1//==- HexagonPatterns.td - Target Description for Hexagon -*- tablegen -*-===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8
9// Table of contents:
10//     (0) Definitions
11//     (1) Immediates
12//     (2) Type casts
13//     (3) Extend/truncate
14//     (4) Logical
15//     (5) Compare
16//     (6) Select
17//     (7) Insert/extract
18//     (8) Shift/permute
19//     (9) Arithmetic/bitwise
20//    (10) Bit
21//    (11) PIC
22//    (12) Load
23//    (13) Store
24//    (14) Memop
25//    (15) Call
26//    (16) Branch
27//    (17) Misc
28
29// Guidelines (in no particular order):
30// 1. Avoid relying on pattern ordering to give preference to one pattern
31//    over another, prefer using AddedComplexity instead. The reason for
32//    this is to avoid unintended conseqeuences (caused by altering the
33//    order) when making changes. The current order of patterns in this
34//    file obviously does play some role, but none of the ordering was
35//    deliberately chosen (other than to create a logical structure of
36//    this file). When making changes, adding AddedComplexity to existing
37//    patterns may be needed.
38// 2. Maintain the logical structure of the file, try to put new patterns
39//    in designated sections.
40// 3. Do not use A2_combinew instruction directly, use Combinew fragment
41//    instead. It uses REG_SEQUENCE, which is more amenable to optimizations.
42// 4. Most selection macros are based on PatFrags. For DAGs that involve
43//    SDNodes, use pf1/pf2 to convert them to PatFrags. Use common frags
44//    whenever possible (see the Definitions section). When adding new
45//    macro, try to make is general to enable reuse across sections.
46// 5. Compound instructions (e.g. Rx+Rs*Rt) are generated under the condition
47//    that the nested operation has only one use. Having it separated in case
48//    of multiple uses avoids duplication of (processor) work.
49// 6. The v4 vector instructions (64-bit) are treated as core instructions,
50//    for example, A2_vaddh is in the "arithmetic" section with A2_add.
51// 7. When adding a pattern for an instruction with a constant-extendable
52//    operand, allow all possible kinds of inputs for the immediate value
53//    (see AnyImm/anyimm and their variants in the Definitions section).
54
55
56// --(0) Definitions -----------------------------------------------------
57//
58
59// This complex pattern exists only to create a machine instruction operand
60// of type "frame index". There doesn't seem to be a way to do that directly
61// in the patterns.
62def AddrFI: ComplexPattern<i32, 1, "SelectAddrFI", [frameindex], []>;
63
64// These complex patterns are not strictly necessary, since global address
65// folding will happen during DAG combining. For distinguishing between GA
66// and GP, pat frags with HexagonCONST32 and HexagonCONST32_GP can be used.
67def AddrGA: ComplexPattern<i32, 1, "SelectAddrGA", [], []>;
68def AddrGP: ComplexPattern<i32, 1, "SelectAddrGP", [], []>;
69def AnyImm: ComplexPattern<i32, 1, "SelectAnyImm", [], []>;
70def AnyInt: ComplexPattern<i32, 1, "SelectAnyInt", [], []>;
71
72// Global address or a constant being a multiple of 2^n.
73def AnyImm0: ComplexPattern<i32, 1, "SelectAnyImm0", [], []>;
74def AnyImm1: ComplexPattern<i32, 1, "SelectAnyImm1", [], []>;
75def AnyImm2: ComplexPattern<i32, 1, "SelectAnyImm2", [], []>;
76def AnyImm3: ComplexPattern<i32, 1, "SelectAnyImm3", [], []>;
77
78
79// Type helper frags.
80def V2I1:   PatLeaf<(v2i1    PredRegs:$R)>;
81def V4I1:   PatLeaf<(v4i1    PredRegs:$R)>;
82def V8I1:   PatLeaf<(v8i1    PredRegs:$R)>;
83def V4I8:   PatLeaf<(v4i8    IntRegs:$R)>;
84def V2I16:  PatLeaf<(v2i16   IntRegs:$R)>;
85
86def V8I8:   PatLeaf<(v8i8    DoubleRegs:$R)>;
87def V4I16:  PatLeaf<(v4i16   DoubleRegs:$R)>;
88def V2I32:  PatLeaf<(v2i32   DoubleRegs:$R)>;
89
90def HQ8:    PatLeaf<(VecQ8   HvxQR:$R)>;
91def HQ16:   PatLeaf<(VecQ16  HvxQR:$R)>;
92def HQ32:   PatLeaf<(VecQ32  HvxQR:$R)>;
93
94def HVI8:   PatLeaf<(VecI8   HvxVR:$R)>;
95def HVI16:  PatLeaf<(VecI16  HvxVR:$R)>;
96def HVI32:  PatLeaf<(VecI32  HvxVR:$R)>;
97
98def HWI8:   PatLeaf<(VecPI8  HvxWR:$R)>;
99def HWI16:  PatLeaf<(VecPI16 HvxWR:$R)>;
100def HWI32:  PatLeaf<(VecPI32 HvxWR:$R)>;
101
102def SDTVecLeaf:
103  SDTypeProfile<1, 0, [SDTCisVec<0>]>;
104def SDTVecVecIntOp:
105  SDTypeProfile<1, 3, [SDTCisVec<0>, SDTCisVec<1>, SDTCisSameAs<1,2>,
106                       SDTCisVT<3,i32>]>;
107
108def HexagonPTRUE:      SDNode<"HexagonISD::PTRUE",      SDTVecLeaf>;
109def HexagonPFALSE:     SDNode<"HexagonISD::PFALSE",     SDTVecLeaf>;
110def HexagonVALIGN:     SDNode<"HexagonISD::VALIGN",     SDTVecVecIntOp>;
111def HexagonVALIGNADDR: SDNode<"HexagonISD::VALIGNADDR", SDTIntUnaryOp>;
112
113def ptrue:  PatFrag<(ops), (HexagonPTRUE)>;
114def pfalse: PatFrag<(ops), (HexagonPFALSE)>;
115def pnot:   PatFrag<(ops node:$Pu), (xor node:$Pu, ptrue)>;
116
117def valign: PatFrag<(ops node:$Vt, node:$Vs, node:$Ru),
118                    (HexagonVALIGN node:$Vt, node:$Vs, node:$Ru)>;
119def valignaddr: PatFrag<(ops node:$Addr), (HexagonVALIGNADDR node:$Addr)>;
120
121// Pattern fragments to extract the low and high subregisters from a
122// 64-bit value.
123def LoReg: OutPatFrag<(ops node:$Rs), (EXTRACT_SUBREG (i64 $Rs), isub_lo)>;
124def HiReg: OutPatFrag<(ops node:$Rs), (EXTRACT_SUBREG (i64 $Rs), isub_hi)>;
125
126def IsOrAdd: PatFrag<(ops node:$A, node:$B), (or node:$A, node:$B), [{
127  return isOrEquivalentToAdd(N);
128}]>;
129
130def IsPow2_32: PatLeaf<(i32 imm), [{
131  uint32_t V = N->getZExtValue();
132  return isPowerOf2_32(V);
133}]>;
134
135def IsPow2_64: PatLeaf<(i64 imm), [{
136  uint64_t V = N->getZExtValue();
137  return isPowerOf2_64(V);
138}]>;
139
140def IsNPow2_32: PatLeaf<(i32 imm), [{
141  uint32_t NV = ~N->getZExtValue();
142  return isPowerOf2_32(NV);
143}]>;
144
145def IsPow2_64L: PatLeaf<(i64 imm), [{
146  uint64_t V = N->getZExtValue();
147  return isPowerOf2_64(V) && Log2_64(V) < 32;
148}]>;
149
150def IsPow2_64H: PatLeaf<(i64 imm), [{
151  uint64_t V = N->getZExtValue();
152  return isPowerOf2_64(V) && Log2_64(V) >= 32;
153}]>;
154
155def IsNPow2_64L: PatLeaf<(i64 imm), [{
156  uint64_t NV = ~N->getZExtValue();
157  return isPowerOf2_64(NV) && Log2_64(NV) < 32;
158}]>;
159
160def IsNPow2_64H: PatLeaf<(i64 imm), [{
161  uint64_t NV = ~N->getZExtValue();
162  return isPowerOf2_64(NV) && Log2_64(NV) >= 32;
163}]>;
164
165class IsULE<int Width, int Arg>: PatLeaf<(i32 imm),
166  "uint64_t V = N->getZExtValue();" #
167  "return isUInt<" # Width # ">(V) && V <= " # Arg # ";"
168>;
169
170class IsUGT<int Width, int Arg>: PatLeaf<(i32 imm),
171  "uint64_t V = N->getZExtValue();" #
172  "return isUInt<" # Width # ">(V) && V > " # Arg # ";"
173>;
174
175def SDEC1: SDNodeXForm<imm, [{
176  int32_t V = N->getSExtValue();
177  return CurDAG->getTargetConstant(V-1, SDLoc(N), MVT::i32);
178}]>;
179
180def UDEC1: SDNodeXForm<imm, [{
181  uint32_t V = N->getZExtValue();
182  assert(V >= 1);
183  return CurDAG->getTargetConstant(V-1, SDLoc(N), MVT::i32);
184}]>;
185
186def UDEC32: SDNodeXForm<imm, [{
187  uint32_t V = N->getZExtValue();
188  assert(V >= 32);
189  return CurDAG->getTargetConstant(V-32, SDLoc(N), MVT::i32);
190}]>;
191
192class Subi<int From>: SDNodeXForm<imm,
193  "int32_t V = " # From # " - N->getSExtValue();" #
194  "return CurDAG->getTargetConstant(V, SDLoc(N), MVT::i32);"
195>;
196
197def Log2_32: SDNodeXForm<imm, [{
198  uint32_t V = N->getZExtValue();
199  return CurDAG->getTargetConstant(Log2_32(V), SDLoc(N), MVT::i32);
200}]>;
201
202def Log2_64: SDNodeXForm<imm, [{
203  uint64_t V = N->getZExtValue();
204  return CurDAG->getTargetConstant(Log2_64(V), SDLoc(N), MVT::i32);
205}]>;
206
207def LogN2_32: SDNodeXForm<imm, [{
208  uint32_t NV = ~N->getZExtValue();
209  return CurDAG->getTargetConstant(Log2_32(NV), SDLoc(N), MVT::i32);
210}]>;
211
212def LogN2_64: SDNodeXForm<imm, [{
213  uint64_t NV = ~N->getZExtValue();
214  return CurDAG->getTargetConstant(Log2_64(NV), SDLoc(N), MVT::i32);
215}]>;
216
217def NegImm8: SDNodeXForm<imm, [{
218  int8_t NV = -N->getSExtValue();
219  return CurDAG->getTargetConstant(NV, SDLoc(N), MVT::i32);
220}]>;
221
222def NegImm16: SDNodeXForm<imm, [{
223  int16_t NV = -N->getSExtValue();
224  return CurDAG->getTargetConstant(NV, SDLoc(N), MVT::i32);
225}]>;
226
227def NegImm32: SDNodeXForm<imm, [{
228  int32_t NV = -N->getSExtValue();
229  return CurDAG->getTargetConstant(NV, SDLoc(N), MVT::i32);
230}]>;
231
232
233// Helpers for type promotions/contractions.
234def I1toI32:  OutPatFrag<(ops node:$Rs), (C2_muxii (i1 $Rs), 1, 0)>;
235def I32toI1:  OutPatFrag<(ops node:$Rs), (i1 (C2_cmpgtui (i32 $Rs), (i32 0)))>;
236def ToZext64: OutPatFrag<(ops node:$Rs), (i64 (A4_combineir 0, (i32 $Rs)))>;
237def ToSext64: OutPatFrag<(ops node:$Rs), (i64 (A2_sxtw (i32 $Rs)))>;
238def ToAext64: OutPatFrag<(ops node:$Rs),
239  (REG_SEQUENCE DoubleRegs, (i32 (IMPLICIT_DEF)), isub_hi, (i32 $Rs), isub_lo)>;
240
241def Combinew: OutPatFrag<(ops node:$Rs, node:$Rt),
242  (REG_SEQUENCE DoubleRegs, $Rs, isub_hi, $Rt, isub_lo)>;
243
244def addrga: PatLeaf<(i32 AddrGA:$Addr)>;
245def addrgp: PatLeaf<(i32 AddrGP:$Addr)>;
246def anyimm: PatLeaf<(i32 AnyImm:$Imm)>;
247def anyint: PatLeaf<(i32 AnyInt:$Imm)>;
248
249// Global address or an aligned constant.
250def anyimm0: PatLeaf<(i32 AnyImm0:$Addr)>;
251def anyimm1: PatLeaf<(i32 AnyImm1:$Addr)>;
252def anyimm2: PatLeaf<(i32 AnyImm2:$Addr)>;
253def anyimm3: PatLeaf<(i32 AnyImm3:$Addr)>;
254
255def f32ImmPred : PatLeaf<(f32 fpimm:$F)>;
256def f64ImmPred : PatLeaf<(f64 fpimm:$F)>;
257
258// This complex pattern is really only to detect various forms of
259// sign-extension i32->i64. The selected value will be of type i64
260// whose low word is the value being extended. The high word is
261// unspecified.
262def Usxtw:  ComplexPattern<i64, 1, "DetectUseSxtw", [], []>;
263
264def Aext64: PatFrag<(ops node:$Rs), (i64 (anyext node:$Rs))>;
265def Zext64: PatFrag<(ops node:$Rs), (i64 (zext node:$Rs))>;
266def Sext64: PatLeaf<(i64 Usxtw:$Rs)>;
267
268def azext: PatFrags<(ops node:$Rs), [(zext node:$Rs), (anyext node:$Rs)]>;
269def asext: PatFrags<(ops node:$Rs), [(sext node:$Rs), (anyext node:$Rs)]>;
270
271def: Pat<(IsOrAdd (i32 AddrFI:$Rs), s32_0ImmPred:$off),
272         (PS_fi (i32 AddrFI:$Rs), imm:$off)>;
273
274
275// Converters from unary/binary SDNode to PatFrag.
276class pf1<SDNode Op> : PatFrag<(ops node:$a), (Op node:$a)>;
277class pf2<SDNode Op> : PatFrag<(ops node:$a, node:$b), (Op node:$a, node:$b)>;
278
279class Not2<PatFrag P>
280  : PatFrag<(ops node:$A, node:$B), (P node:$A, (not node:$B))>;
281
282// If there is a constant operand that feeds the and/or instruction,
283// do not generate the compound instructions.
284// It is not always profitable, as some times we end up with a transfer.
285// Check the below example.
286// ra = #65820; rb = lsr(rb, #8); rc ^= and (rb, ra)
287// Instead this is preferable.
288// ra = and (#65820, lsr(ra, #8)); rb = xor(rb, ra)
289class Su_ni1<PatFrag Op>
290  : PatFrag<Op.Operands, !head(Op.Fragments), [{
291            if (hasOneUse(N)){
292              // Check if Op1 is an immediate operand.
293              SDValue Op1 = N->getOperand(1);
294              return !isa<ConstantSDNode>(Op1);
295            }
296            return false;}],
297            Op.OperandTransform>;
298
299class Su<PatFrag Op>
300  : PatFrag<Op.Operands, !head(Op.Fragments), [{ return hasOneUse(N); }],
301            Op.OperandTransform>;
302
303// Main selection macros.
304
305class OpR_R_pat<InstHexagon MI, PatFrag Op, ValueType ResVT, PatFrag RegPred>
306  : Pat<(ResVT (Op RegPred:$Rs)), (MI RegPred:$Rs)>;
307
308class OpR_RI_pat<InstHexagon MI, PatFrag Op, ValueType ResType,
309                 PatFrag RegPred, PatFrag ImmPred>
310  : Pat<(ResType (Op RegPred:$Rs, ImmPred:$I)),
311        (MI RegPred:$Rs, imm:$I)>;
312
313class OpR_RR_pat<InstHexagon MI, PatFrag Op, ValueType ResType,
314                 PatFrag RsPred, PatFrag RtPred = RsPred>
315  : Pat<(ResType (Op RsPred:$Rs, RtPred:$Rt)),
316        (MI RsPred:$Rs, RtPred:$Rt)>;
317
318class AccRRI_pat<InstHexagon MI, PatFrag AccOp, PatFrag Op,
319                 PatFrag RegPred, PatFrag ImmPred>
320  : Pat<(AccOp RegPred:$Rx, (Op RegPred:$Rs, ImmPred:$I)),
321        (MI RegPred:$Rx, RegPred:$Rs, imm:$I)>;
322
323class AccRRR_pat<InstHexagon MI, PatFrag AccOp, PatFrag Op,
324                 PatFrag RxPred, PatFrag RsPred, PatFrag RtPred>
325  : Pat<(AccOp RxPred:$Rx, (Op RsPred:$Rs, RtPred:$Rt)),
326        (MI RxPred:$Rx, RsPred:$Rs, RtPred:$Rt)>;
327
328multiclass SelMinMax_pats<PatFrag CmpOp, PatFrag Val,
329                          InstHexagon InstA, InstHexagon InstB> {
330  def: Pat<(select (i1 (CmpOp Val:$A, Val:$B)), Val:$A, Val:$B),
331           (InstA Val:$A, Val:$B)>;
332  def: Pat<(select (i1 (CmpOp Val:$A, Val:$B)), Val:$B, Val:$A),
333           (InstB Val:$A, Val:$B)>;
334}
335
336multiclass MinMax_pats<InstHexagon PickT, InstHexagon PickS,
337                       PatFrag Sel, PatFrag CmpOp,
338                       ValueType CmpType, PatFrag CmpPred> {
339  def: Pat<(Sel (CmpType (CmpOp CmpPred:$Vs, CmpPred:$Vt)),
340                CmpPred:$Vt, CmpPred:$Vs),
341           (PickT CmpPred:$Vs, CmpPred:$Vt)>;
342  def: Pat<(Sel (CmpType (CmpOp CmpPred:$Vs, CmpPred:$Vt)),
343                CmpPred:$Vs, CmpPred:$Vt),
344           (PickS CmpPred:$Vs, CmpPred:$Vt)>;
345}
346
347// Bitcasts between same-size vector types are no-ops, except for the
348// actual type change.
349multiclass NopCast_pat<ValueType Ty1, ValueType Ty2, RegisterClass RC> {
350  def: Pat<(Ty1 (bitconvert (Ty2 RC:$Val))), (Ty1 RC:$Val)>;
351  def: Pat<(Ty2 (bitconvert (Ty1 RC:$Val))), (Ty2 RC:$Val)>;
352}
353
354
355// Frags for commonly used SDNodes.
356def Add: pf2<add>;    def And: pf2<and>;    def Sra: pf2<sra>;
357def Sub: pf2<sub>;    def Or:  pf2<or>;     def Srl: pf2<srl>;
358def Mul: pf2<mul>;    def Xor: pf2<xor>;    def Shl: pf2<shl>;
359
360def Rol: pf2<rotl>;
361
362// --(1) Immediate -------------------------------------------------------
363//
364
365def SDTHexagonCONST32
366  : SDTypeProfile<1, 1, [SDTCisVT<0, i32>, SDTCisVT<1, i32>, SDTCisPtrTy<0>]>;
367
368def HexagonJT:          SDNode<"HexagonISD::JT",          SDTIntUnaryOp>;
369def HexagonCP:          SDNode<"HexagonISD::CP",          SDTIntUnaryOp>;
370def HexagonCONST32:     SDNode<"HexagonISD::CONST32",     SDTHexagonCONST32>;
371def HexagonCONST32_GP:  SDNode<"HexagonISD::CONST32_GP",  SDTHexagonCONST32>;
372
373def TruncI64ToI32: SDNodeXForm<imm, [{
374  return CurDAG->getTargetConstant(N->getSExtValue(), SDLoc(N), MVT::i32);
375}]>;
376
377def: Pat<(s32_0ImmPred:$s16), (A2_tfrsi imm:$s16)>;
378def: Pat<(s8_0Imm64Pred:$s8), (A2_tfrpi (TruncI64ToI32 $s8))>;
379
380def: Pat<(HexagonCONST32    tglobaltlsaddr:$A), (A2_tfrsi imm:$A)>;
381def: Pat<(HexagonCONST32    bbl:$A),            (A2_tfrsi imm:$A)>;
382def: Pat<(HexagonCONST32    tglobaladdr:$A),    (A2_tfrsi imm:$A)>;
383def: Pat<(HexagonCONST32_GP tblockaddress:$A),  (A2_tfrsi imm:$A)>;
384def: Pat<(HexagonCONST32_GP tglobaladdr:$A),    (A2_tfrsi imm:$A)>;
385def: Pat<(HexagonJT         tjumptable:$A),     (A2_tfrsi imm:$A)>;
386def: Pat<(HexagonCP         tconstpool:$A),     (A2_tfrsi imm:$A)>;
387// The HVX load patterns also match CP directly. Make sure that if
388// the selection of this opcode changes, it's updated in all places.
389
390def: Pat<(i1 0),        (PS_false)>;
391def: Pat<(i1 1),        (PS_true)>;
392def: Pat<(i64 imm:$v),  (CONST64 imm:$v)>;
393
394def ftoi : SDNodeXForm<fpimm, [{
395  APInt I = N->getValueAPF().bitcastToAPInt();
396  return CurDAG->getTargetConstant(I.getZExtValue(), SDLoc(N),
397                                   MVT::getIntegerVT(I.getBitWidth()));
398}]>;
399
400def: Pat<(f32ImmPred:$f), (A2_tfrsi (ftoi $f))>;
401def: Pat<(f64ImmPred:$f), (CONST64  (ftoi $f))>;
402
403def ToI32: OutPatFrag<(ops node:$V), (A2_tfrsi $V)>;
404
405// --(2) Type cast -------------------------------------------------------
406//
407
408def: OpR_R_pat<F2_conv_sf2df,      pf1<fpextend>,   f64, F32>;
409def: OpR_R_pat<F2_conv_df2sf,      pf1<fpround>,    f32, F64>;
410
411def: OpR_R_pat<F2_conv_w2sf,       pf1<sint_to_fp>, f32, I32>;
412def: OpR_R_pat<F2_conv_d2sf,       pf1<sint_to_fp>, f32, I64>;
413def: OpR_R_pat<F2_conv_w2df,       pf1<sint_to_fp>, f64, I32>;
414def: OpR_R_pat<F2_conv_d2df,       pf1<sint_to_fp>, f64, I64>;
415
416def: OpR_R_pat<F2_conv_uw2sf,      pf1<uint_to_fp>, f32, I32>;
417def: OpR_R_pat<F2_conv_ud2sf,      pf1<uint_to_fp>, f32, I64>;
418def: OpR_R_pat<F2_conv_uw2df,      pf1<uint_to_fp>, f64, I32>;
419def: OpR_R_pat<F2_conv_ud2df,      pf1<uint_to_fp>, f64, I64>;
420
421def: OpR_R_pat<F2_conv_sf2w_chop,  pf1<fp_to_sint>, i32, F32>;
422def: OpR_R_pat<F2_conv_df2w_chop,  pf1<fp_to_sint>, i32, F64>;
423def: OpR_R_pat<F2_conv_sf2d_chop,  pf1<fp_to_sint>, i64, F32>;
424def: OpR_R_pat<F2_conv_df2d_chop,  pf1<fp_to_sint>, i64, F64>;
425
426def: OpR_R_pat<F2_conv_sf2uw_chop, pf1<fp_to_uint>, i32, F32>;
427def: OpR_R_pat<F2_conv_df2uw_chop, pf1<fp_to_uint>, i32, F64>;
428def: OpR_R_pat<F2_conv_sf2ud_chop, pf1<fp_to_uint>, i64, F32>;
429def: OpR_R_pat<F2_conv_df2ud_chop, pf1<fp_to_uint>, i64, F64>;
430
431// Bitcast is different than [fp|sint|uint]_to_[sint|uint|fp].
432def: Pat<(i32 (bitconvert F32:$v)), (I32:$v)>;
433def: Pat<(f32 (bitconvert I32:$v)), (F32:$v)>;
434def: Pat<(i64 (bitconvert F64:$v)), (I64:$v)>;
435def: Pat<(f64 (bitconvert I64:$v)), (F64:$v)>;
436
437// Bit convert 32- and 64-bit types.
438// All of these are bitcastable to one another: i32, v2i16, v4i8.
439defm: NopCast_pat<i32,   v2i16, IntRegs>;
440defm: NopCast_pat<i32,    v4i8, IntRegs>;
441defm: NopCast_pat<v2i16,  v4i8, IntRegs>;
442// All of these are bitcastable to one another: i64, v2i32, v4i16, v8i8.
443defm: NopCast_pat<i64,   v2i32, DoubleRegs>;
444defm: NopCast_pat<i64,   v4i16, DoubleRegs>;
445defm: NopCast_pat<i64,    v8i8, DoubleRegs>;
446defm: NopCast_pat<v2i32, v4i16, DoubleRegs>;
447defm: NopCast_pat<v2i32,  v8i8, DoubleRegs>;
448defm: NopCast_pat<v4i16,  v8i8, DoubleRegs>;
449
450
451// --(3) Extend/truncate -------------------------------------------------
452//
453
454def: Pat<(sext_inreg I32:$Rs, i8),  (A2_sxtb I32:$Rs)>;
455def: Pat<(sext_inreg I32:$Rs, i16), (A2_sxth I32:$Rs)>;
456def: Pat<(sext_inreg I64:$Rs, i32), (A2_sxtw (LoReg $Rs))>;
457def: Pat<(sext_inreg I64:$Rs, i16), (A2_sxtw (A2_sxth (LoReg $Rs)))>;
458def: Pat<(sext_inreg I64:$Rs, i8),  (A2_sxtw (A2_sxtb (LoReg $Rs)))>;
459
460def: Pat<(i64 (sext I32:$Rs)), (A2_sxtw I32:$Rs)>;
461def: Pat<(Zext64 I32:$Rs),     (ToZext64 $Rs)>;
462def: Pat<(Aext64 I32:$Rs),     (ToZext64 $Rs)>;
463
464def: Pat<(i32 (trunc I64:$Rs)), (LoReg $Rs)>;
465def: Pat<(i1 (trunc I32:$Rs)),  (S2_tstbit_i I32:$Rs, 0)>;
466def: Pat<(i1 (trunc I64:$Rs)),  (S2_tstbit_i (LoReg $Rs), 0)>;
467
468let AddedComplexity = 20 in {
469  def: Pat<(and I32:$Rs, 255),   (A2_zxtb I32:$Rs)>;
470  def: Pat<(and I32:$Rs, 65535), (A2_zxth I32:$Rs)>;
471}
472
473// Extensions from i1 or vectors of i1.
