1//===- HexagonPatterns.td - Selection Patterns for Hexagon -*- tablegen -*-===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8
9// Table of contents:
10//     (0) Definitions
11//     (1) Immediates
12//     (2) Type casts
13//     (3) Extend/truncate/saturate
14//     (4) Logical
15//     (5) Compare
16//     (6) Select
17//     (7) Insert/extract
18//     (8) Shift/permute
19//     (9) Arithmetic/bitwise
20//    (10) Bit
21//    (11) PIC
22//    (12) Load
23//    (13) Store
24//    (14) Memop
25//    (15) Call
26//    (16) Branch
27//    (17) Misc
28
29// Guidelines (in no particular order):
30// 1. Avoid relying on pattern ordering to give preference to one pattern
31//    over another, prefer using AddedComplexity instead. The reason for
32//    this is to avoid unintended conseqeuences (caused by altering the
33//    order) when making changes. The current order of patterns in this
34//    file obviously does play some role, but none of the ordering was
35//    deliberately chosen (other than to create a logical structure of
36//    this file). When making changes, adding AddedComplexity to existing
37//    patterns may be needed.
38// 2. Maintain the logical structure of the file, try to put new patterns
39//    in designated sections.
40// 3. Do not use A2_combinew instruction directly, use Combinew fragment
41//    instead. It uses REG_SEQUENCE, which is more amenable to optimizations.
42// 4. Most selection macros are based on PatFrags. For DAGs that involve
43//    SDNodes, use pf1/pf2 to convert them to PatFrags. Use common frags
44//    whenever possible (see the Definitions section). When adding new
45//    macro, try to make is general to enable reuse across sections.
46// 5. Compound instructions (e.g. Rx+Rs*Rt) are generated under the condition
47//    that the nested operation has only one use. Having it separated in case
48//    of multiple uses avoids duplication of (processor) work.
49// 6. The v4 vector instructions (64-bit) are treated as core instructions,
50//    for example, A2_vaddh is in the "arithmetic" section with A2_add.
51// 7. When adding a pattern for an instruction with a constant-extendable
52//    operand, allow all possible kinds of inputs for the immediate value
53//    (see AnyImm/anyimm and their variants in the Definitions section).
54
55
56// --(0) Definitions -----------------------------------------------------
57//
58
59// This complex pattern exists only to create a machine instruction operand
60// of type "frame index". There doesn't seem to be a way to do that directly
61// in the patterns.
62def AddrFI: ComplexPattern<i32, 1, "SelectAddrFI", [frameindex], []>;
63
64// These complex patterns are not strictly necessary, since global address
65// folding will happen during DAG combining. For distinguishing between GA
66// and GP, pat frags with HexagonCONST32 and HexagonCONST32_GP can be used.
67def AddrGA: ComplexPattern<i32, 1, "SelectAddrGA", [], []>;
68def AddrGP: ComplexPattern<i32, 1, "SelectAddrGP", [], []>;
69def AnyImm: ComplexPattern<i32, 1, "SelectAnyImm", [], []>;
70def AnyInt: ComplexPattern<i32, 1, "SelectAnyInt", [], []>;
71
72// Global address or a constant being a multiple of 2^n.
73def AnyImm0: ComplexPattern<i32, 1, "SelectAnyImm0", [], []>;
74def AnyImm1: ComplexPattern<i32, 1, "SelectAnyImm1", [], []>;
75def AnyImm2: ComplexPattern<i32, 1, "SelectAnyImm2", [], []>;
76def AnyImm3: ComplexPattern<i32, 1, "SelectAnyImm3", [], []>;
77
78
79// Type helper frags.
80def V2I1:   PatLeaf<(v2i1    PredRegs:$R)>;
81def V4I1:   PatLeaf<(v4i1    PredRegs:$R)>;
82def V8I1:   PatLeaf<(v8i1    PredRegs:$R)>;
83def V4I8:   PatLeaf<(v4i8    IntRegs:$R)>;
84def V2I16:  PatLeaf<(v2i16   IntRegs:$R)>;
85
86def V8I8:   PatLeaf<(v8i8    DoubleRegs:$R)>;
87def V4I16:  PatLeaf<(v4i16   DoubleRegs:$R)>;
88def V2I32:  PatLeaf<(v2i32   DoubleRegs:$R)>;
89
90def SDTVecLeaf:
91  SDTypeProfile<1, 0, [SDTCisVec<0>]>;
92def SDTVecVecIntOp:
93  SDTypeProfile<1, 3, [SDTCisVec<0>, SDTCisVec<1>, SDTCisSameAs<1,2>,
94                       SDTCisVT<3,i32>]>;
95
96def HexagonPTRUE:      SDNode<"HexagonISD::PTRUE",      SDTVecLeaf>;
97def HexagonPFALSE:     SDNode<"HexagonISD::PFALSE",     SDTVecLeaf>;
98def HexagonVALIGN:     SDNode<"HexagonISD::VALIGN",     SDTVecVecIntOp>;
99def HexagonVALIGNADDR: SDNode<"HexagonISD::VALIGNADDR", SDTIntUnaryOp>;
100def HexagonMULHUS:     SDNode<"HexagonISD::MULHUS",     SDTIntBinOp>;
101
102def SDTSaturate:
103  SDTypeProfile<1, 2, [SDTCisInt<0>, SDTCisInt<1>, SDTCisVT<2, OtherVT>]>;
104def HexagonSSAT: SDNode<"HexagonISD::SSAT", SDTSaturate>;
105def HexagonUSAT: SDNode<"HexagonISD::USAT", SDTSaturate>;
106
107def ptrue:  PatFrag<(ops), (HexagonPTRUE)>;
108def pfalse: PatFrag<(ops), (HexagonPFALSE)>;
109def pnot:   PatFrag<(ops node:$Pu), (xor node:$Pu, ptrue)>;
110
111def valign: PatFrag<(ops node:$Vt, node:$Vs, node:$Ru),
112                    (HexagonVALIGN node:$Vt, node:$Vs, node:$Ru)>;
113def valignaddr: PatFrag<(ops node:$Addr), (HexagonVALIGNADDR node:$Addr)>;
114
115def ssat: PatFrag<(ops node:$V, node:$Ty), (HexagonSSAT node:$V, node:$Ty)>;
116def usat: PatFrag<(ops node:$V, node:$Ty), (HexagonUSAT node:$V, node:$Ty)>;
117
118// Pattern fragments to extract the low and high subregisters from a
119// 64-bit value.
120def LoReg: OutPatFrag<(ops node:$Rs), (EXTRACT_SUBREG (i64 $Rs), isub_lo)>;
121def HiReg: OutPatFrag<(ops node:$Rs), (EXTRACT_SUBREG (i64 $Rs), isub_hi)>;
122
123def IsOrAdd: PatFrag<(ops node:$A, node:$B), (or node:$A, node:$B), [{
124  return isOrEquivalentToAdd(N);
125}]>;
126
127def IsPow2_32: PatLeaf<(i32 imm), [{
128  uint32_t V = N->getZExtValue();
129  return isPowerOf2_32(V);
130}]>;
131
132def IsPow2_64: PatLeaf<(i64 imm), [{
133  uint64_t V = N->getZExtValue();
134  return isPowerOf2_64(V);
135}]>;
136
137def IsNPow2_32: PatLeaf<(i32 imm), [{
138  uint32_t NV = ~N->getZExtValue();
139  return isPowerOf2_32(NV);
140}]>;
141
142def IsPow2_64L: PatLeaf<(i64 imm), [{
143  uint64_t V = N->getZExtValue();
144  return isPowerOf2_64(V) && Log2_64(V) < 32;
145}]>;
146
147def IsPow2_64H: PatLeaf<(i64 imm), [{
148  uint64_t V = N->getZExtValue();
149  return isPowerOf2_64(V) && Log2_64(V) >= 32;
150}]>;
151
152def IsNPow2_64L: PatLeaf<(i64 imm), [{
153  uint64_t NV = ~N->getZExtValue();
154  return isPowerOf2_64(NV) && Log2_64(NV) < 32;
155}]>;
156
157def IsNPow2_64H: PatLeaf<(i64 imm), [{
158  uint64_t NV = ~N->getZExtValue();
159  return isPowerOf2_64(NV) && Log2_64(NV) >= 32;
160}]>;
161
162class IsULE<int Width, int Arg>: PatLeaf<(i32 imm),
163  "uint64_t V = N->getZExtValue();" #
164  "return isUInt<" # Width # ">(V) && V <= " # Arg # ";"
165>;
166
167class IsUGT<int Width, int Arg>: PatLeaf<(i32 imm),
168  "uint64_t V = N->getZExtValue();" #
169  "return isUInt<" # Width # ">(V) && V > " # Arg # ";"
170>;
171
172def SDEC1: SDNodeXForm<imm, [{
173  int32_t V = N->getSExtValue();
174  return CurDAG->getTargetConstant(V-1, SDLoc(N), MVT::i32);
175}]>;
176
177def UDEC1: SDNodeXForm<imm, [{
178  uint32_t V = N->getZExtValue();
179  assert(V >= 1);
180  return CurDAG->getTargetConstant(V-1, SDLoc(N), MVT::i32);
181}]>;
182
183def UDEC32: SDNodeXForm<imm, [{
184  uint32_t V = N->getZExtValue();
185  assert(V >= 32);
186  return CurDAG->getTargetConstant(V-32, SDLoc(N), MVT::i32);
187}]>;
188
189class Subi<int From>: SDNodeXForm<imm,
190  "int32_t V = " # From # " - N->getSExtValue();" #
191  "return CurDAG->getTargetConstant(V, SDLoc(N), MVT::i32);"
192>;
193
194def Log2_32: SDNodeXForm<imm, [{
195  uint32_t V = N->getZExtValue();
196  return CurDAG->getTargetConstant(Log2_32(V), SDLoc(N), MVT::i32);
197}]>;
198
199def Log2_64: SDNodeXForm<imm, [{
200  uint64_t V = N->getZExtValue();
201  return CurDAG->getTargetConstant(Log2_64(V), SDLoc(N), MVT::i32);
202}]>;
203
204def LogN2_32: SDNodeXForm<imm, [{
205  uint32_t NV = ~N->getZExtValue();
206  return CurDAG->getTargetConstant(Log2_32(NV), SDLoc(N), MVT::i32);
207}]>;
208
209def LogN2_64: SDNodeXForm<imm, [{
210  uint64_t NV = ~N->getZExtValue();
211  return CurDAG->getTargetConstant(Log2_64(NV), SDLoc(N), MVT::i32);
212}]>;
213
214def NegImm8: SDNodeXForm<imm, [{
215  int8_t NV = -N->getSExtValue();
216  return CurDAG->getTargetConstant(NV, SDLoc(N), MVT::i32);
217}]>;
218
219def NegImm16: SDNodeXForm<imm, [{
220  int16_t NV = -N->getSExtValue();
221  return CurDAG->getTargetConstant(NV, SDLoc(N), MVT::i32);
222}]>;
223
224def NegImm32: SDNodeXForm<imm, [{
225  int32_t NV = -N->getSExtValue();
226  return CurDAG->getTargetConstant(NV, SDLoc(N), MVT::i32);
227}]>;
228
229def SplatB: SDNodeXForm<imm, [{
230  uint32_t V = N->getZExtValue();
231  assert(isUInt<8>(V) || V >> 8 == 0xFFFFFF);
232  V &= 0xFF;
233  uint32_t S = V << 24 | V << 16 | V << 8 | V;
234  return CurDAG->getTargetConstant(S, SDLoc(N), MVT::i32);
235}]>;
236
237def SplatH: SDNodeXForm<imm, [{
238  uint32_t V = N->getZExtValue();
239  assert(isUInt<16>(V) || V >> 16 == 0xFFFF);
240  V &= 0xFFFF;
241  return CurDAG->getTargetConstant(V << 16 | V, SDLoc(N), MVT::i32);
242}]>;
243
244
245// Helpers for type promotions/contractions.
246def I1toI32:  OutPatFrag<(ops node:$Rs), (C2_muxii (i1 $Rs), 1, 0)>;
247def I32toI1:  OutPatFrag<(ops node:$Rs), (i1 (C2_cmpgtui (i32 $Rs), (i32 0)))>;
248def ToZext64: OutPatFrag<(ops node:$Rs), (i64 (A4_combineir 0, (i32 $Rs)))>;
249def ToSext64: OutPatFrag<(ops node:$Rs), (i64 (A2_sxtw (i32 $Rs)))>;
250def ToAext64: OutPatFrag<(ops node:$Rs),
251  (REG_SEQUENCE DoubleRegs, (i32 (IMPLICIT_DEF)), isub_hi, (i32 $Rs), isub_lo)>;
252
253def Combinew: OutPatFrag<(ops node:$Rs, node:$Rt),
254  (REG_SEQUENCE DoubleRegs, $Rs, isub_hi, $Rt, isub_lo)>;
255
256def addrga: PatLeaf<(i32 AddrGA:$Addr)>;
257def addrgp: PatLeaf<(i32 AddrGP:$Addr)>;
258def anyimm: PatLeaf<(i32 AnyImm:$Imm)>;
259def anyint: PatLeaf<(i32 AnyInt:$Imm)>;
260
261// Global address or an aligned constant.
262def anyimm0: PatLeaf<(i32 AnyImm0:$Addr)>;
263def anyimm1: PatLeaf<(i32 AnyImm1:$Addr)>;
264def anyimm2: PatLeaf<(i32 AnyImm2:$Addr)>;
265def anyimm3: PatLeaf<(i32 AnyImm3:$Addr)>;
266
267def f32ImmPred : PatLeaf<(f32 fpimm:$F)>;
268def f64ImmPred : PatLeaf<(f64 fpimm:$F)>;
269def f32zero: PatLeaf<(f32 fpimm:$F), [{
270  return N->isExactlyValue(APFloat::getZero(APFloat::IEEEsingle(), false));
271}]>;
272
273// This complex pattern is really only to detect various forms of
274// sign-extension i32->i64. The selected value will be of type i64
275// whose low word is the value being extended. The high word is
276// unspecified.
277def Usxtw:  ComplexPattern<i64, 1, "DetectUseSxtw", [], []>;
278
279def Aext64: PatFrag<(ops node:$Rs), (i64 (anyext node:$Rs))>;
280def Zext64: PatFrag<(ops node:$Rs), (i64 (zext node:$Rs))>;
281def Sext64: PatLeaf<(i64 Usxtw:$Rs)>;
282
283def azext: PatFrags<(ops node:$Rs), [(zext node:$Rs), (anyext node:$Rs)]>;
284def asext: PatFrags<(ops node:$Rs), [(sext node:$Rs), (anyext node:$Rs)]>;
285
286def: Pat<(IsOrAdd (i32 AddrFI:$Rs), s32_0ImmPred:$off),
287         (PS_fi (i32 AddrFI:$Rs), imm:$off)>;
288
289
290// Converters from unary/binary SDNode to PatFrag.
291class pf1<SDNode Op> : PatFrag<(ops node:$a), (Op node:$a)>;
292class pf2<SDNode Op> : PatFrag<(ops node:$a, node:$b), (Op node:$a, node:$b)>;
293
294class Not2<PatFrag P>
295  : PatFrag<(ops node:$A, node:$B), (P node:$A, (not node:$B))>;
296class VNot2<PatFrag P, PatFrag Not>
297  : PatFrag<(ops node:$A, node:$B), (P node:$A, (Not node:$B))>;
298
299// If there is a constant operand that feeds the and/or instruction,
300// do not generate the compound instructions.
301// It is not always profitable, as some times we end up with a transfer.
302// Check the below example.
303// ra = #65820; rb = lsr(rb, #8); rc ^= and (rb, ra)
304// Instead this is preferable.
305// ra = and (#65820, lsr(ra, #8)); rb = xor(rb, ra)
306class Su_ni1<PatFrag Op>
307  : PatFrag<Op.Operands, !head(Op.Fragments), [{
308            if (hasOneUse(N)){
309              // Check if Op1 is an immediate operand.
310              SDValue Op1 = N->getOperand(1);
311              return !isa<ConstantSDNode>(Op1);
312            }
313            return false;}],
314            Op.OperandTransform>;
315
316class Su<PatFrag Op>
317  : PatFrag<Op.Operands, !head(Op.Fragments), [{ return hasOneUse(N); }],
318            Op.OperandTransform>;
319
320// Main selection macros.
321
322class OpR_R_pat<InstHexagon MI, PatFrag Op, ValueType ResVT, PatFrag RegPred>
323  : Pat<(ResVT (Op RegPred:$Rs)), (MI RegPred:$Rs)>;
324
325class OpR_RI_pat<InstHexagon MI, PatFrag Op, ValueType ResType,
326                 PatFrag RegPred, PatFrag ImmPred>
327  : Pat<(ResType (Op RegPred:$Rs, ImmPred:$I)),
328        (MI RegPred:$Rs, imm:$I)>;
329
330class OpR_RR_pat<InstHexagon MI, PatFrag Op, ValueType ResType,
331                 PatFrag RsPred, PatFrag RtPred = RsPred>
332  : Pat<(ResType (Op RsPred:$Rs, RtPred:$Rt)),
333        (MI RsPred:$Rs, RtPred:$Rt)>;
334
335class AccRRI_pat<InstHexagon MI, PatFrag AccOp, PatFrag Op,
336                 PatFrag RegPred, PatFrag ImmPred>
337  : Pat<(AccOp RegPred:$Rx, (Op RegPred:$Rs, ImmPred:$I)),
338        (MI RegPred:$Rx, RegPred:$Rs, imm:$I)>;
339
340class AccRRR_pat<InstHexagon MI, PatFrag AccOp, PatFrag Op,
341                 PatFrag RxPred, PatFrag RsPred, PatFrag RtPred>
342  : Pat<(AccOp RxPred:$Rx, (Op RsPred:$Rs, RtPred:$Rt)),
343        (MI RxPred:$Rx, RsPred:$Rs, RtPred:$Rt)>;
344
345multiclass SelMinMax_pats<PatFrag CmpOp, PatFrag Val,
346                          InstHexagon InstA, InstHexagon InstB> {
347  def: Pat<(select (i1 (CmpOp Val:$A, Val:$B)), Val:$A, Val:$B),
348           (InstA Val:$A, Val:$B)>;
349  def: Pat<(select (i1 (CmpOp Val:$A, Val:$B)), Val:$B, Val:$A),
350           (InstB Val:$A, Val:$B)>;
351}
352
353multiclass MinMax_pats<InstHexagon PickT, InstHexagon PickS,
354                       SDPatternOperator Sel, SDPatternOperator CmpOp,
355                       ValueType CmpType, PatFrag CmpPred> {
356  def: Pat<(Sel (CmpType (CmpOp CmpPred:$Vs, CmpPred:$Vt)),
357                CmpPred:$Vt, CmpPred:$Vs),
358           (PickT CmpPred:$Vs, CmpPred:$Vt)>;
359  def: Pat<(Sel (CmpType (CmpOp CmpPred:$Vs, CmpPred:$Vt)),
360                CmpPred:$Vs, CmpPred:$Vt),
361           (PickS CmpPred:$Vs, CmpPred:$Vt)>;
362}
363
364// Bitcasts between same-size vector types are no-ops, except for the
365// actual type change.
366multiclass NopCast_pat<ValueType Ty1, ValueType Ty2, RegisterClass RC> {
367  def: Pat<(Ty1 (bitconvert (Ty2 RC:$Val))), (Ty1 RC:$Val)>;
368  def: Pat<(Ty2 (bitconvert (Ty1 RC:$Val))), (Ty2 RC:$Val)>;
369}
370
371// Frags for commonly used SDNodes.
372def Add: pf2<add>;    def And: pf2<and>;    def Sra: pf2<sra>;
373def Sub: pf2<sub>;    def Or:  pf2<or>;     def Srl: pf2<srl>;
374def Mul: pf2<mul>;    def Xor: pf2<xor>;    def Shl: pf2<shl>;
375
376def Smin: pf2<smin>;  def Smax: pf2<smax>;
377def Umin: pf2<umin>;  def Umax: pf2<umax>;
378
379def Rol: pf2<rotl>;
380
381def Fptosi: pf1<fp_to_sint>;
382def Fptoui: pf1<fp_to_uint>;
383def Sitofp: pf1<sint_to_fp>;
384def Uitofp: pf1<uint_to_fp>;
385
386
387// --(1) Immediate -------------------------------------------------------
388//
389
390def Imm64Lo: SDNodeXForm<imm, [{
391  return CurDAG->getTargetConstant(int32_t (N->getSExtValue()),
392                                   SDLoc(N), MVT::i32);
393}]>;
394def Imm64Hi: SDNodeXForm<imm, [{
395  return CurDAG->getTargetConstant(int32_t (N->getSExtValue()>>32),
396                                   SDLoc(N), MVT::i32);
397}]>;
398
399
400def SDTHexagonCONST32
401  : SDTypeProfile<1, 1, [SDTCisVT<0, i32>, SDTCisVT<1, i32>, SDTCisPtrTy<0>]>;
402
403def HexagonJT:          SDNode<"HexagonISD::JT",          SDTIntUnaryOp>;
404def HexagonCP:          SDNode<"HexagonISD::CP",          SDTIntUnaryOp>;
405def HexagonCONST32:     SDNode<"HexagonISD::CONST32",     SDTHexagonCONST32>;
406def HexagonCONST32_GP:  SDNode<"HexagonISD::CONST32_GP",  SDTHexagonCONST32>;
407
408def TruncI64ToI32: SDNodeXForm<imm, [{
409  return CurDAG->getTargetConstant(N->getSExtValue(), SDLoc(N), MVT::i32);
410}]>;
411
412def: Pat<(s32_0ImmPred:$s16), (A2_tfrsi imm:$s16)>;
413def: Pat<(s8_0Imm64Pred:$s8), (A2_tfrpi (TruncI64ToI32 $s8))>;
414
415def: Pat<(HexagonCONST32    tglobaltlsaddr:$A), (A2_tfrsi imm:$A)>;
416def: Pat<(HexagonCONST32    bbl:$A),            (A2_tfrsi imm:$A)>;
417def: Pat<(HexagonCONST32    tglobaladdr:$A),    (A2_tfrsi imm:$A)>;
418def: Pat<(HexagonCONST32_GP tblockaddress:$A),  (A2_tfrsi imm:$A)>;
419def: Pat<(HexagonCONST32_GP tglobaladdr:$A),    (A2_tfrsi imm:$A)>;
420def: Pat<(HexagonJT         tjumptable:$A),     (A2_tfrsi imm:$A)>;
421def: Pat<(HexagonCP         tconstpool:$A),     (A2_tfrsi imm:$A)>;
422// The HVX load patterns also match CP directly. Make sure that if
423// the selection of this opcode changes, it's updated in all places.
424
425def: Pat<(i1 0),        (PS_false)>;
426def: Pat<(i1 1),        (PS_true)>;
427def: Pat<(i64 imm:$v),  (CONST64 imm:$v)>,
428     Requires<[UseSmallData,NotOptTinyCore]>;
429def: Pat<(i64 imm:$v),
430         (Combinew (A2_tfrsi (Imm64Hi $v)), (A2_tfrsi (Imm64Lo $v)))>;
431
432def ftoi : SDNodeXForm<fpimm, [{
433  APInt I = N->getValueAPF().bitcastToAPInt();
434  return CurDAG->getTargetConstant(I.getZExtValue(), SDLoc(N),
435                                   MVT::getIntegerVT(I.getBitWidth()));
436}]>;
437
438def: Pat<(f32ImmPred:$f), (A2_tfrsi (ftoi $f))>;
439def: Pat<(f64ImmPred:$f), (CONST64  (ftoi $f))>;
440
441def ToI32: OutPatFrag<(ops node:$V), (A2_tfrsi $V)>;
442
443// --(2) Type cast -------------------------------------------------------
444//
445
446def: OpR_R_pat<F2_conv_sf2df,      pf1<fpextend>,   f64, F32>;
447def: OpR_R_pat<F2_conv_df2sf,      pf1<fpround>,    f32, F64>;
448
449def: OpR_R_pat<F2_conv_w2sf,       pf1<sint_to_fp>, f32, I32>;
450def: OpR_R_pat<F2_conv_d2sf,       pf1<sint_to_fp>, f32, I64>;
451def: OpR_R_pat<F2_conv_w2df,       pf1<sint_to_fp>, f64, I32>;
452def: OpR_R_pat<F2_conv_d2df,       pf1<sint_to_fp>, f64, I64>;
453
454def: OpR_R_pat<F2_conv_uw2sf,      pf1<uint_to_fp>, f32, I32>;
455def: OpR_R_pat<F2_conv_ud2sf,      pf1<uint_to_fp>, f32, I64>;
456def: OpR_R_pat<F2_conv_uw2df,      pf1<uint_to_fp>, f64, I32>;
457def: OpR_R_pat<F2_conv_ud2df,      pf1<uint_to_fp>, f64, I64>;
458
459def: OpR_R_pat<F2_conv_sf2w_chop,  pf1<fp_to_sint>, i32, F32>;
460def: OpR_R_pat<F2_conv_df2w_chop,  pf1<fp_to_sint>, i32, F64>;
461def: OpR_R_pat<F2_conv_sf2d_chop,  pf1<fp_to_sint>, i64, F32>;
462def: OpR_R_pat<F2_conv_df2d_chop,  pf1<fp_to_sint>, i64, F64>;
463
464def: OpR_R_pat<F2_conv_sf2uw_chop, pf1<fp_to_uint>, i32, F32>;
465def: OpR_R_pat<F2_conv_df2uw_chop, pf1<fp_to_uint>, i32, F64>;
466def: OpR_R_pat<F2_conv_sf2ud_chop, pf1<fp_to_uint>, i64, F32>;
467def: OpR_R_pat<F2_conv_df2ud_chop, pf1<fp_to_uint>, i64, F64>;
468
469// Bitcast is different than [fp|sint|uint]_to_[sint|uint|fp].
470def: Pat<(i32 (bitconvert F32:$v)), (I32:$v)>;
471def: Pat<(f32 (bitconvert I32:$v)), (F32:$v)>;
472def: Pat<(i64 (bitconvert F64:$v)), (I64:$v)>;
473def: Pat<(f64 (bitconvert I64:$v)), (F64:$v)>;
474
475// Bit convert 32- and 64-bit types.
476// All of these are bitcastable to one another: i32, v2i16, v4i8.
477defm: NopCast_pat<i32,   v2i16, IntRegs>;
478defm: NopCast_pat<i32,    v4i8, IntRegs>;
479defm: NopCast_pat<v2i16,  v4i8, IntRegs>;
480// All of these are bitcastable to one another: i64, v2i32, v4i16, v8i8.
481defm: NopCast_pat<i64,   v2i32, DoubleRegs>;
482defm: NopCast_pat<i64,   v4i16, DoubleRegs>;
483defm: NopCast_pat<i64,    v8i8, DoubleRegs>;
484defm: NopCast_pat<v2i32, v4i16, DoubleRegs>;
485defm: NopCast_pat<v2i32,  v8i8, DoubleRegs>;
486defm: NopCast_pat<v4i16,  v8i8, DoubleRegs>;
487
488
489// --(3) Extend/truncate/saturate ----------------------------------------
490//
491
492def: Pat<(sext_inreg I32:$Rs, i8),  (A2_sxtb I32:$Rs)>;
493def: Pat<(sext_inreg I32:$Rs, i16), (A2_sxth I32:$Rs)>;
494def: Pat<(sext_inreg I64:$Rs, i32), (A2_sxtw (LoReg $Rs))>;
495def: Pat<(sext_inreg I64:$Rs, i16), (A2_sxtw (A2_sxth (LoReg $Rs)))>;
496def: Pat<(sext_inreg I64:$Rs, i8),  (A2_sxtw (A2_sxtb (LoReg $Rs)))>;
497
498def: Pat<(i64 (sext I32:$Rs)), (A2_sxtw I32:$Rs)>;
499def: Pat<(Zext64 I32:$Rs),     (ToZext64 $Rs)>;
500def: Pat<(Aext64 I32:$Rs),     (ToZext64 $Rs)>;
501
502def: Pat<(i32 (trunc I64:$Rs)), (LoReg $Rs)>;
503def: Pat<(i1 (trunc I32:$Rs)),  (S2_tstbit_i I32:$Rs, 0)>;
504def: Pat<(i1 (trunc I64:$Rs)),  (S2_tstbit_i (LoReg $Rs), 0)>;
505
506let AddedComplexity = 20 in {
507  def: Pat<(and I32:$Rs, 255),   (A2_zxtb I32:$Rs)>;
508  def: Pat<(and I32:$Rs, 65535), (A2_zxth I32:$Rs)>;
509}
510
511// Extensions from i1 or vectors of i1.
