1 //===-- NVPTXISelLowering.cpp - NVPTX DAG Lowering Implementation ---------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines the interfaces that NVPTX uses to lower LLVM code into a
10 // selection DAG.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "NVPTXISelLowering.h"
15 #include "MCTargetDesc/NVPTXBaseInfo.h"
16 #include "NVPTX.h"
17 #include "NVPTXSubtarget.h"
18 #include "NVPTXTargetMachine.h"
19 #include "NVPTXTargetObjectFile.h"
20 #include "NVPTXUtilities.h"
21 #include "llvm/ADT/APInt.h"
22 #include "llvm/ADT/STLExtras.h"
23 #include "llvm/ADT/SmallVector.h"
24 #include "llvm/ADT/StringRef.h"
25 #include "llvm/CodeGen/Analysis.h"
26 #include "llvm/CodeGen/MachineFunction.h"
27 #include "llvm/CodeGen/MachineMemOperand.h"
28 #include "llvm/CodeGen/MachineValueType.h"
29 #include "llvm/CodeGen/SelectionDAG.h"
30 #include "llvm/CodeGen/SelectionDAGNodes.h"
31 #include "llvm/CodeGen/TargetCallingConv.h"
32 #include "llvm/CodeGen/TargetLowering.h"
33 #include "llvm/CodeGen/ValueTypes.h"
34 #include "llvm/IR/Argument.h"
35 #include "llvm/IR/Attributes.h"
36 #include "llvm/IR/Constants.h"
37 #include "llvm/IR/DataLayout.h"
38 #include "llvm/IR/DerivedTypes.h"
39 #include "llvm/IR/FPEnv.h"
40 #include "llvm/IR/Function.h"
41 #include "llvm/IR/GlobalValue.h"
42 #include "llvm/IR/Instruction.h"
43 #include "llvm/IR/Instructions.h"
44 #include "llvm/IR/IntrinsicsNVPTX.h"
45 #include "llvm/IR/Module.h"
46 #include "llvm/IR/Type.h"
47 #include "llvm/IR/Value.h"
48 #include "llvm/Support/Casting.h"
49 #include "llvm/Support/CodeGen.h"
50 #include "llvm/Support/CommandLine.h"
51 #include "llvm/Support/ErrorHandling.h"
52 #include "llvm/Support/raw_ostream.h"
53 #include "llvm/Target/TargetMachine.h"
54 #include "llvm/Target/TargetOptions.h"
55 #include <algorithm>
56 #include <cassert>
57 #include <cmath>
58 #include <cstdint>
59 #include <iterator>
60 #include <sstream>
61 #include <string>
62 #include <utility>
63 #include <vector>
64 
65 #define DEBUG_TYPE "nvptx-lower"
66 
67 using namespace llvm;
68 
69 static std::atomic<unsigned> GlobalUniqueCallSite;
70 
71 static cl::opt<bool> sched4reg(
72     "nvptx-sched4reg",
73     cl::desc("NVPTX Specific: schedule for register pressue"), cl::init(false));
74 
75 static cl::opt<unsigned> FMAContractLevelOpt(
76     "nvptx-fma-level", cl::Hidden,
77     cl::desc("NVPTX Specific: FMA contraction (0: don't do it"
78              " 1: do it  2: do it aggressively"),
79     cl::init(2));
80 
81 static cl::opt<int> UsePrecDivF32(
82     "nvptx-prec-divf32", cl::Hidden,
83     cl::desc("NVPTX Specifies: 0 use div.approx, 1 use div.full, 2 use"
84              " IEEE Compliant F32 div.rnd if available."),
85     cl::init(2));
86 
87 static cl::opt<bool> UsePrecSqrtF32(
88     "nvptx-prec-sqrtf32", cl::Hidden,
89     cl::desc("NVPTX Specific: 0 use sqrt.approx, 1 use sqrt.rn."),
90     cl::init(true));
91 
92 static cl::opt<bool> ForceMinByValParamAlign(
93     "nvptx-force-min-byval-param-align", cl::Hidden,
94     cl::desc("NVPTX Specific: force 4-byte minimal alignment for byval"
95              " params of device functions."),
96     cl::init(false));
97 
98 int NVPTXTargetLowering::getDivF32Level() const {
99   if (UsePrecDivF32.getNumOccurrences() > 0) {
100     // If nvptx-prec-div32=N is used on the command-line, always honor it
101     return UsePrecDivF32;
102   } else {
103     // Otherwise, use div.approx if fast math is enabled
104     if (getTargetMachine().Options.UnsafeFPMath)
105       return 0;
106     else
107       return 2;
108   }
109 }
110 
111 bool NVPTXTargetLowering::usePrecSqrtF32() const {
112   if (UsePrecSqrtF32.getNumOccurrences() > 0) {
113     // If nvptx-prec-sqrtf32 is used on the command-line, always honor it
114     return UsePrecSqrtF32;
115   } else {
116     // Otherwise, use sqrt.approx if fast math is enabled
117     return !getTargetMachine().Options.UnsafeFPMath;
118   }
119 }
120 
121 bool NVPTXTargetLowering::useF32FTZ(const MachineFunction &MF) const {
122   return MF.getDenormalMode(APFloat::IEEEsingle()).Output ==
123          DenormalMode::PreserveSign;
124 }
125 
126 static bool IsPTXVectorType(MVT VT) {
127   switch (VT.SimpleTy) {
128   default:
129     return false;
130   case MVT::v2i1:
131   case MVT::v4i1:
132   case MVT::v2i8:
133   case MVT::v4i8:
134   case MVT::v2i16:
135   case MVT::v4i16:
136   case MVT::v2i32:
137   case MVT::v4i32:
138   case MVT::v2i64:
139   case MVT::v2f16:
140   case MVT::v4f16:
141   case MVT::v8f16: // <4 x f16x2>
142   case MVT::v2bf16:
143   case MVT::v4bf16:
144   case MVT::v8bf16: // <4 x bf16x2>
145   case MVT::v2f32:
146   case MVT::v4f32:
147   case MVT::v2f64:
148     return true;
149   }
150 }
151 
152 static bool Isv2f16Orv2bf16Type(EVT VT) {
153   return (VT == MVT::v2f16 || VT == MVT::v2bf16);
154 }
155 
156 static bool Isf16Orbf16Type(MVT VT) {
157   return (VT.SimpleTy == MVT::f16 || VT.SimpleTy == MVT::bf16);
158 }
159 
160 /// ComputePTXValueVTs - For the given Type \p Ty, returns the set of primitive
161 /// EVTs that compose it.  Unlike ComputeValueVTs, this will break apart vectors
162 /// into their primitive components.
163 /// NOTE: This is a band-aid for code that expects ComputeValueVTs to return the
164 /// same number of types as the Ins/Outs arrays in LowerFormalArguments,
165 /// LowerCall, and LowerReturn.
166 static void ComputePTXValueVTs(const TargetLowering &TLI, const DataLayout &DL,
167                                Type *Ty, SmallVectorImpl<EVT> &ValueVTs,
168                                SmallVectorImpl<uint64_t> *Offsets = nullptr,
169                                uint64_t StartingOffset = 0) {
170   SmallVector<EVT, 16> TempVTs;
171   SmallVector<uint64_t, 16> TempOffsets;
172 
173   // Special case for i128 - decompose to (i64, i64)
174   if (Ty->isIntegerTy(128)) {
175     ValueVTs.push_back(EVT(MVT::i64));
176     ValueVTs.push_back(EVT(MVT::i64));
177 
178     if (Offsets) {
179       Offsets->push_back(StartingOffset + 0);
180       Offsets->push_back(StartingOffset + 8);
181     }
182 
183     return;
184   }
185 
186   // Given a struct type, recursively traverse the elements with custom ComputePTXValueVTs.