474def: Pat<(i32 (azext I1:$Pu)), (C2_muxii I1:$Pu, 1, 0)>;
475def: Pat<(i64 (azext I1:$Pu)), (ToZext64 (C2_muxii I1:$Pu, 1, 0))>;
476def: Pat<(i32  (sext I1:$Pu)), (C2_muxii I1:$Pu, -1, 0)>;
477def: Pat<(i64  (sext I1:$Pu)), (Combinew (C2_muxii PredRegs:$Pu, -1, 0),
478                                         (C2_muxii PredRegs:$Pu, -1, 0))>;
479
480def: Pat<(v2i16 (sext V2I1:$Pu)), (S2_vtrunehb (C2_mask V2I1:$Pu))>;
481def: Pat<(v2i32 (sext V2I1:$Pu)), (C2_mask V2I1:$Pu)>;
482def: Pat<(v4i8  (sext V4I1:$Pu)), (S2_vtrunehb (C2_mask V4I1:$Pu))>;
483def: Pat<(v4i16 (sext V4I1:$Pu)), (C2_mask V4I1:$Pu)>;
484def: Pat<(v8i8  (sext V8I1:$Pu)), (C2_mask V8I1:$Pu)>;
485
486def Vsplatpi: OutPatFrag<(ops node:$V),
487                         (Combinew (A2_tfrsi $V), (A2_tfrsi $V))>;
488
489def: Pat<(v2i16 (azext V2I1:$Pu)),
490         (A2_andir (LoReg (C2_mask V2I1:$Pu)), (i32 0x00010001))>;
491def: Pat<(v2i32 (azext V2I1:$Pu)),
492         (A2_andp (C2_mask V2I1:$Pu), (A2_combineii (i32 1), (i32 1)))>;
493def: Pat<(v4i8 (azext V4I1:$Pu)),
494         (A2_andir (LoReg (C2_mask V4I1:$Pu)), (i32 0x01010101))>;
495def: Pat<(v4i16 (azext V4I1:$Pu)),
496         (A2_andp (C2_mask V4I1:$Pu), (Vsplatpi (i32 0x00010001)))>;
497def: Pat<(v8i8 (azext V8I1:$Pu)),
498         (A2_andp (C2_mask V8I1:$Pu), (Vsplatpi (i32 0x01010101)))>;
499
500def: Pat<(v4i16 (azext  V4I8:$Rs)),  (S2_vzxtbh V4I8:$Rs)>;
501def: Pat<(v2i32 (azext  V2I16:$Rs)), (S2_vzxthw V2I16:$Rs)>;
502def: Pat<(v4i16 (sext   V4I8:$Rs)),  (S2_vsxtbh V4I8:$Rs)>;
503def: Pat<(v2i32 (sext   V2I16:$Rs)), (S2_vsxthw V2I16:$Rs)>;
504
505def: Pat<(v2i32 (sext_inreg V2I32:$Rs, v2i8)),
506         (Combinew (A2_sxtb (HiReg $Rs)), (A2_sxtb (LoReg $Rs)))>;
507
508def: Pat<(v2i32 (sext_inreg V2I32:$Rs, v2i16)),
509         (Combinew (A2_sxth (HiReg $Rs)), (A2_sxth (LoReg $Rs)))>;
510
511// Truncate: from vector B copy all 'E'ven 'B'yte elements:
512// A[0] = B[0];  A[1] = B[2];  A[2] = B[4];  A[3] = B[6];
513def: Pat<(v4i8 (trunc V4I16:$Rs)),
514         (S2_vtrunehb V4I16:$Rs)>;
515
516// Truncate: from vector B copy all 'O'dd 'B'yte elements:
517// A[0] = B[1];  A[1] = B[3];  A[2] = B[5];  A[3] = B[7];
518// S2_vtrunohb
519
520// Truncate: from vectors B and C copy all 'E'ven 'H'alf-word elements:
521// A[0] = B[0];  A[1] = B[2];  A[2] = C[0];  A[3] = C[2];
522// S2_vtruneh
523
524def: Pat<(v2i16 (trunc V2I32:$Rs)),
525         (A2_combine_ll (HiReg $Rs), (LoReg $Rs))>;
526
527
528// --(4) Logical ---------------------------------------------------------
529//
530
531def: Pat<(not I1:$Ps),      (C2_not I1:$Ps)>;
532def: Pat<(pnot V2I1:$Ps),   (C2_not V2I1:$Ps)>;
533def: Pat<(pnot V4I1:$Ps),   (C2_not V4I1:$Ps)>;
534def: Pat<(pnot V8I1:$Ps),   (C2_not V8I1:$Ps)>;
535def: Pat<(add I1:$Ps, -1),  (C2_not I1:$Ps)>;
536
537multiclass BoolOpR_RR_pat<InstHexagon MI, PatFrag Op> {
538  def: OpR_RR_pat<MI, Op,   i1,   I1>;
539  def: OpR_RR_pat<MI, Op, v2i1, V2I1>;
540  def: OpR_RR_pat<MI, Op, v4i1, V4I1>;
541  def: OpR_RR_pat<MI, Op, v8i1, V8I1>;
542}
543
544multiclass BoolAccRRR_pat<InstHexagon MI, PatFrag AccOp, PatFrag Op> {
545  def: AccRRR_pat<MI, AccOp, Op,   I1,   I1,   I1>;
546  def: AccRRR_pat<MI, AccOp, Op, V2I1, V2I1, V2I1>;
547  def: AccRRR_pat<MI, AccOp, Op, V4I1, V4I1, V4I1>;
548  def: AccRRR_pat<MI, AccOp, Op, V8I1, V8I1, V8I1>;
549}
550
551defm: BoolOpR_RR_pat<C2_and,   And>;
552defm: BoolOpR_RR_pat<C2_or,    Or>;
553defm: BoolOpR_RR_pat<C2_xor,   Xor>;
554defm: BoolOpR_RR_pat<C2_andn,  Not2<And>>;
555defm: BoolOpR_RR_pat<C2_orn,   Not2<Or>>;
556
557// op(Ps, op(Pt, Pu))
558defm: BoolAccRRR_pat<C4_and_and,   And, Su<And>>;
559defm: BoolAccRRR_pat<C4_and_or,    And, Su<Or>>;
560defm: BoolAccRRR_pat<C4_or_and,    Or,  Su<And>>;
561defm: BoolAccRRR_pat<C4_or_or,     Or,  Su<Or>>;
562
563// op(Ps, op(Pt, ~Pu))
564defm: BoolAccRRR_pat<C4_and_andn,  And, Su<Not2<And>>>;
565defm: BoolAccRRR_pat<C4_and_orn,   And, Su<Not2<Or>>>;
566defm: BoolAccRRR_pat<C4_or_andn,   Or,  Su<Not2<And>>>;
567defm: BoolAccRRR_pat<C4_or_orn,    Or,  Su<Not2<Or>>>;
568
569
570// --(5) Compare ---------------------------------------------------------
571//
572
573// Avoid negated comparisons, i.e. those of form "Pd = !cmp(...)".
574// These cannot form compounds (e.g. J4_cmpeqi_tp0_jump_nt).
575
576def: OpR_RI_pat<C2_cmpeqi,    seteq,          i1, I32,  anyimm>;
577def: OpR_RI_pat<C2_cmpgti,    setgt,          i1, I32,  anyimm>;
578def: OpR_RI_pat<C2_cmpgtui,   setugt,         i1, I32,  anyimm>;
579
580def: Pat<(i1 (setge I32:$Rs, s32_0ImmPred:$s10)),
581         (C2_cmpgti I32:$Rs, (SDEC1 imm:$s10))>;
582def: Pat<(i1 (setuge I32:$Rs, u32_0ImmPred:$u9)),
583         (C2_cmpgtui I32:$Rs, (UDEC1 imm:$u9))>;
584
585def: Pat<(i1 (setlt I32:$Rs, s32_0ImmPred:$s10)),
586         (C2_not (C2_cmpgti I32:$Rs, (SDEC1 imm:$s10)))>;
587def: Pat<(i1 (setult I32:$Rs, u32_0ImmPred:$u9)),
588         (C2_not (C2_cmpgtui I32:$Rs, (UDEC1 imm:$u9)))>;
589
590// Patfrag to convert the usual comparison patfrags (e.g. setlt) to ones
591// that reverse the order of the operands.
592class RevCmp<PatFrag F>
593  : PatFrag<(ops node:$rhs, node:$lhs), !head(F.Fragments), F.PredicateCode,
594            F.OperandTransform>;
595
596def: OpR_RR_pat<C2_cmpeq,     seteq,          i1,   I32>;
597def: OpR_RR_pat<C2_cmpgt,     setgt,          i1,   I32>;
598def: OpR_RR_pat<C2_cmpgtu,    setugt,         i1,   I32>;
599def: OpR_RR_pat<C2_cmpgt,     RevCmp<setlt>,  i1,   I32>;
600def: OpR_RR_pat<C2_cmpgtu,    RevCmp<setult>, i1,   I32>;
601def: OpR_RR_pat<C2_cmpeqp,    seteq,          i1,   I64>;
602def: OpR_RR_pat<C2_cmpgtp,    setgt,          i1,   I64>;
603def: OpR_RR_pat<C2_cmpgtup,   setugt,         i1,   I64>;
604def: OpR_RR_pat<C2_cmpgtp,    RevCmp<setlt>,  i1,   I64>;
605def: OpR_RR_pat<C2_cmpgtup,   RevCmp<setult>, i1,   I64>;
606def: OpR_RR_pat<A2_vcmpbeq,   seteq,          i1,   V8I8>;
607def: OpR_RR_pat<A2_vcmpbeq,   seteq,          v8i1, V8I8>;
608def: OpR_RR_pat<A4_vcmpbgt,   RevCmp<setlt>,  i1,   V8I8>;
609def: OpR_RR_pat<A4_vcmpbgt,   RevCmp<setlt>,  v8i1, V8I8>;
610def: OpR_RR_pat<A4_vcmpbgt,   setgt,          i1,   V8I8>;
611def: OpR_RR_pat<A4_vcmpbgt,   setgt,          v8i1, V8I8>;
612def: OpR_RR_pat<A2_vcmpbgtu,  RevCmp<setult>, i1,   V8I8>;
613def: OpR_RR_pat<A2_vcmpbgtu,  RevCmp<setult>, v8i1, V8I8>;
614def: OpR_RR_pat<A2_vcmpbgtu,  setugt,         i1,   V8I8>;
615def: OpR_RR_pat<A2_vcmpbgtu,  setugt,         v8i1, V8I8>;
616def: OpR_RR_pat<A2_vcmpheq,   seteq,          i1,   V4I16>;
617def: OpR_RR_pat<A2_vcmpheq,   seteq,          v4i1, V4I16>;
618def: OpR_RR_pat<A2_vcmphgt,   RevCmp<setlt>,  i1,   V4I16>;
619def: OpR_RR_pat<A2_vcmphgt,   RevCmp<setlt>,  v4i1, V4I16>;
620def: OpR_RR_pat<A2_vcmphgt,   setgt,          i1,   V4I16>;
621def: OpR_RR_pat<A2_vcmphgt,   setgt,          v4i1, V4I16>;
622def: OpR_RR_pat<A2_vcmphgtu,  RevCmp<setult>, i1,   V4I16>;
623def: OpR_RR_pat<A2_vcmphgtu,  RevCmp<setult>, v4i1, V4I16>;
624def: OpR_RR_pat<A2_vcmphgtu,  setugt,         i1,   V4I16>;
625def: OpR_RR_pat<A2_vcmphgtu,  setugt,         v4i1, V4I16>;
626def: OpR_RR_pat<A2_vcmpweq,   seteq,          i1,   V2I32>;
627def: OpR_RR_pat<A2_vcmpweq,   seteq,          v2i1, V2I32>;
628def: OpR_RR_pat<A2_vcmpwgt,   RevCmp<setlt>,  i1,   V2I32>;
629def: OpR_RR_pat<A2_vcmpwgt,   RevCmp<setlt>,  v2i1, V2I32>;
630def: OpR_RR_pat<A2_vcmpwgt,   setgt,          i1,   V2I32>;
631def: OpR_RR_pat<A2_vcmpwgt,   setgt,          v2i1, V2I32>;
632def: OpR_RR_pat<A2_vcmpwgtu,  RevCmp<setult>, i1,   V2I32>;
633def: OpR_RR_pat<A2_vcmpwgtu,  RevCmp<setult>, v2i1, V2I32>;
634def: OpR_RR_pat<A2_vcmpwgtu,  setugt,         i1,   V2I32>;
635def: OpR_RR_pat<A2_vcmpwgtu,  setugt,         v2i1, V2I32>;
636
637def: OpR_RR_pat<F2_sfcmpeq,   seteq,          i1, F32>;
638def: OpR_RR_pat<F2_sfcmpgt,   setgt,          i1, F32>;
639def: OpR_RR_pat<F2_sfcmpge,   setge,          i1, F32>;
640def: OpR_RR_pat<F2_sfcmpeq,   setoeq,         i1, F32>;
641def: OpR_RR_pat<F2_sfcmpgt,   setogt,         i1, F32>;
642def: OpR_RR_pat<F2_sfcmpge,   setoge,         i1, F32>;
643def: OpR_RR_pat<F2_sfcmpgt,   RevCmp<setolt>, i1, F32>;
644def: OpR_RR_pat<F2_sfcmpge,   RevCmp<setole>, i1, F32>;
645def: OpR_RR_pat<F2_sfcmpgt,   RevCmp<setlt>,  i1, F32>;
646def: OpR_RR_pat<F2_sfcmpge,   RevCmp<setle>,  i1, F32>;
647def: OpR_RR_pat<F2_sfcmpuo,   setuo,          i1, F32>;
648
649def: OpR_RR_pat<F2_dfcmpeq,   seteq,          i1, F64>;
650def: OpR_RR_pat<F2_dfcmpgt,   setgt,          i1, F64>;
651def: OpR_RR_pat<F2_dfcmpge,   setge,          i1, F64>;
652def: OpR_RR_pat<F2_dfcmpeq,   setoeq,         i1, F64>;
653def: OpR_RR_pat<F2_dfcmpgt,   setogt,         i1, F64>;
654def: OpR_RR_pat<F2_dfcmpge,   setoge,         i1, F64>;
655def: OpR_RR_pat<F2_dfcmpgt,   RevCmp<setolt>, i1, F64>;
656def: OpR_RR_pat<F2_dfcmpge,   RevCmp<setole>, i1, F64>;
657def: OpR_RR_pat<F2_dfcmpgt,   RevCmp<setlt>,  i1, F64>;
658def: OpR_RR_pat<F2_dfcmpge,   RevCmp<setle>,  i1, F64>;
659def: OpR_RR_pat<F2_dfcmpuo,   setuo,          i1, F64>;
660
661// Avoid C4_cmpneqi, C4_cmpltei, C4_cmplteui, since they cannot form compounds.
662
663def: Pat<(i1 (setne I32:$Rs, anyimm:$u5)),
664         (C2_not (C2_cmpeqi I32:$Rs, imm:$u5))>;
665def: Pat<(i1 (setle I32:$Rs, anyimm:$u5)),
666         (C2_not (C2_cmpgti I32:$Rs, imm:$u5))>;
667def: Pat<(i1 (setule I32:$Rs, anyimm:$u5)),
668         (C2_not (C2_cmpgtui I32:$Rs, imm:$u5))>;
669
670class OpmR_RR_pat<PatFrag Output, PatFrag Op, ValueType ResType,
671                  PatFrag RsPred, PatFrag RtPred = RsPred>
672  : Pat<(ResType (Op RsPred:$Rs, RtPred:$Rt)),
673        (Output RsPred:$Rs, RtPred:$Rt)>;
674
675class Outn<InstHexagon MI>
676  : OutPatFrag<(ops node:$Rs, node:$Rt),
677               (C2_not (MI $Rs, $Rt))>;
678
679def: OpmR_RR_pat<Outn<C2_cmpeq>,    setne,          i1,   I32>;
680def: OpmR_RR_pat<Outn<C2_cmpgt>,    setle,          i1,   I32>;
681def: OpmR_RR_pat<Outn<C2_cmpgtu>,   setule,         i1,   I32>;
682def: OpmR_RR_pat<Outn<C2_cmpgt>,    RevCmp<setge>,  i1,   I32>;
683def: OpmR_RR_pat<Outn<C2_cmpgtu>,   RevCmp<setuge>, i1,   I32>;
684def: OpmR_RR_pat<Outn<C2_cmpeqp>,   setne,          i1,   I64>;
685def: OpmR_RR_pat<Outn<C2_cmpgtp>,   setle,          i1,   I64>;
686def: OpmR_RR_pat<Outn<C2_cmpgtup>,  setule,         i1,   I64>;
687def: OpmR_RR_pat<Outn<C2_cmpgtp>,   RevCmp<setge>,  i1,   I64>;
688def: OpmR_RR_pat<Outn<C2_cmpgtup>,  RevCmp<setuge>, i1,   I64>;
689def: OpmR_RR_pat<Outn<A2_vcmpbeq>,  setne,          v8i1, V8I8>;
690def: OpmR_RR_pat<Outn<A4_vcmpbgt>,  setle,          v8i1, V8I8>;
691def: OpmR_RR_pat<Outn<A2_vcmpbgtu>, setule,         v8i1, V8I8>;
692def: OpmR_RR_pat<Outn<A4_vcmpbgt>,  RevCmp<setge>,  v8i1, V8I8>;
693def: OpmR_RR_pat<Outn<A2_vcmpbgtu>, RevCmp<setuge>, v8i1, V8I8>;
694def: OpmR_RR_pat<Outn<A2_vcmpheq>,  setne,          v4i1, V4I16>;
695def: OpmR_RR_pat<Outn<A2_vcmphgt>,  setle,          v4i1, V4I16>;
696def: OpmR_RR_pat<Outn<A2_vcmphgtu>, setule,         v4i1, V4I16>;
697def: OpmR_RR_pat<Outn<A2_vcmphgt>,  RevCmp<setge>,  v4i1, V4I16>;
698def: OpmR_RR_pat<Outn<A2_vcmphgtu>, RevCmp<setuge>, v4i1, V4I16>;
699def: OpmR_RR_pat<Outn<A2_vcmpweq>,  setne,          v2i1, V2I32>;
700def: OpmR_RR_pat<Outn<A2_vcmpwgt>,  setle,          v2i1, V2I32>;
701def: OpmR_RR_pat<Outn<A2_vcmpwgtu>, setule,         v2i1, V2I32>;
702def: OpmR_RR_pat<Outn<A2_vcmpwgt>,  RevCmp<setge>,  v2i1, V2I32>;
703def: OpmR_RR_pat<Outn<A2_vcmpwgtu>, RevCmp<setuge>, v2i1, V2I32>;
704
705let AddedComplexity = 100 in {
706  def: Pat<(i1 (seteq (and (xor I32:$Rs, I32:$Rt), 255), 0)),
707           (A4_cmpbeq IntRegs:$Rs, IntRegs:$Rt)>;
708  def: Pat<(i1 (setne (and (xor I32:$Rs, I32:$Rt), 255), 0)),
709           (C2_not (A4_cmpbeq IntRegs:$Rs, IntRegs:$Rt))>;
710  def: Pat<(i1 (seteq (and (xor I32:$Rs, I32:$Rt), 65535), 0)),
711           (A4_cmpheq IntRegs:$Rs, IntRegs:$Rt)>;
712  def: Pat<(i1 (setne (and (xor I32:$Rs, I32:$Rt), 65535), 0)),
713           (C2_not (A4_cmpheq IntRegs:$Rs, IntRegs:$Rt))>;
714}
715
716// PatFrag for AsserZext which takes the original type as a parameter.
717def SDTAssertZext: SDTypeProfile<1, 2, [SDTCisInt<0>, SDTCisSameAs<0,1>]>;
718def AssertZextSD: SDNode<"ISD::AssertZext", SDTAssertZext>;
719class AssertZext<ValueType T>: PatFrag<(ops node:$A), (AssertZextSD $A, T)>;
720
721multiclass Cmpb_pat<InstHexagon MI, PatFrag Op, PatFrag AssertExt,
722                      PatLeaf ImmPred, int Mask> {
723  def: Pat<(i1 (Op (and I32:$Rs, Mask), ImmPred:$I)),
724           (MI I32:$Rs, imm:$I)>;
725  def: Pat<(i1 (Op (AssertExt I32:$Rs), ImmPred:$I)),
726           (MI I32:$Rs, imm:$I)>;
727}
728
729multiclass CmpbN_pat<InstHexagon MI, PatFrag Op, PatFrag AssertExt,
730                     PatLeaf ImmPred, int Mask> {
731  def: Pat<(i1 (Op (and I32:$Rs, Mask), ImmPred:$I)),
732           (C2_not (MI I32:$Rs, imm:$I))>;
733  def: Pat<(i1 (Op (AssertExt I32:$Rs), ImmPred:$I)),
734           (C2_not (MI I32:$Rs, imm:$I))>;
735}
736
737multiclass CmpbND_pat<InstHexagon MI, PatFrag Op, PatFrag AssertExt,
738                      PatLeaf ImmPred, int Mask> {
739  def: Pat<(i1 (Op (and I32:$Rs, Mask), ImmPred:$I)),
740           (C2_not (MI I32:$Rs, (UDEC1 imm:$I)))>;
741  def: Pat<(i1 (Op (AssertExt I32:$Rs), ImmPred:$I)),
742           (C2_not (MI I32:$Rs, (UDEC1 imm:$I)))>;
743}
744
745let AddedComplexity = 200 in {
746  defm: Cmpb_pat  <A4_cmpbeqi,  seteq,  AssertZext<i8>,  IsUGT<8,31>,  255>;
747  defm: CmpbN_pat <A4_cmpbeqi,  setne,  AssertZext<i8>,  IsUGT<8,31>,  255>;
748  defm: Cmpb_pat  <A4_cmpbgtui, setugt, AssertZext<i8>,  IsUGT<32,31>, 255>;
749  defm: CmpbN_pat <A4_cmpbgtui, setule, AssertZext<i8>,  IsUGT<32,31>, 255>;
750  defm: Cmpb_pat  <A4_cmphgtui, setugt, AssertZext<i16>, IsUGT<32,31>, 65535>;
751  defm: CmpbN_pat <A4_cmphgtui, setule, AssertZext<i16>, IsUGT<32,31>, 65535>;
752  defm: CmpbND_pat<A4_cmpbgtui, setult, AssertZext<i8>,  IsUGT<32,32>, 255>;
753  defm: CmpbND_pat<A4_cmphgtui, setult, AssertZext<i16>, IsUGT<32,32>, 65535>;
754}
755
756def: Pat<(i32 (zext (i1 (seteq I32:$Rs, I32:$Rt)))),
757         (A4_rcmpeq I32:$Rs, I32:$Rt)>;
758def: Pat<(i32 (zext (i1 (setne I32:$Rs, I32:$Rt)))),
759         (A4_rcmpneq I32:$Rs, I32:$Rt)>;
760def: Pat<(i32 (zext (i1 (seteq I32:$Rs, anyimm:$s8)))),
761         (A4_rcmpeqi I32:$Rs, imm:$s8)>;
762def: Pat<(i32 (zext (i1 (setne I32:$Rs, anyimm:$s8)))),
763         (A4_rcmpneqi I32:$Rs, imm:$s8)>;
764
765def: Pat<(i1 (seteq I1:$Ps, (i1 -1))), (I1:$Ps)>;
766def: Pat<(i1 (setne I1:$Ps, (i1 -1))), (C2_not I1:$Ps)>;
767def: Pat<(i1 (seteq I1:$Ps, I1:$Pt)),  (C2_xor I1:$Ps, (C2_not I1:$Pt))>;
768def: Pat<(i1 (setne I1:$Ps, I1:$Pt)),  (C2_xor I1:$Ps, I1:$Pt)>;
769
770// Floating-point comparisons with checks for ordered/unordered status.
771
772class T3<InstHexagon MI1, InstHexagon MI2, InstHexagon MI3>
773  : OutPatFrag<(ops node:$Rs, node:$Rt),
774               (MI1 (MI2 $Rs, $Rt), (MI3 $Rs, $Rt))>;
775
776class Cmpuf<InstHexagon MI>:  T3<C2_or,  F2_sfcmpuo, MI>;
777class Cmpud<InstHexagon MI>:  T3<C2_or,  F2_dfcmpuo, MI>;
778
779class Cmpufn<InstHexagon MI>: T3<C2_orn, F2_sfcmpuo, MI>;
780class Cmpudn<InstHexagon MI>: T3<C2_orn, F2_dfcmpuo, MI>;
781
782def: OpmR_RR_pat<Cmpuf<F2_sfcmpeq>,  setueq,         i1, F32>;
783def: OpmR_RR_pat<Cmpuf<F2_sfcmpge>,  setuge,         i1, F32>;
784def: OpmR_RR_pat<Cmpuf<F2_sfcmpgt>,  setugt,         i1, F32>;
785def: OpmR_RR_pat<Cmpuf<F2_sfcmpge>,  RevCmp<setule>, i1, F32>;
786def: OpmR_RR_pat<Cmpuf<F2_sfcmpgt>,  RevCmp<setult>, i1, F32>;
787def: OpmR_RR_pat<Cmpufn<F2_sfcmpeq>, setune,         i1, F32>;
788
789def: OpmR_RR_pat<Cmpud<F2_dfcmpeq>,  setueq,         i1, F64>;
790def: OpmR_RR_pat<Cmpud<F2_dfcmpge>,  setuge,         i1, F64>;
791def: OpmR_RR_pat<Cmpud<F2_dfcmpgt>,  setugt,         i1, F64>;
792def: OpmR_RR_pat<Cmpud<F2_dfcmpge>,  RevCmp<setule>, i1, F64>;
793def: OpmR_RR_pat<Cmpud<F2_dfcmpgt>,  RevCmp<setult>, i1, F64>;
794def: OpmR_RR_pat<Cmpudn<F2_dfcmpeq>, setune,         i1, F64>;
795
796def: OpmR_RR_pat<Outn<F2_sfcmpeq>, setone, i1, F32>;
797def: OpmR_RR_pat<Outn<F2_sfcmpeq>, setne,  i1, F32>;
798
799def: OpmR_RR_pat<Outn<F2_dfcmpeq>, setone, i1, F64>;
800def: OpmR_RR_pat<Outn<F2_dfcmpeq>, setne,  i1, F64>;
801
802def: OpmR_RR_pat<Outn<F2_sfcmpuo>, seto,   i1, F32>;
803def: OpmR_RR_pat<Outn<F2_dfcmpuo>, seto,   i1, F64>;
804
805
806// --(6) Select ----------------------------------------------------------
807//
808
809def: Pat<(select I1:$Pu, I32:$Rs, I32:$Rt),
810         (C2_mux I1:$Pu, I32:$Rs, I32:$Rt)>;
811def: Pat<(select I1:$Pu, anyimm:$s8, I32:$Rs),
812         (C2_muxri I1:$Pu, imm:$s8, I32:$Rs)>;
813def: Pat<(select I1:$Pu, I32:$Rs, anyimm:$s8),
814         (C2_muxir I1:$Pu, I32:$Rs, imm:$s8)>;
815def: Pat<(select I1:$Pu, anyimm:$s8, s8_0ImmPred:$S8),
816         (C2_muxii I1:$Pu, imm:$s8, imm:$S8)>;
817
818def: Pat<(select (not I1:$Pu), I32:$Rs, I32:$Rt),
819         (C2_mux I1:$Pu, I32:$Rt, I32:$Rs)>;
820def: Pat<(select (not I1:$Pu), s8_0ImmPred:$S8, anyimm:$s8),
821         (C2_muxii I1:$Pu, imm:$s8, imm:$S8)>;
822def: Pat<(select (not I1:$Pu), anyimm:$s8, I32:$Rs),
823         (C2_muxir I1:$Pu, I32:$Rs, imm:$s8)>;
824def: Pat<(select (not I1:$Pu), I32:$Rs, anyimm:$s8),
825         (C2_muxri I1:$Pu, imm:$s8, I32:$Rs)>;
826
827// Map from a 64-bit select to an emulated 64-bit mux.
828// Hexagon does not support 64-bit MUXes; so emulate with combines.
829def: Pat<(select I1:$Pu, I64:$Rs, I64:$Rt),
830         (Combinew (C2_mux I1:$Pu, (HiReg $Rs), (HiReg $Rt)),
831                   (C2_mux I1:$Pu, (LoReg $Rs), (LoReg $Rt)))>;
832
833def: Pat<(select I1:$Pu, F32:$Rs, f32ImmPred:$I),
834         (C2_muxir I1:$Pu, F32:$Rs, (ftoi $I))>;
835def: Pat<(select I1:$Pu, f32ImmPred:$I, F32:$Rt),
836         (C2_muxri I1:$Pu, (ftoi $I), F32:$Rt)>;
837def: Pat<(select I1:$Pu, F32:$Rs, F32:$Rt),
838         (C2_mux I1:$Pu, F32:$Rs, F32:$Rt)>;
839def: Pat<(select I1:$Pu, F64:$Rs, F64:$Rt),
840         (Combinew (C2_mux I1:$Pu, (HiReg $Rs), (HiReg $Rt)),
841                   (C2_mux I1:$Pu, (LoReg $Rs), (LoReg $Rt)))>;
842
843def: Pat<(select (i1 (setult F32:$Ra, F32:$Rb)), F32:$Rs, F32:$Rt),
844         (C2_mux (F2_sfcmpgt F32:$Rb, F32:$Ra), F32:$Rs, F32:$Rt)>;
845def: Pat<(select (i1 (setult F64:$Ra, F64:$Rb)), F64:$Rs, F64:$Rt),
846         (C2_vmux (F2_dfcmpgt F64:$Rb, F64:$Ra), F64:$Rs, F64:$Rt)>;
847
848def: Pat<(select (not I1:$Pu), f32ImmPred:$I, F32:$Rs),
849         (C2_muxir I1:$Pu, F32:$Rs, (ftoi $I))>;
850def: Pat<(select (not I1:$Pu), F32:$Rt, f32ImmPred:$I),
851         (C2_muxri I1:$Pu, (ftoi $I), F32:$Rt)>;
852
853def: Pat<(vselect V8I1:$Pu, V8I8:$Rs, V8I8:$Rt),
854         (C2_vmux V8I1:$Pu, V8I8:$Rs, V8I8:$Rt)>;
855def: Pat<(vselect V4I1:$Pu, V4I16:$Rs, V4I16:$Rt),
856         (C2_vmux V4I1:$Pu, V4I16:$Rs, V4I16:$Rt)>;
857def: Pat<(vselect V2I1:$Pu, V2I32:$Rs, V2I32:$Rt),
858         (C2_vmux V2I1:$Pu, V2I32:$Rs, V2I32:$Rt)>;
859
860def: Pat<(vselect (pnot V8I1:$Pu), V8I8:$Rs, V8I8:$Rt),
861         (C2_vmux V8I1:$Pu, V8I8:$Rt, V8I8:$Rs)>;
862def: Pat<(vselect (pnot V4I1:$Pu), V4I16:$Rs, V4I16:$Rt),
863         (C2_vmux V4I1:$Pu, V4I16:$Rt, V4I16:$Rs)>;
864def: Pat<(vselect (pnot V2I1:$Pu), V2I32:$Rs, V2I32:$Rt),
865         (C2_vmux V2I1:$Pu, V2I32:$Rt, V2I32:$Rs)>;
866
867
868// From LegalizeDAG.cpp: (Pu ? Pv : Pw) <=> (Pu & Pv) | (!Pu & Pw).
