccRRR_pat<S2_asl_r_p_and,   And, Su<Shl>, I64, I64, I32>;
1269  def: AccRRR_pat<S2_asl_r_p_or,    Or,  Su<Shl>, I64, I64, I32>;
1270  def: AccRRR_pat<S2_asl_r_p_xor,   Xor, Su<Shl>, I64, I64, I32>;
1271}
1272
1273
1274class OpshIRI_pat<InstHexagon MI, PatFrag Op, PatFrag ShOp,
1275                  PatFrag RegPred, PatFrag ImmPred>
1276  : Pat<(Op anyimm:$u8, (ShOp RegPred:$Rs, ImmPred:$U5)),
1277        (MI anyimm:$u8, RegPred:$Rs, imm:$U5)>;
1278
1279let AddedComplexity = 200, Predicates = [UseCompound] in {
1280  def: OpshIRI_pat<S4_addi_asl_ri,  Add, Su<Shl>, I32, u5_0ImmPred>;
1281  def: OpshIRI_pat<S4_addi_lsr_ri,  Add, Su<Srl>, I32, u5_0ImmPred>;
1282  def: OpshIRI_pat<S4_subi_asl_ri,  Sub, Su<Shl>, I32, u5_0ImmPred>;
1283  def: OpshIRI_pat<S4_subi_lsr_ri,  Sub, Su<Srl>, I32, u5_0ImmPred>;
1284  def: OpshIRI_pat<S4_andi_asl_ri,  And, Su<Shl>, I32, u5_0ImmPred>;
1285  def: OpshIRI_pat<S4_andi_lsr_ri,  And, Su<Srl>, I32, u5_0ImmPred>;
1286  def: OpshIRI_pat<S4_ori_asl_ri,   Or,  Su<Shl>, I32, u5_0ImmPred>;
1287  def: OpshIRI_pat<S4_ori_lsr_ri,   Or,  Su<Srl>, I32, u5_0ImmPred>;
1288}
1289
1290// Prefer this pattern to S2_asl_i_p_or for the special case of joining
1291// two 32-bit words into a 64-bit word.
1292let AddedComplexity = 200 in
1293def: Pat<(or (shl (Aext64 I32:$a), (i32 32)), (Zext64 I32:$b)),
1294         (Combinew I32:$a, I32:$b)>;
1295
1296def: Pat<(or (or (or (shl (Zext64 (and I32:$b, (i32 65535))), (i32 16)),
1297                     (Zext64 (and I32:$a, (i32 65535)))),
1298                 (shl (Aext64 (and I32:$c, (i32 65535))), (i32 32))),
1299             (shl (Aext64 I32:$d), (i32 48))),
1300         (Combinew (A2_combine_ll I32:$d, I32:$c),
1301                   (A2_combine_ll I32:$b, I32:$a))>;
1302
1303let AddedComplexity = 200 in {
1304  def: Pat<(or (shl I32:$Rt, (i32 16)), (and I32:$Rs, (i32 65535))),
1305           (A2_combine_ll I32:$Rt, I32:$Rs)>;
1306  def: Pat<(or (shl I32:$Rt, (i32 16)), (srl I32:$Rs, (i32 16))),
1307           (A2_combine_lh I32:$Rt, I32:$Rs)>;
1308  def: Pat<(or (and I32:$Rt, (i32 268431360)), (and I32:$Rs, (i32 65535))),
1309           (A2_combine_hl I32:$Rt, I32:$Rs)>;
1310  def: Pat<(or (and I32:$Rt, (i32 268431360)), (srl I32:$Rs, (i32 16))),
1311           (A2_combine_hh I32:$Rt, I32:$Rs)>;
1312}
1313
1314def SDTHexagonVShift
1315  : SDTypeProfile<1, 2, [SDTCisSameAs<0, 1>, SDTCisVec<0>, SDTCisVT<2, i32>]>;
1316
1317def HexagonVASL: SDNode<"HexagonISD::VASL", SDTHexagonVShift>;
1318def HexagonVASR: SDNode<"HexagonISD::VASR", SDTHexagonVShift>;
1319def HexagonVLSR: SDNode<"HexagonISD::VLSR", SDTHexagonVShift>;
1320
1321def: OpR_RI_pat<S2_asl_i_vw, pf2<HexagonVASL>, v2i32, V2I32, u5_0ImmPred>;
1322def: OpR_RI_pat<S2_asl_i_vh, pf2<HexagonVASL>, v4i16, V4I16, u4_0ImmPred>;
1323def: OpR_RI_pat<S2_asr_i_vw, pf2<HexagonVASR>, v2i32, V2I32, u5_0ImmPred>;
1324def: OpR_RI_pat<S2_asr_i_vh, pf2<HexagonVASR>, v4i16, V4I16, u4_0ImmPred>;
1325def: OpR_RI_pat<S2_lsr_i_vw, pf2<HexagonVLSR>, v2i32, V2I32, u5_0ImmPred>;
1326def: OpR_RI_pat<S2_lsr_i_vh, pf2<HexagonVLSR>, v4i16, V4I16, u4_0ImmPred>;
1327
1328def: OpR_RR_pat<S2_asl_r_vw, pf2<HexagonVASL>, v2i32, V2I32, I32>;
1329def: OpR_RR_pat<S2_asl_r_vh, pf2<HexagonVASL>, v4i16, V4I16, I32>;
1330def: OpR_RR_pat<S2_asr_r_vw, pf2<HexagonVASR>, v2i32, V2I32, I32>;
1331def: OpR_RR_pat<S2_asr_r_vh, pf2<HexagonVASR>, v4i16, V4I16, I32>;
1332def: OpR_RR_pat<S2_lsr_r_vw, pf2<HexagonVLSR>, v2i32, V2I32, I32>;
1333def: OpR_RR_pat<S2_lsr_r_vh, pf2<HexagonVLSR>, v4i16, V4I16, I32>;
1334
1335def: Pat<(sra V2I32:$b, (v2i32 (splat_vector u5_0ImmPred:$c))),
1336         (S2_asr_i_vw V2I32:$b, imm:$c)>;
1337def: Pat<(srl V2I32:$b, (v2i32 (splat_vector u5_0ImmPred:$c))),
1338         (S2_lsr_i_vw V2I32:$b, imm:$c)>;
1339def: Pat<(shl V2I32:$b, (v2i32 (splat_vector u5_0ImmPred:$c))),
1340         (S2_asl_i_vw V2I32:$b, imm:$c)>;
1341def: Pat<(sra V4I16:$b, (v4i16 (splat_vector u4_0ImmPred:$c))),
1342         (S2_asr_i_vh V4I16:$b, imm:$c)>;
1343def: Pat<(srl V4I16:$b, (v4i16 (splat_vector u4_0ImmPred:$c))),
1344         (S2_lsr_i_vh V4I16:$b, imm:$c)>;
1345def: Pat<(shl V4I16:$b, (v4i16 (splat_vector u4_0ImmPred:$c))),
1346         (S2_asl_i_vh V4I16:$b, imm:$c)>;
1347
1348def: Pat<(HexagonVASR V2I16:$Rs, u4_0ImmPred:$S),
1349         (LoReg (S2_asr_i_vh (ToAext64 $Rs), imm:$S))>;
1350def: Pat<(HexagonVASL V2I16:$Rs, u4_0ImmPred:$S),
1351         (LoReg (S2_asl_i_vh (ToAext64 $Rs), imm:$S))>;
1352def: Pat<(HexagonVLSR V2I16:$Rs, u4_0ImmPred:$S),
1353         (LoReg (S2_lsr_i_vh (ToAext64 $Rs), imm:$S))>;
1354def: Pat<(HexagonVASR V2I16:$Rs, I32:$Rt),
1355         (LoReg (S2_asr_i_vh (ToAext64 $Rs), I32:$Rt))>;
1356def: Pat<(HexagonVASL V2I16:$Rs, I32:$Rt),
1357         (LoReg (S2_asl_i_vh (ToAext64 $Rs), I32:$Rt))>;
1358def: Pat<(HexagonVLSR V2I16:$Rs, I32:$Rt),
1359         (LoReg (S2_lsr_i_vh (ToAext64 $Rs), I32:$Rt))>;
1360
1361
1362// --(9) Arithmetic/bitwise ----------------------------------------------
1363//
1364
1365def: Pat<(abs  I32:$Rs), (A2_abs   I32:$Rs)>;
1366def: Pat<(abs  I64:$Rs), (A2_absp  I64:$Rs)>;
1367def: Pat<(not  I32:$Rs), (A2_subri -1, I32:$Rs)>;
1368def: Pat<(not  I64:$Rs), (A2_notp  I64:$Rs)>;
1369def: Pat<(ineg I64:$Rs), (A2_negp  I64:$Rs)>;
1370
1371def: Pat<(fabs F32:$Rs), (S2_clrbit_i    F32:$Rs, 31)>;
1372def: Pat<(fneg F32:$Rs), (S2_togglebit_i F32:$Rs, 31)>;
1373
1374def: Pat<(fabs F64:$Rs),
1375         (Combinew (S2_clrbit_i (HiReg $Rs), 31),
1376                   (i32 (LoReg $Rs)))>;
1377def: Pat<(fneg F64:$Rs),
1378         (Combinew (S2_togglebit_i (HiReg $Rs), 31),
1379                   (i32 (LoReg $Rs)))>;
1380
1381def: Pat<(add I32:$Rs, anyimm:$s16),   (A2_addi   I32:$Rs,  imm:$s16)>;
1382def: Pat<(or  I32:$Rs, anyimm:$s10),   (A2_orir   I32:$Rs,  imm:$s10)>;
1383def: Pat<(and I32:$Rs, anyimm:$s10),   (A2_andir  I32:$Rs,  imm:$s10)>;
1384def: Pat<(sub anyimm:$s10, I32:$Rs),   (A2_subri  imm:$s10, I32:$Rs)>;
1385
1386def: OpR_RR_pat<A2_add,       Add,        i32,   I32>;
1387def: OpR_RR_pat<A2_sub,       Sub,        i32,   I32>;
1388def: OpR_RR_pat<A2_and,       And,        i32,   I32>;
1389def: OpR_RR_pat<A2_or,        Or,         i32,   I32>;
1390def: OpR_RR_pat<A2_xor,       Xor,        i32,   I32>;
1391def: OpR_RR_pat<A2_addp,      Add,        i64,   I64>;
1392def: OpR_RR_pat<A2_subp,      Sub,        i64,   I64>;
1393def: OpR_RR_pat<A2_andp,      And,        i64,   I64>;
1394def: OpR_RR_pat<A2_orp,       Or,         i64,   I64>;
1395def: OpR_RR_pat<A2_xorp,      Xor,        i64,   I64>;
1396def: OpR_RR_pat<A4_andnp,     Not2<And>,  i64,   I64>;
1397def: OpR_RR_pat<A4_ornp,      Not2<Or>,   i64,   I64>;
1398
1399def: OpR_RR_pat<A2_svaddh,    Add,        v2i16, V2I16>;
1400def: OpR_RR_pat<A2_svsubh,    Sub,        v2i16, V2I16>;
1401
1402def: OpR_RR_pat<A2_vaddub,    Add,        v8i8,  V8I8>;
1403def: OpR_RR_pat<A2_vaddh,     Add,        v4i16, V4I16>;
1404def: OpR_RR_pat<A2_vaddw,     Add,        v2i32, V2I32>;
1405def: OpR_RR_pat<A2_vsubub,    Sub,        v8i8,  V8I8>;
1406def: OpR_RR_pat<A2_vsubh,     Sub,        v4i16, V4I16>;
1407def: OpR_RR_pat<A2_vsubw,     Sub,        v2i32, V2I32>;
1408
1409def: OpR_RR_pat<A2_and,       And,        v4i8,  V4I8>;
1410def: OpR_RR_pat<A2_xor,       Xor,        v4i8,  V4I8>;
1411def: OpR_RR_pat<A2_or,        Or,         v4i8,  V4I8>;
1412def: OpR_RR_pat<A2_and,       And,        v2i16, V2I16>;
1413def: OpR_RR_pat<A2_xor,       Xor,        v2i16, V2I16>;
1414def: OpR_RR_pat<A2_or,        Or,         v2i16, V2I16>;
1415def: OpR_RR_pat<A2_andp,      And,        v8i8,  V8I8>;
1416def: OpR_RR_pat<A2_orp,       Or,         v8i8,  V8I8>;
1417def: OpR_RR_pat<A2_xorp,      Xor,        v8i8,  V8I8>;
1418def: OpR_RR_pat<A2_andp,      And,        v4i16, V4I16>;
1419def: OpR_RR_pat<A2_orp,       Or,         v4i16, V4I16>;
1420def: OpR_RR_pat<A2_xorp,      Xor,        v4i16, V4I16>;
1421def: OpR_RR_pat<A2_andp,      And,        v2i32, V2I32>;
1422def: OpR_RR_pat<A2_orp,       Or,         v2i32, V2I32>;
1423def: OpR_RR_pat<A2_xorp,      Xor,        v2i32, V2I32>;
1424
1425def: OpR_RR_pat<M2_mpyi,      Mul,        i32,   I32>;
1426def: OpR_RR_pat<M2_mpy_up,    pf2<mulhs>, i32,   I32>;
1427def: OpR_RR_pat<M2_mpyu_up,   pf2<mulhu>, i32,   I32>;
1428def: OpR_RI_pat<M2_mpysip,    Mul,        i32,   I32, u32_0ImmPred>;
1429def: OpR_RI_pat<M2_mpysmi,    Mul,        i32,   I32, s32_0ImmPred>;
1430
1431// Arithmetic on predicates.
1432def: OpR_RR_pat<C2_xor,       Add,        i1,    I1>;
1433def: OpR_RR_pat<C2_xor,       Add,        v2i1,  V2I1>;
1434def: OpR_RR_pat<C2_xor,       Add,        v4i1,  V4I1>;
1435def: OpR_RR_pat<C2_xor,       Add,        v8i1,  V8I1>;
1436def: OpR_RR_pat<C2_xor,       Sub,        i1,    I1>;
1437def: OpR_RR_pat<C2_xor,       Sub,        v2i1,  V2I1>;
1438def: OpR_RR_pat<C2_xor,       Sub,        v4i1,  V4I1>;
1439def: OpR_RR_pat<C2_xor,       Sub,        v8i1,  V8I1>;
1440def: OpR_RR_pat<C2_and,       Mul,        i1,    I1>;
1441def: OpR_RR_pat<C2_and,       Mul,        v2i1,  V2I1>;
1442def: OpR_RR_pat<C2_and,       Mul,        v4i1,  V4I1>;
1443def: OpR_RR_pat<C2_and,       Mul,        v8i1,  V8I1>;
1444
1445def: OpR_RR_pat<F2_sfadd,     pf2<fadd>,    f32, F32>;
1446def: OpR_RR_pat<F2_sfsub,     pf2<fsub>,    f32, F32>;
1447def: OpR_RR_pat<F2_sfmpy,     pf2<fmul>,    f32, F32>;
1448def: OpR_RR_pat<F2_sfmin,     pf2<fminnum>, f32, F32>;
1449def: OpR_RR_pat<F2_sfmax,     pf2<fmaxnum>, f32, F32>;
1450
1451let Predicates = [HasV66] in {
1452  def: OpR_RR_pat<F2_dfadd,     pf2<fadd>,    f64, F64>;
1453  def: OpR_RR_pat<F2_dfsub,     pf2<fsub>,    f64, F64>;
1454}
1455
1456def DfMpy: OutPatFrag<(ops node:$Rs, node:$Rt),
1457  (F2_dfmpyhh
1458    (F2_dfmpylh
1459      (F2_dfmpylh
1460        (F2_dfmpyll $Rs, $Rt),
1461      $Rs, $Rt),
1462    $Rt, $Rs),
1463  $Rs, $Rt)>;
1464
1465let Predicates = [HasV67,UseUnsafeMath], AddedComplexity = 50 in {
1466  def: Pat<(fmul F64:$Rs, F64:$Rt), (DfMpy $Rs, $Rt)>;
1467}
1468let Predicates = [HasV67] in {
1469  def: OpR_RR_pat<F2_dfmin,     pf2<fminnum>, f64, F64>;
1470  def: OpR_RR_pat<F2_dfmax,     pf2<fmaxnum>, f64, F64>;
1471
1472  def: Pat<(fmul F64:$Rs, F64:$Rt), (DfMpy (F2_dfmpyfix $Rs, $Rt),
1473                                           (F2_dfmpyfix $Rt, $Rs))>;
1474}
1475
1476// In expressions like a0*b0 + a1*b1 + ..., prefer to generate multiply-add,
1477// over add-add with individual multiplies as inputs.
1478let AddedComplexity = 10 in {
1479  def: AccRRI_pat<M2_macsip,    Add, Su<Mul>, I32, u32_0ImmPred>;
1480  def: AccRRI_pat<M2_macsin,    Sub, Su<Mul>, I32, u32_0ImmPred>;
1481  def: AccRRR_pat<M2_maci,      Add, Su<Mul>, I32, I32, I32>;
1482  let Predicates = [HasV66] in
1483  def: AccRRR_pat<M2_mnaci,     Sub, Su<Mul>, I32, I32, I32>;
1484}
1485
1486def: AccRRI_pat<M2_naccii,    Sub, Su<Add>, I32, s32_0ImmPred>;
1487def: AccRRI_pat<M2_accii,     Add, Su<Add>, I32, s32_0ImmPred>;
1488def: AccRRR_pat<M2_acci,      Add, Su<Add>, I32, I32, I32>;
1489
1490// Mulh for vectors
1491//
1492def: Pat<(v2i32 (mulhu V2I32:$Rss, V2I32:$Rtt)),
1493         (Combinew (M2_mpyu_up (HiReg $Rss), (HiReg $Rtt)),
1494                   (M2_mpyu_up (LoReg $Rss), (LoReg $Rtt)))>;
1495
1496def: Pat<(v2i32 (mulhs V2I32:$Rs, V2I32:$Rt)),
1497         (Combinew (M2_mpy_up (HiReg $Rs), (HiReg $Rt)),
1498                   (M2_mpy_up (LoReg $Rt), (LoReg $Rt)))>;
1499
1500def Mulhub:
1501  OutPatFrag<(ops node:$Rss, node:$Rtt),
1502             (Combinew (S2_vtrunohb (M5_vmpybuu (HiReg $Rss), (HiReg $Rtt))),
1503                       (S2_vtrunohb (M5_vmpybuu (LoReg $Rss), (LoReg $Rtt))))>;
1504
1505// Equivalent of byte-wise arithmetic shift right by 7 in v8i8.