187   if (StructType *STy = dyn_cast<StructType>(Ty)) {
188     auto const *SL = DL.getStructLayout(STy);
189     auto ElementNum = 0;
190     for(auto *EI : STy->elements()) {
191       ComputePTXValueVTs(TLI, DL, EI, ValueVTs, Offsets,
192                          StartingOffset + SL->getElementOffset(ElementNum));
193       ++ElementNum;
194     }
195     return;
196   }
197 
198   ComputeValueVTs(TLI, DL, Ty, TempVTs, &TempOffsets, StartingOffset);
199   for (unsigned i = 0, e = TempVTs.size(); i != e; ++i) {
200     EVT VT = TempVTs[i];
201     uint64_t Off = TempOffsets[i];
202     // Split vectors into individual elements, except for v2f16, which
203     // we will pass as a single scalar.
204     if (VT.isVector()) {
205       unsigned NumElts = VT.getVectorNumElements();
206       EVT EltVT = VT.getVectorElementType();
207       // Vectors with an even number of f16 elements will be passed to
208       // us as an array of v2f16/v2bf16 elements. We must match this so we
209       // stay in sync with Ins/Outs.
210       if ((Isf16Orbf16Type(EltVT.getSimpleVT())) && NumElts % 2 == 0) {
211         EltVT = EltVT == MVT::f16 ? MVT::v2f16 : MVT::v2bf16;
212         NumElts /= 2;
213       }
214       for (unsigned j = 0; j != NumElts; ++j) {
215         ValueVTs.push_back(EltVT);
216         if (Offsets)
217           Offsets->push_back(Off + j * EltVT.getStoreSize());
218       }
219     } else {
220       ValueVTs.push_back(VT);
221       if (Offsets)
222         Offsets->push_back(Off);
223     }
224   }
225 }
226 
227 /// PromoteScalarIntegerPTX
228 /// Used to make sure the arguments/returns are suitable for passing
229 /// and promote them to a larger size if they're not.
230 ///
231 /// The promoted type is placed in \p PromoteVT if the function returns true.
232 static bool PromoteScalarIntegerPTX(const EVT &VT, MVT *PromotedVT) {
233   if (VT.isScalarInteger()) {
234     switch (PowerOf2Ceil(VT.getFixedSizeInBits())) {
235     default:
236       llvm_unreachable(
237           "Promotion is not suitable for scalars of size larger than 64-bits");
238     case 1:
239       *PromotedVT = MVT::i1;
240       break;
241     case 2:
242     case 4:
243     case 8:
244       *PromotedVT = MVT::i8;
245       break;
246     case 16:
247       *PromotedVT = MVT::i16;
248       break;
249     case 32:
250       *PromotedVT = MVT::i32;
251       break;
252     case 64:
253       *PromotedVT = MVT::i64;
254       break;
255     }
256     return EVT(*PromotedVT) != VT;
257   }
258   return false;
259 }
260 
261 // Check whether we can merge loads/stores of some of the pieces of a
262 // flattened function parameter or return value into a single vector
263 // load/store.
264 //
265 // The flattened parameter is represented as a list of EVTs and
266 // offsets, and the whole structure is aligned to ParamAlignment. This
267 // function determines whether we can load/store pieces of the
268 // parameter starting at index Idx using a single vectorized op of
269 // size AccessSize. If so, it returns the number of param pieces
270 // covered by the vector op. Otherwise, it returns 1.
271 static unsigned CanMergeParamLoadStoresStartingAt(
272     unsigned Idx, uint32_t AccessSize, const SmallVectorImpl<EVT> &ValueVTs,
273     const SmallVectorImpl<uint64_t> &Offsets, Align ParamAlignment) {
274 
275   // Can't vectorize if param alignment is not sufficient.
276   if (ParamAlignment < AccessSize)
277     return 1;
278   // Can't vectorize if offset is not aligned.
279   if (Offsets[Idx] & (AccessSize - 1))
280     return 1;
281 
282   EVT EltVT = ValueVTs[Idx];
283   unsigned EltSize = EltVT.getStoreSize();
284 
285   // Element is too large to vectorize.
286   if (EltSize >= AccessSize)
287     return 1;
288 
289   unsigned NumElts = AccessSize / EltSize;
290   // Can't vectorize if AccessBytes if not a multiple of EltSize.
291   if (AccessSize != EltSize * NumElts)
292     return 1;
293 
294   // We don't have enough elements to vectorize.
295   if (Idx + NumElts > ValueVTs.size())
296     return 1;
297 
298   // PTX ISA can only deal with 2- and 4-element vector ops.
299   if (NumElts != 4 && NumElts != 2)
300     return 1;
301 
302   for (unsigned j = Idx + 1; j < Idx + NumElts; ++j) {
303     // Types do not match.
304     if (ValueVTs[j] != EltVT)
305       return 1;
306 
307     // Elements are not contiguous.
308     if (Offsets[j] - Offsets[j - 1] != EltSize)
309       return 1;
310   }
311   // OK. We can vectorize ValueVTs[i..i+NumElts)
312   return NumElts;
313 }
314 
315 // Flags for tracking per-element vectorization state of loads/stores
316 // of a flattened function parameter or return value.
317 enum ParamVectorizationFlags {
318   PVF_INNER = 0x0, // Middle elements of a vector.
319   PVF_FIRST = 0x1, // First element of the vector.
320   PVF_LAST = 0x2,  // Last element of the vector.
321   // Scalar is effectively a 1-element vector.
322   PVF_SCALAR = PVF_FIRST | PVF_LAST
323 };
324 
325 // Computes whether and how we can vectorize the loads/stores of a
326 // flattened function parameter or return value.
327 //
328 // The flattened parameter is represented as the list of ValueVTs and
329 // Offsets, and is aligned to ParamAlignment bytes. We return a vector
330 // of the same size as ValueVTs indicating how each piece should be
331 // loaded/stored (i.e. as a scalar, or as part of a vector
332 // load/store).
333 static SmallVector<ParamVectorizationFlags, 16>
334 VectorizePTXValueVTs(const SmallVectorImpl<EVT> &ValueVTs,
335                      const SmallVectorImpl<uint64_t> &Offsets,
336                      Align ParamAlignment, bool IsVAArg = false) {
337   // Set vector size to match ValueVTs and mark all elements as
338   // scalars by default.
339   SmallVector<ParamVectorizationFlags, 16> VectorInfo;
340   VectorInfo.assign(ValueVTs.size(), PVF_SCALAR);
341 
342   if (IsVAArg)
343     return VectorInfo;
344 
345   // Check what we can vectorize using 128/64/32-bit accesses.
346   for (int I = 0, E = ValueVTs.size(); I != E; ++I) {
347     // Skip elements we've already processed.
348     assert(VectorInfo[I] == PVF_SCALAR && "Unexpected vector info state.");
349     for (unsigned AccessSize : {16, 8, 4, 2}) {
350       unsigned NumElts = CanMergeParamLoadStoresStartingAt(
351           I, AccessSize, ValueVTs, Offsets, ParamAlignment);
352       // Mark vectorized elements.
353       switch (NumElts) {
354       default:
355         llvm_unreachable("Unexpected return value");
356       case 1:
357         // Can't vectorize using this size, try next smaller size.
358         continue;
359       case 2:
360         assert(I + 1 < E && "Not enough elements.");
361         VectorInfo[I] = PVF_FIRST;
362         VectorInfo[I + 1] = PVF_LAST;
363         I += 1;
364         break;
365       case 4:
366         assert(I + 3 < E && "Not enough elements.");
367         VectorInfo[I] = PVF_FIRST;
368         VectorInfo[I + 1] = PVF_INNER;
369         VectorInfo[I + 2] = PVF_INNER;
370         VectorInfo[I + 3] = PVF_LAST;
371         I += 3;
372         break;
373       }
374       // Break out of the inner loop because we've already succeeded
375       // using largest possible AccessSize.
376       break;
377     }
378   }
379   return VectorInfo;
380 }
381 
382 // NVPTXTargetLowering Constructor.
383 NVPTXTargetLowering::NVPTXTargetLowering(const NVPTXTargetMachine &TM,
384                                          const NVPTXSubtarget &STI)
385     : TargetLowering(TM), nvTM(&TM), STI(STI) {
386   // always lower memset, memcpy, and memmove intrinsics to load/store
387   // instructions, rather
388   // then generating calls to memset, mempcy or memmove.
