1 //===-- HexagonVectorCombine.cpp ------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 // HexagonVectorCombine is a utility class implementing a variety of functions
9 // that assist in vector-based optimizations.
10 //
11 // AlignVectors: replace unaligned vector loads and stores with aligned ones.
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/ADT/APInt.h"
15 #include "llvm/ADT/ArrayRef.h"
16 #include "llvm/ADT/DenseMap.h"
17 #include "llvm/ADT/Optional.h"
18 #include "llvm/ADT/STLExtras.h"
19 #include "llvm/ADT/SmallVector.h"
20 #include "llvm/Analysis/AliasAnalysis.h"
21 #include "llvm/Analysis/AssumptionCache.h"
22 #include "llvm/Analysis/InstructionSimplify.h"
23 #include "llvm/Analysis/TargetLibraryInfo.h"
24 #include "llvm/Analysis/ValueTracking.h"
25 #include "llvm/Analysis/VectorUtils.h"
26 #include "llvm/CodeGen/TargetPassConfig.h"
27 #include "llvm/IR/Dominators.h"
28 #include "llvm/IR/IRBuilder.h"
29 #include "llvm/IR/IntrinsicInst.h"
30 #include "llvm/IR/Intrinsics.h"
31 #include "llvm/IR/IntrinsicsHexagon.h"
32 #include "llvm/IR/Metadata.h"
33 #include "llvm/InitializePasses.h"
34 #include "llvm/Pass.h"
35 #include "llvm/Support/KnownBits.h"
36 #include "llvm/Support/MathExtras.h"
37 #include "llvm/Support/raw_ostream.h"
38 #include "llvm/Target/TargetMachine.h"
39 
40 #include "HexagonSubtarget.h"
41 #include "HexagonTargetMachine.h"
42 
43 #include <algorithm>
44 #include <deque>
45 #include <map>
46 #include <set>
47 #include <utility>
48 #include <vector>
49 
50 #define DEBUG_TYPE "hexagon-vc"
51 
52 using namespace llvm;
53 
54 namespace {
55 class HexagonVectorCombine {
56 public:
57   HexagonVectorCombine(Function &F_, AliasAnalysis &AA_, AssumptionCache &AC_,
58                        DominatorTree &DT_, TargetLibraryInfo &TLI_,
59                        const TargetMachine &TM_)
60       : F(F_), DL(F.getParent()->getDataLayout()), AA(AA_), AC(AC_), DT(DT_),
61         TLI(TLI_),
62         HST(static_cast<const HexagonSubtarget &>(*TM_.getSubtargetImpl(F))) {}
63 
64   bool run();
65 
66   // Common integer type.
67   IntegerType *getIntTy() const;
68   // Byte type: either scalar (when Length = 0), or vector with given
69   // element count.
70   Type *getByteTy(int ElemCount = 0) const;
71   // Boolean type: either scalar (when Length = 0), or vector with given
72   // element count.
73   Type *getBoolTy(int ElemCount = 0) const;
74   // Create a ConstantInt of type returned by getIntTy with the value Val.
75   ConstantInt *getConstInt(int Val) const;
76   // Get the integer value of V, if it exists.
77   Optional<APInt> getIntValue(const Value *Val) const;
78   // Is V a constant 0, or a vector of 0s?
79   bool isZero(const Value *Val) const;
80   // Is V an undef value?
81   bool isUndef(const Value *Val) const;
82 
83   int getSizeOf(const Value *Val) const;
84   int getSizeOf(const Type *Ty) const;
85   int getAllocSizeOf(const Type *Ty) const;
86   int getTypeAlignment(Type *Ty) const;
87 
88   Constant *getNullValue(Type *Ty) const;
89   Constant *getFullValue(Type *Ty) const;
90 
91   Value *insertb(IRBuilder<> &Builder, Value *Dest, Value *Src, int Start,
92                  int Length, int Where) const;
93   Value *vlalignb(IRBuilder<> &Builder, Value *Lo, Value *Hi, Value *Amt) const;
94   Value *vralignb(IRBuilder<> &Builder, Value *Lo, Value *Hi, Value *Amt) const;
95   Value *concat(IRBuilder<> &Builder, ArrayRef<Value *> Vecs) const;
96   Value *vresize(IRBuilder<> &Builder, Value *Val, int NewSize,
97                  Value *Pad) const;
98   Value *rescale(IRBuilder<> &Builder, Value *Mask, Type *FromTy,
99                  Type *ToTy) const;
100   Value *vlsb(IRBuilder<> &Builder, Value *Val) const;
101   Value *vbytes(IRBuilder<> &Builder, Value *Val) const;
102 
103   Value *createHvxIntrinsic(IRBuilder<> &Builder, Intrinsic::ID IntID,
104                             Type *RetTy, ArrayRef<Value *> Args) const;
105 
106   Optional<int> calculatePointerDifference(Value *Ptr0, Value *Ptr1) const;
107 
108   template <typename T = std::vector<Instruction *>>
109   bool isSafeToMoveBeforeInBB(const Instruction &In,
110                               BasicBlock::const_iterator To,
111                               const T &Ignore = {}) const;
112 
113   Function &F;
114   const DataLayout &DL;
115   AliasAnalysis &AA;
116   AssumptionCache &AC;
117   DominatorTree &DT;
118   TargetLibraryInfo &TLI;
119   const HexagonSubtarget &HST;
120 
121 private:
122 #ifndef NDEBUG
123   // These two functions are only used for assertions at the moment.
124   bool isByteVecTy(Type *Ty) const;
125   bool isSectorTy(Type *Ty) const;
126 #endif
127   Value *getElementRange(IRBuilder<> &Builder, Value *Lo, Value *Hi, int Start,
128                          int Length) const;
129 };
130 
131 class AlignVectors {
132 public:
133   AlignVectors(HexagonVectorCombine &HVC_) : HVC(HVC_) {}
134 
135   bool run();
136 
137 private:
138   using InstList = std::vector<Instruction *>;
139 
140   struct Segment {
141     void *Data;
142     int Start;
143     int Size;
144   };
145 
146   struct AddrInfo {
147     AddrInfo(const AddrInfo &) = default;
148     AddrInfo(const HexagonVectorCombine &HVC, Instruction *I, Value *A, Type *T,
149              Align H)
150         : Inst(I), Addr(A), ValTy(T), HaveAlign(H),
151           NeedAlign(HVC.getTypeAlignment(ValTy)) {}
152     AddrInfo &operator=(const AddrInfo &) = default;
153 
154     // XXX: add Size member?
155     Instruction *Inst;
156     Value *Addr;
157     Type *ValTy;
158     Align HaveAlign;
159     Align NeedAlign;
160     int Offset = 0; // Offset (in bytes) from the first member of the
161                     // containing AddrList.
162   };
163   using AddrList = std::vector<AddrInfo>;
164 
165   struct InstrLess {
166     bool operator()(const Instruction *A, const Instruction *B) const {
167       return A->comesBefore(B);
168     }
169   };
170   using DepList = std::set<Instruction *, InstrLess>;
171 
172   struct MoveGroup {
173     MoveGroup(const AddrInfo &AI, Instruction *B, bool Hvx, bool Load)
174         : Base(B), Main{AI.Inst}, IsHvx(Hvx), IsLoad(Load) {}
175     Instruction *Base; // Base instruction of the parent address group.
176     InstList Main;     // Main group of instructions.
177     InstList Deps;     // List of dependencies.
178     bool IsHvx;        // Is this group of HVX instructions?
179     bool IsLoad;       // Is this a load group?
180   };
181   using MoveList = std::vector<MoveGroup>;
182 
183   struct ByteSpan {
184     struct Segment {
185       // Segment of a Value: 'Len' bytes starting at byte 'Begin'.
186       Segment(Value *Val, int Begin, int Len)
187           : Val(Val), Start(Begin), Size(Len) {}
188       Segment(const Segment &Seg) = default;
189       Segment &operator=(const Segment &Seg) = default;
190       Value *Val; // Value representable as a sequence of bytes.
191       int Start;  // First byte of the value that belongs to the segment.
192       int Size;   // Number of bytes in the segment.
193     };
194 
195     struct Block {
196       Block(Value *Val, int Len, int Pos) : Seg(Val, 0, Len), Pos(Pos) {}
197       Block(Value *Val, int Off, int Len, int Pos)
198           : Seg(Val, Off, Len), Pos(Pos) {}
199       Block(const Block &Blk) = default;
200       Block &operator=(const Block &Blk) = default;
201       Segment Seg; // Value segment.
202       int Pos;     // Position (offset) of the segment in the Block.
