1 //===- HexagonPacketizer.cpp - VLIW packetizer ----------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This implements a simple VLIW packetizer using DFA. The packetizer works on
10 // machine basic blocks. For each instruction I in BB, the packetizer consults
11 // the DFA to see if machine resources are available to execute I. If so, the
12 // packetizer checks if I depends on any instruction J in the current packet.
13 // If no dependency is found, I is added to current packet and machine resource
14 // is marked as taken. If any dependency is found, a target API call is made to
15 // prune the dependence.
16 //
17 //===----------------------------------------------------------------------===//
18 
19 #include "HexagonVLIWPacketizer.h"
20 #include "Hexagon.h"
21 #include "HexagonInstrInfo.h"
22 #include "HexagonRegisterInfo.h"
23 #include "HexagonSubtarget.h"
24 #include "llvm/ADT/BitVector.h"
25 #include "llvm/ADT/DenseSet.h"
26 #include "llvm/ADT/STLExtras.h"
27 #include "llvm/ADT/StringExtras.h"
28 #include "llvm/Analysis/AliasAnalysis.h"
29 #include "llvm/CodeGen/MachineBasicBlock.h"
30 #include "llvm/CodeGen/MachineBranchProbabilityInfo.h"
31 #include "llvm/CodeGen/MachineDominators.h"
32 #include "llvm/CodeGen/MachineFrameInfo.h"
33 #include "llvm/CodeGen/MachineFunction.h"
34 #include "llvm/CodeGen/MachineFunctionPass.h"
35 #include "llvm/CodeGen/MachineInstr.h"
36 #include "llvm/CodeGen/MachineInstrBundle.h"
37 #include "llvm/CodeGen/MachineLoopInfo.h"
38 #include "llvm/CodeGen/MachineOperand.h"
39 #include "llvm/CodeGen/ScheduleDAG.h"
40 #include "llvm/CodeGen/TargetRegisterInfo.h"
41 #include "llvm/CodeGen/TargetSubtargetInfo.h"
42 #include "llvm/IR/DebugLoc.h"
43 #include "llvm/InitializePasses.h"
44 #include "llvm/MC/MCInstrDesc.h"
45 #include "llvm/Pass.h"
46 #include "llvm/Support/CommandLine.h"
47 #include "llvm/Support/Debug.h"
48 #include "llvm/Support/ErrorHandling.h"
49 #include "llvm/Support/raw_ostream.h"
50 #include <cassert>
51 #include <cstdint>
52 #include <iterator>
53 
54 using namespace llvm;
55 
56 #define DEBUG_TYPE "packets"
57 
58 static cl::opt<bool> DisablePacketizer("disable-packetizer", cl::Hidden,
59   cl::ZeroOrMore, cl::init(false),
60   cl::desc("Disable Hexagon packetizer pass"));
61 
62 static cl::opt<bool> Slot1Store("slot1-store-slot0-load", cl::Hidden,
63                                 cl::ZeroOrMore, cl::init(true),
64                                 cl::desc("Allow slot1 store and slot0 load"));
65 
66 static cl::opt<bool> PacketizeVolatiles("hexagon-packetize-volatiles",
67   cl::ZeroOrMore, cl::Hidden, cl::init(true),
68   cl::desc("Allow non-solo packetization of volatile memory references"));
69 
70 static cl::opt<bool> EnableGenAllInsnClass("enable-gen-insn", cl::init(false),
71   cl::Hidden, cl::ZeroOrMore, cl::desc("Generate all instruction with TC"));
72 
73 static cl::opt<bool> DisableVecDblNVStores("disable-vecdbl-nv-stores",
74   cl::init(false), cl::Hidden, cl::ZeroOrMore,
75   cl::desc("Disable vector double new-value-stores"));
76 
77 extern cl::opt<bool> ScheduleInlineAsm;
78 
79 namespace llvm {
80 
81 FunctionPass *createHexagonPacketizer(bool Minimal);
82 void initializeHexagonPacketizerPass(PassRegistry&);
83 
84 } // end namespace llvm
85 
86 namespace {
87 
88   class HexagonPacketizer : public MachineFunctionPass {
89   public:
90     static char ID;
91 
92     HexagonPacketizer(bool Min = false)
93       : MachineFunctionPass(ID), Minimal(Min) {}
94 
95     void getAnalysisUsage(AnalysisUsage &AU) const override {
96       AU.setPreservesCFG();
97       AU.addRequired<AAResultsWrapperPass>();
98       AU.addRequired<MachineBranchProbabilityInfo>();
99       AU.addRequired<MachineDominatorTree>();
100       AU.addRequired<MachineLoopInfo>();
101       AU.addPreserved<MachineDominatorTree>();
102       AU.addPreserved<MachineLoopInfo>();
103       MachineFunctionPass::getAnalysisUsage(AU);
104     }
105 
106     StringRef getPassName() const override { return "Hexagon Packetizer"; }
107     bool runOnMachineFunction(MachineFunction &Fn) override;
108 
109     MachineFunctionProperties getRequiredProperties() const override {
110       return MachineFunctionProperties().set(
111           MachineFunctionProperties::Property::NoVRegs);
112     }
113 
114   private:
115     const HexagonInstrInfo *HII = nullptr;
116     const HexagonRegisterInfo *HRI = nullptr;
117     const bool Minimal = false;
118   };
119 
120 } // end anonymous namespace
121 
122 char HexagonPacketizer::ID = 0;
123 
124 INITIALIZE_PASS_BEGIN(HexagonPacketizer, "hexagon-packetizer",
125                       "Hexagon Packetizer", false, false)
126 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
127 INITIALIZE_PASS_DEPENDENCY(MachineBranchProbabilityInfo)
128 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo)
129 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
130 INITIALIZE_PASS_END(HexagonPacketizer, "hexagon-packetizer",
131                     "Hexagon Packetizer", false, false)
132 
133 HexagonPacketizerList::HexagonPacketizerList(MachineFunction &MF,
134       MachineLoopInfo &MLI, AAResults *AA,
135       const MachineBranchProbabilityInfo *MBPI, bool Minimal)
136     : VLIWPacketizerList(MF, MLI, AA), MBPI(MBPI), MLI(&MLI),
137       Minimal(Minimal) {
138   HII = MF.getSubtarget<HexagonSubtarget>().getInstrInfo();
139   HRI = MF.getSubtarget<HexagonSubtarget>().getRegisterInfo();
140 
141   addMutation(std::make_unique<HexagonSubtarget::UsrOverflowMutation>());
142   addMutation(std::make_unique<HexagonSubtarget::HVXMemLatencyMutation>());
143   addMutation(std::make_unique<HexagonSubtarget::BankConflictMutation>());
144 }
145 
146 // Check if FirstI modifies a register that SecondI reads.
147 static bool hasWriteToReadDep(const MachineInstr &FirstI,
148                               const MachineInstr &SecondI,
149                               const TargetRegisterInfo *TRI) {
150   for (auto &MO : FirstI.operands()) {
151     if (!MO.isReg() || !MO.isDef())
152       continue;
153     Register R = MO.getReg();
154     if (SecondI.readsRegister(R, TRI))
155       return true;
156   }
157   return false;
158 }
159 
160 
161 static MachineBasicBlock::iterator moveInstrOut(MachineInstr &MI,
162       MachineBasicBlock::iterator BundleIt, bool Before) {
163   MachineBasicBlock::instr_iterator InsertPt;
164   if (Before)
165     InsertPt = BundleIt.getInstrIterator();
166   else
167     InsertPt = std::next(BundleIt).getInstrIterator();
168 
169   MachineBasicBlock &B = *MI.getParent();
170   // The instruction should at least be bundled with the preceding instruction
171   // (there will always be one, i.e. BUNDLE, if nothing else).
172   assert(MI.isBundledWithPred());
173   if (MI.isBundledWithSucc()) {
174     MI.clearFlag(MachineInstr::BundledSucc);
175     MI.clearFlag(MachineInstr::BundledPred);
176   } else {
177     // If it's not bundled with the successor (i.e. it is the last one
178     // in the bundle), then we can simply unbundle it from the predecessor,
179     // which will take care of updating the predecessor's flag.
180     MI.unbundleFromPred();
181   }
182   B.splice(InsertPt, &B, MI.getIterator());
183 
184   // Get the size of the bundle without asserting.
185   MachineBasicBlock::const_instr_iterator I = BundleIt.getInstrIterator();
186   MachineBasicBlock::const_instr_iterator E = B.instr_end();
187   unsigned Size = 0;
188   for (++I; I != E && I->isBundledWithPred(); ++I)
189     ++Size;
190 
191   // If there are still two or more instructions, then there is nothing
192   // else to be done.
193   if (Size > 1)
194     return BundleIt;
195 
196   // Otherwise, extract the single instruction out and delete the bundle.
197   MachineBasicBlock::iterator NextIt = std::next(BundleIt);
198   MachineInstr &SingleI = *BundleIt->getNextNode();
199   SingleI.unbundleFromPred();
200   assert(!SingleI.isBundledWithSucc());
201   BundleIt->eraseFromParent();
202   return NextIt;
203 }
204 
205 bool HexagonPacketizer::runOnMachineFunction(MachineFunction &MF) {
206   auto &HST = MF.getSubtarget<HexagonSubtarget>();
207   HII = HST.getInstrInfo();
208   HRI = HST.getRegisterInfo();
209   auto &MLI = getAnalysis<MachineLoopInfo>();
210   auto *AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
211   auto *MBPI = &getAnalysis<MachineBranchProbabilityInfo>();
212 
213   if (EnableGenAllInsnClass)
214     HII->genAllInsnTimingClasses(MF);
215 
216   // Instantiate the packetizer.
217   bool MinOnly = Minimal || DisablePacketizer || !HST.usePackets() ||
218                  skipFunction(MF.getFunction());
219   HexagonPacketizerList Packetizer(MF, MLI, AA, MBPI, MinOnly);
220 
221   // DFA state table should not be empty.
