1 //===-- M68kISelLowering.cpp - M68k DAG Lowering Impl -----------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 ///
9 /// \file
10 /// This file defines the interfaces that M68k uses to lower LLVM code into a
11 /// selection DAG.
12 ///
13 //===----------------------------------------------------------------------===//
14 
15 #include "M68kISelLowering.h"
16 #include "M68kCallingConv.h"
17 #include "M68kMachineFunction.h"
18 #include "M68kSubtarget.h"
19 #include "M68kTargetMachine.h"
20 #include "M68kTargetObjectFile.h"
21 
22 #include "llvm/ADT/Statistic.h"
23 #include "llvm/CodeGen/CallingConvLower.h"
24 #include "llvm/CodeGen/MachineFrameInfo.h"
25 #include "llvm/CodeGen/MachineFunction.h"
26 #include "llvm/CodeGen/MachineInstrBuilder.h"
27 #include "llvm/CodeGen/MachineJumpTableInfo.h"
28 #include "llvm/CodeGen/MachineRegisterInfo.h"
29 #include "llvm/CodeGen/SelectionDAG.h"
30 #include "llvm/CodeGen/ValueTypes.h"
31 #include "llvm/IR/CallingConv.h"
32 #include "llvm/IR/DerivedTypes.h"
33 #include "llvm/IR/GlobalVariable.h"
34 #include "llvm/Support/CommandLine.h"
35 #include "llvm/Support/Debug.h"
36 #include "llvm/Support/ErrorHandling.h"
37 #include "llvm/Support/KnownBits.h"
38 #include "llvm/Support/raw_ostream.h"
39 
40 using namespace llvm;
41 
42 #define DEBUG_TYPE "M68k-isel"
43 
44 STATISTIC(NumTailCalls, "Number of tail calls");
45 
46 M68kTargetLowering::M68kTargetLowering(const M68kTargetMachine &TM,
47                                        const M68kSubtarget &STI)
48     : TargetLowering(TM), Subtarget(STI), TM(TM) {
49 
50   MVT PtrVT = MVT::i32;
51 
52   setBooleanContents(ZeroOrOneBooleanContent);
53 
54   auto *RegInfo = Subtarget.getRegisterInfo();
55   setStackPointerRegisterToSaveRestore(RegInfo->getStackRegister());
56 
57   // Set up the register classes.
58   addRegisterClass(MVT::i8, &M68k::DR8RegClass);
59   addRegisterClass(MVT::i16, &M68k::XR16RegClass);
60   addRegisterClass(MVT::i32, &M68k::XR32RegClass);
61 
62   for (auto VT : MVT::integer_valuetypes()) {
63     setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote);
64     setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i1, Promote);
65     setLoadExtAction(ISD::EXTLOAD, VT, MVT::i1, Promote);
66   }
67 
68   // We don't accept any truncstore of integer registers.
69   setTruncStoreAction(MVT::i64, MVT::i32, Expand);
70   setTruncStoreAction(MVT::i64, MVT::i16, Expand);
71   setTruncStoreAction(MVT::i64, MVT::i8, Expand);
72   setTruncStoreAction(MVT::i32, MVT::i16, Expand);
73   setTruncStoreAction(MVT::i32, MVT::i8, Expand);
74   setTruncStoreAction(MVT::i16, MVT::i8, Expand);
75 
76   setOperationAction({ISD::MUL, ISD::SDIV, ISD::UDIV}, MVT::i8, Promote);
77   setOperationAction({ISD::MUL, ISD::SDIV, ISD::UDIV}, MVT::i16, Legal);
78   if (Subtarget.atLeastM68020())
79     setOperationAction({ISD::MUL, ISD::SDIV, ISD::UDIV}, MVT::i32, Legal);
80   else
81     setOperationAction({ISD::MUL, ISD::SDIV, ISD::UDIV}, MVT::i32, LibCall);
82   setOperationAction(ISD::MUL, MVT::i64, LibCall);
83 
84   for (auto OP :
85        {ISD::SREM, ISD::UREM, ISD::UDIVREM, ISD::SDIVREM,
86         ISD::MULHS, ISD::MULHU, ISD::UMUL_LOHI, ISD::SMUL_LOHI}) {
87     setOperationAction(OP, MVT::i8, Promote);
88     setOperationAction(OP, MVT::i16, Legal);
89     setOperationAction(OP, MVT::i32, LibCall);
90   }
91 
92   for (auto OP : {ISD::UMUL_LOHI, ISD::SMUL_LOHI}) {
93     setOperationAction(OP, MVT::i8, Expand);
94     setOperationAction(OP, MVT::i16, Expand);
95   }
96 
97   for (auto OP : {ISD::SMULO, ISD::UMULO}) {
98     setOperationAction(OP, MVT::i8,  Custom);
99     setOperationAction(OP, MVT::i16, Custom);
100     setOperationAction(OP, MVT::i32, Custom);
101   }
102 
103   for (auto OP : {ISD::SHL_PARTS, ISD::SRA_PARTS, ISD::SRL_PARTS})
104     setOperationAction(OP, MVT::i32, Custom);
105 
106   // Add/Sub overflow ops with MVT::Glues are lowered to CCR dependences.
107   for (auto VT : {MVT::i8, MVT::i16, MVT::i32}) {
108     setOperationAction(ISD::ADDC, VT, Custom);
109     setOperationAction(ISD::ADDE, VT, Custom);
110     setOperationAction(ISD::SUBC, VT, Custom);
111     setOperationAction(ISD::SUBE, VT, Custom);
112   }
113 
114   // SADDO and friends are legal with this setup, i hope
115   for (auto VT : {MVT::i8, MVT::i16, MVT::i32}) {
116     setOperationAction(ISD::SADDO, VT, Custom);
117     setOperationAction(ISD::UADDO, VT, Custom);
118     setOperationAction(ISD::SSUBO, VT, Custom);
119     setOperationAction(ISD::USUBO, VT, Custom);
120   }
121 
122   setOperationAction(ISD::BR_JT, MVT::Other, Expand);
123   setOperationAction(ISD::BRCOND, MVT::Other, Custom);
124 
125   for (auto VT : {MVT::i8, MVT::i16, MVT::i32}) {
126     setOperationAction(ISD::BR_CC, VT, Expand);
127     setOperationAction(ISD::SELECT, VT, Custom);
128     setOperationAction(ISD::SELECT_CC, VT, Expand);
129     setOperationAction(ISD::SETCC, VT, Custom);
130     setOperationAction(ISD::SETCCCARRY, VT, Custom);
131   }
132 
133   for (auto VT : {MVT::i8, MVT::i16, MVT::i32}) {
134     setOperationAction(ISD::BSWAP, VT, Expand);
135     setOperationAction(ISD::CTTZ, VT, Expand);
136     setOperationAction(ISD::CTLZ, VT, Expand);
137     setOperationAction(ISD::CTPOP, VT, Expand);
138   }
139 
140   setOperationAction(ISD::ConstantPool, MVT::i32, Custom);
141   setOperationAction(ISD::JumpTable, MVT::i32, Custom);
142   setOperationAction(ISD::GlobalAddress, MVT::i32, Custom);
143   setOperationAction(ISD::GlobalTLSAddress, MVT::i32, Custom);
144   setOperationAction(ISD::ExternalSymbol, MVT::i32, Custom);
145   setOperationAction(ISD::BlockAddress, MVT::i32, Custom);
146 
147   setOperationAction(ISD::VASTART, MVT::Other, Custom);
148   setOperationAction(ISD::VAEND, MVT::Other, Expand);
149   setOperationAction(ISD::VAARG, MVT::Other, Expand);
150   setOperationAction(ISD::VACOPY, MVT::Other, Expand);
151 
152   setOperationAction(ISD::STACKSAVE, MVT::Other, Expand);
153   setOperationAction(ISD::STACKRESTORE, MVT::Other, Expand);
154 
155   setOperationAction(ISD::DYNAMIC_STACKALLOC, PtrVT, Custom);
156 
157   computeRegisterProperties(STI.getRegisterInfo());
158 
159   // We lower the `atomic-compare-and-swap` to `__sync_val_compare_and_swap`
160   // for subtarget < M68020
161   setMaxAtomicSizeInBitsSupported(32);
162   setOperationAction(ISD::ATOMIC_CMP_SWAP, {MVT::i8, MVT::i16, MVT::i32},
163                      Subtarget.atLeastM68020() ? Legal : LibCall);
164 
165   setOperationAction(ISD::ATOMIC_FENCE, MVT::Other, Custom);
166 
167   // M68k does not have native read-modify-write support, so expand all of them
168   // to `__sync_fetch_*` for target < M68020, otherwise expand to CmpxChg.
169   // See `shouldExpandAtomicRMWInIR` below.
170   setOperationAction(
171       {
172           ISD::ATOMIC_LOAD_ADD,
173           ISD::ATOMIC_LOAD_SUB,
174           ISD::ATOMIC_LOAD_AND,
175           ISD::ATOMIC_LOAD_OR,
176           ISD::ATOMIC_LOAD_XOR,
177           ISD::ATOMIC_LOAD_NAND,
178           ISD::ATOMIC_LOAD_MIN,
179           ISD::ATOMIC_LOAD_MAX,
180           ISD::ATOMIC_LOAD_UMIN,
181           ISD::ATOMIC_LOAD_UMAX,
182           ISD::ATOMIC_SWAP,
183       },
184       {MVT::i8, MVT::i16, MVT::i32}, LibCall);
185 
186   setMinFunctionAlignment(Align(2));
187 }
188 
189 TargetLoweringBase::AtomicExpansionKind
190 M68kTargetLowering::shouldExpandAtomicRMWInIR(AtomicRMWInst *RMW) const {
191   return Subtarget.atLeastM68020()
192              ? TargetLoweringBase::AtomicExpansionKind::CmpXChg
193              : TargetLoweringBase::AtomicExpansionKind::None;
194 }
195 
196 Register
197 M68kTargetLowering::getExceptionPointerRegister(const Constant *) const {
198   return M68k::D0;
199 }
200 
201 Register
202 M68kTargetLowering::getExceptionSelectorRegister(const Constant *) const {
203   return M68k::D1;
204 }
205 
206 InlineAsm::ConstraintCode
207 M68kTargetLowering::getInlineAsmMemConstraint(StringRef ConstraintCode) const {
208   return StringSwitch<InlineAsm::ConstraintCode>(ConstraintCode)
209       .Case("Q", InlineAsm::ConstraintCode::Q)
210       // We borrow ConstraintCode::Um for 'U'.
211       .Case("U", InlineAsm::ConstraintCode::Um)
212       .Default(TargetLowering::getInlineAsmMemConstraint(ConstraintCode));
213 }
214 
215 EVT M68kTargetLowering::getSetCCResultType(const DataLayout &DL,
216                                            LLVMContext &Context, EVT VT) const {
217   // M68k SETcc producess either 0x00 or 0xFF
218   return MVT::i8;
219 }
220 
221 MVT M68kTargetLowering::getScalarShiftAmountTy(const DataLayout &DL,
222                                                EVT Ty) const {
223   if (Ty.isSimple()) {
224     return Ty.getSimpleVT();
225   }
226   return MVT::getIntegerVT(DL.getPointerSizeInBits(0));
227 }
228 
229 #include "M68kGenCallingConv.inc"
230 
231 enum StructReturnType { NotStructReturn, RegStructReturn, StackStructReturn };
232 
233 static StructReturnType
234 callIsStructReturn(const SmallVectorImpl<ISD::OutputArg> &Outs) {
235   if (Outs.empty())
236     return NotStructReturn;
237 
238   const ISD::ArgFlagsTy &Flags = Outs[0].Flags;
239   if (!Flags.isSRet())
240     return NotStructReturn;
241   if (Flags.isInReg())
242     return RegStructReturn;
243   return StackStructReturn;
244 }
245 
246 /// Determines whether a function uses struct return semantics.
247 static StructReturnType
248 argsAreStructReturn(const SmallVectorImpl<ISD::InputArg> &Ins) {
249   if (Ins.empty())
250     return NotStructReturn;
251 
252   const ISD::ArgFlagsTy &Flags = Ins[0].Flags;
253   if (!Flags.isSRet())
254     return NotStructReturn;
255   if (Flags.isInReg())
256     return RegStructReturn;
257   return StackStructReturn;
258 }
259 
260 /// Make a copy of an aggregate at address specified by "Src" to address
261 /// "Dst" with size and alignment information specified by the specific
262 /// parameter attribute. The copy will be passed as a byval function parameter.
263 static SDValue CreateCopyOfByValArgument(SDValue Src, SDValue Dst,
264                                          SDValue Chain, ISD::ArgFlagsTy Flags,
265                                          SelectionDAG &DAG, const SDLoc &DL) {
266   SDValue SizeNode = DAG.getConstant(Flags.getByValSize(), DL, MVT::i32);
267 
268   return DAG.getMemcpy(
269       Chain, DL, Dst, Src, SizeNode, Flags.getNonZeroByValAlign(),
270       /*isVolatile=*/false, /*AlwaysInline=*/true,
271       /*isTailCall=*/false, MachinePointerInfo(), MachinePointerInfo());
272 }
273 
274 /// Return true if the calling convention is one that we can guarantee TCO for.
275 static bool canGuaranteeTCO(CallingConv::ID CC) { return false; }
276 
277 /// Return true if we might ever do TCO for calls with this calling convention.
278 static bool mayTailCallThisCC(CallingConv::ID CC) {
279   switch (CC) {
280   // C calling conventions:
281   case CallingConv::C:
282     return true;
283   default:
284     return canGuaranteeTCO(CC);
285   }
286 }
287 
288 /// Return true if the function is being made into a tailcall target by
289 /// changing its ABI.
290 static bool shouldGuaranteeTCO(CallingConv::ID CC, bool GuaranteedTailCallOpt) {
291   return GuaranteedTailCallOpt && canGuaranteeTCO(CC);
292 }
293 
294 /// Return true if the given stack call argument is already available in the
295 /// same position (relatively) of the caller's incoming argument stack.
296 static bool MatchingStackOffset(SDValue Arg, unsigned Offset,
297                                 ISD::ArgFlagsTy Flags, MachineFrameInfo &MFI,
298                                 const MachineRegisterInfo *MRI,
299                                 const M68kInstrInfo *TII,
300                                 const CCValAssign &VA) {
301   unsigned Bytes = Arg.getValueType().getSizeInBits() / 8;
302 
303   for (;;) {
304     // Look through nodes that don't alter the bits of the incoming value.
305     unsigned Op = Arg.getOpcode();
306     if (Op == ISD::ZERO_EXTEND || Op == ISD::ANY_EXTEND || Op == ISD::BITCAST) {
307       Arg = Arg.getOperand(0);
308       continue;
309     }
310     if (Op == ISD::TRUNCATE) {
311       const SDValue &TruncInput = Arg.getOperand(0);
312       if (TruncInput.getOpcode() == ISD::AssertZext &&
313           cast<VTSDNode>(TruncInput.getOperand(1))->getVT() ==
314               Arg.getValueType()) {
315         Arg = TruncInput.getOperand(0);
316         continue;
317       }
318     }
319     break;
320   }
321 
322   int FI = INT_MAX;
323   if (Arg.getOpcode() == ISD::CopyFromReg) {
324     Register VR = cast<RegisterSDNode>(Arg.getOperand(1))->getReg();
325     if (!Register::isVirtualRegister(VR))
326       return false;
327     MachineInstr *Def = MRI->getVRegDef(VR);
328     if (!Def)
329       return false;
330     if (!Flags.isByVal()) {
331       if (!TII->isLoadFromStackSlot(*Def, FI))
332         return false;
333     } else {
334       unsigned Opcode = Def->getOpcode();
335       if ((Opcode == M68k::LEA32p || Opcode == M68k::LEA32f) &&
336           Def->getOperand(1).isFI()) {
337         FI = Def->getOperand(1).getIndex();
338         Bytes = Flags.getByValSize();
339       } else
340         return false;
341     }
342   } else if (auto *Ld = dyn_cast<LoadSDNode>(Arg)) {
343     if (Flags.isByVal())
344       // ByVal argument is passed in as a pointer but it's now being
345       // dereferenced. e.g.
346       // define @foo(%struct.X* %A) {
347       //   tail call @bar(%struct.X* byval %A)
348       // }
349       return false;
350     SDValue Ptr = Ld->getBasePtr();
351     FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(Ptr);
352     if (!FINode)
353       return false;
354     FI = FINode->getIndex();
355   } else if (Arg.getOpcode() == ISD::FrameIndex && Flags.isByVal()) {
356     FrameIndexSDNode *FINode = cast<FrameIndexSDNode>(Arg);
357     FI = FINode->getIndex();
358     Bytes = Flags.getByValSize();
359   } else
360     return false;
361 
362   assert(FI != INT_MAX);
363   if (!MFI.isFixedObjectIndex(FI))
364     return false;
365 
366   if (Offset != MFI.getObjectOffset(FI))
367     return false;
368 
369   if (VA.getLocVT().getSizeInBits() > Arg.getValueType().getSizeInBits()) {
370     // If the argument location is wider than the argument type, check that any
371     // extension flags match.
372     if (Flags.isZExt() != MFI.isObjectZExt(FI) ||
373         Flags.isSExt() != MFI.isObjectSExt(FI)) {
374       return false;
375     }
376   }
377 
378   return Bytes == MFI.getObjectSize(FI);
379 }
380 
381 SDValue
382 M68kTargetLowering::getReturnAddressFrameIndex(SelectionDAG &DAG) const {
383   MachineFunction &MF = DAG.getMachineFunction();
384   M68kMachineFunctionInfo *FuncInfo = MF.getInfo<M68kMachineFunctionInfo>();
385   int ReturnAddrIndex = FuncInfo->getRAIndex();
386 
387   if (ReturnAddrIndex == 0) {
388     // Set up a frame object for the return address.
389     unsigned SlotSize = Subtarget.getSlotSize();
390     ReturnAddrIndex = MF.getFrameInfo().CreateFixedObject(
391         SlotSize, -(int64_t)SlotSize, false);
392     FuncInfo->setRAIndex(ReturnAddrIndex);
393   }
394 
395   return DAG.getFrameIndex(ReturnAddrIndex, getPointerTy(DAG.getDataLayout()));
396 }
397 
398 SDValue M68kTargetLowering::EmitTailCallLoadRetAddr(SelectionDAG &DAG,
399                                                     SDValue &OutRetAddr,
400                                                     SDValue Chain,
401                                                     bool IsTailCall, int FPDiff,
402                                                     const SDLoc &DL) const {
403   EVT VT = getPointerTy(DAG.getDataLayout());
404   OutRetAddr = getReturnAddressFrameIndex(DAG);
405 
406   // Load the "old" Return address.
407   OutRetAddr = DAG.getLoad(VT, DL, Chain, OutRetAddr, MachinePointerInfo());
408   return SDValue(OutRetAddr.getNode(), 1);
409 }
410 
411 SDValue M68kTargetLowering::EmitTailCallStoreRetAddr(
412     SelectionDAG &DAG, MachineFunction &MF, SDValue Chain, SDValue RetFI,
413     EVT PtrVT, unsigned SlotSize, int FPDiff, const SDLoc &DL) const {
414   if (!FPDiff)
415     return Chain;
416 
417   // Calculate the new stack slot for the return address.
418   int NewFO = MF.getFrameInfo().CreateFixedObject(
419       SlotSize, (int64_t)FPDiff - SlotSize, false);
420 
421   SDValue NewFI = DAG.getFrameIndex(NewFO, PtrVT);
422   // Store the return address to the appropriate stack slot.
423   Chain = DAG.getStore(
424       Chain, DL, RetFI, NewFI,
425       MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), NewFO));
426   return Chain;
427 }
428 
429 SDValue
430 M68kTargetLowering::LowerMemArgument(SDValue Chain, CallingConv::ID CallConv,
431                                      const SmallVectorImpl<ISD::InputArg> &Ins,
432                                      const SDLoc &DL, SelectionDAG &DAG,
433                                      const CCValAssign &VA,
434                                      MachineFrameInfo &MFI,
435                                      unsigned ArgIdx) const {
436   // Create the nodes corresponding to a load from this parameter slot.
437   ISD::ArgFlagsTy Flags = Ins[ArgIdx].Flags;
438   EVT ValVT;
439 
440   // If value is passed by pointer we have address passed instead of the value
441   // itself.
442   if (VA.getLocInfo() == CCValAssign::Indirect)
443     ValVT = VA.getLocVT();
444   else
445     ValVT = VA.getValVT();
446 
447   // Because we are dealing with BE architecture we need to offset loading of
448   // partial types
449   int Offset = VA.getLocMemOffset();
450   if (VA.getValVT() == MVT::i8) {
451     Offset += 3;
452   } else if (VA.getValVT() == MVT::i16) {
453     Offset += 2;
454   }
455 
456   // TODO Interrupt handlers
457   // Calculate SP offset of interrupt parameter, re-arrange the slot normally
458   // taken by a return address.
459 
460   // FIXME For now, all byval parameter objects are marked mutable. This can
461   // be changed with more analysis. In case of tail call optimization mark all
462   // arguments mutable. Since they could be overwritten by lowering of arguments
463   // in case of a tail call.
464   bool AlwaysUseMutable = shouldGuaranteeTCO(
465       CallConv, DAG.getTarget().Options.GuaranteedTailCallOpt);
466   bool IsImmutable = !AlwaysUseMutable && !Flags.isByVal();
467 
468   if (Flags.isByVal()) {
469     unsigned Bytes = Flags.getByValSize();
470     if (Bytes == 0)
471       Bytes = 1; // Don't create zero-sized stack objects.
472     int FI = MFI.CreateFixedObject(Bytes, Offset, IsImmutable);
473     // TODO Interrupt handlers
474     // Adjust SP offset of interrupt parameter.
