1 //===-- MipsSEISelDAGToDAG.cpp - A Dag to Dag Inst Selector for MipsSE ----===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // Subclass of MipsDAGToDAGISel specialized for mips32/64.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "MipsSEISelDAGToDAG.h"
14 #include "MCTargetDesc/MipsBaseInfo.h"
15 #include "Mips.h"
16 #include "MipsAnalyzeImmediate.h"
17 #include "MipsMachineFunction.h"
18 #include "MipsRegisterInfo.h"
19 #include "llvm/CodeGen/MachineConstantPool.h"
20 #include "llvm/CodeGen/MachineFrameInfo.h"
21 #include "llvm/CodeGen/MachineFunction.h"
22 #include "llvm/CodeGen/MachineInstrBuilder.h"
23 #include "llvm/CodeGen/MachineRegisterInfo.h"
24 #include "llvm/CodeGen/SelectionDAGNodes.h"
25 #include "llvm/IR/CFG.h"
26 #include "llvm/IR/Dominators.h"
27 #include "llvm/IR/GlobalValue.h"
28 #include "llvm/IR/Instructions.h"
29 #include "llvm/IR/Intrinsics.h"
30 #include "llvm/IR/IntrinsicsMips.h"
31 #include "llvm/IR/Type.h"
32 #include "llvm/Support/Debug.h"
33 #include "llvm/Support/ErrorHandling.h"
34 #include "llvm/Support/raw_ostream.h"
35 #include "llvm/Target/TargetMachine.h"
36 using namespace llvm;
37 
38 #define DEBUG_TYPE "mips-isel"
39 
40 bool MipsSEDAGToDAGISel::runOnMachineFunction(MachineFunction &MF) {
41   Subtarget = &MF.getSubtarget<MipsSubtarget>();
42   if (Subtarget->inMips16Mode())
43     return false;
44   return MipsDAGToDAGISel::runOnMachineFunction(MF);
45 }
46 
47 void MipsSEDAGToDAGISel::getAnalysisUsage(AnalysisUsage &AU) const {
48   AU.addRequired<DominatorTreeWrapperPass>();
49   SelectionDAGISel::getAnalysisUsage(AU);
50 }
51 
52 void MipsSEDAGToDAGISel::addDSPCtrlRegOperands(bool IsDef, MachineInstr &MI,
53                                                MachineFunction &MF) {
54   MachineInstrBuilder MIB(MF, &MI);
55   unsigned Mask = MI.getOperand(1).getImm();
56   unsigned Flag =
57       IsDef ? RegState::ImplicitDefine : RegState::Implicit | RegState::Undef;
58 
59   if (Mask & 1)
60     MIB.addReg(Mips::DSPPos, Flag);
61 
62   if (Mask & 2)
63     MIB.addReg(Mips::DSPSCount, Flag);
64 
65   if (Mask & 4)
66     MIB.addReg(Mips::DSPCarry, Flag);
67 
68   if (Mask & 8)
69     MIB.addReg(Mips::DSPOutFlag, Flag);
70 
71   if (Mask & 16)
72     MIB.addReg(Mips::DSPCCond, Flag);
73 
74   if (Mask & 32)
75     MIB.addReg(Mips::DSPEFI, Flag);
76 }
77 
78 unsigned MipsSEDAGToDAGISel::getMSACtrlReg(const SDValue RegIdx) const {
79   uint64_t RegNum = cast<ConstantSDNode>(RegIdx)->getZExtValue();
80   return Mips::MSACtrlRegClass.getRegister(RegNum);
81 }
82 
83 bool MipsSEDAGToDAGISel::replaceUsesWithZeroReg(MachineRegisterInfo *MRI,
84                                                 const MachineInstr& MI) {
85   unsigned DstReg = 0, ZeroReg = 0;
86 
87   // Check if MI is "addiu $dst, $zero, 0" or "daddiu $dst, $zero, 0".
88   if ((MI.getOpcode() == Mips::ADDiu) &&
89       (MI.getOperand(1).getReg() == Mips::ZERO) &&
90       (MI.getOperand(2).isImm()) &&
91       (MI.getOperand(2).getImm() == 0)) {
92     DstReg = MI.getOperand(0).getReg();
93     ZeroReg = Mips::ZERO;
94   } else if ((MI.getOpcode() == Mips::DADDiu) &&
95              (MI.getOperand(1).getReg() == Mips::ZERO_64) &&
96              (MI.getOperand(2).isImm()) &&
97              (MI.getOperand(2).getImm() == 0)) {
98     DstReg = MI.getOperand(0).getReg();
99     ZeroReg = Mips::ZERO_64;
100   }
101 
102   if (!DstReg)
103     return false;
104 
105   // Replace uses with ZeroReg.
106   for (MachineRegisterInfo::use_iterator U = MRI->use_begin(DstReg),
107        E = MRI->use_end(); U != E;) {
108     MachineOperand &MO = *U;
109     unsigned OpNo = U.getOperandNo();
110     MachineInstr *MI = MO.getParent();
111     ++U;
112 
113     // Do not replace if it is a phi's operand or is tied to def operand.
114     if (MI->isPHI() || MI->isRegTiedToDefOperand(OpNo) || MI->isPseudo())
115       continue;
116 
117     // Also, we have to check that the register class of the operand
118     // contains the zero register.
119     if (!MRI->getRegClass(MO.getReg())->contains(ZeroReg))
120       continue;
121 
122     MO.setReg(ZeroReg);
123   }
124 
125   return true;
126 }
127 
128 void MipsSEDAGToDAGISel::emitMCountABI(MachineInstr &MI, MachineBasicBlock &MBB,
129                                        MachineFunction &MF) {
130   MachineInstrBuilder MIB(MF, &MI);
131   if (!Subtarget->isABI_O32()) { // N32, N64
132     // Save current return address.
133     BuildMI(MBB, &MI, MI.getDebugLoc(), TII->get(Mips::OR64))
134         .addDef(Mips::AT_64)
135         .addUse(Mips::RA_64, RegState::Undef)
136         .addUse(Mips::ZERO_64);
137     // Stops instruction above from being removed later on.
138     MIB.addUse(Mips::AT_64, RegState::Implicit);
139   } else {  // O32
140     // Save current return address.
141     BuildMI(MBB, &MI, MI.getDebugLoc(), TII->get(Mips::OR))
142         .addDef(Mips::AT)
143         .addUse(Mips::RA, RegState::Undef)
144         .addUse(Mips::ZERO);
145     // _mcount pops 2 words from stack.
146     BuildMI(MBB, &MI, MI.getDebugLoc(), TII->get(Mips::ADDiu))
147         .addDef(Mips::SP)
148         .addUse(Mips::SP)
149         .addImm(-8);
150     // Stops first instruction above from being removed later on.
151     MIB.addUse(Mips::AT, RegState::Implicit);
152   }
153 }
154 
155 void MipsSEDAGToDAGISel::processFunctionAfterISel(MachineFunction &MF) {
156   MF.getInfo<MipsFunctionInfo>()->initGlobalBaseReg(MF);
157 
158   MachineRegisterInfo *MRI = &MF.getRegInfo();
159 
160   for (auto &MBB: MF) {
161     for (auto &MI: MBB) {
162       switch (MI.getOpcode()) {
163       case Mips::RDDSP:
164         addDSPCtrlRegOperands(false, MI, MF);
165         break;
166       case Mips::WRDSP:
167         addDSPCtrlRegOperands(true, MI, MF);
168         break;
169       case Mips::BuildPairF64_64:
170       case Mips::ExtractElementF64_64:
171         if (!Subtarget->useOddSPReg()) {
172           MI.addOperand(MachineOperand::CreateReg(Mips::SP, false, true));
173           break;
174         }
175         [[fallthrough]];
176       case Mips::BuildPairF64:
177       case Mips::ExtractElementF64:
178         if (Subtarget->isABI_FPXX() && !Subtarget->hasMTHC1())
179           MI.addOperand(MachineOperand::CreateReg(Mips::SP, false, true));
180         break;
181       case Mips::JAL:
182       case Mips::JAL_MM:
183         if (MI.getOperand(0).isGlobal() &&
184             MI.getOperand(0).getGlobal()->getGlobalIdentifier() == "_mcount")
185           emitMCountABI(MI, MBB, MF);
186         break;
187       case Mips::JALRPseudo:
188       case Mips::JALR64Pseudo:
189       case Mips::JALR16_MM:
190         if (MI.getOperand(2).isMCSymbol() &&
191             MI.getOperand(2).getMCSymbol()->getName() == "_mcount")
192           emitMCountABI(MI, MBB, MF);
193         break;
194       case Mips::JALR:
195         if (MI.getOperand(3).isMCSymbol() &&
196             MI.getOperand(3).getMCSymbol()->getName() == "_mcount")
197           emitMCountABI(MI, MBB, MF);
198         break;
199       default:
200         replaceUsesWithZeroReg(MRI, MI);
201       }
202     }
203   }
204 }
205 
206 void MipsSEDAGToDAGISel::selectAddE(SDNode *Node, const SDLoc &DL) const {
207   SDValue InGlue = Node->getOperand(2);
208   unsigned Opc = InGlue.getOpcode();
209   SDValue LHS = Node->getOperand(0), RHS = Node->getOperand(1);
210   EVT VT = LHS.getValueType();
211 
212   // In the base case, we can rely on the carry bit from the addsc
213   // instruction.