869def: Pat<(select I1:$Pu, I1:$Pv, I1:$Pw),
870         (C2_or (C2_and  I1:$Pu, I1:$Pv),
871                (C2_andn I1:$Pw, I1:$Pu))>;
872
873
874def IsPosHalf : PatLeaf<(i32 IntRegs:$a), [{
875  return isPositiveHalfWord(N);
876}]>;
877
878multiclass SelMinMax16_pats<PatFrag CmpOp, InstHexagon InstA,
879                            InstHexagon InstB> {
880  def: Pat<(sext_inreg (select (i1 (CmpOp IsPosHalf:$Rs, IsPosHalf:$Rt)),
881                               IsPosHalf:$Rs, IsPosHalf:$Rt), i16),
882           (InstA IntRegs:$Rs, IntRegs:$Rt)>;
883  def: Pat<(sext_inreg (select (i1 (CmpOp IsPosHalf:$Rs, IsPosHalf:$Rt)),
884                               IsPosHalf:$Rt, IsPosHalf:$Rs), i16),
885           (InstB IntRegs:$Rs, IntRegs:$Rt)>;
886}
887
888let AddedComplexity = 200 in {
889  defm: SelMinMax16_pats<setge,  A2_max,  A2_min>;
890  defm: SelMinMax16_pats<setgt,  A2_max,  A2_min>;
891  defm: SelMinMax16_pats<setle,  A2_min,  A2_max>;
892  defm: SelMinMax16_pats<setlt,  A2_min,  A2_max>;
893  defm: SelMinMax16_pats<setuge, A2_maxu, A2_minu>;
894  defm: SelMinMax16_pats<setugt, A2_maxu, A2_minu>;
895  defm: SelMinMax16_pats<setule, A2_minu, A2_maxu>;
896  defm: SelMinMax16_pats<setult, A2_minu, A2_maxu>;
897}
898
899let AddedComplexity = 200 in {
900  defm: MinMax_pats<A2_min,   A2_max,   select,  setgt, i1, I32>;
901  defm: MinMax_pats<A2_min,   A2_max,   select,  setge, i1, I32>;
902  defm: MinMax_pats<A2_max,   A2_min,   select,  setlt, i1, I32>;
903  defm: MinMax_pats<A2_max,   A2_min,   select,  setle, i1, I32>;
904  defm: MinMax_pats<A2_minu,  A2_maxu,  select, setugt, i1, I32>;
905  defm: MinMax_pats<A2_minu,  A2_maxu,  select, setuge, i1, I32>;
906  defm: MinMax_pats<A2_maxu,  A2_minu,  select, setult, i1, I32>;
907  defm: MinMax_pats<A2_maxu,  A2_minu,  select, setule, i1, I32>;
908
909  defm: MinMax_pats<A2_minp,  A2_maxp,  select,  setgt, i1, I64>;
910  defm: MinMax_pats<A2_minp,  A2_maxp,  select,  setge, i1, I64>;
911  defm: MinMax_pats<A2_maxp,  A2_minp,  select,  setlt, i1, I64>;
912  defm: MinMax_pats<A2_maxp,  A2_minp,  select,  setle, i1, I64>;
913  defm: MinMax_pats<A2_minup, A2_maxup, select, setugt, i1, I64>;
914  defm: MinMax_pats<A2_minup, A2_maxup, select, setuge, i1, I64>;
915  defm: MinMax_pats<A2_maxup, A2_minup, select, setult, i1, I64>;
916  defm: MinMax_pats<A2_maxup, A2_minup, select, setule, i1, I64>;
917}
918
919let AddedComplexity = 100 in {
920  defm: MinMax_pats<F2_sfmin, F2_sfmax, select, setogt, i1, F32>;
921  defm: MinMax_pats<F2_sfmin, F2_sfmax, select, setoge, i1, F32>;
922  defm: MinMax_pats<F2_sfmax, F2_sfmin, select, setolt, i1, F32>;
923  defm: MinMax_pats<F2_sfmax, F2_sfmin, select, setole, i1, F32>;
924}
925
926defm: MinMax_pats<A2_vminb,  A2_vmaxb,  vselect,  setgt,  v8i1,  V8I8>;
927defm: MinMax_pats<A2_vminb,  A2_vmaxb,  vselect,  setge,  v8i1,  V8I8>;
928defm: MinMax_pats<A2_vminh,  A2_vmaxh,  vselect,  setgt,  v4i1, V4I16>;
929defm: MinMax_pats<A2_vminh,  A2_vmaxh,  vselect,  setge,  v4i1, V4I16>;
930defm: MinMax_pats<A2_vminw,  A2_vmaxw,  vselect,  setgt,  v2i1, V2I32>;
931defm: MinMax_pats<A2_vminw,  A2_vmaxw,  vselect,  setge,  v2i1, V2I32>;
932defm: MinMax_pats<A2_vminub, A2_vmaxub, vselect, setugt,  v8i1,  V8I8>;
933defm: MinMax_pats<A2_vminub, A2_vmaxub, vselect, setuge,  v8i1,  V8I8>;
934defm: MinMax_pats<A2_vminuh, A2_vmaxuh, vselect, setugt,  v4i1, V4I16>;
935defm: MinMax_pats<A2_vminuh, A2_vmaxuh, vselect, setuge,  v4i1, V4I16>;
936defm: MinMax_pats<A2_vminuw, A2_vmaxuw, vselect, setugt,  v2i1, V2I32>;
937defm: MinMax_pats<A2_vminuw, A2_vmaxuw, vselect, setuge,  v2i1, V2I32>;
938
939// --(7) Insert/extract --------------------------------------------------
940//
941
942def SDTHexagonINSERT:
943  SDTypeProfile<1, 4, [SDTCisSameAs<0, 1>, SDTCisSameAs<0, 2>,
944                       SDTCisInt<0>, SDTCisVT<3, i32>, SDTCisVT<4, i32>]>;
945def HexagonINSERT:    SDNode<"HexagonISD::INSERT",   SDTHexagonINSERT>;
946
947let AddedComplexity = 10 in {
948  def: Pat<(HexagonINSERT I32:$Rs, I32:$Rt, u5_0ImmPred:$u1, u5_0ImmPred:$u2),
949           (S2_insert I32:$Rs, I32:$Rt, imm:$u1, imm:$u2)>;
950  def: Pat<(HexagonINSERT I64:$Rs, I64:$Rt, u6_0ImmPred:$u1, u6_0ImmPred:$u2),
951           (S2_insertp I64:$Rs, I64:$Rt, imm:$u1, imm:$u2)>;
952}
953def: Pat<(HexagonINSERT I32:$Rs, I32:$Rt, I32:$Width, I32:$Off),
954         (S2_insert_rp I32:$Rs, I32:$Rt, (Combinew $Width, $Off))>;
955def: Pat<(HexagonINSERT I64:$Rs, I64:$Rt, I32:$Width, I32:$Off),
956         (S2_insertp_rp I64:$Rs, I64:$Rt, (Combinew $Width, $Off))>;
957
958def SDTHexagonEXTRACTU
959  : SDTypeProfile<1, 3, [SDTCisSameAs<0, 1>, SDTCisInt<0>, SDTCisInt<1>,
960                  SDTCisVT<2, i32>, SDTCisVT<3, i32>]>;
961def HexagonEXTRACTU:   SDNode<"HexagonISD::EXTRACTU",   SDTHexagonEXTRACTU>;
962
963let AddedComplexity = 10 in {
964  def: Pat<(HexagonEXTRACTU I32:$Rs, u5_0ImmPred:$u5, u5_0ImmPred:$U5),
965           (S2_extractu I32:$Rs, imm:$u5, imm:$U5)>;
966  def: Pat<(HexagonEXTRACTU I64:$Rs, u6_0ImmPred:$u6, u6_0ImmPred:$U6),
967           (S2_extractup I64:$Rs, imm:$u6, imm:$U6)>;
968}
969def: Pat<(HexagonEXTRACTU I32:$Rs, I32:$Width, I32:$Off),
970         (S2_extractu_rp I32:$Rs, (Combinew $Width, $Off))>;
971def: Pat<(HexagonEXTRACTU I64:$Rs, I32:$Width, I32:$Off),
972         (S2_extractup_rp I64:$Rs, (Combinew $Width, $Off))>;
973
974def SDTHexagonVSPLAT:
975  SDTypeProfile<1, 1, [SDTCisVec<0>, SDTCisVT<1, i32>]>;
976
977def HexagonVSPLAT: SDNode<"HexagonISD::VSPLAT", SDTHexagonVSPLAT>;
978
979def: Pat<(v4i8  (HexagonVSPLAT I32:$Rs)), (S2_vsplatrb I32:$Rs)>;
980def: Pat<(v4i16 (HexagonVSPLAT I32:$Rs)), (S2_vsplatrh I32:$Rs)>;
981def: Pat<(v2i32 (HexagonVSPLAT s8_0ImmPred:$s8)),
982         (A2_combineii imm:$s8, imm:$s8)>;
983def: Pat<(v2i32 (HexagonVSPLAT I32:$Rs)), (Combinew I32:$Rs, I32:$Rs)>;
984
985let AddedComplexity = 10 in
986def: Pat<(v8i8 (HexagonVSPLAT I32:$Rs)), (S6_vsplatrbp I32:$Rs)>,
987     Requires<[HasV62]>;
988def: Pat<(v8i8 (HexagonVSPLAT I32:$Rs)),
989         (Combinew (S2_vsplatrb I32:$Rs), (S2_vsplatrb I32:$Rs))>;
990
991
992// --(8) Shift/permute ---------------------------------------------------
993//
994
995def SDTHexagonI64I32I32: SDTypeProfile<1, 2,
996  [SDTCisVT<0, i64>, SDTCisVT<1, i32>, SDTCisSameAs<1, 2>]>;
997
998def HexagonCOMBINE:  SDNode<"HexagonISD::COMBINE",  SDTHexagonI64I32I32>;
999
1000def: Pat<(HexagonCOMBINE I32:$Rs, I32:$Rt), (Combinew $Rs, $Rt)>;
1001
1002// The complexity of the combines involving immediates should be greater
1003// than the complexity of the combine with two registers.
1004let AddedComplexity = 50 in {
1005  def: Pat<(HexagonCOMBINE I32:$Rs, anyimm:$s8),
1006           (A4_combineri IntRegs:$Rs, imm:$s8)>;
1007  def: Pat<(HexagonCOMBINE anyimm:$s8, I32:$Rs),
1008           (A4_combineir imm:$s8, IntRegs:$Rs)>;
1009}
1010
1011// The complexity of the combine with two immediates should be greater than
1012// the complexity of a combine involving a register.
1013let AddedComplexity = 75 in {
1014  def: Pat<(HexagonCOMBINE s8_0ImmPred:$s8, anyimm:$u6),
1015           (A4_combineii imm:$s8, imm:$u6)>;
1016  def: Pat<(HexagonCOMBINE anyimm:$s8, s8_0ImmPred:$S8),
1017           (A2_combineii imm:$s8, imm:$S8)>;
1018}
1019
1020def: Pat<(bswap I32:$Rs),  (A2_swiz I32:$Rs)>;
1021def: Pat<(bswap I64:$Rss), (Combinew (A2_swiz (LoReg $Rss)),
1022                                     (A2_swiz (HiReg $Rss)))>;
1023
1024def: Pat<(shl s6_0ImmPred:$s6, I32:$Rt),  (S4_lsli imm:$s6, I32:$Rt)>;
1025def: Pat<(shl I32:$Rs, (i32 16)),         (A2_aslh I32:$Rs)>;
1026def: Pat<(sra I32:$Rs, (i32 16)),         (A2_asrh I32:$Rs)>;
1027
1028def: OpR_RI_pat<S2_asr_i_r,  Sra, i32,   I32,   u5_0ImmPred>;
1029def: OpR_RI_pat<S2_lsr_i_r,  Srl, i32,   I32,   u5_0ImmPred>;
1030def: OpR_RI_pat<S2_asl_i_r,  Shl, i32,   I32,   u5_0ImmPred>;
1031def: OpR_RI_pat<S2_asr_i_p,  Sra, i64,   I64,   u6_0ImmPred>;
1032def: OpR_RI_pat<S2_lsr_i_p,  Srl, i64,   I64,   u6_0ImmPred>;
1033def: OpR_RI_pat<S2_asl_i_p,  Shl, i64,   I64,   u6_0ImmPred>;
1034def: OpR_RI_pat<S2_asr_i_vh, Sra, v4i16, V4I16, u4_0ImmPred>;
1035def: OpR_RI_pat<S2_lsr_i_vh, Srl, v4i16, V4I16, u4_0ImmPred>;
1036def: OpR_RI_pat<S2_asl_i_vh, Shl, v4i16, V4I16, u4_0ImmPred>;
1037def: OpR_RI_pat<S2_asr_i_vh, Sra, v2i32, V2I32, u5_0ImmPred>;
1038def: OpR_RI_pat<S2_lsr_i_vh, Srl, v2i32, V2I32, u5_0ImmPred>;
1039def: OpR_RI_pat<S2_asl_i_vh, Shl, v2i32, V2I32, u5_0ImmPred>;
1040
1041def: OpR_RR_pat<S2_asr_r_r, Sra, i32, I32, I32>;
1042def: OpR_RR_pat<S2_lsr_r_r, Srl, i32, I32, I32>;
1043def: OpR_RR_pat<S2_asl_r_r, Shl, i32, I32, I32>;
1044def: OpR_RR_pat<S2_asr_r_p, Sra, i64, I64, I32>;
1045def: OpR_RR_pat<S2_lsr_r_p, Srl, i64, I64, I32>;
1046def: OpR_RR_pat<S2_asl_r_p, Shl, i64, I64, I32>;
1047
1048// Funnel shifts.
1049def IsMul8_U3: PatLeaf<(i32 imm), [{
1050  uint64_t V = N->getZExtValue();
1051  return V % 8 == 0 && isUInt<3>(V / 8);
1052}]>;
1053
1054def Divu8: SDNodeXForm<imm, [{
1055  return CurDAG->getTargetConstant(N->getZExtValue() / 8, SDLoc(N), MVT::i32);
1056}]>;
1057
1058// Funnel shift-left.
1059def FShl32i: OutPatFrag<(ops node:$Rs, node:$Rt, node:$S),
1060  (HiReg (S2_asl_i_p (Combinew $Rs, $Rt), $S))>;
1061def FShl32r: OutPatFrag<(ops node:$Rs, node:$Rt, node:$Ru),
1062  (HiReg (S2_asl_r_p (Combinew $Rs, $Rt), $Ru))>;
1063
1064def FShl64i: OutPatFrag<(ops node:$Rs, node:$Rt, node:$S),
1065  (S2_lsr_i_p_or (S2_asl_i_p $Rt, $S),  $Rs, (Subi<64> $S))>;
1066def FShl64r: OutPatFrag<(ops node:$Rs, node:$Rt, node:$Ru),
1067  (S2_lsr_r_p_or (S2_asl_r_p $Rt, $Ru), $Rs, (A2_subri 64, $Ru))>;
1068
1069// Combined SDNodeXForm: (Divu8 (Subi<64> $S))
1070def Divu64_8: SDNodeXForm<imm, [{
1071  return CurDAG->getTargetConstant((64 - N->getSExtValue()) / 8,
1072                                   SDLoc(N), MVT::i32);
1073}]>;
1074
1075// Special cases:
1076let AddedComplexity = 100 in {
1077  def: Pat<(fshl I32:$Rs, I32:$Rt, (i32 16)),
1078           (A2_combine_hl I32:$Rs, I32:$Rt)>;
1079  def: Pat<(fshl I64:$Rs, I64:$Rt, IsMul8_U3:$S),
1080           (S2_valignib I64:$Rs, I64:$Rt, (Divu64_8 $S))>;
1081}
1082
1083let Predicates = [HasV60], AddedComplexity = 50 in {
1084  def: OpR_RI_pat<S6_rol_i_r, Rol, i32, I32, u5_0ImmPred>;
1085  def: OpR_RI_pat<S6_rol_i_p, Rol, i64, I64, u6_0ImmPred>;
1086}
1087let AddedComplexity = 30 in {
1088  def: Pat<(rotl I32:$Rs, u5_0ImmPred:$S),          (FShl32i $Rs, $Rs, imm:$S)>;
1089  def: Pat<(rotl I64:$Rs, u6_0ImmPred:$S),          (FShl64i $Rs, $Rs, imm:$S)>;
1090  def: Pat<(fshl I32:$Rs, I32:$Rt, u5_0ImmPred:$S), (FShl32i $Rs, $Rt, imm:$S)>;
1091  def: Pat<(fshl I64:$Rs, I64:$Rt, u6_0ImmPred:$S), (FShl64i $Rs, $Rt, imm:$S)>;
1092}
1093def: Pat<(rotl I32:$Rs, I32:$Rt),           (FShl32r $Rs, $Rs, $Rt)>;
1094def: Pat<(rotl I64:$Rs, I32:$Rt),           (FShl64r $Rs, $Rs, $Rt)>;
1095def: Pat<(fshl I32:$Rs, I32:$Rt, I32:$Ru),  (FShl32r $Rs, $Rt, $Ru)>;
1096def: Pat<(fshl I64:$Rs, I64:$Rt, I32:$Ru),  (FShl64r $Rs, $Rt, $Ru)>;
1097
1098// Funnel shift-right.
1099def FShr32i: OutPatFrag<(ops node:$Rs, node:$Rt, node:$S),
1100  (LoReg (S2_lsr_i_p (Combinew $Rs, $Rt), $S))>;
1101def FShr32r: OutPatFrag<(ops node:$Rs, node:$Rt, node:$Ru),
1102  (LoReg (S2_lsr_r_p (Combinew $Rs, $Rt), $Ru))>;
1103
1104def FShr64i: OutPatFrag<(ops node:$Rs, node:$Rt, node:$S),
1105  (S2_asl_i_p_or (S2_lsr_i_p $Rt, $S),  $Rs, (Subi<64> $S))>;
1106def FShr64r: OutPatFrag<(ops node:$Rs, node:$Rt, node:$Ru),
1107  (S2_asl_r_p_or (S2_lsr_r_p $Rt, $Ru), $Rs, (A2_subri 64, $Ru))>;
1108
1109// Special cases:
1110let AddedComplexity = 100 in {
1111  def: Pat<(fshr I32:$Rs, I32:$Rt, (i32 16)),
1112           (A2_combine_hl I32:$Rs, I32:$Rt)>;
1113  def: Pat<(fshr I64:$Rs, I64:$Rt, IsMul8_U3:$S),
1114           (S2_valignib I64:$Rs, I64:$Rt, (Divu8 $S))>;
1115}
1116
1117let Predicates = [HasV60], AddedComplexity = 50 in {
1118  def: Pat<(rotr I32:$Rs, u5_0ImmPred:$S), (S6_rol_i_r I32:$Rs, (Subi<32> $S))>;
1119  def: Pat<(rotr I64:$Rs, u6_0ImmPred:$S), (S6_rol_i_p I64:$Rs, (Subi<64> $S))>;
1120}
1121let AddedComplexity = 30 in {
1122  def: Pat<(rotr I32:$Rs, u5_0ImmPred:$S),          (FShr32i $Rs, $Rs, imm:$S)>;
1123  def: Pat<(rotr I64:$Rs, u6_0ImmPred:$S),          (FShr64i $Rs, $Rs, imm:$S)>;
1124  def: Pat<(fshr I32:$Rs, I32:$Rt, u5_0ImmPred:$S), (FShr32i $Rs, $Rt, imm:$S)>;
1125  def: Pat<(fshr I64:$Rs, I64:$Rt, u6_0ImmPred:$S), (FShr64i $Rs, $Rt, imm:$S)>;
1126}
1127def: Pat<(rotr I32:$Rs, I32:$Rt),           (FShr32r $Rs, $Rs, $Rt)>;
1128def: Pat<(rotr I64:$Rs, I32:$Rt),           (FShr64r $Rs, $Rs, $Rt)>;
1129def: Pat<(fshr I32:$Rs, I32:$Rt, I32:$Ru),  (FShr32r $Rs, $Rt, $Ru)>;
1130def: Pat<(fshr I64:$Rs, I64:$Rt, I32:$Ru),  (FShr64r $Rs, $Rt, $Ru)>;
1131
1132
1133def: Pat<(sra (add (sra I32:$Rs, u5_0ImmPred:$u5), 1), (i32 1)),
1134         (S2_asr_i_r_rnd I32:$Rs, imm:$u5)>;
1135def: Pat<(sra (add (sra I64:$Rs, u6_0ImmPred:$u6), 1), (i32 1)),
1136         (S2_asr_i_p_rnd I64:$Rs, imm:$u6)>;
1137
1138// Prefer S2_addasl_rrri over S2_asl_i_r_acc.
1139let AddedComplexity = 120 in
1140def: Pat<(add I32:$Rt, (shl I32:$Rs, u3_0ImmPred:$u3)),
1141         (S2_addasl_rrri IntRegs:$Rt, IntRegs:$Rs, imm:$u3)>;
1142
1143let AddedComplexity = 100 in {
1144  def: AccRRI_pat<S2_asr_i_r_acc,   Add, Su<Sra>, I32, u5_0ImmPred>;
1145  def: AccRRI_pat<S2_asr_i_r_nac,   Sub, Su<Sra>, I32, u5_0ImmPred>;
1146  def: AccRRI_pat<S2_asr_i_r_and,   And, Su<Sra>, I32, u5_0ImmPred>;
1147  def: AccRRI_pat<S2_asr_i_r_or,    Or,  Su<Sra>, I32, u5_0ImmPred>;
1148
1149  def: AccRRI_pat<S2_asr_i_p_acc,   Add, Su<Sra>, I64, u6_0ImmPred>;
1150  def: AccRRI_pat<S2_asr_i_p_nac,   Sub, Su<Sra>, I64, u6_0ImmPred>;
1151  def: AccRRI_pat<S2_asr_i_p_and,   And, Su<Sra>, I64, u6_0ImmPred>;
1152  def: AccRRI_pat<S2_asr_i_p_or,    Or,  Su<Sra>, I64, u6_0ImmPred>;
1153
1154  def: AccRRI_pat<S2_lsr_i_r_acc,   Add, Su<Srl>, I32, u5_0ImmPred>;
1155  def: AccRRI_pat<S2_lsr_i_r_nac,   Sub, Su<Srl>, I32, u5_0ImmPred>;
1156  def: AccRRI_pat<S2_lsr_i_r_and,   And, Su<Srl>, I32, u5_0ImmPred>;
1157  def: AccRRI_pat<S2_lsr_i_r_or,    Or,  Su<Srl>, I32, u5_0ImmPred>;
1158  def: AccRRI_pat<S2_lsr_i_r_xacc,  Xor, Su<Srl>, I32, u5_0ImmPred>;
1159
1160  def: AccRRI_pat<S2_lsr_i_p_acc,   Add, Su<Srl>, I64, u6_0ImmPred>;
1161  def: AccRRI_pat<S2_lsr_i_p_nac,   Sub, Su<Srl>, I64, u6_0ImmPred>;
1162  def: AccRRI_pat<S2_lsr_i_p_and,   And, Su<Srl>, I64, u6_0ImmPred>;
1163  def: AccRRI_pat<S2_lsr_i_p_or,    Or,  Su<Srl>, I64, u6_0ImmPred>;
1164  def: AccRRI_pat<S2_lsr_i_p_xacc,  Xor, Su<Srl>, I64, u6_0ImmPred>;
1165
1166  def: AccRRI_pat<S2_asl_i_r_acc,   Add, Su<Shl>, I32, u5_0ImmPred>;
1167  def: AccRRI_pat<S2_asl_i_r_nac,   Sub, Su<Shl>, I32, u5_0ImmPred>;
1168  def: AccRRI_pat<S2_asl_i_r_and,   And, Su<Shl>, I32, u5_0ImmPred>;
1169  def: AccRRI_pat<S2_asl_i_r_or,    Or,  Su<Shl>, I32, u5_0ImmPred>;
1170  def: AccRRI_pat<S2_asl_i_r_xacc,  Xor, Su<Shl>, I32, u5_0ImmPred>;
1171
1172  def: AccRRI_pat<S2_asl_i_p_acc,   Add, Su<Shl>, I64, u6_0ImmPred>;
1173  def: AccRRI_pat<S2_asl_i_p_nac,   Sub, Su<Shl>, I64, u6_0ImmPred>;
1174  def: AccRRI_pat<S2_asl_i_p_and,   And, Su<Shl>, I64, u6_0ImmPred>;
1175  def: AccRRI_pat<S2_asl_i_p_or,    Or,  Su<Shl>, I64, u6_0ImmPred>;
1176  def: AccRRI_pat<S2_asl_i_p_xacc,  Xor, Su<Shl>, I64, u6_0ImmPred>;
1177
1178  let Predicates = [HasV60] in {
1179    def: AccRRI_pat<S6_rol_i_r_acc,   Add, Su<Rol>, I32, u5_0ImmPred>;
1180    def: AccRRI_pat<S6_rol_i_r_nac,   Sub, Su<Rol>, I32, u5_0ImmPred>;
1181    def: AccRRI_pat<S6_rol_i_r_and,   And, Su<Rol>, I32, u5_0ImmPred>;
1182    def: AccRRI_pat<S6_rol_i_r_or,    Or,  Su<Rol>, I32, u5_0ImmPred>;
1183    def: AccRRI_pat<S6_rol_i_r_xacc,  Xor, Su<Rol>, I32, u5_0ImmPred>;
1184
1185    def: AccRRI_pat<S6_rol_i_p_acc,   Add, Su<Rol>, I64, u6_0ImmPred>;
1186    def: AccRRI_pat<S6_rol_i_p_nac,   Sub, Su<Rol>, I64, u6_0ImmPred>;
1187    def: AccRRI_pat<S6_rol_i_p_and,   And, Su<Rol>, I64, u6_0ImmPred>;
1188    def: AccRRI_pat<S6_rol_i_p_or,    Or,  Su<Rol>, I64, u6_0ImmPred>;
1189    def: AccRRI_pat<S6_rol_i_p_xacc,  Xor, Su<Rol>, I64, u6_0ImmPred>;
1190  }
1191}
1192
1193let AddedComplexity = 100 in {
1194  def: AccRRR_pat<S2_asr_r_r_acc,   Add, Su<Sra>, I32, I32, I32>;
1195  def: AccRRR_pat<S2_asr_r_r_nac,   Sub, Su<Sra>, I32, I32, I32>;
1196  def: AccRRR_pat<S2_asr_r_r_and,   And, Su<Sra>, I32, I32, I32>;
1197  def: AccRRR_pat<S2_asr_r_r_or,    Or,  Su<Sra>, I32, I32, I32>;
1198
1199  def: AccRRR_pat<S2_asr_r_p_acc,   Add, Su<Sra>, I64, I64, I32>;
1200  def: AccRRR_pat<S2_asr_r_p_nac,   Sub, Su<Sra>, I64, I64, I32>;
1201  def: AccRRR_pat<S2_asr_r_p_and,   And, Su<Sra>, I64, I64, I32>;
1202  def: AccRRR_pat<S2_asr_r_p_or,    Or,  Su<Sra>, I64, I64, I32>;
1203  def: AccRRR_pat<S2_asr_r_p_xor,   Xor, Su<Sra>, I64, I64, I32>;
1204
1205  def: AccRRR_pat<S2_lsr_r_r_acc,   Add, Su<Srl>, I32, I32, I32>;
1206  def: AccRRR_pat<S2_lsr_r_r_nac,   Sub, Su<Srl>, I32, I32, I32>;
1207  def: AccRRR_pat<S2_lsr_r_r_and,   And, Su<Srl>, I32, I32, I32>;
1208  def: AccRRR_pat<S2_lsr_r_r_or,    Or,  Su<Srl>, I32, I32, I32>;
1209
1210  def: AccRRR_pat<S2_lsr_r_p_acc,   Add, Su<Srl>, I64, I64, I32>;
1211  def: AccRRR_pat<S2_lsr_r_p_nac,   Sub, Su<Srl>, I64, I64, I32>;
1212  def: AccRRR_pat<S2_lsr_r_p_and,   And, Su<Srl>, I64, I64, I32>;
1213  def: AccRRR_pat<S2_lsr_r_p_or,    Or,  Su<Srl>, I64, I64, I32>;
1214  def: AccRRR_pat<S2_lsr_r_p_xor,   Xor, Su<Srl>, I64, I64, I32>;
1215
1216  def: AccRRR_pat<S2_asl_r_r_acc,   Add, Su<Shl>, I32, I32, I32>;
1217  def: AccRRR_pat<S2_asl_r_r_nac,   Sub, Su<Shl>, I32, I32, I32>;
1218  def: AccRRR_pat<S2_asl_r_r_and,   And, Su<Shl>, I32, I32, I32>;
1219  def: AccRRR_pat<S2_asl_r_r_or,    Or,  Su<Shl>, I32, I32, I32>;
1220
1221  def: AccRRR_pat<S2_asl_r_p_acc,   Add, Su<Shl>, I64, I64, I32>;
1222  def: AccRRR_pat<S2_asl_r_p_nac,   Sub, Su<Shl>, I64, I64, I32>;
1223  def: AccRRR_pat<S2_asl_r_p_and,   And, Su<Shl>, I64, I64, I32>;
1224  def: AccRRR_pat<S2_asl_r_p_or,    Or,  Su<Shl>, I64, I64, I32>;
1225  def: AccRRR_pat<S2_asl_r_p_xor,   Xor, Su<Shl>, I64, I64, I32>;
1226}
1227
1228
1229class OpshIRI_pat<InstHexagon MI, PatFrag Op, PatFrag ShOp,
1230                  PatFrag RegPred, PatFrag ImmPred>
1231  : Pat<(Op anyimm:$u8, (ShOp RegPred:$Rs, ImmPred:$U5)),
1232        (MI anyimm:$u8, RegPred:$Rs, imm:$U5)>;
1233
1234let AddedComplexity = 200 in {
1235  def: OpshIRI_pat<S4_addi_asl_ri,  Add, Su<Shl>, I32, u5_0ImmPred>;
1236  def: OpshIRI_pat<S4_addi_lsr_ri,  Add, Su<Srl>, I32, u5_0ImmPred>;
1237  def: OpshIRI_pat<S4_subi_asl_ri,  Sub, Su<Shl>, I32, u5_0ImmPred>;
1238  def: OpshIRI_pat<S4_subi_lsr_ri,  Sub, Su<Srl>, I32, u5_0ImmPred>;
1239  def: OpshIRI_pat<S4_andi_asl_ri,  And, Su<Shl>, I32, u5_0ImmPred>;
1240  def: OpshIRI_pat<S4_andi_lsr_ri,  And, Su<Srl>, I32, u5_0ImmPred>;
1241  def: OpshIRI_pat<S4_ori_asl_ri,   Or,  Su<Shl>, I32, u5_0ImmPred>;
1242  def: OpshIRI_pat<S4_ori_lsr_ri,   Or,  Su<Srl>, I32, u5_0ImmPred>;
1243}
1244
1245// Prefer this pattern to S2_asl_i_p_or for the special case of joining
1246// two 32-bit words into a 64-bit word.