203     };
204 
205     int extent() const;
206     ByteSpan section(int Start, int Length) const;
207     ByteSpan &shift(int Offset);
208     SmallVector<Value *, 8> values() const;
209 
210     int size() const { return Blocks.size(); }
211     Block &operator[](int i) { return Blocks[i]; }
212 
213     std::vector<Block> Blocks;
214 
215     using iterator = decltype(Blocks)::iterator;
216     iterator begin() { return Blocks.begin(); }
217     iterator end() { return Blocks.end(); }
218     using const_iterator = decltype(Blocks)::const_iterator;
219     const_iterator begin() const { return Blocks.begin(); }
220     const_iterator end() const { return Blocks.end(); }
221   };
222 
223   Align getAlignFromValue(const Value *V) const;
224   Optional<MemoryLocation> getLocation(const Instruction &In) const;
225   Optional<AddrInfo> getAddrInfo(Instruction &In) const;
226   bool isHvx(const AddrInfo &AI) const;
227 
228   Value *getPayload(Value *Val) const;
229   Value *getMask(Value *Val) const;
230   Value *getPassThrough(Value *Val) const;
231 
232   Value *createAdjustedPointer(IRBuilder<> &Builder, Value *Ptr, Type *ValTy,
233                                int Adjust) const;
234   Value *createAlignedPointer(IRBuilder<> &Builder, Value *Ptr, Type *ValTy,
235                               int Alignment) const;
236   Value *createAlignedLoad(IRBuilder<> &Builder, Type *ValTy, Value *Ptr,
237                            int Alignment, Value *Mask, Value *PassThru) const;
238   Value *createAlignedStore(IRBuilder<> &Builder, Value *Val, Value *Ptr,
239                             int Alignment, Value *Mask) const;
240 
241   bool createAddressGroups();
242   MoveList createLoadGroups(const AddrList &Group) const;
243   MoveList createStoreGroups(const AddrList &Group) const;
244   bool move(const MoveGroup &Move) const;
245   bool realignGroup(const MoveGroup &Move) const;
246 
247   friend raw_ostream &operator<<(raw_ostream &OS, const AddrInfo &AI);
248   friend raw_ostream &operator<<(raw_ostream &OS, const MoveGroup &MG);
249   friend raw_ostream &operator<<(raw_ostream &OS, const ByteSpan &BS);
250 
251   std::map<Instruction *, AddrList> AddrGroups;
252   HexagonVectorCombine &HVC;
253 };
254 
255 LLVM_ATTRIBUTE_UNUSED
256 raw_ostream &operator<<(raw_ostream &OS, const AlignVectors::AddrInfo &AI) {
257   OS << "Inst: " << AI.Inst << "  " << *AI.Inst << '\n';
258   OS << "Addr: " << *AI.Addr << '\n';
259   OS << "Type: " << *AI.ValTy << '\n';
260   OS << "HaveAlign: " << AI.HaveAlign.value() << '\n';
261   OS << "NeedAlign: " << AI.NeedAlign.value() << '\n';
262   OS << "Offset: " << AI.Offset;
263   return OS;
264 }
265 
266 LLVM_ATTRIBUTE_UNUSED
267 raw_ostream &operator<<(raw_ostream &OS, const AlignVectors::MoveGroup &MG) {
268   OS << "Main\n";
269   for (Instruction *I : MG.Main)
270     OS << "  " << *I << '\n';
271   OS << "Deps\n";
272   for (Instruction *I : MG.Deps)
273     OS << "  " << *I << '\n';
274   return OS;
275 }
276 
277 LLVM_ATTRIBUTE_UNUSED
278 raw_ostream &operator<<(raw_ostream &OS, const AlignVectors::ByteSpan &BS) {
279   OS << "ByteSpan[size=" << BS.size() << ", extent=" << BS.extent() << '\n';
280   for (const AlignVectors::ByteSpan::Block &B : BS) {
281     OS << "  @" << B.Pos << " [" << B.Seg.Start << ',' << B.Seg.Size << "] "
282        << *B.Seg.Val << '\n';
283   }
284   OS << ']';
285   return OS;
286 }
287 
288 } // namespace
289 
290 namespace {
291 
292 template <typename T> T *getIfUnordered(T *MaybeT) {
293   return MaybeT && MaybeT->isUnordered() ? MaybeT : nullptr;
294 }
295 template <typename T> T *isCandidate(Instruction *In) {
296   return dyn_cast<T>(In);
297 }
298 template <> LoadInst *isCandidate<LoadInst>(Instruction *In) {
299   return getIfUnordered(dyn_cast<LoadInst>(In));
300 }
301 template <> StoreInst *isCandidate<StoreInst>(Instruction *In) {
302   return getIfUnordered(dyn_cast<StoreInst>(In));
303 }
304 
305 #if !defined(_MSC_VER) || _MSC_VER >= 1926
306 // VS2017 and some versions of VS2019 have trouble compiling this:
307 // error C2976: 'std::map': too few template arguments
308 // VS 2019 16.x is known to work, except for 16.4/16.5 (MSC_VER 1924/1925)
309 template <typename Pred, typename... Ts>
310 void erase_if(std::map<Ts...> &map, Pred p)
311 #else
312 template <typename Pred, typename T, typename U>
313 void erase_if(std::map<T, U> &map, Pred p)
314 #endif
315 {
316   for (auto i = map.begin(), e = map.end(); i != e;) {
317     if (p(*i))
318       i = map.erase(i);
319     else
320       i = std::next(i);
321   }
322 }
323 
324 // Forward other erase_ifs to the LLVM implementations.
325 template <typename Pred, typename T> void erase_if(T &&container, Pred p) {
326   llvm::erase_if(std::forward<T>(container), p);
327 }
328 
329 } // namespace
330 
331 // --- Begin AlignVectors
332 
333 auto AlignVectors::ByteSpan::extent() const -> int {
334   if (size() == 0)
335     return 0;
336   int Min = Blocks[0].Pos;
337   int Max = Blocks[0].Pos + Blocks[0].Seg.Size;
338   for (int i = 1, e = size(); i != e; ++i) {
339     Min = std::min(Min, Blocks[i].Pos);
340     Max = std::max(Max, Blocks[i].Pos + Blocks[i].Seg.Size);
341   }
342   return Max - Min;
343 }
344 
345 auto AlignVectors::ByteSpan::section(int Start, int Length) const -> ByteSpan {
346   ByteSpan Section;
347   for (const ByteSpan::Block &B : Blocks) {
348     int L = std::max(B.Pos, Start);                       // Left end.
349     int R = std::min(B.Pos + B.Seg.Size, Start + Length); // Right end+1.
350     if (L < R) {
351       // How much to chop off the beginning of the segment:
352       int Off = L > B.Pos ? L - B.Pos : 0;
353       Section.Blocks.emplace_back(B.Seg.Val, B.Seg.Start + Off, R - L, L);
354     }
355   }
356   return Section;
357 }
358 
359 auto AlignVectors::ByteSpan::shift(int Offset) -> ByteSpan & {
360   for (Block &B : Blocks)
361     B.Pos += Offset;
362   return *this;
363 }
364 
365 auto AlignVectors::ByteSpan::values() const -> SmallVector<Value *, 8> {
366   SmallVector<Value *, 8> Values(Blocks.size());
367   for (int i = 0, e = Blocks.size(); i != e; ++i)
368     Values[i] = Blocks[i].Seg.Val;
369   return Values;
370 }
371 
372 auto AlignVectors::getAlignFromValue(const Value *V) const -> Align {
373   const auto *C = dyn_cast<ConstantInt>(V);
374   assert(C && "Alignment must be a compile-time constant integer");
375   return C->getAlignValue();
376 }
377 
378 auto AlignVectors::getAddrInfo(Instruction &In) const -> Optional<AddrInfo> {
379   if (auto *L = isCandidate<LoadInst>(&In))
380     return AddrInfo(HVC, L, L->getPointerOperand(), L->getType(),
381                     L->getAlign());
382   if (auto *S = isCandidate<StoreInst>(&In))
383     return AddrInfo(HVC, S, S->getPointerOperand(),
384                     S->getValueOperand()->getType(), S->getAlign());
385   if (auto *II = isCandidate<IntrinsicInst>(&In)) {
386     Intrinsic::ID ID = II->getIntrinsicID();
387     switch (ID) {
388     case Intrinsic::masked_load:
389       return AddrInfo(HVC, II, II->getArgOperand(0), II->getType(),
390                       getAlignFromValue(II->getArgOperand(1)));
391     case Intrinsic::masked_store:
392       return AddrInfo(HVC, II, II->getArgOperand(1),
393                       II->getArgOperand(0)->getType(),
394                       getAlignFromValue(II->getArgOperand(2)));
395     }
396   }
397   return Optional<AddrInfo>();
398 }
399 
400 auto AlignVectors::isHvx(const AddrInfo &AI) const -> bool {
401   return HVC.HST.isTypeForHVX(AI.ValTy);
402 }
403 
404 auto AlignVectors::getPayload(Value *Val) const -> Value * {
405   if (auto *In = dyn_cast<Instruction>(Val)) {
406     Intrinsic::ID ID = 0;
407     if (auto *II = dyn_cast<IntrinsicInst>(In))
408       ID = II->getIntrinsicID();
409     if (isa<StoreInst>(In) || ID == Intrinsic::masked_store)
410       return In->getOperand(0);
411   }
412   return Val;
413 }
414 
415 auto AlignVectors::getMask(Value *Val) const -> Value * {
416   if (auto *II = dyn_cast<IntrinsicInst>(Val)) {
417     switch (II->getIntrinsicID()) {
418     case Intrinsic::masked_load:
419       return II->getArgOperand(2);
420     case Intrinsic::masked_store:
421       return II->getArgOperand(3);
422     }
423   }
424 
425   Type *ValTy = getPayload(Val)->getType();
426   if (auto *VecTy = dyn_cast<VectorType>(ValTy)) {
427     int ElemCount = VecTy->getElementCount().getFixedValue();
428     return HVC.getFullValue(HVC.getBoolTy(ElemCount));
429   }
430   return HVC.getFullValue(HVC.getBoolTy());
431 }
432 
433 auto AlignVectors::getPassThrough(Value *Val) const -> Value * {
434   if (auto *II = dyn_cast<IntrinsicInst>(Val)) {
435     if (II->getIntrinsicID() == Intrinsic::masked_load)
436       return II->getArgOperand(3);
437   }
438   return UndefValue::get(getPayload(Val)->getType());
439 }
440 
441 auto AlignVectors::createAdjustedPointer(IRBuilder<> &Builder, Value *Ptr,
442                                          Type *ValTy, int Adjust) const
443     -> Value * {
444   // The adjustment is in bytes, but if it's a multiple of the type size,
445   // we don't need to do pointer casts.
