1 //===- MipsLegalizerInfo.cpp ------------------------------------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 /// \file
9 /// This file implements the targeting of the Machinelegalizer class for Mips.
10 /// \todo This should be generated by TableGen.
11 //===----------------------------------------------------------------------===//
12 
13 #include "MipsLegalizerInfo.h"
14 #include "MipsTargetMachine.h"
15 #include "llvm/CodeGen/GlobalISel/LegalizerHelper.h"
16 #include "llvm/IR/IntrinsicsMips.h"
17 
18 using namespace llvm;
19 
20 struct TypesAndMemOps {
21   LLT ValTy;
22   LLT PtrTy;
23   unsigned MemSize;
24   bool SystemSupportsUnalignedAccess;
25 };
26 
27 // Assumes power of 2 memory size. Subtargets that have only naturally-aligned
28 // memory access need to perform additional legalization here.
29 static bool isUnalignedMemmoryAccess(uint64_t MemSize, uint64_t AlignInBits) {
30   assert(isPowerOf2_64(MemSize) && "Expected power of 2 memory size");
31   assert(isPowerOf2_64(AlignInBits) && "Expected power of 2 align");
32   if (MemSize > AlignInBits)
33     return true;
34   return false;
35 }
36 
37 static bool
38 CheckTy0Ty1MemSizeAlign(const LegalityQuery &Query,
39                         std::initializer_list<TypesAndMemOps> SupportedValues) {
40   unsigned QueryMemSize = Query.MMODescrs[0].MemoryTy.getSizeInBits();
41 
42   // Non power of two memory access is never legal.
43   if (!isPowerOf2_64(QueryMemSize))
44     return false;
45 
46   for (auto &Val : SupportedValues) {
47     if (Val.ValTy != Query.Types[0])
48       continue;
49     if (Val.PtrTy != Query.Types[1])
50       continue;
51     if (Val.MemSize != QueryMemSize)
52       continue;
53     if (!Val.SystemSupportsUnalignedAccess &&
54         isUnalignedMemmoryAccess(QueryMemSize, Query.MMODescrs[0].AlignInBits))
55       return false;
56     return true;
57   }
58   return false;
59 }
60 
61 static bool CheckTyN(unsigned N, const LegalityQuery &Query,
62                      std::initializer_list<LLT> SupportedValues) {
63   return llvm::is_contained(SupportedValues, Query.Types[N]);
64 }
65 
66 MipsLegalizerInfo::MipsLegalizerInfo(const MipsSubtarget &ST) {
67   using namespace TargetOpcode;
68 
69   const LLT s1 = LLT::scalar(1);
70   const LLT s8 = LLT::scalar(8);
71   const LLT s16 = LLT::scalar(16);
72   const LLT s32 = LLT::scalar(32);
73   const LLT s64 = LLT::scalar(64);
74   const LLT v16s8 = LLT::fixed_vector(16, 8);
75   const LLT v8s16 = LLT::fixed_vector(8, 16);
76   const LLT v4s32 = LLT::fixed_vector(4, 32);
77   const LLT v2s64 = LLT::fixed_vector(2, 64);
78   const LLT p0 = LLT::pointer(0, 32);
79 
80   getActionDefinitionsBuilder({G_ADD, G_SUB, G_MUL})
81       .legalIf([=, &ST](const LegalityQuery &Query) {
82         if (CheckTyN(0, Query, {s32}))
83           return true;
84         if (ST.hasMSA() && CheckTyN(0, Query, {v16s8, v8s16, v4s32, v2s64}))
85           return true;
86         return false;
87       })
88       .clampScalar(0, s32, s32);
89 
90   getActionDefinitionsBuilder({G_UADDO, G_UADDE, G_USUBO, G_USUBE, G_UMULO})
91       .lowerFor({{s32, s1}});
92 
93   getActionDefinitionsBuilder(G_UMULH)
94       .legalFor({s32})
95       .maxScalar(0, s32);
96 
97   // MIPS32r6 does not have alignment restrictions for memory access.
98   // For MIPS32r5 and older memory access must be naturally-aligned i.e. aligned
99   // to at least a multiple of its own size. There is however a two instruction
100   // combination that performs 4 byte unaligned access (lwr/lwl and swl/swr)
101   // therefore 4 byte load and store are legal and will use NoAlignRequirements.