214   if (Opc == ISD::ADDC) {
215     SDValue Ops[3] = {LHS, RHS, InGlue};
216     CurDAG->SelectNodeTo(Node, Mips::ADDWC, VT, MVT::Glue, Ops);
217     return;
218   }
219 
220   assert(Opc == ISD::ADDE && "ISD::ADDE not in a chain of ADDE nodes!");
221 
222   // The more complex case is when there is a chain of ISD::ADDE nodes like:
223   // (adde (adde (adde (addc a b) c) d) e).
224   //
225   // The addwc instruction does not write to the carry bit, instead it writes
226   // to bit 20 of the dsp control register. To match this series of nodes, each
227   // intermediate adde node must be expanded to write the carry bit before the
228   // addition.
229 
230   // Start by reading the overflow field for addsc and moving the value to the
231   // carry field. The usage of 1 here with MipsISD::RDDSP / Mips::WRDSP
232   // corresponds to reading/writing the entire control register to/from a GPR.
233 
234   SDValue CstOne = CurDAG->getTargetConstant(1, DL, MVT::i32);
235 
236   SDValue OuFlag = CurDAG->getTargetConstant(20, DL, MVT::i32);
237 
238   SDNode *DSPCtrlField = CurDAG->getMachineNode(Mips::RDDSP, DL, MVT::i32,
239                                                 MVT::Glue, CstOne, InGlue);
240 
241   SDNode *Carry = CurDAG->getMachineNode(
242       Mips::EXT, DL, MVT::i32, SDValue(DSPCtrlField, 0), OuFlag, CstOne);
243 
244   SDValue Ops[4] = {SDValue(DSPCtrlField, 0),
245                     CurDAG->getTargetConstant(6, DL, MVT::i32), CstOne,
246                     SDValue(Carry, 0)};
247   SDNode *DSPCFWithCarry = CurDAG->getMachineNode(Mips::INS, DL, MVT::i32, Ops);
248 
249   // My reading of the MIPS DSP 3.01 specification isn't as clear as I
250   // would like about whether bit 20 always gets overwritten by addwc.
251   // Hence take an extremely conservative view and presume it's sticky. We
252   // therefore need to clear it.
253 
254   SDValue Zero = CurDAG->getRegister(Mips::ZERO, MVT::i32);
255 
256   SDValue InsOps[4] = {Zero, OuFlag, CstOne, SDValue(DSPCFWithCarry, 0)};
257   SDNode *DSPCtrlFinal =
258       CurDAG->getMachineNode(Mips::INS, DL, MVT::i32, InsOps);
259 
260   SDNode *WrDSP = CurDAG->getMachineNode(Mips::WRDSP, DL, MVT::Glue,
261                                          SDValue(DSPCtrlFinal, 0), CstOne);
262 
263   SDValue Operands[3] = {LHS, RHS, SDValue(WrDSP, 0)};
264   CurDAG->SelectNodeTo(Node, Mips::ADDWC, VT, MVT::Glue, Operands);
265 }
266 
267 /// Match frameindex
268 bool MipsSEDAGToDAGISel::selectAddrFrameIndex(SDValue Addr, SDValue &Base,
269                                               SDValue &Offset) const {
270   if (FrameIndexSDNode *FIN = dyn_cast<FrameIndexSDNode>(Addr)) {
271     EVT ValTy = Addr.getValueType();
272 
273     Base   = CurDAG->getTargetFrameIndex(FIN->getIndex(), ValTy);
274     Offset = CurDAG->getTargetConstant(0, SDLoc(Addr), ValTy);
275     return true;
276   }
277   return false;
278 }
279 
280 /// Match frameindex+offset and frameindex|offset
281 bool MipsSEDAGToDAGISel::selectAddrFrameIndexOffset(
282     SDValue Addr, SDValue &Base, SDValue &Offset, unsigned OffsetBits,
283     unsigned ShiftAmount = 0) const {
284   if (CurDAG->isBaseWithConstantOffset(Addr)) {
285     auto *CN = cast<ConstantSDNode>(Addr.getOperand(1));
286     if (isIntN(OffsetBits + ShiftAmount, CN->getSExtValue())) {
287       EVT ValTy = Addr.getValueType();
288 
289       // If the first operand is a FI, get the TargetFI Node
290       if (FrameIndexSDNode *FIN =
291               dyn_cast<FrameIndexSDNode>(Addr.getOperand(0)))
292         Base = CurDAG->getTargetFrameIndex(FIN->getIndex(), ValTy);
293       else {
294         Base = Addr.getOperand(0);
295         // If base is a FI, additional offset calculation is done in
296         // eliminateFrameIndex, otherwise we need to check the alignment
297         const Align Alignment(1ULL << ShiftAmount);
298         if (!isAligned(Alignment, CN->getZExtValue()))
299           return false;
300       }
301 
302       Offset = CurDAG->getTargetConstant(CN->getZExtValue(), SDLoc(Addr),
303                                          ValTy);
304       return true;
305     }
306   }
307   return false;
308 }
309 
310 /// ComplexPattern used on MipsInstrInfo
311 /// Used on Mips Load/Store instructions
312 bool MipsSEDAGToDAGISel::selectAddrRegImm(SDValue Addr, SDValue &Base,
313                                           SDValue &Offset) const {
314   // if Address is FI, get the TargetFrameIndex.
315   if (selectAddrFrameIndex(Addr, Base, Offset))
316     return true;
317 
318   // on PIC code Load GA
319   if (Addr.getOpcode() == MipsISD::Wrapper) {
320     Base   = Addr.getOperand(0);
321     Offset = Addr.getOperand(1);
322     return true;
323   }
324 
325   if (!TM.isPositionIndependent()) {
326     if ((Addr.getOpcode() == ISD::TargetExternalSymbol ||
327         Addr.getOpcode() == ISD::TargetGlobalAddress))
328       return false;
329   }
330 
331   // Addresses of the form FI+const or FI|const
332   if (selectAddrFrameIndexOffset(Addr, Base, Offset, 16))
333     return true;
334 
335   // Operand is a result from an ADD.