446   auto *PtrTy = cast<PointerType>(Ptr->getType());
447   if (!PtrTy->isOpaque()) {
448     Type *ElemTy = PtrTy->getNonOpaquePointerElementType();
449     int ElemSize = HVC.getAllocSizeOf(ElemTy);
450     if (Adjust % ElemSize == 0 && Adjust != 0) {
451       Value *Tmp0 =
452           Builder.CreateGEP(ElemTy, Ptr, HVC.getConstInt(Adjust / ElemSize));
453       return Builder.CreatePointerCast(Tmp0, ValTy->getPointerTo());
454     }
455   }
456 
457   PointerType *CharPtrTy = Type::getInt8PtrTy(HVC.F.getContext());
458   Value *Tmp0 = Builder.CreatePointerCast(Ptr, CharPtrTy);
459   Value *Tmp1 = Builder.CreateGEP(Type::getInt8Ty(HVC.F.getContext()), Tmp0,
460                                   HVC.getConstInt(Adjust));
461   return Builder.CreatePointerCast(Tmp1, ValTy->getPointerTo());
462 }
463 
464 auto AlignVectors::createAlignedPointer(IRBuilder<> &Builder, Value *Ptr,
465                                         Type *ValTy, int Alignment) const
466     -> Value * {
467   Value *AsInt = Builder.CreatePtrToInt(Ptr, HVC.getIntTy());
468   Value *Mask = HVC.getConstInt(-Alignment);
469   Value *And = Builder.CreateAnd(AsInt, Mask);
470   return Builder.CreateIntToPtr(And, ValTy->getPointerTo());
471 }
472 
473 auto AlignVectors::createAlignedLoad(IRBuilder<> &Builder, Type *ValTy,
474                                      Value *Ptr, int Alignment, Value *Mask,
475                                      Value *PassThru) const -> Value * {
476   assert(!HVC.isUndef(Mask)); // Should this be allowed?
477   if (HVC.isZero(Mask))
478     return PassThru;
479   if (Mask == ConstantInt::getTrue(Mask->getType()))
480     return Builder.CreateAlignedLoad(ValTy, Ptr, Align(Alignment));
481   return Builder.CreateMaskedLoad(ValTy, Ptr, Align(Alignment), Mask, PassThru);
482 }
483 
484 auto AlignVectors::createAlignedStore(IRBuilder<> &Builder, Value *Val,
485                                       Value *Ptr, int Alignment,
486                                       Value *Mask) const -> Value * {
487   if (HVC.isZero(Mask) || HVC.isUndef(Val) || HVC.isUndef(Mask))
488     return UndefValue::get(Val->getType());
489   if (Mask == ConstantInt::getTrue(Mask->getType()))
490     return Builder.CreateAlignedStore(Val, Ptr, Align(Alignment));
491   return Builder.CreateMaskedStore(Val, Ptr, Align(Alignment), Mask);
492 }
493 
494 auto AlignVectors::createAddressGroups() -> bool {
495   // An address group created here may contain instructions spanning
496   // multiple basic blocks.
497   AddrList WorkStack;
498 
499   auto findBaseAndOffset = [&](AddrInfo &AI) -> std::pair<Instruction *, int> {
500     for (AddrInfo &W : WorkStack) {
501       if (auto D = HVC.calculatePointerDifference(AI.Addr, W.Addr))
502         return std::make_pair(W.Inst, *D);
503     }
504     return std::make_pair(nullptr, 0);
505   };
506 
507   auto traverseBlock = [&](DomTreeNode *DomN, auto Visit) -> void {
508     BasicBlock &Block = *DomN->getBlock();
509     for (Instruction &I : Block) {
510       auto AI = this->getAddrInfo(I); // Use this-> for gcc6.
511       if (!AI)
512         continue;
513       auto F = findBaseAndOffset(*AI);
514       Instruction *GroupInst;
515       if (Instruction *BI = F.first) {
516         AI->Offset = F.second;
517         GroupInst = BI;
518       } else {
519         WorkStack.push_back(*AI);
520         GroupInst = AI->Inst;
521       }
522       AddrGroups[GroupInst].push_back(*AI);
523     }
524 
525     for (DomTreeNode *C : DomN->children())
526       Visit(C, Visit);
527 
528     while (!WorkStack.empty() && WorkStack.back().Inst->getParent() == &Block)
529       WorkStack.pop_back();
530   };
531 
532   traverseBlock(HVC.DT.getRootNode(), traverseBlock);
533   assert(WorkStack.empty());
534 
535   // AddrGroups are formed.
536 
537   // Remove groups of size 1.
538   erase_if(AddrGroups, [](auto &G) { return G.second.size() == 1; });
539   // Remove groups that don't use HVX types.
540   erase_if(AddrGroups, [&](auto &G) {
541     return llvm::none_of(
542         G.second, [&](auto &I) { return HVC.HST.isTypeForHVX(I.ValTy); });
543   });
544 
545   return !AddrGroups.empty();
546 }
547 
548 auto AlignVectors::createLoadGroups(const AddrList &Group) const -> MoveList {
549   // Form load groups.
550   // To avoid complications with moving code across basic blocks, only form
551   // groups that are contained within a single basic block.
552 
553   auto getUpwardDeps = [](Instruction *In, Instruction *Base) {
554     BasicBlock *Parent = Base->getParent();
555     assert(In->getParent() == Parent &&
556            "Base and In should be in the same block");
557     assert(Base->comesBefore(In) && "Base should come before In");
558 
559     DepList Deps;
560     std::deque<Instruction *> WorkQ = {In};
561     while (!WorkQ.empty()) {
562       Instruction *D = WorkQ.front();
563       WorkQ.pop_front();
564       Deps.insert(D);
565       for (Value *Op : D->operands()) {
566         if (auto *I = dyn_cast<Instruction>(Op)) {
567           if (I->getParent() == Parent && Base->comesBefore(I))
568             WorkQ.push_back(I);
569         }
570       }
571     }
572     return Deps;
573   };
574 
575   auto tryAddTo = [&](const AddrInfo &Info, MoveGroup &Move) {
576     assert(!Move.Main.empty() && "Move group should have non-empty Main");
577     // Don't mix HVX and non-HVX instructions.
578     if (Move.IsHvx != isHvx(Info))
579       return false;
580     // Leading instruction in the load group.
581     Instruction *Base = Move.Main.front();
582     if (Base->getParent() != Info.Inst->getParent())
583       return false;
584 
585     auto isSafeToMoveToBase = [&](const Instruction *I) {
586       return HVC.isSafeToMoveBeforeInBB(*I, Base->getIterator());
587     };
588     DepList Deps = getUpwardDeps(Info.Inst, Base);
589     if (!llvm::all_of(Deps, isSafeToMoveToBase))
590       return false;
591 
592     // The dependencies will be moved together with the load, so make sure
593     // that none of them could be moved independently in another group.
594     Deps.erase(Info.Inst);
595     auto inAddrMap = [&](Instruction *I) { return AddrGroups.count(I) > 0; };
596     if (llvm::any_of(Deps, inAddrMap))
597       return false;
598     Move.Main.push_back(Info.Inst);
599     llvm::append_range(Move.Deps, Deps);
600     return true;
601   };
602 
603   MoveList LoadGroups;
604 
605   for (const AddrInfo &Info : Group) {
606     if (!Info.Inst->mayReadFromMemory())
607       continue;
608     if (LoadGroups.empty() || !tryAddTo(Info, LoadGroups.back()))
609       LoadGroups.emplace_back(Info, Group.front().Inst, isHvx(Info), true);
610   }
611 
612   // Erase singleton groups.
