1 //===- MipsISelLowering.cpp - Mips DAG Lowering Implementation ------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines the interfaces that Mips uses to lower LLVM code into a
10 // selection DAG.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "MipsISelLowering.h"
15 #include "MCTargetDesc/MipsBaseInfo.h"
16 #include "MCTargetDesc/MipsInstPrinter.h"
17 #include "MCTargetDesc/MipsMCTargetDesc.h"
18 #include "MipsCCState.h"
19 #include "MipsInstrInfo.h"
20 #include "MipsMachineFunction.h"
21 #include "MipsRegisterInfo.h"
22 #include "MipsSubtarget.h"
23 #include "MipsTargetMachine.h"
24 #include "MipsTargetObjectFile.h"
25 #include "llvm/ADT/APFloat.h"
26 #include "llvm/ADT/ArrayRef.h"
27 #include "llvm/ADT/SmallVector.h"
28 #include "llvm/ADT/Statistic.h"
29 #include "llvm/ADT/StringRef.h"
30 #include "llvm/ADT/StringSwitch.h"
31 #include "llvm/CodeGen/CallingConvLower.h"
32 #include "llvm/CodeGen/FunctionLoweringInfo.h"
33 #include "llvm/CodeGen/ISDOpcodes.h"
34 #include "llvm/CodeGen/MachineBasicBlock.h"
35 #include "llvm/CodeGen/MachineFrameInfo.h"
36 #include "llvm/CodeGen/MachineFunction.h"
37 #include "llvm/CodeGen/MachineInstr.h"
38 #include "llvm/CodeGen/MachineInstrBuilder.h"
39 #include "llvm/CodeGen/MachineJumpTableInfo.h"
40 #include "llvm/CodeGen/MachineMemOperand.h"
41 #include "llvm/CodeGen/MachineOperand.h"
42 #include "llvm/CodeGen/MachineRegisterInfo.h"
43 #include "llvm/CodeGen/RuntimeLibcalls.h"
44 #include "llvm/CodeGen/SelectionDAG.h"
45 #include "llvm/CodeGen/SelectionDAGNodes.h"
46 #include "llvm/CodeGen/TargetFrameLowering.h"
47 #include "llvm/CodeGen/TargetInstrInfo.h"
48 #include "llvm/CodeGen/TargetRegisterInfo.h"
49 #include "llvm/CodeGen/ValueTypes.h"
50 #include "llvm/IR/CallingConv.h"
51 #include "llvm/IR/Constants.h"
52 #include "llvm/IR/DataLayout.h"
53 #include "llvm/IR/DebugLoc.h"
54 #include "llvm/IR/DerivedTypes.h"
55 #include "llvm/IR/Function.h"
56 #include "llvm/IR/GlobalValue.h"
57 #include "llvm/IR/Type.h"
58 #include "llvm/IR/Value.h"
59 #include "llvm/MC/MCContext.h"
60 #include "llvm/MC/MCRegisterInfo.h"
61 #include "llvm/Support/Casting.h"
62 #include "llvm/Support/CodeGen.h"
63 #include "llvm/Support/CommandLine.h"
64 #include "llvm/Support/Compiler.h"
65 #include "llvm/Support/ErrorHandling.h"
66 #include "llvm/Support/MachineValueType.h"
67 #include "llvm/Support/MathExtras.h"
68 #include "llvm/Target/TargetMachine.h"
69 #include "llvm/Target/TargetOptions.h"
70 #include <algorithm>
71 #include <cassert>
72 #include <cctype>
73 #include <cstdint>
74 #include <deque>
75 #include <iterator>
76 #include <utility>
77 #include <vector>
78 
79 using namespace llvm;
80 
81 #define DEBUG_TYPE "mips-lower"
82 
83 STATISTIC(NumTailCalls, "Number of tail calls");
84 
85 static cl::opt<bool>
86 NoZeroDivCheck("mno-check-zero-division", cl::Hidden,
87                cl::desc("MIPS: Don't trap on integer division by zero."),
88                cl::init(false));
89 
90 extern cl::opt<bool> EmitJalrReloc;
91 
92 static const MCPhysReg Mips64DPRegs[8] = {
93   Mips::D12_64, Mips::D13_64, Mips::D14_64, Mips::D15_64,
94   Mips::D16_64, Mips::D17_64, Mips::D18_64, Mips::D19_64
95 };
96 
97 // If I is a shifted mask, set the size (Size) and the first bit of the
98 // mask (Pos), and return true.
99 // For example, if I is 0x003ff800, (Pos, Size) = (11, 11).
100 static bool isShiftedMask(uint64_t I, uint64_t &Pos, uint64_t &Size) {
101   if (!isShiftedMask_64(I))
102     return false;
103 
104   Size = countPopulation(I);
105   Pos = countTrailingZeros(I);
106   return true;
107 }
108 
109 // The MIPS MSA ABI passes vector arguments in the integer register set.
110 // The number of integer registers used is dependant on the ABI used.
111 MVT MipsTargetLowering::getRegisterTypeForCallingConv(LLVMContext &Context,
112                                                       CallingConv::ID CC,
113                                                       EVT VT) const {
114   if (!VT.isVector())
115     return getRegisterType(Context, VT);
116 
117   return Subtarget.isABI_O32() || VT.getSizeInBits() == 32 ? MVT::i32
118                                                            : MVT::i64;
119 }
120 
121 unsigned MipsTargetLowering::getNumRegistersForCallingConv(LLVMContext &Context,
122                                                            CallingConv::ID CC,
123                                                            EVT VT) const {
124   if (VT.isVector())
125     return std::max(((unsigned)VT.getSizeInBits() /
126                      (Subtarget.isABI_O32() ? 32 : 64)),
127                     1U);
128   return MipsTargetLowering::getNumRegisters(Context, VT);
129 }
130 
131 unsigned MipsTargetLowering::getVectorTypeBreakdownForCallingConv(
132     LLVMContext &Context, CallingConv::ID CC, EVT VT, EVT &IntermediateVT,
133     unsigned &NumIntermediates, MVT &RegisterVT) const {
134   // Break down vector types to either 2 i64s or 4 i32s.
135   RegisterVT = getRegisterTypeForCallingConv(Context, CC, VT);
136   IntermediateVT = RegisterVT;
137   NumIntermediates = VT.getSizeInBits() < RegisterVT.getSizeInBits()
138                          ? VT.getVectorNumElements()
139                          : VT.getSizeInBits() / RegisterVT.getSizeInBits();
140 
141   return NumIntermediates;
142 }
143 
144 SDValue MipsTargetLowering::getGlobalReg(SelectionDAG &DAG, EVT Ty) const {
145   MipsFunctionInfo *FI = DAG.getMachineFunction().getInfo<MipsFunctionInfo>();
146   return DAG.getRegister(FI->getGlobalBaseReg(), Ty);
147 }
148 
149 SDValue MipsTargetLowering::getTargetNode(GlobalAddressSDNode *N, EVT Ty,
150                                           SelectionDAG &DAG,
151                                           unsigned Flag) const {
152   return DAG.getTargetGlobalAddress(N->getGlobal(), SDLoc(N), Ty, 0, Flag);
153 }
154 
155 SDValue MipsTargetLowering::getTargetNode(ExternalSymbolSDNode *N, EVT Ty,
156                                           SelectionDAG &DAG,
157                                           unsigned Flag) const {
158   return DAG.getTargetExternalSymbol(N->getSymbol(), Ty, Flag);
159 }
160 
161 SDValue MipsTargetLowering::getTargetNode(BlockAddressSDNode *N, EVT Ty,
162                                           SelectionDAG &DAG,
163                                           unsigned Flag) const {
164   return DAG.getTargetBlockAddress(N->getBlockAddress(), Ty, 0, Flag);
165 }
166 
167 SDValue MipsTargetLowering::getTargetNode(JumpTableSDNode *N, EVT Ty,
168                                           SelectionDAG &DAG,
169                                           unsigned Flag) const {
170   return DAG.getTargetJumpTable(N->getIndex(), Ty, Flag);
171 }
172 
173 SDValue MipsTargetLowering::getTargetNode(ConstantPoolSDNode *N, EVT Ty,
174                                           SelectionDAG &DAG,
175                                           unsigned Flag) const {
176   return DAG.getTargetConstantPool(N->getConstVal(), Ty, N->getAlignment(),
177                                    N->getOffset(), Flag);
178 }
179 
180 const char *MipsTargetLowering::getTargetNodeName(unsigned Opcode) const {
181   switch ((MipsISD::NodeType)Opcode) {
182   case MipsISD::FIRST_NUMBER:      break;
183   case MipsISD::JmpLink:           return "MipsISD::JmpLink";
184   case MipsISD::TailCall:          return "MipsISD::TailCall";
185   case MipsISD::Highest:           return "MipsISD::Highest";
186   case MipsISD::Higher:            return "MipsISD::Higher";
187   case MipsISD::Hi:                return "MipsISD::Hi";
188   case MipsISD::Lo:                return "MipsISD::Lo";
189   case MipsISD::GotHi:             return "MipsISD::GotHi";
190   case MipsISD::TlsHi:             return "MipsISD::TlsHi";
191   case MipsISD::GPRel:             return "MipsISD::GPRel";
192   case MipsISD::ThreadPointer:     return "MipsISD::ThreadPointer";
193   case MipsISD::Ret:               return "MipsISD::Ret";
194   case MipsISD::ERet:              return "MipsISD::ERet";
195   case MipsISD::EH_RETURN:         return "MipsISD::EH_RETURN";
196   case MipsISD::FMS:               return "MipsISD::FMS";
197   case MipsISD::FPBrcond:          return "MipsISD::FPBrcond";
198   case MipsISD::FPCmp:             return "MipsISD::FPCmp";
199   case MipsISD::FSELECT:           return "MipsISD::FSELECT";
200   case MipsISD::MTC1_D64:          return "MipsISD::MTC1_D64";
201   case MipsISD::CMovFP_T:          return "MipsISD::CMovFP_T";
202   case MipsISD::CMovFP_F:          return "MipsISD::CMovFP_F";
203   case MipsISD::TruncIntFP:        return "MipsISD::TruncIntFP";
204   case MipsISD::MFHI:              return "MipsISD::MFHI";
205   case MipsISD::MFLO:              return "MipsISD::MFLO";
206   case MipsISD::MTLOHI:            return "MipsISD::MTLOHI";
207   case MipsISD::Mult:              return "MipsISD::Mult";
208   case MipsISD::Multu:             return "MipsISD::Multu";
209   case MipsISD::MAdd:              return "MipsISD::MAdd";
210   case MipsISD::MAddu:             return "MipsISD::MAddu";
211   case MipsISD::MSub:              return "MipsISD::MSub";
212   case MipsISD::MSubu:             return "MipsISD::MSubu";
213   case MipsISD::DivRem:            return "MipsISD::DivRem";
214   case MipsISD::DivRemU:           return "MipsISD::DivRemU";
215   case MipsISD::DivRem16:          return "MipsISD::DivRem16";
216   case MipsISD::DivRemU16:         return "MipsISD::DivRemU16";
217   case MipsISD::BuildPairF64:      return "MipsISD::BuildPairF64";
218   case MipsISD::ExtractElementF64: return "MipsISD::ExtractElementF64";
219   case MipsISD::Wrapper:           return "MipsISD::Wrapper";
220   case MipsISD::DynAlloc:          return "MipsISD::DynAlloc";
221   case MipsISD::Sync:              return "MipsISD::Sync";
222   case MipsISD::Ext:               return "MipsISD::Ext";
223   case MipsISD::Ins:               return "MipsISD::Ins";
224   case MipsISD::CIns:              return "MipsISD::CIns";
225   case MipsISD::LWL:               return "MipsISD::LWL";
226   case MipsISD::LWR:               return "MipsISD::LWR";
227   case MipsISD::SWL:               return "MipsISD::SWL";
228   case MipsISD::SWR:               return "MipsISD::SWR";
229   case MipsISD::LDL:               return "MipsISD::LDL";
230   case MipsISD::LDR:               return "MipsISD::LDR";
231   case MipsISD::SDL:               return "MipsISD::SDL";
232   case MipsISD::SDR:               return "MipsISD::SDR";
233   case MipsISD::EXTP:              return "MipsISD::EXTP";
234   case MipsISD::EXTPDP:            return "MipsISD::EXTPDP";
235   case MipsISD::EXTR_S_H:          return "MipsISD::EXTR_S_H";
236   case MipsISD::EXTR_W:            return "MipsISD::EXTR_W";
237   case MipsISD::EXTR_R_W:          return "MipsISD::EXTR_R_W";
238   case MipsISD::EXTR_RS_W:         return "MipsISD::EXTR_RS_W";
239   case MipsISD::SHILO:             return "MipsISD::SHILO";
240   case MipsISD::MTHLIP:            return "MipsISD::MTHLIP";
241   case MipsISD::MULSAQ_S_W_PH:     return "MipsISD::MULSAQ_S_W_PH";
242   case MipsISD::MAQ_S_W_PHL:       return "MipsISD::MAQ_S_W_PHL";
243   case MipsISD::MAQ_S_W_PHR:       return "MipsISD::MAQ_S_W_PHR";
244   case MipsISD::MAQ_SA_W_PHL:      return "MipsISD::MAQ_SA_W_PHL";
245   case MipsISD::MAQ_SA_W_PHR:      return "MipsISD::MAQ_SA_W_PHR";
246   case MipsISD::DPAU_H_QBL:        return "MipsISD::DPAU_H_QBL";
247   case MipsISD::DPAU_H_QBR:        return "MipsISD::DPAU_H_QBR";
248   case MipsISD::DPSU_H_QBL:        return "MipsISD::DPSU_H_QBL";
249   case MipsISD::DPSU_H_QBR:        return "MipsISD::DPSU_H_QBR";
250   case MipsISD::DPAQ_S_W_PH:       return "MipsISD::DPAQ_S_W_PH";
251   case MipsISD::DPSQ_S_W_PH:       return "MipsISD::DPSQ_S_W_PH";
252   case MipsISD::DPAQ_SA_L_W:       return "MipsISD::DPAQ_SA_L_W";
253   case MipsISD::DPSQ_SA_L_W:       return "MipsISD::DPSQ_SA_L_W";
254   case MipsISD::DPA_W_PH:          return "MipsISD::DPA_W_PH";
255   case MipsISD::DPS_W_PH:          return "MipsISD::DPS_W_PH";
256   case MipsISD::DPAQX_S_W_PH:      return "MipsISD::DPAQX_S_W_PH";
257   case MipsISD::DPAQX_SA_W_PH:     return "MipsISD::DPAQX_SA_W_PH";
258   case MipsISD::DPAX_W_PH:         return "MipsISD::DPAX_W_PH";
259   case MipsISD::DPSX_W_PH:         return "MipsISD::DPSX_W_PH";
260   case MipsISD::DPSQX_S_W_PH:      return "MipsISD::DPSQX_S_W_PH";
261   case MipsISD::DPSQX_SA_W_PH:     return "MipsISD::DPSQX_SA_W_PH";
262   case MipsISD::MULSA_W_PH:        return "MipsISD::MULSA_W_PH";
263   case MipsISD::MULT:              return "MipsISD::MULT";
264   case MipsISD::MULTU:             return "MipsISD::MULTU";
265   case MipsISD::MADD_DSP:          return "MipsISD::MADD_DSP";
266   case MipsISD::MADDU_DSP:         return "MipsISD::MADDU_DSP";
267   case MipsISD::MSUB_DSP:          return "MipsISD::MSUB_DSP";
268   case MipsISD::MSUBU_DSP:         return "MipsISD::MSUBU_DSP";
269   case MipsISD::SHLL_DSP:          return "MipsISD::SHLL_DSP";
270   case MipsISD::SHRA_DSP:          return "MipsISD::SHRA_DSP";
271   case MipsISD::SHRL_DSP:          return "MipsISD::SHRL_DSP";
272   case MipsISD::SETCC_DSP:         return "MipsISD::SETCC_DSP";
273   case MipsISD::SELECT_CC_DSP:     return "MipsISD::SELECT_CC_DSP";
274   case MipsISD::VALL_ZERO:         return "MipsISD::VALL_ZERO";
275   case MipsISD::VANY_ZERO:         return "MipsISD::VANY_ZERO";
276   case MipsISD::VALL_NONZERO:      return "MipsISD::VALL_NONZERO";
277   case MipsISD::VANY_NONZERO:      return "MipsISD::VANY_NONZERO";
278   case MipsISD::VCEQ:              return "MipsISD::VCEQ";
279   case MipsISD::VCLE_S:            return "MipsISD::VCLE_S";
280   case MipsISD::VCLE_U:            return "MipsISD::VCLE_U";
281   case MipsISD::VCLT_S:            return "MipsISD::VCLT_S";
282   case MipsISD::VCLT_U:            return "MipsISD::VCLT_U";
283   case MipsISD::VEXTRACT_SEXT_ELT: return "MipsISD::VEXTRACT_SEXT_ELT";
284   case MipsISD::VEXTRACT_ZEXT_ELT: return "MipsISD::VEXTRACT_ZEXT_ELT";
285   case MipsISD::VNOR:              return "MipsISD::VNOR";
286   case MipsISD::VSHF:              return "MipsISD::VSHF";
287   case MipsISD::SHF:               return "MipsISD::SHF";
288   case MipsISD::ILVEV:             return "MipsISD::ILVEV";
289   case MipsISD::ILVOD:             return "MipsISD::ILVOD";
290   case MipsISD::ILVL:              return "MipsISD::ILVL";
291   case MipsISD::ILVR:              return "MipsISD::ILVR";
292   case MipsISD::PCKEV:             return "MipsISD::PCKEV";
293   case MipsISD::PCKOD:             return "MipsISD::PCKOD";
294   case MipsISD::INSVE:             return "MipsISD::INSVE";
295   }
296   return nullptr;
297 }
298 
299 MipsTargetLowering::MipsTargetLowering(const MipsTargetMachine &TM,
300                                        const MipsSubtarget &STI)
301     : TargetLowering(TM), Subtarget(STI), ABI(TM.getABI()) {
302   // Mips does not have i1 type, so use i32 for
303   // setcc operations results (slt, sgt, ...).
304   setBooleanContents(ZeroOrOneBooleanContent);
305   setBooleanVectorContents(ZeroOrNegativeOneBooleanContent);
306   // The cmp.cond.fmt instruction in MIPS32r6/MIPS64r6 uses 0 and -1 like MSA
307   // does. Integer booleans still use 0 and 1.
308   if (Subtarget.hasMips32r6())
309     setBooleanContents(ZeroOrOneBooleanContent,
310                        ZeroOrNegativeOneBooleanContent);
311 
312   // Load extented operations for i1 types must be promoted
313   for (MVT VT : MVT::integer_valuetypes()) {
314     setLoadExtAction(ISD::EXTLOAD,  VT, MVT::i1,  Promote);
315     setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i1,  Promote);
316     setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1,  Promote);
317   }
318 
319   // MIPS doesn't have extending float->double load/store.  Set LoadExtAction
320   // for f32, f16
321   for (MVT VT : MVT::fp_valuetypes()) {
322     setLoadExtAction(ISD::EXTLOAD, VT, MVT::f32, Expand);
323     setLoadExtAction(ISD::EXTLOAD, VT, MVT::f16, Expand);
324   }
325 
326   // Set LoadExtAction for f16 vectors to Expand
327   for (MVT VT : MVT::fp_fixedlen_vector_valuetypes()) {
328     MVT F16VT = MVT::getVectorVT(MVT::f16, VT.getVectorNumElements());
329     if (F16VT.isValid())
330       setLoadExtAction(ISD::EXTLOAD, VT, F16VT, Expand);
331   }
332 
333   setTruncStoreAction(MVT::f32, MVT::f16, Expand);
334   setTruncStoreAction(MVT::f64, MVT::f16, Expand);
335 
336   setTruncStoreAction(MVT::f64, MVT::f32, Expand);
337 
338   // Used by legalize types to correctly generate the setcc result.
339   // Without this, every float setcc comes with a AND/OR with the result,
340   // we don't want this, since the fpcmp result goes to a flag register,
341   // which is used implicitly by brcond and select operations.
342   AddPromotedToType(ISD::SETCC, MVT::i1, MVT::i32);
343 
344   // Mips Custom Operations
345   setOperationAction(ISD::BR_JT,              MVT::Other, Expand);
346   setOperationAction(ISD::GlobalAddress,      MVT::i32,   Custom);
347   setOperationAction(ISD::BlockAddress,       MVT::i32,   Custom);
348   setOperationAction(ISD::GlobalTLSAddress,   MVT::i32,   Custom);
349   setOperationAction(ISD::JumpTable,          MVT::i32,   Custom);
350   setOperationAction(ISD::ConstantPool,       MVT::i32,   Custom);
351   setOperationAction(ISD::SELECT,             MVT::f32,   Custom);
352   setOperationAction(ISD::SELECT,             MVT::f64,   Custom);
353   setOperationAction(ISD::SELECT,             MVT::i32,   Custom);
354   setOperationAction(ISD::SETCC,              MVT::f32,   Custom);
355   setOperationAction(ISD::SETCC,              MVT::f64,   Custom);
356   setOperationAction(ISD::BRCOND,             MVT::Other, Custom);
357   setOperationAction(ISD::FCOPYSIGN,          MVT::f32,   Custom);
358   setOperationAction(ISD::FCOPYSIGN,          MVT::f64,   Custom);
359   setOperationAction(ISD::FP_TO_SINT,         MVT::i32,   Custom);
360 
361   if (!(TM.Options.NoNaNsFPMath || Subtarget.inAbs2008Mode())) {
362     setOperationAction(ISD::FABS, MVT::f32, Custom);
363     setOperationAction(ISD::FABS, MVT::f64, Custom);
364   }
365 
366   if (Subtarget.isGP64bit()) {
367     setOperationAction(ISD::GlobalAddress,      MVT::i64,   Custom);
368     setOperationAction(ISD::BlockAddress,       MVT::i64,   Custom);
369     setOperationAction(ISD::GlobalTLSAddress,   MVT::i64,   Custom);
370     setOperationAction(ISD::JumpTable,          MVT::i64,   Custom);
371     setOperationAction(ISD::ConstantPool,       MVT::i64,   Custom);
372     setOperationAction(ISD::SELECT,             MVT::i64,   Custom);
373     setOperationAction(ISD::LOAD,               MVT::i64,   Custom);
374     setOperationAction(ISD::STORE,              MVT::i64,   Custom);
375     setOperationAction(ISD::FP_TO_SINT,         MVT::i64,   Custom);
376     setOperationAction(ISD::SHL_PARTS,          MVT::i64,   Custom);
377     setOperationAction(ISD::SRA_PARTS,          MVT::i64,   Custom);
378     setOperationAction(ISD::SRL_PARTS,          MVT::i64,   Custom);
379   }
380 
381   if (!Subtarget.isGP64bit()) {
382     setOperationAction(ISD::SHL_PARTS,          MVT::i32,   Custom);
383     setOperationAction(ISD::SRA_PARTS,          MVT::i32,   Custom);
384     setOperationAction(ISD::SRL_PARTS,          MVT::i32,   Custom);
385   }
386 
387   setOperationAction(ISD::EH_DWARF_CFA,         MVT::i32,   Custom);
388   if (Subtarget.isGP64bit())
389     setOperationAction(ISD::EH_DWARF_CFA,       MVT::i64,   Custom);
390 
391   setOperationAction(ISD::SDIV, MVT::i32, Expand);
392   setOperationAction(ISD::SREM, MVT::i32, Expand);
393   setOperationAction(ISD::UDIV, MVT::i32, Expand);
394   setOperationAction(ISD::UREM, MVT::i32, Expand);
395   setOperationAction(ISD::SDIV, MVT::i64, Expand);
396   setOperationAction(ISD::SREM, MVT::i64, Expand);
397   setOperationAction(ISD::UDIV, MVT::i64, Expand);
398   setOperationAction(ISD::UREM, MVT::i64, Expand);
399 
400   // Operations not directly supported by Mips.
401   setOperationAction(ISD::BR_CC,             MVT::f32,   Expand);
402   setOperationAction(ISD::BR_CC,             MVT::f64,   Expand);
403   setOperationAction(ISD::BR_CC,             MVT::i32,   Expand);
404   setOperationAction(ISD::BR_CC,             MVT::i64,   Expand);
405   setOperationAction(ISD::SELECT_CC,         MVT::i32,   Expand);
406   setOperationAction(ISD::SELECT_CC,         MVT::i64,   Expand);
407   setOperationAction(ISD::SELECT_CC,         MVT::f32,   Expand);
408   setOperationAction(ISD::SELECT_CC,         MVT::f64,   Expand);
409   setOperationAction(ISD::UINT_TO_FP,        MVT::i32,   Expand);
410   setOperationAction(ISD::UINT_TO_FP,        MVT::i64,   Expand);
411   setOperationAction(ISD::FP_TO_UINT,        MVT::i32,   Expand);
412   setOperationAction(ISD::FP_TO_UINT,        MVT::i64,   Expand);
413   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1,    Expand);
414   if (Subtarget.hasCnMips()) {
415     setOperationAction(ISD::CTPOP,           MVT::i32,   Legal);
416     setOperationAction(ISD::CTPOP,           MVT::i64,   Legal);
417   } else {
418     setOperationAction(ISD::CTPOP,           MVT::i32,   Expand);
419     setOperationAction(ISD::CTPOP,           MVT::i64,   Expand);
420   }
421   setOperationAction(ISD::CTTZ,              MVT::i32,   Expand);
422   setOperationAction(ISD::CTTZ,              MVT::i64,   Expand);
423   setOperationAction(ISD::ROTL,              MVT::i32,   Expand);
424   setOperationAction(ISD::ROTL,              MVT::i64,   Expand);
425   setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32,  Expand);
426   setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i64,  Expand);
427 
428   if (!Subtarget.hasMips32r2())
429     setOperationAction(ISD::ROTR, MVT::i32,   Expand);
430 
431   if (!Subtarget.hasMips64r2())
432     setOperationAction(ISD::ROTR, MVT::i64,   Expand);
433 
434   setOperationAction(ISD::FSIN,              MVT::f32,   Expand);
435   setOperationAction(ISD::FSIN,              MVT::f64,   Expand);
436   setOperationAction(ISD::FCOS,              MVT::f32,   Expand);
437   setOperationAction(ISD::FCOS,              MVT::f64,   Expand);
438   setOperationAction(ISD::FSINCOS,           MVT::f32,   Expand);
439   setOperationAction(ISD::FSINCOS,           MVT::f64,   Expand);
440   setOperationAction(ISD::FPOW,              MVT::f32,   Expand);
441   setOperationAction(ISD::FPOW,              MVT::f64,   Expand);
442   setOperationAction(ISD::FLOG,              MVT::f32,   Expand);
443   setOperationAction(ISD::FLOG2,             MVT::f32,   Expand);
444   setOperationAction(ISD::FLOG10,            MVT::f32,   Expand);
445   setOperationAction(ISD::FEXP,              MVT::f32,   Expand);
446   setOperationAction(ISD::FMA,               MVT::f32,   Expand);
447   setOperationAction(ISD::FMA,               MVT::f64,   Expand);
448   setOperationAction(ISD::FREM,              MVT::f32,   Expand);
449   setOperationAction(ISD::FREM,              MVT::f64,   Expand);
450 
451   // Lower f16 conversion operations into library calls
452   setOperationAction(ISD::FP16_TO_FP,        MVT::f32,   Expand);
453   setOperationAction(ISD::FP_TO_FP16,        MVT::f32,   Expand);
454   setOperationAction(ISD::FP16_TO_FP,        MVT::f64,   Expand);
455   setOperationAction(ISD::FP_TO_FP16,        MVT::f64,   Expand);
456 
457   setOperationAction(ISD::EH_RETURN, MVT::Other, Custom);
458 
459   setOperationAction(ISD::VASTART,           MVT::Other, Custom);
460   setOperationAction(ISD::VAARG,             MVT::Other, Custom);
461   setOperationAction(ISD::VACOPY,            MVT::Other, Expand);
462   setOperationAction(ISD::VAEND,             MVT::Other, Expand);
463 
464   // Use the default for now
465   setOperationAction(ISD::STACKSAVE,         MVT::Other, Expand);
466   setOperationAction(ISD::STACKRESTORE,      MVT::Other, Expand);
467 
468   if (!Subtarget.isGP64bit()) {
469     setOperationAction(ISD::ATOMIC_LOAD,     MVT::i64,   Expand);
470     setOperationAction(ISD::ATOMIC_STORE,    MVT::i64,   Expand);
471   }
472 
473   if (!Subtarget.hasMips32r2()) {
474     setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8,  Expand);
475     setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16, Expand);
476   }
477 
478   // MIPS16 lacks MIPS32's clz and clo instructions.
479   if (!Subtarget.hasMips32() || Subtarget.inMips16Mode())
480     setOperationAction(ISD::CTLZ, MVT::i32, Expand);
481   if (!Subtarget.hasMips64())
482     setOperationAction(ISD::CTLZ, MVT::i64, Expand);
483 
484   if (!Subtarget.hasMips32r2())
485     setOperationAction(ISD::BSWAP, MVT::i32, Expand);
486   if (!Subtarget.hasMips64r2())
487     setOperationAction(ISD::BSWAP, MVT::i64, Expand);
488 
489   if (Subtarget.isGP64bit()) {
490     setLoadExtAction(ISD::SEXTLOAD, MVT::i64, MVT::i32, Custom);
491     setLoadExtAction(ISD::ZEXTLOAD, MVT::i64, MVT::i32, Custom);
492     setLoadExtAction(ISD::EXTLOAD, MVT::i64, MVT::i32, Custom);
493     setTruncStoreAction(MVT::i64, MVT::i32, Custom);
494   }
495 
496   setOperationAction(ISD::TRAP, MVT::Other, Legal);
497 
498   setTargetDAGCombine(ISD::SDIVREM);
499   setTargetDAGCombine(ISD::UDIVREM);
500   setTargetDAGCombine(ISD::SELECT);
501   setTargetDAGCombine(ISD::AND);
502   setTargetDAGCombine(ISD::OR);
503   setTargetDAGCombine(ISD::ADD);
504   setTargetDAGCombine(ISD::SUB);
505   setTargetDAGCombine(ISD::AssertZext);
506   setTargetDAGCombine(ISD::SHL);
507 
508   if (ABI.IsO32()) {
509     // These libcalls are not available in 32-bit.