389   MaxStoresPerMemset = (unsigned) 0xFFFFFFFF;
390   MaxStoresPerMemcpy = (unsigned) 0xFFFFFFFF;
391   MaxStoresPerMemmove = (unsigned) 0xFFFFFFFF;
392 
393   setBooleanContents(ZeroOrNegativeOneBooleanContent);
394   setBooleanVectorContents(ZeroOrNegativeOneBooleanContent);
395 
396   // Jump is Expensive. Don't create extra control flow for 'and', 'or'
397   // condition branches.
398   setJumpIsExpensive(true);
399 
400   // Wide divides are _very_ slow. Try to reduce the width of the divide if
401   // possible.
402   addBypassSlowDiv(64, 32);
403 
404   // By default, use the Source scheduling
405   if (sched4reg)
406     setSchedulingPreference(Sched::RegPressure);
407   else
408     setSchedulingPreference(Sched::Source);
409 
410   auto setFP16OperationAction = [&](unsigned Op, MVT VT, LegalizeAction Action,
411                                     LegalizeAction NoF16Action) {
412     setOperationAction(Op, VT, STI.allowFP16Math() ? Action : NoF16Action);
413   };
414 
415   auto setBF16OperationAction = [&](unsigned Op, MVT VT, LegalizeAction Action,
416                                     LegalizeAction NoBF16Action) {
417     bool IsOpSupported = STI.hasBF16Math();
418     // Few instructions are available on sm_90 only
419     switch(Op) {
420       case ISD::FADD:
421       case ISD::FMUL:
422       case ISD::FSUB:
423         IsOpSupported = STI.getSmVersion() >= 90 && STI.getPTXVersion() >= 78;
424         break;
425     }
426     setOperationAction(
427         Op, VT, IsOpSupported ? Action : NoBF16Action);
428   };
429 
430   addRegisterClass(MVT::i1, &NVPTX::Int1RegsRegClass);
431   addRegisterClass(MVT::i16, &NVPTX::Int16RegsRegClass);
432   addRegisterClass(MVT::i32, &NVPTX::Int32RegsRegClass);
433   addRegisterClass(MVT::i64, &NVPTX::Int64RegsRegClass);
434   addRegisterClass(MVT::f32, &NVPTX::Float32RegsRegClass);
435   addRegisterClass(MVT::f64, &NVPTX::Float64RegsRegClass);
436   addRegisterClass(MVT::f16, &NVPTX::Int16RegsRegClass);
437   addRegisterClass(MVT::v2f16, &NVPTX::Int32RegsRegClass);
438   addRegisterClass(MVT::bf16, &NVPTX::Int16RegsRegClass);
439   addRegisterClass(MVT::v2bf16, &NVPTX::Int32RegsRegClass);
440 
441   // Conversion to/from FP16/FP16x2 is always legal.
442   setOperationAction(ISD::SINT_TO_FP, MVT::f16, Legal);
443   setOperationAction(ISD::FP_TO_SINT, MVT::f16, Legal);
444   setOperationAction(ISD::BUILD_VECTOR, MVT::v2f16, Custom);
445   setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f16, Custom);
446   setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v2f16, Expand);
447   setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v2f16, Expand);
448 
449   setFP16OperationAction(ISD::SETCC, MVT::f16, Legal, Promote);
450   setFP16OperationAction(ISD::SETCC, MVT::v2f16, Legal, Expand);
451 
452   // Conversion to/from BFP16/BFP16x2 is always legal.
453   setOperationAction(ISD::SINT_TO_FP, MVT::bf16, Legal);
454   setOperationAction(ISD::FP_TO_SINT, MVT::bf16, Legal);
455   setOperationAction(ISD::BUILD_VECTOR, MVT::v2bf16, Custom);
456   setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2bf16, Custom);
457   setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v2bf16, Expand);
458   setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v2bf16, Expand);
459 
460   setBF16OperationAction(ISD::SETCC, MVT::bf16, Legal, Promote);
461   setBF16OperationAction(ISD::SETCC, MVT::v2bf16, Legal, Expand);
462   // Operations not directly supported by NVPTX.
463   for (MVT VT : {MVT::bf16, MVT::f16, MVT::v2bf16, MVT::v2f16, MVT::f32,
464                  MVT::f64, MVT::i1, MVT::i8, MVT::i16, MVT::i32, MVT::i64}) {
465     setOperationAction(ISD::SELECT_CC, VT, Expand);
466     setOperationAction(ISD::BR_CC, VT, Expand);
467   }
468 
469   // Some SIGN_EXTEND_INREG can be done using cvt instruction.
470   // For others we will expand to a SHL/SRA pair.
471   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i64, Legal);
472   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i32, Legal);
473   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16, Legal);
474   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8 , Legal);
475   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
476 
477   setOperationAction(ISD::SHL_PARTS, MVT::i32  , Custom);
478   setOperationAction(ISD::SRA_PARTS, MVT::i32  , Custom);
479   setOperationAction(ISD::SRL_PARTS, MVT::i32  , Custom);
480   setOperationAction(ISD::SHL_PARTS, MVT::i64  , Custom);
481   setOperationAction(ISD::SRA_PARTS, MVT::i64  , Custom);
482   setOperationAction(ISD::SRL_PARTS, MVT::i64  , Custom);
483 
484   setOperationAction(ISD::BITREVERSE, MVT::i32, Legal);
485   setOperationAction(ISD::BITREVERSE, MVT::i64, Legal);
486 
487   // TODO: we may consider expanding ROTL/ROTR on older GPUs.  Currently on GPUs
488   // that don't have h/w rotation we lower them to multi-instruction assembly.
489   // See ROT*_sw in NVPTXIntrInfo.td
490   setOperationAction(ISD::ROTL, MVT::i64, Legal);
491   setOperationAction(ISD::ROTR, MVT::i64, Legal);
492   setOperationAction(ISD::ROTL, MVT::i32, Legal);
493   setOperationAction(ISD::ROTR, MVT::i32, Legal);
494 
495   setOperationAction(ISD::ROTL, MVT::i16, Expand);
496   setOperationAction(ISD::ROTR, MVT::i16, Expand);
497   setOperationAction(ISD::ROTL, MVT::i8, Expand);
498   setOperationAction(ISD::ROTR, MVT::i8, Expand);
499   setOperationAction(ISD::BSWAP, MVT::i16, Expand);
500   setOperationAction(ISD::BSWAP, MVT::i32, Expand);
501   setOperationAction(ISD::BSWAP, MVT::i64, Expand);
502 
503   // Indirect branch is not supported.
504   // This also disables Jump Table creation.
505   setOperationAction(ISD::BR_JT, MVT::Other, Expand);
506   setOperationAction(ISD::BRIND, MVT::Other, Expand);
507 
508   setOperationAction(ISD::GlobalAddress, MVT::i32, Custom);
509   setOperationAction(ISD::GlobalAddress, MVT::i64, Custom);
510 
511   // We want to legalize constant related memmove and memcopy
512   // intrinsics.
513   setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::Other, Custom);
514 
515   // Turn FP extload into load/fpextend
516   setLoadExtAction(ISD::EXTLOAD, MVT::f32, MVT::f16, Expand);
517   setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f16, Expand);
518   setLoadExtAction(ISD::EXTLOAD, MVT::f32, MVT::bf16, Expand);
519   setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::bf16, Expand);
520   setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f32, Expand);
521   setLoadExtAction(ISD::EXTLOAD, MVT::v2f32, MVT::v2f16, Expand);
522   setLoadExtAction(ISD::EXTLOAD, MVT::v2f64, MVT::v2f16, Expand);
523   setLoadExtAction(ISD::EXTLOAD, MVT::v2f32, MVT::v2bf16, Expand);
524   setLoadExtAction(ISD::EXTLOAD, MVT::v2f64, MVT::v2bf16, Expand);
525   setLoadExtAction(ISD::EXTLOAD, MVT::v2f64, MVT::v2f32, Expand);
526   setLoadExtAction(ISD::EXTLOAD, MVT::v4f32, MVT::v4f16, Expand);
527   setLoadExtAction(ISD::EXTLOAD, MVT::v4f64, MVT::v4f16, Expand);
528   setLoadExtAction(ISD::EXTLOAD, MVT::v4f32, MVT::v4bf16, Expand);
529   setLoadExtAction(ISD::EXTLOAD, MVT::v4f64, MVT::v4bf16, Expand);
530   setLoadExtAction(ISD::EXTLOAD, MVT::v4f64, MVT::v4f32, Expand);
531   // Turn FP truncstore into trunc + store.