512def: Pat<(i32 (azext I1:$Pu)), (C2_muxii I1:$Pu, 1, 0)>;
513def: Pat<(i64 (azext I1:$Pu)), (ToZext64 (C2_muxii I1:$Pu, 1, 0))>;
514def: Pat<(i32  (sext I1:$Pu)), (C2_muxii I1:$Pu, -1, 0)>;
515def: Pat<(i64  (sext I1:$Pu)), (Combinew (C2_muxii PredRegs:$Pu, -1, 0),
516                                         (C2_muxii PredRegs:$Pu, -1, 0))>;
517
518def: Pat<(v2i16 (sext V2I1:$Pu)), (S2_vtrunehb (C2_mask V2I1:$Pu))>;
519def: Pat<(v2i32 (sext V2I1:$Pu)), (C2_mask V2I1:$Pu)>;
520def: Pat<(v4i8  (sext V4I1:$Pu)), (S2_vtrunehb (C2_mask V4I1:$Pu))>;
521def: Pat<(v4i16 (sext V4I1:$Pu)), (C2_mask V4I1:$Pu)>;
522def: Pat<(v8i8  (sext V8I1:$Pu)), (C2_mask V8I1:$Pu)>;
523
524def Vsplatpi: OutPatFrag<(ops node:$V),
525                         (Combinew (A2_tfrsi $V), (A2_tfrsi $V))>;
526
527def: Pat<(v2i16 (azext V2I1:$Pu)),
528         (A2_andir (LoReg (C2_mask V2I1:$Pu)), (i32 0x00010001))>;
529def: Pat<(v2i32 (azext V2I1:$Pu)),
530         (A2_andp (C2_mask V2I1:$Pu), (A2_combineii (i32 1), (i32 1)))>;
531def: Pat<(v4i8 (azext V4I1:$Pu)),
532         (A2_andir (LoReg (C2_mask V4I1:$Pu)), (i32 0x01010101))>;
533def: Pat<(v4i16 (azext V4I1:$Pu)),
534         (A2_andp (C2_mask V4I1:$Pu), (Vsplatpi (i32 0x00010001)))>;
535def: Pat<(v8i8 (azext V8I1:$Pu)),
536         (A2_andp (C2_mask V8I1:$Pu), (Vsplatpi (i32 0x01010101)))>;
537
538def: Pat<(v4i16 (azext  V4I8:$Rs)),  (S2_vzxtbh V4I8:$Rs)>;
539def: Pat<(v2i32 (azext  V2I16:$Rs)), (S2_vzxthw V2I16:$Rs)>;
540def: Pat<(v4i16 (sext   V4I8:$Rs)),  (S2_vsxtbh V4I8:$Rs)>;
541def: Pat<(v2i32 (sext   V2I16:$Rs)), (S2_vsxthw V2I16:$Rs)>;
542
543def: Pat<(v2i32 (sext_inreg V2I32:$Rs, v2i8)),
544         (Combinew (A2_sxtb (HiReg $Rs)), (A2_sxtb (LoReg $Rs)))>;
545
546def: Pat<(v2i32 (sext_inreg V2I32:$Rs, v2i16)),
547         (Combinew (A2_sxth (HiReg $Rs)), (A2_sxth (LoReg $Rs)))>;
548
549// Truncate: from vector B copy all 'E'ven 'B'yte elements:
550// A[0] = B[0];  A[1] = B[2];  A[2] = B[4];  A[3] = B[6];
551def: Pat<(v4i8 (trunc V4I16:$Rs)),
552         (S2_vtrunehb V4I16:$Rs)>;
553
554// Truncate: from vector B copy all 'O'dd 'B'yte elements:
555// A[0] = B[1];  A[1] = B[3];  A[2] = B[5];  A[3] = B[7];
556// S2_vtrunohb
557
558// Truncate: from vectors B and C copy all 'E'ven 'H'alf-word elements:
559// A[0] = B[0];  A[1] = B[2];  A[2] = C[0];  A[3] = C[2];
560// S2_vtruneh
561
562def: Pat<(v2i16 (trunc V2I32:$Rs)),
563         (A2_combine_ll (HiReg $Rs), (LoReg $Rs))>;
564
565// Saturation:
566// Note: saturation assumes the same signed-ness for the input and the
567// output.
568def: Pat<(i32 (ssat I32:$Rs, i8)),  (A2_satb  I32:$Rs)>;
569def: Pat<(i32 (ssat I32:$Rs, i16)), (A2_sath  I32:$Rs)>;
570def: Pat<(i32 (ssat I64:$Rs, i32)), (A2_sat   I64:$Rs)>;
571def: Pat<(i32 (usat I32:$Rs, i8)),  (A2_satub I32:$Rs)>;
572def: Pat<(i32 (usat I32:$Rs, i16)), (A2_satuh I32:$Rs)>;
573def: Pat<(i32 (usat I64:$Rs, i32)),
574         (C2_mux (C2_cmpeqi (HiReg $Rs), (i32 0)), (LoReg $Rs), (i32 -1))>;
575
576def: Pat<(v4i8  (ssat V4I16:$Rs, v4i8)),  (S2_vsathb  V4I16:$Rs)>;
577def: Pat<(v2i16 (ssat V2I32:$Rs, v2i16)), (S2_vsatwh  V2I32:$Rs)>;
578def: Pat<(v4i8  (usat V4I16:$Rs, v4i8)),  (S2_vsathub V4I16:$Rs)>;
579def: Pat<(v2i16 (usat V2I32:$Rs, v2i16)), (S2_vsatwuh V2I32:$Rs)>;
580
581
582// --(4) Logical ---------------------------------------------------------
583//
584
585def: Pat<(not I1:$Ps),      (C2_not I1:$Ps)>;
586def: Pat<(pnot V2I1:$Ps),   (C2_not V2I1:$Ps)>;
587def: Pat<(pnot V4I1:$Ps),   (C2_not V4I1:$Ps)>;
588def: Pat<(pnot V8I1:$Ps),   (C2_not V8I1:$Ps)>;
589def: Pat<(add I1:$Ps, -1),  (C2_not I1:$Ps)>;
590
591def: OpR_RR_pat<C2_and,         And, i1, I1>;
592def: OpR_RR_pat<C2_or,           Or, i1, I1>;
593def: OpR_RR_pat<C2_xor,         Xor, i1, I1>;
594def: OpR_RR_pat<C2_andn,  Not2<And>, i1, I1>;
595def: OpR_RR_pat<C2_orn,    Not2<Or>, i1, I1>;
596
597def: AccRRR_pat<C4_and_and,   And,       Su<And>, I1, I1, I1>;
598def: AccRRR_pat<C4_and_or,    And,       Su< Or>, I1, I1, I1>;
599def: AccRRR_pat<C4_or_and,     Or,       Su<And>, I1, I1, I1>;
600def: AccRRR_pat<C4_or_or,      Or,       Su< Or>, I1, I1, I1>;
601def: AccRRR_pat<C4_and_andn,  And, Su<Not2<And>>, I1, I1, I1>;
602def: AccRRR_pat<C4_and_orn,   And, Su<Not2< Or>>, I1, I1, I1>;
603def: AccRRR_pat<C4_or_andn,    Or, Su<Not2<And>>, I1, I1, I1>;
604def: AccRRR_pat<C4_or_orn,     Or, Su<Not2< Or>>, I1, I1, I1>;
605
606multiclass BoolvOpR_RR_pat<InstHexagon MI, PatFrag VOp> {
607  def: OpR_RR_pat<MI, VOp, v2i1, V2I1>;
608  def: OpR_RR_pat<MI, VOp, v4i1, V4I1>;
609  def: OpR_RR_pat<MI, VOp, v8i1, V8I1>;
610}
611
612multiclass BoolvAccRRR_pat<InstHexagon MI, PatFrag AccOp, PatFrag VOp> {
613  def: AccRRR_pat<MI, AccOp, VOp, V2I1, V2I1, V2I1>;
614  def: AccRRR_pat<MI, AccOp, VOp, V4I1, V4I1, V4I1>;
615  def: AccRRR_pat<MI, AccOp, VOp, V8I1, V8I1, V8I1>;
616}
617
618defm: BoolvOpR_RR_pat<C2_and,                    And>;
619defm: BoolvOpR_RR_pat<C2_or,                      Or>;
620defm: BoolvOpR_RR_pat<C2_xor,                    Xor>;
621defm: BoolvOpR_RR_pat<C2_andn,      VNot2<And, pnot>>;
622defm: BoolvOpR_RR_pat<C2_orn,       VNot2< Or, pnot>>;
623
624// op(Ps, op(Pt, Pu))
625defm: BoolvAccRRR_pat<C4_and_and,   And, Su<And>>;
626defm: BoolvAccRRR_pat<C4_and_or,    And, Su<Or>>;
627defm: BoolvAccRRR_pat<C4_or_and,    Or,  Su<And>>;
628defm: BoolvAccRRR_pat<C4_or_or,     Or,  Su<Or>>;
629
630// op(Ps, op(Pt, !Pu))
631defm: BoolvAccRRR_pat<C4_and_andn,  And, Su<VNot2<And, pnot>>>;
632defm: BoolvAccRRR_pat<C4_and_orn,   And, Su<VNot2< Or, pnot>>>;
633defm: BoolvAccRRR_pat<C4_or_andn,   Or,  Su<VNot2<And, pnot>>>;
634defm: BoolvAccRRR_pat<C4_or_orn,    Or,  Su<VNot2< Or, pnot>>>;
635
636
637// --(5) Compare ---------------------------------------------------------
638//
639
640// Avoid negated comparisons, i.e. those of form "Pd = !cmp(...)".
641// These cannot form compounds (e.g. J4_cmpeqi_tp0_jump_nt).
642
643def: OpR_RI_pat<C2_cmpeqi,    seteq,          i1, I32,  anyimm>;
644def: OpR_RI_pat<C2_cmpgti,    setgt,          i1, I32,  anyimm>;
645def: OpR_RI_pat<C2_cmpgtui,   setugt,         i1, I32,  anyimm>;
646
647def: Pat<(i1 (setge I32:$Rs, s32_0ImmPred:$s10)),
648         (C2_cmpgti I32:$Rs, (SDEC1 imm:$s10))>;
649def: Pat<(i1 (setuge I32:$Rs, u32_0ImmPred:$u9)),
650         (C2_cmpgtui I32:$Rs, (UDEC1 imm:$u9))>;
651
652def: Pat<(i1 (setlt I32:$Rs, s32_0ImmPred:$s10)),
653         (C2_not (C2_cmpgti I32:$Rs, (SDEC1 imm:$s10)))>;
654def: Pat<(i1 (setult I32:$Rs, u32_0ImmPred:$u9)),
655         (C2_not (C2_cmpgtui I32:$Rs, (UDEC1 imm:$u9)))>;
656
657// Patfrag to convert the usual comparison patfrags (e.g. setlt) to ones
658// that reverse the order of the operands.
659class RevCmp<PatFrag F>
660  : PatFrag<(ops node:$rhs, node:$lhs), !head(F.Fragments), F.PredicateCode,
661            F.OperandTransform>;
662
663def: OpR_RR_pat<C2_cmpeq,     seteq,          i1,   I32>;
664def: OpR_RR_pat<C2_cmpgt,     setgt,          i1,   I32>;
665def: OpR_RR_pat<C2_cmpgtu,    setugt,         i1,   I32>;
666def: OpR_RR_pat<C2_cmpgt,     RevCmp<setlt>,  i1,   I32>;
667def: OpR_RR_pat<C2_cmpgtu,    RevCmp<setult>, i1,   I32>;
668def: OpR_RR_pat<C2_cmpeqp,    seteq,          i1,   I64>;
669def: OpR_RR_pat<C2_cmpgtp,    setgt,          i1,   I64>;
670def: OpR_RR_pat<C2_cmpgtup,   setugt,         i1,   I64>;
671def: OpR_RR_pat<C2_cmpgtp,    RevCmp<setlt>,  i1,   I64>;
672def: OpR_RR_pat<C2_cmpgtup,   RevCmp<setult>, i1,   I64>;
673def: OpR_RR_pat<A2_vcmpbeq,   seteq,          i1,   V8I8>;
674def: OpR_RR_pat<A2_vcmpbeq,   seteq,          v8i1, V8I8>;
675def: OpR_RR_pat<A4_vcmpbgt,   RevCmp<setlt>,  i1,   V8I8>;
676def: OpR_RR_pat<A4_vcmpbgt,   RevCmp<setlt>,  v8i1, V8I8>;
677def: OpR_RR_pat<A4_vcmpbgt,   setgt,          i1,   V8I8>;
678def: OpR_RR_pat<A4_vcmpbgt,   setgt,          v8i1, V8I8>;
679def: OpR_RR_pat<A2_vcmpbgtu,  RevCmp<setult>, i1,   V8I8>;
680def: OpR_RR_pat<A2_vcmpbgtu,  RevCmp<setult>, v8i1, V8I8>;
681def: OpR_RR_pat<A2_vcmpbgtu,  setugt,         i1,   V8I8>;
682def: OpR_RR_pat<A2_vcmpbgtu,  setugt,         v8i1, V8I8>;
683def: OpR_RR_pat<A2_vcmpheq,   seteq,          i1,   V4I16>;
684def: OpR_RR_pat<A2_vcmpheq,   seteq,          v4i1, V4I16>;
685def: OpR_RR_pat<A2_vcmphgt,   RevCmp<setlt>,  i1,   V4I16>;
686def: OpR_RR_pat<A2_vcmphgt,   RevCmp<setlt>,  v4i1, V4I16>;
687def: OpR_RR_pat<A2_vcmphgt,   setgt,          i1,   V4I16>;
688def: OpR_RR_pat<A2_vcmphgt,   setgt,          v4i1, V4I16>;
689def: OpR_RR_pat<A2_vcmphgtu,  RevCmp<setult>, i1,   V4I16>;
690def: OpR_RR_pat<A2_vcmphgtu,  RevCmp<setult>, v4i1, V4I16>;
691def: OpR_RR_pat<A2_vcmphgtu,  setugt,         i1,   V4I16>;
692def: OpR_RR_pat<A2_vcmphgtu,  setugt,         v4i1, V4I16>;
693def: OpR_RR_pat<A2_vcmpweq,   seteq,          i1,   V2I32>;
694def: OpR_RR_pat<A2_vcmpweq,   seteq,          v2i1, V2I32>;
695def: OpR_RR_pat<A2_vcmpwgt,   RevCmp<setlt>,  i1,   V2I32>;
696def: OpR_RR_pat<A2_vcmpwgt,   RevCmp<setlt>,  v2i1, V2I32>;
697def: OpR_RR_pat<A2_vcmpwgt,   setgt,          i1,   V2I32>;
698def: OpR_RR_pat<A2_vcmpwgt,   setgt,          v2i1, V2I32>;
699def: OpR_RR_pat<A2_vcmpwgtu,  RevCmp<setult>, i1,   V2I32>;
700def: OpR_RR_pat<A2_vcmpwgtu,  RevCmp<setult>, v2i1, V2I32>;
701def: OpR_RR_pat<A2_vcmpwgtu,  setugt,         i1,   V2I32>;
702def: OpR_RR_pat<A2_vcmpwgtu,  setugt,         v2i1, V2I32>;
703
704def: OpR_RR_pat<F2_sfcmpeq,   seteq,          i1, F32>;
705def: OpR_RR_pat<F2_sfcmpgt,   setgt,          i1, F32>;
706def: OpR_RR_pat<F2_sfcmpge,   setge,          i1, F32>;
707def: OpR_RR_pat<F2_sfcmpeq,   setoeq,         i1, F32>;
708def: OpR_RR_pat<F2_sfcmpgt,   setogt,         i1, F32>;
709def: OpR_RR_pat<F2_sfcmpge,   setoge,         i1, F32>;
710def: OpR_RR_pat<F2_sfcmpgt,   RevCmp<setolt>, i1, F32>;
711def: OpR_RR_pat<F2_sfcmpge,   RevCmp<setole>, i1, F32>;
712def: OpR_RR_pat<F2_sfcmpgt,   RevCmp<setlt>,  i1, F32>;
713def: OpR_RR_pat<F2_sfcmpge,   RevCmp<setle>,  i1, F32>;
714def: OpR_RR_pat<F2_sfcmpuo,   setuo,          i1, F32>;
715
716def: OpR_RR_pat<F2_dfcmpeq,   seteq,          i1, F64>;
717def: OpR_RR_pat<F2_dfcmpgt,   setgt,          i1, F64>;
718def: OpR_RR_pat<F2_dfcmpge,   setge,          i1, F64>;
719def: OpR_RR_pat<F2_dfcmpeq,   setoeq,         i1, F64>;
720def: OpR_RR_pat<F2_dfcmpgt,   setogt,         i1, F64>;
721def: OpR_RR_pat<F2_dfcmpge,   setoge,         i1, F64>;
722def: OpR_RR_pat<F2_dfcmpgt,   RevCmp<setolt>, i1, F64>;
723def: OpR_RR_pat<F2_dfcmpge,   RevCmp<setole>, i1, F64>;
724def: OpR_RR_pat<F2_dfcmpgt,   RevCmp<setlt>,  i1, F64>;
725def: OpR_RR_pat<F2_dfcmpge,   RevCmp<setle>,  i1, F64>;
726def: OpR_RR_pat<F2_dfcmpuo,   setuo,          i1, F64>;
727
728// Avoid C4_cmpneqi, C4_cmpltei, C4_cmplteui, since they cannot form compounds.
729
730def: Pat<(i1 (setne I32:$Rs, anyimm:$u5)),
731         (C2_not (C2_cmpeqi I32:$Rs, imm:$u5))>;
732def: Pat<(i1 (setle I32:$Rs, anyimm:$u5)),
733         (C2_not (C2_cmpgti I32:$Rs, imm:$u5))>;
734def: Pat<(i1 (setule I32:$Rs, anyimm:$u5)),
735         (C2_not (C2_cmpgtui I32:$Rs, imm:$u5))>;
736
737class OpmR_RR_pat<PatFrag Output, PatFrag Op, ValueType ResType,
738                  PatFrag RsPred, PatFrag RtPred = RsPred>
739  : Pat<(ResType (Op RsPred:$Rs, RtPred:$Rt)),
740        (Output RsPred:$Rs, RtPred:$Rt)>;
741
742class Outn<InstHexagon MI>
743  : OutPatFrag<(ops node:$Rs, node:$Rt),
744               (C2_not (MI $Rs, $Rt))>;
745
746def: OpmR_RR_pat<Outn<C2_cmpeq>,    setne,          i1,   I32>;
747def: OpmR_RR_pat<Outn<C2_cmpgt>,    setle,          i1,   I32>;
748def: OpmR_RR_pat<Outn<C2_cmpgtu>,   setule,         i1,   I32>;
749def: OpmR_RR_pat<Outn<C2_cmpgt>,    RevCmp<setge>,  i1,   I32>;
750def: OpmR_RR_pat<Outn<C2_cmpgtu>,   RevCmp<setuge>, i1,   I32>;
751def: OpmR_RR_pat<Outn<C2_cmpeqp>,   setne,          i1,   I64>;
752def: OpmR_RR_pat<Outn<C2_cmpgtp>,   setle,          i1,   I64>;
753def: OpmR_RR_pat<Outn<C2_cmpgtup>,  setule,         i1,   I64>;
754def: OpmR_RR_pat<Outn<C2_cmpgtp>,   RevCmp<setge>,  i1,   I64>;
755def: OpmR_RR_pat<Outn<C2_cmpgtup>,  RevCmp<setuge>, i1,   I64>;
756def: OpmR_RR_pat<Outn<A2_vcmpbeq>,  setne,          v8i1, V8I8>;
757def: OpmR_RR_pat<Outn<A4_vcmpbgt>,  setle,          v8i1, V8I8>;
758def: OpmR_RR_pat<Outn<A2_vcmpbgtu>, setule,         v8i1, V8I8>;
759def: OpmR_RR_pat<Outn<A4_vcmpbgt>,  RevCmp<setge>,  v8i1, V8I8>;
760def: OpmR_RR_pat<Outn<A2_vcmpbgtu>, RevCmp<setuge>, v8i1, V8I8>;
761def: OpmR_RR_pat<Outn<A2_vcmpheq>,  setne,          v4i1, V4I16>;
762def: OpmR_RR_pat<Outn<A2_vcmphgt>,  setle,          v4i1, V4I16>;
763def: OpmR_RR_pat<Outn<A2_vcmphgtu>, setule,         v4i1, V4I16>;
764def: OpmR_RR_pat<Outn<A2_vcmphgt>,  RevCmp<setge>,  v4i1, V4I16>;
765def: OpmR_RR_pat<Outn<A2_vcmphgtu>, RevCmp<setuge>, v4i1, V4I16>;
766def: OpmR_RR_pat<Outn<A2_vcmpweq>,  setne,          v2i1, V2I32>;
767def: OpmR_RR_pat<Outn<A2_vcmpwgt>,  setle,          v2i1, V2I32>;
768def: OpmR_RR_pat<Outn<A2_vcmpwgtu>, setule,         v2i1, V2I32>;
769def: OpmR_RR_pat<Outn<A2_vcmpwgt>,  RevCmp<setge>,  v2i1, V2I32>;
770def: OpmR_RR_pat<Outn<A2_vcmpwgtu>, RevCmp<setuge>, v2i1, V2I32>;
771
772let AddedComplexity = 100 in {
773  def: Pat<(i1 (seteq (and (xor I32:$Rs, I32:$Rt), 255), 0)),
774           (A4_cmpbeq IntRegs:$Rs, IntRegs:$Rt)>;
775  def: Pat<(i1 (setne (and (xor I32:$Rs, I32:$Rt), 255), 0)),
776           (C2_not (A4_cmpbeq IntRegs:$Rs, IntRegs:$Rt))>;
777  def: Pat<(i1 (seteq (and (xor I32:$Rs, I32:$Rt), 65535), 0)),
778           (A4_cmpheq IntRegs:$Rs, IntRegs:$Rt)>;
779  def: Pat<(i1 (setne (and (xor I32:$Rs, I32:$Rt), 65535), 0)),
780           (C2_not (A4_cmpheq IntRegs:$Rs, IntRegs:$Rt))>;
781}
782
783// PatFrag for AsserZext which takes the original type as a parameter.
784def SDTAssertZext: SDTypeProfile<1, 2, [SDTCisInt<0>, SDTCisSameAs<0,1>]>;
785def AssertZextSD: SDNode<"ISD::AssertZext", SDTAssertZext>;
786class AssertZext<ValueType T>: PatFrag<(ops node:$A), (AssertZextSD $A, T)>;
787
788multiclass Cmpb_pat<InstHexagon MI, PatFrag Op, PatFrag AssertExt,
789                      PatLeaf ImmPred, int Mask> {
790  def: Pat<(i1 (Op (and I32:$Rs, Mask), ImmPred:$I)),
791           (MI I32:$Rs, imm:$I)>;
792  def: Pat<(i1 (Op (AssertExt I32:$Rs), ImmPred:$I)),
793           (MI I32:$Rs, imm:$I)>;
794}
795
796multiclass CmpbN_pat<InstHexagon MI, PatFrag Op, PatFrag AssertExt,
797                     PatLeaf ImmPred, int Mask> {
798  def: Pat<(i1 (Op (and I32:$Rs, Mask), ImmPred:$I)),
799           (C2_not (MI I32:$Rs, imm:$I))>;
800  def: Pat<(i1 (Op (AssertExt I32:$Rs), ImmPred:$I)),
801           (C2_not (MI I32:$Rs, imm:$I))>;
802}
803
804multiclass CmpbND_pat<InstHexagon MI, PatFrag Op, PatFrag AssertExt,
805                      PatLeaf ImmPred, int Mask> {
806  def: Pat<(i1 (Op (and I32:$Rs, Mask), ImmPred:$I)),
807           (C2_not (MI I32:$Rs, (UDEC1 imm:$I)))>;
808  def: Pat<(i1 (Op (AssertExt I32:$Rs), ImmPred:$I)),
809           (C2_not (MI I32:$Rs, (UDEC1 imm:$I)))>;
810}
811
812let AddedComplexity = 200 in {
813  defm: Cmpb_pat  <A4_cmpbeqi,  seteq,  AssertZext<i8>,  IsUGT<8,31>,  255>;
814  defm: CmpbN_pat <A4_cmpbeqi,  setne,  AssertZext<i8>,  IsUGT<8,31>,  255>;
815  defm: Cmpb_pat  <A4_cmpbgtui, setugt, AssertZext<i8>,  IsUGT<32,31>, 255>;
816  defm: CmpbN_pat <A4_cmpbgtui, setule, AssertZext<i8>,  IsUGT<32,31>, 255>;
817  defm: Cmpb_pat  <A4_cmphgtui, setugt, AssertZext<i16>, IsUGT<32,31>, 65535>;
818  defm: CmpbN_pat <A4_cmphgtui, setule, AssertZext<i16>, IsUGT<32,31>, 65535>;
819  defm: CmpbND_pat<A4_cmpbgtui, setult, AssertZext<i8>,  IsUGT<32,32>, 255>;
820  defm: CmpbND_pat<A4_cmphgtui, setult, AssertZext<i16>, IsUGT<32,32>, 65535>;
821}
822
823def: Pat<(i32 (zext (i1 (seteq I32:$Rs, I32:$Rt)))),
824         (A4_rcmpeq I32:$Rs, I32:$Rt)>;
825def: Pat<(i32 (zext (i1 (setne I32:$Rs, I32:$Rt)))),
826         (A4_rcmpneq I32:$Rs, I32:$Rt)>;
827def: Pat<(i32 (zext (i1 (seteq I32:$Rs, anyimm:$s8)))),
828         (A4_rcmpeqi I32:$Rs, imm:$s8)>;
829def: Pat<(i32 (zext (i1 (setne I32:$Rs, anyimm:$s8)))),
830         (A4_rcmpneqi I32:$Rs, imm:$s8)>;
831
832def: Pat<(i1 (seteq I1:$Ps, (i1 -1))), (I1:$Ps)>;
833def: Pat<(i1 (setne I1:$Ps, (i1 -1))), (C2_not I1:$Ps)>;
834def: Pat<(i1 (seteq I1:$Ps, I1:$Pt)),  (C2_xor I1:$Ps, (C2_not I1:$Pt))>;
835def: Pat<(i1 (setne I1:$Ps, I1:$Pt)),  (C2_xor I1:$Ps, I1:$Pt)>;
836
837// Floating-point comparisons with checks for ordered/unordered status.
838
839class T3<InstHexagon MI1, InstHexagon MI2, InstHexagon MI3>
840  : OutPatFrag<(ops node:$Rs, node:$Rt),
841               (MI1 (MI2 $Rs, $Rt), (MI3 $Rs, $Rt))>;
842
843class Cmpuf<InstHexagon MI>:  T3<C2_or,  F2_sfcmpuo, MI>;
844class Cmpud<InstHexagon MI>:  T3<C2_or,  F2_dfcmpuo, MI>;
845
846class Cmpufn<InstHexagon MI>: T3<C2_orn, F2_sfcmpuo, MI>;
847class Cmpudn<InstHexagon MI>: T3<C2_orn, F2_dfcmpuo, MI>;
848
849def: OpmR_RR_pat<Cmpuf<F2_sfcmpeq>,  setueq,         i1, F32>;
850def: OpmR_RR_pat<Cmpuf<F2_sfcmpge>,  setuge,         i1, F32>;
851def: OpmR_RR_pat<Cmpuf<F2_sfcmpgt>,  setugt,         i1, F32>;
852def: OpmR_RR_pat<Cmpuf<F2_sfcmpge>,  RevCmp<setule>, i1, F32>;
853def: OpmR_RR_pat<Cmpuf<F2_sfcmpgt>,  RevCmp<setult>, i1, F32>;
854def: OpmR_RR_pat<Cmpufn<F2_sfcmpeq>, setune,         i1, F32>;
855
856def: OpmR_RR_pat<Cmpud<F2_dfcmpeq>,  setueq,         i1, F64>;
857def: OpmR_RR_pat<Cmpud<F2_dfcmpge>,  setuge,         i1, F64>;
858def: OpmR_RR_pat<Cmpud<F2_dfcmpgt>,  setugt,         i1, F64>;
859def: OpmR_RR_pat<Cmpud<F2_dfcmpge>,  RevCmp<setule>, i1, F64>;
860def: OpmR_RR_pat<Cmpud<F2_dfcmpgt>,  RevCmp<setult>, i1, F64>;
861def: OpmR_RR_pat<Cmpudn<F2_dfcmpeq>, setune,         i1, F64>;
862
863def: OpmR_RR_pat<Outn<F2_sfcmpeq>, setone, i1, F32>;
864def: OpmR_RR_pat<Outn<F2_sfcmpeq>, setne,  i1, F32>;
865
866def: OpmR_RR_pat<Outn<F2_dfcmpeq>, setone, i1, F64>;
867def: OpmR_RR_pat<Outn<F2_dfcmpeq>, setne,  i1, F64>;
868
869def: OpmR_RR_pat<Outn<F2_sfcmpuo>, seto,   i1, F32>;
870def: OpmR_RR_pat<Outn<F2_dfcmpuo>, seto,   i1, F64>;
871
872
873// --(6) Select ----------------------------------------------------------
874//
875
876def: Pat<(select I1:$Pu, I32:$Rs, I32:$Rt),
877         (C2_mux I1:$Pu, I32:$Rs, I32:$Rt)>;
878def: Pat<(select I1:$Pu, v4i8:$Rs, v4i8:$Rt),
879         (C2_mux I1:$Pu, v4i8:$Rs, v4i8:$Rt)>;
880def: Pat<(select I1:$Pu, v2i16:$Rs, v2i16:$Rt),
881         (C2_mux I1:$Pu, v2i16:$Rs, v2i16:$Rt)>;
882def: Pat<(select I1:$Pu, anyimm:$s8, I32:$Rs),
883         (C2_muxri I1:$Pu, imm:$s8, I32:$Rs)>;
884def: Pat<(select I1:$Pu, I32:$Rs, anyimm:$s8),
885         (C2_muxir I1:$Pu, I32:$Rs, imm:$s8)>;
886def: Pat<(select I1:$Pu, anyimm:$s8, s8_0ImmPred:$S8),
887         (C2_muxii I1:$Pu, imm:$s8, imm:$S8)>;
888
889def: Pat<(select (not I1:$Pu), I32:$Rs, I32:$Rt),
890         (C2_mux I1:$Pu, I32:$Rt, I32:$Rs)>;
891def: Pat<(select (not I1:$Pu), s8_0ImmPred:$S8, anyimm:$s8),
892         (C2_muxii I1:$Pu, imm:$s8, imm:$S8)>;
893def: Pat<(select (not I1:$Pu), anyimm:$s8, I32:$Rs),
894         (C2_muxir I1:$Pu, I32:$Rs, imm:$s8)>;
895def: Pat<(select (not I1:$Pu), I32:$Rs, anyimm:$s8),
896         (C2_muxri I1:$Pu, imm:$s8, I32:$Rs)>;
897
898// Map from a 64-bit select to an emulated 64-bit mux.
899// Hexagon does not support 64-bit MUXes; so emulate with combines.
