1 //===- MipsFastISel.cpp - Mips FastISel implementation --------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 ///
9 /// \file
10 /// This file defines the MIPS-specific support for the FastISel class.
11 /// Some of the target-specific code is generated by tablegen in the file
12 /// MipsGenFastISel.inc, which is #included here.
13 ///
14 //===----------------------------------------------------------------------===//
15 
16 #include "MCTargetDesc/MipsABIInfo.h"
17 #include "MCTargetDesc/MipsBaseInfo.h"
18 #include "MipsCCState.h"
19 #include "MipsISelLowering.h"
20 #include "MipsInstrInfo.h"
21 #include "MipsMachineFunction.h"
22 #include "MipsSubtarget.h"
23 #include "MipsTargetMachine.h"
24 #include "llvm/ADT/APInt.h"
25 #include "llvm/ADT/ArrayRef.h"
26 #include "llvm/ADT/DenseMap.h"
27 #include "llvm/ADT/SmallVector.h"
28 #include "llvm/Analysis/TargetLibraryInfo.h"
29 #include "llvm/CodeGen/CallingConvLower.h"
30 #include "llvm/CodeGen/FastISel.h"
31 #include "llvm/CodeGen/FunctionLoweringInfo.h"
32 #include "llvm/CodeGen/ISDOpcodes.h"
33 #include "llvm/CodeGen/MachineBasicBlock.h"
34 #include "llvm/CodeGen/MachineFrameInfo.h"
35 #include "llvm/CodeGen/MachineInstrBuilder.h"
36 #include "llvm/CodeGen/MachineMemOperand.h"
37 #include "llvm/CodeGen/MachineRegisterInfo.h"
38 #include "llvm/CodeGen/TargetInstrInfo.h"
39 #include "llvm/CodeGen/TargetLowering.h"
40 #include "llvm/CodeGen/ValueTypes.h"
41 #include "llvm/IR/Attributes.h"
42 #include "llvm/IR/CallingConv.h"
43 #include "llvm/IR/Constant.h"
44 #include "llvm/IR/Constants.h"
45 #include "llvm/IR/DataLayout.h"
46 #include "llvm/IR/Function.h"
47 #include "llvm/IR/GetElementPtrTypeIterator.h"
48 #include "llvm/IR/GlobalValue.h"
49 #include "llvm/IR/GlobalVariable.h"
50 #include "llvm/IR/InstrTypes.h"
51 #include "llvm/IR/Instruction.h"
52 #include "llvm/IR/Instructions.h"
53 #include "llvm/IR/IntrinsicInst.h"
54 #include "llvm/IR/Operator.h"
55 #include "llvm/IR/Type.h"
56 #include "llvm/IR/User.h"
57 #include "llvm/IR/Value.h"
58 #include "llvm/MC/MCContext.h"
59 #include "llvm/MC/MCInstrDesc.h"
60 #include "llvm/MC/MCRegisterInfo.h"
61 #include "llvm/MC/MCSymbol.h"
62 #include "llvm/Support/Casting.h"
63 #include "llvm/Support/Compiler.h"
64 #include "llvm/Support/Debug.h"
65 #include "llvm/Support/ErrorHandling.h"
66 #include "llvm/Support/MachineValueType.h"
67 #include "llvm/Support/MathExtras.h"
68 #include "llvm/Support/raw_ostream.h"
69 #include <algorithm>
70 #include <array>
71 #include <cassert>
72 #include <cstdint>
73 
74 #define DEBUG_TYPE "mips-fastisel"
75 
76 using namespace llvm;
77 
78 extern cl::opt<bool> EmitJalrReloc;
79 
80 namespace {
81 
82 class MipsFastISel final : public FastISel {
83 
84   // All possible address modes.
85   class Address {
86   public:
87     using BaseKind = enum { RegBase, FrameIndexBase };
88 
89   private:
90     BaseKind Kind = RegBase;
91     union {
92       unsigned Reg;
93       int FI;
94     } Base;
95 
96     int64_t Offset = 0;
97 
98     const GlobalValue *GV = nullptr;
99 
100   public:
101     // Innocuous defaults for our address.
102     Address() { Base.Reg = 0; }
103 
104     void setKind(BaseKind K) { Kind = K; }
105     BaseKind getKind() const { return Kind; }
106     bool isRegBase() const { return Kind == RegBase; }
107     bool isFIBase() const { return Kind == FrameIndexBase; }
108 
109     void setReg(unsigned Reg) {
110       assert(isRegBase() && "Invalid base register access!");
111       Base.Reg = Reg;
112     }
113 
114     unsigned getReg() const {
115       assert(isRegBase() && "Invalid base register access!");
116       return Base.Reg;
117     }
118 
119     void setFI(unsigned FI) {
120       assert(isFIBase() && "Invalid base frame index access!");
121       Base.FI = FI;
122     }
123 
124     unsigned getFI() const {
125       assert(isFIBase() && "Invalid base frame index access!");
126       return Base.FI;
127     }
128 
129     void setOffset(int64_t Offset_) { Offset = Offset_; }
130     int64_t getOffset() const { return Offset; }
131     void setGlobalValue(const GlobalValue *G) { GV = G; }
132     const GlobalValue *getGlobalValue() { return GV; }
133   };
134 
135   /// Subtarget - Keep a pointer to the MipsSubtarget around so that we can
136   /// make the right decision when generating code for different targets.
137   const TargetMachine &TM;
138   const MipsSubtarget *Subtarget;
139   const TargetInstrInfo &TII;
140   const TargetLowering &TLI;
141   MipsFunctionInfo *MFI;
142 
143   // Convenience variables to avoid some queries.
144   LLVMContext *Context;
145 
146   bool fastLowerArguments() override;
147   bool fastLowerCall(CallLoweringInfo &CLI) override;
148   bool fastLowerIntrinsicCall(const IntrinsicInst *II) override;
149 
150   bool UnsupportedFPMode; // To allow fast-isel to proceed and just not handle
151   // floating point but not reject doing fast-isel in other
152   // situations
153 
154 private:
155   // Selection routines.
156   bool selectLogicalOp(const Instruction *I);
157   bool selectLoad(const Instruction *I);
158   bool selectStore(const Instruction *I);
159   bool selectBranch(const Instruction *I);
160   bool selectSelect(const Instruction *I);
161   bool selectCmp(const Instruction *I);
162   bool selectFPExt(const Instruction *I);
163   bool selectFPTrunc(const Instruction *I);
164   bool selectFPToInt(const Instruction *I, bool IsSigned);
165   bool selectRet(const Instruction *I);
166   bool selectTrunc(const Instruction *I);
167   bool selectIntExt(const Instruction *I);
168   bool selectShift(const Instruction *I);
169   bool selectDivRem(const Instruction *I, unsigned ISDOpcode);
170 
171   // Utility helper routines.
172   bool isTypeLegal(Type *Ty, MVT &VT);
173   bool isTypeSupported(Type *Ty, MVT &VT);
174   bool isLoadTypeLegal(Type *Ty, MVT &VT);
175   bool computeAddress(const Value *Obj, Address &Addr);
176   bool computeCallAddress(const Value *V, Address &Addr);
177   void simplifyAddress(Address &Addr);
178 
179   // Emit helper routines.
180   bool emitCmp(unsigned DestReg, const CmpInst *CI);
181   bool emitLoad(MVT VT, unsigned &ResultReg, Address &Addr);
182   bool emitStore(MVT VT, unsigned SrcReg, Address &Addr);
183   unsigned emitIntExt(MVT SrcVT, unsigned SrcReg, MVT DestVT, bool isZExt);
184   bool emitIntExt(MVT SrcVT, unsigned SrcReg, MVT DestVT, unsigned DestReg,
185 
186                   bool IsZExt);
187   bool emitIntZExt(MVT SrcVT, unsigned SrcReg, MVT DestVT, unsigned DestReg);
188 
189   bool emitIntSExt(MVT SrcVT, unsigned SrcReg, MVT DestVT, unsigned DestReg);
190   bool emitIntSExt32r1(MVT SrcVT, unsigned SrcReg, MVT DestVT,
191                        unsigned DestReg);
192   bool emitIntSExt32r2(MVT SrcVT, unsigned SrcReg, MVT DestVT,
193                        unsigned DestReg);
194 
195   unsigned getRegEnsuringSimpleIntegerWidening(const Value *, bool IsUnsigned);
196 
197   unsigned emitLogicalOp(unsigned ISDOpc, MVT RetVT, const Value *LHS,
198                          const Value *RHS);
199 
200   unsigned materializeFP(const ConstantFP *CFP, MVT VT);
201   unsigned materializeGV(const GlobalValue *GV, MVT VT);
202   unsigned materializeInt(const Constant *C, MVT VT);
203   unsigned materialize32BitInt(int64_t Imm, const TargetRegisterClass *RC);
204   unsigned materializeExternalCallSym(MCSymbol *Syn);
205 
206   MachineInstrBuilder emitInst(unsigned Opc) {
207     return BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(Opc));
208   }
209 
210   MachineInstrBuilder emitInst(unsigned Opc, unsigned DstReg) {
211     return BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(Opc),
212                    DstReg);
213   }
214 
215   MachineInstrBuilder emitInstStore(unsigned Opc, unsigned SrcReg,
216                                     unsigned MemReg, int64_t MemOffset) {
217     return emitInst(Opc).addReg(SrcReg).addReg(MemReg).addImm(MemOffset);
218   }
219 
220   MachineInstrBuilder emitInstLoad(unsigned Opc, unsigned DstReg,
221                                    unsigned MemReg, int64_t MemOffset) {
222     return emitInst(Opc, DstReg).addReg(MemReg).addImm(MemOffset);
223   }
224 
225   unsigned fastEmitInst_rr(unsigned MachineInstOpcode,
226                            const TargetRegisterClass *RC,
227                            unsigned Op0, unsigned Op1);
228 
229   // for some reason, this default is not generated by tablegen
230   // so we explicitly generate it here.
231   unsigned fastEmitInst_riir(uint64_t inst, const TargetRegisterClass *RC,
232                              unsigned Op0, uint64_t imm1, uint64_t imm2,
233                              unsigned Op3) {
234     return 0;
235   }
236 
237   // Call handling routines.
238 private:
239   CCAssignFn *CCAssignFnForCall(CallingConv::ID CC) const;
240   bool processCallArgs(CallLoweringInfo &CLI, SmallVectorImpl<MVT> &ArgVTs,
241                        unsigned &NumBytes);
242   bool finishCall(CallLoweringInfo &CLI, MVT RetVT, unsigned NumBytes);
243 
244   const MipsABIInfo &getABI() const {
245     return static_cast<const MipsTargetMachine &>(TM).getABI();
246   }
247 
248 public:
249   // Backend specific FastISel code.