532   // FIXME: vector types should also be expanded
533   setTruncStoreAction(MVT::f32, MVT::f16, Expand);
534   setTruncStoreAction(MVT::f64, MVT::f16, Expand);
535   setTruncStoreAction(MVT::f32, MVT::bf16, Expand);
536   setTruncStoreAction(MVT::f64, MVT::bf16, Expand);
537   setTruncStoreAction(MVT::f64, MVT::f32, Expand);
538 
539   // PTX does not support load / store predicate registers
540   setOperationAction(ISD::LOAD, MVT::i1, Custom);
541   setOperationAction(ISD::STORE, MVT::i1, Custom);
542 
543   for (MVT VT : MVT::integer_valuetypes()) {
544     setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote);
545     setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i1, Promote);
546     setTruncStoreAction(VT, MVT::i1, Expand);
547   }
548 
549   // This is legal in NVPTX
550   setOperationAction(ISD::ConstantFP, MVT::f64, Legal);
551   setOperationAction(ISD::ConstantFP, MVT::f32, Legal);
552   setOperationAction(ISD::ConstantFP, MVT::f16, Legal);
553   setOperationAction(ISD::ConstantFP, MVT::bf16, Legal);
554 
555   // TRAP can be lowered to PTX trap
556   setOperationAction(ISD::TRAP, MVT::Other, Legal);
557 
558   // Register custom handling for vector loads/stores
559   for (MVT VT : MVT::fixedlen_vector_valuetypes()) {
560     if (IsPTXVectorType(VT)) {
561       setOperationAction(ISD::LOAD, VT, Custom);
562       setOperationAction(ISD::STORE, VT, Custom);
563       setOperationAction(ISD::INTRINSIC_W_CHAIN, VT, Custom);
564     }
565   }
566 
567   // Support varargs.
568   setOperationAction(ISD::VASTART, MVT::Other, Custom);
569   setOperationAction(ISD::VAARG, MVT::Other, Custom);
570   setOperationAction(ISD::VACOPY, MVT::Other, Expand);
571   setOperationAction(ISD::VAEND, MVT::Other, Expand);
572 
573   // Custom handling for i8 intrinsics
574   setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i8, Custom);
575 
576   for (const auto& Ty : {MVT::i16, MVT::i32, MVT::i64}) {
577     setOperationAction(ISD::ABS,  Ty, Legal);
578     setOperationAction(ISD::SMIN, Ty, Legal);
579     setOperationAction(ISD::SMAX, Ty, Legal);
580     setOperationAction(ISD::UMIN, Ty, Legal);
581     setOperationAction(ISD::UMAX, Ty, Legal);
582 
583     setOperationAction(ISD::CTPOP, Ty, Legal);
584     setOperationAction(ISD::CTLZ, Ty, Legal);
585   }
586 
587   setOperationAction(ISD::ADDC, MVT::i32, Legal);
588   setOperationAction(ISD::ADDE, MVT::i32, Legal);
589   setOperationAction(ISD::SUBC, MVT::i32, Legal);
590   setOperationAction(ISD::SUBE, MVT::i32, Legal);
591   if (STI.getPTXVersion() >= 43) {
592     setOperationAction(ISD::ADDC, MVT::i64, Legal);
593     setOperationAction(ISD::ADDE, MVT::i64, Legal);
594     setOperationAction(ISD::SUBC, MVT::i64, Legal);
595     setOperationAction(ISD::SUBE, MVT::i64, Legal);
596   }
597 
598   setOperationAction(ISD::CTTZ, MVT::i16, Expand);
599   setOperationAction(ISD::CTTZ, MVT::i32, Expand);
600   setOperationAction(ISD::CTTZ, MVT::i64, Expand);
601 
602   // PTX does not directly support SELP of i1, so promote to i32 first
603   setOperationAction(ISD::SELECT, MVT::i1, Custom);
604 
605   // PTX cannot multiply two i64s in a single instruction.
606   setOperationAction(ISD::SMUL_LOHI, MVT::i64, Expand);
607   setOperationAction(ISD::UMUL_LOHI, MVT::i64, Expand);
608 
609   // We have some custom DAG combine patterns for these nodes
610   setTargetDAGCombine({ISD::ADD, ISD::AND, ISD::FADD, ISD::MUL, ISD::SHL,
611                        ISD::SREM, ISD::UREM});
612 
613   // setcc for f16x2 and bf16x2 needs special handling to prevent
614   // legalizer's attempt to scalarize it due to v2i1 not being legal.
615   if (STI.allowFP16Math() || STI.hasBF16Math())
616     setTargetDAGCombine(ISD::SETCC);
617 
618   // Promote fp16 arithmetic if fp16 hardware isn't available or the
619   // user passed --nvptx-no-fp16-math. The flag is useful because,
620   // although sm_53+ GPUs have some sort of FP16 support in
621   // hardware, only sm_53 and sm_60 have full implementation. Others
622   // only have token amount of hardware and are likely to run faster
623   // by using fp32 units instead.
624   for (const auto &Op : {ISD::FADD, ISD::FMUL, ISD::FSUB, ISD::FMA}) {
625     setFP16OperationAction(Op, MVT::f16, Legal, Promote);
626     setFP16OperationAction(Op, MVT::v2f16, Legal, Expand);
627     setBF16OperationAction(Op, MVT::bf16, Legal, Promote);
628     setBF16OperationAction(Op, MVT::v2bf16, Legal, Expand);
629     // bf16 must be promoted to f32.
630     if (getOperationAction(Op, MVT::bf16) == Promote)
631       AddPromotedToType(Op, MVT::bf16, MVT::f32);
632   }
633 
634   // f16/f16x2 neg was introduced in PTX 60, SM_53.
635   const bool IsFP16FP16x2NegAvailable = STI.getSmVersion() >= 53 &&
636                                         STI.getPTXVersion() >= 60 &&
637                                         STI.allowFP16Math();
638   for (const auto &VT : {MVT::f16, MVT::v2f16})
639     setOperationAction(ISD::FNEG, VT,
640                        IsFP16FP16x2NegAvailable ? Legal : Expand);
641 
642   setBF16OperationAction(ISD::FNEG, MVT::bf16, Legal, Expand);
643   setBF16OperationAction(ISD::FNEG, MVT::v2bf16, Legal, Expand);
644   // (would be) Library functions.
645 
646   // These map to conversion instructions for scalar FP types.
647   for (const auto &Op : {ISD::FCEIL, ISD::FFLOOR, ISD::FNEARBYINT, ISD::FRINT,
648                          ISD::FROUNDEVEN, ISD::FTRUNC}) {
649     setOperationAction(Op, MVT::bf16, Legal);
650     setOperationAction(Op, MVT::f16, Legal);
651     setOperationAction(Op, MVT::f32, Legal);
652     setOperationAction(Op, MVT::f64, Legal);
653     setOperationAction(Op, MVT::v2f16, Expand);
654     setOperationAction(Op, MVT::v2bf16, Expand);
655   }
656 
657   setOperationAction(ISD::FROUND, MVT::f16, Promote);
658   setOperationAction(ISD::FROUND, MVT::v2f16, Expand);
659   setOperationAction(ISD::FROUND, MVT::bf16, Promote);
660   setOperationAction(ISD::FROUND, MVT::v2bf16, Expand);
661   setOperationAction(ISD::FROUND, MVT::f32, Custom);
662   setOperationAction(ISD::FROUND, MVT::f64, Custom);
663 
664 
665   // 'Expand' implements FCOPYSIGN without calling an external library.