475     return DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout()));
476   } else {
477     int FI =
478         MFI.CreateFixedObject(ValVT.getSizeInBits() / 8, Offset, IsImmutable);
479 
480     // Set SExt or ZExt flag.
481     if (VA.getLocInfo() == CCValAssign::ZExt) {
482       MFI.setObjectZExt(FI, true);
483     } else if (VA.getLocInfo() == CCValAssign::SExt) {
484       MFI.setObjectSExt(FI, true);
485     }
486 
487     // TODO Interrupt handlers
488     // Adjust SP offset of interrupt parameter.
489 
490     SDValue FIN = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout()));
491     SDValue Val = DAG.getLoad(
492         ValVT, DL, Chain, FIN,
493         MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI));
494     return VA.isExtInLoc() ? DAG.getNode(ISD::TRUNCATE, DL, VA.getValVT(), Val)
495                            : Val;
496   }
497 }
498 
499 SDValue M68kTargetLowering::LowerMemOpCallTo(SDValue Chain, SDValue StackPtr,
500                                              SDValue Arg, const SDLoc &DL,
501                                              SelectionDAG &DAG,
502                                              const CCValAssign &VA,
503                                              ISD::ArgFlagsTy Flags) const {
504   unsigned LocMemOffset = VA.getLocMemOffset();
505   SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset, DL);
506   PtrOff = DAG.getNode(ISD::ADD, DL, getPointerTy(DAG.getDataLayout()),
507                        StackPtr, PtrOff);
508   if (Flags.isByVal())
509     return CreateCopyOfByValArgument(Arg, PtrOff, Chain, Flags, DAG, DL);
510 
511   return DAG.getStore(
512       Chain, DL, Arg, PtrOff,
513       MachinePointerInfo::getStack(DAG.getMachineFunction(), LocMemOffset));
514 }
515 
516 //===----------------------------------------------------------------------===//
517 //                                   Call
518 //===----------------------------------------------------------------------===//
519 
520 SDValue M68kTargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI,
521                                       SmallVectorImpl<SDValue> &InVals) const {
522   SelectionDAG &DAG = CLI.DAG;
523   SDLoc &DL = CLI.DL;
524   SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs;
525   SmallVectorImpl<SDValue> &OutVals = CLI.OutVals;
526   SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins;
527   SDValue Chain = CLI.Chain;
528   SDValue Callee = CLI.Callee;
529   CallingConv::ID CallConv = CLI.CallConv;
530   bool &IsTailCall = CLI.IsTailCall;
531   bool IsVarArg = CLI.IsVarArg;
532 
533   MachineFunction &MF = DAG.getMachineFunction();
534   StructReturnType SR = callIsStructReturn(Outs);
535   bool IsSibcall = false;
536   M68kMachineFunctionInfo *MFI = MF.getInfo<M68kMachineFunctionInfo>();
537   // const M68kRegisterInfo *TRI = Subtarget.getRegisterInfo();
538 
539   if (CallConv == CallingConv::M68k_INTR)
540     report_fatal_error("M68k interrupts may not be called directly");
541 
542   auto Attr = MF.getFunction().getFnAttribute("disable-tail-calls");
543   if (Attr.getValueAsBool())
544     IsTailCall = false;
545 
546   // FIXME Add tailcalls support
547 
548   bool IsMustTail = CLI.CB && CLI.CB->isMustTailCall();
549   if (IsMustTail) {
550     // Force this to be a tail call.  The verifier rules are enough to ensure
551     // that we can lower this successfully without moving the return address
552     // around.
553     IsTailCall = true;
554   } else if (IsTailCall) {
555     // Check if it's really possible to do a tail call.
556     IsTailCall = IsEligibleForTailCallOptimization(
557         Callee, CallConv, IsVarArg, SR != NotStructReturn,
558         MF.getFunction().hasStructRetAttr(), CLI.RetTy, Outs, OutVals, Ins,
559         DAG);
560 
561     // Sibcalls are automatically detected tailcalls which do not require
562     // ABI changes.
563     if (!MF.getTarget().Options.GuaranteedTailCallOpt && IsTailCall)
564       IsSibcall = true;
565 
566     if (IsTailCall)
567       ++NumTailCalls;
568   }
569 
570   assert(!(IsVarArg && canGuaranteeTCO(CallConv)) &&
571          "Var args not supported with calling convention fastcc");
572 
573   // Analyze operands of the call, assigning locations to each operand.
574   SmallVector<CCValAssign, 16> ArgLocs;
575   SmallVector<Type *, 4> ArgTypes;
576   for (const auto &Arg : CLI.getArgs())
577     ArgTypes.emplace_back(Arg.Ty);
578   M68kCCState CCInfo(ArgTypes, CallConv, IsVarArg, MF, ArgLocs,
579                      *DAG.getContext());
580   CCInfo.AnalyzeCallOperands(Outs, CC_M68k);
581 
582   // Get a count of how many bytes are to be pushed on the stack.
583   unsigned NumBytes = CCInfo.getAlignedCallFrameSize();
584   if (IsSibcall) {
585     // This is a sibcall. The memory operands are available in caller's
586     // own caller's stack.
587     NumBytes = 0;
588   } else if (MF.getTarget().Options.GuaranteedTailCallOpt &&
589              canGuaranteeTCO(CallConv)) {
590     NumBytes = GetAlignedArgumentStackSize(NumBytes, DAG);
591   }
592 
593   int FPDiff = 0;
594   if (IsTailCall && !IsSibcall && !IsMustTail) {
595     // Lower arguments at fp - stackoffset + fpdiff.
596     unsigned NumBytesCallerPushed = MFI->getBytesToPopOnReturn();
597 
598     FPDiff = NumBytesCallerPushed - NumBytes;
599 
600     // Set the delta of movement of the returnaddr stackslot.
601     // But only set if delta is greater than previous delta.
602     if (FPDiff < MFI->getTCReturnAddrDelta())
603       MFI->setTCReturnAddrDelta(FPDiff);
604   }
605 
606   unsigned NumBytesToPush = NumBytes;
607   unsigned NumBytesToPop = NumBytes;
608 
609   // If we have an inalloca argument, all stack space has already been allocated
610   // for us and be right at the top of the stack.  We don't support multiple
611   // arguments passed in memory when using inalloca.
612   if (!Outs.empty() && Outs.back().Flags.isInAlloca()) {
613     NumBytesToPush = 0;
614     if (!ArgLocs.back().isMemLoc())
615       report_fatal_error("cannot use inalloca attribute on a register "
616                          "parameter");
617     if (ArgLocs.back().getLocMemOffset() != 0)
618       report_fatal_error("any parameter with the inalloca attribute must be "
619                          "the only memory argument");
620   }
621 
622   if (!IsSibcall)
623     Chain = DAG.getCALLSEQ_START(Chain, NumBytesToPush,
624                                  NumBytes - NumBytesToPush, DL);
625 
626   SDValue RetFI;
627   // Load return address for tail calls.
628   if (IsTailCall && FPDiff)
629     Chain = EmitTailCallLoadRetAddr(DAG, RetFI, Chain, IsTailCall, FPDiff, DL);
630 
631   SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
632   SmallVector<SDValue, 8> MemOpChains;
633   SDValue StackPtr;
634 
635   // Walk the register/memloc assignments, inserting copies/loads.  In the case
636   // of tail call optimization arguments are handle later.
637   const M68kRegisterInfo *RegInfo = Subtarget.getRegisterInfo();
638   for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
639     ISD::ArgFlagsTy Flags = Outs[i].Flags;
640 
641     // Skip inalloca arguments, they have already been written.
642     if (Flags.isInAlloca())
643       continue;
644 
645     CCValAssign &VA = ArgLocs[i];
646     EVT RegVT = VA.getLocVT();
647     SDValue Arg = OutVals[i];
648     bool IsByVal = Flags.isByVal();
649 
650     // Promote the value if needed.
651     switch (VA.getLocInfo()) {
652     default:
653       llvm_unreachable("Unknown loc info!");
654     case CCValAssign::Full:
655       break;
656     case CCValAssign::SExt:
657       Arg = DAG.getNode(ISD::SIGN_EXTEND, DL, RegVT, Arg);
658       break;
659     case CCValAssign::ZExt:
660       Arg = DAG.getNode(ISD::ZERO_EXTEND, DL, RegVT, Arg);
661       break;
662     case CCValAssign::AExt:
663       Arg = DAG.getNode(ISD::ANY_EXTEND, DL, RegVT, Arg);
664       break;
665     case CCValAssign::BCvt:
666       Arg = DAG.getBitcast(RegVT, Arg);
667       break;
668     case CCValAssign::Indirect: {
669       // Store the argument.
670       SDValue SpillSlot = DAG.CreateStackTemporary(VA.getValVT());
671       int FI = cast<FrameIndexSDNode>(SpillSlot)->getIndex();
672       Chain = DAG.getStore(
673           Chain, DL, Arg, SpillSlot,
674           MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI));
675       Arg = SpillSlot;
676       break;
677     }
678     }
679 
680     if (VA.isRegLoc()) {
681       RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
682     } else if (!IsSibcall && (!IsTailCall || IsByVal)) {
683       assert(VA.isMemLoc());
684       if (!StackPtr.getNode()) {
685         StackPtr = DAG.getCopyFromReg(Chain, DL, RegInfo->getStackRegister(),
686                                       getPointerTy(DAG.getDataLayout()));
687       }
688       MemOpChains.push_back(
689           LowerMemOpCallTo(Chain, StackPtr, Arg, DL, DAG, VA, Flags));
690     }
691   }
692 
693   if (!MemOpChains.empty())
694     Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOpChains);
695 
696   // FIXME Make sure PIC style GOT works as expected
697   // The only time GOT is really needed is for Medium-PIC static data
698   // otherwise we are happy with pc-rel or static references
699 
700   if (IsVarArg && IsMustTail) {
701     const auto &Forwards = MFI->getForwardedMustTailRegParms();
702     for (const auto &F : Forwards) {
703       SDValue Val = DAG.getCopyFromReg(Chain, DL, F.VReg, F.VT);
704       RegsToPass.push_back(std::make_pair(unsigned(F.PReg), Val));
705     }
706   }
707 
708   // For tail calls lower the arguments to the 'real' stack slots.  Sibcalls
709   // don't need this because the eligibility check rejects calls that require
710   // shuffling arguments passed in memory.
711   if (!IsSibcall && IsTailCall) {
712     // Force all the incoming stack arguments to be loaded from the stack
713     // before any new outgoing arguments are stored to the stack, because the
714     // outgoing stack slots may alias the incoming argument stack slots, and
715     // the alias isn't otherwise explicit. This is slightly more conservative
716     // than necessary, because it means that each store effectively depends
717     // on every argument instead of just those arguments it would clobber.
718     SDValue ArgChain = DAG.getStackArgumentTokenFactor(Chain);
719 
720     SmallVector<SDValue, 8> MemOpChains2;
721     SDValue FIN;
722     int FI = 0;
723     for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
724       CCValAssign &VA = ArgLocs[i];
725       if (VA.isRegLoc())
726         continue;
727       assert(VA.isMemLoc());
728       SDValue Arg = OutVals[i];
729       ISD::ArgFlagsTy Flags = Outs[i].Flags;
730       // Skip inalloca arguments.  They don't require any work.
731       if (Flags.isInAlloca())
732         continue;
733       // Create frame index.
734       int32_t Offset = VA.getLocMemOffset() + FPDiff;
735       uint32_t OpSize = (VA.getLocVT().getSizeInBits() + 7) / 8;
736       FI = MF.getFrameInfo().CreateFixedObject(OpSize, Offset, true);
737       FIN = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout()));
738 
739       if (Flags.isByVal()) {
740         // Copy relative to framepointer.
741         SDValue Source = DAG.getIntPtrConstant(VA.getLocMemOffset(), DL);
742         if (!StackPtr.getNode()) {
743           StackPtr = DAG.getCopyFromReg(Chain, DL, RegInfo->getStackRegister(),
744                                         getPointerTy(DAG.getDataLayout()));
745         }
746         Source = DAG.getNode(ISD::ADD, DL, getPointerTy(DAG.getDataLayout()),
747                              StackPtr, Source);
748 
749         MemOpChains2.push_back(
750             CreateCopyOfByValArgument(Source, FIN, ArgChain, Flags, DAG, DL));
751       } else {
752         // Store relative to framepointer.
753         MemOpChains2.push_back(DAG.getStore(
754             ArgChain, DL, Arg, FIN,
755             MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI)));
756       }
757     }
758 
759     if (!MemOpChains2.empty())
760       Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOpChains2);
761 
762     // Store the return address to the appropriate stack slot.
763     Chain = EmitTailCallStoreRetAddr(DAG, MF, Chain, RetFI,
764                                      getPointerTy(DAG.getDataLayout()),
765                                      Subtarget.getSlotSize(), FPDiff, DL);
766   }
767 
768   // Build a sequence of copy-to-reg nodes chained together with token chain
769   // and flag operands which copy the outgoing args into registers.
770   SDValue InGlue;
771   for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
772     Chain = DAG.getCopyToReg(Chain, DL, RegsToPass[i].first,
773                              RegsToPass[i].second, InGlue);
774     InGlue = Chain.getValue(1);
775   }
776 
777   if (Callee->getOpcode() == ISD::GlobalAddress) {
778     // If the callee is a GlobalAddress node (quite common, every direct call
779     // is) turn it into a TargetGlobalAddress node so that legalize doesn't hack
780     // it.
781     GlobalAddressSDNode *G = cast<GlobalAddressSDNode>(Callee);
782 
783     // We should use extra load for direct calls to dllimported functions in
784     // non-JIT mode.
785     const GlobalValue *GV = G->getGlobal();
786     if (!GV->hasDLLImportStorageClass()) {
787       unsigned char OpFlags = Subtarget.classifyGlobalFunctionReference(GV);
788 
789       Callee = DAG.getTargetGlobalAddress(
790           GV, DL, getPointerTy(DAG.getDataLayout()), G->getOffset(), OpFlags);
791 
792       if (OpFlags == M68kII::MO_GOTPCREL) {
793 
794         // Add a wrapper.
795         Callee = DAG.getNode(M68kISD::WrapperPC, DL,
796                              getPointerTy(DAG.getDataLayout()), Callee);
797 
798         // Add extra indirection
799         Callee = DAG.getLoad(
800             getPointerTy(DAG.getDataLayout()), DL, DAG.getEntryNode(), Callee,
801             MachinePointerInfo::getGOT(DAG.getMachineFunction()));
802       }
803     }
804   } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) {
805     const Module *Mod = DAG.getMachineFunction().getFunction().getParent();
806     unsigned char OpFlags =
807         Subtarget.classifyGlobalFunctionReference(nullptr, *Mod);
808 
809     Callee = DAG.getTargetExternalSymbol(
810         S->getSymbol(), getPointerTy(DAG.getDataLayout()), OpFlags);
811   }
812 
813   // Returns a chain & a flag for retval copy to use.
814   SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
815   SmallVector<SDValue, 8> Ops;
816 
817   if (!IsSibcall && IsTailCall) {
818     Chain = DAG.getCALLSEQ_END(Chain, NumBytesToPop, 0, InGlue, DL);
819     InGlue = Chain.getValue(1);
820   }
821 
822   Ops.push_back(Chain);
823   Ops.push_back(Callee);
824 
825   if (IsTailCall)
826     Ops.push_back(DAG.getConstant(FPDiff, DL, MVT::i32));
827 
828   // Add argument registers to the end of the list so that they are known live
829   // into the call.
830   for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
831     Ops.push_back(DAG.getRegister(RegsToPass[i].first,
832                                   RegsToPass[i].second.getValueType()));
833 
834   // Add a register mask operand representing the call-preserved registers.
835   const uint32_t *Mask = RegInfo->getCallPreservedMask(MF, CallConv);
836   assert(Mask && "Missing call preserved mask for calling convention");
837 
838   Ops.push_back(DAG.getRegisterMask(Mask));
839 
840   if (InGlue.getNode())
841     Ops.push_back(InGlue);
842 
843   if (IsTailCall) {
844     MF.getFrameInfo().setHasTailCall();
845     return DAG.getNode(M68kISD::TC_RETURN, DL, NodeTys, Ops);
846   }
847 
848   Chain = DAG.getNode(M68kISD::CALL, DL, NodeTys, Ops);
849   InGlue = Chain.getValue(1);
850 
851   // Create the CALLSEQ_END node.
852   unsigned NumBytesForCalleeToPop;
853   if (M68k::isCalleePop(CallConv, IsVarArg,
854                         DAG.getTarget().Options.GuaranteedTailCallOpt)) {
855     NumBytesForCalleeToPop = NumBytes; // Callee pops everything
856   } else if (!canGuaranteeTCO(CallConv) && SR == StackStructReturn) {
857     // If this is a call to a struct-return function, the callee
858     // pops the hidden struct pointer, so we have to push it back.
859     NumBytesForCalleeToPop = 4;
860   } else {
861     NumBytesForCalleeToPop = 0; // Callee pops nothing.
862   }
863 
864   if (CLI.DoesNotReturn && !getTargetMachine().Options.TrapUnreachable) {
865     // No need to reset the stack after the call if the call doesn't return. To
866     // make the MI verify, we'll pretend the callee does it for us.
867     NumBytesForCalleeToPop = NumBytes;
868   }
869 
870   // Returns a flag for retval copy to use.
871   if (!IsSibcall) {
872     Chain = DAG.getCALLSEQ_END(Chain, NumBytesToPop, NumBytesForCalleeToPop,
873                                InGlue, DL);
874     InGlue = Chain.getValue(1);
875   }
876 
877   // Handle result values, copying them out of physregs into vregs that we
878   // return.
879   return LowerCallResult(Chain, InGlue, CallConv, IsVarArg, Ins, DL, DAG,
880                          InVals);
881 }
882 
883 SDValue M68kTargetLowering::LowerCallResult(
884     SDValue Chain, SDValue InGlue, CallingConv::ID CallConv, bool IsVarArg,
885     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL,
886     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
887 
888   // Assign locations to each value returned by this call.
889   SmallVector<CCValAssign, 16> RVLocs;
890   CCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(), RVLocs,
891                  *DAG.getContext());
892   CCInfo.AnalyzeCallResult(Ins, RetCC_M68k);
893 
894   // Copy all of the result registers out of their specified physreg.
895   for (unsigned i = 0, e = RVLocs.size(); i != e; ++i) {
896     CCValAssign &VA = RVLocs[i];
897     EVT CopyVT = VA.getLocVT();
898 
899     /// ??? is this correct?
900     Chain = DAG.getCopyFromReg(Chain, DL, VA.getLocReg(), CopyVT, InGlue)
901                 .getValue(1);
902     SDValue Val = Chain.getValue(0);
903 
904     if (VA.isExtInLoc() && VA.getValVT().getScalarType() == MVT::i1)
905       Val = DAG.getNode(ISD::TRUNCATE, DL, VA.getValVT(), Val);
906 
907     InGlue = Chain.getValue(2);
908     InVals.push_back(Val);
909   }
910 
911   return Chain;
912 }
913 
914 //===----------------------------------------------------------------------===//
915 //            Formal Arguments Calling Convention Implementation
916 //===----------------------------------------------------------------------===//
917 
918 SDValue M68kTargetLowering::LowerFormalArguments(
919     SDValue Chain, CallingConv::ID CCID, bool IsVarArg,
920     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL,
921     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
922   MachineFunction &MF = DAG.getMachineFunction();
923   M68kMachineFunctionInfo *MMFI = MF.getInfo<M68kMachineFunctionInfo>();
924   // const TargetFrameLowering &TFL = *Subtarget.getFrameLowering();
925 
926   MachineFrameInfo &MFI = MF.getFrameInfo();
927 
928   // Assign locations to all of the incoming arguments.
929   SmallVector<CCValAssign, 16> ArgLocs;
930   SmallVector<Type *, 4> ArgTypes;
931   for (const Argument &Arg : MF.getFunction().args())
932     ArgTypes.emplace_back(Arg.getType());
933   M68kCCState CCInfo(ArgTypes, CCID, IsVarArg, MF, ArgLocs, *DAG.getContext());
934 
935   CCInfo.AnalyzeFormalArguments(Ins, CC_M68k);
936 
937   unsigned LastVal = ~0U;
938   SDValue ArgValue;
939   for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
940     CCValAssign &VA = ArgLocs[i];
941     assert(VA.getValNo() != LastVal && "Same value in different locations");
942 
943     LastVal = VA.getValNo();
944 
945     if (VA.isRegLoc()) {
946       EVT RegVT = VA.getLocVT();
947       const TargetRegisterClass *RC;
948       if (RegVT == MVT::i32)
949         RC = &M68k::XR32RegClass;
950       else
951         llvm_unreachable("Unknown argument type!");
952 
953       Register Reg = MF.addLiveIn(VA.getLocReg(), RC);
954       ArgValue = DAG.getCopyFromReg(Chain, DL, Reg, RegVT);
955 
956       // If this is an 8 or 16-bit value, it is really passed promoted to 32
957       // bits.  Insert an assert[sz]ext to capture this, then truncate to the
958       // right size.
959       if (VA.getLocInfo() == CCValAssign::SExt) {
960         ArgValue = DAG.getNode(ISD::AssertSext, DL, RegVT, ArgValue,
961                                DAG.getValueType(VA.getValVT()));
962       } else if (VA.getLocInfo() == CCValAssign::ZExt) {
963         ArgValue = DAG.getNode(ISD::AssertZext, DL, RegVT, ArgValue,
964                                DAG.getValueType(VA.getValVT()));
965       } else if (VA.getLocInfo() == CCValAssign::BCvt) {
966         ArgValue = DAG.getBitcast(VA.getValVT(), ArgValue);
967       }
968 
969       if (VA.isExtInLoc()) {
970         ArgValue = DAG.getNode(ISD::TRUNCATE, DL, VA.getValVT(), ArgValue);
971       }
972     } else {
973       assert(VA.isMemLoc());
974       ArgValue = LowerMemArgument(Chain, CCID, Ins, DL, DAG, VA, MFI, i);
975     }
976 
977     // If value is passed via pointer - do a load.