1506def Asr7:
1507  OutPatFrag<(ops node:$Rss), (C2_mask (C2_not (A4_vcmpbgti $Rss, 0)))>;
1508
1509def: Pat<(v8i8 (mulhu V8I8:$Rss, V8I8:$Rtt)),
1510         (Mulhub $Rss, $Rtt)>;
1511
1512def: Pat<(v8i8 (mulhs V8I8:$Rss, V8I8:$Rtt)),
1513         (A2_vsubub
1514           (Mulhub $Rss, $Rtt),
1515           (A2_vaddub (A2_andp V8I8:$Rss, (Asr7 $Rtt)),
1516                      (A2_andp V8I8:$Rtt, (Asr7 $Rss))))>;
1517
1518def Mpysh:
1519  OutPatFrag<(ops node:$Rs, node:$Rt), (M2_vmpy2s_s0 $Rs, $Rt)>;
1520def Mpyshh:
1521  OutPatFrag<(ops node:$Rss, node:$Rtt), (Mpysh (HiReg $Rss), (HiReg $Rtt))>;
1522def Mpyshl:
1523  OutPatFrag<(ops node:$Rss, node:$Rtt), (Mpysh (LoReg $Rss), (LoReg $Rtt))>;
1524
1525def Mulhsh:
1526  OutPatFrag<(ops node:$Rss, node:$Rtt),
1527             (Combinew (A2_combine_hh (HiReg (Mpyshh $Rss, $Rtt)),
1528                                      (LoReg (Mpyshh $Rss, $Rtt))),
1529                       (A2_combine_hh (HiReg (Mpyshl $Rss, $Rtt)),
1530                                      (LoReg (Mpyshl $Rss, $Rtt))))>;
1531
1532def: Pat<(v4i16 (mulhs V4I16:$Rss, V4I16:$Rtt)), (Mulhsh $Rss, $Rtt)>;
1533
1534def: Pat<(v4i16 (mulhu V4I16:$Rss, V4I16:$Rtt)),
1535         (A2_vaddh
1536           (Mulhsh $Rss, $Rtt),
1537           (A2_vaddh (A2_andp V4I16:$Rss, (S2_asr_i_vh $Rtt, 15)),
1538                     (A2_andp V4I16:$Rtt, (S2_asr_i_vh $Rss, 15))))>;
1539
1540
1541def: Pat<(ineg (mul I32:$Rs, u8_0ImmPred:$u8)),
1542         (M2_mpysin IntRegs:$Rs, imm:$u8)>;
1543
1544def n8_0ImmPred: PatLeaf<(i32 imm), [{
1545  int64_t V = N->getSExtValue();
1546  return -255 <= V && V <= 0;
1547}]>;
1548
1549// Change the sign of the immediate for Rd=-mpyi(Rs,#u8)
1550def: Pat<(mul I32:$Rs, n8_0ImmPred:$n8),
1551         (M2_mpysin I32:$Rs, (NegImm8 imm:$n8))>;
1552
1553def: Pat<(add Sext64:$Rs, I64:$Rt),
1554         (A2_addsp (LoReg Sext64:$Rs), I64:$Rt)>;
1555
1556def: AccRRR_pat<M4_and_and,   And, Su_ni1<And>,  I32,  I32,  I32>;
1557def: AccRRR_pat<M4_and_or,    And, Su_ni1<Or>,   I32,  I32,  I32>;
1558def: AccRRR_pat<M4_and_xor,   And, Su<Xor>,      I32,  I32,  I32>;
1559def: AccRRR_pat<M4_or_and,    Or,  Su_ni1<And>,  I32,  I32,  I32>;
1560def: AccRRR_pat<M4_or_or,     Or,  Su_ni1<Or>,   I32,  I32,  I32>;
1561def: AccRRR_pat<M4_or_xor,    Or,  Su<Xor>,      I32,  I32,  I32>;
1562def: AccRRR_pat<M4_xor_and,   Xor, Su_ni1<And>,  I32,  I32,  I32>;
1563def: AccRRR_pat<M4_xor_or,    Xor, Su_ni1<Or>,   I32,  I32,  I32>;
1564def: AccRRR_pat<M2_xor_xacc,  Xor, Su<Xor>,      I32,  I32,  I32>;
1565def: AccRRR_pat<M4_xor_xacc,  Xor, Su<Xor>,      I64,  I64,  I64>;
1566
1567// For dags like (or (and (not _), _), (shl _, _)) where the "or" with
1568// one argument matches the patterns below, and with the other argument
1569// matches S2_asl_r_r_or, etc, prefer the patterns below.
1570let AddedComplexity = 110 in {  // greater than S2_asl_r_r_and/or/xor.
1571  def: AccRRR_pat<M4_and_andn,  And, Su<Not2<And>>, I32,  I32,  I32>;
1572  def: AccRRR_pat<M4_or_andn,   Or,  Su<Not2<And>>, I32,  I32,  I32>;
1573  def: AccRRR_pat<M4_xor_andn,  Xor, Su<Not2<And>>, I32,  I32,  I32>;
1574}
1575
1576// S4_addaddi and S4_subaddi don't have tied operands, so give them
1577// a bit of preference.
1578let AddedComplexity = 30, Predicates = [UseCompound] in {
1579  def: Pat<(add I32:$Rs, (Su<Add> I32:$Ru, anyimm:$s6)),
1580           (S4_addaddi IntRegs:$Rs, IntRegs:$Ru, imm:$s6)>;
1581  def: Pat<(add anyimm:$s6, (Su<Add> I32:$Rs, I32:$Ru)),
1582           (S4_addaddi IntRegs:$Rs, IntRegs:$Ru, imm:$s6)>;
1583  def: Pat<(add I32:$Rs, (Su<Sub> anyimm:$s6, I32:$Ru)),
1584           (S4_subaddi IntRegs:$Rs, imm:$s6, IntRegs:$Ru)>;
1585  def: Pat<(sub (Su<Add> I32:$Rs, anyimm:$s6), I32:$Ru),
1586           (S4_subaddi IntRegs:$Rs, imm:$s6, IntRegs:$Ru)>;
1587  def: Pat<(add (Su<Sub> I32:$Rs, I32:$Ru), anyimm:$s6),
1588           (S4_subaddi IntRegs:$Rs, imm:$s6, IntRegs:$Ru)>;
1589}
1590
1591let Predicates = [UseCompound] in
1592def: Pat<(or I32:$Ru, (Su<And> I32:$Rx, anyimm:$s10)),
1593         (S4_or_andix IntRegs:$Ru, IntRegs:$Rx, imm:$s10)>;
1594
1595def: Pat<(or I32:$Rx, (Su<And> I32:$Rs, anyimm:$s10)),
1596         (S4_or_andi IntRegs:$Rx, IntRegs:$Rs, imm:$s10)>;
1597def: Pat<(or I32:$Rx, (Su<Or> I32:$Rs, anyimm:$s10)),
1598         (S4_or_ori IntRegs:$Rx, IntRegs:$Rs, imm:$s10)>;
1599
1600
1601def: Pat<(i32 (trunc (sra (Su<Mul> Sext64:$Rs, Sext64:$Rt), (i32 32)))),
1602         (M2_mpy_up (LoReg Sext64:$Rs), (LoReg Sext64:$Rt))>;
1603def: Pat<(i32 (trunc (srl (Su<Mul> Sext64:$Rs, Sext64:$Rt), (i32 32)))),
1604         (M2_mpy_up (LoReg Sext64:$Rs), (LoReg Sext64:$Rt))>;
1605
1606def: Pat<(mul (Zext64 I32:$Rs), (Zext64 I32:$Rt)),
1607         (M2_dpmpyuu_s0 I32:$Rs, I32:$Rt)>;
1608def: Pat<(mul (Aext64 I32:$Rs), (Aext64 I32:$Rt)),
1609         (M2_dpmpyuu_s0 I32:$Rs, I32:$Rt)>;
1610def: Pat<(mul Sext64:$Rs, Sext64:$Rt),
1611         (M2_dpmpyss_s0 (LoReg Sext64:$Rs), (LoReg Sext64:$Rt))>;
1612
1613def: Pat<(add I64:$Rx, (Su<Mul> Sext64:$Rs, Sext64:$Rt)),
1614         (M2_dpmpyss_acc_s0 I64:$Rx, (LoReg Sext64:$Rs), (LoReg Sext64:$Rt))>;
1615def: Pat<(sub I64:$Rx, (Su<Mul> Sext64:$Rs, Sext64:$Rt)),
1616         (M2_dpmpyss_nac_s0 I64:$Rx, (LoReg Sext64:$Rs), (LoReg Sext64:$Rt))>;
1617def: Pat<(add I64:$Rx, (Su<Mul> (Aext64 I32:$Rs), (Aext64 I32:$Rt))),
1618         (M2_dpmpyuu_acc_s0 I64:$Rx, I32:$Rs, I32:$Rt)>;
1619def: Pat<(add I64:$Rx, (Su<Mul> (Zext64 I32:$Rs), (Zext64 I32:$Rt))),
1620         (M2_dpmpyuu_acc_s0 I64:$Rx, I32:$Rs, I32:$Rt)>;
1621def: Pat<(sub I64:$Rx, (Su<Mul> (Aext64 I32:$Rs), (Aext64 I32:$Rt))),
1622         (M2_dpmpyuu_nac_s0 I64:$Rx, I32:$Rs, I32:$Rt)>;
1623def: Pat<(sub I64:$Rx, (Su<Mul> (Zext64 I32:$Rs), (Zext64 I32:$Rt))),
1624         (M2_dpmpyuu_nac_s0 I64:$Rx, I32:$Rs, I32:$Rt)>;
1625
1626// Add halfword.
1627def: Pat<(sext_inreg (add I32:$Rt, I32:$Rs), i16),
1628         (A2_addh_l16_ll I32:$Rt, I32:$Rs)>;
1629def: Pat<(sra (add (shl I32:$Rt, (i32 16)), I32:$Rs), (i32 16)),
1630         (A2_addh_l16_hl I32:$Rt, I32:$Rs)>;
1631def: Pat<(shl (add I32:$Rt, I32:$Rs), (i32 16)),
1632         (A2_addh_h16_ll I32:$Rt, I32:$Rs)>;
1633
1634// Subtract halfword.
1635def: Pat<(sext_inreg (sub I32:$Rt, I32:$Rs), i16),
1636         (A2_subh_l16_ll I32:$Rt, I32:$Rs)>;
1637def: Pat<(sra (add (shl I32:$Rt, (i32 16)), I32:$Rs), (i32 16)),
1638         (A2_addh_l16_hl I32:$Rt, I32:$Rs)>;
1639def: Pat<(shl (sub I32:$Rt, I32:$Rs), (i32 16)),
1640         (A2_subh_h16_ll I32:$Rt, I32:$Rs)>;
1641
1642def: Pat<(mul I64:$Rss, I64:$Rtt),
1643         (Combinew
1644           (M2_maci (M2_maci (HiReg (M2_dpmpyuu_s0 (LoReg $Rss), (LoReg $Rtt))),
1645                             (LoReg $Rss),
1646                             (HiReg $Rtt)),
1647                    (LoReg $Rtt),
1648                    (HiReg $Rss)),
1649           (i32 (LoReg (M2_dpmpyuu_s0 (LoReg $Rss), (LoReg $Rtt)))))>;
1650
1651def MulHU : OutPatFrag<(ops node:$Rss, node:$Rtt),
1652  (A2_addp
1653    (M2_dpmpyuu_acc_s0
1654      (S2_lsr_i_p
1655        (A2_addp
1656          (M2_dpmpyuu_acc_s0
1657            (S2_lsr_i_p (M2_dpmpyuu_s0 (LoReg $Rss), (LoReg $Rtt)), 32),
1658            (HiReg $Rss),
1659            (LoReg $Rtt)),
1660          (A4_combineir 0, (LoReg (M2_dpmpyuu_s0 (LoReg $Rss), (HiReg $Rtt))))),
1661        32),
1662      (HiReg $Rss),
1663      (HiReg $Rtt)),
1664    (S2_lsr_i_p (M2_dpmpyuu_s0 (LoReg $Rss), (HiReg $Rtt)), 32))>;
1665
1666// Multiply 64-bit unsigned and use upper result.
1667def : Pat <(mulhu I64:$Rss, I64:$Rtt), (MulHU $Rss, $Rtt)>;
1668
1669// Multiply 64-bit signed and use upper result.
1670//
1671// For two signed 64-bit integers A and B, let A' and B' denote A and B
1672// with the sign bit cleared. Then A = -2^63*s(A) + A', where s(A) is the
1673// sign bit of A (and identically for B). With this notation, the signed
1674// product A*B can be written as:
1675//   AB = (-2^63 s(A) + A') * (-2^63 s(B) + B')
1676//      = 2^126 s(A)s(B) - 2^63 [s(A)B'+s(B)A'] + A'B'
1677//      = 2^126 s(A)s(B) + 2^63 [s(A)B'+s(B)A'] + A'B' - 2*2^63 [s(A)B'+s(B)A']
1678//      = (unsigned product AB) - 2^64 [s(A)B'+s(B)A']
1679
1680// Clear the sign bit in a 64-bit register.
1681def ClearSign : OutPatFrag<(ops node:$Rss),
1682  (Combinew (S2_clrbit_i (HiReg $Rss), 31), (i32 (LoReg $Rss)))>;
1683
1684def : Pat <(mulhs I64:$Rss, I64:$Rtt),
1685  (A2_subp
1686    (MulHU $Rss, $Rtt),
1687    (A2_addp
1688      (A2_andp (S2_asr_i_p $Rss, 63), (ClearSign $Rtt)),
1689      (A2_andp (S2_asr_i_p $Rtt, 63), (ClearSign $Rss))))>;
1690
1691// Prefer these instructions over M2_macsip/M2_macsin: the macsi* instructions
1692// will put the immediate addend into a register, while these instructions will
1693// use it directly. Such a construct does not appear in the middle of a gep,
1694// where M2_macsip would be preferable.
1695let AddedComplexity = 20, Predicates = [UseCompound] in {
1696  def: Pat<(add (Su<Mul> I32:$Rs, u6_0ImmPred:$U6), anyimm:$u6),
1697           (M4_mpyri_addi imm:$u6, IntRegs:$Rs, imm:$U6)>;
1698  def: Pat<(add (Su<Mul> I32:$Rs, I32:$Rt), anyimm:$u6),
1699           (M4_mpyrr_addi imm:$u6, IntRegs:$Rs, IntRegs:$Rt)>;
1700}
1701
1702// Keep these instructions less preferable to M2_macsip/M2_macsin.
1703let Predicates = [UseCompound] in {
1704  def: Pat<(add I32:$Ru, (Su<Mul> I32:$Rs, u6_2ImmPred:$u6_2)),
1705           (M4_mpyri_addr_u2 IntRegs:$Ru, imm:$u6_2, IntRegs:$Rs)>;
1706  def: Pat<(add I32:$Ru, (Su<Mul> I32:$Rs, anyimm:$u6)),
1707           (M4_mpyri_addr IntRegs:$Ru, IntRegs:$Rs, imm:$u6)>;
1708  def: Pat<(add I32:$Ru, (Su<Mul> I32:$Ry, I32:$Rs)),
1709           (M4_mpyrr_addr IntRegs:$Ru, IntRegs:$Ry, IntRegs:$Rs)>;
1710}
1711
1712def: Pat<(fma F32:$Rs, F32:$Rt, F32:$Rx),
1713         (F2_sffma F32:$Rx, F32:$Rs, F32:$Rt)>;
1714def: Pat<(fma (fneg F32:$Rs), F32:$Rt, F32:$Rx),
1715         (F2_sffms F32:$Rx, F32:$Rs, F32:$Rt)>;
1716
1717def: Pat<(mul V2I32:$Rs, V2I32:$Rt),
1718         (PS_vmulw V2I32:$Rs, V2I32:$Rt)>;
1719def: Pat<(add V2I32:$Rx, (mul V2I32:$Rs, V2I32:$Rt)),
1720         (PS_vmulw_acc V2I32:$Rx, V2I32:$Rs, V2I32:$Rt)>;
1721
1722// Add/subtract two v4i8: Hexagon does not have an insn for this one, so
1723// we use the double add v8i8, and use only the low part of the result.
1724def: Pat<(add V4I8:$Rs, V4I8:$Rt),
1725         (LoReg (A2_vaddub (ToAext64 $Rs), (ToAext64 $Rt)))>;
1726def: Pat<(sub V4I8:$Rs, V4I8:$Rt),
1727         (LoReg (A2_vsubub (ToAext64 $Rs), (ToAext64 $Rt)))>;
1728
1729// Use M2_vmpy2s_s0 for half-word vector multiply. It multiplies two
1730// half-words, and saturates the result to a 32-bit value, except the
1731// saturation never happens (it can only occur with scaling).
1732def: Pat<(v2i16 (mul V2I16:$Rs, V2I16:$Rt)),
1733         (LoReg (S2_vtrunewh (A2_combineii 0, 0),
1734                             (M2_vmpy2s_s0 V2I16:$Rs, V2I16:$Rt)))>;
1735def: Pat<(v4i16 (mul V4I16:$Rs, V4I16:$Rt)),
1736         (S2_vtrunewh (M2_vmpy2s_s0 (HiReg $Rs), (HiReg $Rt)),
1737                      (M2_vmpy2s_s0 (LoReg $Rs), (LoReg $Rt)))>;
1738
1739// Multiplies two v4i8 vectors.
1740def: Pat<(v4i8 (mul V4I8:$Rs, V4I8:$Rt)),
1741         (S2_vtrunehb (M5_vmpybuu V4I8:$Rs, V4I8:$Rt))>;
1742
1743// Multiplies two v8i8 vectors.
1744def: Pat<(v8i8 (mul V8I8:$Rs, V8I8:$Rt)),
1745         (Combinew (S2_vtrunehb (M5_vmpybuu (HiReg $Rs), (HiReg $Rt))),
1746                   (S2_vtrunehb (M5_vmpybuu (LoReg $Rs), (LoReg $Rt))))>;
1747
1748
1749// --(10) Bit ------------------------------------------------------------
1750//
1751
1752// Count leading zeros.
1753def: Pat<(i32 (ctlz I32:$Rs)),                (S2_cl0 I32:$Rs)>;
1754def: Pat<(i32 (trunc (ctlz I64:$Rss))),       (S2_cl0p I64:$Rss)>;
1755
1756// Count trailing zeros.
1757def: Pat<(i32 (cttz I32:$Rs)),                (S2_ct0 I32:$Rs)>;
1758def: Pat<(i32 (trunc (cttz I64:$Rss))),       (S2_ct0p I64:$Rss)>;
1759
1760// Count leading ones.