900def: Pat<(select I1:$Pu, I64:$Rs, I64:$Rt),
901         (Combinew (C2_mux I1:$Pu, (HiReg $Rs), (HiReg $Rt)),
902                   (C2_mux I1:$Pu, (LoReg $Rs), (LoReg $Rt)))>;
903
904def: Pat<(select I1:$Pu, v2i32:$Rs, v2i32:$Rt),
905         (Combinew (C2_mux I1:$Pu, (HiReg $Rs), (HiReg $Rt)),
906                   (C2_mux I1:$Pu, (LoReg $Rs), (LoReg $Rt)))>;
907
908def: Pat<(select I1:$Pu, F32:$Rs, f32ImmPred:$I),
909         (C2_muxir I1:$Pu, F32:$Rs, (ftoi $I))>;
910def: Pat<(select I1:$Pu, f32ImmPred:$I, F32:$Rt),
911         (C2_muxri I1:$Pu, (ftoi $I), F32:$Rt)>;
912def: Pat<(select I1:$Pu, F32:$Rs, F32:$Rt),
913         (C2_mux I1:$Pu, F32:$Rs, F32:$Rt)>;
914def: Pat<(select I1:$Pu, F64:$Rs, F64:$Rt),
915         (Combinew (C2_mux I1:$Pu, (HiReg $Rs), (HiReg $Rt)),
916                   (C2_mux I1:$Pu, (LoReg $Rs), (LoReg $Rt)))>;
917
918def: Pat<(select (i1 (setult F32:$Ra, F32:$Rb)), F32:$Rs, F32:$Rt),
919         (C2_mux (F2_sfcmpgt F32:$Rb, F32:$Ra), F32:$Rs, F32:$Rt)>;
920def: Pat<(select (i1 (setult F64:$Ra, F64:$Rb)), F64:$Rs, F64:$Rt),
921         (C2_vmux (F2_dfcmpgt F64:$Rb, F64:$Ra), F64:$Rs, F64:$Rt)>;
922
923def: Pat<(select (not I1:$Pu), f32ImmPred:$I, F32:$Rs),
924         (C2_muxir I1:$Pu, F32:$Rs, (ftoi $I))>;
925def: Pat<(select (not I1:$Pu), F32:$Rt, f32ImmPred:$I),
926         (C2_muxri I1:$Pu, (ftoi $I), F32:$Rt)>;
927
928def: Pat<(vselect V8I1:$Pu, V8I8:$Rs, V8I8:$Rt),
929         (C2_vmux V8I1:$Pu, V8I8:$Rs, V8I8:$Rt)>;
930def: Pat<(vselect V4I1:$Pu, V4I16:$Rs, V4I16:$Rt),
931         (C2_vmux V4I1:$Pu, V4I16:$Rs, V4I16:$Rt)>;
932def: Pat<(vselect V2I1:$Pu, V2I32:$Rs, V2I32:$Rt),
933         (C2_vmux V2I1:$Pu, V2I32:$Rs, V2I32:$Rt)>;
934
935def: Pat<(vselect (pnot V8I1:$Pu), V8I8:$Rs, V8I8:$Rt),
936         (C2_vmux V8I1:$Pu, V8I8:$Rt, V8I8:$Rs)>;
937def: Pat<(vselect (pnot V4I1:$Pu), V4I16:$Rs, V4I16:$Rt),
938         (C2_vmux V4I1:$Pu, V4I16:$Rt, V4I16:$Rs)>;
939def: Pat<(vselect (pnot V2I1:$Pu), V2I32:$Rs, V2I32:$Rt),
940         (C2_vmux V2I1:$Pu, V2I32:$Rt, V2I32:$Rs)>;
941
942
943// From LegalizeDAG.cpp: (Pu ? Pv : Pw) <=> (Pu & Pv) | (!Pu & Pw).
944def: Pat<(select I1:$Pu, I1:$Pv, I1:$Pw),
945         (C2_or (C2_and  I1:$Pu, I1:$Pv),
946                (C2_andn I1:$Pw, I1:$Pu))>;
947
948
949def IsPosHalf : PatLeaf<(i32 IntRegs:$a), [{
950  return isPositiveHalfWord(N);
951}]>;
952
953multiclass SelMinMax16_pats<PatFrag CmpOp, InstHexagon InstA,
954                            InstHexagon InstB> {
955  def: Pat<(sext_inreg (select (i1 (CmpOp IsPosHalf:$Rs, IsPosHalf:$Rt)),
956                               IsPosHalf:$Rs, IsPosHalf:$Rt), i16),
957           (InstA IntRegs:$Rs, IntRegs:$Rt)>;
958  def: Pat<(sext_inreg (select (i1 (CmpOp IsPosHalf:$Rs, IsPosHalf:$Rt)),
959                               IsPosHalf:$Rt, IsPosHalf:$Rs), i16),
960           (InstB IntRegs:$Rs, IntRegs:$Rt)>;
961}
962
963let AddedComplexity = 200 in {
964  defm: SelMinMax16_pats<setge,  A2_max,  A2_min>;
965  defm: SelMinMax16_pats<setgt,  A2_max,  A2_min>;
966  defm: SelMinMax16_pats<setle,  A2_min,  A2_max>;
967  defm: SelMinMax16_pats<setlt,  A2_min,  A2_max>;
968  defm: SelMinMax16_pats<setuge, A2_maxu, A2_minu>;
969  defm: SelMinMax16_pats<setugt, A2_maxu, A2_minu>;
970  defm: SelMinMax16_pats<setule, A2_minu, A2_maxu>;
971  defm: SelMinMax16_pats<setult, A2_minu, A2_maxu>;
972}
973
974def: OpR_RR_pat<A2_min,   Smin, i32, I32, I32>;
975def: OpR_RR_pat<A2_max,   Smax, i32, I32, I32>;
976def: OpR_RR_pat<A2_minu,  Umin, i32, I32, I32>;
977def: OpR_RR_pat<A2_maxu,  Umax, i32, I32, I32>;
978def: OpR_RR_pat<A2_minp,  Smin, i64, I64, I64>;
979def: OpR_RR_pat<A2_maxp,  Smax, i64, I64, I64>;
980def: OpR_RR_pat<A2_minup, Umin, i64, I64, I64>;
981def: OpR_RR_pat<A2_maxup, Umax, i64, I64, I64>;
982
983let AddedComplexity = 100 in {
984  defm: MinMax_pats<F2_sfmin, F2_sfmax, select, setogt, i1, F32>;
985  defm: MinMax_pats<F2_sfmin, F2_sfmax, select, setoge, i1, F32>;
986  defm: MinMax_pats<F2_sfmax, F2_sfmin, select, setolt, i1, F32>;
987  defm: MinMax_pats<F2_sfmax, F2_sfmin, select, setole, i1, F32>;
988}
989
990let AddedComplexity = 100, Predicates = [HasV67] in {
991  defm: MinMax_pats<F2_dfmin, F2_dfmax, select, setogt, i1, F64>;
992  defm: MinMax_pats<F2_dfmin, F2_dfmax, select, setoge, i1, F64>;
993  defm: MinMax_pats<F2_dfmax, F2_dfmin, select, setolt, i1, F64>;
994  defm: MinMax_pats<F2_dfmax, F2_dfmin, select, setole, i1, F64>;
995}
996
997def: OpR_RR_pat<A2_vminb,  Smin, v8i8,  V8I8>;
998def: OpR_RR_pat<A2_vmaxb,  Smax, v8i8,  V8I8>;
999def: OpR_RR_pat<A2_vminub, Umin, v8i8,  V8I8>;
1000def: OpR_RR_pat<A2_vmaxub, Umax, v8i8,  V8I8>;
1001
1002def: OpR_RR_pat<A2_vminh,  Smin, v4i16, V4I16>;
1003def: OpR_RR_pat<A2_vmaxh,  Smax, v4i16, V4I16>;
1004def: OpR_RR_pat<A2_vminuh, Umin, v4i16, V4I16>;
1005def: OpR_RR_pat<A2_vmaxuh, Umax, v4i16, V4I16>;
1006
1007def: OpR_RR_pat<A2_vminw,  Smin, v2i32, V2I32>;
1008def: OpR_RR_pat<A2_vmaxw,  Smax, v2i32, V2I32>;
1009def: OpR_RR_pat<A2_vminuw, Umin, v2i32, V2I32>;
1010def: OpR_RR_pat<A2_vmaxuw, Umax, v2i32, V2I32>;
1011
1012// --(7) Insert/extract --------------------------------------------------
1013//
1014
1015def SDTHexagonINSERT:
1016  SDTypeProfile<1, 4, [SDTCisSameAs<0, 1>, SDTCisSameAs<0, 2>,
1017                       SDTCisInt<0>, SDTCisVT<3, i32>, SDTCisVT<4, i32>]>;
1018def HexagonINSERT:    SDNode<"HexagonISD::INSERT",   SDTHexagonINSERT>;
1019
1020let AddedComplexity = 10 in {
1021  def: Pat<(HexagonINSERT I32:$Rs, I32:$Rt, u5_0ImmPred:$u1, u5_0ImmPred:$u2),
1022           (S2_insert I32:$Rs, I32:$Rt, imm:$u1, imm:$u2)>;
1023  def: Pat<(HexagonINSERT I64:$Rs, I64:$Rt, u6_0ImmPred:$u1, u6_0ImmPred:$u2),
1024           (S2_insertp I64:$Rs, I64:$Rt, imm:$u1, imm:$u2)>;
1025}
1026def: Pat<(HexagonINSERT I32:$Rs, I32:$Rt, I32:$Width, I32:$Off),
1027         (S2_insert_rp I32:$Rs, I32:$Rt, (Combinew $Width, $Off))>;
1028def: Pat<(HexagonINSERT I64:$Rs, I64:$Rt, I32:$Width, I32:$Off),
1029         (S2_insertp_rp I64:$Rs, I64:$Rt, (Combinew $Width, $Off))>;
1030
1031def SDTHexagonEXTRACTU
1032  : SDTypeProfile<1, 3, [SDTCisSameAs<0, 1>, SDTCisInt<0>, SDTCisInt<1>,
1033                  SDTCisVT<2, i32>, SDTCisVT<3, i32>]>;
1034def HexagonEXTRACTU:   SDNode<"HexagonISD::EXTRACTU",   SDTHexagonEXTRACTU>;
1035
1036let AddedComplexity = 10 in {
1037  def: Pat<(HexagonEXTRACTU I32:$Rs, u5_0ImmPred:$u5, u5_0ImmPred:$U5),
1038           (S2_extractu I32:$Rs, imm:$u5, imm:$U5)>;
1039  def: Pat<(HexagonEXTRACTU I64:$Rs, u6_0ImmPred:$u6, u6_0ImmPred:$U6),
1040           (S2_extractup I64:$Rs, imm:$u6, imm:$U6)>;
1041}
1042def: Pat<(HexagonEXTRACTU I32:$Rs, I32:$Width, I32:$Off),
1043         (S2_extractu_rp I32:$Rs, (Combinew $Width, $Off))>;
1044def: Pat<(HexagonEXTRACTU I64:$Rs, I32:$Width, I32:$Off),
1045         (S2_extractup_rp I64:$Rs, (Combinew $Width, $Off))>;
1046
1047def: Pat<(v4i8  (splat_vector anyint:$V)), (ToI32 (SplatB $V))>;
1048def: Pat<(v2i16 (splat_vector anyint:$V)), (ToI32 (SplatH $V))>;
1049def: Pat<(v8i8  (splat_vector anyint:$V)),
1050          (Combinew (ToI32 (SplatB $V)), (ToI32 (SplatB $V)))>;
1051def: Pat<(v4i16 (splat_vector anyint:$V)),
1052          (Combinew (ToI32 (SplatH $V)), (ToI32 (SplatH $V)))>;
1053let AddedComplexity = 10 in
1054def: Pat<(v2i32 (splat_vector s8_0ImmPred:$s8)),
1055         (A2_combineii imm:$s8, imm:$s8)>;
1056def: Pat<(v2i32 (splat_vector anyimm:$V)), (Combinew (ToI32 $V), (ToI32 $V))>;
1057
1058def: Pat<(v4i8  (splat_vector I32:$Rs)), (S2_vsplatrb I32:$Rs)>;
1059def: Pat<(v2i16 (splat_vector I32:$Rs)), (LoReg (S2_vsplatrh I32:$Rs))>;
1060def: Pat<(v4i16 (splat_vector I32:$Rs)), (S2_vsplatrh I32:$Rs)>;
1061def: Pat<(v2i32 (splat_vector I32:$Rs)), (Combinew I32:$Rs, I32:$Rs)>;
1062
1063let AddedComplexity = 10 in
1064def: Pat<(v8i8 (splat_vector I32:$Rs)), (S6_vsplatrbp I32:$Rs)>,
1065     Requires<[HasV62]>;
1066def: Pat<(v8i8 (splat_vector I32:$Rs)),
1067         (Combinew (S2_vsplatrb I32:$Rs), (S2_vsplatrb I32:$Rs))>;
1068
1069let AddedComplexity = 10 in {
1070  def: Pat<(sext_inreg (HexagonEXTRACTU I32:$Rs,  8, u5_0ImmPred:$U5),  i8),
1071           (S4_extract  I32:$Rs,  8, imm:$U5)>;
1072  def: Pat<(sext_inreg (HexagonEXTRACTU I32:$Rs, 16, u5_0ImmPred:$U5), i16),
1073           (S4_extract  I32:$Rs, 16, imm:$U5)>;
1074  def: Pat<(sext_inreg (HexagonEXTRACTU I64:$Rs,  8, u6_0ImmPred:$U6),  i8),
1075           (S4_extractp I64:$Rs,  8, imm:$U6)>;
1076  def: Pat<(sext_inreg (HexagonEXTRACTU I64:$Rs, 16, u6_0ImmPred:$U6), i16),
1077           (S4_extractp I64:$Rs, 16, imm:$U6)>;
1078  def: Pat<(sext_inreg (HexagonEXTRACTU I64:$Rs, 32, u6_0ImmPred:$U6), i32),
1079           (S4_extractp I64:$Rs, 32, imm:$U6)>;
1080}
1081
1082def: Pat<(sext_inreg (HexagonEXTRACTU I32:$Rs,  8, I32:$Off),  i8),
1083         (S4_extract_rp  I32:$Rs, (Combinew (ToI32 8), I32:$Off))>;
1084def: Pat<(sext_inreg (HexagonEXTRACTU I32:$Rs, 16, I32:$Off), i16),
1085         (S4_extract_rp  I32:$Rs, (Combinew (ToI32 16), I32:$Off))>;
1086def: Pat<(sext_inreg (HexagonEXTRACTU I64:$Rs,  8, I32:$Off),  i8),
1087         (S4_extractp_rp I64:$Rs, (Combinew (ToI32 8), I32:$Off))>;
1088def: Pat<(sext_inreg (HexagonEXTRACTU I64:$Rs, 16, I32:$Off), i16),
1089         (S4_extractp_rp I64:$Rs, (Combinew (ToI32 16), I32:$Off))>;
1090def: Pat<(sext_inreg (HexagonEXTRACTU I64:$Rs, 32, I32:$Off), i32),
1091         (S4_extractp_rp I64:$Rs, (Combinew (ToI32 32), I32:$Off))>;
1092
1093
1094// --(8) Shift/permute ---------------------------------------------------
1095//
1096
1097def SDTHexagonI64I32I32: SDTypeProfile<1, 2,
1098  [SDTCisVT<0, i64>, SDTCisVT<1, i32>, SDTCisSameAs<1, 2>]>;
1099
1100def HexagonCOMBINE:  SDNode<"HexagonISD::COMBINE",  SDTHexagonI64I32I32>;
1101
1102def: Pat<(HexagonCOMBINE I32:$Rs, I32:$Rt), (Combinew $Rs, $Rt)>;
1103
1104// The complexity of the combines involving immediates should be greater
1105// than the complexity of the combine with two registers.
1106let AddedComplexity = 50 in {
1107  def: Pat<(HexagonCOMBINE I32:$Rs, anyimm:$s8),
1108           (A4_combineri IntRegs:$Rs, imm:$s8)>;
1109  def: Pat<(HexagonCOMBINE anyimm:$s8, I32:$Rs),
1110           (A4_combineir imm:$s8, IntRegs:$Rs)>;
1111}
1112
1113// The complexity of the combine with two immediates should be greater than
1114// the complexity of a combine involving a register.
1115let AddedComplexity = 75 in {
1116  def: Pat<(HexagonCOMBINE s8_0ImmPred:$s8, anyimm:$u6),
1117           (A4_combineii imm:$s8, imm:$u6)>;
1118  def: Pat<(HexagonCOMBINE anyimm:$s8, s8_0ImmPred:$S8),
1119           (A2_combineii imm:$s8, imm:$S8)>;
1120}
1121
1122def: Pat<(bswap I32:$Rs),  (A2_swiz I32:$Rs)>;
1123def: Pat<(bswap I64:$Rss), (Combinew (A2_swiz (LoReg $Rss)),
1124                                     (A2_swiz (HiReg $Rss)))>;
1125
1126def: Pat<(shl s6_0ImmPred:$s6, I32:$Rt),  (S4_lsli imm:$s6, I32:$Rt)>;
1127def: Pat<(shl I32:$Rs, (i32 16)),         (A2_aslh I32:$Rs)>;
1128def: Pat<(sra I32:$Rs, (i32 16)),         (A2_asrh I32:$Rs)>;
1129
1130def: OpR_RI_pat<S2_asr_i_r,  Sra, i32,   I32,   u5_0ImmPred>;
1131def: OpR_RI_pat<S2_lsr_i_r,  Srl, i32,   I32,   u5_0ImmPred>;
1132def: OpR_RI_pat<S2_asl_i_r,  Shl, i32,   I32,   u5_0ImmPred>;
1133def: OpR_RI_pat<S2_asr_i_p,  Sra, i64,   I64,   u6_0ImmPred>;
1134def: OpR_RI_pat<S2_lsr_i_p,  Srl, i64,   I64,   u6_0ImmPred>;
1135def: OpR_RI_pat<S2_asl_i_p,  Shl, i64,   I64,   u6_0ImmPred>;
1136def: OpR_RI_pat<S2_asr_i_vh, Sra, v4i16, V4I16, u4_0ImmPred>;
1137def: OpR_RI_pat<S2_lsr_i_vh, Srl, v4i16, V4I16, u4_0ImmPred>;
1138def: OpR_RI_pat<S2_asl_i_vh, Shl, v4i16, V4I16, u4_0ImmPred>;
1139def: OpR_RI_pat<S2_asr_i_vh, Sra, v2i32, V2I32, u5_0ImmPred>;
1140def: OpR_RI_pat<S2_lsr_i_vh, Srl, v2i32, V2I32, u5_0ImmPred>;
1141def: OpR_RI_pat<S2_asl_i_vh, Shl, v2i32, V2I32, u5_0ImmPred>;
1142
1143def: OpR_RR_pat<S2_asr_r_r, Sra, i32, I32, I32>;
1144def: OpR_RR_pat<S2_lsr_r_r, Srl, i32, I32, I32>;
1145def: OpR_RR_pat<S2_asl_r_r, Shl, i32, I32, I32>;
1146def: OpR_RR_pat<S2_asr_r_p, Sra, i64, I64, I32>;
1147def: OpR_RR_pat<S2_lsr_r_p, Srl, i64, I64, I32>;
1148def: OpR_RR_pat<S2_asl_r_p, Shl, i64, I64, I32>;
1149
1150// Funnel shifts.
1151def IsMul8_U3: PatLeaf<(i32 imm), [{
1152  uint64_t V = N->getZExtValue();
1153  return V % 8 == 0 && isUInt<3>(V / 8);
1154}]>;
1155
1156def Divu8: SDNodeXForm<imm, [{
1157  return CurDAG->getTargetConstant(N->getZExtValue() / 8, SDLoc(N), MVT::i32);
1158}]>;
1159
1160// Funnel shift-left.
1161def FShl32i: OutPatFrag<(ops node:$Rs, node:$Rt, node:$S),
1162  (HiReg (S2_asl_i_p (Combinew $Rs, $Rt), $S))>;
1163def FShl32r: OutPatFrag<(ops node:$Rs, node:$Rt, node:$Ru),
1164  (HiReg (S2_asl_r_p (Combinew $Rs, $Rt), $Ru))>;
1165
1166def FShl64i: OutPatFrag<(ops node:$Rs, node:$Rt, node:$S),
1167  (S2_lsr_i_p_or (S2_asl_i_p $Rs, $S),  $Rt, (Subi<64> $S))>;
1168def FShl64r: OutPatFrag<(ops node:$Rs, node:$Rt, node:$Ru),
1169  (S2_lsr_r_p_or (S2_asl_r_p $Rs, $Ru), $Rt, (A2_subri 64, $Ru))>;
1170
1171// Combined SDNodeXForm: (Divu8 (Subi<64> $S))
1172def Divu64_8: SDNodeXForm<imm, [{
1173  return CurDAG->getTargetConstant((64 - N->getSExtValue()) / 8,
1174                                   SDLoc(N), MVT::i32);
1175}]>;
1176
1177// Special cases:
1178let AddedComplexity = 100 in {
1179  def: Pat<(fshl I32:$Rs, I32:$Rt, (i32 16)),
1180           (A2_combine_lh I32:$Rs, I32:$Rt)>;
1181  def: Pat<(fshl I64:$Rs, I64:$Rt, IsMul8_U3:$S),
1182           (S2_valignib I64:$Rs, I64:$Rt, (Divu64_8 $S))>;
1183}
1184
1185let Predicates = [HasV60], AddedComplexity = 50 in {
1186  def: OpR_RI_pat<S6_rol_i_r, Rol, i32, I32, u5_0ImmPred>;
1187  def: OpR_RI_pat<S6_rol_i_p, Rol, i64, I64, u6_0ImmPred>;
1188}
1189let AddedComplexity = 30 in {
1190  def: Pat<(rotl I32:$Rs, u5_0ImmPred:$S),          (FShl32i $Rs, $Rs, imm:$S)>;
1191  def: Pat<(rotl I64:$Rs, u6_0ImmPred:$S),          (FShl64i $Rs, $Rs, imm:$S)>;
1192  def: Pat<(fshl I32:$Rs, I32:$Rt, u5_0ImmPred:$S), (FShl32i $Rs, $Rt, imm:$S)>;
1193  def: Pat<(fshl I64:$Rs, I64:$Rt, u6_0ImmPred:$S), (FShl64i $Rs, $Rt, imm:$S)>;
1194}
1195def: Pat<(rotl I32:$Rs, I32:$Rt),           (FShl32r $Rs, $Rs, $Rt)>;
1196def: Pat<(rotl I64:$Rs, I32:$Rt),           (FShl64r $Rs, $Rs, $Rt)>;
1197def: Pat<(fshl I32:$Rs, I32:$Rt, I32:$Ru),  (FShl32r $Rs, $Rt, $Ru)>;
1198def: Pat<(fshl I64:$Rs, I64:$Rt, I32:$Ru),  (FShl64r $Rs, $Rt, $Ru)>;
1199
1200// Funnel shift-right.
1201def FShr32i: OutPatFrag<(ops node:$Rs, node:$Rt, node:$S),
1202  (LoReg (S2_lsr_i_p (Combinew $Rs, $Rt), $S))>;
1203def FShr32r: OutPatFrag<(ops node:$Rs, node:$Rt, node:$Ru),
1204  (LoReg (S2_lsr_r_p (Combinew $Rs, $Rt), $Ru))>;
1205
1206def FShr64i: OutPatFrag<(ops node:$Rs, node:$Rt, node:$S),
1207  (S2_asl_i_p_or (S2_lsr_i_p $Rt, $S),  $Rs, (Subi<64> $S))>;
1208def FShr64r: OutPatFrag<(ops node:$Rs, node:$Rt, node:$Ru),
1209  (S2_asl_r_p_or (S2_lsr_r_p $Rt, $Ru), $Rs, (A2_subri 64, $Ru))>;
1210
1211// Special cases:
1212let AddedComplexity = 100 in {
1213  def: Pat<(fshr I32:$Rs, I32:$Rt, (i32 16)),
1214           (A2_combine_lh I32:$Rs, I32:$Rt)>;
1215  def: Pat<(fshr I64:$Rs, I64:$Rt, IsMul8_U3:$S),
1216           (S2_valignib I64:$Rs, I64:$Rt, (Divu8 $S))>;
1217}
1218
1219let Predicates = [HasV60], AddedComplexity = 50 in {
1220  def: Pat<(rotr I32:$Rs, u5_0ImmPred:$S), (S6_rol_i_r I32:$Rs, (Subi<32> $S))>;
1221  def: Pat<(rotr I64:$Rs, u6_0ImmPred:$S), (S6_rol_i_p I64:$Rs, (Subi<64> $S))>;
1222}
1223let AddedComplexity = 30 in {
1224  def: Pat<(rotr I32:$Rs, u5_0ImmPred:$S),          (FShr32i $Rs, $Rs, imm:$S)>;
1225  def: Pat<(rotr I64:$Rs, u6_0ImmPred:$S),          (FShr64i $Rs, $Rs, imm:$S)>;
1226  def: Pat<(fshr I32:$Rs, I32:$Rt, u5_0ImmPred:$S), (FShr32i $Rs, $Rt, imm:$S)>;
1227  def: Pat<(fshr I64:$Rs, I64:$Rt, u6_0ImmPred:$S), (FShr64i $Rs, $Rt, imm:$S)>;
1228}
1229def: Pat<(rotr I32:$Rs, I32:$Rt),           (FShr32r $Rs, $Rs, $Rt)>;
1230def: Pat<(rotr I64:$Rs, I32:$Rt),           (FShr64r $Rs, $Rs, $Rt)>;
1231def: Pat<(fshr I32:$Rs, I32:$Rt, I32:$Ru),  (FShr32r $Rs, $Rt, $Ru)>;
1232def: Pat<(fshr I64:$Rs, I64:$Rt, I32:$Ru),  (FShr64r $Rs, $Rt, $Ru)>;
1233
1234
1235def: Pat<(sra (add (sra I32:$Rs, u5_0ImmPred:$u5), 1), (i32 1)),
1236         (S2_asr_i_r_rnd I32:$Rs, imm:$u5)>;
1237def: Pat<(sra (add (sra I64:$Rs, u6_0ImmPred:$u6), 1), (i32 1)),
1238         (S2_asr_i_p_rnd I64:$Rs, imm:$u6)>;
1239
1240// Prefer S2_addasl_rrri over S2_asl_i_r_acc.
1241let AddedComplexity = 120 in
1242def: Pat<(add I32:$Rt, (shl I32:$Rs, u3_0ImmPred:$u3)),
1243         (S2_addasl_rrri IntRegs:$Rt, IntRegs:$Rs, imm:$u3)>;
1244
1245let AddedComplexity = 100 in {
1246  def: AccRRI_pat<S2_asr_i_r_acc,   Add, Su<Sra>, I32, u5_0ImmPred>;
1247  def: AccRRI_pat<S2_asr_i_r_nac,   Sub, Su<Sra>, I32, u5_0ImmPred>;
1248  def: AccRRI_pat<S2_asr_i_r_and,   And, Su<Sra>, I32, u5_0ImmPred>;
1249  def: AccRRI_pat<S2_asr_i_r_or,    Or,  Su<Sra>, I32, u5_0ImmPred>;
1250
1251  def: AccRRI_pat<S2_asr_i_p_acc,   Add, Su<Sra>, I64, u6_0ImmPred>;
1252  def: AccRRI_pat<S2_asr_i_p_nac,   Sub, Su<Sra>, I64, u6_0ImmPred>;
1253  def: AccRRI_pat<S2_asr_i_p_and,   And, Su<Sra>, I64, u6_0ImmPred>;
1254  def: AccRRI_pat<S2_asr_i_p_or,    Or,  Su<Sra>, I64, u6_0ImmPred>;
1255
1256  def: AccRRI_pat<S2_lsr_i_r_acc,   Add, Su<Srl>, I32, u5_0ImmPred>;
1257  def: AccRRI_pat<S2_lsr_i_r_nac,   Sub, Su<Srl>, I32, u5_0ImmPred>;
1258  def: AccRRI_pat<S2_lsr_i_r_and,   And, Su<Srl>, I32, u5_0ImmPred>;
1259  def: AccRRI_pat<S2_lsr_i_r_or,    Or,  Su<Srl>, I32, u5_0ImmPred>;
1260  def: AccRRI_pat<S2_lsr_i_r_xacc,  Xor, Su<Srl>, I32, u5_0ImmPred>;
1261
1262  def: AccRRI_pat<S2_lsr_i_p_acc,   Add, Su<Srl>, I64, u6_0ImmPred>;
1263  def: AccRRI_pat<S2_lsr_i_p_nac,   Sub, Su<Srl>, I64, u6_0ImmPred>;
1264  def: AccRRI_pat<S2_lsr_i_p_and,   And, Su<Srl>, I64, u6_0ImmPred>;
1265  def: AccRRI_pat<S2_lsr_i_p_or,    Or,  Su<Srl>, I64, u6_0ImmPred>;
1266  def: AccRRI_pat<S2_lsr_i_p_xacc,  Xor, Su<Srl>, I64, u6_0ImmPred>;
1267
1268  def: AccRRI_pat<S2_asl_i_r_acc,   Add, Su<Shl>, I32, u5_0ImmPred>;
1269  def: AccRRI_pat<S2_asl_i_r_nac,   Sub, Su<Shl>, I32, u5_0ImmPred>;
1270  def: AccRRI_pat<S2_asl_i_r_and,   And, Su<Shl>, I32, u5_0ImmPred>;
1271  def: AccRRI_pat<S2_asl_i_r_or,    Or,  Su<Shl>, I32, u5_0ImmPred>;
1272  def: AccRRI_pat<S2_asl_i_r_xacc,  Xor, Su<Shl>, I32, u5_0ImmPred>;
1273
1274  def: AccRRI_pat<S2_asl_i_p_acc,   Add, Su<Shl>, I64, u6_0ImmPred>;
1275  def: AccRRI_pat<S2_asl_i_p_nac,   Sub, Su<Shl>, I64, u6_0ImmPred>;
1276  def: AccRRI_pat<S2_asl_i_p_and,   And, Su<Shl>, I64, u6_0ImmPred>;
1277  def: AccRRI_pat<S2_asl_i_p_or,    Or,  Su<Shl>, I64, u6_0ImmPred>;
1278  def: AccRRI_pat<S2_asl_i_p_xacc,  Xor, Su<Shl>, I64, u6_0ImmPred>;
1279
1280  let Predicates = [HasV60] in {
1281    def: AccRRI_pat<S6_rol_i_r_acc,   Add, Su<Rol>, I32, u5_0ImmPred>;
1282    def: AccRRI_pat<S6_rol_i_r_nac,   Sub, Su<Rol>, I32, u5_0ImmPred>;
1283    def: AccRRI_pat<S6_rol_i_r_and,   And, Su<Rol>, I32, u5_0ImmPred>;
1284    def: AccRRI_pat<S6_rol_i_r_or,    Or,  Su<Rol>, I32, u5_0ImmPred>;
1285    def: AccRRI_pat<S6_rol_i_r_xacc,  Xor, Su<Rol>, I32, u5_0ImmPred>;
1286
1287    def: AccRRI_pat<S6_rol_i_p_acc,   Add, Su<Rol>, I64, u6_0ImmPred>;
1288    def: AccRRI_pat<S6_rol_i_p_nac,   Sub, Su<Rol>, I64, u6_0ImmPred>;
1289    def: AccRRI_pat<S6_rol_i_p_and,   And, Su<Rol>, I64, u6_0ImmPred>;
1290    def: AccRRI_pat<S6_rol_i_p_or,    Or,  Su<Rol>, I64, u6_0ImmPred>;
1291    def: AccRRI_pat<S6_rol_i_p_xacc,  Xor, Su<Rol>, I64, u6_0ImmPred>;
1292  }
1293}
1294
1295let AddedComplexity = 100 in {
1296  def: AccRRR_pat<S2_asr_r_r_acc,   Add, Su<Sra>, I32, I32, I32>;
1297  def: AccRRR_pat<S2_asr_r_r_nac,   Sub, Su<Sra>, I32, I32, I32>;
1298  def: AccRRR_pat<S2_asr_r_r_and,   And, Su<Sra>, I32, I32, I32>;
1299  def: AccRRR_pat<S2_asr_r_r_or,    Or,  Su<Sra>, I32, I32, I32>;
1300
1301  def: AccRRR_pat<S2_asr_r_p_acc,   Add, Su<Sra>, I64, I64, I32>;
1302  def: AccRRR_pat<S2_asr_r_p_nac,   Sub, Su<Sra>, I64, I64, I32>;
1303  def: AccRRR_pat<S2_asr_r_p_and,   And, Su<Sra>, I64, I64, I32>;
1304  def: AccRRR_pat<S2_asr_r_p_or,    Or,  Su<Sra>, I64, I64, I32>;
1305  def: AccRRR_pat<S2_asr_r_p_xor,   Xor, Su<Sra>, I64, I64, I32>;
1306
1307  def: AccRRR_pat<S2_lsr_r_r_acc,   Add, Su<Srl>, I32, I32, I32>;
1308  def: AccRRR_pat<S2_lsr_r_r_nac,   Sub, Su<Srl>, I32, I32, I32>;
1309  def: AccRRR_pat<S2_lsr_r_r_and,   And, Su<Srl>, I32, I32, I32>;
1310  def: AccRRR_pat<S2_lsr_r_r_or,    Or,  Su<Srl>, I32, I32, I32>;
1311
1312  def: AccRRR_pat<S2_lsr_r_p_acc,   Add, Su<Srl>, I64, I64, I32>;
1313  def: AccRRR_pat<S2_lsr_r_p_nac,   Sub, Su<Srl>, I64, I64, I32>;
1314  def: AccRRR_pat<S2_lsr_r_p_and,   And, Su<Srl>, I64, I64, I32>;
1315  def: AccRRR_pat<S2_lsr_r_p_or,    Or,  Su<Srl>, I64, I64, I32>;
1316  def: AccRRR_pat<S2_lsr_r_p_xor,   Xor, Su<Srl>, I64, I64, I32>;
1317
1318  def: AccRRR_pat<S2_asl_r_r_acc,   Add, Su<Shl>, I32, I32, I32>;
1319  def: AccRRR_pat<S2_asl_r_r_nac,   Sub, Su<Shl>, I32, I32, I32>;
1320  def: AccRRR_pat<S2_asl_r_r_and,   And, Su<Shl>, I32, I32, I32>;
1321  def: AccRRR_pat<S2_asl_r_r_or,    Or,  Su<Shl>, I32, I32, I32>;
1322
1323  def: AccRRR_pat<S2_asl_r_p_acc,   Add, Su<Shl>, I64, I64, I32>;
1324  def: AccRRR_pat<S2_asl_r_p_nac,   Sub, Su<Shl>, I64, I64, I32>;
1325  def: AccRRR_pat<S2_asl_r_p_and,   And, Su<Shl>, I64, I64, I32>;
1326  def: AccRRR_pat<S2_asl_r_p_or,    Or,  Su<Shl>, I64, I64, I32>;
1327  def: AccRRR_pat<S2_asl_r_p_xor,   Xor, Su<Shl>, I64, I64, I32>;
1328}
1329
1330
1331class OpshIRI_pat<InstHexagon MI, PatFrag Op, PatFrag ShOp,
1332                  PatFrag RegPred, PatFrag ImmPred>
1333  : Pat<(Op anyimm:$u8, (ShOp RegPred:$Rs, ImmPred:$U5)),
1334        (MI anyimm:$u8, RegPred:$Rs, imm:$U5)>;
1335
1336let AddedComplexity = 200, Predicates = [UseCompound] in {
1337  def: OpshIRI_pat<S4_addi_asl_ri,  Add, Su<Shl>, I32, u5_0ImmPred>;
1338  def: OpshIRI_pat<S4_addi_lsr_ri,  Add, Su<Srl>, I32, u5_0ImmPred>;
1339  def: OpshIRI_pat<S4_subi_asl_ri,  Sub, Su<Shl>, I32, u5_0ImmPred>;
1340  def: OpshIRI_pat<S4_subi_lsr_ri,  Sub, Su<Srl>, I32, u5_0ImmPred>;
1341  def: OpshIRI_pat<S4_andi_asl_ri,  And, Su<Shl>, I32, u5_0ImmPred>;
1342  def: OpshIRI_pat<S4_andi_lsr_ri,  And, Su<Srl>, I32, u5_0ImmPred>;
1343  def: OpshIRI_pat<S4_ori_asl_ri,   Or,  Su<Shl>, I32, u5_0ImmPred>;
1344  def: OpshIRI_pat<S4_ori_lsr_ri,   Or,  Su<Srl>, I32, u5_0ImmPred>;
1345}
1346
1347// Prefer this pattern to S2_asl_i_p_or for the special case of joining
1348// two 32-bit words into a 64-bit word.