613   erase_if(LoadGroups, [](const MoveGroup &G) { return G.Main.size() <= 1; });
614   return LoadGroups;
615 }
616 
617 auto AlignVectors::createStoreGroups(const AddrList &Group) const -> MoveList {
618   // Form store groups.
619   // To avoid complications with moving code across basic blocks, only form
620   // groups that are contained within a single basic block.
621 
622   auto tryAddTo = [&](const AddrInfo &Info, MoveGroup &Move) {
623     assert(!Move.Main.empty() && "Move group should have non-empty Main");
624     // For stores with return values we'd have to collect downward depenencies.
625     // There are no such stores that we handle at the moment, so omit that.
626     assert(Info.Inst->getType()->isVoidTy() &&
627            "Not handling stores with return values");
628     // Don't mix HVX and non-HVX instructions.
629     if (Move.IsHvx != isHvx(Info))
630       return false;
631     // For stores we need to be careful whether it's safe to move them.
632     // Stores that are otherwise safe to move together may not appear safe
633     // to move over one another (i.e. isSafeToMoveBefore may return false).
634     Instruction *Base = Move.Main.front();
635     if (Base->getParent() != Info.Inst->getParent())
636       return false;
637     if (!HVC.isSafeToMoveBeforeInBB(*Info.Inst, Base->getIterator(), Move.Main))
638       return false;
639     Move.Main.push_back(Info.Inst);
640     return true;
641   };
642 
643   MoveList StoreGroups;
644 
645   for (auto I = Group.rbegin(), E = Group.rend(); I != E; ++I) {
646     const AddrInfo &Info = *I;
647     if (!Info.Inst->mayWriteToMemory())
648       continue;
649     if (StoreGroups.empty() || !tryAddTo(Info, StoreGroups.back()))
650       StoreGroups.emplace_back(Info, Group.front().Inst, isHvx(Info), false);
651   }
652 
653   // Erase singleton groups.
654   erase_if(StoreGroups, [](const MoveGroup &G) { return G.Main.size() <= 1; });
655   return StoreGroups;
656 }
657 
658 auto AlignVectors::move(const MoveGroup &Move) const -> bool {
659   assert(!Move.Main.empty() && "Move group should have non-empty Main");
660   Instruction *Where = Move.Main.front();
661 
662   if (Move.IsLoad) {
663     // Move all deps to before Where, keeping order.
664     for (Instruction *D : Move.Deps)
665       D->moveBefore(Where);
666     // Move all main instructions to after Where, keeping order.
667     ArrayRef<Instruction *> Main(Move.Main);
668     for (Instruction *M : Main.drop_front(1)) {
669       M->moveAfter(Where);
670       Where = M;
671     }
672   } else {
673     // NOTE: Deps are empty for "store" groups. If they need to be
674     // non-empty, decide on the order.
675     assert(Move.Deps.empty());
676     // Move all main instructions to before Where, inverting order.
677     ArrayRef<Instruction *> Main(Move.Main);
678     for (Instruction *M : Main.drop_front(1)) {
679       M->moveBefore(Where);
680       Where = M;
681     }
682   }
683 
684   return Move.Main.size() + Move.Deps.size() > 1;
685 }
686 
687 auto AlignVectors::realignGroup(const MoveGroup &Move) const -> bool {
688   // TODO: Needs support for masked loads/stores of "scalar" vectors.
689   if (!Move.IsHvx)
690     return false;
691 
692   // Return the element with the maximum alignment from Range,
693   // where GetValue obtains the value to compare from an element.
694   auto getMaxOf = [](auto Range, auto GetValue) {
695     return *std::max_element(
696         Range.begin(), Range.end(),
697         [&GetValue](auto &A, auto &B) { return GetValue(A) < GetValue(B); });
698   };
699 
700   const AddrList &BaseInfos = AddrGroups.at(Move.Base);
701 
702   // Conceptually, there is a vector of N bytes covering the addresses
703   // starting from the minimum offset (i.e. Base.Addr+Start). This vector
704   // represents a contiguous memory region that spans all accessed memory
705   // locations.
706   // The correspondence between loaded or stored values will be expressed
707   // in terms of this vector. For example, the 0th element of the vector
708   // from the Base address info will start at byte Start from the beginning
709   // of this conceptual vector.
710   //
711   // This vector will be loaded/stored starting at the nearest down-aligned
712   // address and the amount od the down-alignment will be AlignVal:
713   //   valign(load_vector(align_down(Base+Start)), AlignVal)
714 
715   std::set<Instruction *> TestSet(Move.Main.begin(), Move.Main.end());
716   AddrList MoveInfos;
717   llvm::copy_if(
718       BaseInfos, std::back_inserter(MoveInfos),
719       [&TestSet](const AddrInfo &AI) { return TestSet.count(AI.Inst); });
720 
721   // Maximum alignment present in the whole address group.
722   const AddrInfo &WithMaxAlign =
723       getMaxOf(MoveInfos, [](const AddrInfo &AI) { return AI.HaveAlign; });
724   Align MaxGiven = WithMaxAlign.HaveAlign;
725 
726   // Minimum alignment present in the move address group.
727   const AddrInfo &WithMinOffset =
728       getMaxOf(MoveInfos, [](const AddrInfo &AI) { return -AI.Offset; });
729 
730   const AddrInfo &WithMaxNeeded =
731       getMaxOf(MoveInfos, [](const AddrInfo &AI) { return AI.NeedAlign; });
732   Align MinNeeded = WithMaxNeeded.NeedAlign;
733 
734   // Set the builder at the top instruction in the move group.
735   Instruction *TopIn = Move.IsLoad ? Move.Main.front() : Move.Main.back();
736   IRBuilder<> Builder(TopIn);
737   Value *AlignAddr = nullptr; // Actual aligned address.
738   Value *AlignVal = nullptr;  // Right-shift amount (for valign).
739 
740   if (MinNeeded <= MaxGiven) {
741     int Start = WithMinOffset.Offset;
742     int OffAtMax = WithMaxAlign.Offset;
743     // Shift the offset of the maximally aligned instruction (OffAtMax)
744     // back by just enough multiples of the required alignment to cover the
745     // distance from Start to OffAtMax.
746     // Calculate the address adjustment amount based on the address with the
747     // maximum alignment. This is to allow a simple gep instruction instead
748     // of potential bitcasts to i8*.
749     int Adjust = -alignTo(OffAtMax - Start, MinNeeded.value());
750     AlignAddr = createAdjustedPointer(Builder, WithMaxAlign.Addr,
751                                       WithMaxAlign.ValTy, Adjust);
752     int Diff = Start - (OffAtMax + Adjust);
753     AlignVal = HVC.getConstInt(Diff);
754     assert(Diff >= 0);
755     assert(static_cast<decltype(MinNeeded.value())>(Diff) < MinNeeded.value());
756   } else {
757     // WithMinOffset is the lowest address in the group,
758     //   WithMinOffset.Addr = Base+Start.
759     // Align instructions for both HVX (V6_valign) and scalar (S2_valignrb)
760     // mask off unnecessary bits, so it's ok to just the original pointer as
761     // the alignment amount.
762     // Do an explicit down-alignment of the address to avoid creating an
763     // aligned instruction with an address that is not really aligned.
764     AlignAddr = createAlignedPointer(Builder, WithMinOffset.Addr,
765                                      WithMinOffset.ValTy, MinNeeded.value());
766     AlignVal = Builder.CreatePtrToInt(WithMinOffset.Addr, HVC.getIntTy());
767   }
768 
769   ByteSpan VSpan;
770   for (const AddrInfo &AI : MoveInfos) {
771     VSpan.Blocks.emplace_back(AI.Inst, HVC.getSizeOf(AI.ValTy),
772                               AI.Offset - WithMinOffset.Offset);
773   }
774 
775   // The aligned loads/stores will use blocks that are either scalars,
776   // or HVX vectors. Let "sector" be the unified term for such a block.
777   // blend(scalar, vector) -> sector...
778   int ScLen = Move.IsHvx ? HVC.HST.getVectorLength()
779                          : std::max<int>(MinNeeded.value(), 4);
780   assert(!Move.IsHvx || ScLen == 64 || ScLen == 128);
781   assert(Move.IsHvx || ScLen == 4 || ScLen == 8);
782 
783   Type *SecTy = HVC.getByteTy(ScLen);
784   int NumSectors = (VSpan.extent() + ScLen - 1) / ScLen;
785   bool DoAlign = !HVC.isZero(AlignVal);
786 
787   if (Move.IsLoad) {
788     ByteSpan ASpan;
789     auto *True = HVC.getFullValue(HVC.getBoolTy(ScLen));
790     auto *Undef = UndefValue::get(SecTy);
791 
792     for (int i = 0; i != NumSectors + DoAlign; ++i) {
793       Value *Ptr = createAdjustedPointer(Builder, AlignAddr, SecTy, i * ScLen);
794       // FIXME: generate a predicated load?
795       Value *Load = createAlignedLoad(Builder, SecTy, Ptr, ScLen, True, Undef);
796       // If vector shifting is potentially needed, accumulate metadata
797       // from source sections of twice the load width.