666   setOperationAction(ISD::FCOPYSIGN, MVT::f16, Expand);
667   setOperationAction(ISD::FCOPYSIGN, MVT::v2f16, Expand);
668   setOperationAction(ISD::FCOPYSIGN, MVT::bf16, Expand);
669   setOperationAction(ISD::FCOPYSIGN, MVT::v2bf16, Expand);
670   setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand);
671   setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
672 
673   // These map to corresponding instructions for f32/f64. f16 must be
674   // promoted to f32. v2f16 is expanded to f16, which is then promoted
675   // to f32.
676   for (const auto &Op :
677        {ISD::FDIV, ISD::FREM, ISD::FSQRT, ISD::FSIN, ISD::FCOS, ISD::FABS}) {
678     setOperationAction(Op, MVT::f16, Promote);
679     setOperationAction(Op, MVT::bf16, Promote);
680     setOperationAction(Op, MVT::f32, Legal);
681     setOperationAction(Op, MVT::f64, Legal);
682     setOperationAction(Op, MVT::v2f16, Expand);
683     setOperationAction(Op, MVT::v2bf16, Expand);
684   }
685   // max.f16, max.f16x2 and max.NaN are supported on sm_80+.
686   auto GetMinMaxAction = [&](LegalizeAction NotSm80Action) {
687     bool IsAtLeastSm80 = STI.getSmVersion() >= 80 && STI.getPTXVersion() >= 70;
688     return IsAtLeastSm80 ? Legal : NotSm80Action;
689   };
690   for (const auto &Op : {ISD::FMINNUM, ISD::FMAXNUM}) {
691     setFP16OperationAction(Op, MVT::f16, GetMinMaxAction(Promote), Promote);
692     setBF16OperationAction(Op, MVT::bf16, Legal, Promote);
693     setOperationAction(Op, MVT::f32, Legal);
694     setOperationAction(Op, MVT::f64, Legal);
695     setFP16OperationAction(Op, MVT::v2f16, GetMinMaxAction(Expand), Expand);
696     setBF16OperationAction(Op, MVT::v2bf16, Legal, Expand);
697   }
698   for (const auto &Op : {ISD::FMINIMUM, ISD::FMAXIMUM}) {
699     setFP16OperationAction(Op, MVT::f16, GetMinMaxAction(Expand), Expand);
700     setFP16OperationAction(Op, MVT::bf16, Legal, Expand);
701     setOperationAction(Op, MVT::f32, GetMinMaxAction(Expand));
702     setFP16OperationAction(Op, MVT::v2f16, GetMinMaxAction(Expand), Expand);
703     setBF16OperationAction(Op, MVT::v2bf16, Legal, Expand);
704   }
705 
706   // No FEXP2, FLOG2.  The PTX ex2 and log2 functions are always approximate.
707   // No FPOW or FREM in PTX.
708 
709   // Now deduce the information based on the above mentioned
710   // actions
711   computeRegisterProperties(STI.getRegisterInfo());
712 
713   setMinCmpXchgSizeInBits(32);
714 }
715 
716 const char *NVPTXTargetLowering::getTargetNodeName(unsigned Opcode) const {
717   switch ((NVPTXISD::NodeType)Opcode) {
718   case NVPTXISD::FIRST_NUMBER:
719     break;
720   case NVPTXISD::CALL:
721     return "NVPTXISD::CALL";
722   case NVPTXISD::RET_GLUE:
723     return "NVPTXISD::RET_GLUE";
724   case NVPTXISD::LOAD_PARAM:
725     return "NVPTXISD::LOAD_PARAM";
726   case NVPTXISD::Wrapper:
727     return "NVPTXISD::Wrapper";
728   case NVPTXISD::DeclareParam:
729     return "NVPTXISD::DeclareParam";
730   case NVPTXISD::DeclareScalarParam:
731     return "NVPTXISD::DeclareScalarParam";
732   case NVPTXISD::DeclareRet:
733     return "NVPTXISD::DeclareRet";
734   case NVPTXISD::DeclareScalarRet:
735     return "NVPTXISD::DeclareScalarRet";
736   case NVPTXISD::DeclareRetParam:
737     return "NVPTXISD::DeclareRetParam";
738   case NVPTXISD::PrintCall:
739     return "NVPTXISD::PrintCall";
740   case NVPTXISD::PrintConvergentCall:
741     return "NVPTXISD::PrintConvergentCall";
742   case NVPTXISD::PrintCallUni:
743     return "NVPTXISD::PrintCallUni";
744   case NVPTXISD::PrintConvergentCallUni:
745     return "NVPTXISD::PrintConvergentCallUni";
746   case NVPTXISD::LoadParam:
747     return "NVPTXISD::LoadParam";
748   case NVPTXISD::LoadParamV2:
749     return "NVPTXISD::LoadParamV2";
750   case NVPTXISD::LoadParamV4:
751     return "NVPTXISD::LoadParamV4";
752   case NVPTXISD::StoreParam:
753     return "NVPTXISD::StoreParam";
754   case NVPTXISD::StoreParamV2:
755     return "NVPTXISD::StoreParamV2";
756   case NVPTXISD::StoreParamV4:
757     return "NVPTXISD::StoreParamV4";
758   case NVPTXISD::StoreParamS32:
759     return "NVPTXISD::StoreParamS32";
760   case NVPTXISD::StoreParamU32:
761     return "NVPTXISD::StoreParamU32";
762   case NVPTXISD::CallArgBegin:
763     return "NVPTXISD::CallArgBegin";
764   case NVPTXISD::CallArg:
765     return "NVPTXISD::CallArg";
766   case NVPTXISD::LastCallArg:
767     return "NVPTXISD::LastCallArg";
768   case NVPTXISD::CallArgEnd:
769     return "NVPTXISD::CallArgEnd";
770   case NVPTXISD::CallVoid:
771     return "NVPTXISD::CallVoid";
772   case NVPTXISD::CallVal:
773     return "NVPTXISD::CallVal";
774   case NVPTXISD::CallSymbol:
775     return "NVPTXISD::CallSymbol";
776   case NVPTXISD::Prototype:
777     return "NVPTXISD::Prototype";
778   case NVPTXISD::MoveParam:
779     return "NVPTXISD::MoveParam";
780   case NVPTXISD::StoreRetval:
781     return "NVPTXISD::StoreRetval";
782   case NVPTXISD::StoreRetvalV2:
783     return "NVPTXISD::StoreRetvalV2";
784   case NVPTXISD::StoreRetvalV4:
785     return "NVPTXISD::StoreRetvalV4";
786   case NVPTXISD::PseudoUseParam:
787     return "NVPTXISD::PseudoUseParam";
788   case NVPTXISD::RETURN:
789     return "NVPTXISD::RETURN";
790   case NVPTXISD::CallSeqBegin:
791     return "NVPTXISD::CallSeqBegin";
792   case NVPTXISD::CallSeqEnd:
793     return "NVPTXISD::CallSeqEnd";
794   case NVPTXISD::CallPrototype:
795     return "NVPTXISD::CallPrototype";
796   case NVPTXISD::ProxyReg:
797     return "NVPTXISD::ProxyReg";
798   case NVPTXISD::LoadV2:
799     return "NVPTXISD::LoadV2";
800   case NVPTXISD::LoadV4:
801     return "NVPTXISD::LoadV4";