1761def: Pat<(i32 (ctlz (not I32:$Rs))),          (S2_cl1 I32:$Rs)>;
1762def: Pat<(i32 (trunc (ctlz (not I64:$Rss)))), (S2_cl1p I64:$Rss)>;
1763
1764// Count trailing ones.
1765def: Pat<(i32 (cttz (not I32:$Rs))),           (S2_ct1 I32:$Rs)>;
1766def: Pat<(i32 (trunc (cttz (not I64:$Rss)))), (S2_ct1p I64:$Rss)>;
1767
1768// Define leading/trailing patterns that require zero-extensions to 64 bits.
1769def: Pat<(i64 (ctlz I64:$Rss)),               (ToZext64 (S2_cl0p I64:$Rss))>;
1770def: Pat<(i64 (cttz I64:$Rss)),               (ToZext64 (S2_ct0p I64:$Rss))>;
1771def: Pat<(i64 (ctlz (not I64:$Rss))),         (ToZext64 (S2_cl1p I64:$Rss))>;
1772def: Pat<(i64 (cttz (not I64:$Rss))),         (ToZext64 (S2_ct1p I64:$Rss))>;
1773
1774def: Pat<(i64 (ctpop I64:$Rss)),  (ToZext64 (S5_popcountp I64:$Rss))>;
1775def: Pat<(i32 (ctpop I32:$Rs)),   (S5_popcountp (A4_combineir 0, I32:$Rs))>;
1776
1777def: Pat<(bitreverse I32:$Rs),    (S2_brev I32:$Rs)>;
1778def: Pat<(bitreverse I64:$Rss),   (S2_brevp I64:$Rss)>;
1779
1780let AddedComplexity = 20 in { // Complexity greater than and/or/xor
1781  def: Pat<(and I32:$Rs, IsNPow2_32:$V),
1782           (S2_clrbit_i IntRegs:$Rs, (LogN2_32 $V))>;
1783  def: Pat<(or I32:$Rs, IsPow2_32:$V),
1784           (S2_setbit_i IntRegs:$Rs, (Log2_32 $V))>;
1785  def: Pat<(xor I32:$Rs, IsPow2_32:$V),
1786           (S2_togglebit_i IntRegs:$Rs, (Log2_32 $V))>;
1787
1788  def: Pat<(and I32:$Rs, (not (shl 1, I32:$Rt))),
1789           (S2_clrbit_r IntRegs:$Rs, IntRegs:$Rt)>;
1790  def: Pat<(or I32:$Rs, (shl 1, I32:$Rt)),
1791           (S2_setbit_r IntRegs:$Rs, IntRegs:$Rt)>;
1792  def: Pat<(xor I32:$Rs, (shl 1, I32:$Rt)),
1793           (S2_togglebit_r IntRegs:$Rs, IntRegs:$Rt)>;
1794}
1795
1796// Clr/set/toggle bit for 64-bit values with immediate bit index.
1797let AddedComplexity = 20 in { // Complexity greater than and/or/xor
1798  def: Pat<(and I64:$Rss, IsNPow2_64L:$V),
1799           (Combinew (i32 (HiReg $Rss)),
1800                     (S2_clrbit_i (LoReg $Rss), (LogN2_64 $V)))>;
1801  def: Pat<(and I64:$Rss, IsNPow2_64H:$V),
1802           (Combinew (S2_clrbit_i (HiReg $Rss), (UDEC32 (i32 (LogN2_64 $V)))),
1803                     (i32 (LoReg $Rss)))>;
1804
1805  def: Pat<(or I64:$Rss, IsPow2_64L:$V),
1806           (Combinew (i32 (HiReg $Rss)),
1807                     (S2_setbit_i (LoReg $Rss), (Log2_64 $V)))>;
1808  def: Pat<(or I64:$Rss, IsPow2_64H:$V),
1809           (Combinew (S2_setbit_i (HiReg $Rss), (UDEC32 (i32 (Log2_64 $V)))),
1810                     (i32 (LoReg $Rss)))>;
1811
1812  def: Pat<(xor I64:$Rss, IsPow2_64L:$V),
1813           (Combinew (i32 (HiReg $Rss)),
1814                     (S2_togglebit_i (LoReg $Rss), (Log2_64 $V)))>;
1815  def: Pat<(xor I64:$Rss, IsPow2_64H:$V),
1816           (Combinew (S2_togglebit_i (HiReg $Rss), (UDEC32 (i32 (Log2_64 $V)))),
1817                     (i32 (LoReg $Rss)))>;
1818}
1819
1820
1821let AddedComplexity = 20 in { // Complexity greater than cmp reg-imm.
1822  def: Pat<(i1 (setne (and (shl 1, u5_0ImmPred:$u5), I32:$Rs), 0)),
1823           (S2_tstbit_i IntRegs:$Rs, imm:$u5)>;
1824  def: Pat<(i1 (setne (and (shl 1, I32:$Rt), I32:$Rs), 0)),
1825           (S2_tstbit_r IntRegs:$Rs, IntRegs:$Rt)>;
1826  def: Pat<(i1 (trunc I32:$Rs)),
1827           (S2_tstbit_i IntRegs:$Rs, 0)>;
1828  def: Pat<(i1 (trunc I64:$Rs)),
1829           (S2_tstbit_i (LoReg DoubleRegs:$Rs), 0)>;
1830}
1831
1832def: Pat<(and (srl I32:$Rs, u5_0ImmPred:$u5), 1),
1833         (I1toI32 (S2_tstbit_i I32:$Rs, imm:$u5))>;
1834def: Pat<(and (srl I64:$Rss, IsULE<32,31>:$u6), 1),
1835         (ToZext64 (I1toI32 (S2_tstbit_i (LoReg $Rss), imm:$u6)))>;
1836def: Pat<(and (srl I64:$Rss, IsUGT<32,31>:$u6), 1),
1837         (ToZext64 (I1toI32 (S2_tstbit_i (HiReg $Rss), (UDEC32 $u6))))>;
1838
1839def: Pat<(and (not (srl I32:$Rs, u5_0ImmPred:$u5)), 1),
1840         (I1toI32 (S4_ntstbit_i I32:$Rs, imm:$u5))>;
1841def: Pat<(and (not (srl I64:$Rss, IsULE<32,31>:$u6)), 1),
1842         (ToZext64 (I1toI32 (S4_ntstbit_i (LoReg $Rss), imm:$u6)))>;
1843def: Pat<(and (not (srl I64:$Rss, IsUGT<32,31>:$u6)), 1),
1844         (ToZext64 (I1toI32 (S4_ntstbit_i (HiReg $Rss), (UDEC32 $u6))))>;
1845
1846let AddedComplexity = 20 in { // Complexity greater than compare reg-imm.
1847  def: Pat<(i1 (seteq (and I32:$Rs, u6_0ImmPred:$u6), 0)),
1848           (C2_bitsclri IntRegs:$Rs, imm:$u6)>;
1849  def: Pat<(i1 (seteq (and I32:$Rs, I32:$Rt), 0)),
1850           (C2_bitsclr IntRegs:$Rs, IntRegs:$Rt)>;
1851}
1852
1853let AddedComplexity = 10 in   // Complexity greater than compare reg-reg.
1854def: Pat<(i1 (seteq (and I32:$Rs, I32:$Rt), IntRegs:$Rt)),
1855         (C2_bitsset IntRegs:$Rs, IntRegs:$Rt)>;
1856
1857def SDTTestBit:
1858  SDTypeProfile<1, 2, [SDTCisVT<0, i1>, SDTCisVT<1, i32>, SDTCisVT<2, i32>]>;
1859def HexagonTSTBIT: SDNode<"HexagonISD::TSTBIT", SDTTestBit>;
1860
1861def: Pat<(HexagonTSTBIT I32:$Rs, u5_0ImmPred:$u5),
1862         (S2_tstbit_i I32:$Rs, imm:$u5)>;
1863def: Pat<(HexagonTSTBIT I32:$Rs, I32:$Rt),
1864         (S2_tstbit_r I32:$Rs, I32:$Rt)>;
1865
1866// Add extra complexity to prefer these instructions over bitsset/bitsclr.
1867// The reason is that tstbit/ntstbit can be folded into a compound instruction:
1868//   if ([!]tstbit(...)) jump ...
1869let AddedComplexity = 20 in {   // Complexity greater than cmp reg-imm.
1870  def: Pat<(i1 (seteq (and I32:$Rs, IsPow2_32:$u5), 0)),
1871           (S4_ntstbit_i I32:$Rs, (Log2_32 imm:$u5))>;
1872  def: Pat<(i1 (setne (and I32:$Rs, IsPow2_32:$u5), 0)),
1873           (S2_tstbit_i I32:$Rs, (Log2_32 imm:$u5))>;
1874  def: Pat<(i1 (seteq (and (shl 1, I32:$Rt), I32:$Rs), 0)),
1875           (S4_ntstbit_r I32:$Rs, I32:$Rt)>;
1876  def: Pat<(i1 (setne (and (shl 1, I32:$Rt), I32:$Rs), 0)),
1877           (S2_tstbit_r I32:$Rs, I32:$Rt)>;
1878}
1879
1880def: Pat<(i1 (seteq (and I64:$Rs, IsPow2_64L:$u6), 0)),
1881         (S4_ntstbit_i (LoReg $Rs), (Log2_64 $u6))>;
1882def: Pat<(i1 (seteq (and I64:$Rs, IsPow2_64H:$u6), 0)),
1883         (S4_ntstbit_i (HiReg $Rs), (UDEC32 (i32 (Log2_64 $u6))))>;
1884def: Pat<(i1 (setne (and I64:$Rs, IsPow2_64L:$u6), 0)),
1885         (S2_tstbit_i (LoReg $Rs), (Log2_64 imm:$u6))>;
1886def: Pat<(i1 (setne (and I64:$Rs, IsPow2_64H:$u6), 0)),
1887         (S2_tstbit_i (HiReg $Rs), (UDEC32 (i32 (Log2_64 imm:$u6))))>;
1888
1889// Do not increase complexity of these patterns. In the DAG, "cmp i8" may be
1890// represented as a compare against "value & 0xFF", which is an exact match
1891// for cmpb (same for cmph). The patterns below do not contain any additional
1892// complexity that would make them preferable, and if they were actually used
1893// instead of cmpb/cmph, they would result in a compare against register that
1894// is loaded with the byte/half mask (i.e. 0xFF or 0xFFFF).
1895def: Pat<(i1 (setne (and I32:$Rs, u6_0ImmPred:$u6), 0)),
1896         (C4_nbitsclri I32:$Rs, imm:$u6)>;
1897def: Pat<(i1 (setne (and I32:$Rs, I32:$Rt), 0)),
1898         (C4_nbitsclr I32:$Rs, I32:$Rt)>;
1899def: Pat<(i1 (setne (and I32:$Rs, I32:$Rt), I32:$Rt)),
1900         (C4_nbitsset I32:$Rs, I32:$Rt)>;
1901
1902// Special patterns to address certain cases where the "top-down" matching
1903// algorithm would cause suboptimal selection.
1904
1905let AddedComplexity = 100 in {
1906  // Avoid A4_rcmp[n]eqi in these cases:
1907  def: Pat<(i32 (zext (i1 (seteq (and (shl 1, I32:$Rt), I32:$Rs), 0)))),
1908           (I1toI32 (S4_ntstbit_r IntRegs:$Rs, IntRegs:$Rt))>;
1909  def: Pat<(i32 (zext (i1 (setne (and (shl 1, I32:$Rt), I32:$Rs), 0)))),
1910           (I1toI32 (S2_tstbit_r IntRegs:$Rs, IntRegs:$Rt))>;
1911  def: Pat<(i32 (zext (i1 (seteq (and I32:$Rs, IsPow2_32:$u5), 0)))),
1912           (I1toI32 (S4_ntstbit_i I32:$Rs, (Log2_32 imm:$u5)))>;
1913  def: Pat<(i32 (zext (i1 (setne (and I32:$Rs, IsPow2_32:$u5), 0)))),
1914           (I1toI32 (S2_tstbit_i I32:$Rs, (Log2_32 imm:$u5)))>;
1915  def: Pat<(i32 (zext (i1 (seteq (and (shl 1, I32:$Rt), I32:$Rs), 0)))),
1916           (I1toI32 (S4_ntstbit_r I32:$Rs, I32:$Rt))>;
1917  def: Pat<(i32 (zext (i1 (setne (and (shl 1, I32:$Rt), I32:$Rs), 0)))),
1918           (I1toI32 (S2_tstbit_r I32:$Rs, I32:$Rt))>;
1919}
1920
1921// --(11) PIC ------------------------------------------------------------
1922//
1923
1924def SDT_HexagonAtGot
1925  : SDTypeProfile<1, 3, [SDTCisVT<0, i32>, SDTCisVT<1, i32>, SDTCisVT<2, i32>]>;
1926def SDT_HexagonAtPcrel
1927  : SDTypeProfile<1, 1, [SDTCisVT<0, i32>, SDTCisVT<1, i32>]>;
1928
1929// AT_GOT address-of-GOT, address-of-global, offset-in-global
1930def HexagonAtGot       : SDNode<"HexagonISD::AT_GOT", SDT_HexagonAtGot>;
1931// AT_PCREL address-of-global
1932def HexagonAtPcrel     : SDNode<"HexagonISD::AT_PCREL", SDT_HexagonAtPcrel>;
1933
1934def: Pat<(HexagonAtGot I32:$got, I32:$addr, (i32 0)),
1935         (L2_loadri_io I32:$got, imm:$addr)>;
1936def: Pat<(HexagonAtGot I32:$got, I32:$addr, s30_2ImmPred:$off),
1937         (A2_addi (L2_loadri_io I32:$got, imm:$addr), imm:$off)>;
1938def: Pat<(HexagonAtPcrel I32:$addr),
1939         (C4_addipc imm:$addr)>;
1940
1941// The HVX load patterns also match AT_PCREL directly. Make sure that
1942// if the selection of this opcode changes, it's updated in all places.
1943
1944
1945// --(12) Load -----------------------------------------------------------
1946//
1947
1948def L1toI32:  OutPatFrag<(ops node:$Rs), (A2_subri 0, (i32 $Rs))>;
1949def L1toI64:  OutPatFrag<(ops node:$Rs), (ToSext64 (L1toI32 $Rs))>;
1950
1951def extloadv2i8: PatFrag<(ops node:$ptr), (extload node:$ptr), [{
1952  return cast<LoadSDNode>(N)->getMemoryVT() == MVT::v2i8;
1953}]>;
1954def extloadv4i8: PatFrag<(ops node:$ptr), (extload node:$ptr), [{
1955  return cast<LoadSDNode>(N)->getMemoryVT() == MVT::v4i8;
1956}]>;
1957
1958def zextloadv2i8: PatFrag<(ops node:$ptr), (zextload node:$ptr), [{
1959  return cast<LoadSDNode>(N)->getMemoryVT() == MVT::v2i8;
1960}]>;
1961def zextloadv4i8: PatFrag<(ops node:$ptr), (zextload node:$ptr), [{
1962  return cast<LoadSDNode>(N)->getMemoryVT() == MVT::v4i8;
1963}]>;
1964
1965def sextloadv2i8: PatFrag<(ops node:$ptr), (sextload node:$ptr), [{
1966  return cast<LoadSDNode>(N)->getMemoryVT() == MVT::v2i8;
1967}]>;
1968def sextloadv4i8: PatFrag<(ops node:$ptr), (sextload node:$ptr), [{
1969  return cast<LoadSDNode>(N)->getMemoryVT() == MVT::v4i8;
1970}]>;
1971
1972// Patterns to select load-indexed: Rs + Off.
1973// - frameindex [+ imm],
1974multiclass Loadxfi_pat<PatFrag Load, ValueType VT, PatLeaf ImmPred,
1975                       InstHexagon MI> {
1976  def: Pat<(VT (Load (add (i32 AddrFI:$fi), ImmPred:$Off))),
1977           (VT (MI AddrFI:$fi, imm:$Off))>;
1978  def: Pat<(VT (Load (IsOrAdd (i32 AddrFI:$fi), ImmPred:$Off))),
1979           (VT (MI AddrFI:$fi, imm:$Off))>;
1980  def: Pat<(VT (Load AddrFI:$fi)), (VT (MI AddrFI:$fi, 0))>;
1981}
1982
1983// Patterns to select load-indexed: Rs + Off.
1984// - base reg [+ imm]
1985multiclass Loadxgi_pat<PatFrag Load, ValueType VT, PatLeaf ImmPred,
1986                       InstHexagon MI> {
1987  def: Pat<(VT (Load (add I32:$Rs, ImmPred:$Off))),
1988           (VT (MI IntRegs:$Rs, imm:$Off))>;
1989  def: Pat<(VT (Load (IsOrAdd I32:$Rs, ImmPred:$Off))),
1990           (VT (MI IntRegs:$Rs, imm:$Off))>;
1991  def: Pat<(VT (Load I32:$Rs)), (VT (MI IntRegs:$Rs, 0))>;
1992}
1993
1994// Patterns to select load-indexed: Rs + Off. Combines Loadxfi + Loadxgi.
1995multiclass Loadxi_pat<PatFrag Load, ValueType VT, PatLeaf ImmPred,
1996                      InstHexagon MI> {
1997  defm: Loadxfi_pat<Load, VT, ImmPred, MI>;
1998  defm: Loadxgi_pat<Load, VT, ImmPred, MI>;
1999}
2000
2001// Patterns to select load reg indexed: Rs + Off with a value modifier.
2002// - frameindex [+ imm]
2003multiclass Loadxfim_pat<PatFrag Load, ValueType VT, PatFrag ValueMod,
2004                        PatLeaf ImmPred, InstHexagon MI> {
2005  def: Pat<(VT (Load (add (i32 AddrFI:$fi), ImmPred:$Off))),
2006           (VT (ValueMod (MI AddrFI:$fi, imm:$Off)))>;
2007  def: Pat<(VT (Load (IsOrAdd (i32 AddrFI:$fi), ImmPred:$Off))),
2008           (VT (ValueMod (MI AddrFI:$fi, imm:$Off)))>;
2009  def: Pat<(VT (Load AddrFI:$fi)), (VT (ValueMod (MI AddrFI:$fi, 0)))>;
2010}
2011
2012// Patterns to select load reg indexed: Rs + Off with a value modifier.