222   assert(Packetizer.getResourceTracker() && "Empty DFA table!");
223 
224   // Loop over all basic blocks and remove KILL pseudo-instructions
225   // These instructions confuse the dependence analysis. Consider:
226   // D0 = ...   (Insn 0)
227   // R0 = KILL R0, D0 (Insn 1)
228   // R0 = ... (Insn 2)
229   // Here, Insn 1 will result in the dependence graph not emitting an output
230   // dependence between Insn 0 and Insn 2. This can lead to incorrect
231   // packetization
232   for (MachineBasicBlock &MB : MF) {
233     auto End = MB.end();
234     auto MI = MB.begin();
235     while (MI != End) {
236       auto NextI = std::next(MI);
237       if (MI->isKill()) {
238         MB.erase(MI);
239         End = MB.end();
240       }
241       MI = NextI;
242     }
243   }
244 
245   // Loop over all of the basic blocks.
246   for (auto &MB : MF) {
247     auto Begin = MB.begin(), End = MB.end();
248     while (Begin != End) {
249       // Find the first non-boundary starting from the end of the last
250       // scheduling region.
251       MachineBasicBlock::iterator RB = Begin;
252       while (RB != End && HII->isSchedulingBoundary(*RB, &MB, MF))
253         ++RB;
254       // Find the first boundary starting from the beginning of the new
255       // region.
256       MachineBasicBlock::iterator RE = RB;
257       while (RE != End && !HII->isSchedulingBoundary(*RE, &MB, MF))
258         ++RE;
259       // Add the scheduling boundary if it's not block end.
260       if (RE != End)
261         ++RE;
262       // If RB == End, then RE == End.
263       if (RB != End)
264         Packetizer.PacketizeMIs(&MB, RB, RE);
265 
266       Begin = RE;
267     }
268   }
269 
270   Packetizer.unpacketizeSoloInstrs(MF);
271   return true;
272 }
273 
274 // Reserve resources for a constant extender. Trigger an assertion if the
275 // reservation fails.
276 void HexagonPacketizerList::reserveResourcesForConstExt() {
277   if (!tryAllocateResourcesForConstExt(true))
278     llvm_unreachable("Resources not available");
279 }
280 
281 bool HexagonPacketizerList::canReserveResourcesForConstExt() {
282   return tryAllocateResourcesForConstExt(false);
283 }
284 
285 // Allocate resources (i.e. 4 bytes) for constant extender. If succeeded,
286 // return true, otherwise, return false.
287 bool HexagonPacketizerList::tryAllocateResourcesForConstExt(bool Reserve) {
288   auto *ExtMI = MF.CreateMachineInstr(HII->get(Hexagon::A4_ext), DebugLoc());
289   bool Avail = ResourceTracker->canReserveResources(*ExtMI);
290   if (Reserve && Avail)
291     ResourceTracker->reserveResources(*ExtMI);
292   MF.DeleteMachineInstr(ExtMI);
293   return Avail;
294 }
295 
296 bool HexagonPacketizerList::isCallDependent(const MachineInstr &MI,
297       SDep::Kind DepType, unsigned DepReg) {
298   // Check for LR dependence.
299   if (DepReg == HRI->getRARegister())
300     return true;
301 
302   if (HII->isDeallocRet(MI))
303     if (DepReg == HRI->getFrameRegister() || DepReg == HRI->getStackRegister())
304       return true;
305 
306   // Call-like instructions can be packetized with preceding instructions
307   // that define registers implicitly used or modified by the call. Explicit
308   // uses are still prohibited, as in the case of indirect calls:
309   //   r0 = ...
310   //   J2_jumpr r0
311   if (DepType == SDep::Data) {
312     for (const MachineOperand &MO : MI.operands())
313       if (MO.isReg() && MO.getReg() == DepReg && !MO.isImplicit())
314         return true;
315   }
316 
317   return false;
318 }
319 
320 static bool isRegDependence(const SDep::Kind DepType) {
321   return DepType == SDep::Data || DepType == SDep::Anti ||
322          DepType == SDep::Output;
323 }
324 
325 static bool isDirectJump(const MachineInstr &MI) {
326   return MI.getOpcode() == Hexagon::J2_jump;
327 }
328 
329 static bool isSchedBarrier(const MachineInstr &MI) {
330   switch (MI.getOpcode()) {
331   case Hexagon::Y2_barrier:
332     return true;
333   }
334   return false;
335 }
336 
337 static bool isControlFlow(const MachineInstr &MI) {
338   return MI.getDesc().isTerminator() || MI.getDesc().isCall();
339 }
340 
341 /// Returns true if the instruction modifies a callee-saved register.
342 static bool doesModifyCalleeSavedReg(const MachineInstr &MI,
343                                      const TargetRegisterInfo *TRI) {
344   const MachineFunction &MF = *MI.getParent()->getParent();
345   for (auto *CSR = TRI->getCalleeSavedRegs(&MF); CSR && *CSR; ++CSR)
346     if (MI.modifiesRegister(*CSR, TRI))
347       return true;
348   return false;
349 }
350 
351 // Returns true if an instruction can be promoted to .new predicate or
352 // new-value store.
353 bool HexagonPacketizerList::isNewifiable(const MachineInstr &MI,
354       const TargetRegisterClass *NewRC) {
355   // Vector stores can be predicated, and can be new-value stores, but
356   // they cannot be predicated on a .new predicate value.
357   if (NewRC == &Hexagon::PredRegsRegClass) {
358     if (HII->isHVXVec(MI) && MI.mayStore())
359       return false;
360     return HII->isPredicated(MI) && HII->getDotNewPredOp(MI, nullptr) > 0;
361   }
362   // If the class is not PredRegs, it could only apply to new-value stores.
363   return HII->mayBeNewStore(MI);
364 }
365 
366 // Promote an instructiont to its .cur form.
367 // At this time, we have already made a call to canPromoteToDotCur and made
368 // sure that it can *indeed* be promoted.
369 bool HexagonPacketizerList::promoteToDotCur(MachineInstr &MI,
370       SDep::Kind DepType, MachineBasicBlock::iterator &MII,
371       const TargetRegisterClass* RC) {
372   assert(DepType == SDep::Data);
373   int CurOpcode = HII->getDotCurOp(MI);
374   MI.setDesc(HII->get(CurOpcode));
375   return true;
376 }
377 
378 void HexagonPacketizerList::cleanUpDotCur() {
379   MachineInstr *MI = nullptr;
380   for (auto BI : CurrentPacketMIs) {
381     LLVM_DEBUG(dbgs() << "Cleanup packet has "; BI->dump(););
382     if (HII->isDotCurInst(*BI)) {
383       MI = BI;
384       continue;
385     }
386     if (MI) {
387       for (auto &MO : BI->operands())
388         if (MO.isReg() && MO.getReg() == MI->getOperand(0).getReg())
389           return;
390     }
391   }
392   if (!MI)
393     return;
394   // We did not find a use of the CUR, so de-cur it.
395   MI->setDesc(HII->get(HII->getNonDotCurOp(*MI)));
396   LLVM_DEBUG(dbgs() << "Demoted CUR "; MI->dump(););
397 }
398 
399 // Check to see if an instruction can be dot cur.
400 bool HexagonPacketizerList::canPromoteToDotCur(const MachineInstr &MI,
401       const SUnit *PacketSU, unsigned DepReg, MachineBasicBlock::iterator &MII,
402       const TargetRegisterClass *RC) {
403   if (!HII->isHVXVec(MI))
404     return false;
405   if (!HII->isHVXVec(*MII))
406     return false;
407 
408   // Already a dot new instruction.
409   if (HII->isDotCurInst(MI) && !HII->mayBeCurLoad(MI))
410     return false;
411 
412   if (!HII->mayBeCurLoad(MI))
413     return false;
414 
415   // The "cur value" cannot come from inline asm.
416   if (PacketSU->getInstr()->isInlineAsm())
417     return false;
418 
419   // Make sure candidate instruction uses cur.
420   LLVM_DEBUG(dbgs() << "Can we DOT Cur Vector MI\n"; MI.dump();
421              dbgs() << "in packet\n";);
422   MachineInstr &MJ = *MII;
423   LLVM_DEBUG({
424     dbgs() << "Checking CUR against ";
425     MJ.dump();
426   });
427   Register DestReg = MI.getOperand(0).getReg();
428   bool FoundMatch = false;
429   for (auto &MO : MJ.operands())
430     if (MO.isReg() && MO.getReg() == DestReg)
431       FoundMatch = true;
432   if (!FoundMatch)
433     return false;
434 
435   // Check for existing uses of a vector register within the packet which
436   // would be affected by converting a vector load into .cur formt.
437   for (auto BI : CurrentPacketMIs) {
438     LLVM_DEBUG(dbgs() << "packet has "; BI->dump(););
439     if (BI->readsRegister(DepReg, MF.getSubtarget().getRegisterInfo()))
440       return false;
441   }
442 
443   LLVM_DEBUG(dbgs() << "Can Dot CUR MI\n"; MI.dump(););
444   // We can convert the opcode into a .cur.
445   return true;
446 }
447 
448 // Promote an instruction to its .new form. At this time, we have already
449 // made a call to canPromoteToDotNew and made sure that it can *indeed* be
450 // promoted.