250   explicit MipsFastISel(FunctionLoweringInfo &funcInfo,
251                         const TargetLibraryInfo *libInfo)
252       : FastISel(funcInfo, libInfo), TM(funcInfo.MF->getTarget()),
253         Subtarget(&funcInfo.MF->getSubtarget<MipsSubtarget>()),
254         TII(*Subtarget->getInstrInfo()), TLI(*Subtarget->getTargetLowering()) {
255     MFI = funcInfo.MF->getInfo<MipsFunctionInfo>();
256     Context = &funcInfo.Fn->getContext();
257     UnsupportedFPMode = Subtarget->isFP64bit() || Subtarget->useSoftFloat();
258   }
259 
260   unsigned fastMaterializeAlloca(const AllocaInst *AI) override;
261   unsigned fastMaterializeConstant(const Constant *C) override;
262   bool fastSelectInstruction(const Instruction *I) override;
263 
264 #include "MipsGenFastISel.inc"
265 };
266 
267 } // end anonymous namespace
268 
269 static bool CC_Mips(unsigned ValNo, MVT ValVT, MVT LocVT,
270                     CCValAssign::LocInfo LocInfo, ISD::ArgFlagsTy ArgFlags,
271                     CCState &State) LLVM_ATTRIBUTE_UNUSED;
272 
273 static bool CC_MipsO32_FP32(unsigned ValNo, MVT ValVT, MVT LocVT,
274                             CCValAssign::LocInfo LocInfo,
275                             ISD::ArgFlagsTy ArgFlags, CCState &State) {
276   llvm_unreachable("should not be called");
277 }
278 
279 static bool CC_MipsO32_FP64(unsigned ValNo, MVT ValVT, MVT LocVT,
280                             CCValAssign::LocInfo LocInfo,
281                             ISD::ArgFlagsTy ArgFlags, CCState &State) {
282   llvm_unreachable("should not be called");
283 }
284 
285 #include "MipsGenCallingConv.inc"
286 
287 CCAssignFn *MipsFastISel::CCAssignFnForCall(CallingConv::ID CC) const {
288   return CC_MipsO32;
289 }
290 
291 unsigned MipsFastISel::emitLogicalOp(unsigned ISDOpc, MVT RetVT,
292                                      const Value *LHS, const Value *RHS) {
293   // Canonicalize immediates to the RHS first.
294   if (isa<ConstantInt>(LHS) && !isa<ConstantInt>(RHS))
295     std::swap(LHS, RHS);
296 
297   unsigned Opc;
298   switch (ISDOpc) {
299   case ISD::AND:
300     Opc = Mips::AND;
301     break;
302   case ISD::OR:
303     Opc = Mips::OR;
304     break;
305   case ISD::XOR:
306     Opc = Mips::XOR;
307     break;
308   default:
309     llvm_unreachable("unexpected opcode");
310   }
311 
312   Register LHSReg = getRegForValue(LHS);
313   if (!LHSReg)
314     return 0;
315 
316   unsigned RHSReg;
317   if (const auto *C = dyn_cast<ConstantInt>(RHS))
318     RHSReg = materializeInt(C, MVT::i32);
319   else
320     RHSReg = getRegForValue(RHS);
321   if (!RHSReg)
322     return 0;
323 
324   Register ResultReg = createResultReg(&Mips::GPR32RegClass);
325   if (!ResultReg)
326     return 0;
327 
328   emitInst(Opc, ResultReg).addReg(LHSReg).addReg(RHSReg);
329   return ResultReg;
330 }
331 
332 unsigned MipsFastISel::fastMaterializeAlloca(const AllocaInst *AI) {
333   assert(TLI.getValueType(DL, AI->getType(), true) == MVT::i32 &&
334          "Alloca should always return a pointer.");
335 
336   DenseMap<const AllocaInst *, int>::iterator SI =
337       FuncInfo.StaticAllocaMap.find(AI);
338 
339   if (SI != FuncInfo.StaticAllocaMap.end()) {
340     Register ResultReg = createResultReg(&Mips::GPR32RegClass);
341     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(Mips::LEA_ADDiu),
342             ResultReg)
343         .addFrameIndex(SI->second)
344         .addImm(0);
345     return ResultReg;
346   }
347 
348   return 0;
349 }
350 
351 unsigned MipsFastISel::materializeInt(const Constant *C, MVT VT) {
352   if (VT != MVT::i32 && VT != MVT::i16 && VT != MVT::i8 && VT != MVT::i1)
353     return 0;
354   const TargetRegisterClass *RC = &Mips::GPR32RegClass;
355   const ConstantInt *CI = cast<ConstantInt>(C);
356   return materialize32BitInt(CI->getZExtValue(), RC);
357 }
358 
359 unsigned MipsFastISel::materialize32BitInt(int64_t Imm,
360                                            const TargetRegisterClass *RC) {
361   Register ResultReg = createResultReg(RC);
362 
363   if (isInt<16>(Imm)) {
364     unsigned Opc = Mips::ADDiu;
365     emitInst(Opc, ResultReg).addReg(Mips::ZERO).addImm(Imm);
366     return ResultReg;
367   } else if (isUInt<16>(Imm)) {
368     emitInst(Mips::ORi, ResultReg).addReg(Mips::ZERO).addImm(Imm);
369     return ResultReg;
370   }
371   unsigned Lo = Imm & 0xFFFF;
372   unsigned Hi = (Imm >> 16) & 0xFFFF;
373   if (Lo) {
374     // Both Lo and Hi have nonzero bits.
375     Register TmpReg = createResultReg(RC);
376     emitInst(Mips::LUi, TmpReg).addImm(Hi);
377     emitInst(Mips::ORi, ResultReg).addReg(TmpReg).addImm(Lo);
378   } else {
379     emitInst(Mips::LUi, ResultReg).addImm(Hi);
380   }
381   return ResultReg;
382 }
383 
384 unsigned MipsFastISel::materializeFP(const ConstantFP *CFP, MVT VT) {
385   if (UnsupportedFPMode)
386     return 0;
387   int64_t Imm = CFP->getValueAPF().bitcastToAPInt().getZExtValue();
388   if (VT == MVT::f32) {
389     const TargetRegisterClass *RC = &Mips::FGR32RegClass;
390     Register DestReg = createResultReg(RC);
391     unsigned TempReg = materialize32BitInt(Imm, &Mips::GPR32RegClass);
392     emitInst(Mips::MTC1, DestReg).addReg(TempReg);
393     return DestReg;
394   } else if (VT == MVT::f64) {
395     const TargetRegisterClass *RC = &Mips::AFGR64RegClass;
396     Register DestReg = createResultReg(RC);
397     unsigned TempReg1 = materialize32BitInt(Imm >> 32, &Mips::GPR32RegClass);
398     unsigned TempReg2 =
399         materialize32BitInt(Imm & 0xFFFFFFFF, &Mips::GPR32RegClass);
400     emitInst(Mips::BuildPairF64, DestReg).addReg(TempReg2).addReg(TempReg1);
401     return DestReg;
402   }
403   return 0;
404 }
405 
406 unsigned MipsFastISel::materializeGV(const GlobalValue *GV, MVT VT) {
407   // For now 32-bit only.
408   if (VT != MVT::i32)
409     return 0;
410   const TargetRegisterClass *RC = &Mips::GPR32RegClass;
411   Register DestReg = createResultReg(RC);
412   const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV);
413   bool IsThreadLocal = GVar && GVar->isThreadLocal();
414   // TLS not supported at this time.
415   if (IsThreadLocal)
416     return 0;
417   emitInst(Mips::LW, DestReg)
418       .addReg(MFI->getGlobalBaseReg(*MF))
419       .addGlobalAddress(GV, 0, MipsII::MO_GOT);
420   if ((GV->hasInternalLinkage() ||
421        (GV->hasLocalLinkage() && !isa<Function>(GV)))) {
422     Register TempReg = createResultReg(RC);
423     emitInst(Mips::ADDiu, TempReg)
424         .addReg(DestReg)
425         .addGlobalAddress(GV, 0, MipsII::MO_ABS_LO);
426     DestReg = TempReg;
427   }
428   return DestReg;
429 }
430 
431 unsigned MipsFastISel::materializeExternalCallSym(MCSymbol *Sym) {
432   const TargetRegisterClass *RC = &Mips::GPR32RegClass;
433   Register DestReg = createResultReg(RC);
434   emitInst(Mips::LW, DestReg)
435       .addReg(MFI->getGlobalBaseReg(*MF))
436       .addSym(Sym, MipsII::MO_GOT);
437   return DestReg;
438 }
439 
440 // Materialize a constant into a register, and return the register
441 // number (or zero if we failed to handle it).
442 unsigned MipsFastISel::fastMaterializeConstant(const Constant *C) {
443   EVT CEVT = TLI.getValueType(DL, C->getType(), true);
444 
445   // Only handle simple types.
446   if (!CEVT.isSimple())
447     return 0;
448   MVT VT = CEVT.getSimpleVT();
449 
450   if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C))
451     return (UnsupportedFPMode) ? 0 : materializeFP(CFP, VT);
452   else if (const GlobalValue *GV = dyn_cast<GlobalValue>(C))
453     return materializeGV(GV, VT);
454   else if (isa<ConstantInt>(C))
455     return materializeInt(C, VT);
456 
457   return 0;
458 }
459 
460 bool MipsFastISel::computeAddress(const Value *Obj, Address &Addr) {
461   const User *U = nullptr;
462   unsigned Opcode = Instruction::UserOp1;
463   if (const Instruction *I = dyn_cast<Instruction>(Obj)) {
464     // Don't walk into other basic blocks unless the object is an alloca from
465     // another block, otherwise it may not have a virtual register assigned.
466     if (FuncInfo.StaticAllocaMap.count(static_cast<const AllocaInst *>(Obj)) ||
467         FuncInfo.MBBMap[I->getParent()] == FuncInfo.MBB) {
468       Opcode = I->getOpcode();
469       U = I;
470     }
471   } else if (const ConstantExpr *C = dyn_cast<ConstantExpr>(Obj)) {
472     Opcode = C->getOpcode();
473     U = C;
474   }
475   switch (Opcode) {
476   default:
477     break;
478   case Instruction::BitCast:
479     // Look through bitcasts.
480     return computeAddress(U->getOperand(0), Addr);
481   case Instruction::GetElementPtr: {
482     Address SavedAddr = Addr;
483     int64_t TmpOffset = Addr.getOffset();
484     // Iterate through the GEP folding the constants into offsets where
485     // we can.
486     gep_type_iterator GTI = gep_type_begin(U);
487     for (User::const_op_iterator i = U->op_begin() + 1, e = U->op_end(); i != e;
488          ++i, ++GTI) {
489       const Value *Op = *i;
490       if (StructType *STy = GTI.getStructTypeOrNull()) {
491         const StructLayout *SL = DL.getStructLayout(STy);
492         unsigned Idx = cast<ConstantInt>(Op)->getZExtValue();
493         TmpOffset += SL->getElementOffset(Idx);
494       } else {
495         uint64_t S = DL.getTypeAllocSize(GTI.getIndexedType());
496         while (true) {
497           if (const ConstantInt *CI = dyn_cast<ConstantInt>(Op)) {
498             // Constant-offset addressing.
499             TmpOffset += CI->getSExtValue() * S;
500             break;
501           }
502           if (canFoldAddIntoGEP(U, Op)) {
503             // A compatible add with a constant operand. Fold the constant.
504             ConstantInt *CI =
505                 cast<ConstantInt>(cast<AddOperator>(Op)->getOperand(1));
506             TmpOffset += CI->getSExtValue() * S;
507             // Iterate on the other operand.
508             Op = cast<AddOperator>(Op)->getOperand(0);
509             continue;
510           }
511           // Unsupported
512           goto unsupported_gep;
513         }
514       }
515     }
516     // Try to grab the base operand now.
517     Addr.setOffset(TmpOffset);
518     if (computeAddress(U->getOperand(0), Addr))
519       return true;
520     // We failed, restore everything and try the other options.