2013// - base reg [+ imm]
2014multiclass Loadxgim_pat<PatFrag Load, ValueType VT, PatFrag ValueMod,
2015                        PatLeaf ImmPred, InstHexagon MI> {
2016  def: Pat<(VT (Load (add I32:$Rs, ImmPred:$Off))),
2017           (VT (ValueMod (MI IntRegs:$Rs, imm:$Off)))>;
2018  def: Pat<(VT (Load (IsOrAdd I32:$Rs, ImmPred:$Off))),
2019           (VT (ValueMod (MI IntRegs:$Rs, imm:$Off)))>;
2020  def: Pat<(VT (Load I32:$Rs)), (VT (ValueMod (MI IntRegs:$Rs, 0)))>;
2021}
2022
2023// Patterns to select load reg indexed: Rs + Off with a value modifier.
2024// Combines Loadxfim + Loadxgim.
2025multiclass Loadxim_pat<PatFrag Load, ValueType VT, PatFrag ValueMod,
2026                       PatLeaf ImmPred, InstHexagon MI> {
2027  defm: Loadxfim_pat<Load, VT, ValueMod, ImmPred, MI>;
2028  defm: Loadxgim_pat<Load, VT, ValueMod, ImmPred, MI>;
2029}
2030
2031// Pattern to select load reg reg-indexed: Rs + Rt<<u2.
2032class Loadxr_shl_pat<PatFrag Load, ValueType VT, InstHexagon MI>
2033  : Pat<(VT (Load (add I32:$Rs, (i32 (shl I32:$Rt, u2_0ImmPred:$u2))))),
2034        (VT (MI IntRegs:$Rs, IntRegs:$Rt, imm:$u2))>;
2035
2036// Pattern to select load reg reg-indexed: Rs + Rt<<0.
2037class Loadxr_add_pat<PatFrag Load, ValueType VT, InstHexagon MI>
2038  : Pat<(VT (Load (add I32:$Rs, I32:$Rt))),
2039        (VT (MI IntRegs:$Rs, IntRegs:$Rt, 0))>;
2040
2041// Pattern to select load reg reg-indexed: Rs + Rt<<u2 with value modifier.
2042class Loadxrm_shl_pat<PatFrag Load, ValueType VT, PatFrag ValueMod,
2043                      InstHexagon MI>
2044  : Pat<(VT (Load (add I32:$Rs, (i32 (shl I32:$Rt, u2_0ImmPred:$u2))))),
2045        (VT (ValueMod (MI IntRegs:$Rs, IntRegs:$Rt, imm:$u2)))>;
2046
2047// Pattern to select load reg reg-indexed: Rs + Rt<<0 with value modifier.
2048class Loadxrm_add_pat<PatFrag Load, ValueType VT, PatFrag ValueMod,
2049                      InstHexagon MI>
2050  : Pat<(VT (Load (add I32:$Rs, I32:$Rt))),
2051        (VT (ValueMod (MI IntRegs:$Rs, IntRegs:$Rt, 0)))>;
2052
2053// Pattern to select load long-offset reg-indexed: Addr + Rt<<u2.
2054// Don't match for u2==0, instead use reg+imm for those cases.
2055class Loadxu_pat<PatFrag Load, ValueType VT, PatFrag ImmPred, InstHexagon MI>
2056  : Pat<(VT (Load (add (shl IntRegs:$Rt, u2_0ImmPred:$u2), ImmPred:$Addr))),
2057        (VT (MI IntRegs:$Rt, imm:$u2, ImmPred:$Addr))>;
2058
2059class Loadxum_pat<PatFrag Load, ValueType VT, PatFrag ImmPred, PatFrag ValueMod,
2060                  InstHexagon MI>
2061  : Pat<(VT (Load (add (shl IntRegs:$Rt, u2_0ImmPred:$u2), ImmPred:$Addr))),
2062        (VT (ValueMod (MI IntRegs:$Rt, imm:$u2, ImmPred:$Addr)))>;
2063
2064// Pattern to select load absolute.
2065class Loada_pat<PatFrag Load, ValueType VT, PatFrag Addr, InstHexagon MI>
2066  : Pat<(VT (Load Addr:$addr)), (MI Addr:$addr)>;
2067
2068// Pattern to select load absolute with value modifier.
2069class Loadam_pat<PatFrag Load, ValueType VT, PatFrag Addr, PatFrag ValueMod,
2070                 InstHexagon MI>
2071  : Pat<(VT (Load Addr:$addr)), (ValueMod (MI Addr:$addr))>;
2072
2073
2074let AddedComplexity = 20 in {
2075  defm: Loadxi_pat<extloadi1,       i32,   anyimm0, L2_loadrub_io>;
2076  defm: Loadxi_pat<extloadi8,       i32,   anyimm0, L2_loadrub_io>;
2077  defm: Loadxi_pat<extloadi16,      i32,   anyimm1, L2_loadruh_io>;
2078  defm: Loadxi_pat<extloadv2i8,     v2i16, anyimm1, L2_loadbzw2_io>;
2079  defm: Loadxi_pat<extloadv4i8,     v4i16, anyimm2, L2_loadbzw4_io>;
2080  defm: Loadxi_pat<sextloadi8,      i32,   anyimm0, L2_loadrb_io>;
2081  defm: Loadxi_pat<sextloadi16,     i32,   anyimm1, L2_loadrh_io>;
2082  defm: Loadxi_pat<sextloadv2i8,    v2i16, anyimm1, L2_loadbsw2_io>;
2083  defm: Loadxi_pat<sextloadv4i8,    v4i16, anyimm2, L2_loadbsw4_io>;
2084  defm: Loadxi_pat<zextloadi1,      i32,   anyimm0, L2_loadrub_io>;
2085  defm: Loadxi_pat<zextloadi8,      i32,   anyimm0, L2_loadrub_io>;
2086  defm: Loadxi_pat<zextloadi16,     i32,   anyimm1, L2_loadruh_io>;
2087  defm: Loadxi_pat<zextloadv2i8,    v2i16, anyimm1, L2_loadbzw2_io>;
2088  defm: Loadxi_pat<zextloadv4i8,    v4i16, anyimm2, L2_loadbzw4_io>;
2089  defm: Loadxi_pat<load,            i32,   anyimm2, L2_loadri_io>;
2090  defm: Loadxi_pat<load,            v2i16, anyimm2, L2_loadri_io>;
2091  defm: Loadxi_pat<load,            v4i8,  anyimm2, L2_loadri_io>;
2092  defm: Loadxi_pat<load,            i64,   anyimm3, L2_loadrd_io>;
2093  defm: Loadxi_pat<load,            v2i32, anyimm3, L2_loadrd_io>;
2094  defm: Loadxi_pat<load,            v4i16, anyimm3, L2_loadrd_io>;
2095  defm: Loadxi_pat<load,            v8i8,  anyimm3, L2_loadrd_io>;
2096  defm: Loadxi_pat<load,            f32,   anyimm2, L2_loadri_io>;
2097  defm: Loadxi_pat<load,            f64,   anyimm3, L2_loadrd_io>;
2098  // No sextloadi1.
2099
2100  defm: Loadxi_pat<atomic_load_8 ,  i32, anyimm0, L2_loadrub_io>;
2101  defm: Loadxi_pat<atomic_load_16,  i32, anyimm1, L2_loadruh_io>;
2102  defm: Loadxi_pat<atomic_load_32,  i32, anyimm2, L2_loadri_io>;
2103  defm: Loadxi_pat<atomic_load_64,  i64, anyimm3, L2_loadrd_io>;
2104}
2105
2106let AddedComplexity = 30 in {
2107  // Loads of i1 are loading a byte, and the byte should be either 0 or 1.
2108  // It doesn't matter if it's sign- or zero-extended, so use zero-extension
2109  // everywhere.
2110  defm: Loadxim_pat<sextloadi1,   i32, L1toI32,  anyimm0, L2_loadrub_io>;
2111  defm: Loadxim_pat<extloadi1,    i64, ToAext64, anyimm0, L2_loadrub_io>;
2112  defm: Loadxim_pat<sextloadi1,   i64, L1toI64,  anyimm0, L2_loadrub_io>;
2113  defm: Loadxim_pat<zextloadi1,   i64, ToZext64, anyimm0, L2_loadrub_io>;
2114
2115  defm: Loadxim_pat<extloadi8,    i64, ToAext64, anyimm0, L2_loadrub_io>;
2116  defm: Loadxim_pat<extloadi16,   i64, ToAext64, anyimm1, L2_loadruh_io>;
2117  defm: Loadxim_pat<extloadi32,   i64, ToAext64, anyimm2, L2_loadri_io>;
2118  defm: Loadxim_pat<zextloadi8,   i64, ToZext64, anyimm0, L2_loadrub_io>;
2119  defm: Loadxim_pat<zextloadi16,  i64, ToZext64, anyimm1, L2_loadruh_io>;
2120  defm: Loadxim_pat<zextloadi32,  i64, ToZext64, anyimm2, L2_loadri_io>;
2121  defm: Loadxim_pat<sextloadi8,   i64, ToSext64, anyimm0, L2_loadrb_io>;
2122  defm: Loadxim_pat<sextloadi16,  i64, ToSext64, anyimm1, L2_loadrh_io>;
2123  defm: Loadxim_pat<sextloadi32,  i64, ToSext64, anyimm2, L2_loadri_io>;
2124}
2125
2126let AddedComplexity  = 60 in {
2127  def: Loadxu_pat<extloadi1,    i32,   anyimm0, L4_loadrub_ur>;
2128  def: Loadxu_pat<extloadi8,    i32,   anyimm0, L4_loadrub_ur>;
2129  def: Loadxu_pat<extloadi16,   i32,   anyimm1, L4_loadruh_ur>;
2130  def: Loadxu_pat<extloadv2i8,  v2i16, anyimm1, L4_loadbzw2_ur>;
2131  def: Loadxu_pat<extloadv4i8,  v4i16, anyimm2, L4_loadbzw4_ur>;
2132  def: Loadxu_pat<sextloadi8,   i32,   anyimm0, L4_loadrb_ur>;
2133  def: Loadxu_pat<sextloadi16,  i32,   anyimm1, L4_loadrh_ur>;
2134  def: Loadxu_pat<sextloadv2i8, v2i16, anyimm1, L4_loadbsw2_ur>;
2135  def: Loadxu_pat<sextloadv4i8, v4i16, anyimm2, L4_loadbsw4_ur>;
2136  def: Loadxu_pat<zextloadi1,   i32,   anyimm0, L4_loadrub_ur>;
2137  def: Loadxu_pat<zextloadi8,   i32,   anyimm0, L4_loadrub_ur>;
2138  def: Loadxu_pat<zextloadi16,  i32,   anyimm1, L4_loadruh_ur>;
2139  def: Loadxu_pat<zextloadv2i8, v2i16, anyimm1, L4_loadbzw2_ur>;
2140  def: Loadxu_pat<zextloadv4i8, v4i16, anyimm2, L4_loadbzw4_ur>;
2141  def: Loadxu_pat<load,         i32,   anyimm2, L4_loadri_ur>;
2142  def: Loadxu_pat<load,         v2i16, anyimm2, L4_loadri_ur>;
2143  def: Loadxu_pat<load,         v4i8,  anyimm2, L4_loadri_ur>;
2144  def: Loadxu_pat<load,         i64,   anyimm3, L4_loadrd_ur>;
2145  def: Loadxu_pat<load,         v2i32, anyimm3, L4_loadrd_ur>;
2146  def: Loadxu_pat<load,         v4i16, anyimm3, L4_loadrd_ur>;
2147  def: Loadxu_pat<load,         v8i8,  anyimm3, L4_loadrd_ur>;
2148  def: Loadxu_pat<load,         f32,   anyimm2, L4_loadri_ur>;
2149  def: Loadxu_pat<load,         f64,   anyimm3, L4_loadrd_ur>;
2150
2151  def: Loadxum_pat<sextloadi1,  i32, anyimm0, L1toI32,  L4_loadrub_ur>;
2152  def: Loadxum_pat<extloadi1,   i64, anyimm0, ToAext64, L4_loadrub_ur>;
2153  def: Loadxum_pat<sextloadi1,  i64, anyimm0, L1toI64,  L4_loadrub_ur>;
2154  def: Loadxum_pat<zextloadi1,  i64, anyimm0, ToZext64, L4_loadrub_ur>;
2155
2156  def: Loadxum_pat<sextloadi8,  i64, anyimm0, ToSext64, L4_loadrb_ur>;
2157  def: Loadxum_pat<zextloadi8,  i64, anyimm0, ToZext64, L4_loadrub_ur>;
2158  def: Loadxum_pat<extloadi8,   i64, anyimm0, ToAext64, L4_loadrub_ur>;
2159  def: Loadxum_pat<sextloadi16, i64, anyimm1, ToSext64, L4_loadrh_ur>;
2160  def: Loadxum_pat<zextloadi16, i64, anyimm1, ToZext64, L4_loadruh_ur>;
2161  def: Loadxum_pat<extloadi16,  i64, anyimm1, ToAext64, L4_loadruh_ur>;
2162  def: Loadxum_pat<sextloadi32, i64, anyimm2, ToSext64, L4_loadri_ur>;
2163  def: Loadxum_pat<zextloadi32, i64, anyimm2, ToZext64, L4_loadri_ur>;
2164  def: Loadxum_pat<extloadi32,  i64, anyimm2, ToAext64, L4_loadri_ur>;
2165}
2166
2167let AddedComplexity = 40 in {
2168  def: Loadxr_shl_pat<extloadi1,     i32,   L4_loadrub_rr>;
2169  def: Loadxr_shl_pat<extloadi8,     i32,   L4_loadrub_rr>;
2170  def: Loadxr_shl_pat<zextloadi1,    i32,   L4_loadrub_rr>;
2171  def: Loadxr_shl_pat<zextloadi8,    i32,   L4_loadrub_rr>;
2172  def: Loadxr_shl_pat<sextloadi8,    i32,   L4_loadrb_rr>;
2173  def: Loadxr_shl_pat<extloadi16,    i32,   L4_loadruh_rr>;
2174  def: Loadxr_shl_pat<zextloadi16,   i32,   L4_loadruh_rr>;
2175  def: Loadxr_shl_pat<sextloadi16,   i32,   L4_loadrh_rr>;
2176  def: Loadxr_shl_pat<load,          i32,   L4_loadri_rr>;
2177  def: Loadxr_shl_pat<load,          v2i16, L4_loadri_rr>;
2178  def: Loadxr_shl_pat<load,          v4i8,  L4_loadri_rr>;
2179  def: Loadxr_shl_pat<load,          i64,   L4_loadrd_rr>;
2180  def: Loadxr_shl_pat<load,          v2i32, L4_loadrd_rr>;
2181  def: Loadxr_shl_pat<load,          v4i16, L4_loadrd_rr>;
2182  def: Loadxr_shl_pat<load,          v8i8,  L4_loadrd_rr>;
2183  def: Loadxr_shl_pat<load,          f32,   L4_loadri_rr>;
2184  def: Loadxr_shl_pat<load,          f64,   L4_loadrd_rr>;
2185}
2186
2187let AddedComplexity = 20 in {
2188  def: Loadxr_add_pat<extloadi1,     i32,   L4_loadrub_rr>;
2189  def: Loadxr_add_pat<extloadi8,     i32,   L4_loadrub_rr>;
2190  def: Loadxr_add_pat<zextloadi8,    i32,   L4_loadrub_rr>;
2191  def: Loadxr_add_pat<zextloadi1,    i32,   L4_loadrub_rr>;
2192  def: Loadxr_add_pat<sextloadi8,    i32,   L4_loadrb_rr>;
2193  def: Loadxr_add_pat<extloadi16,    i32,   L4_loadruh_rr>;
2194  def: Loadxr_add_pat<zextloadi16,   i32,   L4_loadruh_rr>;
2195  def: Loadxr_add_pat<sextloadi16,   i32,   L4_loadrh_rr>;
2196  def: Loadxr_add_pat<load,          i32,   L4_loadri_rr>;
2197  def: Loadxr_add_pat<load,          v2i16, L4_loadri_rr>;
2198  def: Loadxr_add_pat<load,          v4i8,  L4_loadri_rr>;
2199  def: Loadxr_add_pat<load,          i64,   L4_loadrd_rr>;
2200  def: Loadxr_add_pat<load,          v2i32, L4_loadrd_rr>;
2201  def: Loadxr_add_pat<load,          v4i16, L4_loadrd_rr>;
2202  def: Loadxr_add_pat<load,          v8i8,  L4_loadrd_rr>;
2203  def: Loadxr_add_pat<load,          f32,   L4_loadri_rr>;
2204  def: Loadxr_add_pat<load,          f64,   L4_loadrd_rr>;
2205}
2206
2207let AddedComplexity = 40 in {
2208  def: Loadxrm_shl_pat<sextloadi1,   i32, L1toI32,  L4_loadrub_rr>;
2209  def: Loadxrm_shl_pat<extloadi1,    i64, ToAext64, L4_loadrub_rr>;
2210  def: Loadxrm_shl_pat<sextloadi1,   i64, L1toI64,  L4_loadrub_rr>;
2211  def: Loadxrm_shl_pat<zextloadi1,   i64, ToZext64, L4_loadrub_rr>;
2212
2213  def: Loadxrm_shl_pat<extloadi8,    i64, ToAext64, L4_loadrub_rr>;
2214  def: Loadxrm_shl_pat<zextloadi8,   i64, ToZext64, L4_loadrub_rr>;
2215  def: Loadxrm_shl_pat<sextloadi8,   i64, ToSext64, L4_loadrb_rr>;
2216  def: Loadxrm_shl_pat<extloadi16,   i64, ToAext64, L4_loadruh_rr>;
2217  def: Loadxrm_shl_pat<zextloadi16,  i64, ToZext64, L4_loadruh_rr>;
2218  def: Loadxrm_shl_pat<sextloadi16,  i64, ToSext64, L4_loadrh_rr>;
2219  def: Loadxrm_shl_pat<extloadi32,   i64, ToAext64, L4_loadri_rr>;
2220  def: Loadxrm_shl_pat<zextloadi32,  i64, ToZext64, L4_loadri_rr>;
2221  def: Loadxrm_shl_pat<sextloadi32,  i64, ToSext64, L4_loadri_rr>;
2222}
2223
2224let AddedComplexity = 30 in {
2225  def: Loadxrm_add_pat<sextloadi1,   i32, L1toI32,  L4_loadrub_rr>;
2226  def: Loadxrm_add_pat<extloadi1,    i64, ToAext64, L4_loadrub_rr>;
2227  def: Loadxrm_add_pat<sextloadi1,   i64, L1toI64,  L4_loadrub_rr>;
2228  def: Loadxrm_add_pat<zextloadi1,   i64, ToZext64, L4_loadrub_rr>;
2229
2230  def: Loadxrm_add_pat<extloadi8,    i64, ToAext64, L4_loadrub_rr>;
2231  def: Loadxrm_add_pat<zextloadi8,   i64, ToZext64, L4_loadrub_rr>;
2232  def: Loadxrm_add_pat<sextloadi8,   i64, ToSext64, L4_loadrb_rr>;
2233  def: Loadxrm_add_pat<extloadi16,   i64, ToAext64, L4_loadruh_rr>;
2234  def: Loadxrm_add_pat<zextloadi16,  i64, ToZext64, L4_loadruh_rr>;
2235  def: Loadxrm_add_pat<sextloadi16,  i64, ToSext64, L4_loadrh_rr>;
2236  def: Loadxrm_add_pat<extloadi32,   i64, ToAext64, L4_loadri_rr>;
2237  def: Loadxrm_add_pat<zextloadi32,  i64, ToZext64, L4_loadri_rr>;