510     setLibcallName(RTLIB::SHL_I128, nullptr);
511     setLibcallName(RTLIB::SRL_I128, nullptr);
512     setLibcallName(RTLIB::SRA_I128, nullptr);
513   }
514 
515   setMinFunctionAlignment(Subtarget.isGP64bit() ? Align(8) : Align(4));
516 
517   // The arguments on the stack are defined in terms of 4-byte slots on O32
518   // and 8-byte slots on N32/N64.
519   setMinStackArgumentAlignment((ABI.IsN32() || ABI.IsN64()) ? Align(8)
520                                                             : Align(4));
521 
522   setStackPointerRegisterToSaveRestore(ABI.IsN64() ? Mips::SP_64 : Mips::SP);
523 
524   MaxStoresPerMemcpy = 16;
525 
526   isMicroMips = Subtarget.inMicroMipsMode();
527 }
528 
529 const MipsTargetLowering *
530 MipsTargetLowering::create(const MipsTargetMachine &TM,
531                            const MipsSubtarget &STI) {
532   if (STI.inMips16Mode())
533     return createMips16TargetLowering(TM, STI);
534 
535   return createMipsSETargetLowering(TM, STI);
536 }
537 
538 // Create a fast isel object.
539 FastISel *
540 MipsTargetLowering::createFastISel(FunctionLoweringInfo &funcInfo,
541                                   const TargetLibraryInfo *libInfo) const {
542   const MipsTargetMachine &TM =
543       static_cast<const MipsTargetMachine &>(funcInfo.MF->getTarget());
544 
545   // We support only the standard encoding [MIPS32,MIPS32R5] ISAs.
546   bool UseFastISel = TM.Options.EnableFastISel && Subtarget.hasMips32() &&
547                      !Subtarget.hasMips32r6() && !Subtarget.inMips16Mode() &&
548                      !Subtarget.inMicroMipsMode();
549 
550   // Disable if either of the following is true:
551   // We do not generate PIC, the ABI is not O32, XGOT is being used.
552   if (!TM.isPositionIndependent() || !TM.getABI().IsO32() ||
553       Subtarget.useXGOT())
554     UseFastISel = false;
555 
556   return UseFastISel ? Mips::createFastISel(funcInfo, libInfo) : nullptr;
557 }
558 
559 EVT MipsTargetLowering::getSetCCResultType(const DataLayout &, LLVMContext &,
560                                            EVT VT) const {
561   if (!VT.isVector())
562     return MVT::i32;
563   return VT.changeVectorElementTypeToInteger();
564 }
565 
566 static SDValue performDivRemCombine(SDNode *N, SelectionDAG &DAG,
567                                     TargetLowering::DAGCombinerInfo &DCI,
568                                     const MipsSubtarget &Subtarget) {
569   if (DCI.isBeforeLegalizeOps())
570     return SDValue();
571 
572   EVT Ty = N->getValueType(0);
573   unsigned LO = (Ty == MVT::i32) ? Mips::LO0 : Mips::LO0_64;
574   unsigned HI = (Ty == MVT::i32) ? Mips::HI0 : Mips::HI0_64;
575   unsigned Opc = N->getOpcode() == ISD::SDIVREM ? MipsISD::DivRem16 :
576                                                   MipsISD::DivRemU16;
577   SDLoc DL(N);
578 
579   SDValue DivRem = DAG.getNode(Opc, DL, MVT::Glue,
580                                N->getOperand(0), N->getOperand(1));
581   SDValue InChain = DAG.getEntryNode();
582   SDValue InGlue = DivRem;
583 
584   // insert MFLO
585   if (N->hasAnyUseOfValue(0)) {
586     SDValue CopyFromLo = DAG.getCopyFromReg(InChain, DL, LO, Ty,
587                                             InGlue);
588     DAG.ReplaceAllUsesOfValueWith(SDValue(N, 0), CopyFromLo);
589     InChain = CopyFromLo.getValue(1);
590     InGlue = CopyFromLo.getValue(2);
591   }
592 
593   // insert MFHI
594   if (N->hasAnyUseOfValue(1)) {
595     SDValue CopyFromHi = DAG.getCopyFromReg(InChain, DL,
596                                             HI, Ty, InGlue);
597     DAG.ReplaceAllUsesOfValueWith(SDValue(N, 1), CopyFromHi);
598   }
599 
600   return SDValue();
601 }
602 
603 static Mips::CondCode condCodeToFCC(ISD::CondCode CC) {
604   switch (CC) {
605   default: llvm_unreachable("Unknown fp condition code!");
606   case ISD::SETEQ:
607   case ISD::SETOEQ: return Mips::FCOND_OEQ;
608   case ISD::SETUNE: return Mips::FCOND_UNE;
609   case ISD::SETLT:
610   case ISD::SETOLT: return Mips::FCOND_OLT;
611   case ISD::SETGT:
612   case ISD::SETOGT: return Mips::FCOND_OGT;
613   case ISD::SETLE:
614   case ISD::SETOLE: return Mips::FCOND_OLE;
615   case ISD::SETGE:
616   case ISD::SETOGE: return Mips::FCOND_OGE;
617   case ISD::SETULT: return Mips::FCOND_ULT;
618   case ISD::SETULE: return Mips::FCOND_ULE;
619   case ISD::SETUGT: return Mips::FCOND_UGT;
620   case ISD::SETUGE: return Mips::FCOND_UGE;
621   case ISD::SETUO:  return Mips::FCOND_UN;
622   case ISD::SETO:   return Mips::FCOND_OR;
623   case ISD::SETNE:
624   case ISD::SETONE: return Mips::FCOND_ONE;
625   case ISD::SETUEQ: return Mips::FCOND_UEQ;
626   }
627 }
628 
629 /// This function returns true if the floating point conditional branches and
630 /// conditional moves which use condition code CC should be inverted.
631 static bool invertFPCondCodeUser(Mips::CondCode CC) {
632   if (CC >= Mips::FCOND_F && CC <= Mips::FCOND_NGT)
633     return false;
634 
635   assert((CC >= Mips::FCOND_T && CC <= Mips::FCOND_GT) &&
636          "Illegal Condition Code");
637 
638   return true;
639 }
640 
641 // Creates and returns an FPCmp node from a setcc node.
642 // Returns Op if setcc is not a floating point comparison.
643 static SDValue createFPCmp(SelectionDAG &DAG, const SDValue &Op) {
644   // must be a SETCC node
645   if (Op.getOpcode() != ISD::SETCC)
646     return Op;
647 
648   SDValue LHS = Op.getOperand(0);
649 
650   if (!LHS.getValueType().isFloatingPoint())
651     return Op;
652 
653   SDValue RHS = Op.getOperand(1);
654   SDLoc DL(Op);
655 
656   // Assume the 3rd operand is a CondCodeSDNode. Add code to check the type of
657   // node if necessary.
658   ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
659 
660   return DAG.getNode(MipsISD::FPCmp, DL, MVT::Glue, LHS, RHS,
661                      DAG.getConstant(condCodeToFCC(CC), DL, MVT::i32));
662 }
663 
664 // Creates and returns a CMovFPT/F node.
665 static SDValue createCMovFP(SelectionDAG &DAG, SDValue Cond, SDValue True,
666                             SDValue False, const SDLoc &DL) {
667   ConstantSDNode *CC = cast<ConstantSDNode>(Cond.getOperand(2));
668   bool invert = invertFPCondCodeUser((Mips::CondCode)CC->getSExtValue());
669   SDValue FCC0 = DAG.getRegister(Mips::FCC0, MVT::i32);
670 
671   return DAG.getNode((invert ? MipsISD::CMovFP_F : MipsISD::CMovFP_T), DL,
672                      True.getValueType(), True, FCC0, False, Cond);
673 }
674 
675 static SDValue performSELECTCombine(SDNode *N, SelectionDAG &DAG,
676                                     TargetLowering::DAGCombinerInfo &DCI,
677                                     const MipsSubtarget &Subtarget) {
678   if (DCI.isBeforeLegalizeOps())
679     return SDValue();
680 
681   SDValue SetCC = N->getOperand(0);
682 
683   if ((SetCC.getOpcode() != ISD::SETCC) ||
684       !SetCC.getOperand(0).getValueType().isInteger())
685     return SDValue();
686 
687   SDValue False = N->getOperand(2);
688   EVT FalseTy = False.getValueType();
689 
690   if (!FalseTy.isInteger())
691     return SDValue();
692 
693   ConstantSDNode *FalseC = dyn_cast<ConstantSDNode>(False);
694 
695   // If the RHS (False) is 0, we swap the order of the operands
696   // of ISD::SELECT (obviously also inverting the condition) so that we can
697   // take advantage of conditional moves using the $0 register.
698   // Example:
699   //   return (a != 0) ? x : 0;
700   //     load $reg, x
701   //     movz $reg, $0, a
702   if (!FalseC)
703     return SDValue();
704 
705   const SDLoc DL(N);
706 
707   if (!FalseC->getZExtValue()) {
708     ISD::CondCode CC = cast<CondCodeSDNode>(SetCC.getOperand(2))->get();
709     SDValue True = N->getOperand(1);
710 
711     SetCC = DAG.getSetCC(DL, SetCC.getValueType(), SetCC.getOperand(0),
712                          SetCC.getOperand(1),
713                          ISD::getSetCCInverse(CC, SetCC.getValueType()));
714 
715     return DAG.getNode(ISD::SELECT, DL, FalseTy, SetCC, False, True);
716   }
717 
718   // If both operands are integer constants there's a possibility that we
719   // can do some interesting optimizations.
720   SDValue True = N->getOperand(1);
721   ConstantSDNode *TrueC = dyn_cast<ConstantSDNode>(True);
722 
723   if (!TrueC || !True.getValueType().isInteger())
724     return SDValue();
725 
726   // We'll also ignore MVT::i64 operands as this optimizations proves
727   // to be ineffective because of the required sign extensions as the result
728   // of a SETCC operator is always MVT::i32 for non-vector types.
729   if (True.getValueType() == MVT::i64)
730     return SDValue();
731 
732   int64_t Diff = TrueC->getSExtValue() - FalseC->getSExtValue();
733 
734   // 1)  (a < x) ? y : y-1
735   //  slti $reg1, a, x
736   //  addiu $reg2, $reg1, y-1
737   if (Diff == 1)
738     return DAG.getNode(ISD::ADD, DL, SetCC.getValueType(), SetCC, False);
739 
740   // 2)  (a < x) ? y-1 : y
741   //  slti $reg1, a, x
742   //  xor $reg1, $reg1, 1
743   //  addiu $reg2, $reg1, y-1
744   if (Diff == -1) {
745     ISD::CondCode CC = cast<CondCodeSDNode>(SetCC.getOperand(2))->get();
746     SetCC = DAG.getSetCC(DL, SetCC.getValueType(), SetCC.getOperand(0),
747                          SetCC.getOperand(1),
748                          ISD::getSetCCInverse(CC, SetCC.getValueType()));
749     return DAG.getNode(ISD::ADD, DL, SetCC.getValueType(), SetCC, True);
750   }
751 
752   // Could not optimize.
753   return SDValue();
754 }
755 
756 static SDValue performCMovFPCombine(SDNode *N, SelectionDAG &DAG,
757                                     TargetLowering::DAGCombinerInfo &DCI,
758                                     const MipsSubtarget &Subtarget) {
759   if (DCI.isBeforeLegalizeOps())
760     return SDValue();
761 
762   SDValue ValueIfTrue = N->getOperand(0), ValueIfFalse = N->getOperand(2);
763 
764   ConstantSDNode *FalseC = dyn_cast<ConstantSDNode>(ValueIfFalse);
765   if (!FalseC || FalseC->getZExtValue())
766     return SDValue();
767 
768   // Since RHS (False) is 0, we swap the order of the True/False operands
769   // (obviously also inverting the condition) so that we can
770   // take advantage of conditional moves using the $0 register.
771   // Example:
772   //   return (a != 0) ? x : 0;
773   //     load $reg, x
774   //     movz $reg, $0, a
775   unsigned Opc = (N->getOpcode() == MipsISD::CMovFP_T) ? MipsISD::CMovFP_F :
776                                                          MipsISD::CMovFP_T;
777 
778   SDValue FCC = N->getOperand(1), Glue = N->getOperand(3);
779   return DAG.getNode(Opc, SDLoc(N), ValueIfFalse.getValueType(),
780                      ValueIfFalse, FCC, ValueIfTrue, Glue);
781 }
782 
783 static SDValue performANDCombine(SDNode *N, SelectionDAG &DAG,
784                                  TargetLowering::DAGCombinerInfo &DCI,
785                                  const MipsSubtarget &Subtarget) {
786   if (DCI.isBeforeLegalizeOps() || !Subtarget.hasExtractInsert())
787     return SDValue();
788 
789   SDValue FirstOperand = N->getOperand(0);
790   unsigned FirstOperandOpc = FirstOperand.getOpcode();
791   SDValue Mask = N->getOperand(1);
792   EVT ValTy = N->getValueType(0);
793   SDLoc DL(N);
794 
795   uint64_t Pos = 0, SMPos, SMSize;
796   ConstantSDNode *CN;
797   SDValue NewOperand;
798   unsigned Opc;
799 
800   // Op's second operand must be a shifted mask.
801   if (!(CN = dyn_cast<ConstantSDNode>(Mask)) ||
802       !isShiftedMask(CN->getZExtValue(), SMPos, SMSize))
803     return SDValue();
804 
805   if (FirstOperandOpc == ISD::SRA || FirstOperandOpc == ISD::SRL) {
806     // Pattern match EXT.
807     //  $dst = and ((sra or srl) $src , pos), (2**size - 1)
808     //  => ext $dst, $src, pos, size
809 
810     // The second operand of the shift must be an immediate.
811     if (!(CN = dyn_cast<ConstantSDNode>(FirstOperand.getOperand(1))))
812       return SDValue();
813 
814     Pos = CN->getZExtValue();
815 
816     // Return if the shifted mask does not start at bit 0 or the sum of its size
817     // and Pos exceeds the word's size.
818     if (SMPos != 0 || Pos + SMSize > ValTy.getSizeInBits())
819       return SDValue();
820 
821     Opc = MipsISD::Ext;
822     NewOperand = FirstOperand.getOperand(0);
823   } else if (FirstOperandOpc == ISD::SHL && Subtarget.hasCnMips()) {
824     // Pattern match CINS.
825     //  $dst = and (shl $src , pos), mask
826     //  => cins $dst, $src, pos, size
827     // mask is a shifted mask with consecutive 1's, pos = shift amount,
828     // size = population count.
829 
830     // The second operand of the shift must be an immediate.
831     if (!(CN = dyn_cast<ConstantSDNode>(FirstOperand.getOperand(1))))
832       return SDValue();
833 
834     Pos = CN->getZExtValue();
835 
836     if (SMPos != Pos || Pos >= ValTy.getSizeInBits() || SMSize >= 32 ||
837         Pos + SMSize > ValTy.getSizeInBits())
838       return SDValue();
839 
840     NewOperand = FirstOperand.getOperand(0);
841     // SMSize is 'location' (position) in this case, not size.
842     SMSize--;
843     Opc = MipsISD::CIns;
844   } else {
845     // Pattern match EXT.
846     //  $dst = and $src, (2**size - 1) , if size > 16
847     //  => ext $dst, $src, pos, size , pos = 0
848 
849     // If the mask is <= 0xffff, andi can be used instead.
850     if (CN->getZExtValue() <= 0xffff)
851       return SDValue();
852 
853     // Return if the mask doesn't start at position 0.
854     if (SMPos)
855       return SDValue();
856 
857     Opc = MipsISD::Ext;
858     NewOperand = FirstOperand;
859   }
860   return DAG.getNode(Opc, DL, ValTy, NewOperand,
861                      DAG.getConstant(Pos, DL, MVT::i32),
862                      DAG.getConstant(SMSize, DL, MVT::i32));
863 }
864 
865 static SDValue performORCombine(SDNode *N, SelectionDAG &DAG,
866                                 TargetLowering::DAGCombinerInfo &DCI,
867                                 const MipsSubtarget &Subtarget) {
868   // Pattern match INS.
869   //  $dst = or (and $src1 , mask0), (and (shl $src, pos), mask1),
870   //  where mask1 = (2**size - 1) << pos, mask0 = ~mask1
871   //  => ins $dst, $src, size, pos, $src1
872   if (DCI.isBeforeLegalizeOps() || !Subtarget.hasExtractInsert())
873     return SDValue();
874 
875   SDValue And0 = N->getOperand(0), And1 = N->getOperand(1);
876   uint64_t SMPos0, SMSize0, SMPos1, SMSize1;
877   ConstantSDNode *CN, *CN1;
878 
879   // See if Op's first operand matches (and $src1 , mask0).
880   if (And0.getOpcode() != ISD::AND)
881     return SDValue();
882 
883   if (!(CN = dyn_cast<ConstantSDNode>(And0.getOperand(1))) ||
884       !isShiftedMask(~CN->getSExtValue(), SMPos0, SMSize0))
885     return SDValue();
886 
887   // See if Op's second operand matches (and (shl $src, pos), mask1).
888   if (And1.getOpcode() == ISD::AND &&
889       And1.getOperand(0).getOpcode() == ISD::SHL) {
890 
891     if (!(CN = dyn_cast<ConstantSDNode>(And1.getOperand(1))) ||
892         !isShiftedMask(CN->getZExtValue(), SMPos1, SMSize1))
893       return SDValue();
894 
895     // The shift masks must have the same position and size.
896     if (SMPos0 != SMPos1 || SMSize0 != SMSize1)
897       return SDValue();
898 
899     SDValue Shl = And1.getOperand(0);
900 
901     if (!(CN = dyn_cast<ConstantSDNode>(Shl.getOperand(1))))
902       return SDValue();
903 
904     unsigned Shamt = CN->getZExtValue();
905 
906     // Return if the shift amount and the first bit position of mask are not the
907     // same.
908     EVT ValTy = N->getValueType(0);
909     if ((Shamt != SMPos0) || (SMPos0 + SMSize0 > ValTy.getSizeInBits()))
910       return SDValue();
911 
912     SDLoc DL(N);
913     return DAG.getNode(MipsISD::Ins, DL, ValTy, Shl.getOperand(0),
914                        DAG.getConstant(SMPos0, DL, MVT::i32),
915                        DAG.getConstant(SMSize0, DL, MVT::i32),
916                        And0.getOperand(0));
917   } else {
918     // Pattern match DINS.
919     //  $dst = or (and $src, mask0), mask1
920     //  where mask0 = ((1 << SMSize0) -1) << SMPos0
921     //  => dins $dst, $src, pos, size
922     if (~CN->getSExtValue() == ((((int64_t)1 << SMSize0) - 1) << SMPos0) &&
923         ((SMSize0 + SMPos0 <= 64 && Subtarget.hasMips64r2()) ||
924          (SMSize0 + SMPos0 <= 32))) {
925       // Check if AND instruction has constant as argument
926       bool isConstCase = And1.getOpcode() != ISD::AND;
927       if (And1.getOpcode() == ISD::AND) {
928         if (!(CN1 = dyn_cast<ConstantSDNode>(And1->getOperand(1))))
929           return SDValue();
930       } else {
931         if (!(CN1 = dyn_cast<ConstantSDNode>(N->getOperand(1))))
932           return SDValue();
933       }
934       // Don't generate INS if constant OR operand doesn't fit into bits
935       // cleared by constant AND operand.
936       if (CN->getSExtValue() & CN1->getSExtValue())
937         return SDValue();
938 
939       SDLoc DL(N);
940       EVT ValTy = N->getOperand(0)->getValueType(0);
941       SDValue Const1;
942       SDValue SrlX;
943       if (!isConstCase) {
944         Const1 = DAG.getConstant(SMPos0, DL, MVT::i32);
945         SrlX = DAG.getNode(ISD::SRL, DL, And1->getValueType(0), And1, Const1);
946       }
947       return DAG.getNode(
948           MipsISD::Ins, DL, N->getValueType(0),
949           isConstCase
950               ? DAG.getConstant(CN1->getSExtValue() >> SMPos0, DL, ValTy)
951               : SrlX,
952           DAG.getConstant(SMPos0, DL, MVT::i32),
953           DAG.getConstant(ValTy.getSizeInBits() / 8 < 8 ? SMSize0 & 31
954                                                         : SMSize0,
955                           DL, MVT::i32),
956           And0->getOperand(0));
957 
958     }
959     return SDValue();
960   }
961 }
962 
963 static SDValue performMADD_MSUBCombine(SDNode *ROOTNode, SelectionDAG &CurDAG,
964                                        const MipsSubtarget &Subtarget) {
965   // ROOTNode must have a multiplication as an operand for the match to be
966   // successful.
967   if (ROOTNode->getOperand(0).getOpcode() != ISD::MUL &&
968       ROOTNode->getOperand(1).getOpcode() != ISD::MUL)
969     return SDValue();
970 
971   // We don't handle vector types here.
972   if (ROOTNode->getValueType(0).isVector())
973     return SDValue();
974 
975   // For MIPS64, madd / msub instructions are inefficent to use with 64 bit
976   // arithmetic. E.g.
977   // (add (mul a b) c) =>
978   //   let res = (madd (mthi (drotr c 32))x(mtlo c) a b) in
979   //   MIPS64:   (or (dsll (mfhi res) 32) (dsrl (dsll (mflo res) 32) 32)
980   //   or
981   //   MIPS64R2: (dins (mflo res) (mfhi res) 32 32)
982   //
983   // The overhead of setting up the Hi/Lo registers and reassembling the
984   // result makes this a dubious optimzation for MIPS64. The core of the
985   // problem is that Hi/Lo contain the upper and lower 32 bits of the
986   // operand and result.
987   //
988   // It requires a chain of 4 add/mul for MIPS64R2 to get better code
989   // density than doing it naively, 5 for MIPS64. Additionally, using
990   // madd/msub on MIPS64 requires the operands actually be 32 bit sign
991   // extended operands, not true 64 bit values.
992   //
993   // FIXME: For the moment, disable this completely for MIPS64.
994   if (Subtarget.hasMips64())
995     return SDValue();
996 
997   SDValue Mult = ROOTNode->getOperand(0).getOpcode() == ISD::MUL
998                      ? ROOTNode->getOperand(0)
999                      : ROOTNode->getOperand(1);
1000 
1001   SDValue AddOperand = ROOTNode->getOperand(0).getOpcode() == ISD::MUL
1002                      ? ROOTNode->getOperand(1)
1003                      : ROOTNode->getOperand(0);
1004 
1005   // Transform this to a MADD only if the user of this node is the add.
1006   // If there are other users of the mul, this function returns here.
1007   if (!Mult.hasOneUse())
1008     return SDValue();
1009 
1010   // maddu and madd are unusual instructions in that on MIPS64 bits 63..31
1011   // must be in canonical form, i.e. sign extended. For MIPS32, the operands
1012   // of the multiply must have 32 or more sign bits, otherwise we cannot
1013   // perform this optimization. We have to check this here as we're performing
1014   // this optimization pre-legalization.
1015   SDValue MultLHS = Mult->getOperand(0);
1016   SDValue MultRHS = Mult->getOperand(1);
1017 
1018   bool IsSigned = MultLHS->getOpcode() == ISD::SIGN_EXTEND &&
1019                   MultRHS->getOpcode() == ISD::SIGN_EXTEND;
1020   bool IsUnsigned = MultLHS->getOpcode() == ISD::ZERO_EXTEND &&
1021                     MultRHS->getOpcode() == ISD::ZERO_EXTEND;
1022 
1023   if (!IsSigned && !IsUnsigned)
1024     return SDValue();
1025 
1026   // Initialize accumulator.
1027   SDLoc DL(ROOTNode);
1028   SDValue TopHalf;
1029   SDValue BottomHalf;
1030   BottomHalf = CurDAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, AddOperand,
1031                               CurDAG.getIntPtrConstant(0, DL));
1032 
1033   TopHalf = CurDAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, AddOperand,
1034                            CurDAG.getIntPtrConstant(1, DL));
1035   SDValue ACCIn = CurDAG.getNode(MipsISD::MTLOHI, DL, MVT::Untyped,
1036                                   BottomHalf,
1037                                   TopHalf);
1038 
1039   // Create MipsMAdd(u) / MipsMSub(u) node.
1040   bool IsAdd = ROOTNode->getOpcode() == ISD::ADD;
1041   unsigned Opcode = IsAdd ? (IsUnsigned ? MipsISD::MAddu : MipsISD::MAdd)
1042                           : (IsUnsigned ? MipsISD::MSubu : MipsISD::MSub);
1043   SDValue MAddOps[3] = {
1044       CurDAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Mult->getOperand(0)),
1045       CurDAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Mult->getOperand(1)), ACCIn};
1046   EVT VTs[2] = {MVT::i32, MVT::i32};
1047   SDValue MAdd = CurDAG.getNode(Opcode, DL, VTs, MAddOps);
1048 
1049   SDValue ResLo = CurDAG.getNode(MipsISD::MFLO, DL, MVT::i32, MAdd);
1050   SDValue ResHi = CurDAG.getNode(MipsISD::MFHI, DL, MVT::i32, MAdd);
1051   SDValue Combined =
1052       CurDAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, ResLo, ResHi);
1053   return Combined;
1054 }
1055 
1056 static SDValue performSUBCombine(SDNode *N, SelectionDAG &DAG,
1057                                  TargetLowering::DAGCombinerInfo &DCI,
1058                                  const MipsSubtarget &Subtarget) {
1059   // (sub v0 (mul v1, v2)) => (msub v1, v2, v0)
1060   if (DCI.isBeforeLegalizeOps()) {
1061     if (Subtarget.hasMips32() && !Subtarget.hasMips32r6() &&
1062         !Subtarget.inMips16Mode() && N->getValueType(0) == MVT::i64)
1063       return performMADD_MSUBCombine(N, DAG, Subtarget);
1064 
1065     return SDValue();
1066   }
1067 
1068   return SDValue();
1069 }
1070 
1071 static SDValue performADDCombine(SDNode *N, SelectionDAG &DAG,
1072                                  TargetLowering::DAGCombinerInfo &DCI,
1073                                  const MipsSubtarget &Subtarget) {
1074   // (add v0 (mul v1, v2)) => (madd v1, v2, v0)
1075   if (DCI.isBeforeLegalizeOps()) {
1076     if (Subtarget.hasMips32() && !Subtarget.hasMips32r6() &&
1077         !Subtarget.inMips16Mode() && N->getValueType(0) == MVT::i64)
1078       return performMADD_MSUBCombine(N, DAG, Subtarget);
1079 
1080     return SDValue();
1081   }
1082 
1083   // (add v0, (add v1, abs_lo(tjt))) => (add (add v0, v1), abs_lo(tjt))
1084   SDValue Add = N->getOperand(1);
1085 
1086   if (Add.getOpcode() != ISD::ADD)
1087     return SDValue();
1088 
1089   SDValue Lo = Add.getOperand(1);
1090 
1091   if ((Lo.getOpcode() != MipsISD::Lo) ||
1092       (Lo.getOperand(0).getOpcode() != ISD::TargetJumpTable))
1093     return SDValue();
1094 
1095   EVT ValTy = N->getValueType(0);
1096   SDLoc DL(N);
1097 
1098   SDValue Add1 = DAG.getNode(ISD::ADD, DL, ValTy, N->getOperand(0),
1099                              Add.getOperand(0));
1100   return DAG.getNode(ISD::ADD, DL, ValTy, Add1, Lo);
1101 }
1102 
1103 static SDValue performSHLCombine(SDNode *N, SelectionDAG &DAG,
1104                                  TargetLowering::DAGCombinerInfo &DCI,
1105                                  const MipsSubtarget &Subtarget) {
1106   // Pattern match CINS.
1107   //  $dst = shl (and $src , imm), pos
1108   //  => cins $dst, $src, pos, size
1109 
1110   if (DCI.isBeforeLegalizeOps() || !Subtarget.hasCnMips())
1111     return SDValue();
1112 
1113   SDValue FirstOperand = N->getOperand(0);
1114   unsigned FirstOperandOpc = FirstOperand.getOpcode();
1115   SDValue SecondOperand = N->getOperand(1);
1116   EVT ValTy = N->getValueType(0);
1117   SDLoc DL(N);
1118 
1119   uint64_t Pos = 0, SMPos, SMSize;
1120   ConstantSDNode *CN;
1121   SDValue NewOperand;
1122 
1123   // The second operand of the shift must be an immediate.
1124   if (!(CN = dyn_cast<ConstantSDNode>(SecondOperand)))
1125     return SDValue();
1126 
1127   Pos = CN->getZExtValue();
1128 
1129   if (Pos >= ValTy.getSizeInBits())
1130     return SDValue();
1131 
1132   if (FirstOperandOpc != ISD::AND)
1133     return SDValue();
1134 
1135   // AND's second operand must be a shifted mask.
1136   if (!(CN = dyn_cast<ConstantSDNode>(FirstOperand.getOperand(1))) ||
1137       !isShiftedMask(CN->getZExtValue(), SMPos, SMSize))
1138     return SDValue();
1139 
1140   // Return if the shifted mask does not start at bit 0 or the sum of its size
1141   // and Pos exceeds the word's size.
1142   if (SMPos != 0 || SMSize > 32 || Pos + SMSize > ValTy.getSizeInBits())
1143     return SDValue();
1144 
1145   NewOperand = FirstOperand.getOperand(0);
1146   // SMSize is 'location' (position) in this case, not size.