521     Addr = SavedAddr;
522   unsupported_gep:
523     break;
524   }
525   case Instruction::Alloca: {
526     const AllocaInst *AI = cast<AllocaInst>(Obj);
527     DenseMap<const AllocaInst *, int>::iterator SI =
528         FuncInfo.StaticAllocaMap.find(AI);
529     if (SI != FuncInfo.StaticAllocaMap.end()) {
530       Addr.setKind(Address::FrameIndexBase);
531       Addr.setFI(SI->second);
532       return true;
533     }
534     break;
535   }
536   }
537   Addr.setReg(getRegForValue(Obj));
538   return Addr.getReg() != 0;
539 }
540 
541 bool MipsFastISel::computeCallAddress(const Value *V, Address &Addr) {
542   const User *U = nullptr;
543   unsigned Opcode = Instruction::UserOp1;
544 
545   if (const auto *I = dyn_cast<Instruction>(V)) {
546     // Check if the value is defined in the same basic block. This information
547     // is crucial to know whether or not folding an operand is valid.
548     if (I->getParent() == FuncInfo.MBB->getBasicBlock()) {
549       Opcode = I->getOpcode();
550       U = I;
551     }
552   } else if (const auto *C = dyn_cast<ConstantExpr>(V)) {
553     Opcode = C->getOpcode();
554     U = C;
555   }
556 
557   switch (Opcode) {
558   default:
559     break;
560   case Instruction::BitCast:
561     // Look past bitcasts if its operand is in the same BB.
562       return computeCallAddress(U->getOperand(0), Addr);
563     break;
564   case Instruction::IntToPtr:
565     // Look past no-op inttoptrs if its operand is in the same BB.
566     if (TLI.getValueType(DL, U->getOperand(0)->getType()) ==
567         TLI.getPointerTy(DL))
568       return computeCallAddress(U->getOperand(0), Addr);
569     break;
570   case Instruction::PtrToInt:
571     // Look past no-op ptrtoints if its operand is in the same BB.
572     if (TLI.getValueType(DL, U->getType()) == TLI.getPointerTy(DL))
573       return computeCallAddress(U->getOperand(0), Addr);
574     break;
575   }
576 
577   if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
578     Addr.setGlobalValue(GV);
579     return true;
580   }
581 
582   // If all else fails, try to materialize the value in a register.
583   if (!Addr.getGlobalValue()) {
584     Addr.setReg(getRegForValue(V));
585     return Addr.getReg() != 0;
586   }
587 
588   return false;
589 }
590 
591 bool MipsFastISel::isTypeLegal(Type *Ty, MVT &VT) {
592   EVT evt = TLI.getValueType(DL, Ty, true);
593   // Only handle simple types.
594   if (evt == MVT::Other || !evt.isSimple())
595     return false;
596   VT = evt.getSimpleVT();
597 
598   // Handle all legal types, i.e. a register that will directly hold this
599   // value.
600   return TLI.isTypeLegal(VT);
601 }
602 
603 bool MipsFastISel::isTypeSupported(Type *Ty, MVT &VT) {
604   if (Ty->isVectorTy())
605     return false;
606 
607   if (isTypeLegal(Ty, VT))
608     return true;
609 
610   // If this is a type than can be sign or zero-extended to a basic operation
611   // go ahead and accept it now.
612   if (VT == MVT::i1 || VT == MVT::i8 || VT == MVT::i16)
613     return true;
614 
615   return false;
616 }
617 
618 bool MipsFastISel::isLoadTypeLegal(Type *Ty, MVT &VT) {
619   if (isTypeLegal(Ty, VT))
620     return true;
621   // We will extend this in a later patch:
622   //   If this is a type than can be sign or zero-extended to a basic operation
623   //   go ahead and accept it now.
624   if (VT == MVT::i8 || VT == MVT::i16)
625     return true;
626   return false;
627 }
628 
629 // Because of how EmitCmp is called with fast-isel, you can
630 // end up with redundant "andi" instructions after the sequences emitted below.
631 // We should try and solve this issue in the future.
632 //
633 bool MipsFastISel::emitCmp(unsigned ResultReg, const CmpInst *CI) {
634   const Value *Left = CI->getOperand(0), *Right = CI->getOperand(1);
635   bool IsUnsigned = CI->isUnsigned();
636   unsigned LeftReg = getRegEnsuringSimpleIntegerWidening(Left, IsUnsigned);
637   if (LeftReg == 0)
638     return false;
639   unsigned RightReg = getRegEnsuringSimpleIntegerWidening(Right, IsUnsigned);
640   if (RightReg == 0)
641     return false;
642   CmpInst::Predicate P = CI->getPredicate();
643 
644   switch (P) {
645   default:
646     return false;
647   case CmpInst::ICMP_EQ: {
648     Register TempReg = createResultReg(&Mips::GPR32RegClass);
649     emitInst(Mips::XOR, TempReg).addReg(LeftReg).addReg(RightReg);
650     emitInst(Mips::SLTiu, ResultReg).addReg(TempReg).addImm(1);
651     break;
652   }
653   case CmpInst::ICMP_NE: {
654     Register TempReg = createResultReg(&Mips::GPR32RegClass);
655     emitInst(Mips::XOR, TempReg).addReg(LeftReg).addReg(RightReg);
656     emitInst(Mips::SLTu, ResultReg).addReg(Mips::ZERO).addReg(TempReg);
657     break;
658   }
659   case CmpInst::ICMP_UGT:
660     emitInst(Mips::SLTu, ResultReg).addReg(RightReg).addReg(LeftReg);
661     break;
662   case CmpInst::ICMP_ULT:
663     emitInst(Mips::SLTu, ResultReg).addReg(LeftReg).addReg(RightReg);
664     break;
665   case CmpInst::ICMP_UGE: {
666     Register TempReg = createResultReg(&Mips::GPR32RegClass);
667     emitInst(Mips::SLTu, TempReg).addReg(LeftReg).addReg(RightReg);
668     emitInst(Mips::XORi, ResultReg).addReg(TempReg).addImm(1);
669     break;
670   }
671   case CmpInst::ICMP_ULE: {
672     Register TempReg = createResultReg(&Mips::GPR32RegClass);
673     emitInst(Mips::SLTu, TempReg).addReg(RightReg).addReg(LeftReg);
674     emitInst(Mips::XORi, ResultReg).addReg(TempReg).addImm(1);
675     break;
676   }
677   case CmpInst::ICMP_SGT:
678     emitInst(Mips::SLT, ResultReg).addReg(RightReg).addReg(LeftReg);
679     break;
680   case CmpInst::ICMP_SLT:
681     emitInst(Mips::SLT, ResultReg).addReg(LeftReg).addReg(RightReg);
682     break;
683   case CmpInst::ICMP_SGE: {
684     Register TempReg = createResultReg(&Mips::GPR32RegClass);
685     emitInst(Mips::SLT, TempReg).addReg(LeftReg).addReg(RightReg);
686     emitInst(Mips::XORi, ResultReg).addReg(TempReg).addImm(1);
687     break;
688   }
689   case CmpInst::ICMP_SLE: {
690     Register TempReg = createResultReg(&Mips::GPR32RegClass);
691     emitInst(Mips::SLT, TempReg).addReg(RightReg).addReg(LeftReg);
692     emitInst(Mips::XORi, ResultReg).addReg(TempReg).addImm(1);
693     break;
694   }
695   case CmpInst::FCMP_OEQ:
696   case CmpInst::FCMP_UNE:
697   case CmpInst::FCMP_OLT:
698   case CmpInst::FCMP_OLE:
699   case CmpInst::FCMP_OGT:
700   case CmpInst::FCMP_OGE: {
701     if (UnsupportedFPMode)
702       return false;
703     bool IsFloat = Left->getType()->isFloatTy();
704     bool IsDouble = Left->getType()->isDoubleTy();
705     if (!IsFloat && !IsDouble)
706       return false;
707     unsigned Opc, CondMovOpc;
708     switch (P) {
709     case CmpInst::FCMP_OEQ:
710       Opc = IsFloat ? Mips::C_EQ_S : Mips::C_EQ_D32;
711       CondMovOpc = Mips::MOVT_I;
712       break;
713     case CmpInst::FCMP_UNE:
714       Opc = IsFloat ? Mips::C_EQ_S : Mips::C_EQ_D32;
715       CondMovOpc = Mips::MOVF_I;
716       break;
717     case CmpInst::FCMP_OLT:
718       Opc = IsFloat ? Mips::C_OLT_S : Mips::C_OLT_D32;
719       CondMovOpc = Mips::MOVT_I;
720       break;
721     case CmpInst::FCMP_OLE:
722       Opc = IsFloat ? Mips::C_OLE_S : Mips::C_OLE_D32;
723       CondMovOpc = Mips::MOVT_I;
724       break;
725     case CmpInst::FCMP_OGT:
726       Opc = IsFloat ? Mips::C_ULE_S : Mips::C_ULE_D32;
727       CondMovOpc = Mips::MOVF_I;
728       break;
729     case CmpInst::FCMP_OGE:
730       Opc = IsFloat ? Mips::C_ULT_S : Mips::C_ULT_D32;
731       CondMovOpc = Mips::MOVF_I;
732       break;
733     default:
734       llvm_unreachable("Only switching of a subset of CCs.");
735     }
736     Register RegWithZero = createResultReg(&Mips::GPR32RegClass);
737     Register RegWithOne = createResultReg(&Mips::GPR32RegClass);
738     emitInst(Mips::ADDiu, RegWithZero).addReg(Mips::ZERO).addImm(0);
739     emitInst(Mips::ADDiu, RegWithOne).addReg(Mips::ZERO).addImm(1);
740     emitInst(Opc).addReg(Mips::FCC0, RegState::Define).addReg(LeftReg)
741                  .addReg(RightReg);
742     emitInst(CondMovOpc, ResultReg)
743         .addReg(RegWithOne)
744         .addReg(Mips::FCC0)
745         .addReg(RegWithZero);
746     break;
747   }
748   }
749   return true;
750 }
751 
752 bool MipsFastISel::emitLoad(MVT VT, unsigned &ResultReg, Address &Addr) {
753   //
754   // more cases will be handled here in following patches.
755   //
756   unsigned Opc;
757   switch (VT.SimpleTy) {
758   case MVT::i32:
759     ResultReg = createResultReg(&Mips::GPR32RegClass);
760     Opc = Mips::LW;
761     break;
762   case MVT::i16:
763     ResultReg = createResultReg(&Mips::GPR32RegClass);
764     Opc = Mips::LHu;
765     break;
766   case MVT::i8:
767     ResultReg = createResultReg(&Mips::GPR32RegClass);
768     Opc = Mips::LBu;
769     break;
770   case MVT::f32:
771     if (UnsupportedFPMode)
772       return false;
773     ResultReg = createResultReg(&Mips::FGR32RegClass);
774     Opc = Mips::LWC1;
775     break;
776   case MVT::f64:
777     if (UnsupportedFPMode)
778       return false;
779     ResultReg = createResultReg(&Mips::AFGR64RegClass);
780     Opc = Mips::LDC1;
781     break;
782   default:
783     return false;
784   }
785   if (Addr.isRegBase()) {
786     simplifyAddress(Addr);
787     emitInstLoad(Opc, ResultReg, Addr.getReg(), Addr.getOffset());
788     return true;
789   }
790   if (Addr.isFIBase()) {
791     unsigned FI = Addr.getFI();
792     int64_t Offset = Addr.getOffset();
793     MachineFrameInfo &MFI = MF->getFrameInfo();
794     MachineMemOperand *MMO = MF->getMachineMemOperand(
795         MachinePointerInfo::getFixedStack(*MF, FI), MachineMemOperand::MOLoad,
796         MFI.getObjectSize(FI), Align(4));
797     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(Opc), ResultReg)
798         .addFrameIndex(FI)
799         .addImm(Offset)
800         .addMemOperand(MMO);
801     return true;
802   }
803   return false;
804 }
805 
806 bool MipsFastISel::emitStore(MVT VT, unsigned SrcReg, Address &Addr) {
807   //
808   // more cases will be handled here in following patches.