451 bool HexagonPacketizerList::promoteToDotNew(MachineInstr &MI,
452       SDep::Kind DepType, MachineBasicBlock::iterator &MII,
453       const TargetRegisterClass* RC) {
454   assert(DepType == SDep::Data);
455   int NewOpcode;
456   if (RC == &Hexagon::PredRegsRegClass)
457     NewOpcode = HII->getDotNewPredOp(MI, MBPI);
458   else
459     NewOpcode = HII->getDotNewOp(MI);
460   MI.setDesc(HII->get(NewOpcode));
461   return true;
462 }
463 
464 bool HexagonPacketizerList::demoteToDotOld(MachineInstr &MI) {
465   int NewOpcode = HII->getDotOldOp(MI);
466   MI.setDesc(HII->get(NewOpcode));
467   return true;
468 }
469 
470 bool HexagonPacketizerList::useCallersSP(MachineInstr &MI) {
471   unsigned Opc = MI.getOpcode();
472   switch (Opc) {
473     case Hexagon::S2_storerd_io:
474     case Hexagon::S2_storeri_io:
475     case Hexagon::S2_storerh_io:
476     case Hexagon::S2_storerb_io:
477       break;
478     default:
479       llvm_unreachable("Unexpected instruction");
480   }
481   unsigned FrameSize = MF.getFrameInfo().getStackSize();
482   MachineOperand &Off = MI.getOperand(1);
483   int64_t NewOff = Off.getImm() - (FrameSize + HEXAGON_LRFP_SIZE);
484   if (HII->isValidOffset(Opc, NewOff, HRI)) {
485     Off.setImm(NewOff);
486     return true;
487   }
488   return false;
489 }
490 
491 void HexagonPacketizerList::useCalleesSP(MachineInstr &MI) {
492   unsigned Opc = MI.getOpcode();
493   switch (Opc) {
494     case Hexagon::S2_storerd_io:
495     case Hexagon::S2_storeri_io:
496     case Hexagon::S2_storerh_io:
497     case Hexagon::S2_storerb_io:
498       break;
499     default:
500       llvm_unreachable("Unexpected instruction");
501   }
502   unsigned FrameSize = MF.getFrameInfo().getStackSize();
503   MachineOperand &Off = MI.getOperand(1);
504   Off.setImm(Off.getImm() + FrameSize + HEXAGON_LRFP_SIZE);
505 }
506 
507 /// Return true if we can update the offset in MI so that MI and MJ
508 /// can be packetized together.
509 bool HexagonPacketizerList::updateOffset(SUnit *SUI, SUnit *SUJ) {
510   assert(SUI->getInstr() && SUJ->getInstr());
511   MachineInstr &MI = *SUI->getInstr();
512   MachineInstr &MJ = *SUJ->getInstr();
513 
514   unsigned BPI, OPI;
515   if (!HII->getBaseAndOffsetPosition(MI, BPI, OPI))
516     return false;
517   unsigned BPJ, OPJ;
518   if (!HII->getBaseAndOffsetPosition(MJ, BPJ, OPJ))
519     return false;
520   Register Reg = MI.getOperand(BPI).getReg();
521   if (Reg != MJ.getOperand(BPJ).getReg())
522     return false;
523   // Make sure that the dependences do not restrict adding MI to the packet.
524   // That is, ignore anti dependences, and make sure the only data dependence
525   // involves the specific register.
526   for (const auto &PI : SUI->Preds)
527     if (PI.getKind() != SDep::Anti &&
528         (PI.getKind() != SDep::Data || PI.getReg() != Reg))
529       return false;
530   int Incr;
531   if (!HII->getIncrementValue(MJ, Incr))
532     return false;
533 
534   int64_t Offset = MI.getOperand(OPI).getImm();
535   if (!HII->isValidOffset(MI.getOpcode(), Offset+Incr, HRI))
536     return false;
537 
538   MI.getOperand(OPI).setImm(Offset + Incr);
539   ChangedOffset = Offset;
540   return true;
541 }
542 
543 /// Undo the changed offset. This is needed if the instruction cannot be
544 /// added to the current packet due to a different instruction.
545 void HexagonPacketizerList::undoChangedOffset(MachineInstr &MI) {
546   unsigned BP, OP;
547   if (!HII->getBaseAndOffsetPosition(MI, BP, OP))
548     llvm_unreachable("Unable to find base and offset operands.");
549   MI.getOperand(OP).setImm(ChangedOffset);
550 }
551 
552 enum PredicateKind {
553   PK_False,
554   PK_True,
555   PK_Unknown
556 };
557 
558 /// Returns true if an instruction is predicated on p0 and false if it's
559 /// predicated on !p0.
560 static PredicateKind getPredicateSense(const MachineInstr &MI,
561                                        const HexagonInstrInfo *HII) {
562   if (!HII->isPredicated(MI))
563     return PK_Unknown;
564   if (HII->isPredicatedTrue(MI))
565     return PK_True;
566   return PK_False;
567 }
568 
569 static const MachineOperand &getPostIncrementOperand(const MachineInstr &MI,
570       const HexagonInstrInfo *HII) {
571   assert(HII->isPostIncrement(MI) && "Not a post increment operation.");
572 #ifndef NDEBUG
573   // Post Increment means duplicates. Use dense map to find duplicates in the
574   // list. Caution: Densemap initializes with the minimum of 64 buckets,
575   // whereas there are at most 5 operands in the post increment.
576   DenseSet<unsigned> DefRegsSet;
577   for (auto &MO : MI.operands())
578     if (MO.isReg() && MO.isDef())
579       DefRegsSet.insert(MO.getReg());
580 
581   for (auto &MO : MI.operands())
582     if (MO.isReg() && MO.isUse() && DefRegsSet.count(MO.getReg()))
583       return MO;
584 #else
585   if (MI.mayLoad()) {
586     const MachineOperand &Op1 = MI.getOperand(1);
587     // The 2nd operand is always the post increment operand in load.
588     assert(Op1.isReg() && "Post increment operand has be to a register.");
589     return Op1;
590   }
591   if (MI.getDesc().mayStore()) {
592     const MachineOperand &Op0 = MI.getOperand(0);
593     // The 1st operand is always the post increment operand in store.
594     assert(Op0.isReg() && "Post increment operand has be to a register.");
595     return Op0;
596   }
597 #endif
598   // we should never come here.
599   llvm_unreachable("mayLoad or mayStore not set for Post Increment operation");
600 }
601 
602 // Get the value being stored.
603 static const MachineOperand& getStoreValueOperand(const MachineInstr &MI) {
604   // value being stored is always the last operand.
605   return MI.getOperand(MI.getNumOperands()-1);
606 }
607 
608 static bool isLoadAbsSet(const MachineInstr &MI) {
609   unsigned Opc = MI.getOpcode();
610   switch (Opc) {
611     case Hexagon::L4_loadrd_ap:
612     case Hexagon::L4_loadrb_ap:
613     case Hexagon::L4_loadrh_ap:
614     case Hexagon::L4_loadrub_ap:
615     case Hexagon::L4_loadruh_ap:
616     case Hexagon::L4_loadri_ap:
617       return true;
618   }
619   return false;
620 }
621 
622 static const MachineOperand &getAbsSetOperand(const MachineInstr &MI) {
623   assert(isLoadAbsSet(MI));
624   return MI.getOperand(1);
625 }
626 
627 // Can be new value store?
628 // Following restrictions are to be respected in convert a store into
629 // a new value store.
630 // 1. If an instruction uses auto-increment, its address register cannot
631 //    be a new-value register. Arch Spec 5.4.2.1
632 // 2. If an instruction uses absolute-set addressing mode, its address
633 //    register cannot be a new-value register. Arch Spec 5.4.2.1.
634 // 3. If an instruction produces a 64-bit result, its registers cannot be used
635 //    as new-value registers. Arch Spec 5.4.2.2.
636 // 4. If the instruction that sets the new-value register is conditional, then
637 //    the instruction that uses the new-value register must also be conditional,
638 //    and both must always have their predicates evaluate identically.
639 //    Arch Spec 5.4.2.3.
640 // 5. There is an implied restriction that a packet cannot have another store,
641 //    if there is a new value store in the packet. Corollary: if there is
642 //    already a store in a packet, there can not be a new value store.
643 //    Arch Spec: 3.4.4.2
644 bool HexagonPacketizerList::canPromoteToNewValueStore(const MachineInstr &MI,
645       const MachineInstr &PacketMI, unsigned DepReg) {
646   // Make sure we are looking at the store, that can be promoted.
647   if (!HII->mayBeNewStore(MI))
648     return false;
649 
650   // Make sure there is dependency and can be new value'd.
651   const MachineOperand &Val = getStoreValueOperand(MI);
652   if (Val.isReg() && Val.getReg() != DepReg)
653     return false;
654 
655   const MCInstrDesc& MCID = PacketMI.getDesc();
656 
657   // First operand is always the result.
658   const TargetRegisterClass *PacketRC = HII->getRegClass(MCID, 0, HRI, MF);
659   // Double regs can not feed into new value store: PRM section: 5.4.2.2.
660   if (PacketRC == &Hexagon::DoubleRegsRegClass)
661     return false;
662 
663   // New-value stores are of class NV (slot 0), dual stores require class ST
664   // in slot 0 (PRM 5.5).
665   for (auto I : CurrentPacketMIs) {
666     SUnit *PacketSU = MIToSUnit.find(I)->second;
667     if (PacketSU->getInstr()->mayStore())
668       return false;
669   }
670 
671   // Make sure it's NOT the post increment register that we are going to
672   // new value.
673   if (HII->isPostIncrement(MI) &&
674       getPostIncrementOperand(MI, HII).getReg() == DepReg) {
675     return false;
676   }
677 
678   if (HII->isPostIncrement(PacketMI) && PacketMI.mayLoad() &&
679       getPostIncrementOperand(PacketMI, HII).getReg() == DepReg) {
680     // If source is post_inc, or absolute-set addressing, it can not feed
681     // into new value store
682     //   r3 = memw(r2++#4)
683     //   memw(r30 + #-1404) = r2.new -> can not be new value store
684     // arch spec section: 5.4.2.1.
685     return false;
686   }
687 
688   if (isLoadAbsSet(PacketMI) && getAbsSetOperand(PacketMI).getReg() == DepReg)
689     return false;
690 
691   // If the source that feeds the store is predicated, new value store must
692   // also be predicated.
693   if (HII->isPredicated(PacketMI)) {
694     if (!HII->isPredicated(MI))
695       return false;
696 
697     // Check to make sure that they both will have their predicates
698     // evaluate identically.
699     unsigned predRegNumSrc = 0;
700     unsigned predRegNumDst = 0;
701     const TargetRegisterClass* predRegClass = nullptr;
702 
703     // Get predicate register used in the source instruction.