336   if (Addr.getOpcode() == ISD::ADD) {
337     // When loading from constant pools, load the lower address part in
338     // the instruction itself. Example, instead of:
339     //  lui $2, %hi($CPI1_0)
340     //  addiu $2, $2, %lo($CPI1_0)
341     //  lwc1 $f0, 0($2)
342     // Generate:
343     //  lui $2, %hi($CPI1_0)
344     //  lwc1 $f0, %lo($CPI1_0)($2)
345     if (Addr.getOperand(1).getOpcode() == MipsISD::Lo ||
346         Addr.getOperand(1).getOpcode() == MipsISD::GPRel) {
347       SDValue Opnd0 = Addr.getOperand(1).getOperand(0);
348       if (isa<ConstantPoolSDNode>(Opnd0) || isa<GlobalAddressSDNode>(Opnd0) ||
349           isa<JumpTableSDNode>(Opnd0)) {
350         Base = Addr.getOperand(0);
351         Offset = Opnd0;
352         return true;
353       }
354     }
355   }
356 
357   return false;
358 }
359 
360 /// ComplexPattern used on MipsInstrInfo
361 /// Used on Mips Load/Store instructions
362 bool MipsSEDAGToDAGISel::selectAddrDefault(SDValue Addr, SDValue &Base,
363                                            SDValue &Offset) const {
364   Base = Addr;
365   Offset = CurDAG->getTargetConstant(0, SDLoc(Addr), Addr.getValueType());
366   return true;
367 }
368 
369 bool MipsSEDAGToDAGISel::selectIntAddr(SDValue Addr, SDValue &Base,
370                                        SDValue &Offset) const {
371   return selectAddrRegImm(Addr, Base, Offset) ||
372     selectAddrDefault(Addr, Base, Offset);
373 }
374 
375 bool MipsSEDAGToDAGISel::selectAddrRegImm9(SDValue Addr, SDValue &Base,
376                                            SDValue &Offset) const {
377   if (selectAddrFrameIndex(Addr, Base, Offset))
378     return true;
379 
380   if (selectAddrFrameIndexOffset(Addr, Base, Offset, 9))
381     return true;
382 
383   return false;
384 }
385 
386 /// Used on microMIPS LWC2, LDC2, SWC2 and SDC2 instructions (11-bit offset)
387 bool MipsSEDAGToDAGISel::selectAddrRegImm11(SDValue Addr, SDValue &Base,
388                                             SDValue &Offset) const {
389   if (selectAddrFrameIndex(Addr, Base, Offset))
390     return true;
391 
392   if (selectAddrFrameIndexOffset(Addr, Base, Offset, 11))
393     return true;
394 
395   return false;
396 }
397 
398 /// Used on microMIPS Load/Store unaligned instructions (12-bit offset)
399 bool MipsSEDAGToDAGISel::selectAddrRegImm12(SDValue Addr, SDValue &Base,
400                                             SDValue &Offset) const {
401   if (selectAddrFrameIndex(Addr, Base, Offset))
402     return true;
403 
404   if (selectAddrFrameIndexOffset(Addr, Base, Offset, 12))
405     return true;
406 
407   return false;
408 }
409 
410 bool MipsSEDAGToDAGISel::selectAddrRegImm16(SDValue Addr, SDValue &Base,
411                                             SDValue &Offset) const {
412   if (selectAddrFrameIndex(Addr, Base, Offset))
413     return true;
414 
415   if (selectAddrFrameIndexOffset(Addr, Base, Offset, 16))
416     return true;
417 
418   return false;
419 }
420 
421 bool MipsSEDAGToDAGISel::selectIntAddr11MM(SDValue Addr, SDValue &Base,
422                                          SDValue &Offset) const {
423   return selectAddrRegImm11(Addr, Base, Offset) ||
424     selectAddrDefault(Addr, Base, Offset);
425 }
426 
427 bool MipsSEDAGToDAGISel::selectIntAddr12MM(SDValue Addr, SDValue &Base,
428                                          SDValue &Offset) const {
429   return selectAddrRegImm12(Addr, Base, Offset) ||
430     selectAddrDefault(Addr, Base, Offset);
431 }
432 
433 bool MipsSEDAGToDAGISel::selectIntAddr16MM(SDValue Addr, SDValue &Base,
434                                          SDValue &Offset) const {
435   return selectAddrRegImm16(Addr, Base, Offset) ||
436     selectAddrDefault(Addr, Base, Offset);
437 }
438 
439 bool MipsSEDAGToDAGISel::selectIntAddrLSL2MM(SDValue Addr, SDValue &Base,
440                                              SDValue &Offset) const {
441   if (selectAddrFrameIndexOffset(Addr, Base, Offset, 7)) {
442     if (isa<FrameIndexSDNode>(Base))
443       return false;
444 
445     if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(Offset)) {
446       unsigned CnstOff = CN->getZExtValue();
447       return (CnstOff == (CnstOff & 0x3c));
448     }
449 
450     return false;
451   }
452 
453   // For all other cases where "lw" would be selected, don't select "lw16"
454   // because it would result in additional instructions to prepare operands.
455   if (selectAddrRegImm(Addr, Base, Offset))
456     return false;
457 
458   return selectAddrDefault(Addr, Base, Offset);
459 }
460 
461 bool MipsSEDAGToDAGISel::selectIntAddrSImm10(SDValue Addr, SDValue &Base,
462                                              SDValue &Offset) const {
463 
464   if (selectAddrFrameIndex(Addr, Base, Offset))
465     return true;
466 
467   if (selectAddrFrameIndexOffset(Addr, Base, Offset, 10))
468     return true;
469 
470   return selectAddrDefault(Addr, Base, Offset);
471 }
472 
473 bool MipsSEDAGToDAGISel::selectIntAddrSImm10Lsl1(SDValue Addr, SDValue &Base,
474                                                  SDValue &Offset) const {
475   if (selectAddrFrameIndex(Addr, Base, Offset))
476     return true;
477 
478   if (selectAddrFrameIndexOffset(Addr, Base, Offset, 10, 1))
479     return true;
480 
481   return selectAddrDefault(Addr, Base, Offset);
482 }
483 
484 bool MipsSEDAGToDAGISel::selectIntAddrSImm10Lsl2(SDValue Addr, SDValue &Base,
485                                                  SDValue &Offset) const {
486   if (selectAddrFrameIndex(Addr, Base, Offset))
487     return true;
488 
489   if (selectAddrFrameIndexOffset(Addr, Base, Offset, 10, 2))
490     return true;
491 
492   return selectAddrDefault(Addr, Base, Offset);
493 }
494 
495 bool MipsSEDAGToDAGISel::selectIntAddrSImm10Lsl3(SDValue Addr, SDValue &Base,
496                                                  SDValue &Offset) const {
497   if (selectAddrFrameIndex(Addr, Base, Offset))
498     return true;
499 
500   if (selectAddrFrameIndexOffset(Addr, Base, Offset, 10, 3))
501     return true;
502 
503   return selectAddrDefault(Addr, Base, Offset);
504 }
505 
506 // Select constant vector splats.
507 //
508 // Returns true and sets Imm if:
509 // * MSA is enabled
510 // * N is a ISD::BUILD_VECTOR representing a constant splat
511 bool MipsSEDAGToDAGISel::selectVSplat(SDNode *N, APInt &Imm,
512                                       unsigned MinSizeInBits) const {
513   if (!Subtarget->hasMSA())
514     return false;
515 
516   BuildVectorSDNode *Node = dyn_cast<BuildVectorSDNode>(N);
517 
518   if (!Node)
519     return false;
520 
521   APInt SplatValue, SplatUndef;
522   unsigned SplatBitSize;
523   bool HasAnyUndefs;
524 
525   if (!Node->isConstantSplat(SplatValue, SplatUndef, SplatBitSize, HasAnyUndefs,
526                              MinSizeInBits, !Subtarget->isLittle()))
527     return false;
528 
529   Imm = SplatValue;
530 
531   return true;
532 }
533 
534 // Select constant vector splats.
535 //
536 // In addition to the requirements of selectVSplat(), this function returns
537 // true and sets Imm if:
538 // * The splat value is the same width as the elements of the vector
539 // * The splat value fits in an integer with the specified signed-ness and
540 //   width.
541 //
542 // This function looks through ISD::BITCAST nodes.
543 // TODO: This might not be appropriate for big-endian MSA since BITCAST is
544 //       sometimes a shuffle in big-endian mode.
545 //
546 // It's worth noting that this function is not used as part of the selection
547 // of ldi.[bhwd] since it does not permit using the wrong-typed ldi.[bhwd]
548 // instruction to achieve the desired bit pattern. ldi.[bhwd] is selected in
549 // MipsSEDAGToDAGISel::selectNode.
550 bool MipsSEDAGToDAGISel::
551 selectVSplatCommon(SDValue N, SDValue &Imm, bool Signed,
552                    unsigned ImmBitSize) const {
553   APInt ImmValue;
554   EVT EltTy = N->getValueType(0).getVectorElementType();
555 
556   if (N->getOpcode() == ISD::BITCAST)
557     N = N->getOperand(0);
558 
559   if (selectVSplat(N.getNode(), ImmValue, EltTy.getSizeInBits()) &&
560       ImmValue.getBitWidth() == EltTy.getSizeInBits()) {
561 
562     if (( Signed && ImmValue.isSignedIntN(ImmBitSize)) ||
563         (!Signed && ImmValue.isIntN(ImmBitSize))) {
564       Imm = CurDAG->getTargetConstant(ImmValue, SDLoc(N), EltTy);
565       return true;
566     }
567   }
568 
569   return false;
570 }
571 
572 // Select constant vector splats.