978     // TODO Make sure this handling on indirect arguments is correct
979     if (VA.getLocInfo() == CCValAssign::Indirect)
980       ArgValue =
981           DAG.getLoad(VA.getValVT(), DL, Chain, ArgValue, MachinePointerInfo());
982 
983     InVals.push_back(ArgValue);
984   }
985 
986   for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
987     // Swift calling convention does not require we copy the sret argument
988     // into %D0 for the return. We don't set SRetReturnReg for Swift.
989     if (CCID == CallingConv::Swift)
990       continue;
991 
992     // ABI require that for returning structs by value we copy the sret argument
993     // into %D0 for the return. Save the argument into a virtual register so
994     // that we can access it from the return points.
995     if (Ins[i].Flags.isSRet()) {
996       unsigned Reg = MMFI->getSRetReturnReg();
997       if (!Reg) {
998         MVT PtrTy = getPointerTy(DAG.getDataLayout());
999         Reg = MF.getRegInfo().createVirtualRegister(getRegClassFor(PtrTy));
1000         MMFI->setSRetReturnReg(Reg);
1001       }
1002       SDValue Copy = DAG.getCopyToReg(DAG.getEntryNode(), DL, Reg, InVals[i]);
1003       Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Copy, Chain);
1004       break;
1005     }
1006   }
1007 
1008   unsigned StackSize = CCInfo.getStackSize();
1009   // Align stack specially for tail calls.
1010   if (shouldGuaranteeTCO(CCID, MF.getTarget().Options.GuaranteedTailCallOpt))
1011     StackSize = GetAlignedArgumentStackSize(StackSize, DAG);
1012 
1013   // If the function takes variable number of arguments, make a frame index for
1014   // the start of the first vararg value... for expansion of llvm.va_start. We
1015   // can skip this if there are no va_start calls.
1016   if (MFI.hasVAStart()) {
1017     MMFI->setVarArgsFrameIndex(MFI.CreateFixedObject(1, StackSize, true));
1018   }
1019 
1020   if (IsVarArg && MFI.hasMustTailInVarArgFunc()) {
1021     // We forward some GPRs and some vector types.
1022     SmallVector<MVT, 2> RegParmTypes;
1023     MVT IntVT = MVT::i32;
1024     RegParmTypes.push_back(IntVT);
1025 
1026     // Compute the set of forwarded registers. The rest are scratch.
1027     // ??? what is this for?
1028     SmallVectorImpl<ForwardedRegister> &Forwards =
1029         MMFI->getForwardedMustTailRegParms();
1030     CCInfo.analyzeMustTailForwardedRegisters(Forwards, RegParmTypes, CC_M68k);
1031 
1032     // Copy all forwards from physical to virtual registers.
1033     for (ForwardedRegister &F : Forwards) {
1034       // FIXME Can we use a less constrained schedule?
1035       SDValue RegVal = DAG.getCopyFromReg(Chain, DL, F.VReg, F.VT);
1036       F.VReg = MF.getRegInfo().createVirtualRegister(getRegClassFor(F.VT));
1037       Chain = DAG.getCopyToReg(Chain, DL, F.VReg, RegVal);
1038     }
1039   }
1040 
1041   // Some CCs need callee pop.
1042   if (M68k::isCalleePop(CCID, IsVarArg,
1043                         MF.getTarget().Options.GuaranteedTailCallOpt)) {
1044     MMFI->setBytesToPopOnReturn(StackSize); // Callee pops everything.
1045   } else {
1046     MMFI->setBytesToPopOnReturn(0); // Callee pops nothing.
1047     // If this is an sret function, the return should pop the hidden pointer.
1048     if (!canGuaranteeTCO(CCID) && argsAreStructReturn(Ins) == StackStructReturn)
1049       MMFI->setBytesToPopOnReturn(4);
1050   }
1051 
1052   MMFI->setArgumentStackSize(StackSize);
1053 
1054   return Chain;
1055 }
1056 
1057 //===----------------------------------------------------------------------===//
1058 //              Return Value Calling Convention Implementation
1059 //===----------------------------------------------------------------------===//
1060 
1061 bool M68kTargetLowering::CanLowerReturn(
1062     CallingConv::ID CCID, MachineFunction &MF, bool IsVarArg,
1063     const SmallVectorImpl<ISD::OutputArg> &Outs, LLVMContext &Context) const {
1064   SmallVector<CCValAssign, 16> RVLocs;
1065   CCState CCInfo(CCID, IsVarArg, MF, RVLocs, Context);
1066   return CCInfo.CheckReturn(Outs, RetCC_M68k);
1067 }
1068 
1069 SDValue
1070 M68kTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CCID,
1071                                 bool IsVarArg,
1072                                 const SmallVectorImpl<ISD::OutputArg> &Outs,
1073                                 const SmallVectorImpl<SDValue> &OutVals,
1074                                 const SDLoc &DL, SelectionDAG &DAG) const {
1075   MachineFunction &MF = DAG.getMachineFunction();
1076   M68kMachineFunctionInfo *MFI = MF.getInfo<M68kMachineFunctionInfo>();
1077 
1078   SmallVector<CCValAssign, 16> RVLocs;
1079   CCState CCInfo(CCID, IsVarArg, MF, RVLocs, *DAG.getContext());
1080   CCInfo.AnalyzeReturn(Outs, RetCC_M68k);
1081 
1082   SDValue Glue;
1083   SmallVector<SDValue, 6> RetOps;
1084   // Operand #0 = Chain (updated below)
1085   RetOps.push_back(Chain);
1086   // Operand #1 = Bytes To Pop
1087   RetOps.push_back(
1088       DAG.getTargetConstant(MFI->getBytesToPopOnReturn(), DL, MVT::i32));
1089 
1090   // Copy the result values into the output registers.
1091   for (unsigned i = 0, e = RVLocs.size(); i != e; ++i) {
1092     CCValAssign &VA = RVLocs[i];
1093     assert(VA.isRegLoc() && "Can only return in registers!");
1094     SDValue ValToCopy = OutVals[i];
1095     EVT ValVT = ValToCopy.getValueType();
1096 
1097     // Promote values to the appropriate types.
1098     if (VA.getLocInfo() == CCValAssign::SExt)
1099       ValToCopy = DAG.getNode(ISD::SIGN_EXTEND, DL, VA.getLocVT(), ValToCopy);
1100     else if (VA.getLocInfo() == CCValAssign::ZExt)
1101       ValToCopy = DAG.getNode(ISD::ZERO_EXTEND, DL, VA.getLocVT(), ValToCopy);
1102     else if (VA.getLocInfo() == CCValAssign::AExt) {
1103       if (ValVT.isVector() && ValVT.getVectorElementType() == MVT::i1)
1104         ValToCopy = DAG.getNode(ISD::SIGN_EXTEND, DL, VA.getLocVT(), ValToCopy);
1105       else
1106         ValToCopy = DAG.getNode(ISD::ANY_EXTEND, DL, VA.getLocVT(), ValToCopy);
1107     } else if (VA.getLocInfo() == CCValAssign::BCvt)
1108       ValToCopy = DAG.getBitcast(VA.getLocVT(), ValToCopy);
1109 
1110     Chain = DAG.getCopyToReg(Chain, DL, VA.getLocReg(), ValToCopy, Glue);
1111     Glue = Chain.getValue(1);
1112     RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
1113   }
1114 
1115   // Swift calling convention does not require we copy the sret argument
1116   // into %d0 for the return, and SRetReturnReg is not set for Swift.
1117 
1118   // ABI require that for returning structs by value we copy the sret argument
1119   // into %D0 for the return. Save the argument into a virtual register so that
1120   // we can access it from the return points.
1121   //
1122   // Checking Function.hasStructRetAttr() here is insufficient because the IR
1123   // may not have an explicit sret argument. If MFI.CanLowerReturn is
1124   // false, then an sret argument may be implicitly inserted in the SelDAG. In
1125   // either case MFI->setSRetReturnReg() will have been called.
1126   if (unsigned SRetReg = MFI->getSRetReturnReg()) {
1127     // ??? Can i just move this to the top and escape this explanation?
1128     // When we have both sret and another return value, we should use the
1129     // original Chain stored in RetOps[0], instead of the current Chain updated
1130     // in the above loop. If we only have sret, RetOps[0] equals to Chain.
1131 
1132     // For the case of sret and another return value, we have
1133     //   Chain_0 at the function entry
1134     //   Chain_1 = getCopyToReg(Chain_0) in the above loop
1135     // If we use Chain_1 in getCopyFromReg, we will have
1136     //   Val = getCopyFromReg(Chain_1)
1137     //   Chain_2 = getCopyToReg(Chain_1, Val) from below
1138 
1139     // getCopyToReg(Chain_0) will be glued together with
1140     // getCopyToReg(Chain_1, Val) into Unit A, getCopyFromReg(Chain_1) will be
1141     // in Unit B, and we will have cyclic dependency between Unit A and Unit B:
1142     //   Data dependency from Unit B to Unit A due to usage of Val in
1143     //     getCopyToReg(Chain_1, Val)
1144     //   Chain dependency from Unit A to Unit B
1145 
1146     // So here, we use RetOps[0] (i.e Chain_0) for getCopyFromReg.
1147     SDValue Val = DAG.getCopyFromReg(RetOps[0], DL, SRetReg,
1148                                      getPointerTy(MF.getDataLayout()));
1149 
1150     // ??? How will this work if CC does not use registers for args passing?
1151     // ??? What if I return multiple structs?
1152     unsigned RetValReg = M68k::D0;
1153     Chain = DAG.getCopyToReg(Chain, DL, RetValReg, Val, Glue);
1154     Glue = Chain.getValue(1);
1155 
1156     RetOps.push_back(
1157         DAG.getRegister(RetValReg, getPointerTy(DAG.getDataLayout())));
1158   }
1159 
1160   RetOps[0] = Chain; // Update chain.
1161 
1162   // Add the glue if we have it.
1163   if (Glue.getNode())
1164     RetOps.push_back(Glue);
1165 
1166   return DAG.getNode(M68kISD::RET, DL, MVT::Other, RetOps);
1167 }
1168 
1169 //===----------------------------------------------------------------------===//
1170 //                Fast Calling Convention (tail call) implementation
1171 //===----------------------------------------------------------------------===//
1172 
1173 //  Like std call, callee cleans arguments, convention except that ECX is
1174 //  reserved for storing the tail called function address. Only 2 registers are
1175 //  free for argument passing (inreg). Tail call optimization is performed
1176 //  provided:
1177 //                * tailcallopt is enabled
1178 //                * caller/callee are fastcc
1179 //  On M68k_64 architecture with GOT-style position independent code only
1180 //  local (within module) calls are supported at the moment. To keep the stack
1181 //  aligned according to platform abi the function GetAlignedArgumentStackSize
1182 //  ensures that argument delta is always multiples of stack alignment. (Dynamic
1183 //  linkers need this - darwin's dyld for example) If a tail called function
1184 //  callee has more arguments than the caller the caller needs to make sure that
1185 //  there is room to move the RETADDR to. This is achieved by reserving an area
1186 //  the size of the argument delta right after the original RETADDR, but before
1187 //  the saved framepointer or the spilled registers e.g. caller(arg1, arg2)
1188 //  calls callee(arg1, arg2,arg3,arg4) stack layout:
1189 //    arg1
1190 //    arg2
1191 //    RETADDR
1192 //    [ new RETADDR
1193 //      move area ]
1194 //    (possible EBP)
1195 //    ESI
1196 //    EDI
1197 //    local1 ..
1198 
1199 /// Make the stack size align e.g 16n + 12 aligned for a 16-byte align
1200 /// requirement.
1201 unsigned
1202 M68kTargetLowering::GetAlignedArgumentStackSize(unsigned StackSize,
1203                                                 SelectionDAG &DAG) const {
1204   const TargetFrameLowering &TFI = *Subtarget.getFrameLowering();
1205   unsigned StackAlignment = TFI.getStackAlignment();
1206   uint64_t AlignMask = StackAlignment - 1;
1207   int64_t Offset = StackSize;
1208   unsigned SlotSize = Subtarget.getSlotSize();
1209   if ((Offset & AlignMask) <= (StackAlignment - SlotSize)) {
1210     // Number smaller than 12 so just add the difference.
1211     Offset += ((StackAlignment - SlotSize) - (Offset & AlignMask));
1212   } else {
1213     // Mask out lower bits, add stackalignment once plus the 12 bytes.
1214     Offset =
1215         ((~AlignMask) & Offset) + StackAlignment + (StackAlignment - SlotSize);
1216   }
1217   return Offset;
1218 }
1219 
1220 /// Check whether the call is eligible for tail call optimization. Targets
1221 /// that want to do tail call optimization should implement this function.
1222 bool M68kTargetLowering::IsEligibleForTailCallOptimization(
1223     SDValue Callee, CallingConv::ID CalleeCC, bool IsVarArg,
1224     bool IsCalleeStructRet, bool IsCallerStructRet, Type *RetTy,
1225     const SmallVectorImpl<ISD::OutputArg> &Outs,
1226     const SmallVectorImpl<SDValue> &OutVals,
1227     const SmallVectorImpl<ISD::InputArg> &Ins, SelectionDAG &DAG) const {
1228   if (!mayTailCallThisCC(CalleeCC))
1229     return false;
1230 
1231   // If -tailcallopt is specified, make fastcc functions tail-callable.
1232   MachineFunction &MF = DAG.getMachineFunction();
1233   const auto &CallerF = MF.getFunction();
1234 
1235   CallingConv::ID CallerCC = CallerF.getCallingConv();
1236   bool CCMatch = CallerCC == CalleeCC;
1237 
1238   if (DAG.getTarget().Options.GuaranteedTailCallOpt) {
1239     if (canGuaranteeTCO(CalleeCC) && CCMatch)
1240       return true;
1241     return false;
1242   }
1243 
1244   // Look for obvious safe cases to perform tail call optimization that do not
1245   // require ABI changes. This is what gcc calls sibcall.
1246 
1247   // Can't do sibcall if stack needs to be dynamically re-aligned. PEI needs to
1248   // emit a special epilogue.
1249   const M68kRegisterInfo *RegInfo = Subtarget.getRegisterInfo();
1250   if (RegInfo->hasStackRealignment(MF))
1251     return false;
1252 
1253   // Also avoid sibcall optimization if either caller or callee uses struct
1254   // return semantics.
1255   if (IsCalleeStructRet || IsCallerStructRet)
1256     return false;
1257 
1258   // Do not sibcall optimize vararg calls unless all arguments are passed via
1259   // registers.
1260   LLVMContext &C = *DAG.getContext();
1261   if (IsVarArg && !Outs.empty()) {
1262 
1263     SmallVector<CCValAssign, 16> ArgLocs;
1264     CCState CCInfo(CalleeCC, IsVarArg, MF, ArgLocs, C);
1265 
1266     CCInfo.AnalyzeCallOperands(Outs, CC_M68k);
1267     for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i)
1268       if (!ArgLocs[i].isRegLoc())
1269         return false;
1270   }
1271 
1272   // Check that the call results are passed in the same way.
1273   if (!CCState::resultsCompatible(CalleeCC, CallerCC, MF, C, Ins, RetCC_M68k,
1274                                   RetCC_M68k))
1275     return false;
1276 
1277   // The callee has to preserve all registers the caller needs to preserve.
1278   const M68kRegisterInfo *TRI = Subtarget.getRegisterInfo();
1279   const uint32_t *CallerPreserved = TRI->getCallPreservedMask(MF, CallerCC);
1280   if (!CCMatch) {
1281     const uint32_t *CalleePreserved = TRI->getCallPreservedMask(MF, CalleeCC);
1282     if (!TRI->regmaskSubsetEqual(CallerPreserved, CalleePreserved))
1283       return false;
1284   }
1285 
1286   unsigned StackArgsSize = 0;
1287 
1288   // If the callee takes no arguments then go on to check the results of the
1289   // call.
1290   if (!Outs.empty()) {
1291     // Check if stack adjustment is needed. For now, do not do this if any
1292     // argument is passed on the stack.
1293     SmallVector<CCValAssign, 16> ArgLocs;
1294     CCState CCInfo(CalleeCC, IsVarArg, MF, ArgLocs, C);
1295 
1296     CCInfo.AnalyzeCallOperands(Outs, CC_M68k);
1297     StackArgsSize = CCInfo.getStackSize();
1298 
1299     if (StackArgsSize) {
1300       // Check if the arguments are already laid out in the right way as
1301       // the caller's fixed stack objects.
1302       MachineFrameInfo &MFI = MF.getFrameInfo();
1303       const MachineRegisterInfo *MRI = &MF.getRegInfo();
1304       const M68kInstrInfo *TII = Subtarget.getInstrInfo();
1305       for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
1306         CCValAssign &VA = ArgLocs[i];
1307         SDValue Arg = OutVals[i];
1308         ISD::ArgFlagsTy Flags = Outs[i].Flags;
1309         if (VA.getLocInfo() == CCValAssign::Indirect)
1310           return false;
1311         if (!VA.isRegLoc()) {
1312           if (!MatchingStackOffset(Arg, VA.getLocMemOffset(), Flags, MFI, MRI,
1313                                    TII, VA))
1314             return false;
1315         }
1316       }
1317     }
1318 
1319     bool PositionIndependent = isPositionIndependent();
1320     // If the tailcall address may be in a register, then make sure it's
1321     // possible to register allocate for it. The call address can
1322     // only target %A0 or %A1 since the tail call must be scheduled after
1323     // callee-saved registers are restored. These happen to be the same
1324     // registers used to pass 'inreg' arguments so watch out for those.
1325     if ((!isa<GlobalAddressSDNode>(Callee) &&
1326          !isa<ExternalSymbolSDNode>(Callee)) ||
1327         PositionIndependent) {
1328       unsigned NumInRegs = 0;
1329       // In PIC we need an extra register to formulate the address computation
1330       // for the callee.
1331       unsigned MaxInRegs = PositionIndependent ? 1 : 2;
1332 
1333       for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
1334         CCValAssign &VA = ArgLocs[i];
1335         if (!VA.isRegLoc())
1336           continue;
1337         Register Reg = VA.getLocReg();
1338         switch (Reg) {
1339         default:
1340           break;
1341         case M68k::A0:
1342         case M68k::A1:
1343           if (++NumInRegs == MaxInRegs)
1344             return false;
1345           break;
1346         }
1347       }
1348     }
1349 
1350     const MachineRegisterInfo &MRI = MF.getRegInfo();
1351     if (!parametersInCSRMatch(MRI, CallerPreserved, ArgLocs, OutVals))
1352       return false;
1353   }
1354 
1355   bool CalleeWillPop = M68k::isCalleePop(
1356       CalleeCC, IsVarArg, MF.getTarget().Options.GuaranteedTailCallOpt);
1357 
1358   if (unsigned BytesToPop =
1359           MF.getInfo<M68kMachineFunctionInfo>()->getBytesToPopOnReturn()) {
1360     // If we have bytes to pop, the callee must pop them.
1361     bool CalleePopMatches = CalleeWillPop && BytesToPop == StackArgsSize;
1362     if (!CalleePopMatches)
1363       return false;
1364   } else if (CalleeWillPop && StackArgsSize > 0) {
1365     // If we don't have bytes to pop, make sure the callee doesn't pop any.