704     for (auto &MO : PacketMI.operands()) {
705       if (!MO.isReg())
706         continue;
707       predRegNumSrc = MO.getReg();
708       predRegClass = HRI->getMinimalPhysRegClass(predRegNumSrc);
709       if (predRegClass == &Hexagon::PredRegsRegClass)
710         break;
711     }
712     assert((predRegClass == &Hexagon::PredRegsRegClass) &&
713         "predicate register not found in a predicated PacketMI instruction");
714 
715     // Get predicate register used in new-value store instruction.
716     for (auto &MO : MI.operands()) {
717       if (!MO.isReg())
718         continue;
719       predRegNumDst = MO.getReg();
720       predRegClass = HRI->getMinimalPhysRegClass(predRegNumDst);
721       if (predRegClass == &Hexagon::PredRegsRegClass)
722         break;
723     }
724     assert((predRegClass == &Hexagon::PredRegsRegClass) &&
725            "predicate register not found in a predicated MI instruction");
726 
727     // New-value register producer and user (store) need to satisfy these
728     // constraints:
729     // 1) Both instructions should be predicated on the same register.
730     // 2) If producer of the new-value register is .new predicated then store
731     // should also be .new predicated and if producer is not .new predicated
732     // then store should not be .new predicated.
733     // 3) Both new-value register producer and user should have same predicate
734     // sense, i.e, either both should be negated or both should be non-negated.
735     if (predRegNumDst != predRegNumSrc ||
736         HII->isDotNewInst(PacketMI) != HII->isDotNewInst(MI) ||
737         getPredicateSense(MI, HII) != getPredicateSense(PacketMI, HII))
738       return false;
739   }
740 
741   // Make sure that other than the new-value register no other store instruction
742   // register has been modified in the same packet. Predicate registers can be
743   // modified by they should not be modified between the producer and the store
744   // instruction as it will make them both conditional on different values.
745   // We already know this to be true for all the instructions before and
746   // including PacketMI. Howerver, we need to perform the check for the
747   // remaining instructions in the packet.
748 
749   unsigned StartCheck = 0;
750 
751   for (auto I : CurrentPacketMIs) {
752     SUnit *TempSU = MIToSUnit.find(I)->second;
753     MachineInstr &TempMI = *TempSU->getInstr();
754 
755     // Following condition is true for all the instructions until PacketMI is
756     // reached (StartCheck is set to 0 before the for loop).
757     // StartCheck flag is 1 for all the instructions after PacketMI.
758     if (&TempMI != &PacketMI && !StartCheck) // Start processing only after
759       continue;                              // encountering PacketMI.
760 
761     StartCheck = 1;
762     if (&TempMI == &PacketMI) // We don't want to check PacketMI for dependence.
763       continue;
764 
765     for (auto &MO : MI.operands())
766       if (MO.isReg() && TempSU->getInstr()->modifiesRegister(MO.getReg(), HRI))
767         return false;
768   }
769 
770   // Make sure that for non-POST_INC stores:
771   // 1. The only use of reg is DepReg and no other registers.
772   //    This handles base+index registers.
773   //    The following store can not be dot new.
774   //    Eg.   r0 = add(r0, #3)
775   //          memw(r1+r0<<#2) = r0
776   if (!HII->isPostIncrement(MI)) {
777     for (unsigned opNum = 0; opNum < MI.getNumOperands()-1; opNum++) {
778       const MachineOperand &MO = MI.getOperand(opNum);
779       if (MO.isReg() && MO.getReg() == DepReg)
780         return false;
781     }
782   }
783 
784   // If data definition is because of implicit definition of the register,
785   // do not newify the store. Eg.
786   // %r9 = ZXTH %r12, implicit %d6, implicit-def %r12
787   // S2_storerh_io %r8, 2, killed %r12; mem:ST2[%scevgep343]
788   for (auto &MO : PacketMI.operands()) {
789     if (MO.isRegMask() && MO.clobbersPhysReg(DepReg))
790       return false;
791     if (!MO.isReg() || !MO.isDef() || !MO.isImplicit())
792       continue;
793     Register R = MO.getReg();
794     if (R == DepReg || HRI->isSuperRegister(DepReg, R))
795       return false;
796   }
797 
798   // Handle imp-use of super reg case. There is a target independent side
799   // change that should prevent this situation but I am handling it for
800   // just-in-case. For example, we cannot newify R2 in the following case:
801   // %r3 = A2_tfrsi 0;
802   // S2_storeri_io killed %r0, 0, killed %r2, implicit killed %d1;
803   for (auto &MO : MI.operands()) {
804     if (MO.isReg() && MO.isUse() && MO.isImplicit() && MO.getReg() == DepReg)
805       return false;
806   }
807 
808   // Can be dot new store.
809   return true;
810 }
811 
812 // Can this MI to promoted to either new value store or new value jump.
813 bool HexagonPacketizerList::canPromoteToNewValue(const MachineInstr &MI,
814       const SUnit *PacketSU, unsigned DepReg,
815       MachineBasicBlock::iterator &MII) {
816   if (!HII->mayBeNewStore(MI))
817     return false;
818 
819   // Check to see the store can be new value'ed.
820   MachineInstr &PacketMI = *PacketSU->getInstr();
821   if (canPromoteToNewValueStore(MI, PacketMI, DepReg))
822     return true;
823 
824   // Check to see the compare/jump can be new value'ed.
825   // This is done as a pass on its own. Don't need to check it here.
826   return false;
827 }
828 
829 static bool isImplicitDependency(const MachineInstr &I, bool CheckDef,
830       unsigned DepReg) {
831   for (auto &MO : I.operands()) {
832     if (CheckDef && MO.isRegMask() && MO.clobbersPhysReg(DepReg))
833       return true;
834     if (!MO.isReg() || MO.getReg() != DepReg || !MO.isImplicit())
835       continue;
836     if (CheckDef == MO.isDef())
837       return true;
838   }
839   return false;
840 }
841 
842 // Check to see if an instruction can be dot new.
843 bool HexagonPacketizerList::canPromoteToDotNew(const MachineInstr &MI,
844       const SUnit *PacketSU, unsigned DepReg, MachineBasicBlock::iterator &MII,
845       const TargetRegisterClass* RC) {
846   // Already a dot new instruction.
847   if (HII->isDotNewInst(MI) && !HII->mayBeNewStore(MI))
848     return false;
849 
850   if (!isNewifiable(MI, RC))
851     return false;
852 
853   const MachineInstr &PI = *PacketSU->getInstr();
854 
855   // The "new value" cannot come from inline asm.
856   if (PI.isInlineAsm())
857     return false;
858 
859   // IMPLICIT_DEFs won't materialize as real instructions, so .new makes no
860   // sense.
861   if (PI.isImplicitDef())
862     return false;
863 
864   // If dependency is trough an implicitly defined register, we should not
865   // newify the use.
866   if (isImplicitDependency(PI, true, DepReg) ||
867       isImplicitDependency(MI, false, DepReg))
868     return false;
869 
870   const MCInstrDesc& MCID = PI.getDesc();
871   const TargetRegisterClass *VecRC = HII->getRegClass(MCID, 0, HRI, MF);
872   if (DisableVecDblNVStores && VecRC == &Hexagon::HvxWRRegClass)
873     return false;
874 
875   // predicate .new
876   if (RC == &Hexagon::PredRegsRegClass)
877     return HII->predCanBeUsedAsDotNew(PI, DepReg);
878 
879   if (RC != &Hexagon::PredRegsRegClass && !HII->mayBeNewStore(MI))
880     return false;
881 
882   // Create a dot new machine instruction to see if resources can be
883   // allocated. If not, bail out now.
884   int NewOpcode = HII->getDotNewOp(MI);
885   const MCInstrDesc &D = HII->get(NewOpcode);
886   MachineInstr *NewMI = MF.CreateMachineInstr(D, DebugLoc());
887   bool ResourcesAvailable = ResourceTracker->canReserveResources(*NewMI);
888   MF.DeleteMachineInstr(NewMI);
889   if (!ResourcesAvailable)
890     return false;
891 
892   // New Value Store only. New Value Jump generated as a separate pass.
893   if (!canPromoteToNewValue(MI, PacketSU, DepReg, MII))
894     return false;
895 
896   return true;
897 }
898 
899 // Go through the packet instructions and search for an anti dependency between
900 // them and DepReg from MI. Consider this case:
901 // Trying to add
902 // a) %r1 = TFRI_cdNotPt %p3, 2
903 // to this packet:
904 // {
905 //   b) %p0 = C2_or killed %p3, killed %p0
906 //   c) %p3 = C2_tfrrp %r23
907 //   d) %r1 = C2_cmovenewit %p3, 4
908 //  }
909 // The P3 from a) and d) will be complements after
910 // a)'s P3 is converted to .new form
911 // Anti-dep between c) and b) is irrelevant for this case
912 bool HexagonPacketizerList::restrictingDepExistInPacket(MachineInstr &MI,
913                                                         unsigned DepReg) {
914   SUnit *PacketSUDep = MIToSUnit.find(&MI)->second;
915 
916   for (auto I : CurrentPacketMIs) {
917     // We only care for dependencies to predicated instructions
918     if (!HII->isPredicated(*I))
919       continue;
920 
921     // Scheduling Unit for current insn in the packet
922     SUnit *PacketSU = MIToSUnit.find(I)->second;
923 
924     // Look at dependencies between current members of the packet and
925     // predicate defining instruction MI. Make sure that dependency is
926     // on the exact register we care about.
927     if (PacketSU->isSucc(PacketSUDep)) {
928       for (unsigned i = 0; i < PacketSU->Succs.size(); ++i) {
929         auto &Dep = PacketSU->Succs[i];
930         if (Dep.getSUnit() == PacketSUDep && Dep.getKind() == SDep::Anti &&
931             Dep.getReg() == DepReg)
932           return true;
933       }
934     }
935   }
936 
937   return false;
938 }
939 
940 /// Gets the predicate register of a predicated instruction.