2238  def: Loadxrm_add_pat<sextloadi32,  i64, ToSext64, L4_loadri_rr>;
2239}
2240
2241// Absolute address
2242
2243let AddedComplexity  = 60 in {
2244  def: Loada_pat<extloadi1,       i32,   anyimm0, PS_loadrubabs>;
2245  def: Loada_pat<zextloadi1,      i32,   anyimm0, PS_loadrubabs>;
2246  def: Loada_pat<extloadi8,       i32,   anyimm0, PS_loadrubabs>;
2247  def: Loada_pat<sextloadi8,      i32,   anyimm0, PS_loadrbabs>;
2248  def: Loada_pat<zextloadi8,      i32,   anyimm0, PS_loadrubabs>;
2249  def: Loada_pat<extloadi16,      i32,   anyimm1, PS_loadruhabs>;
2250  def: Loada_pat<sextloadi16,     i32,   anyimm1, PS_loadrhabs>;
2251  def: Loada_pat<zextloadi16,     i32,   anyimm1, PS_loadruhabs>;
2252  def: Loada_pat<load,            i32,   anyimm2, PS_loadriabs>;
2253  def: Loada_pat<load,            v2i16, anyimm2, PS_loadriabs>;
2254  def: Loada_pat<load,            v4i8,  anyimm2, PS_loadriabs>;
2255  def: Loada_pat<load,            i64,   anyimm3, PS_loadrdabs>;
2256  def: Loada_pat<load,            v2i32, anyimm3, PS_loadrdabs>;
2257  def: Loada_pat<load,            v4i16, anyimm3, PS_loadrdabs>;
2258  def: Loada_pat<load,            v8i8,  anyimm3, PS_loadrdabs>;
2259  def: Loada_pat<load,            f32,   anyimm2, PS_loadriabs>;
2260  def: Loada_pat<load,            f64,   anyimm3, PS_loadrdabs>;
2261
2262  def: Loada_pat<atomic_load_8,   i32, anyimm0, PS_loadrubabs>;
2263  def: Loada_pat<atomic_load_16,  i32, anyimm1, PS_loadruhabs>;
2264  def: Loada_pat<atomic_load_32,  i32, anyimm2, PS_loadriabs>;
2265  def: Loada_pat<atomic_load_64,  i64, anyimm3, PS_loadrdabs>;
2266}
2267
2268let AddedComplexity  = 30 in {
2269  def: Loadam_pat<load,           i1,  anyimm0, I32toI1,  PS_loadrubabs>;
2270  def: Loadam_pat<sextloadi1,     i32, anyimm0, L1toI32,  PS_loadrubabs>;
2271  def: Loadam_pat<extloadi1,      i64, anyimm0, ToZext64, PS_loadrubabs>;
2272  def: Loadam_pat<sextloadi1,     i64, anyimm0, L1toI64,  PS_loadrubabs>;
2273  def: Loadam_pat<zextloadi1,     i64, anyimm0, ToZext64, PS_loadrubabs>;
2274
2275  def: Loadam_pat<extloadi8,      i64, anyimm0, ToAext64, PS_loadrubabs>;
2276  def: Loadam_pat<sextloadi8,     i64, anyimm0, ToSext64, PS_loadrbabs>;
2277  def: Loadam_pat<zextloadi8,     i64, anyimm0, ToZext64, PS_loadrubabs>;
2278  def: Loadam_pat<extloadi16,     i64, anyimm1, ToAext64, PS_loadruhabs>;
2279  def: Loadam_pat<sextloadi16,    i64, anyimm1, ToSext64, PS_loadrhabs>;
2280  def: Loadam_pat<zextloadi16,    i64, anyimm1, ToZext64, PS_loadruhabs>;
2281  def: Loadam_pat<extloadi32,     i64, anyimm2, ToAext64, PS_loadriabs>;
2282  def: Loadam_pat<sextloadi32,    i64, anyimm2, ToSext64, PS_loadriabs>;
2283  def: Loadam_pat<zextloadi32,    i64, anyimm2, ToZext64, PS_loadriabs>;
2284}
2285
2286// GP-relative address
2287
2288let AddedComplexity  = 100 in {
2289  def: Loada_pat<extloadi1,       i32,   addrgp,  L2_loadrubgp>;
2290  def: Loada_pat<zextloadi1,      i32,   addrgp,  L2_loadrubgp>;
2291  def: Loada_pat<extloadi8,       i32,   addrgp,  L2_loadrubgp>;
2292  def: Loada_pat<sextloadi8,      i32,   addrgp,  L2_loadrbgp>;
2293  def: Loada_pat<zextloadi8,      i32,   addrgp,  L2_loadrubgp>;
2294  def: Loada_pat<extloadi16,      i32,   addrgp,  L2_loadruhgp>;
2295  def: Loada_pat<sextloadi16,     i32,   addrgp,  L2_loadrhgp>;
2296  def: Loada_pat<zextloadi16,     i32,   addrgp,  L2_loadruhgp>;
2297  def: Loada_pat<load,            i32,   addrgp,  L2_loadrigp>;
2298  def: Loada_pat<load,            v2i16, addrgp,  L2_loadrigp>;
2299  def: Loada_pat<load,            v4i8,  addrgp,  L2_loadrigp>;
2300  def: Loada_pat<load,            i64,   addrgp,  L2_loadrdgp>;
2301  def: Loada_pat<load,            v2i32, addrgp,  L2_loadrdgp>;
2302  def: Loada_pat<load,            v4i16, addrgp,  L2_loadrdgp>;
2303  def: Loada_pat<load,            v8i8,  addrgp,  L2_loadrdgp>;
2304  def: Loada_pat<load,            f32,   addrgp,  L2_loadrigp>;
2305  def: Loada_pat<load,            f64,   addrgp,  L2_loadrdgp>;
2306
2307  def: Loada_pat<atomic_load_8,   i32, addrgp,  L2_loadrubgp>;
2308  def: Loada_pat<atomic_load_16,  i32, addrgp,  L2_loadruhgp>;
2309  def: Loada_pat<atomic_load_32,  i32, addrgp,  L2_loadrigp>;
2310  def: Loada_pat<atomic_load_64,  i64, addrgp,  L2_loadrdgp>;
2311}
2312
2313let AddedComplexity  = 70 in {
2314  def: Loadam_pat<sextloadi1,     i32, addrgp,  L1toI32,  L2_loadrubgp>;
2315  def: Loadam_pat<extloadi1,      i64, addrgp,  ToAext64, L2_loadrubgp>;
2316  def: Loadam_pat<sextloadi1,     i64, addrgp,  L1toI64,  L2_loadrubgp>;
2317  def: Loadam_pat<zextloadi1,     i64, addrgp,  ToZext64, L2_loadrubgp>;
2318
2319  def: Loadam_pat<extloadi8,      i64, addrgp,  ToAext64, L2_loadrubgp>;
2320  def: Loadam_pat<sextloadi8,     i64, addrgp,  ToSext64, L2_loadrbgp>;
2321  def: Loadam_pat<zextloadi8,     i64, addrgp,  ToZext64, L2_loadrubgp>;
2322  def: Loadam_pat<extloadi16,     i64, addrgp,  ToAext64, L2_loadruhgp>;
2323  def: Loadam_pat<sextloadi16,    i64, addrgp,  ToSext64, L2_loadrhgp>;
2324  def: Loadam_pat<zextloadi16,    i64, addrgp,  ToZext64, L2_loadruhgp>;
2325  def: Loadam_pat<extloadi32,     i64, addrgp,  ToAext64, L2_loadrigp>;
2326  def: Loadam_pat<sextloadi32,    i64, addrgp,  ToSext64, L2_loadrigp>;
2327  def: Loadam_pat<zextloadi32,    i64, addrgp,  ToZext64, L2_loadrigp>;
2328
2329  def: Loadam_pat<load,           i1,  addrgp,  I32toI1,  L2_loadrubgp>;
2330}
2331
2332// Patterns for loads of i1:
2333def: Pat<(i1 (load AddrFI:$fi)),
2334         (C2_tfrrp (L2_loadrub_io AddrFI:$fi, 0))>;
2335def: Pat<(i1 (load (add I32:$Rs, anyimm0:$Off))),
2336         (C2_tfrrp (L2_loadrub_io IntRegs:$Rs, imm:$Off))>;
2337def: Pat<(i1 (load I32:$Rs)),
2338         (C2_tfrrp (L2_loadrub_io IntRegs:$Rs, 0))>;
2339
2340
2341// --(13) Store ----------------------------------------------------------
2342//
2343
2344class Storepi_pat<PatFrag Store, PatFrag Value, PatFrag Offset, InstHexagon MI>
2345  : Pat<(Store Value:$Rt, I32:$Rx, Offset:$s4),
2346        (MI I32:$Rx, imm:$s4, Value:$Rt)>;
2347
2348def: Storepi_pat<post_truncsti8,  I32, s4_0ImmPred, S2_storerb_pi>;
2349def: Storepi_pat<post_truncsti16, I32, s4_1ImmPred, S2_storerh_pi>;
2350def: Storepi_pat<post_store,      I32, s4_2ImmPred, S2_storeri_pi>;
2351def: Storepi_pat<post_store,      I64, s4_3ImmPred, S2_storerd_pi>;
2352
2353// Patterns for generating stores, where the address takes different forms:
2354// - frameindex,
2355// - frameindex + offset,
2356// - base + offset,
2357// - simple (base address without offset).
2358// These would usually be used together (via Storexi_pat defined below), but
2359// in some cases one may want to apply different properties (such as
2360// AddedComplexity) to the individual patterns.
2361class Storexi_fi_pat<PatFrag Store, PatFrag Value, InstHexagon MI>
2362  : Pat<(Store Value:$Rs, AddrFI:$fi), (MI AddrFI:$fi, 0, Value:$Rs)>;
2363
2364multiclass Storexi_fi_add_pat<PatFrag Store, PatFrag Value, PatFrag ImmPred,
2365                              InstHexagon MI> {
2366  def: Pat<(Store Value:$Rs, (add (i32 AddrFI:$fi), ImmPred:$Off)),
2367           (MI AddrFI:$fi, imm:$Off, Value:$Rs)>;
2368  def: Pat<(Store Value:$Rs, (IsOrAdd (i32 AddrFI:$fi), ImmPred:$Off)),
2369           (MI AddrFI:$fi, imm:$Off, Value:$Rs)>;
2370}
2371
2372multiclass Storexi_add_pat<PatFrag Store, PatFrag Value, PatFrag ImmPred,
2373                           InstHexagon MI> {
2374  def: Pat<(Store Value:$Rt, (add I32:$Rs, ImmPred:$Off)),
2375           (MI IntRegs:$Rs, imm:$Off, Value:$Rt)>;
2376  def: Pat<(Store Value:$Rt, (IsOrAdd I32:$Rs, ImmPred:$Off)),
2377           (MI IntRegs:$Rs, imm:$Off, Value:$Rt)>;
2378}
2379
2380class Storexi_base_pat<PatFrag Store, PatFrag Value, InstHexagon MI>
2381  : Pat<(Store Value:$Rt, I32:$Rs),
2382        (MI IntRegs:$Rs, 0, Value:$Rt)>;
2383
2384// Patterns for generating stores, where the address takes different forms,
2385// and where the value being stored is transformed through the value modifier
2386// ValueMod.  The address forms are same as above.
2387class Storexim_fi_pat<PatFrag Store, PatFrag Value, PatFrag ValueMod,
2388                      InstHexagon MI>
2389  : Pat<(Store Value:$Rs, AddrFI:$fi),
2390        (MI AddrFI:$fi, 0, (ValueMod Value:$Rs))>;
2391
2392multiclass Storexim_fi_add_pat<PatFrag Store, PatFrag Value, PatFrag ImmPred,
2393                               PatFrag ValueMod, InstHexagon MI> {
2394  def: Pat<(Store Value:$Rs, (add (i32 AddrFI:$fi), ImmPred:$Off)),
2395           (MI AddrFI:$fi, imm:$Off, (ValueMod Value:$Rs))>;
2396  def: Pat<(Store Value:$Rs, (IsOrAdd (i32 AddrFI:$fi), ImmPred:$Off)),
2397           (MI AddrFI:$fi, imm:$Off, (ValueMod Value:$Rs))>;
2398}
2399
2400multiclass Storexim_add_pat<PatFrag Store, PatFrag Value, PatFrag ImmPred,
2401                            PatFrag ValueMod, InstHexagon MI> {
2402  def: Pat<(Store Value:$Rt, (add I32:$Rs, ImmPred:$Off)),
2403           (MI IntRegs:$Rs, imm:$Off, (ValueMod Value:$Rt))>;
2404  def: Pat<(Store Value:$Rt, (IsOrAdd I32:$Rs, ImmPred:$Off)),
2405           (MI IntRegs:$Rs, imm:$Off, (ValueMod Value:$Rt))>;
2406}
2407
2408class Storexim_base_pat<PatFrag Store, PatFrag Value, PatFrag ValueMod,
2409                        InstHexagon MI>
2410  : Pat<(Store Value:$Rt, I32:$Rs),
2411        (MI IntRegs:$Rs, 0, (ValueMod Value:$Rt))>;
2412
2413multiclass Storexi_pat<PatFrag Store, PatFrag Value, PatLeaf ImmPred,
2414                       InstHexagon MI> {
2415  defm: Storexi_fi_add_pat <Store, Value, ImmPred, MI>;
2416  def:  Storexi_fi_pat     <Store, Value,          MI>;
2417  defm: Storexi_add_pat    <Store, Value, ImmPred, MI>;
2418}
2419
2420multiclass Storexim_pat<PatFrag Store, PatFrag Value, PatLeaf ImmPred,
2421                        PatFrag ValueMod, InstHexagon MI> {
2422  defm: Storexim_fi_add_pat <Store, Value, ImmPred, ValueMod, MI>;
2423  def:  Storexim_fi_pat     <Store, Value,          ValueMod, MI>;
2424  defm: Storexim_add_pat    <Store, Value, ImmPred, ValueMod, MI>;
2425}
2426
2427// Reg<<S + Imm
2428class Storexu_shl_pat<PatFrag Store, PatFrag Value, PatFrag ImmPred, InstHexagon MI>
2429  : Pat<(Store Value:$Rt, (add (shl I32:$Ru, u2_0ImmPred:$u2), ImmPred:$A)),
2430        (MI IntRegs:$Ru, imm:$u2, ImmPred:$A, Value:$Rt)>;
2431
2432// Reg<<S + Reg
2433class Storexr_shl_pat<PatFrag Store, PatFrag Value, InstHexagon MI>
2434  : Pat<(Store Value:$Ru, (add I32:$Rs, (shl I32:$Rt, u2_0ImmPred:$u2))),
2435        (MI IntRegs:$Rs, IntRegs:$Rt, imm:$u2, Value:$Ru)>;
2436
2437// Reg + Reg
2438class Storexr_add_pat<PatFrag Store, PatFrag Value, InstHexagon MI>
2439  : Pat<(Store Value:$Ru, (add I32:$Rs, I32:$Rt)),
2440        (MI IntRegs:$Rs, IntRegs:$Rt, 0, Value:$Ru)>;
2441
2442class Storea_pat<PatFrag Store, PatFrag Value, PatFrag Addr, InstHexagon MI>
2443  : Pat<(Store Value:$val, Addr:$addr), (MI Addr:$addr, Value:$val)>;
2444
2445class Stoream_pat<PatFrag Store, PatFrag Value, PatFrag Addr, PatFrag ValueMod,
2446                  InstHexagon MI>
2447  : Pat<(Store Value:$val, Addr:$addr),
2448        (MI Addr:$addr, (ValueMod Value:$val))>;
2449
2450// Regular stores in the DAG have two operands: value and address.
2451// Atomic stores also have two, but they are reversed: address, value.
2452// To use atomic stores with the patterns, they need to have their operands
2453// swapped. This relies on the knowledge that the F.Fragment uses names
2454// "ptr" and "val".
2455class AtomSt<PatFrag F>
2456  : PatFrag<(ops node:$val, node:$ptr), !head(F.Fragments), F.PredicateCode,
2457            F.OperandTransform> {
2458  let IsAtomic = F.IsAtomic;
2459  let MemoryVT = F.MemoryVT;
2460}
2461
2462
2463def IMM_BYTE : SDNodeXForm<imm, [{
2464  // -1 can be represented as 255, etc.
2465  // assigning to a byte restores our desired signed value.
2466  int8_t imm = N->getSExtValue();
2467  return CurDAG->getTargetConstant(imm, SDLoc(N), MVT::i32);
2468}]>;
2469
2470def IMM_HALF : SDNodeXForm<imm, [{
2471  // -1 can be represented as 65535, etc.
2472  // assigning to a short restores our desired signed value.
2473  int16_t imm = N->getSExtValue();
2474  return CurDAG->getTargetConstant(imm, SDLoc(N), MVT::i32);
2475}]>;
2476
2477def IMM_WORD : SDNodeXForm<imm, [{
2478  // -1 can be represented as 4294967295, etc.
2479  // Currently, it's not doing this. But some optimization
2480  // might convert -1 to a large +ve number.
2481  // assigning to a word restores our desired signed value.
2482  int32_t imm = N->getSExtValue();
2483  return CurDAG->getTargetConstant(imm, SDLoc(N), MVT::i32);
2484}]>;
2485
2486def ToImmByte : OutPatFrag<(ops node:$R), (IMM_BYTE $R)>;
2487def ToImmHalf : OutPatFrag<(ops node:$R), (IMM_HALF $R)>;
2488def ToImmWord : OutPatFrag<(ops node:$R), (IMM_WORD $R)>;
2489
2490// Even though the offset is not extendable in the store-immediate, we
2491// can still generate the fi# in the base address. If the final offset
2492// is not valid for the instruction, we will replace it with a scratch
2493// register.