573 bool MipsSEDAGToDAGISel::
574 selectVSplatUimm1(SDValue N, SDValue &Imm) const {
575   return selectVSplatCommon(N, Imm, false, 1);
576 }
577 
578 bool MipsSEDAGToDAGISel::
579 selectVSplatUimm2(SDValue N, SDValue &Imm) const {
580   return selectVSplatCommon(N, Imm, false, 2);
581 }
582 
583 bool MipsSEDAGToDAGISel::
584 selectVSplatUimm3(SDValue N, SDValue &Imm) const {
585   return selectVSplatCommon(N, Imm, false, 3);
586 }
587 
588 // Select constant vector splats.
589 bool MipsSEDAGToDAGISel::
590 selectVSplatUimm4(SDValue N, SDValue &Imm) const {
591   return selectVSplatCommon(N, Imm, false, 4);
592 }
593 
594 // Select constant vector splats.
595 bool MipsSEDAGToDAGISel::
596 selectVSplatUimm5(SDValue N, SDValue &Imm) const {
597   return selectVSplatCommon(N, Imm, false, 5);
598 }
599 
600 // Select constant vector splats.
601 bool MipsSEDAGToDAGISel::
602 selectVSplatUimm6(SDValue N, SDValue &Imm) const {
603   return selectVSplatCommon(N, Imm, false, 6);
604 }
605 
606 // Select constant vector splats.
607 bool MipsSEDAGToDAGISel::
608 selectVSplatUimm8(SDValue N, SDValue &Imm) const {
609   return selectVSplatCommon(N, Imm, false, 8);
610 }
611 
612 // Select constant vector splats.
613 bool MipsSEDAGToDAGISel::
614 selectVSplatSimm5(SDValue N, SDValue &Imm) const {
615   return selectVSplatCommon(N, Imm, true, 5);
616 }
617 
618 // Select constant vector splats whose value is a power of 2.
619 //
620 // In addition to the requirements of selectVSplat(), this function returns
621 // true and sets Imm if:
622 // * The splat value is the same width as the elements of the vector
623 // * The splat value is a power of two.
624 //
625 // This function looks through ISD::BITCAST nodes.
626 // TODO: This might not be appropriate for big-endian MSA since BITCAST is
627 //       sometimes a shuffle in big-endian mode.
628 bool MipsSEDAGToDAGISel::selectVSplatUimmPow2(SDValue N, SDValue &Imm) const {
629   APInt ImmValue;
630   EVT EltTy = N->getValueType(0).getVectorElementType();
631 
632   if (N->getOpcode() == ISD::BITCAST)
633     N = N->getOperand(0);
634 
635   if (selectVSplat(N.getNode(), ImmValue, EltTy.getSizeInBits()) &&
636       ImmValue.getBitWidth() == EltTy.getSizeInBits()) {
637     int32_t Log2 = ImmValue.exactLogBase2();
638 
639     if (Log2 != -1) {
640       Imm = CurDAG->getTargetConstant(Log2, SDLoc(N), EltTy);
641       return true;
642     }
643   }
644 
645   return false;
646 }
647 
648 // Select constant vector splats whose value only has a consecutive sequence
649 // of left-most bits set (e.g. 0b11...1100...00).
650 //
651 // In addition to the requirements of selectVSplat(), this function returns
652 // true and sets Imm if:
653 // * The splat value is the same width as the elements of the vector
654 // * The splat value is a consecutive sequence of left-most bits.
655 //
656 // This function looks through ISD::BITCAST nodes.
657 // TODO: This might not be appropriate for big-endian MSA since BITCAST is
658 //       sometimes a shuffle in big-endian mode.
659 bool MipsSEDAGToDAGISel::selectVSplatMaskL(SDValue N, SDValue &Imm) const {
660   APInt ImmValue;
661   EVT EltTy = N->getValueType(0).getVectorElementType();
662 
663   if (N->getOpcode() == ISD::BITCAST)
664     N = N->getOperand(0);
665 
666   if (selectVSplat(N.getNode(), ImmValue, EltTy.getSizeInBits()) &&
667       ImmValue.getBitWidth() == EltTy.getSizeInBits()) {
668     // Extract the run of set bits starting with bit zero from the bitwise
669     // inverse of ImmValue, and test that the inverse of this is the same
670     // as the original value.
671     if (ImmValue == ~(~ImmValue & ~(~ImmValue + 1))) {
672 
673       Imm = CurDAG->getTargetConstant(ImmValue.popcount() - 1, SDLoc(N), EltTy);
674       return true;
675     }
676   }
677 
678   return false;
679 }
680 
681 // Select constant vector splats whose value only has a consecutive sequence
682 // of right-most bits set (e.g. 0b00...0011...11).
683 //
684 // In addition to the requirements of selectVSplat(), this function returns
685 // true and sets Imm if:
686 // * The splat value is the same width as the elements of the vector
687 // * The splat value is a consecutive sequence of right-most bits.
688 //
689 // This function looks through ISD::BITCAST nodes.
690 // TODO: This might not be appropriate for big-endian MSA since BITCAST is
691 //       sometimes a shuffle in big-endian mode.
692 bool MipsSEDAGToDAGISel::selectVSplatMaskR(SDValue N, SDValue &Imm) const {
693   APInt ImmValue;
694   EVT EltTy = N->getValueType(0).getVectorElementType();
695 
696   if (N->getOpcode() == ISD::BITCAST)
697     N = N->getOperand(0);
698 
699   if (selectVSplat(N.getNode(), ImmValue, EltTy.getSizeInBits()) &&
700       ImmValue.getBitWidth() == EltTy.getSizeInBits()) {
701     // Extract the run of set bits starting with bit zero, and test that the
702     // result is the same as the original value
703     if (ImmValue == (ImmValue & ~(ImmValue + 1))) {
704       Imm = CurDAG->getTargetConstant(ImmValue.popcount() - 1, SDLoc(N), EltTy);
705       return true;
706     }
707   }
708 
709   return false;
710 }
711 
712 bool MipsSEDAGToDAGISel::selectVSplatUimmInvPow2(SDValue N,
713                                                  SDValue &Imm) const {
714   APInt ImmValue;
715   EVT EltTy = N->getValueType(0).getVectorElementType();
716 
717   if (N->getOpcode() == ISD::BITCAST)
718     N = N->getOperand(0);
719 
720   if (selectVSplat(N.getNode(), ImmValue, EltTy.getSizeInBits()) &&
721       ImmValue.getBitWidth() == EltTy.getSizeInBits()) {
722     int32_t Log2 = (~ImmValue).exactLogBase2();
723 
724     if (Log2 != -1) {
725       Imm = CurDAG->getTargetConstant(Log2, SDLoc(N), EltTy);
726       return true;
727     }
728   }
729 
730   return false;
731 }
732 
733 bool MipsSEDAGToDAGISel::trySelect(SDNode *Node) {
734   unsigned Opcode = Node->getOpcode();
735   SDLoc DL(Node);
736 
737   ///
738   // Instruction Selection not handled by the auto-generated
739   // tablegen selection should be handled here.