809   //
810   unsigned Opc;
811   switch (VT.SimpleTy) {
812   case MVT::i8:
813     Opc = Mips::SB;
814     break;
815   case MVT::i16:
816     Opc = Mips::SH;
817     break;
818   case MVT::i32:
819     Opc = Mips::SW;
820     break;
821   case MVT::f32:
822     if (UnsupportedFPMode)
823       return false;
824     Opc = Mips::SWC1;
825     break;
826   case MVT::f64:
827     if (UnsupportedFPMode)
828       return false;
829     Opc = Mips::SDC1;
830     break;
831   default:
832     return false;
833   }
834   if (Addr.isRegBase()) {
835     simplifyAddress(Addr);
836     emitInstStore(Opc, SrcReg, Addr.getReg(), Addr.getOffset());
837     return true;
838   }
839   if (Addr.isFIBase()) {
840     unsigned FI = Addr.getFI();
841     int64_t Offset = Addr.getOffset();
842     MachineFrameInfo &MFI = MF->getFrameInfo();
843     MachineMemOperand *MMO = MF->getMachineMemOperand(
844         MachinePointerInfo::getFixedStack(*MF, FI), MachineMemOperand::MOStore,
845         MFI.getObjectSize(FI), Align(4));
846     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(Opc))
847         .addReg(SrcReg)
848         .addFrameIndex(FI)
849         .addImm(Offset)
850         .addMemOperand(MMO);
851     return true;
852   }
853   return false;
854 }
855 
856 bool MipsFastISel::selectLogicalOp(const Instruction *I) {
857   MVT VT;
858   if (!isTypeSupported(I->getType(), VT))
859     return false;
860 
861   unsigned ResultReg;
862   switch (I->getOpcode()) {
863   default:
864     llvm_unreachable("Unexpected instruction.");
865   case Instruction::And:
866     ResultReg = emitLogicalOp(ISD::AND, VT, I->getOperand(0), I->getOperand(1));
867     break;
868   case Instruction::Or:
869     ResultReg = emitLogicalOp(ISD::OR, VT, I->getOperand(0), I->getOperand(1));
870     break;
871   case Instruction::Xor:
872     ResultReg = emitLogicalOp(ISD::XOR, VT, I->getOperand(0), I->getOperand(1));
873     break;
874   }
875 
876   if (!ResultReg)
877     return false;
878 
879   updateValueMap(I, ResultReg);
880   return true;
881 }
882 
883 bool MipsFastISel::selectLoad(const Instruction *I) {
884   // Atomic loads need special handling.
885   if (cast<LoadInst>(I)->isAtomic())
886     return false;
887 
888   // Verify we have a legal type before going any further.
889   MVT VT;
890   if (!isLoadTypeLegal(I->getType(), VT))
891     return false;
892 
893   // See if we can handle this address.
894   Address Addr;
895   if (!computeAddress(I->getOperand(0), Addr))
896     return false;
897 
898   unsigned ResultReg;
899   if (!emitLoad(VT, ResultReg, Addr))
900     return false;
901   updateValueMap(I, ResultReg);
902   return true;
903 }
904 
905 bool MipsFastISel::selectStore(const Instruction *I) {
906   Value *Op0 = I->getOperand(0);
907   unsigned SrcReg = 0;
908 
909   // Atomic stores need special handling.
910   if (cast<StoreInst>(I)->isAtomic())
911     return false;
912 
913   // Verify we have a legal type before going any further.
914   MVT VT;
915   if (!isLoadTypeLegal(I->getOperand(0)->getType(), VT))
916     return false;
917 
918   // Get the value to be stored into a register.
919   SrcReg = getRegForValue(Op0);
920   if (SrcReg == 0)
921     return false;
922 
923   // See if we can handle this address.
924   Address Addr;
925   if (!computeAddress(I->getOperand(1), Addr))
926     return false;
927 
928   if (!emitStore(VT, SrcReg, Addr))
929     return false;
930   return true;
931 }
932 
933 // This can cause a redundant sltiu to be generated.
934 // FIXME: try and eliminate this in a future patch.
935 bool MipsFastISel::selectBranch(const Instruction *I) {
936   const BranchInst *BI = cast<BranchInst>(I);
937   MachineBasicBlock *BrBB = FuncInfo.MBB;
938   //
939   // TBB is the basic block for the case where the comparison is true.
940   // FBB is the basic block for the case where the comparison is false.
941   // if (cond) goto TBB
942   // goto FBB
943   // TBB:
944   //
945   MachineBasicBlock *TBB = FuncInfo.MBBMap[BI->getSuccessor(0)];
946   MachineBasicBlock *FBB = FuncInfo.MBBMap[BI->getSuccessor(1)];
947 
948   // Fold the common case of a conditional branch with a comparison
949   // in the same block.
950   unsigned ZExtCondReg = 0;
951   if (const CmpInst *CI = dyn_cast<CmpInst>(BI->getCondition())) {
952     if (CI->hasOneUse() && CI->getParent() == I->getParent()) {
953       ZExtCondReg = createResultReg(&Mips::GPR32RegClass);
954       if (!emitCmp(ZExtCondReg, CI))
955         return false;
956     }
957   }
958 
959   // For the general case, we need to mask with 1.
960   if (ZExtCondReg == 0) {
961     Register CondReg = getRegForValue(BI->getCondition());
962     if (CondReg == 0)
963       return false;
964 
965     ZExtCondReg = emitIntExt(MVT::i1, CondReg, MVT::i32, true);
966     if (ZExtCondReg == 0)
967       return false;
968   }
969 
970   BuildMI(*BrBB, FuncInfo.InsertPt, MIMD, TII.get(Mips::BGTZ))
971       .addReg(ZExtCondReg)
972       .addMBB(TBB);
973   finishCondBranch(BI->getParent(), TBB, FBB);
974   return true;
975 }
976 
977 bool MipsFastISel::selectCmp(const Instruction *I) {
978   const CmpInst *CI = cast<CmpInst>(I);
979   Register ResultReg = createResultReg(&Mips::GPR32RegClass);
980   if (!emitCmp(ResultReg, CI))
981     return false;
982   updateValueMap(I, ResultReg);
983   return true;
984 }
985 
986 // Attempt to fast-select a floating-point extend instruction.
987 bool MipsFastISel::selectFPExt(const Instruction *I) {
988   if (UnsupportedFPMode)
989     return false;
990   Value *Src = I->getOperand(0);
991   EVT SrcVT = TLI.getValueType(DL, Src->getType(), true);
992   EVT DestVT = TLI.getValueType(DL, I->getType(), true);
993 
994   if (SrcVT != MVT::f32 || DestVT != MVT::f64)
995     return false;
996 
997   Register SrcReg =
998       getRegForValue(Src); // this must be a 32bit floating point register class
999                            // maybe we should handle this differently
1000   if (!SrcReg)
1001     return false;
1002 
1003   Register DestReg = createResultReg(&Mips::AFGR64RegClass);
1004   emitInst(Mips::CVT_D32_S, DestReg).addReg(SrcReg);
1005   updateValueMap(I, DestReg);
1006   return true;
1007 }
1008 
1009 bool MipsFastISel::selectSelect(const Instruction *I) {
1010   assert(isa<SelectInst>(I) && "Expected a select instruction.");
1011 
1012   LLVM_DEBUG(dbgs() << "selectSelect\n");
1013 
1014   MVT VT;
1015   if (!isTypeSupported(I->getType(), VT) || UnsupportedFPMode) {
1016     LLVM_DEBUG(
1017         dbgs() << ".. .. gave up (!isTypeSupported || UnsupportedFPMode)\n");
1018     return false;
1019   }
1020 
1021   unsigned CondMovOpc;
1022   const TargetRegisterClass *RC;
1023 
1024   if (VT.isInteger() && !VT.isVector() && VT.getSizeInBits() <= 32) {
1025     CondMovOpc = Mips::MOVN_I_I;
1026     RC = &Mips::GPR32RegClass;
1027   } else if (VT == MVT::f32) {
1028     CondMovOpc = Mips::MOVN_I_S;
1029     RC = &Mips::FGR32RegClass;
1030   } else if (VT == MVT::f64) {
1031     CondMovOpc = Mips::MOVN_I_D32;
1032     RC = &Mips::AFGR64RegClass;
1033   } else
1034     return false;
1035 
1036   const SelectInst *SI = cast<SelectInst>(I);
1037   const Value *Cond = SI->getCondition();
1038   Register Src1Reg = getRegForValue(SI->getTrueValue());
1039   Register Src2Reg = getRegForValue(SI->getFalseValue());
1040   Register CondReg = getRegForValue(Cond);
1041 
1042   if (!Src1Reg || !Src2Reg || !CondReg)
1043     return false;
1044 
1045   Register ZExtCondReg = createResultReg(&Mips::GPR32RegClass);
1046   if (!ZExtCondReg)
1047     return false;
1048 
1049   if (!emitIntExt(MVT::i1, CondReg, MVT::i32, ZExtCondReg, true))
1050     return false;
1051 
1052   Register ResultReg = createResultReg(RC);
1053   Register TempReg = createResultReg(RC);
1054 
1055   if (!ResultReg || !TempReg)
1056     return false;
1057 
1058   emitInst(TargetOpcode::COPY, TempReg).addReg(Src2Reg);
1059   emitInst(CondMovOpc, ResultReg)
1060     .addReg(Src1Reg).addReg(ZExtCondReg).addReg(TempReg);
1061   updateValueMap(I, ResultReg);
1062   return true;
1063 }
1064 
1065 // Attempt to fast-select a floating-point truncate instruction.
1066 bool MipsFastISel::selectFPTrunc(const Instruction *I) {
1067   if (UnsupportedFPMode)
1068     return false;
1069   Value *Src = I->getOperand(0);
1070   EVT SrcVT = TLI.getValueType(DL, Src->getType(), true);
1071   EVT DestVT = TLI.getValueType(DL, I->getType(), true);
1072 
1073   if (SrcVT != MVT::f64 || DestVT != MVT::f32)
1074     return false;
1075 
1076   Register SrcReg = getRegForValue(Src);
1077   if (!SrcReg)
1078     return false;
1079 
1080   Register DestReg = createResultReg(&Mips::FGR32RegClass);
1081   if (!DestReg)
1082     return false;
1083 
1084   emitInst(Mips::CVT_S_D32, DestReg).addReg(SrcReg);
1085   updateValueMap(I, DestReg);
1086   return true;
1087 }
1088 
1089 // Attempt to fast-select a floating-point-to-integer conversion.
1090 bool MipsFastISel::selectFPToInt(const Instruction *I, bool IsSigned) {
1091   if (UnsupportedFPMode)
1092     return false;
1093   MVT DstVT, SrcVT;
1094   if (!IsSigned)
1095     return false; // We don't handle this case yet. There is no native
1096                   // instruction for this but it can be synthesized.