1247let AddedComplexity = 200 in
1248def: Pat<(or (shl (Aext64 I32:$a), (i32 32)), (Zext64 I32:$b)),
1249         (Combinew I32:$a, I32:$b)>;
1250
1251def: Pat<(or (or (or (shl (Zext64 (and I32:$b, (i32 65535))), (i32 16)),
1252                     (Zext64 (and I32:$a, (i32 65535)))),
1253                 (shl (Aext64 (and I32:$c, (i32 65535))), (i32 32))),
1254             (shl (Aext64 I32:$d), (i32 48))),
1255         (Combinew (A2_combine_ll I32:$d, I32:$c),
1256                   (A2_combine_ll I32:$b, I32:$a))>;
1257
1258let AddedComplexity = 200 in {
1259  def: Pat<(or (shl I32:$Rt, (i32 16)), (and I32:$Rs, (i32 65535))),
1260           (A2_combine_ll I32:$Rt, I32:$Rs)>;
1261  def: Pat<(or (shl I32:$Rt, (i32 16)), (srl I32:$Rs, (i32 16))),
1262           (A2_combine_lh I32:$Rt, I32:$Rs)>;
1263  def: Pat<(or (and I32:$Rt, (i32 268431360)), (and I32:$Rs, (i32 65535))),
1264           (A2_combine_hl I32:$Rt, I32:$Rs)>;
1265  def: Pat<(or (and I32:$Rt, (i32 268431360)), (srl I32:$Rs, (i32 16))),
1266           (A2_combine_hh I32:$Rt, I32:$Rs)>;
1267}
1268
1269def SDTHexagonVShift
1270  : SDTypeProfile<1, 2, [SDTCisSameAs<0, 1>, SDTCisVec<0>, SDTCisVT<2, i32>]>;
1271
1272def HexagonVASL: SDNode<"HexagonISD::VASL", SDTHexagonVShift>;
1273def HexagonVASR: SDNode<"HexagonISD::VASR", SDTHexagonVShift>;
1274def HexagonVLSR: SDNode<"HexagonISD::VLSR", SDTHexagonVShift>;
1275
1276def: OpR_RI_pat<S2_asl_i_vw, pf2<HexagonVASL>, v2i32, V2I32, u5_0ImmPred>;
1277def: OpR_RI_pat<S2_asl_i_vh, pf2<HexagonVASL>, v4i16, V4I16, u4_0ImmPred>;
1278def: OpR_RI_pat<S2_asr_i_vw, pf2<HexagonVASR>, v2i32, V2I32, u5_0ImmPred>;
1279def: OpR_RI_pat<S2_asr_i_vh, pf2<HexagonVASR>, v4i16, V4I16, u4_0ImmPred>;
1280def: OpR_RI_pat<S2_lsr_i_vw, pf2<HexagonVLSR>, v2i32, V2I32, u5_0ImmPred>;
1281def: OpR_RI_pat<S2_lsr_i_vh, pf2<HexagonVLSR>, v4i16, V4I16, u4_0ImmPred>;
1282
1283def: OpR_RR_pat<S2_asl_r_vw, pf2<HexagonVASL>, v2i32, V2I32, I32>;
1284def: OpR_RR_pat<S2_asl_r_vh, pf2<HexagonVASL>, v4i16, V4I16, I32>;
1285def: OpR_RR_pat<S2_asr_r_vw, pf2<HexagonVASR>, v2i32, V2I32, I32>;
1286def: OpR_RR_pat<S2_asr_r_vh, pf2<HexagonVASR>, v4i16, V4I16, I32>;
1287def: OpR_RR_pat<S2_lsr_r_vw, pf2<HexagonVLSR>, v2i32, V2I32, I32>;
1288def: OpR_RR_pat<S2_lsr_r_vh, pf2<HexagonVLSR>, v4i16, V4I16, I32>;
1289
1290def: Pat<(sra V2I32:$b, (v2i32 (HexagonVSPLAT u5_0ImmPred:$c))),
1291         (S2_asr_i_vw V2I32:$b, imm:$c)>;
1292def: Pat<(srl V2I32:$b, (v2i32 (HexagonVSPLAT u5_0ImmPred:$c))),
1293         (S2_lsr_i_vw V2I32:$b, imm:$c)>;
1294def: Pat<(shl V2I32:$b, (v2i32 (HexagonVSPLAT u5_0ImmPred:$c))),
1295         (S2_asl_i_vw V2I32:$b, imm:$c)>;
1296def: Pat<(sra V4I16:$b, (v4i16 (HexagonVSPLAT u4_0ImmPred:$c))),
1297         (S2_asr_i_vh V4I16:$b, imm:$c)>;
1298def: Pat<(srl V4I16:$b, (v4i16 (HexagonVSPLAT u4_0ImmPred:$c))),
1299         (S2_lsr_i_vh V4I16:$b, imm:$c)>;
1300def: Pat<(shl V4I16:$b, (v4i16 (HexagonVSPLAT u4_0ImmPred:$c))),
1301         (S2_asl_i_vh V4I16:$b, imm:$c)>;
1302
1303def: Pat<(HexagonVASR V2I16:$Rs, u4_0ImmPred:$S),
1304         (LoReg (S2_asr_i_vh (ToAext64 $Rs), imm:$S))>;
1305def: Pat<(HexagonVASL V2I16:$Rs, u4_0ImmPred:$S),
1306         (LoReg (S2_asl_i_vh (ToAext64 $Rs), imm:$S))>;
1307def: Pat<(HexagonVLSR V2I16:$Rs, u4_0ImmPred:$S),
1308         (LoReg (S2_lsr_i_vh (ToAext64 $Rs), imm:$S))>;
1309def: Pat<(HexagonVASR V2I16:$Rs, I32:$Rt),
1310         (LoReg (S2_asr_i_vh (ToAext64 $Rs), I32:$Rt))>;
1311def: Pat<(HexagonVASL V2I16:$Rs, I32:$Rt),
1312         (LoReg (S2_asl_i_vh (ToAext64 $Rs), I32:$Rt))>;
1313def: Pat<(HexagonVLSR V2I16:$Rs, I32:$Rt),
1314         (LoReg (S2_lsr_i_vh (ToAext64 $Rs), I32:$Rt))>;
1315
1316
1317// --(9) Arithmetic/bitwise ----------------------------------------------
1318//
1319
1320def: Pat<(abs  I32:$Rs), (A2_abs   I32:$Rs)>;
1321def: Pat<(abs  I64:$Rs), (A2_absp  I64:$Rs)>;
1322def: Pat<(not  I32:$Rs), (A2_subri -1, I32:$Rs)>;
1323def: Pat<(not  I64:$Rs), (A2_notp  I64:$Rs)>;
1324def: Pat<(ineg I64:$Rs), (A2_negp  I64:$Rs)>;
1325
1326def: Pat<(fabs F32:$Rs), (S2_clrbit_i    F32:$Rs, 31)>;
1327def: Pat<(fneg F32:$Rs), (S2_togglebit_i F32:$Rs, 31)>;
1328
1329def: Pat<(fabs F64:$Rs),
1330         (Combinew (S2_clrbit_i (HiReg $Rs), 31),
1331                   (i32 (LoReg $Rs)))>;
1332def: Pat<(fneg F64:$Rs),
1333         (Combinew (S2_togglebit_i (HiReg $Rs), 31),
1334                   (i32 (LoReg $Rs)))>;
1335
1336def: Pat<(add I32:$Rs, anyimm:$s16),   (A2_addi   I32:$Rs,  imm:$s16)>;
1337def: Pat<(or  I32:$Rs, anyimm:$s10),   (A2_orir   I32:$Rs,  imm:$s10)>;
1338def: Pat<(and I32:$Rs, anyimm:$s10),   (A2_andir  I32:$Rs,  imm:$s10)>;
1339def: Pat<(sub anyimm:$s10, I32:$Rs),   (A2_subri  imm:$s10, I32:$Rs)>;
1340
1341def: OpR_RR_pat<A2_add,       Add,        i32,   I32>;
1342def: OpR_RR_pat<A2_sub,       Sub,        i32,   I32>;
1343def: OpR_RR_pat<A2_and,       And,        i32,   I32>;
1344def: OpR_RR_pat<A2_or,        Or,         i32,   I32>;
1345def: OpR_RR_pat<A2_xor,       Xor,        i32,   I32>;
1346def: OpR_RR_pat<A2_addp,      Add,        i64,   I64>;
1347def: OpR_RR_pat<A2_subp,      Sub,        i64,   I64>;
1348def: OpR_RR_pat<A2_andp,      And,        i64,   I64>;
1349def: OpR_RR_pat<A2_orp,       Or,         i64,   I64>;
1350def: OpR_RR_pat<A2_xorp,      Xor,        i64,   I64>;
1351def: OpR_RR_pat<A4_andnp,     Not2<And>,  i64,   I64>;
1352def: OpR_RR_pat<A4_ornp,      Not2<Or>,   i64,   I64>;
1353
1354def: OpR_RR_pat<A2_svaddh,    Add,        v2i16, V2I16>;
1355def: OpR_RR_pat<A2_svsubh,    Sub,        v2i16, V2I16>;
1356
1357def: OpR_RR_pat<A2_vaddub,    Add,        v8i8,  V8I8>;
1358def: OpR_RR_pat<A2_vaddh,     Add,        v4i16, V4I16>;
1359def: OpR_RR_pat<A2_vaddw,     Add,        v2i32, V2I32>;
1360def: OpR_RR_pat<A2_vsubub,    Sub,        v8i8,  V8I8>;
1361def: OpR_RR_pat<A2_vsubh,     Sub,        v4i16, V4I16>;
1362def: OpR_RR_pat<A2_vsubw,     Sub,        v2i32, V2I32>;
1363
1364def: OpR_RR_pat<A2_and,       And,        v4i8,  V4I8>;
1365def: OpR_RR_pat<A2_xor,       Xor,        v4i8,  V4I8>;
1366def: OpR_RR_pat<A2_or,        Or,         v4i8,  V4I8>;
1367def: OpR_RR_pat<A2_and,       And,        v2i16, V2I16>;
1368def: OpR_RR_pat<A2_xor,       Xor,        v2i16, V2I16>;
1369def: OpR_RR_pat<A2_or,        Or,         v2i16, V2I16>;
1370def: OpR_RR_pat<A2_andp,      And,        v8i8,  V8I8>;
1371def: OpR_RR_pat<A2_orp,       Or,         v8i8,  V8I8>;
1372def: OpR_RR_pat<A2_xorp,      Xor,        v8i8,  V8I8>;
1373def: OpR_RR_pat<A2_andp,      And,        v4i16, V4I16>;
1374def: OpR_RR_pat<A2_orp,       Or,         v4i16, V4I16>;
1375def: OpR_RR_pat<A2_xorp,      Xor,        v4i16, V4I16>;
1376def: OpR_RR_pat<A2_andp,      And,        v2i32, V2I32>;
1377def: OpR_RR_pat<A2_orp,       Or,         v2i32, V2I32>;
1378def: OpR_RR_pat<A2_xorp,      Xor,        v2i32, V2I32>;
1379
1380def: OpR_RR_pat<M2_mpyi,      Mul,        i32,   I32>;
1381def: OpR_RR_pat<M2_mpy_up,    pf2<mulhs>, i32,   I32>;
1382def: OpR_RR_pat<M2_mpyu_up,   pf2<mulhu>, i32,   I32>;
1383def: OpR_RI_pat<M2_mpysip,    Mul,        i32,   I32, u32_0ImmPred>;
1384def: OpR_RI_pat<M2_mpysmi,    Mul,        i32,   I32, s32_0ImmPred>;
1385
1386// Arithmetic on predicates.
1387def: OpR_RR_pat<C2_xor,       Add,        i1,    I1>;
1388def: OpR_RR_pat<C2_xor,       Add,        v2i1,  V2I1>;
1389def: OpR_RR_pat<C2_xor,       Add,        v4i1,  V4I1>;
1390def: OpR_RR_pat<C2_xor,       Add,        v8i1,  V8I1>;
1391def: OpR_RR_pat<C2_xor,       Sub,        i1,    I1>;
1392def: OpR_RR_pat<C2_xor,       Sub,        v2i1,  V2I1>;
1393def: OpR_RR_pat<C2_xor,       Sub,        v4i1,  V4I1>;
1394def: OpR_RR_pat<C2_xor,       Sub,        v8i1,  V8I1>;
1395def: OpR_RR_pat<C2_and,       Mul,        i1,    I1>;
1396def: OpR_RR_pat<C2_and,       Mul,        v2i1,  V2I1>;
1397def: OpR_RR_pat<C2_and,       Mul,        v4i1,  V4I1>;
1398def: OpR_RR_pat<C2_and,       Mul,        v8i1,  V8I1>;
1399
1400def: OpR_RR_pat<F2_sfadd,     pf2<fadd>,    f32, F32>;
1401def: OpR_RR_pat<F2_sfsub,     pf2<fsub>,    f32, F32>;
1402def: OpR_RR_pat<F2_sfmpy,     pf2<fmul>,    f32, F32>;
1403def: OpR_RR_pat<F2_sfmin,     pf2<fminnum>, f32, F32>;
1404def: OpR_RR_pat<F2_sfmax,     pf2<fmaxnum>, f32, F32>;
1405
1406let Predicates = [HasV66] in {
1407  def: OpR_RR_pat<F2_dfadd,     pf2<fadd>,    f64, F64>;
1408  def: OpR_RR_pat<F2_dfsub,     pf2<fsub>,    f64, F64>;
1409}
1410
1411// In expressions like a0*b0 + a1*b1 + ..., prefer to generate multiply-add,
1412// over add-add with individual multiplies as inputs.
1413let AddedComplexity = 10 in {
1414  def: AccRRI_pat<M2_macsip,    Add, Su<Mul>, I32, u32_0ImmPred>;
1415  def: AccRRI_pat<M2_macsin,    Sub, Su<Mul>, I32, u32_0ImmPred>;
1416  def: AccRRR_pat<M2_maci,      Add, Su<Mul>, I32, I32, I32>;
1417  let Predicates = [HasV66] in
1418  def: AccRRR_pat<M2_mnaci,     Sub, Su<Mul>, I32, I32, I32>;
1419}
1420
1421def: AccRRI_pat<M2_naccii,    Sub, Su<Add>, I32, s32_0ImmPred>;
1422def: AccRRI_pat<M2_accii,     Add, Su<Add>, I32, s32_0ImmPred>;
1423def: AccRRR_pat<M2_acci,      Add, Su<Add>, I32, I32, I32>;
1424
1425// Mulh for vectors
1426//
1427def: Pat<(v2i32 (mulhu V2I32:$Rss, V2I32:$Rtt)),
1428         (Combinew (M2_mpyu_up (HiReg $Rss), (HiReg $Rtt)),
1429                   (M2_mpyu_up (LoReg $Rss), (LoReg $Rtt)))>;
1430
1431def: Pat<(v2i32 (mulhs V2I32:$Rs, V2I32:$Rt)),
1432         (Combinew (M2_mpy_up (HiReg $Rs), (HiReg $Rt)),
1433                   (M2_mpy_up (LoReg $Rt), (LoReg $Rt)))>;
1434
1435def Mulhub:
1436  OutPatFrag<(ops node:$Rss, node:$Rtt),
1437             (Combinew (S2_vtrunohb (M5_vmpybuu (HiReg $Rss), (HiReg $Rtt))),
1438                       (S2_vtrunohb (M5_vmpybuu (LoReg $Rss), (LoReg $Rtt))))>;
1439
1440// Equivalent of byte-wise arithmetic shift right by 7 in v8i8.
1441def Asr7:
1442  OutPatFrag<(ops node:$Rss), (C2_mask (C2_not (A4_vcmpbgti $Rss, 0)))>;
1443
1444def: Pat<(v8i8 (mulhu V8I8:$Rss, V8I8:$Rtt)),
1445         (Mulhub $Rss, $Rtt)>;
1446
1447def: Pat<(v8i8 (mulhs V8I8:$Rss, V8I8:$Rtt)),
1448         (A2_vsubub
1449           (Mulhub $Rss, $Rtt),
1450           (A2_vaddub (A2_andp V8I8:$Rss, (Asr7 $Rtt)),
1451                      (A2_andp V8I8:$Rtt, (Asr7 $Rss))))>;
1452
1453def Mpysh:
1454  OutPatFrag<(ops node:$Rs, node:$Rt), (M2_vmpy2s_s0 $Rs, $Rt)>;
1455def Mpyshh:
1456  OutPatFrag<(ops node:$Rss, node:$Rtt), (Mpysh (HiReg $Rss), (HiReg $Rtt))>;
1457def Mpyshl:
1458  OutPatFrag<(ops node:$Rss, node:$Rtt), (Mpysh (LoReg $Rss), (LoReg $Rtt))>;
1459
1460def Mulhsh:
1461  OutPatFrag<(ops node:$Rss, node:$Rtt),
1462             (Combinew (A2_combine_hh (HiReg (Mpyshh $Rss, $Rtt)),
1463                                      (LoReg (Mpyshh $Rss, $Rtt))),
1464                       (A2_combine_hh (HiReg (Mpyshl $Rss, $Rtt)),
1465                                      (LoReg (Mpyshl $Rss, $Rtt))))>;
1466
1467def: Pat<(v4i16 (mulhs V4I16:$Rss, V4I16:$Rtt)), (Mulhsh $Rss, $Rtt)>;
1468
1469def: Pat<(v4i16 (mulhu V4I16:$Rss, V4I16:$Rtt)),
1470         (A2_vaddh
1471           (Mulhsh $Rss, $Rtt),
1472           (A2_vaddh (A2_andp V4I16:$Rss, (S2_asr_i_vh $Rtt, 15)),
1473                     (A2_andp V4I16:$Rtt, (S2_asr_i_vh $Rss, 15))))>;
1474
1475
1476def: Pat<(ineg (mul I32:$Rs, u8_0ImmPred:$u8)),
1477         (M2_mpysin IntRegs:$Rs, imm:$u8)>;
1478
1479def n8_0ImmPred: PatLeaf<(i32 imm), [{
1480  int64_t V = N->getSExtValue();
1481  return -255 <= V && V <= 0;
1482}]>;
1483
1484// Change the sign of the immediate for Rd=-mpyi(Rs,#u8)
1485def: Pat<(mul I32:$Rs, n8_0ImmPred:$n8),
1486         (M2_mpysin I32:$Rs, (NegImm8 imm:$n8))>;
1487
1488def: Pat<(add Sext64:$Rs, I64:$Rt),
1489         (A2_addsp (LoReg Sext64:$Rs), I64:$Rt)>;
1490
1491def: AccRRR_pat<M4_and_and,   And, Su_ni1<And>,  I32,  I32,  I32>;
1492def: AccRRR_pat<M4_and_or,    And, Su_ni1<Or>,   I32,  I32,  I32>;
1493def: AccRRR_pat<M4_and_xor,   And, Su<Xor>,      I32,  I32,  I32>;
1494def: AccRRR_pat<M4_or_and,    Or,  Su_ni1<And>,  I32,  I32,  I32>;
1495def: AccRRR_pat<M4_or_or,     Or,  Su_ni1<Or>,   I32,  I32,  I32>;
1496def: AccRRR_pat<M4_or_xor,    Or,  Su<Xor>,      I32,  I32,  I32>;
1497def: AccRRR_pat<M4_xor_and,   Xor, Su_ni1<And>,  I32,  I32,  I32>;
1498def: AccRRR_pat<M4_xor_or,    Xor, Su_ni1<Or>,   I32,  I32,  I32>;
1499def: AccRRR_pat<M2_xor_xacc,  Xor, Su<Xor>,      I32,  I32,  I32>;
1500def: AccRRR_pat<M4_xor_xacc,  Xor, Su<Xor>,      I64,  I64,  I64>;
1501
1502// For dags like (or (and (not _), _), (shl _, _)) where the "or" with
1503// one argument matches the patterns below, and with the other argument
1504// matches S2_asl_r_r_or, etc, prefer the patterns below.
1505let AddedComplexity = 110 in {  // greater than S2_asl_r_r_and/or/xor.
1506  def: AccRRR_pat<M4_and_andn,  And, Su<Not2<And>>, I32,  I32,  I32>;
1507  def: AccRRR_pat<M4_or_andn,   Or,  Su<Not2<And>>, I32,  I32,  I32>;
1508  def: AccRRR_pat<M4_xor_andn,  Xor, Su<Not2<And>>, I32,  I32,  I32>;
1509}
1510
1511// S4_addaddi and S4_subaddi don't have tied operands, so give them
1512// a bit of preference.
1513let AddedComplexity = 30 in {
1514  def: Pat<(add I32:$Rs, (Su<Add> I32:$Ru, anyimm:$s6)),
1515           (S4_addaddi IntRegs:$Rs, IntRegs:$Ru, imm:$s6)>;
1516  def: Pat<(add anyimm:$s6, (Su<Add> I32:$Rs, I32:$Ru)),
1517           (S4_addaddi IntRegs:$Rs, IntRegs:$Ru, imm:$s6)>;
1518  def: Pat<(add I32:$Rs, (Su<Sub> anyimm:$s6, I32:$Ru)),
1519           (S4_subaddi IntRegs:$Rs, imm:$s6, IntRegs:$Ru)>;
1520  def: Pat<(sub (Su<Add> I32:$Rs, anyimm:$s6), I32:$Ru),
1521           (S4_subaddi IntRegs:$Rs, imm:$s6, IntRegs:$Ru)>;
1522  def: Pat<(add (Su<Sub> I32:$Rs, I32:$Ru), anyimm:$s6),
1523           (S4_subaddi IntRegs:$Rs, imm:$s6, IntRegs:$Ru)>;
1524}
1525
1526def: Pat<(or I32:$Ru, (Su<And> I32:$Rx, anyimm:$s10)),
1527         (S4_or_andix IntRegs:$Ru, IntRegs:$Rx, imm:$s10)>;
1528def: Pat<(or I32:$Rx, (Su<And> I32:$Rs, anyimm:$s10)),
1529         (S4_or_andi IntRegs:$Rx, IntRegs:$Rs, imm:$s10)>;
1530def: Pat<(or I32:$Rx, (Su<Or> I32:$Rs, anyimm:$s10)),
1531         (S4_or_ori IntRegs:$Rx, IntRegs:$Rs, imm:$s10)>;
1532
1533
1534def: Pat<(i32 (trunc (sra (Su<Mul> Sext64:$Rs, Sext64:$Rt), (i32 32)))),
1535         (M2_mpy_up (LoReg Sext64:$Rs), (LoReg Sext64:$Rt))>;
1536def: Pat<(i32 (trunc (srl (Su<Mul> Sext64:$Rs, Sext64:$Rt), (i32 32)))),
1537         (M2_mpy_up (LoReg Sext64:$Rs), (LoReg Sext64:$Rt))>;
1538
1539def: Pat<(mul (Zext64 I32:$Rs), (Zext64 I32:$Rt)),
1540         (M2_dpmpyuu_s0 I32:$Rs, I32:$Rt)>;
1541def: Pat<(mul (Aext64 I32:$Rs), (Aext64 I32:$Rt)),
1542         (M2_dpmpyuu_s0 I32:$Rs, I32:$Rt)>;
1543def: Pat<(mul Sext64:$Rs, Sext64:$Rt),
1544         (M2_dpmpyss_s0 (LoReg Sext64:$Rs), (LoReg Sext64:$Rt))>;
1545
1546def: Pat<(add I64:$Rx, (Su<Mul> Sext64:$Rs, Sext64:$Rt)),
1547         (M2_dpmpyss_acc_s0 I64:$Rx, (LoReg Sext64:$Rs), (LoReg Sext64:$Rt))>;
1548def: Pat<(sub I64:$Rx, (Su<Mul> Sext64:$Rs, Sext64:$Rt)),
1549         (M2_dpmpyss_nac_s0 I64:$Rx, (LoReg Sext64:$Rs), (LoReg Sext64:$Rt))>;
1550def: Pat<(add I64:$Rx, (Su<Mul> (Aext64 I32:$Rs), (Aext64 I32:$Rt))),
1551         (M2_dpmpyuu_acc_s0 I64:$Rx, I32:$Rs, I32:$Rt)>;
1552def: Pat<(add I64:$Rx, (Su<Mul> (Zext64 I32:$Rs), (Zext64 I32:$Rt))),
1553         (M2_dpmpyuu_acc_s0 I64:$Rx, I32:$Rs, I32:$Rt)>;
1554def: Pat<(sub I64:$Rx, (Su<Mul> (Aext64 I32:$Rs), (Aext64 I32:$Rt))),
1555         (M2_dpmpyuu_nac_s0 I64:$Rx, I32:$Rs, I32:$Rt)>;
1556def: Pat<(sub I64:$Rx, (Su<Mul> (Zext64 I32:$Rs), (Zext64 I32:$Rt))),
1557         (M2_dpmpyuu_nac_s0 I64:$Rx, I32:$Rs, I32:$Rt)>;
1558
1559// Add halfword.
1560def: Pat<(sext_inreg (add I32:$Rt, I32:$Rs), i16),
1561         (A2_addh_l16_ll I32:$Rt, I32:$Rs)>;
1562def: Pat<(sra (add (shl I32:$Rt, (i32 16)), I32:$Rs), (i32 16)),
1563         (A2_addh_l16_hl I32:$Rt, I32:$Rs)>;
1564def: Pat<(shl (add I32:$Rt, I32:$Rs), (i32 16)),
1565         (A2_addh_h16_ll I32:$Rt, I32:$Rs)>;
1566
1567// Subtract halfword.