941 static unsigned getPredicatedRegister(MachineInstr &MI,
942                                       const HexagonInstrInfo *QII) {
943   /// We use the following rule: The first predicate register that is a use is
944   /// the predicate register of a predicated instruction.
945   assert(QII->isPredicated(MI) && "Must be predicated instruction");
946 
947   for (auto &Op : MI.operands()) {
948     if (Op.isReg() && Op.getReg() && Op.isUse() &&
949         Hexagon::PredRegsRegClass.contains(Op.getReg()))
950       return Op.getReg();
951   }
952 
953   llvm_unreachable("Unknown instruction operand layout");
954   return 0;
955 }
956 
957 // Given two predicated instructions, this function detects whether
958 // the predicates are complements.
959 bool HexagonPacketizerList::arePredicatesComplements(MachineInstr &MI1,
960                                                      MachineInstr &MI2) {
961   // If we don't know the predicate sense of the instructions bail out early, we
962   // need it later.
963   if (getPredicateSense(MI1, HII) == PK_Unknown ||
964       getPredicateSense(MI2, HII) == PK_Unknown)
965     return false;
966 
967   // Scheduling unit for candidate.
968   SUnit *SU = MIToSUnit[&MI1];
969 
970   // One corner case deals with the following scenario:
971   // Trying to add
972   // a) %r24 = A2_tfrt %p0, %r25
973   // to this packet:
974   // {
975   //   b) %r25 = A2_tfrf %p0, %r24
976   //   c) %p0 = C2_cmpeqi %r26, 1
977   // }
978   //
979   // On general check a) and b) are complements, but presence of c) will
980   // convert a) to .new form, and then it is not a complement.
981   // We attempt to detect it by analyzing existing dependencies in the packet.
982 
983   // Analyze relationships between all existing members of the packet.
984   // Look for Anti dependecy on the same predicate reg as used in the
985   // candidate.
986   for (auto I : CurrentPacketMIs) {
987     // Scheduling Unit for current insn in the packet.
988     SUnit *PacketSU = MIToSUnit.find(I)->second;
989 
990     // If this instruction in the packet is succeeded by the candidate...
991     if (PacketSU->isSucc(SU)) {
992       for (unsigned i = 0; i < PacketSU->Succs.size(); ++i) {
993         auto Dep = PacketSU->Succs[i];
994         // The corner case exist when there is true data dependency between
995         // candidate and one of current packet members, this dep is on
996         // predicate reg, and there already exist anti dep on the same pred in
997         // the packet.
998         if (Dep.getSUnit() == SU && Dep.getKind() == SDep::Data &&
999             Hexagon::PredRegsRegClass.contains(Dep.getReg())) {
1000           // Here I know that I is predicate setting instruction with true
1001           // data dep to candidate on the register we care about - c) in the
1002           // above example. Now I need to see if there is an anti dependency
1003           // from c) to any other instruction in the same packet on the pred
1004           // reg of interest.
1005           if (restrictingDepExistInPacket(*I, Dep.getReg()))
1006             return false;
1007         }
1008       }
1009     }
1010   }
1011 
1012   // If the above case does not apply, check regular complement condition.
1013   // Check that the predicate register is the same and that the predicate
1014   // sense is different We also need to differentiate .old vs. .new: !p0
1015   // is not complementary to p0.new.
1016   unsigned PReg1 = getPredicatedRegister(MI1, HII);
1017   unsigned PReg2 = getPredicatedRegister(MI2, HII);
1018   return PReg1 == PReg2 &&
1019          Hexagon::PredRegsRegClass.contains(PReg1) &&
1020          Hexagon::PredRegsRegClass.contains(PReg2) &&
1021          getPredicateSense(MI1, HII) != getPredicateSense(MI2, HII) &&
1022          HII->isDotNewInst(MI1) == HII->isDotNewInst(MI2);
1023 }
1024 
1025 // Initialize packetizer flags.
1026 void HexagonPacketizerList::initPacketizerState() {
1027   Dependence = false;
1028   PromotedToDotNew = false;
1029   GlueToNewValueJump = false;
1030   GlueAllocframeStore = false;
1031   FoundSequentialDependence = false;
1032   ChangedOffset = INT64_MAX;
1033 }
1034 
1035 // Ignore bundling of pseudo instructions.
1036 bool HexagonPacketizerList::ignorePseudoInstruction(const MachineInstr &MI,
1037                                                     const MachineBasicBlock *) {
1038   if (MI.isDebugInstr())
1039     return true;
1040 
1041   if (MI.isCFIInstruction())
1042     return false;
1043 
1044   // We must print out inline assembly.
1045   if (MI.isInlineAsm())
1046     return false;
1047 
1048   if (MI.isImplicitDef())
1049     return false;
1050 
1051   // We check if MI has any functional units mapped to it. If it doesn't,
1052   // we ignore the instruction.
1053   const MCInstrDesc& TID = MI.getDesc();
1054   auto *IS = ResourceTracker->getInstrItins()->beginStage(TID.getSchedClass());
1055   unsigned FuncUnits = IS->getUnits();
1056   return !FuncUnits;
1057 }
1058 
1059 bool HexagonPacketizerList::isSoloInstruction(const MachineInstr &MI) {
1060   // Ensure any bundles created by gather packetize remain seperate.
1061   if (MI.isBundle())
1062     return true;
1063 
1064   if (MI.isEHLabel() || MI.isCFIInstruction())
1065     return true;
1066 
1067   // Consider inline asm to not be a solo instruction by default.
1068   // Inline asm will be put in a packet temporarily, but then it will be
1069   // removed, and placed outside of the packet (before or after, depending
1070   // on dependencies).  This is to reduce the impact of inline asm as a
1071   // "packet splitting" instruction.
1072   if (MI.isInlineAsm() && !ScheduleInlineAsm)
1073     return true;
1074 
1075   if (isSchedBarrier(MI))
1076     return true;
1077 
1078   if (HII->isSolo(MI))
1079     return true;
1080 
1081   if (MI.getOpcode() == Hexagon::A2_nop)
1082     return true;
1083 
1084   return false;
1085 }
1086 
1087 // Quick check if instructions MI and MJ cannot coexist in the same packet.
1088 // Limit the tests to be "one-way", e.g.  "if MI->isBranch and MJ->isInlineAsm",
1089 // but not the symmetric case: "if MJ->isBranch and MI->isInlineAsm".
1090 // For full test call this function twice:
1091 //   cannotCoexistAsymm(MI, MJ) || cannotCoexistAsymm(MJ, MI)
1092 // Doing the test only one way saves the amount of code in this function,
1093 // since every test would need to be repeated with the MI and MJ reversed.
1094 static bool cannotCoexistAsymm(const MachineInstr &MI, const MachineInstr &MJ,
1095       const HexagonInstrInfo &HII) {
1096   const MachineFunction *MF = MI.getParent()->getParent();
1097   if (MF->getSubtarget<HexagonSubtarget>().hasV60OpsOnly() &&
1098       HII.isHVXMemWithAIndirect(MI, MJ))
1099     return true;
1100 
1101   // An inline asm cannot be together with a branch, because we may not be
1102   // able to remove the asm out after packetizing (i.e. if the asm must be
1103   // moved past the bundle).  Similarly, two asms cannot be together to avoid
1104   // complications when determining their relative order outside of a bundle.
1105   if (MI.isInlineAsm())
1106     return MJ.isInlineAsm() || MJ.isBranch() || MJ.isBarrier() ||
1107            MJ.isCall() || MJ.isTerminator();
1108 
1109   // New-value stores cannot coexist with any other stores.
1110   if (HII.isNewValueStore(MI) && MJ.mayStore())
1111     return true;
1112 
1113   switch (MI.getOpcode()) {
1114   case Hexagon::S2_storew_locked:
1115   case Hexagon::S4_stored_locked:
1116   case Hexagon::L2_loadw_locked:
1117   case Hexagon::L4_loadd_locked:
1118   case Hexagon::Y2_dccleana:
1119   case Hexagon::Y2_dccleaninva:
1120   case Hexagon::Y2_dcinva:
1121   case Hexagon::Y2_dczeroa:
1122   case Hexagon::Y4_l2fetch:
1123   case Hexagon::Y5_l2fetch: {
1124     // These instructions can only be grouped with ALU32 or non-floating-point
1125     // XTYPE instructions.  Since there is no convenient way of identifying fp
1126     // XTYPE instructions, only allow grouping with ALU32 for now.
1127     unsigned TJ = HII.getType(MJ);
1128     if (TJ != HexagonII::TypeALU32_2op &&
1129         TJ != HexagonII::TypeALU32_3op &&
1130         TJ != HexagonII::TypeALU32_ADDI)
1131       return true;
1132     break;
1133   }
1134   default:
1135     break;
1136   }
1137 
1138   // "False" really means that the quick check failed to determine if
1139   // I and J cannot coexist.
1140   return false;
1141 }
1142 
1143 // Full, symmetric check.
1144 bool HexagonPacketizerList::cannotCoexist(const MachineInstr &MI,
1145       const MachineInstr &MJ) {
1146   return cannotCoexistAsymm(MI, MJ, *HII) || cannotCoexistAsymm(MJ, MI, *HII);
1147 }
1148 
1149 void HexagonPacketizerList::unpacketizeSoloInstrs(MachineFunction &MF) {
1150   for (auto &B : MF) {
1151     MachineBasicBlock::iterator BundleIt;
1152     MachineBasicBlock::instr_iterator NextI;
1153     for (auto I = B.instr_begin(), E = B.instr_end(); I != E; I = NextI) {
1154       NextI = std::next(I);
1155       MachineInstr &MI = *I;
1156       if (MI.isBundle())
1157         BundleIt = I;
1158       if (!MI.isInsideBundle())
1159         continue;
1160 
1161       // Decide on where to insert the instruction that we are pulling out.
1162       // Debug instructions always go before the bundle, but the placement of
1163       // INLINE_ASM depends on potential dependencies.  By default, try to
1164       // put it before the bundle, but if the asm writes to a register that
1165       // other instructions in the bundle read, then we need to place it
1166       // after the bundle (to preserve the bundle semantics).