1097   Type *DstTy = I->getType();
1098   if (!isTypeLegal(DstTy, DstVT))
1099     return false;
1100 
1101   if (DstVT != MVT::i32)
1102     return false;
1103 
1104   Value *Src = I->getOperand(0);
1105   Type *SrcTy = Src->getType();
1106   if (!isTypeLegal(SrcTy, SrcVT))
1107     return false;
1108 
1109   if (SrcVT != MVT::f32 && SrcVT != MVT::f64)
1110     return false;
1111 
1112   Register SrcReg = getRegForValue(Src);
1113   if (SrcReg == 0)
1114     return false;
1115 
1116   // Determine the opcode for the conversion, which takes place
1117   // entirely within FPRs.
1118   Register DestReg = createResultReg(&Mips::GPR32RegClass);
1119   Register TempReg = createResultReg(&Mips::FGR32RegClass);
1120   unsigned Opc = (SrcVT == MVT::f32) ? Mips::TRUNC_W_S : Mips::TRUNC_W_D32;
1121 
1122   // Generate the convert.
1123   emitInst(Opc, TempReg).addReg(SrcReg);
1124   emitInst(Mips::MFC1, DestReg).addReg(TempReg);
1125 
1126   updateValueMap(I, DestReg);
1127   return true;
1128 }
1129 
1130 bool MipsFastISel::processCallArgs(CallLoweringInfo &CLI,
1131                                    SmallVectorImpl<MVT> &OutVTs,
1132                                    unsigned &NumBytes) {
1133   CallingConv::ID CC = CLI.CallConv;
1134   SmallVector<CCValAssign, 16> ArgLocs;
1135   CCState CCInfo(CC, false, *FuncInfo.MF, ArgLocs, *Context);
1136   CCInfo.AnalyzeCallOperands(OutVTs, CLI.OutFlags, CCAssignFnForCall(CC));
1137   // Get a count of how many bytes are to be pushed on the stack.
1138   NumBytes = CCInfo.getNextStackOffset();
1139   // This is the minimum argument area used for A0-A3.
1140   if (NumBytes < 16)
1141     NumBytes = 16;
1142 
1143   emitInst(Mips::ADJCALLSTACKDOWN).addImm(16).addImm(0);
1144   // Process the args.
1145   MVT firstMVT;
1146   for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
1147     CCValAssign &VA = ArgLocs[i];
1148     const Value *ArgVal = CLI.OutVals[VA.getValNo()];
1149     MVT ArgVT = OutVTs[VA.getValNo()];
1150 
1151     if (i == 0) {
1152       firstMVT = ArgVT;
1153       if (ArgVT == MVT::f32) {
1154         VA.convertToReg(Mips::F12);
1155       } else if (ArgVT == MVT::f64) {
1156         if (Subtarget->isFP64bit())
1157           VA.convertToReg(Mips::D6_64);
1158         else
1159           VA.convertToReg(Mips::D6);
1160       }
1161     } else if (i == 1) {
1162       if ((firstMVT == MVT::f32) || (firstMVT == MVT::f64)) {
1163         if (ArgVT == MVT::f32) {
1164           VA.convertToReg(Mips::F14);
1165         } else if (ArgVT == MVT::f64) {
1166           if (Subtarget->isFP64bit())
1167             VA.convertToReg(Mips::D7_64);
1168           else
1169             VA.convertToReg(Mips::D7);
1170         }
1171       }
1172     }
1173     if (((ArgVT == MVT::i32) || (ArgVT == MVT::f32) || (ArgVT == MVT::i16) ||
1174          (ArgVT == MVT::i8)) &&
1175         VA.isMemLoc()) {
1176       switch (VA.getLocMemOffset()) {
1177       case 0:
1178         VA.convertToReg(Mips::A0);
1179         break;
1180       case 4:
1181         VA.convertToReg(Mips::A1);
1182         break;
1183       case 8:
1184         VA.convertToReg(Mips::A2);
1185         break;
1186       case 12:
1187         VA.convertToReg(Mips::A3);
1188         break;
1189       default:
1190         break;
1191       }
1192     }
1193     Register ArgReg = getRegForValue(ArgVal);
1194     if (!ArgReg)
1195       return false;
1196 
1197     // Handle arg promotion: SExt, ZExt, AExt.
1198     switch (VA.getLocInfo()) {
1199     case CCValAssign::Full:
1200       break;
1201     case CCValAssign::AExt:
1202     case CCValAssign::SExt: {
1203       MVT DestVT = VA.getLocVT();
1204       MVT SrcVT = ArgVT;
1205       ArgReg = emitIntExt(SrcVT, ArgReg, DestVT, /*isZExt=*/false);
1206       if (!ArgReg)
1207         return false;
1208       break;
1209     }
1210     case CCValAssign::ZExt: {
1211       MVT DestVT = VA.getLocVT();
1212       MVT SrcVT = ArgVT;
1213       ArgReg = emitIntExt(SrcVT, ArgReg, DestVT, /*isZExt=*/true);
1214       if (!ArgReg)
1215         return false;
1216       break;
1217     }
1218     default:
1219       llvm_unreachable("Unknown arg promotion!");
1220     }
1221 
1222     // Now copy/store arg to correct locations.
1223     if (VA.isRegLoc() && !VA.needsCustom()) {
1224       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD,
1225               TII.get(TargetOpcode::COPY), VA.getLocReg()).addReg(ArgReg);
1226       CLI.OutRegs.push_back(VA.getLocReg());
1227     } else if (VA.needsCustom()) {
1228       llvm_unreachable("Mips does not use custom args.");
1229       return false;
1230     } else {
1231       //
1232       // FIXME: This path will currently return false. It was copied
1233       // from the AArch64 port and should be essentially fine for Mips too.
1234       // The work to finish up this path will be done in a follow-on patch.
1235       //
1236       assert(VA.isMemLoc() && "Assuming store on stack.");
1237       // Don't emit stores for undef values.
1238       if (isa<UndefValue>(ArgVal))
1239         continue;
1240 
1241       // Need to store on the stack.
1242       // FIXME: This alignment is incorrect but this path is disabled
1243       // for now (will return false). We need to determine the right alignment
1244       // based on the normal alignment for the underlying machine type.
1245       //
1246       unsigned ArgSize = alignTo(ArgVT.getSizeInBits(), 4);
1247 
1248       unsigned BEAlign = 0;
1249       if (ArgSize < 8 && !Subtarget->isLittle())
1250         BEAlign = 8 - ArgSize;
1251 
1252       Address Addr;
1253       Addr.setKind(Address::RegBase);
1254       Addr.setReg(Mips::SP);
1255       Addr.setOffset(VA.getLocMemOffset() + BEAlign);
1256 
1257       Align Alignment = DL.getABITypeAlign(ArgVal->getType());
1258       MachineMemOperand *MMO = FuncInfo.MF->getMachineMemOperand(
1259           MachinePointerInfo::getStack(*FuncInfo.MF, Addr.getOffset()),
1260           MachineMemOperand::MOStore, ArgVT.getStoreSize(), Alignment);
1261       (void)(MMO);
1262       // if (!emitStore(ArgVT, ArgReg, Addr, MMO))
1263       return false; // can't store on the stack yet.
1264     }
1265   }
1266 
1267   return true;
1268 }
1269 
1270 bool MipsFastISel::finishCall(CallLoweringInfo &CLI, MVT RetVT,
1271                               unsigned NumBytes) {
1272   CallingConv::ID CC = CLI.CallConv;
1273   emitInst(Mips::ADJCALLSTACKUP).addImm(16).addImm(0);
1274   if (RetVT != MVT::isVoid) {
1275     SmallVector<CCValAssign, 16> RVLocs;
1276     MipsCCState CCInfo(CC, false, *FuncInfo.MF, RVLocs, *Context);
1277 
1278     CCInfo.AnalyzeCallResult(CLI.Ins, RetCC_Mips, CLI.RetTy,
1279                              CLI.Symbol ? CLI.Symbol->getName().data()
1280                                         : nullptr);
1281 
1282     // Only handle a single return value.
1283     if (RVLocs.size() != 1)
1284       return false;
1285     // Copy all of the result registers out of their specified physreg.
1286     MVT CopyVT = RVLocs[0].getValVT();
1287     // Special handling for extended integers.
1288     if (RetVT == MVT::i1 || RetVT == MVT::i8 || RetVT == MVT::i16)
1289       CopyVT = MVT::i32;
1290 
1291     Register ResultReg = createResultReg(TLI.getRegClassFor(CopyVT));
1292     if (!ResultReg)
1293       return false;
1294     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD,
1295             TII.get(TargetOpcode::COPY),
1296             ResultReg).addReg(RVLocs[0].getLocReg());
1297     CLI.InRegs.push_back(RVLocs[0].getLocReg());
1298 
1299     CLI.ResultReg = ResultReg;
1300     CLI.NumResultRegs = 1;
1301   }
1302   return true;
1303 }
1304 
1305 bool MipsFastISel::fastLowerArguments() {
1306   LLVM_DEBUG(dbgs() << "fastLowerArguments\n");
1307 
1308   if (!FuncInfo.CanLowerReturn) {
1309     LLVM_DEBUG(dbgs() << ".. gave up (!CanLowerReturn)\n");
1310     return false;
1311   }
1312 
1313   const Function *F = FuncInfo.Fn;
1314   if (F->isVarArg()) {
1315     LLVM_DEBUG(dbgs() << ".. gave up (varargs)\n");
1316     return false;
1317   }
1318 
1319   CallingConv::ID CC = F->getCallingConv();
1320   if (CC != CallingConv::C) {
1321     LLVM_DEBUG(dbgs() << ".. gave up (calling convention is not C)\n");
1322     return false;
1323   }
1324 
1325   std::array<MCPhysReg, 4> GPR32ArgRegs = {{Mips::A0, Mips::A1, Mips::A2,
1326                                            Mips::A3}};
1327   std::array<MCPhysReg, 2> FGR32ArgRegs = {{Mips::F12, Mips::F14}};
1328   std::array<MCPhysReg, 2> AFGR64ArgRegs = {{Mips::D6, Mips::D7}};
1329   auto NextGPR32 = GPR32ArgRegs.begin();
1330   auto NextFGR32 = FGR32ArgRegs.begin();
1331   auto NextAFGR64 = AFGR64ArgRegs.begin();
1332 
1333   struct AllocatedReg {
1334     const TargetRegisterClass *RC;
1335     unsigned Reg;
1336     AllocatedReg(const TargetRegisterClass *RC, unsigned Reg)
1337         : RC(RC), Reg(Reg) {}
1338   };
1339 
1340   // Only handle simple cases. i.e. All arguments are directly mapped to
1341   // registers of the appropriate type.