102   bool NoAlignRequirements = true;
103 
104   getActionDefinitionsBuilder({G_LOAD, G_STORE})
105       .legalIf([=, &ST](const LegalityQuery &Query) {
106         if (CheckTy0Ty1MemSizeAlign(
107                 Query, {{s32, p0, 8, NoAlignRequirements},
108                         {s32, p0, 16, ST.systemSupportsUnalignedAccess()},
109                         {s32, p0, 32, NoAlignRequirements},
110                         {p0, p0, 32, NoAlignRequirements},
111                         {s64, p0, 64, ST.systemSupportsUnalignedAccess()}}))
112           return true;
113         if (ST.hasMSA() && CheckTy0Ty1MemSizeAlign(
114                                Query, {{v16s8, p0, 128, NoAlignRequirements},
115                                        {v8s16, p0, 128, NoAlignRequirements},
116                                        {v4s32, p0, 128, NoAlignRequirements},
117                                        {v2s64, p0, 128, NoAlignRequirements}}))
118           return true;
119         return false;
120       })
121       // Custom lower scalar memory access, up to 8 bytes, for:
122       // - non-power-of-2 MemSizes
123       // - unaligned 2 or 8 byte MemSizes for MIPS32r5 and older
124       .customIf([=, &ST](const LegalityQuery &Query) {
125         if (!Query.Types[0].isScalar() || Query.Types[1] != p0 ||
126             Query.Types[0] == s1)
127           return false;
128 
129         unsigned Size = Query.Types[0].getSizeInBits();
130         unsigned QueryMemSize = Query.MMODescrs[0].MemoryTy.getSizeInBits();
131         assert(QueryMemSize <= Size && "Scalar can't hold MemSize");
132 
133         if (Size > 64 || QueryMemSize > 64)
134           return false;
135 
136         if (!isPowerOf2_64(Query.MMODescrs[0].MemoryTy.getSizeInBits()))
137           return true;
138 
139         if (!ST.systemSupportsUnalignedAccess() &&
140             isUnalignedMemmoryAccess(QueryMemSize,
141                                      Query.MMODescrs[0].AlignInBits)) {
142           assert(QueryMemSize != 32 && "4 byte load and store are legal");
143           return true;
144         }
145 
146         return false;
147       })
148       .minScalar(0, s32)
149       .lower();
150 
151   getActionDefinitionsBuilder(G_IMPLICIT_DEF)
152       .legalFor({s32, s64});
153 
154   getActionDefinitionsBuilder(G_UNMERGE_VALUES)
155      .legalFor({{s32, s64}});
156 
157   getActionDefinitionsBuilder(G_MERGE_VALUES)
158      .legalFor({{s64, s32}});
159 
160   getActionDefinitionsBuilder({G_ZEXTLOAD, G_SEXTLOAD})
161       .legalForTypesWithMemDesc({{s32, p0, s8, 8},
162                                  {s32, p0, s16, 8}})
163       .clampScalar(0, s32, s32);
164 
165   getActionDefinitionsBuilder({G_ZEXT, G_SEXT, G_ANYEXT})
166       .legalIf([](const LegalityQuery &Query) { return false; })
167       .maxScalar(0, s32);
168 
169   getActionDefinitionsBuilder(G_TRUNC)
170       .legalIf([](const LegalityQuery &Query) { return false; })
171       .maxScalar(1, s32);
172 
173   getActionDefinitionsBuilder(G_SELECT)
174       .legalForCartesianProduct({p0, s32, s64}, {s32})
175       .minScalar(0, s32)
176       .minScalar(1, s32);
177 
178   getActionDefinitionsBuilder(G_BRCOND)
179       .legalFor({s32})
180       .minScalar(0, s32);
181 