1366     return false;
1367   }
1368 
1369   return true;
1370 }
1371 
1372 //===----------------------------------------------------------------------===//
1373 // Custom Lower
1374 //===----------------------------------------------------------------------===//
1375 
1376 SDValue M68kTargetLowering::LowerOperation(SDValue Op,
1377                                            SelectionDAG &DAG) const {
1378   switch (Op.getOpcode()) {
1379   default:
1380     llvm_unreachable("Should not custom lower this!");
1381   case ISD::SADDO:
1382   case ISD::UADDO:
1383   case ISD::SSUBO:
1384   case ISD::USUBO:
1385   case ISD::SMULO:
1386   case ISD::UMULO:
1387     return LowerXALUO(Op, DAG);
1388   case ISD::SETCC:
1389     return LowerSETCC(Op, DAG);
1390   case ISD::SETCCCARRY:
1391     return LowerSETCCCARRY(Op, DAG);
1392   case ISD::SELECT:
1393     return LowerSELECT(Op, DAG);
1394   case ISD::BRCOND:
1395     return LowerBRCOND(Op, DAG);
1396   case ISD::ADDC:
1397   case ISD::ADDE:
1398   case ISD::SUBC:
1399   case ISD::SUBE:
1400     return LowerADDC_ADDE_SUBC_SUBE(Op, DAG);
1401   case ISD::ConstantPool:
1402     return LowerConstantPool(Op, DAG);
1403   case ISD::GlobalAddress:
1404     return LowerGlobalAddress(Op, DAG);
1405   case ISD::ExternalSymbol:
1406     return LowerExternalSymbol(Op, DAG);
1407   case ISD::BlockAddress:
1408     return LowerBlockAddress(Op, DAG);
1409   case ISD::JumpTable:
1410     return LowerJumpTable(Op, DAG);
1411   case ISD::VASTART:
1412     return LowerVASTART(Op, DAG);
1413   case ISD::DYNAMIC_STACKALLOC:
1414     return LowerDYNAMIC_STACKALLOC(Op, DAG);
1415   case ISD::SHL_PARTS:
1416     return LowerShiftLeftParts(Op, DAG);
1417   case ISD::SRA_PARTS:
1418     return LowerShiftRightParts(Op, DAG, true);
1419   case ISD::SRL_PARTS:
1420     return LowerShiftRightParts(Op, DAG, false);
1421   case ISD::ATOMIC_FENCE:
1422     return LowerATOMICFENCE(Op, DAG);
1423   case ISD::GlobalTLSAddress:
1424     return LowerGlobalTLSAddress(Op, DAG);
1425   }
1426 }
1427 
1428 SDValue M68kTargetLowering::LowerExternalSymbolCall(SelectionDAG &DAG,
1429                                                     SDLoc Loc,
1430                                                     llvm::StringRef SymbolName,
1431                                                     ArgListTy &&ArgList) const {
1432   PointerType *PtrTy = PointerType::get(*DAG.getContext(), 0);
1433   CallLoweringInfo CLI(DAG);
1434   CLI.setDebugLoc(Loc)
1435       .setChain(DAG.getEntryNode())
1436       .setLibCallee(CallingConv::C, PtrTy,
1437                     DAG.getExternalSymbol(SymbolName.data(),
1438                                           getPointerMemTy(DAG.getDataLayout())),
1439                     std::move(ArgList));
1440   return LowerCallTo(CLI).first;
1441 }
1442 
1443 SDValue M68kTargetLowering::getTLSGetAddr(GlobalAddressSDNode *GA,
1444                                           SelectionDAG &DAG,
1445                                           unsigned TargetFlags) const {
1446   SDValue GOT = DAG.getGLOBAL_OFFSET_TABLE(MVT::i32);
1447   SDValue TGA = DAG.getTargetGlobalAddress(
1448       GA->getGlobal(), GA, GA->getValueType(0), GA->getOffset(), TargetFlags);
1449   SDValue Arg = DAG.getNode(ISD::ADD, SDLoc(GA), MVT::i32, GOT, TGA);
1450 
1451   PointerType *PtrTy = PointerType::get(*DAG.getContext(), 0);
1452 
1453   ArgListTy Args;
1454   ArgListEntry Entry;
1455   Entry.Node = Arg;
1456   Entry.Ty = PtrTy;
1457   Args.push_back(Entry);
1458   return LowerExternalSymbolCall(DAG, SDLoc(GA), "__tls_get_addr",
1459                                  std::move(Args));
1460 }
1461 
1462 SDValue M68kTargetLowering::getM68kReadTp(SDLoc Loc, SelectionDAG &DAG) const {
1463   return LowerExternalSymbolCall(DAG, Loc, "__m68k_read_tp", ArgListTy());
1464 }
1465 
1466 SDValue M68kTargetLowering::LowerTLSGeneralDynamic(GlobalAddressSDNode *GA,
1467                                                    SelectionDAG &DAG) const {
1468   return getTLSGetAddr(GA, DAG, M68kII::MO_TLSGD);
1469 }
1470 
1471 SDValue M68kTargetLowering::LowerTLSLocalDynamic(GlobalAddressSDNode *GA,
1472                                                  SelectionDAG &DAG) const {
1473   SDValue Addr = getTLSGetAddr(GA, DAG, M68kII::MO_TLSLDM);
1474   SDValue TGA =
1475       DAG.getTargetGlobalAddress(GA->getGlobal(), GA, GA->getValueType(0),
1476                                  GA->getOffset(), M68kII::MO_TLSLD);
1477   return DAG.getNode(ISD::ADD, SDLoc(GA), MVT::i32, TGA, Addr);
1478 }
1479 
1480 SDValue M68kTargetLowering::LowerTLSInitialExec(GlobalAddressSDNode *GA,
1481                                                 SelectionDAG &DAG) const {
1482   SDValue GOT = DAG.getGLOBAL_OFFSET_TABLE(MVT::i32);
1483   SDValue Tp = getM68kReadTp(SDLoc(GA), DAG);
1484   SDValue TGA =
1485       DAG.getTargetGlobalAddress(GA->getGlobal(), GA, GA->getValueType(0),
1486                                  GA->getOffset(), M68kII::MO_TLSIE);
1487   SDValue Addr = DAG.getNode(ISD::ADD, SDLoc(GA), MVT::i32, TGA, GOT);
1488   SDValue Offset =
1489       DAG.getLoad(MVT::i32, SDLoc(GA), DAG.getEntryNode(), Addr,
1490                   MachinePointerInfo::getGOT(DAG.getMachineFunction()));
1491 
1492   return DAG.getNode(ISD::ADD, SDLoc(GA), MVT::i32, Offset, Tp);
1493 }
1494 
1495 SDValue M68kTargetLowering::LowerTLSLocalExec(GlobalAddressSDNode *GA,
1496                                               SelectionDAG &DAG) const {
1497   SDValue Tp = getM68kReadTp(SDLoc(GA), DAG);
1498   SDValue TGA =
1499       DAG.getTargetGlobalAddress(GA->getGlobal(), GA, GA->getValueType(0),
1500                                  GA->getOffset(), M68kII::MO_TLSLE);
1501   return DAG.getNode(ISD::ADD, SDLoc(GA), MVT::i32, TGA, Tp);
1502 }
1503 
1504 SDValue M68kTargetLowering::LowerGlobalTLSAddress(SDValue Op,
1505                                                   SelectionDAG &DAG) const {
1506   assert(Subtarget.isTargetELF());
1507 
1508   auto *GA = cast<GlobalAddressSDNode>(Op);
1509   TLSModel::Model AccessModel = DAG.getTarget().getTLSModel(GA->getGlobal());
1510 
1511   switch (AccessModel) {
1512   case TLSModel::GeneralDynamic:
1513     return LowerTLSGeneralDynamic(GA, DAG);
1514   case TLSModel::LocalDynamic:
1515     return LowerTLSLocalDynamic(GA, DAG);
1516   case TLSModel::InitialExec:
1517     return LowerTLSInitialExec(GA, DAG);
1518   case TLSModel::LocalExec:
1519     return LowerTLSLocalExec(GA, DAG);
1520   }
1521 
1522   llvm_unreachable("Unexpected TLS access model type");
1523 }
1524 
1525 bool M68kTargetLowering::decomposeMulByConstant(LLVMContext &Context, EVT VT,
1526                                                 SDValue C) const {
1527   // Shifts and add instructions in M68000 and M68010 support
1528   // up to 32 bits, but mul only has 16-bit variant. So it's almost
1529   // certainly beneficial to lower 8/16/32-bit mul to their
1530   // add / shifts counterparts. But for 64-bits mul, it might be
1531   // safer to just leave it to compiler runtime implementations.
1532   return VT.bitsLE(MVT::i32) || Subtarget.atLeastM68020();
1533 }
1534 
1535 static bool isOverflowArithmetic(unsigned Opcode) {
1536   switch (Opcode) {
1537   case ISD::UADDO:
1538   case ISD::SADDO:
1539   case ISD::USUBO:
1540   case ISD::SSUBO:
1541   case ISD::UMULO:
1542   case ISD::SMULO:
1543     return true;
1544   default:
1545     return false;
1546   }
1547 }
1548 
1549 static void lowerOverflowArithmetic(SDValue Op, SelectionDAG &DAG,
1550                                     SDValue &Result, SDValue &CCR,
1551                                     unsigned &CC) {
1552   SDNode *N = Op.getNode();
1553   EVT VT = N->getValueType(0);
1554   SDValue LHS = N->getOperand(0);
1555   SDValue RHS = N->getOperand(1);
1556   SDLoc DL(Op);
1557 
1558   unsigned TruncOp = 0;
1559   auto PromoteMULO = [&](unsigned ExtOp) {
1560     // We don't have 8-bit multiplications, so promote i8 version of U/SMULO
1561     // to i16.
1562     // Ideally this should be done by legalizer but sadly there is no promotion
1563     // rule for U/SMULO at this moment.
1564     if (VT == MVT::i8) {
1565       LHS = DAG.getNode(ExtOp, DL, MVT::i16, LHS);
1566       RHS = DAG.getNode(ExtOp, DL, MVT::i16, RHS);
1567       VT = MVT::i16;
1568       TruncOp = ISD::TRUNCATE;
1569     }
1570   };
1571 
1572   bool NoOverflow = false;
1573   unsigned BaseOp = 0;
1574   switch (Op.getOpcode()) {
1575   default:
1576     llvm_unreachable("Unknown ovf instruction!");
1577   case ISD::SADDO:
1578     BaseOp = M68kISD::ADD;
1579     CC = M68k::COND_VS;
1580     break;
1581   case ISD::UADDO:
1582     BaseOp = M68kISD::ADD;
1583     CC = M68k::COND_CS;
1584     break;
1585   case ISD::SSUBO:
1586     BaseOp = M68kISD::SUB;
1587     CC = M68k::COND_VS;
1588     break;
1589   case ISD::USUBO:
1590     BaseOp = M68kISD::SUB;
1591     CC = M68k::COND_CS;
1592     break;
1593   case ISD::UMULO:
1594     PromoteMULO(ISD::ZERO_EXTEND);
1595     NoOverflow = VT != MVT::i32;
1596     BaseOp = NoOverflow ? ISD::MUL : M68kISD::UMUL;
1597     CC = M68k::COND_VS;
1598     break;
1599   case ISD::SMULO:
1600     PromoteMULO(ISD::SIGN_EXTEND);
1601     NoOverflow = VT != MVT::i32;
1602     BaseOp = NoOverflow ? ISD::MUL : M68kISD::SMUL;
1603     CC = M68k::COND_VS;
1604     break;
1605   }
1606 
1607   SDVTList VTs;
1608   if (NoOverflow)
1609     VTs = DAG.getVTList(VT);
1610   else
1611     // Also sets CCR.
1612     VTs = DAG.getVTList(VT, MVT::i8);
1613 
1614   SDValue Arith = DAG.getNode(BaseOp, DL, VTs, LHS, RHS);
1615   Result = Arith.getValue(0);
1616   if (TruncOp)
1617     // Right now the only place to truncate is from i16 to i8.
1618     Result = DAG.getNode(TruncOp, DL, MVT::i8, Arith);
1619 
1620   if (NoOverflow)
1621     CCR = DAG.getConstant(0, DL, N->getValueType(1));
1622   else
1623     CCR = Arith.getValue(1);
1624 }
1625 
1626 SDValue M68kTargetLowering::LowerXALUO(SDValue Op, SelectionDAG &DAG) const {
1627   SDNode *N = Op.getNode();
1628   SDLoc DL(Op);
1629 
1630   // Lower the "add/sub/mul with overflow" instruction into a regular ins plus
1631   // a "setcc" instruction that checks the overflow flag.
1632   SDValue Result, CCR;
1633   unsigned CC;
1634   lowerOverflowArithmetic(Op, DAG, Result, CCR, CC);
1635 
1636   SDValue Overflow;
1637   if (isa<ConstantSDNode>(CCR)) {
1638     // It's likely a result of operations that will not overflow
1639     // hence no setcc is needed.
1640     Overflow = CCR;
1641   } else {
1642     // Generate a M68kISD::SETCC.
1643     Overflow = DAG.getNode(M68kISD::SETCC, DL, N->getValueType(1),
1644                            DAG.getConstant(CC, DL, MVT::i8), CCR);
1645   }
1646 
1647   return DAG.getNode(ISD::MERGE_VALUES, DL, N->getVTList(), Result, Overflow);
1648 }
1649 
1650 /// Create a BTST (Bit Test) node - Test bit \p BitNo in \p Src and set
1651 /// condition according to equal/not-equal condition code \p CC.
1652 static SDValue getBitTestCondition(SDValue Src, SDValue BitNo, ISD::CondCode CC,
1653                                    const SDLoc &DL, SelectionDAG &DAG) {
1654   // If Src is i8, promote it to i32 with any_extend.  There is no i8 BTST
1655   // instruction.  Since the shift amount is in-range-or-undefined, we know
1656   // that doing a bittest on the i32 value is ok.
1657   if (Src.getValueType() == MVT::i8 || Src.getValueType() == MVT::i16)
1658     Src = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i32, Src);
1659 
1660   // If the operand types disagree, extend the shift amount to match.  Since
1661   // BTST ignores high bits (like shifts) we can use anyextend.
1662   if (Src.getValueType() != BitNo.getValueType())
1663     BitNo = DAG.getNode(ISD::ANY_EXTEND, DL, Src.getValueType(), BitNo);
1664 
1665   SDValue BTST = DAG.getNode(M68kISD::BTST, DL, MVT::i32, Src, BitNo);
1666 
1667   // NOTE BTST sets CCR.Z flag
1668   M68k::CondCode Cond = CC == ISD::SETEQ ? M68k::COND_NE : M68k::COND_EQ;
1669   return DAG.getNode(M68kISD::SETCC, DL, MVT::i8,
1670                      DAG.getConstant(Cond, DL, MVT::i8), BTST);
1671 }
1672 
1673 /// Result of 'and' is compared against zero. Change to a BTST node if possible.
1674 static SDValue LowerAndToBTST(SDValue And, ISD::CondCode CC, const SDLoc &DL,
1675                               SelectionDAG &DAG) {
1676   SDValue Op0 = And.getOperand(0);
1677   SDValue Op1 = And.getOperand(1);
1678   if (Op0.getOpcode() == ISD::TRUNCATE)
1679     Op0 = Op0.getOperand(0);
1680   if (Op1.getOpcode() == ISD::TRUNCATE)
1681     Op1 = Op1.getOperand(0);
1682 
1683   SDValue LHS, RHS;
1684   if (Op1.getOpcode() == ISD::SHL)
1685     std::swap(Op0, Op1);
1686   if (Op0.getOpcode() == ISD::SHL) {
1687     if (isOneConstant(Op0.getOperand(0))) {
1688       // If we looked past a truncate, check that it's only truncating away
1689       // known zeros.
1690       unsigned BitWidth = Op0.getValueSizeInBits();
1691       unsigned AndBitWidth = And.getValueSizeInBits();
1692       if (BitWidth > AndBitWidth) {
1693         auto Known = DAG.computeKnownBits(Op0);
1694         if (Known.countMinLeadingZeros() < BitWidth - AndBitWidth)
1695           return SDValue();
1696       }
1697       LHS = Op1;
1698       RHS = Op0.getOperand(1);
1699     }
1700   } else if (auto *AndRHS = dyn_cast<ConstantSDNode>(Op1)) {
1701     uint64_t AndRHSVal = AndRHS->getZExtValue();
1702     SDValue AndLHS = Op0;
1703 
1704     if (AndRHSVal == 1 && AndLHS.getOpcode() == ISD::SRL) {
1705       LHS = AndLHS.getOperand(0);
1706       RHS = AndLHS.getOperand(1);
1707     }
1708 
1709     // Use BTST if the immediate can't be encoded in a TEST instruction.
1710     if (!isUInt<32>(AndRHSVal) && isPowerOf2_64(AndRHSVal)) {
1711       LHS = AndLHS;
1712       RHS = DAG.getConstant(Log2_64_Ceil(AndRHSVal), DL, LHS.getValueType());
1713     }
1714   }
1715 
1716   if (LHS.getNode())
1717     return getBitTestCondition(LHS, RHS, CC, DL, DAG);
1718 
1719   return SDValue();
1720 }
1721 
1722 static M68k::CondCode TranslateIntegerM68kCC(ISD::CondCode SetCCOpcode) {
1723   switch (SetCCOpcode) {
1724   default:
1725     llvm_unreachable("Invalid integer condition!");
1726   case ISD::SETEQ:
1727     return M68k::COND_EQ;
1728   case ISD::SETGT:
1729     return M68k::COND_GT;
1730   case ISD::SETGE:
1731     return M68k::COND_GE;
1732   case ISD::SETLT:
1733     return M68k::COND_LT;
1734   case ISD::SETLE:
1735     return M68k::COND_LE;
1736   case ISD::SETNE:
1737     return M68k::COND_NE;
1738   case ISD::SETULT:
1739     return M68k::COND_CS;
1740   case ISD::SETUGE:
1741     return M68k::COND_CC;
1742   case ISD::SETUGT:
1743     return M68k::COND_HI;
1744   case ISD::SETULE:
1745     return M68k::COND_LS;
1746   }
1747 }
1748 
1749 /// Do a one-to-one translation of a ISD::CondCode to the M68k-specific
1750 /// condition code, returning the condition code and the LHS/RHS of the
1751 /// comparison to make.
1752 static unsigned TranslateM68kCC(ISD::CondCode SetCCOpcode, const SDLoc &DL,
1753                                 bool IsFP, SDValue &LHS, SDValue &RHS,
1754                                 SelectionDAG &DAG) {
1755   if (!IsFP) {
1756     if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) {
1757       if (SetCCOpcode == ISD::SETGT && RHSC->isAllOnes()) {
1758         // X > -1   -> X == 0, jump !sign.
1759         RHS = DAG.getConstant(0, DL, RHS.getValueType());
1760         return M68k::COND_PL;
1761       }
1762       if (SetCCOpcode == ISD::SETLT && RHSC->isZero()) {
1763         // X < 0   -> X == 0, jump on sign.
1764         return M68k::COND_MI;
1765       }
1766       if (SetCCOpcode == ISD::SETLT && RHSC->getZExtValue() == 1) {
1767         // X < 1   -> X <= 0
1768         RHS = DAG.getConstant(0, DL, RHS.getValueType());
1769         return M68k::COND_LE;
1770       }
1771     }
1772 
1773     return TranslateIntegerM68kCC(SetCCOpcode);
1774   }
1775 
1776   // First determine if it is required or is profitable to flip the operands.
1777 
1778   // If LHS is a foldable load, but RHS is not, flip the condition.
1779   if (ISD::isNON_EXTLoad(LHS.getNode()) && !ISD::isNON_EXTLoad(RHS.getNode())) {
1780     SetCCOpcode = getSetCCSwappedOperands(SetCCOpcode);
1781     std::swap(LHS, RHS);
1782   }
1783 
1784   switch (SetCCOpcode) {
1785   default:
1786     break;
1787   case ISD::SETOLT:
1788   case ISD::SETOLE:
1789   case ISD::SETUGT:
1790   case ISD::SETUGE:
1791     std::swap(LHS, RHS);
1792     break;
1793   }
1794 
1795   // On a floating point condition, the flags are set as follows:
1796   // ZF  PF  CF   op
1797   //  0 | 0 | 0 | X > Y
1798   //  0 | 0 | 1 | X < Y
1799   //  1 | 0 | 0 | X == Y
1800   //  1 | 1 | 1 | unordered
1801   switch (SetCCOpcode) {
1802   default:
1803     llvm_unreachable("Condcode should be pre-legalized away");
1804   case ISD::SETUEQ:
1805   case ISD::SETEQ:
1806     return M68k::COND_EQ;
1807   case ISD::SETOLT: // flipped
1808   case ISD::SETOGT:
1809   case ISD::SETGT:
1810     return M68k::COND_HI;
1811   case ISD::SETOLE: // flipped
1812   case ISD::SETOGE:
1813   case ISD::SETGE:
1814     return M68k::COND_CC;
1815   case ISD::SETUGT: // flipped
1816   case ISD::SETULT:
1817   case ISD::SETLT:
1818     return M68k::COND_CS;
1819   case ISD::SETUGE: // flipped
1820   case ISD::SETULE:
1821   case ISD::SETLE:
1822     return M68k::COND_LS;
1823   case ISD::SETONE:
1824   case ISD::SETNE:
1825     return M68k::COND_NE;
1826   case ISD::SETOEQ:
1827   case ISD::SETUNE:
1828     return M68k::COND_INVALID;
1829   }
1830 }
1831 
1832 // Convert (truncate (srl X, N) to i1) to (bt X, N)
1833 static SDValue LowerTruncateToBTST(SDValue Op, ISD::CondCode CC,
1834                                    const SDLoc &DL, SelectionDAG &DAG) {
1835 
1836   assert(Op.getOpcode() == ISD::TRUNCATE && Op.getValueType() == MVT::i1 &&
1837          "Expected TRUNCATE to i1 node");
1838 
1839   if (Op.getOperand(0).getOpcode() != ISD::SRL)
1840     return SDValue();
1841 
1842   SDValue ShiftRight = Op.getOperand(0);
1843   return getBitTestCondition(ShiftRight.getOperand(0), ShiftRight.getOperand(1),
1844                              CC, DL, DAG);
1845 }
1846 
1847 /// \brief return true if \c Op has a use that doesn't just read flags.
1848 static bool hasNonFlagsUse(SDValue Op) {
1849   for (SDNode::use_iterator UI = Op->use_begin(), UE = Op->use_end(); UI != UE;
1850        ++UI) {
1851     SDNode *User = *UI;
1852     unsigned UOpNo = UI.getOperandNo();
1853     if (User->getOpcode() == ISD::TRUNCATE && User->hasOneUse()) {
1854       // Look pass truncate.
1855       UOpNo = User->use_begin().getOperandNo();
1856       User = *User->use_begin();
1857     }
1858 
1859     if (User->getOpcode() != ISD::BRCOND && User->getOpcode() != ISD::SETCC &&
1860         !(User->getOpcode() == ISD::SELECT && UOpNo == 0))
1861       return true;
1862   }
1863   return false;
1864 }
1865 
1866 SDValue M68kTargetLowering::EmitTest(SDValue Op, unsigned M68kCC,
1867                                      const SDLoc &DL, SelectionDAG &DAG) const {
1868 
1869   // CF and OF aren't always set the way we want. Determine which
1870   // of these we need.