1342   SmallVector<AllocatedReg, 4> Allocation;
1343   for (const auto &FormalArg : F->args()) {
1344     if (FormalArg.hasAttribute(Attribute::InReg) ||
1345         FormalArg.hasAttribute(Attribute::StructRet) ||
1346         FormalArg.hasAttribute(Attribute::ByVal)) {
1347       LLVM_DEBUG(dbgs() << ".. gave up (inreg, structret, byval)\n");
1348       return false;
1349     }
1350 
1351     Type *ArgTy = FormalArg.getType();
1352     if (ArgTy->isStructTy() || ArgTy->isArrayTy() || ArgTy->isVectorTy()) {
1353       LLVM_DEBUG(dbgs() << ".. gave up (struct, array, or vector)\n");
1354       return false;
1355     }
1356 
1357     EVT ArgVT = TLI.getValueType(DL, ArgTy);
1358     LLVM_DEBUG(dbgs() << ".. " << FormalArg.getArgNo() << ": "
1359                       << ArgVT.getEVTString() << "\n");
1360     if (!ArgVT.isSimple()) {
1361       LLVM_DEBUG(dbgs() << ".. .. gave up (not a simple type)\n");
1362       return false;
1363     }
1364 
1365     switch (ArgVT.getSimpleVT().SimpleTy) {
1366     case MVT::i1:
1367     case MVT::i8:
1368     case MVT::i16:
1369       if (!FormalArg.hasAttribute(Attribute::SExt) &&
1370           !FormalArg.hasAttribute(Attribute::ZExt)) {
1371         // It must be any extend, this shouldn't happen for clang-generated IR
1372         // so just fall back on SelectionDAG.
1373         LLVM_DEBUG(dbgs() << ".. .. gave up (i8/i16 arg is not extended)\n");
1374         return false;
1375       }
1376 
1377       if (NextGPR32 == GPR32ArgRegs.end()) {
1378         LLVM_DEBUG(dbgs() << ".. .. gave up (ran out of GPR32 arguments)\n");
1379         return false;
1380       }
1381 
1382       LLVM_DEBUG(dbgs() << ".. .. GPR32(" << *NextGPR32 << ")\n");
1383       Allocation.emplace_back(&Mips::GPR32RegClass, *NextGPR32++);
1384 
1385       // Allocating any GPR32 prohibits further use of floating point arguments.
1386       NextFGR32 = FGR32ArgRegs.end();
1387       NextAFGR64 = AFGR64ArgRegs.end();
1388       break;
1389 
1390     case MVT::i32:
1391       if (FormalArg.hasAttribute(Attribute::ZExt)) {
1392         // The O32 ABI does not permit a zero-extended i32.
1393         LLVM_DEBUG(dbgs() << ".. .. gave up (i32 arg is zero extended)\n");
1394         return false;
1395       }
1396 
1397       if (NextGPR32 == GPR32ArgRegs.end()) {
1398         LLVM_DEBUG(dbgs() << ".. .. gave up (ran out of GPR32 arguments)\n");
1399         return false;
1400       }
1401 
1402       LLVM_DEBUG(dbgs() << ".. .. GPR32(" << *NextGPR32 << ")\n");
1403       Allocation.emplace_back(&Mips::GPR32RegClass, *NextGPR32++);
1404 
1405       // Allocating any GPR32 prohibits further use of floating point arguments.
1406       NextFGR32 = FGR32ArgRegs.end();
1407       NextAFGR64 = AFGR64ArgRegs.end();
1408       break;
1409 
1410     case MVT::f32:
1411       if (UnsupportedFPMode) {
1412         LLVM_DEBUG(dbgs() << ".. .. gave up (UnsupportedFPMode)\n");
1413         return false;
1414       }
1415       if (NextFGR32 == FGR32ArgRegs.end()) {
1416         LLVM_DEBUG(dbgs() << ".. .. gave up (ran out of FGR32 arguments)\n");
1417         return false;
1418       }
1419       LLVM_DEBUG(dbgs() << ".. .. FGR32(" << *NextFGR32 << ")\n");
1420       Allocation.emplace_back(&Mips::FGR32RegClass, *NextFGR32++);
1421       // Allocating an FGR32 also allocates the super-register AFGR64, and
1422       // ABI rules require us to skip the corresponding GPR32.
1423       if (NextGPR32 != GPR32ArgRegs.end())
1424         NextGPR32++;
1425       if (NextAFGR64 != AFGR64ArgRegs.end())
1426         NextAFGR64++;
1427       break;
1428 
1429     case MVT::f64:
1430       if (UnsupportedFPMode) {
1431         LLVM_DEBUG(dbgs() << ".. .. gave up (UnsupportedFPMode)\n");
1432         return false;
1433       }
1434       if (NextAFGR64 == AFGR64ArgRegs.end()) {
1435         LLVM_DEBUG(dbgs() << ".. .. gave up (ran out of AFGR64 arguments)\n");
1436         return false;
1437       }
1438       LLVM_DEBUG(dbgs() << ".. .. AFGR64(" << *NextAFGR64 << ")\n");
1439       Allocation.emplace_back(&Mips::AFGR64RegClass, *NextAFGR64++);
1440       // Allocating an FGR32 also allocates the super-register AFGR64, and
1441       // ABI rules require us to skip the corresponding GPR32 pair.
1442       if (NextGPR32 != GPR32ArgRegs.end())
1443         NextGPR32++;
1444       if (NextGPR32 != GPR32ArgRegs.end())
1445         NextGPR32++;
1446       if (NextFGR32 != FGR32ArgRegs.end())
1447         NextFGR32++;
1448       break;
1449 
1450     default:
1451       LLVM_DEBUG(dbgs() << ".. .. gave up (unknown type)\n");
1452       return false;
1453     }
1454   }
1455 
1456   for (const auto &FormalArg : F->args()) {
1457     unsigned ArgNo = FormalArg.getArgNo();
1458     unsigned SrcReg = Allocation[ArgNo].Reg;
1459     Register DstReg = FuncInfo.MF->addLiveIn(SrcReg, Allocation[ArgNo].RC);
1460     // FIXME: Unfortunately it's necessary to emit a copy from the livein copy.
1461     // Without this, EmitLiveInCopies may eliminate the livein if its only
1462     // use is a bitcast (which isn't turned into an instruction).
1463     Register ResultReg = createResultReg(Allocation[ArgNo].RC);
1464     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD,
1465             TII.get(TargetOpcode::COPY), ResultReg)
1466         .addReg(DstReg, getKillRegState(true));
1467     updateValueMap(&FormalArg, ResultReg);
1468   }
1469 
1470   // Calculate the size of the incoming arguments area.
1471   // We currently reject all the cases where this would be non-zero.
1472   unsigned IncomingArgSizeInBytes = 0;
1473 
1474   // Account for the reserved argument area on ABI's that have one (O32).
1475   // It seems strange to do this on the caller side but it's necessary in
1476   // SelectionDAG's implementation.
1477   IncomingArgSizeInBytes = std::min(getABI().GetCalleeAllocdArgSizeInBytes(CC),
1478                                     IncomingArgSizeInBytes);
1479 
1480   MF->getInfo<MipsFunctionInfo>()->setFormalArgInfo(IncomingArgSizeInBytes,
1481                                                     false);
1482 
1483   return true;
1484 }
1485 
1486 bool MipsFastISel::fastLowerCall(CallLoweringInfo &CLI) {
1487   CallingConv::ID CC = CLI.CallConv;
1488   bool IsTailCall = CLI.IsTailCall;
1489   bool IsVarArg = CLI.IsVarArg;
1490   const Value *Callee = CLI.Callee;
1491   MCSymbol *Symbol = CLI.Symbol;
1492 
1493   // Do not handle FastCC.
1494   if (CC == CallingConv::Fast)
1495     return false;
1496 
1497   // Allow SelectionDAG isel to handle tail calls.
1498   if (IsTailCall)
1499     return false;
1500 
1501   // Let SDISel handle vararg functions.
1502   if (IsVarArg)
1503     return false;
1504 
1505   // FIXME: Only handle *simple* calls for now.
1506   MVT RetVT;
1507   if (CLI.RetTy->isVoidTy())
1508     RetVT = MVT::isVoid;
1509   else if (!isTypeSupported(CLI.RetTy, RetVT))
1510     return false;
1511 
1512   for (auto Flag : CLI.OutFlags)
1513     if (Flag.isInReg() || Flag.isSRet() || Flag.isNest() || Flag.isByVal())
1514       return false;
1515 
1516   // Set up the argument vectors.
1517   SmallVector<MVT, 16> OutVTs;
1518   OutVTs.reserve(CLI.OutVals.size());
1519 
1520   for (auto *Val : CLI.OutVals) {
1521     MVT VT;
1522     if (!isTypeLegal(Val->getType(), VT) &&
1523         !(VT == MVT::i1 || VT == MVT::i8 || VT == MVT::i16))
1524       return false;
1525 
1526     // We don't handle vector parameters yet.
1527     if (VT.isVector() || VT.getSizeInBits() > 64)
1528       return false;
1529 
1530     OutVTs.push_back(VT);
1531   }
1532 
1533   Address Addr;
1534   if (!computeCallAddress(Callee, Addr))
1535     return false;
1536 
1537   // Handle the arguments now that we've gotten them.
1538   unsigned NumBytes;
1539   if (!processCallArgs(CLI, OutVTs, NumBytes))
1540     return false;
1541 
1542   if (!Addr.getGlobalValue())
1543     return false;
1544 
1545   // Issue the call.
1546   unsigned DestAddress;
1547   if (Symbol)
1548     DestAddress = materializeExternalCallSym(Symbol);
1549   else
1550     DestAddress = materializeGV(Addr.getGlobalValue(), MVT::i32);
1551   emitInst(TargetOpcode::COPY, Mips::T9).addReg(DestAddress);
1552   MachineInstrBuilder MIB =
1553       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(Mips::JALR),
1554               Mips::RA).addReg(Mips::T9);
1555 
1556   // Add implicit physical register uses to the call.
1557   for (auto Reg : CLI.OutRegs)
1558     MIB.addReg(Reg, RegState::Implicit);
1559 
1560   // Add a register mask with the call-preserved registers.
1561   // Proper defs for return values will be added by setPhysRegsDeadExcept().
1562   MIB.addRegMask(TRI.getCallPreservedMask(*FuncInfo.MF, CC));
1563 
1564   CLI.Call = MIB;
1565 
1566   if (EmitJalrReloc && !Subtarget->inMips16Mode()) {
1567     // Attach callee address to the instruction, let asm printer emit
1568     // .reloc R_MIPS_JALR.
1569     if (Symbol)
1570       MIB.addSym(Symbol, MipsII::MO_JALR);
1571     else
1572       MIB.addSym(FuncInfo.MF->getContext().getOrCreateSymbol(
1573 	                   Addr.getGlobalValue()->getName()), MipsII::MO_JALR);
1574   }
1575 
1576   // Finish off the call including any return values.