182   getActionDefinitionsBuilder(G_BRJT)
183       .legalFor({{p0, s32}});
184 
185   getActionDefinitionsBuilder(G_BRINDIRECT)
186       .legalFor({p0});
187 
188   getActionDefinitionsBuilder(G_PHI)
189       .legalFor({p0, s32, s64})
190       .minScalar(0, s32);
191 
192   getActionDefinitionsBuilder({G_AND, G_OR, G_XOR})
193       .legalFor({s32})
194       .clampScalar(0, s32, s32);
195 
196   getActionDefinitionsBuilder({G_SDIV, G_SREM, G_UDIV, G_UREM})
197       .legalIf([=, &ST](const LegalityQuery &Query) {
198         if (CheckTyN(0, Query, {s32}))
199           return true;
200         if (ST.hasMSA() && CheckTyN(0, Query, {v16s8, v8s16, v4s32, v2s64}))
201           return true;
202         return false;
203       })
204       .minScalar(0, s32)
205       .libcallFor({s64});
206 
207   getActionDefinitionsBuilder({G_SHL, G_ASHR, G_LSHR})
208       .legalFor({{s32, s32}})
209       .clampScalar(1, s32, s32)
210       .clampScalar(0, s32, s32);
211 
212   getActionDefinitionsBuilder(G_ICMP)
213       .legalForCartesianProduct({s32}, {s32, p0})
214       .clampScalar(1, s32, s32)
215       .minScalar(0, s32);
216 
217   getActionDefinitionsBuilder(G_CONSTANT)
218       .legalFor({s32})
219       .clampScalar(0, s32, s32);
220 
221   getActionDefinitionsBuilder({G_PTR_ADD, G_INTTOPTR})
222       .legalFor({{p0, s32}});
223 
224   getActionDefinitionsBuilder(G_PTRTOINT)
225       .legalFor({{s32, p0}});
226 
227   getActionDefinitionsBuilder(G_FRAME_INDEX)
228       .legalFor({p0});
229 
230   getActionDefinitionsBuilder({G_GLOBAL_VALUE, G_JUMP_TABLE})
231       .legalFor({p0});
232 
233   getActionDefinitionsBuilder(G_DYN_STACKALLOC)
234       .lowerFor({{p0, s32}});
235 
236   getActionDefinitionsBuilder(G_VASTART)
237      .legalFor({p0});
238 
239   getActionDefinitionsBuilder(G_BSWAP)
240       .legalIf([=, &ST](const LegalityQuery &Query) {
241         if (ST.hasMips32r2() && CheckTyN(0, Query, {s32}))
242           return true;
243         return false;
244       })
245       .lowerIf([=, &ST](const LegalityQuery &Query) {
246         if (!ST.hasMips32r2() && CheckTyN(0, Query, {s32}))
247           return true;
248         return false;
249       })
250       .maxScalar(0, s32);
251 
252   getActionDefinitionsBuilder(G_BITREVERSE)
253       .lowerFor({s32})
254       .maxScalar(0, s32);
255 
256   getActionDefinitionsBuilder(G_CTLZ)
257       .legalFor({{s32, s32}})
258       .maxScalar(0, s32)
259       .maxScalar(1, s32);
260   getActionDefinitionsBuilder(G_CTLZ_ZERO_UNDEF)
261       .lowerFor({{s32, s32}});
262 
263   getActionDefinitionsBuilder(G_CTTZ)
264       .lowerFor({{s32, s32}})
265       .maxScalar(0, s32)
266       .maxScalar(1, s32);
267   getActionDefinitionsBuilder(G_CTTZ_ZERO_UNDEF)
268       .lowerFor({{s32, s32}, {s64, s64}});
269 
270   getActionDefinitionsBuilder(G_CTPOP)
271       .lowerFor({{s32, s32}})
272       .clampScalar(0, s32, s32)
273       .clampScalar(1, s32, s32);
274 
275   // FP instructions
276   getActionDefinitionsBuilder(G_FCONSTANT)
277       .legalFor({s32, s64});
278 
279   getActionDefinitionsBuilder({G_FADD, G_FSUB, G_FMUL, G_FDIV, G_FABS, G_FSQRT})
280       .legalIf([=, &ST](const LegalityQuery &Query) {
281         if (CheckTyN(0, Query, {s32, s64}))
282           return true;