1871   bool NeedCF = false;
1872   bool NeedOF = false;
1873   switch (M68kCC) {
1874   default:
1875     break;
1876   case M68k::COND_HI:
1877   case M68k::COND_CC:
1878   case M68k::COND_CS:
1879   case M68k::COND_LS:
1880     NeedCF = true;
1881     break;
1882   case M68k::COND_GT:
1883   case M68k::COND_GE:
1884   case M68k::COND_LT:
1885   case M68k::COND_LE:
1886   case M68k::COND_VS:
1887   case M68k::COND_VC: {
1888     // Check if we really need to set the
1889     // Overflow flag. If NoSignedWrap is present
1890     // that is not actually needed.
1891     switch (Op->getOpcode()) {
1892     case ISD::ADD:
1893     case ISD::SUB:
1894     case ISD::MUL:
1895     case ISD::SHL: {
1896       if (Op.getNode()->getFlags().hasNoSignedWrap())
1897         break;
1898       [[fallthrough]];
1899     }
1900     default:
1901       NeedOF = true;
1902       break;
1903     }
1904     break;
1905   }
1906   }
1907   // See if we can use the CCR value from the operand instead of
1908   // doing a separate TEST. TEST always sets OF and CF to 0, so unless
1909   // we prove that the arithmetic won't overflow, we can't use OF or CF.
1910   if (Op.getResNo() != 0 || NeedOF || NeedCF) {
1911     // Emit a CMP with 0, which is the TEST pattern.
1912     return DAG.getNode(M68kISD::CMP, DL, MVT::i8,
1913                        DAG.getConstant(0, DL, Op.getValueType()), Op);
1914   }
1915   unsigned Opcode = 0;
1916   unsigned NumOperands = 0;
1917 
1918   // Truncate operations may prevent the merge of the SETCC instruction
1919   // and the arithmetic instruction before it. Attempt to truncate the operands
1920   // of the arithmetic instruction and use a reduced bit-width instruction.
1921   bool NeedTruncation = false;
1922   SDValue ArithOp = Op;
1923   if (Op->getOpcode() == ISD::TRUNCATE && Op->hasOneUse()) {
1924     SDValue Arith = Op->getOperand(0);
1925     // Both the trunc and the arithmetic op need to have one user each.
1926     if (Arith->hasOneUse())
1927       switch (Arith.getOpcode()) {
1928       default:
1929         break;
1930       case ISD::ADD:
1931       case ISD::SUB:
1932       case ISD::AND:
1933       case ISD::OR:
1934       case ISD::XOR: {
1935         NeedTruncation = true;
1936         ArithOp = Arith;
1937       }
1938       }
1939   }
1940 
1941   // NOTICE: In the code below we use ArithOp to hold the arithmetic operation
1942   // which may be the result of a CAST.  We use the variable 'Op', which is the
1943   // non-casted variable when we check for possible users.
1944   switch (ArithOp.getOpcode()) {
1945   case ISD::ADD:
1946     Opcode = M68kISD::ADD;
1947     NumOperands = 2;
1948     break;
1949   case ISD::SHL:
1950   case ISD::SRL:
1951     // If we have a constant logical shift that's only used in a comparison
1952     // against zero turn it into an equivalent AND. This allows turning it into
1953     // a TEST instruction later.
1954     if ((M68kCC == M68k::COND_EQ || M68kCC == M68k::COND_NE) &&
1955         Op->hasOneUse() && isa<ConstantSDNode>(Op->getOperand(1)) &&
1956         !hasNonFlagsUse(Op)) {
1957       EVT VT = Op.getValueType();
1958       unsigned BitWidth = VT.getSizeInBits();
1959       unsigned ShAmt = Op->getConstantOperandVal(1);
1960       if (ShAmt >= BitWidth) // Avoid undefined shifts.
1961         break;
1962       APInt Mask = ArithOp.getOpcode() == ISD::SRL
1963                        ? APInt::getHighBitsSet(BitWidth, BitWidth - ShAmt)
1964                        : APInt::getLowBitsSet(BitWidth, BitWidth - ShAmt);
1965       if (!Mask.isSignedIntN(32)) // Avoid large immediates.
1966         break;
1967       Op = DAG.getNode(ISD::AND, DL, VT, Op->getOperand(0),
1968                        DAG.getConstant(Mask, DL, VT));
1969     }
1970     break;
1971 
1972   case ISD::AND:
1973     // If the primary 'and' result isn't used, don't bother using
1974     // M68kISD::AND, because a TEST instruction will be better.
1975     if (!hasNonFlagsUse(Op)) {
1976       SDValue Op0 = ArithOp->getOperand(0);
1977       SDValue Op1 = ArithOp->getOperand(1);
1978       EVT VT = ArithOp.getValueType();
1979       bool IsAndn = isBitwiseNot(Op0) || isBitwiseNot(Op1);
1980       bool IsLegalAndnType = VT == MVT::i32 || VT == MVT::i64;
1981 
1982       // But if we can combine this into an ANDN operation, then create an AND
1983       // now and allow it to be pattern matched into an ANDN.
1984       if (/*!Subtarget.hasBMI() ||*/ !IsAndn || !IsLegalAndnType)
1985         break;
1986     }
1987     [[fallthrough]];
1988   case ISD::SUB:
1989   case ISD::OR:
1990   case ISD::XOR:
1991     // Due to the ISEL shortcoming noted above, be conservative if this op is
1992     // likely to be selected as part of a load-modify-store instruction.
1993     for (const auto *U : Op.getNode()->uses())
1994       if (U->getOpcode() == ISD::STORE)
1995         goto default_case;
1996 
1997     // Otherwise use a regular CCR-setting instruction.
1998     switch (ArithOp.getOpcode()) {
1999     default:
2000       llvm_unreachable("unexpected operator!");
2001     case ISD::SUB:
2002       Opcode = M68kISD::SUB;
2003       break;
2004     case ISD::XOR:
2005       Opcode = M68kISD::XOR;
2006       break;
2007     case ISD::AND:
2008       Opcode = M68kISD::AND;
2009       break;
2010     case ISD::OR:
2011       Opcode = M68kISD::OR;
2012       break;
2013     }
2014 
2015     NumOperands = 2;
2016     break;
2017   case M68kISD::ADD:
2018   case M68kISD::SUB:
2019   case M68kISD::OR:
2020   case M68kISD::XOR:
2021   case M68kISD::AND:
2022     return SDValue(Op.getNode(), 1);
2023   default:
2024   default_case:
2025     break;
2026   }
2027 
2028   // If we found that truncation is beneficial, perform the truncation and
2029   // update 'Op'.
2030   if (NeedTruncation) {
2031     EVT VT = Op.getValueType();
2032     SDValue WideVal = Op->getOperand(0);
2033     EVT WideVT = WideVal.getValueType();
2034     unsigned ConvertedOp = 0;
2035     // Use a target machine opcode to prevent further DAGCombine
2036     // optimizations that may separate the arithmetic operations
2037     // from the setcc node.
2038     switch (WideVal.getOpcode()) {
2039     default:
2040       break;
2041     case ISD::ADD:
2042       ConvertedOp = M68kISD::ADD;
2043       break;
2044     case ISD::SUB:
2045       ConvertedOp = M68kISD::SUB;
2046       break;
2047     case ISD::AND:
2048       ConvertedOp = M68kISD::AND;
2049       break;
2050     case ISD::OR:
2051       ConvertedOp = M68kISD::OR;
2052       break;
2053     case ISD::XOR:
2054       ConvertedOp = M68kISD::XOR;
2055       break;
2056     }
2057 
2058     if (ConvertedOp) {
2059       const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2060       if (TLI.isOperationLegal(WideVal.getOpcode(), WideVT)) {
2061         SDValue V0 = DAG.getNode(ISD::TRUNCATE, DL, VT, WideVal.getOperand(0));
2062         SDValue V1 = DAG.getNode(ISD::TRUNCATE, DL, VT, WideVal.getOperand(1));
2063         Op = DAG.getNode(ConvertedOp, DL, VT, V0, V1);
2064       }
2065     }
2066   }
2067 
2068   if (Opcode == 0) {
2069     // Emit a CMP with 0, which is the TEST pattern.
2070     return DAG.getNode(M68kISD::CMP, DL, MVT::i8,
2071                        DAG.getConstant(0, DL, Op.getValueType()), Op);
2072   }
2073   SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::i8);
2074   SmallVector<SDValue, 4> Ops(Op->op_begin(), Op->op_begin() + NumOperands);
2075 
2076   SDValue New = DAG.getNode(Opcode, DL, VTs, Ops);
2077   DAG.ReplaceAllUsesWith(Op, New);
2078   return SDValue(New.getNode(), 1);
2079 }
2080 
2081 /// \brief Return true if the condition is an unsigned comparison operation.
2082 static bool isM68kCCUnsigned(unsigned M68kCC) {
2083   switch (M68kCC) {
2084   default:
2085     llvm_unreachable("Invalid integer condition!");
2086   case M68k::COND_EQ:
2087   case M68k::COND_NE:
2088   case M68k::COND_CS:
2089   case M68k::COND_HI:
2090   case M68k::COND_LS:
2091   case M68k::COND_CC:
2092     return true;
2093   case M68k::COND_GT:
2094   case M68k::COND_GE:
2095   case M68k::COND_LT:
2096   case M68k::COND_LE:
2097     return false;
2098   }
2099 }
2100 
2101 SDValue M68kTargetLowering::EmitCmp(SDValue Op0, SDValue Op1, unsigned M68kCC,
2102                                     const SDLoc &DL, SelectionDAG &DAG) const {
2103   if (isNullConstant(Op1))
2104     return EmitTest(Op0, M68kCC, DL, DAG);
2105 
2106   assert(!(isa<ConstantSDNode>(Op1) && Op0.getValueType() == MVT::i1) &&
2107          "Unexpected comparison operation for MVT::i1 operands");
2108 
2109   if ((Op0.getValueType() == MVT::i8 || Op0.getValueType() == MVT::i16 ||
2110        Op0.getValueType() == MVT::i32 || Op0.getValueType() == MVT::i64)) {
2111     // Only promote the compare up to I32 if it is a 16 bit operation
2112     // with an immediate.  16 bit immediates are to be avoided.
2113     if ((Op0.getValueType() == MVT::i16 &&
2114          (isa<ConstantSDNode>(Op0) || isa<ConstantSDNode>(Op1))) &&
2115         !DAG.getMachineFunction().getFunction().hasMinSize()) {
2116       unsigned ExtendOp =
2117           isM68kCCUnsigned(M68kCC) ? ISD::ZERO_EXTEND : ISD::SIGN_EXTEND;
2118       Op0 = DAG.getNode(ExtendOp, DL, MVT::i32, Op0);
2119       Op1 = DAG.getNode(ExtendOp, DL, MVT::i32, Op1);
2120     }
2121     // Use SUB instead of CMP to enable CSE between SUB and CMP.
2122     SDVTList VTs = DAG.getVTList(Op0.getValueType(), MVT::i8);
2123     SDValue Sub = DAG.getNode(M68kISD::SUB, DL, VTs, Op0, Op1);
2124     return SDValue(Sub.getNode(), 1);
2125   }
2126   return DAG.getNode(M68kISD::CMP, DL, MVT::i8, Op0, Op1);
2127 }
2128 
2129 /// Result of 'and' or 'trunc to i1' is compared against zero.
2130 /// Change to a BTST node if possible.
2131 SDValue M68kTargetLowering::LowerToBTST(SDValue Op, ISD::CondCode CC,
2132                                         const SDLoc &DL,
2133                                         SelectionDAG &DAG) const {
2134   if (Op.getOpcode() == ISD::AND)
2135     return LowerAndToBTST(Op, CC, DL, DAG);
2136   if (Op.getOpcode() == ISD::TRUNCATE && Op.getValueType() == MVT::i1)
2137     return LowerTruncateToBTST(Op, CC, DL, DAG);
2138   return SDValue();
2139 }
2140 
2141 SDValue M68kTargetLowering::LowerSETCC(SDValue Op, SelectionDAG &DAG) const {
2142   MVT VT = Op.getSimpleValueType();
2143   assert(VT == MVT::i8 && "SetCC type must be 8-bit integer");
2144 
2145   SDValue Op0 = Op.getOperand(0);
2146   SDValue Op1 = Op.getOperand(1);
2147   SDLoc DL(Op);
2148   ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
2149 
2150   // Optimize to BTST if possible.
2151   // Lower (X & (1 << N)) == 0 to BTST(X, N).
2152   // Lower ((X >>u N) & 1) != 0 to BTST(X, N).
2153   // Lower ((X >>s N) & 1) != 0 to BTST(X, N).
2154   // Lower (trunc (X >> N) to i1) to BTST(X, N).
2155   if (Op0.hasOneUse() && isNullConstant(Op1) &&
2156       (CC == ISD::SETEQ || CC == ISD::SETNE)) {
2157     if (SDValue NewSetCC = LowerToBTST(Op0, CC, DL, DAG)) {
2158       if (VT == MVT::i1)
2159         return DAG.getNode(ISD::TRUNCATE, DL, MVT::i1, NewSetCC);
2160       return NewSetCC;
2161     }
2162   }
2163 
2164   // Look for X == 0, X == 1, X != 0, or X != 1.  We can simplify some forms of
2165   // these.
2166   if ((isOneConstant(Op1) || isNullConstant(Op1)) &&
2167       (CC == ISD::SETEQ || CC == ISD::SETNE)) {
2168 
2169     // If the input is a setcc, then reuse the input setcc or use a new one with
2170     // the inverted condition.
2171     if (Op0.getOpcode() == M68kISD::SETCC) {
2172       M68k::CondCode CCode = (M68k::CondCode)Op0.getConstantOperandVal(0);
2173       bool Invert = (CC == ISD::SETNE) ^ isNullConstant(Op1);
2174       if (!Invert)
2175         return Op0;
2176 
2177       CCode = M68k::GetOppositeBranchCondition(CCode);
2178       SDValue SetCC =
2179           DAG.getNode(M68kISD::SETCC, DL, MVT::i8,
2180                       DAG.getConstant(CCode, DL, MVT::i8), Op0.getOperand(1));
2181       if (VT == MVT::i1)
2182         return DAG.getNode(ISD::TRUNCATE, DL, MVT::i1, SetCC);
2183       return SetCC;
2184     }
2185   }
2186   if (Op0.getValueType() == MVT::i1 && (CC == ISD::SETEQ || CC == ISD::SETNE)) {
2187     if (isOneConstant(Op1)) {
2188       ISD::CondCode NewCC = ISD::GlobalISel::getSetCCInverse(CC, true);
2189       return DAG.getSetCC(DL, VT, Op0, DAG.getConstant(0, DL, MVT::i1), NewCC);
2190     }
2191     if (!isNullConstant(Op1)) {
2192       SDValue Xor = DAG.getNode(ISD::XOR, DL, MVT::i1, Op0, Op1);
2193       return DAG.getSetCC(DL, VT, Xor, DAG.getConstant(0, DL, MVT::i1), CC);
2194     }
2195   }
2196 
2197   bool IsFP = Op1.getSimpleValueType().isFloatingPoint();
2198   unsigned M68kCC = TranslateM68kCC(CC, DL, IsFP, Op0, Op1, DAG);
2199   if (M68kCC == M68k::COND_INVALID)
2200     return SDValue();
2201 
2202   SDValue CCR = EmitCmp(Op0, Op1, M68kCC, DL, DAG);
2203   return DAG.getNode(M68kISD::SETCC, DL, MVT::i8,
2204                      DAG.getConstant(M68kCC, DL, MVT::i8), CCR);
2205 }
2206 
2207 SDValue M68kTargetLowering::LowerSETCCCARRY(SDValue Op,
2208                                             SelectionDAG &DAG) const {
2209   SDValue LHS = Op.getOperand(0);
2210   SDValue RHS = Op.getOperand(1);
2211   SDValue Carry = Op.getOperand(2);
2212   SDValue Cond = Op.getOperand(3);
2213   SDLoc DL(Op);
2214 
2215   assert(LHS.getSimpleValueType().isInteger() && "SETCCCARRY is integer only.");
2216   M68k::CondCode CC = TranslateIntegerM68kCC(cast<CondCodeSDNode>(Cond)->get());
2217 
2218   EVT CarryVT = Carry.getValueType();
2219   APInt NegOne = APInt::getAllOnes(CarryVT.getScalarSizeInBits());
2220   Carry = DAG.getNode(M68kISD::ADD, DL, DAG.getVTList(CarryVT, MVT::i32), Carry,
2221                       DAG.getConstant(NegOne, DL, CarryVT));
2222 
2223   SDVTList VTs = DAG.getVTList(LHS.getValueType(), MVT::i32);
2224   SDValue Cmp =
2225       DAG.getNode(M68kISD::SUBX, DL, VTs, LHS, RHS, Carry.getValue(1));
2226 
2227   return DAG.getNode(M68kISD::SETCC, DL, MVT::i8,
2228                      DAG.getConstant(CC, DL, MVT::i8), Cmp.getValue(1));
2229 }
2230 
2231 /// Return true if opcode is a M68k logical comparison.
2232 static bool isM68kLogicalCmp(SDValue Op) {
2233   unsigned Opc = Op.getNode()->getOpcode();
2234   if (Opc == M68kISD::CMP)
2235     return true;
2236   if (Op.getResNo() == 1 &&
2237       (Opc == M68kISD::ADD || Opc == M68kISD::SUB || Opc == M68kISD::ADDX ||
2238        Opc == M68kISD::SUBX || Opc == M68kISD::SMUL || Opc == M68kISD::UMUL ||
2239        Opc == M68kISD::OR || Opc == M68kISD::XOR || Opc == M68kISD::AND))
2240     return true;
2241 
2242   if (Op.getResNo() == 2 && Opc == M68kISD::UMUL)
2243     return true;
2244 
2245   return false;
2246 }
2247 
2248 static bool isTruncWithZeroHighBitsInput(SDValue V, SelectionDAG &DAG) {
2249   if (V.getOpcode() != ISD::TRUNCATE)
2250     return false;
2251 
2252   SDValue VOp0 = V.getOperand(0);
2253   unsigned InBits = VOp0.getValueSizeInBits();
2254   unsigned Bits = V.getValueSizeInBits();
2255   return DAG.MaskedValueIsZero(VOp0,
2256                                APInt::getHighBitsSet(InBits, InBits - Bits));
2257 }
2258 
2259 SDValue M68kTargetLowering::LowerSELECT(SDValue Op, SelectionDAG &DAG) const {
2260   bool addTest = true;
2261   SDValue Cond = Op.getOperand(0);
2262   SDValue Op1 = Op.getOperand(1);
2263   SDValue Op2 = Op.getOperand(2);
2264   SDLoc DL(Op);
2265   SDValue CC;
2266 
2267   if (Cond.getOpcode() == ISD::SETCC) {
2268     if (SDValue NewCond = LowerSETCC(Cond, DAG))
2269       Cond = NewCond;
2270   }
2271 
2272   // (select (x == 0), -1, y) -> (sign_bit (x - 1)) | y
2273   // (select (x == 0), y, -1) -> ~(sign_bit (x - 1)) | y
2274   // (select (x != 0), y, -1) -> (sign_bit (x - 1)) | y
2275   // (select (x != 0), -1, y) -> ~(sign_bit (x - 1)) | y
2276   if (Cond.getOpcode() == M68kISD::SETCC &&
2277       Cond.getOperand(1).getOpcode() == M68kISD::CMP &&
2278       isNullConstant(Cond.getOperand(1).getOperand(0))) {
2279     SDValue Cmp = Cond.getOperand(1);
2280 
2281     unsigned CondCode = Cond.getConstantOperandVal(0);
2282 
2283     if ((isAllOnesConstant(Op1) || isAllOnesConstant(Op2)) &&
2284         (CondCode == M68k::COND_EQ || CondCode == M68k::COND_NE)) {
2285       SDValue Y = isAllOnesConstant(Op2) ? Op1 : Op2;
2286 
2287       SDValue CmpOp0 = Cmp.getOperand(1);
2288       // Apply further optimizations for special cases
2289       // (select (x != 0), -1, 0) -> neg & sbb
2290       // (select (x == 0), 0, -1) -> neg & sbb
2291       if (isNullConstant(Y) &&
2292           (isAllOnesConstant(Op1) == (CondCode == M68k::COND_NE))) {
2293 
2294         SDVTList VTs = DAG.getVTList(CmpOp0.getValueType(), MVT::i32);
2295 
2296         SDValue Neg =
2297             DAG.getNode(M68kISD::SUB, DL, VTs,
2298                         DAG.getConstant(0, DL, CmpOp0.getValueType()), CmpOp0);
2299 
2300         SDValue Res = DAG.getNode(M68kISD::SETCC_CARRY, DL, Op.getValueType(),
2301                                   DAG.getConstant(M68k::COND_CS, DL, MVT::i8),
2302                                   SDValue(Neg.getNode(), 1));
2303         return Res;
2304       }
2305 
2306       Cmp = DAG.getNode(M68kISD::CMP, DL, MVT::i8,
2307                         DAG.getConstant(1, DL, CmpOp0.getValueType()), CmpOp0);
2308 
2309       SDValue Res = // Res = 0 or -1.
2310           DAG.getNode(M68kISD::SETCC_CARRY, DL, Op.getValueType(),
2311                       DAG.getConstant(M68k::COND_CS, DL, MVT::i8), Cmp);
2312 
2313       if (isAllOnesConstant(Op1) != (CondCode == M68k::COND_EQ))
2314         Res = DAG.getNOT(DL, Res, Res.getValueType());
2315 
2316       if (!isNullConstant(Op2))
2317         Res = DAG.getNode(ISD::OR, DL, Res.getValueType(), Res, Y);
2318       return Res;
2319     }
2320   }
2321 
2322   // Look past (and (setcc_carry (cmp ...)), 1).