740   ///
741   switch(Opcode) {
742   default: break;
743 
744   case Mips::PseudoD_SELECT_I:
745   case Mips::PseudoD_SELECT_I64: {
746     MVT VT = Subtarget->isGP64bit() ? MVT::i64 : MVT::i32;
747     SDValue cond = Node->getOperand(0);
748     SDValue Hi1 = Node->getOperand(1);
749     SDValue Lo1 = Node->getOperand(2);
750     SDValue Hi2 = Node->getOperand(3);
751     SDValue Lo2 = Node->getOperand(4);
752 
753     SDValue ops[] = {cond, Hi1, Lo1, Hi2, Lo2};
754     EVT NodeTys[] = {VT, VT};
755     ReplaceNode(Node, CurDAG->getMachineNode(Subtarget->isGP64bit()
756                                                  ? Mips::PseudoD_SELECT_I64
757                                                  : Mips::PseudoD_SELECT_I,
758                                              DL, NodeTys, ops));
759     return true;
760   }
761 
762   case ISD::ADDE: {
763     selectAddE(Node, DL);
764     return true;
765   }
766 
767   case ISD::ConstantFP: {
768     auto *CN = cast<ConstantFPSDNode>(Node);
769     if (Node->getValueType(0) == MVT::f64 && CN->isExactlyValue(+0.0)) {
770       if (Subtarget->isGP64bit()) {
771         SDValue Zero = CurDAG->getCopyFromReg(CurDAG->getEntryNode(), DL,
772                                               Mips::ZERO_64, MVT::i64);
773         ReplaceNode(Node,
774                     CurDAG->getMachineNode(Mips::DMTC1, DL, MVT::f64, Zero));
775       } else if (Subtarget->isFP64bit()) {
776         SDValue Zero = CurDAG->getCopyFromReg(CurDAG->getEntryNode(), DL,
777                                               Mips::ZERO, MVT::i32);
778         ReplaceNode(Node, CurDAG->getMachineNode(Mips::BuildPairF64_64, DL,
779                                                  MVT::f64, Zero, Zero));
780       } else {
781         SDValue Zero = CurDAG->getCopyFromReg(CurDAG->getEntryNode(), DL,
782                                               Mips::ZERO, MVT::i32);
783         ReplaceNode(Node, CurDAG->getMachineNode(Mips::BuildPairF64, DL,
784                                                  MVT::f64, Zero, Zero));
785       }
786       return true;
787     }
788     break;
789   }
790 
791   case ISD::Constant: {
792     auto *CN = cast<ConstantSDNode>(Node);
793     int64_t Imm = CN->getSExtValue();
794     unsigned Size = CN->getValueSizeInBits(0);
795 
796     if (isInt<32>(Imm))
797       break;
798 
799     MipsAnalyzeImmediate AnalyzeImm;
800 
801     const MipsAnalyzeImmediate::InstSeq &Seq =
802       AnalyzeImm.Analyze(Imm, Size, false);
803 
804     MipsAnalyzeImmediate::InstSeq::const_iterator Inst = Seq.begin();
805     SDLoc DL(CN);
806     SDNode *RegOpnd;
807     SDValue ImmOpnd = CurDAG->getTargetConstant(SignExtend64<16>(Inst->ImmOpnd),
808                                                 DL, MVT::i64);
809 
810     // The first instruction can be a LUi which is different from other
811     // instructions (ADDiu, ORI and SLL) in that it does not have a register
812     // operand.
813     if (Inst->Opc == Mips::LUi64)
814       RegOpnd = CurDAG->getMachineNode(Inst->Opc, DL, MVT::i64, ImmOpnd);
815     else
816       RegOpnd =
817         CurDAG->getMachineNode(Inst->Opc, DL, MVT::i64,
818                                CurDAG->getRegister(Mips::ZERO_64, MVT::i64),
819                                ImmOpnd);
820 
821     // The remaining instructions in the sequence are handled here.
822     for (++Inst; Inst != Seq.end(); ++Inst) {
823       ImmOpnd = CurDAG->getTargetConstant(SignExtend64<16>(Inst->ImmOpnd), DL,
824                                           MVT::i64);
825       RegOpnd = CurDAG->getMachineNode(Inst->Opc, DL, MVT::i64,
826                                        SDValue(RegOpnd, 0), ImmOpnd);
827     }
828 
829     ReplaceNode(Node, RegOpnd);
830     return true;
831   }
832 
833   case ISD::INTRINSIC_W_CHAIN: {
834     const unsigned IntrinsicOpcode =
835         cast<ConstantSDNode>(Node->getOperand(1))->getZExtValue();
836     switch (IntrinsicOpcode) {
837     default:
838       break;
839 
840     case Intrinsic::mips_cfcmsa: {
841       SDValue ChainIn = Node->getOperand(0);
842       SDValue RegIdx = Node->getOperand(2);
843       SDValue Reg = CurDAG->getCopyFromReg(ChainIn, DL,
844                                            getMSACtrlReg(RegIdx), MVT::i32);
845       ReplaceNode(Node, Reg.getNode());
846       return true;
847     }
848     case Intrinsic::mips_ldr_d:
849     case Intrinsic::mips_ldr_w: {
850       unsigned Op = (IntrinsicOpcode == Intrinsic::mips_ldr_d) ? Mips::LDR_D
851                                                                : Mips::LDR_W;
852 
853       SDLoc DL(Node);
854       assert(Node->getNumOperands() == 4 && "Unexpected number of operands.");
855       const SDValue &Chain = Node->getOperand(0);
856       const SDValue &Intrinsic = Node->getOperand(1);
857       const SDValue &Pointer = Node->getOperand(2);
858       const SDValue &Constant = Node->getOperand(3);
859 
860       assert(Chain.getValueType() == MVT::Other);
861       (void)Intrinsic;
862       assert(Intrinsic.getOpcode() == ISD::TargetConstant &&
863              Constant.getOpcode() == ISD::Constant &&
864              "Invalid instruction operand.");
865 
866       // Convert Constant to TargetConstant.
867       const ConstantInt *Val =
868           cast<ConstantSDNode>(Constant)->getConstantIntValue();
869       SDValue Imm =
870           CurDAG->getTargetConstant(*Val, DL, Constant.getValueType());
871 
872       SmallVector<SDValue, 3> Ops{Pointer, Imm, Chain};
873 
874       assert(Node->getNumValues() == 2);
875       assert(Node->getValueType(0).is128BitVector());
876       assert(Node->getValueType(1) == MVT::Other);
877       SmallVector<EVT, 2> ResTys{Node->getValueType(0), Node->getValueType(1)};
878 
879       ReplaceNode(Node, CurDAG->getMachineNode(Op, DL, ResTys, Ops));
880 
881       return true;
882     }
883     }
884     break;
885   }
886 
887   case ISD::INTRINSIC_WO_CHAIN: {
888     switch (cast<ConstantSDNode>(Node->getOperand(0))->getZExtValue()) {
889     default:
890       break;
891 
892     case Intrinsic::mips_move_v:
893       // Like an assignment but will always produce a move.v even if
894       // unnecessary.
895       ReplaceNode(Node, CurDAG->getMachineNode(Mips::MOVE_V, DL,
896                                                Node->getValueType(0),
897                                                Node->getOperand(1)));
898       return true;
899     }
900     break;
901   }
902 
903   case ISD::INTRINSIC_VOID: {
904     const unsigned IntrinsicOpcode =
905         cast<ConstantSDNode>(Node->getOperand(1))->getZExtValue();
906     switch (IntrinsicOpcode) {
907     default:
908       break;
909 
910     case Intrinsic::mips_ctcmsa: {
911       SDValue ChainIn = Node->getOperand(0);
912       SDValue RegIdx  = Node->getOperand(2);
913       SDValue Value   = Node->getOperand(3);
914       SDValue ChainOut = CurDAG->getCopyToReg(ChainIn, DL,
915                                               getMSACtrlReg(RegIdx), Value);
916       ReplaceNode(Node, ChainOut.getNode());
917       return true;
918     }
919     case Intrinsic::mips_str_d:
920     case Intrinsic::mips_str_w: {
921       unsigned Op = (IntrinsicOpcode == Intrinsic::mips_str_d) ? Mips::STR_D
922                                                                : Mips::STR_W;
923 
924       SDLoc DL(Node);
925       assert(Node->getNumOperands() == 5 && "Unexpected number of operands.");
926       const SDValue &Chain = Node->getOperand(0);
927       const SDValue &Intrinsic = Node->getOperand(1);
928       const SDValue &Vec = Node->getOperand(2);
929       const SDValue &Pointer = Node->getOperand(3);
930       const SDValue &Constant = Node->getOperand(4);
931 
932       assert(Chain.getValueType() == MVT::Other);
933       (void)Intrinsic;
934       assert(Intrinsic.getOpcode() == ISD::TargetConstant &&
935              Constant.getOpcode() == ISD::Constant &&
936              "Invalid instruction operand.");
937 
938       // Convert Constant to TargetConstant.