1167       bool InsertBeforeBundle;
1168       if (MI.isInlineAsm())
1169         InsertBeforeBundle = !hasWriteToReadDep(MI, *BundleIt, HRI);
1170       else if (MI.isDebugValue())
1171         InsertBeforeBundle = true;
1172       else
1173         continue;
1174 
1175       BundleIt = moveInstrOut(MI, BundleIt, InsertBeforeBundle);
1176     }
1177   }
1178 }
1179 
1180 // Check if a given instruction is of class "system".
1181 static bool isSystemInstr(const MachineInstr &MI) {
1182   unsigned Opc = MI.getOpcode();
1183   switch (Opc) {
1184     case Hexagon::Y2_barrier:
1185     case Hexagon::Y2_dcfetchbo:
1186     case Hexagon::Y4_l2fetch:
1187     case Hexagon::Y5_l2fetch:
1188       return true;
1189   }
1190   return false;
1191 }
1192 
1193 bool HexagonPacketizerList::hasDeadDependence(const MachineInstr &I,
1194                                               const MachineInstr &J) {
1195   // The dependence graph may not include edges between dead definitions,
1196   // so without extra checks, we could end up packetizing two instruction
1197   // defining the same (dead) register.
1198   if (I.isCall() || J.isCall())
1199     return false;
1200   if (HII->isPredicated(I) || HII->isPredicated(J))
1201     return false;
1202 
1203   BitVector DeadDefs(Hexagon::NUM_TARGET_REGS);
1204   for (auto &MO : I.operands()) {
1205     if (!MO.isReg() || !MO.isDef() || !MO.isDead())
1206       continue;
1207     DeadDefs[MO.getReg()] = true;
1208   }
1209 
1210   for (auto &MO : J.operands()) {
1211     if (!MO.isReg() || !MO.isDef() || !MO.isDead())
1212       continue;
1213     Register R = MO.getReg();
1214     if (R != Hexagon::USR_OVF && DeadDefs[R])
1215       return true;
1216   }
1217   return false;
1218 }
1219 
1220 bool HexagonPacketizerList::hasControlDependence(const MachineInstr &I,
1221                                                  const MachineInstr &J) {
1222   // A save callee-save register function call can only be in a packet
1223   // with instructions that don't write to the callee-save registers.
1224   if ((HII->isSaveCalleeSavedRegsCall(I) &&
1225        doesModifyCalleeSavedReg(J, HRI)) ||
1226       (HII->isSaveCalleeSavedRegsCall(J) &&
1227        doesModifyCalleeSavedReg(I, HRI)))
1228     return true;
1229 
1230   // Two control flow instructions cannot go in the same packet.
1231   if (isControlFlow(I) && isControlFlow(J))
1232     return true;
1233 
1234   // \ref-manual (7.3.4) A loop setup packet in loopN or spNloop0 cannot
1235   // contain a speculative indirect jump,
1236   // a new-value compare jump or a dealloc_return.
1237   auto isBadForLoopN = [this] (const MachineInstr &MI) -> bool {
1238     if (MI.isCall() || HII->isDeallocRet(MI) || HII->isNewValueJump(MI))
1239       return true;
1240     if (HII->isPredicated(MI) && HII->isPredicatedNew(MI) && HII->isJumpR(MI))
1241       return true;
1242     return false;
1243   };
1244 
1245   if (HII->isLoopN(I) && isBadForLoopN(J))
1246     return true;
1247   if (HII->isLoopN(J) && isBadForLoopN(I))
1248     return true;
1249 
1250   // dealloc_return cannot appear in the same packet as a conditional or
1251   // unconditional jump.
1252   return HII->isDeallocRet(I) &&
1253          (J.isBranch() || J.isCall() || J.isBarrier());
1254 }
1255 
1256 bool HexagonPacketizerList::hasRegMaskDependence(const MachineInstr &I,
1257                                                  const MachineInstr &J) {
1258   // Adding I to a packet that has J.
1259 
1260   // Regmasks are not reflected in the scheduling dependency graph, so
1261   // we need to check them manually. This code assumes that regmasks only
1262   // occur on calls, and the problematic case is when we add an instruction
1263   // defining a register R to a packet that has a call that clobbers R via
1264   // a regmask. Those cannot be packetized together, because the call will
1265   // be executed last. That's also a reson why it is ok to add a call
1266   // clobbering R to a packet that defines R.
1267 
1268   // Look for regmasks in J.
1269   for (const MachineOperand &OpJ : J.operands()) {
1270     if (!OpJ.isRegMask())
1271       continue;
1272     assert((J.isCall() || HII->isTailCall(J)) && "Regmask on a non-call");
1273     for (const MachineOperand &OpI : I.operands()) {
1274       if (OpI.isReg()) {
1275         if (OpJ.clobbersPhysReg(OpI.getReg()))
1276           return true;
1277       } else if (OpI.isRegMask()) {
1278         // Both are regmasks. Assume that they intersect.
1279         return true;
1280       }
1281     }
1282   }
1283   return false;
1284 }
1285 
1286 bool HexagonPacketizerList::hasDualStoreDependence(const MachineInstr &I,
1287                                                    const MachineInstr &J) {
1288   bool SysI = isSystemInstr(I), SysJ = isSystemInstr(J);
1289   bool StoreI = I.mayStore(), StoreJ = J.mayStore();
1290   if ((SysI && StoreJ) || (SysJ && StoreI))
1291     return true;
1292 
1293   if (StoreI && StoreJ) {
1294     if (HII->isNewValueInst(J) || HII->isMemOp(J) || HII->isMemOp(I))
1295       return true;
1296   } else {
1297     // A memop cannot be in the same packet with another memop or a store.
1298     // Two stores can be together, but here I and J cannot both be stores.
1299     bool MopStI = HII->isMemOp(I) || StoreI;
1300     bool MopStJ = HII->isMemOp(J) || StoreJ;
1301     if (MopStI && MopStJ)
1302       return true;
1303   }
1304 
1305   return (StoreJ && HII->isDeallocRet(I)) || (StoreI && HII->isDeallocRet(J));
1306 }
1307 
1308 // SUI is the current instruction that is out side of the current packet.
1309 // SUJ is the current instruction inside the current packet against which that
1310 // SUI will be packetized.
1311 bool HexagonPacketizerList::isLegalToPacketizeTogether(SUnit *SUI, SUnit *SUJ) {
1312   assert(SUI->getInstr() && SUJ->getInstr());
1313   MachineInstr &I = *SUI->getInstr();
1314   MachineInstr &J = *SUJ->getInstr();
1315 
1316   // Clear IgnoreDepMIs when Packet starts.
1317   if (CurrentPacketMIs.size() == 1)
1318     IgnoreDepMIs.clear();
1319 
1320   MachineBasicBlock::iterator II = I.getIterator();
1321 
1322   // Solo instructions cannot go in the packet.
1323   assert(!isSoloInstruction(I) && "Unexpected solo instr!");
1324 
1325   if (cannotCoexist(I, J))
1326     return false;
1327 
1328   Dependence = hasDeadDependence(I, J) || hasControlDependence(I, J);
1329   if (Dependence)
1330     return false;
1331 
1332   // Regmasks are not accounted for in the scheduling graph, so we need
1333   // to explicitly check for dependencies caused by them. They should only
1334   // appear on calls, so it's not too pessimistic to reject all regmask
1335   // dependencies.
1336   Dependence = hasRegMaskDependence(I, J);
1337   if (Dependence)
1338     return false;
1339 
1340   // Dual-store does not allow second store, if the first store is not
1341   // in SLOT0. New value store, new value jump, dealloc_return and memop
1342   // always take SLOT0. Arch spec 3.4.4.2.
1343   Dependence = hasDualStoreDependence(I, J);
1344   if (Dependence)
1345     return false;
1346 
1347   // If an instruction feeds new value jump, glue it.
1348   MachineBasicBlock::iterator NextMII = I.getIterator();
1349   ++NextMII;
1350   if (NextMII != I.getParent()->end() && HII->isNewValueJump(*NextMII)) {
1351     MachineInstr &NextMI = *NextMII;
1352 
1353     bool secondRegMatch = false;
1354     const MachineOperand &NOp0 = NextMI.getOperand(0);
1355     const MachineOperand &NOp1 = NextMI.getOperand(1);
1356 
1357     if (NOp1.isReg() && I.getOperand(0).getReg() == NOp1.getReg())
1358       secondRegMatch = true;
1359 
1360     for (MachineInstr *PI : CurrentPacketMIs) {
1361       // NVJ can not be part of the dual jump - Arch Spec: section 7.8.
1362       if (PI->isCall()) {
1363         Dependence = true;
1364         break;
1365       }
1366       // Validate:
1367       // 1. Packet does not have a store in it.
1368       // 2. If the first operand of the nvj is newified, and the second
1369       //    operand is also a reg, it (second reg) is not defined in
1370       //    the same packet.
1371       // 3. If the second operand of the nvj is newified, (which means
1372       //    first operand is also a reg), first reg is not defined in
1373       //    the same packet.
1374       if (PI->getOpcode() == Hexagon::S2_allocframe || PI->mayStore() ||
1375           HII->isLoopN(*PI)) {
1376         Dependence = true;
1377         break;
1378       }
1379       // Check #2/#3.
1380       const MachineOperand &OpR = secondRegMatch ? NOp0 : NOp1;
1381       if (OpR.isReg() && PI->modifiesRegister(OpR.getReg(), HRI)) {
1382         Dependence = true;
1383         break;
1384       }
1385     }
1386 
1387     GlueToNewValueJump = true;
1388     if (Dependence)
1389       return false;
1390   }
1391 
1392   // There no dependency between a prolog instruction and its successor.
1393   if (!SUJ->isSucc(SUI))
1394     return true;
1395 
1396   for (unsigned i = 0; i < SUJ->Succs.size(); ++i) {
1397     if (FoundSequentialDependence)
1398       break;
1399 
1400     if (SUJ->Succs[i].getSUnit() != SUI)
1401       continue;
1402 
1403     SDep::Kind DepType = SUJ->Succs[i].getKind();
1404     // For direct calls:
1405     // Ignore register dependences for call instructions for packetization
1406     // purposes except for those due to r31 and predicate registers.