283         if (ST.hasMSA() && CheckTyN(0, Query, {v16s8, v8s16, v4s32, v2s64}))
284           return true;
285         return false;
286       });
287 
288   getActionDefinitionsBuilder(G_FCMP)
289       .legalFor({{s32, s32}, {s32, s64}})
290       .minScalar(0, s32);
291 
292   getActionDefinitionsBuilder({G_FCEIL, G_FFLOOR})
293       .libcallFor({s32, s64});
294 
295   getActionDefinitionsBuilder(G_FPEXT)
296       .legalFor({{s64, s32}});
297 
298   getActionDefinitionsBuilder(G_FPTRUNC)
299       .legalFor({{s32, s64}});
300 
301   // FP to int conversion instructions
302   getActionDefinitionsBuilder(G_FPTOSI)
303       .legalForCartesianProduct({s32}, {s64, s32})
304       .libcallForCartesianProduct({s64}, {s64, s32})
305       .minScalar(0, s32);
306 
307   getActionDefinitionsBuilder(G_FPTOUI)
308       .libcallForCartesianProduct({s64}, {s64, s32})
309       .lowerForCartesianProduct({s32}, {s64, s32})
310       .minScalar(0, s32);
311 
312   // Int to FP conversion instructions
313   getActionDefinitionsBuilder(G_SITOFP)
314       .legalForCartesianProduct({s64, s32}, {s32})
315       .libcallForCartesianProduct({s64, s32}, {s64})
316       .minScalar(1, s32);
317 
318   getActionDefinitionsBuilder(G_UITOFP)
319       .libcallForCartesianProduct({s64, s32}, {s64})
320       .customForCartesianProduct({s64, s32}, {s32})
321       .minScalar(1, s32);
322 
323   getActionDefinitionsBuilder(G_SEXT_INREG).lower();
324 
325   getActionDefinitionsBuilder({G_MEMCPY, G_MEMMOVE, G_MEMSET}).libcall();
326 
327   getLegacyLegalizerInfo().computeTables();
328   verify(*ST.getInstrInfo());
329 }
330 
331 bool MipsLegalizerInfo::legalizeCustom(LegalizerHelper &Helper,
332                                        MachineInstr &MI) const {
333   using namespace TargetOpcode;
334 
335   MachineIRBuilder &MIRBuilder = Helper.MIRBuilder;
336   MachineRegisterInfo &MRI = *MIRBuilder.getMRI();
337 
338   const LLT s32 = LLT::scalar(32);
339   const LLT s64 = LLT::scalar(64);
340 
341   switch (MI.getOpcode()) {
342   case G_LOAD:
343   case G_STORE: {
344     unsigned MemSize = (**MI.memoperands_begin()).getSize();
345     Register Val = MI.getOperand(0).getReg();
346     unsigned Size = MRI.getType(Val).getSizeInBits();
347 
348     MachineMemOperand *MMOBase = *MI.memoperands_begin();
349 
350     assert(MemSize <= 8 && "MemSize is too large");
351     assert(Size <= 64 && "Scalar size is too large");
352 
353     // Split MemSize into two, P2HalfMemSize is largest power of two smaller
354     // then MemSize. e.g. 8 = 4 + 4 , 6 = 4 + 2, 3 = 2 + 1.
355     unsigned P2HalfMemSize, RemMemSize;
356     if (isPowerOf2_64(MemSize)) {
357       P2HalfMemSize = RemMemSize = MemSize / 2;
358     } else {
359       P2HalfMemSize = 1 << Log2_32(MemSize);
360       RemMemSize = MemSize - P2HalfMemSize;
361     }
362 
363     Register BaseAddr = MI.getOperand(1).getReg();
364     LLT PtrTy = MRI.getType(BaseAddr);
365     MachineFunction &MF = MIRBuilder.getMF();
366 
367     auto P2HalfMemOp = MF.getMachineMemOperand(MMOBase, 0, P2HalfMemSize);
368     auto RemMemOp = MF.getMachineMemOperand(MMOBase, P2HalfMemSize, RemMemSize);
369 
370     if (MI.getOpcode() == G_STORE) {
371       // Widen Val to s32 or s64 in order to create legal G_LSHR or G_UNMERGE.