2323   if (Cond.getOpcode() == ISD::AND &&
2324       Cond.getOperand(0).getOpcode() == M68kISD::SETCC_CARRY &&
2325       isOneConstant(Cond.getOperand(1)))
2326     Cond = Cond.getOperand(0);
2327 
2328   // If condition flag is set by a M68kISD::CMP, then use it as the condition
2329   // setting operand in place of the M68kISD::SETCC.
2330   unsigned CondOpcode = Cond.getOpcode();
2331   if (CondOpcode == M68kISD::SETCC || CondOpcode == M68kISD::SETCC_CARRY) {
2332     CC = Cond.getOperand(0);
2333 
2334     SDValue Cmp = Cond.getOperand(1);
2335     unsigned Opc = Cmp.getOpcode();
2336 
2337     bool IllegalFPCMov = false;
2338 
2339     if ((isM68kLogicalCmp(Cmp) && !IllegalFPCMov) || Opc == M68kISD::BTST) {
2340       Cond = Cmp;
2341       addTest = false;
2342     }
2343   } else if (isOverflowArithmetic(CondOpcode)) {
2344     // Result is unused here.
2345     SDValue Result;
2346     unsigned CCode;
2347     lowerOverflowArithmetic(Cond, DAG, Result, Cond, CCode);
2348     CC = DAG.getConstant(CCode, DL, MVT::i8);
2349     addTest = false;
2350   }
2351 
2352   if (addTest) {
2353     // Look past the truncate if the high bits are known zero.
2354     if (isTruncWithZeroHighBitsInput(Cond, DAG))
2355       Cond = Cond.getOperand(0);
2356 
2357     // We know the result of AND is compared against zero. Try to match
2358     // it to BT.
2359     if (Cond.getOpcode() == ISD::AND && Cond.hasOneUse()) {
2360       if (SDValue NewSetCC = LowerToBTST(Cond, ISD::SETNE, DL, DAG)) {
2361         CC = NewSetCC.getOperand(0);
2362         Cond = NewSetCC.getOperand(1);
2363         addTest = false;
2364       }
2365     }
2366   }
2367 
2368   if (addTest) {
2369     CC = DAG.getConstant(M68k::COND_NE, DL, MVT::i8);
2370     Cond = EmitTest(Cond, M68k::COND_NE, DL, DAG);
2371   }
2372 
2373   // a <  b ? -1 :  0 -> RES = ~setcc_carry
2374   // a <  b ?  0 : -1 -> RES = setcc_carry
2375   // a >= b ? -1 :  0 -> RES = setcc_carry
2376   // a >= b ?  0 : -1 -> RES = ~setcc_carry
2377   if (Cond.getOpcode() == M68kISD::SUB) {
2378     unsigned CondCode = CC->getAsZExtVal();
2379 
2380     if ((CondCode == M68k::COND_CC || CondCode == M68k::COND_CS) &&
2381         (isAllOnesConstant(Op1) || isAllOnesConstant(Op2)) &&
2382         (isNullConstant(Op1) || isNullConstant(Op2))) {
2383       SDValue Res =
2384           DAG.getNode(M68kISD::SETCC_CARRY, DL, Op.getValueType(),
2385                       DAG.getConstant(M68k::COND_CS, DL, MVT::i8), Cond);
2386       if (isAllOnesConstant(Op1) != (CondCode == M68k::COND_CS))
2387         return DAG.getNOT(DL, Res, Res.getValueType());
2388       return Res;
2389     }
2390   }
2391 
2392   // M68k doesn't have an i8 cmov. If both operands are the result of a
2393   // truncate widen the cmov and push the truncate through. This avoids
2394   // introducing a new branch during isel and doesn't add any extensions.
2395   if (Op.getValueType() == MVT::i8 && Op1.getOpcode() == ISD::TRUNCATE &&
2396       Op2.getOpcode() == ISD::TRUNCATE) {
2397     SDValue T1 = Op1.getOperand(0), T2 = Op2.getOperand(0);
2398     if (T1.getValueType() == T2.getValueType() &&
2399         // Block CopyFromReg so partial register stalls are avoided.
2400         T1.getOpcode() != ISD::CopyFromReg &&
2401         T2.getOpcode() != ISD::CopyFromReg) {
2402       SDVTList VTs = DAG.getVTList(T1.getValueType(), MVT::Glue);
2403       SDValue Cmov = DAG.getNode(M68kISD::CMOV, DL, VTs, T2, T1, CC, Cond);
2404       return DAG.getNode(ISD::TRUNCATE, DL, Op.getValueType(), Cmov);
2405     }
2406   }
2407 
2408   // Simple optimization when Cond is a constant to avoid generating
2409   // M68kISD::CMOV if possible.
2410   // TODO: Generalize this to use SelectionDAG::computeKnownBits.
2411   if (auto *Const = dyn_cast<ConstantSDNode>(Cond.getNode())) {
2412     const APInt &C = Const->getAPIntValue();
2413     if (C.countr_zero() >= 5)
2414       return Op2;
2415     else if (C.countr_one() >= 5)
2416       return Op1;
2417   }
2418 
2419   // M68kISD::CMOV means set the result (which is operand 1) to the RHS if
2420   // condition is true.
2421   SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::Glue);
2422   SDValue Ops[] = {Op2, Op1, CC, Cond};
2423   return DAG.getNode(M68kISD::CMOV, DL, VTs, Ops);
2424 }
2425 
2426 /// Return true if node is an ISD::AND or ISD::OR of two M68k::SETcc nodes
2427 /// each of which has no other use apart from the AND / OR.
2428 static bool isAndOrOfSetCCs(SDValue Op, unsigned &Opc) {
2429   Opc = Op.getOpcode();
2430   if (Opc != ISD::OR && Opc != ISD::AND)
2431     return false;
2432   return (M68k::IsSETCC(Op.getOperand(0).getOpcode()) &&
2433           Op.getOperand(0).hasOneUse() &&
2434           M68k::IsSETCC(Op.getOperand(1).getOpcode()) &&
2435           Op.getOperand(1).hasOneUse());
2436 }
2437 
2438 /// Return true if node is an ISD::XOR of a M68kISD::SETCC and 1 and that the
2439 /// SETCC node has a single use.
2440 static bool isXor1OfSetCC(SDValue Op) {
2441   if (Op.getOpcode() != ISD::XOR)
2442     return false;
2443   if (isOneConstant(Op.getOperand(1)))
2444     return Op.getOperand(0).getOpcode() == M68kISD::SETCC &&
2445            Op.getOperand(0).hasOneUse();
2446   return false;
2447 }
2448 
2449 SDValue M68kTargetLowering::LowerBRCOND(SDValue Op, SelectionDAG &DAG) const {
2450   bool AddTest = true;
2451   SDValue Chain = Op.getOperand(0);
2452   SDValue Cond = Op.getOperand(1);
2453   SDValue Dest = Op.getOperand(2);
2454   SDLoc DL(Op);
2455   SDValue CC;
2456   bool Inverted = false;
2457 
2458   if (Cond.getOpcode() == ISD::SETCC) {
2459     // Check for setcc([su]{add,sub}o == 0).
2460     if (cast<CondCodeSDNode>(Cond.getOperand(2))->get() == ISD::SETEQ &&
2461         isNullConstant(Cond.getOperand(1)) &&
2462         Cond.getOperand(0).getResNo() == 1 &&
2463         (Cond.getOperand(0).getOpcode() == ISD::SADDO ||
2464          Cond.getOperand(0).getOpcode() == ISD::UADDO ||
2465          Cond.getOperand(0).getOpcode() == ISD::SSUBO ||
2466          Cond.getOperand(0).getOpcode() == ISD::USUBO)) {
2467       Inverted = true;
2468       Cond = Cond.getOperand(0);
2469     } else {
2470       if (SDValue NewCond = LowerSETCC(Cond, DAG))
2471         Cond = NewCond;
2472     }
2473   }
2474 
2475   // Look pass (and (setcc_carry (cmp ...)), 1).
2476   if (Cond.getOpcode() == ISD::AND &&
2477       Cond.getOperand(0).getOpcode() == M68kISD::SETCC_CARRY &&
2478       isOneConstant(Cond.getOperand(1)))
2479     Cond = Cond.getOperand(0);
2480 
2481   // If condition flag is set by a M68kISD::CMP, then use it as the condition
2482   // setting operand in place of the M68kISD::SETCC.
2483   unsigned CondOpcode = Cond.getOpcode();
2484   if (CondOpcode == M68kISD::SETCC || CondOpcode == M68kISD::SETCC_CARRY) {
2485     CC = Cond.getOperand(0);
2486 
2487     SDValue Cmp = Cond.getOperand(1);
2488     unsigned Opc = Cmp.getOpcode();
2489 
2490     if (isM68kLogicalCmp(Cmp) || Opc == M68kISD::BTST) {
2491       Cond = Cmp;
2492       AddTest = false;
2493     } else {
2494       switch (CC->getAsZExtVal()) {
2495       default:
2496         break;
2497       case M68k::COND_VS:
2498       case M68k::COND_CS:
2499         // These can only come from an arithmetic instruction with overflow,
2500         // e.g. SADDO, UADDO.
2501         Cond = Cond.getNode()->getOperand(1);
2502         AddTest = false;
2503         break;
2504       }
2505     }
2506   }
2507   CondOpcode = Cond.getOpcode();
2508   if (isOverflowArithmetic(CondOpcode)) {
2509     SDValue Result;
2510     unsigned CCode;
2511     lowerOverflowArithmetic(Cond, DAG, Result, Cond, CCode);
2512 
2513     if (Inverted)
2514       CCode = M68k::GetOppositeBranchCondition((M68k::CondCode)CCode);
2515     CC = DAG.getConstant(CCode, DL, MVT::i8);
2516 
2517     AddTest = false;
2518   } else {
2519     unsigned CondOpc;
2520     if (Cond.hasOneUse() && isAndOrOfSetCCs(Cond, CondOpc)) {
2521       SDValue Cmp = Cond.getOperand(0).getOperand(1);
2522       if (CondOpc == ISD::OR) {
2523         // Also, recognize the pattern generated by an FCMP_UNE. We can emit
2524         // two branches instead of an explicit OR instruction with a
2525         // separate test.
2526         if (Cmp == Cond.getOperand(1).getOperand(1) && isM68kLogicalCmp(Cmp)) {
2527           CC = Cond.getOperand(0).getOperand(0);
2528           Chain = DAG.getNode(M68kISD::BRCOND, DL, Op.getValueType(), Chain,
2529                               Dest, CC, Cmp);
2530           CC = Cond.getOperand(1).getOperand(0);
2531           Cond = Cmp;
2532           AddTest = false;
2533         }
2534       } else { // ISD::AND
2535         // Also, recognize the pattern generated by an FCMP_OEQ. We can emit
2536         // two branches instead of an explicit AND instruction with a
2537         // separate test. However, we only do this if this block doesn't
2538         // have a fall-through edge, because this requires an explicit
2539         // jmp when the condition is false.
2540         if (Cmp == Cond.getOperand(1).getOperand(1) && isM68kLogicalCmp(Cmp) &&
2541             Op.getNode()->hasOneUse()) {
2542           M68k::CondCode CCode =
2543               (M68k::CondCode)Cond.getOperand(0).getConstantOperandVal(0);
2544           CCode = M68k::GetOppositeBranchCondition(CCode);
2545           CC = DAG.getConstant(CCode, DL, MVT::i8);
2546           SDNode *User = *Op.getNode()->use_begin();
2547           // Look for an unconditional branch following this conditional branch.
2548           // We need this because we need to reverse the successors in order
2549           // to implement FCMP_OEQ.
2550           if (User->getOpcode() == ISD::BR) {
2551             SDValue FalseBB = User->getOperand(1);
2552             SDNode *NewBR =
2553                 DAG.UpdateNodeOperands(User, User->getOperand(0), Dest);
2554             assert(NewBR == User);
2555             (void)NewBR;
2556             Dest = FalseBB;
2557 
2558             Chain = DAG.getNode(M68kISD::BRCOND, DL, Op.getValueType(), Chain,
2559                                 Dest, CC, Cmp);
2560             M68k::CondCode CCode =
2561                 (M68k::CondCode)Cond.getOperand(1).getConstantOperandVal(0);
2562             CCode = M68k::GetOppositeBranchCondition(CCode);
2563             CC = DAG.getConstant(CCode, DL, MVT::i8);
2564             Cond = Cmp;
2565             AddTest = false;
2566           }
2567         }
2568       }
2569     } else if (Cond.hasOneUse() && isXor1OfSetCC(Cond)) {
2570       // Recognize for xorb (setcc), 1 patterns. The xor inverts the condition.
2571       // It should be transformed during dag combiner except when the condition
2572       // is set by a arithmetics with overflow node.
2573       M68k::CondCode CCode =
2574           (M68k::CondCode)Cond.getOperand(0).getConstantOperandVal(0);
2575       CCode = M68k::GetOppositeBranchCondition(CCode);
2576       CC = DAG.getConstant(CCode, DL, MVT::i8);
2577       Cond = Cond.getOperand(0).getOperand(1);
2578       AddTest = false;
2579     }
2580   }
2581 
2582   if (AddTest) {
2583     // Look pass the truncate if the high bits are known zero.
2584     if (isTruncWithZeroHighBitsInput(Cond, DAG))
2585       Cond = Cond.getOperand(0);
2586 
2587     // We know the result is compared against zero. Try to match it to BT.
2588     if (Cond.hasOneUse()) {
2589       if (SDValue NewSetCC = LowerToBTST(Cond, ISD::SETNE, DL, DAG)) {
2590         CC = NewSetCC.getOperand(0);
2591         Cond = NewSetCC.getOperand(1);
2592         AddTest = false;
2593       }
2594     }
2595   }
2596 
2597   if (AddTest) {
2598     M68k::CondCode MxCond = Inverted ? M68k::COND_EQ : M68k::COND_NE;
2599     CC = DAG.getConstant(MxCond, DL, MVT::i8);
2600     Cond = EmitTest(Cond, MxCond, DL, DAG);
2601   }
2602   return DAG.getNode(M68kISD::BRCOND, DL, Op.getValueType(), Chain, Dest, CC,
2603                      Cond);
2604 }
2605 
2606 SDValue M68kTargetLowering::LowerADDC_ADDE_SUBC_SUBE(SDValue Op,
2607                                                      SelectionDAG &DAG) const {
2608   MVT VT = Op.getNode()->getSimpleValueType(0);
2609 
2610   // Let legalize expand this if it isn't a legal type yet.
2611   if (!DAG.getTargetLoweringInfo().isTypeLegal(VT))
2612     return SDValue();
2613 
2614   SDVTList VTs = DAG.getVTList(VT, MVT::i8);
2615 
2616   unsigned Opc;
2617   bool ExtraOp = false;
2618   switch (Op.getOpcode()) {
2619   default:
2620     llvm_unreachable("Invalid code");
2621   case ISD::ADDC:
2622     Opc = M68kISD::ADD;
2623     break;
2624   case ISD::ADDE:
2625     Opc = M68kISD::ADDX;
2626     ExtraOp = true;
2627     break;
2628   case ISD::SUBC:
2629     Opc = M68kISD::SUB;
2630     break;
2631   case ISD::SUBE:
2632     Opc = M68kISD::SUBX;
2633     ExtraOp = true;
2634     break;
2635   }
2636 
2637   if (!ExtraOp)
2638     return DAG.getNode(Opc, SDLoc(Op), VTs, Op.getOperand(0), Op.getOperand(1));
2639   return DAG.getNode(Opc, SDLoc(Op), VTs, Op.getOperand(0), Op.getOperand(1),
2640                      Op.getOperand(2));
2641 }
2642 
2643 // ConstantPool, JumpTable, GlobalAddress, and ExternalSymbol are lowered as
2644 // their target countpart wrapped in the M68kISD::Wrapper node. Suppose N is
2645 // one of the above mentioned nodes. It has to be wrapped because otherwise
2646 // Select(N) returns N. So the raw TargetGlobalAddress nodes, etc. can only
2647 // be used to form addressing mode. These wrapped nodes will be selected
2648 // into MOV32ri.
2649 SDValue M68kTargetLowering::LowerConstantPool(SDValue Op,
2650                                               SelectionDAG &DAG) const {
2651   ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op);
2652 
2653   // In PIC mode (unless we're in PCRel PIC mode) we add an offset to the
2654   // global base reg.
2655   unsigned char OpFlag = Subtarget.classifyLocalReference(nullptr);
2656 
2657   unsigned WrapperKind = M68kISD::Wrapper;
2658   if (M68kII::isPCRelGlobalReference(OpFlag)) {
2659     WrapperKind = M68kISD::WrapperPC;
2660   }
2661 
2662   MVT PtrVT = getPointerTy(DAG.getDataLayout());
2663   SDValue Result = DAG.getTargetConstantPool(
2664       CP->getConstVal(), PtrVT, CP->getAlign(), CP->getOffset(), OpFlag);
2665 
2666   SDLoc DL(CP);
2667   Result = DAG.getNode(WrapperKind, DL, PtrVT, Result);
2668 
2669   // With PIC, the address is actually $g + Offset.
2670   if (M68kII::isGlobalRelativeToPICBase(OpFlag)) {
2671     Result = DAG.getNode(ISD::ADD, DL, PtrVT,
2672                          DAG.getNode(M68kISD::GLOBAL_BASE_REG, SDLoc(), PtrVT),
2673                          Result);
2674   }
2675 
2676   return Result;
2677 }
2678 
2679 SDValue M68kTargetLowering::LowerExternalSymbol(SDValue Op,
2680                                                 SelectionDAG &DAG) const {
2681   const char *Sym = cast<ExternalSymbolSDNode>(Op)->getSymbol();
2682 
2683   // In PIC mode (unless we're in PCRel PIC mode) we add an offset to the
2684   // global base reg.
2685   const Module *Mod = DAG.getMachineFunction().getFunction().getParent();
2686   unsigned char OpFlag = Subtarget.classifyExternalReference(*Mod);
2687 
2688   unsigned WrapperKind = M68kISD::Wrapper;
2689   if (M68kII::isPCRelGlobalReference(OpFlag)) {
2690     WrapperKind = M68kISD::WrapperPC;
2691   }
2692 
2693   auto PtrVT = getPointerTy(DAG.getDataLayout());
2694   SDValue Result = DAG.getTargetExternalSymbol(Sym, PtrVT, OpFlag);
2695 
2696   SDLoc DL(Op);
2697   Result = DAG.getNode(WrapperKind, DL, PtrVT, Result);
2698 
2699   // With PIC, the address is actually $g + Offset.
2700   if (M68kII::isGlobalRelativeToPICBase(OpFlag)) {
2701     Result = DAG.getNode(ISD::ADD, DL, PtrVT,
2702                          DAG.getNode(M68kISD::GLOBAL_BASE_REG, SDLoc(), PtrVT),
2703                          Result);
2704   }
2705 
2706   // For symbols that require a load from a stub to get the address, emit the
2707   // load.
2708   if (M68kII::isGlobalStubReference(OpFlag)) {
2709     Result = DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), Result,
2710                          MachinePointerInfo::getGOT(DAG.getMachineFunction()));
2711   }
2712 
2713   return Result;
2714 }
2715 
2716 SDValue M68kTargetLowering::LowerBlockAddress(SDValue Op,
2717                                               SelectionDAG &DAG) const {
2718   unsigned char OpFlags = Subtarget.classifyBlockAddressReference();
2719   const BlockAddress *BA = cast<BlockAddressSDNode>(Op)->getBlockAddress();
2720   int64_t Offset = cast<BlockAddressSDNode>(Op)->getOffset();
2721   SDLoc DL(Op);
2722   auto PtrVT = getPointerTy(DAG.getDataLayout());
2723 
2724   // Create the TargetBlockAddressAddress node.
2725   SDValue Result = DAG.getTargetBlockAddress(BA, PtrVT, Offset, OpFlags);
2726 
2727   if (M68kII::isPCRelBlockReference(OpFlags)) {
2728     Result = DAG.getNode(M68kISD::WrapperPC, DL, PtrVT, Result);
2729   } else {
2730     Result = DAG.getNode(M68kISD::Wrapper, DL, PtrVT, Result);
2731   }
2732 
2733   // With PIC, the address is actually $g + Offset.
2734   if (M68kII::isGlobalRelativeToPICBase(OpFlags)) {
2735     Result =
2736         DAG.getNode(ISD::ADD, DL, PtrVT,
2737                     DAG.getNode(M68kISD::GLOBAL_BASE_REG, DL, PtrVT), Result);
2738   }
2739 
2740   return Result;
2741 }
2742 
2743 SDValue M68kTargetLowering::LowerGlobalAddress(const GlobalValue *GV,
2744                                                const SDLoc &DL, int64_t Offset,
2745                                                SelectionDAG &DAG) const {
2746   unsigned char OpFlags = Subtarget.classifyGlobalReference(GV);
2747   auto PtrVT = getPointerTy(DAG.getDataLayout());
2748 
2749   // Create the TargetGlobalAddress node, folding in the constant
2750   // offset if it is legal.
2751   SDValue Result;
2752   if (M68kII::isDirectGlobalReference(OpFlags)) {
2753     Result = DAG.getTargetGlobalAddress(GV, DL, PtrVT, Offset);
2754     Offset = 0;
2755   } else {
2756     Result = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, OpFlags);
2757   }
2758 
2759   if (M68kII::isPCRelGlobalReference(OpFlags))
2760     Result = DAG.getNode(M68kISD::WrapperPC, DL, PtrVT, Result);
2761   else
2762     Result = DAG.getNode(M68kISD::Wrapper, DL, PtrVT, Result);
2763 
2764   // With PIC, the address is actually $g + Offset.