1349let AddedComplexity = 200 in
1350def: Pat<(or (shl (Aext64 I32:$a), (i32 32)), (Zext64 I32:$b)),
1351         (Combinew I32:$a, I32:$b)>;
1352
1353def: Pat<(or (or (or (shl (Zext64 (and I32:$b, (i32 65535))), (i32 16)),
1354                     (Zext64 (and I32:$a, (i32 65535)))),
1355                 (shl (Aext64 (and I32:$c, (i32 65535))), (i32 32))),
1356             (shl (Aext64 I32:$d), (i32 48))),
1357         (Combinew (A2_combine_ll I32:$d, I32:$c),
1358                   (A2_combine_ll I32:$b, I32:$a))>;
1359
1360let AddedComplexity = 200 in {
1361  def: Pat<(or (shl I32:$Rt, (i32 16)), (and I32:$Rs, (i32 65535))),
1362           (A2_combine_ll I32:$Rt, I32:$Rs)>;
1363  def: Pat<(or (shl I32:$Rt, (i32 16)), (srl I32:$Rs, (i32 16))),
1364           (A2_combine_lh I32:$Rt, I32:$Rs)>;
1365  def: Pat<(or (and I32:$Rt, (i32 268431360)), (and I32:$Rs, (i32 65535))),
1366           (A2_combine_hl I32:$Rt, I32:$Rs)>;
1367  def: Pat<(or (and I32:$Rt, (i32 268431360)), (srl I32:$Rs, (i32 16))),
1368           (A2_combine_hh I32:$Rt, I32:$Rs)>;
1369}
1370
1371def SDTHexagonVShift
1372  : SDTypeProfile<1, 2, [SDTCisSameAs<0, 1>, SDTCisVec<0>, SDTCisVT<2, i32>]>;
1373
1374def HexagonVASL: SDNode<"HexagonISD::VASL", SDTHexagonVShift>;
1375def HexagonVASR: SDNode<"HexagonISD::VASR", SDTHexagonVShift>;
1376def HexagonVLSR: SDNode<"HexagonISD::VLSR", SDTHexagonVShift>;
1377
1378// Funnel shifts with the shift amount module element bit width.
1379def HexagonMFSHL: SDNode<"HexagonISD::MFSHL", SDTIntShiftDOp>;
1380def HexagonMFSHR: SDNode<"HexagonISD::MFSHR", SDTIntShiftDOp>;
1381
1382def: OpR_RI_pat<S2_asl_i_vw, pf2<HexagonVASL>, v2i32, V2I32, u5_0ImmPred>;
1383def: OpR_RI_pat<S2_asl_i_vh, pf2<HexagonVASL>, v4i16, V4I16, u4_0ImmPred>;
1384def: OpR_RI_pat<S2_asr_i_vw, pf2<HexagonVASR>, v2i32, V2I32, u5_0ImmPred>;
1385def: OpR_RI_pat<S2_asr_i_vh, pf2<HexagonVASR>, v4i16, V4I16, u4_0ImmPred>;
1386def: OpR_RI_pat<S2_lsr_i_vw, pf2<HexagonVLSR>, v2i32, V2I32, u5_0ImmPred>;
1387def: OpR_RI_pat<S2_lsr_i_vh, pf2<HexagonVLSR>, v4i16, V4I16, u4_0ImmPred>;
1388
1389def: OpR_RR_pat<S2_asl_r_vw, pf2<HexagonVASL>, v2i32, V2I32, I32>;
1390def: OpR_RR_pat<S2_asl_r_vh, pf2<HexagonVASL>, v4i16, V4I16, I32>;
1391def: OpR_RR_pat<S2_asr_r_vw, pf2<HexagonVASR>, v2i32, V2I32, I32>;
1392def: OpR_RR_pat<S2_asr_r_vh, pf2<HexagonVASR>, v4i16, V4I16, I32>;
1393def: OpR_RR_pat<S2_lsr_r_vw, pf2<HexagonVLSR>, v2i32, V2I32, I32>;
1394def: OpR_RR_pat<S2_lsr_r_vh, pf2<HexagonVLSR>, v4i16, V4I16, I32>;
1395
1396def: Pat<(sra V2I32:$b, (v2i32 (splat_vector u5_0ImmPred:$c))),
1397         (S2_asr_i_vw V2I32:$b, imm:$c)>;
1398def: Pat<(srl V2I32:$b, (v2i32 (splat_vector u5_0ImmPred:$c))),
1399         (S2_lsr_i_vw V2I32:$b, imm:$c)>;
1400def: Pat<(shl V2I32:$b, (v2i32 (splat_vector u5_0ImmPred:$c))),
1401         (S2_asl_i_vw V2I32:$b, imm:$c)>;
1402def: Pat<(sra V4I16:$b, (v4i16 (splat_vector u4_0ImmPred:$c))),
1403         (S2_asr_i_vh V4I16:$b, imm:$c)>;
1404def: Pat<(srl V4I16:$b, (v4i16 (splat_vector u4_0ImmPred:$c))),
1405         (S2_lsr_i_vh V4I16:$b, imm:$c)>;
1406def: Pat<(shl V4I16:$b, (v4i16 (splat_vector u4_0ImmPred:$c))),
1407         (S2_asl_i_vh V4I16:$b, imm:$c)>;
1408
1409def: Pat<(HexagonVASR V2I16:$Rs, u4_0ImmPred:$S),
1410         (LoReg (S2_asr_i_vh (ToAext64 $Rs), imm:$S))>;
1411def: Pat<(HexagonVASL V2I16:$Rs, u4_0ImmPred:$S),
1412         (LoReg (S2_asl_i_vh (ToAext64 $Rs), imm:$S))>;
1413def: Pat<(HexagonVLSR V2I16:$Rs, u4_0ImmPred:$S),
1414         (LoReg (S2_lsr_i_vh (ToAext64 $Rs), imm:$S))>;
1415def: Pat<(HexagonVASR V2I16:$Rs, I32:$Rt),
1416         (LoReg (S2_asr_i_vh (ToAext64 $Rs), I32:$Rt))>;
1417def: Pat<(HexagonVASL V2I16:$Rs, I32:$Rt),
1418         (LoReg (S2_asl_i_vh (ToAext64 $Rs), I32:$Rt))>;
1419def: Pat<(HexagonVLSR V2I16:$Rs, I32:$Rt),
1420         (LoReg (S2_lsr_i_vh (ToAext64 $Rs), I32:$Rt))>;
1421
1422
1423// --(9) Arithmetic/bitwise ----------------------------------------------
1424//
1425
1426def: Pat<(abs  I32:$Rs), (A2_abs   I32:$Rs)>;
1427def: Pat<(abs  I64:$Rs), (A2_absp  I64:$Rs)>;
1428def: Pat<(not  I32:$Rs), (A2_subri -1, I32:$Rs)>;
1429def: Pat<(not  I64:$Rs), (A2_notp  I64:$Rs)>;
1430def: Pat<(ineg I64:$Rs), (A2_negp  I64:$Rs)>;
1431
1432def: Pat<(fabs F32:$Rs), (S2_clrbit_i    F32:$Rs, 31)>;
1433def: Pat<(fneg F32:$Rs), (S2_togglebit_i F32:$Rs, 31)>;
1434
1435def: Pat<(fabs F64:$Rs),
1436         (Combinew (S2_clrbit_i (HiReg $Rs), 31),
1437                   (i32 (LoReg $Rs)))>;
1438def: Pat<(fneg F64:$Rs),
1439         (Combinew (S2_togglebit_i (HiReg $Rs), 31),
1440                   (i32 (LoReg $Rs)))>;
1441
1442def: Pat<(add I32:$Rs, anyimm:$s16),   (A2_addi   I32:$Rs,  imm:$s16)>;
1443def: Pat<(or  I32:$Rs, anyimm:$s10),   (A2_orir   I32:$Rs,  imm:$s10)>;
1444def: Pat<(and I32:$Rs, anyimm:$s10),   (A2_andir  I32:$Rs,  imm:$s10)>;
1445def: Pat<(sub anyimm:$s10, I32:$Rs),   (A2_subri  imm:$s10, I32:$Rs)>;
1446
1447def: OpR_RR_pat<A2_add,       Add,        i32,   I32>;
1448def: OpR_RR_pat<A2_sub,       Sub,        i32,   I32>;
1449def: OpR_RR_pat<A2_and,       And,        i32,   I32>;
1450def: OpR_RR_pat<A2_or,        Or,         i32,   I32>;
1451def: OpR_RR_pat<A2_xor,       Xor,        i32,   I32>;
1452def: OpR_RR_pat<A2_addp,      Add,        i64,   I64>;
1453def: OpR_RR_pat<A2_subp,      Sub,        i64,   I64>;
1454def: OpR_RR_pat<A2_andp,      And,        i64,   I64>;
1455def: OpR_RR_pat<A2_orp,       Or,         i64,   I64>;
1456def: OpR_RR_pat<A2_xorp,      Xor,        i64,   I64>;
1457def: OpR_RR_pat<A4_andnp,     Not2<And>,  i64,   I64>;
1458def: OpR_RR_pat<A4_ornp,      Not2<Or>,   i64,   I64>;
1459
1460def: OpR_RR_pat<A2_svaddh,    Add,        v2i16, V2I16>;
1461def: OpR_RR_pat<A2_svsubh,    Sub,        v2i16, V2I16>;
1462
1463def: OpR_RR_pat<A2_vaddub,    Add,        v8i8,  V8I8>;
1464def: OpR_RR_pat<A2_vaddh,     Add,        v4i16, V4I16>;
1465def: OpR_RR_pat<A2_vaddw,     Add,        v2i32, V2I32>;
1466def: OpR_RR_pat<A2_vsubub,    Sub,        v8i8,  V8I8>;
1467def: OpR_RR_pat<A2_vsubh,     Sub,        v4i16, V4I16>;
1468def: OpR_RR_pat<A2_vsubw,     Sub,        v2i32, V2I32>;
1469
1470def: OpR_RR_pat<A2_and,       And,        v4i8,  V4I8>;
1471def: OpR_RR_pat<A2_xor,       Xor,        v4i8,  V4I8>;
1472def: OpR_RR_pat<A2_or,        Or,         v4i8,  V4I8>;
1473def: OpR_RR_pat<A2_and,       And,        v2i16, V2I16>;
1474def: OpR_RR_pat<A2_xor,       Xor,        v2i16, V2I16>;
1475def: OpR_RR_pat<A2_or,        Or,         v2i16, V2I16>;
1476def: OpR_RR_pat<A2_andp,      And,        v8i8,  V8I8>;
1477def: OpR_RR_pat<A2_orp,       Or,         v8i8,  V8I8>;
1478def: OpR_RR_pat<A2_xorp,      Xor,        v8i8,  V8I8>;
1479def: OpR_RR_pat<A2_andp,      And,        v4i16, V4I16>;
1480def: OpR_RR_pat<A2_orp,       Or,         v4i16, V4I16>;
1481def: OpR_RR_pat<A2_xorp,      Xor,        v4i16, V4I16>;
1482def: OpR_RR_pat<A2_andp,      And,        v2i32, V2I32>;
1483def: OpR_RR_pat<A2_orp,       Or,         v2i32, V2I32>;
1484def: OpR_RR_pat<A2_xorp,      Xor,        v2i32, V2I32>;
1485
1486def: OpR_RR_pat<M2_mpyi,      Mul,        i32,   I32>;
1487def: OpR_RR_pat<M2_mpy_up,    pf2<mulhs>, i32,   I32>;
1488def: OpR_RR_pat<M2_mpyu_up,   pf2<mulhu>, i32,   I32>;
1489def: OpR_RI_pat<M2_mpysip,    Mul,        i32,   I32, u32_0ImmPred>;
1490def: OpR_RI_pat<M2_mpysmi,    Mul,        i32,   I32, s32_0ImmPred>;
1491
1492// Arithmetic on predicates.
1493def: OpR_RR_pat<C2_xor,       Add,        i1,    I1>;
1494def: OpR_RR_pat<C2_xor,       Add,        v2i1,  V2I1>;
1495def: OpR_RR_pat<C2_xor,       Add,        v4i1,  V4I1>;
1496def: OpR_RR_pat<C2_xor,       Add,        v8i1,  V8I1>;
1497def: OpR_RR_pat<C2_xor,       Sub,        i1,    I1>;
1498def: OpR_RR_pat<C2_xor,       Sub,        v2i1,  V2I1>;
1499def: OpR_RR_pat<C2_xor,       Sub,        v4i1,  V4I1>;
1500def: OpR_RR_pat<C2_xor,       Sub,        v8i1,  V8I1>;
1501def: OpR_RR_pat<C2_and,       Mul,        i1,    I1>;
1502def: OpR_RR_pat<C2_and,       Mul,        v2i1,  V2I1>;
1503def: OpR_RR_pat<C2_and,       Mul,        v4i1,  V4I1>;
1504def: OpR_RR_pat<C2_and,       Mul,        v8i1,  V8I1>;
1505
1506def: OpR_RR_pat<F2_sfadd,     pf2<fadd>,    f32, F32>;
1507def: OpR_RR_pat<F2_sfsub,     pf2<fsub>,    f32, F32>;
1508def: OpR_RR_pat<F2_sfmpy,     pf2<fmul>,    f32, F32>;
1509def: OpR_RR_pat<F2_sfmin,     pf2<fminnum>, f32, F32>;
1510def: OpR_RR_pat<F2_sfmax,     pf2<fmaxnum>, f32, F32>;
1511
1512let Predicates = [HasV66] in {
1513  def: OpR_RR_pat<F2_dfadd,     pf2<fadd>,    f64, F64>;
1514  def: OpR_RR_pat<F2_dfsub,     pf2<fsub>,    f64, F64>;
1515}
1516
1517def DfMpy: OutPatFrag<(ops node:$Rs, node:$Rt),
1518  (F2_dfmpyhh
1519    (F2_dfmpylh
1520      (F2_dfmpylh
1521        (F2_dfmpyll $Rs, $Rt),
1522      $Rs, $Rt),
1523    $Rt, $Rs),
1524  $Rs, $Rt)>;
1525
1526let Predicates = [HasV67,UseUnsafeMath], AddedComplexity = 50 in {
1527  def: Pat<(fmul F64:$Rs, F64:$Rt), (DfMpy $Rs, $Rt)>;
1528}
1529let Predicates = [HasV67] in {
1530  def: OpR_RR_pat<F2_dfmin,     pf2<fminnum>, f64, F64>;
1531  def: OpR_RR_pat<F2_dfmax,     pf2<fmaxnum>, f64, F64>;
1532
1533  def: Pat<(fmul F64:$Rs, F64:$Rt), (DfMpy (F2_dfmpyfix $Rs, $Rt),
1534                                           (F2_dfmpyfix $Rt, $Rs))>;
1535}
1536
1537// In expressions like a0*b0 + a1*b1 + ..., prefer to generate multiply-add,
1538// over add-add with individual multiplies as inputs.
1539let AddedComplexity = 10 in {
1540  def: AccRRI_pat<M2_macsip,    Add, Su<Mul>, I32, u32_0ImmPred>;
1541  def: AccRRI_pat<M2_macsin,    Sub, Su<Mul>, I32, u32_0ImmPred>;
1542  def: AccRRR_pat<M2_maci,      Add, Su<Mul>, I32, I32, I32>;
1543  let Predicates = [HasV66] in
1544  def: AccRRR_pat<M2_mnaci,     Sub, Su<Mul>, I32, I32, I32>;
1545}
1546
1547def: AccRRI_pat<M2_naccii,    Sub, Su<Add>, I32, s32_0ImmPred>;
1548def: AccRRI_pat<M2_accii,     Add, Su<Add>, I32, s32_0ImmPred>;
1549def: AccRRR_pat<M2_acci,      Add, Su<Add>, I32, I32, I32>;
1550
1551// Mulh for vectors
1552//
1553def: Pat<(v2i32 (mulhu V2I32:$Rss, V2I32:$Rtt)),
1554         (Combinew (M2_mpyu_up (HiReg $Rss), (HiReg $Rtt)),
1555                   (M2_mpyu_up (LoReg $Rss), (LoReg $Rtt)))>;
1556
1557def: Pat<(v2i32 (mulhs V2I32:$Rss, V2I32:$Rtt)),
1558         (Combinew (M2_mpy_up (HiReg $Rss), (HiReg $Rtt)),
1559                   (M2_mpy_up (LoReg $Rss), (LoReg $Rtt)))>;
1560
1561def Mulhub4:
1562  OutPatFrag<(ops node:$Rs, node:$Rt), (S2_vtrunohb (M5_vmpybuu $Rs, $Rt))>;
1563def Mulhub8:
1564  OutPatFrag<(ops node:$Rss, node:$Rtt),
1565             (Combinew (Mulhub4 (HiReg $Rss), (HiReg $Rtt)),
1566                       (Mulhub4 (LoReg $Rss), (LoReg $Rtt)))>;
1567
1568// (mux (x >= 0), 0, y)
1569def Negbytes8:
1570  OutPatFrag<(ops node:$Rss, node:$Rtt),
1571             (C2_vmux (A4_vcmpbgti $Rss, -1), (A2_tfrpi 0), $Rtt)>;
1572
1573def: Pat<(v4i8 (mulhu  V4I8:$Rs,  V4I8:$Rt)), (Mulhub4  $Rs,  $Rt)>;
1574def: Pat<(v8i8 (mulhu V8I8:$Rss, V8I8:$Rtt)), (Mulhub8 $Rss, $Rtt)>;
1575
1576// (Mulhs x, y) = (Mulhu x, y) - (x < 0 ? y : 0) - (y < 0 ? x : 0)
1577def Mulhsb8:
1578  OutPatFrag<(ops node:$Rss, node:$Rtt),
1579             (A2_vsubub (Mulhub8 $Rss, $Rtt),
1580                        (A2_vaddub (Negbytes8 $Rss, $Rtt),
1581                                   (Negbytes8 $Rtt, $Rss)))>;
1582
1583def: Pat<(v4i8 (mulhs V4I8:$Rs, V4I8:$Rt)),
1584         (LoReg (Mulhsb8 (v8i8 (ToAext64 $Rs)), (v8i8 (ToAext64 $Rt))))>;
1585def: Pat<(v8i8 (mulhs V8I8:$Rss, V8I8:$Rtt)), (Mulhsb8 $Rss, $Rtt)>;
1586
1587// v2i16 *s v2i16 -> v2i32
1588def Muli16:
1589  OutPatFrag<(ops node:$Rs, node:$Rt), (M2_vmpy2s_s0 $Rs, $Rt)>;
1590
1591def Mulhsh2:
1592  OutPatFrag<(ops node:$Rs, node:$Rt),
1593             (A2_combine_hh (HiReg (Muli16 $Rs, $Rt)),
1594                            (LoReg (Muli16 $Rs, $Rt)))>;
1595def Mulhsh4:
1596  OutPatFrag<(ops node:$Rss, node:$Rtt),
1597             (Combinew (Mulhsh2 (HiReg $Rss), (HiReg $Rtt)),
1598                       (Mulhsh2 (LoReg $Rss), (LoReg $Rtt)))>;
1599
1600def: Pat<(v2i16 (mulhs  V2I16:$Rs,  V2I16:$Rt)), (Mulhsh2  $Rs,  $Rt)>;
1601def: Pat<(v4i16 (mulhs V4I16:$Rss, V4I16:$Rtt)), (Mulhsh4 $Rss, $Rtt)>;
1602
1603def: Pat<(v2i16 (mulhu V2I16:$Rs, V2I16:$Rt)),
1604  (A2_svaddh
1605     (Mulhsh2 $Rs, $Rt),
1606     (A2_svaddh (LoReg (A2_andp (Combinew $Rt, $Rs),
1607                                (S2_asr_i_vh (Combinew $Rs, $Rt), 15))),
1608                (HiReg (A2_andp (Combinew $Rt, $Rs),
1609                                (S2_asr_i_vh (Combinew $Rs, $Rt), 15)))))>;
1610
1611def: Pat<(v4i16 (mulhu V4I16:$Rss, V4I16:$Rtt)),
1612         (A2_vaddh
1613           (Mulhsh4 $Rss, $Rtt),
1614           (A2_vaddh (A2_andp V4I16:$Rss, (S2_asr_i_vh $Rtt, 15)),
1615                     (A2_andp V4I16:$Rtt, (S2_asr_i_vh $Rss, 15))))>;
1616
1617
1618def: Pat<(ineg (mul I32:$Rs, u8_0ImmPred:$u8)),
1619         (M2_mpysin IntRegs:$Rs, imm:$u8)>;
1620
1621def n8_0ImmPred: PatLeaf<(i32 imm), [{
1622  int64_t V = N->getSExtValue();
1623  return -255 <= V && V <= 0;
1624}]>;
1625
1626// Change the sign of the immediate for Rd=-mpyi(Rs,#u8)
1627def: Pat<(mul I32:$Rs, n8_0ImmPred:$n8),
1628         (M2_mpysin I32:$Rs, (NegImm8 imm:$n8))>;
1629
1630def: Pat<(add Sext64:$Rs, I64:$Rt),
1631         (A2_addsp (LoReg Sext64:$Rs), I64:$Rt)>;
1632
1633def: AccRRR_pat<M4_and_and,   And, Su_ni1<And>,  I32,  I32,  I32>;
1634def: AccRRR_pat<M4_and_or,    And, Su_ni1<Or>,   I32,  I32,  I32>;
1635def: AccRRR_pat<M4_and_xor,   And, Su<Xor>,      I32,  I32,  I32>;
1636def: AccRRR_pat<M4_or_and,    Or,  Su_ni1<And>,  I32,  I32,  I32>;
1637def: AccRRR_pat<M4_or_or,     Or,  Su_ni1<Or>,   I32,  I32,  I32>;
1638def: AccRRR_pat<M4_or_xor,    Or,  Su<Xor>,      I32,  I32,  I32>;
1639def: AccRRR_pat<M4_xor_and,   Xor, Su_ni1<And>,  I32,  I32,  I32>;
1640def: AccRRR_pat<M4_xor_or,    Xor, Su_ni1<Or>,   I32,  I32,  I32>;
1641def: AccRRR_pat<M2_xor_xacc,  Xor, Su<Xor>,      I32,  I32,  I32>;
1642def: AccRRR_pat<M4_xor_xacc,  Xor, Su<Xor>,      I64,  I64,  I64>;
1643
1644// For dags like (or (and (not _), _), (shl _, _)) where the "or" with
1645// one argument matches the patterns below, and with the other argument
1646// matches S2_asl_r_r_or, etc, prefer the patterns below.
1647let AddedComplexity = 110 in {  // greater than S2_asl_r_r_and/or/xor.
1648  def: AccRRR_pat<M4_and_andn,  And, Su<Not2<And>>, I32,  I32,  I32>;
1649  def: AccRRR_pat<M4_or_andn,   Or,  Su<Not2<And>>, I32,  I32,  I32>;
1650  def: AccRRR_pat<M4_xor_andn,  Xor, Su<Not2<And>>, I32,  I32,  I32>;
1651}
1652
1653// S4_addaddi and S4_subaddi don't have tied operands, so give them
1654// a bit of preference.
1655let AddedComplexity = 30, Predicates = [UseCompound] in {
1656  def: Pat<(add I32:$Rs, (Su<Add> I32:$Ru, anyimm:$s6)),
1657           (S4_addaddi IntRegs:$Rs, IntRegs:$Ru, imm:$s6)>;
1658  def: Pat<(add anyimm:$s6, (Su<Add> I32:$Rs, I32:$Ru)),
1659           (S4_addaddi IntRegs:$Rs, IntRegs:$Ru, imm:$s6)>;
1660  def: Pat<(add I32:$Rs, (Su<Sub> anyimm:$s6, I32:$Ru)),
1661           (S4_subaddi IntRegs:$Rs, imm:$s6, IntRegs:$Ru)>;
1662  def: Pat<(sub (Su<Add> I32:$Rs, anyimm:$s6), I32:$Ru),
1663           (S4_subaddi IntRegs:$Rs, imm:$s6, IntRegs:$Ru)>;
1664  def: Pat<(add (Su<Sub> I32:$Rs, I32:$Ru), anyimm:$s6),
1665           (S4_subaddi IntRegs:$Rs, imm:$s6, IntRegs:$Ru)>;
1666}
1667
1668let Predicates = [UseCompound] in
1669def: Pat<(or I32:$Ru, (Su<And> I32:$Rx, anyimm:$s10)),
1670         (S4_or_andix IntRegs:$Ru, IntRegs:$Rx, imm:$s10)>;
1671
1672def: Pat<(or I32:$Rx, (Su<And> I32:$Rs, anyimm:$s10)),
1673         (S4_or_andi IntRegs:$Rx, IntRegs:$Rs, imm:$s10)>;
1674def: Pat<(or I32:$Rx, (Su<Or> I32:$Rs, anyimm:$s10)),
1675         (S4_or_ori IntRegs:$Rx, IntRegs:$Rs, imm:$s10)>;
1676
1677
1678def: Pat<(i32 (trunc (sra (Su<Mul> Sext64:$Rs, Sext64:$Rt), (i32 32)))),
1679         (M2_mpy_up (LoReg Sext64:$Rs), (LoReg Sext64:$Rt))>;
1680def: Pat<(i32 (trunc (srl (Su<Mul> Sext64:$Rs, Sext64:$Rt), (i32 32)))),
1681         (M2_mpy_up (LoReg Sext64:$Rs), (LoReg Sext64:$Rt))>;
1682
1683def: Pat<(mul (Zext64 I32:$Rs), (Zext64 I32:$Rt)),
1684         (M2_dpmpyuu_s0 I32:$Rs, I32:$Rt)>;
1685def: Pat<(mul (Aext64 I32:$Rs), (Aext64 I32:$Rt)),
1686         (M2_dpmpyuu_s0 I32:$Rs, I32:$Rt)>;
1687def: Pat<(mul Sext64:$Rs, Sext64:$Rt),
1688         (M2_dpmpyss_s0 (LoReg Sext64:$Rs), (LoReg Sext64:$Rt))>;
1689
1690def: Pat<(add I64:$Rx, (Su<Mul> Sext64:$Rs, Sext64:$Rt)),
1691         (M2_dpmpyss_acc_s0 I64:$Rx, (LoReg Sext64:$Rs), (LoReg Sext64:$Rt))>;
1692def: Pat<(sub I64:$Rx, (Su<Mul> Sext64:$Rs, Sext64:$Rt)),
1693         (M2_dpmpyss_nac_s0 I64:$Rx, (LoReg Sext64:$Rs), (LoReg Sext64:$Rt))>;
1694def: Pat<(add I64:$Rx, (Su<Mul> (Aext64 I32:$Rs), (Aext64 I32:$Rt))),
1695         (M2_dpmpyuu_acc_s0 I64:$Rx, I32:$Rs, I32:$Rt)>;
1696def: Pat<(add I64:$Rx, (Su<Mul> (Zext64 I32:$Rs), (Zext64 I32:$Rt))),
1697         (M2_dpmpyuu_acc_s0 I64:$Rx, I32:$Rs, I32:$Rt)>;
1698def: Pat<(sub I64:$Rx, (Su<Mul> (Aext64 I32:$Rs), (Aext64 I32:$Rt))),
1699         (M2_dpmpyuu_nac_s0 I64:$Rx, I32:$Rs, I32:$Rt)>;
1700def: Pat<(sub I64:$Rx, (Su<Mul> (Zext64 I32:$Rs), (Zext64 I32:$Rt))),
1701         (M2_dpmpyuu_nac_s0 I64:$Rx, I32:$Rs, I32:$Rt)>;
1702
1703// Add halfword.