1407     //
1408     // For indirect calls:
1409     // Same as direct calls + check for true dependences to the register
1410     // used in the indirect call.
1411     //
1412     // We completely ignore Order dependences for call instructions.
1413     //
1414     // For returns:
1415     // Ignore register dependences for return instructions like jumpr,
1416     // dealloc return unless we have dependencies on the explicit uses
1417     // of the registers used by jumpr (like r31) or dealloc return
1418     // (like r29 or r30).
1419     unsigned DepReg = 0;
1420     const TargetRegisterClass *RC = nullptr;
1421     if (DepType == SDep::Data) {
1422       DepReg = SUJ->Succs[i].getReg();
1423       RC = HRI->getMinimalPhysRegClass(DepReg);
1424     }
1425 
1426     if (I.isCall() || HII->isJumpR(I) || I.isReturn() || HII->isTailCall(I)) {
1427       if (!isRegDependence(DepType))
1428         continue;
1429       if (!isCallDependent(I, DepType, SUJ->Succs[i].getReg()))
1430         continue;
1431     }
1432 
1433     if (DepType == SDep::Data) {
1434       if (canPromoteToDotCur(J, SUJ, DepReg, II, RC))
1435         if (promoteToDotCur(J, DepType, II, RC))
1436           continue;
1437     }
1438 
1439     // Data dpendence ok if we have load.cur.
1440     if (DepType == SDep::Data && HII->isDotCurInst(J)) {
1441       if (HII->isHVXVec(I))
1442         continue;
1443     }
1444 
1445     // For instructions that can be promoted to dot-new, try to promote.
1446     if (DepType == SDep::Data) {
1447       if (canPromoteToDotNew(I, SUJ, DepReg, II, RC)) {
1448         if (promoteToDotNew(I, DepType, II, RC)) {
1449           PromotedToDotNew = true;
1450           if (cannotCoexist(I, J))
1451             FoundSequentialDependence = true;
1452           continue;
1453         }
1454       }
1455       if (HII->isNewValueJump(I))
1456         continue;
1457     }
1458 
1459     // For predicated instructions, if the predicates are complements then
1460     // there can be no dependence.
1461     if (HII->isPredicated(I) && HII->isPredicated(J) &&
1462         arePredicatesComplements(I, J)) {
1463       // Not always safe to do this translation.
1464       // DAG Builder attempts to reduce dependence edges using transitive
1465       // nature of dependencies. Here is an example:
1466       //
1467       // r0 = tfr_pt ... (1)
1468       // r0 = tfr_pf ... (2)
1469       // r0 = tfr_pt ... (3)
1470       //
1471       // There will be an output dependence between (1)->(2) and (2)->(3).
1472       // However, there is no dependence edge between (1)->(3). This results
1473       // in all 3 instructions going in the same packet. We ignore dependce
1474       // only once to avoid this situation.
1475       auto Itr = find(IgnoreDepMIs, &J);
1476       if (Itr != IgnoreDepMIs.end()) {
1477         Dependence = true;
1478         return false;
1479       }
1480       IgnoreDepMIs.push_back(&I);
1481       continue;
1482     }
1483 
1484     // Ignore Order dependences between unconditional direct branches
1485     // and non-control-flow instructions.
1486     if (isDirectJump(I) && !J.isBranch() && !J.isCall() &&
1487         DepType == SDep::Order)
1488       continue;
1489 
1490     // Ignore all dependences for jumps except for true and output
1491     // dependences.
1492     if (I.isConditionalBranch() && DepType != SDep::Data &&
1493         DepType != SDep::Output)
1494       continue;
1495 
1496     if (DepType == SDep::Output) {
1497       FoundSequentialDependence = true;
1498       break;
1499     }
1500 
1501     // For Order dependences:
1502     // 1. Volatile loads/stores can be packetized together, unless other
1503     //    rules prevent is.
1504     // 2. Store followed by a load is not allowed.
1505     // 3. Store followed by a store is valid.
1506     // 4. Load followed by any memory operation is allowed.
1507     if (DepType == SDep::Order) {
1508       if (!PacketizeVolatiles) {
1509         bool OrdRefs = I.hasOrderedMemoryRef() || J.hasOrderedMemoryRef();
1510         if (OrdRefs) {
1511           FoundSequentialDependence = true;
1512           break;
1513         }
1514       }
1515       // J is first, I is second.
1516       bool LoadJ = J.mayLoad(), StoreJ = J.mayStore();
1517       bool LoadI = I.mayLoad(), StoreI = I.mayStore();
1518       bool NVStoreJ = HII->isNewValueStore(J);
1519       bool NVStoreI = HII->isNewValueStore(I);
1520       bool IsVecJ = HII->isHVXVec(J);
1521       bool IsVecI = HII->isHVXVec(I);
1522 
1523       if (Slot1Store && MF.getSubtarget<HexagonSubtarget>().hasV65Ops() &&
1524           ((LoadJ && StoreI && !NVStoreI) ||
1525            (StoreJ && LoadI && !NVStoreJ)) &&
1526           (J.getOpcode() != Hexagon::S2_allocframe &&
1527            I.getOpcode() != Hexagon::S2_allocframe) &&
1528           (J.getOpcode() != Hexagon::L2_deallocframe &&
1529            I.getOpcode() != Hexagon::L2_deallocframe) &&
1530           (!HII->isMemOp(J) && !HII->isMemOp(I)) && (!IsVecJ && !IsVecI))
1531         setmemShufDisabled(true);
1532       else
1533         if (StoreJ && LoadI && alias(J, I)) {
1534           FoundSequentialDependence = true;
1535           break;
1536         }
1537 
1538       if (!StoreJ)
1539         if (!LoadJ || (!LoadI && !StoreI)) {
1540           // If J is neither load nor store, assume a dependency.
1541           // If J is a load, but I is neither, also assume a dependency.
1542           FoundSequentialDependence = true;
1543           break;
1544         }
1545       // Store followed by store: not OK on V2.
1546       // Store followed by load: not OK on all.
1547       // Load followed by store: OK on all.
1548       // Load followed by load: OK on all.
1549       continue;
1550     }
1551 
1552     // Special case for ALLOCFRAME: even though there is dependency
1553     // between ALLOCFRAME and subsequent store, allow it to be packetized
1554     // in a same packet. This implies that the store is using the caller's
1555     // SP. Hence, offset needs to be updated accordingly.
1556     if (DepType == SDep::Data && J.getOpcode() == Hexagon::S2_allocframe) {
1557       unsigned Opc = I.getOpcode();
1558       switch (Opc) {
1559         case Hexagon::S2_storerd_io:
1560         case Hexagon::S2_storeri_io:
1561         case Hexagon::S2_storerh_io:
1562         case Hexagon::S2_storerb_io:
1563           if (I.getOperand(0).getReg() == HRI->getStackRegister()) {
1564             // Since this store is to be glued with allocframe in the same
1565             // packet, it will use SP of the previous stack frame, i.e.
1566             // caller's SP. Therefore, we need to recalculate offset
1567             // according to this change.
1568             GlueAllocframeStore = useCallersSP(I);
1569             if (GlueAllocframeStore)
1570               continue;
1571           }
1572           break;
1573         default:
1574           break;
1575       }
1576     }
1577 
1578     // There are certain anti-dependencies that cannot be ignored.
1579     // Specifically:
1580     //   J2_call ... implicit-def %r0   ; SUJ
1581     //   R0 = ...                   ; SUI
1582     // Those cannot be packetized together, since the call will observe
1583     // the effect of the assignment to R0.
1584     if ((DepType == SDep::Anti || DepType == SDep::Output) && J.isCall()) {
1585       // Check if I defines any volatile register. We should also check
1586       // registers that the call may read, but these happen to be a
1587       // subset of the volatile register set.
1588       for (const MachineOperand &Op : I.operands()) {
1589         if (Op.isReg() && Op.isDef()) {
1590           Register R = Op.getReg();
1591           if (!J.readsRegister(R, HRI) && !J.modifiesRegister(R, HRI))
1592             continue;
1593         } else if (!Op.isRegMask()) {
1594           // If I has a regmask assume dependency.
1595           continue;
1596         }
1597         FoundSequentialDependence = true;
1598         break;
1599       }
1600     }
1601 
1602     // Skip over remaining anti-dependences. Two instructions that are
1603     // anti-dependent can share a packet, since in most such cases all
1604     // operands are read before any modifications take place.
1605     // The exceptions are branch and call instructions, since they are
1606     // executed after all other instructions have completed (at least
1607     // conceptually).
1608     if (DepType != SDep::Anti) {
1609       FoundSequentialDependence = true;
1610       break;
1611     }
1612   }
1613 
1614   if (FoundSequentialDependence) {
1615     Dependence = true;
1616     return false;
1617   }
1618 
1619   return true;
1620 }
1621 
1622 bool HexagonPacketizerList::isLegalToPruneDependencies(SUnit *SUI, SUnit *SUJ) {
1623   assert(SUI->getInstr() && SUJ->getInstr());
1624   MachineInstr &I = *SUI->getInstr();
1625   MachineInstr &J = *SUJ->getInstr();
1626 
1627   bool Coexist = !cannotCoexist(I, J);
1628 
1629   if (Coexist && !Dependence)
1630     return true;
1631 
1632   // Check if the instruction was promoted to a dot-new. If so, demote it
1633   // back into a dot-old.
1634   if (PromotedToDotNew)
1635     demoteToDotOld(I);
1636 
1637   cleanUpDotCur();
1638   // Check if the instruction (must be a store) was glued with an allocframe
1639   // instruction. If so, restore its offset to its original value, i.e. use
1640   // current SP instead of caller's SP.