2765   if (M68kII::isGlobalRelativeToPICBase(OpFlags)) {
2766     Result =
2767         DAG.getNode(ISD::ADD, DL, PtrVT,
2768                     DAG.getNode(M68kISD::GLOBAL_BASE_REG, DL, PtrVT), Result);
2769   }
2770 
2771   // For globals that require a load from a stub to get the address, emit the
2772   // load.
2773   if (M68kII::isGlobalStubReference(OpFlags)) {
2774     Result = DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), Result,
2775                          MachinePointerInfo::getGOT(DAG.getMachineFunction()));
2776   }
2777 
2778   // If there was a non-zero offset that we didn't fold, create an explicit
2779   // addition for it.
2780   if (Offset != 0) {
2781     Result = DAG.getNode(ISD::ADD, DL, PtrVT, Result,
2782                          DAG.getConstant(Offset, DL, PtrVT));
2783   }
2784 
2785   return Result;
2786 }
2787 
2788 SDValue M68kTargetLowering::LowerGlobalAddress(SDValue Op,
2789                                                SelectionDAG &DAG) const {
2790   const GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal();
2791   int64_t Offset = cast<GlobalAddressSDNode>(Op)->getOffset();
2792   return LowerGlobalAddress(GV, SDLoc(Op), Offset, DAG);
2793 }
2794 
2795 //===----------------------------------------------------------------------===//
2796 // Custom Lower Jump Table
2797 //===----------------------------------------------------------------------===//
2798 
2799 SDValue M68kTargetLowering::LowerJumpTable(SDValue Op,
2800                                            SelectionDAG &DAG) const {
2801   JumpTableSDNode *JT = cast<JumpTableSDNode>(Op);
2802 
2803   // In PIC mode (unless we're in PCRel PIC mode) we add an offset to the
2804   // global base reg.
2805   unsigned char OpFlag = Subtarget.classifyLocalReference(nullptr);
2806 
2807   unsigned WrapperKind = M68kISD::Wrapper;
2808   if (M68kII::isPCRelGlobalReference(OpFlag)) {
2809     WrapperKind = M68kISD::WrapperPC;
2810   }
2811 
2812   auto PtrVT = getPointerTy(DAG.getDataLayout());
2813   SDValue Result = DAG.getTargetJumpTable(JT->getIndex(), PtrVT, OpFlag);
2814   SDLoc DL(JT);
2815   Result = DAG.getNode(WrapperKind, DL, PtrVT, Result);
2816 
2817   // With PIC, the address is actually $g + Offset.
2818   if (M68kII::isGlobalRelativeToPICBase(OpFlag)) {
2819     Result = DAG.getNode(ISD::ADD, DL, PtrVT,
2820                          DAG.getNode(M68kISD::GLOBAL_BASE_REG, SDLoc(), PtrVT),
2821                          Result);
2822   }
2823 
2824   return Result;
2825 }
2826 
2827 unsigned M68kTargetLowering::getJumpTableEncoding() const {
2828   return Subtarget.getJumpTableEncoding();
2829 }
2830 
2831 const MCExpr *M68kTargetLowering::LowerCustomJumpTableEntry(
2832     const MachineJumpTableInfo *MJTI, const MachineBasicBlock *MBB,
2833     unsigned uid, MCContext &Ctx) const {
2834   return MCSymbolRefExpr::create(MBB->getSymbol(), MCSymbolRefExpr::VK_GOTOFF,
2835                                  Ctx);
2836 }
2837 
2838 SDValue M68kTargetLowering::getPICJumpTableRelocBase(SDValue Table,
2839                                                      SelectionDAG &DAG) const {
2840   if (getJumpTableEncoding() == MachineJumpTableInfo::EK_Custom32)
2841     return DAG.getNode(M68kISD::GLOBAL_BASE_REG, SDLoc(),
2842                        getPointerTy(DAG.getDataLayout()));
2843 
2844   // MachineJumpTableInfo::EK_LabelDifference32 entry
2845   return Table;
2846 }
2847 
2848 // NOTE This only used for MachineJumpTableInfo::EK_LabelDifference32 entries
2849 const MCExpr *M68kTargetLowering::getPICJumpTableRelocBaseExpr(
2850     const MachineFunction *MF, unsigned JTI, MCContext &Ctx) const {
2851   return MCSymbolRefExpr::create(MF->getJTISymbol(JTI, Ctx), Ctx);
2852 }
2853 
2854 M68kTargetLowering::ConstraintType
2855 M68kTargetLowering::getConstraintType(StringRef Constraint) const {
2856   if (Constraint.size() > 0) {
2857     switch (Constraint[0]) {
2858     case 'a':
2859     case 'd':
2860       return C_RegisterClass;
2861     case 'I':
2862     case 'J':
2863     case 'K':
2864     case 'L':
2865     case 'M':
2866     case 'N':
2867     case 'O':
2868     case 'P':
2869       return C_Immediate;
2870     case 'C':
2871       if (Constraint.size() == 2)
2872         switch (Constraint[1]) {
2873         case '0':
2874         case 'i':
2875         case 'j':
2876           return C_Immediate;
2877         default:
2878           break;
2879         }
2880       break;
2881     case 'Q':
2882     case 'U':
2883       return C_Memory;
2884     default:
2885       break;
2886     }
2887   }
2888 
2889   return TargetLowering::getConstraintType(Constraint);
2890 }
2891 
2892 void M68kTargetLowering::LowerAsmOperandForConstraint(SDValue Op,
2893                                                       StringRef Constraint,
2894                                                       std::vector<SDValue> &Ops,
2895                                                       SelectionDAG &DAG) const {
2896   SDValue Result;
2897 
2898   if (Constraint.size() == 1) {
2899     // Constant constraints
2900     switch (Constraint[0]) {
2901     case 'I':
2902     case 'J':
2903     case 'K':
2904     case 'L':
2905     case 'M':
2906     case 'N':
2907     case 'O':
2908     case 'P': {
2909       auto *C = dyn_cast<ConstantSDNode>(Op);
2910       if (!C)
2911         return;
2912 
2913       int64_t Val = C->getSExtValue();
2914       switch (Constraint[0]) {
2915       case 'I': // constant integer in the range [1,8]
2916         if (Val > 0 && Val <= 8)
2917           break;
2918         return;
2919       case 'J': // constant signed 16-bit integer
2920         if (isInt<16>(Val))
2921           break;
2922         return;
2923       case 'K': // constant that is NOT in the range of [-0x80, 0x80)
2924         if (Val < -0x80 || Val >= 0x80)
2925           break;
2926         return;
2927       case 'L': // constant integer in the range [-8,-1]
2928         if (Val < 0 && Val >= -8)
2929           break;
2930         return;
2931       case 'M': // constant that is NOT in the range of [-0x100, 0x100]
2932         if (Val < -0x100 || Val >= 0x100)
2933           break;
2934         return;
2935       case 'N': // constant integer in the range [24,31]
2936         if (Val >= 24 && Val <= 31)
2937           break;
2938         return;
2939       case 'O': // constant integer 16
2940         if (Val == 16)
2941           break;
2942         return;
2943       case 'P': // constant integer in the range [8,15]
2944         if (Val >= 8 && Val <= 15)
2945           break;
2946         return;
2947       default:
2948         llvm_unreachable("Unhandled constant constraint");
2949       }
2950 
2951       Result = DAG.getTargetConstant(Val, SDLoc(Op), Op.getValueType());
2952       break;
2953     }
2954     default:
2955       break;
2956     }
2957   }
2958 
2959   if (Constraint.size() == 2) {
2960     switch (Constraint[0]) {
2961     case 'C':
2962       // Constant constraints start with 'C'
2963       switch (Constraint[1]) {
2964       case '0':
2965       case 'i':
2966       case 'j': {
2967         auto *C = dyn_cast<ConstantSDNode>(Op);
2968         if (!C)
2969           break;
2970 
2971         int64_t Val = C->getSExtValue();
2972         switch (Constraint[1]) {
2973         case '0': // constant integer 0
2974           if (!Val)
2975             break;
2976           return;
2977         case 'i': // constant integer
2978           break;
2979         case 'j': // integer constant that doesn't fit in 16 bits
2980           if (!isInt<16>(C->getSExtValue()))
2981             break;
2982           return;
2983         default:
2984           llvm_unreachable("Unhandled constant constraint");
2985         }
2986 
2987         Result = DAG.getTargetConstant(Val, SDLoc(Op), Op.getValueType());
2988         break;
2989       }
2990       default:
2991         break;
2992       }
2993       break;
2994     default:
2995       break;
2996     }
2997   }
2998 
2999   if (Result.getNode()) {
3000     Ops.push_back(Result);
3001     return;
3002   }
3003 
3004   TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
3005 }
3006 
3007 std::pair<unsigned, const TargetRegisterClass *>
3008 M68kTargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI,
3009                                                  StringRef Constraint,
3010                                                  MVT VT) const {
3011   if (Constraint.size() == 1) {
3012     switch (Constraint[0]) {
3013     case 'r':
3014     case 'd':
3015       switch (VT.SimpleTy) {
3016       case MVT::i8:
3017         return std::make_pair(0U, &M68k::DR8RegClass);
3018       case MVT::i16:
3019         return std::make_pair(0U, &M68k::DR16RegClass);
3020       case MVT::i32:
3021         return std::make_pair(0U, &M68k::DR32RegClass);
3022       default:
3023         break;
3024       }
3025       break;
3026     case 'a':
3027       switch (VT.SimpleTy) {
3028       case MVT::i16:
3029         return std::make_pair(0U, &M68k::AR16RegClass);
3030       case MVT::i32:
3031         return std::make_pair(0U, &M68k::AR32RegClass);
3032       default:
3033         break;
3034       }
3035       break;
3036     default:
3037       break;
3038     }
3039   }
3040 
3041   return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT);
3042 }
3043 
3044 /// Determines whether the callee is required to pop its own arguments.
3045 /// Callee pop is necessary to support tail calls.
3046 bool M68k::isCalleePop(CallingConv::ID CC, bool IsVarArg, bool GuaranteeTCO) {
3047   return CC == CallingConv::M68k_RTD && !IsVarArg;
3048 }
3049 
3050 // Return true if it is OK for this CMOV pseudo-opcode to be cascaded
3051 // together with other CMOV pseudo-opcodes into a single basic-block with
3052 // conditional jump around it.
3053 static bool isCMOVPseudo(MachineInstr &MI) {
3054   switch (MI.getOpcode()) {
3055   case M68k::CMOV8d:
3056   case M68k::CMOV16d:
3057   case M68k::CMOV32r:
3058     return true;
3059 
3060   default:
3061     return false;
3062   }
3063 }
3064 
3065 // The CCR operand of SelectItr might be missing a kill marker
3066 // because there were multiple uses of CCR, and ISel didn't know
3067 // which to mark. Figure out whether SelectItr should have had a
3068 // kill marker, and set it if it should. Returns the correct kill
3069 // marker value.
3070 static bool checkAndUpdateCCRKill(MachineBasicBlock::iterator SelectItr,
3071                                   MachineBasicBlock *BB,
3072                                   const TargetRegisterInfo *TRI) {
3073   // Scan forward through BB for a use/def of CCR.
3074   MachineBasicBlock::iterator miI(std::next(SelectItr));
3075   for (MachineBasicBlock::iterator miE = BB->end(); miI != miE; ++miI) {
3076     const MachineInstr &mi = *miI;
3077     if (mi.readsRegister(M68k::CCR))
3078       return false;
3079     if (mi.definesRegister(M68k::CCR))
3080       break; // Should have kill-flag - update below.
3081   }
3082 
3083   // If we hit the end of the block, check whether CCR is live into a
3084   // successor.
3085   if (miI == BB->end())
3086     for (const auto *SBB : BB->successors())
3087       if (SBB->isLiveIn(M68k::CCR))
3088         return false;
3089 
3090   // We found a def, or hit the end of the basic block and CCR wasn't live
3091   // out. SelectMI should have a kill flag on CCR.
3092   SelectItr->addRegisterKilled(M68k::CCR, TRI);
3093   return true;
3094 }
3095 
3096 MachineBasicBlock *
3097 M68kTargetLowering::EmitLoweredSelect(MachineInstr &MI,
3098                                       MachineBasicBlock *MBB) const {
3099   const TargetInstrInfo *TII = Subtarget.getInstrInfo();
3100   DebugLoc DL = MI.getDebugLoc();
3101 
3102   // To "insert" a SELECT_CC instruction, we actually have to insert the
3103   // diamond control-flow pattern.  The incoming instruction knows the
3104   // destination vreg to set, the condition code register to branch on, the
3105   // true/false values to select between, and a branch opcode to use.
3106   const BasicBlock *BB = MBB->getBasicBlock();
3107   MachineFunction::iterator It = ++MBB->getIterator();
3108 
3109   //  ThisMBB:
3110   //  ...
3111   //   TrueVal = ...
3112   //   cmp ccX, r1, r2
3113   //   bcc Copy1MBB
3114   //   fallthrough --> Copy0MBB
3115   MachineBasicBlock *ThisMBB = MBB;
3116   MachineFunction *F = MBB->getParent();
3117 
3118   // This code lowers all pseudo-CMOV instructions. Generally it lowers these
3119   // as described above, by inserting a MBB, and then making a PHI at the join
3120   // point to select the true and false operands of the CMOV in the PHI.
3121   //
3122   // The code also handles two different cases of multiple CMOV opcodes
3123   // in a row.
3124   //
3125   // Case 1:
3126   // In this case, there are multiple CMOVs in a row, all which are based on
3127   // the same condition setting (or the exact opposite condition setting).
3128   // In this case we can lower all the CMOVs using a single inserted MBB, and
3129   // then make a number of PHIs at the join point to model the CMOVs. The only
3130   // trickiness here, is that in a case like:
3131   //
3132   // t2 = CMOV cond1 t1, f1
3133   // t3 = CMOV cond1 t2, f2
3134   //
3135   // when rewriting this into PHIs, we have to perform some renaming on the
3136   // temps since you cannot have a PHI operand refer to a PHI result earlier
3137   // in the same block.  The "simple" but wrong lowering would be:
3138   //
3139   // t2 = PHI t1(BB1), f1(BB2)
3140   // t3 = PHI t2(BB1), f2(BB2)
3141   //
3142   // but clearly t2 is not defined in BB1, so that is incorrect. The proper
3143   // renaming is to note that on the path through BB1, t2 is really just a
3144   // copy of t1, and do that renaming, properly generating:
3145   //
3146   // t2 = PHI t1(BB1), f1(BB2)
3147   // t3 = PHI t1(BB1), f2(BB2)
3148   //
3149   // Case 2, we lower cascaded CMOVs such as
3150   //
3151   //   (CMOV (CMOV F, T, cc1), T, cc2)
3152   //
3153   // to two successives branches.
3154   MachineInstr *CascadedCMOV = nullptr;
3155   MachineInstr *LastCMOV = &MI;
3156   M68k::CondCode CC = M68k::CondCode(MI.getOperand(3).getImm());
3157   M68k::CondCode OppCC = M68k::GetOppositeBranchCondition(CC);
3158   MachineBasicBlock::iterator NextMIIt =
3159       std::next(MachineBasicBlock::iterator(MI));
3160 
3161   // Check for case 1, where there are multiple CMOVs with the same condition
3162   // first.  Of the two cases of multiple CMOV lowerings, case 1 reduces the
3163   // number of jumps the most.
3164 
3165   if (isCMOVPseudo(MI)) {
3166     // See if we have a string of CMOVS with the same condition.
3167     while (NextMIIt != MBB->end() && isCMOVPseudo(*NextMIIt) &&
3168            (NextMIIt->getOperand(3).getImm() == CC ||
3169             NextMIIt->getOperand(3).getImm() == OppCC)) {
3170       LastCMOV = &*NextMIIt;
3171       ++NextMIIt;
3172     }
3173   }
3174 
3175   // This checks for case 2, but only do this if we didn't already find
3176   // case 1, as indicated by LastCMOV == MI.
3177   if (LastCMOV == &MI && NextMIIt != MBB->end() &&
3178       NextMIIt->getOpcode() == MI.getOpcode() &&
3179       NextMIIt->getOperand(2).getReg() == MI.getOperand(2).getReg() &&
3180       NextMIIt->getOperand(1).getReg() == MI.getOperand(0).getReg() &&
3181       NextMIIt->getOperand(1).isKill()) {
3182     CascadedCMOV = &*NextMIIt;
3183   }
3184 
3185   MachineBasicBlock *Jcc1MBB = nullptr;
3186 
3187   // If we have a cascaded CMOV, we lower it to two successive branches to
3188   // the same block.  CCR is used by both, so mark it as live in the second.
3189   if (CascadedCMOV) {
3190     Jcc1MBB = F->CreateMachineBasicBlock(BB);
3191     F->insert(It, Jcc1MBB);
3192     Jcc1MBB->addLiveIn(M68k::CCR);
3193   }
3194 
3195   MachineBasicBlock *Copy0MBB = F->CreateMachineBasicBlock(BB);
3196   MachineBasicBlock *SinkMBB = F->CreateMachineBasicBlock(BB);
3197   F->insert(It, Copy0MBB);
3198   F->insert(It, SinkMBB);
3199 
3200   // Set the call frame size on entry to the new basic blocks.
3201   unsigned CallFrameSize = TII->getCallFrameSizeAt(MI);
3202   Copy0MBB->setCallFrameSize(CallFrameSize);
3203   SinkMBB->setCallFrameSize(CallFrameSize);
3204 
3205   // If the CCR register isn't dead in the terminator, then claim that it's
3206   // live into the sink and copy blocks.
3207   const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo();
3208 
3209   MachineInstr *LastCCRSUser = CascadedCMOV ? CascadedCMOV : LastCMOV;
3210   if (!LastCCRSUser->killsRegister(M68k::CCR) &&
3211       !checkAndUpdateCCRKill(LastCCRSUser, MBB, TRI)) {
3212     Copy0MBB->addLiveIn(M68k::CCR);
3213     SinkMBB->addLiveIn(M68k::CCR);
3214   }
3215 
3216   // Transfer the remainder of MBB and its successor edges to SinkMBB.
3217   SinkMBB->splice(SinkMBB->begin(), MBB,
3218                   std::next(MachineBasicBlock::iterator(LastCMOV)), MBB->end());
3219   SinkMBB->transferSuccessorsAndUpdatePHIs(MBB);
3220 
3221   // Add the true and fallthrough blocks as its successors.
3222   if (CascadedCMOV) {
3223     // The fallthrough block may be Jcc1MBB, if we have a cascaded CMOV.
3224     MBB->addSuccessor(Jcc1MBB);
3225 
3226     // In that case, Jcc1MBB will itself fallthrough the Copy0MBB, and
3227     // jump to the SinkMBB.
3228     Jcc1MBB->addSuccessor(Copy0MBB);
3229     Jcc1MBB->addSuccessor(SinkMBB);
3230   } else {
3231     MBB->addSuccessor(Copy0MBB);
3232   }
3233 
3234   // The true block target of the first (or only) branch is always SinkMBB.
3235   MBB->addSuccessor(SinkMBB);
3236 
3237   // Create the conditional branch instruction.
3238   unsigned Opc = M68k::GetCondBranchFromCond(CC);
3239   BuildMI(MBB, DL, TII->get(Opc)).addMBB(SinkMBB);
3240 
3241   if (CascadedCMOV) {
3242     unsigned Opc2 = M68k::GetCondBranchFromCond(
3243         (M68k::CondCode)CascadedCMOV->getOperand(3).getImm());
3244     BuildMI(Jcc1MBB, DL, TII->get(Opc2)).addMBB(SinkMBB);
3245   }
3246 
3247   //  Copy0MBB:
3248   //   %FalseValue = ...
3249   //   # fallthrough to SinkMBB
3250   Copy0MBB->addSuccessor(SinkMBB);
3251 
3252   //  SinkMBB:
3253   //   %Result = phi [ %FalseValue, Copy0MBB ], [ %TrueValue, ThisMBB ]
3254   //  ...
3255   MachineBasicBlock::iterator MIItBegin = MachineBasicBlock::iterator(MI);
3256   MachineBasicBlock::iterator MIItEnd =
3257       std::next(MachineBasicBlock::iterator(LastCMOV));
3258   MachineBasicBlock::iterator SinkInsertionPoint = SinkMBB->begin();
3259   DenseMap<unsigned, std::pair<unsigned, unsigned>> RegRewriteTable;
3260   MachineInstrBuilder MIB;
3261 
3262   // As we are creating the PHIs, we have to be careful if there is more than
3263   // one.  Later CMOVs may reference the results of earlier CMOVs, but later
3264   // PHIs have to reference the individual true/false inputs from earlier PHIs.
3265   // That also means that PHI construction must work forward from earlier to
3266   // later, and that the code must maintain a mapping from earlier PHI's
3267   // destination registers, and the registers that went into the PHI.
3268 
3269   for (MachineBasicBlock::iterator MIIt = MIItBegin; MIIt != MIItEnd; ++MIIt) {
3270     Register DestReg = MIIt->getOperand(0).getReg();
3271     Register Op1Reg = MIIt->getOperand(1).getReg();
3272     Register Op2Reg = MIIt->getOperand(2).getReg();
3273 
3274     // If this CMOV we are generating is the opposite condition from
3275     // the jump we generated, then we have to swap the operands for the
3276     // PHI that is going to be generated.