1704def: Pat<(sext_inreg (add I32:$Rt, I32:$Rs), i16),
1705         (A2_addh_l16_ll I32:$Rt, I32:$Rs)>;
1706def: Pat<(sra (add (shl I32:$Rt, (i32 16)), I32:$Rs), (i32 16)),
1707         (A2_addh_l16_hl I32:$Rt, I32:$Rs)>;
1708def: Pat<(shl (add I32:$Rt, I32:$Rs), (i32 16)),
1709         (A2_addh_h16_ll I32:$Rt, I32:$Rs)>;
1710
1711// Subtract halfword.
1712def: Pat<(sext_inreg (sub I32:$Rt, I32:$Rs), i16),
1713         (A2_subh_l16_ll I32:$Rt, I32:$Rs)>;
1714def: Pat<(sra (add (shl I32:$Rt, (i32 16)), I32:$Rs), (i32 16)),
1715         (A2_addh_l16_hl I32:$Rt, I32:$Rs)>;
1716def: Pat<(shl (sub I32:$Rt, I32:$Rs), (i32 16)),
1717         (A2_subh_h16_ll I32:$Rt, I32:$Rs)>;
1718
1719def: Pat<(mul I64:$Rss, I64:$Rtt),
1720         (Combinew
1721           (M2_maci (M2_maci (HiReg (M2_dpmpyuu_s0 (LoReg $Rss), (LoReg $Rtt))),
1722                             (LoReg $Rss),
1723                             (HiReg $Rtt)),
1724                    (LoReg $Rtt),
1725                    (HiReg $Rss)),
1726           (i32 (LoReg (M2_dpmpyuu_s0 (LoReg $Rss), (LoReg $Rtt)))))>;
1727
1728def MulHU : OutPatFrag<(ops node:$Rss, node:$Rtt),
1729  (A2_addp
1730    (M2_dpmpyuu_acc_s0
1731      (S2_lsr_i_p
1732        (A2_addp
1733          (M2_dpmpyuu_acc_s0
1734            (S2_lsr_i_p (M2_dpmpyuu_s0 (LoReg $Rss), (LoReg $Rtt)), 32),
1735            (HiReg $Rss),
1736            (LoReg $Rtt)),
1737          (A4_combineir 0, (LoReg (M2_dpmpyuu_s0 (LoReg $Rss), (HiReg $Rtt))))),
1738        32),
1739      (HiReg $Rss),
1740      (HiReg $Rtt)),
1741    (S2_lsr_i_p (M2_dpmpyuu_s0 (LoReg $Rss), (HiReg $Rtt)), 32))>;
1742
1743// Multiply 64-bit unsigned and use upper result.
1744def : Pat <(mulhu I64:$Rss, I64:$Rtt), (MulHU $Rss, $Rtt)>;
1745
1746// Multiply 64-bit signed and use upper result.
1747//
1748// For two signed 64-bit integers A and B, let A' and B' denote A and B
1749// with the sign bit cleared. Then A = -2^63*s(A) + A', where s(A) is the
1750// sign bit of A (and identically for B). With this notation, the signed
1751// product A*B can be written as:
1752//   AB = (-2^63 s(A) + A') * (-2^63 s(B) + B')
1753//      = 2^126 s(A)s(B) - 2^63 [s(A)B'+s(B)A'] + A'B'
1754//      = 2^126 s(A)s(B) + 2^63 [s(A)B'+s(B)A'] + A'B' - 2*2^63 [s(A)B'+s(B)A']
1755//      = (unsigned product AB) - 2^64 [s(A)B'+s(B)A']
1756
1757// Clear the sign bit in a 64-bit register.
1758def ClearSign : OutPatFrag<(ops node:$Rss),
1759  (Combinew (S2_clrbit_i (HiReg $Rss), 31), (i32 (LoReg $Rss)))>;
1760
1761def : Pat <(mulhs I64:$Rss, I64:$Rtt),
1762  (A2_subp
1763    (MulHU $Rss, $Rtt),
1764    (A2_addp
1765      (A2_andp (S2_asr_i_p $Rss, 63), (ClearSign $Rtt)),
1766      (A2_andp (S2_asr_i_p $Rtt, 63), (ClearSign $Rss))))>;
1767
1768// Prefer these instructions over M2_macsip/M2_macsin: the macsi* instructions
1769// will put the immediate addend into a register, while these instructions will
1770// use it directly. Such a construct does not appear in the middle of a gep,
1771// where M2_macsip would be preferable.
1772let AddedComplexity = 20, Predicates = [UseCompound] in {
1773  def: Pat<(add (Su<Mul> I32:$Rs, u6_0ImmPred:$U6), anyimm:$u6),
1774           (M4_mpyri_addi imm:$u6, IntRegs:$Rs, imm:$U6)>;
1775  def: Pat<(add (Su<Mul> I32:$Rs, I32:$Rt), anyimm:$u6),
1776           (M4_mpyrr_addi imm:$u6, IntRegs:$Rs, IntRegs:$Rt)>;
1777}
1778
1779// Keep these instructions less preferable to M2_macsip/M2_macsin.
1780let Predicates = [UseCompound] in {
1781  def: Pat<(add I32:$Ru, (Su<Mul> I32:$Rs, u6_2ImmPred:$u6_2)),
1782           (M4_mpyri_addr_u2 IntRegs:$Ru, imm:$u6_2, IntRegs:$Rs)>;
1783  def: Pat<(add I32:$Ru, (Su<Mul> I32:$Rs, anyimm:$u6)),
1784           (M4_mpyri_addr IntRegs:$Ru, IntRegs:$Rs, imm:$u6)>;
1785  def: Pat<(add I32:$Ru, (Su<Mul> I32:$Ry, I32:$Rs)),
1786           (M4_mpyrr_addr IntRegs:$Ru, IntRegs:$Ry, IntRegs:$Rs)>;
1787}
1788
1789def: Pat<(fma F32:$Rs, F32:$Rt, F32:$Rx),
1790         (F2_sffma F32:$Rx, F32:$Rs, F32:$Rt)>;
1791def: Pat<(fma (fneg F32:$Rs), F32:$Rt, F32:$Rx),
1792         (F2_sffms F32:$Rx, F32:$Rs, F32:$Rt)>;
1793
1794def: Pat<(mul V2I32:$Rs, V2I32:$Rt),
1795         (PS_vmulw V2I32:$Rs, V2I32:$Rt)>;
1796def: Pat<(add V2I32:$Rx, (mul V2I32:$Rs, V2I32:$Rt)),
1797         (PS_vmulw_acc V2I32:$Rx, V2I32:$Rs, V2I32:$Rt)>;
1798
1799// Add/subtract two v4i8: Hexagon does not have an insn for this one, so
1800// we use the double add v8i8, and use only the low part of the result.
1801def: Pat<(add V4I8:$Rs, V4I8:$Rt),
1802         (LoReg (A2_vaddub (ToAext64 $Rs), (ToAext64 $Rt)))>;
1803def: Pat<(sub V4I8:$Rs, V4I8:$Rt),
1804         (LoReg (A2_vsubub (ToAext64 $Rs), (ToAext64 $Rt)))>;
1805
1806// Use M2_vmpy2s_s0 for half-word vector multiply. It multiplies two
1807// half-words, and saturates the result to a 32-bit value, except the
1808// saturation never happens (it can only occur with scaling).
1809def: Pat<(v2i16 (mul V2I16:$Rs, V2I16:$Rt)),
1810         (LoReg (S2_vtrunewh (IMPLICIT_DEF),
1811                             (M2_vmpy2s_s0 V2I16:$Rs, V2I16:$Rt)))>;
1812def: Pat<(v4i16 (mul V4I16:$Rs, V4I16:$Rt)),
1813         (S2_vtrunewh (M2_vmpy2s_s0 (HiReg $Rs), (HiReg $Rt)),
1814                      (M2_vmpy2s_s0 (LoReg $Rs), (LoReg $Rt)))>;
1815
1816// Multiplies two v4i8 vectors.
1817def: Pat<(v4i8 (mul V4I8:$Rs, V4I8:$Rt)),
1818         (S2_vtrunehb (M5_vmpybuu V4I8:$Rs, V4I8:$Rt))>;
1819
1820// Multiplies two v8i8 vectors.
1821def: Pat<(v8i8 (mul V8I8:$Rs, V8I8:$Rt)),
1822         (Combinew (S2_vtrunehb (M5_vmpybuu (HiReg $Rs), (HiReg $Rt))),
1823                   (S2_vtrunehb (M5_vmpybuu (LoReg $Rs), (LoReg $Rt))))>;
1824
1825
1826// --(10) Bit ------------------------------------------------------------
1827//
1828
1829// Count leading zeros.
1830def: Pat<(i32 (ctlz I32:$Rs)),                (S2_cl0 I32:$Rs)>;
1831def: Pat<(i32 (trunc (ctlz I64:$Rss))),       (S2_cl0p I64:$Rss)>;
1832
1833// Count trailing zeros.
1834def: Pat<(i32 (cttz I32:$Rs)),                (S2_ct0 I32:$Rs)>;
1835def: Pat<(i32 (trunc (cttz I64:$Rss))),       (S2_ct0p I64:$Rss)>;
1836
1837// Count leading ones.
1838def: Pat<(i32 (ctlz (not I32:$Rs))),          (S2_cl1 I32:$Rs)>;
1839def: Pat<(i32 (trunc (ctlz (not I64:$Rss)))), (S2_cl1p I64:$Rss)>;
1840
1841// Count trailing ones.
1842def: Pat<(i32 (cttz (not I32:$Rs))),           (S2_ct1 I32:$Rs)>;
1843def: Pat<(i32 (trunc (cttz (not I64:$Rss)))), (S2_ct1p I64:$Rss)>;
1844
1845// Define leading/trailing patterns that require zero-extensions to 64 bits.
1846def: Pat<(i64 (ctlz I64:$Rss)),               (ToZext64 (S2_cl0p I64:$Rss))>;
1847def: Pat<(i64 (cttz I64:$Rss)),               (ToZext64 (S2_ct0p I64:$Rss))>;
1848def: Pat<(i64 (ctlz (not I64:$Rss))),         (ToZext64 (S2_cl1p I64:$Rss))>;
1849def: Pat<(i64 (cttz (not I64:$Rss))),         (ToZext64 (S2_ct1p I64:$Rss))>;
1850
1851def: Pat<(i64 (ctpop I64:$Rss)),  (ToZext64 (S5_popcountp I64:$Rss))>;
1852def: Pat<(i32 (ctpop I32:$Rs)),   (S5_popcountp (A4_combineir 0, I32:$Rs))>;
1853
1854def: Pat<(bitreverse I32:$Rs),    (S2_brev I32:$Rs)>;
1855def: Pat<(bitreverse I64:$Rss),   (S2_brevp I64:$Rss)>;
1856
1857let AddedComplexity = 20 in { // Complexity greater than and/or/xor
1858  def: Pat<(and I32:$Rs, IsNPow2_32:$V),
1859           (S2_clrbit_i IntRegs:$Rs, (LogN2_32 $V))>;
1860  def: Pat<(or I32:$Rs, IsPow2_32:$V),
1861           (S2_setbit_i IntRegs:$Rs, (Log2_32 $V))>;
1862  def: Pat<(xor I32:$Rs, IsPow2_32:$V),
1863           (S2_togglebit_i IntRegs:$Rs, (Log2_32 $V))>;
1864
1865  def: Pat<(and I32:$Rs, (not (shl 1, I32:$Rt))),
1866           (S2_clrbit_r IntRegs:$Rs, IntRegs:$Rt)>;
1867  def: Pat<(or I32:$Rs, (shl 1, I32:$Rt)),
1868           (S2_setbit_r IntRegs:$Rs, IntRegs:$Rt)>;
1869  def: Pat<(xor I32:$Rs, (shl 1, I32:$Rt)),
1870           (S2_togglebit_r IntRegs:$Rs, IntRegs:$Rt)>;
1871}
1872
1873// Clr/set/toggle bit for 64-bit values with immediate bit index.
1874let AddedComplexity = 20 in { // Complexity greater than and/or/xor
1875  def: Pat<(and I64:$Rss, IsNPow2_64L:$V),
1876           (Combinew (i32 (HiReg $Rss)),
1877                     (S2_clrbit_i (LoReg $Rss), (LogN2_64 $V)))>;
1878  def: Pat<(and I64:$Rss, IsNPow2_64H:$V),
1879           (Combinew (S2_clrbit_i (HiReg $Rss), (UDEC32 (i32 (LogN2_64 $V)))),
1880                     (i32 (LoReg $Rss)))>;
1881
1882  def: Pat<(or I64:$Rss, IsPow2_64L:$V),
1883           (Combinew (i32 (HiReg $Rss)),
1884                     (S2_setbit_i (LoReg $Rss), (Log2_64 $V)))>;
1885  def: Pat<(or I64:$Rss, IsPow2_64H:$V),
1886           (Combinew (S2_setbit_i (HiReg $Rss), (UDEC32 (i32 (Log2_64 $V)))),
1887                     (i32 (LoReg $Rss)))>;
1888
1889  def: Pat<(xor I64:$Rss, IsPow2_64L:$V),
1890           (Combinew (i32 (HiReg $Rss)),
1891                     (S2_togglebit_i (LoReg $Rss), (Log2_64 $V)))>;
1892  def: Pat<(xor I64:$Rss, IsPow2_64H:$V),
1893           (Combinew (S2_togglebit_i (HiReg $Rss), (UDEC32 (i32 (Log2_64 $V)))),
1894                     (i32 (LoReg $Rss)))>;
1895}
1896
1897
1898let AddedComplexity = 20 in { // Complexity greater than cmp reg-imm.
1899  def: Pat<(i1 (setne (and (shl 1, u5_0ImmPred:$u5), I32:$Rs), 0)),
1900           (S2_tstbit_i IntRegs:$Rs, imm:$u5)>;
1901  def: Pat<(i1 (setne (and (shl 1, I32:$Rt), I32:$Rs), 0)),
1902           (S2_tstbit_r IntRegs:$Rs, IntRegs:$Rt)>;
1903  def: Pat<(i1 (trunc I32:$Rs)),
1904           (S2_tstbit_i IntRegs:$Rs, 0)>;
1905  def: Pat<(i1 (trunc I64:$Rs)),
1906           (S2_tstbit_i (LoReg DoubleRegs:$Rs), 0)>;
1907}
1908
1909def: Pat<(and (srl I32:$Rs, u5_0ImmPred:$u5), 1),
1910         (I1toI32 (S2_tstbit_i I32:$Rs, imm:$u5))>;
1911def: Pat<(and (srl I64:$Rss, IsULE<32,31>:$u6), 1),
1912         (ToZext64 (I1toI32 (S2_tstbit_i (LoReg $Rss), imm:$u6)))>;
1913def: Pat<(and (srl I64:$Rss, IsUGT<32,31>:$u6), 1),
1914         (ToZext64 (I1toI32 (S2_tstbit_i (HiReg $Rss), (UDEC32 $u6))))>;
1915
1916def: Pat<(and (not (srl I32:$Rs, u5_0ImmPred:$u5)), 1),
1917         (I1toI32 (S4_ntstbit_i I32:$Rs, imm:$u5))>;
1918def: Pat<(and (not (srl I64:$Rss, IsULE<32,31>:$u6)), 1),
1919         (ToZext64 (I1toI32 (S4_ntstbit_i (LoReg $Rss), imm:$u6)))>;
1920def: Pat<(and (not (srl I64:$Rss, IsUGT<32,31>:$u6)), 1),
1921         (ToZext64 (I1toI32 (S4_ntstbit_i (HiReg $Rss), (UDEC32 $u6))))>;
1922
1923let AddedComplexity = 20 in { // Complexity greater than compare reg-imm.
1924  def: Pat<(i1 (seteq (and I32:$Rs, u6_0ImmPred:$u6), 0)),
1925           (C2_bitsclri IntRegs:$Rs, imm:$u6)>;
1926  def: Pat<(i1 (seteq (and I32:$Rs, I32:$Rt), 0)),
1927           (C2_bitsclr IntRegs:$Rs, IntRegs:$Rt)>;
1928}
1929
1930let AddedComplexity = 10 in   // Complexity greater than compare reg-reg.
1931def: Pat<(i1 (seteq (and I32:$Rs, I32:$Rt), IntRegs:$Rt)),
1932         (C2_bitsset IntRegs:$Rs, IntRegs:$Rt)>;
1933
1934def SDTTestBit:
1935  SDTypeProfile<1, 2, [SDTCisVT<0, i1>, SDTCisVT<1, i32>, SDTCisVT<2, i32>]>;
1936def HexagonTSTBIT: SDNode<"HexagonISD::TSTBIT", SDTTestBit>;
1937
1938def: Pat<(HexagonTSTBIT I32:$Rs, u5_0ImmPred:$u5),
1939         (S2_tstbit_i I32:$Rs, imm:$u5)>;
1940def: Pat<(HexagonTSTBIT I32:$Rs, I32:$Rt),
1941         (S2_tstbit_r I32:$Rs, I32:$Rt)>;
1942
1943// Add extra complexity to prefer these instructions over bitsset/bitsclr.
1944// The reason is that tstbit/ntstbit can be folded into a compound instruction:
1945//   if ([!]tstbit(...)) jump ...
1946let AddedComplexity = 20 in {   // Complexity greater than cmp reg-imm.
1947  def: Pat<(i1 (seteq (and I32:$Rs, IsPow2_32:$u5), 0)),
1948           (S4_ntstbit_i I32:$Rs, (Log2_32 imm:$u5))>;
1949  def: Pat<(i1 (setne (and I32:$Rs, IsPow2_32:$u5), 0)),
1950           (S2_tstbit_i I32:$Rs, (Log2_32 imm:$u5))>;
1951  def: Pat<(i1 (seteq (and (shl 1, I32:$Rt), I32:$Rs), 0)),
1952           (S4_ntstbit_r I32:$Rs, I32:$Rt)>;
1953  def: Pat<(i1 (setne (and (shl 1, I32:$Rt), I32:$Rs), 0)),
1954           (S2_tstbit_r I32:$Rs, I32:$Rt)>;
1955}
1956
1957def: Pat<(i1 (seteq (and I64:$Rs, IsPow2_64L:$u6), 0)),
1958         (S4_ntstbit_i (LoReg $Rs), (Log2_64 $u6))>;
1959def: Pat<(i1 (seteq (and I64:$Rs, IsPow2_64H:$u6), 0)),
1960         (S4_ntstbit_i (HiReg $Rs), (UDEC32 (i32 (Log2_64 $u6))))>;
1961def: Pat<(i1 (setne (and I64:$Rs, IsPow2_64L:$u6), 0)),
1962         (S2_tstbit_i (LoReg $Rs), (Log2_64 imm:$u6))>;
1963def: Pat<(i1 (setne (and I64:$Rs, IsPow2_64H:$u6), 0)),
1964         (S2_tstbit_i (HiReg $Rs), (UDEC32 (i32 (Log2_64 imm:$u6))))>;
1965
1966// Do not increase complexity of these patterns. In the DAG, "cmp i8" may be
1967// represented as a compare against "value & 0xFF", which is an exact match
1968// for cmpb (same for cmph). The patterns below do not contain any additional
1969// complexity that would make them preferable, and if they were actually used
1970// instead of cmpb/cmph, they would result in a compare against register that
1971// is loaded with the byte/half mask (i.e. 0xFF or 0xFFFF).
1972def: Pat<(i1 (setne (and I32:$Rs, u6_0ImmPred:$u6), 0)),
1973         (C4_nbitsclri I32:$Rs, imm:$u6)>;
1974def: Pat<(i1 (setne (and I32:$Rs, I32:$Rt), 0)),
1975         (C4_nbitsclr I32:$Rs, I32:$Rt)>;
1976def: Pat<(i1 (setne (and I32:$Rs, I32:$Rt), I32:$Rt)),
1977         (C4_nbitsset I32:$Rs, I32:$Rt)>;
1978
1979// Special patterns to address certain cases where the "top-down" matching
1980// algorithm would cause suboptimal selection.
1981
1982let AddedComplexity = 100 in {
1983  // Avoid A4_rcmp[n]eqi in these cases:
1984  def: Pat<(i32 (zext (i1 (seteq (and (shl 1, I32:$Rt), I32:$Rs), 0)))),
1985           (I1toI32 (S4_ntstbit_r IntRegs:$Rs, IntRegs:$Rt))>;
1986  def: Pat<(i32 (zext (i1 (setne (and (shl 1, I32:$Rt), I32:$Rs), 0)))),
1987           (I1toI32 (S2_tstbit_r IntRegs:$Rs, IntRegs:$Rt))>;
1988  def: Pat<(i32 (zext (i1 (seteq (and I32:$Rs, IsPow2_32:$u5), 0)))),
1989           (I1toI32 (S4_ntstbit_i I32:$Rs, (Log2_32 imm:$u5)))>;
1990  def: Pat<(i32 (zext (i1 (setne (and I32:$Rs, IsPow2_32:$u5), 0)))),
1991           (I1toI32 (S2_tstbit_i I32:$Rs, (Log2_32 imm:$u5)))>;
1992  def: Pat<(i32 (zext (i1 (seteq (and (shl 1, I32:$Rt), I32:$Rs), 0)))),
1993           (I1toI32 (S4_ntstbit_r I32:$Rs, I32:$Rt))>;
1994  def: Pat<(i32 (zext (i1 (setne (and (shl 1, I32:$Rt), I32:$Rs), 0)))),
1995           (I1toI32 (S2_tstbit_r I32:$Rs, I32:$Rt))>;
1996}
1997
1998// --(11) PIC ------------------------------------------------------------
1999//
2000
2001def SDT_HexagonAtGot
2002  : SDTypeProfile<1, 3, [SDTCisVT<0, i32>, SDTCisVT<1, i32>, SDTCisVT<2, i32>]>;
2003def SDT_HexagonAtPcrel
2004  : SDTypeProfile<1, 1, [SDTCisVT<0, i32>, SDTCisVT<1, i32>]>;
2005
2006// AT_GOT address-of-GOT, address-of-global, offset-in-global
2007def HexagonAtGot       : SDNode<"HexagonISD::AT_GOT", SDT_HexagonAtGot>;
2008// AT_PCREL address-of-global
2009def HexagonAtPcrel     : SDNode<"HexagonISD::AT_PCREL", SDT_HexagonAtPcrel>;
2010
2011def: Pat<(HexagonAtGot I32:$got, I32:$addr, (i32 0)),
2012         (L2_loadri_io I32:$got, imm:$addr)>;
2013def: Pat<(HexagonAtGot I32:$got, I32:$addr, s30_2ImmPred:$off),
2014         (A2_addi (L2_loadri_io I32:$got, imm:$addr), imm:$off)>;
2015def: Pat<(HexagonAtPcrel I32:$addr),
2016         (C4_addipc imm:$addr)>;
2017
2018// The HVX load patterns also match AT_PCREL directly. Make sure that
2019// if the selection of this opcode changes, it's updated in all places.
2020
2021
2022// --(12) Load -----------------------------------------------------------
2023//
2024
2025def L1toI32:  OutPatFrag<(ops node:$Rs), (A2_subri 0, (i32 $Rs))>;
2026def L1toI64:  OutPatFrag<(ops node:$Rs), (ToSext64 (L1toI32 $Rs))>;
2027
2028def extloadv2i8: PatFrag<(ops node:$ptr), (extload node:$ptr), [{
2029  return cast<LoadSDNode>(N)->getMemoryVT() == MVT::v2i8;
2030}]>;
2031def extloadv4i8: PatFrag<(ops node:$ptr), (extload node:$ptr), [{
2032  return cast<LoadSDNode>(N)->getMemoryVT() == MVT::v4i8;
2033}]>;
2034
2035def zextloadv2i8: PatFrag<(ops node:$ptr), (zextload node:$ptr), [{
2036  return cast<LoadSDNode>(N)->getMemoryVT() == MVT::v2i8;
2037}]>;
2038def zextloadv4i8: PatFrag<(ops node:$ptr), (zextload node:$ptr), [{
2039  return cast<LoadSDNode>(N)->getMemoryVT() == MVT::v4i8;
2040}]>;
2041
2042def sextloadv2i8: PatFrag<(ops node:$ptr), (sextload node:$ptr), [{
2043  return cast<LoadSDNode>(N)->getMemoryVT() == MVT::v2i8;
2044}]>;
2045def sextloadv4i8: PatFrag<(ops node:$ptr), (sextload node:$ptr), [{
2046  return cast<LoadSDNode>(N)->getMemoryVT() == MVT::v4i8;
2047}]>;
2048
2049// Patterns to select load-indexed: Rs + Off.
2050// - frameindex [+ imm],
2051multiclass Loadxfi_pat<PatFrag Load, ValueType VT, PatLeaf ImmPred,
2052                       InstHexagon MI> {
2053  def: Pat<(VT (Load (add (i32 AddrFI:$fi), ImmPred:$Off))),
2054           (VT (MI AddrFI:$fi, imm:$Off))>;
2055  def: Pat<(VT (Load (IsOrAdd (i32 AddrFI:$fi), ImmPred:$Off))),
2056           (VT (MI AddrFI:$fi, imm:$Off))>;
2057  def: Pat<(VT (Load AddrFI:$fi)), (VT (MI AddrFI:$fi, 0))>;
2058}
2059
2060// Patterns to select load-indexed: Rs + Off.
2061// - base reg [+ imm]
2062multiclass Loadxgi_pat<PatFrag Load, ValueType VT, PatLeaf ImmPred,
2063                       InstHexagon MI> {
2064  def: Pat<(VT (Load (add I32:$Rs, ImmPred:$Off))),
2065           (VT (MI IntRegs:$Rs, imm:$Off))>;
2066  def: Pat<(VT (Load (IsOrAdd I32:$Rs, ImmPred:$Off))),
2067           (VT (MI IntRegs:$Rs, imm:$Off))>;
2068  def: Pat<(VT (Load I32:$Rs)), (VT (MI IntRegs:$Rs, 0))>;
2069}
2070
2071// Patterns to select load-indexed: Rs + Off. Combines Loadxfi + Loadxgi.
2072multiclass Loadxi_pat<PatFrag Load, ValueType VT, PatLeaf ImmPred,
2073                      InstHexagon MI> {
2074  defm: Loadxfi_pat<Load, VT, ImmPred, MI>;
2075  defm: Loadxgi_pat<Load, VT, ImmPred, MI>;
2076}
2077
2078// Patterns to select load reg indexed: Rs + Off with a value modifier.
2079// - frameindex [+ imm]
2080multiclass Loadxfim_pat<PatFrag Load, ValueType VT, PatFrag ValueMod,
2081                        PatLeaf ImmPred, InstHexagon MI> {
2082  def: Pat<(VT (Load (add (i32 AddrFI:$fi), ImmPred:$Off))),
2083           (VT (ValueMod (MI AddrFI:$fi, imm:$Off)))>;
2084  def: Pat<(VT (Load (IsOrAdd (i32 AddrFI:$fi), ImmPred:$Off))),
2085           (VT (ValueMod (MI AddrFI:$fi, imm:$Off)))>;
2086  def: Pat<(VT (Load AddrFI:$fi)), (VT (ValueMod (MI AddrFI:$fi, 0)))>;
2087}
2088
2089// Patterns to select load reg indexed: Rs + Off with a value modifier.
2090// - base reg [+ imm]
2091multiclass Loadxgim_pat<PatFrag Load, ValueType VT, PatFrag ValueMod,
2092                        PatLeaf ImmPred, InstHexagon MI> {
2093  def: Pat<(VT (Load (add I32:$Rs, ImmPred:$Off))),
2094           (VT (ValueMod (MI IntRegs:$Rs, imm:$Off)))>;
2095  def: Pat<(VT (Load (IsOrAdd I32:$Rs, ImmPred:$Off))),
2096           (VT (ValueMod (MI IntRegs:$Rs, imm:$Off)))>;
2097  def: Pat<(VT (Load I32:$Rs)), (VT (ValueMod (MI IntRegs:$Rs, 0)))>;
2098}
2099
2100// Patterns to select load reg indexed: Rs + Off with a value modifier.
2101// Combines Loadxfim + Loadxgim.
2102multiclass Loadxim_pat<PatFrag Load, ValueType VT, PatFrag ValueMod,
2103                       PatLeaf ImmPred, InstHexagon MI> {
2104  defm: Loadxfim_pat<Load, VT, ValueMod, ImmPred, MI>;
2105  defm: Loadxgim_pat<Load, VT, ValueMod, ImmPred, MI>;
2106}
2107
2108// Pattern to select load reg reg-indexed: Rs + Rt<<u2.