1568def: Pat<(sext_inreg (sub I32:$Rt, I32:$Rs), i16),
1569         (A2_subh_l16_ll I32:$Rt, I32:$Rs)>;
1570def: Pat<(sra (add (shl I32:$Rt, (i32 16)), I32:$Rs), (i32 16)),
1571         (A2_addh_l16_hl I32:$Rt, I32:$Rs)>;
1572def: Pat<(shl (sub I32:$Rt, I32:$Rs), (i32 16)),
1573         (A2_subh_h16_ll I32:$Rt, I32:$Rs)>;
1574
1575def: Pat<(mul I64:$Rss, I64:$Rtt),
1576         (Combinew
1577           (M2_maci (M2_maci (HiReg (M2_dpmpyuu_s0 (LoReg $Rss), (LoReg $Rtt))),
1578                             (LoReg $Rss),
1579                             (HiReg $Rtt)),
1580                    (LoReg $Rtt),
1581                    (HiReg $Rss)),
1582           (i32 (LoReg (M2_dpmpyuu_s0 (LoReg $Rss), (LoReg $Rtt)))))>;
1583
1584def MulHU : OutPatFrag<(ops node:$Rss, node:$Rtt),
1585  (A2_addp
1586    (M2_dpmpyuu_acc_s0
1587      (S2_lsr_i_p
1588        (A2_addp
1589          (M2_dpmpyuu_acc_s0
1590            (S2_lsr_i_p (M2_dpmpyuu_s0 (LoReg $Rss), (LoReg $Rtt)), 32),
1591            (HiReg $Rss),
1592            (LoReg $Rtt)),
1593          (A4_combineir 0, (LoReg (M2_dpmpyuu_s0 (LoReg $Rss), (HiReg $Rtt))))),
1594        32),
1595      (HiReg $Rss),
1596      (HiReg $Rtt)),
1597    (S2_lsr_i_p (M2_dpmpyuu_s0 (LoReg $Rss), (HiReg $Rtt)), 32))>;
1598
1599// Multiply 64-bit unsigned and use upper result.
1600def : Pat <(mulhu I64:$Rss, I64:$Rtt), (MulHU $Rss, $Rtt)>;
1601
1602// Multiply 64-bit signed and use upper result.
1603//
1604// For two signed 64-bit integers A and B, let A' and B' denote A and B
1605// with the sign bit cleared. Then A = -2^63*s(A) + A', where s(A) is the
1606// sign bit of A (and identically for B). With this notation, the signed
1607// product A*B can be written as:
1608//   AB = (-2^63 s(A) + A') * (-2^63 s(B) + B')
1609//      = 2^126 s(A)s(B) - 2^63 [s(A)B'+s(B)A'] + A'B'
1610//      = 2^126 s(A)s(B) + 2^63 [s(A)B'+s(B)A'] + A'B' - 2*2^63 [s(A)B'+s(B)A']
1611//      = (unsigned product AB) - 2^64 [s(A)B'+s(B)A']
1612
1613// Clear the sign bit in a 64-bit register.
1614def ClearSign : OutPatFrag<(ops node:$Rss),
1615  (Combinew (S2_clrbit_i (HiReg $Rss), 31), (i32 (LoReg $Rss)))>;
1616
1617def : Pat <(mulhs I64:$Rss, I64:$Rtt),
1618  (A2_subp
1619    (MulHU $Rss, $Rtt),
1620    (A2_addp
1621      (A2_andp (S2_asr_i_p $Rss, 63), (ClearSign $Rtt)),
1622      (A2_andp (S2_asr_i_p $Rtt, 63), (ClearSign $Rss))))>;
1623
1624// Prefer these instructions over M2_macsip/M2_macsin: the macsi* instructions
1625// will put the immediate addend into a register, while these instructions will
1626// use it directly. Such a construct does not appear in the middle of a gep,
1627// where M2_macsip would be preferable.
1628let AddedComplexity = 20 in {
1629  def: Pat<(add (Su<Mul> I32:$Rs, u6_0ImmPred:$U6), anyimm:$u6),
1630           (M4_mpyri_addi imm:$u6, IntRegs:$Rs, imm:$U6)>;
1631  def: Pat<(add (Su<Mul> I32:$Rs, I32:$Rt), anyimm:$u6),
1632           (M4_mpyrr_addi imm:$u6, IntRegs:$Rs, IntRegs:$Rt)>;
1633}
1634
1635// Keep these instructions less preferable to M2_macsip/M2_macsin.
1636def: Pat<(add I32:$Ru, (Su<Mul> I32:$Rs, u6_2ImmPred:$u6_2)),
1637         (M4_mpyri_addr_u2 IntRegs:$Ru, imm:$u6_2, IntRegs:$Rs)>;
1638def: Pat<(add I32:$Ru, (Su<Mul> I32:$Rs, anyimm:$u6)),
1639         (M4_mpyri_addr IntRegs:$Ru, IntRegs:$Rs, imm:$u6)>;
1640def: Pat<(add I32:$Ru, (Su<Mul> I32:$Ry, I32:$Rs)),
1641         (M4_mpyrr_addr IntRegs:$Ru, IntRegs:$Ry, IntRegs:$Rs)>;
1642
1643
1644def: Pat<(fma F32:$Rs, F32:$Rt, F32:$Rx),
1645         (F2_sffma F32:$Rx, F32:$Rs, F32:$Rt)>;
1646def: Pat<(fma (fneg F32:$Rs), F32:$Rt, F32:$Rx),
1647         (F2_sffms F32:$Rx, F32:$Rs, F32:$Rt)>;
1648def: Pat<(fma F32:$Rs, (fneg F32:$Rt), F32:$Rx),
1649         (F2_sffms F32:$Rx, F32:$Rs, F32:$Rt)>;
1650
1651
1652def: Pat<(mul V2I32:$Rs, V2I32:$Rt),
1653         (PS_vmulw V2I32:$Rs, V2I32:$Rt)>;
1654def: Pat<(add V2I32:$Rx, (mul V2I32:$Rs, V2I32:$Rt)),
1655         (PS_vmulw_acc V2I32:$Rx, V2I32:$Rs, V2I32:$Rt)>;
1656
1657// Add/subtract two v4i8: Hexagon does not have an insn for this one, so
1658// we use the double add v8i8, and use only the low part of the result.
1659def: Pat<(add V4I8:$Rs, V4I8:$Rt),
1660         (LoReg (A2_vaddub (ToAext64 $Rs), (ToAext64 $Rt)))>;
1661def: Pat<(sub V4I8:$Rs, V4I8:$Rt),
1662         (LoReg (A2_vsubub (ToAext64 $Rs), (ToAext64 $Rt)))>;
1663
1664// Use M2_vmpy2s_s0 for half-word vector multiply. It multiplies two
1665// half-words, and saturates the result to a 32-bit value, except the
1666// saturation never happens (it can only occur with scaling).
1667def: Pat<(v2i16 (mul V2I16:$Rs, V2I16:$Rt)),
1668         (LoReg (S2_vtrunewh (A2_combineii 0, 0),
1669                             (M2_vmpy2s_s0 V2I16:$Rs, V2I16:$Rt)))>;
1670def: Pat<(v4i16 (mul V4I16:$Rs, V4I16:$Rt)),
1671         (S2_vtrunewh (M2_vmpy2s_s0 (HiReg $Rs), (HiReg $Rt)),
1672                      (M2_vmpy2s_s0 (LoReg $Rs), (LoReg $Rt)))>;
1673
1674// Multiplies two v4i8 vectors.
1675def: Pat<(v4i8 (mul V4I8:$Rs, V4I8:$Rt)),
1676         (S2_vtrunehb (M5_vmpybuu V4I8:$Rs, V4I8:$Rt))>;
1677
1678// Multiplies two v8i8 vectors.
1679def: Pat<(v8i8 (mul V8I8:$Rs, V8I8:$Rt)),
1680         (Combinew (S2_vtrunehb (M5_vmpybuu (HiReg $Rs), (HiReg $Rt))),
1681                   (S2_vtrunehb (M5_vmpybuu (LoReg $Rs), (LoReg $Rt))))>;
1682
1683
1684// --(10) Bit ------------------------------------------------------------
1685//
1686
1687// Count leading zeros.
1688def: Pat<(i32 (ctlz I32:$Rs)),                (S2_cl0 I32:$Rs)>;
1689def: Pat<(i32 (trunc (ctlz I64:$Rss))),       (S2_cl0p I64:$Rss)>;
1690
1691// Count trailing zeros.
1692def: Pat<(i32 (cttz I32:$Rs)),                (S2_ct0 I32:$Rs)>;
1693def: Pat<(i32 (trunc (cttz I64:$Rss))),       (S2_ct0p I64:$Rss)>;
1694
1695// Count leading ones.
1696def: Pat<(i32 (ctlz (not I32:$Rs))),          (S2_cl1 I32:$Rs)>;
1697def: Pat<(i32 (trunc (ctlz (not I64:$Rss)))), (S2_cl1p I64:$Rss)>;
1698
1699// Count trailing ones.
1700def: Pat<(i32 (cttz (not I32:$Rs))),           (S2_ct1 I32:$Rs)>;
1701def: Pat<(i32 (trunc (cttz (not I64:$Rss)))), (S2_ct1p I64:$Rss)>;
1702
1703// Define leading/trailing patterns that require zero-extensions to 64 bits.
1704def: Pat<(i64 (ctlz I64:$Rss)),               (ToZext64 (S2_cl0p I64:$Rss))>;
1705def: Pat<(i64 (cttz I64:$Rss)),               (ToZext64 (S2_ct0p I64:$Rss))>;
1706def: Pat<(i64 (ctlz (not I64:$Rss))),         (ToZext64 (S2_cl1p I64:$Rss))>;
1707def: Pat<(i64 (cttz (not I64:$Rss))),         (ToZext64 (S2_ct1p I64:$Rss))>;
1708
1709def: Pat<(i64 (ctpop I64:$Rss)),  (ToZext64 (S5_popcountp I64:$Rss))>;
1710def: Pat<(i32 (ctpop I32:$Rs)),   (S5_popcountp (A4_combineir 0, I32:$Rs))>;
1711
1712def: Pat<(bitreverse I32:$Rs),    (S2_brev I32:$Rs)>;
1713def: Pat<(bitreverse I64:$Rss),   (S2_brevp I64:$Rss)>;
1714
1715let AddedComplexity = 20 in { // Complexity greater than and/or/xor
1716  def: Pat<(and I32:$Rs, IsNPow2_32:$V),
1717           (S2_clrbit_i IntRegs:$Rs, (LogN2_32 $V))>;
1718  def: Pat<(or I32:$Rs, IsPow2_32:$V),
1719           (S2_setbit_i IntRegs:$Rs, (Log2_32 $V))>;
1720  def: Pat<(xor I32:$Rs, IsPow2_32:$V),
1721           (S2_togglebit_i IntRegs:$Rs, (Log2_32 $V))>;
1722
1723  def: Pat<(and I32:$Rs, (not (shl 1, I32:$Rt))),
1724           (S2_clrbit_r IntRegs:$Rs, IntRegs:$Rt)>;
1725  def: Pat<(or I32:$Rs, (shl 1, I32:$Rt)),
1726           (S2_setbit_r IntRegs:$Rs, IntRegs:$Rt)>;
1727  def: Pat<(xor I32:$Rs, (shl 1, I32:$Rt)),
1728           (S2_togglebit_r IntRegs:$Rs, IntRegs:$Rt)>;
1729}
1730
1731// Clr/set/toggle bit for 64-bit values with immediate bit index.
1732let AddedComplexity = 20 in { // Complexity greater than and/or/xor
1733  def: Pat<(and I64:$Rss, IsNPow2_64L:$V),
1734           (Combinew (i32 (HiReg $Rss)),
1735                     (S2_clrbit_i (LoReg $Rss), (LogN2_64 $V)))>;
1736  def: Pat<(and I64:$Rss, IsNPow2_64H:$V),
1737           (Combinew (S2_clrbit_i (HiReg $Rss), (UDEC32 (i32 (LogN2_64 $V)))),
1738                     (i32 (LoReg $Rss)))>;
1739
1740  def: Pat<(or I64:$Rss, IsPow2_64L:$V),
1741           (Combinew (i32 (HiReg $Rss)),
1742                     (S2_setbit_i (LoReg $Rss), (Log2_64 $V)))>;
1743  def: Pat<(or I64:$Rss, IsPow2_64H:$V),
1744           (Combinew (S2_setbit_i (HiReg $Rss), (UDEC32 (i32 (Log2_64 $V)))),
1745                     (i32 (LoReg $Rss)))>;
1746
1747  def: Pat<(xor I64:$Rss, IsPow2_64L:$V),
1748           (Combinew (i32 (HiReg $Rss)),
1749                     (S2_togglebit_i (LoReg $Rss), (Log2_64 $V)))>;
1750  def: Pat<(xor I64:$Rss, IsPow2_64H:$V),
1751           (Combinew (S2_togglebit_i (HiReg $Rss), (UDEC32 (i32 (Log2_64 $V)))),
1752                     (i32 (LoReg $Rss)))>;
1753}
1754
1755
1756let AddedComplexity = 20 in { // Complexity greater than cmp reg-imm.
1757  def: Pat<(i1 (setne (and (shl 1, u5_0ImmPred:$u5), I32:$Rs), 0)),
1758           (S2_tstbit_i IntRegs:$Rs, imm:$u5)>;
1759  def: Pat<(i1 (setne (and (shl 1, I32:$Rt), I32:$Rs), 0)),
1760           (S2_tstbit_r IntRegs:$Rs, IntRegs:$Rt)>;
1761  def: Pat<(i1 (trunc I32:$Rs)),
1762           (S2_tstbit_i IntRegs:$Rs, 0)>;
1763  def: Pat<(i1 (trunc I64:$Rs)),
1764           (S2_tstbit_i (LoReg DoubleRegs:$Rs), 0)>;
1765}
1766
1767def: Pat<(and (srl I32:$Rs, u5_0ImmPred:$u5), 1),
1768         (I1toI32 (S2_tstbit_i I32:$Rs, imm:$u5))>;
1769def: Pat<(and (srl I64:$Rss, IsULE<32,31>:$u6), 1),
1770         (ToZext64 (I1toI32 (S2_tstbit_i (LoReg $Rss), imm:$u6)))>;
1771def: Pat<(and (srl I64:$Rss, IsUGT<32,31>:$u6), 1),
1772         (ToZext64 (I1toI32 (S2_tstbit_i (HiReg $Rss), (UDEC32 $u6))))>;
1773
1774def: Pat<(and (not (srl I32:$Rs, u5_0ImmPred:$u5)), 1),
1775         (I1toI32 (S4_ntstbit_i I32:$Rs, imm:$u5))>;
1776def: Pat<(and (not (srl I64:$Rss, IsULE<32,31>:$u6)), 1),
1777         (ToZext64 (I1toI32 (S4_ntstbit_i (LoReg $Rss), imm:$u6)))>;
1778def: Pat<(and (not (srl I64:$Rss, IsUGT<32,31>:$u6)), 1),
1779         (ToZext64 (I1toI32 (S4_ntstbit_i (HiReg $Rss), (UDEC32 $u6))))>;
1780
1781let AddedComplexity = 20 in { // Complexity greater than compare reg-imm.
1782  def: Pat<(i1 (seteq (and I32:$Rs, u6_0ImmPred:$u6), 0)),
1783           (C2_bitsclri IntRegs:$Rs, imm:$u6)>;
1784  def: Pat<(i1 (seteq (and I32:$Rs, I32:$Rt), 0)),
1785           (C2_bitsclr IntRegs:$Rs, IntRegs:$Rt)>;
1786}
1787
1788let AddedComplexity = 10 in   // Complexity greater than compare reg-reg.
1789def: Pat<(i1 (seteq (and I32:$Rs, I32:$Rt), IntRegs:$Rt)),
1790         (C2_bitsset IntRegs:$Rs, IntRegs:$Rt)>;
1791
1792def SDTTestBit:
1793  SDTypeProfile<1, 2, [SDTCisVT<0, i1>, SDTCisVT<1, i32>, SDTCisVT<2, i32>]>;
1794def HexagonTSTBIT: SDNode<"HexagonISD::TSTBIT", SDTTestBit>;
1795
1796def: Pat<(HexagonTSTBIT I32:$Rs, u5_0ImmPred:$u5),
1797         (S2_tstbit_i I32:$Rs, imm:$u5)>;
1798def: Pat<(HexagonTSTBIT I32:$Rs, I32:$Rt),
1799         (S2_tstbit_r I32:$Rs, I32:$Rt)>;
1800
1801// Add extra complexity to prefer these instructions over bitsset/bitsclr.
1802// The reason is that tstbit/ntstbit can be folded into a compound instruction:
1803//   if ([!]tstbit(...)) jump ...
1804let AddedComplexity = 20 in {   // Complexity greater than cmp reg-imm.
1805  def: Pat<(i1 (seteq (and I32:$Rs, IsPow2_32:$u5), 0)),
1806           (S4_ntstbit_i I32:$Rs, (Log2_32 imm:$u5))>;
1807  def: Pat<(i1 (setne (and I32:$Rs, IsPow2_32:$u5), 0)),
1808           (S2_tstbit_i I32:$Rs, (Log2_32 imm:$u5))>;
1809  def: Pat<(i1 (seteq (and (shl 1, I32:$Rt), I32:$Rs), 0)),
1810           (S4_ntstbit_r I32:$Rs, I32:$Rt)>;
1811  def: Pat<(i1 (setne (and (shl 1, I32:$Rt), I32:$Rs), 0)),
1812           (S2_tstbit_r I32:$Rs, I32:$Rt)>;
1813}
1814
1815def: Pat<(i1 (seteq (and I64:$Rs, IsPow2_64L:$u6), 0)),
1816         (S4_ntstbit_i (LoReg $Rs), (Log2_64 $u6))>;
1817def: Pat<(i1 (seteq (and I64:$Rs, IsPow2_64H:$u6), 0)),
1818         (S4_ntstbit_i (HiReg $Rs), (UDEC32 (i32 (Log2_64 $u6))))>;
1819def: Pat<(i1 (setne (and I64:$Rs, IsPow2_64L:$u6), 0)),
1820         (S2_tstbit_i (LoReg $Rs), (Log2_64 imm:$u6))>;
1821def: Pat<(i1 (setne (and I64:$Rs, IsPow2_64H:$u6), 0)),
1822         (S2_tstbit_i (HiReg $Rs), (UDEC32 (i32 (Log2_64 imm:$u6))))>;
1823
1824// Do not increase complexity of these patterns. In the DAG, "cmp i8" may be
1825// represented as a compare against "value & 0xFF", which is an exact match
1826// for cmpb (same for cmph). The patterns below do not contain any additional
1827// complexity that would make them preferable, and if they were actually used
1828// instead of cmpb/cmph, they would result in a compare against register that
1829// is loaded with the byte/half mask (i.e. 0xFF or 0xFFFF).
1830def: Pat<(i1 (setne (and I32:$Rs, u6_0ImmPred:$u6), 0)),
1831         (C4_nbitsclri I32:$Rs, imm:$u6)>;
1832def: Pat<(i1 (setne (and I32:$Rs, I32:$Rt), 0)),
1833         (C4_nbitsclr I32:$Rs, I32:$Rt)>;
1834def: Pat<(i1 (setne (and I32:$Rs, I32:$Rt), I32:$Rt)),
1835         (C4_nbitsset I32:$Rs, I32:$Rt)>;
1836
1837// Special patterns to address certain cases where the "top-down" matching
1838// algorithm would cause suboptimal selection.
1839
1840let AddedComplexity = 100 in {
1841  // Avoid A4_rcmp[n]eqi in these cases:
1842  def: Pat<(i32 (zext (i1 (seteq (and (shl 1, I32:$Rt), I32:$Rs), 0)))),
1843           (I1toI32 (S4_ntstbit_r IntRegs:$Rs, IntRegs:$Rt))>;
1844  def: Pat<(i32 (zext (i1 (setne (and (shl 1, I32:$Rt), I32:$Rs), 0)))),
1845           (I1toI32 (S2_tstbit_r IntRegs:$Rs, IntRegs:$Rt))>;
1846  def: Pat<(i32 (zext (i1 (seteq (and I32:$Rs, IsPow2_32:$u5), 0)))),
1847           (I1toI32 (S4_ntstbit_i I32:$Rs, (Log2_32 imm:$u5)))>;
1848  def: Pat<(i32 (zext (i1 (setne (and I32:$Rs, IsPow2_32:$u5), 0)))),
1849           (I1toI32 (S2_tstbit_i I32:$Rs, (Log2_32 imm:$u5)))>;
1850  def: Pat<(i32 (zext (i1 (seteq (and (shl 1, I32:$Rt), I32:$Rs), 0)))),
1851           (I1toI32 (S4_ntstbit_r I32:$Rs, I32:$Rt))>;
1852  def: Pat<(i32 (zext (i1 (setne (and (shl 1, I32:$Rt), I32:$Rs), 0)))),
1853           (I1toI32 (S2_tstbit_r I32:$Rs, I32:$Rt))>;
1854}
1855
1856// --(11) PIC ------------------------------------------------------------
1857//
1858
1859def SDT_HexagonAtGot
1860  : SDTypeProfile<1, 3, [SDTCisVT<0, i32>, SDTCisVT<1, i32>, SDTCisVT<2, i32>]>;
1861def SDT_HexagonAtPcrel
1862  : SDTypeProfile<1, 1, [SDTCisVT<0, i32>, SDTCisVT<1, i32>]>;
1863
1864// AT_GOT address-of-GOT, address-of-global, offset-in-global
1865def HexagonAtGot       : SDNode<"HexagonISD::AT_GOT", SDT_HexagonAtGot>;
1866// AT_PCREL address-of-global
1867def HexagonAtPcrel     : SDNode<"HexagonISD::AT_PCREL", SDT_HexagonAtPcrel>;
1868
1869def: Pat<(HexagonAtGot I32:$got, I32:$addr, (i32 0)),
1870         (L2_loadri_io I32:$got, imm:$addr)>;
1871def: Pat<(HexagonAtGot I32:$got, I32:$addr, s30_2ImmPred:$off),
1872         (A2_addi (L2_loadri_io I32:$got, imm:$addr), imm:$off)>;
1873def: Pat<(HexagonAtPcrel I32:$addr),
1874         (C4_addipc imm:$addr)>;
1875
1876// The HVX load patterns also match AT_PCREL directly. Make sure that
1877// if the selection of this opcode changes, it's updated in all places.
1878
1879
1880// --(12) Load -----------------------------------------------------------
1881//
1882
1883def extloadv2i8: PatFrag<(ops node:$ptr), (extload node:$ptr), [{
1884  return cast<LoadSDNode>(N)->getMemoryVT() == MVT::v2i8;
1885}]>;
1886def extloadv4i8: PatFrag<(ops node:$ptr), (extload node:$ptr), [{
1887  return cast<LoadSDNode>(N)->getMemoryVT() == MVT::v4i8;
1888}]>;
1889
1890def zextloadv2i8: PatFrag<(ops node:$ptr), (zextload node:$ptr), [{
1891  return cast<LoadSDNode>(N)->getMemoryVT() == MVT::v2i8;
1892}]>;
1893def zextloadv4i8: PatFrag<(ops node:$ptr), (zextload node:$ptr), [{
1894  return cast<LoadSDNode>(N)->getMemoryVT() == MVT::v4i8;
1895}]>;
1896
1897def sextloadv2i8: PatFrag<(ops node:$ptr), (sextload node:$ptr), [{
1898  return cast<LoadSDNode>(N)->getMemoryVT() == MVT::v2i8;
1899}]>;
1900def sextloadv4i8: PatFrag<(ops node:$ptr), (sextload node:$ptr), [{
1901  return cast<LoadSDNode>(N)->getMemoryVT() == MVT::v4i8;
1902}]>;
1903
1904// Patterns to select load-indexed: Rs + Off.
1905// - frameindex [+ imm],
1906multiclass Loadxfi_pat<PatFrag Load, ValueType VT, PatLeaf ImmPred,
1907                       InstHexagon MI> {
1908  def: Pat<(VT (Load (add (i32 AddrFI:$fi), ImmPred:$Off))),
1909           (VT (MI AddrFI:$fi, imm:$Off))>;
1910  def: Pat<(VT (Load (IsOrAdd (i32 AddrFI:$fi), ImmPred:$Off))),
1911           (VT (MI AddrFI:$fi, imm:$Off))>;
1912  def: Pat<(VT (Load AddrFI:$fi)), (VT (MI AddrFI:$fi, 0))>;
1913}
1914
1915// Patterns to select load-indexed: Rs + Off.
1916// - base reg [+ imm]
1917multiclass Loadxgi_pat<PatFrag Load, ValueType VT, PatLeaf ImmPred,
1918                       InstHexagon MI> {
1919  def: Pat<(VT (Load (add I32:$Rs, ImmPred:$Off))),
1920           (VT (MI IntRegs:$Rs, imm:$Off))>;
1921  def: Pat<(VT (Load (IsOrAdd I32:$Rs, ImmPred:$Off))),
1922           (VT (MI IntRegs:$Rs, imm:$Off))>;
1923  def: Pat<(VT (Load I32:$Rs)), (VT (MI IntRegs:$Rs, 0))>;
1924}
1925
1926// Patterns to select load-indexed: Rs + Off. Combines Loadxfi + Loadxgi.
1927multiclass Loadxi_pat<PatFrag Load, ValueType VT, PatLeaf ImmPred,
1928                      InstHexagon MI> {
1929  defm: Loadxfi_pat<Load, VT, ImmPred, MI>;
1930  defm: Loadxgi_pat<Load, VT, ImmPred, MI>;
1931}
1932
1933// Patterns to select load reg indexed: Rs + Off with a value modifier.
1934// - frameindex [+ imm]
1935multiclass Loadxfim_pat<PatFrag Load, ValueType VT, PatFrag ValueMod,
1936                        PatLeaf ImmPred, InstHexagon MI> {
1937  def: Pat<(VT (Load (add (i32 AddrFI:$fi), ImmPred:$Off))),
1938           (VT (ValueMod (MI AddrFI:$fi, imm:$Off)))>;
1939  def: Pat<(VT (Load (IsOrAdd (i32 AddrFI:$fi), ImmPred:$Off))),
1940           (VT (ValueMod (MI AddrFI:$fi, imm:$Off)))>;
1941  def: Pat<(VT (Load AddrFI:$fi)), (VT (ValueMod (MI AddrFI:$fi, 0)))>;
1942}
1943
1944// Patterns to select load reg indexed: Rs + Off with a value modifier.
1945// - base reg [+ imm]
1946multiclass Loadxgim_pat<PatFrag Load, ValueType VT, PatFrag ValueMod,
1947                        PatLeaf ImmPred, InstHexagon MI> {
1948  def: Pat<(VT (Load (add I32:$Rs, ImmPred:$Off))),
1949           (VT (ValueMod (MI IntRegs:$Rs, imm:$Off)))>;
1950  def: Pat<(VT (Load (IsOrAdd I32:$Rs, ImmPred:$Off))),
1951           (VT (ValueMod (MI IntRegs:$Rs, imm:$Off)))>;
1952  def: Pat<(VT (Load I32:$Rs)), (VT (ValueMod (MI IntRegs:$Rs, 0)))>;
1953}
1954
1955// Patterns to select load reg indexed: Rs + Off with a value modifier.
1956// Combines Loadxfim + Loadxgim.
1957multiclass Loadxim_pat<PatFrag Load, ValueType VT, PatFrag ValueMod,
1958                       PatLeaf ImmPred, InstHexagon MI> {
1959  defm: Loadxfim_pat<Load, VT, ValueMod, ImmPred, MI>;
1960  defm: Loadxgim_pat<Load, VT, ValueMod, ImmPred, MI>;
1961}
1962
1963// Pattern to select load reg reg-indexed: Rs + Rt<<u2.
1964class Loadxr_shl_pat<PatFrag Load, ValueType VT, InstHexagon MI>
1965  : Pat<(VT (Load (add I32:$Rs, (i32 (shl I32:$Rt, u2_0ImmPred:$u2))))),
1966        (VT (MI IntRegs:$Rs, IntRegs:$Rt, imm:$u2))>;
1967
1968// Pattern to select load reg reg-indexed: Rs + Rt<<0.
1969class Loadxr_add_pat<PatFrag Load, ValueType VT, InstHexagon MI>
1970  : Pat<(VT (Load (add I32:$Rs, I32:$Rt))),
1971        (VT (MI IntRegs:$Rs, IntRegs:$Rt, 0))>;
1972
1973// Pattern to select load reg reg-indexed: Rs + Rt<<u2 with value modifier.
1974class Loadxrm_shl_pat<PatFrag Load, ValueType VT, PatFrag ValueMod,
1975                      InstHexagon MI>
1976  : Pat<(VT (Load (add I32:$Rs, (i32 (shl I32:$Rt, u2_0ImmPred:$u2))))),
1977        (VT (ValueMod (MI IntRegs:$Rs, IntRegs:$Rt, imm:$u2)))>;
1978
1979// Pattern to select load reg reg-indexed: Rs + Rt<<0 with value modifier.
1980class Loadxrm_add_pat<PatFrag Load, ValueType VT, PatFrag ValueMod,
1981                      InstHexagon MI>
1982  : Pat<(VT (Load (add I32:$Rs, I32:$Rt))),
1983        (VT (ValueMod (MI IntRegs:$Rs, IntRegs:$Rt, 0)))>;
1984
1985// Pattern to select load long-offset reg-indexed: Addr + Rt<<u2.
1986// Don't match for u2==0, instead use reg+imm for those cases.