2494class SmallStackStore<PatFrag Store>
2495  : PatFrag<(ops node:$Val, node:$Addr), (Store node:$Val, node:$Addr), [{
2496  return isSmallStackStore(cast<StoreSDNode>(N));
2497}]>;
2498
2499// This is the complement of SmallStackStore.
2500class LargeStackStore<PatFrag Store>
2501  : PatFrag<(ops node:$Val, node:$Addr), (Store node:$Val, node:$Addr), [{
2502  return !isSmallStackStore(cast<StoreSDNode>(N));
2503}]>;
2504
2505// Preferred addressing modes for various combinations of stored value
2506// and address computation.
2507// For stores where the address and value are both immediates, prefer
2508// store-immediate. The reason is that the constant-extender optimization
2509// can replace store-immediate with a store-register, but there is nothing
2510// to generate a store-immediate out of a store-register.
2511//
2512//         C     R     F    F+C   R+C   R+R   R<<S+C   R<<S+R
2513// --+-------+-----+-----+------+-----+-----+--------+--------
2514// C |   imm | imm | imm |  imm | imm |  rr |     ur |     rr
2515// R |  abs* |  io |  io |   io |  io |  rr |     ur |     rr
2516//
2517// (*) Absolute or GP-relative.
2518//
2519// Note that any expression can be matched by Reg. In particular, an immediate
2520// can always be placed in a register, so patterns checking for Imm should
2521// have a higher priority than the ones involving Reg that could also match.
2522// For example, *(p+4) could become r1=#4; memw(r0+r1<<#0) instead of the
2523// preferred memw(r0+#4). Similarly Reg+Imm or Reg+Reg should be tried before
2524// Reg alone.
2525//
2526// The order in which the different combinations are tried:
2527//
2528//         C     F     R    F+C   R+C   R+R   R<<S+C   R<<S+R
2529// --+-------+-----+-----+------+-----+-----+--------+--------
2530// C |     1 |   6 |   - |    5 |   9 |   - |      - |      -
2531// R |     2 |   8 |  12 |    7 |  10 |  11 |      3 |      4
2532
2533
2534// First, match the unusual case of doubleword store into Reg+Imm4, i.e.
2535// a store where the offset Imm4 is a multiple of 4, but not of 8. This
2536// implies that Reg is also a proper multiple of 4. To still generate a
2537// doubleword store, add 4 to Reg, and subtract 4 from the offset.
2538
2539def s30_2ProperPred  : PatLeaf<(i32 imm), [{
2540  int64_t v = (int64_t)N->getSExtValue();
2541  return isShiftedInt<30,2>(v) && !isShiftedInt<29,3>(v);
2542}]>;
2543def RoundTo8 : SDNodeXForm<imm, [{
2544  int32_t Imm = N->getSExtValue();
2545  return CurDAG->getTargetConstant(Imm & -8, SDLoc(N), MVT::i32);
2546}]>;
2547
2548let AddedComplexity = 150 in
2549def: Pat<(store I64:$Ru, (add I32:$Rs, s30_2ProperPred:$Off)),
2550         (S2_storerd_io (A2_addi I32:$Rs, 4), (RoundTo8 $Off), I64:$Ru)>;
2551
2552class Storexi_abs_pat<PatFrag Store, PatFrag Value, InstHexagon MI>
2553  : Pat<(Store Value:$val, anyimm:$addr),
2554        (MI (ToI32 $addr), 0, Value:$val)>;
2555class Storexim_abs_pat<PatFrag Store, PatFrag Value, PatFrag ValueMod,
2556                       InstHexagon MI>
2557  : Pat<(Store Value:$val, anyimm:$addr),
2558        (MI (ToI32 $addr), 0, (ValueMod Value:$val))>;
2559
2560let AddedComplexity = 140 in {
2561  def: Storexim_abs_pat<truncstorei8,  anyint, ToImmByte, S4_storeirb_io>;
2562  def: Storexim_abs_pat<truncstorei16, anyint, ToImmHalf, S4_storeirh_io>;
2563  def: Storexim_abs_pat<store,         anyint, ToImmWord, S4_storeiri_io>;
2564
2565  def: Storexi_abs_pat<truncstorei8,  anyimm, S4_storeirb_io>;
2566  def: Storexi_abs_pat<truncstorei16, anyimm, S4_storeirh_io>;
2567  def: Storexi_abs_pat<store,         anyimm, S4_storeiri_io>;
2568}
2569
2570// GP-relative address
2571let AddedComplexity = 120 in {
2572  def: Storea_pat<truncstorei8,               I32, addrgp, S2_storerbgp>;
2573  def: Storea_pat<truncstorei16,              I32, addrgp, S2_storerhgp>;
2574  def: Storea_pat<store,                      I32, addrgp, S2_storerigp>;
2575  def: Storea_pat<store,                     V4I8, addrgp, S2_storerigp>;
2576  def: Storea_pat<store,                    V2I16, addrgp, S2_storerigp>;
2577  def: Storea_pat<store,                      I64, addrgp, S2_storerdgp>;
2578  def: Storea_pat<store,                     V8I8, addrgp, S2_storerdgp>;
2579  def: Storea_pat<store,                    V4I16, addrgp, S2_storerdgp>;
2580  def: Storea_pat<store,                    V2I32, addrgp, S2_storerdgp>;
2581  def: Storea_pat<store,                      F32, addrgp, S2_storerigp>;
2582  def: Storea_pat<store,                      F64, addrgp, S2_storerdgp>;
2583  def: Storea_pat<AtomSt<atomic_store_8>,     I32, addrgp, S2_storerbgp>;
2584  def: Storea_pat<AtomSt<atomic_store_16>,    I32, addrgp, S2_storerhgp>;
2585  def: Storea_pat<AtomSt<atomic_store_32>,    I32, addrgp, S2_storerigp>;
2586  def: Storea_pat<AtomSt<atomic_store_32>,   V4I8, addrgp, S2_storerigp>;
2587  def: Storea_pat<AtomSt<atomic_store_32>,  V2I16, addrgp, S2_storerigp>;
2588  def: Storea_pat<AtomSt<atomic_store_64>,    I64, addrgp, S2_storerdgp>;
2589  def: Storea_pat<AtomSt<atomic_store_64>,   V8I8, addrgp, S2_storerdgp>;
2590  def: Storea_pat<AtomSt<atomic_store_64>,  V4I16, addrgp, S2_storerdgp>;
2591  def: Storea_pat<AtomSt<atomic_store_64>,  V2I32, addrgp, S2_storerdgp>;
2592
2593  def: Stoream_pat<truncstorei8,  I64, addrgp, LoReg,    S2_storerbgp>;
2594  def: Stoream_pat<truncstorei16, I64, addrgp, LoReg,    S2_storerhgp>;
2595  def: Stoream_pat<truncstorei32, I64, addrgp, LoReg,    S2_storerigp>;
2596  def: Stoream_pat<store,         I1,  addrgp, I1toI32,  S2_storerbgp>;
2597}
2598
2599// Absolute address
2600let AddedComplexity = 110 in {
2601  def: Storea_pat<truncstorei8,               I32, anyimm0, PS_storerbabs>;
2602  def: Storea_pat<truncstorei16,              I32, anyimm1, PS_storerhabs>;
2603  def: Storea_pat<store,                      I32, anyimm2, PS_storeriabs>;
2604  def: Storea_pat<store,                     V4I8, anyimm2, PS_storeriabs>;
2605  def: Storea_pat<store,                    V2I16, anyimm2, PS_storeriabs>;
2606  def: Storea_pat<store,                      I64, anyimm3, PS_storerdabs>;
2607  def: Storea_pat<store,                     V8I8, anyimm3, PS_storerdabs>;
2608  def: Storea_pat<store,                    V4I16, anyimm3, PS_storerdabs>;
2609  def: Storea_pat<store,                    V2I32, anyimm3, PS_storerdabs>;
2610  def: Storea_pat<store,                      F32, anyimm2, PS_storeriabs>;
2611  def: Storea_pat<store,                      F64, anyimm3, PS_storerdabs>;
2612  def: Storea_pat<AtomSt<atomic_store_8>,     I32, anyimm0, PS_storerbabs>;
2613  def: Storea_pat<AtomSt<atomic_store_16>,    I32, anyimm1, PS_storerhabs>;
2614  def: Storea_pat<AtomSt<atomic_store_32>,    I32, anyimm2, PS_storeriabs>;
2615  def: Storea_pat<AtomSt<atomic_store_32>,   V4I8, anyimm2, PS_storeriabs>;
2616  def: Storea_pat<AtomSt<atomic_store_32>,  V2I16, anyimm2, PS_storeriabs>;
2617  def: Storea_pat<AtomSt<atomic_store_64>,    I64, anyimm3, PS_storerdabs>;
2618  def: Storea_pat<AtomSt<atomic_store_64>,   V8I8, anyimm3, PS_storerdabs>;
2619  def: Storea_pat<AtomSt<atomic_store_64>,  V4I16, anyimm3, PS_storerdabs>;
2620  def: Storea_pat<AtomSt<atomic_store_64>,  V2I32, anyimm3, PS_storerdabs>;
2621
2622  def: Stoream_pat<truncstorei8,  I64, anyimm0, LoReg,    PS_storerbabs>;
2623  def: Stoream_pat<truncstorei16, I64, anyimm1, LoReg,    PS_storerhabs>;
2624  def: Stoream_pat<truncstorei32, I64, anyimm2, LoReg,    PS_storeriabs>;
2625  def: Stoream_pat<store,         I1,  anyimm0, I1toI32,  PS_storerbabs>;
2626}
2627
2628// Reg<<S + Imm
2629let AddedComplexity = 100 in {
2630  def: Storexu_shl_pat<truncstorei8,    I32, anyimm0, S4_storerb_ur>;
2631  def: Storexu_shl_pat<truncstorei16,   I32, anyimm1, S4_storerh_ur>;
2632  def: Storexu_shl_pat<store,           I32, anyimm2, S4_storeri_ur>;
2633  def: Storexu_shl_pat<store,          V4I8, anyimm2, S4_storeri_ur>;
2634  def: Storexu_shl_pat<store,         V2I16, anyimm2, S4_storeri_ur>;
2635  def: Storexu_shl_pat<store,           I64, anyimm3, S4_storerd_ur>;
2636  def: Storexu_shl_pat<store,          V8I8, anyimm3, S4_storerd_ur>;
2637  def: Storexu_shl_pat<store,         V4I16, anyimm3, S4_storerd_ur>;
2638  def: Storexu_shl_pat<store,         V2I32, anyimm3, S4_storerd_ur>;
2639  def: Storexu_shl_pat<store,           F32, anyimm2, S4_storeri_ur>;
2640  def: Storexu_shl_pat<store,           F64, anyimm3, S4_storerd_ur>;
2641
2642  def: Pat<(store I1:$Pu, (add (shl I32:$Rs, u2_0ImmPred:$u2), anyimm:$A)),
2643           (S4_storerb_ur IntRegs:$Rs, imm:$u2, imm:$A, (I1toI32 I1:$Pu))>;
2644}
2645
2646// Reg<<S + Reg
2647let AddedComplexity = 90 in {
2648  def: Storexr_shl_pat<truncstorei8,    I32, S4_storerb_rr>;
2649  def: Storexr_shl_pat<truncstorei16,   I32, S4_storerh_rr>;
2650  def: Storexr_shl_pat<store,           I32, S4_storeri_rr>;
2651  def: Storexr_shl_pat<store,          V4I8, S4_storeri_rr>;
2652  def: Storexr_shl_pat<store,         V2I16, S4_storeri_rr>;
2653  def: Storexr_shl_pat<store,           I64, S4_storerd_rr>;
2654  def: Storexr_shl_pat<store,          V8I8, S4_storerd_rr>;
2655  def: Storexr_shl_pat<store,         V4I16, S4_storerd_rr>;
2656  def: Storexr_shl_pat<store,         V2I32, S4_storerd_rr>;
2657  def: Storexr_shl_pat<store,           F32, S4_storeri_rr>;
2658  def: Storexr_shl_pat<store,           F64, S4_storerd_rr>;
2659
2660  def: Pat<(store I1:$Pu, (add (shl I32:$Rs, u2_0ImmPred:$u2), I32:$Rt)),
2661           (S4_storerb_ur IntRegs:$Rt, IntRegs:$Rs, imm:$u2, (I1toI32 I1:$Pu))>;
2662}
2663
2664class SS_<PatFrag F> : SmallStackStore<F>;
2665class LS_<PatFrag F> : LargeStackStore<F>;
2666
2667multiclass IMFA_<PatFrag S, PatFrag V, PatFrag O, PatFrag M, InstHexagon I> {
2668  defm: Storexim_fi_add_pat<S, V, O, M, I>;
2669}
2670multiclass IFA_<PatFrag S, PatFrag V, PatFrag O, InstHexagon I> {
2671  defm: Storexi_fi_add_pat<S, V, O, I>;
2672}
2673
2674// Fi+Imm, store-immediate
2675let AddedComplexity = 80 in {
2676  defm: IMFA_<SS_<truncstorei8>,  anyint, u6_0ImmPred, ToImmByte, S4_storeirb_io>;
2677  defm: IMFA_<SS_<truncstorei16>, anyint, u6_1ImmPred, ToImmHalf, S4_storeirh_io>;
2678  defm: IMFA_<SS_<store>,         anyint, u6_2ImmPred, ToImmWord, S4_storeiri_io>;
2679
2680  defm: IFA_<SS_<truncstorei8>,   anyimm, u6_0ImmPred, S4_storeirb_io>;
2681  defm: IFA_<SS_<truncstorei16>,  anyimm, u6_1ImmPred, S4_storeirh_io>;
2682  defm: IFA_<SS_<store>,          anyimm, u6_2ImmPred, S4_storeiri_io>;
2683
2684  // For large-stack stores, generate store-register (prefer explicit Fi
2685  // in the address).
2686  defm: IMFA_<LS_<truncstorei8>,   anyimm, u6_0ImmPred, ToI32, S2_storerb_io>;
2687  defm: IMFA_<LS_<truncstorei16>,  anyimm, u6_1ImmPred, ToI32, S2_storerh_io>;
2688  defm: IMFA_<LS_<store>,          anyimm, u6_2ImmPred, ToI32, S2_storeri_io>;
2689}
2690
2691// Fi, store-immediate
2692let AddedComplexity = 70 in {
2693  def: Storexim_fi_pat<SS_<truncstorei8>,  anyint, ToImmByte, S4_storeirb_io>;
2694  def: Storexim_fi_pat<SS_<truncstorei16>, anyint, ToImmHalf, S4_storeirh_io>;
2695  def: Storexim_fi_pat<SS_<store>,         anyint, ToImmWord, S4_storeiri_io>;
2696
2697  def: Storexi_fi_pat<SS_<truncstorei8>,   anyimm, S4_storeirb_io>;
2698  def: Storexi_fi_pat<SS_<truncstorei16>,  anyimm, S4_storeirh_io>;
2699  def: Storexi_fi_pat<SS_<store>,          anyimm, S4_storeiri_io>;
2700
2701  // For large-stack stores, generate store-register (prefer explicit Fi
2702  // in the address).