798       int Start = (i - DoAlign) * ScLen;
799       int Width = (1 + DoAlign) * ScLen;
800       propagateMetadata(cast<Instruction>(Load),
801                         VSpan.section(Start, Width).values());
802       ASpan.Blocks.emplace_back(Load, ScLen, i * ScLen);
803     }
804 
805     if (DoAlign) {
806       for (int j = 0; j != NumSectors; ++j) {
807         ASpan[j].Seg.Val = HVC.vralignb(Builder, ASpan[j].Seg.Val,
808                                         ASpan[j + 1].Seg.Val, AlignVal);
809       }
810     }
811 
812     for (ByteSpan::Block &B : VSpan) {
813       ByteSpan ASection = ASpan.section(B.Pos, B.Seg.Size).shift(-B.Pos);
814       Value *Accum = UndefValue::get(HVC.getByteTy(B.Seg.Size));
815       for (ByteSpan::Block &S : ASection) {
816         Value *Pay = HVC.vbytes(Builder, getPayload(S.Seg.Val));
817         Accum =
818             HVC.insertb(Builder, Accum, Pay, S.Seg.Start, S.Seg.Size, S.Pos);
819       }
820       // Instead of casting everything to bytes for the vselect, cast to the
821       // original value type. This will avoid complications with casting masks.
822       // For example, in cases when the original mask applied to i32, it could
823       // be converted to a mask applicable to i8 via pred_typecast intrinsic,
824       // but if the mask is not exactly of HVX length, extra handling would be
825       // needed to make it work.
826       Type *ValTy = getPayload(B.Seg.Val)->getType();
827       Value *Cast = Builder.CreateBitCast(Accum, ValTy);
828       Value *Sel = Builder.CreateSelect(getMask(B.Seg.Val), Cast,
829                                         getPassThrough(B.Seg.Val));
830       B.Seg.Val->replaceAllUsesWith(Sel);
831     }
832   } else {
833     // Stores.
834     ByteSpan ASpanV, ASpanM;
835 
836     // Return a vector value corresponding to the input value Val:
837     // either <1 x Val> for scalar Val, or Val itself for vector Val.
838     auto MakeVec = [](IRBuilder<> &Builder, Value *Val) -> Value * {
839       Type *Ty = Val->getType();
840       if (Ty->isVectorTy())
841         return Val;
842       auto *VecTy = VectorType::get(Ty, 1, /*Scalable*/ false);
843       return Builder.CreateBitCast(Val, VecTy);
844     };
845 
846     // Create an extra "undef" sector at the beginning and at the end.
847     // They will be used as the left/right filler in the vlalign step.
848     for (int i = (DoAlign ? -1 : 0); i != NumSectors + DoAlign; ++i) {
849       // For stores, the size of each section is an aligned vector length.
850       // Adjust the store offsets relative to the section start offset.
851       ByteSpan VSection = VSpan.section(i * ScLen, ScLen).shift(-i * ScLen);
852       Value *AccumV = UndefValue::get(SecTy);
853       Value *AccumM = HVC.getNullValue(SecTy);
854       for (ByteSpan::Block &S : VSection) {
855         Value *Pay = getPayload(S.Seg.Val);
856         Value *Mask = HVC.rescale(Builder, MakeVec(Builder, getMask(S.Seg.Val)),
857                                   Pay->getType(), HVC.getByteTy());
858         AccumM = HVC.insertb(Builder, AccumM, HVC.vbytes(Builder, Mask),
859                              S.Seg.Start, S.Seg.Size, S.Pos);
860         AccumV = HVC.insertb(Builder, AccumV, HVC.vbytes(Builder, Pay),
861                              S.Seg.Start, S.Seg.Size, S.Pos);
862       }
863       ASpanV.Blocks.emplace_back(AccumV, ScLen, i * ScLen);
864       ASpanM.Blocks.emplace_back(AccumM, ScLen, i * ScLen);
865     }
866 
867     // vlalign
868     if (DoAlign) {
869       for (int j = 1; j != NumSectors + 2; ++j) {
870         ASpanV[j - 1].Seg.Val = HVC.vlalignb(Builder, ASpanV[j - 1].Seg.Val,
871                                              ASpanV[j].Seg.Val, AlignVal);
872         ASpanM[j - 1].Seg.Val = HVC.vlalignb(Builder, ASpanM[j - 1].Seg.Val,
873                                              ASpanM[j].Seg.Val, AlignVal);
874       }
875     }
876 
877     for (int i = 0; i != NumSectors + DoAlign; ++i) {
878       Value *Ptr = createAdjustedPointer(Builder, AlignAddr, SecTy, i * ScLen);
879       Value *Val = ASpanV[i].Seg.Val;
880       Value *Mask = ASpanM[i].Seg.Val; // bytes
881       if (!HVC.isUndef(Val) && !HVC.isZero(Mask)) {
882         Value *Store = createAlignedStore(Builder, Val, Ptr, ScLen,
883                                           HVC.vlsb(Builder, Mask));
884         // If vector shifting is potentially needed, accumulate metadata
885         // from source sections of twice the store width.
886         int Start = (i - DoAlign) * ScLen;
887         int Width = (1 + DoAlign) * ScLen;
888         propagateMetadata(cast<Instruction>(Store),
889                           VSpan.section(Start, Width).values());
890       }
891     }
892   }
893 
894   for (auto *Inst : Move.Main)
895     Inst->eraseFromParent();
896 
897   return true;
898 }
899 
900 auto AlignVectors::run() -> bool {
901   if (!createAddressGroups())
902     return false;
903 
904   bool Changed = false;
905   MoveList LoadGroups, StoreGroups;
906 
907   for (auto &G : AddrGroups) {
908     llvm::append_range(LoadGroups, createLoadGroups(G.second));
909     llvm::append_range(StoreGroups, createStoreGroups(G.second));
910   }
911 
912   for (auto &M : LoadGroups)
913     Changed |= move(M);
914   for (auto &M : StoreGroups)
915     Changed |= move(M);
916 
917   for (auto &M : LoadGroups)
918     Changed |= realignGroup(M);
919   for (auto &M : StoreGroups)
920     Changed |= realignGroup(M);
921 
922   return Changed;
923 }
924 
925 // --- End AlignVectors
926 
927 auto HexagonVectorCombine::run() -> bool {
928   if (!HST.useHVXOps())
929     return false;
930 
931   bool Changed = AlignVectors(*this).run();
932   return Changed;
933 }
934 
935 auto HexagonVectorCombine::getIntTy() const -> IntegerType * {
936   return Type::getInt32Ty(F.getContext());
937 }
938 
939 auto HexagonVectorCombine::getByteTy(int ElemCount) const -> Type * {
940   assert(ElemCount >= 0);
941   IntegerType *ByteTy = Type::getInt8Ty(F.getContext());
942   if (ElemCount == 0)
943     return ByteTy;
944   return VectorType::get(ByteTy, ElemCount, /*Scalable*/ false);
945 }
946 
947 auto HexagonVectorCombine::getBoolTy(int ElemCount) const -> Type * {
948   assert(ElemCount >= 0);
949   IntegerType *BoolTy = Type::getInt1Ty(F.getContext());
950   if (ElemCount == 0)
951     return BoolTy;
952   return VectorType::get(BoolTy, ElemCount, /*Scalable*/ false);
953 }
954 
955 auto HexagonVectorCombine::getConstInt(int Val) const -> ConstantInt * {
956   return ConstantInt::getSigned(getIntTy(), Val);
957 }
958 
959 auto HexagonVectorCombine::isZero(const Value *Val) const -> bool {
960   if (auto *C = dyn_cast<Constant>(Val))
961     return C->isZeroValue();
962   return false;
963 }
964 
965 auto HexagonVectorCombine::getIntValue(const Value *Val) const
966     -> Optional<APInt> {
967   if (auto *CI = dyn_cast<ConstantInt>(Val))
968     return CI->getValue();
969   return None;
970 }
971 
972 auto HexagonVectorCombine::isUndef(const Value *Val) const -> bool {
973   return isa<UndefValue>(Val);
974 }
975 
976 auto HexagonVectorCombine::getSizeOf(const Value *Val) const -> int {
977   return getSizeOf(Val->getType());
978 }
979 
980 auto HexagonVectorCombine::getSizeOf(const Type *Ty) const -> int {
981   return DL.getTypeStoreSize(const_cast<Type *>(Ty)).getFixedValue();
982 }
983 
984 auto HexagonVectorCombine::getAllocSizeOf(const Type *Ty) const -> int {
985   return DL.getTypeAllocSize(const_cast<Type *>(Ty)).getFixedValue();
986 }
987 
988 auto HexagonVectorCombine::getTypeAlignment(Type *Ty) const -> int {
989   // The actual type may be shorter than the HVX vector, so determine
990   // the alignment based on subtarget info.