2109class Loadxr_shl_pat<PatFrag Load, ValueType VT, InstHexagon MI>
2110  : Pat<(VT (Load (add I32:$Rs, (i32 (shl I32:$Rt, u2_0ImmPred:$u2))))),
2111        (VT (MI IntRegs:$Rs, IntRegs:$Rt, imm:$u2))>;
2112
2113// Pattern to select load reg reg-indexed: Rs + Rt<<0.
2114class Loadxr_add_pat<PatFrag Load, ValueType VT, InstHexagon MI>
2115  : Pat<(VT (Load (add I32:$Rs, I32:$Rt))),
2116        (VT (MI IntRegs:$Rs, IntRegs:$Rt, 0))>;
2117
2118// Pattern to select load reg reg-indexed: Rs + Rt<<u2 with value modifier.
2119class Loadxrm_shl_pat<PatFrag Load, ValueType VT, PatFrag ValueMod,
2120                      InstHexagon MI>
2121  : Pat<(VT (Load (add I32:$Rs, (i32 (shl I32:$Rt, u2_0ImmPred:$u2))))),
2122        (VT (ValueMod (MI IntRegs:$Rs, IntRegs:$Rt, imm:$u2)))>;
2123
2124// Pattern to select load reg reg-indexed: Rs + Rt<<0 with value modifier.
2125class Loadxrm_add_pat<PatFrag Load, ValueType VT, PatFrag ValueMod,
2126                      InstHexagon MI>
2127  : Pat<(VT (Load (add I32:$Rs, I32:$Rt))),
2128        (VT (ValueMod (MI IntRegs:$Rs, IntRegs:$Rt, 0)))>;
2129
2130// Pattern to select load long-offset reg-indexed: Addr + Rt<<u2.
2131// Don't match for u2==0, instead use reg+imm for those cases.
2132class Loadxu_pat<PatFrag Load, ValueType VT, PatFrag ImmPred, InstHexagon MI>
2133  : Pat<(VT (Load (add (shl IntRegs:$Rt, u2_0ImmPred:$u2), ImmPred:$Addr))),
2134        (VT (MI IntRegs:$Rt, imm:$u2, ImmPred:$Addr))>;
2135
2136class Loadxum_pat<PatFrag Load, ValueType VT, PatFrag ImmPred, PatFrag ValueMod,
2137                  InstHexagon MI>
2138  : Pat<(VT (Load (add (shl IntRegs:$Rt, u2_0ImmPred:$u2), ImmPred:$Addr))),
2139        (VT (ValueMod (MI IntRegs:$Rt, imm:$u2, ImmPred:$Addr)))>;
2140
2141// Pattern to select load absolute.
2142class Loada_pat<PatFrag Load, ValueType VT, PatFrag Addr, InstHexagon MI>
2143  : Pat<(VT (Load Addr:$addr)), (MI Addr:$addr)>;
2144
2145// Pattern to select load absolute with value modifier.
2146class Loadam_pat<PatFrag Load, ValueType VT, PatFrag Addr, PatFrag ValueMod,
2147                 InstHexagon MI>
2148  : Pat<(VT (Load Addr:$addr)), (ValueMod (MI Addr:$addr))>;
2149
2150
2151let AddedComplexity = 20 in {
2152  defm: Loadxi_pat<extloadi1,       i32,   anyimm0, L2_loadrub_io>;
2153  defm: Loadxi_pat<extloadi8,       i32,   anyimm0, L2_loadrub_io>;
2154  defm: Loadxi_pat<extloadi16,      i32,   anyimm1, L2_loadruh_io>;
2155  defm: Loadxi_pat<extloadv2i8,     v2i16, anyimm1, L2_loadbzw2_io>;
2156  defm: Loadxi_pat<extloadv4i8,     v4i16, anyimm2, L2_loadbzw4_io>;
2157  defm: Loadxi_pat<sextloadi8,      i32,   anyimm0, L2_loadrb_io>;
2158  defm: Loadxi_pat<sextloadi16,     i32,   anyimm1, L2_loadrh_io>;
2159  defm: Loadxi_pat<sextloadv2i8,    v2i16, anyimm1, L2_loadbsw2_io>;
2160  defm: Loadxi_pat<sextloadv4i8,    v4i16, anyimm2, L2_loadbsw4_io>;
2161  defm: Loadxi_pat<zextloadi1,      i32,   anyimm0, L2_loadrub_io>;
2162  defm: Loadxi_pat<zextloadi8,      i32,   anyimm0, L2_loadrub_io>;
2163  defm: Loadxi_pat<zextloadi16,     i32,   anyimm1, L2_loadruh_io>;
2164  defm: Loadxi_pat<zextloadv2i8,    v2i16, anyimm1, L2_loadbzw2_io>;
2165  defm: Loadxi_pat<zextloadv4i8,    v4i16, anyimm2, L2_loadbzw4_io>;
2166  defm: Loadxi_pat<load,            i32,   anyimm2, L2_loadri_io>;
2167  defm: Loadxi_pat<load,            v2i16, anyimm2, L2_loadri_io>;
2168  defm: Loadxi_pat<load,            v4i8,  anyimm2, L2_loadri_io>;
2169  defm: Loadxi_pat<load,            i64,   anyimm3, L2_loadrd_io>;
2170  defm: Loadxi_pat<load,            v2i32, anyimm3, L2_loadrd_io>;
2171  defm: Loadxi_pat<load,            v4i16, anyimm3, L2_loadrd_io>;
2172  defm: Loadxi_pat<load,            v8i8,  anyimm3, L2_loadrd_io>;
2173  defm: Loadxi_pat<load,            f32,   anyimm2, L2_loadri_io>;
2174  defm: Loadxi_pat<load,            f64,   anyimm3, L2_loadrd_io>;
2175  // No sextloadi1.
2176
2177  defm: Loadxi_pat<atomic_load_8 ,  i32, anyimm0, L2_loadrub_io>;
2178  defm: Loadxi_pat<atomic_load_16,  i32, anyimm1, L2_loadruh_io>;
2179  defm: Loadxi_pat<atomic_load_32,  i32, anyimm2, L2_loadri_io>;
2180  defm: Loadxi_pat<atomic_load_64,  i64, anyimm3, L2_loadrd_io>;
2181}
2182
2183let AddedComplexity = 30 in {
2184  // Loads of i1 are loading a byte, and the byte should be either 0 or 1.
2185  // It doesn't matter if it's sign- or zero-extended, so use zero-extension
2186  // everywhere.
2187  defm: Loadxim_pat<sextloadi1,   i32, L1toI32,  anyimm0, L2_loadrub_io>;
2188  defm: Loadxim_pat<extloadi1,    i64, ToAext64, anyimm0, L2_loadrub_io>;
2189  defm: Loadxim_pat<sextloadi1,   i64, L1toI64,  anyimm0, L2_loadrub_io>;
2190  defm: Loadxim_pat<zextloadi1,   i64, ToZext64, anyimm0, L2_loadrub_io>;
2191
2192  defm: Loadxim_pat<extloadi8,    i64, ToAext64, anyimm0, L2_loadrub_io>;
2193  defm: Loadxim_pat<extloadi16,   i64, ToAext64, anyimm1, L2_loadruh_io>;
2194  defm: Loadxim_pat<extloadi32,   i64, ToAext64, anyimm2, L2_loadri_io>;
2195  defm: Loadxim_pat<zextloadi8,   i64, ToZext64, anyimm0, L2_loadrub_io>;
2196  defm: Loadxim_pat<zextloadi16,  i64, ToZext64, anyimm1, L2_loadruh_io>;
2197  defm: Loadxim_pat<zextloadi32,  i64, ToZext64, anyimm2, L2_loadri_io>;
2198  defm: Loadxim_pat<sextloadi8,   i64, ToSext64, anyimm0, L2_loadrb_io>;
2199  defm: Loadxim_pat<sextloadi16,  i64, ToSext64, anyimm1, L2_loadrh_io>;
2200  defm: Loadxim_pat<sextloadi32,  i64, ToSext64, anyimm2, L2_loadri_io>;
2201}
2202
2203let AddedComplexity  = 60 in {
2204  def: Loadxu_pat<extloadi1,    i32,   anyimm0, L4_loadrub_ur>;
2205  def: Loadxu_pat<extloadi8,    i32,   anyimm0, L4_loadrub_ur>;
2206  def: Loadxu_pat<extloadi16,   i32,   anyimm1, L4_loadruh_ur>;
2207  def: Loadxu_pat<extloadv2i8,  v2i16, anyimm1, L4_loadbzw2_ur>;
2208  def: Loadxu_pat<extloadv4i8,  v4i16, anyimm2, L4_loadbzw4_ur>;
2209  def: Loadxu_pat<sextloadi8,   i32,   anyimm0, L4_loadrb_ur>;
2210  def: Loadxu_pat<sextloadi16,  i32,   anyimm1, L4_loadrh_ur>;
2211  def: Loadxu_pat<sextloadv2i8, v2i16, anyimm1, L4_loadbsw2_ur>;
2212  def: Loadxu_pat<sextloadv4i8, v4i16, anyimm2, L4_loadbsw4_ur>;
2213  def: Loadxu_pat<zextloadi1,   i32,   anyimm0, L4_loadrub_ur>;
2214  def: Loadxu_pat<zextloadi8,   i32,   anyimm0, L4_loadrub_ur>;
2215  def: Loadxu_pat<zextloadi16,  i32,   anyimm1, L4_loadruh_ur>;
2216  def: Loadxu_pat<zextloadv2i8, v2i16, anyimm1, L4_loadbzw2_ur>;
2217  def: Loadxu_pat<zextloadv4i8, v4i16, anyimm2, L4_loadbzw4_ur>;
2218  def: Loadxu_pat<load,         i32,   anyimm2, L4_loadri_ur>;
2219  def: Loadxu_pat<load,         v2i16, anyimm2, L4_loadri_ur>;
2220  def: Loadxu_pat<load,         v4i8,  anyimm2, L4_loadri_ur>;
2221  def: Loadxu_pat<load,         i64,   anyimm3, L4_loadrd_ur>;
2222  def: Loadxu_pat<load,         v2i32, anyimm3, L4_loadrd_ur>;
2223  def: Loadxu_pat<load,         v4i16, anyimm3, L4_loadrd_ur>;
2224  def: Loadxu_pat<load,         v8i8,  anyimm3, L4_loadrd_ur>;
2225  def: Loadxu_pat<load,         f32,   anyimm2, L4_loadri_ur>;
2226  def: Loadxu_pat<load,         f64,   anyimm3, L4_loadrd_ur>;
2227
2228  def: Loadxum_pat<sextloadi1,  i32, anyimm0, L1toI32,  L4_loadrub_ur>;
2229  def: Loadxum_pat<extloadi1,   i64, anyimm0, ToAext64, L4_loadrub_ur>;
2230  def: Loadxum_pat<sextloadi1,  i64, anyimm0, L1toI64,  L4_loadrub_ur>;
2231  def: Loadxum_pat<zextloadi1,  i64, anyimm0, ToZext64, L4_loadrub_ur>;
2232
2233  def: Loadxum_pat<sextloadi8,  i64, anyimm0, ToSext64, L4_loadrb_ur>;
2234  def: Loadxum_pat<zextloadi8,  i64, anyimm0, ToZext64, L4_loadrub_ur>;
2235  def: Loadxum_pat<extloadi8,   i64, anyimm0, ToAext64, L4_loadrub_ur>;
2236  def: Loadxum_pat<sextloadi16, i64, anyimm1, ToSext64, L4_loadrh_ur>;
2237  def: Loadxum_pat<zextloadi16, i64, anyimm1, ToZext64, L4_loadruh_ur>;
2238  def: Loadxum_pat<extloadi16,  i64, anyimm1, ToAext64, L4_loadruh_ur>;
2239  def: Loadxum_pat<sextloadi32, i64, anyimm2, ToSext64, L4_loadri_ur>;
2240  def: Loadxum_pat<zextloadi32, i64, anyimm2, ToZext64, L4_loadri_ur>;
2241  def: Loadxum_pat<extloadi32,  i64, anyimm2, ToAext64, L4_loadri_ur>;
2242}
2243
2244let AddedComplexity = 40 in {
2245  def: Loadxr_shl_pat<extloadi1,     i32,   L4_loadrub_rr>;
2246  def: Loadxr_shl_pat<extloadi8,     i32,   L4_loadrub_rr>;
2247  def: Loadxr_shl_pat<zextloadi1,    i32,   L4_loadrub_rr>;
2248  def: Loadxr_shl_pat<zextloadi8,    i32,   L4_loadrub_rr>;
2249  def: Loadxr_shl_pat<sextloadi8,    i32,   L4_loadrb_rr>;
2250  def: Loadxr_shl_pat<extloadi16,    i32,   L4_loadruh_rr>;
2251  def: Loadxr_shl_pat<zextloadi16,   i32,   L4_loadruh_rr>;
2252  def: Loadxr_shl_pat<sextloadi16,   i32,   L4_loadrh_rr>;
2253  def: Loadxr_shl_pat<load,          i32,   L4_loadri_rr>;
2254  def: Loadxr_shl_pat<load,          v2i16, L4_loadri_rr>;
2255  def: Loadxr_shl_pat<load,          v4i8,  L4_loadri_rr>;
2256  def: Loadxr_shl_pat<load,          i64,   L4_loadrd_rr>;
2257  def: Loadxr_shl_pat<load,          v2i32, L4_loadrd_rr>;
2258  def: Loadxr_shl_pat<load,          v4i16, L4_loadrd_rr>;
2259  def: Loadxr_shl_pat<load,          v8i8,  L4_loadrd_rr>;
2260  def: Loadxr_shl_pat<load,          f32,   L4_loadri_rr>;
2261  def: Loadxr_shl_pat<load,          f64,   L4_loadrd_rr>;
2262}
2263
2264let AddedComplexity = 20 in {
2265  def: Loadxr_add_pat<extloadi1,     i32,   L4_loadrub_rr>;
2266  def: Loadxr_add_pat<extloadi8,     i32,   L4_loadrub_rr>;
2267  def: Loadxr_add_pat<zextloadi8,    i32,   L4_loadrub_rr>;
2268  def: Loadxr_add_pat<zextloadi1,    i32,   L4_loadrub_rr>;
2269  def: Loadxr_add_pat<sextloadi8,    i32,   L4_loadrb_rr>;
2270  def: Loadxr_add_pat<extloadi16,    i32,   L4_loadruh_rr>;
2271  def: Loadxr_add_pat<zextloadi16,   i32,   L4_loadruh_rr>;
2272  def: Loadxr_add_pat<sextloadi16,   i32,   L4_loadrh_rr>;
2273  def: Loadxr_add_pat<load,          i32,   L4_loadri_rr>;
2274  def: Loadxr_add_pat<load,          v2i16, L4_loadri_rr>;
2275  def: Loadxr_add_pat<load,          v4i8,  L4_loadri_rr>;
2276  def: Loadxr_add_pat<load,          i64,   L4_loadrd_rr>;
2277  def: Loadxr_add_pat<load,          v2i32, L4_loadrd_rr>;
2278  def: Loadxr_add_pat<load,          v4i16, L4_loadrd_rr>;
2279  def: Loadxr_add_pat<load,          v8i8,  L4_loadrd_rr>;
2280  def: Loadxr_add_pat<load,          f32,   L4_loadri_rr>;
2281  def: Loadxr_add_pat<load,          f64,   L4_loadrd_rr>;
2282}
2283
2284let AddedComplexity = 40 in {
2285  def: Loadxrm_shl_pat<sextloadi1,   i32, L1toI32,  L4_loadrub_rr>;
2286  def: Loadxrm_shl_pat<extloadi1,    i64, ToAext64, L4_loadrub_rr>;
2287  def: Loadxrm_shl_pat<sextloadi1,   i64, L1toI64,  L4_loadrub_rr>;
2288  def: Loadxrm_shl_pat<zextloadi1,   i64, ToZext64, L4_loadrub_rr>;
2289
2290  def: Loadxrm_shl_pat<extloadi8,    i64, ToAext64, L4_loadrub_rr>;
2291  def: Loadxrm_shl_pat<zextloadi8,   i64, ToZext64, L4_loadrub_rr>;
2292  def: Loadxrm_shl_pat<sextloadi8,   i64, ToSext64, L4_loadrb_rr>;
2293  def: Loadxrm_shl_pat<extloadi16,   i64, ToAext64, L4_loadruh_rr>;
2294  def: Loadxrm_shl_pat<zextloadi16,  i64, ToZext64, L4_loadruh_rr>;
2295  def: Loadxrm_shl_pat<sextloadi16,  i64, ToSext64, L4_loadrh_rr>;
2296  def: Loadxrm_shl_pat<extloadi32,   i64, ToAext64, L4_loadri_rr>;
2297  def: Loadxrm_shl_pat<zextloadi32,  i64, ToZext64, L4_loadri_rr>;
2298  def: Loadxrm_shl_pat<sextloadi32,  i64, ToSext64, L4_loadri_rr>;
2299}
2300
2301let AddedComplexity = 30 in {
2302  def: Loadxrm_add_pat<sextloadi1,   i32, L1toI32,  L4_loadrub_rr>;
2303  def: Loadxrm_add_pat<extloadi1,    i64, ToAext64, L4_loadrub_rr>;
2304  def: Loadxrm_add_pat<sextloadi1,   i64, L1toI64,  L4_loadrub_rr>;
2305  def: Loadxrm_add_pat<zextloadi1,   i64, ToZext64, L4_loadrub_rr>;
2306
2307  def: Loadxrm_add_pat<extloadi8,    i64, ToAext64, L4_loadrub_rr>;
2308  def: Loadxrm_add_pat<zextloadi8,   i64, ToZext64, L4_loadrub_rr>;
2309  def: Loadxrm_add_pat<sextloadi8,   i64, ToSext64, L4_loadrb_rr>;
2310  def: Loadxrm_add_pat<extloadi16,   i64, ToAext64, L4_loadruh_rr>;
2311  def: Loadxrm_add_pat<zextloadi16,  i64, ToZext64, L4_loadruh_rr>;
2312  def: Loadxrm_add_pat<sextloadi16,  i64, ToSext64, L4_loadrh_rr>;
2313  def: Loadxrm_add_pat<extloadi32,   i64, ToAext64, L4_loadri_rr>;
2314  def: Loadxrm_add_pat<zextloadi32,  i64, ToZext64, L4_loadri_rr>;
2315  def: Loadxrm_add_pat<sextloadi32,  i64, ToSext64, L4_loadri_rr>;
2316}
2317
2318// Absolute address
2319
2320let AddedComplexity  = 60 in {
2321  def: Loada_pat<extloadi1,       i32,   anyimm0, PS_loadrubabs>;
2322  def: Loada_pat<zextloadi1,      i32,   anyimm0, PS_loadrubabs>;
2323  def: Loada_pat<extloadi8,       i32,   anyimm0, PS_loadrubabs>;
2324  def: Loada_pat<sextloadi8,      i32,   anyimm0, PS_loadrbabs>;
2325  def: Loada_pat<zextloadi8,      i32,   anyimm0, PS_loadrubabs>;
2326  def: Loada_pat<extloadi16,      i32,   anyimm1, PS_loadruhabs>;
2327  def: Loada_pat<sextloadi16,     i32,   anyimm1, PS_loadrhabs>;
2328  def: Loada_pat<zextloadi16,     i32,   anyimm1, PS_loadruhabs>;
2329  def: Loada_pat<load,            i32,   anyimm2, PS_loadriabs>;
2330  def: Loada_pat<load,            v2i16, anyimm2, PS_loadriabs>;
2331  def: Loada_pat<load,            v4i8,  anyimm2, PS_loadriabs>;
2332  def: Loada_pat<load,            i64,   anyimm3, PS_loadrdabs>;
2333  def: Loada_pat<load,            v2i32, anyimm3, PS_loadrdabs>;
2334  def: Loada_pat<load,            v4i16, anyimm3, PS_loadrdabs>;
2335  def: Loada_pat<load,            v8i8,  anyimm3, PS_loadrdabs>;
2336  def: Loada_pat<load,            f32,   anyimm2, PS_loadriabs>;
2337  def: Loada_pat<load,            f64,   anyimm3, PS_loadrdabs>;
2338
2339  def: Loada_pat<atomic_load_8,   i32, anyimm0, PS_loadrubabs>;
2340  def: Loada_pat<atomic_load_16,  i32, anyimm1, PS_loadruhabs>;
2341  def: Loada_pat<atomic_load_32,  i32, anyimm2, PS_loadriabs>;
2342  def: Loada_pat<atomic_load_64,  i64, anyimm3, PS_loadrdabs>;
2343}
2344
2345let AddedComplexity  = 30 in {
2346  def: Loadam_pat<load,           i1,  anyimm0, I32toI1,  PS_loadrubabs>;
2347  def: Loadam_pat<sextloadi1,     i32, anyimm0, L1toI32,  PS_loadrubabs>;
2348  def: Loadam_pat<extloadi1,      i64, anyimm0, ToZext64, PS_loadrubabs>;
2349  def: Loadam_pat<sextloadi1,     i64, anyimm0, L1toI64,  PS_loadrubabs>;
2350  def: Loadam_pat<zextloadi1,     i64, anyimm0, ToZext64, PS_loadrubabs>;
2351
2352  def: Loadam_pat<extloadi8,      i64, anyimm0, ToAext64, PS_loadrubabs>;
2353  def: Loadam_pat<sextloadi8,     i64, anyimm0, ToSext64, PS_loadrbabs>;
2354  def: Loadam_pat<zextloadi8,     i64, anyimm0, ToZext64, PS_loadrubabs>;
2355  def: Loadam_pat<extloadi16,     i64, anyimm1, ToAext64, PS_loadruhabs>;
2356  def: Loadam_pat<sextloadi16,    i64, anyimm1, ToSext64, PS_loadrhabs>;
2357  def: Loadam_pat<zextloadi16,    i64, anyimm1, ToZext64, PS_loadruhabs>;
2358  def: Loadam_pat<extloadi32,     i64, anyimm2, ToAext64, PS_loadriabs>;
2359  def: Loadam_pat<sextloadi32,    i64, anyimm2, ToSext64, PS_loadriabs>;
2360  def: Loadam_pat<zextloadi32,    i64, anyimm2, ToZext64, PS_loadriabs>;
2361}
2362
2363// GP-relative address
2364
2365let AddedComplexity  = 100 in {
2366  def: Loada_pat<extloadi1,       i32,   addrgp,  L2_loadrubgp>;
2367  def: Loada_pat<zextloadi1,      i32,   addrgp,  L2_loadrubgp>;
2368  def: Loada_pat<extloadi8,       i32,   addrgp,  L2_loadrubgp>;
2369  def: Loada_pat<sextloadi8,      i32,   addrgp,  L2_loadrbgp>;
2370  def: Loada_pat<zextloadi8,      i32,   addrgp,  L2_loadrubgp>;
2371  def: Loada_pat<extloadi16,      i32,   addrgp,  L2_loadruhgp>;
2372  def: Loada_pat<sextloadi16,     i32,   addrgp,  L2_loadrhgp>;
2373  def: Loada_pat<zextloadi16,     i32,   addrgp,  L2_loadruhgp>;
2374  def: Loada_pat<load,            i32,   addrgp,  L2_loadrigp>;
2375  def: Loada_pat<load,            v2i16, addrgp,  L2_loadrigp>;
2376  def: Loada_pat<load,            v4i8,  addrgp,  L2_loadrigp>;
2377  def: Loada_pat<load,            i64,   addrgp,  L2_loadrdgp>;
2378  def: Loada_pat<load,            v2i32, addrgp,  L2_loadrdgp>;
2379  def: Loada_pat<load,            v4i16, addrgp,  L2_loadrdgp>;
2380  def: Loada_pat<load,            v8i8,  addrgp,  L2_loadrdgp>;
2381  def: Loada_pat<load,            f32,   addrgp,  L2_loadrigp>;
2382  def: Loada_pat<load,            f64,   addrgp,  L2_loadrdgp>;
2383
2384  def: Loada_pat<atomic_load_8,   i32, addrgp,  L2_loadrubgp>;
2385  def: Loada_pat<atomic_load_16,  i32, addrgp,  L2_loadruhgp>;
2386  def: Loada_pat<atomic_load_32,  i32, addrgp,  L2_loadrigp>;
2387  def: Loada_pat<atomic_load_64,  i64, addrgp,  L2_loadrdgp>;
2388}
2389
2390let AddedComplexity  = 70 in {
2391  def: Loadam_pat<sextloadi1,     i32, addrgp,  L1toI32,  L2_loadrubgp>;
2392  def: Loadam_pat<extloadi1,      i64, addrgp,  ToAext64, L2_loadrubgp>;
2393  def: Loadam_pat<sextloadi1,     i64, addrgp,  L1toI64,  L2_loadrubgp>;
2394  def: Loadam_pat<zextloadi1,     i64, addrgp,  ToZext64, L2_loadrubgp>;
2395
2396  def: Loadam_pat<extloadi8,      i64, addrgp,  ToAext64, L2_loadrubgp>;
2397  def: Loadam_pat<sextloadi8,     i64, addrgp,  ToSext64, L2_loadrbgp>;
2398  def: Loadam_pat<zextloadi8,     i64, addrgp,  ToZext64, L2_loadrubgp>;
2399  def: Loadam_pat<extloadi16,     i64, addrgp,  ToAext64, L2_loadruhgp>;
2400  def: Loadam_pat<sextloadi16,    i64, addrgp,  ToSext64, L2_loadrhgp>;
2401  def: Loadam_pat<zextloadi16,    i64, addrgp,  ToZext64, L2_loadruhgp>;
2402  def: Loadam_pat<extloadi32,     i64, addrgp,  ToAext64, L2_loadrigp>;
2403  def: Loadam_pat<sextloadi32,    i64, addrgp,  ToSext64, L2_loadrigp>;
2404  def: Loadam_pat<zextloadi32,    i64, addrgp,  ToZext64, L2_loadrigp>;
2405
2406  def: Loadam_pat<load,           i1,  addrgp,  I32toI1,  L2_loadrubgp>;
2407}
2408
2409// Patterns for loads of i1:
2410def: Pat<(i1 (load AddrFI:$fi)),
2411         (C2_tfrrp (L2_loadrub_io AddrFI:$fi, 0))>;
2412def: Pat<(i1 (load (add I32:$Rs, anyimm0:$Off))),
2413         (C2_tfrrp (L2_loadrub_io IntRegs:$Rs, imm:$Off))>;
2414def: Pat<(i1 (load I32:$Rs)),
2415         (C2_tfrrp (L2_loadrub_io IntRegs:$Rs, 0))>;
2416
2417
2418// --(13) Store ----------------------------------------------------------
2419//
2420
2421class Storepi_pat<PatFrag Store, PatFrag Value, PatFrag Offset, InstHexagon MI>
2422  : Pat<(Store Value:$Rt, I32:$Rx, Offset:$s4),
2423        (MI I32:$Rx, imm:$s4, Value:$Rt)>;
2424
2425def: Storepi_pat<post_truncsti8,  I32, s4_0ImmPred, S2_storerb_pi>;
2426def: Storepi_pat<post_truncsti16, I32, s4_1ImmPred, S2_storerh_pi>;
2427def: Storepi_pat<post_store,      I32, s4_2ImmPred, S2_storeri_pi>;
2428def: Storepi_pat<post_store,      I64, s4_3ImmPred, S2_storerd_pi>;
2429
2430// Patterns for generating stores, where the address takes different forms:
2431// - frameindex,
2432// - frameindex + offset,
2433// - base + offset,
2434// - simple (base address without offset).
2435// These would usually be used together (via Storexi_pat defined below), but
2436// in some cases one may want to apply different properties (such as
2437// AddedComplexity) to the individual patterns.
2438class Storexi_fi_pat<PatFrag Store, PatFrag Value, InstHexagon MI>
2439  : Pat<(Store Value:$Rs, AddrFI:$fi), (MI AddrFI:$fi, 0, Value:$Rs)>;
2440
2441multiclass Storexi_fi_add_pat<PatFrag Store, PatFrag Value, PatFrag ImmPred,
2442                              InstHexagon MI> {
2443  def: Pat<(Store Value:$Rs, (add (i32 AddrFI:$fi), ImmPred:$Off)),
2444           (MI AddrFI:$fi, imm:$Off, Value:$Rs)>;
2445  def: Pat<(Store Value:$Rs, (IsOrAdd (i32 AddrFI:$fi), ImmPred:$Off)),
2446           (MI AddrFI:$fi, imm:$Off, Value:$Rs)>;
2447}
2448
2449multiclass Storexi_add_pat<PatFrag Store, PatFrag Value, PatFrag ImmPred,
2450                           InstHexagon MI> {
2451  def: Pat<(Store Value:$Rt, (add I32:$Rs, ImmPred:$Off)),
2452           (MI IntRegs:$Rs, imm:$Off, Value:$Rt)>;
2453  def: Pat<(Store Value:$Rt, (IsOrAdd I32:$Rs, ImmPred:$Off)),
2454           (MI IntRegs:$Rs, imm:$Off, Value:$Rt)>;
2455}
2456
2457class Storexi_base_pat<PatFrag Store, PatFrag Value, InstHexagon MI>
2458  : Pat<(Store Value:$Rt, I32:$Rs),
2459        (MI IntRegs:$Rs, 0, Value:$Rt)>;
2460
2461// Patterns for generating stores, where the address takes different forms,
2462// and where the value being stored is transformed through the value modifier
2463// ValueMod.  The address forms are same as above.