372       if (Size < 32)
373         Val = MIRBuilder.buildAnyExt(s32, Val).getReg(0);
374       if (Size > 32 && Size < 64)
375         Val = MIRBuilder.buildAnyExt(s64, Val).getReg(0);
376 
377       auto C_P2HalfMemSize = MIRBuilder.buildConstant(s32, P2HalfMemSize);
378       auto Addr = MIRBuilder.buildPtrAdd(PtrTy, BaseAddr, C_P2HalfMemSize);
379 
380       if (MI.getOpcode() == G_STORE && MemSize <= 4) {
381         MIRBuilder.buildStore(Val, BaseAddr, *P2HalfMemOp);
382         auto C_P2Half_InBits = MIRBuilder.buildConstant(s32, P2HalfMemSize * 8);
383         auto Shift = MIRBuilder.buildLShr(s32, Val, C_P2Half_InBits);
384         MIRBuilder.buildStore(Shift, Addr, *RemMemOp);
385       } else {
386         auto Unmerge = MIRBuilder.buildUnmerge(s32, Val);
387         MIRBuilder.buildStore(Unmerge.getReg(0), BaseAddr, *P2HalfMemOp);
388         MIRBuilder.buildStore(Unmerge.getReg(1), Addr, *RemMemOp);
389       }
390     }
391 
392     if (MI.getOpcode() == G_LOAD) {
393 
394       if (MemSize <= 4) {
395         // This is anyextending load, use 4 byte lwr/lwl.
396         auto *Load4MMO = MF.getMachineMemOperand(MMOBase, 0, 4);
397 
398         if (Size == 32)
399           MIRBuilder.buildLoad(Val, BaseAddr, *Load4MMO);
400         else {
401           auto Load = MIRBuilder.buildLoad(s32, BaseAddr, *Load4MMO);
402           MIRBuilder.buildTrunc(Val, Load.getReg(0));
403         }
404 
405       } else {
406         auto C_P2HalfMemSize = MIRBuilder.buildConstant(s32, P2HalfMemSize);
407         auto Addr = MIRBuilder.buildPtrAdd(PtrTy, BaseAddr, C_P2HalfMemSize);
408 
409         auto Load_P2Half = MIRBuilder.buildLoad(s32, BaseAddr, *P2HalfMemOp);
410         auto Load_Rem = MIRBuilder.buildLoad(s32, Addr, *RemMemOp);
411 
412         if (Size == 64)
413           MIRBuilder.buildMerge(Val, {Load_P2Half, Load_Rem});
414         else {
415           auto Merge = MIRBuilder.buildMerge(s64, {Load_P2Half, Load_Rem});
416           MIRBuilder.buildTrunc(Val, Merge);
417         }
418       }
419     }
420     MI.eraseFromParent();
421     break;
422   }
423   case G_UITOFP: {
424     Register Dst = MI.getOperand(0).getReg();
425     Register Src = MI.getOperand(1).getReg();
426     LLT DstTy = MRI.getType(Dst);
427     LLT SrcTy = MRI.getType(Src);
428 
429     if (SrcTy != s32)
430       return false;
431     if (DstTy != s32 && DstTy != s64)
432       return false;
433 
434     // Let 0xABCDEFGH be given unsigned in MI.getOperand(1). First let's convert
435     // unsigned to double. Mantissa has 52 bits so we use following trick:
436     // First make floating point bit mask 0x43300000ABCDEFGH.
437     // Mask represents 2^52 * 0x1.00000ABCDEFGH i.e. 0x100000ABCDEFGH.0 .
438     // Next, subtract  2^52 * 0x1.0000000000000 i.e. 0x10000000000000.0 from it.
439     // Done. Trunc double to float if needed.