939       const ConstantInt *Val =
940           cast<ConstantSDNode>(Constant)->getConstantIntValue();
941       SDValue Imm =
942           CurDAG->getTargetConstant(*Val, DL, Constant.getValueType());
943 
944       SmallVector<SDValue, 4> Ops{Vec, Pointer, Imm, Chain};
945 
946       assert(Node->getNumValues() == 1);
947       assert(Node->getValueType(0) == MVT::Other);
948       SmallVector<EVT, 1> ResTys{Node->getValueType(0)};
949 
950       ReplaceNode(Node, CurDAG->getMachineNode(Op, DL, ResTys, Ops));
951       return true;
952     }
953     }
954     break;
955   }
956 
957   case MipsISD::FAbs: {
958     MVT ResTy = Node->getSimpleValueType(0);
959     assert((ResTy == MVT::f64 || ResTy == MVT::f32) &&
960            "Unsupported float type!");
961     unsigned Opc = 0;
962     if (ResTy == MVT::f64)
963       Opc = (Subtarget->isFP64bit() ? Mips::FABS_D64 : Mips::FABS_D32);
964     else
965       Opc = Mips::FABS_S;
966 
967     if (Subtarget->inMicroMipsMode()) {
968       switch (Opc) {
969       case Mips::FABS_D64:
970         Opc = Mips::FABS_D64_MM;
971         break;
972       case Mips::FABS_D32:
973         Opc = Mips::FABS_D32_MM;
974         break;
975       case Mips::FABS_S:
976         Opc = Mips::FABS_S_MM;
977         break;
978       default:
979         llvm_unreachable("Unknown opcode for MIPS floating point abs!");
980       }
981     }
982 
983     ReplaceNode(Node,
984                 CurDAG->getMachineNode(Opc, DL, ResTy, Node->getOperand(0)));
985 
986     return true;
987   }
988 
989   // Manually match MipsISD::Ins nodes to get the correct instruction. It has
990   // to be done in this fashion so that we respect the differences between
991   // dins and dinsm, as the difference is that the size operand has the range
992   // 0 < size <= 32 for dins while dinsm has the range 2 <= size <= 64 which
993   // means SelectionDAGISel would have to test all the operands at once to
994   // match the instruction.
995   case MipsISD::Ins: {
996 
997     // Validating the node operands.
998     if (Node->getValueType(0) != MVT::i32 && Node->getValueType(0) != MVT::i64)
999       return false;
1000 
1001     if (Node->getNumOperands() != 4)
1002       return false;
1003 
1004     if (Node->getOperand(1)->getOpcode() != ISD::Constant ||
1005         Node->getOperand(2)->getOpcode() != ISD::Constant)
1006       return false;
1007 
1008     MVT ResTy = Node->getSimpleValueType(0);
1009     uint64_t Pos = Node->getConstantOperandVal(1);
1010     uint64_t Size = Node->getConstantOperandVal(2);
1011 
1012     // Size has to be >0 for 'ins', 'dins' and 'dinsu'.
1013     if (!Size)
1014       return false;
1015 
1016     if (Pos + Size > 64)
1017       return false;
1018 
1019     if (ResTy != MVT::i32 && ResTy != MVT::i64)
1020       return false;
1021 
1022     unsigned Opcode = 0;
1023     if (ResTy == MVT::i32) {
1024       if (Pos + Size <= 32)
1025         Opcode = Mips::INS;
1026     } else {
1027       if (Pos + Size <= 32)
1028         Opcode = Mips::DINS;
1029       else if (Pos < 32 && 1 < Size)
1030         Opcode = Mips::DINSM;
1031       else
1032         Opcode = Mips::DINSU;
1033     }
1034 
1035     if (Opcode) {
1036       SDValue Ops[4] = {
1037           Node->getOperand(0), CurDAG->getTargetConstant(Pos, DL, MVT::i32),
1038           CurDAG->getTargetConstant(Size, DL, MVT::i32), Node->getOperand(3)};
1039 
1040       ReplaceNode(Node, CurDAG->getMachineNode(Opcode, DL, ResTy, Ops));
1041       return true;
1042     }
1043 
1044     return false;
1045   }
1046 
1047   case MipsISD::ThreadPointer: {
1048     EVT PtrVT = getTargetLowering()->getPointerTy(CurDAG->getDataLayout());
1049     unsigned RdhwrOpc, DestReg;
1050 
1051     if (PtrVT == MVT::i32) {
1052       RdhwrOpc = Mips::RDHWR;
1053       DestReg = Mips::V1;
1054     } else {
1055       RdhwrOpc = Mips::RDHWR64;
1056       DestReg = Mips::V1_64;
1057     }
1058 
1059     SDNode *Rdhwr =
1060         CurDAG->getMachineNode(RdhwrOpc, DL, Node->getValueType(0), MVT::Glue,
1061                                CurDAG->getRegister(Mips::HWR29, MVT::i32),
1062                                CurDAG->getTargetConstant(0, DL, MVT::i32));
1063     SDValue Chain = CurDAG->getCopyToReg(CurDAG->getEntryNode(), DL, DestReg,
1064                                          SDValue(Rdhwr, 0), SDValue(Rdhwr, 1));
1065     SDValue ResNode = CurDAG->getCopyFromReg(Chain, DL, DestReg, PtrVT,
1066                                              Chain.getValue(1));
1067     ReplaceNode(Node, ResNode.getNode());
1068     return true;
1069   }
1070 
1071   case ISD::BUILD_VECTOR: {
1072     // Select appropriate ldi.[bhwd] instructions for constant splats of
1073     // 128-bit when MSA is enabled. Fixup any register class mismatches that
1074     // occur as a result.
1075     //
1076     // This allows the compiler to use a wider range of immediates than would
1077     // otherwise be allowed. If, for example, v4i32 could only use ldi.h then
1078     // it would not be possible to load { 0x01010101, 0x01010101, 0x01010101,
1079     // 0x01010101 } without using a constant pool. This would be sub-optimal
1080     // when // 'ldi.b wd, 1' is capable of producing that bit-pattern in the
1081     // same set/ of registers. Similarly, ldi.h isn't capable of producing {
1082     // 0x00000000, 0x00000001, 0x00000000, 0x00000001 } but 'ldi.d wd, 1' can.
1083 
1084     const MipsABIInfo &ABI =
1085         static_cast<const MipsTargetMachine &>(TM).getABI();
1086 
1087     BuildVectorSDNode *BVN = cast<BuildVectorSDNode>(Node);
1088     APInt SplatValue, SplatUndef;
1089     unsigned SplatBitSize;
1090     bool HasAnyUndefs;
1091     unsigned LdiOp;
1092     EVT ResVecTy = BVN->getValueType(0);
1093     EVT ViaVecTy;
1094 
1095     if (!Subtarget->hasMSA() || !BVN->getValueType(0).is128BitVector())
1096       return false;
1097 
1098     if (!BVN->isConstantSplat(SplatValue, SplatUndef, SplatBitSize,
1099                               HasAnyUndefs, 8,
1100                               !Subtarget->isLittle()))
1101       return false;
1102 
1103     switch (SplatBitSize) {
1104     default:
1105       return false;
1106     case 8:
1107       LdiOp = Mips::LDI_B;
1108       ViaVecTy = MVT::v16i8;
1109       break;
1110     case 16:
1111       LdiOp = Mips::LDI_H;
1112       ViaVecTy = MVT::v8i16;
1113       break;
1114     case 32:
1115       LdiOp = Mips::LDI_W;
1116       ViaVecTy = MVT::v4i32;
1117       break;
1118     case 64:
1119       LdiOp = Mips::LDI_D;
1120       ViaVecTy = MVT::v2i64;
1121       break;
1122     }
1123 
1124     SDNode *Res = nullptr;
1125 
1126     // If we have a signed 10 bit integer, we can splat it directly.
1127     //
1128     // If we have something bigger we can synthesize the value into a GPR and
1129     // splat from there.
1130     if (SplatValue.isSignedIntN(10)) {
1131       SDValue Imm = CurDAG->getTargetConstant(SplatValue, DL,
1132                                               ViaVecTy.getVectorElementType());
1133 
1134       Res = CurDAG->getMachineNode(LdiOp, DL, ViaVecTy, Imm);
1135     } else if (SplatValue.isSignedIntN(16) &&
1136                ((ABI.IsO32() && SplatBitSize < 64) ||
1137                 (ABI.IsN32() || ABI.IsN64()))) {
1138       // Only handle signed 16 bit values when the element size is GPR width.