802   case NVPTXISD::LDGV2:
803     return "NVPTXISD::LDGV2";
804   case NVPTXISD::LDGV4:
805     return "NVPTXISD::LDGV4";
806   case NVPTXISD::LDUV2:
807     return "NVPTXISD::LDUV2";
808   case NVPTXISD::LDUV4:
809     return "NVPTXISD::LDUV4";
810   case NVPTXISD::StoreV2:
811     return "NVPTXISD::StoreV2";
812   case NVPTXISD::StoreV4:
813     return "NVPTXISD::StoreV4";
814   case NVPTXISD::FUN_SHFL_CLAMP:
815     return "NVPTXISD::FUN_SHFL_CLAMP";
816   case NVPTXISD::FUN_SHFR_CLAMP:
817     return "NVPTXISD::FUN_SHFR_CLAMP";
818   case NVPTXISD::IMAD:
819     return "NVPTXISD::IMAD";
820   case NVPTXISD::SETP_F16X2:
821     return "NVPTXISD::SETP_F16X2";
822   case NVPTXISD::Dummy:
823     return "NVPTXISD::Dummy";
824   case NVPTXISD::MUL_WIDE_SIGNED:
825     return "NVPTXISD::MUL_WIDE_SIGNED";
826   case NVPTXISD::MUL_WIDE_UNSIGNED:
827     return "NVPTXISD::MUL_WIDE_UNSIGNED";
828   case NVPTXISD::Tex1DFloatS32:        return "NVPTXISD::Tex1DFloatS32";
829   case NVPTXISD::Tex1DFloatFloat:      return "NVPTXISD::Tex1DFloatFloat";
830   case NVPTXISD::Tex1DFloatFloatLevel:
831     return "NVPTXISD::Tex1DFloatFloatLevel";
832   case NVPTXISD::Tex1DFloatFloatGrad:
833     return "NVPTXISD::Tex1DFloatFloatGrad";
834   case NVPTXISD::Tex1DS32S32:          return "NVPTXISD::Tex1DS32S32";
835   case NVPTXISD::Tex1DS32Float:        return "NVPTXISD::Tex1DS32Float";
836   case NVPTXISD::Tex1DS32FloatLevel:
837     return "NVPTXISD::Tex1DS32FloatLevel";
838   case NVPTXISD::Tex1DS32FloatGrad:
839     return "NVPTXISD::Tex1DS32FloatGrad";
840   case NVPTXISD::Tex1DU32S32:          return "NVPTXISD::Tex1DU32S32";
841   case NVPTXISD::Tex1DU32Float:        return "NVPTXISD::Tex1DU32Float";
842   case NVPTXISD::Tex1DU32FloatLevel:
843     return "NVPTXISD::Tex1DU32FloatLevel";
844   case NVPTXISD::Tex1DU32FloatGrad:
845     return "NVPTXISD::Tex1DU32FloatGrad";
846   case NVPTXISD::Tex1DArrayFloatS32:   return "NVPTXISD::Tex1DArrayFloatS32";
847   case NVPTXISD::Tex1DArrayFloatFloat: return "NVPTXISD::Tex1DArrayFloatFloat";
848   case NVPTXISD::Tex1DArrayFloatFloatLevel:
849     return "NVPTXISD::Tex1DArrayFloatFloatLevel";
850   case NVPTXISD::Tex1DArrayFloatFloatGrad:
851     return "NVPTXISD::Tex1DArrayFloatFloatGrad";
852   case NVPTXISD::Tex1DArrayS32S32:     return "NVPTXISD::Tex1DArrayS32S32";
853   case NVPTXISD::Tex1DArrayS32Float:   return "NVPTXISD::Tex1DArrayS32Float";
854   case NVPTXISD::Tex1DArrayS32FloatLevel:
855     return "NVPTXISD::Tex1DArrayS32FloatLevel";
856   case NVPTXISD::Tex1DArrayS32FloatGrad:
857     return "NVPTXISD::Tex1DArrayS32FloatGrad";
858   case NVPTXISD::Tex1DArrayU32S32:     return "NVPTXISD::Tex1DArrayU32S32";
859   case NVPTXISD::Tex1DArrayU32Float:   return "NVPTXISD::Tex1DArrayU32Float";
860   case NVPTXISD::Tex1DArrayU32FloatLevel:
861     return "NVPTXISD::Tex1DArrayU32FloatLevel";
862   case NVPTXISD::Tex1DArrayU32FloatGrad:
863     return "NVPTXISD::Tex1DArrayU32FloatGrad";
864   case NVPTXISD::Tex2DFloatS32:        return "NVPTXISD::Tex2DFloatS32";
865   case NVPTXISD::Tex2DFloatFloat:      return "NVPTXISD::Tex2DFloatFloat";
866   case NVPTXISD::Tex2DFloatFloatLevel:
867     return "NVPTXISD::Tex2DFloatFloatLevel";
868   case NVPTXISD::Tex2DFloatFloatGrad:
869     return "NVPTXISD::Tex2DFloatFloatGrad";
870   case NVPTXISD::Tex2DS32S32:          return "NVPTXISD::Tex2DS32S32";
871   case NVPTXISD::Tex2DS32Float:        return "NVPTXISD::Tex2DS32Float";
872   case NVPTXISD::Tex2DS32FloatLevel:
873     return "NVPTXISD::Tex2DS32FloatLevel";
874   case NVPTXISD::Tex2DS32FloatGrad:
875     return "NVPTXISD::Tex2DS32FloatGrad";
876   case NVPTXISD::Tex2DU32S32:          return "NVPTXISD::Tex2DU32S32";
877   case NVPTXISD::Tex2DU32Float:        return "NVPTXISD::Tex2DU32Float";
878   case NVPTXISD::Tex2DU32FloatLevel:
879     return "NVPTXISD::Tex2DU32FloatLevel";
880   case NVPTXISD::Tex2DU32FloatGrad:
881     return "NVPTXISD::Tex2DU32FloatGrad";
882   case NVPTXISD::Tex2DArrayFloatS32:   return "NVPTXISD::Tex2DArrayFloatS32";
883   case NVPTXISD::Tex2DArrayFloatFloat: return "NVPTXISD::Tex2DArrayFloatFloat";
884   case NVPTXISD::Tex2DArrayFloatFloatLevel:
885     return "NVPTXISD::Tex2DArrayFloatFloatLevel";
886   case NVPTXISD::Tex2DArrayFloatFloatGrad:
887     return "NVPTXISD::Tex2DArrayFloatFloatGrad";
888   case NVPTXISD::Tex2DArrayS32S32:     return "NVPTXISD::Tex2DArrayS32S32";
889   case NVPTXISD::Tex2DArrayS32Float:   return "NVPTXISD::Tex2DArrayS32Float";
890   case NVPTXISD::Tex2DArrayS32FloatLevel:
891     return "NVPTXISD::Tex2DArrayS32FloatLevel";
892   case NVPTXISD::Tex2DArrayS32FloatGrad:
893     return "NVPTXISD::Tex2DArrayS32FloatGrad";
894   case NVPTXISD::Tex2DArrayU32S32:     return "NVPTXISD::Tex2DArrayU32S32";
895   case NVPTXISD::Tex2DArrayU32Float:   return "NVPTXISD::Tex2DArrayU32Float";
896   case NVPTXISD::Tex2DArrayU32FloatLevel:
897     return "NVPTXISD::Tex2DArrayU32FloatLevel";
898   case NVPTXISD::Tex2DArrayU32FloatGrad:
899     return "NVPTXISD::Tex2DArrayU32FloatGrad";
900   case NVPTXISD::Tex3DFloatS32:        return "NVPTXISD::Tex3DFloatS32";
901   case NVPTXISD::Tex3DFloatFloat:      return "NVPTXISD::Tex3DFloatFloat";
902   case NVPTXISD::Tex3DFloatFloatLevel:
903     return "NVPTXISD::Tex3DFloatFloatLevel";
904   case NVPTXISD::Tex3DFloatFloatGrad:
905     return "NVPTXISD::Tex3DFloatFloatGrad";
906   case NVPTXISD::Tex3DS32S32:          return "NVPTXISD::Tex3DS32S32";
907   case NVPTXISD::Tex3DS32Float:        return "NVPTXISD::Tex3DS32Float";
908   case NVPTXISD::Tex3DS32FloatLevel:
909     return "NVPTXISD::Tex3DS32FloatLevel";
910   case NVPTXISD::Tex3DS32FloatGrad:
911     return "NVPTXISD::Tex3DS32FloatGrad";
912   case NVPTXISD::Tex3DU32S32:          return "NVPTXISD::Tex3DU32S32";
913   case NVPTXISD::Tex3DU32Float:        return "NVPTXISD::Tex3DU32Float";
914   case NVPTXISD::Tex3DU32FloatLevel:
915     return "NVPTXISD::Tex3DU32FloatLevel";
916   case NVPTXISD::Tex3DU32FloatGrad:
917     return "NVPTXISD::Tex3DU32FloatGrad";
918   case NVPTXISD::TexCubeFloatFloat:      return "NVPTXISD::TexCubeFloatFloat";
919   case NVPTXISD::TexCubeFloatFloatLevel:
920     return "NVPTXISD::TexCubeFloatFloatLevel";
921   case NVPTXISD::TexCubeS32Float:        return "NVPTXISD::TexCubeS32Float";
922   case NVPTXISD::TexCubeS32FloatLevel:
923     return "NVPTXISD::TexCubeS32FloatLevel";
924   case NVPTXISD::TexCubeU32Float:        return "NVPTXISD::TexCubeU32Float";
925   case NVPTXISD::TexCubeU32FloatLevel:
926     return "NVPTXISD::TexCubeU32FloatLevel";
927   case NVPTXISD::TexCubeArrayFloatFloat:
928     return "NVPTXISD::TexCubeArrayFloatFloat";
929   case NVPTXISD::TexCubeArrayFloatFloatLevel:
930     return "NVPTXISD::TexCubeArrayFloatFloatLevel";
931   case NVPTXISD::TexCubeArrayS32Float:
932     return "NVPTXISD::TexCubeArrayS32Float";
933   case NVPTXISD::TexCubeArrayS32FloatLevel:
934     return "NVPTXISD::TexCubeArrayS32FloatLevel";
935   case NVPTXISD::TexCubeArrayU32Float:
936     return "NVPTXISD::TexCubeArrayU32Float";
937   case NVPTXISD::TexCubeArrayU32FloatLevel:
938     return "NVPTXISD::TexCubeArrayU32FloatLevel";
939   case NVPTXISD::Tld4R2DFloatFloat:
940     return "NVPTXISD::Tld4R2DFloatFloat";
941   case NVPTXISD::Tld4G2DFloatFloat:
942     return "NVPTXISD::Tld4G2DFloatFloat";
943   case NVPTXISD::Tld4B2DFloatFloat:
944     return "NVPTXISD::Tld4B2DFloatFloat";
945   case NVPTXISD::Tld4A2DFloatFloat:
946     return "NVPTXISD::Tld4A2DFloatFloat";
947   case NVPTXISD::Tld4R2DS64Float:
948     return "NVPTXISD::Tld4R2DS64Float";
949   case NVPTXISD::Tld4G2DS64Float:
950     return "NVPTXISD::Tld4G2DS64Float";
951   case NVPTXISD::Tld4B2DS64Float:
952     return "NVPTXISD::Tld4B2DS64Float";
953   case NVPTXISD::Tld4A2DS64Float:
954     return "NVPTXISD::Tld4A2DS64Float";
955   case NVPTXISD::Tld4R2DU64Float:
956     return "NVPTXISD::Tld4R2DU64Float";
957   case NVPTXISD::Tld4G2DU64Float:
958     return "NVPTXISD::Tld4G2DU64Float";
959   case NVPTXISD::Tld4B2DU64Float:
960     return "NVPTXISD::Tld4B2DU64Float";
961   case NVPTXISD::Tld4A2DU64Float:
962     return "NVPTXISD::Tld4A2DU64Float";
963 
964   case NVPTXISD::TexUnified1DFloatS32:
965     return "NVPTXISD::TexUnified1DFloatS32";
966   case NVPTXISD::TexUnified1DFloatFloat:
967     return "NVPTXISD::TexUnified1DFloatFloat";
968   case NVPTXISD::TexUnified1DFloatFloatLevel:
969     return "NVPTXISD::TexUnified1DFloatFloatLevel";
970   case NVPTXISD::TexUnified1DFloatFloatGrad:
971     return "NVPTXISD::TexUnified1DFloatFloatGrad";
972   case NVPTXISD::TexUnified1DS32S32:
973     return "NVPTXISD::TexUnified1DS32S32";
974   case NVPTXISD::TexUnified1DS32Float:
975     return "NVPTXISD::TexUnified1DS32Float";
976   case NVPTXISD::TexUnified1DS32FloatLevel:
977     return "NVPTXISD::TexUnified1DS32FloatLevel";
978   case NVPTXISD::TexUnified1DS32FloatGrad:
979     return "NVPTXISD::TexUnified1DS32FloatGrad";
980   case NVPTXISD::TexUnified1DU32S32:
981     return "NVPTXISD::TexUnified1DU32S32";
982   case NVPTXISD::TexUnified1DU32Float:
983     return "NVPTXISD::TexUnified1DU32Float";
984   case NVPTXISD::TexUnified1DU32FloatLevel:
985     return "NVPTXISD::TexUnified1DU32FloatLevel";
986   case NVPTXISD::TexUnified1DU32FloatGrad:
987     return "NVPTXISD::TexUnified1DU32FloatGrad";
988   case NVPTXISD::TexUnified1DArrayFloatS32:
989     return "NVPTXISD::TexUnified1DArrayFloatS32";
990   case NVPTXISD::TexUnified1DArrayFloatFloat:
991     return "NVPTXISD::TexUnified1DArrayFloatFloat";
992   case NVPTXISD::TexUnified1DArrayFloatFloatLevel:
993     return "NVPTXISD::TexUnified1DArrayFloatFloatLevel";
994   case NVPTXISD::TexUnified1DArrayFloatFloatGrad:
995     return "NVPTXISD::TexUnified1DArrayFloatFloatGrad";
996   case NVPTXISD::TexUnified1DArrayS32S32:
997     return "NVPTXISD::TexUnified1DArrayS32S32";
998   case NVPTXISD::TexUnified1DArrayS32Float:
999     return "NVPTXISD::TexUnified1DArrayS32Float";
1000   case NVPTXISD::TexUnified1DArrayS32FloatLevel:
1001     return "NVPTXISD::TexUnified1DArrayS32FloatLevel";
1002   case NVPTXISD::TexUnified1DArrayS32FloatGrad:
1003     return "NVPTXISD::TexUnified1DArrayS32FloatGrad";
1004   case NVPTXISD::TexUnified1DArrayU32S32:
1005     return "NVPTXISD::TexUnified1DArrayU32S32";
1006   case NVPTXISD::TexUnified1DArrayU32Float:
1007     return "NVPTXISD::TexUnified1DArrayU32Float";
1008   case NVPTXISD::TexUnified1DArrayU32FloatLevel:
1009     return "NVPTXISD::TexUnified1DArrayU32FloatLevel";
1010   case NVPTXISD::TexUnified1DArrayU32FloatGrad:
1011     return "NVPTXISD::TexUnified1DArrayU32FloatGrad";
1012   case NVPTXISD::TexUnified2DFloatS32:
1013     return "NVPTXISD::TexUnified2DFloatS32";
1014   case NVPTXISD::TexUnified2DFloatFloat:
1015     return "NVPTXISD::TexUnified2DFloatFloat";
1016   case NVPTXISD::TexUnified2DFloatFloatLevel:
1017     return "NVPTXISD::TexUnified2DFloatFloatLevel";
1018   case NVPTXISD::TexUnified2DFloatFloatGrad:
1019     return "NVPTXISD::TexUnified2DFloatFloatGrad";
1020   case NVPTXISD::TexUnified2DS32S32:
1021     return "NVPTXISD::TexUnified2DS32S32";
1022   case NVPTXISD::TexUnified2DS32Float:
1023     return "NVPTXISD::TexUnified2DS32Float";
1024   case NVPTXISD::TexUnified2DS32FloatLevel:
1025     return "NVPTXISD::TexUnified2DS32FloatLevel";