1147   SMSize--;
1148 
1149   return DAG.getNode(MipsISD::CIns, DL, ValTy, NewOperand,
1150                      DAG.getConstant(Pos, DL, MVT::i32),
1151                      DAG.getConstant(SMSize, DL, MVT::i32));
1152 }
1153 
1154 SDValue  MipsTargetLowering::PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI)
1155   const {
1156   SelectionDAG &DAG = DCI.DAG;
1157   unsigned Opc = N->getOpcode();
1158 
1159   switch (Opc) {
1160   default: break;
1161   case ISD::SDIVREM:
1162   case ISD::UDIVREM:
1163     return performDivRemCombine(N, DAG, DCI, Subtarget);
1164   case ISD::SELECT:
1165     return performSELECTCombine(N, DAG, DCI, Subtarget);
1166   case MipsISD::CMovFP_F:
1167   case MipsISD::CMovFP_T:
1168     return performCMovFPCombine(N, DAG, DCI, Subtarget);
1169   case ISD::AND:
1170     return performANDCombine(N, DAG, DCI, Subtarget);
1171   case ISD::OR:
1172     return performORCombine(N, DAG, DCI, Subtarget);
1173   case ISD::ADD:
1174     return performADDCombine(N, DAG, DCI, Subtarget);
1175   case ISD::SHL:
1176     return performSHLCombine(N, DAG, DCI, Subtarget);
1177   case ISD::SUB:
1178     return performSUBCombine(N, DAG, DCI, Subtarget);
1179   }
1180 
1181   return SDValue();
1182 }
1183 
1184 bool MipsTargetLowering::isCheapToSpeculateCttz() const {
1185   return Subtarget.hasMips32();
1186 }
1187 
1188 bool MipsTargetLowering::isCheapToSpeculateCtlz() const {
1189   return Subtarget.hasMips32();
1190 }
1191 
1192 bool MipsTargetLowering::shouldFoldConstantShiftPairToMask(
1193     const SDNode *N, CombineLevel Level) const {
1194   if (N->getOperand(0).getValueType().isVector())
1195     return false;
1196   return true;
1197 }
1198 
1199 void
1200 MipsTargetLowering::LowerOperationWrapper(SDNode *N,
1201                                           SmallVectorImpl<SDValue> &Results,
1202                                           SelectionDAG &DAG) const {
1203   SDValue Res = LowerOperation(SDValue(N, 0), DAG);
1204 
1205   if (Res)
1206     for (unsigned I = 0, E = Res->getNumValues(); I != E; ++I)
1207       Results.push_back(Res.getValue(I));
1208 }
1209 
1210 void
1211 MipsTargetLowering::ReplaceNodeResults(SDNode *N,
1212                                        SmallVectorImpl<SDValue> &Results,
1213                                        SelectionDAG &DAG) const {
1214   return LowerOperationWrapper(N, Results, DAG);
1215 }
1216 
1217 SDValue MipsTargetLowering::
1218 LowerOperation(SDValue Op, SelectionDAG &DAG) const
1219 {
1220   switch (Op.getOpcode())
1221   {
1222   case ISD::BRCOND:             return lowerBRCOND(Op, DAG);
1223   case ISD::ConstantPool:       return lowerConstantPool(Op, DAG);
1224   case ISD::GlobalAddress:      return lowerGlobalAddress(Op, DAG);
1225   case ISD::BlockAddress:       return lowerBlockAddress(Op, DAG);
1226   case ISD::GlobalTLSAddress:   return lowerGlobalTLSAddress(Op, DAG);
1227   case ISD::JumpTable:          return lowerJumpTable(Op, DAG);
1228   case ISD::SELECT:             return lowerSELECT(Op, DAG);
1229   case ISD::SETCC:              return lowerSETCC(Op, DAG);
1230   case ISD::VASTART:            return lowerVASTART(Op, DAG);
1231   case ISD::VAARG:              return lowerVAARG(Op, DAG);
1232   case ISD::FCOPYSIGN:          return lowerFCOPYSIGN(Op, DAG);
1233   case ISD::FABS:               return lowerFABS(Op, DAG);
1234   case ISD::FRAMEADDR:          return lowerFRAMEADDR(Op, DAG);
1235   case ISD::RETURNADDR:         return lowerRETURNADDR(Op, DAG);
1236   case ISD::EH_RETURN:          return lowerEH_RETURN(Op, DAG);
1237   case ISD::ATOMIC_FENCE:       return lowerATOMIC_FENCE(Op, DAG);
1238   case ISD::SHL_PARTS:          return lowerShiftLeftParts(Op, DAG);
1239   case ISD::SRA_PARTS:          return lowerShiftRightParts(Op, DAG, true);
1240   case ISD::SRL_PARTS:          return lowerShiftRightParts(Op, DAG, false);
1241   case ISD::LOAD:               return lowerLOAD(Op, DAG);
1242   case ISD::STORE:              return lowerSTORE(Op, DAG);
1243   case ISD::EH_DWARF_CFA:       return lowerEH_DWARF_CFA(Op, DAG);
1244   case ISD::FP_TO_SINT:         return lowerFP_TO_SINT(Op, DAG);
1245   }
1246   return SDValue();
1247 }
1248 
1249 //===----------------------------------------------------------------------===//
1250 //  Lower helper functions
1251 //===----------------------------------------------------------------------===//
1252 
1253 // addLiveIn - This helper function adds the specified physical register to the
1254 // MachineFunction as a live in value.  It also creates a corresponding
1255 // virtual register for it.
1256 static unsigned
1257 addLiveIn(MachineFunction &MF, unsigned PReg, const TargetRegisterClass *RC)
1258 {
1259   Register VReg = MF.getRegInfo().createVirtualRegister(RC);
1260   MF.getRegInfo().addLiveIn(PReg, VReg);
1261   return VReg;
1262 }
1263 
1264 static MachineBasicBlock *insertDivByZeroTrap(MachineInstr &MI,
1265                                               MachineBasicBlock &MBB,
1266                                               const TargetInstrInfo &TII,
1267                                               bool Is64Bit, bool IsMicroMips) {
1268   if (NoZeroDivCheck)
1269     return &MBB;
1270 
1271   // Insert instruction "teq $divisor_reg, $zero, 7".
1272   MachineBasicBlock::iterator I(MI);
1273   MachineInstrBuilder MIB;
1274   MachineOperand &Divisor = MI.getOperand(2);
1275   MIB = BuildMI(MBB, std::next(I), MI.getDebugLoc(),
1276                 TII.get(IsMicroMips ? Mips::TEQ_MM : Mips::TEQ))
1277             .addReg(Divisor.getReg(), getKillRegState(Divisor.isKill()))
1278             .addReg(Mips::ZERO)
1279             .addImm(7);
1280 
1281   // Use the 32-bit sub-register if this is a 64-bit division.
1282   if (Is64Bit)
1283     MIB->getOperand(0).setSubReg(Mips::sub_32);
1284 
1285   // Clear Divisor's kill flag.
1286   Divisor.setIsKill(false);
1287 
1288   // We would normally delete the original instruction here but in this case
1289   // we only needed to inject an additional instruction rather than replace it.
1290 
1291   return &MBB;
1292 }
1293 
1294 MachineBasicBlock *
1295 MipsTargetLowering::EmitInstrWithCustomInserter(MachineInstr &MI,
1296                                                 MachineBasicBlock *BB) const {
1297   switch (MI.getOpcode()) {
1298   default:
1299     llvm_unreachable("Unexpected instr type to insert");
1300   case Mips::ATOMIC_LOAD_ADD_I8:
1301     return emitAtomicBinaryPartword(MI, BB, 1);
1302   case Mips::ATOMIC_LOAD_ADD_I16:
1303     return emitAtomicBinaryPartword(MI, BB, 2);
1304   case Mips::ATOMIC_LOAD_ADD_I32:
1305     return emitAtomicBinary(MI, BB);
1306   case Mips::ATOMIC_LOAD_ADD_I64:
1307     return emitAtomicBinary(MI, BB);
1308 
1309   case Mips::ATOMIC_LOAD_AND_I8:
1310     return emitAtomicBinaryPartword(MI, BB, 1);
1311   case Mips::ATOMIC_LOAD_AND_I16:
1312     return emitAtomicBinaryPartword(MI, BB, 2);
1313   case Mips::ATOMIC_LOAD_AND_I32:
1314     return emitAtomicBinary(MI, BB);
1315   case Mips::ATOMIC_LOAD_AND_I64:
1316     return emitAtomicBinary(MI, BB);
1317 
1318   case Mips::ATOMIC_LOAD_OR_I8:
1319     return emitAtomicBinaryPartword(MI, BB, 1);
1320   case Mips::ATOMIC_LOAD_OR_I16:
1321     return emitAtomicBinaryPartword(MI, BB, 2);
1322   case Mips::ATOMIC_LOAD_OR_I32:
1323     return emitAtomicBinary(MI, BB);
1324   case Mips::ATOMIC_LOAD_OR_I64:
1325     return emitAtomicBinary(MI, BB);
1326 
1327   case Mips::ATOMIC_LOAD_XOR_I8:
1328     return emitAtomicBinaryPartword(MI, BB, 1);
1329   case Mips::ATOMIC_LOAD_XOR_I16:
1330     return emitAtomicBinaryPartword(MI, BB, 2);
1331   case Mips::ATOMIC_LOAD_XOR_I32:
1332     return emitAtomicBinary(MI, BB);
1333   case Mips::ATOMIC_LOAD_XOR_I64:
1334     return emitAtomicBinary(MI, BB);
1335 
1336   case Mips::ATOMIC_LOAD_NAND_I8:
1337     return emitAtomicBinaryPartword(MI, BB, 1);
1338   case Mips::ATOMIC_LOAD_NAND_I16:
1339     return emitAtomicBinaryPartword(MI, BB, 2);
1340   case Mips::ATOMIC_LOAD_NAND_I32:
1341     return emitAtomicBinary(MI, BB);
1342   case Mips::ATOMIC_LOAD_NAND_I64:
1343     return emitAtomicBinary(MI, BB);
1344 
1345   case Mips::ATOMIC_LOAD_SUB_I8:
1346     return emitAtomicBinaryPartword(MI, BB, 1);
1347   case Mips::ATOMIC_LOAD_SUB_I16:
1348     return emitAtomicBinaryPartword(MI, BB, 2);
1349   case Mips::ATOMIC_LOAD_SUB_I32:
1350     return emitAtomicBinary(MI, BB);
1351   case Mips::ATOMIC_LOAD_SUB_I64:
1352     return emitAtomicBinary(MI, BB);
1353 
1354   case Mips::ATOMIC_SWAP_I8:
1355     return emitAtomicBinaryPartword(MI, BB, 1);
1356   case Mips::ATOMIC_SWAP_I16:
1357     return emitAtomicBinaryPartword(MI, BB, 2);
1358   case Mips::ATOMIC_SWAP_I32:
1359     return emitAtomicBinary(MI, BB);
1360   case Mips::ATOMIC_SWAP_I64:
1361     return emitAtomicBinary(MI, BB);
1362 
1363   case Mips::ATOMIC_CMP_SWAP_I8:
1364     return emitAtomicCmpSwapPartword(MI, BB, 1);
1365   case Mips::ATOMIC_CMP_SWAP_I16:
1366     return emitAtomicCmpSwapPartword(MI, BB, 2);
1367   case Mips::ATOMIC_CMP_SWAP_I32:
1368     return emitAtomicCmpSwap(MI, BB);
1369   case Mips::ATOMIC_CMP_SWAP_I64:
1370     return emitAtomicCmpSwap(MI, BB);
1371 
1372   case Mips::ATOMIC_LOAD_MIN_I8:
1373     return emitAtomicBinaryPartword(MI, BB, 1);
1374   case Mips::ATOMIC_LOAD_MIN_I16:
1375     return emitAtomicBinaryPartword(MI, BB, 2);
1376   case Mips::ATOMIC_LOAD_MIN_I32:
1377     return emitAtomicBinary(MI, BB);
1378   case Mips::ATOMIC_LOAD_MIN_I64:
1379     return emitAtomicBinary(MI, BB);
1380 
1381   case Mips::ATOMIC_LOAD_MAX_I8:
1382     return emitAtomicBinaryPartword(MI, BB, 1);
1383   case Mips::ATOMIC_LOAD_MAX_I16:
1384     return emitAtomicBinaryPartword(MI, BB, 2);
1385   case Mips::ATOMIC_LOAD_MAX_I32:
1386     return emitAtomicBinary(MI, BB);
1387   case Mips::ATOMIC_LOAD_MAX_I64:
1388     return emitAtomicBinary(MI, BB);
1389 
1390   case Mips::ATOMIC_LOAD_UMIN_I8:
1391     return emitAtomicBinaryPartword(MI, BB, 1);
1392   case Mips::ATOMIC_LOAD_UMIN_I16:
1393     return emitAtomicBinaryPartword(MI, BB, 2);
1394   case Mips::ATOMIC_LOAD_UMIN_I32:
1395     return emitAtomicBinary(MI, BB);
1396   case Mips::ATOMIC_LOAD_UMIN_I64:
1397     return emitAtomicBinary(MI, BB);
1398 
1399   case Mips::ATOMIC_LOAD_UMAX_I8:
1400     return emitAtomicBinaryPartword(MI, BB, 1);
1401   case Mips::ATOMIC_LOAD_UMAX_I16:
1402     return emitAtomicBinaryPartword(MI, BB, 2);
1403   case Mips::ATOMIC_LOAD_UMAX_I32:
1404     return emitAtomicBinary(MI, BB);
1405   case Mips::ATOMIC_LOAD_UMAX_I64:
1406     return emitAtomicBinary(MI, BB);
1407 
1408   case Mips::PseudoSDIV:
1409   case Mips::PseudoUDIV:
1410   case Mips::DIV:
1411   case Mips::DIVU:
1412   case Mips::MOD:
1413   case Mips::MODU:
1414     return insertDivByZeroTrap(MI, *BB, *Subtarget.getInstrInfo(), false,
1415                                false);
1416   case Mips::SDIV_MM_Pseudo:
1417   case Mips::UDIV_MM_Pseudo:
1418   case Mips::SDIV_MM:
1419   case Mips::UDIV_MM:
1420   case Mips::DIV_MMR6:
1421   case Mips::DIVU_MMR6:
1422   case Mips::MOD_MMR6:
1423   case Mips::MODU_MMR6:
1424     return insertDivByZeroTrap(MI, *BB, *Subtarget.getInstrInfo(), false, true);
1425   case Mips::PseudoDSDIV:
1426   case Mips::PseudoDUDIV:
1427   case Mips::DDIV:
1428   case Mips::DDIVU:
1429   case Mips::DMOD:
1430   case Mips::DMODU:
1431     return insertDivByZeroTrap(MI, *BB, *Subtarget.getInstrInfo(), true, false);
1432 
1433   case Mips::PseudoSELECT_I:
1434   case Mips::PseudoSELECT_I64:
1435   case Mips::PseudoSELECT_S:
1436   case Mips::PseudoSELECT_D32:
1437   case Mips::PseudoSELECT_D64:
1438     return emitPseudoSELECT(MI, BB, false, Mips::BNE);
1439   case Mips::PseudoSELECTFP_F_I:
1440   case Mips::PseudoSELECTFP_F_I64:
1441   case Mips::PseudoSELECTFP_F_S:
1442   case Mips::PseudoSELECTFP_F_D32:
1443   case Mips::PseudoSELECTFP_F_D64:
1444     return emitPseudoSELECT(MI, BB, true, Mips::BC1F);
1445   case Mips::PseudoSELECTFP_T_I:
1446   case Mips::PseudoSELECTFP_T_I64:
1447   case Mips::PseudoSELECTFP_T_S:
1448   case Mips::PseudoSELECTFP_T_D32:
1449   case Mips::PseudoSELECTFP_T_D64:
1450     return emitPseudoSELECT(MI, BB, true, Mips::BC1T);
1451   case Mips::PseudoD_SELECT_I:
1452   case Mips::PseudoD_SELECT_I64:
1453     return emitPseudoD_SELECT(MI, BB);
1454   }
1455 }
1456 
1457 // This function also handles Mips::ATOMIC_SWAP_I32 (when BinOpcode == 0), and
1458 // Mips::ATOMIC_LOAD_NAND_I32 (when Nand == true)
1459 MachineBasicBlock *
1460 MipsTargetLowering::emitAtomicBinary(MachineInstr &MI,
1461                                      MachineBasicBlock *BB) const {
1462 
1463   MachineFunction *MF = BB->getParent();
1464   MachineRegisterInfo &RegInfo = MF->getRegInfo();
1465   const TargetInstrInfo *TII = Subtarget.getInstrInfo();
1466   DebugLoc DL = MI.getDebugLoc();
1467 
1468   unsigned AtomicOp;
1469   bool NeedsAdditionalReg = false;
1470   switch (MI.getOpcode()) {
1471   case Mips::ATOMIC_LOAD_ADD_I32:
1472     AtomicOp = Mips::ATOMIC_LOAD_ADD_I32_POSTRA;
1473     break;
1474   case Mips::ATOMIC_LOAD_SUB_I32:
1475     AtomicOp = Mips::ATOMIC_LOAD_SUB_I32_POSTRA;
1476     break;
1477   case Mips::ATOMIC_LOAD_AND_I32:
1478     AtomicOp = Mips::ATOMIC_LOAD_AND_I32_POSTRA;
1479     break;
1480   case Mips::ATOMIC_LOAD_OR_I32:
1481     AtomicOp = Mips::ATOMIC_LOAD_OR_I32_POSTRA;
1482     break;
1483   case Mips::ATOMIC_LOAD_XOR_I32:
1484     AtomicOp = Mips::ATOMIC_LOAD_XOR_I32_POSTRA;
1485     break;
1486   case Mips::ATOMIC_LOAD_NAND_I32:
1487     AtomicOp = Mips::ATOMIC_LOAD_NAND_I32_POSTRA;
1488     break;
1489   case Mips::ATOMIC_SWAP_I32:
1490     AtomicOp = Mips::ATOMIC_SWAP_I32_POSTRA;
1491     break;
1492   case Mips::ATOMIC_LOAD_ADD_I64:
1493     AtomicOp = Mips::ATOMIC_LOAD_ADD_I64_POSTRA;
1494     break;
1495   case Mips::ATOMIC_LOAD_SUB_I64:
1496     AtomicOp = Mips::ATOMIC_LOAD_SUB_I64_POSTRA;
1497     break;
1498   case Mips::ATOMIC_LOAD_AND_I64:
1499     AtomicOp = Mips::ATOMIC_LOAD_AND_I64_POSTRA;
1500     break;
1501   case Mips::ATOMIC_LOAD_OR_I64:
1502     AtomicOp = Mips::ATOMIC_LOAD_OR_I64_POSTRA;
1503     break;
1504   case Mips::ATOMIC_LOAD_XOR_I64:
1505     AtomicOp = Mips::ATOMIC_LOAD_XOR_I64_POSTRA;
1506     break;
1507   case Mips::ATOMIC_LOAD_NAND_I64:
1508     AtomicOp = Mips::ATOMIC_LOAD_NAND_I64_POSTRA;
1509     break;
1510   case Mips::ATOMIC_SWAP_I64:
1511     AtomicOp = Mips::ATOMIC_SWAP_I64_POSTRA;
1512     break;
1513   case Mips::ATOMIC_LOAD_MIN_I32:
1514     AtomicOp = Mips::ATOMIC_LOAD_MIN_I32_POSTRA;
1515     NeedsAdditionalReg = true;
1516     break;
1517   case Mips::ATOMIC_LOAD_MAX_I32:
1518     AtomicOp = Mips::ATOMIC_LOAD_MAX_I32_POSTRA;
1519     NeedsAdditionalReg = true;
1520     break;
1521   case Mips::ATOMIC_LOAD_UMIN_I32:
1522     AtomicOp = Mips::ATOMIC_LOAD_UMIN_I32_POSTRA;
1523     NeedsAdditionalReg = true;
1524     break;
1525   case Mips::ATOMIC_LOAD_UMAX_I32:
1526     AtomicOp = Mips::ATOMIC_LOAD_UMAX_I32_POSTRA;
1527     NeedsAdditionalReg = true;
1528     break;
1529   case Mips::ATOMIC_LOAD_MIN_I64:
1530     AtomicOp = Mips::ATOMIC_LOAD_MIN_I64_POSTRA;
1531     NeedsAdditionalReg = true;
1532     break;
1533   case Mips::ATOMIC_LOAD_MAX_I64:
1534     AtomicOp = Mips::ATOMIC_LOAD_MAX_I64_POSTRA;
1535     NeedsAdditionalReg = true;
1536     break;
1537   case Mips::ATOMIC_LOAD_UMIN_I64:
1538     AtomicOp = Mips::ATOMIC_LOAD_UMIN_I64_POSTRA;
1539     NeedsAdditionalReg = true;
1540     break;
1541   case Mips::ATOMIC_LOAD_UMAX_I64:
1542     AtomicOp = Mips::ATOMIC_LOAD_UMAX_I64_POSTRA;
1543     NeedsAdditionalReg = true;
1544     break;
1545   default:
1546     llvm_unreachable("Unknown pseudo atomic for replacement!");
1547   }
1548 
1549   Register OldVal = MI.getOperand(0).getReg();
1550   Register Ptr = MI.getOperand(1).getReg();
1551   Register Incr = MI.getOperand(2).getReg();
1552   Register Scratch = RegInfo.createVirtualRegister(RegInfo.getRegClass(OldVal));
1553 
1554   MachineBasicBlock::iterator II(MI);
1555 
1556   // The scratch registers here with the EarlyClobber | Define | Implicit
1557   // flags is used to persuade the register allocator and the machine
1558   // verifier to accept the usage of this register. This has to be a real
1559   // register which has an UNDEF value but is dead after the instruction which
1560   // is unique among the registers chosen for the instruction.
1561 
1562   // The EarlyClobber flag has the semantic properties that the operand it is
1563   // attached to is clobbered before the rest of the inputs are read. Hence it
1564   // must be unique among the operands to the instruction.
1565   // The Define flag is needed to coerce the machine verifier that an Undef
1566   // value isn't a problem.
1567   // The Dead flag is needed as the value in scratch isn't used by any other
1568   // instruction. Kill isn't used as Dead is more precise.
1569   // The implicit flag is here due to the interaction between the other flags
1570   // and the machine verifier.
1571 
1572   // For correctness purpose, a new pseudo is introduced here. We need this
1573   // new pseudo, so that FastRegisterAllocator does not see an ll/sc sequence
1574   // that is spread over >1 basic blocks. A register allocator which
1575   // introduces (or any codegen infact) a store, can violate the expectations
1576   // of the hardware.
1577   //
1578   // An atomic read-modify-write sequence starts with a linked load
1579   // instruction and ends with a store conditional instruction. The atomic
1580   // read-modify-write sequence fails if any of the following conditions
1581   // occur between the execution of ll and sc:
1582   //   * A coherent store is completed by another process or coherent I/O
1583   //     module into the block of synchronizable physical memory containing
1584   //     the word. The size and alignment of the block is
1585   //     implementation-dependent.
1586   //   * A coherent store is executed between an LL and SC sequence on the
1587   //     same processor to the block of synchornizable physical memory
1588   //     containing the word.
1589   //
1590 
1591   Register PtrCopy = RegInfo.createVirtualRegister(RegInfo.getRegClass(Ptr));
1592   Register IncrCopy = RegInfo.createVirtualRegister(RegInfo.getRegClass(Incr));
1593 
1594   BuildMI(*BB, II, DL, TII->get(Mips::COPY), IncrCopy).addReg(Incr);
1595   BuildMI(*BB, II, DL, TII->get(Mips::COPY), PtrCopy).addReg(Ptr);
1596 
1597   MachineInstrBuilder MIB =
1598       BuildMI(*BB, II, DL, TII->get(AtomicOp))
1599           .addReg(OldVal, RegState::Define | RegState::EarlyClobber)
1600           .addReg(PtrCopy)
1601           .addReg(IncrCopy)
1602           .addReg(Scratch, RegState::Define | RegState::EarlyClobber |
1603                                RegState::Implicit | RegState::Dead);
1604   if (NeedsAdditionalReg) {
1605     Register Scratch2 =
1606         RegInfo.createVirtualRegister(RegInfo.getRegClass(OldVal));
1607     MIB.addReg(Scratch2, RegState::Define | RegState::EarlyClobber |
1608                              RegState::Implicit | RegState::Dead);
1609   }
1610 
1611   MI.eraseFromParent();
1612 
1613   return BB;
1614 }
1615 
1616 MachineBasicBlock *MipsTargetLowering::emitSignExtendToI32InReg(
1617     MachineInstr &MI, MachineBasicBlock *BB, unsigned Size, unsigned DstReg,
1618     unsigned SrcReg) const {
1619   const TargetInstrInfo *TII = Subtarget.getInstrInfo();
1620   const DebugLoc &DL = MI.getDebugLoc();
1621 
1622   if (Subtarget.hasMips32r2() && Size == 1) {
1623     BuildMI(BB, DL, TII->get(Mips::SEB), DstReg).addReg(SrcReg);
1624     return BB;
1625   }
1626 
1627   if (Subtarget.hasMips32r2() && Size == 2) {
1628     BuildMI(BB, DL, TII->get(Mips::SEH), DstReg).addReg(SrcReg);
1629     return BB;
1630   }
1631 
1632   MachineFunction *MF = BB->getParent();
1633   MachineRegisterInfo &RegInfo = MF->getRegInfo();
1634   const TargetRegisterClass *RC = getRegClassFor(MVT::i32);
1635   Register ScrReg = RegInfo.createVirtualRegister(RC);
1636 
1637   assert(Size < 32);
1638   int64_t ShiftImm = 32 - (Size * 8);
1639 
1640   BuildMI(BB, DL, TII->get(Mips::SLL), ScrReg).addReg(SrcReg).addImm(ShiftImm);
1641   BuildMI(BB, DL, TII->get(Mips::SRA), DstReg).addReg(ScrReg).addImm(ShiftImm);
1642 
1643   return BB;
1644 }
1645 
1646 MachineBasicBlock *MipsTargetLowering::emitAtomicBinaryPartword(
1647     MachineInstr &MI, MachineBasicBlock *BB, unsigned Size) const {
1648   assert((Size == 1 || Size == 2) &&
1649          "Unsupported size for EmitAtomicBinaryPartial.");
1650 
1651   MachineFunction *MF = BB->getParent();
1652   MachineRegisterInfo &RegInfo = MF->getRegInfo();
1653   const TargetRegisterClass *RC = getRegClassFor(MVT::i32);
1654   const bool ArePtrs64bit = ABI.ArePtrs64bit();
1655   const TargetRegisterClass *RCp =
1656     getRegClassFor(ArePtrs64bit ? MVT::i64 : MVT::i32);
1657   const TargetInstrInfo *TII = Subtarget.getInstrInfo();
1658   DebugLoc DL = MI.getDebugLoc();
1659 
1660   Register Dest = MI.getOperand(0).getReg();
1661   Register Ptr = MI.getOperand(1).getReg();
1662   Register Incr = MI.getOperand(2).getReg();
1663 
1664   Register AlignedAddr = RegInfo.createVirtualRegister(RCp);
1665   Register ShiftAmt = RegInfo.createVirtualRegister(RC);
1666   Register Mask = RegInfo.createVirtualRegister(RC);
1667   Register Mask2 = RegInfo.createVirtualRegister(RC);
1668   Register Incr2 = RegInfo.createVirtualRegister(RC);
1669   Register MaskLSB2 = RegInfo.createVirtualRegister(RCp);
1670   Register PtrLSB2 = RegInfo.createVirtualRegister(RC);
1671   Register MaskUpper = RegInfo.createVirtualRegister(RC);
1672   Register Scratch = RegInfo.createVirtualRegister(RC);
1673   Register Scratch2 = RegInfo.createVirtualRegister(RC);
1674   Register Scratch3 = RegInfo.createVirtualRegister(RC);
1675 
1676   unsigned AtomicOp = 0;
1677   bool NeedsAdditionalReg = false;
1678   switch (MI.getOpcode()) {
1679   case Mips::ATOMIC_LOAD_NAND_I8:
1680     AtomicOp = Mips::ATOMIC_LOAD_NAND_I8_POSTRA;
1681     break;
1682   case Mips::ATOMIC_LOAD_NAND_I16:
1683     AtomicOp = Mips::ATOMIC_LOAD_NAND_I16_POSTRA;
1684     break;
1685   case Mips::ATOMIC_SWAP_I8:
1686     AtomicOp = Mips::ATOMIC_SWAP_I8_POSTRA;
1687     break;
1688   case Mips::ATOMIC_SWAP_I16:
1689     AtomicOp = Mips::ATOMIC_SWAP_I16_POSTRA;
1690     break;
1691   case Mips::ATOMIC_LOAD_ADD_I8:
1692     AtomicOp = Mips::ATOMIC_LOAD_ADD_I8_POSTRA;
1693     break;
1694   case Mips::ATOMIC_LOAD_ADD_I16:
1695     AtomicOp = Mips::ATOMIC_LOAD_ADD_I16_POSTRA;
1696     break;
1697   case Mips::ATOMIC_LOAD_SUB_I8:
1698     AtomicOp = Mips::ATOMIC_LOAD_SUB_I8_POSTRA;
1699     break;
1700   case Mips::ATOMIC_LOAD_SUB_I16:
1701     AtomicOp = Mips::ATOMIC_LOAD_SUB_I16_POSTRA;
1702     break;
1703   case Mips::ATOMIC_LOAD_AND_I8:
1704     AtomicOp = Mips::ATOMIC_LOAD_AND_I8_POSTRA;
1705     break;
1706   case Mips::ATOMIC_LOAD_AND_I16:
1707     AtomicOp = Mips::ATOMIC_LOAD_AND_I16_POSTRA;
1708     break;
1709   case Mips::ATOMIC_LOAD_OR_I8:
1710     AtomicOp = Mips::ATOMIC_LOAD_OR_I8_POSTRA;
1711     break;
1712   case Mips::ATOMIC_LOAD_OR_I16:
1713     AtomicOp = Mips::ATOMIC_LOAD_OR_I16_POSTRA;
1714     break;
1715   case Mips::ATOMIC_LOAD_XOR_I8:
1716     AtomicOp = Mips::ATOMIC_LOAD_XOR_I8_POSTRA;
1717     break;
1718   case Mips::ATOMIC_LOAD_XOR_I16:
1719     AtomicOp = Mips::ATOMIC_LOAD_XOR_I16_POSTRA;
1720     break;
1721   case Mips::ATOMIC_LOAD_MIN_I8:
1722     AtomicOp = Mips::ATOMIC_LOAD_MIN_I8_POSTRA;
1723     NeedsAdditionalReg = true;
1724     break;
1725   case Mips::ATOMIC_LOAD_MIN_I16:
1726     AtomicOp = Mips::ATOMIC_LOAD_MIN_I16_POSTRA;
1727     NeedsAdditionalReg = true;
1728     break;
1729   case Mips::ATOMIC_LOAD_MAX_I8:
1730     AtomicOp = Mips::ATOMIC_LOAD_MAX_I8_POSTRA;
1731     NeedsAdditionalReg = true;
1732     break;
1733   case Mips::ATOMIC_LOAD_MAX_I16:
1734     AtomicOp = Mips::ATOMIC_LOAD_MAX_I16_POSTRA;
1735     NeedsAdditionalReg = true;
1736     break;
1737   case Mips::ATOMIC_LOAD_UMIN_I8:
1738     AtomicOp = Mips::ATOMIC_LOAD_UMIN_I8_POSTRA;
1739     NeedsAdditionalReg = true;
1740     break;
1741   case Mips::ATOMIC_LOAD_UMIN_I16:
1742     AtomicOp = Mips::ATOMIC_LOAD_UMIN_I16_POSTRA;
1743     NeedsAdditionalReg = true;
1744     break;
1745   case Mips::ATOMIC_LOAD_UMAX_I8:
1746     AtomicOp = Mips::ATOMIC_LOAD_UMAX_I8_POSTRA;
1747     NeedsAdditionalReg = true;
1748     break;
1749   case Mips::ATOMIC_LOAD_UMAX_I16:
1750     AtomicOp = Mips::ATOMIC_LOAD_UMAX_I16_POSTRA;
1751     NeedsAdditionalReg = true;
1752     break;
1753   default:
1754     llvm_unreachable("Unknown subword atomic pseudo for expansion!");
1755   }
1756 
1757   // insert new blocks after the current block
1758   const BasicBlock *LLVM_BB = BB->getBasicBlock();
1759   MachineBasicBlock *exitMBB = MF->CreateMachineBasicBlock(LLVM_BB);
1760   MachineFunction::iterator It = ++BB->getIterator();
1761   MF->insert(It, exitMBB);
1762 
1763   // Transfer the remainder of BB and its successor edges to exitMBB.