2464class Storexim_fi_pat<PatFrag Store, PatFrag Value, PatFrag ValueMod,
2465                      InstHexagon MI>
2466  : Pat<(Store Value:$Rs, AddrFI:$fi),
2467        (MI AddrFI:$fi, 0, (ValueMod Value:$Rs))>;
2468
2469multiclass Storexim_fi_add_pat<PatFrag Store, PatFrag Value, PatFrag ImmPred,
2470                               PatFrag ValueMod, InstHexagon MI> {
2471  def: Pat<(Store Value:$Rs, (add (i32 AddrFI:$fi), ImmPred:$Off)),
2472           (MI AddrFI:$fi, imm:$Off, (ValueMod Value:$Rs))>;
2473  def: Pat<(Store Value:$Rs, (IsOrAdd (i32 AddrFI:$fi), ImmPred:$Off)),
2474           (MI AddrFI:$fi, imm:$Off, (ValueMod Value:$Rs))>;
2475}
2476
2477multiclass Storexim_add_pat<PatFrag Store, PatFrag Value, PatFrag ImmPred,
2478                            PatFrag ValueMod, InstHexagon MI> {
2479  def: Pat<(Store Value:$Rt, (add I32:$Rs, ImmPred:$Off)),
2480           (MI IntRegs:$Rs, imm:$Off, (ValueMod Value:$Rt))>;
2481  def: Pat<(Store Value:$Rt, (IsOrAdd I32:$Rs, ImmPred:$Off)),
2482           (MI IntRegs:$Rs, imm:$Off, (ValueMod Value:$Rt))>;
2483}
2484
2485class Storexim_base_pat<PatFrag Store, PatFrag Value, PatFrag ValueMod,
2486                        InstHexagon MI>
2487  : Pat<(Store Value:$Rt, I32:$Rs),
2488        (MI IntRegs:$Rs, 0, (ValueMod Value:$Rt))>;
2489
2490multiclass Storexi_pat<PatFrag Store, PatFrag Value, PatLeaf ImmPred,
2491                       InstHexagon MI> {
2492  defm: Storexi_fi_add_pat <Store, Value, ImmPred, MI>;
2493  def:  Storexi_fi_pat     <Store, Value,          MI>;
2494  defm: Storexi_add_pat    <Store, Value, ImmPred, MI>;
2495}
2496
2497multiclass Storexim_pat<PatFrag Store, PatFrag Value, PatLeaf ImmPred,
2498                        PatFrag ValueMod, InstHexagon MI> {
2499  defm: Storexim_fi_add_pat <Store, Value, ImmPred, ValueMod, MI>;
2500  def:  Storexim_fi_pat     <Store, Value,          ValueMod, MI>;
2501  defm: Storexim_add_pat    <Store, Value, ImmPred, ValueMod, MI>;
2502}
2503
2504// Reg<<S + Imm
2505class Storexu_shl_pat<PatFrag Store, PatFrag Value, PatFrag ImmPred, InstHexagon MI>
2506  : Pat<(Store Value:$Rt, (add (shl I32:$Ru, u2_0ImmPred:$u2), ImmPred:$A)),
2507        (MI IntRegs:$Ru, imm:$u2, ImmPred:$A, Value:$Rt)>;
2508
2509// Reg<<S + Reg
2510class Storexr_shl_pat<PatFrag Store, PatFrag Value, InstHexagon MI>
2511  : Pat<(Store Value:$Ru, (add I32:$Rs, (shl I32:$Rt, u2_0ImmPred:$u2))),
2512        (MI IntRegs:$Rs, IntRegs:$Rt, imm:$u2, Value:$Ru)>;
2513
2514// Reg + Reg
2515class Storexr_add_pat<PatFrag Store, PatFrag Value, InstHexagon MI>
2516  : Pat<(Store Value:$Ru, (add I32:$Rs, I32:$Rt)),
2517        (MI IntRegs:$Rs, IntRegs:$Rt, 0, Value:$Ru)>;
2518
2519class Storea_pat<PatFrag Store, PatFrag Value, PatFrag Addr, InstHexagon MI>
2520  : Pat<(Store Value:$val, Addr:$addr), (MI Addr:$addr, Value:$val)>;
2521
2522class Stoream_pat<PatFrag Store, PatFrag Value, PatFrag Addr, PatFrag ValueMod,
2523                  InstHexagon MI>
2524  : Pat<(Store Value:$val, Addr:$addr),
2525        (MI Addr:$addr, (ValueMod Value:$val))>;
2526
2527// Regular stores in the DAG have two operands: value and address.
2528// Atomic stores also have two, but they are reversed: address, value.
2529// To use atomic stores with the patterns, they need to have their operands
2530// swapped. This relies on the knowledge that the F.Fragment uses names
2531// "ptr" and "val".
2532class AtomSt<PatFrag F>
2533  : PatFrag<(ops node:$val, node:$ptr), !head(F.Fragments), F.PredicateCode,
2534            F.OperandTransform> {
2535  let IsAtomic = F.IsAtomic;
2536  let MemoryVT = F.MemoryVT;
2537}
2538
2539
2540def IMM_BYTE : SDNodeXForm<imm, [{
2541  // -1 can be represented as 255, etc.
2542  // assigning to a byte restores our desired signed value.
2543  int8_t imm = N->getSExtValue();
2544  return CurDAG->getTargetConstant(imm, SDLoc(N), MVT::i32);
2545}]>;
2546
2547def IMM_HALF : SDNodeXForm<imm, [{
2548  // -1 can be represented as 65535, etc.
2549  // assigning to a short restores our desired signed value.
2550  int16_t imm = N->getSExtValue();
2551  return CurDAG->getTargetConstant(imm, SDLoc(N), MVT::i32);
2552}]>;
2553
2554def IMM_WORD : SDNodeXForm<imm, [{
2555  // -1 can be represented as 4294967295, etc.
2556  // Currently, it's not doing this. But some optimization
2557  // might convert -1 to a large +ve number.
2558  // assigning to a word restores our desired signed value.
2559  int32_t imm = N->getSExtValue();
2560  return CurDAG->getTargetConstant(imm, SDLoc(N), MVT::i32);
2561}]>;
2562
2563def ToImmByte : OutPatFrag<(ops node:$R), (IMM_BYTE $R)>;
2564def ToImmHalf : OutPatFrag<(ops node:$R), (IMM_HALF $R)>;
2565def ToImmWord : OutPatFrag<(ops node:$R), (IMM_WORD $R)>;
2566
2567// Even though the offset is not extendable in the store-immediate, we
2568// can still generate the fi# in the base address. If the final offset
2569// is not valid for the instruction, we will replace it with a scratch
2570// register.
2571class SmallStackStore<PatFrag Store>
2572  : PatFrag<(ops node:$Val, node:$Addr), (Store node:$Val, node:$Addr), [{
2573  return isSmallStackStore(cast<StoreSDNode>(N));
2574}]>;
2575
2576// This is the complement of SmallStackStore.
2577class LargeStackStore<PatFrag Store>
2578  : PatFrag<(ops node:$Val, node:$Addr), (Store node:$Val, node:$Addr), [{
2579  return !isSmallStackStore(cast<StoreSDNode>(N));
2580}]>;
2581
2582// Preferred addressing modes for various combinations of stored value
2583// and address computation.
2584// For stores where the address and value are both immediates, prefer
2585// store-immediate. The reason is that the constant-extender optimization
2586// can replace store-immediate with a store-register, but there is nothing
2587// to generate a store-immediate out of a store-register.
2588//
2589//         C     R     F    F+C   R+C   R+R   R<<S+C   R<<S+R
2590// --+-------+-----+-----+------+-----+-----+--------+--------
2591// C |   imm | imm | imm |  imm | imm |  rr |     ur |     rr
2592// R |  abs* |  io |  io |   io |  io |  rr |     ur |     rr
2593//
2594// (*) Absolute or GP-relative.
2595//
2596// Note that any expression can be matched by Reg. In particular, an immediate
2597// can always be placed in a register, so patterns checking for Imm should
2598// have a higher priority than the ones involving Reg that could also match.
2599// For example, *(p+4) could become r1=#4; memw(r0+r1<<#0) instead of the
2600// preferred memw(r0+#4). Similarly Reg+Imm or Reg+Reg should be tried before
2601// Reg alone.
2602//
2603// The order in which the different combinations are tried:
2604//
2605//         C     F     R    F+C   R+C   R+R   R<<S+C   R<<S+R
2606// --+-------+-----+-----+------+-----+-----+--------+--------
2607// C |     1 |   6 |   - |    5 |   9 |   - |      - |      -
2608// R |     2 |   8 |  12 |    7 |  10 |  11 |      3 |      4
2609
2610
2611// First, match the unusual case of doubleword store into Reg+Imm4, i.e.
2612// a store where the offset Imm4 is a multiple of 4, but not of 8. This
2613// implies that Reg is also a proper multiple of 4. To still generate a
2614// doubleword store, add 4 to Reg, and subtract 4 from the offset.
2615
2616def s30_2ProperPred  : PatLeaf<(i32 imm), [{
2617  int64_t v = (int64_t)N->getSExtValue();
2618  return isShiftedInt<30,2>(v) && !isShiftedInt<29,3>(v);
2619}]>;
2620def RoundTo8 : SDNodeXForm<imm, [{
2621  int32_t Imm = N->getSExtValue();
2622  return CurDAG->getTargetConstant(Imm & -8, SDLoc(N), MVT::i32);
2623}]>;
2624
2625let AddedComplexity = 150 in
2626def: Pat<(store I64:$Ru, (add I32:$Rs, s30_2ProperPred:$Off)),
2627         (S2_storerd_io (A2_addi I32:$Rs, 4), (RoundTo8 $Off), I64:$Ru)>;
2628
2629class Storexi_abs_pat<PatFrag Store, PatFrag Value, InstHexagon MI>
2630  : Pat<(Store Value:$val, anyimm:$addr),
2631        (MI (ToI32 $addr), 0, Value:$val)>;
2632class Storexim_abs_pat<PatFrag Store, PatFrag Value, PatFrag ValueMod,
2633                       InstHexagon MI>
2634  : Pat<(Store Value:$val, anyimm:$addr),
2635        (MI (ToI32 $addr), 0, (ValueMod Value:$val))>;
2636
2637let AddedComplexity = 140 in {
2638  def: Storexim_abs_pat<truncstorei8,  anyint, ToImmByte, S4_storeirb_io>;
2639  def: Storexim_abs_pat<truncstorei16, anyint, ToImmHalf, S4_storeirh_io>;
2640  def: Storexim_abs_pat<store,         anyint, ToImmWord, S4_storeiri_io>;
2641
2642  def: Storexi_abs_pat<truncstorei8,  anyimm, S4_storeirb_io>;
2643  def: Storexi_abs_pat<truncstorei16, anyimm, S4_storeirh_io>;
2644  def: Storexi_abs_pat<store,         anyimm, S4_storeiri_io>;
2645}
2646
2647// GP-relative address
2648let AddedComplexity = 120 in {
2649  def: Storea_pat<truncstorei8,               I32, addrgp, S2_storerbgp>;
2650  def: Storea_pat<truncstorei16,              I32, addrgp, S2_storerhgp>;
2651  def: Storea_pat<store,                      I32, addrgp, S2_storerigp>;
2652  def: Storea_pat<store,                     V4I8, addrgp, S2_storerigp>;
2653  def: Storea_pat<store,                    V2I16, addrgp, S2_storerigp>;
2654  def: Storea_pat<store,                      I64, addrgp, S2_storerdgp>;
2655  def: Storea_pat<store,                     V8I8, addrgp, S2_storerdgp>;
2656  def: Storea_pat<store,                    V4I16, addrgp, S2_storerdgp>;
2657  def: Storea_pat<store,                    V2I32, addrgp, S2_storerdgp>;
2658  def: Storea_pat<store,                      F32, addrgp, S2_storerigp>;
2659  def: Storea_pat<store,                      F64, addrgp, S2_storerdgp>;
2660  def: Storea_pat<AtomSt<atomic_store_8>,     I32, addrgp, S2_storerbgp>;
2661  def: Storea_pat<AtomSt<atomic_store_16>,    I32, addrgp, S2_storerhgp>;
2662  def: Storea_pat<AtomSt<atomic_store_32>,    I32, addrgp, S2_storerigp>;
2663  def: Storea_pat<AtomSt<atomic_store_32>,   V4I8, addrgp, S2_storerigp>;
2664  def: Storea_pat<AtomSt<atomic_store_32>,  V2I16, addrgp, S2_storerigp>;
2665  def: Storea_pat<AtomSt<atomic_store_64>,    I64, addrgp, S2_storerdgp>;
2666  def: Storea_pat<AtomSt<atomic_store_64>,   V8I8, addrgp, S2_storerdgp>;
2667  def: Storea_pat<AtomSt<atomic_store_64>,  V4I16, addrgp, S2_storerdgp>;
2668  def: Storea_pat<AtomSt<atomic_store_64>,  V2I32, addrgp, S2_storerdgp>;
2669
2670  def: Stoream_pat<truncstorei8,  I64, addrgp, LoReg,    S2_storerbgp>;
2671  def: Stoream_pat<truncstorei16, I64, addrgp, LoReg,    S2_storerhgp>;
2672  def: Stoream_pat<truncstorei32, I64, addrgp, LoReg,    S2_storerigp>;
2673  def: Stoream_pat<store,         I1,  addrgp, I1toI32,  S2_storerbgp>;
2674}
2675
2676// Absolute address
2677let AddedComplexity = 110 in {
2678  def: Storea_pat<truncstorei8,               I32, anyimm0, PS_storerbabs>;
2679  def: Storea_pat<truncstorei16,              I32, anyimm1, PS_storerhabs>;
2680  def: Storea_pat<store,                      I32, anyimm2, PS_storeriabs>;
2681  def: Storea_pat<store,                     V4I8, anyimm2, PS_storeriabs>;
2682  def: Storea_pat<store,                    V2I16, anyimm2, PS_storeriabs>;
2683  def: Storea_pat<store,                      I64, anyimm3, PS_storerdabs>;
2684  def: Storea_pat<store,                     V8I8, anyimm3, PS_storerdabs>;
2685  def: Storea_pat<store,                    V4I16, anyimm3, PS_storerdabs>;
2686  def: Storea_pat<store,                    V2I32, anyimm3, PS_storerdabs>;
2687  def: Storea_pat<store,                      F32, anyimm2, PS_storeriabs>;
2688  def: Storea_pat<store,                      F64, anyimm3, PS_storerdabs>;
2689  def: Storea_pat<AtomSt<atomic_store_8>,     I32, anyimm0, PS_storerbabs>;
2690  def: Storea_pat<AtomSt<atomic_store_16>,    I32, anyimm1, PS_storerhabs>;
2691  def: Storea_pat<AtomSt<atomic_store_32>,    I32, anyimm2, PS_storeriabs>;
2692  def: Storea_pat<AtomSt<atomic_store_32>,   V4I8, anyimm2, PS_storeriabs>;
2693  def: Storea_pat<AtomSt<atomic_store_32>,  V2I16, anyimm2, PS_storeriabs>;
2694  def: Storea_pat<AtomSt<atomic_store_64>,    I64, anyimm3, PS_storerdabs>;
2695  def: Storea_pat<AtomSt<atomic_store_64>,   V8I8, anyimm3, PS_storerdabs>;
2696  def: Storea_pat<AtomSt<atomic_store_64>,  V4I16, anyimm3, PS_storerdabs>;
2697  def: Storea_pat<AtomSt<atomic_store_64>,  V2I32, anyimm3, PS_storerdabs>;
2698
2699  def: Stoream_pat<truncstorei8,  I64, anyimm0, LoReg,    PS_storerbabs>;
2700  def: Stoream_pat<truncstorei16, I64, anyimm1, LoReg,    PS_storerhabs>;
2701  def: Stoream_pat<truncstorei32, I64, anyimm2, LoReg,    PS_storeriabs>;
2702  def: Stoream_pat<store,         I1,  anyimm0, I1toI32,  PS_storerbabs>;
2703}
2704
2705// Reg<<S + Imm
2706let AddedComplexity = 100 in {
2707  def: Storexu_shl_pat<truncstorei8,    I32, anyimm0, S4_storerb_ur>;
2708  def: Storexu_shl_pat<truncstorei16,   I32, anyimm1, S4_storerh_ur>;
2709  def: Storexu_shl_pat<store,           I32, anyimm2, S4_storeri_ur>;
2710  def: Storexu_shl_pat<store,          V4I8, anyimm2, S4_storeri_ur>;
2711  def: Storexu_shl_pat<store,         V2I16, anyimm2, S4_storeri_ur>;
2712  def: Storexu_shl_pat<store,           I64, anyimm3, S4_storerd_ur>;
2713  def: Storexu_shl_pat<store,          V8I8, anyimm3, S4_storerd_ur>;
2714  def: Storexu_shl_pat<store,         V4I16, anyimm3, S4_storerd_ur>;
2715  def: Storexu_shl_pat<store,         V2I32, anyimm3, S4_storerd_ur>;
2716  def: Storexu_shl_pat<store,           F32, anyimm2, S4_storeri_ur>;
2717  def: Storexu_shl_pat<store,           F64, anyimm3, S4_storerd_ur>;
2718
2719  def: Pat<(store I1:$Pu, (add (shl I32:$Rs, u2_0ImmPred:$u2), anyimm:$A)),
2720           (S4_storerb_ur IntRegs:$Rs, imm:$u2, imm:$A, (I1toI32 I1:$Pu))>;
2721}
2722
2723// Reg<<S + Reg
2724let AddedComplexity = 90 in {
2725  def: Storexr_shl_pat<truncstorei8,    I32, S4_storerb_rr>;
2726  def: Storexr_shl_pat<truncstorei16,   I32, S4_storerh_rr>;
2727  def: Storexr_shl_pat<store,           I32, S4_storeri_rr>;
2728  def: Storexr_shl_pat<store,          V4I8, S4_storeri_rr>;
2729  def: Storexr_shl_pat<store,         V2I16, S4_storeri_rr>;
2730  def: Storexr_shl_pat<store,           I64, S4_storerd_rr>;
2731  def: Storexr_shl_pat<store,          V8I8, S4_storerd_rr>;
2732  def: Storexr_shl_pat<store,         V4I16, S4_storerd_rr>;
2733  def: Storexr_shl_pat<store,         V2I32, S4_storerd_rr>;
2734  def: Storexr_shl_pat<store,           F32, S4_storeri_rr>;
2735  def: Storexr_shl_pat<store,           F64, S4_storerd_rr>;
2736
2737  def: Pat<(store I1:$Pu, (add (shl I32:$Rs, u2_0ImmPred:$u2), I32:$Rt)),
2738           (S4_storerb_ur IntRegs:$Rt, IntRegs:$Rs, imm:$u2, (I1toI32 I1:$Pu))>;
2739}
2740
2741class SS_<PatFrag F> : SmallStackStore<F>;
2742class LS_<PatFrag F> : LargeStackStore<F>;
2743
2744multiclass IMFA_<PatFrag S, PatFrag V, PatFrag O, PatFrag M, InstHexagon I> {
2745  defm: Storexim_fi_add_pat<S, V, O, M, I>;
2746}
2747multiclass IFA_<PatFrag S, PatFrag V, PatFrag O, InstHexagon I> {
2748  defm: Storexi_fi_add_pat<S, V, O, I>;
2749}
2750
2751// Fi+Imm, store-immediate
2752let AddedComplexity = 80 in {
2753  defm: IMFA_<SS_<truncstorei8>,  anyint, u6_0ImmPred, ToImmByte, S4_storeirb_io>;
2754  defm: IMFA_<SS_<truncstorei16>, anyint, u6_1ImmPred, ToImmHalf, S4_storeirh_io>;
2755  defm: IMFA_<SS_<store>,         anyint, u6_2ImmPred, ToImmWord, S4_storeiri_io>;
2756
2757  defm: IFA_<SS_<truncstorei8>,   anyimm, u6_0ImmPred, S4_storeirb_io>;
2758  defm: IFA_<SS_<truncstorei16>,  anyimm, u6_1ImmPred, S4_storeirh_io>;
2759  defm: IFA_<SS_<store>,          anyimm, u6_2ImmPred, S4_storeiri_io>;
2760
2761  // For large-stack stores, generate store-register (prefer explicit Fi
2762  // in the address).
2763  defm: IMFA_<LS_<truncstorei8>,   anyimm, u6_0ImmPred, ToI32, S2_storerb_io>;
2764  defm: IMFA_<LS_<truncstorei16>,  anyimm, u6_1ImmPred, ToI32, S2_storerh_io>;
2765  defm: IMFA_<LS_<store>,          anyimm, u6_2ImmPred, ToI32, S2_storeri_io>;
2766}
2767
2768// Fi, store-immediate
2769let AddedComplexity = 70 in {
2770  def: Storexim_fi_pat<SS_<truncstorei8>,  anyint, ToImmByte, S4_storeirb_io>;
2771  def: Storexim_fi_pat<SS_<truncstorei16>, anyint, ToImmHalf, S4_storeirh_io>;
2772  def: Storexim_fi_pat<SS_<store>,         anyint, ToImmWord, S4_storeiri_io>;
2773
2774  def: Storexi_fi_pat<SS_<truncstorei8>,   anyimm, S4_storeirb_io>;
2775  def: Storexi_fi_pat<SS_<truncstorei16>,  anyimm, S4_storeirh_io>;
2776  def: Storexi_fi_pat<SS_<store>,          anyimm, S4_storeiri_io>;
2777
2778  // For large-stack stores, generate store-register (prefer explicit Fi
2779  // in the address).
2780  def: Storexim_fi_pat<LS_<truncstorei8>,  anyimm, ToI32, S2_storerb_io>;
2781  def: Storexim_fi_pat<LS_<truncstorei16>, anyimm, ToI32, S2_storerh_io>;
2782  def: Storexim_fi_pat<LS_<store>,         anyimm, ToI32, S2_storeri_io>;
2783}
2784
2785// Fi+Imm, Fi, store-register
2786let AddedComplexity = 60 in {
2787  defm: Storexi_fi_add_pat<truncstorei8,    I32, anyimm, S2_storerb_io>;
2788  defm: Storexi_fi_add_pat<truncstorei16,   I32, anyimm, S2_storerh_io>;
2789  defm: Storexi_fi_add_pat<store,           I32, anyimm, S2_storeri_io>;
2790  defm: Storexi_fi_add_pat<store,          V4I8, anyimm, S2_storeri_io>;
2791  defm: Storexi_fi_add_pat<store,         V2I16, anyimm, S2_storeri_io>;
2792  defm: Storexi_fi_add_pat<store,           I64, anyimm, S2_storerd_io>;
2793  defm: Storexi_fi_add_pat<store,          V8I8, anyimm, S2_storerd_io>;
2794  defm: Storexi_fi_add_pat<store,         V4I16, anyimm, S2_storerd_io>;
2795  defm: Storexi_fi_add_pat<store,         V2I32, anyimm, S2_storerd_io>;
2796  defm: Storexi_fi_add_pat<store,           F32, anyimm, S2_storeri_io>;
2797  defm: Storexi_fi_add_pat<store,           F64, anyimm, S2_storerd_io>;
2798  defm: Storexim_fi_add_pat<store, I1, anyimm, I1toI32, S2_storerb_io>;
2799
2800  def: Storexi_fi_pat<truncstorei8,     I32, S2_storerb_io>;
2801  def: Storexi_fi_pat<truncstorei16,    I32, S2_storerh_io>;
2802  def: Storexi_fi_pat<store,            I32, S2_storeri_io>;
2803  def: Storexi_fi_pat<store,           V4I8, S2_storeri_io>;
2804  def: Storexi_fi_pat<store,          V2I16, S2_storeri_io>;
2805  def: Storexi_fi_pat<store,            I64, S2_storerd_io>;
2806  def: Storexi_fi_pat<store,           V8I8, S2_storerd_io>;
2807  def: Storexi_fi_pat<store,          V4I16, S2_storerd_io>;
2808  def: Storexi_fi_pat<store,          V2I32, S2_storerd_io>;
2809  def: Storexi_fi_pat<store,            F32, S2_storeri_io>;
2810  def: Storexi_fi_pat<store,            F64, S2_storerd_io>;
2811  def: Storexim_fi_pat<store, I1, I1toI32, S2_storerb_io>;
2812}
2813
2814
2815multiclass IMRA_<PatFrag S, PatFrag V, PatFrag O, PatFrag M, InstHexagon I> {
2816  defm: Storexim_add_pat<S, V, O, M, I>;
2817}
2818multiclass IRA_<PatFrag S, PatFrag V, PatFrag O, InstHexagon I> {
2819  defm: Storexi_add_pat<S, V, O, I>;
2820}
2821
2822// Reg+Imm, store-immediate
2823let AddedComplexity = 50 in {
2824  defm: IMRA_<truncstorei8,   anyint, u6_0ImmPred, ToImmByte, S4_storeirb_io>;
2825  defm: IMRA_<truncstorei16,  anyint, u6_1ImmPred, ToImmHalf, S4_storeirh_io>;
2826  defm: IMRA_<store,          anyint, u6_2ImmPred, ToImmWord, S4_storeiri_io>;
2827
2828  defm: IRA_<truncstorei8,    anyimm, u6_0ImmPred, S4_storeirb_io>;
2829  defm: IRA_<truncstorei16,   anyimm, u6_1ImmPred, S4_storeirh_io>;
2830  defm: IRA_<store,           anyimm, u6_2ImmPred, S4_storeiri_io>;
2831}
2832
2833// Reg+Imm, store-register
2834let AddedComplexity = 40 in {
2835  defm: Storexi_pat<truncstorei8,     I32, anyimm0, S2_storerb_io>;
2836  defm: Storexi_pat<truncstorei16,    I32, anyimm1, S2_storerh_io>;
2837  defm: Storexi_pat<store,            I32, anyimm2, S2_storeri_io>;
2838  defm: Storexi_pat<store,           V4I8, anyimm2, S2_storeri_io>;
2839  defm: Storexi_pat<store,          V2I16, anyimm2, S2_storeri_io>;
2840  defm: Storexi_pat<store,            I64, anyimm3, S2_storerd_io>;
2841  defm: Storexi_pat<store,           V8I8, anyimm3, S2_storerd_io>;
2842  defm: Storexi_pat<store,          V4I16, anyimm3, S2_storerd_io>;
2843  defm: Storexi_pat<store,          V2I32, anyimm3, S2_storerd_io>;
2844  defm: Storexi_pat<store,            F32, anyimm2, S2_storeri_io>;
2845  defm: Storexi_pat<store,            F64, anyimm3, S2_storerd_io>;
2846
2847  defm: Storexim_pat<truncstorei8,  I64, anyimm0, LoReg,   S2_storerb_io>;
2848  defm: Storexim_pat<truncstorei16, I64, anyimm1, LoReg,   S2_storerh_io>;
2849  defm: Storexim_pat<truncstorei32, I64, anyimm2, LoReg,   S2_storeri_io>;
2850  defm: Storexim_pat<store,         I1,  anyimm0, I1toI32, S2_storerb_io>;
2851
2852  defm: Storexi_pat<AtomSt<atomic_store_8>,     I32, anyimm0, S2_storerb_io>;
2853  defm: Storexi_pat<AtomSt<atomic_store_16>,    I32, anyimm1, S2_storerh_io>;
2854  defm: Storexi_pat<AtomSt<atomic_store_32>,    I32, anyimm2, S2_storeri_io>;
2855  defm: Storexi_pat<AtomSt<atomic_store_32>,   V4I8, anyimm2, S2_storeri_io>;
2856  defm: Storexi_pat<AtomSt<atomic_store_32>,  V2I16, anyimm2, S2_storeri_io>;
2857  defm: Storexi_pat<AtomSt<atomic_store_64>,    I64, anyimm3, S2_storerd_io>;
2858  defm: Storexi_pat<AtomSt<atomic_store_64>,   V8I8, anyimm3, S2_storerd_io>;
2859  defm: Storexi_pat<AtomSt<atomic_store_64>,  V4I16, anyimm3, S2_storerd_io>;
2860  defm: Storexi_pat<AtomSt<atomic_store_64>,  V2I32, anyimm3, S2_storerd_io>;
2861}
2862
2863// Reg+Reg
2864let AddedComplexity = 30 in {
2865  def: Storexr_add_pat<truncstorei8,    I32, S4_storerb_rr>;
2866  def: Storexr_add_pat<truncstorei16,   I32, S4_storerh_rr>;
2867  def: Storexr_add_pat<store,           I32, S4_storeri_rr>;
2868  def: Storexr_add_pat<store,          V4I8, S4_storeri_rr>;
2869  def: Storexr_add_pat<store,         V2I16, S4_storeri_rr>;
2870  def: Storexr_add_pat<store,           I64, S4_storerd_rr>;
2871  def: Storexr_add_pat<store,          V8I8, S4_storerd_rr>;
2872  def: Storexr_add_pat<store,         V4I16, S4_storerd_rr>;
2873  def: Storexr_add_pat<store,         V2I32, S4_storerd_rr>;
2874  def: Storexr_add_pat<store,           F32, S4_storeri_rr>;
2875  def: Storexr_add_pat<store,           F64, S4_storerd_rr>;
2876
2877  def: Pat<(store I1:$Pu, (add I32:$Rs, I32:$Rt)),
2878           (S4_storerb_rr IntRegs:$Rs, IntRegs:$Rt, 0, (I1toI32 I1:$Pu))>;
2879}
2880
2881// Reg, store-immediate
2882let AddedComplexity = 20 in {
2883  def: Storexim_base_pat<truncstorei8,  anyint, ToImmByte, S4_storeirb_io>;
2884  def: Storexim_base_pat<truncstorei16, anyint, ToImmHalf, S4_storeirh_io>;
2885  def: Storexim_base_pat<store,         anyint, ToImmWord, S4_storeiri_io>;
2886
2887  def: Storexi_base_pat<truncstorei8,   anyimm, S4_storeirb_io>;
2888  def: Storexi_base_pat<truncstorei16,  anyimm, S4_storeirh_io>;
2889  def: Storexi_base_pat<store,          anyimm, S4_storeiri_io>;
2890}
2891
2892// Reg, store-register