3277     if (MIIt->getOperand(3).getImm() == OppCC)
3278       std::swap(Op1Reg, Op2Reg);
3279 
3280     if (RegRewriteTable.find(Op1Reg) != RegRewriteTable.end())
3281       Op1Reg = RegRewriteTable[Op1Reg].first;
3282 
3283     if (RegRewriteTable.find(Op2Reg) != RegRewriteTable.end())
3284       Op2Reg = RegRewriteTable[Op2Reg].second;
3285 
3286     MIB =
3287         BuildMI(*SinkMBB, SinkInsertionPoint, DL, TII->get(M68k::PHI), DestReg)
3288             .addReg(Op1Reg)
3289             .addMBB(Copy0MBB)
3290             .addReg(Op2Reg)
3291             .addMBB(ThisMBB);
3292 
3293     // Add this PHI to the rewrite table.
3294     RegRewriteTable[DestReg] = std::make_pair(Op1Reg, Op2Reg);
3295   }
3296 
3297   // If we have a cascaded CMOV, the second Jcc provides the same incoming
3298   // value as the first Jcc (the True operand of the SELECT_CC/CMOV nodes).
3299   if (CascadedCMOV) {
3300     MIB.addReg(MI.getOperand(2).getReg()).addMBB(Jcc1MBB);
3301     // Copy the PHI result to the register defined by the second CMOV.
3302     BuildMI(*SinkMBB, std::next(MachineBasicBlock::iterator(MIB.getInstr())),
3303             DL, TII->get(TargetOpcode::COPY),
3304             CascadedCMOV->getOperand(0).getReg())
3305         .addReg(MI.getOperand(0).getReg());
3306     CascadedCMOV->eraseFromParent();
3307   }
3308 
3309   // Now remove the CMOV(s).
3310   for (MachineBasicBlock::iterator MIIt = MIItBegin; MIIt != MIItEnd;)
3311     (MIIt++)->eraseFromParent();
3312 
3313   return SinkMBB;
3314 }
3315 
3316 MachineBasicBlock *
3317 M68kTargetLowering::EmitLoweredSegAlloca(MachineInstr &MI,
3318                                          MachineBasicBlock *BB) const {
3319   llvm_unreachable("Cannot lower Segmented Stack Alloca with stack-split on");
3320 }
3321 
3322 MachineBasicBlock *
3323 M68kTargetLowering::EmitInstrWithCustomInserter(MachineInstr &MI,
3324                                                 MachineBasicBlock *BB) const {
3325   switch (MI.getOpcode()) {
3326   default:
3327     llvm_unreachable("Unexpected instr type to insert");
3328   case M68k::CMOV8d:
3329   case M68k::CMOV16d:
3330   case M68k::CMOV32r:
3331     return EmitLoweredSelect(MI, BB);
3332   case M68k::SALLOCA:
3333     return EmitLoweredSegAlloca(MI, BB);
3334   }
3335 }
3336 
3337 SDValue M68kTargetLowering::LowerVASTART(SDValue Op, SelectionDAG &DAG) const {
3338   MachineFunction &MF = DAG.getMachineFunction();
3339   auto PtrVT = getPointerTy(MF.getDataLayout());
3340   M68kMachineFunctionInfo *FuncInfo = MF.getInfo<M68kMachineFunctionInfo>();
3341 
3342   const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
3343   SDLoc DL(Op);
3344 
3345   // vastart just stores the address of the VarArgsFrameIndex slot into the
3346   // memory location argument.
3347   SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT);
3348   return DAG.getStore(Op.getOperand(0), DL, FR, Op.getOperand(1),
3349                       MachinePointerInfo(SV));
3350 }
3351 
3352 SDValue M68kTargetLowering::LowerATOMICFENCE(SDValue Op,
3353                                              SelectionDAG &DAG) const {
3354   // Lower to a memory barrier created from inline asm.
3355   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3356   LLVMContext &Ctx = *DAG.getContext();
3357 
3358   const unsigned Flags = InlineAsm::Extra_MayLoad | InlineAsm::Extra_MayStore |
3359                          InlineAsm::Extra_HasSideEffects;
3360   const SDValue AsmOperands[4] = {
3361       Op.getOperand(0), // Input chain
3362       DAG.getTargetExternalSymbol(
3363           "", TLI.getProgramPointerTy(
3364                   DAG.getDataLayout())),   // Empty inline asm string
3365       DAG.getMDNode(MDNode::get(Ctx, {})), // (empty) srcloc
3366       DAG.getTargetConstant(Flags, SDLoc(Op),
3367                             TLI.getPointerTy(DAG.getDataLayout())), // Flags
3368   };
3369 
3370   return DAG.getNode(ISD::INLINEASM, SDLoc(Op),
3371                      DAG.getVTList(MVT::Other, MVT::Glue), AsmOperands);
3372 }
3373 
3374 // Lower dynamic stack allocation to _alloca call for Cygwin/Mingw targets.
3375 // Calls to _alloca are needed to probe the stack when allocating more than 4k
3376 // bytes in one go. Touching the stack at 4K increments is necessary to ensure
3377 // that the guard pages used by the OS virtual memory manager are allocated in
3378 // correct sequence.
3379 SDValue M68kTargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op,
3380                                                     SelectionDAG &DAG) const {
3381   MachineFunction &MF = DAG.getMachineFunction();
3382   bool SplitStack = MF.shouldSplitStack();
3383 
3384   SDLoc DL(Op);
3385 
3386   // Get the inputs.
3387   SDNode *Node = Op.getNode();
3388   SDValue Chain = Op.getOperand(0);
3389   SDValue Size = Op.getOperand(1);
3390   unsigned Align = Op.getConstantOperandVal(2);
3391   EVT VT = Node->getValueType(0);
3392 
3393   // Chain the dynamic stack allocation so that it doesn't modify the stack
3394   // pointer when other instructions are using the stack.
3395   Chain = DAG.getCALLSEQ_START(Chain, 0, 0, DL);
3396 
3397   SDValue Result;
3398   if (SplitStack) {
3399     auto &MRI = MF.getRegInfo();
3400     auto SPTy = getPointerTy(DAG.getDataLayout());
3401     auto *ARClass = getRegClassFor(SPTy);
3402     Register Vreg = MRI.createVirtualRegister(ARClass);
3403     Chain = DAG.getCopyToReg(Chain, DL, Vreg, Size);
3404     Result = DAG.getNode(M68kISD::SEG_ALLOCA, DL, SPTy, Chain,
3405                          DAG.getRegister(Vreg, SPTy));
3406   } else {
3407     auto &TLI = DAG.getTargetLoweringInfo();
3408     Register SPReg = TLI.getStackPointerRegisterToSaveRestore();
3409     assert(SPReg && "Target cannot require DYNAMIC_STACKALLOC expansion and"
3410                     " not tell us which reg is the stack pointer!");
3411 
3412     SDValue SP = DAG.getCopyFromReg(Chain, DL, SPReg, VT);
3413     Chain = SP.getValue(1);
3414     const TargetFrameLowering &TFI = *Subtarget.getFrameLowering();
3415     unsigned StackAlign = TFI.getStackAlignment();
3416     Result = DAG.getNode(ISD::SUB, DL, VT, SP, Size); // Value
3417     if (Align > StackAlign)
3418       Result = DAG.getNode(ISD::AND, DL, VT, Result,
3419                            DAG.getConstant(-(uint64_t)Align, DL, VT));
3420     Chain = DAG.getCopyToReg(Chain, DL, SPReg, Result); // Output chain
3421   }
3422 
3423   Chain = DAG.getCALLSEQ_END(Chain, 0, 0, SDValue(), DL);
3424 
3425   SDValue Ops[2] = {Result, Chain};
3426   return DAG.getMergeValues(Ops, DL);
3427 }
3428 
3429 SDValue M68kTargetLowering::LowerShiftLeftParts(SDValue Op,
3430                                                 SelectionDAG &DAG) const {
3431   SDLoc DL(Op);
3432   SDValue Lo = Op.getOperand(0);
3433   SDValue Hi = Op.getOperand(1);
3434   SDValue Shamt = Op.getOperand(2);
3435   EVT VT = Lo.getValueType();
3436 
3437   // if Shamt - register size < 0: // Shamt < register size
3438   //   Lo = Lo << Shamt
3439   //   Hi = (Hi << Shamt) | ((Lo >>u 1) >>u (register size - 1 ^ Shamt))
3440   // else:
3441   //   Lo = 0
3442   //   Hi = Lo << (Shamt - register size)
3443 
3444   SDValue Zero = DAG.getConstant(0, DL, VT);
3445   SDValue One = DAG.getConstant(1, DL, VT);
3446   SDValue MinusRegisterSize = DAG.getConstant(-32, DL, VT);
3447   SDValue RegisterSizeMinus1 = DAG.getConstant(32 - 1, DL, VT);
3448   SDValue ShamtMinusRegisterSize =
3449       DAG.getNode(ISD::ADD, DL, VT, Shamt, MinusRegisterSize);
3450   SDValue RegisterSizeMinus1Shamt =
3451       DAG.getNode(ISD::XOR, DL, VT, RegisterSizeMinus1, Shamt);
3452 
3453   SDValue LoTrue = DAG.getNode(ISD::SHL, DL, VT, Lo, Shamt);
3454   SDValue ShiftRight1Lo = DAG.getNode(ISD::SRL, DL, VT, Lo, One);
3455   SDValue ShiftRightLo =
3456       DAG.getNode(ISD::SRL, DL, VT, ShiftRight1Lo, RegisterSizeMinus1Shamt);
3457   SDValue ShiftLeftHi = DAG.getNode(ISD::SHL, DL, VT, Hi, Shamt);
3458   SDValue HiTrue = DAG.getNode(ISD::OR, DL, VT, ShiftLeftHi, ShiftRightLo);
3459   SDValue HiFalse = DAG.getNode(ISD::SHL, DL, VT, Lo, ShamtMinusRegisterSize);
3460 
3461   SDValue CC =
3462       DAG.getSetCC(DL, MVT::i8, ShamtMinusRegisterSize, Zero, ISD::SETLT);
3463 
3464   Lo = DAG.getNode(ISD::SELECT, DL, VT, CC, LoTrue, Zero);
3465   Hi = DAG.getNode(ISD::SELECT, DL, VT, CC, HiTrue, HiFalse);
3466 
3467   return DAG.getMergeValues({Lo, Hi}, DL);
3468 }
3469 
3470 SDValue M68kTargetLowering::LowerShiftRightParts(SDValue Op, SelectionDAG &DAG,
3471                                                  bool IsSRA) const {
3472   SDLoc DL(Op);
3473   SDValue Lo = Op.getOperand(0);
3474   SDValue Hi = Op.getOperand(1);
3475   SDValue Shamt = Op.getOperand(2);
3476   EVT VT = Lo.getValueType();
3477 
3478   // SRA expansion:
3479   //   if Shamt - register size < 0: // Shamt < register size
3480   //     Lo = (Lo >>u Shamt) | ((Hi << 1) << (register size - 1 ^ Shamt))
3481   //     Hi = Hi >>s Shamt
3482   //   else:
3483   //     Lo = Hi >>s (Shamt - register size);
3484   //     Hi = Hi >>s (register size - 1)
3485   //
3486   // SRL expansion:
3487   //   if Shamt - register size < 0: // Shamt < register size
3488   //     Lo = (Lo >>u Shamt) | ((Hi << 1) << (register size - 1 ^ Shamt))
3489   //     Hi = Hi >>u Shamt
3490   //   else:
3491   //     Lo = Hi >>u (Shamt - register size);
3492   //     Hi = 0;
3493 
3494   unsigned ShiftRightOp = IsSRA ? ISD::SRA : ISD::SRL;
3495 
3496   SDValue Zero = DAG.getConstant(0, DL, VT);
3497   SDValue One = DAG.getConstant(1, DL, VT);
3498   SDValue MinusRegisterSize = DAG.getConstant(-32, DL, VT);
3499   SDValue RegisterSizeMinus1 = DAG.getConstant(32 - 1, DL, VT);
3500   SDValue ShamtMinusRegisterSize =
3501       DAG.getNode(ISD::ADD, DL, VT, Shamt, MinusRegisterSize);
3502   SDValue RegisterSizeMinus1Shamt =
3503       DAG.getNode(ISD::XOR, DL, VT, RegisterSizeMinus1, Shamt);
3504 
3505   SDValue ShiftRightLo = DAG.getNode(ISD::SRL, DL, VT, Lo, Shamt);
3506   SDValue ShiftLeftHi1 = DAG.getNode(ISD::SHL, DL, VT, Hi, One);
3507   SDValue ShiftLeftHi =
3508       DAG.getNode(ISD::SHL, DL, VT, ShiftLeftHi1, RegisterSizeMinus1Shamt);
3509   SDValue LoTrue = DAG.getNode(ISD::OR, DL, VT, ShiftRightLo, ShiftLeftHi);
3510   SDValue HiTrue = DAG.getNode(ShiftRightOp, DL, VT, Hi, Shamt);
3511   SDValue LoFalse =
3512       DAG.getNode(ShiftRightOp, DL, VT, Hi, ShamtMinusRegisterSize);
3513   SDValue HiFalse =
3514       IsSRA ? DAG.getNode(ISD::SRA, DL, VT, Hi, RegisterSizeMinus1) : Zero;
3515 
3516   SDValue CC =
3517       DAG.getSetCC(DL, MVT::i8, ShamtMinusRegisterSize, Zero, ISD::SETLT);
3518 
3519   Lo = DAG.getNode(ISD::SELECT, DL, VT, CC, LoTrue, LoFalse);
3520   Hi = DAG.getNode(ISD::SELECT, DL, VT, CC, HiTrue, HiFalse);
3521 
3522   return DAG.getMergeValues({Lo, Hi}, DL);
3523 }
3524 
3525 //===----------------------------------------------------------------------===//
3526 // DAG Combine
3527 //===----------------------------------------------------------------------===//
3528 
3529 static SDValue getSETCC(M68k::CondCode Cond, SDValue CCR, const SDLoc &dl,
3530                         SelectionDAG &DAG) {
3531   return DAG.getNode(M68kISD::SETCC, dl, MVT::i8,
3532                      DAG.getConstant(Cond, dl, MVT::i8), CCR);
3533 }
3534 // When legalizing carry, we create carries via add X, -1
3535 // If that comes from an actual carry, via setcc, we use the
3536 // carry directly.
3537 static SDValue combineCarryThroughADD(SDValue CCR) {
3538   if (CCR.getOpcode() == M68kISD::ADD) {
3539     if (isAllOnesConstant(CCR.getOperand(1))) {
3540       SDValue Carry = CCR.getOperand(0);
3541       while (Carry.getOpcode() == ISD::TRUNCATE ||
3542              Carry.getOpcode() == ISD::ZERO_EXTEND ||
3543              Carry.getOpcode() == ISD::SIGN_EXTEND ||
3544              Carry.getOpcode() == ISD::ANY_EXTEND ||
3545              (Carry.getOpcode() == ISD::AND &&
3546               isOneConstant(Carry.getOperand(1))))
3547         Carry = Carry.getOperand(0);
3548       if (Carry.getOpcode() == M68kISD::SETCC ||
3549           Carry.getOpcode() == M68kISD::SETCC_CARRY) {
3550         if (Carry.getConstantOperandVal(0) == M68k::COND_CS)
3551           return Carry.getOperand(1);
3552       }
3553     }
3554   }
3555 
3556   return SDValue();
3557 }
3558 
3559 /// Optimize a CCR definition used according to the condition code \p CC into
3560 /// a simpler CCR value, potentially returning a new \p CC and replacing uses
3561 /// of chain values.
3562 static SDValue combineSetCCCCR(SDValue CCR, M68k::CondCode &CC,
3563                                SelectionDAG &DAG,
3564                                const M68kSubtarget &Subtarget) {
3565   if (CC == M68k::COND_CS)
3566     if (SDValue Flags = combineCarryThroughADD(CCR))
3567       return Flags;
3568 
3569   return SDValue();
3570 }
3571 
3572 // Optimize  RES = M68kISD::SETCC CONDCODE, CCR_INPUT
3573 static SDValue combineM68kSetCC(SDNode *N, SelectionDAG &DAG,
3574                                 const M68kSubtarget &Subtarget) {
3575   SDLoc DL(N);
3576   M68k::CondCode CC = M68k::CondCode(N->getConstantOperandVal(0));
3577   SDValue CCR = N->getOperand(1);
3578 
3579   // Try to simplify the CCR and condition code operands.
3580   if (SDValue Flags = combineSetCCCCR(CCR, CC, DAG, Subtarget))
3581     return getSETCC(CC, Flags, DL, DAG);
3582 
3583   return SDValue();
3584 }
3585 static SDValue combineM68kBrCond(SDNode *N, SelectionDAG &DAG,
3586                                  const M68kSubtarget &Subtarget) {
3587   SDLoc DL(N);
3588   M68k::CondCode CC = M68k::CondCode(N->getConstantOperandVal(2));
3589   SDValue CCR = N->getOperand(3);
3590 
3591   // Try to simplify the CCR and condition code operands.
3592   // Make sure to not keep references to operands, as combineSetCCCCR can
3593   // RAUW them under us.
3594   if (SDValue Flags = combineSetCCCCR(CCR, CC, DAG, Subtarget)) {
3595     SDValue Cond = DAG.getConstant(CC, DL, MVT::i8);
3596     return DAG.getNode(M68kISD::BRCOND, DL, N->getVTList(), N->getOperand(0),
3597                        N->getOperand(1), Cond, Flags);
3598   }
3599 
3600   return SDValue();
3601 }
3602 
3603 static SDValue combineSUBX(SDNode *N, SelectionDAG &DAG) {
3604   if (SDValue Flags = combineCarryThroughADD(N->getOperand(2))) {
3605     MVT VT = N->getSimpleValueType(0);
3606     SDVTList VTs = DAG.getVTList(VT, MVT::i32);
3607     return DAG.getNode(M68kISD::SUBX, SDLoc(N), VTs, N->getOperand(0),
3608                        N->getOperand(1), Flags);
3609   }
3610 
3611   return SDValue();
3612 }
3613 
3614 // Optimize RES, CCR = M68kISD::ADDX LHS, RHS, CCR
3615 static SDValue combineADDX(SDNode *N, SelectionDAG &DAG,
3616                            TargetLowering::DAGCombinerInfo &DCI) {
3617   if (SDValue Flags = combineCarryThroughADD(N->getOperand(2))) {
3618     MVT VT = N->getSimpleValueType(0);
3619     SDVTList VTs = DAG.getVTList(VT, MVT::i32);
3620     return DAG.getNode(M68kISD::ADDX, SDLoc(N), VTs, N->getOperand(0),
3621                        N->getOperand(1), Flags);
3622   }
3623 
3624   return SDValue();
3625 }
3626 
3627 SDValue M68kTargetLowering::PerformDAGCombine(SDNode *N,
3628                                               DAGCombinerInfo &DCI) const {
3629   SelectionDAG &DAG = DCI.DAG;
3630   switch (N->getOpcode()) {
3631   case M68kISD::SUBX:
3632     return combineSUBX(N, DAG);
3633   case M68kISD::ADDX:
3634     return combineADDX(N, DAG, DCI);
3635   case M68kISD::SETCC:
3636     return combineM68kSetCC(N, DAG, Subtarget);
3637   case M68kISD::BRCOND:
3638     return combineM68kBrCond(N, DAG, Subtarget);
3639   }
3640 
3641   return SDValue();
3642 }
3643 
3644 //===----------------------------------------------------------------------===//
3645 // M68kISD Node Names
3646 //===----------------------------------------------------------------------===//
3647 const char *M68kTargetLowering::getTargetNodeName(unsigned Opcode) const {
3648   switch (Opcode) {
3649   case M68kISD::CALL:
3650     return "M68kISD::CALL";
3651   case M68kISD::TAIL_CALL:
3652     return "M68kISD::TAIL_CALL";
3653   case M68kISD::RET:
3654     return "M68kISD::RET";
3655   case M68kISD::TC_RETURN:
3656     return "M68kISD::TC_RETURN";
3657   case M68kISD::ADD:
3658     return "M68kISD::ADD";
3659   case M68kISD::SUB:
3660     return "M68kISD::SUB";
3661   case M68kISD::ADDX:
3662     return "M68kISD::ADDX";
3663   case M68kISD::SUBX:
3664     return "M68kISD::SUBX";
3665   case M68kISD::SMUL:
3666     return "M68kISD::SMUL";
3667   case M68kISD::UMUL:
3668     return "M68kISD::UMUL";
3669   case M68kISD::OR:
3670     return "M68kISD::OR";
3671   case M68kISD::XOR:
3672     return "M68kISD::XOR";
3673   case M68kISD::AND:
3674     return "M68kISD::AND";
3675   case M68kISD::CMP:
3676     return "M68kISD::CMP";
3677   case M68kISD::BTST:
3678     return "M68kISD::BTST";
3679   case M68kISD::SELECT:
3680     return "M68kISD::SELECT";
3681   case M68kISD::CMOV:
3682     return "M68kISD::CMOV";
3683   case M68kISD::BRCOND:
3684     return "M68kISD::BRCOND";
3685   case M68kISD::SETCC:
3686     return "M68kISD::SETCC";
3687   case M68kISD::SETCC_CARRY:
3688     return "M68kISD::SETCC_CARRY";
3689   case M68kISD::GLOBAL_BASE_REG:
3690     return "M68kISD::GLOBAL_BASE_REG";
3691   case M68kISD::Wrapper:
3692     return "M68kISD::Wrapper";
3693   case M68kISD::WrapperPC:
3694     return "M68kISD::WrapperPC";
3695   case M68kISD::SEG_ALLOCA:
3696     return "M68kISD::SEG_ALLOCA";
3697   default:
3698     return NULL;
3699   }
3700 }
3701 
3702 CCAssignFn *M68kTargetLowering::getCCAssignFn(CallingConv::ID CC, bool Return,
3703                                               bool IsVarArg) const {
3704   if (Return)
3705     return RetCC_M68k_C;
3706   else
3707     return CC_M68k_C;
3708 }
3709