1764   exitMBB->splice(exitMBB->begin(), BB,
1765                   std::next(MachineBasicBlock::iterator(MI)), BB->end());
1766   exitMBB->transferSuccessorsAndUpdatePHIs(BB);
1767 
1768   BB->addSuccessor(exitMBB, BranchProbability::getOne());
1769 
1770   //  thisMBB:
1771   //    addiu   masklsb2,$0,-4                # 0xfffffffc
1772   //    and     alignedaddr,ptr,masklsb2
1773   //    andi    ptrlsb2,ptr,3
1774   //    sll     shiftamt,ptrlsb2,3
1775   //    ori     maskupper,$0,255               # 0xff
1776   //    sll     mask,maskupper,shiftamt
1777   //    nor     mask2,$0,mask
1778   //    sll     incr2,incr,shiftamt
1779 
1780   int64_t MaskImm = (Size == 1) ? 255 : 65535;
1781   BuildMI(BB, DL, TII->get(ABI.GetPtrAddiuOp()), MaskLSB2)
1782     .addReg(ABI.GetNullPtr()).addImm(-4);
1783   BuildMI(BB, DL, TII->get(ABI.GetPtrAndOp()), AlignedAddr)
1784     .addReg(Ptr).addReg(MaskLSB2);
1785   BuildMI(BB, DL, TII->get(Mips::ANDi), PtrLSB2)
1786       .addReg(Ptr, 0, ArePtrs64bit ? Mips::sub_32 : 0).addImm(3);
1787   if (Subtarget.isLittle()) {
1788     BuildMI(BB, DL, TII->get(Mips::SLL), ShiftAmt).addReg(PtrLSB2).addImm(3);
1789   } else {
1790     Register Off = RegInfo.createVirtualRegister(RC);
1791     BuildMI(BB, DL, TII->get(Mips::XORi), Off)
1792       .addReg(PtrLSB2).addImm((Size == 1) ? 3 : 2);
1793     BuildMI(BB, DL, TII->get(Mips::SLL), ShiftAmt).addReg(Off).addImm(3);
1794   }
1795   BuildMI(BB, DL, TII->get(Mips::ORi), MaskUpper)
1796     .addReg(Mips::ZERO).addImm(MaskImm);
1797   BuildMI(BB, DL, TII->get(Mips::SLLV), Mask)
1798     .addReg(MaskUpper).addReg(ShiftAmt);
1799   BuildMI(BB, DL, TII->get(Mips::NOR), Mask2).addReg(Mips::ZERO).addReg(Mask);
1800   BuildMI(BB, DL, TII->get(Mips::SLLV), Incr2).addReg(Incr).addReg(ShiftAmt);
1801 
1802 
1803   // The purposes of the flags on the scratch registers is explained in
1804   // emitAtomicBinary. In summary, we need a scratch register which is going to
1805   // be undef, that is unique among registers chosen for the instruction.
1806 
1807   MachineInstrBuilder MIB =
1808       BuildMI(BB, DL, TII->get(AtomicOp))
1809           .addReg(Dest, RegState::Define | RegState::EarlyClobber)
1810           .addReg(AlignedAddr)
1811           .addReg(Incr2)
1812           .addReg(Mask)
1813           .addReg(Mask2)
1814           .addReg(ShiftAmt)
1815           .addReg(Scratch, RegState::EarlyClobber | RegState::Define |
1816                                RegState::Dead | RegState::Implicit)
1817           .addReg(Scratch2, RegState::EarlyClobber | RegState::Define |
1818                                 RegState::Dead | RegState::Implicit)
1819           .addReg(Scratch3, RegState::EarlyClobber | RegState::Define |
1820                                 RegState::Dead | RegState::Implicit);
1821   if (NeedsAdditionalReg) {
1822     Register Scratch4 = RegInfo.createVirtualRegister(RC);
1823     MIB.addReg(Scratch4, RegState::EarlyClobber | RegState::Define |
1824                              RegState::Dead | RegState::Implicit);
1825   }
1826 
1827   MI.eraseFromParent(); // The instruction is gone now.
1828 
1829   return exitMBB;
1830 }
1831 
1832 // Lower atomic compare and swap to a pseudo instruction, taking care to
1833 // define a scratch register for the pseudo instruction's expansion. The
1834 // instruction is expanded after the register allocator as to prevent
1835 // the insertion of stores between the linked load and the store conditional.
1836 
1837 MachineBasicBlock *
1838 MipsTargetLowering::emitAtomicCmpSwap(MachineInstr &MI,
1839                                       MachineBasicBlock *BB) const {
1840 
1841   assert((MI.getOpcode() == Mips::ATOMIC_CMP_SWAP_I32 ||
1842           MI.getOpcode() == Mips::ATOMIC_CMP_SWAP_I64) &&
1843          "Unsupported atomic pseudo for EmitAtomicCmpSwap.");
1844 
1845   const unsigned Size = MI.getOpcode() == Mips::ATOMIC_CMP_SWAP_I32 ? 4 : 8;
1846 
1847   MachineFunction *MF = BB->getParent();
1848   MachineRegisterInfo &MRI = MF->getRegInfo();
1849   const TargetRegisterClass *RC = getRegClassFor(MVT::getIntegerVT(Size * 8));
1850   const TargetInstrInfo *TII = Subtarget.getInstrInfo();
1851   DebugLoc DL = MI.getDebugLoc();
1852 
1853   unsigned AtomicOp = MI.getOpcode() == Mips::ATOMIC_CMP_SWAP_I32
1854                           ? Mips::ATOMIC_CMP_SWAP_I32_POSTRA
1855                           : Mips::ATOMIC_CMP_SWAP_I64_POSTRA;
1856   Register Dest = MI.getOperand(0).getReg();
1857   Register Ptr = MI.getOperand(1).getReg();
1858   Register OldVal = MI.getOperand(2).getReg();
1859   Register NewVal = MI.getOperand(3).getReg();
1860 
1861   Register Scratch = MRI.createVirtualRegister(RC);
1862   MachineBasicBlock::iterator II(MI);
1863 
1864   // We need to create copies of the various registers and kill them at the
1865   // atomic pseudo. If the copies are not made, when the atomic is expanded
1866   // after fast register allocation, the spills will end up outside of the
1867   // blocks that their values are defined in, causing livein errors.
1868 
1869   Register PtrCopy = MRI.createVirtualRegister(MRI.getRegClass(Ptr));
1870   Register OldValCopy = MRI.createVirtualRegister(MRI.getRegClass(OldVal));
1871   Register NewValCopy = MRI.createVirtualRegister(MRI.getRegClass(NewVal));
1872 
1873   BuildMI(*BB, II, DL, TII->get(Mips::COPY), PtrCopy).addReg(Ptr);
1874   BuildMI(*BB, II, DL, TII->get(Mips::COPY), OldValCopy).addReg(OldVal);
1875   BuildMI(*BB, II, DL, TII->get(Mips::COPY), NewValCopy).addReg(NewVal);
1876 
1877   // The purposes of the flags on the scratch registers is explained in
1878   // emitAtomicBinary. In summary, we need a scratch register which is going to
1879   // be undef, that is unique among registers chosen for the instruction.
1880 
1881   BuildMI(*BB, II, DL, TII->get(AtomicOp))
1882       .addReg(Dest, RegState::Define | RegState::EarlyClobber)
1883       .addReg(PtrCopy, RegState::Kill)
1884       .addReg(OldValCopy, RegState::Kill)
1885       .addReg(NewValCopy, RegState::Kill)
1886       .addReg(Scratch, RegState::EarlyClobber | RegState::Define |
1887                            RegState::Dead | RegState::Implicit);
1888 
1889   MI.eraseFromParent(); // The instruction is gone now.
1890 
1891   return BB;
1892 }
1893 
1894 MachineBasicBlock *MipsTargetLowering::emitAtomicCmpSwapPartword(
1895     MachineInstr &MI, MachineBasicBlock *BB, unsigned Size) const {
1896   assert((Size == 1 || Size == 2) &&
1897       "Unsupported size for EmitAtomicCmpSwapPartial.");
1898 
1899   MachineFunction *MF = BB->getParent();
1900   MachineRegisterInfo &RegInfo = MF->getRegInfo();
1901   const TargetRegisterClass *RC = getRegClassFor(MVT::i32);
1902   const bool ArePtrs64bit = ABI.ArePtrs64bit();
1903   const TargetRegisterClass *RCp =
1904     getRegClassFor(ArePtrs64bit ? MVT::i64 : MVT::i32);
1905   const TargetInstrInfo *TII = Subtarget.getInstrInfo();
1906   DebugLoc DL = MI.getDebugLoc();
1907 
1908   Register Dest = MI.getOperand(0).getReg();
1909   Register Ptr = MI.getOperand(1).getReg();
1910   Register CmpVal = MI.getOperand(2).getReg();
1911   Register NewVal = MI.getOperand(3).getReg();
1912 
1913   Register AlignedAddr = RegInfo.createVirtualRegister(RCp);
1914   Register ShiftAmt = RegInfo.createVirtualRegister(RC);
1915   Register Mask = RegInfo.createVirtualRegister(RC);
1916   Register Mask2 = RegInfo.createVirtualRegister(RC);
1917   Register ShiftedCmpVal = RegInfo.createVirtualRegister(RC);
1918   Register ShiftedNewVal = RegInfo.createVirtualRegister(RC);
1919   Register MaskLSB2 = RegInfo.createVirtualRegister(RCp);
1920   Register PtrLSB2 = RegInfo.createVirtualRegister(RC);
1921   Register MaskUpper = RegInfo.createVirtualRegister(RC);
1922   Register MaskedCmpVal = RegInfo.createVirtualRegister(RC);
1923   Register MaskedNewVal = RegInfo.createVirtualRegister(RC);
1924   unsigned AtomicOp = MI.getOpcode() == Mips::ATOMIC_CMP_SWAP_I8
1925                           ? Mips::ATOMIC_CMP_SWAP_I8_POSTRA
1926                           : Mips::ATOMIC_CMP_SWAP_I16_POSTRA;
1927 
1928   // The scratch registers here with the EarlyClobber | Define | Dead | Implicit
1929   // flags are used to coerce the register allocator and the machine verifier to
1930   // accept the usage of these registers.
1931   // The EarlyClobber flag has the semantic properties that the operand it is
1932   // attached to is clobbered before the rest of the inputs are read. Hence it
1933   // must be unique among the operands to the instruction.
1934   // The Define flag is needed to coerce the machine verifier that an Undef
1935   // value isn't a problem.
1936   // The Dead flag is needed as the value in scratch isn't used by any other
1937   // instruction. Kill isn't used as Dead is more precise.
1938   Register Scratch = RegInfo.createVirtualRegister(RC);
1939   Register Scratch2 = RegInfo.createVirtualRegister(RC);
1940 
1941   // insert new blocks after the current block
1942   const BasicBlock *LLVM_BB = BB->getBasicBlock();
1943   MachineBasicBlock *exitMBB = MF->CreateMachineBasicBlock(LLVM_BB);
1944   MachineFunction::iterator It = ++BB->getIterator();
1945   MF->insert(It, exitMBB);
1946 
1947   // Transfer the remainder of BB and its successor edges to exitMBB.
1948   exitMBB->splice(exitMBB->begin(), BB,
1949                   std::next(MachineBasicBlock::iterator(MI)), BB->end());
1950   exitMBB->transferSuccessorsAndUpdatePHIs(BB);
1951 
1952   BB->addSuccessor(exitMBB, BranchProbability::getOne());
1953 
1954   //  thisMBB:
1955   //    addiu   masklsb2,$0,-4                # 0xfffffffc
1956   //    and     alignedaddr,ptr,masklsb2
1957   //    andi    ptrlsb2,ptr,3
1958   //    xori    ptrlsb2,ptrlsb2,3              # Only for BE
1959   //    sll     shiftamt,ptrlsb2,3
1960   //    ori     maskupper,$0,255               # 0xff
1961   //    sll     mask,maskupper,shiftamt
1962   //    nor     mask2,$0,mask
1963   //    andi    maskedcmpval,cmpval,255
1964   //    sll     shiftedcmpval,maskedcmpval,shiftamt
1965   //    andi    maskednewval,newval,255
1966   //    sll     shiftednewval,maskednewval,shiftamt
1967   int64_t MaskImm = (Size == 1) ? 255 : 65535;
1968   BuildMI(BB, DL, TII->get(ArePtrs64bit ? Mips::DADDiu : Mips::ADDiu), MaskLSB2)
1969     .addReg(ABI.GetNullPtr()).addImm(-4);
1970   BuildMI(BB, DL, TII->get(ArePtrs64bit ? Mips::AND64 : Mips::AND), AlignedAddr)
1971     .addReg(Ptr).addReg(MaskLSB2);
1972   BuildMI(BB, DL, TII->get(Mips::ANDi), PtrLSB2)
1973       .addReg(Ptr, 0, ArePtrs64bit ? Mips::sub_32 : 0).addImm(3);
1974   if (Subtarget.isLittle()) {
1975     BuildMI(BB, DL, TII->get(Mips::SLL), ShiftAmt).addReg(PtrLSB2).addImm(3);
1976   } else {
1977     Register Off = RegInfo.createVirtualRegister(RC);
1978     BuildMI(BB, DL, TII->get(Mips::XORi), Off)
1979       .addReg(PtrLSB2).addImm((Size == 1) ? 3 : 2);
1980     BuildMI(BB, DL, TII->get(Mips::SLL), ShiftAmt).addReg(Off).addImm(3);
1981   }
1982   BuildMI(BB, DL, TII->get(Mips::ORi), MaskUpper)
1983     .addReg(Mips::ZERO).addImm(MaskImm);
1984   BuildMI(BB, DL, TII->get(Mips::SLLV), Mask)
1985     .addReg(MaskUpper).addReg(ShiftAmt);
1986   BuildMI(BB, DL, TII->get(Mips::NOR), Mask2).addReg(Mips::ZERO).addReg(Mask);
1987   BuildMI(BB, DL, TII->get(Mips::ANDi), MaskedCmpVal)
1988     .addReg(CmpVal).addImm(MaskImm);
1989   BuildMI(BB, DL, TII->get(Mips::SLLV), ShiftedCmpVal)
1990     .addReg(MaskedCmpVal).addReg(ShiftAmt);
1991   BuildMI(BB, DL, TII->get(Mips::ANDi), MaskedNewVal)
1992     .addReg(NewVal).addImm(MaskImm);
1993   BuildMI(BB, DL, TII->get(Mips::SLLV), ShiftedNewVal)
1994     .addReg(MaskedNewVal).addReg(ShiftAmt);
1995 
1996   // The purposes of the flags on the scratch registers are explained in
1997   // emitAtomicBinary. In summary, we need a scratch register which is going to
1998   // be undef, that is unique among the register chosen for the instruction.
1999 
2000   BuildMI(BB, DL, TII->get(AtomicOp))
2001       .addReg(Dest, RegState::Define | RegState::EarlyClobber)
2002       .addReg(AlignedAddr)
2003       .addReg(Mask)
2004       .addReg(ShiftedCmpVal)
2005       .addReg(Mask2)
2006       .addReg(ShiftedNewVal)
2007       .addReg(ShiftAmt)
2008       .addReg(Scratch, RegState::EarlyClobber | RegState::Define |
2009                            RegState::Dead | RegState::Implicit)
2010       .addReg(Scratch2, RegState::EarlyClobber | RegState::Define |
2011                             RegState::Dead | RegState::Implicit);
2012 
2013   MI.eraseFromParent(); // The instruction is gone now.
2014 
2015   return exitMBB;
2016 }
2017 
2018 SDValue MipsTargetLowering::lowerBRCOND(SDValue Op, SelectionDAG &DAG) const {
2019   // The first operand is the chain, the second is the condition, the third is
2020   // the block to branch to if the condition is true.
2021   SDValue Chain = Op.getOperand(0);
2022   SDValue Dest = Op.getOperand(2);
2023   SDLoc DL(Op);
2024 
2025   assert(!Subtarget.hasMips32r6() && !Subtarget.hasMips64r6());
2026   SDValue CondRes = createFPCmp(DAG, Op.getOperand(1));
2027 
2028   // Return if flag is not set by a floating point comparison.
2029   if (CondRes.getOpcode() != MipsISD::FPCmp)
2030     return Op;
2031 
2032   SDValue CCNode  = CondRes.getOperand(2);
2033   Mips::CondCode CC =
2034     (Mips::CondCode)cast<ConstantSDNode>(CCNode)->getZExtValue();
2035   unsigned Opc = invertFPCondCodeUser(CC) ? Mips::BRANCH_F : Mips::BRANCH_T;
2036   SDValue BrCode = DAG.getConstant(Opc, DL, MVT::i32);
2037   SDValue FCC0 = DAG.getRegister(Mips::FCC0, MVT::i32);
2038   return DAG.getNode(MipsISD::FPBrcond, DL, Op.getValueType(), Chain, BrCode,
2039                      FCC0, Dest, CondRes);
2040 }
2041 
2042 SDValue MipsTargetLowering::
2043 lowerSELECT(SDValue Op, SelectionDAG &DAG) const
2044 {
2045   assert(!Subtarget.hasMips32r6() && !Subtarget.hasMips64r6());
2046   SDValue Cond = createFPCmp(DAG, Op.getOperand(0));
2047 
2048   // Return if flag is not set by a floating point comparison.
2049   if (Cond.getOpcode() != MipsISD::FPCmp)
2050     return Op;
2051 
2052   return createCMovFP(DAG, Cond, Op.getOperand(1), Op.getOperand(2),
2053                       SDLoc(Op));
2054 }
2055 
2056 SDValue MipsTargetLowering::lowerSETCC(SDValue Op, SelectionDAG &DAG) const {
2057   assert(!Subtarget.hasMips32r6() && !Subtarget.hasMips64r6());
2058   SDValue Cond = createFPCmp(DAG, Op);
2059 
2060   assert(Cond.getOpcode() == MipsISD::FPCmp &&
2061          "Floating point operand expected.");
2062 
2063   SDLoc DL(Op);
2064   SDValue True  = DAG.getConstant(1, DL, MVT::i32);
2065   SDValue False = DAG.getConstant(0, DL, MVT::i32);
2066 
2067   return createCMovFP(DAG, Cond, True, False, DL);
2068 }
2069 
2070 SDValue MipsTargetLowering::lowerGlobalAddress(SDValue Op,
2071                                                SelectionDAG &DAG) const {
2072   EVT Ty = Op.getValueType();
2073   GlobalAddressSDNode *N = cast<GlobalAddressSDNode>(Op);
2074   const GlobalValue *GV = N->getGlobal();
2075 
2076   if (!isPositionIndependent()) {
2077     const MipsTargetObjectFile *TLOF =
2078         static_cast<const MipsTargetObjectFile *>(
2079             getTargetMachine().getObjFileLowering());
2080     const GlobalObject *GO = GV->getBaseObject();
2081     if (GO && TLOF->IsGlobalInSmallSection(GO, getTargetMachine()))
2082       // %gp_rel relocation
2083       return getAddrGPRel(N, SDLoc(N), Ty, DAG, ABI.IsN64());
2084 
2085                                 // %hi/%lo relocation
2086     return Subtarget.hasSym32() ? getAddrNonPIC(N, SDLoc(N), Ty, DAG)
2087                                 // %highest/%higher/%hi/%lo relocation
2088                                 : getAddrNonPICSym64(N, SDLoc(N), Ty, DAG);
2089   }
2090 
2091   // Every other architecture would use shouldAssumeDSOLocal in here, but
2092   // mips is special.
2093   // * In PIC code mips requires got loads even for local statics!
2094   // * To save on got entries, for local statics the got entry contains the
2095   //   page and an additional add instruction takes care of the low bits.
2096   // * It is legal to access a hidden symbol with a non hidden undefined,
2097   //   so one cannot guarantee that all access to a hidden symbol will know
2098   //   it is hidden.
2099   // * Mips linkers don't support creating a page and a full got entry for
2100   //   the same symbol.
2101   // * Given all that, we have to use a full got entry for hidden symbols :-(
2102   if (GV->hasLocalLinkage())
2103     return getAddrLocal(N, SDLoc(N), Ty, DAG, ABI.IsN32() || ABI.IsN64());
2104 
2105   if (Subtarget.useXGOT())
2106     return getAddrGlobalLargeGOT(
2107         N, SDLoc(N), Ty, DAG, MipsII::MO_GOT_HI16, MipsII::MO_GOT_LO16,
2108         DAG.getEntryNode(),
2109         MachinePointerInfo::getGOT(DAG.getMachineFunction()));
2110 
2111   return getAddrGlobal(
2112       N, SDLoc(N), Ty, DAG,
2113       (ABI.IsN32() || ABI.IsN64()) ? MipsII::MO_GOT_DISP : MipsII::MO_GOT,
2114       DAG.getEntryNode(), MachinePointerInfo::getGOT(DAG.getMachineFunction()));
2115 }
2116 
2117 SDValue MipsTargetLowering::lowerBlockAddress(SDValue Op,
2118                                               SelectionDAG &DAG) const {
2119   BlockAddressSDNode *N = cast<BlockAddressSDNode>(Op);
2120   EVT Ty = Op.getValueType();
2121 
2122   if (!isPositionIndependent())
2123     return Subtarget.hasSym32() ? getAddrNonPIC(N, SDLoc(N), Ty, DAG)
2124                                 : getAddrNonPICSym64(N, SDLoc(N), Ty, DAG);
2125 
2126   return getAddrLocal(N, SDLoc(N), Ty, DAG, ABI.IsN32() || ABI.IsN64());
2127 }
2128 
2129 SDValue MipsTargetLowering::
2130 lowerGlobalTLSAddress(SDValue Op, SelectionDAG &DAG) const
2131 {
2132   // If the relocation model is PIC, use the General Dynamic TLS Model or
2133   // Local Dynamic TLS model, otherwise use the Initial Exec or
2134   // Local Exec TLS Model.
2135 
2136   GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op);
2137   if (DAG.getTarget().useEmulatedTLS())
2138     return LowerToTLSEmulatedModel(GA, DAG);
2139 
2140   SDLoc DL(GA);
2141   const GlobalValue *GV = GA->getGlobal();
2142   EVT PtrVT = getPointerTy(DAG.getDataLayout());
2143 
2144   TLSModel::Model model = getTargetMachine().getTLSModel(GV);
2145 
2146   if (model == TLSModel::GeneralDynamic || model == TLSModel::LocalDynamic) {
2147     // General Dynamic and Local Dynamic TLS Model.
2148     unsigned Flag = (model == TLSModel::LocalDynamic) ? MipsII::MO_TLSLDM
2149                                                       : MipsII::MO_TLSGD;
2150 
2151     SDValue TGA = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, Flag);
2152     SDValue Argument = DAG.getNode(MipsISD::Wrapper, DL, PtrVT,
2153                                    getGlobalReg(DAG, PtrVT), TGA);
2154     unsigned PtrSize = PtrVT.getSizeInBits();
2155     IntegerType *PtrTy = Type::getIntNTy(*DAG.getContext(), PtrSize);
2156 
2157     SDValue TlsGetAddr = DAG.getExternalSymbol("__tls_get_addr", PtrVT);
2158 
2159     ArgListTy Args;
2160     ArgListEntry Entry;
2161     Entry.Node = Argument;
2162     Entry.Ty = PtrTy;
2163     Args.push_back(Entry);
2164 
2165     TargetLowering::CallLoweringInfo CLI(DAG);
2166     CLI.setDebugLoc(DL)
2167         .setChain(DAG.getEntryNode())
2168         .setLibCallee(CallingConv::C, PtrTy, TlsGetAddr, std::move(Args));
2169     std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI);
2170 
2171     SDValue Ret = CallResult.first;
2172 
2173     if (model != TLSModel::LocalDynamic)
2174       return Ret;
2175 
2176     SDValue TGAHi = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0,
2177                                                MipsII::MO_DTPREL_HI);
2178     SDValue Hi = DAG.getNode(MipsISD::TlsHi, DL, PtrVT, TGAHi);
2179     SDValue TGALo = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0,
2180                                                MipsII::MO_DTPREL_LO);
2181     SDValue Lo = DAG.getNode(MipsISD::Lo, DL, PtrVT, TGALo);
2182     SDValue Add = DAG.getNode(ISD::ADD, DL, PtrVT, Hi, Ret);
2183     return DAG.getNode(ISD::ADD, DL, PtrVT, Add, Lo);
2184   }
2185 
2186   SDValue Offset;
2187   if (model == TLSModel::InitialExec) {
2188     // Initial Exec TLS Model
2189     SDValue TGA = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0,
2190                                              MipsII::MO_GOTTPREL);
2191     TGA = DAG.getNode(MipsISD::Wrapper, DL, PtrVT, getGlobalReg(DAG, PtrVT),
2192                       TGA);
2193     Offset =
2194         DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), TGA, MachinePointerInfo());
2195   } else {
2196     // Local Exec TLS Model
2197     assert(model == TLSModel::LocalExec);
2198     SDValue TGAHi = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0,
2199                                                MipsII::MO_TPREL_HI);
2200     SDValue TGALo = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0,
2201                                                MipsII::MO_TPREL_LO);
2202     SDValue Hi = DAG.getNode(MipsISD::TlsHi, DL, PtrVT, TGAHi);
2203     SDValue Lo = DAG.getNode(MipsISD::Lo, DL, PtrVT, TGALo);
2204     Offset = DAG.getNode(ISD::ADD, DL, PtrVT, Hi, Lo);
2205   }
2206 
2207   SDValue ThreadPointer = DAG.getNode(MipsISD::ThreadPointer, DL, PtrVT);
2208   return DAG.getNode(ISD::ADD, DL, PtrVT, ThreadPointer, Offset);
2209 }
2210 
2211 SDValue MipsTargetLowering::
2212 lowerJumpTable(SDValue Op, SelectionDAG &DAG) const
2213 {
2214   JumpTableSDNode *N = cast<JumpTableSDNode>(Op);
2215   EVT Ty = Op.getValueType();
2216 
2217   if (!isPositionIndependent())
2218     return Subtarget.hasSym32() ? getAddrNonPIC(N, SDLoc(N), Ty, DAG)
2219                                 : getAddrNonPICSym64(N, SDLoc(N), Ty, DAG);
2220 
2221   return getAddrLocal(N, SDLoc(N), Ty, DAG, ABI.IsN32() || ABI.IsN64());
2222 }
2223 
2224 SDValue MipsTargetLowering::
2225 lowerConstantPool(SDValue Op, SelectionDAG &DAG) const
2226 {
2227   ConstantPoolSDNode *N = cast<ConstantPoolSDNode>(Op);
2228   EVT Ty = Op.getValueType();
2229 
2230   if (!isPositionIndependent()) {
2231     const MipsTargetObjectFile *TLOF =
2232         static_cast<const MipsTargetObjectFile *>(
2233             getTargetMachine().getObjFileLowering());
2234 
2235     if (TLOF->IsConstantInSmallSection(DAG.getDataLayout(), N->getConstVal(),
2236                                        getTargetMachine()))
2237       // %gp_rel relocation
2238       return getAddrGPRel(N, SDLoc(N), Ty, DAG, ABI.IsN64());
2239 
2240     return Subtarget.hasSym32() ? getAddrNonPIC(N, SDLoc(N), Ty, DAG)
2241                                 : getAddrNonPICSym64(N, SDLoc(N), Ty, DAG);
2242   }
2243 
2244  return getAddrLocal(N, SDLoc(N), Ty, DAG, ABI.IsN32() || ABI.IsN64());
2245 }
2246 
2247 SDValue MipsTargetLowering::lowerVASTART(SDValue Op, SelectionDAG &DAG) const {
2248   MachineFunction &MF = DAG.getMachineFunction();
2249   MipsFunctionInfo *FuncInfo = MF.getInfo<MipsFunctionInfo>();
2250 
2251   SDLoc DL(Op);
2252   SDValue FI = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(),
2253                                  getPointerTy(MF.getDataLayout()));
2254 
2255   // vastart just stores the address of the VarArgsFrameIndex slot into the
2256   // memory location argument.
2257   const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
2258   return DAG.getStore(Op.getOperand(0), DL, FI, Op.getOperand(1),
2259                       MachinePointerInfo(SV));
2260 }
2261 
2262 SDValue MipsTargetLowering::lowerVAARG(SDValue Op, SelectionDAG &DAG) const {
2263   SDNode *Node = Op.getNode();
2264   EVT VT = Node->getValueType(0);
2265   SDValue Chain = Node->getOperand(0);
2266   SDValue VAListPtr = Node->getOperand(1);
2267   const Align Align =
2268       llvm::MaybeAlign(Node->getConstantOperandVal(3)).valueOrOne();
2269   const Value *SV = cast<SrcValueSDNode>(Node->getOperand(2))->getValue();
2270   SDLoc DL(Node);
2271   unsigned ArgSlotSizeInBytes = (ABI.IsN32() || ABI.IsN64()) ? 8 : 4;
2272 
2273   SDValue VAListLoad = DAG.getLoad(getPointerTy(DAG.getDataLayout()), DL, Chain,
2274                                    VAListPtr, MachinePointerInfo(SV));
2275   SDValue VAList = VAListLoad;
2276 
2277   // Re-align the pointer if necessary.