1577   return finishCall(CLI, RetVT, NumBytes);
1578 }
1579 
1580 bool MipsFastISel::fastLowerIntrinsicCall(const IntrinsicInst *II) {
1581   switch (II->getIntrinsicID()) {
1582   default:
1583     return false;
1584   case Intrinsic::bswap: {
1585     Type *RetTy = II->getCalledFunction()->getReturnType();
1586 
1587     MVT VT;
1588     if (!isTypeSupported(RetTy, VT))
1589       return false;
1590 
1591     Register SrcReg = getRegForValue(II->getOperand(0));
1592     if (SrcReg == 0)
1593       return false;
1594     Register DestReg = createResultReg(&Mips::GPR32RegClass);
1595     if (DestReg == 0)
1596       return false;
1597     if (VT == MVT::i16) {
1598       if (Subtarget->hasMips32r2()) {
1599         emitInst(Mips::WSBH, DestReg).addReg(SrcReg);
1600         updateValueMap(II, DestReg);
1601         return true;
1602       } else {
1603         unsigned TempReg[3];
1604         for (unsigned &R : TempReg) {
1605           R = createResultReg(&Mips::GPR32RegClass);
1606           if (R == 0)
1607             return false;
1608         }
1609         emitInst(Mips::SLL, TempReg[0]).addReg(SrcReg).addImm(8);
1610         emitInst(Mips::SRL, TempReg[1]).addReg(SrcReg).addImm(8);
1611         emitInst(Mips::OR, TempReg[2]).addReg(TempReg[0]).addReg(TempReg[1]);
1612         emitInst(Mips::ANDi, DestReg).addReg(TempReg[2]).addImm(0xFFFF);
1613         updateValueMap(II, DestReg);
1614         return true;
1615       }
1616     } else if (VT == MVT::i32) {
1617       if (Subtarget->hasMips32r2()) {
1618         Register TempReg = createResultReg(&Mips::GPR32RegClass);
1619         emitInst(Mips::WSBH, TempReg).addReg(SrcReg);
1620         emitInst(Mips::ROTR, DestReg).addReg(TempReg).addImm(16);
1621         updateValueMap(II, DestReg);
1622         return true;
1623       } else {
1624         unsigned TempReg[8];
1625         for (unsigned &R : TempReg) {
1626           R = createResultReg(&Mips::GPR32RegClass);
1627           if (R == 0)
1628             return false;
1629         }
1630 
1631         emitInst(Mips::SRL, TempReg[0]).addReg(SrcReg).addImm(8);
1632         emitInst(Mips::SRL, TempReg[1]).addReg(SrcReg).addImm(24);
1633         emitInst(Mips::ANDi, TempReg[2]).addReg(TempReg[0]).addImm(0xFF00);
1634         emitInst(Mips::OR, TempReg[3]).addReg(TempReg[1]).addReg(TempReg[2]);
1635 
1636         emitInst(Mips::ANDi, TempReg[4]).addReg(SrcReg).addImm(0xFF00);
1637         emitInst(Mips::SLL, TempReg[5]).addReg(TempReg[4]).addImm(8);
1638 
1639         emitInst(Mips::SLL, TempReg[6]).addReg(SrcReg).addImm(24);
1640         emitInst(Mips::OR, TempReg[7]).addReg(TempReg[3]).addReg(TempReg[5]);
1641         emitInst(Mips::OR, DestReg).addReg(TempReg[6]).addReg(TempReg[7]);
1642         updateValueMap(II, DestReg);
1643         return true;
1644       }
1645     }
1646     return false;
1647   }
1648   case Intrinsic::memcpy:
1649   case Intrinsic::memmove: {
1650     const auto *MTI = cast<MemTransferInst>(II);
1651     // Don't handle volatile.
1652     if (MTI->isVolatile())
1653       return false;
1654     if (!MTI->getLength()->getType()->isIntegerTy(32))
1655       return false;
1656     const char *IntrMemName = isa<MemCpyInst>(II) ? "memcpy" : "memmove";
1657     return lowerCallTo(II, IntrMemName, II->arg_size() - 1);
1658   }
1659   case Intrinsic::memset: {
1660     const MemSetInst *MSI = cast<MemSetInst>(II);
1661     // Don't handle volatile.
1662     if (MSI->isVolatile())
1663       return false;
1664     if (!MSI->getLength()->getType()->isIntegerTy(32))
1665       return false;
1666     return lowerCallTo(II, "memset", II->arg_size() - 1);
1667   }
1668   }
1669   return false;
1670 }
1671 
1672 bool MipsFastISel::selectRet(const Instruction *I) {
1673   const Function &F = *I->getParent()->getParent();
1674   const ReturnInst *Ret = cast<ReturnInst>(I);
1675 
1676   LLVM_DEBUG(dbgs() << "selectRet\n");
1677 
1678   if (!FuncInfo.CanLowerReturn)
1679     return false;
1680 
1681   // Build a list of return value registers.
1682   SmallVector<unsigned, 4> RetRegs;
1683 
1684   if (Ret->getNumOperands() > 0) {
1685     CallingConv::ID CC = F.getCallingConv();
1686 
1687     // Do not handle FastCC.
1688     if (CC == CallingConv::Fast)
1689       return false;
1690 
1691     SmallVector<ISD::OutputArg, 4> Outs;
1692     GetReturnInfo(CC, F.getReturnType(), F.getAttributes(), Outs, TLI, DL);
1693 
1694     // Analyze operands of the call, assigning locations to each operand.
1695     SmallVector<CCValAssign, 16> ValLocs;
1696     MipsCCState CCInfo(CC, F.isVarArg(), *FuncInfo.MF, ValLocs,
1697                        I->getContext());
1698     CCAssignFn *RetCC = RetCC_Mips;
1699     CCInfo.AnalyzeReturn(Outs, RetCC);
1700 
1701     // Only handle a single return value for now.
1702     if (ValLocs.size() != 1)
1703       return false;
1704 
1705     CCValAssign &VA = ValLocs[0];
1706     const Value *RV = Ret->getOperand(0);
1707 
1708     // Don't bother handling odd stuff for now.
1709     if ((VA.getLocInfo() != CCValAssign::Full) &&
1710         (VA.getLocInfo() != CCValAssign::BCvt))
1711       return false;
1712 
1713     // Only handle register returns for now.
1714     if (!VA.isRegLoc())
1715       return false;
1716 
1717     Register Reg = getRegForValue(RV);
1718     if (Reg == 0)
1719       return false;
1720 
1721     unsigned SrcReg = Reg + VA.getValNo();
1722     Register DestReg = VA.getLocReg();
1723     // Avoid a cross-class copy. This is very unlikely.
1724     if (!MRI.getRegClass(SrcReg)->contains(DestReg))
1725       return false;
1726 
1727     EVT RVEVT = TLI.getValueType(DL, RV->getType());
1728     if (!RVEVT.isSimple())
1729       return false;
1730 
1731     if (RVEVT.isVector())
1732       return false;
1733 
1734     MVT RVVT = RVEVT.getSimpleVT();
1735     if (RVVT == MVT::f128)
1736       return false;
1737 
1738     // Do not handle FGR64 returns for now.
1739     if (RVVT == MVT::f64 && UnsupportedFPMode) {
1740       LLVM_DEBUG(dbgs() << ".. .. gave up (UnsupportedFPMode\n");
1741       return false;
1742     }
1743 
1744     MVT DestVT = VA.getValVT();
1745     // Special handling for extended integers.
1746     if (RVVT != DestVT) {
1747       if (RVVT != MVT::i1 && RVVT != MVT::i8 && RVVT != MVT::i16)
1748         return false;
1749 
1750       if (Outs[0].Flags.isZExt() || Outs[0].Flags.isSExt()) {
1751         bool IsZExt = Outs[0].Flags.isZExt();
1752         SrcReg = emitIntExt(RVVT, SrcReg, DestVT, IsZExt);
1753         if (SrcReg == 0)
1754           return false;
1755       }
1756     }
1757 
1758     // Make the copy.
1759     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD,
1760             TII.get(TargetOpcode::COPY), DestReg).addReg(SrcReg);
1761 
1762     // Add register to return instruction.
1763     RetRegs.push_back(VA.getLocReg());
1764   }
1765   MachineInstrBuilder MIB = emitInst(Mips::RetRA);
1766   for (unsigned i = 0, e = RetRegs.size(); i != e; ++i)
1767     MIB.addReg(RetRegs[i], RegState::Implicit);
1768   return true;
1769 }
1770 
1771 bool MipsFastISel::selectTrunc(const Instruction *I) {
1772   // The high bits for a type smaller than the register size are assumed to be
1773   // undefined.
1774   Value *Op = I->getOperand(0);
1775 
1776   EVT SrcVT, DestVT;
1777   SrcVT = TLI.getValueType(DL, Op->getType(), true);
1778   DestVT = TLI.getValueType(DL, I->getType(), true);
1779 
1780   if (SrcVT != MVT::i32 && SrcVT != MVT::i16 && SrcVT != MVT::i8)
1781     return false;
1782   if (DestVT != MVT::i16 && DestVT != MVT::i8 && DestVT != MVT::i1)
1783     return false;
1784 
1785   Register SrcReg = getRegForValue(Op);
1786   if (!SrcReg)
1787     return false;
1788 
1789   // Because the high bits are undefined, a truncate doesn't generate
1790   // any code.
1791   updateValueMap(I, SrcReg);
1792   return true;
1793 }
1794 
1795 bool MipsFastISel::selectIntExt(const Instruction *I) {
1796   Type *DestTy = I->getType();
1797   Value *Src = I->getOperand(0);
1798   Type *SrcTy = Src->getType();
1799 
1800   bool isZExt = isa<ZExtInst>(I);
1801   Register SrcReg = getRegForValue(Src);
1802   if (!SrcReg)
1803     return false;
1804 
1805   EVT SrcEVT, DestEVT;
1806   SrcEVT = TLI.getValueType(DL, SrcTy, true);
1807   DestEVT = TLI.getValueType(DL, DestTy, true);
1808   if (!SrcEVT.isSimple())
1809     return false;
1810   if (!DestEVT.isSimple())
1811     return false;
1812 
1813   MVT SrcVT = SrcEVT.getSimpleVT();
1814   MVT DestVT = DestEVT.getSimpleVT();
1815   Register ResultReg = createResultReg(&Mips::GPR32RegClass);
1816 
1817   if (!emitIntExt(SrcVT, SrcReg, DestVT, ResultReg, isZExt))
1818     return false;
1819   updateValueMap(I, ResultReg);
1820   return true;
1821 }
1822 
1823 bool MipsFastISel::emitIntSExt32r1(MVT SrcVT, unsigned SrcReg, MVT DestVT,
1824                                    unsigned DestReg) {
1825   unsigned ShiftAmt;
1826   switch (SrcVT.SimpleTy) {
1827   default:
1828     return false;
1829   case MVT::i8:
1830     ShiftAmt = 24;
1831     break;
1832   case MVT::i16:
1833     ShiftAmt = 16;
1834     break;
1835   }
1836   Register TempReg = createResultReg(&Mips::GPR32RegClass);
1837   emitInst(Mips::SLL, TempReg).addReg(SrcReg).addImm(ShiftAmt);
1838   emitInst(Mips::SRA, DestReg).addReg(TempReg).addImm(ShiftAmt);
1839   return true;
1840 }
1841 
1842 bool MipsFastISel::emitIntSExt32r2(MVT SrcVT, unsigned SrcReg, MVT DestVT,
1843                                    unsigned DestReg) {
1844   switch (SrcVT.SimpleTy) {
1845   default:
1846     return false;
1847   case MVT::i8:
1848     emitInst(Mips::SEB, DestReg).addReg(SrcReg);
1849     break;
1850   case MVT::i16:
1851     emitInst(Mips::SEH, DestReg).addReg(SrcReg);
1852     break;
1853   }
1854   return true;
1855 }
1856 
1857 bool MipsFastISel::emitIntSExt(MVT SrcVT, unsigned SrcReg, MVT DestVT,
1858                                unsigned DestReg) {
1859   if ((DestVT != MVT::i32) && (DestVT != MVT::i16))
1860     return false;
1861   if (Subtarget->hasMips32r2())
1862     return emitIntSExt32r2(SrcVT, SrcReg, DestVT, DestReg);
1863   return emitIntSExt32r1(SrcVT, SrcReg, DestVT, DestReg);
1864 }
1865 
1866 bool MipsFastISel::emitIntZExt(MVT SrcVT, unsigned SrcReg, MVT DestVT,
1867                                unsigned DestReg) {
1868   int64_t Imm;
1869 
1870   switch (SrcVT.SimpleTy) {
1871   default:
1872     return false;
1873   case MVT::i1:
1874     Imm = 1;
1875     break;
1876   case MVT::i8:
1877     Imm = 0xff;
1878     break;
1879   case MVT::i16:
1880     Imm = 0xffff;
1881     break;
1882   }
1883 
1884   emitInst(Mips::ANDi, DestReg).addReg(SrcReg).addImm(Imm);
1885   return true;
1886 }
1887 
1888 bool MipsFastISel::emitIntExt(MVT SrcVT, unsigned SrcReg, MVT DestVT,
1889                               unsigned DestReg, bool IsZExt) {
1890   // FastISel does not have plumbing to deal with extensions where the SrcVT or
1891   // DestVT are odd things, so test to make sure that they are both types we can
1892   // handle (i1/i8/i16/i32 for SrcVT and i8/i16/i32/i64 for DestVT), otherwise
1893   // bail out to SelectionDAG.