1139       // MIPS64 can handle all the cases but MIPS32 would need to handle
1140       // negative cases specifically here. Instead, handle those cases as
1141       // 64bit values.
1142 
1143       bool Is32BitSplat = ABI.IsO32() || SplatBitSize < 64;
1144       const unsigned ADDiuOp = Is32BitSplat ? Mips::ADDiu : Mips::DADDiu;
1145       const MVT SplatMVT = Is32BitSplat ? MVT::i32 : MVT::i64;
1146       SDValue ZeroVal = CurDAG->getRegister(
1147           Is32BitSplat ? Mips::ZERO : Mips::ZERO_64, SplatMVT);
1148 
1149       const unsigned FILLOp =
1150           SplatBitSize == 16
1151               ? Mips::FILL_H
1152               : (SplatBitSize == 32 ? Mips::FILL_W
1153                                     : (SplatBitSize == 64 ? Mips::FILL_D : 0));
1154 
1155       assert(FILLOp != 0 && "Unknown FILL Op for splat synthesis!");
1156       assert((!ABI.IsO32() || (FILLOp != Mips::FILL_D)) &&
1157              "Attempting to use fill.d on MIPS32!");
1158 
1159       const unsigned Lo = SplatValue.getLoBits(16).getZExtValue();
1160       SDValue LoVal = CurDAG->getTargetConstant(Lo, DL, SplatMVT);
1161 
1162       Res = CurDAG->getMachineNode(ADDiuOp, DL, SplatMVT, ZeroVal, LoVal);
1163       Res = CurDAG->getMachineNode(FILLOp, DL, ViaVecTy, SDValue(Res, 0));
1164 
1165     } else if (SplatValue.isSignedIntN(32) && SplatBitSize == 32) {
1166       // Only handle the cases where the splat size agrees with the size
1167       // of the SplatValue here.
1168       const unsigned Lo = SplatValue.getLoBits(16).getZExtValue();
1169       const unsigned Hi = SplatValue.lshr(16).getLoBits(16).getZExtValue();
1170       SDValue ZeroVal = CurDAG->getRegister(Mips::ZERO, MVT::i32);
1171 
1172       SDValue LoVal = CurDAG->getTargetConstant(Lo, DL, MVT::i32);
1173       SDValue HiVal = CurDAG->getTargetConstant(Hi, DL, MVT::i32);
1174 
1175       if (Hi)
1176         Res = CurDAG->getMachineNode(Mips::LUi, DL, MVT::i32, HiVal);
1177 
1178       if (Lo)
1179         Res = CurDAG->getMachineNode(Mips::ORi, DL, MVT::i32,
1180                                      Hi ? SDValue(Res, 0) : ZeroVal, LoVal);
1181 
1182       assert((Hi || Lo) && "Zero case reached 32 bit case splat synthesis!");
1183       Res =
1184           CurDAG->getMachineNode(Mips::FILL_W, DL, MVT::v4i32, SDValue(Res, 0));
1185 
1186     } else if (SplatValue.isSignedIntN(32) && SplatBitSize == 64 &&
1187                (ABI.IsN32() || ABI.IsN64())) {
1188       // N32 and N64 can perform some tricks that O32 can't for signed 32 bit
1189       // integers due to having 64bit registers. lui will cause the necessary
1190       // zero/sign extension.
1191       const unsigned Lo = SplatValue.getLoBits(16).getZExtValue();
1192       const unsigned Hi = SplatValue.lshr(16).getLoBits(16).getZExtValue();
1193       SDValue ZeroVal = CurDAG->getRegister(Mips::ZERO, MVT::i32);
1194 
1195       SDValue LoVal = CurDAG->getTargetConstant(Lo, DL, MVT::i32);
1196       SDValue HiVal = CurDAG->getTargetConstant(Hi, DL, MVT::i32);
1197 
1198       if (Hi)
1199         Res = CurDAG->getMachineNode(Mips::LUi, DL, MVT::i32, HiVal);
1200 
1201       if (Lo)
1202         Res = CurDAG->getMachineNode(Mips::ORi, DL, MVT::i32,
1203                                      Hi ? SDValue(Res, 0) : ZeroVal, LoVal);
1204 
1205       Res = CurDAG->getMachineNode(
1206               Mips::SUBREG_TO_REG, DL, MVT::i64,
1207               CurDAG->getTargetConstant(((Hi >> 15) & 0x1), DL, MVT::i64),
1208               SDValue(Res, 0),
1209               CurDAG->getTargetConstant(Mips::sub_32, DL, MVT::i64));
1210 
1211       Res =
1212           CurDAG->getMachineNode(Mips::FILL_D, DL, MVT::v2i64, SDValue(Res, 0));
1213 
1214     } else if (SplatValue.isSignedIntN(64)) {
1215       // If we have a 64 bit Splat value, we perform a similar sequence to the
1216       // above:
1217       //
1218       // MIPS32:                            MIPS64:
1219       //   lui $res, %highest(val)            lui $res, %highest(val)
1220       //   ori $res, $res, %higher(val)       ori $res, $res, %higher(val)
1221       //   lui $res2, %hi(val)                lui $res2, %hi(val)
1222       //   ori $res2, %res2, %lo(val)         ori $res2, %res2, %lo(val)
1223       //   $res3 = fill $res2                 dinsu $res, $res2, 0, 32
1224       //   $res4 = insert.w $res3[1], $res    fill.d $res
1225       //   splat.d $res4, 0
1226       //
1227       // The ability to use dinsu is guaranteed as MSA requires MIPSR5.
1228       // This saves having to materialize the value by shifts and ors.
1229       //
1230       // FIXME: Implement the preferred sequence for MIPS64R6:
1231       //
1232       // MIPS64R6:
1233       //   ori $res, $zero, %lo(val)
1234       //   daui $res, $res, %hi(val)
1235       //   dahi $res, $res, %higher(val)
1236       //   dati $res, $res, %highest(cal)
1237       //   fill.d $res
1238       //
1239 
1240       const unsigned Lo = SplatValue.getLoBits(16).getZExtValue();
1241       const unsigned Hi = SplatValue.lshr(16).getLoBits(16).getZExtValue();
1242       const unsigned Higher = SplatValue.lshr(32).getLoBits(16).getZExtValue();
1243       const unsigned Highest = SplatValue.lshr(48).getLoBits(16).getZExtValue();
1244 
1245       SDValue LoVal = CurDAG->getTargetConstant(Lo, DL, MVT::i32);
1246       SDValue HiVal = CurDAG->getTargetConstant(Hi, DL, MVT::i32);
1247       SDValue HigherVal = CurDAG->getTargetConstant(Higher, DL, MVT::i32);
1248       SDValue HighestVal = CurDAG->getTargetConstant(Highest, DL, MVT::i32);
1249       SDValue ZeroVal = CurDAG->getRegister(Mips::ZERO, MVT::i32);
1250 
1251       // Independent of whether we're targeting MIPS64 or not, the basic
1252       // operations are the same. Also, directly use the $zero register if
1253       // the 16 bit chunk is zero.
1254       //
1255       // For optimization purposes we always synthesize the splat value as
1256       // an i32 value, then if we're targetting MIPS64, use SUBREG_TO_REG
1257       // just before combining the values with dinsu to produce an i64. This
1258       // enables SelectionDAG to aggressively share components of splat values
1259       // where possible.
1260       //
1261       // FIXME: This is the general constant synthesis problem. This code
1262       //        should be factored out into a class shared between all the
1263       //        classes that need it. Specifically, for a splat size of 64
1264       //        bits that's a negative number we can do better than LUi/ORi
1265       //        for the upper 32bits.