2278   // It should only ever be necessary for 64-bit types on O32 since the minimum
2279   // argument alignment is the same as the maximum type alignment for N32/N64.
2280   //
2281   // FIXME: We currently align too often. The code generator doesn't notice
2282   //        when the pointer is still aligned from the last va_arg (or pair of
2283   //        va_args for the i64 on O32 case).
2284   if (Align > getMinStackArgumentAlignment()) {
2285     VAList = DAG.getNode(
2286         ISD::ADD, DL, VAList.getValueType(), VAList,
2287         DAG.getConstant(Align.value() - 1, DL, VAList.getValueType()));
2288 
2289     VAList = DAG.getNode(
2290         ISD::AND, DL, VAList.getValueType(), VAList,
2291         DAG.getConstant(-(int64_t)Align.value(), DL, VAList.getValueType()));
2292   }
2293 
2294   // Increment the pointer, VAList, to the next vaarg.
2295   auto &TD = DAG.getDataLayout();
2296   unsigned ArgSizeInBytes =
2297       TD.getTypeAllocSize(VT.getTypeForEVT(*DAG.getContext()));
2298   SDValue Tmp3 =
2299       DAG.getNode(ISD::ADD, DL, VAList.getValueType(), VAList,
2300                   DAG.getConstant(alignTo(ArgSizeInBytes, ArgSlotSizeInBytes),
2301                                   DL, VAList.getValueType()));
2302   // Store the incremented VAList to the legalized pointer
2303   Chain = DAG.getStore(VAListLoad.getValue(1), DL, Tmp3, VAListPtr,
2304                        MachinePointerInfo(SV));
2305 
2306   // In big-endian mode we must adjust the pointer when the load size is smaller
2307   // than the argument slot size. We must also reduce the known alignment to
2308   // match. For example in the N64 ABI, we must add 4 bytes to the offset to get
2309   // the correct half of the slot, and reduce the alignment from 8 (slot
2310   // alignment) down to 4 (type alignment).
2311   if (!Subtarget.isLittle() && ArgSizeInBytes < ArgSlotSizeInBytes) {
2312     unsigned Adjustment = ArgSlotSizeInBytes - ArgSizeInBytes;
2313     VAList = DAG.getNode(ISD::ADD, DL, VAListPtr.getValueType(), VAList,
2314                          DAG.getIntPtrConstant(Adjustment, DL));
2315   }
2316   // Load the actual argument out of the pointer VAList
2317   return DAG.getLoad(VT, DL, Chain, VAList, MachinePointerInfo());
2318 }
2319 
2320 static SDValue lowerFCOPYSIGN32(SDValue Op, SelectionDAG &DAG,
2321                                 bool HasExtractInsert) {
2322   EVT TyX = Op.getOperand(0).getValueType();
2323   EVT TyY = Op.getOperand(1).getValueType();
2324   SDLoc DL(Op);
2325   SDValue Const1 = DAG.getConstant(1, DL, MVT::i32);
2326   SDValue Const31 = DAG.getConstant(31, DL, MVT::i32);
2327   SDValue Res;
2328 
2329   // If operand is of type f64, extract the upper 32-bit. Otherwise, bitcast it
2330   // to i32.
2331   SDValue X = (TyX == MVT::f32) ?
2332     DAG.getNode(ISD::BITCAST, DL, MVT::i32, Op.getOperand(0)) :
2333     DAG.getNode(MipsISD::ExtractElementF64, DL, MVT::i32, Op.getOperand(0),
2334                 Const1);
2335   SDValue Y = (TyY == MVT::f32) ?
2336     DAG.getNode(ISD::BITCAST, DL, MVT::i32, Op.getOperand(1)) :
2337     DAG.getNode(MipsISD::ExtractElementF64, DL, MVT::i32, Op.getOperand(1),
2338                 Const1);
2339 
2340   if (HasExtractInsert) {
2341     // ext  E, Y, 31, 1  ; extract bit31 of Y
2342     // ins  X, E, 31, 1  ; insert extracted bit at bit31 of X
2343     SDValue E = DAG.getNode(MipsISD::Ext, DL, MVT::i32, Y, Const31, Const1);
2344     Res = DAG.getNode(MipsISD::Ins, DL, MVT::i32, E, Const31, Const1, X);
2345   } else {
2346     // sll SllX, X, 1
2347     // srl SrlX, SllX, 1
2348     // srl SrlY, Y, 31
2349     // sll SllY, SrlX, 31
2350     // or  Or, SrlX, SllY
2351     SDValue SllX = DAG.getNode(ISD::SHL, DL, MVT::i32, X, Const1);
2352     SDValue SrlX = DAG.getNode(ISD::SRL, DL, MVT::i32, SllX, Const1);
2353     SDValue SrlY = DAG.getNode(ISD::SRL, DL, MVT::i32, Y, Const31);
2354     SDValue SllY = DAG.getNode(ISD::SHL, DL, MVT::i32, SrlY, Const31);
2355     Res = DAG.getNode(ISD::OR, DL, MVT::i32, SrlX, SllY);
2356   }
2357 
2358   if (TyX == MVT::f32)
2359     return DAG.getNode(ISD::BITCAST, DL, Op.getOperand(0).getValueType(), Res);
2360 
2361   SDValue LowX = DAG.getNode(MipsISD::ExtractElementF64, DL, MVT::i32,
2362                              Op.getOperand(0),
2363                              DAG.getConstant(0, DL, MVT::i32));
2364   return DAG.getNode(MipsISD::BuildPairF64, DL, MVT::f64, LowX, Res);
2365 }
2366 
2367 static SDValue lowerFCOPYSIGN64(SDValue Op, SelectionDAG &DAG,
2368                                 bool HasExtractInsert) {
2369   unsigned WidthX = Op.getOperand(0).getValueSizeInBits();
2370   unsigned WidthY = Op.getOperand(1).getValueSizeInBits();
2371   EVT TyX = MVT::getIntegerVT(WidthX), TyY = MVT::getIntegerVT(WidthY);
2372   SDLoc DL(Op);
2373   SDValue Const1 = DAG.getConstant(1, DL, MVT::i32);
2374 
2375   // Bitcast to integer nodes.
2376   SDValue X = DAG.getNode(ISD::BITCAST, DL, TyX, Op.getOperand(0));
2377   SDValue Y = DAG.getNode(ISD::BITCAST, DL, TyY, Op.getOperand(1));
2378 
2379   if (HasExtractInsert) {
2380     // ext  E, Y, width(Y) - 1, 1  ; extract bit width(Y)-1 of Y
2381     // ins  X, E, width(X) - 1, 1  ; insert extracted bit at bit width(X)-1 of X
2382     SDValue E = DAG.getNode(MipsISD::Ext, DL, TyY, Y,
2383                             DAG.getConstant(WidthY - 1, DL, MVT::i32), Const1);
2384 
2385     if (WidthX > WidthY)
2386       E = DAG.getNode(ISD::ZERO_EXTEND, DL, TyX, E);
2387     else if (WidthY > WidthX)
2388       E = DAG.getNode(ISD::TRUNCATE, DL, TyX, E);
2389 
2390     SDValue I = DAG.getNode(MipsISD::Ins, DL, TyX, E,
2391                             DAG.getConstant(WidthX - 1, DL, MVT::i32), Const1,
2392                             X);
2393     return DAG.getNode(ISD::BITCAST, DL, Op.getOperand(0).getValueType(), I);
2394   }
2395 
2396   // (d)sll SllX, X, 1
2397   // (d)srl SrlX, SllX, 1
2398   // (d)srl SrlY, Y, width(Y)-1
2399   // (d)sll SllY, SrlX, width(Y)-1
2400   // or     Or, SrlX, SllY
2401   SDValue SllX = DAG.getNode(ISD::SHL, DL, TyX, X, Const1);
2402   SDValue SrlX = DAG.getNode(ISD::SRL, DL, TyX, SllX, Const1);
2403   SDValue SrlY = DAG.getNode(ISD::SRL, DL, TyY, Y,
2404                              DAG.getConstant(WidthY - 1, DL, MVT::i32));
2405 
2406   if (WidthX > WidthY)
2407     SrlY = DAG.getNode(ISD::ZERO_EXTEND, DL, TyX, SrlY);
2408   else if (WidthY > WidthX)
2409     SrlY = DAG.getNode(ISD::TRUNCATE, DL, TyX, SrlY);
2410 
2411   SDValue SllY = DAG.getNode(ISD::SHL, DL, TyX, SrlY,
2412                              DAG.getConstant(WidthX - 1, DL, MVT::i32));
2413   SDValue Or = DAG.getNode(ISD::OR, DL, TyX, SrlX, SllY);
2414   return DAG.getNode(ISD::BITCAST, DL, Op.getOperand(0).getValueType(), Or);
2415 }
2416 
2417 SDValue
2418 MipsTargetLowering::lowerFCOPYSIGN(SDValue Op, SelectionDAG &DAG) const {
2419   if (Subtarget.isGP64bit())
2420     return lowerFCOPYSIGN64(Op, DAG, Subtarget.hasExtractInsert());
2421 
2422   return lowerFCOPYSIGN32(Op, DAG, Subtarget.hasExtractInsert());
2423 }
2424 
2425 static SDValue lowerFABS32(SDValue Op, SelectionDAG &DAG,
2426                            bool HasExtractInsert) {
2427   SDLoc DL(Op);
2428   SDValue Res, Const1 = DAG.getConstant(1, DL, MVT::i32);
2429 
2430   // If operand is of type f64, extract the upper 32-bit. Otherwise, bitcast it
2431   // to i32.
2432   SDValue X = (Op.getValueType() == MVT::f32)
2433                   ? DAG.getNode(ISD::BITCAST, DL, MVT::i32, Op.getOperand(0))
2434                   : DAG.getNode(MipsISD::ExtractElementF64, DL, MVT::i32,
2435                                 Op.getOperand(0), Const1);
2436 
2437   // Clear MSB.
2438   if (HasExtractInsert)
2439     Res = DAG.getNode(MipsISD::Ins, DL, MVT::i32,
2440                       DAG.getRegister(Mips::ZERO, MVT::i32),
2441                       DAG.getConstant(31, DL, MVT::i32), Const1, X);
2442   else {
2443     // TODO: Provide DAG patterns which transform (and x, cst)
2444     // back to a (shl (srl x (clz cst)) (clz cst)) sequence.
2445     SDValue SllX = DAG.getNode(ISD::SHL, DL, MVT::i32, X, Const1);
2446     Res = DAG.getNode(ISD::SRL, DL, MVT::i32, SllX, Const1);
2447   }
2448 
2449   if (Op.getValueType() == MVT::f32)
2450     return DAG.getNode(ISD::BITCAST, DL, MVT::f32, Res);
2451 
2452   // FIXME: For mips32r2, the sequence of (BuildPairF64 (ins (ExtractElementF64
2453   // Op 1), $zero, 31 1) (ExtractElementF64 Op 0)) and the Op has one use, we
2454   // should be able to drop the usage of mfc1/mtc1 and rewrite the register in
2455   // place.
2456   SDValue LowX =
2457       DAG.getNode(MipsISD::ExtractElementF64, DL, MVT::i32, Op.getOperand(0),
2458                   DAG.getConstant(0, DL, MVT::i32));
2459   return DAG.getNode(MipsISD::BuildPairF64, DL, MVT::f64, LowX, Res);
2460 }
2461 
2462 static SDValue lowerFABS64(SDValue Op, SelectionDAG &DAG,
2463                            bool HasExtractInsert) {
2464   SDLoc DL(Op);
2465   SDValue Res, Const1 = DAG.getConstant(1, DL, MVT::i32);
2466 
2467   // Bitcast to integer node.
2468   SDValue X = DAG.getNode(ISD::BITCAST, DL, MVT::i64, Op.getOperand(0));
2469 
2470   // Clear MSB.
2471   if (HasExtractInsert)
2472     Res = DAG.getNode(MipsISD::Ins, DL, MVT::i64,
2473                       DAG.getRegister(Mips::ZERO_64, MVT::i64),
2474                       DAG.getConstant(63, DL, MVT::i32), Const1, X);
2475   else {
2476     SDValue SllX = DAG.getNode(ISD::SHL, DL, MVT::i64, X, Const1);
2477     Res = DAG.getNode(ISD::SRL, DL, MVT::i64, SllX, Const1);
2478   }
2479 
2480   return DAG.getNode(ISD::BITCAST, DL, MVT::f64, Res);
2481 }
2482 
2483 SDValue MipsTargetLowering::lowerFABS(SDValue Op, SelectionDAG &DAG) const {
2484   if ((ABI.IsN32() || ABI.IsN64()) && (Op.getValueType() == MVT::f64))
2485     return lowerFABS64(Op, DAG, Subtarget.hasExtractInsert());
2486 
2487   return lowerFABS32(Op, DAG, Subtarget.hasExtractInsert());
2488 }
2489 
2490 SDValue MipsTargetLowering::
2491 lowerFRAMEADDR(SDValue Op, SelectionDAG &DAG) const {
2492   // check the depth
2493   if (cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue() != 0) {
2494     DAG.getContext()->emitError(
2495         "return address can be determined only for current frame");
2496     return SDValue();
2497   }
2498 
2499   MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
2500   MFI.setFrameAddressIsTaken(true);
2501   EVT VT = Op.getValueType();
2502   SDLoc DL(Op);
2503   SDValue FrameAddr = DAG.getCopyFromReg(
2504       DAG.getEntryNode(), DL, ABI.IsN64() ? Mips::FP_64 : Mips::FP, VT);
2505   return FrameAddr;
2506 }
2507 
2508 SDValue MipsTargetLowering::lowerRETURNADDR(SDValue Op,
2509                                             SelectionDAG &DAG) const {
2510   if (verifyReturnAddressArgumentIsConstant(Op, DAG))
2511     return SDValue();
2512 
2513   // check the depth
2514   if (cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue() != 0) {
2515     DAG.getContext()->emitError(
2516         "return address can be determined only for current frame");
2517     return SDValue();
2518   }
2519 
2520   MachineFunction &MF = DAG.getMachineFunction();
2521   MachineFrameInfo &MFI = MF.getFrameInfo();
2522   MVT VT = Op.getSimpleValueType();
2523   unsigned RA = ABI.IsN64() ? Mips::RA_64 : Mips::RA;
2524   MFI.setReturnAddressIsTaken(true);
2525 
2526   // Return RA, which contains the return address. Mark it an implicit live-in.
2527   unsigned Reg = MF.addLiveIn(RA, getRegClassFor(VT));
2528   return DAG.getCopyFromReg(DAG.getEntryNode(), SDLoc(Op), Reg, VT);
2529 }
2530 
2531 // An EH_RETURN is the result of lowering llvm.eh.return which in turn is
2532 // generated from __builtin_eh_return (offset, handler)
2533 // The effect of this is to adjust the stack pointer by "offset"
2534 // and then branch to "handler".
2535 SDValue MipsTargetLowering::lowerEH_RETURN(SDValue Op, SelectionDAG &DAG)
2536                                                                      const {
2537   MachineFunction &MF = DAG.getMachineFunction();
2538   MipsFunctionInfo *MipsFI = MF.getInfo<MipsFunctionInfo>();
2539 
2540   MipsFI->setCallsEhReturn();
2541   SDValue Chain     = Op.getOperand(0);
2542   SDValue Offset    = Op.getOperand(1);
2543   SDValue Handler   = Op.getOperand(2);
2544   SDLoc DL(Op);
2545   EVT Ty = ABI.IsN64() ? MVT::i64 : MVT::i32;
2546 
2547   // Store stack offset in V1, store jump target in V0. Glue CopyToReg and
2548   // EH_RETURN nodes, so that instructions are emitted back-to-back.
2549   unsigned OffsetReg = ABI.IsN64() ? Mips::V1_64 : Mips::V1;
2550   unsigned AddrReg = ABI.IsN64() ? Mips::V0_64 : Mips::V0;
2551   Chain = DAG.getCopyToReg(Chain, DL, OffsetReg, Offset, SDValue());
2552   Chain = DAG.getCopyToReg(Chain, DL, AddrReg, Handler, Chain.getValue(1));
2553   return DAG.getNode(MipsISD::EH_RETURN, DL, MVT::Other, Chain,
2554                      DAG.getRegister(OffsetReg, Ty),
2555                      DAG.getRegister(AddrReg, getPointerTy(MF.getDataLayout())),
2556                      Chain.getValue(1));
2557 }
2558 
2559 SDValue MipsTargetLowering::lowerATOMIC_FENCE(SDValue Op,
2560                                               SelectionDAG &DAG) const {
2561   // FIXME: Need pseudo-fence for 'singlethread' fences
2562   // FIXME: Set SType for weaker fences where supported/appropriate.
2563   unsigned SType = 0;
2564   SDLoc DL(Op);
2565   return DAG.getNode(MipsISD::Sync, DL, MVT::Other, Op.getOperand(0),
2566                      DAG.getConstant(SType, DL, MVT::i32));
2567 }
2568 
2569 SDValue MipsTargetLowering::lowerShiftLeftParts(SDValue Op,
2570                                                 SelectionDAG &DAG) const {
2571   SDLoc DL(Op);
2572   MVT VT = Subtarget.isGP64bit() ? MVT::i64 : MVT::i32;
2573 
2574   SDValue Lo = Op.getOperand(0), Hi = Op.getOperand(1);
2575   SDValue Shamt = Op.getOperand(2);
2576   // if shamt < (VT.bits):
2577   //  lo = (shl lo, shamt)
2578   //  hi = (or (shl hi, shamt) (srl (srl lo, 1), ~shamt))
2579   // else:
2580   //  lo = 0
2581   //  hi = (shl lo, shamt[4:0])
2582   SDValue Not = DAG.getNode(ISD::XOR, DL, MVT::i32, Shamt,
2583                             DAG.getConstant(-1, DL, MVT::i32));
2584   SDValue ShiftRight1Lo = DAG.getNode(ISD::SRL, DL, VT, Lo,
2585                                       DAG.getConstant(1, DL, VT));
2586   SDValue ShiftRightLo = DAG.getNode(ISD::SRL, DL, VT, ShiftRight1Lo, Not);
2587   SDValue ShiftLeftHi = DAG.getNode(ISD::SHL, DL, VT, Hi, Shamt);
2588   SDValue Or = DAG.getNode(ISD::OR, DL, VT, ShiftLeftHi, ShiftRightLo);
2589   SDValue ShiftLeftLo = DAG.getNode(ISD::SHL, DL, VT, Lo, Shamt);
2590   SDValue Cond = DAG.getNode(ISD::AND, DL, MVT::i32, Shamt,
2591                              DAG.getConstant(VT.getSizeInBits(), DL, MVT::i32));
2592   Lo = DAG.getNode(ISD::SELECT, DL, VT, Cond,
2593                    DAG.getConstant(0, DL, VT), ShiftLeftLo);
2594   Hi = DAG.getNode(ISD::SELECT, DL, VT, Cond, ShiftLeftLo, Or);
2595 
2596   SDValue Ops[2] = {Lo, Hi};
2597   return DAG.getMergeValues(Ops, DL);
2598 }
2599 
2600 SDValue MipsTargetLowering::lowerShiftRightParts(SDValue Op, SelectionDAG &DAG,
2601                                                  bool IsSRA) const {
2602   SDLoc DL(Op);
2603   SDValue Lo = Op.getOperand(0), Hi = Op.getOperand(1);
2604   SDValue Shamt = Op.getOperand(2);
2605   MVT VT = Subtarget.isGP64bit() ? MVT::i64 : MVT::i32;
2606 
2607   // if shamt < (VT.bits):
2608   //  lo = (or (shl (shl hi, 1), ~shamt) (srl lo, shamt))
2609   //  if isSRA:
2610   //    hi = (sra hi, shamt)
2611   //  else:
2612   //    hi = (srl hi, shamt)
2613   // else:
2614   //  if isSRA:
2615   //   lo = (sra hi, shamt[4:0])
2616   //   hi = (sra hi, 31)
2617   //  else:
2618   //   lo = (srl hi, shamt[4:0])
2619   //   hi = 0
2620   SDValue Not = DAG.getNode(ISD::XOR, DL, MVT::i32, Shamt,
2621                             DAG.getConstant(-1, DL, MVT::i32));
2622   SDValue ShiftLeft1Hi = DAG.getNode(ISD::SHL, DL, VT, Hi,
2623                                      DAG.getConstant(1, DL, VT));
2624   SDValue ShiftLeftHi = DAG.getNode(ISD::SHL, DL, VT, ShiftLeft1Hi, Not);
2625   SDValue ShiftRightLo = DAG.getNode(ISD::SRL, DL, VT, Lo, Shamt);
2626   SDValue Or = DAG.getNode(ISD::OR, DL, VT, ShiftLeftHi, ShiftRightLo);
2627   SDValue ShiftRightHi = DAG.getNode(IsSRA ? ISD::SRA : ISD::SRL,
2628                                      DL, VT, Hi, Shamt);
2629   SDValue Cond = DAG.getNode(ISD::AND, DL, MVT::i32, Shamt,
2630                              DAG.getConstant(VT.getSizeInBits(), DL, MVT::i32));
2631   SDValue Ext = DAG.getNode(ISD::SRA, DL, VT, Hi,
2632                             DAG.getConstant(VT.getSizeInBits() - 1, DL, VT));
2633 
2634   if (!(Subtarget.hasMips4() || Subtarget.hasMips32())) {
2635     SDVTList VTList = DAG.getVTList(VT, VT);
2636     return DAG.getNode(Subtarget.isGP64bit() ? Mips::PseudoD_SELECT_I64
2637                                              : Mips::PseudoD_SELECT_I,
2638                        DL, VTList, Cond, ShiftRightHi,
2639                        IsSRA ? Ext : DAG.getConstant(0, DL, VT), Or,
2640                        ShiftRightHi);
2641   }
2642 
2643   Lo = DAG.getNode(ISD::SELECT, DL, VT, Cond, ShiftRightHi, Or);
2644   Hi = DAG.getNode(ISD::SELECT, DL, VT, Cond,
2645                    IsSRA ? Ext : DAG.getConstant(0, DL, VT), ShiftRightHi);
2646 
2647   SDValue Ops[2] = {Lo, Hi};
2648   return DAG.getMergeValues(Ops, DL);
2649 }
2650 
2651 static SDValue createLoadLR(unsigned Opc, SelectionDAG &DAG, LoadSDNode *LD,
2652                             SDValue Chain, SDValue Src, unsigned Offset) {
2653   SDValue Ptr = LD->getBasePtr();
2654   EVT VT = LD->getValueType(0), MemVT = LD->getMemoryVT();
2655   EVT BasePtrVT = Ptr.getValueType();
2656   SDLoc DL(LD);
2657   SDVTList VTList = DAG.getVTList(VT, MVT::Other);
2658 
2659   if (Offset)
2660     Ptr = DAG.getNode(ISD::ADD, DL, BasePtrVT, Ptr,
2661                       DAG.getConstant(Offset, DL, BasePtrVT));
2662 
2663   SDValue Ops[] = { Chain, Ptr, Src };
2664   return DAG.getMemIntrinsicNode(Opc, DL, VTList, Ops, MemVT,
2665                                  LD->getMemOperand());
2666 }
2667 
2668 // Expand an unaligned 32 or 64-bit integer load node.
2669 SDValue MipsTargetLowering::lowerLOAD(SDValue Op, SelectionDAG &DAG) const {
2670   LoadSDNode *LD = cast<LoadSDNode>(Op);
2671   EVT MemVT = LD->getMemoryVT();
2672 
2673   if (Subtarget.systemSupportsUnalignedAccess())
2674     return Op;
2675 
2676   // Return if load is aligned or if MemVT is neither i32 nor i64.
2677   if ((LD->getAlignment() >= MemVT.getSizeInBits() / 8) ||
2678       ((MemVT != MVT::i32) && (MemVT != MVT::i64)))
2679     return SDValue();
2680 
2681   bool IsLittle = Subtarget.isLittle();
2682   EVT VT = Op.getValueType();
2683   ISD::LoadExtType ExtType = LD->getExtensionType();
2684   SDValue Chain = LD->getChain(), Undef = DAG.getUNDEF(VT);
2685 
2686   assert((VT == MVT::i32) || (VT == MVT::i64));
2687 
2688   // Expand
2689   //  (set dst, (i64 (load baseptr)))
2690   // to
2691   //  (set tmp, (ldl (add baseptr, 7), undef))
2692   //  (set dst, (ldr baseptr, tmp))
2693   if ((VT == MVT::i64) && (ExtType == ISD::NON_EXTLOAD)) {
2694     SDValue LDL = createLoadLR(MipsISD::LDL, DAG, LD, Chain, Undef,
2695                                IsLittle ? 7 : 0);
2696     return createLoadLR(MipsISD::LDR, DAG, LD, LDL.getValue(1), LDL,
2697                         IsLittle ? 0 : 7);
2698   }
2699 
2700   SDValue LWL = createLoadLR(MipsISD::LWL, DAG, LD, Chain, Undef,
2701                              IsLittle ? 3 : 0);
2702   SDValue LWR = createLoadLR(MipsISD::LWR, DAG, LD, LWL.getValue(1), LWL,
2703                              IsLittle ? 0 : 3);
2704 
2705   // Expand
2706   //  (set dst, (i32 (load baseptr))) or
2707   //  (set dst, (i64 (sextload baseptr))) or
2708   //  (set dst, (i64 (extload baseptr)))
2709   // to
2710   //  (set tmp, (lwl (add baseptr, 3), undef))
2711   //  (set dst, (lwr baseptr, tmp))
2712   if ((VT == MVT::i32) || (ExtType == ISD::SEXTLOAD) ||
2713       (ExtType == ISD::EXTLOAD))
2714     return LWR;
2715 
2716   assert((VT == MVT::i64) && (ExtType == ISD::ZEXTLOAD));
2717 
2718   // Expand
2719   //  (set dst, (i64 (zextload baseptr)))
2720   // to
2721   //  (set tmp0, (lwl (add baseptr, 3), undef))
2722   //  (set tmp1, (lwr baseptr, tmp0))
2723   //  (set tmp2, (shl tmp1, 32))
2724   //  (set dst, (srl tmp2, 32))
2725   SDLoc DL(LD);
2726   SDValue Const32 = DAG.getConstant(32, DL, MVT::i32);
2727   SDValue SLL = DAG.getNode(ISD::SHL, DL, MVT::i64, LWR, Const32);
2728   SDValue SRL = DAG.getNode(ISD::SRL, DL, MVT::i64, SLL, Const32);
2729   SDValue Ops[] = { SRL, LWR.getValue(1) };
2730   return DAG.getMergeValues(Ops, DL);
2731 }
2732 
2733 static SDValue createStoreLR(unsigned Opc, SelectionDAG &DAG, StoreSDNode *SD,
2734                              SDValue Chain, unsigned Offset) {
2735   SDValue Ptr = SD->getBasePtr(), Value = SD->getValue();
2736   EVT MemVT = SD->getMemoryVT(), BasePtrVT = Ptr.getValueType();
2737   SDLoc DL(SD);
2738   SDVTList VTList = DAG.getVTList(MVT::Other);
2739 
2740   if (Offset)
2741     Ptr = DAG.getNode(ISD::ADD, DL, BasePtrVT, Ptr,
2742                       DAG.getConstant(Offset, DL, BasePtrVT));
2743 
2744   SDValue Ops[] = { Chain, Value, Ptr };
2745   return DAG.getMemIntrinsicNode(Opc, DL, VTList, Ops, MemVT,
2746                                  SD->getMemOperand());
2747 }
2748 
2749 // Expand an unaligned 32 or 64-bit integer store node.
2750 static SDValue lowerUnalignedIntStore(StoreSDNode *SD, SelectionDAG &DAG,
2751                                       bool IsLittle) {
2752   SDValue Value = SD->getValue(), Chain = SD->getChain();
2753   EVT VT = Value.getValueType();
2754 
2755   // Expand
2756   //  (store val, baseptr) or
2757   //  (truncstore val, baseptr)
2758   // to
2759   //  (swl val, (add baseptr, 3))
2760   //  (swr val, baseptr)
2761   if ((VT == MVT::i32) || SD->isTruncatingStore()) {
2762     SDValue SWL = createStoreLR(MipsISD::SWL, DAG, SD, Chain,
2763                                 IsLittle ? 3 : 0);
2764     return createStoreLR(MipsISD::SWR, DAG, SD, SWL, IsLittle ? 0 : 3);
2765   }
2766 
2767   assert(VT == MVT::i64);
2768 
2769   // Expand
2770   //  (store val, baseptr)
2771   // to
2772   //  (sdl val, (add baseptr, 7))
2773   //  (sdr val, baseptr)
2774   SDValue SDL = createStoreLR(MipsISD::SDL, DAG, SD, Chain, IsLittle ? 7 : 0);
2775   return createStoreLR(MipsISD::SDR, DAG, SD, SDL, IsLittle ? 0 : 7);
2776 }
2777 
2778 // Lower (store (fp_to_sint $fp) $ptr) to (store (TruncIntFP $fp), $ptr).
2779 static SDValue lowerFP_TO_SINT_STORE(StoreSDNode *SD, SelectionDAG &DAG,
2780                                      bool SingleFloat) {
2781   SDValue Val = SD->getValue();
2782 
2783   if (Val.getOpcode() != ISD::FP_TO_SINT ||
2784       (Val.getValueSizeInBits() > 32 && SingleFloat))
2785     return SDValue();
2786 
2787   EVT FPTy = EVT::getFloatingPointVT(Val.getValueSizeInBits());
2788   SDValue Tr = DAG.getNode(MipsISD::TruncIntFP, SDLoc(Val), FPTy,
2789                            Val.getOperand(0));
2790   return DAG.getStore(SD->getChain(), SDLoc(SD), Tr, SD->getBasePtr(),
2791                       SD->getPointerInfo(), SD->getAlignment(),
2792                       SD->getMemOperand()->getFlags());
2793 }
2794 
2795 SDValue MipsTargetLowering::lowerSTORE(SDValue Op, SelectionDAG &DAG) const {
2796   StoreSDNode *SD = cast<StoreSDNode>(Op);
2797   EVT MemVT = SD->getMemoryVT();
2798 
2799   // Lower unaligned integer stores.