440 
441     auto C_HiMask = MIRBuilder.buildConstant(s32, UINT32_C(0x43300000));
442     auto Bitcast = MIRBuilder.buildMerge(s64, {Src, C_HiMask.getReg(0)});
443 
444     MachineInstrBuilder TwoP52FP = MIRBuilder.buildFConstant(
445         s64, BitsToDouble(UINT64_C(0x4330000000000000)));
446 
447     if (DstTy == s64)
448       MIRBuilder.buildFSub(Dst, Bitcast, TwoP52FP);
449     else {
450       MachineInstrBuilder ResF64 = MIRBuilder.buildFSub(s64, Bitcast, TwoP52FP);
451       MIRBuilder.buildFPTrunc(Dst, ResF64);
452     }
453 
454     MI.eraseFromParent();
455     break;
456   }
457   default:
458     return false;
459   }
460 
461   return true;
462 }
463 
464 static bool SelectMSA3OpIntrinsic(MachineInstr &MI, unsigned Opcode,
465                                   MachineIRBuilder &MIRBuilder,
466                                   const MipsSubtarget &ST) {
467   assert(ST.hasMSA() && "MSA intrinsic not supported on target without MSA.");
468   if (!MIRBuilder.buildInstr(Opcode)
469            .add(MI.getOperand(0))
470            .add(MI.getOperand(2))
471            .add(MI.getOperand(3))
472            .constrainAllUses(MIRBuilder.getTII(), *ST.getRegisterInfo(),
473                              *ST.getRegBankInfo()))
474     return false;
475   MI.eraseFromParent();
476   return true;
477 }
478 
479 static bool MSA3OpIntrinsicToGeneric(MachineInstr &MI, unsigned Opcode,
480                                      MachineIRBuilder &MIRBuilder,
481                                      const MipsSubtarget &ST) {
482   assert(ST.hasMSA() && "MSA intrinsic not supported on target without MSA.");
483   MIRBuilder.buildInstr(Opcode)
484       .add(MI.getOperand(0))
485       .add(MI.getOperand(2))
486       .add(MI.getOperand(3));
487   MI.eraseFromParent();
488   return true;
489 }
490 
491 static bool MSA2OpIntrinsicToGeneric(MachineInstr &MI, unsigned Opcode,
492                                      MachineIRBuilder &MIRBuilder,
493                                      const MipsSubtarget &ST) {
494   assert(ST.hasMSA() && "MSA intrinsic not supported on target without MSA.");
495   MIRBuilder.buildInstr(Opcode)
496       .add(MI.getOperand(0))
497       .add(MI.getOperand(2));
498   MI.eraseFromParent();
499   return true;
500 }
501 
502 bool MipsLegalizerInfo::legalizeIntrinsic(LegalizerHelper &Helper,
503                                           MachineInstr &MI) const {
504   MachineIRBuilder &MIRBuilder = Helper.MIRBuilder;
505   const MipsSubtarget &ST =
506       static_cast<const MipsSubtarget &>(MI.getMF()->getSubtarget());
507   const MipsInstrInfo &TII = *ST.getInstrInfo();
508   const MipsRegisterInfo &TRI = *ST.getRegisterInfo();
509   const RegisterBankInfo &RBI = *ST.getRegBankInfo();
510 
511   switch (MI.getIntrinsicID()) {
512   case Intrinsic::trap: {
513     MachineInstr *Trap = MIRBuilder.buildInstr(Mips::TRAP);
514     MI.eraseFromParent();
515     return constrainSelectedInstRegOperands(*Trap, TII, TRI, RBI);
516   }
517   case Intrinsic::vacopy: {
518     MachinePointerInfo MPO;
519     LLT PtrTy = LLT::pointer(0, 32);
520     auto Tmp =
521         MIRBuilder.buildLoad(PtrTy, MI.getOperand(2),
522                              *MI.getMF()->getMachineMemOperand(
523                                  MPO, MachineMemOperand::MOLoad, PtrTy, Align(4)));
524     MIRBuilder.buildStore(Tmp, MI.getOperand(1),
525                           *MI.getMF()->getMachineMemOperand(
526                               MPO, MachineMemOperand::MOStore, PtrTy, Align(4)));
527     MI.eraseFromParent();
528     return true;