1266 
1267       if (Hi)
1268         Res = CurDAG->getMachineNode(Mips::LUi, DL, MVT::i32, HiVal);
1269 
1270       if (Lo)
1271         Res = CurDAG->getMachineNode(Mips::ORi, DL, MVT::i32,
1272                                      Hi ? SDValue(Res, 0) : ZeroVal, LoVal);
1273 
1274       SDNode *HiRes;
1275       if (Highest)
1276         HiRes = CurDAG->getMachineNode(Mips::LUi, DL, MVT::i32, HighestVal);
1277 
1278       if (Higher)
1279         HiRes = CurDAG->getMachineNode(Mips::ORi, DL, MVT::i32,
1280                                        Highest ? SDValue(HiRes, 0) : ZeroVal,
1281                                        HigherVal);
1282 
1283 
1284       if (ABI.IsO32()) {
1285         Res = CurDAG->getMachineNode(Mips::FILL_W, DL, MVT::v4i32,
1286                                      (Hi || Lo) ? SDValue(Res, 0) : ZeroVal);
1287 
1288         Res = CurDAG->getMachineNode(
1289             Mips::INSERT_W, DL, MVT::v4i32, SDValue(Res, 0),
1290             (Highest || Higher) ? SDValue(HiRes, 0) : ZeroVal,
1291             CurDAG->getTargetConstant(1, DL, MVT::i32));
1292 
1293         const TargetLowering *TLI = getTargetLowering();
1294         const TargetRegisterClass *RC =
1295             TLI->getRegClassFor(ViaVecTy.getSimpleVT());
1296 
1297         Res = CurDAG->getMachineNode(
1298             Mips::COPY_TO_REGCLASS, DL, ViaVecTy, SDValue(Res, 0),
1299             CurDAG->getTargetConstant(RC->getID(), DL, MVT::i32));
1300 
1301         Res = CurDAG->getMachineNode(
1302             Mips::SPLATI_D, DL, MVT::v2i64, SDValue(Res, 0),
1303             CurDAG->getTargetConstant(0, DL, MVT::i32));
1304       } else if (ABI.IsN64() || ABI.IsN32()) {
1305 
1306         SDValue Zero64Val = CurDAG->getRegister(Mips::ZERO_64, MVT::i64);
1307         const bool HiResNonZero = Highest || Higher;
1308         const bool ResNonZero = Hi || Lo;
1309 
1310         if (HiResNonZero)
1311           HiRes = CurDAG->getMachineNode(
1312               Mips::SUBREG_TO_REG, DL, MVT::i64,
1313               CurDAG->getTargetConstant(((Highest >> 15) & 0x1), DL, MVT::i64),
1314               SDValue(HiRes, 0),
1315               CurDAG->getTargetConstant(Mips::sub_32, DL, MVT::i64));
1316 
1317         if (ResNonZero)
1318           Res = CurDAG->getMachineNode(
1319               Mips::SUBREG_TO_REG, DL, MVT::i64,
1320               CurDAG->getTargetConstant(((Hi >> 15) & 0x1), DL, MVT::i64),
1321               SDValue(Res, 0),
1322               CurDAG->getTargetConstant(Mips::sub_32, DL, MVT::i64));
1323 
1324         // We have 3 cases:
1325         //   The HiRes is nonzero but Res is $zero  => dsll32 HiRes, 0
1326         //   The Res is nonzero but HiRes is $zero  => dinsu Res, $zero, 32, 32
1327         //   Both are non zero                      => dinsu Res, HiRes, 32, 32
1328         //
1329         // The obvious "missing" case is when both are zero, but that case is
1330         // handled by the ldi case.
1331         if (ResNonZero) {
1332           IntegerType *Int32Ty =
1333               IntegerType::get(MF->getFunction().getContext(), 32);
1334           const ConstantInt *Const32 = ConstantInt::get(Int32Ty, 32);
1335           SDValue Ops[4] = {HiResNonZero ? SDValue(HiRes, 0) : Zero64Val,
1336                             CurDAG->getConstant(*Const32, DL, MVT::i32),
1337                             CurDAG->getConstant(*Const32, DL, MVT::i32),
1338                             SDValue(Res, 0)};
1339 
1340           Res = CurDAG->getMachineNode(Mips::DINSU, DL, MVT::i64, Ops);
1341         } else if (HiResNonZero) {
1342           Res = CurDAG->getMachineNode(
1343               Mips::DSLL32, DL, MVT::i64, SDValue(HiRes, 0),
1344               CurDAG->getTargetConstant(0, DL, MVT::i32));
1345         } else
1346           llvm_unreachable(
1347               "Zero splat value handled by non-zero 64bit splat synthesis!");
1348 
1349         Res = CurDAG->getMachineNode(Mips::FILL_D, DL, MVT::v2i64,
1350                                      SDValue(Res, 0));
1351       } else
1352         llvm_unreachable("Unknown ABI in MipsISelDAGToDAG!");
1353 
1354     } else
1355       return false;
1356 
1357     if (ResVecTy != ViaVecTy) {
1358       // If LdiOp is writing to a different register class to ResVecTy, then
1359       // fix it up here. This COPY_TO_REGCLASS should never cause a move.v
1360       // since the source and destination register sets contain the same
1361       // registers.
1362       const TargetLowering *TLI = getTargetLowering();
1363       MVT ResVecTySimple = ResVecTy.getSimpleVT();
1364       const TargetRegisterClass *RC = TLI->getRegClassFor(ResVecTySimple);
1365       Res = CurDAG->getMachineNode(Mips::COPY_TO_REGCLASS, DL,
1366                                    ResVecTy, SDValue(Res, 0),
1367                                    CurDAG->getTargetConstant(RC->getID(), DL,
1368                                                              MVT::i32));
1369     }
1370 
1371     ReplaceNode(Node, Res);
1372     return true;
1373   }
1374 
1375   }
1376 
1377   return false;
1378 }
1379 
1380 bool MipsSEDAGToDAGISel::
1381 SelectInlineAsmMemoryOperand(const SDValue &Op, unsigned ConstraintID,
1382                              std::vector<SDValue> &OutOps) {
1383   SDValue Base, Offset;
1384 
1385   switch(ConstraintID) {
1386   default:
1387     llvm_unreachable("Unexpected asm memory constraint");
1388   // All memory constraints can at least accept raw pointers.
1389   case InlineAsm::Constraint_m:
1390   case InlineAsm::Constraint_o:
1391     if (selectAddrRegImm16(Op, Base, Offset)) {
1392       OutOps.push_back(Base);
1393       OutOps.push_back(Offset);
1394       return false;
1395     }
1396     OutOps.push_back(Op);
1397     OutOps.push_back(CurDAG->getTargetConstant(0, SDLoc(Op), MVT::i32));
1398     return false;
1399   case InlineAsm::Constraint_R:
1400     // The 'R' constraint is supposed to be much more complicated than this.
1401     // However, it's becoming less useful due to architectural changes and
1402     // ought to be replaced by other constraints such as 'ZC'.
1403     // For now, support 9-bit signed offsets which is supportable by all
1404     // subtargets for all instructions.
1405     if (selectAddrRegImm9(Op, Base, Offset)) {
1406       OutOps.push_back(Base);
1407       OutOps.push_back(Offset);
1408       return false;
1409     }
1410     OutOps.push_back(Op);
1411     OutOps.push_back(CurDAG->getTargetConstant(0, SDLoc(Op), MVT::i32));
1412     return false;
1413   case InlineAsm::Constraint_ZC:
1414     // ZC matches whatever the pref, ll, and sc instructions can handle for the
1415     // given subtarget.
1416     if (Subtarget->inMicroMipsMode()) {
1417       // On microMIPS, they can handle 12-bit offsets.
1418       if (selectAddrRegImm12(Op, Base, Offset)) {
1419         OutOps.push_back(Base);
1420         OutOps.push_back(Offset);
1421         return false;
1422       }
1423     } else if (Subtarget->hasMips32r6()) {
1424       // On MIPS32r6/MIPS64r6, they can only handle 9-bit offsets.
1425       if (selectAddrRegImm9(Op, Base, Offset)) {
1426         OutOps.push_back(Base);
1427         OutOps.push_back(Offset);
1428         return false;
1429       }
1430     } else if (selectAddrRegImm16(Op, Base, Offset)) {
1431       // Prior to MIPS32r6/MIPS64r6, they can handle 16-bit offsets.
1432       OutOps.push_back(Base);
1433       OutOps.push_back(Offset);
1434       return false;
1435     }
1436     // In all cases, 0-bit offsets are acceptable.
1437     OutOps.push_back(Op);
1438     OutOps.push_back(CurDAG->getTargetConstant(0, SDLoc(Op), MVT::i32));
1439     return false;
1440   }
1441   return true;
1442 }
1443 
1444 FunctionPass *llvm::createMipsSEISelDag(MipsTargetMachine &TM,
1445                                         CodeGenOpt::Level OptLevel) {
1446   return new MipsSEDAGToDAGISel(TM, OptLevel);
1447 }
1448