2800   if (!Subtarget.systemSupportsUnalignedAccess() &&
2801       (SD->getAlignment() < MemVT.getSizeInBits() / 8) &&
2802       ((MemVT == MVT::i32) || (MemVT == MVT::i64)))
2803     return lowerUnalignedIntStore(SD, DAG, Subtarget.isLittle());
2804 
2805   return lowerFP_TO_SINT_STORE(SD, DAG, Subtarget.isSingleFloat());
2806 }
2807 
2808 SDValue MipsTargetLowering::lowerEH_DWARF_CFA(SDValue Op,
2809                                               SelectionDAG &DAG) const {
2810 
2811   // Return a fixed StackObject with offset 0 which points to the old stack
2812   // pointer.
2813   MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
2814   EVT ValTy = Op->getValueType(0);
2815   int FI = MFI.CreateFixedObject(Op.getValueSizeInBits() / 8, 0, false);
2816   return DAG.getFrameIndex(FI, ValTy);
2817 }
2818 
2819 SDValue MipsTargetLowering::lowerFP_TO_SINT(SDValue Op,
2820                                             SelectionDAG &DAG) const {
2821   if (Op.getValueSizeInBits() > 32 && Subtarget.isSingleFloat())
2822     return SDValue();
2823 
2824   EVT FPTy = EVT::getFloatingPointVT(Op.getValueSizeInBits());
2825   SDValue Trunc = DAG.getNode(MipsISD::TruncIntFP, SDLoc(Op), FPTy,
2826                               Op.getOperand(0));
2827   return DAG.getNode(ISD::BITCAST, SDLoc(Op), Op.getValueType(), Trunc);
2828 }
2829 
2830 //===----------------------------------------------------------------------===//
2831 //                      Calling Convention Implementation
2832 //===----------------------------------------------------------------------===//
2833 
2834 //===----------------------------------------------------------------------===//
2835 // TODO: Implement a generic logic using tblgen that can support this.
2836 // Mips O32 ABI rules:
2837 // ---
2838 // i32 - Passed in A0, A1, A2, A3 and stack
2839 // f32 - Only passed in f32 registers if no int reg has been used yet to hold
2840 //       an argument. Otherwise, passed in A1, A2, A3 and stack.
2841 // f64 - Only passed in two aliased f32 registers if no int reg has been used
2842 //       yet to hold an argument. Otherwise, use A2, A3 and stack. If A1 is
2843 //       not used, it must be shadowed. If only A3 is available, shadow it and
2844 //       go to stack.
2845 // vXiX - Received as scalarized i32s, passed in A0 - A3 and the stack.
2846 // vXf32 - Passed in either a pair of registers {A0, A1}, {A2, A3} or {A0 - A3}
2847 //         with the remainder spilled to the stack.
2848 // vXf64 - Passed in either {A0, A1, A2, A3} or {A2, A3} and in both cases
2849 //         spilling the remainder to the stack.
2850 //
2851 //  For vararg functions, all arguments are passed in A0, A1, A2, A3 and stack.
2852 //===----------------------------------------------------------------------===//
2853 
2854 static bool CC_MipsO32(unsigned ValNo, MVT ValVT, MVT LocVT,
2855                        CCValAssign::LocInfo LocInfo, ISD::ArgFlagsTy ArgFlags,
2856                        CCState &State, ArrayRef<MCPhysReg> F64Regs) {
2857   const MipsSubtarget &Subtarget = static_cast<const MipsSubtarget &>(
2858       State.getMachineFunction().getSubtarget());
2859 
2860   static const MCPhysReg IntRegs[] = { Mips::A0, Mips::A1, Mips::A2, Mips::A3 };
2861 
2862   const MipsCCState * MipsState = static_cast<MipsCCState *>(&State);
2863 
2864   static const MCPhysReg F32Regs[] = { Mips::F12, Mips::F14 };
2865 
2866   static const MCPhysReg FloatVectorIntRegs[] = { Mips::A0, Mips::A2 };
2867 
2868   // Do not process byval args here.
2869   if (ArgFlags.isByVal())
2870     return true;
2871 
2872   // Promote i8 and i16
2873   if (ArgFlags.isInReg() && !Subtarget.isLittle()) {
2874     if (LocVT == MVT::i8 || LocVT == MVT::i16 || LocVT == MVT::i32) {
2875       LocVT = MVT::i32;
2876       if (ArgFlags.isSExt())
2877         LocInfo = CCValAssign::SExtUpper;
2878       else if (ArgFlags.isZExt())
2879         LocInfo = CCValAssign::ZExtUpper;
2880       else
2881         LocInfo = CCValAssign::AExtUpper;
2882     }
2883   }
2884 
2885   // Promote i8 and i16
2886   if (LocVT == MVT::i8 || LocVT == MVT::i16) {
2887     LocVT = MVT::i32;
2888     if (ArgFlags.isSExt())
2889       LocInfo = CCValAssign::SExt;
2890     else if (ArgFlags.isZExt())
2891       LocInfo = CCValAssign::ZExt;
2892     else
2893       LocInfo = CCValAssign::AExt;
2894   }
2895 
2896   unsigned Reg;
2897 
2898   // f32 and f64 are allocated in A0, A1, A2, A3 when either of the following
2899   // is true: function is vararg, argument is 3rd or higher, there is previous
2900   // argument which is not f32 or f64.
2901   bool AllocateFloatsInIntReg = State.isVarArg() || ValNo > 1 ||
2902                                 State.getFirstUnallocated(F32Regs) != ValNo;
2903   unsigned OrigAlign = ArgFlags.getOrigAlign();
2904   bool isI64 = (ValVT == MVT::i32 && OrigAlign == 8);
2905   bool isVectorFloat = MipsState->WasOriginalArgVectorFloat(ValNo);
2906 
2907   // The MIPS vector ABI for floats passes them in a pair of registers
2908   if (ValVT == MVT::i32 && isVectorFloat) {
2909     // This is the start of an vector that was scalarized into an unknown number
2910     // of components. It doesn't matter how many there are. Allocate one of the
2911     // notional 8 byte aligned registers which map onto the argument stack, and
2912     // shadow the register lost to alignment requirements.
2913     if (ArgFlags.isSplit()) {
2914       Reg = State.AllocateReg(FloatVectorIntRegs);
2915       if (Reg == Mips::A2)
2916         State.AllocateReg(Mips::A1);
2917       else if (Reg == 0)
2918         State.AllocateReg(Mips::A3);
2919     } else {
2920       // If we're an intermediate component of the split, we can just attempt to
2921       // allocate a register directly.
2922       Reg = State.AllocateReg(IntRegs);
2923     }
2924   } else if (ValVT == MVT::i32 ||
2925              (ValVT == MVT::f32 && AllocateFloatsInIntReg)) {
2926     Reg = State.AllocateReg(IntRegs);
2927     // If this is the first part of an i64 arg,
2928     // the allocated register must be either A0 or A2.
2929     if (isI64 && (Reg == Mips::A1 || Reg == Mips::A3))
2930       Reg = State.AllocateReg(IntRegs);
2931     LocVT = MVT::i32;
2932   } else if (ValVT == MVT::f64 && AllocateFloatsInIntReg) {
2933     // Allocate int register and shadow next int register. If first
2934     // available register is Mips::A1 or Mips::A3, shadow it too.
2935     Reg = State.AllocateReg(IntRegs);
2936     if (Reg == Mips::A1 || Reg == Mips::A3)
2937       Reg = State.AllocateReg(IntRegs);
2938     State.AllocateReg(IntRegs);
2939     LocVT = MVT::i32;
2940   } else if (ValVT.isFloatingPoint() && !AllocateFloatsInIntReg) {
2941     // we are guaranteed to find an available float register
2942     if (ValVT == MVT::f32) {
2943       Reg = State.AllocateReg(F32Regs);
2944       // Shadow int register
2945       State.AllocateReg(IntRegs);
2946     } else {
2947       Reg = State.AllocateReg(F64Regs);
2948       // Shadow int registers
2949       unsigned Reg2 = State.AllocateReg(IntRegs);
2950       if (Reg2 == Mips::A1 || Reg2 == Mips::A3)
2951         State.AllocateReg(IntRegs);
2952       State.AllocateReg(IntRegs);
2953     }
2954   } else
2955     llvm_unreachable("Cannot handle this ValVT.");
2956 
2957   if (!Reg) {
2958     unsigned Offset = State.AllocateStack(ValVT.getStoreSize(), OrigAlign);
2959     State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset, LocVT, LocInfo));
2960   } else
2961     State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
2962 
2963   return false;
2964 }
2965 
2966 static bool CC_MipsO32_FP32(unsigned ValNo, MVT ValVT,
2967                             MVT LocVT, CCValAssign::LocInfo LocInfo,
2968                             ISD::ArgFlagsTy ArgFlags, CCState &State) {
2969   static const MCPhysReg F64Regs[] = { Mips::D6, Mips::D7 };
2970 
2971   return CC_MipsO32(ValNo, ValVT, LocVT, LocInfo, ArgFlags, State, F64Regs);
2972 }
2973 
2974 static bool CC_MipsO32_FP64(unsigned ValNo, MVT ValVT,
2975                             MVT LocVT, CCValAssign::LocInfo LocInfo,
2976                             ISD::ArgFlagsTy ArgFlags, CCState &State) {
2977   static const MCPhysReg F64Regs[] = { Mips::D12_64, Mips::D14_64 };
2978 
2979   return CC_MipsO32(ValNo, ValVT, LocVT, LocInfo, ArgFlags, State, F64Regs);
2980 }
2981 
2982 static bool CC_MipsO32(unsigned ValNo, MVT ValVT, MVT LocVT,
2983                        CCValAssign::LocInfo LocInfo, ISD::ArgFlagsTy ArgFlags,
2984                        CCState &State) LLVM_ATTRIBUTE_UNUSED;
2985 
2986 #include "MipsGenCallingConv.inc"
2987 
2988  CCAssignFn *MipsTargetLowering::CCAssignFnForCall() const{
2989    return CC_Mips_FixedArg;
2990  }
2991 
2992  CCAssignFn *MipsTargetLowering::CCAssignFnForReturn() const{
2993    return RetCC_Mips;
2994  }
2995 //===----------------------------------------------------------------------===//
2996 //                  Call Calling Convention Implementation
2997 //===----------------------------------------------------------------------===//
2998 
2999 // Return next O32 integer argument register.
3000 static unsigned getNextIntArgReg(unsigned Reg) {
3001   assert((Reg == Mips::A0) || (Reg == Mips::A2));
3002   return (Reg == Mips::A0) ? Mips::A1 : Mips::A3;
3003 }
3004 
3005 SDValue MipsTargetLowering::passArgOnStack(SDValue StackPtr, unsigned Offset,
3006                                            SDValue Chain, SDValue Arg,
3007                                            const SDLoc &DL, bool IsTailCall,
3008                                            SelectionDAG &DAG) const {
3009   if (!IsTailCall) {
3010     SDValue PtrOff =
3011         DAG.getNode(ISD::ADD, DL, getPointerTy(DAG.getDataLayout()), StackPtr,
3012                     DAG.getIntPtrConstant(Offset, DL));
3013     return DAG.getStore(Chain, DL, Arg, PtrOff, MachinePointerInfo());
3014   }
3015 
3016   MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
3017   int FI = MFI.CreateFixedObject(Arg.getValueSizeInBits() / 8, Offset, false);
3018   SDValue FIN = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout()));
3019   return DAG.getStore(Chain, DL, Arg, FIN, MachinePointerInfo(),
3020                       /* Alignment = */ 0, MachineMemOperand::MOVolatile);
3021 }
3022 
3023 void MipsTargetLowering::
3024 getOpndList(SmallVectorImpl<SDValue> &Ops,
3025             std::deque<std::pair<unsigned, SDValue>> &RegsToPass,
3026             bool IsPICCall, bool GlobalOrExternal, bool InternalLinkage,
3027             bool IsCallReloc, CallLoweringInfo &CLI, SDValue Callee,
3028             SDValue Chain) const {
3029   // Insert node "GP copy globalreg" before call to function.
3030   //
3031   // R_MIPS_CALL* operators (emitted when non-internal functions are called
3032   // in PIC mode) allow symbols to be resolved via lazy binding.
3033   // The lazy binding stub requires GP to point to the GOT.
3034   // Note that we don't need GP to point to the GOT for indirect calls
3035   // (when R_MIPS_CALL* is not used for the call) because Mips linker generates
3036   // lazy binding stub for a function only when R_MIPS_CALL* are the only relocs
3037   // used for the function (that is, Mips linker doesn't generate lazy binding
3038   // stub for a function whose address is taken in the program).
3039   if (IsPICCall && !InternalLinkage && IsCallReloc) {
3040     unsigned GPReg = ABI.IsN64() ? Mips::GP_64 : Mips::GP;
3041     EVT Ty = ABI.IsN64() ? MVT::i64 : MVT::i32;
3042     RegsToPass.push_back(std::make_pair(GPReg, getGlobalReg(CLI.DAG, Ty)));
3043   }
3044 
3045   // Build a sequence of copy-to-reg nodes chained together with token
3046   // chain and flag operands which copy the outgoing args into registers.
3047   // The InFlag in necessary since all emitted instructions must be
3048   // stuck together.
3049   SDValue InFlag;
3050 
3051   for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
3052     Chain = CLI.DAG.getCopyToReg(Chain, CLI.DL, RegsToPass[i].first,
3053                                  RegsToPass[i].second, InFlag);
3054     InFlag = Chain.getValue(1);
3055   }
3056 
3057   // Add argument registers to the end of the list so that they are
3058   // known live into the call.
3059   for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
3060     Ops.push_back(CLI.DAG.getRegister(RegsToPass[i].first,
3061                                       RegsToPass[i].second.getValueType()));
3062 
3063   // Add a register mask operand representing the call-preserved registers.
3064   const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo();
3065   const uint32_t *Mask =
3066       TRI->getCallPreservedMask(CLI.DAG.getMachineFunction(), CLI.CallConv);
3067   assert(Mask && "Missing call preserved mask for calling convention");
3068   if (Subtarget.inMips16HardFloat()) {
3069     if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(CLI.Callee)) {
3070       StringRef Sym = G->getGlobal()->getName();
3071       Function *F = G->getGlobal()->getParent()->getFunction(Sym);
3072       if (F && F->hasFnAttribute("__Mips16RetHelper")) {
3073         Mask = MipsRegisterInfo::getMips16RetHelperMask();
3074       }
3075     }
3076   }
3077   Ops.push_back(CLI.DAG.getRegisterMask(Mask));
3078 
3079   if (InFlag.getNode())
3080     Ops.push_back(InFlag);
3081 }
3082 
3083 void MipsTargetLowering::AdjustInstrPostInstrSelection(MachineInstr &MI,
3084                                                        SDNode *Node) const {
3085   switch (MI.getOpcode()) {
3086     default:
3087       return;
3088     case Mips::JALR:
3089     case Mips::JALRPseudo:
3090     case Mips::JALR64:
3091     case Mips::JALR64Pseudo:
3092     case Mips::JALR16_MM:
3093     case Mips::JALRC16_MMR6:
3094     case Mips::TAILCALLREG:
3095     case Mips::TAILCALLREG64:
3096     case Mips::TAILCALLR6REG:
3097     case Mips::TAILCALL64R6REG:
3098     case Mips::TAILCALLREG_MM:
3099     case Mips::TAILCALLREG_MMR6: {
3100       if (!EmitJalrReloc ||
3101           Subtarget.inMips16Mode() ||
3102           !isPositionIndependent() ||
3103           Node->getNumOperands() < 1 ||
3104           Node->getOperand(0).getNumOperands() < 2) {
3105         return;
3106       }
3107       // We are after the callee address, set by LowerCall().
3108       // If added to MI, asm printer will emit .reloc R_MIPS_JALR for the
3109       // symbol.
3110       const SDValue TargetAddr = Node->getOperand(0).getOperand(1);
3111       StringRef Sym;
3112       if (const GlobalAddressSDNode *G =
3113               dyn_cast_or_null<const GlobalAddressSDNode>(TargetAddr)) {
3114         // We must not emit the R_MIPS_JALR relocation against data symbols
3115         // since this will cause run-time crashes if the linker replaces the
3116         // call instruction with a relative branch to the data symbol.
3117         if (!isa<Function>(G->getGlobal())) {
3118           LLVM_DEBUG(dbgs() << "Not adding R_MIPS_JALR against data symbol "
3119                             << G->getGlobal()->getName() << "\n");
3120           return;
3121         }
3122         Sym = G->getGlobal()->getName();
3123       }
3124       else if (const ExternalSymbolSDNode *ES =
3125                    dyn_cast_or_null<const ExternalSymbolSDNode>(TargetAddr)) {
3126         Sym = ES->getSymbol();
3127       }
3128 
3129       if (Sym.empty())
3130         return;
3131 
3132       MachineFunction *MF = MI.getParent()->getParent();
3133       MCSymbol *S = MF->getContext().getOrCreateSymbol(Sym);
3134       LLVM_DEBUG(dbgs() << "Adding R_MIPS_JALR against " << Sym << "\n");
3135       MI.addOperand(MachineOperand::CreateMCSymbol(S, MipsII::MO_JALR));
3136     }
3137   }
3138 }
3139 
3140 /// LowerCall - functions arguments are copied from virtual regs to
3141 /// (physical regs)/(stack frame), CALLSEQ_START and CALLSEQ_END are emitted.
3142 SDValue
3143 MipsTargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI,
3144                               SmallVectorImpl<SDValue> &InVals) const {
3145   SelectionDAG &DAG                     = CLI.DAG;
3146   SDLoc DL                              = CLI.DL;
3147   SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs;
3148   SmallVectorImpl<SDValue> &OutVals     = CLI.OutVals;
3149   SmallVectorImpl<ISD::InputArg> &Ins   = CLI.Ins;
3150   SDValue Chain                         = CLI.Chain;
3151   SDValue Callee                        = CLI.Callee;
3152   bool &IsTailCall                      = CLI.IsTailCall;
3153   CallingConv::ID CallConv              = CLI.CallConv;
3154   bool IsVarArg                         = CLI.IsVarArg;
3155 
3156   MachineFunction &MF = DAG.getMachineFunction();
3157   MachineFrameInfo &MFI = MF.getFrameInfo();
3158   const TargetFrameLowering *TFL = Subtarget.getFrameLowering();
3159   MipsFunctionInfo *FuncInfo = MF.getInfo<MipsFunctionInfo>();
3160   bool IsPIC = isPositionIndependent();
3161 
3162   // Analyze operands of the call, assigning locations to each operand.
3163   SmallVector<CCValAssign, 16> ArgLocs;
3164   MipsCCState CCInfo(
3165       CallConv, IsVarArg, DAG.getMachineFunction(), ArgLocs, *DAG.getContext(),
3166       MipsCCState::getSpecialCallingConvForCallee(Callee.getNode(), Subtarget));
3167 
3168   const ExternalSymbolSDNode *ES =
3169       dyn_cast_or_null<const ExternalSymbolSDNode>(Callee.getNode());
3170 
3171   // There is one case where CALLSEQ_START..CALLSEQ_END can be nested, which
3172   // is during the lowering of a call with a byval argument which produces
3173   // a call to memcpy. For the O32 case, this causes the caller to allocate
3174   // stack space for the reserved argument area for the callee, then recursively
3175   // again for the memcpy call. In the NEWABI case, this doesn't occur as those
3176   // ABIs mandate that the callee allocates the reserved argument area. We do
3177   // still produce nested CALLSEQ_START..CALLSEQ_END with zero space though.
3178   //
3179   // If the callee has a byval argument and memcpy is used, we are mandated
3180   // to already have produced a reserved argument area for the callee for O32.
3181   // Therefore, the reserved argument area can be reused for both calls.
3182   //
3183   // Other cases of calling memcpy cannot have a chain with a CALLSEQ_START
3184   // present, as we have yet to hook that node onto the chain.
3185   //
3186   // Hence, the CALLSEQ_START and CALLSEQ_END nodes can be eliminated in this
3187   // case. GCC does a similar trick, in that wherever possible, it calculates
3188   // the maximum out going argument area (including the reserved area), and
3189   // preallocates the stack space on entrance to the caller.
3190   //
3191   // FIXME: We should do the same for efficiency and space.
3192 
3193   // Note: The check on the calling convention below must match
3194   //       MipsABIInfo::GetCalleeAllocdArgSizeInBytes().
3195   bool MemcpyInByVal = ES &&
3196                        StringRef(ES->getSymbol()) == StringRef("memcpy") &&
3197                        CallConv != CallingConv::Fast &&
3198                        Chain.getOpcode() == ISD::CALLSEQ_START;
3199 
3200   // Allocate the reserved argument area. It seems strange to do this from the
3201   // caller side but removing it breaks the frame size calculation.
3202   unsigned ReservedArgArea =
3203       MemcpyInByVal ? 0 : ABI.GetCalleeAllocdArgSizeInBytes(CallConv);
3204   CCInfo.AllocateStack(ReservedArgArea, 1);
3205 
3206   CCInfo.AnalyzeCallOperands(Outs, CC_Mips, CLI.getArgs(),
3207                              ES ? ES->getSymbol() : nullptr);
3208 
3209   // Get a count of how many bytes are to be pushed on the stack.
3210   unsigned NextStackOffset = CCInfo.getNextStackOffset();
3211 
3212   // Check if it's really possible to do a tail call. Restrict it to functions
3213   // that are part of this compilation unit.
3214   bool InternalLinkage = false;
3215   if (IsTailCall) {
3216     IsTailCall = isEligibleForTailCallOptimization(
3217         CCInfo, NextStackOffset, *MF.getInfo<MipsFunctionInfo>());
3218      if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
3219       InternalLinkage = G->getGlobal()->hasInternalLinkage();
3220       IsTailCall &= (InternalLinkage || G->getGlobal()->hasLocalLinkage() ||
3221                      G->getGlobal()->hasPrivateLinkage() ||
3222                      G->getGlobal()->hasHiddenVisibility() ||
3223                      G->getGlobal()->hasProtectedVisibility());
3224      }
3225   }
3226   if (!IsTailCall && CLI.CS && CLI.CS.isMustTailCall())
3227     report_fatal_error("failed to perform tail call elimination on a call "
3228                        "site marked musttail");
3229 
3230   if (IsTailCall)
3231     ++NumTailCalls;
3232 
3233   // Chain is the output chain of the last Load/Store or CopyToReg node.
3234   // ByValChain is the output chain of the last Memcpy node created for copying
3235   // byval arguments to the stack.
3236   unsigned StackAlignment = TFL->getStackAlignment();
3237   NextStackOffset = alignTo(NextStackOffset, StackAlignment);
3238   SDValue NextStackOffsetVal = DAG.getIntPtrConstant(NextStackOffset, DL, true);
3239 
3240   if (!(IsTailCall || MemcpyInByVal))
3241     Chain = DAG.getCALLSEQ_START(Chain, NextStackOffset, 0, DL);
3242 
3243   SDValue StackPtr =
3244       DAG.getCopyFromReg(Chain, DL, ABI.IsN64() ? Mips::SP_64 : Mips::SP,
3245                          getPointerTy(DAG.getDataLayout()));
3246 
3247   std::deque<std::pair<unsigned, SDValue>> RegsToPass;
3248   SmallVector<SDValue, 8> MemOpChains;
3249 
3250   CCInfo.rewindByValRegsInfo();
3251 
3252   // Walk the register/memloc assignments, inserting copies/loads.
3253   for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
3254     SDValue Arg = OutVals[i];
3255     CCValAssign &VA = ArgLocs[i];
3256     MVT ValVT = VA.getValVT(), LocVT = VA.getLocVT();
3257     ISD::ArgFlagsTy Flags = Outs[i].Flags;
3258     bool UseUpperBits = false;
3259 
3260     // ByVal Arg.
3261     if (Flags.isByVal()) {
3262       unsigned FirstByValReg, LastByValReg;
3263       unsigned ByValIdx = CCInfo.getInRegsParamsProcessed();
3264       CCInfo.getInRegsParamInfo(ByValIdx, FirstByValReg, LastByValReg);
3265 
3266       assert(Flags.getByValSize() &&
3267              "ByVal args of size 0 should have been ignored by front-end.");
3268       assert(ByValIdx < CCInfo.getInRegsParamsCount());
3269       assert(!IsTailCall &&
3270              "Do not tail-call optimize if there is a byval argument.");
3271       passByValArg(Chain, DL, RegsToPass, MemOpChains, StackPtr, MFI, DAG, Arg,
3272                    FirstByValReg, LastByValReg, Flags, Subtarget.isLittle(),
3273                    VA);
3274       CCInfo.nextInRegsParam();
3275       continue;
3276     }
3277 
3278     // Promote the value if needed.
3279     switch (VA.getLocInfo()) {
3280     default:
3281       llvm_unreachable("Unknown loc info!");
3282     case CCValAssign::Full:
3283       if (VA.isRegLoc()) {
3284         if ((ValVT == MVT::f32 && LocVT == MVT::i32) ||
3285             (ValVT == MVT::f64 && LocVT == MVT::i64) ||
3286             (ValVT == MVT::i64 && LocVT == MVT::f64))
3287           Arg = DAG.getNode(ISD::BITCAST, DL, LocVT, Arg);
3288         else if (ValVT == MVT::f64 && LocVT == MVT::i32) {
3289           SDValue Lo = DAG.getNode(MipsISD::ExtractElementF64, DL, MVT::i32,
3290                                    Arg, DAG.getConstant(0, DL, MVT::i32));
3291           SDValue Hi = DAG.getNode(MipsISD::ExtractElementF64, DL, MVT::i32,
3292                                    Arg, DAG.getConstant(1, DL, MVT::i32));
3293           if (!Subtarget.isLittle())
3294             std::swap(Lo, Hi);
3295           Register LocRegLo = VA.getLocReg();
3296           unsigned LocRegHigh = getNextIntArgReg(LocRegLo);
3297           RegsToPass.push_back(std::make_pair(LocRegLo, Lo));
3298           RegsToPass.push_back(std::make_pair(LocRegHigh, Hi));
3299           continue;
3300         }
3301       }
3302       break;
3303     case CCValAssign::BCvt:
3304       Arg = DAG.getNode(ISD::BITCAST, DL, LocVT, Arg);
3305       break;
3306     case CCValAssign::SExtUpper:
3307       UseUpperBits = true;
3308       LLVM_FALLTHROUGH;
3309     case CCValAssign::SExt:
3310       Arg = DAG.getNode(ISD::SIGN_EXTEND, DL, LocVT, Arg);
3311       break;
3312     case CCValAssign::ZExtUpper:
3313       UseUpperBits = true;
3314       LLVM_FALLTHROUGH;
3315     case CCValAssign::ZExt:
3316       Arg = DAG.getNode(ISD::ZERO_EXTEND, DL, LocVT, Arg);
3317       break;
3318     case CCValAssign::AExtUpper:
3319       UseUpperBits = true;
3320       LLVM_FALLTHROUGH;
3321     case CCValAssign::AExt:
3322       Arg = DAG.getNode(ISD::ANY_EXTEND, DL, LocVT, Arg);
3323       break;
3324     }
3325 
3326     if (UseUpperBits) {
3327       unsigned ValSizeInBits = Outs[i].ArgVT.getSizeInBits();
3328       unsigned LocSizeInBits = VA.getLocVT().getSizeInBits();
3329       Arg = DAG.getNode(
3330           ISD::SHL, DL, VA.getLocVT(), Arg,
3331           DAG.getConstant(LocSizeInBits - ValSizeInBits, DL, VA.getLocVT()));
3332     }
3333 
3334     // Arguments that can be passed on register must be kept at
3335     // RegsToPass vector
3336     if (VA.isRegLoc()) {
3337       RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
3338       continue;
3339     }
3340 
3341     // Register can't get to this point...
3342     assert(VA.isMemLoc());
3343 
3344     // emit ISD::STORE whichs stores the
3345     // parameter value to a stack Location
3346     MemOpChains.push_back(passArgOnStack(StackPtr, VA.getLocMemOffset(),
3347                                          Chain, Arg, DL, IsTailCall, DAG));
3348   }
3349 
3350   // Transform all store nodes into one single node because all store
3351   // nodes are independent of each other.
3352   if (!MemOpChains.empty())
3353     Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOpChains);
3354 
3355   // If the callee is a GlobalAddress/ExternalSymbol node (quite common, every
3356   // direct call is) turn it into a TargetGlobalAddress/TargetExternalSymbol
3357   // node so that legalize doesn't hack it.
3358 
3359   EVT Ty = Callee.getValueType();
3360   bool GlobalOrExternal = false, IsCallReloc = false;
3361 
3362   // The long-calls feature is ignored in case of PIC.
3363   // While we do not support -mshared / -mno-shared properly,
3364   // ignore long-calls in case of -mabicalls too.
3365   if (!Subtarget.isABICalls() && !IsPIC) {
3366     // If the function should be called using "long call",
3367     // get its address into a register to prevent using
3368     // of the `jal` instruction for the direct call.
3369     if (auto *N = dyn_cast<ExternalSymbolSDNode>(Callee)) {
3370       if (Subtarget.useLongCalls())
3371         Callee = Subtarget.hasSym32()
3372                      ? getAddrNonPIC(N, SDLoc(N), Ty, DAG)
3373                      : getAddrNonPICSym64(N, SDLoc(N), Ty, DAG);
3374     } else if (auto *N = dyn_cast<GlobalAddressSDNode>(Callee)) {
3375       bool UseLongCalls = Subtarget.useLongCalls();
3376       // If the function has long-call/far/near attribute
3377       // it overrides command line switch pased to the backend.