1894   if (((DestVT != MVT::i8) && (DestVT != MVT::i16) && (DestVT != MVT::i32)) ||
1895       ((SrcVT != MVT::i1) && (SrcVT != MVT::i8) && (SrcVT != MVT::i16)))
1896     return false;
1897   if (IsZExt)
1898     return emitIntZExt(SrcVT, SrcReg, DestVT, DestReg);
1899   return emitIntSExt(SrcVT, SrcReg, DestVT, DestReg);
1900 }
1901 
1902 unsigned MipsFastISel::emitIntExt(MVT SrcVT, unsigned SrcReg, MVT DestVT,
1903                                   bool isZExt) {
1904   unsigned DestReg = createResultReg(&Mips::GPR32RegClass);
1905   bool Success = emitIntExt(SrcVT, SrcReg, DestVT, DestReg, isZExt);
1906   return Success ? DestReg : 0;
1907 }
1908 
1909 bool MipsFastISel::selectDivRem(const Instruction *I, unsigned ISDOpcode) {
1910   EVT DestEVT = TLI.getValueType(DL, I->getType(), true);
1911   if (!DestEVT.isSimple())
1912     return false;
1913 
1914   MVT DestVT = DestEVT.getSimpleVT();
1915   if (DestVT != MVT::i32)
1916     return false;
1917 
1918   unsigned DivOpc;
1919   switch (ISDOpcode) {
1920   default:
1921     return false;
1922   case ISD::SDIV:
1923   case ISD::SREM:
1924     DivOpc = Mips::SDIV;
1925     break;
1926   case ISD::UDIV:
1927   case ISD::UREM:
1928     DivOpc = Mips::UDIV;
1929     break;
1930   }
1931 
1932   Register Src0Reg = getRegForValue(I->getOperand(0));
1933   Register Src1Reg = getRegForValue(I->getOperand(1));
1934   if (!Src0Reg || !Src1Reg)
1935     return false;
1936 
1937   emitInst(DivOpc).addReg(Src0Reg).addReg(Src1Reg);
1938   emitInst(Mips::TEQ).addReg(Src1Reg).addReg(Mips::ZERO).addImm(7);
1939 
1940   Register ResultReg = createResultReg(&Mips::GPR32RegClass);
1941   if (!ResultReg)
1942     return false;
1943 
1944   unsigned MFOpc = (ISDOpcode == ISD::SREM || ISDOpcode == ISD::UREM)
1945                        ? Mips::MFHI
1946                        : Mips::MFLO;
1947   emitInst(MFOpc, ResultReg);
1948 
1949   updateValueMap(I, ResultReg);
1950   return true;
1951 }
1952 
1953 bool MipsFastISel::selectShift(const Instruction *I) {
1954   MVT RetVT;
1955 
1956   if (!isTypeSupported(I->getType(), RetVT))
1957     return false;
1958 
1959   Register ResultReg = createResultReg(&Mips::GPR32RegClass);
1960   if (!ResultReg)
1961     return false;
1962 
1963   unsigned Opcode = I->getOpcode();
1964   const Value *Op0 = I->getOperand(0);
1965   Register Op0Reg = getRegForValue(Op0);
1966   if (!Op0Reg)
1967     return false;
1968 
1969   // If AShr or LShr, then we need to make sure the operand0 is sign extended.
1970   if (Opcode == Instruction::AShr || Opcode == Instruction::LShr) {
1971     Register TempReg = createResultReg(&Mips::GPR32RegClass);
1972     if (!TempReg)
1973       return false;
1974 
1975     MVT Op0MVT = TLI.getValueType(DL, Op0->getType(), true).getSimpleVT();
1976     bool IsZExt = Opcode == Instruction::LShr;
1977     if (!emitIntExt(Op0MVT, Op0Reg, MVT::i32, TempReg, IsZExt))
1978       return false;
1979 
1980     Op0Reg = TempReg;
1981   }
1982 
1983   if (const auto *C = dyn_cast<ConstantInt>(I->getOperand(1))) {
1984     uint64_t ShiftVal = C->getZExtValue();
1985 
1986     switch (Opcode) {
1987     default:
1988       llvm_unreachable("Unexpected instruction.");
1989     case Instruction::Shl:
1990       Opcode = Mips::SLL;
1991       break;
1992     case Instruction::AShr:
1993       Opcode = Mips::SRA;
1994       break;
1995     case Instruction::LShr:
1996       Opcode = Mips::SRL;
1997       break;
1998     }
1999 
2000     emitInst(Opcode, ResultReg).addReg(Op0Reg).addImm(ShiftVal);
2001     updateValueMap(I, ResultReg);
2002     return true;
2003   }
2004 
2005   Register Op1Reg = getRegForValue(I->getOperand(1));
2006   if (!Op1Reg)
2007     return false;
2008 
2009   switch (Opcode) {
2010   default:
2011     llvm_unreachable("Unexpected instruction.");
2012   case Instruction::Shl:
2013     Opcode = Mips::SLLV;
2014     break;
2015   case Instruction::AShr:
2016     Opcode = Mips::SRAV;
2017     break;
2018   case Instruction::LShr:
2019     Opcode = Mips::SRLV;
2020     break;
2021   }
2022 
2023   emitInst(Opcode, ResultReg).addReg(Op0Reg).addReg(Op1Reg);
2024   updateValueMap(I, ResultReg);
2025   return true;
2026 }
2027 
2028 bool MipsFastISel::fastSelectInstruction(const Instruction *I) {
2029   switch (I->getOpcode()) {
2030   default:
2031     break;
2032   case Instruction::Load:
2033     return selectLoad(I);
2034   case Instruction::Store:
2035     return selectStore(I);
2036   case Instruction::SDiv:
2037     if (!selectBinaryOp(I, ISD::SDIV))
2038       return selectDivRem(I, ISD::SDIV);
2039     return true;
2040   case Instruction::UDiv:
2041     if (!selectBinaryOp(I, ISD::UDIV))
2042       return selectDivRem(I, ISD::UDIV);
2043     return true;
2044   case Instruction::SRem:
2045     if (!selectBinaryOp(I, ISD::SREM))
2046       return selectDivRem(I, ISD::SREM);
2047     return true;
2048   case Instruction::URem:
2049     if (!selectBinaryOp(I, ISD::UREM))
2050       return selectDivRem(I, ISD::UREM);
2051     return true;
2052   case Instruction::Shl:
2053   case Instruction::LShr:
2054   case Instruction::AShr:
2055     return selectShift(I);
2056   case Instruction::And:
2057   case Instruction::Or:
2058   case Instruction::Xor:
2059     return selectLogicalOp(I);
2060   case Instruction::Br:
2061     return selectBranch(I);
2062   case Instruction::Ret:
2063     return selectRet(I);
2064   case Instruction::Trunc:
2065     return selectTrunc(I);
2066   case Instruction::ZExt:
2067   case Instruction::SExt:
2068     return selectIntExt(I);
2069   case Instruction::FPTrunc:
2070     return selectFPTrunc(I);
2071   case Instruction::FPExt:
2072     return selectFPExt(I);
2073   case Instruction::FPToSI:
2074     return selectFPToInt(I, /*isSigned*/ true);
2075   case Instruction::FPToUI:
2076     return selectFPToInt(I, /*isSigned*/ false);
2077   case Instruction::ICmp:
2078   case Instruction::FCmp:
2079     return selectCmp(I);
2080   case Instruction::Select:
2081     return selectSelect(I);
2082   }
2083   return false;
2084 }
2085 
2086 unsigned MipsFastISel::getRegEnsuringSimpleIntegerWidening(const Value *V,
2087                                                            bool IsUnsigned) {
2088   Register VReg = getRegForValue(V);
2089   if (VReg == 0)
2090     return 0;
2091   MVT VMVT = TLI.getValueType(DL, V->getType(), true).getSimpleVT();
2092 
2093   if (VMVT == MVT::i1)
2094     return 0;
2095 
2096   if ((VMVT == MVT::i8) || (VMVT == MVT::i16)) {
2097     Register TempReg = createResultReg(&Mips::GPR32RegClass);
2098     if (!emitIntExt(VMVT, VReg, MVT::i32, TempReg, IsUnsigned))
2099       return 0;
2100     VReg = TempReg;
2101   }
2102   return VReg;
2103 }
2104 
2105 void MipsFastISel::simplifyAddress(Address &Addr) {
2106   if (!isInt<16>(Addr.getOffset())) {
2107     unsigned TempReg =
2108         materialize32BitInt(Addr.getOffset(), &Mips::GPR32RegClass);
2109     Register DestReg = createResultReg(&Mips::GPR32RegClass);
2110     emitInst(Mips::ADDu, DestReg).addReg(TempReg).addReg(Addr.getReg());
2111     Addr.setReg(DestReg);
2112     Addr.setOffset(0);
2113   }
2114 }
2115 
2116 unsigned MipsFastISel::fastEmitInst_rr(unsigned MachineInstOpcode,
2117                                        const TargetRegisterClass *RC,
2118                                        unsigned Op0, unsigned Op1) {
2119   // We treat the MUL instruction in a special way because it clobbers
2120   // the HI0 & LO0 registers. The TableGen definition of this instruction can
2121   // mark these registers only as implicitly defined. As a result, the
2122   // register allocator runs out of registers when this instruction is
2123   // followed by another instruction that defines the same registers too.
2124   // We can fix this by explicitly marking those registers as dead.
2125   if (MachineInstOpcode == Mips::MUL) {
2126     Register ResultReg = createResultReg(RC);
2127     const MCInstrDesc &II = TII.get(MachineInstOpcode);
2128     Op0 = constrainOperandRegClass(II, Op0, II.getNumDefs());
2129     Op1 = constrainOperandRegClass(II, Op1, II.getNumDefs() + 1);
2130     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, II, ResultReg)
2131       .addReg(Op0)
2132       .addReg(Op1)
2133       .addReg(Mips::HI0, RegState::ImplicitDefine | RegState::Dead)
2134       .addReg(Mips::LO0, RegState::ImplicitDefine | RegState::Dead);
2135     return ResultReg;
2136   }
2137 
2138   return FastISel::fastEmitInst_rr(MachineInstOpcode, RC, Op0, Op1);
2139 }
2140 
2141 namespace llvm {
2142 
2143 FastISel *Mips::createFastISel(FunctionLoweringInfo &funcInfo,
2144                                const TargetLibraryInfo *libInfo) {
2145   return new MipsFastISel(funcInfo, libInfo);
2146 }
2147 
2148 } // end namespace llvm
2149