1987class Loadxu_pat<PatFrag Load, ValueType VT, PatFrag ImmPred, InstHexagon MI>
1988  : Pat<(VT (Load (add (shl IntRegs:$Rt, u2_0ImmPred:$u2), ImmPred:$Addr))),
1989        (VT (MI IntRegs:$Rt, imm:$u2, ImmPred:$Addr))>;
1990
1991class Loadxum_pat<PatFrag Load, ValueType VT, PatFrag ImmPred, PatFrag ValueMod,
1992                  InstHexagon MI>
1993  : Pat<(VT (Load (add (shl IntRegs:$Rt, u2_0ImmPred:$u2), ImmPred:$Addr))),
1994        (VT (ValueMod (MI IntRegs:$Rt, imm:$u2, ImmPred:$Addr)))>;
1995
1996// Pattern to select load absolute.
1997class Loada_pat<PatFrag Load, ValueType VT, PatFrag Addr, InstHexagon MI>
1998  : Pat<(VT (Load Addr:$addr)), (MI Addr:$addr)>;
1999
2000// Pattern to select load absolute with value modifier.
2001class Loadam_pat<PatFrag Load, ValueType VT, PatFrag Addr, PatFrag ValueMod,
2002                 InstHexagon MI>
2003  : Pat<(VT (Load Addr:$addr)), (ValueMod (MI Addr:$addr))>;
2004
2005
2006let AddedComplexity = 20 in {
2007  defm: Loadxi_pat<extloadi1,       i32,   anyimm0, L2_loadrub_io>;
2008  defm: Loadxi_pat<extloadi8,       i32,   anyimm0, L2_loadrub_io>;
2009  defm: Loadxi_pat<extloadi16,      i32,   anyimm1, L2_loadruh_io>;
2010  defm: Loadxi_pat<extloadv2i8,     v2i16, anyimm1, L2_loadbzw2_io>;
2011  defm: Loadxi_pat<extloadv4i8,     v4i16, anyimm2, L2_loadbzw4_io>;
2012  defm: Loadxi_pat<sextloadi8,      i32,   anyimm0, L2_loadrb_io>;
2013  defm: Loadxi_pat<sextloadi16,     i32,   anyimm1, L2_loadrh_io>;
2014  defm: Loadxi_pat<sextloadv2i8,    v2i16, anyimm1, L2_loadbsw2_io>;
2015  defm: Loadxi_pat<sextloadv4i8,    v4i16, anyimm2, L2_loadbzw4_io>;
2016  defm: Loadxi_pat<zextloadi1,      i32,   anyimm0, L2_loadrub_io>;
2017  defm: Loadxi_pat<zextloadi8,      i32,   anyimm0, L2_loadrub_io>;
2018  defm: Loadxi_pat<zextloadi16,     i32,   anyimm1, L2_loadruh_io>;
2019  defm: Loadxi_pat<zextloadv2i8,    v2i16, anyimm1, L2_loadbzw2_io>;
2020  defm: Loadxi_pat<zextloadv4i8,    v4i16, anyimm2, L2_loadbzw4_io>;
2021  defm: Loadxi_pat<load,            i32,   anyimm2, L2_loadri_io>;
2022  defm: Loadxi_pat<load,            v2i16, anyimm2, L2_loadri_io>;
2023  defm: Loadxi_pat<load,            v4i8,  anyimm2, L2_loadri_io>;
2024  defm: Loadxi_pat<load,            i64,   anyimm3, L2_loadrd_io>;
2025  defm: Loadxi_pat<load,            v2i32, anyimm3, L2_loadrd_io>;
2026  defm: Loadxi_pat<load,            v4i16, anyimm3, L2_loadrd_io>;
2027  defm: Loadxi_pat<load,            v8i8,  anyimm3, L2_loadrd_io>;
2028  defm: Loadxi_pat<load,            f32,   anyimm2, L2_loadri_io>;
2029  defm: Loadxi_pat<load,            f64,   anyimm3, L2_loadrd_io>;
2030  // No sextloadi1.
2031
2032  defm: Loadxi_pat<atomic_load_8 ,  i32, anyimm0, L2_loadrub_io>;
2033  defm: Loadxi_pat<atomic_load_16,  i32, anyimm1, L2_loadruh_io>;
2034  defm: Loadxi_pat<atomic_load_32,  i32, anyimm2, L2_loadri_io>;
2035  defm: Loadxi_pat<atomic_load_64,  i64, anyimm3, L2_loadrd_io>;
2036}
2037
2038let AddedComplexity = 30 in {
2039  defm: Loadxim_pat<extloadi1,    i64, ToAext64, anyimm0, L2_loadrub_io>;
2040  defm: Loadxim_pat<extloadi8,    i64, ToAext64, anyimm0, L2_loadrub_io>;
2041  defm: Loadxim_pat<extloadi16,   i64, ToAext64, anyimm1, L2_loadruh_io>;
2042  defm: Loadxim_pat<extloadi32,   i64, ToAext64, anyimm2, L2_loadri_io>;
2043  defm: Loadxim_pat<zextloadi1,   i64, ToZext64, anyimm0, L2_loadrub_io>;
2044  defm: Loadxim_pat<zextloadi8,   i64, ToZext64, anyimm0, L2_loadrub_io>;
2045  defm: Loadxim_pat<zextloadi16,  i64, ToZext64, anyimm1, L2_loadruh_io>;
2046  defm: Loadxim_pat<zextloadi32,  i64, ToZext64, anyimm2, L2_loadri_io>;
2047  defm: Loadxim_pat<sextloadi8,   i64, ToSext64, anyimm0, L2_loadrb_io>;
2048  defm: Loadxim_pat<sextloadi16,  i64, ToSext64, anyimm1, L2_loadrh_io>;
2049  defm: Loadxim_pat<sextloadi32,  i64, ToSext64, anyimm2, L2_loadri_io>;
2050}
2051
2052let AddedComplexity  = 60 in {
2053  def: Loadxu_pat<extloadi8,    i32,   anyimm0, L4_loadrub_ur>;
2054  def: Loadxu_pat<extloadi16,   i32,   anyimm1, L4_loadruh_ur>;
2055  def: Loadxu_pat<extloadv2i8,  v2i16, anyimm1, L4_loadbzw2_ur>;
2056  def: Loadxu_pat<extloadv4i8,  v4i16, anyimm2, L4_loadbzw4_ur>;
2057  def: Loadxu_pat<sextloadi8,   i32,   anyimm0, L4_loadrb_ur>;
2058  def: Loadxu_pat<sextloadi16,  i32,   anyimm1, L4_loadrh_ur>;
2059  def: Loadxu_pat<sextloadv2i8, v2i16, anyimm1, L4_loadbsw2_ur>;
2060  def: Loadxu_pat<sextloadv4i8, v4i16, anyimm2, L4_loadbzw4_ur>;
2061  def: Loadxu_pat<zextloadi8,   i32,   anyimm0, L4_loadrub_ur>;
2062  def: Loadxu_pat<zextloadi16,  i32,   anyimm1, L4_loadruh_ur>;
2063  def: Loadxu_pat<zextloadv2i8, v2i16, anyimm1, L4_loadbzw2_ur>;
2064  def: Loadxu_pat<zextloadv4i8, v4i16, anyimm2, L4_loadbzw4_ur>;
2065  def: Loadxu_pat<load,         i32,   anyimm2, L4_loadri_ur>;
2066  def: Loadxu_pat<load,         v2i16, anyimm2, L4_loadri_ur>;
2067  def: Loadxu_pat<load,         v4i8,  anyimm2, L4_loadri_ur>;
2068  def: Loadxu_pat<load,         i64,   anyimm3, L4_loadrd_ur>;
2069  def: Loadxu_pat<load,         v2i32, anyimm3, L4_loadrd_ur>;
2070  def: Loadxu_pat<load,         v4i16, anyimm3, L4_loadrd_ur>;
2071  def: Loadxu_pat<load,         v8i8,  anyimm3, L4_loadrd_ur>;
2072  def: Loadxu_pat<load,         f32,   anyimm2, L4_loadri_ur>;
2073  def: Loadxu_pat<load,         f64,   anyimm3, L4_loadrd_ur>;
2074
2075  def: Loadxum_pat<sextloadi8,  i64, anyimm0, ToSext64, L4_loadrb_ur>;
2076  def: Loadxum_pat<zextloadi8,  i64, anyimm0, ToZext64, L4_loadrub_ur>;
2077  def: Loadxum_pat<extloadi8,   i64, anyimm0, ToAext64, L4_loadrub_ur>;
2078  def: Loadxum_pat<sextloadi16, i64, anyimm1, ToSext64, L4_loadrh_ur>;
2079  def: Loadxum_pat<zextloadi16, i64, anyimm1, ToZext64, L4_loadruh_ur>;
2080  def: Loadxum_pat<extloadi16,  i64, anyimm1, ToAext64, L4_loadruh_ur>;
2081  def: Loadxum_pat<sextloadi32, i64, anyimm2, ToSext64, L4_loadri_ur>;
2082  def: Loadxum_pat<zextloadi32, i64, anyimm2, ToZext64, L4_loadri_ur>;
2083  def: Loadxum_pat<extloadi32,  i64, anyimm2, ToAext64, L4_loadri_ur>;
2084}
2085
2086let AddedComplexity = 40 in {
2087  def: Loadxr_shl_pat<extloadi8,     i32,   L4_loadrub_rr>;
2088  def: Loadxr_shl_pat<zextloadi8,    i32,   L4_loadrub_rr>;
2089  def: Loadxr_shl_pat<sextloadi8,    i32,   L4_loadrb_rr>;
2090  def: Loadxr_shl_pat<extloadi16,    i32,   L4_loadruh_rr>;
2091  def: Loadxr_shl_pat<zextloadi16,   i32,   L4_loadruh_rr>;
2092  def: Loadxr_shl_pat<sextloadi16,   i32,   L4_loadrh_rr>;
2093  def: Loadxr_shl_pat<load,          i32,   L4_loadri_rr>;
2094  def: Loadxr_shl_pat<load,          v2i16, L4_loadri_rr>;
2095  def: Loadxr_shl_pat<load,          v4i8,  L4_loadri_rr>;
2096  def: Loadxr_shl_pat<load,          i64,   L4_loadrd_rr>;
2097  def: Loadxr_shl_pat<load,          v2i32, L4_loadrd_rr>;
2098  def: Loadxr_shl_pat<load,          v4i16, L4_loadrd_rr>;
2099  def: Loadxr_shl_pat<load,          v8i8,  L4_loadrd_rr>;
2100  def: Loadxr_shl_pat<load,          f32,   L4_loadri_rr>;
2101  def: Loadxr_shl_pat<load,          f64,   L4_loadrd_rr>;
2102}
2103
2104let AddedComplexity = 20 in {
2105  def: Loadxr_add_pat<extloadi8,     i32,   L4_loadrub_rr>;
2106  def: Loadxr_add_pat<zextloadi8,    i32,   L4_loadrub_rr>;
2107  def: Loadxr_add_pat<sextloadi8,    i32,   L4_loadrb_rr>;
2108  def: Loadxr_add_pat<extloadi16,    i32,   L4_loadruh_rr>;
2109  def: Loadxr_add_pat<zextloadi16,   i32,   L4_loadruh_rr>;
2110  def: Loadxr_add_pat<sextloadi16,   i32,   L4_loadrh_rr>;
2111  def: Loadxr_add_pat<load,          i32,   L4_loadri_rr>;
2112  def: Loadxr_add_pat<load,          v2i16, L4_loadri_rr>;
2113  def: Loadxr_add_pat<load,          v4i8,  L4_loadri_rr>;
2114  def: Loadxr_add_pat<load,          i64,   L4_loadrd_rr>;
2115  def: Loadxr_add_pat<load,          v2i32, L4_loadrd_rr>;
2116  def: Loadxr_add_pat<load,          v4i16, L4_loadrd_rr>;
2117  def: Loadxr_add_pat<load,          v8i8,  L4_loadrd_rr>;
2118  def: Loadxr_add_pat<load,          f32,   L4_loadri_rr>;
2119  def: Loadxr_add_pat<load,          f64,   L4_loadrd_rr>;
2120}
2121
2122let AddedComplexity = 40 in {
2123  def: Loadxrm_shl_pat<extloadi8,    i64, ToAext64, L4_loadrub_rr>;
2124  def: Loadxrm_shl_pat<zextloadi8,   i64, ToZext64, L4_loadrub_rr>;
2125  def: Loadxrm_shl_pat<sextloadi8,   i64, ToSext64, L4_loadrb_rr>;
2126  def: Loadxrm_shl_pat<extloadi16,   i64, ToAext64, L4_loadruh_rr>;
2127  def: Loadxrm_shl_pat<zextloadi16,  i64, ToZext64, L4_loadruh_rr>;
2128  def: Loadxrm_shl_pat<sextloadi16,  i64, ToSext64, L4_loadrh_rr>;
2129  def: Loadxrm_shl_pat<extloadi32,   i64, ToAext64, L4_loadri_rr>;
2130  def: Loadxrm_shl_pat<zextloadi32,  i64, ToZext64, L4_loadri_rr>;
2131  def: Loadxrm_shl_pat<sextloadi32,  i64, ToSext64, L4_loadri_rr>;
2132}
2133
2134let AddedComplexity = 20 in {
2135  def: Loadxrm_add_pat<extloadi8,    i64, ToAext64, L4_loadrub_rr>;
2136  def: Loadxrm_add_pat<zextloadi8,   i64, ToZext64, L4_loadrub_rr>;
2137  def: Loadxrm_add_pat<sextloadi8,   i64, ToSext64, L4_loadrb_rr>;
2138  def: Loadxrm_add_pat<extloadi16,   i64, ToAext64, L4_loadruh_rr>;
2139  def: Loadxrm_add_pat<zextloadi16,  i64, ToZext64, L4_loadruh_rr>;
2140  def: Loadxrm_add_pat<sextloadi16,  i64, ToSext64, L4_loadrh_rr>;
2141  def: Loadxrm_add_pat<extloadi32,   i64, ToAext64, L4_loadri_rr>;
2142  def: Loadxrm_add_pat<zextloadi32,  i64, ToZext64, L4_loadri_rr>;
2143  def: Loadxrm_add_pat<sextloadi32,  i64, ToSext64, L4_loadri_rr>;
2144}
2145
2146// Absolute address
2147
2148let AddedComplexity  = 60 in {
2149  def: Loada_pat<zextloadi1,      i32,   anyimm0, PS_loadrubabs>;
2150  def: Loada_pat<sextloadi8,      i32,   anyimm0, PS_loadrbabs>;
2151  def: Loada_pat<extloadi8,       i32,   anyimm0, PS_loadrubabs>;
2152  def: Loada_pat<zextloadi8,      i32,   anyimm0, PS_loadrubabs>;
2153  def: Loada_pat<sextloadi16,     i32,   anyimm1, PS_loadrhabs>;
2154  def: Loada_pat<extloadi16,      i32,   anyimm1, PS_loadruhabs>;
2155  def: Loada_pat<zextloadi16,     i32,   anyimm1, PS_loadruhabs>;
2156  def: Loada_pat<load,            i32,   anyimm2, PS_loadriabs>;
2157  def: Loada_pat<load,            v2i16, anyimm2, PS_loadriabs>;
2158  def: Loada_pat<load,            v4i8,  anyimm2, PS_loadriabs>;
2159  def: Loada_pat<load,            i64,   anyimm3, PS_loadrdabs>;
2160  def: Loada_pat<load,            v2i32, anyimm3, PS_loadrdabs>;
2161  def: Loada_pat<load,            v4i16, anyimm3, PS_loadrdabs>;
2162  def: Loada_pat<load,            v8i8,  anyimm3, PS_loadrdabs>;
2163  def: Loada_pat<load,            f32,   anyimm2, PS_loadriabs>;
2164  def: Loada_pat<load,            f64,   anyimm3, PS_loadrdabs>;
2165
2166  def: Loada_pat<atomic_load_8,   i32, anyimm0, PS_loadrubabs>;
2167  def: Loada_pat<atomic_load_16,  i32, anyimm1, PS_loadruhabs>;
2168  def: Loada_pat<atomic_load_32,  i32, anyimm2, PS_loadriabs>;
2169  def: Loada_pat<atomic_load_64,  i64, anyimm3, PS_loadrdabs>;
2170}
2171
2172let AddedComplexity  = 30 in {
2173  def: Loadam_pat<extloadi8,      i64, anyimm0, ToAext64, PS_loadrubabs>;
2174  def: Loadam_pat<sextloadi8,     i64, anyimm0, ToSext64, PS_loadrbabs>;
2175  def: Loadam_pat<zextloadi8,     i64, anyimm0, ToZext64, PS_loadrubabs>;
2176  def: Loadam_pat<extloadi16,     i64, anyimm1, ToAext64, PS_loadruhabs>;
2177  def: Loadam_pat<sextloadi16,    i64, anyimm1, ToSext64, PS_loadrhabs>;
2178  def: Loadam_pat<zextloadi16,    i64, anyimm1, ToZext64, PS_loadruhabs>;
2179  def: Loadam_pat<extloadi32,     i64, anyimm2, ToAext64, PS_loadriabs>;
2180  def: Loadam_pat<sextloadi32,    i64, anyimm2, ToSext64, PS_loadriabs>;
2181  def: Loadam_pat<zextloadi32,    i64, anyimm2, ToZext64, PS_loadriabs>;
2182
2183  def: Loadam_pat<load,           i1,  anyimm0, I32toI1,  PS_loadrubabs>;
2184  def: Loadam_pat<zextloadi1,     i64, anyimm0, ToZext64, PS_loadrubabs>;
2185}
2186
2187// GP-relative address
2188
2189let AddedComplexity  = 100 in {
2190  def: Loada_pat<extloadi1,       i32,   addrgp,  L2_loadrubgp>;
2191  def: Loada_pat<zextloadi1,      i32,   addrgp,  L2_loadrubgp>;
2192  def: Loada_pat<extloadi8,       i32,   addrgp,  L2_loadrubgp>;
2193  def: Loada_pat<sextloadi8,      i32,   addrgp,  L2_loadrbgp>;
2194  def: Loada_pat<zextloadi8,      i32,   addrgp,  L2_loadrubgp>;
2195  def: Loada_pat<extloadi16,      i32,   addrgp,  L2_loadruhgp>;
2196  def: Loada_pat<sextloadi16,     i32,   addrgp,  L2_loadrhgp>;
2197  def: Loada_pat<zextloadi16,     i32,   addrgp,  L2_loadruhgp>;
2198  def: Loada_pat<load,            i32,   addrgp,  L2_loadrigp>;
2199  def: Loada_pat<load,            v2i16, addrgp,  L2_loadrigp>;
2200  def: Loada_pat<load,            v4i8,  addrgp,  L2_loadrigp>;
2201  def: Loada_pat<load,            i64,   addrgp,  L2_loadrdgp>;
2202  def: Loada_pat<load,            v2i32, addrgp,  L2_loadrdgp>;
2203  def: Loada_pat<load,            v4i16, addrgp,  L2_loadrdgp>;
2204  def: Loada_pat<load,            v8i8,  addrgp,  L2_loadrdgp>;
2205  def: Loada_pat<load,            f32,   addrgp,  L2_loadrigp>;
2206  def: Loada_pat<load,            f64,   addrgp,  L2_loadrdgp>;
2207
2208  def: Loada_pat<atomic_load_8,   i32, addrgp,  L2_loadrubgp>;
2209  def: Loada_pat<atomic_load_16,  i32, addrgp,  L2_loadruhgp>;
2210  def: Loada_pat<atomic_load_32,  i32, addrgp,  L2_loadrigp>;
2211  def: Loada_pat<atomic_load_64,  i64, addrgp,  L2_loadrdgp>;
2212}
2213
2214let AddedComplexity  = 70 in {
2215  def: Loadam_pat<extloadi8,      i64, addrgp,  ToAext64, L2_loadrubgp>;
2216  def: Loadam_pat<sextloadi8,     i64, addrgp,  ToSext64, L2_loadrbgp>;
2217  def: Loadam_pat<zextloadi8,     i64, addrgp,  ToZext64, L2_loadrubgp>;
2218  def: Loadam_pat<extloadi16,     i64, addrgp,  ToAext64, L2_loadruhgp>;
2219  def: Loadam_pat<sextloadi16,    i64, addrgp,  ToSext64, L2_loadrhgp>;
2220  def: Loadam_pat<zextloadi16,    i64, addrgp,  ToZext64, L2_loadruhgp>;
2221  def: Loadam_pat<extloadi32,     i64, addrgp,  ToAext64, L2_loadrigp>;
2222  def: Loadam_pat<sextloadi32,    i64, addrgp,  ToSext64, L2_loadrigp>;
2223  def: Loadam_pat<zextloadi32,    i64, addrgp,  ToZext64, L2_loadrigp>;
2224
2225  def: Loadam_pat<load,           i1,  addrgp,  I32toI1,  L2_loadrubgp>;
2226  def: Loadam_pat<zextloadi1,     i64, addrgp,  ToZext64, L2_loadrubgp>;
2227}
2228
2229
2230// Sign-extending loads of i1 need to replicate the lowest bit throughout
2231// the 32-bit value. Since the loaded value can only be 0 or 1, 0-v should
2232// do the trick.
2233let AddedComplexity = 20 in
2234def: Pat<(i32 (sextloadi1 I32:$Rs)),
2235         (A2_subri 0, (L2_loadrub_io IntRegs:$Rs, 0))>;
2236
2237// Patterns for loads of i1:
2238def: Pat<(i1 (load AddrFI:$fi)),
2239         (C2_tfrrp (L2_loadrub_io AddrFI:$fi, 0))>;
2240def: Pat<(i1 (load (add I32:$Rs, anyimm0:$Off))),
2241         (C2_tfrrp (L2_loadrub_io IntRegs:$Rs, imm:$Off))>;
2242def: Pat<(i1 (load I32:$Rs)),
2243         (C2_tfrrp (L2_loadrub_io IntRegs:$Rs, 0))>;
2244
2245
2246// --(13) Store ----------------------------------------------------------
2247//
2248
2249class Storepi_pat<PatFrag Store, PatFrag Value, PatFrag Offset, InstHexagon MI>
2250  : Pat<(Store Value:$Rt, I32:$Rx, Offset:$s4),
2251        (MI I32:$Rx, imm:$s4, Value:$Rt)>;
2252
2253def: Storepi_pat<post_truncsti8,  I32, s4_0ImmPred, S2_storerb_pi>;
2254def: Storepi_pat<post_truncsti16, I32, s4_1ImmPred, S2_storerh_pi>;
2255def: Storepi_pat<post_store,      I32, s4_2ImmPred, S2_storeri_pi>;
2256def: Storepi_pat<post_store,      I64, s4_3ImmPred, S2_storerd_pi>;
2257
2258// Patterns for generating stores, where the address takes different forms:
2259// - frameindex,
2260// - frameindex + offset,
2261// - base + offset,
2262// - simple (base address without offset).
2263// These would usually be used together (via Storexi_pat defined below), but
2264// in some cases one may want to apply different properties (such as
2265// AddedComplexity) to the individual patterns.
2266class Storexi_fi_pat<PatFrag Store, PatFrag Value, InstHexagon MI>
2267  : Pat<(Store Value:$Rs, AddrFI:$fi), (MI AddrFI:$fi, 0, Value:$Rs)>;
2268
2269multiclass Storexi_fi_add_pat<PatFrag Store, PatFrag Value, PatFrag ImmPred,
2270                              InstHexagon MI> {
2271  def: Pat<(Store Value:$Rs, (add (i32 AddrFI:$fi), ImmPred:$Off)),
2272           (MI AddrFI:$fi, imm:$Off, Value:$Rs)>;
2273  def: Pat<(Store Value:$Rs, (IsOrAdd (i32 AddrFI:$fi), ImmPred:$Off)),
2274           (MI AddrFI:$fi, imm:$Off, Value:$Rs)>;
2275}
2276
2277multiclass Storexi_add_pat<PatFrag Store, PatFrag Value, PatFrag ImmPred,
2278                           InstHexagon MI> {
2279  def: Pat<(Store Value:$Rt, (add I32:$Rs, ImmPred:$Off)),
2280           (MI IntRegs:$Rs, imm:$Off, Value:$Rt)>;
2281  def: Pat<(Store Value:$Rt, (IsOrAdd I32:$Rs, ImmPred:$Off)),
2282           (MI IntRegs:$Rs, imm:$Off, Value:$Rt)>;
2283}
2284
2285class Storexi_base_pat<PatFrag Store, PatFrag Value, InstHexagon MI>
2286  : Pat<(Store Value:$Rt, I32:$Rs),
2287        (MI IntRegs:$Rs, 0, Value:$Rt)>;
2288
2289// Patterns for generating stores, where the address takes different forms,
2290// and where the value being stored is transformed through the value modifier
2291// ValueMod.  The address forms are same as above.
2292class Storexim_fi_pat<PatFrag Store, PatFrag Value, PatFrag ValueMod,
2293                      InstHexagon MI>
2294  : Pat<(Store Value:$Rs, AddrFI:$fi),
2295        (MI AddrFI:$fi, 0, (ValueMod Value:$Rs))>;
2296
2297multiclass Storexim_fi_add_pat<PatFrag Store, PatFrag Value, PatFrag ImmPred,
2298                               PatFrag ValueMod, InstHexagon MI> {
2299  def: Pat<(Store Value:$Rs, (add (i32 AddrFI:$fi), ImmPred:$Off)),
2300           (MI AddrFI:$fi, imm:$Off, (ValueMod Value:$Rs))>;
2301  def: Pat<(Store Value:$Rs, (IsOrAdd (i32 AddrFI:$fi), ImmPred:$Off)),
2302           (MI AddrFI:$fi, imm:$Off, (ValueMod Value:$Rs))>;
2303}
2304
2305multiclass Storexim_add_pat<PatFrag Store, PatFrag Value, PatFrag ImmPred,
2306                            PatFrag ValueMod, InstHexagon MI> {
2307  def: Pat<(Store Value:$Rt, (add I32:$Rs, ImmPred:$Off)),
2308           (MI IntRegs:$Rs, imm:$Off, (ValueMod Value:$Rt))>;
2309  def: Pat<(Store Value:$Rt, (IsOrAdd I32:$Rs, ImmPred:$Off)),
2310           (MI IntRegs:$Rs, imm:$Off, (ValueMod Value:$Rt))>;
2311}
2312
2313class Storexim_base_pat<PatFrag Store, PatFrag Value, PatFrag ValueMod,
2314                        InstHexagon MI>
2315  : Pat<(Store Value:$Rt, I32:$Rs),
2316        (MI IntRegs:$Rs, 0, (ValueMod Value:$Rt))>;
2317
2318multiclass Storexi_pat<PatFrag Store, PatFrag Value, PatLeaf ImmPred,
2319                       InstHexagon MI> {
2320  defm: Storexi_fi_add_pat <Store, Value, ImmPred, MI>;
2321  def:  Storexi_fi_pat     <Store, Value,          MI>;
2322  defm: Storexi_add_pat    <Store, Value, ImmPred, MI>;
2323}
2324
2325multiclass Storexim_pat<PatFrag Store, PatFrag Value, PatLeaf ImmPred,
2326                        PatFrag ValueMod, InstHexagon MI> {
2327  defm: Storexim_fi_add_pat <Store, Value, ImmPred, ValueMod, MI>;
2328  def:  Storexim_fi_pat     <Store, Value,          ValueMod, MI>;
2329  defm: Storexim_add_pat    <Store, Value, ImmPred, ValueMod, MI>;
2330}
2331
2332// Reg<<S + Imm
2333class Storexu_shl_pat<PatFrag Store, PatFrag Value, PatFrag ImmPred, InstHexagon MI>
2334  : Pat<(Store Value:$Rt, (add (shl I32:$Ru, u2_0ImmPred:$u2), ImmPred:$A)),
2335        (MI IntRegs:$Ru, imm:$u2, ImmPred:$A, Value:$Rt)>;
2336
2337// Reg<<S + Reg
2338class Storexr_shl_pat<PatFrag Store, PatFrag Value, InstHexagon MI>
2339  : Pat<(Store Value:$Ru, (add I32:$Rs, (shl I32:$Rt, u2_0ImmPred:$u2))),
2340        (MI IntRegs:$Rs, IntRegs:$Rt, imm:$u2, Value:$Ru)>;
2341
2342// Reg + Reg
2343class Storexr_add_pat<PatFrag Store, PatFrag Value, InstHexagon MI>
2344  : Pat<(Store Value:$Ru, (add I32:$Rs, I32:$Rt)),
2345        (MI IntRegs:$Rs, IntRegs:$Rt, 0, Value:$Ru)>;
2346
2347class Storea_pat<PatFrag Store, PatFrag Value, PatFrag Addr, InstHexagon MI>
2348  : Pat<(Store Value:$val, Addr:$addr), (MI Addr:$addr, Value:$val)>;
2349
2350class Stoream_pat<PatFrag Store, PatFrag Value, PatFrag Addr, PatFrag ValueMod,
2351                  InstHexagon MI>
2352  : Pat<(Store Value:$val, Addr:$addr),
2353        (MI Addr:$addr, (ValueMod Value:$val))>;
2354
2355// Regular stores in the DAG have two operands: value and address.