991   if (HST.isTypeForHVX(Ty))
992     return HST.getVectorLength();
993   return DL.getABITypeAlign(Ty).value();
994 }
995 
996 auto HexagonVectorCombine::getNullValue(Type *Ty) const -> Constant * {
997   assert(Ty->isIntOrIntVectorTy());
998   auto Zero = ConstantInt::get(Ty->getScalarType(), 0);
999   if (auto *VecTy = dyn_cast<VectorType>(Ty))
1000     return ConstantVector::getSplat(VecTy->getElementCount(), Zero);
1001   return Zero;
1002 }
1003 
1004 auto HexagonVectorCombine::getFullValue(Type *Ty) const -> Constant * {
1005   assert(Ty->isIntOrIntVectorTy());
1006   auto Minus1 = ConstantInt::get(Ty->getScalarType(), -1);
1007   if (auto *VecTy = dyn_cast<VectorType>(Ty))
1008     return ConstantVector::getSplat(VecTy->getElementCount(), Minus1);
1009   return Minus1;
1010 }
1011 
1012 // Insert bytes [Start..Start+Length) of Src into Dst at byte Where.
1013 auto HexagonVectorCombine::insertb(IRBuilder<> &Builder, Value *Dst, Value *Src,
1014                                    int Start, int Length, int Where) const
1015     -> Value * {
1016   assert(isByteVecTy(Dst->getType()) && isByteVecTy(Src->getType()));
1017   int SrcLen = getSizeOf(Src);
1018   int DstLen = getSizeOf(Dst);
1019   assert(0 <= Start && Start + Length <= SrcLen);
1020   assert(0 <= Where && Where + Length <= DstLen);
1021 
1022   int P2Len = PowerOf2Ceil(SrcLen | DstLen);
1023   auto *Undef = UndefValue::get(getByteTy());
1024   Value *P2Src = vresize(Builder, Src, P2Len, Undef);
1025   Value *P2Dst = vresize(Builder, Dst, P2Len, Undef);
1026 
1027   SmallVector<int, 256> SMask(P2Len);
1028   for (int i = 0; i != P2Len; ++i) {
1029     // If i is in [Where, Where+Length), pick Src[Start+(i-Where)].
1030     // Otherwise, pick Dst[i];
1031     SMask[i] =
1032         (Where <= i && i < Where + Length) ? P2Len + Start + (i - Where) : i;
1033   }
1034 
1035   Value *P2Insert = Builder.CreateShuffleVector(P2Dst, P2Src, SMask);
1036   return vresize(Builder, P2Insert, DstLen, Undef);
1037 }
1038 
1039 auto HexagonVectorCombine::vlalignb(IRBuilder<> &Builder, Value *Lo, Value *Hi,
1040                                     Value *Amt) const -> Value * {
1041   assert(Lo->getType() == Hi->getType() && "Argument type mismatch");
1042   assert(isSectorTy(Hi->getType()));
1043   if (isZero(Amt))
1044     return Hi;
1045   int VecLen = getSizeOf(Hi);
1046   if (auto IntAmt = getIntValue(Amt))
1047     return getElementRange(Builder, Lo, Hi, VecLen - IntAmt->getSExtValue(),
1048                            VecLen);
1049 
1050   if (HST.isTypeForHVX(Hi->getType())) {
1051     int HwLen = HST.getVectorLength();
1052     assert(VecLen == HwLen && "Expecting an exact HVX type");
1053     Intrinsic::ID V6_vlalignb = HwLen == 64
1054                                     ? Intrinsic::hexagon_V6_vlalignb
1055                                     : Intrinsic::hexagon_V6_vlalignb_128B;
1056     return createHvxIntrinsic(Builder, V6_vlalignb, Hi->getType(),
1057                               {Hi, Lo, Amt});
1058   }
1059 
1060   if (VecLen == 4) {
1061     Value *Pair = concat(Builder, {Lo, Hi});
1062     Value *Shift = Builder.CreateLShr(Builder.CreateShl(Pair, Amt), 32);
1063     Value *Trunc = Builder.CreateTrunc(Shift, Type::getInt32Ty(F.getContext()));
1064     return Builder.CreateBitCast(Trunc, Hi->getType());
1065   }
1066   if (VecLen == 8) {
1067     Value *Sub = Builder.CreateSub(getConstInt(VecLen), Amt);
1068     return vralignb(Builder, Lo, Hi, Sub);
1069   }
1070   llvm_unreachable("Unexpected vector length");
1071 }
1072 
1073 auto HexagonVectorCombine::vralignb(IRBuilder<> &Builder, Value *Lo, Value *Hi,
1074                                     Value *Amt) const -> Value * {
1075   assert(Lo->getType() == Hi->getType() && "Argument type mismatch");
1076   assert(isSectorTy(Lo->getType()));
1077   if (isZero(Amt))
1078     return Lo;
1079   int VecLen = getSizeOf(Lo);
1080   if (auto IntAmt = getIntValue(Amt))
1081     return getElementRange(Builder, Lo, Hi, IntAmt->getSExtValue(), VecLen);
1082 
1083   if (HST.isTypeForHVX(Lo->getType())) {
1084     int HwLen = HST.getVectorLength();
1085     assert(VecLen == HwLen && "Expecting an exact HVX type");
1086     Intrinsic::ID V6_valignb = HwLen == 64 ? Intrinsic::hexagon_V6_valignb
1087                                            : Intrinsic::hexagon_V6_valignb_128B;
1088     return createHvxIntrinsic(Builder, V6_valignb, Lo->getType(),
1089                               {Hi, Lo, Amt});
1090   }
1091 
1092   if (VecLen == 4) {
1093     Value *Pair = concat(Builder, {Lo, Hi});
1094     Value *Shift = Builder.CreateLShr(Pair, Amt);
1095     Value *Trunc = Builder.CreateTrunc(Shift, Type::getInt32Ty(F.getContext()));
1096     return Builder.CreateBitCast(Trunc, Lo->getType());
1097   }
1098   if (VecLen == 8) {
1099     Type *Int64Ty = Type::getInt64Ty(F.getContext());
1100     Value *Lo64 = Builder.CreateBitCast(Lo, Int64Ty);
1101     Value *Hi64 = Builder.CreateBitCast(Hi, Int64Ty);
1102     Function *FI = Intrinsic::getDeclaration(F.getParent(),
1103                                              Intrinsic::hexagon_S2_valignrb);
1104     Value *Call = Builder.CreateCall(FI, {Hi64, Lo64, Amt});
1105     return Builder.CreateBitCast(Call, Lo->getType());
1106   }
1107   llvm_unreachable("Unexpected vector length");
1108 }
1109 
1110 // Concatenates a sequence of vectors of the same type.
1111 auto HexagonVectorCombine::concat(IRBuilder<> &Builder,
1112                                   ArrayRef<Value *> Vecs) const -> Value * {
1113   assert(!Vecs.empty());
1114   SmallVector<int, 256> SMask;
1115   std::vector<Value *> Work[2];
1116   int ThisW = 0, OtherW = 1;
1117 
1118   Work[ThisW].assign(Vecs.begin(), Vecs.end());
1119   while (Work[ThisW].size() > 1) {
1120     auto *Ty = cast<VectorType>(Work[ThisW].front()->getType());
1121     int ElemCount = Ty->getElementCount().getFixedValue();
1122     SMask.resize(ElemCount * 2);
1123     std::iota(SMask.begin(), SMask.end(), 0);
1124 
1125     Work[OtherW].clear();
1126     if (Work[ThisW].size() % 2 != 0)
1127       Work[ThisW].push_back(UndefValue::get(Ty));
1128     for (int i = 0, e = Work[ThisW].size(); i < e; i += 2) {
1129       Value *Joined = Builder.CreateShuffleVector(Work[ThisW][i],
1130                                                   Work[ThisW][i + 1], SMask);
1131       Work[OtherW].push_back(Joined);
1132     }
1133     std::swap(ThisW, OtherW);
1134   }
1135 
1136   // Since there may have been some undefs appended to make shuffle operands
1137   // have the same type, perform the last shuffle to only pick the original
1138   // elements.
1139   SMask.resize(Vecs.size() * getSizeOf(Vecs.front()->getType()));
1140   std::iota(SMask.begin(), SMask.end(), 0);
1141   Value *Total = Work[OtherW].front();
1142   return Builder.CreateShuffleVector(Total, SMask);
1143 }
1144 
1145 auto HexagonVectorCombine::vresize(IRBuilder<> &Builder, Value *Val,
1146                                    int NewSize, Value *Pad) const -> Value * {
1147   assert(isa<VectorType>(Val->getType()));
1148   auto *ValTy = cast<VectorType>(Val->getType());
1149   assert(ValTy->getElementType() == Pad->getType());
1150 
1151   int CurSize = ValTy->getElementCount().getFixedValue();
1152   if (CurSize == NewSize)
1153     return Val;
1154   // Truncate?
1155   if (CurSize > NewSize)
1156     return getElementRange(Builder, Val, /*Unused*/ Val, 0, NewSize);
1157   // Extend.