2703  def: Storexim_fi_pat<LS_<truncstorei8>,  anyimm, ToI32, S2_storerb_io>;
2704  def: Storexim_fi_pat<LS_<truncstorei16>, anyimm, ToI32, S2_storerh_io>;
2705  def: Storexim_fi_pat<LS_<store>,         anyimm, ToI32, S2_storeri_io>;
2706}
2707
2708// Fi+Imm, Fi, store-register
2709let AddedComplexity = 60 in {
2710  defm: Storexi_fi_add_pat<truncstorei8,    I32, anyimm, S2_storerb_io>;
2711  defm: Storexi_fi_add_pat<truncstorei16,   I32, anyimm, S2_storerh_io>;
2712  defm: Storexi_fi_add_pat<store,           I32, anyimm, S2_storeri_io>;
2713  defm: Storexi_fi_add_pat<store,          V4I8, anyimm, S2_storeri_io>;
2714  defm: Storexi_fi_add_pat<store,         V2I16, anyimm, S2_storeri_io>;
2715  defm: Storexi_fi_add_pat<store,           I64, anyimm, S2_storerd_io>;
2716  defm: Storexi_fi_add_pat<store,          V8I8, anyimm, S2_storerd_io>;
2717  defm: Storexi_fi_add_pat<store,         V4I16, anyimm, S2_storerd_io>;
2718  defm: Storexi_fi_add_pat<store,         V2I32, anyimm, S2_storerd_io>;
2719  defm: Storexi_fi_add_pat<store,           F32, anyimm, S2_storeri_io>;
2720  defm: Storexi_fi_add_pat<store,           F64, anyimm, S2_storerd_io>;
2721  defm: Storexim_fi_add_pat<store, I1, anyimm, I1toI32, S2_storerb_io>;
2722
2723  def: Storexi_fi_pat<truncstorei8,     I32, S2_storerb_io>;
2724  def: Storexi_fi_pat<truncstorei16,    I32, S2_storerh_io>;
2725  def: Storexi_fi_pat<store,            I32, S2_storeri_io>;
2726  def: Storexi_fi_pat<store,           V4I8, S2_storeri_io>;
2727  def: Storexi_fi_pat<store,          V2I16, S2_storeri_io>;
2728  def: Storexi_fi_pat<store,            I64, S2_storerd_io>;
2729  def: Storexi_fi_pat<store,           V8I8, S2_storerd_io>;
2730  def: Storexi_fi_pat<store,          V4I16, S2_storerd_io>;
2731  def: Storexi_fi_pat<store,          V2I32, S2_storerd_io>;
2732  def: Storexi_fi_pat<store,            F32, S2_storeri_io>;
2733  def: Storexi_fi_pat<store,            F64, S2_storerd_io>;
2734  def: Storexim_fi_pat<store, I1, I1toI32, S2_storerb_io>;
2735}
2736
2737
2738multiclass IMRA_<PatFrag S, PatFrag V, PatFrag O, PatFrag M, InstHexagon I> {
2739  defm: Storexim_add_pat<S, V, O, M, I>;
2740}
2741multiclass IRA_<PatFrag S, PatFrag V, PatFrag O, InstHexagon I> {
2742  defm: Storexi_add_pat<S, V, O, I>;
2743}
2744
2745// Reg+Imm, store-immediate
2746let AddedComplexity = 50 in {
2747  defm: IMRA_<truncstorei8,   anyint, u6_0ImmPred, ToImmByte, S4_storeirb_io>;
2748  defm: IMRA_<truncstorei16,  anyint, u6_1ImmPred, ToImmHalf, S4_storeirh_io>;
2749  defm: IMRA_<store,          anyint, u6_2ImmPred, ToImmWord, S4_storeiri_io>;
2750
2751  defm: IRA_<truncstorei8,    anyimm, u6_0ImmPred, S4_storeirb_io>;
2752  defm: IRA_<truncstorei16,   anyimm, u6_1ImmPred, S4_storeirh_io>;
2753  defm: IRA_<store,           anyimm, u6_2ImmPred, S4_storeiri_io>;
2754}
2755
2756// Reg+Imm, store-register
2757let AddedComplexity = 40 in {
2758  defm: Storexi_pat<truncstorei8,     I32, anyimm0, S2_storerb_io>;
2759  defm: Storexi_pat<truncstorei16,    I32, anyimm1, S2_storerh_io>;
2760  defm: Storexi_pat<store,            I32, anyimm2, S2_storeri_io>;
2761  defm: Storexi_pat<store,           V4I8, anyimm2, S2_storeri_io>;
2762  defm: Storexi_pat<store,          V2I16, anyimm2, S2_storeri_io>;
2763  defm: Storexi_pat<store,            I64, anyimm3, S2_storerd_io>;
2764  defm: Storexi_pat<store,           V8I8, anyimm3, S2_storerd_io>;
2765  defm: Storexi_pat<store,          V4I16, anyimm3, S2_storerd_io>;
2766  defm: Storexi_pat<store,          V2I32, anyimm3, S2_storerd_io>;
2767  defm: Storexi_pat<store,            F32, anyimm2, S2_storeri_io>;
2768  defm: Storexi_pat<store,            F64, anyimm3, S2_storerd_io>;
2769
2770  defm: Storexim_pat<truncstorei8,  I64, anyimm0, LoReg,   S2_storerb_io>;
2771  defm: Storexim_pat<truncstorei16, I64, anyimm1, LoReg,   S2_storerh_io>;
2772  defm: Storexim_pat<truncstorei32, I64, anyimm2, LoReg,   S2_storeri_io>;
2773  defm: Storexim_pat<store,         I1,  anyimm0, I1toI32, S2_storerb_io>;
2774
2775  defm: Storexi_pat<AtomSt<atomic_store_8>,     I32, anyimm0, S2_storerb_io>;
2776  defm: Storexi_pat<AtomSt<atomic_store_16>,    I32, anyimm1, S2_storerh_io>;
2777  defm: Storexi_pat<AtomSt<atomic_store_32>,    I32, anyimm2, S2_storeri_io>;
2778  defm: Storexi_pat<AtomSt<atomic_store_32>,   V4I8, anyimm2, S2_storeri_io>;
2779  defm: Storexi_pat<AtomSt<atomic_store_32>,  V2I16, anyimm2, S2_storeri_io>;
2780  defm: Storexi_pat<AtomSt<atomic_store_64>,    I64, anyimm3, S2_storerd_io>;
2781  defm: Storexi_pat<AtomSt<atomic_store_64>,   V8I8, anyimm3, S2_storerd_io>;
2782  defm: Storexi_pat<AtomSt<atomic_store_64>,  V4I16, anyimm3, S2_storerd_io>;
2783  defm: Storexi_pat<AtomSt<atomic_store_64>,  V2I32, anyimm3, S2_storerd_io>;
2784}
2785
2786// Reg+Reg
2787let AddedComplexity = 30 in {
2788  def: Storexr_add_pat<truncstorei8,    I32, S4_storerb_rr>;
2789  def: Storexr_add_pat<truncstorei16,   I32, S4_storerh_rr>;
2790  def: Storexr_add_pat<store,           I32, S4_storeri_rr>;
2791  def: Storexr_add_pat<store,          V4I8, S4_storeri_rr>;
2792  def: Storexr_add_pat<store,         V2I16, S4_storeri_rr>;
2793  def: Storexr_add_pat<store,           I64, S4_storerd_rr>;
2794  def: Storexr_add_pat<store,          V8I8, S4_storerd_rr>;
2795  def: Storexr_add_pat<store,         V4I16, S4_storerd_rr>;
2796  def: Storexr_add_pat<store,         V2I32, S4_storerd_rr>;
2797  def: Storexr_add_pat<store,           F32, S4_storeri_rr>;
2798  def: Storexr_add_pat<store,           F64, S4_storerd_rr>;
2799
2800  def: Pat<(store I1:$Pu, (add I32:$Rs, I32:$Rt)),
2801           (S4_storerb_rr IntRegs:$Rs, IntRegs:$Rt, 0, (I1toI32 I1:$Pu))>;
2802}
2803
2804// Reg, store-immediate
2805let AddedComplexity = 20 in {
2806  def: Storexim_base_pat<truncstorei8,  anyint, ToImmByte, S4_storeirb_io>;
2807  def: Storexim_base_pat<truncstorei16, anyint, ToImmHalf, S4_storeirh_io>;
2808  def: Storexim_base_pat<store,         anyint, ToImmWord, S4_storeiri_io>;
2809
2810  def: Storexi_base_pat<truncstorei8,   anyimm, S4_storeirb_io>;
2811  def: Storexi_base_pat<truncstorei16,  anyimm, S4_storeirh_io>;
2812  def: Storexi_base_pat<store,          anyimm, S4_storeiri_io>;
2813}
2814
2815// Reg, store-register
2816let AddedComplexity = 10 in {
2817  def: Storexi_base_pat<truncstorei8,     I32, S2_storerb_io>;
2818  def: Storexi_base_pat<truncstorei16,    I32, S2_storerh_io>;
2819  def: Storexi_base_pat<store,            I32, S2_storeri_io>;
2820  def: Storexi_base_pat<store,           V4I8, S2_storeri_io>;
2821  def: Storexi_base_pat<store,          V2I16, S2_storeri_io>;
2822  def: Storexi_base_pat<store,            I64, S2_storerd_io>;
2823  def: Storexi_base_pat<store,           V8I8, S2_storerd_io>;
2824  def: Storexi_base_pat<store,          V4I16, S2_storerd_io>;
2825  def: Storexi_base_pat<store,          V2I32, S2_storerd_io>;
2826  def: Storexi_base_pat<store,            F32, S2_storeri_io>;
2827  def: Storexi_base_pat<store,            F64, S2_storerd_io>;
2828
2829  def: Storexim_base_pat<truncstorei8,  I64, LoReg,   S2_storerb_io>;
2830  def: Storexim_base_pat<truncstorei16, I64, LoReg,   S2_storerh_io>;
2831  def: Storexim_base_pat<truncstorei32, I64, LoReg,   S2_storeri_io>;
2832  def: Storexim_base_pat<store,         I1,  I1toI32, S2_storerb_io>;
2833
2834  def: Storexi_base_pat<AtomSt<atomic_store_8>,     I32, S2_storerb_io>;
2835  def: Storexi_base_pat<AtomSt<atomic_store_16>,    I32, S2_storerh_io>;
2836  def: Storexi_base_pat<AtomSt<atomic_store_32>,    I32, S2_storeri_io>;
2837  def: Storexi_base_pat<AtomSt<atomic_store_32>,   V4I8, S2_storeri_io>;
2838  def: Storexi_base_pat<AtomSt<atomic_store_32>,  V2I16, S2_storeri_io>;
2839  def: Storexi_base_pat<AtomSt<atomic_store_64>,    I64, S2_storerd_io>;
2840  def: Storexi_base_pat<AtomSt<atomic_store_64>,   V8I8, S2_storerd_io>;
2841  def: Storexi_base_pat<AtomSt<atomic_store_64>,  V4I16, S2_storerd_io>;
2842  def: Storexi_base_pat<AtomSt<atomic_store_64>,  V2I32, S2_storerd_io>;
2843}
2844
2845
2846// --(14) Memop ----------------------------------------------------------
2847//
2848
2849def m5_0Imm8Pred : PatLeaf<(i32 imm), [{
2850  int8_t V = N->getSExtValue();
2851  return -32 < V && V <= -1;
2852}]>;
2853
2854def m5_0Imm16Pred : PatLeaf<(i32 imm), [{
2855  int16_t V = N->getSExtValue();
2856  return -32 < V && V <= -1;
2857}]>;
2858
2859def m5_0ImmPred  : PatLeaf<(i32 imm), [{
2860  int64_t V = N->getSExtValue();
2861  return -31 <= V && V <= -1;
2862}]>;
2863
2864def IsNPow2_8 : PatLeaf<(i32 imm), [{
2865  uint8_t NV = ~N->getZExtValue();
2866  return isPowerOf2_32(NV);
2867}]>;
2868
2869def IsNPow2_16 : PatLeaf<(i32 imm), [{
2870  uint16_t NV = ~N->getZExtValue();
2871  return isPowerOf2_32(NV);
2872}]>;
2873
2874def Log2_8 : SDNodeXForm<imm, [{
2875  uint8_t V = N->getZExtValue();
2876  return CurDAG->getTargetConstant(Log2_32(V), SDLoc(N), MVT::i32);
2877}]>;
2878
2879def Log2_16 : SDNodeXForm<imm, [{
2880  uint16_t V = N->getZExtValue();
2881  return CurDAG->getTargetConstant(Log2_32(V), SDLoc(N), MVT::i32);
2882}]>;
2883
2884def LogN2_8 : SDNodeXForm<imm, [{
2885  uint8_t NV = ~N->getZExtValue();
2886  return CurDAG->getTargetConstant(Log2_32(NV), SDLoc(N), MVT::i32);
2887}]>;
2888
2889def LogN2_16 : SDNodeXForm<imm, [{
2890  uint16_t NV = ~N->getZExtValue();
2891  return CurDAG->getTargetConstant(Log2_32(NV), SDLoc(N), MVT::i32);
2892}]>;
2893
2894def IdImm : SDNodeXForm<imm, [{ return SDValue(N, 0); }]>;
2895
2896multiclass Memopxr_base_pat<PatFrag Load, PatFrag Store, SDNode Oper,
2897                            InstHexagon MI> {
2898  // Addr: i32
2899  def: Pat<(Store (Oper (Load I32:$Rs), I32:$A), I32:$Rs),
2900           (MI I32:$Rs, 0, I32:$A)>;
2901  // Addr: fi
2902  def: Pat<(Store (Oper (Load AddrFI:$Rs), I32:$A), AddrFI:$Rs),
2903           (MI AddrFI:$Rs, 0, I32:$A)>;
2904}
2905
2906multiclass Memopxr_add_pat<PatFrag Load, PatFrag Store, PatFrag ImmPred,
2907                           SDNode Oper, InstHexagon MI> {
2908  // Addr: i32
2909  def: Pat<(Store (Oper (Load (add I32:$Rs, ImmPred:$Off)), I32:$A),
2910                  (add I32:$Rs, ImmPred:$Off)),
2911           (MI I32:$Rs, imm:$Off, I32:$A)>;
2912  def: Pat<(Store (Oper (Load (IsOrAdd I32:$Rs, ImmPred:$Off)), I32:$A),
2913                  (IsOrAdd I32:$Rs, ImmPred:$Off)),
2914           (MI I32:$Rs, imm:$Off, I32:$A)>;
2915  // Addr: fi
2916  def: Pat<(Store (Oper (Load (add AddrFI:$Rs, ImmPred:$Off)), I32:$A),
2917                  (add AddrFI:$Rs, ImmPred:$Off)),
2918           (MI AddrFI:$Rs, imm:$Off, I32:$A)>;
2919  def: Pat<(Store (Oper (Load (IsOrAdd AddrFI:$Rs, ImmPred:$Off)), I32:$A),
2920                  (IsOrAdd AddrFI:$Rs, ImmPred:$Off)),
2921           (MI AddrFI:$Rs, imm:$Off, I32:$A)>;
2922}
2923
2924multiclass Memopxr_pat<PatFrag Load, PatFrag Store, PatFrag ImmPred,
2925                       SDNode Oper, InstHexagon MI> {
2926  let Predicates = [UseMEMOPS] in {
2927    defm: Memopxr_base_pat <Load, Store,          Oper, MI>;
2928    defm: Memopxr_add_pat  <Load, Store, ImmPred, Oper, MI>;
2929  }
2930}
2931
2932let AddedComplexity = 200 in {
2933  // add reg
2934  defm: Memopxr_pat<extloadi8, truncstorei8, u6_0ImmPred, add,
2935        /*anyext*/  L4_add_memopb_io>;
2936  defm: Memopxr_pat<sextloadi8, truncstorei8, u6_0ImmPred, add,
2937        /*sext*/    L4_add_memopb_io>;
2938  defm: Memopxr_pat<zextloadi8, truncstorei8, u6_0ImmPred, add,
2939        /*zext*/    L4_add_memopb_io>;
2940  defm: Memopxr_pat<extloadi16, truncstorei16, u6_1ImmPred, add,
2941        /*anyext*/  L4_add_memoph_io>;
2942  defm: Memopxr_pat<sextloadi16, truncstorei16, u6_1ImmPred, add,
2943        /*sext*/    L4_add_memoph_io>;
2944  defm: Memopxr_pat<zextloadi16, truncstorei16, u6_1ImmPred, add,
2945        /*zext*/    L4_add_memoph_io>;
2946  defm: Memopxr_pat<load, store, u6_2ImmPred, add, L4_add_memopw_io>;
2947
2948  // sub reg
2949  defm: Memopxr_pat<extloadi8, truncstorei8, u6_0ImmPred, sub,
2950        /*anyext*/  L4_sub_memopb_io>;
2951  defm: Memopxr_pat<sextloadi8, truncstorei8, u6_0ImmPred, sub,
2952        /*sext*/    L4_sub_memopb_io>;
2953  defm: Memopxr_pat<zextloadi8, truncstorei8, u6_0ImmPred, sub,
2954        /*zext*/    L4_sub_memopb_io>;
2955  defm: Memopxr_pat<extloadi16, truncstorei16, u6_1ImmPred, sub,
2956        /*anyext*/  L4_sub_memoph_io>;
2957  defm: Memopxr_pat<sextloadi16, truncstorei16, u6_1ImmPred, sub,
2958        /*sext*/    L4_sub_memoph_io>;
2959  defm: Memopxr_pat<zextloadi16, truncstorei16, u6_1ImmPred, sub,
2960        /*zext*/    L4_sub_memoph_io>;
2961  defm: Memopxr_pat<load, store, u6_2ImmPred, sub, L4_sub_memopw_io>;
2962
2963  // and reg
2964  defm: Memopxr_pat<extloadi8, truncstorei8, u6_0ImmPred, and,
2965        /*anyext*/  L4_and_memopb_io>;
2966  defm: Memopxr_pat<sextloadi8, truncstorei8, u6_0ImmPred, and,
2967        /*sext*/    L4_and_memopb_io>;
2968  defm: Memopxr_pat<zextloadi8, truncstorei8, u6_0ImmPred, and,
2969        /*zext*/    L4_and_memopb_io>;
2970  defm: Memopxr_pat<extloadi16, truncstorei16, u6_1ImmPred, and,
2971        /*anyext*/  L4_and_memoph_io>;
2972  defm: Memopxr_pat<sextloadi16, truncstorei16, u6_1ImmPred, and,
2973        /*sext*/    L4_and_memoph_io>;
2974  defm: Memopxr_pat<zextloadi16, truncstorei16, u6_1ImmPred, and,
2975        /*zext*/    L4_and_memoph_io>;
2976  defm: Memopxr_pat<load, store, u6_2ImmPred, and, L4_and_memopw_io>;
2977
2978  // or reg
2979  defm: Memopxr_pat<extloadi8, truncstorei8, u6_0ImmPred, or,
2980        /*anyext*/  L4_or_memopb_io>;
2981  defm: Memopxr_pat<sextloadi8, truncstorei8, u6_0ImmPred, or,
2982        /*sext*/    L4_or_memopb_io>;
2983  defm: Memopxr_pat<zextloadi8, truncstorei8, u6_0ImmPred, or,
2984        /*zext*/    L4_or_memopb_io>;
2985  defm: Memopxr_pat<extloadi16, truncstorei16, u6_1ImmPred, or,
2986        /*anyext*/  L4_or_memoph_io>;
2987  defm: Memopxr_pat<sextloadi16, truncstorei16, u6_1ImmPred, or,
2988        /*sext*/    L4_or_memoph_io>;
2989  defm: Memopxr_pat<zextloadi16, truncstorei16, u6_1ImmPred, or,
2990        /*zext*/    L4_or_memoph_io>;
2991  defm: Memopxr_pat<load, store, u6_2ImmPred, or, L4_or_memopw_io>;
2992}
2993
2994
2995multiclass Memopxi_base_pat<PatFrag Load, PatFrag Store, SDNode Oper,