2893let AddedComplexity = 10 in {
2894  def: Storexi_base_pat<truncstorei8,     I32, S2_storerb_io>;
2895  def: Storexi_base_pat<truncstorei16,    I32, S2_storerh_io>;
2896  def: Storexi_base_pat<store,            I32, S2_storeri_io>;
2897  def: Storexi_base_pat<store,           V4I8, S2_storeri_io>;
2898  def: Storexi_base_pat<store,          V2I16, S2_storeri_io>;
2899  def: Storexi_base_pat<store,            I64, S2_storerd_io>;
2900  def: Storexi_base_pat<store,           V8I8, S2_storerd_io>;
2901  def: Storexi_base_pat<store,          V4I16, S2_storerd_io>;
2902  def: Storexi_base_pat<store,          V2I32, S2_storerd_io>;
2903  def: Storexi_base_pat<store,            F32, S2_storeri_io>;
2904  def: Storexi_base_pat<store,            F64, S2_storerd_io>;
2905
2906  def: Storexim_base_pat<truncstorei8,  I64, LoReg,   S2_storerb_io>;
2907  def: Storexim_base_pat<truncstorei16, I64, LoReg,   S2_storerh_io>;
2908  def: Storexim_base_pat<truncstorei32, I64, LoReg,   S2_storeri_io>;
2909  def: Storexim_base_pat<store,         I1,  I1toI32, S2_storerb_io>;
2910
2911  def: Storexi_base_pat<AtomSt<atomic_store_8>,     I32, S2_storerb_io>;
2912  def: Storexi_base_pat<AtomSt<atomic_store_16>,    I32, S2_storerh_io>;
2913  def: Storexi_base_pat<AtomSt<atomic_store_32>,    I32, S2_storeri_io>;
2914  def: Storexi_base_pat<AtomSt<atomic_store_32>,   V4I8, S2_storeri_io>;
2915  def: Storexi_base_pat<AtomSt<atomic_store_32>,  V2I16, S2_storeri_io>;
2916  def: Storexi_base_pat<AtomSt<atomic_store_64>,    I64, S2_storerd_io>;
2917  def: Storexi_base_pat<AtomSt<atomic_store_64>,   V8I8, S2_storerd_io>;
2918  def: Storexi_base_pat<AtomSt<atomic_store_64>,  V4I16, S2_storerd_io>;
2919  def: Storexi_base_pat<AtomSt<atomic_store_64>,  V2I32, S2_storerd_io>;
2920}
2921
2922
2923// --(14) Memop ----------------------------------------------------------
2924//
2925
2926def m5_0Imm8Pred : PatLeaf<(i32 imm), [{
2927  int8_t V = N->getSExtValue();
2928  return -32 < V && V <= -1;
2929}]>;
2930
2931def m5_0Imm16Pred : PatLeaf<(i32 imm), [{
2932  int16_t V = N->getSExtValue();
2933  return -32 < V && V <= -1;
2934}]>;
2935
2936def m5_0ImmPred  : PatLeaf<(i32 imm), [{
2937  int64_t V = N->getSExtValue();
2938  return -31 <= V && V <= -1;
2939}]>;
2940
2941def IsNPow2_8 : PatLeaf<(i32 imm), [{
2942  uint8_t NV = ~N->getZExtValue();
2943  return isPowerOf2_32(NV);
2944}]>;
2945
2946def IsNPow2_16 : PatLeaf<(i32 imm), [{
2947  uint16_t NV = ~N->getZExtValue();
2948  return isPowerOf2_32(NV);
2949}]>;
2950
2951def Log2_8 : SDNodeXForm<imm, [{
2952  uint8_t V = N->getZExtValue();
2953  return CurDAG->getTargetConstant(Log2_32(V), SDLoc(N), MVT::i32);
2954}]>;
2955
2956def Log2_16 : SDNodeXForm<imm, [{
2957  uint16_t V = N->getZExtValue();
2958  return CurDAG->getTargetConstant(Log2_32(V), SDLoc(N), MVT::i32);
2959}]>;
2960
2961def LogN2_8 : SDNodeXForm<imm, [{
2962  uint8_t NV = ~N->getZExtValue();
2963  return CurDAG->getTargetConstant(Log2_32(NV), SDLoc(N), MVT::i32);
2964}]>;
2965
2966def LogN2_16 : SDNodeXForm<imm, [{
2967  uint16_t NV = ~N->getZExtValue();
2968  return CurDAG->getTargetConstant(Log2_32(NV), SDLoc(N), MVT::i32);
2969}]>;
2970
2971def IdImm : SDNodeXForm<imm, [{ return SDValue(N, 0); }]>;
2972
2973multiclass Memopxr_base_pat<PatFrag Load, PatFrag Store, SDNode Oper,
2974                            InstHexagon MI> {
2975  // Addr: i32
2976  def: Pat<(Store (Oper (Load I32:$Rs), I32:$A), I32:$Rs),
2977           (MI I32:$Rs, 0, I32:$A)>;
2978  // Addr: fi
2979  def: Pat<(Store (Oper (Load AddrFI:$Rs), I32:$A), AddrFI:$Rs),
2980           (MI AddrFI:$Rs, 0, I32:$A)>;
2981}
2982
2983multiclass Memopxr_add_pat<PatFrag Load, PatFrag Store, PatFrag ImmPred,
2984                           SDNode Oper, InstHexagon MI> {
2985  // Addr: i32
2986  def: Pat<(Store (Oper (Load (add I32:$Rs, ImmPred:$Off)), I32:$A),
2987                  (add I32:$Rs, ImmPred:$Off)),
2988           (MI I32:$Rs, imm:$Off, I32:$A)>;
2989  def: Pat<(Store (Oper (Load (IsOrAdd I32:$Rs, ImmPred:$Off)), I32:$A),
2990                  (IsOrAdd I32:$Rs, ImmPred:$Off)),
2991           (MI I32:$Rs, imm:$Off, I32:$A)>;
2992  // Addr: fi
2993  def: Pat<(Store (Oper (Load (add AddrFI:$Rs, ImmPred:$Off)), I32:$A),
2994                  (add AddrFI:$Rs, ImmPred:$Off)),
2995           (MI AddrFI:$Rs, imm:$Off, I32:$A)>;
2996  def: Pat<(Store (Oper (Load (IsOrAdd AddrFI:$Rs, ImmPred:$Off)), I32:$A),
2997                  (IsOrAdd AddrFI:$Rs, ImmPred:$Off)),
2998           (MI AddrFI:$Rs, imm:$Off, I32:$A)>;
2999}
3000
3001multiclass Memopxr_pat<PatFrag Load, PatFrag Store, PatFrag ImmPred,
3002                       SDNode Oper, InstHexagon MI> {
3003  let Predicates = [UseMEMOPS] in {
3004    defm: Memopxr_base_pat <Load, Store,          Oper, MI>;
3005    defm: Memopxr_add_pat  <Load, Store, ImmPred, Oper, MI>;
3006  }
3007}
3008
3009let AddedComplexity = 200 in {
3010  // add reg
3011  defm: Memopxr_pat<extloadi8, truncstorei8, u6_0ImmPred, add,
3012        /*anyext*/  L4_add_memopb_io>;
3013  defm: Memopxr_pat<sextloadi8, truncstorei8, u6_0ImmPred, add,
3014        /*sext*/    L4_add_memopb_io>;
3015  defm: Memopxr_pat<zextloadi8, truncstorei8, u6_0ImmPred, add,
3016        /*zext*/    L4_add_memopb_io>;
3017  defm: Memopxr_pat<extloadi16, truncstorei16, u6_1ImmPred, add,
3018        /*anyext*/  L4_add_memoph_io>;
3019  defm: Memopxr_pat<sextloadi16, truncstorei16, u6_1ImmPred, add,
3020        /*sext*/    L4_add_memoph_io>;
3021  defm: Memopxr_pat<zextloadi16, truncstorei16, u6_1ImmPred, add,
3022        /*zext*/    L4_add_memoph_io>;
3023  defm: Memopxr_pat<load, store, u6_2ImmPred, add, L4_add_memopw_io>;
3024
3025  // sub reg
3026  defm: Memopxr_pat<extloadi8, truncstorei8, u6_0ImmPred, sub,
3027        /*anyext*/  L4_sub_memopb_io>;
3028  defm: Memopxr_pat<sextloadi8, truncstorei8, u6_0ImmPred, sub,
3029        /*sext*/    L4_sub_memopb_io>;
3030  defm: Memopxr_pat<zextloadi8, truncstorei8, u6_0ImmPred, sub,
3031        /*zext*/    L4_sub_memopb_io>;
3032  defm: Memopxr_pat<extloadi16, truncstorei16, u6_1ImmPred, sub,
3033        /*anyext*/  L4_sub_memoph_io>;
3034  defm: Memopxr_pat<sextloadi16, truncstorei16, u6_1ImmPred, sub,
3035        /*sext*/    L4_sub_memoph_io>;
3036  defm: Memopxr_pat<zextloadi16, truncstorei16, u6_1ImmPred, sub,
3037        /*zext*/    L4_sub_memoph_io>;
3038  defm: Memopxr_pat<load, store, u6_2ImmPred, sub, L4_sub_memopw_io>;
3039
3040  // and reg
3041  defm: Memopxr_pat<extloadi8, truncstorei8, u6_0ImmPred, and,
3042        /*anyext*/  L4_and_memopb_io>;
3043  defm: Memopxr_pat<sextloadi8, truncstorei8, u6_0ImmPred, and,
3044        /*sext*/    L4_and_memopb_io>;
3045  defm: Memopxr_pat<zextloadi8, truncstorei8, u6_0ImmPred, and,
3046        /*zext*/    L4_and_memopb_io>;
3047  defm: Memopxr_pat<extloadi16, truncstorei16, u6_1ImmPred, and,
3048        /*anyext*/  L4_and_memoph_io>;
3049  defm: Memopxr_pat<sextloadi16, truncstorei16, u6_1ImmPred, and,
3050        /*sext*/    L4_and_memoph_io>;
3051  defm: Memopxr_pat<zextloadi16, truncstorei16, u6_1ImmPred, and,
3052        /*zext*/    L4_and_memoph_io>;
3053  defm: Memopxr_pat<load, store, u6_2ImmPred, and, L4_and_memopw_io>;
3054
3055  // or reg
3056  defm: Memopxr_pat<extloadi8, truncstorei8, u6_0ImmPred, or,
3057        /*anyext*/  L4_or_memopb_io>;
3058  defm: Memopxr_pat<sextloadi8, truncstorei8, u6_0ImmPred, or,
3059        /*sext*/    L4_or_memopb_io>;
3060  defm: Memopxr_pat<zextloadi8, truncstorei8, u6_0ImmPred, or,
3061        /*zext*/    L4_or_memopb_io>;
3062  defm: Memopxr_pat<extloadi16, truncstorei16, u6_1ImmPred, or,
3063        /*anyext*/  L4_or_memoph_io>;
3064  defm: Memopxr_pat<sextloadi16, truncstorei16, u6_1ImmPred, or,
3065        /*sext*/    L4_or_memoph_io>;
3066  defm: Memopxr_pat<zextloadi16, truncstorei16, u6_1ImmPred, or,
3067        /*zext*/    L4_or_memoph_io>;
3068  defm: Memopxr_pat<load, store, u6_2ImmPred, or, L4_or_memopw_io>;
3069}
3070
3071
3072multiclass Memopxi_base_pat<PatFrag Load, PatFrag Store, SDNode Oper,
3073                            PatFrag Arg, SDNodeXForm ArgMod, InstHexagon MI> {
3074  // Addr: i32
3075  def: Pat<(Store (Oper (Load I32:$Rs), Arg:$A), I32:$Rs),
3076           (MI I32:$Rs, 0, (ArgMod Arg:$A))>;
3077  // Addr: fi
3078  def: Pat<(Store (Oper (Load AddrFI:$Rs), Arg:$A), AddrFI:$Rs),
3079           (MI AddrFI:$Rs, 0, (ArgMod Arg:$A))>;
3080}
3081
3082multiclass Memopxi_add_pat<PatFrag Load, PatFrag Store, PatFrag ImmPred,
3083                           SDNode Oper, PatFrag Arg, SDNodeXForm ArgMod,
3084                           InstHexagon MI> {
3085  // Addr: i32
3086  def: Pat<(Store (Oper (Load (add I32:$Rs, ImmPred:$Off)), Arg:$A),
3087                  (add I32:$Rs, ImmPred:$Off)),
3088           (MI I32:$Rs, imm:$Off, (ArgMod Arg:$A))>;
3089  def: Pat<(Store (Oper (Load (IsOrAdd I32:$Rs, ImmPred:$Off)), Arg:$A),
3090                  (IsOrAdd I32:$Rs, ImmPred:$Off)),
3091           (MI I32:$Rs, imm:$Off, (ArgMod Arg:$A))>;
3092  // Addr: fi
3093  def: Pat<(Store (Oper (Load (add AddrFI:$Rs, ImmPred:$Off)), Arg:$A),
3094                  (add AddrFI:$Rs, ImmPred:$Off)),
3095           (MI AddrFI:$Rs, imm:$Off, (ArgMod Arg:$A))>;
3096  def: Pat<(Store (Oper (Load (IsOrAdd AddrFI:$Rs, ImmPred:$Off)), Arg:$A),
3097                  (IsOrAdd AddrFI:$Rs, ImmPred:$Off)),
3098           (MI AddrFI:$Rs, imm:$Off, (ArgMod Arg:$A))>;
3099}
3100
3101multiclass Memopxi_pat<PatFrag Load, PatFrag Store, PatFrag ImmPred,
3102                       SDNode Oper, PatFrag Arg, SDNodeXForm ArgMod,
3103                       InstHexagon MI> {
3104  let Predicates = [UseMEMOPS] in {
3105    defm: Memopxi_base_pat <Load, Store,          Oper, Arg, ArgMod, MI>;
3106    defm: Memopxi_add_pat  <Load, Store, ImmPred, Oper, Arg, ArgMod, MI>;
3107  }
3108}
3109
3110let AddedComplexity = 220 in {
3111  // add imm
3112  defm: Memopxi_pat<extloadi8, truncstorei8, u6_0ImmPred, add, u5_0ImmPred,
3113        /*anyext*/  IdImm, L4_iadd_memopb_io>;
3114  defm: Memopxi_pat<sextloadi8, truncstorei8, u6_0ImmPred, add, u5_0ImmPred,
3115        /*sext*/    IdImm, L4_iadd_memopb_io>;
3116  defm: Memopxi_pat<zextloadi8, truncstorei8, u6_0ImmPred, add, u5_0ImmPred,
3117        /*zext*/    IdImm, L4_iadd_memopb_io>;
3118  defm: Memopxi_pat<extloadi16, truncstorei16, u6_1ImmPred, add, u5_0ImmPred,
3119        /*anyext*/  IdImm, L4_iadd_memoph_io>;
3120  defm: Memopxi_pat<extloadi16, truncstorei16, u6_1ImmPred, add, u5_0ImmPred,
3121        /*sext*/    IdImm, L4_iadd_memoph_io>;
3122  defm: Memopxi_pat<extloadi16, truncstorei16, u6_1ImmPred, add, u5_0ImmPred,
3123        /*zext*/    IdImm, L4_iadd_memoph_io>;
3124  defm: Memopxi_pat<load, store, u6_2ImmPred, add, u5_0ImmPred, IdImm,
3125                    L4_iadd_memopw_io>;
3126  defm: Memopxi_pat<extloadi8, truncstorei8, u6_0ImmPred, sub, m5_0Imm8Pred,
3127        /*anyext*/  NegImm8, L4_iadd_memopb_io>;
3128  defm: Memopxi_pat<sextloadi8, truncstorei8, u6_0ImmPred, sub, m5_0Imm8Pred,
3129        /*sext*/    NegImm8, L4_iadd_memopb_io>;
3130  defm: Memopxi_pat<zextloadi8, truncstorei8, u6_0ImmPred, sub, m5_0Imm8Pred,
3131        /*zext*/    NegImm8, L4_iadd_memopb_io>;
3132  defm: Memopxi_pat<extloadi16, truncstorei16, u6_1ImmPred, sub, m5_0Imm16Pred,
3133        /*anyext*/  NegImm16, L4_iadd_memoph_io>;
3134  defm: Memopxi_pat<sextloadi16, truncstorei16, u6_1ImmPred, sub, m5_0Imm16Pred,
3135        /*sext*/    NegImm16, L4_iadd_memoph_io>;
3136  defm: Memopxi_pat<zextloadi16, truncstorei16, u6_1ImmPred, sub, m5_0Imm16Pred,
3137        /*zext*/    NegImm16, L4_iadd_memoph_io>;
3138  defm: Memopxi_pat<load, store, u6_2ImmPred, sub, m5_0ImmPred, NegImm32,
3139                    L4_iadd_memopw_io>;
3140
3141  // sub imm
3142  defm: Memopxi_pat<extloadi8, truncstorei8, u6_0ImmPred, sub, u5_0ImmPred,
3143        /*anyext*/  IdImm, L4_isub_memopb_io>;
3144  defm: Memopxi_pat<sextloadi8, truncstorei8, u6_0ImmPred, sub, u5_0ImmPred,
3145        /*sext*/    IdImm, L4_isub_memopb_io>;
3146  defm: Memopxi_pat<zextloadi8, truncstorei8, u6_0ImmPred, sub, u5_0ImmPred,
3147        /*zext*/    IdImm, L4_isub_memopb_io>;
3148  defm: Memopxi_pat<extloadi16, truncstorei16, u6_1ImmPred, sub, u5_0ImmPred,
3149        /*anyext*/  IdImm, L4_isub_memoph_io>;
3150  defm: Memopxi_pat<sextloadi16, truncstorei16, u6_1ImmPred, sub, u5_0ImmPred,
3151        /*sext*/    IdImm, L4_isub_memoph_io>;
3152  defm: Memopxi_pat<zextloadi16, truncstorei16, u6_1ImmPred, sub, u5_0ImmPred,
3153        /*zext*/    IdImm, L4_isub_memoph_io>;
3154  defm: Memopxi_pat<load, store, u6_2ImmPred, sub, u5_0ImmPred, IdImm,
3155                    L4_isub_memopw_io>;
3156  defm: Memopxi_pat<extloadi8, truncstorei8, u6_0ImmPred, add, m5_0Imm8Pred,
3157        /*anyext*/  NegImm8, L4_isub_memopb_io>;
3158  defm: Memopxi_pat<sextloadi8, truncstorei8, u6_0ImmPred, add, m5_0Imm8Pred,
3159        /*sext*/    NegImm8, L4_isub_memopb_io>;
3160  defm: Memopxi_pat<zextloadi8, truncstorei8, u6_0ImmPred, add, m5_0Imm8Pred,
3161        /*zext*/    NegImm8, L4_isub_memopb_io>;
3162  defm: Memopxi_pat<extloadi16, truncstorei16, u6_1ImmPred, add, m5_0Imm16Pred,
3163        /*anyext*/  NegImm16, L4_isub_memoph_io>;
3164  defm: Memopxi_pat<sextloadi16, truncstorei16, u6_1ImmPred, add, m5_0Imm16Pred,
3165        /*sext*/    NegImm16, L4_isub_memoph_io>;
3166  defm: Memopxi_pat<zextloadi16, truncstorei16, u6_1ImmPred, add, m5_0Imm16Pred,
3167        /*zext*/    NegImm16, L4_isub_memoph_io>;
3168  defm: Memopxi_pat<load, store, u6_2ImmPred, add, m5_0ImmPred, NegImm32,
3169                    L4_isub_memopw_io>;
3170
3171  // clrbit imm
3172  defm: Memopxi_pat<extloadi8, truncstorei8, u6_0ImmPred, and, IsNPow2_8,
3173        /*anyext*/  LogN2_8, L4_iand_memopb_io>;
3174  defm: Memopxi_pat<sextloadi8, truncstorei8, u6_0ImmPred, and, IsNPow2_8,
3175        /*sext*/    LogN2_8, L4_iand_memopb_io>;
3176  defm: Memopxi_pat<zextloadi8, truncstorei8, u6_0ImmPred, and, IsNPow2_8,
3177        /*zext*/    LogN2_8, L4_iand_memopb_io>;
3178  defm: Memopxi_pat<extloadi16, truncstorei16, u6_1ImmPred, and, IsNPow2_16,
3179        /*anyext*/  LogN2_16, L4_iand_memoph_io>;
3180  defm: Memopxi_pat<sextloadi16, truncstorei16, u6_1ImmPred, and, IsNPow2_16,
3181        /*sext*/    LogN2_16, L4_iand_memoph_io>;
3182  defm: Memopxi_pat<zextloadi16, truncstorei16, u6_1ImmPred, and, IsNPow2_16,
3183        /*zext*/    LogN2_16, L4_iand_memoph_io>;
3184  defm: Memopxi_pat<load, store, u6_2ImmPred, and, IsNPow2_32,
3185		    LogN2_32, L4_iand_memopw_io>;
3186
3187  // setbit imm
3188  defm: Memopxi_pat<extloadi8, truncstorei8, u6_0ImmPred, or, IsPow2_32,
3189        /*anyext*/  Log2_8, L4_ior_memopb_io>;
3190  defm: Memopxi_pat<sextloadi8, truncstorei8, u6_0ImmPred, or, IsPow2_32,
3191        /*sext*/    Log2_8, L4_ior_memopb_io>;
3192  defm: Memopxi_pat<zextloadi8, truncstorei8, u6_0ImmPred, or, IsPow2_32,
3193        /*zext*/    Log2_8, L4_ior_memopb_io>;
3194  defm: Memopxi_pat<extloadi16, truncstorei16, u6_1ImmPred, or, IsPow2_32,
3195        /*anyext*/  Log2_16, L4_ior_memoph_io>;
3196  defm: Memopxi_pat<sextloadi16, truncstorei16, u6_1ImmPred, or, IsPow2_32,
3197        /*sext*/    Log2_16, L4_ior_memoph_io>;
3198  defm: Memopxi_pat<zextloadi16, truncstorei16, u6_1ImmPred, or, IsPow2_32,
3199        /*zext*/    Log2_16, L4_ior_memoph_io>;
3200  defm: Memopxi_pat<load, store, u6_2ImmPred, or, IsPow2_32,
3201		    Log2_32, L4_ior_memopw_io>;
3202}
3203
3204
3205// --(15) Call -----------------------------------------------------------
3206//
3207
3208// Pseudo instructions.
3209def SDT_SPCallSeqStart
3210  : SDCallSeqStart<[SDTCisVT<0, i32>, SDTCisVT<1, i32>]>;
3211def SDT_SPCallSeqEnd
3212  : SDCallSeqEnd<[SDTCisVT<0, i32>, SDTCisVT<1, i32>]>;
3213
3214def callseq_start: SDNode<"ISD::CALLSEQ_START", SDT_SPCallSeqStart,
3215                          [SDNPHasChain, SDNPOutGlue]>;
3216def callseq_end:   SDNode<"ISD::CALLSEQ_END",   SDT_SPCallSeqEnd,
3217                          [SDNPHasChain, SDNPOptInGlue, SDNPOutGlue]>;
3218
3219def SDT_SPCall: SDTypeProfile<0, 1, [SDTCisVT<0, i32>]>;
3220
3221def HexagonTCRet: SDNode<"HexagonISD::TC_RETURN", SDT_SPCall,
3222                         [SDNPHasChain,  SDNPOptInGlue, SDNPVariadic]>;
3223def callv3: SDNode<"HexagonISD::CALL", SDT_SPCall,
3224                   [SDNPHasChain, SDNPOptInGlue, SDNPOutGlue, SDNPVariadic]>;
3225def callv3nr: SDNode<"HexagonISD::CALLnr", SDT_SPCall,
3226                     [SDNPHasChain, SDNPOptInGlue, SDNPOutGlue, SDNPVariadic]>;
3227
3228def: Pat<(callseq_start timm:$amt, timm:$amt2),
3229         (ADJCALLSTACKDOWN imm:$amt, imm:$amt2)>;
3230def: Pat<(callseq_end timm:$amt1, timm:$amt2),
3231         (ADJCALLSTACKUP imm:$amt1, imm:$amt2)>;
3232
3233def: Pat<(HexagonTCRet tglobaladdr:$dst),   (PS_tailcall_i tglobaladdr:$dst)>;
3234def: Pat<(HexagonTCRet texternalsym:$dst),  (PS_tailcall_i texternalsym:$dst)>;
3235def: Pat<(HexagonTCRet I32:$dst),           (PS_tailcall_r I32:$dst)>;
3236
3237def: Pat<(callv3 I32:$dst),                 (J2_callr I32:$dst)>;
3238def: Pat<(callv3 tglobaladdr:$dst),         (J2_call tglobaladdr:$dst)>;
3239def: Pat<(callv3 texternalsym:$dst),        (J2_call texternalsym:$dst)>;
3240def: Pat<(callv3 tglobaltlsaddr:$dst),      (J2_call tglobaltlsaddr:$dst)>;
3241
3242def: Pat<(callv3nr I32:$dst),               (PS_callr_nr I32:$dst)>;
3243def: Pat<(callv3nr tglobaladdr:$dst),       (PS_call_nr tglobaladdr:$dst)>;
3244def: Pat<(callv3nr texternalsym:$dst),      (PS_call_nr texternalsym:$dst)>;
3245
3246def retflag : SDNode<"HexagonISD::RET_FLAG", SDTNone,
3247                     [SDNPHasChain, SDNPOptInGlue, SDNPVariadic]>;
3248def eh_return: SDNode<"HexagonISD::EH_RETURN", SDTNone, [SDNPHasChain]>;
3249
3250def: Pat<(retflag),   (PS_jmpret (i32 R31))>;
3251def: Pat<(eh_return), (EH_RETURN_JMPR (i32 R31))>;
3252
3253
3254// --(16) Branch ---------------------------------------------------------
3255//
3256
3257def: Pat<(br      bb:$dst),         (J2_jump  b30_2Imm:$dst)>;
3258def: Pat<(brind   I32:$dst),        (J2_jumpr I32:$dst)>;
3259
3260def: Pat<(brcond I1:$Pu, bb:$dst),
3261         (J2_jumpt I1:$Pu, bb:$dst)>;
3262def: Pat<(brcond (not I1:$Pu), bb:$dst),
3263         (J2_jumpf I1:$Pu, bb:$dst)>;
3264def: Pat<(brcond (i1 (setne I1:$Pu, -1)), bb:$dst),
3265         (J2_jumpf I1:$Pu, bb:$dst)>;
3266def: Pat<(brcond (i1 (seteq I1:$Pu, 0)), bb:$dst),
3267         (J2_jumpf I1:$Pu, bb:$dst)>;
3268def: Pat<(brcond (i1 (setne I1:$Pu, 0)), bb:$dst),
3269         (J2_jumpt I1:$Pu, bb:$dst)>;
3270
3271
3272// --(17) Misc -----------------------------------------------------------
3273
3274
3275// Generate code of the form 'C2_muxii(cmpbgtui(Rdd, C-1),0,1)'
3276// for C code of the form r = (c>='0' && c<='9') ? 1 : 0.
3277// The isdigit transformation relies on two 'clever' aspects:
3278// 1) The data type is unsigned which allows us to eliminate a zero test after
3279//    biasing the expression by 48. We are depending on the representation of
3280//    the unsigned types, and semantics.
3281// 2) The front end has converted <= 9 into < 10 on entry to LLVM.
3282//
3283// For the C code:
3284//   retval = (c >= '0' && c <= '9') ? 1 : 0;
3285// The code is transformed upstream of llvm into
3286//   retval = (c-48) < 10 ? 1 : 0;
3287
3288def u7_0PosImmPred : ImmLeaf<i32, [{
3289  // True if the immediate fits in an 7-bit unsigned field and is positive.
3290  return Imm > 0 && isUInt<7>(Imm);
3291}]>;
3292
3293let AddedComplexity = 139 in
3294def: Pat<(i32 (zext (i1 (setult (and I32:$Rs, 255), u7_0PosImmPred:$u7)))),
3295         (C2_muxii (A4_cmpbgtui IntRegs:$Rs, (UDEC1 imm:$u7)), 0, 1)>;
3296
3297let AddedComplexity = 100 in
3298def: Pat<(or (or (shl (HexagonINSERT (i32 (zextloadi8 (add I32:$b, 2))),
3299                                     (i32 (extloadi8  (add I32:$b, 3))),
3300                                     24, 8),
3301                      (i32 16)),
3302                 (shl (i32 (zextloadi8 (add I32:$b, 1))), (i32 8))),
3303             (zextloadi8 I32:$b)),
3304         (A2_swiz (L2_loadri_io I32:$b, 0))>;
3305
3306
3307// We need custom lowering of ISD::PREFETCH into HexagonISD::DCFETCH
3308// because the SDNode ISD::PREFETCH has properties MayLoad and MayStore.
3309// We don't really want either one here.
3310def SDTHexagonDCFETCH: SDTypeProfile<0, 2, [SDTCisPtrTy<0>,SDTCisInt<1>]>;
3311def HexagonDCFETCH: SDNode<"HexagonISD::DCFETCH", SDTHexagonDCFETCH,
3312                           [SDNPHasChain]>;
3313
3314def: Pat<(HexagonDCFETCH IntRegs:$Rs, u11_3ImmPred:$u11_3),
3315         (Y2_dcfetchbo IntRegs:$Rs, imm:$u11_3)>;
3316def: Pat<(HexagonDCFETCH (i32 (add IntRegs:$Rs, u11_3ImmPred:$u11_3)), (i32 0)),
3317         (Y2_dcfetchbo IntRegs:$Rs, imm:$u11_3)>;
3318
3319def SDTHexagonALLOCA
3320  : SDTypeProfile<1, 2, [SDTCisVT<0, i32>, SDTCisVT<1, i32>]>;
3321def HexagonALLOCA
3322  : SDNode<"HexagonISD::ALLOCA", SDTHexagonALLOCA, [SDNPHasChain]>;
3323
3324def: Pat<(HexagonALLOCA I32:$Rs, (i32 imm:$A)),
3325         (PS_alloca IntRegs:$Rs, imm:$A)>;
3326
3327def HexagonBARRIER: SDNode<"HexagonISD::BARRIER", SDTNone, [SDNPHasChain]>;
3328def: Pat<(HexagonBARRIER), (Y2_barrier)>;
3329
3330def: Pat<(trap), (PS_crash)>;
3331
3332// Read cycle counter.
3333def SDTInt64Leaf: SDTypeProfile<1, 0, [SDTCisVT<0, i64>]>;
3334def HexagonREADCYCLE: SDNode<"HexagonISD::READCYCLE", SDTInt64Leaf,
3335  [SDNPHasChain]>;
3336
3337def: Pat<(HexagonREADCYCLE), (A4_tfrcpp UPCYCLE)>;
3338
3339// The declared return value of the store-locked intrinsics is i32, but
3340// the instructions actually define i1. To avoid register copies from
3341// IntRegs to PredRegs and back, fold the entire pattern checking the
3342// result against true/false.
3343let AddedComplexity = 100 in {
3344  def: Pat<(i1 (setne (int_hexagon_S2_storew_locked I32:$Rs, I32:$Rt), 0)),
3345           (S2_storew_locked I32:$Rs, I32:$Rt)>;
3346  def: Pat<(i1 (seteq (int_hexagon_S2_storew_locked I32:$Rs, I32:$Rt), 0)),
3347           (C2_not (S2_storew_locked I32:$Rs, I32:$Rt))>;
3348  def: Pat<(i1 (setne (int_hexagon_S4_stored_locked I32:$Rs, I64:$Rt), 0)),
3349           (S4_stored_locked I32:$Rs, I64:$Rt)>;
3350  def: Pat<(i1 (seteq (int_hexagon_S4_stored_locked I32:$Rs, I64:$Rt), 0)),
3351           (C2_not (S4_stored_locked I32:$Rs, I64:$Rt))>;
3352}
3353
3354def: Pat<(int_hexagon_instrprof_custom (HexagonAtPcrel tglobaladdr:$addr), u32_0ImmPred:$I),
3355         (PS_call_instrprof_custom tglobaladdr:$addr, imm:$I)>;
3356
3357def: Pat<(int_hexagon_instrprof_custom (HexagonCONST32 tglobaladdr:$addr), u32_0ImmPred:$I),
3358         (PS_call_instrprof_custom tglobaladdr:$addr, imm:$I)>;
3359