1641   if (GlueAllocframeStore) {
1642     useCalleesSP(I);
1643     GlueAllocframeStore = false;
1644   }
1645 
1646   if (ChangedOffset != INT64_MAX)
1647     undoChangedOffset(I);
1648 
1649   if (GlueToNewValueJump) {
1650     // Putting I and J together would prevent the new-value jump from being
1651     // packetized with the producer. In that case I and J must be separated.
1652     GlueToNewValueJump = false;
1653     return false;
1654   }
1655 
1656   if (!Coexist)
1657     return false;
1658 
1659   if (ChangedOffset == INT64_MAX && updateOffset(SUI, SUJ)) {
1660     FoundSequentialDependence = false;
1661     Dependence = false;
1662     return true;
1663   }
1664 
1665   return false;
1666 }
1667 
1668 
1669 bool HexagonPacketizerList::foundLSInPacket() {
1670   bool FoundLoad = false;
1671   bool FoundStore = false;
1672 
1673   for (auto MJ : CurrentPacketMIs) {
1674     unsigned Opc = MJ->getOpcode();
1675     if (Opc == Hexagon::S2_allocframe || Opc == Hexagon::L2_deallocframe)
1676       continue;
1677     if (HII->isMemOp(*MJ))
1678       continue;
1679     if (MJ->mayLoad())
1680       FoundLoad = true;
1681     if (MJ->mayStore() && !HII->isNewValueStore(*MJ))
1682       FoundStore = true;
1683   }
1684   return FoundLoad && FoundStore;
1685 }
1686 
1687 
1688 MachineBasicBlock::iterator
1689 HexagonPacketizerList::addToPacket(MachineInstr &MI) {
1690   MachineBasicBlock::iterator MII = MI.getIterator();
1691   MachineBasicBlock *MBB = MI.getParent();
1692 
1693   if (CurrentPacketMIs.empty())
1694     PacketStalls = false;
1695   PacketStalls |= producesStall(MI);
1696 
1697   if (MI.isImplicitDef()) {
1698     // Add to the packet to allow subsequent instructions to be checked
1699     // properly.
1700     CurrentPacketMIs.push_back(&MI);
1701     return MII;
1702   }
1703   assert(ResourceTracker->canReserveResources(MI));
1704 
1705   bool ExtMI = HII->isExtended(MI) || HII->isConstExtended(MI);
1706   bool Good = true;
1707 
1708   if (GlueToNewValueJump) {
1709     MachineInstr &NvjMI = *++MII;
1710     // We need to put both instructions in the same packet: MI and NvjMI.
1711     // Either of them can require a constant extender. Try to add both to
1712     // the current packet, and if that fails, end the packet and start a
1713     // new one.
1714     ResourceTracker->reserveResources(MI);
1715     if (ExtMI)
1716       Good = tryAllocateResourcesForConstExt(true);
1717 
1718     bool ExtNvjMI = HII->isExtended(NvjMI) || HII->isConstExtended(NvjMI);
1719     if (Good) {
1720       if (ResourceTracker->canReserveResources(NvjMI))
1721         ResourceTracker->reserveResources(NvjMI);
1722       else
1723         Good = false;
1724     }
1725     if (Good && ExtNvjMI)
1726       Good = tryAllocateResourcesForConstExt(true);
1727 
1728     if (!Good) {
1729       endPacket(MBB, MI);
1730       assert(ResourceTracker->canReserveResources(MI));
1731       ResourceTracker->reserveResources(MI);
1732       if (ExtMI) {
1733         assert(canReserveResourcesForConstExt());
1734         tryAllocateResourcesForConstExt(true);
1735       }
1736       assert(ResourceTracker->canReserveResources(NvjMI));
1737       ResourceTracker->reserveResources(NvjMI);
1738       if (ExtNvjMI) {
1739         assert(canReserveResourcesForConstExt());
1740         reserveResourcesForConstExt();
1741       }
1742     }
1743     CurrentPacketMIs.push_back(&MI);
1744     CurrentPacketMIs.push_back(&NvjMI);
1745     return MII;
1746   }
1747 
1748   ResourceTracker->reserveResources(MI);
1749   if (ExtMI && !tryAllocateResourcesForConstExt(true)) {
1750     endPacket(MBB, MI);
1751     if (PromotedToDotNew)
1752       demoteToDotOld(MI);
1753     if (GlueAllocframeStore) {
1754       useCalleesSP(MI);
1755       GlueAllocframeStore = false;
1756     }
1757     ResourceTracker->reserveResources(MI);
1758     reserveResourcesForConstExt();
1759   }
1760 
1761   CurrentPacketMIs.push_back(&MI);
1762   return MII;
1763 }
1764 
1765 void HexagonPacketizerList::endPacket(MachineBasicBlock *MBB,
1766                                       MachineBasicBlock::iterator EndMI) {
1767   // Replace VLIWPacketizerList::endPacket(MBB, EndMI).
1768   LLVM_DEBUG({
1769     if (!CurrentPacketMIs.empty()) {
1770       dbgs() << "Finalizing packet:\n";
1771       unsigned Idx = 0;
1772       for (MachineInstr *MI : CurrentPacketMIs) {
1773         unsigned R = ResourceTracker->getUsedResources(Idx++);
1774         dbgs() << " * [res:0x" << utohexstr(R) << "] " << *MI;
1775       }
1776     }
1777   });
1778 
1779   bool memShufDisabled = getmemShufDisabled();
1780   if (memShufDisabled && !foundLSInPacket()) {
1781     setmemShufDisabled(false);
1782     LLVM_DEBUG(dbgs() << "  Not added to NoShufPacket\n");
1783   }
1784   memShufDisabled = getmemShufDisabled();
1785 
1786   OldPacketMIs.clear();
1787   for (MachineInstr *MI : CurrentPacketMIs) {
1788     MachineBasicBlock::instr_iterator NextMI = std::next(MI->getIterator());
1789     for (auto &I : make_range(HII->expandVGatherPseudo(*MI), NextMI))
1790       OldPacketMIs.push_back(&I);
1791   }
1792   CurrentPacketMIs.clear();
1793 
1794   if (OldPacketMIs.size() > 1) {
1795     MachineBasicBlock::instr_iterator FirstMI(OldPacketMIs.front());
1796     MachineBasicBlock::instr_iterator LastMI(EndMI.getInstrIterator());
1797     finalizeBundle(*MBB, FirstMI, LastMI);
1798     auto BundleMII = std::prev(FirstMI);
1799     if (memShufDisabled)
1800       HII->setBundleNoShuf(BundleMII);
1801 
1802     setmemShufDisabled(false);
1803   }
1804 
1805   ResourceTracker->clearResources();
1806   LLVM_DEBUG(dbgs() << "End packet\n");
1807 }
1808 
1809 bool HexagonPacketizerList::shouldAddToPacket(const MachineInstr &MI) {
1810   if (Minimal)
1811     return false;
1812   return !producesStall(MI);
1813 }
1814 
1815 // V60 forward scheduling.
1816 bool HexagonPacketizerList::producesStall(const MachineInstr &I) {
1817   // If the packet already stalls, then ignore the stall from a subsequent
1818   // instruction in the same packet.
1819   if (PacketStalls)
1820     return false;
1821 
1822   // Check whether the previous packet is in a different loop. If this is the
1823   // case, there is little point in trying to avoid a stall because that would
1824   // favor the rare case (loop entry) over the common case (loop iteration).
1825   //
1826   // TODO: We should really be able to check all the incoming edges if this is
1827   // the first packet in a basic block, so we can avoid stalls from the loop
1828   // backedge.
1829   if (!OldPacketMIs.empty()) {
1830     auto *OldBB = OldPacketMIs.front()->getParent();
1831     auto *ThisBB = I.getParent();
1832     if (MLI->getLoopFor(OldBB) != MLI->getLoopFor(ThisBB))
1833       return false;
1834   }
1835 
1836   SUnit *SUI = MIToSUnit[const_cast<MachineInstr *>(&I)];
1837 
1838   // If the latency is 0 and there is a data dependence between this
1839   // instruction and any instruction in the current packet, we disregard any
1840   // potential stalls due to the instructions in the previous packet. Most of
1841   // the instruction pairs that can go together in the same packet have 0
1842   // latency between them. The exceptions are
1843   // 1. NewValueJumps as they're generated much later and the latencies can't
1844   // be changed at that point.
1845   // 2. .cur instructions, if its consumer has a 0 latency successor (such as
1846   // .new). In this case, the latency between .cur and the consumer stays
1847   // non-zero even though we can have  both .cur and .new in the same packet.
1848   // Changing the latency to 0 is not an option as it causes software pipeliner
1849   // to not pipeline in some cases.
1850 
1851   // For Example:
1852   // {
1853   //   I1:  v6.cur = vmem(r0++#1)
1854   //   I2:  v7 = valign(v6,v4,r2)
1855   //   I3:  vmem(r5++#1) = v7.new
1856   // }
1857   // Here I2 and I3 has 0 cycle latency, but I1 and I2 has 2.
1858 
1859   for (auto J : CurrentPacketMIs) {
1860     SUnit *SUJ = MIToSUnit[J];
1861     for (auto &Pred : SUI->Preds)
1862       if (Pred.getSUnit() == SUJ)
1863         if ((Pred.getLatency() == 0 && Pred.isAssignedRegDep()) ||
1864             HII->isNewValueJump(I) || HII->isToBeScheduledASAP(*J, I))
1865           return false;
1866   }
1867 
1868   // Check if the latency is greater than one between this instruction and any
1869   // instruction in the previous packet.
1870   for (auto J : OldPacketMIs) {
1871     SUnit *SUJ = MIToSUnit[J];
1872     for (auto &Pred : SUI->Preds)
1873       if (Pred.getSUnit() == SUJ && Pred.getLatency() > 1)
1874         return true;
1875   }
1876 
1877   return false;
1878 }
1879 
1880 //===----------------------------------------------------------------------===//
1881 //                         Public Constructor Functions
1882 //===----------------------------------------------------------------------===//
1883 
1884 FunctionPass *llvm::createHexagonPacketizer(bool Minimal) {
1885   return new HexagonPacketizer(Minimal);
1886 }
1887