529   }
530   case Intrinsic::mips_addv_b:
531   case Intrinsic::mips_addv_h:
532   case Intrinsic::mips_addv_w:
533   case Intrinsic::mips_addv_d:
534     return MSA3OpIntrinsicToGeneric(MI, TargetOpcode::G_ADD, MIRBuilder, ST);
535   case Intrinsic::mips_addvi_b:
536     return SelectMSA3OpIntrinsic(MI, Mips::ADDVI_B, MIRBuilder, ST);
537   case Intrinsic::mips_addvi_h:
538     return SelectMSA3OpIntrinsic(MI, Mips::ADDVI_H, MIRBuilder, ST);
539   case Intrinsic::mips_addvi_w:
540     return SelectMSA3OpIntrinsic(MI, Mips::ADDVI_W, MIRBuilder, ST);
541   case Intrinsic::mips_addvi_d:
542     return SelectMSA3OpIntrinsic(MI, Mips::ADDVI_D, MIRBuilder, ST);
543   case Intrinsic::mips_subv_b:
544   case Intrinsic::mips_subv_h:
545   case Intrinsic::mips_subv_w:
546   case Intrinsic::mips_subv_d:
547     return MSA3OpIntrinsicToGeneric(MI, TargetOpcode::G_SUB, MIRBuilder, ST);
548   case Intrinsic::mips_subvi_b:
549     return SelectMSA3OpIntrinsic(MI, Mips::SUBVI_B, MIRBuilder, ST);
550   case Intrinsic::mips_subvi_h:
551     return SelectMSA3OpIntrinsic(MI, Mips::SUBVI_H, MIRBuilder, ST);
552   case Intrinsic::mips_subvi_w:
553     return SelectMSA3OpIntrinsic(MI, Mips::SUBVI_W, MIRBuilder, ST);
554   case Intrinsic::mips_subvi_d:
555     return SelectMSA3OpIntrinsic(MI, Mips::SUBVI_D, MIRBuilder, ST);
556   case Intrinsic::mips_mulv_b:
557   case Intrinsic::mips_mulv_h:
558   case Intrinsic::mips_mulv_w:
559   case Intrinsic::mips_mulv_d:
560     return MSA3OpIntrinsicToGeneric(MI, TargetOpcode::G_MUL, MIRBuilder, ST);
561   case Intrinsic::mips_div_s_b:
562   case Intrinsic::mips_div_s_h:
563   case Intrinsic::mips_div_s_w:
564   case Intrinsic::mips_div_s_d:
565     return MSA3OpIntrinsicToGeneric(MI, TargetOpcode::G_SDIV, MIRBuilder, ST);
566   case Intrinsic::mips_mod_s_b:
567   case Intrinsic::mips_mod_s_h:
568   case Intrinsic::mips_mod_s_w:
569   case Intrinsic::mips_mod_s_d:
570     return MSA3OpIntrinsicToGeneric(MI, TargetOpcode::G_SREM, MIRBuilder, ST);
571   case Intrinsic::mips_div_u_b:
572   case Intrinsic::mips_div_u_h:
573   case Intrinsic::mips_div_u_w:
574   case Intrinsic::mips_div_u_d:
575     return MSA3OpIntrinsicToGeneric(MI, TargetOpcode::G_UDIV, MIRBuilder, ST);
576   case Intrinsic::mips_mod_u_b:
577   case Intrinsic::mips_mod_u_h:
578   case Intrinsic::mips_mod_u_w:
579   case Intrinsic::mips_mod_u_d:
580     return MSA3OpIntrinsicToGeneric(MI, TargetOpcode::G_UREM, MIRBuilder, ST);
581   case Intrinsic::mips_fadd_w:
582   case Intrinsic::mips_fadd_d:
583     return MSA3OpIntrinsicToGeneric(MI, TargetOpcode::G_FADD, MIRBuilder, ST);
584   case Intrinsic::mips_fsub_w:
585   case Intrinsic::mips_fsub_d:
586     return MSA3OpIntrinsicToGeneric(MI, TargetOpcode::G_FSUB, MIRBuilder, ST);
587   case Intrinsic::mips_fmul_w:
588   case Intrinsic::mips_fmul_d:
589     return MSA3OpIntrinsicToGeneric(MI, TargetOpcode::G_FMUL, MIRBuilder, ST);
590   case Intrinsic::mips_fdiv_w:
591   case Intrinsic::mips_fdiv_d:
592     return MSA3OpIntrinsicToGeneric(MI, TargetOpcode::G_FDIV, MIRBuilder, ST);
593   case Intrinsic::mips_fmax_a_w:
594     return SelectMSA3OpIntrinsic(MI, Mips::FMAX_A_W, MIRBuilder, ST);
595   case Intrinsic::mips_fmax_a_d:
596     return SelectMSA3OpIntrinsic(MI, Mips::FMAX_A_D, MIRBuilder, ST);
597   case Intrinsic::mips_fsqrt_w:
598     return MSA2OpIntrinsicToGeneric(MI, TargetOpcode::G_FSQRT, MIRBuilder, ST);
599   case Intrinsic::mips_fsqrt_d:
600     return MSA2OpIntrinsicToGeneric(MI, TargetOpcode::G_FSQRT, MIRBuilder, ST);
601   default:
602     break;
603   }
604   return true;
605 }
606