3378       if (auto *F = dyn_cast<Function>(N->getGlobal())) {
3379         if (F->hasFnAttribute("long-call"))
3380           UseLongCalls = true;
3381         else if (F->hasFnAttribute("short-call"))
3382           UseLongCalls = false;
3383       }
3384       if (UseLongCalls)
3385         Callee = Subtarget.hasSym32()
3386                      ? getAddrNonPIC(N, SDLoc(N), Ty, DAG)
3387                      : getAddrNonPICSym64(N, SDLoc(N), Ty, DAG);
3388     }
3389   }
3390 
3391   if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
3392     if (IsPIC) {
3393       const GlobalValue *Val = G->getGlobal();
3394       InternalLinkage = Val->hasInternalLinkage();
3395 
3396       if (InternalLinkage)
3397         Callee = getAddrLocal(G, DL, Ty, DAG, ABI.IsN32() || ABI.IsN64());
3398       else if (Subtarget.useXGOT()) {
3399         Callee = getAddrGlobalLargeGOT(G, DL, Ty, DAG, MipsII::MO_CALL_HI16,
3400                                        MipsII::MO_CALL_LO16, Chain,
3401                                        FuncInfo->callPtrInfo(Val));
3402         IsCallReloc = true;
3403       } else {
3404         Callee = getAddrGlobal(G, DL, Ty, DAG, MipsII::MO_GOT_CALL, Chain,
3405                                FuncInfo->callPtrInfo(Val));
3406         IsCallReloc = true;
3407       }
3408     } else
3409       Callee = DAG.getTargetGlobalAddress(G->getGlobal(), DL,
3410                                           getPointerTy(DAG.getDataLayout()), 0,
3411                                           MipsII::MO_NO_FLAG);
3412     GlobalOrExternal = true;
3413   }
3414   else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) {
3415     const char *Sym = S->getSymbol();
3416 
3417     if (!IsPIC) // static
3418       Callee = DAG.getTargetExternalSymbol(
3419           Sym, getPointerTy(DAG.getDataLayout()), MipsII::MO_NO_FLAG);
3420     else if (Subtarget.useXGOT()) {
3421       Callee = getAddrGlobalLargeGOT(S, DL, Ty, DAG, MipsII::MO_CALL_HI16,
3422                                      MipsII::MO_CALL_LO16, Chain,
3423                                      FuncInfo->callPtrInfo(Sym));
3424       IsCallReloc = true;
3425     } else { // PIC
3426       Callee = getAddrGlobal(S, DL, Ty, DAG, MipsII::MO_GOT_CALL, Chain,
3427                              FuncInfo->callPtrInfo(Sym));
3428       IsCallReloc = true;
3429     }
3430 
3431     GlobalOrExternal = true;
3432   }
3433 
3434   SmallVector<SDValue, 8> Ops(1, Chain);
3435   SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
3436 
3437   getOpndList(Ops, RegsToPass, IsPIC, GlobalOrExternal, InternalLinkage,
3438               IsCallReloc, CLI, Callee, Chain);
3439 
3440   if (IsTailCall) {
3441     MF.getFrameInfo().setHasTailCall();
3442     return DAG.getNode(MipsISD::TailCall, DL, MVT::Other, Ops);
3443   }
3444 
3445   Chain = DAG.getNode(MipsISD::JmpLink, DL, NodeTys, Ops);
3446   SDValue InFlag = Chain.getValue(1);
3447 
3448   // Create the CALLSEQ_END node in the case of where it is not a call to
3449   // memcpy.
3450   if (!(MemcpyInByVal)) {
3451     Chain = DAG.getCALLSEQ_END(Chain, NextStackOffsetVal,
3452                                DAG.getIntPtrConstant(0, DL, true), InFlag, DL);
3453     InFlag = Chain.getValue(1);
3454   }
3455 
3456   // Handle result values, copying them out of physregs into vregs that we
3457   // return.
3458   return LowerCallResult(Chain, InFlag, CallConv, IsVarArg, Ins, DL, DAG,
3459                          InVals, CLI);
3460 }
3461 
3462 /// LowerCallResult - Lower the result values of a call into the
3463 /// appropriate copies out of appropriate physical registers.
3464 SDValue MipsTargetLowering::LowerCallResult(
3465     SDValue Chain, SDValue InFlag, CallingConv::ID CallConv, bool IsVarArg,
3466     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL,
3467     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals,
3468     TargetLowering::CallLoweringInfo &CLI) const {
3469   // Assign locations to each value returned by this call.
3470   SmallVector<CCValAssign, 16> RVLocs;
3471   MipsCCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(), RVLocs,
3472                      *DAG.getContext());
3473 
3474   const ExternalSymbolSDNode *ES =
3475       dyn_cast_or_null<const ExternalSymbolSDNode>(CLI.Callee.getNode());
3476   CCInfo.AnalyzeCallResult(Ins, RetCC_Mips, CLI.RetTy,
3477                            ES ? ES->getSymbol() : nullptr);
3478 
3479   // Copy all of the result registers out of their specified physreg.
3480   for (unsigned i = 0; i != RVLocs.size(); ++i) {
3481     CCValAssign &VA = RVLocs[i];
3482     assert(VA.isRegLoc() && "Can only return in registers!");
3483 
3484     SDValue Val = DAG.getCopyFromReg(Chain, DL, RVLocs[i].getLocReg(),
3485                                      RVLocs[i].getLocVT(), InFlag);
3486     Chain = Val.getValue(1);
3487     InFlag = Val.getValue(2);
3488 
3489     if (VA.isUpperBitsInLoc()) {
3490       unsigned ValSizeInBits = Ins[i].ArgVT.getSizeInBits();
3491       unsigned LocSizeInBits = VA.getLocVT().getSizeInBits();
3492       unsigned Shift =
3493           VA.getLocInfo() == CCValAssign::ZExtUpper ? ISD::SRL : ISD::SRA;
3494       Val = DAG.getNode(
3495           Shift, DL, VA.getLocVT(), Val,
3496           DAG.getConstant(LocSizeInBits - ValSizeInBits, DL, VA.getLocVT()));
3497     }
3498 
3499     switch (VA.getLocInfo()) {
3500     default:
3501       llvm_unreachable("Unknown loc info!");
3502     case CCValAssign::Full:
3503       break;
3504     case CCValAssign::BCvt:
3505       Val = DAG.getNode(ISD::BITCAST, DL, VA.getValVT(), Val);
3506       break;
3507     case CCValAssign::AExt:
3508     case CCValAssign::AExtUpper:
3509       Val = DAG.getNode(ISD::TRUNCATE, DL, VA.getValVT(), Val);
3510       break;
3511     case CCValAssign::ZExt:
3512     case CCValAssign::ZExtUpper:
3513       Val = DAG.getNode(ISD::AssertZext, DL, VA.getLocVT(), Val,
3514                         DAG.getValueType(VA.getValVT()));
3515       Val = DAG.getNode(ISD::TRUNCATE, DL, VA.getValVT(), Val);
3516       break;
3517     case CCValAssign::SExt:
3518     case CCValAssign::SExtUpper:
3519       Val = DAG.getNode(ISD::AssertSext, DL, VA.getLocVT(), Val,
3520                         DAG.getValueType(VA.getValVT()));
3521       Val = DAG.getNode(ISD::TRUNCATE, DL, VA.getValVT(), Val);
3522       break;
3523     }
3524 
3525     InVals.push_back(Val);
3526   }
3527 
3528   return Chain;
3529 }
3530 
3531 static SDValue UnpackFromArgumentSlot(SDValue Val, const CCValAssign &VA,
3532                                       EVT ArgVT, const SDLoc &DL,
3533                                       SelectionDAG &DAG) {
3534   MVT LocVT = VA.getLocVT();
3535   EVT ValVT = VA.getValVT();
3536 
3537   // Shift into the upper bits if necessary.
3538   switch (VA.getLocInfo()) {
3539   default:
3540     break;
3541   case CCValAssign::AExtUpper:
3542   case CCValAssign::SExtUpper:
3543   case CCValAssign::ZExtUpper: {
3544     unsigned ValSizeInBits = ArgVT.getSizeInBits();
3545     unsigned LocSizeInBits = VA.getLocVT().getSizeInBits();
3546     unsigned Opcode =
3547         VA.getLocInfo() == CCValAssign::ZExtUpper ? ISD::SRL : ISD::SRA;
3548     Val = DAG.getNode(
3549         Opcode, DL, VA.getLocVT(), Val,
3550         DAG.getConstant(LocSizeInBits - ValSizeInBits, DL, VA.getLocVT()));
3551     break;
3552   }
3553   }
3554 
3555   // If this is an value smaller than the argument slot size (32-bit for O32,
3556   // 64-bit for N32/N64), it has been promoted in some way to the argument slot
3557   // size. Extract the value and insert any appropriate assertions regarding
3558   // sign/zero extension.
3559   switch (VA.getLocInfo()) {
3560   default:
3561     llvm_unreachable("Unknown loc info!");
3562   case CCValAssign::Full:
3563     break;
3564   case CCValAssign::AExtUpper:
3565   case CCValAssign::AExt:
3566     Val = DAG.getNode(ISD::TRUNCATE, DL, ValVT, Val);
3567     break;
3568   case CCValAssign::SExtUpper:
3569   case CCValAssign::SExt:
3570     Val = DAG.getNode(ISD::AssertSext, DL, LocVT, Val, DAG.getValueType(ValVT));
3571     Val = DAG.getNode(ISD::TRUNCATE, DL, ValVT, Val);
3572     break;
3573   case CCValAssign::ZExtUpper:
3574   case CCValAssign::ZExt:
3575     Val = DAG.getNode(ISD::AssertZext, DL, LocVT, Val, DAG.getValueType(ValVT));
3576     Val = DAG.getNode(ISD::TRUNCATE, DL, ValVT, Val);
3577     break;
3578   case CCValAssign::BCvt:
3579     Val = DAG.getNode(ISD::BITCAST, DL, ValVT, Val);
3580     break;
3581   }
3582 
3583   return Val;
3584 }
3585 
3586 //===----------------------------------------------------------------------===//
3587 //             Formal Arguments Calling Convention Implementation
3588 //===----------------------------------------------------------------------===//
3589 /// LowerFormalArguments - transform physical registers into virtual registers
3590 /// and generate load operations for arguments places on the stack.
3591 SDValue MipsTargetLowering::LowerFormalArguments(
3592     SDValue Chain, CallingConv::ID CallConv, bool IsVarArg,
3593     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL,
3594     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
3595   MachineFunction &MF = DAG.getMachineFunction();
3596   MachineFrameInfo &MFI = MF.getFrameInfo();
3597   MipsFunctionInfo *MipsFI = MF.getInfo<MipsFunctionInfo>();
3598 
3599   MipsFI->setVarArgsFrameIndex(0);
3600 
3601   // Used with vargs to acumulate store chains.
3602   std::vector<SDValue> OutChains;
3603 
3604   // Assign locations to all of the incoming arguments.
3605   SmallVector<CCValAssign, 16> ArgLocs;
3606   MipsCCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(), ArgLocs,
3607                      *DAG.getContext());
3608   CCInfo.AllocateStack(ABI.GetCalleeAllocdArgSizeInBytes(CallConv), 1);
3609   const Function &Func = DAG.getMachineFunction().getFunction();
3610   Function::const_arg_iterator FuncArg = Func.arg_begin();
3611 
3612   if (Func.hasFnAttribute("interrupt") && !Func.arg_empty())
3613     report_fatal_error(
3614         "Functions with the interrupt attribute cannot have arguments!");
3615 
3616   CCInfo.AnalyzeFormalArguments(Ins, CC_Mips_FixedArg);
3617   MipsFI->setFormalArgInfo(CCInfo.getNextStackOffset(),
3618                            CCInfo.getInRegsParamsCount() > 0);
3619 
3620   unsigned CurArgIdx = 0;
3621   CCInfo.rewindByValRegsInfo();
3622 
3623   for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
3624     CCValAssign &VA = ArgLocs[i];
3625     if (Ins[i].isOrigArg()) {
3626       std::advance(FuncArg, Ins[i].getOrigArgIndex() - CurArgIdx);
3627       CurArgIdx = Ins[i].getOrigArgIndex();
3628     }
3629     EVT ValVT = VA.getValVT();
3630     ISD::ArgFlagsTy Flags = Ins[i].Flags;
3631     bool IsRegLoc = VA.isRegLoc();
3632 
3633     if (Flags.isByVal()) {
3634       assert(Ins[i].isOrigArg() && "Byval arguments cannot be implicit");
3635       unsigned FirstByValReg, LastByValReg;
3636       unsigned ByValIdx = CCInfo.getInRegsParamsProcessed();
3637       CCInfo.getInRegsParamInfo(ByValIdx, FirstByValReg, LastByValReg);
3638 
3639       assert(Flags.getByValSize() &&
3640              "ByVal args of size 0 should have been ignored by front-end.");
3641       assert(ByValIdx < CCInfo.getInRegsParamsCount());
3642       copyByValRegs(Chain, DL, OutChains, DAG, Flags, InVals, &*FuncArg,
3643                     FirstByValReg, LastByValReg, VA, CCInfo);
3644       CCInfo.nextInRegsParam();
3645       continue;
3646     }
3647 
3648     // Arguments stored on registers
3649     if (IsRegLoc) {
3650       MVT RegVT = VA.getLocVT();
3651       Register ArgReg = VA.getLocReg();
3652       const TargetRegisterClass *RC = getRegClassFor(RegVT);
3653 
3654       // Transform the arguments stored on
3655       // physical registers into virtual ones
3656       unsigned Reg = addLiveIn(DAG.getMachineFunction(), ArgReg, RC);
3657       SDValue ArgValue = DAG.getCopyFromReg(Chain, DL, Reg, RegVT);
3658 
3659       ArgValue = UnpackFromArgumentSlot(ArgValue, VA, Ins[i].ArgVT, DL, DAG);
3660 
3661       // Handle floating point arguments passed in integer registers and
3662       // long double arguments passed in floating point registers.
3663       if ((RegVT == MVT::i32 && ValVT == MVT::f32) ||
3664           (RegVT == MVT::i64 && ValVT == MVT::f64) ||
3665           (RegVT == MVT::f64 && ValVT == MVT::i64))
3666         ArgValue = DAG.getNode(ISD::BITCAST, DL, ValVT, ArgValue);
3667       else if (ABI.IsO32() && RegVT == MVT::i32 &&
3668                ValVT == MVT::f64) {
3669         unsigned Reg2 = addLiveIn(DAG.getMachineFunction(),
3670                                   getNextIntArgReg(ArgReg), RC);
3671         SDValue ArgValue2 = DAG.getCopyFromReg(Chain, DL, Reg2, RegVT);
3672         if (!Subtarget.isLittle())
3673           std::swap(ArgValue, ArgValue2);
3674         ArgValue = DAG.getNode(MipsISD::BuildPairF64, DL, MVT::f64,
3675                                ArgValue, ArgValue2);
3676       }
3677 
3678       InVals.push_back(ArgValue);
3679     } else { // VA.isRegLoc()
3680       MVT LocVT = VA.getLocVT();
3681 
3682       if (ABI.IsO32()) {
3683         // We ought to be able to use LocVT directly but O32 sets it to i32
3684         // when allocating floating point values to integer registers.
3685         // This shouldn't influence how we load the value into registers unless
3686         // we are targeting softfloat.
3687         if (VA.getValVT().isFloatingPoint() && !Subtarget.useSoftFloat())
3688           LocVT = VA.getValVT();
3689       }
3690 
3691       // sanity check
3692       assert(VA.isMemLoc());
3693 
3694       // The stack pointer offset is relative to the caller stack frame.
3695       int FI = MFI.CreateFixedObject(LocVT.getSizeInBits() / 8,
3696                                      VA.getLocMemOffset(), true);
3697 
3698       // Create load nodes to retrieve arguments from the stack
3699       SDValue FIN = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout()));
3700       SDValue ArgValue = DAG.getLoad(
3701           LocVT, DL, Chain, FIN,
3702           MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI));
3703       OutChains.push_back(ArgValue.getValue(1));
3704 
3705       ArgValue = UnpackFromArgumentSlot(ArgValue, VA, Ins[i].ArgVT, DL, DAG);
3706 
3707       InVals.push_back(ArgValue);
3708     }
3709   }
3710 
3711   for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
3712     // The mips ABIs for returning structs by value requires that we copy
3713     // the sret argument into $v0 for the return. Save the argument into
3714     // a virtual register so that we can access it from the return points.
3715     if (Ins[i].Flags.isSRet()) {
3716       unsigned Reg = MipsFI->getSRetReturnReg();
3717       if (!Reg) {
3718         Reg = MF.getRegInfo().createVirtualRegister(
3719             getRegClassFor(ABI.IsN64() ? MVT::i64 : MVT::i32));
3720         MipsFI->setSRetReturnReg(Reg);
3721       }
3722       SDValue Copy = DAG.getCopyToReg(DAG.getEntryNode(), DL, Reg, InVals[i]);
3723       Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Copy, Chain);
3724       break;
3725     }
3726   }
3727 
3728   if (IsVarArg)
3729     writeVarArgRegs(OutChains, Chain, DL, DAG, CCInfo);
3730 
3731   // All stores are grouped in one node to allow the matching between
3732   // the size of Ins and InVals. This only happens when on varg functions
3733   if (!OutChains.empty()) {
3734     OutChains.push_back(Chain);
3735     Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, OutChains);
3736   }
3737 
3738   return Chain;
3739 }
3740 
3741 //===----------------------------------------------------------------------===//
3742 //               Return Value Calling Convention Implementation
3743 //===----------------------------------------------------------------------===//
3744 
3745 bool
3746 MipsTargetLowering::CanLowerReturn(CallingConv::ID CallConv,
3747                                    MachineFunction &MF, bool IsVarArg,
3748                                    const SmallVectorImpl<ISD::OutputArg> &Outs,
3749                                    LLVMContext &Context) const {
3750   SmallVector<CCValAssign, 16> RVLocs;
3751   MipsCCState CCInfo(CallConv, IsVarArg, MF, RVLocs, Context);
3752   return CCInfo.CheckReturn(Outs, RetCC_Mips);
3753 }
3754 
3755 bool MipsTargetLowering::shouldSignExtendTypeInLibCall(EVT Type,
3756                                                        bool IsSigned) const {
3757   if ((ABI.IsN32() || ABI.IsN64()) && Type == MVT::i32)
3758       return true;
3759 
3760   return IsSigned;
3761 }
3762 
3763 SDValue
3764 MipsTargetLowering::LowerInterruptReturn(SmallVectorImpl<SDValue> &RetOps,
3765                                          const SDLoc &DL,
3766                                          SelectionDAG &DAG) const {
3767   MachineFunction &MF = DAG.getMachineFunction();
3768   MipsFunctionInfo *MipsFI = MF.getInfo<MipsFunctionInfo>();
3769 
3770   MipsFI->setISR();
3771 
3772   return DAG.getNode(MipsISD::ERet, DL, MVT::Other, RetOps);
3773 }
3774 
3775 SDValue
3776 MipsTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv,
3777                                 bool IsVarArg,
3778                                 const SmallVectorImpl<ISD::OutputArg> &Outs,
3779                                 const SmallVectorImpl<SDValue> &OutVals,
3780                                 const SDLoc &DL, SelectionDAG &DAG) const {
3781   // CCValAssign - represent the assignment of
3782   // the return value to a location
3783   SmallVector<CCValAssign, 16> RVLocs;
3784   MachineFunction &MF = DAG.getMachineFunction();
3785 
3786   // CCState - Info about the registers and stack slot.
3787   MipsCCState CCInfo(CallConv, IsVarArg, MF, RVLocs, *DAG.getContext());
3788 
3789   // Analyze return values.
3790   CCInfo.AnalyzeReturn(Outs, RetCC_Mips);
3791 
3792   SDValue Flag;
3793   SmallVector<SDValue, 4> RetOps(1, Chain);
3794 
3795   // Copy the result values into the output registers.
3796   for (unsigned i = 0; i != RVLocs.size(); ++i) {
3797     SDValue Val = OutVals[i];
3798     CCValAssign &VA = RVLocs[i];
3799     assert(VA.isRegLoc() && "Can only return in registers!");
3800     bool UseUpperBits = false;
3801 
3802     switch (VA.getLocInfo()) {
3803     default:
3804       llvm_unreachable("Unknown loc info!");
3805     case CCValAssign::Full:
3806       break;
3807     case CCValAssign::BCvt:
3808       Val = DAG.getNode(ISD::BITCAST, DL, VA.getLocVT(), Val);
3809       break;
3810     case CCValAssign::AExtUpper:
3811       UseUpperBits = true;
3812       LLVM_FALLTHROUGH;
3813     case CCValAssign::AExt:
3814       Val = DAG.getNode(ISD::ANY_EXTEND, DL, VA.getLocVT(), Val);
3815       break;
3816     case CCValAssign::ZExtUpper:
3817       UseUpperBits = true;
3818       LLVM_FALLTHROUGH;
3819     case CCValAssign::ZExt:
3820       Val = DAG.getNode(ISD::ZERO_EXTEND, DL, VA.getLocVT(), Val);
3821       break;
3822     case CCValAssign::SExtUpper:
3823       UseUpperBits = true;
3824       LLVM_FALLTHROUGH;
3825     case CCValAssign::SExt:
3826       Val = DAG.getNode(ISD::SIGN_EXTEND, DL, VA.getLocVT(), Val);
3827       break;
3828     }
3829 
3830     if (UseUpperBits) {
3831       unsigned ValSizeInBits = Outs[i].ArgVT.getSizeInBits();
3832       unsigned LocSizeInBits = VA.getLocVT().getSizeInBits();
3833       Val = DAG.getNode(
3834           ISD::SHL, DL, VA.getLocVT(), Val,
3835           DAG.getConstant(LocSizeInBits - ValSizeInBits, DL, VA.getLocVT()));
3836     }
3837 
3838     Chain = DAG.getCopyToReg(Chain, DL, VA.getLocReg(), Val, Flag);
3839 
3840     // Guarantee that all emitted copies are stuck together with flags.
3841     Flag = Chain.getValue(1);
3842     RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
3843   }
3844 
3845   // The mips ABIs for returning structs by value requires that we copy
3846   // the sret argument into $v0 for the return. We saved the argument into
3847   // a virtual register in the entry block, so now we copy the value out
3848   // and into $v0.
3849   if (MF.getFunction().hasStructRetAttr()) {
3850     MipsFunctionInfo *MipsFI = MF.getInfo<MipsFunctionInfo>();
3851     unsigned Reg = MipsFI->getSRetReturnReg();
3852 
3853     if (!Reg)
3854       llvm_unreachable("sret virtual register not created in the entry block");
3855     SDValue Val =
3856         DAG.getCopyFromReg(Chain, DL, Reg, getPointerTy(DAG.getDataLayout()));
3857     unsigned V0 = ABI.IsN64() ? Mips::V0_64 : Mips::V0;
3858 
3859     Chain = DAG.getCopyToReg(Chain, DL, V0, Val, Flag);
3860     Flag = Chain.getValue(1);
3861     RetOps.push_back(DAG.getRegister(V0, getPointerTy(DAG.getDataLayout())));
3862   }
3863 
3864   RetOps[0] = Chain;  // Update chain.
3865 
3866   // Add the flag if we have it.
3867   if (Flag.getNode())
3868     RetOps.push_back(Flag);
3869 
3870   // ISRs must use "eret".
3871   if (DAG.getMachineFunction().getFunction().hasFnAttribute("interrupt"))
3872     return LowerInterruptReturn(RetOps, DL, DAG);
3873 
3874   // Standard return on Mips is a "jr $ra"
3875   return DAG.getNode(MipsISD::Ret, DL, MVT::Other, RetOps);
3876 }
3877 
3878 //===----------------------------------------------------------------------===//
3879 //                           Mips Inline Assembly Support
3880 //===----------------------------------------------------------------------===//
3881 
3882 /// getConstraintType - Given a constraint letter, return the type of
3883 /// constraint it is for this target.
3884 MipsTargetLowering::ConstraintType
3885 MipsTargetLowering::getConstraintType(StringRef Constraint) const {
3886   // Mips specific constraints
3887   // GCC config/mips/constraints.md
3888   //
3889   // 'd' : An address register. Equivalent to r
3890   //       unless generating MIPS16 code.
3891   // 'y' : Equivalent to r; retained for
3892   //       backwards compatibility.
3893   // 'c' : A register suitable for use in an indirect
3894   //       jump. This will always be $25 for -mabicalls.
3895   // 'l' : The lo register. 1 word storage.
3896   // 'x' : The hilo register pair. Double word storage.
3897   if (Constraint.size() == 1) {
3898     switch (Constraint[0]) {
3899       default : break;
3900       case 'd':
3901       case 'y':
3902       case 'f':
3903       case 'c':
3904       case 'l':
3905       case 'x':
3906         return C_RegisterClass;
3907       case 'R':
3908         return C_Memory;
3909     }
3910   }
3911 
3912   if (Constraint == "ZC")
3913     return C_Memory;
3914 
3915   return TargetLowering::getConstraintType(Constraint);
3916 }
3917 
3918 /// Examine constraint type and operand type and determine a weight value.
3919 /// This object must already have been set up with the operand type
3920 /// and the current alternative constraint selected.
3921 TargetLowering::ConstraintWeight
3922 MipsTargetLowering::getSingleConstraintMatchWeight(
3923     AsmOperandInfo &info, const char *constraint) const {
3924   ConstraintWeight weight = CW_Invalid;
3925   Value *CallOperandVal = info.CallOperandVal;
3926     // If we don't have a value, we can't do a match,
3927     // but allow it at the lowest weight.
3928   if (!CallOperandVal)
3929     return CW_Default;
3930   Type *type = CallOperandVal->getType();
3931   // Look at the constraint type.
3932   switch (*constraint) {
3933   default:
3934     weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint);
3935     break;
3936   case 'd':
3937   case 'y':
3938     if (type->isIntegerTy())
3939       weight = CW_Register;
3940     break;
3941   case 'f': // FPU or MSA register
3942     if (Subtarget.hasMSA() && type->isVectorTy() &&
3943         cast<VectorType>(type)->getBitWidth() == 128)
3944       weight = CW_Register;
3945     else if (type->isFloatTy())
3946       weight = CW_Register;
3947     break;
3948   case 'c': // $25 for indirect jumps
3949   case 'l': // lo register
3950   case 'x': // hilo register pair
3951     if (type->isIntegerTy())
3952       weight = CW_SpecificReg;
3953     break;
3954   case 'I': // signed 16 bit immediate
3955   case 'J': // integer zero
3956   case 'K': // unsigned 16 bit immediate
3957   case 'L': // signed 32 bit immediate where lower 16 bits are 0
3958   case 'N': // immediate in the range of -65535 to -1 (inclusive)
3959   case 'O': // signed 15 bit immediate (+- 16383)
3960   case 'P': // immediate in the range of 65535 to 1 (inclusive)
3961     if (isa<ConstantInt>(CallOperandVal))
3962       weight = CW_Constant;
3963     break;
3964   case 'R':
3965     weight = CW_Memory;
3966     break;
3967   }
3968   return weight;
3969 }
3970 
3971 /// This is a helper function to parse a physical register string and split it
3972 /// into non-numeric and numeric parts (Prefix and Reg). The first boolean flag
3973 /// that is returned indicates whether parsing was successful. The second flag
3974 /// is true if the numeric part exists.
3975 static std::pair<bool, bool> parsePhysicalReg(StringRef C, StringRef &Prefix,
3976                                               unsigned long long &Reg) {
3977   if (C.front() != '{' || C.back() != '}')
3978     return std::make_pair(false, false);
3979 
3980   // Search for the first numeric character.
3981   StringRef::const_iterator I, B = C.begin() + 1, E = C.end() - 1;
3982   I = std::find_if(B, E, isdigit);
3983 
3984   Prefix = StringRef(B, I - B);
3985 
3986   // The second flag is set to false if no numeric characters were found.
3987   if (I == E)
3988     return std::make_pair(true, false);
3989 
3990   // Parse the numeric characters.
3991   return std::make_pair(!getAsUnsignedInteger(StringRef(I, E - I), 10, Reg),
3992                         true);
3993 }
3994 
3995 EVT MipsTargetLowering::getTypeForExtReturn(LLVMContext &Context, EVT VT,
3996                                             ISD::NodeType) const {
3997   bool Cond = !Subtarget.isABI_O32() && VT.getSizeInBits() == 32;
3998   EVT MinVT = getRegisterType(Context, Cond ? MVT::i64 : MVT::i32);
3999   return VT.bitsLT(MinVT) ? MinVT : VT;
4000 }
4001 
4002 std::pair<unsigned, const TargetRegisterClass *> MipsTargetLowering::
4003 parseRegForInlineAsmConstraint(StringRef C, MVT VT) const {
4004   const TargetRegisterInfo *TRI =
4005       Subtarget.getRegisterInfo();
4006   const TargetRegisterClass *RC;
4007   StringRef Prefix;
4008   unsigned long long Reg;
4009 
4010   std::pair<bool, bool> R = parsePhysicalReg(C, Prefix, Reg);
4011 
4012   if (!R.first)
4013     return std::make_pair(0U, nullptr);
4014 
4015   if ((Prefix == "hi" || Prefix == "lo")) { // Parse hi/lo.
4016     // No numeric characters follow "hi" or "lo".
4017     if (R.second)
4018       return std::make_pair(0U, nullptr);
4019 
4020     RC = TRI->getRegClass(Prefix == "hi" ?
4021                           Mips::HI32RegClassID : Mips::LO32RegClassID);
4022     return std::make_pair(*(RC->begin()), RC);
4023   } else if (Prefix.startswith("$msa")) {
4024     // Parse $msa(ir|csr|access|save|modify|request|map|unmap)
4025 
4026     // No numeric characters follow the name.
4027     if (R.second)
4028       return std::make_pair(0U, nullptr);
4029 
4030     Reg = StringSwitch<unsigned long long>(Prefix)
4031               .Case("$msair", Mips::MSAIR)
4032               .Case("$msacsr", Mips::MSACSR)
4033               .Case("$msaaccess", Mips::MSAAccess)
4034               .Case("$msasave", Mips::MSASave)
4035               .Case("$msamodify", Mips::MSAModify)
4036               .Case("$msarequest", Mips::MSARequest)
4037               .Case("$msamap", Mips::MSAMap)
4038               .Case("$msaunmap", Mips::MSAUnmap)
4039               .Default(0);
4040 
4041     if (!Reg)
4042       return std::make_pair(0U, nullptr);
4043 
4044     RC = TRI->getRegClass(Mips::MSACtrlRegClassID);
4045     return std::make_pair(Reg, RC);
4046   }
4047 
4048   if (!R.second)
4049     return std::make_pair(0U, nullptr);
4050 
4051   if (Prefix == "$f") { // Parse $f0-$f31.
4052     // If the size of FP registers is 64-bit or Reg is an even number, select
4053     // the 64-bit register class. Otherwise, select the 32-bit register class.
4054     if (VT == MVT::Other)
4055       VT = (Subtarget.isFP64bit() || !(Reg % 2)) ? MVT::f64 : MVT::f32;
4056 
4057     RC = getRegClassFor(VT);
4058 
4059     if (RC == &Mips::AFGR64RegClass) {
4060       assert(Reg % 2 == 0);
4061       Reg >>= 1;
4062     }
4063   } else if (Prefix == "$fcc") // Parse $fcc0-$fcc7.