1158   SmallVector<int, 128> SMask(NewSize);
1159   std::iota(SMask.begin(), SMask.begin() + CurSize, 0);
1160   std::fill(SMask.begin() + CurSize, SMask.end(), CurSize);
1161   Value *PadVec = Builder.CreateVectorSplat(CurSize, Pad);
1162   return Builder.CreateShuffleVector(Val, PadVec, SMask);
1163 }
1164 
1165 auto HexagonVectorCombine::rescale(IRBuilder<> &Builder, Value *Mask,
1166                                    Type *FromTy, Type *ToTy) const -> Value * {
1167   // Mask is a vector <N x i1>, where each element corresponds to an
1168   // element of FromTy. Remap it so that each element will correspond
1169   // to an element of ToTy.
1170   assert(isa<VectorType>(Mask->getType()));
1171 
1172   Type *FromSTy = FromTy->getScalarType();
1173   Type *ToSTy = ToTy->getScalarType();
1174   if (FromSTy == ToSTy)
1175     return Mask;
1176 
1177   int FromSize = getSizeOf(FromSTy);
1178   int ToSize = getSizeOf(ToSTy);
1179   assert(FromSize % ToSize == 0 || ToSize % FromSize == 0);
1180 
1181   auto *MaskTy = cast<VectorType>(Mask->getType());
1182   int FromCount = MaskTy->getElementCount().getFixedValue();
1183   int ToCount = (FromCount * FromSize) / ToSize;
1184   assert((FromCount * FromSize) % ToSize == 0);
1185 
1186   auto *FromITy = IntegerType::get(F.getContext(), FromSize * 8);
1187   auto *ToITy = IntegerType::get(F.getContext(), ToSize * 8);
1188 
1189   // Mask <N x i1> -> sext to <N x FromTy> -> bitcast to <M x ToTy> ->
1190   // -> trunc to <M x i1>.
1191   Value *Ext = Builder.CreateSExt(
1192       Mask, VectorType::get(FromITy, FromCount, /*Scalable*/ false));
1193   Value *Cast = Builder.CreateBitCast(
1194       Ext, VectorType::get(ToITy, ToCount, /*Scalable*/ false));
1195   return Builder.CreateTrunc(
1196       Cast, VectorType::get(getBoolTy(), ToCount, /*Scalable*/ false));
1197 }
1198 
1199 // Bitcast to bytes, and return least significant bits.
1200 auto HexagonVectorCombine::vlsb(IRBuilder<> &Builder, Value *Val) const
1201     -> Value * {
1202   Type *ScalarTy = Val->getType()->getScalarType();
1203   if (ScalarTy == getBoolTy())
1204     return Val;
1205 
1206   Value *Bytes = vbytes(Builder, Val);
1207   if (auto *VecTy = dyn_cast<VectorType>(Bytes->getType()))
1208     return Builder.CreateTrunc(Bytes, getBoolTy(getSizeOf(VecTy)));
1209   // If Bytes is a scalar (i.e. Val was a scalar byte), return i1, not
1210   // <1 x i1>.
1211   return Builder.CreateTrunc(Bytes, getBoolTy());
1212 }
1213 
1214 // Bitcast to bytes for non-bool. For bool, convert i1 -> i8.
1215 auto HexagonVectorCombine::vbytes(IRBuilder<> &Builder, Value *Val) const
1216     -> Value * {
1217   Type *ScalarTy = Val->getType()->getScalarType();
1218   if (ScalarTy == getByteTy())
1219     return Val;
1220 
1221   if (ScalarTy != getBoolTy())
1222     return Builder.CreateBitCast(Val, getByteTy(getSizeOf(Val)));
1223   // For bool, return a sext from i1 to i8.
1224   if (auto *VecTy = dyn_cast<VectorType>(Val->getType()))
1225     return Builder.CreateSExt(Val, VectorType::get(getByteTy(), VecTy));
1226   return Builder.CreateSExt(Val, getByteTy());
1227 }
1228 
1229 auto HexagonVectorCombine::createHvxIntrinsic(IRBuilder<> &Builder,
1230                                               Intrinsic::ID IntID, Type *RetTy,
1231                                               ArrayRef<Value *> Args) const
1232     -> Value * {
1233   int HwLen = HST.getVectorLength();
1234   Type *BoolTy = Type::getInt1Ty(F.getContext());
1235   Type *Int32Ty = Type::getInt32Ty(F.getContext());
1236   // HVX vector -> v16i32/v32i32
1237   // HVX vector predicate -> v512i1/v1024i1
1238   auto getTypeForIntrin = [&](Type *Ty) -> Type * {
1239     if (HST.isTypeForHVX(Ty, /*IncludeBool*/ true)) {
1240       Type *ElemTy = cast<VectorType>(Ty)->getElementType();
1241       if (ElemTy == Int32Ty)
1242         return Ty;
1243       if (ElemTy == BoolTy)
1244         return VectorType::get(BoolTy, 8 * HwLen, /*Scalable*/ false);
1245       return VectorType::get(Int32Ty, HwLen / 4, /*Scalable*/ false);
1246     }
1247     // Non-HVX type. It should be a scalar.
1248     assert(Ty == Int32Ty || Ty->isIntegerTy(64));
1249     return Ty;
1250   };
1251 
1252   auto getCast = [&](IRBuilder<> &Builder, Value *Val,
1253                      Type *DestTy) -> Value * {
1254     Type *SrcTy = Val->getType();
1255     if (SrcTy == DestTy)
1256       return Val;
1257     if (HST.isTypeForHVX(SrcTy, /*IncludeBool*/ true)) {
1258       if (cast<VectorType>(SrcTy)->getElementType() == BoolTy) {
1259         // This should take care of casts the other way too, for example
1260         // v1024i1 -> v32i1.
1261         Intrinsic::ID TC = HwLen == 64
1262                                ? Intrinsic::hexagon_V6_pred_typecast
1263                                : Intrinsic::hexagon_V6_pred_typecast_128B;
1264         Function *FI = Intrinsic::getDeclaration(F.getParent(), TC,
1265                                                  {DestTy, Val->getType()});
1266         return Builder.CreateCall(FI, {Val});
1267       }
1268       // Non-predicate HVX vector.
1269       return Builder.CreateBitCast(Val, DestTy);
1270     }
1271     // Non-HVX type. It should be a scalar, and it should already have
1272     // a valid type.
1273     llvm_unreachable("Unexpected type");
1274   };
1275 
1276   SmallVector<Value *, 4> IntOps;
1277   for (Value *A : Args)
1278     IntOps.push_back(getCast(Builder, A, getTypeForIntrin(A->getType())));
1279   Function *FI = Intrinsic::getDeclaration(F.getParent(), IntID);
1280   Value *Call = Builder.CreateCall(FI, IntOps);
1281 
1282   Type *CallTy = Call->getType();
1283   if (CallTy == RetTy)
1284     return Call;
1285   // Scalar types should have RetTy matching the call return type.
1286   assert(HST.isTypeForHVX(CallTy, /*IncludeBool*/ true));
1287   if (cast<VectorType>(CallTy)->getElementType() == BoolTy)
1288     return getCast(Builder, Call, RetTy);
1289   return Builder.CreateBitCast(Call, RetTy);
1290 }
1291 
1292 auto HexagonVectorCombine::calculatePointerDifference(Value *Ptr0,
1293                                                       Value *Ptr1) const
1294     -> Optional<int> {
1295   struct Builder : IRBuilder<> {
1296     Builder(BasicBlock *B) : IRBuilder<>(B) {}
1297     ~Builder() {
1298       for (Instruction *I : llvm::reverse(ToErase))
1299         I->eraseFromParent();
1300     }
1301     SmallVector<Instruction *, 8> ToErase;
1302   };
1303 
1304 #define CallBuilder(B, F)                                                      \
1305   [&](auto &B_) {                                                              \
1306     Value *V = B_.F;                                                           \
1307     if (auto *I = dyn_cast<Instruction>(V))                                    \
1308       B_.ToErase.push_back(I);                                                 \
1309     return V;                                                                  \
1310   }(B)
1311 
1312   auto Simplify = [&](Value *V) {
1313     if (auto *I = dyn_cast<Instruction>(V)) {
1314       SimplifyQuery Q(DL, &TLI, &DT, &AC, I);
1315       if (Value *S = simplifyInstruction(I, Q))
1316         return S;
1317     }
1318     return V;
1319   };
1320 
1321   auto StripBitCast = [](Value *V) {
1322     while (auto *C = dyn_cast<BitCastInst>(V))
1323       V = C->getOperand(0);
1324     return V;
1325   };
1326 
1327   Ptr0 = StripBitCast(Ptr0);
1328   Ptr1 = StripBitCast(Ptr1);
1329   if (!isa<GetElementPtrInst>(Ptr0) || !isa<GetElementPtrInst>(Ptr1))
1330     return None;
1331 
1332   auto *Gep0 = cast<GetElementPtrInst>(Ptr0);
1333   auto *Gep1 = cast<GetElementPtrInst>(Ptr1);
1334   if (Gep0->getPointerOperand() != Gep1->getPointerOperand())
1335     return None;
1336 
1337   Builder B(Gep0->getParent());
1338   int Scale = getAllocSizeOf(Gep0->getSourceElementType());
1339 
1340   // FIXME: for now only check GEPs with a single index.