2356// Atomic stores also have two, but they are reversed: address, value.
2357// To use atomic stores with the patterns, they need to have their operands
2358// swapped. This relies on the knowledge that the F.Fragment uses names
2359// "ptr" and "val".
2360class AtomSt<PatFrag F>
2361  : PatFrag<(ops node:$val, node:$ptr), !head(F.Fragments), F.PredicateCode,
2362            F.OperandTransform> {
2363  let IsAtomic = F.IsAtomic;
2364  let MemoryVT = F.MemoryVT;
2365}
2366
2367
2368def IMM_BYTE : SDNodeXForm<imm, [{
2369  // -1 can be represented as 255, etc.
2370  // assigning to a byte restores our desired signed value.
2371  int8_t imm = N->getSExtValue();
2372  return CurDAG->getTargetConstant(imm, SDLoc(N), MVT::i32);
2373}]>;
2374
2375def IMM_HALF : SDNodeXForm<imm, [{
2376  // -1 can be represented as 65535, etc.
2377  // assigning to a short restores our desired signed value.
2378  int16_t imm = N->getSExtValue();
2379  return CurDAG->getTargetConstant(imm, SDLoc(N), MVT::i32);
2380}]>;
2381
2382def IMM_WORD : SDNodeXForm<imm, [{
2383  // -1 can be represented as 4294967295, etc.
2384  // Currently, it's not doing this. But some optimization
2385  // might convert -1 to a large +ve number.
2386  // assigning to a word restores our desired signed value.
2387  int32_t imm = N->getSExtValue();
2388  return CurDAG->getTargetConstant(imm, SDLoc(N), MVT::i32);
2389}]>;
2390
2391def ToImmByte : OutPatFrag<(ops node:$R), (IMM_BYTE $R)>;
2392def ToImmHalf : OutPatFrag<(ops node:$R), (IMM_HALF $R)>;
2393def ToImmWord : OutPatFrag<(ops node:$R), (IMM_WORD $R)>;
2394
2395// Even though the offset is not extendable in the store-immediate, we
2396// can still generate the fi# in the base address. If the final offset
2397// is not valid for the instruction, we will replace it with a scratch
2398// register.
2399class SmallStackStore<PatFrag Store>
2400  : PatFrag<(ops node:$Val, node:$Addr), (Store node:$Val, node:$Addr), [{
2401  return isSmallStackStore(cast<StoreSDNode>(N));
2402}]>;
2403
2404// This is the complement of SmallStackStore.
2405class LargeStackStore<PatFrag Store>
2406  : PatFrag<(ops node:$Val, node:$Addr), (Store node:$Val, node:$Addr), [{
2407  return !isSmallStackStore(cast<StoreSDNode>(N));
2408}]>;
2409
2410// Preferred addressing modes for various combinations of stored value
2411// and address computation.
2412// For stores where the address and value are both immediates, prefer
2413// store-immediate. The reason is that the constant-extender optimization
2414// can replace store-immediate with a store-register, but there is nothing
2415// to generate a store-immediate out of a store-register.
2416//
2417//         C     R     F    F+C   R+C   R+R   R<<S+C   R<<S+R
2418// --+-------+-----+-----+------+-----+-----+--------+--------
2419// C |   imm | imm | imm |  imm | imm |  rr |     ur |     rr
2420// R |  abs* |  io |  io |   io |  io |  rr |     ur |     rr
2421//
2422// (*) Absolute or GP-relative.
2423//
2424// Note that any expression can be matched by Reg. In particular, an immediate
2425// can always be placed in a register, so patterns checking for Imm should
2426// have a higher priority than the ones involving Reg that could also match.
2427// For example, *(p+4) could become r1=#4; memw(r0+r1<<#0) instead of the
2428// preferred memw(r0+#4). Similarly Reg+Imm or Reg+Reg should be tried before
2429// Reg alone.
2430//
2431// The order in which the different combinations are tried:
2432//
2433//         C     F     R    F+C   R+C   R+R   R<<S+C   R<<S+R
2434// --+-------+-----+-----+------+-----+-----+--------+--------
2435// C |     1 |   6 |   - |    5 |   9 |   - |      - |      -
2436// R |     2 |   8 |  12 |    7 |  10 |  11 |      3 |      4
2437
2438
2439// First, match the unusual case of doubleword store into Reg+Imm4, i.e.
2440// a store where the offset Imm4 is a multiple of 4, but not of 8. This
2441// implies that Reg is also a proper multiple of 4. To still generate a
2442// doubleword store, add 4 to Reg, and subtract 4 from the offset.
2443
2444def s30_2ProperPred  : PatLeaf<(i32 imm), [{
2445  int64_t v = (int64_t)N->getSExtValue();
2446  return isShiftedInt<30,2>(v) && !isShiftedInt<29,3>(v);
2447}]>;
2448def RoundTo8 : SDNodeXForm<imm, [{
2449  int32_t Imm = N->getSExtValue();
2450  return CurDAG->getTargetConstant(Imm & -8, SDLoc(N), MVT::i32);
2451}]>;
2452
2453let AddedComplexity = 150 in
2454def: Pat<(store I64:$Ru, (add I32:$Rs, s30_2ProperPred:$Off)),
2455         (S2_storerd_io (A2_addi I32:$Rs, 4), (RoundTo8 $Off), I64:$Ru)>;
2456
2457class Storexi_abs_pat<PatFrag Store, PatFrag Value, InstHexagon MI>
2458  : Pat<(Store Value:$val, anyimm:$addr),
2459        (MI (ToI32 $addr), 0, Value:$val)>;
2460class Storexim_abs_pat<PatFrag Store, PatFrag Value, PatFrag ValueMod,
2461                       InstHexagon MI>
2462  : Pat<(Store Value:$val, anyimm:$addr),
2463        (MI (ToI32 $addr), 0, (ValueMod Value:$val))>;
2464
2465let AddedComplexity = 140 in {
2466  def: Storexim_abs_pat<truncstorei8,  anyint, ToImmByte, S4_storeirb_io>;
2467  def: Storexim_abs_pat<truncstorei16, anyint, ToImmHalf, S4_storeirh_io>;
2468  def: Storexim_abs_pat<store,         anyint, ToImmWord, S4_storeiri_io>;
2469
2470  def: Storexi_abs_pat<truncstorei8,  anyimm, S4_storeirb_io>;
2471  def: Storexi_abs_pat<truncstorei16, anyimm, S4_storeirh_io>;
2472  def: Storexi_abs_pat<store,         anyimm, S4_storeiri_io>;
2473}
2474
2475// GP-relative address
2476let AddedComplexity = 120 in {
2477  def: Storea_pat<truncstorei8,               I32, addrgp, S2_storerbgp>;
2478  def: Storea_pat<truncstorei16,              I32, addrgp, S2_storerhgp>;
2479  def: Storea_pat<store,                      I32, addrgp, S2_storerigp>;
2480  def: Storea_pat<store,                     V4I8, addrgp, S2_storerigp>;
2481  def: Storea_pat<store,                    V2I16, addrgp, S2_storerigp>;
2482  def: Storea_pat<store,                      I64, addrgp, S2_storerdgp>;
2483  def: Storea_pat<store,                     V8I8, addrgp, S2_storerdgp>;
2484  def: Storea_pat<store,                    V4I16, addrgp, S2_storerdgp>;
2485  def: Storea_pat<store,                    V2I32, addrgp, S2_storerdgp>;
2486  def: Storea_pat<store,                      F32, addrgp, S2_storerigp>;
2487  def: Storea_pat<store,                      F64, addrgp, S2_storerdgp>;
2488  def: Storea_pat<AtomSt<atomic_store_8>,     I32, addrgp, S2_storerbgp>;
2489  def: Storea_pat<AtomSt<atomic_store_16>,    I32, addrgp, S2_storerhgp>;
2490  def: Storea_pat<AtomSt<atomic_store_32>,    I32, addrgp, S2_storerigp>;
2491  def: Storea_pat<AtomSt<atomic_store_32>,   V4I8, addrgp, S2_storerigp>;
2492  def: Storea_pat<AtomSt<atomic_store_32>,  V2I16, addrgp, S2_storerigp>;
2493  def: Storea_pat<AtomSt<atomic_store_64>,    I64, addrgp, S2_storerdgp>;
2494  def: Storea_pat<AtomSt<atomic_store_64>,   V8I8, addrgp, S2_storerdgp>;
2495  def: Storea_pat<AtomSt<atomic_store_64>,  V4I16, addrgp, S2_storerdgp>;
2496  def: Storea_pat<AtomSt<atomic_store_64>,  V2I32, addrgp, S2_storerdgp>;
2497
2498  def: Stoream_pat<truncstorei8,  I64, addrgp, LoReg,    S2_storerbgp>;
2499  def: Stoream_pat<truncstorei16, I64, addrgp, LoReg,    S2_storerhgp>;
2500  def: Stoream_pat<truncstorei32, I64, addrgp, LoReg,    S2_storerigp>;
2501  def: Stoream_pat<store,         I1,  addrgp, I1toI32,  S2_storerbgp>;
2502}
2503
2504// Absolute address
2505let AddedComplexity = 110 in {
2506  def: Storea_pat<truncstorei8,               I32, anyimm0, PS_storerbabs>;
2507  def: Storea_pat<truncstorei16,              I32, anyimm1, PS_storerhabs>;
2508  def: Storea_pat<store,                      I32, anyimm2, PS_storeriabs>;
2509  def: Storea_pat<store,                     V4I8, anyimm2, PS_storeriabs>;
2510  def: Storea_pat<store,                    V2I16, anyimm2, PS_storeriabs>;
2511  def: Storea_pat<store,                      I64, anyimm3, PS_storerdabs>;
2512  def: Storea_pat<store,                     V8I8, anyimm3, PS_storerdabs>;
2513  def: Storea_pat<store,                    V4I16, anyimm3, PS_storerdabs>;
2514  def: Storea_pat<store,                    V2I32, anyimm3, PS_storerdabs>;
2515  def: Storea_pat<store,                      F32, anyimm2, PS_storeriabs>;
2516  def: Storea_pat<store,                      F64, anyimm3, PS_storerdabs>;
2517  def: Storea_pat<AtomSt<atomic_store_8>,     I32, anyimm0, PS_storerbabs>;
2518  def: Storea_pat<AtomSt<atomic_store_16>,    I32, anyimm1, PS_storerhabs>;
2519  def: Storea_pat<AtomSt<atomic_store_32>,    I32, anyimm2, PS_storeriabs>;
2520  def: Storea_pat<AtomSt<atomic_store_32>,   V4I8, anyimm2, PS_storeriabs>;
2521  def: Storea_pat<AtomSt<atomic_store_32>,  V2I16, anyimm2, PS_storeriabs>;
2522  def: Storea_pat<AtomSt<atomic_store_64>,    I64, anyimm3, PS_storerdabs>;
2523  def: Storea_pat<AtomSt<atomic_store_64>,   V8I8, anyimm3, PS_storerdabs>;
2524  def: Storea_pat<AtomSt<atomic_store_64>,  V4I16, anyimm3, PS_storerdabs>;
2525  def: Storea_pat<AtomSt<atomic_store_64>,  V2I32, anyimm3, PS_storerdabs>;
2526
2527  def: Stoream_pat<truncstorei8,  I64, anyimm0, LoReg,    PS_storerbabs>;
2528  def: Stoream_pat<truncstorei16, I64, anyimm1, LoReg,    PS_storerhabs>;
2529  def: Stoream_pat<truncstorei32, I64, anyimm2, LoReg,    PS_storeriabs>;
2530  def: Stoream_pat<store,         I1,  anyimm0, I1toI32,  PS_storerbabs>;
2531}
2532
2533// Reg<<S + Imm
2534let AddedComplexity = 100 in {
2535  def: Storexu_shl_pat<truncstorei8,    I32, anyimm0, S4_storerb_ur>;
2536  def: Storexu_shl_pat<truncstorei16,   I32, anyimm1, S4_storerh_ur>;
2537  def: Storexu_shl_pat<store,           I32, anyimm2, S4_storeri_ur>;
2538  def: Storexu_shl_pat<store,          V4I8, anyimm2, S4_storeri_ur>;
2539  def: Storexu_shl_pat<store,         V2I16, anyimm2, S4_storeri_ur>;
2540  def: Storexu_shl_pat<store,           I64, anyimm3, S4_storerd_ur>;
2541  def: Storexu_shl_pat<store,          V8I8, anyimm3, S4_storerd_ur>;
2542  def: Storexu_shl_pat<store,         V4I16, anyimm3, S4_storerd_ur>;
2543  def: Storexu_shl_pat<store,         V2I32, anyimm3, S4_storerd_ur>;
2544  def: Storexu_shl_pat<store,           F32, anyimm2, S4_storeri_ur>;
2545  def: Storexu_shl_pat<store,           F64, anyimm3, S4_storerd_ur>;
2546
2547  def: Pat<(store I1:$Pu, (add (shl I32:$Rs, u2_0ImmPred:$u2), anyimm:$A)),
2548           (S4_storerb_ur IntRegs:$Rs, imm:$u2, imm:$A, (I1toI32 I1:$Pu))>;
2549}
2550
2551// Reg<<S + Reg
2552let AddedComplexity = 90 in {
2553  def: Storexr_shl_pat<truncstorei8,    I32, S4_storerb_rr>;
2554  def: Storexr_shl_pat<truncstorei16,   I32, S4_storerh_rr>;
2555  def: Storexr_shl_pat<store,           I32, S4_storeri_rr>;
2556  def: Storexr_shl_pat<store,          V4I8, S4_storeri_rr>;
2557  def: Storexr_shl_pat<store,         V2I16, S4_storeri_rr>;
2558  def: Storexr_shl_pat<store,           I64, S4_storerd_rr>;
2559  def: Storexr_shl_pat<store,          V8I8, S4_storerd_rr>;
2560  def: Storexr_shl_pat<store,         V4I16, S4_storerd_rr>;
2561  def: Storexr_shl_pat<store,         V2I32, S4_storerd_rr>;
2562  def: Storexr_shl_pat<store,           F32, S4_storeri_rr>;
2563  def: Storexr_shl_pat<store,           F64, S4_storerd_rr>;
2564
2565  def: Pat<(store I1:$Pu, (add (shl I32:$Rs, u2_0ImmPred:$u2), I32:$Rt)),
2566           (S4_storerb_ur IntRegs:$Rt, IntRegs:$Rs, imm:$u2, (I1toI32 I1:$Pu))>;
2567}
2568
2569class SS_<PatFrag F> : SmallStackStore<F>;
2570class LS_<PatFrag F> : LargeStackStore<F>;
2571
2572multiclass IMFA_<PatFrag S, PatFrag V, PatFrag O, PatFrag M, InstHexagon I> {
2573  defm: Storexim_fi_add_pat<S, V, O, M, I>;
2574}
2575multiclass IFA_<PatFrag S, PatFrag V, PatFrag O, InstHexagon I> {
2576  defm: Storexi_fi_add_pat<S, V, O, I>;
2577}
2578
2579// Fi+Imm, store-immediate
2580let AddedComplexity = 80 in {
2581  defm: IMFA_<SS_<truncstorei8>,  anyint, u6_0ImmPred, ToImmByte, S4_storeirb_io>;
2582  defm: IMFA_<SS_<truncstorei16>, anyint, u6_1ImmPred, ToImmHalf, S4_storeirh_io>;
2583  defm: IMFA_<SS_<store>,         anyint, u6_2ImmPred, ToImmWord, S4_storeiri_io>;
2584
2585  defm: IFA_<SS_<truncstorei8>,   anyimm, u6_0ImmPred, S4_storeirb_io>;
2586  defm: IFA_<SS_<truncstorei16>,  anyimm, u6_1ImmPred, S4_storeirh_io>;
2587  defm: IFA_<SS_<store>,          anyimm, u6_2ImmPred, S4_storeiri_io>;
2588
2589  // For large-stack stores, generate store-register (prefer explicit Fi
2590  // in the address).
2591  defm: IMFA_<LS_<truncstorei8>,   anyimm, u6_0ImmPred, ToI32, S2_storerb_io>;
2592  defm: IMFA_<LS_<truncstorei16>,  anyimm, u6_1ImmPred, ToI32, S2_storerh_io>;
2593  defm: IMFA_<LS_<store>,          anyimm, u6_2ImmPred, ToI32, S2_storeri_io>;
2594}
2595
2596// Fi, store-immediate
2597let AddedComplexity = 70 in {
2598  def: Storexim_fi_pat<SS_<truncstorei8>,  anyint, ToImmByte, S4_storeirb_io>;
2599  def: Storexim_fi_pat<SS_<truncstorei16>, anyint, ToImmHalf, S4_storeirh_io>;
2600  def: Storexim_fi_pat<SS_<store>,         anyint, ToImmWord, S4_storeiri_io>;
2601
2602  def: Storexi_fi_pat<SS_<truncstorei8>,   anyimm, S4_storeirb_io>;
2603  def: Storexi_fi_pat<SS_<truncstorei16>,  anyimm, S4_storeirh_io>;
2604  def: Storexi_fi_pat<SS_<store>,          anyimm, S4_storeiri_io>;
2605
2606  // For large-stack stores, generate store-register (prefer explicit Fi
2607  // in the address).
2608  def: Storexim_fi_pat<LS_<truncstorei8>,  anyimm, ToI32, S2_storerb_io>;
2609  def: Storexim_fi_pat<LS_<truncstorei16>, anyimm, ToI32, S2_storerh_io>;
2610  def: Storexim_fi_pat<LS_<store>,         anyimm, ToI32, S2_storeri_io>;
2611}
2612
2613// Fi+Imm, Fi, store-register
2614let AddedComplexity = 60 in {
2615  defm: Storexi_fi_add_pat<truncstorei8,    I32, anyimm, S2_storerb_io>;
2616  defm: Storexi_fi_add_pat<truncstorei16,   I32, anyimm, S2_storerh_io>;
2617  defm: Storexi_fi_add_pat<store,           I32, anyimm, S2_storeri_io>;
2618  defm: Storexi_fi_add_pat<store,          V4I8, anyimm, S2_storeri_io>;
2619  defm: Storexi_fi_add_pat<store,         V2I16, anyimm, S2_storeri_io>;
2620  defm: Storexi_fi_add_pat<store,           I64, anyimm, S2_storerd_io>;
2621  defm: Storexi_fi_add_pat<store,          V8I8, anyimm, S2_storerd_io>;
2622  defm: Storexi_fi_add_pat<store,         V4I16, anyimm, S2_storerd_io>;
2623  defm: Storexi_fi_add_pat<store,         V2I32, anyimm, S2_storerd_io>;
2624  defm: Storexi_fi_add_pat<store,           F32, anyimm, S2_storeri_io>;
2625  defm: Storexi_fi_add_pat<store,           F64, anyimm, S2_storerd_io>;
2626  defm: Storexim_fi_add_pat<store, I1, anyimm, I1toI32, S2_storerb_io>;
2627
2628  def: Storexi_fi_pat<truncstorei8,     I32, S2_storerb_io>;
2629  def: Storexi_fi_pat<truncstorei16,    I32, S2_storerh_io>;
2630  def: Storexi_fi_pat<store,            I32, S2_storeri_io>;
2631  def: Storexi_fi_pat<store,           V4I8, S2_storeri_io>;
2632  def: Storexi_fi_pat<store,          V2I16, S2_storeri_io>;
2633  def: Storexi_fi_pat<store,            I64, S2_storerd_io>;
2634  def: Storexi_fi_pat<store,           V8I8, S2_storerd_io>;
2635  def: Storexi_fi_pat<store,          V4I16, S2_storerd_io>;
2636  def: Storexi_fi_pat<store,          V2I32, S2_storerd_io>;
2637  def: Storexi_fi_pat<store,            F32, S2_storeri_io>;
2638  def: Storexi_fi_pat<store,            F64, S2_storerd_io>;
2639  def: Storexim_fi_pat<store, I1, I1toI32, S2_storerb_io>;
2640}
2641
2642
2643multiclass IMRA_<PatFrag S, PatFrag V, PatFrag O, PatFrag M, InstHexagon I> {
2644  defm: Storexim_add_pat<S, V, O, M, I>;
2645}
2646multiclass IRA_<PatFrag S, PatFrag V, PatFrag O, InstHexagon I> {
2647  defm: Storexi_add_pat<S, V, O, I>;
2648}
2649
2650// Reg+Imm, store-immediate
2651let AddedComplexity = 50 in {
2652  defm: IMRA_<truncstorei8,   anyint, u6_0ImmPred, ToImmByte, S4_storeirb_io>;
2653  defm: IMRA_<truncstorei16,  anyint, u6_1ImmPred, ToImmHalf, S4_storeirh_io>;
2654  defm: IMRA_<store,          anyint, u6_2ImmPred, ToImmWord, S4_storeiri_io>;
2655
2656  defm: IRA_<truncstorei8,    anyimm, u6_0ImmPred, S4_storeirb_io>;
2657  defm: IRA_<truncstorei16,   anyimm, u6_1ImmPred, S4_storeirh_io>;
2658  defm: IRA_<store,           anyimm, u6_2ImmPred, S4_storeiri_io>;
2659}
2660
2661// Reg+Imm, store-register
2662let AddedComplexity = 40 in {
2663  defm: Storexi_pat<truncstorei8,     I32, anyimm0, S2_storerb_io>;
2664  defm: Storexi_pat<truncstorei16,    I32, anyimm1, S2_storerh_io>;
2665  defm: Storexi_pat<store,            I32, anyimm2, S2_storeri_io>;
2666  defm: Storexi_pat<store,           V4I8, anyimm2, S2_storeri_io>;
2667  defm: Storexi_pat<store,          V2I16, anyimm2, S2_storeri_io>;
2668  defm: Storexi_pat<store,            I64, anyimm3, S2_storerd_io>;
2669  defm: Storexi_pat<store,           V8I8, anyimm3, S2_storerd_io>;
2670  defm: Storexi_pat<store,          V4I16, anyimm3, S2_storerd_io>;
2671  defm: Storexi_pat<store,          V2I32, anyimm3, S2_storerd_io>;
2672  defm: Storexi_pat<store,            F32, anyimm2, S2_storeri_io>;
2673  defm: Storexi_pat<store,            F64, anyimm3, S2_storerd_io>;
2674
2675  defm: Storexim_pat<truncstorei8,  I64, anyimm0, LoReg,   S2_storerb_io>;
2676  defm: Storexim_pat<truncstorei16, I64, anyimm1, LoReg,   S2_storerh_io>;
2677  defm: Storexim_pat<truncstorei32, I64, anyimm2, LoReg,   S2_storeri_io>;
2678  defm: Storexim_pat<store,         I1,  anyimm0, I1toI32, S2_storerb_io>;
2679
2680  defm: Storexi_pat<AtomSt<atomic_store_8>,     I32, anyimm0, S2_storerb_io>;
2681  defm: Storexi_pat<AtomSt<atomic_store_16>,    I32, anyimm1, S2_storerh_io>;
2682  defm: Storexi_pat<AtomSt<atomic_store_32>,    I32, anyimm2, S2_storeri_io>;
2683  defm: Storexi_pat<AtomSt<atomic_store_32>,   V4I8, anyimm2, S2_storeri_io>;
2684  defm: Storexi_pat<AtomSt<atomic_store_32>,  V2I16, anyimm2, S2_storeri_io>;
2685  defm: Storexi_pat<AtomSt<atomic_store_64>,    I64, anyimm3, S2_storerd_io>;
2686  defm: Storexi_pat<AtomSt<atomic_store_64>,   V8I8, anyimm3, S2_storerd_io>;
2687  defm: Storexi_pat<AtomSt<atomic_store_64>,  V4I16, anyimm3, S2_storerd_io>;
2688  defm: Storexi_pat<AtomSt<atomic_store_64>,  V2I32, anyimm3, S2_storerd_io>;
2689}
2690
2691// Reg+Reg
2692let AddedComplexity = 30 in {
2693  def: Storexr_add_pat<truncstorei8,    I32, S4_storerb_rr>;
2694  def: Storexr_add_pat<truncstorei16,   I32, S4_storerh_rr>;
2695  def: Storexr_add_pat<store,           I32, S4_storeri_rr>;
2696  def: Storexr_add_pat<store,          V4I8, S4_storeri_rr>;
2697  def: Storexr_add_pat<store,         V2I16, S4_storeri_rr>;
2698  def: Storexr_add_pat<store,           I64, S4_storerd_rr>;
2699  def: Storexr_add_pat<store,          V8I8, S4_storerd_rr>;
2700  def: Storexr_add_pat<store,         V4I16, S4_storerd_rr>;
2701  def: Storexr_add_pat<store,         V2I32, S4_storerd_rr>;
2702  def: Storexr_add_pat<store,           F32, S4_storeri_rr>;
2703  def: Storexr_add_pat<store,           F64, S4_storerd_rr>;
2704
2705  def: Pat<(store I1:$Pu, (add I32:$Rs, I32:$Rt)),
2706           (S4_storerb_rr IntRegs:$Rs, IntRegs:$Rt, 0, (I1toI32 I1:$Pu))>;
2707}
2708
2709// Reg, store-immediate
2710let AddedComplexity = 20 in {
2711  def: Storexim_base_pat<truncstorei8,  anyint, ToImmByte, S4_storeirb_io>;
2712  def: Storexim_base_pat<truncstorei16, anyint, ToImmHalf, S4_storeirh_io>;
2713  def: Storexim_base_pat<store,         anyint, ToImmWord, S4_storeiri_io>;
2714
2715  def: Storexi_base_pat<truncstorei8,   anyimm, S4_storeirb_io>;
2716  def: Storexi_base_pat<truncstorei16,  anyimm, S4_storeirh_io>;
2717  def: Storexi_base_pat<store,          anyimm, S4_storeiri_io>;
2718}
2719
2720// Reg, store-register
2721let AddedComplexity = 10 in {
2722  def: Storexi_base_pat<truncstorei8,     I32, S2_storerb_io>;
2723  def: Storexi_base_pat<truncstorei16,    I32, S2_storerh_io>;
2724  def: Storexi_base_pat<store,            I32, S2_storeri_io>;
2725  def: Storexi_base_pat<store,           V4I8, S2_storeri_io>;
2726  def: Storexi_base_pat<store,          V2I16, S2_storeri_io>;
2727  def: Storexi_base_pat<store,            I64, S2_storerd_io>;
2728  def: Storexi_base_pat<store,           V8I8, S2_storerd_io>;
2729  def: Storexi_base_pat<store,          V4I16, S2_storerd_io>;
2730  def: Storexi_base_pat<store,          V2I32, S2_storerd_io>;
2731  def: Storexi_base_pat<store,            F32, S2_storeri_io>;
2732  def: Storexi_base_pat<store,            F64, S2_storerd_io>;
2733
2734  def: Storexim_base_pat<truncstorei8,  I64, LoReg,   S2_storerb_io>;
2735  def: Storexim_base_pat<truncstorei16, I64, LoReg,   S2_storerh_io>;
2736  def: Storexim_base_pat<truncstorei32, I64, LoReg,   S2_storeri_io>;
2737  def: Storexim_base_pat<store,         I1,  I1toI32, S2_storerb_io>;
2738
2739  def: Storexi_base_pat<AtomSt<atomic_store_8>,     I32, S2_storerb_io>;
2740  def: Storexi_base_pat<AtomSt<atomic_store_16>,    I32, S2_storerh_io>;
2741  def: Storexi_base_pat<AtomSt<atomic_store_32>,    I32, S2_storeri_io>;
2742  def: Storexi_base_pat<AtomSt<atomic_store_32>,   V4I8, S2_storeri_io>;