4064     RC = TRI->getRegClass(Mips::FCCRegClassID);
4065   else if (Prefix == "$w") { // Parse $w0-$w31.
4066     RC = getRegClassFor((VT == MVT::Other) ? MVT::v16i8 : VT);
4067   } else { // Parse $0-$31.
4068     assert(Prefix == "$");
4069     RC = getRegClassFor((VT == MVT::Other) ? MVT::i32 : VT);
4070   }
4071 
4072   assert(Reg < RC->getNumRegs());
4073   return std::make_pair(*(RC->begin() + Reg), RC);
4074 }
4075 
4076 /// Given a register class constraint, like 'r', if this corresponds directly
4077 /// to an LLVM register class, return a register of 0 and the register class
4078 /// pointer.
4079 std::pair<unsigned, const TargetRegisterClass *>
4080 MipsTargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI,
4081                                                  StringRef Constraint,
4082                                                  MVT VT) const {
4083   if (Constraint.size() == 1) {
4084     switch (Constraint[0]) {
4085     case 'd': // Address register. Same as 'r' unless generating MIPS16 code.
4086     case 'y': // Same as 'r'. Exists for compatibility.
4087     case 'r':
4088       if (VT == MVT::i32 || VT == MVT::i16 || VT == MVT::i8) {
4089         if (Subtarget.inMips16Mode())
4090           return std::make_pair(0U, &Mips::CPU16RegsRegClass);
4091         return std::make_pair(0U, &Mips::GPR32RegClass);
4092       }
4093       if (VT == MVT::i64 && !Subtarget.isGP64bit())
4094         return std::make_pair(0U, &Mips::GPR32RegClass);
4095       if (VT == MVT::i64 && Subtarget.isGP64bit())
4096         return std::make_pair(0U, &Mips::GPR64RegClass);
4097       // This will generate an error message
4098       return std::make_pair(0U, nullptr);
4099     case 'f': // FPU or MSA register
4100       if (VT == MVT::v16i8)
4101         return std::make_pair(0U, &Mips::MSA128BRegClass);
4102       else if (VT == MVT::v8i16 || VT == MVT::v8f16)
4103         return std::make_pair(0U, &Mips::MSA128HRegClass);
4104       else if (VT == MVT::v4i32 || VT == MVT::v4f32)
4105         return std::make_pair(0U, &Mips::MSA128WRegClass);
4106       else if (VT == MVT::v2i64 || VT == MVT::v2f64)
4107         return std::make_pair(0U, &Mips::MSA128DRegClass);
4108       else if (VT == MVT::f32)
4109         return std::make_pair(0U, &Mips::FGR32RegClass);
4110       else if ((VT == MVT::f64) && (!Subtarget.isSingleFloat())) {
4111         if (Subtarget.isFP64bit())
4112           return std::make_pair(0U, &Mips::FGR64RegClass);
4113         return std::make_pair(0U, &Mips::AFGR64RegClass);
4114       }
4115       break;
4116     case 'c': // register suitable for indirect jump
4117       if (VT == MVT::i32)
4118         return std::make_pair((unsigned)Mips::T9, &Mips::GPR32RegClass);
4119       if (VT == MVT::i64)
4120         return std::make_pair((unsigned)Mips::T9_64, &Mips::GPR64RegClass);
4121       // This will generate an error message
4122       return std::make_pair(0U, nullptr);
4123     case 'l': // use the `lo` register to store values
4124               // that are no bigger than a word
4125       if (VT == MVT::i32 || VT == MVT::i16 || VT == MVT::i8)
4126         return std::make_pair((unsigned)Mips::LO0, &Mips::LO32RegClass);
4127       return std::make_pair((unsigned)Mips::LO0_64, &Mips::LO64RegClass);
4128     case 'x': // use the concatenated `hi` and `lo` registers
4129               // to store doubleword values
4130       // Fixme: Not triggering the use of both hi and low
4131       // This will generate an error message
4132       return std::make_pair(0U, nullptr);
4133     }
4134   }
4135 
4136   if (!Constraint.empty()) {
4137     std::pair<unsigned, const TargetRegisterClass *> R;
4138     R = parseRegForInlineAsmConstraint(Constraint, VT);
4139 
4140     if (R.second)
4141       return R;
4142   }
4143 
4144   return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT);
4145 }
4146 
4147 /// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
4148 /// vector.  If it is invalid, don't add anything to Ops.
4149 void MipsTargetLowering::LowerAsmOperandForConstraint(SDValue Op,
4150                                                      std::string &Constraint,
4151                                                      std::vector<SDValue>&Ops,
4152                                                      SelectionDAG &DAG) const {
4153   SDLoc DL(Op);
4154   SDValue Result;
4155 
4156   // Only support length 1 constraints for now.
4157   if (Constraint.length() > 1) return;
4158 
4159   char ConstraintLetter = Constraint[0];
4160   switch (ConstraintLetter) {
4161   default: break; // This will fall through to the generic implementation
4162   case 'I': // Signed 16 bit constant
4163     // If this fails, the parent routine will give an error
4164     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
4165       EVT Type = Op.getValueType();
4166       int64_t Val = C->getSExtValue();
4167       if (isInt<16>(Val)) {
4168         Result = DAG.getTargetConstant(Val, DL, Type);
4169         break;
4170       }
4171     }
4172     return;
4173   case 'J': // integer zero
4174     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
4175       EVT Type = Op.getValueType();
4176       int64_t Val = C->getZExtValue();
4177       if (Val == 0) {
4178         Result = DAG.getTargetConstant(0, DL, Type);
4179         break;
4180       }
4181     }
4182     return;
4183   case 'K': // unsigned 16 bit immediate
4184     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
4185       EVT Type = Op.getValueType();
4186       uint64_t Val = (uint64_t)C->getZExtValue();
4187       if (isUInt<16>(Val)) {
4188         Result = DAG.getTargetConstant(Val, DL, Type);
4189         break;
4190       }
4191     }
4192     return;
4193   case 'L': // signed 32 bit immediate where lower 16 bits are 0
4194     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
4195       EVT Type = Op.getValueType();
4196       int64_t Val = C->getSExtValue();
4197       if ((isInt<32>(Val)) && ((Val & 0xffff) == 0)){
4198         Result = DAG.getTargetConstant(Val, DL, Type);
4199         break;
4200       }
4201     }
4202     return;
4203   case 'N': // immediate in the range of -65535 to -1 (inclusive)
4204     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
4205       EVT Type = Op.getValueType();
4206       int64_t Val = C->getSExtValue();
4207       if ((Val >= -65535) && (Val <= -1)) {
4208         Result = DAG.getTargetConstant(Val, DL, Type);
4209         break;
4210       }
4211     }
4212     return;
4213   case 'O': // signed 15 bit immediate
4214     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
4215       EVT Type = Op.getValueType();
4216       int64_t Val = C->getSExtValue();
4217       if ((isInt<15>(Val))) {
4218         Result = DAG.getTargetConstant(Val, DL, Type);
4219         break;
4220       }
4221     }
4222     return;
4223   case 'P': // immediate in the range of 1 to 65535 (inclusive)
4224     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
4225       EVT Type = Op.getValueType();
4226       int64_t Val = C->getSExtValue();
4227       if ((Val <= 65535) && (Val >= 1)) {
4228         Result = DAG.getTargetConstant(Val, DL, Type);
4229         break;
4230       }
4231     }
4232     return;
4233   }
4234 
4235   if (Result.getNode()) {
4236     Ops.push_back(Result);
4237     return;
4238   }
4239 
4240   TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
4241 }
4242 
4243 bool MipsTargetLowering::isLegalAddressingMode(const DataLayout &DL,
4244                                                const AddrMode &AM, Type *Ty,
4245                                                unsigned AS,
4246                                                Instruction *I) const {
4247   // No global is ever allowed as a base.
4248   if (AM.BaseGV)
4249     return false;
4250 
4251   switch (AM.Scale) {
4252   case 0: // "r+i" or just "i", depending on HasBaseReg.
4253     break;
4254   case 1:
4255     if (!AM.HasBaseReg) // allow "r+i".
4256       break;
4257     return false; // disallow "r+r" or "r+r+i".
4258   default:
4259     return false;
4260   }
4261 
4262   return true;
4263 }
4264 
4265 bool
4266 MipsTargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const {
4267   // The Mips target isn't yet aware of offsets.
4268   return false;
4269 }
4270 
4271 EVT MipsTargetLowering::getOptimalMemOpType(
4272     uint64_t Size, unsigned DstAlign, unsigned SrcAlign, bool IsMemset,
4273     bool ZeroMemset, bool MemcpyStrSrc,
4274     const AttributeList &FuncAttributes) const {
4275   if (Subtarget.hasMips64())
4276     return MVT::i64;
4277 
4278   return MVT::i32;
4279 }
4280 
4281 bool MipsTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT,
4282                                       bool ForCodeSize) const {
4283   if (VT != MVT::f32 && VT != MVT::f64)
4284     return false;
4285   if (Imm.isNegZero())
4286     return false;
4287   return Imm.isZero();
4288 }
4289 
4290 unsigned MipsTargetLowering::getJumpTableEncoding() const {
4291 
4292   // FIXME: For space reasons this should be: EK_GPRel32BlockAddress.
4293   if (ABI.IsN64() && isPositionIndependent())
4294     return MachineJumpTableInfo::EK_GPRel64BlockAddress;
4295 
4296   return TargetLowering::getJumpTableEncoding();
4297 }
4298 
4299 bool MipsTargetLowering::useSoftFloat() const {
4300   return Subtarget.useSoftFloat();
4301 }
4302 
4303 void MipsTargetLowering::copyByValRegs(
4304     SDValue Chain, const SDLoc &DL, std::vector<SDValue> &OutChains,
4305     SelectionDAG &DAG, const ISD::ArgFlagsTy &Flags,
4306     SmallVectorImpl<SDValue> &InVals, const Argument *FuncArg,
4307     unsigned FirstReg, unsigned LastReg, const CCValAssign &VA,
4308     MipsCCState &State) const {
4309   MachineFunction &MF = DAG.getMachineFunction();
4310   MachineFrameInfo &MFI = MF.getFrameInfo();
4311   unsigned GPRSizeInBytes = Subtarget.getGPRSizeInBytes();
4312   unsigned NumRegs = LastReg - FirstReg;
4313   unsigned RegAreaSize = NumRegs * GPRSizeInBytes;
4314   unsigned FrameObjSize = std::max(Flags.getByValSize(), RegAreaSize);
4315   int FrameObjOffset;
4316   ArrayRef<MCPhysReg> ByValArgRegs = ABI.GetByValArgRegs();
4317 
4318   if (RegAreaSize)
4319     FrameObjOffset =
4320         (int)ABI.GetCalleeAllocdArgSizeInBytes(State.getCallingConv()) -
4321         (int)((ByValArgRegs.size() - FirstReg) * GPRSizeInBytes);
4322   else
4323     FrameObjOffset = VA.getLocMemOffset();
4324 
4325   // Create frame object.
4326   EVT PtrTy = getPointerTy(DAG.getDataLayout());
4327   // Make the fixed object stored to mutable so that the load instructions
4328   // referencing it have their memory dependencies added.
4329   // Set the frame object as isAliased which clears the underlying objects
4330   // vector in ScheduleDAGInstrs::buildSchedGraph() resulting in addition of all
4331   // stores as dependencies for loads referencing this fixed object.
4332   int FI = MFI.CreateFixedObject(FrameObjSize, FrameObjOffset, false, true);
4333   SDValue FIN = DAG.getFrameIndex(FI, PtrTy);
4334   InVals.push_back(FIN);
4335 
4336   if (!NumRegs)
4337     return;
4338 
4339   // Copy arg registers.
4340   MVT RegTy = MVT::getIntegerVT(GPRSizeInBytes * 8);
4341   const TargetRegisterClass *RC = getRegClassFor(RegTy);
4342 
4343   for (unsigned I = 0; I < NumRegs; ++I) {
4344     unsigned ArgReg = ByValArgRegs[FirstReg + I];
4345     unsigned VReg = addLiveIn(MF, ArgReg, RC);
4346     unsigned Offset = I * GPRSizeInBytes;
4347     SDValue StorePtr = DAG.getNode(ISD::ADD, DL, PtrTy, FIN,
4348                                    DAG.getConstant(Offset, DL, PtrTy));
4349     SDValue Store = DAG.getStore(Chain, DL, DAG.getRegister(VReg, RegTy),
4350                                  StorePtr, MachinePointerInfo(FuncArg, Offset));
4351     OutChains.push_back(Store);
4352   }
4353 }
4354 
4355 // Copy byVal arg to registers and stack.
4356 void MipsTargetLowering::passByValArg(
4357     SDValue Chain, const SDLoc &DL,
4358     std::deque<std::pair<unsigned, SDValue>> &RegsToPass,
4359     SmallVectorImpl<SDValue> &MemOpChains, SDValue StackPtr,
4360     MachineFrameInfo &MFI, SelectionDAG &DAG, SDValue Arg, unsigned FirstReg,
4361     unsigned LastReg, const ISD::ArgFlagsTy &Flags, bool isLittle,
4362     const CCValAssign &VA) const {
4363   unsigned ByValSizeInBytes = Flags.getByValSize();
4364   unsigned OffsetInBytes = 0; // From beginning of struct
4365   unsigned RegSizeInBytes = Subtarget.getGPRSizeInBytes();
4366   unsigned Alignment = std::min(Flags.getByValAlign(), RegSizeInBytes);
4367   EVT PtrTy = getPointerTy(DAG.getDataLayout()),
4368       RegTy = MVT::getIntegerVT(RegSizeInBytes * 8);
4369   unsigned NumRegs = LastReg - FirstReg;
4370 
4371   if (NumRegs) {
4372     ArrayRef<MCPhysReg> ArgRegs = ABI.GetByValArgRegs();
4373     bool LeftoverBytes = (NumRegs * RegSizeInBytes > ByValSizeInBytes);
4374     unsigned I = 0;
4375 
4376     // Copy words to registers.
4377     for (; I < NumRegs - LeftoverBytes; ++I, OffsetInBytes += RegSizeInBytes) {
4378       SDValue LoadPtr = DAG.getNode(ISD::ADD, DL, PtrTy, Arg,
4379                                     DAG.getConstant(OffsetInBytes, DL, PtrTy));
4380       SDValue LoadVal = DAG.getLoad(RegTy, DL, Chain, LoadPtr,
4381                                     MachinePointerInfo(), Alignment);
4382       MemOpChains.push_back(LoadVal.getValue(1));
4383       unsigned ArgReg = ArgRegs[FirstReg + I];
4384       RegsToPass.push_back(std::make_pair(ArgReg, LoadVal));
4385     }
4386 
4387     // Return if the struct has been fully copied.
4388     if (ByValSizeInBytes == OffsetInBytes)
4389       return;
4390 
4391     // Copy the remainder of the byval argument with sub-word loads and shifts.
4392     if (LeftoverBytes) {
4393       SDValue Val;
4394 
4395       for (unsigned LoadSizeInBytes = RegSizeInBytes / 2, TotalBytesLoaded = 0;
4396            OffsetInBytes < ByValSizeInBytes; LoadSizeInBytes /= 2) {
4397         unsigned RemainingSizeInBytes = ByValSizeInBytes - OffsetInBytes;
4398 
4399         if (RemainingSizeInBytes < LoadSizeInBytes)
4400           continue;
4401 
4402         // Load subword.
4403         SDValue LoadPtr = DAG.getNode(ISD::ADD, DL, PtrTy, Arg,
4404                                       DAG.getConstant(OffsetInBytes, DL,
4405                                                       PtrTy));
4406         SDValue LoadVal = DAG.getExtLoad(
4407             ISD::ZEXTLOAD, DL, RegTy, Chain, LoadPtr, MachinePointerInfo(),
4408             MVT::getIntegerVT(LoadSizeInBytes * 8), Alignment);
4409         MemOpChains.push_back(LoadVal.getValue(1));
4410 
4411         // Shift the loaded value.
4412         unsigned Shamt;
4413 
4414         if (isLittle)
4415           Shamt = TotalBytesLoaded * 8;
4416         else
4417           Shamt = (RegSizeInBytes - (TotalBytesLoaded + LoadSizeInBytes)) * 8;
4418 
4419         SDValue Shift = DAG.getNode(ISD::SHL, DL, RegTy, LoadVal,
4420                                     DAG.getConstant(Shamt, DL, MVT::i32));
4421 
4422         if (Val.getNode())
4423           Val = DAG.getNode(ISD::OR, DL, RegTy, Val, Shift);
4424         else
4425           Val = Shift;
4426 
4427         OffsetInBytes += LoadSizeInBytes;
4428         TotalBytesLoaded += LoadSizeInBytes;
4429         Alignment = std::min(Alignment, LoadSizeInBytes);
4430       }
4431 
4432       unsigned ArgReg = ArgRegs[FirstReg + I];
4433       RegsToPass.push_back(std::make_pair(ArgReg, Val));
4434       return;
4435     }
4436   }
4437 
4438   // Copy remainder of byval arg to it with memcpy.
4439   unsigned MemCpySize = ByValSizeInBytes - OffsetInBytes;
4440   SDValue Src = DAG.getNode(ISD::ADD, DL, PtrTy, Arg,
4441                             DAG.getConstant(OffsetInBytes, DL, PtrTy));
4442   SDValue Dst = DAG.getNode(ISD::ADD, DL, PtrTy, StackPtr,
4443                             DAG.getIntPtrConstant(VA.getLocMemOffset(), DL));
4444   Chain = DAG.getMemcpy(Chain, DL, Dst, Src,
4445                         DAG.getConstant(MemCpySize, DL, PtrTy),
4446                         Alignment, /*isVolatile=*/false, /*AlwaysInline=*/false,
4447                         /*isTailCall=*/false,
4448                         MachinePointerInfo(), MachinePointerInfo());
4449   MemOpChains.push_back(Chain);
4450 }
4451 
4452 void MipsTargetLowering::writeVarArgRegs(std::vector<SDValue> &OutChains,
4453                                          SDValue Chain, const SDLoc &DL,
4454                                          SelectionDAG &DAG,
4455                                          CCState &State) const {
4456   ArrayRef<MCPhysReg> ArgRegs = ABI.GetVarArgRegs();
4457   unsigned Idx = State.getFirstUnallocated(ArgRegs);
4458   unsigned RegSizeInBytes = Subtarget.getGPRSizeInBytes();
4459   MVT RegTy = MVT::getIntegerVT(RegSizeInBytes * 8);
4460   const TargetRegisterClass *RC = getRegClassFor(RegTy);
4461   MachineFunction &MF = DAG.getMachineFunction();
4462   MachineFrameInfo &MFI = MF.getFrameInfo();
4463   MipsFunctionInfo *MipsFI = MF.getInfo<MipsFunctionInfo>();
4464 
4465   // Offset of the first variable argument from stack pointer.
4466   int VaArgOffset;
4467 
4468   if (ArgRegs.size() == Idx)
4469     VaArgOffset = alignTo(State.getNextStackOffset(), RegSizeInBytes);
4470   else {
4471     VaArgOffset =
4472         (int)ABI.GetCalleeAllocdArgSizeInBytes(State.getCallingConv()) -
4473         (int)(RegSizeInBytes * (ArgRegs.size() - Idx));
4474   }
4475 
4476   // Record the frame index of the first variable argument
4477   // which is a value necessary to VASTART.
4478   int FI = MFI.CreateFixedObject(RegSizeInBytes, VaArgOffset, true);
4479   MipsFI->setVarArgsFrameIndex(FI);
4480 
4481   // Copy the integer registers that have not been used for argument passing
4482   // to the argument register save area. For O32, the save area is allocated
4483   // in the caller's stack frame, while for N32/64, it is allocated in the
4484   // callee's stack frame.
4485   for (unsigned I = Idx; I < ArgRegs.size();
4486        ++I, VaArgOffset += RegSizeInBytes) {
4487     unsigned Reg = addLiveIn(MF, ArgRegs[I], RC);
4488     SDValue ArgValue = DAG.getCopyFromReg(Chain, DL, Reg, RegTy);
4489     FI = MFI.CreateFixedObject(RegSizeInBytes, VaArgOffset, true);
4490     SDValue PtrOff = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout()));
4491     SDValue Store =
4492         DAG.getStore(Chain, DL, ArgValue, PtrOff, MachinePointerInfo());
4493     cast<StoreSDNode>(Store.getNode())->getMemOperand()->setValue(
4494         (Value *)nullptr);
4495     OutChains.push_back(Store);
4496   }
4497 }
4498 
4499 void MipsTargetLowering::HandleByVal(CCState *State, unsigned &Size,
4500                                      unsigned Align) const {
4501   const TargetFrameLowering *TFL = Subtarget.getFrameLowering();
4502 
4503   assert(Size && "Byval argument's size shouldn't be 0.");
4504 
4505   Align = std::min(Align, TFL->getStackAlignment());
4506 
4507   unsigned FirstReg = 0;
4508   unsigned NumRegs = 0;
4509 
4510   if (State->getCallingConv() != CallingConv::Fast) {
4511     unsigned RegSizeInBytes = Subtarget.getGPRSizeInBytes();
4512     ArrayRef<MCPhysReg> IntArgRegs = ABI.GetByValArgRegs();
4513     // FIXME: The O32 case actually describes no shadow registers.
4514     const MCPhysReg *ShadowRegs =
4515         ABI.IsO32() ? IntArgRegs.data() : Mips64DPRegs;
4516 
4517     // We used to check the size as well but we can't do that anymore since
4518     // CCState::HandleByVal() rounds up the size after calling this function.
4519     assert(!(Align % RegSizeInBytes) &&
4520            "Byval argument's alignment should be a multiple of"
4521            "RegSizeInBytes.");
4522 
4523     FirstReg = State->getFirstUnallocated(IntArgRegs);
4524 
4525     // If Align > RegSizeInBytes, the first arg register must be even.
4526     // FIXME: This condition happens to do the right thing but it's not the
4527     //        right way to test it. We want to check that the stack frame offset
4528     //        of the register is aligned.
4529     if ((Align > RegSizeInBytes) && (FirstReg % 2)) {
4530       State->AllocateReg(IntArgRegs[FirstReg], ShadowRegs[FirstReg]);
4531       ++FirstReg;
4532     }
4533 
4534     // Mark the registers allocated.
4535     Size = alignTo(Size, RegSizeInBytes);
4536     for (unsigned I = FirstReg; Size > 0 && (I < IntArgRegs.size());
4537          Size -= RegSizeInBytes, ++I, ++NumRegs)
4538       State->AllocateReg(IntArgRegs[I], ShadowRegs[I]);
4539   }
4540 
4541   State->addInRegsParamInfo(FirstReg, FirstReg + NumRegs);
4542 }
4543 
4544 MachineBasicBlock *MipsTargetLowering::emitPseudoSELECT(MachineInstr &MI,
4545                                                         MachineBasicBlock *BB,
4546                                                         bool isFPCmp,
4547                                                         unsigned Opc) const {
4548   assert(!(Subtarget.hasMips4() || Subtarget.hasMips32()) &&
4549          "Subtarget already supports SELECT nodes with the use of"
4550          "conditional-move instructions.");
4551 
4552   const TargetInstrInfo *TII =
4553       Subtarget.getInstrInfo();
4554   DebugLoc DL = MI.getDebugLoc();
4555 
4556   // To "insert" a SELECT instruction, we actually have to insert the
4557   // diamond control-flow pattern.  The incoming instruction knows the
4558   // destination vreg to set, the condition code register to branch on, the
4559   // true/false values to select between, and a branch opcode to use.
4560   const BasicBlock *LLVM_BB = BB->getBasicBlock();
4561   MachineFunction::iterator It = ++BB->getIterator();
4562 
4563   //  thisMBB:
4564   //  ...
4565   //   TrueVal = ...
4566   //   setcc r1, r2, r3
4567   //   bNE   r1, r0, copy1MBB
4568   //   fallthrough --> copy0MBB
4569   MachineBasicBlock *thisMBB  = BB;
4570   MachineFunction *F = BB->getParent();
4571   MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB);
4572   MachineBasicBlock *sinkMBB  = F->CreateMachineBasicBlock(LLVM_BB);
4573   F->insert(It, copy0MBB);
4574   F->insert(It, sinkMBB);
4575 
4576   // Transfer the remainder of BB and its successor edges to sinkMBB.
4577   sinkMBB->splice(sinkMBB->begin(), BB,
4578                   std::next(MachineBasicBlock::iterator(MI)), BB->end());
4579   sinkMBB->transferSuccessorsAndUpdatePHIs(BB);
4580 
4581   // Next, add the true and fallthrough blocks as its successors.
4582   BB->addSuccessor(copy0MBB);
4583   BB->addSuccessor(sinkMBB);
4584 
4585   if (isFPCmp) {
4586     // bc1[tf] cc, sinkMBB
4587     BuildMI(BB, DL, TII->get(Opc))
4588         .addReg(MI.getOperand(1).getReg())
4589         .addMBB(sinkMBB);
4590   } else {
4591     // bne rs, $0, sinkMBB
4592     BuildMI(BB, DL, TII->get(Opc))
4593         .addReg(MI.getOperand(1).getReg())
4594         .addReg(Mips::ZERO)
4595         .addMBB(sinkMBB);
4596   }
4597 
4598   //  copy0MBB:
4599   //   %FalseValue = ...
4600   //   # fallthrough to sinkMBB
4601   BB = copy0MBB;
4602 
4603   // Update machine-CFG edges
4604   BB->addSuccessor(sinkMBB);
4605 
4606   //  sinkMBB:
4607   //   %Result = phi [ %TrueValue, thisMBB ], [ %FalseValue, copy0MBB ]
4608   //  ...
4609   BB = sinkMBB;
4610 
4611   BuildMI(*BB, BB->begin(), DL, TII->get(Mips::PHI), MI.getOperand(0).getReg())
4612       .addReg(MI.getOperand(2).getReg())
4613       .addMBB(thisMBB)
4614       .addReg(MI.getOperand(3).getReg())
4615       .addMBB(copy0MBB);
4616 
4617   MI.eraseFromParent(); // The pseudo instruction is gone now.
4618 
4619   return BB;
4620 }
4621 
4622 MachineBasicBlock *
4623 MipsTargetLowering::emitPseudoD_SELECT(MachineInstr &MI,
4624                                        MachineBasicBlock *BB) const {
4625   assert(!(Subtarget.hasMips4() || Subtarget.hasMips32()) &&
4626          "Subtarget already supports SELECT nodes with the use of"
4627          "conditional-move instructions.");
4628 
4629   const TargetInstrInfo *TII = Subtarget.getInstrInfo();
4630   DebugLoc DL = MI.getDebugLoc();
4631 
4632   // D_SELECT substitutes two SELECT nodes that goes one after another and
4633   // have the same condition operand. On machines which don't have
4634   // conditional-move instruction, it reduces unnecessary branch instructions
4635   // which are result of using two diamond patterns that are result of two
4636   // SELECT pseudo instructions.
4637   const BasicBlock *LLVM_BB = BB->getBasicBlock();
4638   MachineFunction::iterator It = ++BB->getIterator();
4639 
4640   //  thisMBB:
4641   //  ...
4642   //   TrueVal = ...
4643   //   setcc r1, r2, r3
4644   //   bNE   r1, r0, copy1MBB
4645   //   fallthrough --> copy0MBB
4646   MachineBasicBlock *thisMBB = BB;
4647   MachineFunction *F = BB->getParent();
4648   MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB);
4649   MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB);
4650   F->insert(It, copy0MBB);
4651   F->insert(It, sinkMBB);
4652 
4653   // Transfer the remainder of BB and its successor edges to sinkMBB.
4654   sinkMBB->splice(sinkMBB->begin(), BB,
4655                   std::next(MachineBasicBlock::iterator(MI)), BB->end());
4656   sinkMBB->transferSuccessorsAndUpdatePHIs(BB);
4657 
4658   // Next, add the true and fallthrough blocks as its successors.
4659   BB->addSuccessor(copy0MBB);
4660   BB->addSuccessor(sinkMBB);
4661 
4662   // bne rs, $0, sinkMBB
4663   BuildMI(BB, DL, TII->get(Mips::BNE))
4664       .addReg(MI.getOperand(2).getReg())
4665       .addReg(Mips::ZERO)
4666       .addMBB(sinkMBB);
4667 
4668   //  copy0MBB:
4669   //   %FalseValue = ...
4670   //   # fallthrough to sinkMBB
4671   BB = copy0MBB;
4672 
4673   // Update machine-CFG edges
4674   BB->addSuccessor(sinkMBB);
4675 
4676   //  sinkMBB:
4677   //   %Result = phi [ %TrueValue, thisMBB ], [ %FalseValue, copy0MBB ]
4678   //  ...
4679   BB = sinkMBB;
4680 
4681   // Use two PHI nodes to select two reults
4682   BuildMI(*BB, BB->begin(), DL, TII->get(Mips::PHI), MI.getOperand(0).getReg())
4683       .addReg(MI.getOperand(3).getReg())
4684       .addMBB(thisMBB)
4685       .addReg(MI.getOperand(5).getReg())
4686       .addMBB(copy0MBB);
4687   BuildMI(*BB, BB->begin(), DL, TII->get(Mips::PHI), MI.getOperand(1).getReg())
4688       .addReg(MI.getOperand(4).getReg())
4689       .addMBB(thisMBB)
4690       .addReg(MI.getOperand(6).getReg())
4691       .addMBB(copy0MBB);
4692 
4693   MI.eraseFromParent(); // The pseudo instruction is gone now.
4694 
4695   return BB;
4696 }
4697 
4698 // FIXME? Maybe this could be a TableGen attribute on some registers and
4699 // this table could be generated automatically from RegInfo.
4700 Register
4701 MipsTargetLowering::getRegisterByName(const char *RegName, LLT VT,
4702                                       const MachineFunction &MF) const {
4703   // Named registers is expected to be fairly rare. For now, just support $28
4704   // since the linux kernel uses it.
4705   if (Subtarget.isGP64bit()) {
4706     Register Reg = StringSwitch<Register>(RegName)
4707                          .Case("$28", Mips::GP_64)
4708                          .Default(Register());
4709     if (Reg)
4710       return Reg;
4711   } else {
4712     Register Reg = StringSwitch<Register>(RegName)
4713                          .Case("$28", Mips::GP)
4714                          .Default(Register());
4715     if (Reg)
4716       return Reg;
4717   }
4718   report_fatal_error("Invalid register name global variable");
4719 }
4720