1341   if (Gep0->getNumOperands() != 2 || Gep1->getNumOperands() != 2)
1342     return None;
1343 
1344   Value *Idx0 = Gep0->getOperand(1);
1345   Value *Idx1 = Gep1->getOperand(1);
1346 
1347   // First, try to simplify the subtraction directly.
1348   if (auto *Diff = dyn_cast<ConstantInt>(
1349           Simplify(CallBuilder(B, CreateSub(Idx0, Idx1)))))
1350     return Diff->getSExtValue() * Scale;
1351 
1352   KnownBits Known0 = computeKnownBits(Idx0, DL, 0, &AC, Gep0, &DT);
1353   KnownBits Known1 = computeKnownBits(Idx1, DL, 0, &AC, Gep1, &DT);
1354   APInt Unknown = ~(Known0.Zero | Known0.One) | ~(Known1.Zero | Known1.One);
1355   if (Unknown.isAllOnes())
1356     return None;
1357 
1358   Value *MaskU = ConstantInt::get(Idx0->getType(), Unknown);
1359   Value *AndU0 = Simplify(CallBuilder(B, CreateAnd(Idx0, MaskU)));
1360   Value *AndU1 = Simplify(CallBuilder(B, CreateAnd(Idx1, MaskU)));
1361   Value *SubU = Simplify(CallBuilder(B, CreateSub(AndU0, AndU1)));
1362   int Diff0 = 0;
1363   if (auto *C = dyn_cast<ConstantInt>(SubU)) {
1364     Diff0 = C->getSExtValue();
1365   } else {
1366     return None;
1367   }
1368 
1369   Value *MaskK = ConstantInt::get(MaskU->getType(), ~Unknown);
1370   Value *AndK0 = Simplify(CallBuilder(B, CreateAnd(Idx0, MaskK)));
1371   Value *AndK1 = Simplify(CallBuilder(B, CreateAnd(Idx1, MaskK)));
1372   Value *SubK = Simplify(CallBuilder(B, CreateSub(AndK0, AndK1)));
1373   int Diff1 = 0;
1374   if (auto *C = dyn_cast<ConstantInt>(SubK)) {
1375     Diff1 = C->getSExtValue();
1376   } else {
1377     return None;
1378   }
1379 
1380   return (Diff0 + Diff1) * Scale;
1381 
1382 #undef CallBuilder
1383 }
1384 
1385 template <typename T>
1386 auto HexagonVectorCombine::isSafeToMoveBeforeInBB(const Instruction &In,
1387                                                   BasicBlock::const_iterator To,
1388                                                   const T &Ignore) const
1389     -> bool {
1390   auto getLocOrNone = [this](const Instruction &I) -> Optional<MemoryLocation> {
1391     if (const auto *II = dyn_cast<IntrinsicInst>(&I)) {
1392       switch (II->getIntrinsicID()) {
1393       case Intrinsic::masked_load:
1394         return MemoryLocation::getForArgument(II, 0, TLI);
1395       case Intrinsic::masked_store:
1396         return MemoryLocation::getForArgument(II, 1, TLI);
1397       }
1398     }
1399     return MemoryLocation::getOrNone(&I);
1400   };
1401 
1402   // The source and the destination must be in the same basic block.
1403   const BasicBlock &Block = *In.getParent();
1404   assert(Block.begin() == To || Block.end() == To || To->getParent() == &Block);
1405   // No PHIs.
1406   if (isa<PHINode>(In) || (To != Block.end() && isa<PHINode>(*To)))
1407     return false;
1408 
1409   if (!mayHaveNonDefUseDependency(In))
1410     return true;
1411   bool MayWrite = In.mayWriteToMemory();
1412   auto MaybeLoc = getLocOrNone(In);
1413 
1414   auto From = In.getIterator();
1415   if (From == To)
1416     return true;
1417   bool MoveUp = (To != Block.end() && To->comesBefore(&In));
1418   auto Range =
1419       MoveUp ? std::make_pair(To, From) : std::make_pair(std::next(From), To);
1420   for (auto It = Range.first; It != Range.second; ++It) {
1421     const Instruction &I = *It;
1422     if (llvm::is_contained(Ignore, &I))
1423       continue;
1424     // assume intrinsic can be ignored
1425     if (auto *II = dyn_cast<IntrinsicInst>(&I)) {
1426       if (II->getIntrinsicID() == Intrinsic::assume)
1427         continue;
1428     }
1429     // Parts based on isSafeToMoveBefore from CoveMoverUtils.cpp.
1430     if (I.mayThrow())
1431       return false;
1432     if (auto *CB = dyn_cast<CallBase>(&I)) {
1433       if (!CB->hasFnAttr(Attribute::WillReturn))
1434         return false;
1435       if (!CB->hasFnAttr(Attribute::NoSync))
1436         return false;
1437     }
1438     if (I.mayReadOrWriteMemory()) {
1439       auto MaybeLocI = getLocOrNone(I);
1440       if (MayWrite || I.mayWriteToMemory()) {
1441         if (!MaybeLoc || !MaybeLocI)
1442           return false;
1443         if (!AA.isNoAlias(*MaybeLoc, *MaybeLocI))
1444           return false;
1445       }
1446     }
1447   }
1448   return true;
1449 }
1450 
1451 #ifndef NDEBUG
1452 auto HexagonVectorCombine::isByteVecTy(Type *Ty) const -> bool {
1453   if (auto *VecTy = dyn_cast<VectorType>(Ty))
1454     return VecTy->getElementType() == getByteTy();
1455   return false;
1456 }
1457 
1458 auto HexagonVectorCombine::isSectorTy(Type *Ty) const -> bool {
1459   if (!isByteVecTy(Ty))
1460     return false;
1461   int Size = getSizeOf(Ty);
1462   if (HST.isTypeForHVX(Ty))
1463     return Size == static_cast<int>(HST.getVectorLength());
1464   return Size == 4 || Size == 8;
1465 }
1466 #endif
1467 
1468 auto HexagonVectorCombine::getElementRange(IRBuilder<> &Builder, Value *Lo,
1469                                            Value *Hi, int Start,
1470                                            int Length) const -> Value * {
1471   assert(0 <= Start && Start < Length);
1472   SmallVector<int, 128> SMask(Length);
1473   std::iota(SMask.begin(), SMask.end(), Start);
1474   return Builder.CreateShuffleVector(Lo, Hi, SMask);
1475 }
1476 
1477 // Pass management.
1478 
1479 namespace llvm {
1480 void initializeHexagonVectorCombineLegacyPass(PassRegistry &);
1481 FunctionPass *createHexagonVectorCombineLegacyPass();
1482 } // namespace llvm
1483 
1484 namespace {
1485 class HexagonVectorCombineLegacy : public FunctionPass {
1486 public:
1487   static char ID;
1488 
1489   HexagonVectorCombineLegacy() : FunctionPass(ID) {}
1490 
1491   StringRef getPassName() const override { return "Hexagon Vector Combine"; }
1492 
1493   void getAnalysisUsage(AnalysisUsage &AU) const override {
1494     AU.setPreservesCFG();
1495     AU.addRequired<AAResultsWrapperPass>();
1496     AU.addRequired<AssumptionCacheTracker>();
1497     AU.addRequired<DominatorTreeWrapperPass>();
1498     AU.addRequired<TargetLibraryInfoWrapperPass>();
1499     AU.addRequired<TargetPassConfig>();
1500     FunctionPass::getAnalysisUsage(AU);
1501   }
1502 
1503   bool runOnFunction(Function &F) override {
1504     if (skipFunction(F))
1505       return false;
1506     AliasAnalysis &AA = getAnalysis<AAResultsWrapperPass>().getAAResults();
1507     AssumptionCache &AC =
1508         getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
1509     DominatorTree &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
1510     TargetLibraryInfo &TLI =
1511         getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F);
1512     auto &TM = getAnalysis<TargetPassConfig>().getTM<HexagonTargetMachine>();
1513     HexagonVectorCombine HVC(F, AA, AC, DT, TLI, TM);
1514     return HVC.run();
1515   }
1516 };
1517 } // namespace
1518 
1519 char HexagonVectorCombineLegacy::ID = 0;
1520 
1521 INITIALIZE_PASS_BEGIN(HexagonVectorCombineLegacy, DEBUG_TYPE,
1522                       "Hexagon Vector Combine", false, false)
1523 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
1524 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
1525 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
1526 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
1527 INITIALIZE_PASS_DEPENDENCY(TargetPassConfig)
1528 INITIALIZE_PASS_END(HexagonVectorCombineLegacy, DEBUG_TYPE,
1529                     "Hexagon Vector Combine", false, false)
1530 
1531 FunctionPass *llvm::createHexagonVectorCombineLegacyPass() {
1532   return new HexagonVectorCombineLegacy();
1533 }
1534