2743  def: Storexi_base_pat<AtomSt<atomic_store_32>,  V2I16, S2_storeri_io>;
2744  def: Storexi_base_pat<AtomSt<atomic_store_64>,    I64, S2_storerd_io>;
2745  def: Storexi_base_pat<AtomSt<atomic_store_64>,   V8I8, S2_storerd_io>;
2746  def: Storexi_base_pat<AtomSt<atomic_store_64>,  V4I16, S2_storerd_io>;
2747  def: Storexi_base_pat<AtomSt<atomic_store_64>,  V2I32, S2_storerd_io>;
2748}
2749
2750
2751// --(14) Memop ----------------------------------------------------------
2752//
2753
2754def m5_0Imm8Pred : PatLeaf<(i32 imm), [{
2755  int8_t V = N->getSExtValue();
2756  return -32 < V && V <= -1;
2757}]>;
2758
2759def m5_0Imm16Pred : PatLeaf<(i32 imm), [{
2760  int16_t V = N->getSExtValue();
2761  return -32 < V && V <= -1;
2762}]>;
2763
2764def m5_0ImmPred  : PatLeaf<(i32 imm), [{
2765  int64_t V = N->getSExtValue();
2766  return -31 <= V && V <= -1;
2767}]>;
2768
2769def IsNPow2_8 : PatLeaf<(i32 imm), [{
2770  uint8_t NV = ~N->getZExtValue();
2771  return isPowerOf2_32(NV);
2772}]>;
2773
2774def IsNPow2_16 : PatLeaf<(i32 imm), [{
2775  uint16_t NV = ~N->getZExtValue();
2776  return isPowerOf2_32(NV);
2777}]>;
2778
2779def Log2_8 : SDNodeXForm<imm, [{
2780  uint8_t V = N->getZExtValue();
2781  return CurDAG->getTargetConstant(Log2_32(V), SDLoc(N), MVT::i32);
2782}]>;
2783
2784def Log2_16 : SDNodeXForm<imm, [{
2785  uint16_t V = N->getZExtValue();
2786  return CurDAG->getTargetConstant(Log2_32(V), SDLoc(N), MVT::i32);
2787}]>;
2788
2789def LogN2_8 : SDNodeXForm<imm, [{
2790  uint8_t NV = ~N->getZExtValue();
2791  return CurDAG->getTargetConstant(Log2_32(NV), SDLoc(N), MVT::i32);
2792}]>;
2793
2794def LogN2_16 : SDNodeXForm<imm, [{
2795  uint16_t NV = ~N->getZExtValue();
2796  return CurDAG->getTargetConstant(Log2_32(NV), SDLoc(N), MVT::i32);
2797}]>;
2798
2799def IdImm : SDNodeXForm<imm, [{ return SDValue(N, 0); }]>;
2800
2801multiclass Memopxr_base_pat<PatFrag Load, PatFrag Store, SDNode Oper,
2802                            InstHexagon MI> {
2803  // Addr: i32
2804  def: Pat<(Store (Oper (Load I32:$Rs), I32:$A), I32:$Rs),
2805           (MI I32:$Rs, 0, I32:$A)>;
2806  // Addr: fi
2807  def: Pat<(Store (Oper (Load AddrFI:$Rs), I32:$A), AddrFI:$Rs),
2808           (MI AddrFI:$Rs, 0, I32:$A)>;
2809}
2810
2811multiclass Memopxr_add_pat<PatFrag Load, PatFrag Store, PatFrag ImmPred,
2812                           SDNode Oper, InstHexagon MI> {
2813  // Addr: i32
2814  def: Pat<(Store (Oper (Load (add I32:$Rs, ImmPred:$Off)), I32:$A),
2815                  (add I32:$Rs, ImmPred:$Off)),
2816           (MI I32:$Rs, imm:$Off, I32:$A)>;
2817  def: Pat<(Store (Oper (Load (IsOrAdd I32:$Rs, ImmPred:$Off)), I32:$A),
2818                  (IsOrAdd I32:$Rs, ImmPred:$Off)),
2819           (MI I32:$Rs, imm:$Off, I32:$A)>;
2820  // Addr: fi
2821  def: Pat<(Store (Oper (Load (add AddrFI:$Rs, ImmPred:$Off)), I32:$A),
2822                  (add AddrFI:$Rs, ImmPred:$Off)),
2823           (MI AddrFI:$Rs, imm:$Off, I32:$A)>;
2824  def: Pat<(Store (Oper (Load (IsOrAdd AddrFI:$Rs, ImmPred:$Off)), I32:$A),
2825                  (IsOrAdd AddrFI:$Rs, ImmPred:$Off)),
2826           (MI AddrFI:$Rs, imm:$Off, I32:$A)>;
2827}
2828
2829multiclass Memopxr_pat<PatFrag Load, PatFrag Store, PatFrag ImmPred,
2830                       SDNode Oper, InstHexagon MI> {
2831  let Predicates = [UseMEMOPS] in {
2832    defm: Memopxr_base_pat <Load, Store,          Oper, MI>;
2833    defm: Memopxr_add_pat  <Load, Store, ImmPred, Oper, MI>;
2834  }
2835}
2836
2837let AddedComplexity = 200 in {
2838  // add reg
2839  defm: Memopxr_pat<extloadi8, truncstorei8, u6_0ImmPred, add,
2840        /*anyext*/  L4_add_memopb_io>;
2841  defm: Memopxr_pat<sextloadi8, truncstorei8, u6_0ImmPred, add,
2842        /*sext*/    L4_add_memopb_io>;
2843  defm: Memopxr_pat<zextloadi8, truncstorei8, u6_0ImmPred, add,
2844        /*zext*/    L4_add_memopb_io>;
2845  defm: Memopxr_pat<extloadi16, truncstorei16, u6_1ImmPred, add,
2846        /*anyext*/  L4_add_memoph_io>;
2847  defm: Memopxr_pat<sextloadi16, truncstorei16, u6_1ImmPred, add,
2848        /*sext*/    L4_add_memoph_io>;
2849  defm: Memopxr_pat<zextloadi16, truncstorei16, u6_1ImmPred, add,
2850        /*zext*/    L4_add_memoph_io>;
2851  defm: Memopxr_pat<load, store, u6_2ImmPred, add, L4_add_memopw_io>;
2852
2853  // sub reg
2854  defm: Memopxr_pat<extloadi8, truncstorei8, u6_0ImmPred, sub,
2855        /*anyext*/  L4_sub_memopb_io>;
2856  defm: Memopxr_pat<sextloadi8, truncstorei8, u6_0ImmPred, sub,
2857        /*sext*/    L4_sub_memopb_io>;
2858  defm: Memopxr_pat<zextloadi8, truncstorei8, u6_0ImmPred, sub,
2859        /*zext*/    L4_sub_memopb_io>;
2860  defm: Memopxr_pat<extloadi16, truncstorei16, u6_1ImmPred, sub,
2861        /*anyext*/  L4_sub_memoph_io>;
2862  defm: Memopxr_pat<sextloadi16, truncstorei16, u6_1ImmPred, sub,
2863        /*sext*/    L4_sub_memoph_io>;
2864  defm: Memopxr_pat<zextloadi16, truncstorei16, u6_1ImmPred, sub,
2865        /*zext*/    L4_sub_memoph_io>;
2866  defm: Memopxr_pat<load, store, u6_2ImmPred, sub, L4_sub_memopw_io>;
2867
2868  // and reg
2869  defm: Memopxr_pat<extloadi8, truncstorei8, u6_0ImmPred, and,
2870        /*anyext*/  L4_and_memopb_io>;
2871  defm: Memopxr_pat<sextloadi8, truncstorei8, u6_0ImmPred, and,
2872        /*sext*/    L4_and_memopb_io>;
2873  defm: Memopxr_pat<zextloadi8, truncstorei8, u6_0ImmPred, and,
2874        /*zext*/    L4_and_memopb_io>;
2875  defm: Memopxr_pat<extloadi16, truncstorei16, u6_1ImmPred, and,
2876        /*anyext*/  L4_and_memoph_io>;
2877  defm: Memopxr_pat<sextloadi16, truncstorei16, u6_1ImmPred, and,
2878        /*sext*/    L4_and_memoph_io>;
2879  defm: Memopxr_pat<zextloadi16, truncstorei16, u6_1ImmPred, and,
2880        /*zext*/    L4_and_memoph_io>;
2881  defm: Memopxr_pat<load, store, u6_2ImmPred, and, L4_and_memopw_io>;
2882
2883  // or reg
2884  defm: Memopxr_pat<extloadi8, truncstorei8, u6_0ImmPred, or,
2885        /*anyext*/  L4_or_memopb_io>;
2886  defm: Memopxr_pat<sextloadi8, truncstorei8, u6_0ImmPred, or,
2887        /*sext*/    L4_or_memopb_io>;
2888  defm: Memopxr_pat<zextloadi8, truncstorei8, u6_0ImmPred, or,
2889        /*zext*/    L4_or_memopb_io>;
2890  defm: Memopxr_pat<extloadi16, truncstorei16, u6_1ImmPred, or,
2891        /*anyext*/  L4_or_memoph_io>;
2892  defm: Memopxr_pat<sextloadi16, truncstorei16, u6_1ImmPred, or,
2893        /*sext*/    L4_or_memoph_io>;
2894  defm: Memopxr_pat<zextloadi16, truncstorei16, u6_1ImmPred, or,
2895        /*zext*/    L4_or_memoph_io>;
2896  defm: Memopxr_pat<load, store, u6_2ImmPred, or, L4_or_memopw_io>;
2897}
2898
2899
2900multiclass Memopxi_base_pat<PatFrag Load, PatFrag Store, SDNode Oper,
2901                            PatFrag Arg, SDNodeXForm ArgMod, InstHexagon MI> {
2902  // Addr: i32
2903  def: Pat<(Store (Oper (Load I32:$Rs), Arg:$A), I32:$Rs),
2904           (MI I32:$Rs, 0, (ArgMod Arg:$A))>;
2905  // Addr: fi
2906  def: Pat<(Store (Oper (Load AddrFI:$Rs), Arg:$A), AddrFI:$Rs),
2907           (MI AddrFI:$Rs, 0, (ArgMod Arg:$A))>;
2908}
2909
2910multiclass Memopxi_add_pat<PatFrag Load, PatFrag Store, PatFrag ImmPred,
2911                           SDNode Oper, PatFrag Arg, SDNodeXForm ArgMod,
2912                           InstHexagon MI> {
2913  // Addr: i32
2914  def: Pat<(Store (Oper (Load (add I32:$Rs, ImmPred:$Off)), Arg:$A),
2915                  (add I32:$Rs, ImmPred:$Off)),
2916           (MI I32:$Rs, imm:$Off, (ArgMod Arg:$A))>;
2917  def: Pat<(Store (Oper (Load (IsOrAdd I32:$Rs, ImmPred:$Off)), Arg:$A),
2918                  (IsOrAdd I32:$Rs, ImmPred:$Off)),
2919           (MI I32:$Rs, imm:$Off, (ArgMod Arg:$A))>;
2920  // Addr: fi
2921  def: Pat<(Store (Oper (Load (add AddrFI:$Rs, ImmPred:$Off)), Arg:$A),
2922                  (add AddrFI:$Rs, ImmPred:$Off)),
2923           (MI AddrFI:$Rs, imm:$Off, (ArgMod Arg:$A))>;
2924  def: Pat<(Store (Oper (Load (IsOrAdd AddrFI:$Rs, ImmPred:$Off)), Arg:$A),
2925                  (IsOrAdd AddrFI:$Rs, ImmPred:$Off)),
2926           (MI AddrFI:$Rs, imm:$Off, (ArgMod Arg:$A))>;
2927}
2928
2929multiclass Memopxi_pat<PatFrag Load, PatFrag Store, PatFrag ImmPred,
2930                       SDNode Oper, PatFrag Arg, SDNodeXForm ArgMod,
2931                       InstHexagon MI> {
2932  let Predicates = [UseMEMOPS] in {
2933    defm: Memopxi_base_pat <Load, Store,          Oper, Arg, ArgMod, MI>;
2934    defm: Memopxi_add_pat  <Load, Store, ImmPred, Oper, Arg, ArgMod, MI>;
2935  }
2936}
2937
2938let AddedComplexity = 220 in {
2939  // add imm
2940  defm: Memopxi_pat<extloadi8, truncstorei8, u6_0ImmPred, add, u5_0ImmPred,
2941        /*anyext*/  IdImm, L4_iadd_memopb_io>;
2942  defm: Memopxi_pat<sextloadi8, truncstorei8, u6_0ImmPred, add, u5_0ImmPred,
2943        /*sext*/    IdImm, L4_iadd_memopb_io>;
2944  defm: Memopxi_pat<zextloadi8, truncstorei8, u6_0ImmPred, add, u5_0ImmPred,
2945        /*zext*/    IdImm, L4_iadd_memopb_io>;
2946  defm: Memopxi_pat<extloadi16, truncstorei16, u6_1ImmPred, add, u5_0ImmPred,
2947        /*anyext*/  IdImm, L4_iadd_memoph_io>;
2948  defm: Memopxi_pat<extloadi16, truncstorei16, u6_1ImmPred, add, u5_0ImmPred,
2949        /*sext*/    IdImm, L4_iadd_memoph_io>;
2950  defm: Memopxi_pat<extloadi16, truncstorei16, u6_1ImmPred, add, u5_0ImmPred,
2951        /*zext*/    IdImm, L4_iadd_memoph_io>;
2952  defm: Memopxi_pat<load, store, u6_2ImmPred, add, u5_0ImmPred, IdImm,
2953                    L4_iadd_memopw_io>;
2954  defm: Memopxi_pat<extloadi8, truncstorei8, u6_0ImmPred, sub, m5_0Imm8Pred,
2955        /*anyext*/  NegImm8, L4_iadd_memopb_io>;
2956  defm: Memopxi_pat<sextloadi8, truncstorei8, u6_0ImmPred, sub, m5_0Imm8Pred,
2957        /*sext*/    NegImm8, L4_iadd_memopb_io>;
2958  defm: Memopxi_pat<zextloadi8, truncstorei8, u6_0ImmPred, sub, m5_0Imm8Pred,
2959        /*zext*/    NegImm8, L4_iadd_memopb_io>;
2960  defm: Memopxi_pat<extloadi16, truncstorei16, u6_1ImmPred, sub, m5_0Imm16Pred,
2961        /*anyext*/  NegImm16, L4_iadd_memoph_io>;
2962  defm: Memopxi_pat<sextloadi16, truncstorei16, u6_1ImmPred, sub, m5_0Imm16Pred,
2963        /*sext*/    NegImm16, L4_iadd_memoph_io>;
2964  defm: Memopxi_pat<zextloadi16, truncstorei16, u6_1ImmPred, sub, m5_0Imm16Pred,
2965        /*zext*/    NegImm16, L4_iadd_memoph_io>;
2966  defm: Memopxi_pat<load, store, u6_2ImmPred, sub, m5_0ImmPred, NegImm32,
2967                    L4_iadd_memopw_io>;
2968
2969  // sub imm
2970  defm: Memopxi_pat<extloadi8, truncstorei8, u6_0ImmPred, sub, u5_0ImmPred,
2971        /*anyext*/  IdImm, L4_isub_memopb_io>;
2972  defm: Memopxi_pat<sextloadi8, truncstorei8, u6_0ImmPred, sub, u5_0ImmPred,
2973        /*sext*/    IdImm, L4_isub_memopb_io>;
2974  defm: Memopxi_pat<zextloadi8, truncstorei8, u6_0ImmPred, sub, u5_0ImmPred,
2975        /*zext*/    IdImm, L4_isub_memopb_io>;
2976  defm: Memopxi_pat<extloadi16, truncstorei16, u6_1ImmPred, sub, u5_0ImmPred,
2977        /*anyext*/  IdImm, L4_isub_memoph_io>;
2978  defm: Memopxi_pat<sextloadi16, truncstorei16, u6_1ImmPred, sub, u5_0ImmPred,
2979        /*sext*/    IdImm, L4_isub_memoph_io>;
2980  defm: Memopxi_pat<zextloadi16, truncstorei16, u6_1ImmPred, sub, u5_0ImmPred,
2981        /*zext*/    IdImm, L4_isub_memoph_io>;
2982  defm: Memopxi_pat<load, store, u6_2ImmPred, sub, u5_0ImmPred, IdImm,
2983                    L4_isub_memopw_io>;
2984  defm: Memopxi_pat<extloadi8, truncstorei8, u6_0ImmPred, add, m5_0Imm8Pred,
2985        /*anyext*/  NegImm8, L4_isub_memopb_io>;
2986  defm: Memopxi_pat<sextloadi8, truncstorei8, u6_0ImmPred, add, m5_0Imm8Pred,
2987        /*sext*/    NegImm8, L4_isub_memopb_io>;
2988  defm: Memopxi_pat<zextloadi8, truncstorei8, u6_0ImmPred, add, m5_0Imm8Pred,
2989        /*zext*/    NegImm8, L4_isub_memopb_io>;
2990  defm: Memopxi_pat<extloadi16, truncstorei16, u6_1ImmPred, add, m5_0Imm16Pred,
2991        /*anyext*/  NegImm16, L4_isub_memoph_io>;
2992  defm: Memopxi_pat<sextloadi16, truncstorei16, u6_1ImmPred, add, m5_0Imm16Pred,
2993        /*sext*/    NegImm16, L4_isub_memoph_io>;
2994  defm: Memopxi_pat<zextloadi16, truncstorei16, u6_1ImmPred, add, m5_0Imm16Pred,
2995        /*zext*/    NegImm16, L4_isub_memoph_io>;
2996  defm: Memopxi_pat<load, store, u6_2ImmPred, add, m5_0ImmPred, NegImm32,
2997                    L4_isub_memopw_io>;
2998
2999  // clrbit imm
3000  defm: Memopxi_pat<extloadi8, truncstorei8, u6_0ImmPred, and, IsNPow2_8,
3001        /*anyext*/  LogN2_8, L4_iand_memopb_io>;
3002  defm: Memopxi_pat<sextloadi8, truncstorei8, u6_0ImmPred, and, IsNPow2_8,
3003        /*sext*/    LogN2_8, L4_iand_memopb_io>;
3004  defm: Memopxi_pat<zextloadi8, truncstorei8, u6_0ImmPred, and, IsNPow2_8,
3005        /*zext*/    LogN2_8, L4_iand_memopb_io>;
3006  defm: Memopxi_pat<extloadi16, truncstorei16, u6_1ImmPred, and, IsNPow2_16,
3007        /*anyext*/  LogN2_16, L4_iand_memoph_io>;
3008  defm: Memopxi_pat<sextloadi16, truncstorei16, u6_1ImmPred, and, IsNPow2_16,
3009        /*sext*/    LogN2_16, L4_iand_memoph_io>;
3010  defm: Memopxi_pat<zextloadi16, truncstorei16, u6_1ImmPred, and, IsNPow2_16,
3011        /*zext*/    LogN2_16, L4_iand_memoph_io>;
3012  defm: Memopxi_pat<load, store, u6_2ImmPred, and, IsNPow2_32,
3013		    LogN2_32, L4_iand_memopw_io>;
3014
3015  // setbit imm
3016  defm: Memopxi_pat<extloadi8, truncstorei8, u6_0ImmPred, or, IsPow2_32,
3017        /*anyext*/  Log2_8, L4_ior_memopb_io>;
3018  defm: Memopxi_pat<sextloadi8, truncstorei8, u6_0ImmPred, or, IsPow2_32,
3019        /*sext*/    Log2_8, L4_ior_memopb_io>;
3020  defm: Memopxi_pat<zextloadi8, truncstorei8, u6_0ImmPred, or, IsPow2_32,
3021        /*zext*/    Log2_8, L4_ior_memopb_io>;
3022  defm: Memopxi_pat<extloadi16, truncstorei16, u6_1ImmPred, or, IsPow2_32,
3023        /*anyext*/  Log2_16, L4_ior_memoph_io>;
3024  defm: Memopxi_pat<sextloadi16, truncstorei16, u6_1ImmPred, or, IsPow2_32,
3025        /*sext*/    Log2_16, L4_ior_memoph_io>;
3026  defm: Memopxi_pat<zextloadi16, truncstorei16, u6_1ImmPred, or, IsPow2_32,
3027        /*zext*/    Log2_16, L4_ior_memoph_io>;
3028  defm: Memopxi_pat<load, store, u6_2ImmPred, or, IsPow2_32,
3029		    Log2_32, L4_ior_memopw_io>;
3030}
3031
3032
3033// --(15) Call -----------------------------------------------------------
3034//
3035
3036// Pseudo instructions.
3037def SDT_SPCallSeqStart
3038  : SDCallSeqStart<[SDTCisVT<0, i32>, SDTCisVT<1, i32>]>;
3039def SDT_SPCallSeqEnd
3040  : SDCallSeqEnd<[SDTCisVT<0, i32>, SDTCisVT<1, i32>]>;
3041
3042def callseq_start: SDNode<"ISD::CALLSEQ_START", SDT_SPCallSeqStart,
3043                          [SDNPHasChain, SDNPOutGlue]>;
3044def callseq_end:   SDNode<"ISD::CALLSEQ_END",   SDT_SPCallSeqEnd,
3045                          [SDNPHasChain, SDNPOptInGlue, SDNPOutGlue]>;
3046
3047def SDT_SPCall: SDTypeProfile<0, 1, [SDTCisVT<0, i32>]>;
3048
3049def HexagonTCRet: SDNode<"HexagonISD::TC_RETURN", SDT_SPCall,
3050                         [SDNPHasChain,  SDNPOptInGlue, SDNPVariadic]>;
3051def callv3: SDNode<"HexagonISD::CALL", SDT_SPCall,
3052                   [SDNPHasChain, SDNPOptInGlue, SDNPOutGlue, SDNPVariadic]>;
3053def callv3nr: SDNode<"HexagonISD::CALLnr", SDT_SPCall,
3054                     [SDNPHasChain, SDNPOptInGlue, SDNPOutGlue, SDNPVariadic]>;
3055
3056def: Pat<(callseq_start timm:$amt, timm:$amt2),
3057         (ADJCALLSTACKDOWN imm:$amt, imm:$amt2)>;
3058def: Pat<(callseq_end timm:$amt1, timm:$amt2),
3059         (ADJCALLSTACKUP imm:$amt1, imm:$amt2)>;
3060
3061def: Pat<(HexagonTCRet tglobaladdr:$dst),   (PS_tailcall_i tglobaladdr:$dst)>;
3062def: Pat<(HexagonTCRet texternalsym:$dst),  (PS_tailcall_i texternalsym:$dst)>;
3063def: Pat<(HexagonTCRet I32:$dst),           (PS_tailcall_r I32:$dst)>;
3064
3065def: Pat<(callv3 I32:$dst),                 (J2_callr I32:$dst)>;
3066def: Pat<(callv3 tglobaladdr:$dst),         (J2_call tglobaladdr:$dst)>;
3067def: Pat<(callv3 texternalsym:$dst),        (J2_call texternalsym:$dst)>;
3068def: Pat<(callv3 tglobaltlsaddr:$dst),      (J2_call tglobaltlsaddr:$dst)>;
3069
3070def: Pat<(callv3nr I32:$dst),               (PS_callr_nr I32:$dst)>;
3071def: Pat<(callv3nr tglobaladdr:$dst),       (PS_call_nr tglobaladdr:$dst)>;
3072def: Pat<(callv3nr texternalsym:$dst),      (PS_call_nr texternalsym:$dst)>;
3073
3074def retflag : SDNode<"HexagonISD::RET_FLAG", SDTNone,
3075                     [SDNPHasChain, SDNPOptInGlue, SDNPVariadic]>;
3076def eh_return: SDNode<"HexagonISD::EH_RETURN", SDTNone, [SDNPHasChain]>;
3077
3078def: Pat<(retflag),   (PS_jmpret (i32 R31))>;
3079def: Pat<(eh_return), (EH_RETURN_JMPR (i32 R31))>;
3080
3081
3082// --(16) Branch ---------------------------------------------------------
3083//
3084
3085def: Pat<(br      bb:$dst),         (J2_jump  b30_2Imm:$dst)>;
3086def: Pat<(brind   I32:$dst),        (J2_jumpr I32:$dst)>;
3087
3088def: Pat<(brcond I1:$Pu, bb:$dst),
3089         (J2_jumpt I1:$Pu, bb:$dst)>;
3090def: Pat<(brcond (not I1:$Pu), bb:$dst),
3091         (J2_jumpf I1:$Pu, bb:$dst)>;
3092def: Pat<(brcond (i1 (setne I1:$Pu, -1)), bb:$dst),
3093         (J2_jumpf I1:$Pu, bb:$dst)>;
3094def: Pat<(brcond (i1 (seteq I1:$Pu, 0)), bb:$dst),
3095         (J2_jumpf I1:$Pu, bb:$dst)>;
3096def: Pat<(brcond (i1 (setne I1:$Pu, 0)), bb:$dst),
3097         (J2_jumpt I1:$Pu, bb:$dst)>;
3098
3099
3100// --(17) Misc -----------------------------------------------------------
3101
3102
3103// Generate code of the form 'C2_muxii(cmpbgtui(Rdd, C-1),0,1)'
3104// for C code of the form r = (c>='0' && c<='9') ? 1 : 0.
3105// The isdigit transformation relies on two 'clever' aspects:
3106// 1) The data type is unsigned which allows us to eliminate a zero test after
3107//    biasing the expression by 48. We are depending on the representation of
3108//    the unsigned types, and semantics.
3109// 2) The front end has converted <= 9 into < 10 on entry to LLVM.
3110//
3111// For the C code:
3112//   retval = (c >= '0' && c <= '9') ? 1 : 0;
3113// The code is transformed upstream of llvm into
3114//   retval = (c-48) < 10 ? 1 : 0;
3115
3116def u7_0PosImmPred : ImmLeaf<i32, [{
3117  // True if the immediate fits in an 7-bit unsigned field and is positive.
3118  return Imm > 0 && isUInt<7>(Imm);
3119}]>;
3120
3121let AddedComplexity = 139 in
3122def: Pat<(i32 (zext (i1 (setult (and I32:$Rs, 255), u7_0PosImmPred:$u7)))),
3123         (C2_muxii (A4_cmpbgtui IntRegs:$Rs, (UDEC1 imm:$u7)), 0, 1)>;
3124
3125let AddedComplexity = 100 in
3126def: Pat<(or (or (shl (HexagonINSERT (i32 (zextloadi8 (add I32:$b, 2))),
3127                                     (i32 (extloadi8  (add I32:$b, 3))),
3128                                     24, 8),
3129                      (i32 16)),
3130                 (shl (i32 (zextloadi8 (add I32:$b, 1))), (i32 8))),
3131             (zextloadi8 I32:$b)),
3132         (A2_swiz (L2_loadri_io I32:$b, 0))>;
3133
3134
3135// We need custom lowering of ISD::PREFETCH into HexagonISD::DCFETCH
3136// because the SDNode ISD::PREFETCH has properties MayLoad and MayStore.
3137// We don't really want either one here.
3138def SDTHexagonDCFETCH: SDTypeProfile<0, 2, [SDTCisPtrTy<0>,SDTCisInt<1>]>;
3139def HexagonDCFETCH: SDNode<"HexagonISD::DCFETCH", SDTHexagonDCFETCH,
3140                           [SDNPHasChain]>;
3141
3142def: Pat<(HexagonDCFETCH IntRegs:$Rs, u11_3ImmPred:$u11_3),
3143         (Y2_dcfetchbo IntRegs:$Rs, imm:$u11_3)>;
3144def: Pat<(HexagonDCFETCH (i32 (add IntRegs:$Rs, u11_3ImmPred:$u11_3)), (i32 0)),
3145         (Y2_dcfetchbo IntRegs:$Rs, imm:$u11_3)>;
3146
3147def SDTHexagonALLOCA
3148  : SDTypeProfile<1, 2, [SDTCisVT<0, i32>, SDTCisVT<1, i32>]>;
3149def HexagonALLOCA
3150  : SDNode<"HexagonISD::ALLOCA", SDTHexagonALLOCA, [SDNPHasChain]>;
3151
3152def: Pat<(HexagonALLOCA I32:$Rs, (i32 imm:$A)),
3153         (PS_alloca IntRegs:$Rs, imm:$A)>;
3154
3155def HexagonBARRIER: SDNode<"HexagonISD::BARRIER", SDTNone, [SDNPHasChain]>;
3156def: Pat<(HexagonBARRIER), (Y2_barrier)>;
3157
3158def: Pat<(trap), (PS_crash)>;
3159
3160// Read cycle counter.
3161def SDTInt64Leaf: SDTypeProfile<1, 0, [SDTCisVT<0, i64>]>;
3162def HexagonREADCYCLE: SDNode<"HexagonISD::READCYCLE", SDTInt64Leaf,
3163  [SDNPHasChain]>;
3164
3165def: Pat<(HexagonREADCYCLE), (A4_tfrcpp UPCYCLE)>;
3166
3167// The declared return value of the store-locked intrinsics is i32, but
3168// the instructions actually define i1. To avoid register copies from
3169// IntRegs to PredRegs and back, fold the entire pattern checking the
3170// result against true/false.
3171let AddedComplexity = 100 in {
3172  def: Pat<(i1 (setne (int_hexagon_S2_storew_locked I32:$Rs, I32:$Rt), 0)),
3173           (S2_storew_locked I32:$Rs, I32:$Rt)>;
3174  def: Pat<(i1 (seteq (int_hexagon_S2_storew_locked I32:$Rs, I32:$Rt), 0)),
3175           (C2_not (S2_storew_locked I32:$Rs, I32:$Rt))>;
3176  def: Pat<(i1 (setne (int_hexagon_S4_stored_locked I32:$Rs, I64:$Rt), 0)),
3177           (S4_stored_locked I32:$Rs, I64:$Rt)>;
3178  def: Pat<(i1 (seteq (int_hexagon_S4_stored_locked I32:$Rs, I64:$Rt), 0)),
3179           (C2_not (S4_stored_locked I32:$Rs, I64:$Rt))>;
3180}
3181