2996                            PatFrag Arg, SDNodeXForm ArgMod, InstHexagon MI> {
2997  // Addr: i32
2998  def: Pat<(Store (Oper (Load I32:$Rs), Arg:$A), I32:$Rs),
2999           (MI I32:$Rs, 0, (ArgMod Arg:$A))>;
3000  // Addr: fi
3001  def: Pat<(Store (Oper (Load AddrFI:$Rs), Arg:$A), AddrFI:$Rs),
3002           (MI AddrFI:$Rs, 0, (ArgMod Arg:$A))>;
3003}
3004
3005multiclass Memopxi_add_pat<PatFrag Load, PatFrag Store, PatFrag ImmPred,
3006                           SDNode Oper, PatFrag Arg, SDNodeXForm ArgMod,
3007                           InstHexagon MI> {
3008  // Addr: i32
3009  def: Pat<(Store (Oper (Load (add I32:$Rs, ImmPred:$Off)), Arg:$A),
3010                  (add I32:$Rs, ImmPred:$Off)),
3011           (MI I32:$Rs, imm:$Off, (ArgMod Arg:$A))>;
3012  def: Pat<(Store (Oper (Load (IsOrAdd I32:$Rs, ImmPred:$Off)), Arg:$A),
3013                  (IsOrAdd I32:$Rs, ImmPred:$Off)),
3014           (MI I32:$Rs, imm:$Off, (ArgMod Arg:$A))>;
3015  // Addr: fi
3016  def: Pat<(Store (Oper (Load (add AddrFI:$Rs, ImmPred:$Off)), Arg:$A),
3017                  (add AddrFI:$Rs, ImmPred:$Off)),
3018           (MI AddrFI:$Rs, imm:$Off, (ArgMod Arg:$A))>;
3019  def: Pat<(Store (Oper (Load (IsOrAdd AddrFI:$Rs, ImmPred:$Off)), Arg:$A),
3020                  (IsOrAdd AddrFI:$Rs, ImmPred:$Off)),
3021           (MI AddrFI:$Rs, imm:$Off, (ArgMod Arg:$A))>;
3022}
3023
3024multiclass Memopxi_pat<PatFrag Load, PatFrag Store, PatFrag ImmPred,
3025                       SDNode Oper, PatFrag Arg, SDNodeXForm ArgMod,
3026                       InstHexagon MI> {
3027  let Predicates = [UseMEMOPS] in {
3028    defm: Memopxi_base_pat <Load, Store,          Oper, Arg, ArgMod, MI>;
3029    defm: Memopxi_add_pat  <Load, Store, ImmPred, Oper, Arg, ArgMod, MI>;
3030  }
3031}
3032
3033let AddedComplexity = 220 in {
3034  // add imm
3035  defm: Memopxi_pat<extloadi8, truncstorei8, u6_0ImmPred, add, u5_0ImmPred,
3036        /*anyext*/  IdImm, L4_iadd_memopb_io>;
3037  defm: Memopxi_pat<sextloadi8, truncstorei8, u6_0ImmPred, add, u5_0ImmPred,
3038        /*sext*/    IdImm, L4_iadd_memopb_io>;
3039  defm: Memopxi_pat<zextloadi8, truncstorei8, u6_0ImmPred, add, u5_0ImmPred,
3040        /*zext*/    IdImm, L4_iadd_memopb_io>;
3041  defm: Memopxi_pat<extloadi16, truncstorei16, u6_1ImmPred, add, u5_0ImmPred,
3042        /*anyext*/  IdImm, L4_iadd_memoph_io>;
3043  defm: Memopxi_pat<extloadi16, truncstorei16, u6_1ImmPred, add, u5_0ImmPred,
3044        /*sext*/    IdImm, L4_iadd_memoph_io>;
3045  defm: Memopxi_pat<extloadi16, truncstorei16, u6_1ImmPred, add, u5_0ImmPred,
3046        /*zext*/    IdImm, L4_iadd_memoph_io>;
3047  defm: Memopxi_pat<load, store, u6_2ImmPred, add, u5_0ImmPred, IdImm,
3048                    L4_iadd_memopw_io>;
3049  defm: Memopxi_pat<extloadi8, truncstorei8, u6_0ImmPred, sub, m5_0Imm8Pred,
3050        /*anyext*/  NegImm8, L4_iadd_memopb_io>;
3051  defm: Memopxi_pat<sextloadi8, truncstorei8, u6_0ImmPred, sub, m5_0Imm8Pred,
3052        /*sext*/    NegImm8, L4_iadd_memopb_io>;
3053  defm: Memopxi_pat<zextloadi8, truncstorei8, u6_0ImmPred, sub, m5_0Imm8Pred,
3054        /*zext*/    NegImm8, L4_iadd_memopb_io>;
3055  defm: Memopxi_pat<extloadi16, truncstorei16, u6_1ImmPred, sub, m5_0Imm16Pred,
3056        /*anyext*/  NegImm16, L4_iadd_memoph_io>;
3057  defm: Memopxi_pat<sextloadi16, truncstorei16, u6_1ImmPred, sub, m5_0Imm16Pred,
3058        /*sext*/    NegImm16, L4_iadd_memoph_io>;
3059  defm: Memopxi_pat<zextloadi16, truncstorei16, u6_1ImmPred, sub, m5_0Imm16Pred,
3060        /*zext*/    NegImm16, L4_iadd_memoph_io>;
3061  defm: Memopxi_pat<load, store, u6_2ImmPred, sub, m5_0ImmPred, NegImm32,
3062                    L4_iadd_memopw_io>;
3063
3064  // sub imm
3065  defm: Memopxi_pat<extloadi8, truncstorei8, u6_0ImmPred, sub, u5_0ImmPred,
3066        /*anyext*/  IdImm, L4_isub_memopb_io>;
3067  defm: Memopxi_pat<sextloadi8, truncstorei8, u6_0ImmPred, sub, u5_0ImmPred,
3068        /*sext*/    IdImm, L4_isub_memopb_io>;
3069  defm: Memopxi_pat<zextloadi8, truncstorei8, u6_0ImmPred, sub, u5_0ImmPred,
3070        /*zext*/    IdImm, L4_isub_memopb_io>;
3071  defm: Memopxi_pat<extloadi16, truncstorei16, u6_1ImmPred, sub, u5_0ImmPred,
3072        /*anyext*/  IdImm, L4_isub_memoph_io>;
3073  defm: Memopxi_pat<sextloadi16, truncstorei16, u6_1ImmPred, sub, u5_0ImmPred,
3074        /*sext*/    IdImm, L4_isub_memoph_io>;
3075  defm: Memopxi_pat<zextloadi16, truncstorei16, u6_1ImmPred, sub, u5_0ImmPred,
3076        /*zext*/    IdImm, L4_isub_memoph_io>;
3077  defm: Memopxi_pat<load, store, u6_2ImmPred, sub, u5_0ImmPred, IdImm,
3078                    L4_isub_memopw_io>;
3079  defm: Memopxi_pat<extloadi8, truncstorei8, u6_0ImmPred, add, m5_0Imm8Pred,
3080        /*anyext*/  NegImm8, L4_isub_memopb_io>;
3081  defm: Memopxi_pat<sextloadi8, truncstorei8, u6_0ImmPred, add, m5_0Imm8Pred,
3082        /*sext*/    NegImm8, L4_isub_memopb_io>;
3083  defm: Memopxi_pat<zextloadi8, truncstorei8, u6_0ImmPred, add, m5_0Imm8Pred,
3084        /*zext*/    NegImm8, L4_isub_memopb_io>;
3085  defm: Memopxi_pat<extloadi16, truncstorei16, u6_1ImmPred, add, m5_0Imm16Pred,
3086        /*anyext*/  NegImm16, L4_isub_memoph_io>;
3087  defm: Memopxi_pat<sextloadi16, truncstorei16, u6_1ImmPred, add, m5_0Imm16Pred,
3088        /*sext*/    NegImm16, L4_isub_memoph_io>;
3089  defm: Memopxi_pat<zextloadi16, truncstorei16, u6_1ImmPred, add, m5_0Imm16Pred,
3090        /*zext*/    NegImm16, L4_isub_memoph_io>;
3091  defm: Memopxi_pat<load, store, u6_2ImmPred, add, m5_0ImmPred, NegImm32,
3092                    L4_isub_memopw_io>;
3093
3094  // clrbit imm
3095  defm: Memopxi_pat<extloadi8, truncstorei8, u6_0ImmPred, and, IsNPow2_8,
3096        /*anyext*/  LogN2_8, L4_iand_memopb_io>;
3097  defm: Memopxi_pat<sextloadi8, truncstorei8, u6_0ImmPred, and, IsNPow2_8,
3098        /*sext*/    LogN2_8, L4_iand_memopb_io>;
3099  defm: Memopxi_pat<zextloadi8, truncstorei8, u6_0ImmPred, and, IsNPow2_8,
3100        /*zext*/    LogN2_8, L4_iand_memopb_io>;
3101  defm: Memopxi_pat<extloadi16, truncstorei16, u6_1ImmPred, and, IsNPow2_16,
3102        /*anyext*/  LogN2_16, L4_iand_memoph_io>;
3103  defm: Memopxi_pat<sextloadi16, truncstorei16, u6_1ImmPred, and, IsNPow2_16,
3104        /*sext*/    LogN2_16, L4_iand_memoph_io>;
3105  defm: Memopxi_pat<zextloadi16, truncstorei16, u6_1ImmPred, and, IsNPow2_16,
3106        /*zext*/    LogN2_16, L4_iand_memoph_io>;
3107  defm: Memopxi_pat<load, store, u6_2ImmPred, and, IsNPow2_32,
3108		    LogN2_32, L4_iand_memopw_io>;
3109
3110  // setbit imm
3111  defm: Memopxi_pat<extloadi8, truncstorei8, u6_0ImmPred, or, IsPow2_32,
3112        /*anyext*/  Log2_8, L4_ior_memopb_io>;
3113  defm: Memopxi_pat<sextloadi8, truncstorei8, u6_0ImmPred, or, IsPow2_32,
3114        /*sext*/    Log2_8, L4_ior_memopb_io>;
3115  defm: Memopxi_pat<zextloadi8, truncstorei8, u6_0ImmPred, or, IsPow2_32,
3116        /*zext*/    Log2_8, L4_ior_memopb_io>;
3117  defm: Memopxi_pat<extloadi16, truncstorei16, u6_1ImmPred, or, IsPow2_32,
3118        /*anyext*/  Log2_16, L4_ior_memoph_io>;
3119  defm: Memopxi_pat<sextloadi16, truncstorei16, u6_1ImmPred, or, IsPow2_32,
3120        /*sext*/    Log2_16, L4_ior_memoph_io>;
3121  defm: Memopxi_pat<zextloadi16, truncstorei16, u6_1ImmPred, or, IsPow2_32,
3122        /*zext*/    Log2_16, L4_ior_memoph_io>;
3123  defm: Memopxi_pat<load, store, u6_2ImmPred, or, IsPow2_32,
3124		    Log2_32, L4_ior_memopw_io>;
3125}
3126
3127
3128// --(15) Call -----------------------------------------------------------
3129//
3130
3131// Pseudo instructions.
3132def SDT_SPCallSeqStart
3133  : SDCallSeqStart<[SDTCisVT<0, i32>, SDTCisVT<1, i32>]>;
3134def SDT_SPCallSeqEnd
3135  : SDCallSeqEnd<[SDTCisVT<0, i32>, SDTCisVT<1, i32>]>;
3136
3137def callseq_start: SDNode<"ISD::CALLSEQ_START", SDT_SPCallSeqStart,
3138                          [SDNPHasChain, SDNPOutGlue]>;
3139def callseq_end:   SDNode<"ISD::CALLSEQ_END",   SDT_SPCallSeqEnd,
3140                          [SDNPHasChain, SDNPOptInGlue, SDNPOutGlue]>;
3141
3142def SDT_SPCall: SDTypeProfile<0, 1, [SDTCisVT<0, i32>]>;
3143
3144def HexagonTCRet: SDNode<"HexagonISD::TC_RETURN", SDT_SPCall,
3145                         [SDNPHasChain,  SDNPOptInGlue, SDNPVariadic]>;
3146def callv3: SDNode<"HexagonISD::CALL", SDT_SPCall,
3147                   [SDNPHasChain, SDNPOptInGlue, SDNPOutGlue, SDNPVariadic]>;
3148def callv3nr: SDNode<"HexagonISD::CALLnr", SDT_SPCall,
3149                     [SDNPHasChain, SDNPOptInGlue, SDNPOutGlue, SDNPVariadic]>;
3150
3151def: Pat<(callseq_start timm:$amt, timm:$amt2),
3152         (ADJCALLSTACKDOWN imm:$amt, imm:$amt2)>;
3153def: Pat<(callseq_end timm:$amt1, timm:$amt2),
3154         (ADJCALLSTACKUP imm:$amt1, imm:$amt2)>;
3155
3156def: Pat<(HexagonTCRet tglobaladdr:$dst),   (PS_tailcall_i tglobaladdr:$dst)>;
3157def: Pat<(HexagonTCRet texternalsym:$dst),  (PS_tailcall_i texternalsym:$dst)>;
3158def: Pat<(HexagonTCRet I32:$dst),           (PS_tailcall_r I32:$dst)>;
3159
3160def: Pat<(callv3 I32:$dst),                 (J2_callr I32:$dst)>;
3161def: Pat<(callv3 tglobaladdr:$dst),         (J2_call tglobaladdr:$dst)>;
3162def: Pat<(callv3 texternalsym:$dst),        (J2_call texternalsym:$dst)>;
3163def: Pat<(callv3 tglobaltlsaddr:$dst),      (J2_call tglobaltlsaddr:$dst)>;
3164
3165def: Pat<(callv3nr I32:$dst),               (PS_callr_nr I32:$dst)>;
3166def: Pat<(callv3nr tglobaladdr:$dst),       (PS_call_nr tglobaladdr:$dst)>;
3167def: Pat<(callv3nr texternalsym:$dst),      (PS_call_nr texternalsym:$dst)>;
3168
3169def retflag : SDNode<"HexagonISD::RET_FLAG", SDTNone,
3170                     [SDNPHasChain, SDNPOptInGlue, SDNPVariadic]>;
3171def eh_return: SDNode<"HexagonISD::EH_RETURN", SDTNone, [SDNPHasChain]>;
3172
3173def: Pat<(retflag),   (PS_jmpret (i32 R31))>;
3174def: Pat<(eh_return), (EH_RETURN_JMPR (i32 R31))>;
3175
3176
3177// --(16) Branch ---------------------------------------------------------
3178//
3179
3180def: Pat<(br      bb:$dst),         (J2_jump  b30_2Imm:$dst)>;
3181def: Pat<(brind   I32:$dst),        (J2_jumpr I32:$dst)>;
3182
3183def: Pat<(brcond I1:$Pu, bb:$dst),
3184         (J2_jumpt I1:$Pu, bb:$dst)>;
3185def: Pat<(brcond (not I1:$Pu), bb:$dst),
3186         (J2_jumpf I1:$Pu, bb:$dst)>;
3187def: Pat<(brcond (i1 (setne I1:$Pu, -1)), bb:$dst),
3188         (J2_jumpf I1:$Pu, bb:$dst)>;
3189def: Pat<(brcond (i1 (seteq I1:$Pu, 0)), bb:$dst),
3190         (J2_jumpf I1:$Pu, bb:$dst)>;
3191def: Pat<(brcond (i1 (setne I1:$Pu, 0)), bb:$dst),
3192         (J2_jumpt I1:$Pu, bb:$dst)>;
3193
3194
3195// --(17) Misc -----------------------------------------------------------
3196
3197
3198// Generate code of the form 'C2_muxii(cmpbgtui(Rdd, C-1),0,1)'
3199// for C code of the form r = (c>='0' && c<='9') ? 1 : 0.
3200// The isdigit transformation relies on two 'clever' aspects:
3201// 1) The data type is unsigned which allows us to eliminate a zero test after
3202//    biasing the expression by 48. We are depending on the representation of
3203//    the unsigned types, and semantics.
3204// 2) The front end has converted <= 9 into < 10 on entry to LLVM.
3205//
3206// For the C code:
3207//   retval = (c >= '0' && c <= '9') ? 1 : 0;
3208// The code is transformed upstream of llvm into
3209//   retval = (c-48) < 10 ? 1 : 0;
3210
3211def u7_0PosImmPred : ImmLeaf<i32, [{
3212  // True if the immediate fits in an 7-bit unsigned field and is positive.
3213  return Imm > 0 && isUInt<7>(Imm);
3214}]>;
3215
3216let AddedComplexity = 139 in
3217def: Pat<(i32 (zext (i1 (setult (and I32:$Rs, 255), u7_0PosImmPred:$u7)))),
3218         (C2_muxii (A4_cmpbgtui IntRegs:$Rs, (UDEC1 imm:$u7)), 0, 1)>;
3219
3220let AddedComplexity = 100 in
3221def: Pat<(or (or (shl (HexagonINSERT (i32 (zextloadi8 (add I32:$b, 2))),
3222                                     (i32 (extloadi8  (add I32:$b, 3))),
3223                                     24, 8),
3224                      (i32 16)),
3225                 (shl (i32 (zextloadi8 (add I32:$b, 1))), (i32 8))),
3226             (zextloadi8 I32:$b)),
3227         (A2_swiz (L2_loadri_io I32:$b, 0))>;
3228
3229
3230// We need custom lowering of ISD::PREFETCH into HexagonISD::DCFETCH
3231// because the SDNode ISD::PREFETCH has properties MayLoad and MayStore.
3232// We don't really want either one here.
3233def SDTHexagonDCFETCH: SDTypeProfile<0, 2, [SDTCisPtrTy<0>,SDTCisInt<1>]>;
3234def HexagonDCFETCH: SDNode<"HexagonISD::DCFETCH", SDTHexagonDCFETCH,
3235                           [SDNPHasChain]>;
3236
3237def: Pat<(HexagonDCFETCH IntRegs:$Rs, u11_3ImmPred:$u11_3),
3238         (Y2_dcfetchbo IntRegs:$Rs, imm:$u11_3)>;
3239def: Pat<(HexagonDCFETCH (i32 (add IntRegs:$Rs, u11_3ImmPred:$u11_3)), (i32 0)),
3240         (Y2_dcfetchbo IntRegs:$Rs, imm:$u11_3)>;
3241
3242def SDTHexagonALLOCA
3243  : SDTypeProfile<1, 2, [SDTCisVT<0, i32>, SDTCisVT<1, i32>]>;
3244def HexagonALLOCA
3245  : SDNode<"HexagonISD::ALLOCA", SDTHexagonALLOCA, [SDNPHasChain]>;
3246
3247def: Pat<(HexagonALLOCA I32:$Rs, (i32 imm:$A)),
3248         (PS_alloca IntRegs:$Rs, imm:$A)>;
3249
3250def HexagonBARRIER: SDNode<"HexagonISD::BARRIER", SDTNone, [SDNPHasChain]>;
3251def: Pat<(HexagonBARRIER), (Y2_barrier)>;
3252
3253def: Pat<(trap), (PS_crash)>;
3254
3255// Read cycle counter.
3256def SDTInt64Leaf: SDTypeProfile<1, 0, [SDTCisVT<0, i64>]>;
3257def HexagonREADCYCLE: SDNode<"HexagonISD::READCYCLE", SDTInt64Leaf,
3258  [SDNPHasChain]>;
3259
3260def: Pat<(HexagonREADCYCLE), (A4_tfrcpp UPCYCLE)>;
3261
3262// The declared return value of the store-locked intrinsics is i32, but
3263// the instructions actually define i1. To avoid register copies from
3264// IntRegs to PredRegs and back, fold the entire pattern checking the
3265// result against true/false.
3266let AddedComplexity = 100 in {
3267  def: Pat<(i1 (setne (int_hexagon_S2_storew_locked I32:$Rs, I32:$Rt), 0)),
3268           (S2_storew_locked I32:$Rs, I32:$Rt)>;
3269  def: Pat<(i1 (seteq (int_hexagon_S2_storew_locked I32:$Rs, I32:$Rt), 0)),
3270           (C2_not (S2_storew_locked I32:$Rs, I32:$Rt))>;
3271  def: Pat<(i1 (setne (int_hexagon_S4_stored_locked I32:$Rs, I64:$Rt), 0)),
3272           (S4_stored_locked I32:$Rs, I64:$Rt)>;
3273  def: Pat<(i1 (seteq (int_hexagon_S4_stored_locked I32:$Rs, I64:$Rt), 0)),
3274           (C2_not (S4_stored_locked I32:$Rs, I64:$Rt))>;
3275}
3276