1026   case NVPTXISD::TexUnified2DS32FloatGrad:
1027     return "NVPTXISD::TexUnified2DS32FloatGrad";
1028   case NVPTXISD::TexUnified2DU32S32:
1029     return "NVPTXISD::TexUnified2DU32S32";
1030   case NVPTXISD::TexUnified2DU32Float:
1031     return "NVPTXISD::TexUnified2DU32Float";
1032   case NVPTXISD::TexUnified2DU32FloatLevel:
1033     return "NVPTXISD::TexUnified2DU32FloatLevel";
1034   case NVPTXISD::TexUnified2DU32FloatGrad:
1035     return "NVPTXISD::TexUnified2DU32FloatGrad";
1036   case NVPTXISD::TexUnified2DArrayFloatS32:
1037     return "NVPTXISD::TexUnified2DArrayFloatS32";
1038   case NVPTXISD::TexUnified2DArrayFloatFloat:
1039     return "NVPTXISD::TexUnified2DArrayFloatFloat";
1040   case NVPTXISD::TexUnified2DArrayFloatFloatLevel:
1041     return "NVPTXISD::TexUnified2DArrayFloatFloatLevel";
1042   case NVPTXISD::TexUnified2DArrayFloatFloatGrad:
1043     return "NVPTXISD::TexUnified2DArrayFloatFloatGrad";
1044   case NVPTXISD::TexUnified2DArrayS32S32:
1045     return "NVPTXISD::TexUnified2DArrayS32S32";
1046   case NVPTXISD::TexUnified2DArrayS32Float:
1047     return "NVPTXISD::TexUnified2DArrayS32Float";
1048   case NVPTXISD::TexUnified2DArrayS32FloatLevel:
1049     return "NVPTXISD::TexUnified2DArrayS32FloatLevel";
1050   case NVPTXISD::TexUnified2DArrayS32FloatGrad:
1051     return "NVPTXISD::TexUnified2DArrayS32FloatGrad";
1052   case NVPTXISD::TexUnified2DArrayU32S32:
1053     return "NVPTXISD::TexUnified2DArrayU32S32";
1054   case NVPTXISD::TexUnified2DArrayU32Float:
1055     return "NVPTXISD::TexUnified2DArrayU32Float";
1056   case NVPTXISD::TexUnified2DArrayU32FloatLevel:
1057     return "NVPTXISD::TexUnified2DArrayU32FloatLevel";
1058   case NVPTXISD::TexUnified2DArrayU32FloatGrad:
1059     return "NVPTXISD::TexUnified2DArrayU32FloatGrad";
1060   case NVPTXISD::TexUnified3DFloatS32:
1061     return "NVPTXISD::TexUnified3DFloatS32";
1062   case NVPTXISD::TexUnified3DFloatFloat:
1063     return "NVPTXISD::TexUnified3DFloatFloat";
1064   case NVPTXISD::TexUnified3DFloatFloatLevel:
1065     return "NVPTXISD::TexUnified3DFloatFloatLevel";
1066   case NVPTXISD::TexUnified3DFloatFloatGrad:
1067     return "NVPTXISD::TexUnified3DFloatFloatGrad";
1068   case NVPTXISD::TexUnified3DS32S32:
1069     return "NVPTXISD::TexUnified3DS32S32";
1070   case NVPTXISD::TexUnified3DS32Float:
1071     return "NVPTXISD::TexUnified3DS32Float";
1072   case NVPTXISD::TexUnified3DS32FloatLevel:
1073     return "NVPTXISD::TexUnified3DS32FloatLevel";
1074   case NVPTXISD::TexUnified3DS32FloatGrad:
1075     return "NVPTXISD::TexUnified3DS32FloatGrad";
1076   case NVPTXISD::TexUnified3DU32S32:
1077     return "NVPTXISD::TexUnified3DU32S32";
1078   case NVPTXISD::TexUnified3DU32Float:
1079     return "NVPTXISD::TexUnified3DU32Float";
1080   case NVPTXISD::TexUnified3DU32FloatLevel:
1081     return "NVPTXISD::TexUnified3DU32FloatLevel";
1082   case NVPTXISD::TexUnified3DU32FloatGrad:
1083     return "NVPTXISD::TexUnified3DU32FloatGrad";
1084   case NVPTXISD::TexUnifiedCubeFloatFloat:
1085     return "NVPTXISD::TexUnifiedCubeFloatFloat";
1086   case NVPTXISD::TexUnifiedCubeFloatFloatLevel:
1087     return "NVPTXISD::TexUnifiedCubeFloatFloatLevel";
1088   case NVPTXISD::TexUnifiedCubeS32Float:
1089     return "NVPTXISD::TexUnifiedCubeS32Float";
1090   case NVPTXISD::TexUnifiedCubeS32FloatLevel:
1091     return "NVPTXISD::TexUnifiedCubeS32FloatLevel";
1092   case NVPTXISD::TexUnifiedCubeU32Float:
1093     return "NVPTXISD::TexUnifiedCubeU32Float";
1094   case NVPTXISD::TexUnifiedCubeU32FloatLevel:
1095     return "NVPTXISD::TexUnifiedCubeU32FloatLevel";
1096   case NVPTXISD::TexUnifiedCubeArrayFloatFloat:
1097     return "NVPTXISD::TexUnifiedCubeArrayFloatFloat";
1098   case NVPTXISD::TexUnifiedCubeArrayFloatFloatLevel:
1099     return "NVPTXISD::TexUnifiedCubeArrayFloatFloatLevel";
1100   case NVPTXISD::TexUnifiedCubeArrayS32Float:
1101     return "NVPTXISD::TexUnifiedCubeArrayS32Float";
1102   case NVPTXISD::TexUnifiedCubeArrayS32FloatLevel:
1103     return "NVPTXISD::TexUnifiedCubeArrayS32FloatLevel";
1104   case NVPTXISD::TexUnifiedCubeArrayU32Float:
1105     return "NVPTXISD::TexUnifiedCubeArrayU32Float";
1106   case NVPTXISD::TexUnifiedCubeArrayU32FloatLevel:
1107     return "NVPTXISD::TexUnifiedCubeArrayU32FloatLevel";
1108   case NVPTXISD::Tld4UnifiedR2DFloatFloat:
1109     return "NVPTXISD::Tld4UnifiedR2DFloatFloat";
1110   case NVPTXISD::Tld4UnifiedG2DFloatFloat:
1111     return "NVPTXISD::Tld4UnifiedG2DFloatFloat";
1112   case NVPTXISD::Tld4UnifiedB2DFloatFloat:
1113     return "NVPTXISD::Tld4UnifiedB2DFloatFloat";
1114   case NVPTXISD::Tld4UnifiedA2DFloatFloat:
1115     return "NVPTXISD::Tld4UnifiedA2DFloatFloat";
1116   case NVPTXISD::Tld4UnifiedR2DS64Float:
1117     return "NVPTXISD::Tld4UnifiedR2DS64Float";
1118   case NVPTXISD::Tld4UnifiedG2DS64Float:
1119     return "NVPTXISD::Tld4UnifiedG2DS64Float";
1120   case NVPTXISD::Tld4UnifiedB2DS64Float:
1121     return "NVPTXISD::Tld4UnifiedB2DS64Float";
1122   case NVPTXISD::Tld4UnifiedA2DS64Float:
1123     return "NVPTXISD::Tld4UnifiedA2DS64Float";
1124   case NVPTXISD::Tld4UnifiedR2DU64Float:
1125     return "NVPTXISD::Tld4UnifiedR2DU64Float";
1126   case NVPTXISD::Tld4UnifiedG2DU64Float:
1127     return "NVPTXISD::Tld4UnifiedG2DU64Float";
1128   case NVPTXISD::Tld4UnifiedB2DU64Float:
1129     return "NVPTXISD::Tld4UnifiedB2DU64Float";
1130   case NVPTXISD::Tld4UnifiedA2DU64Float:
1131     return "NVPTXISD::Tld4UnifiedA2DU64Float";
1132 
1133   case NVPTXISD::Suld1DI8Clamp:          return "NVPTXISD::Suld1DI8Clamp";
1134   case NVPTXISD::Suld1DI16Clamp:         return "NVPTXISD::Suld1DI16Clamp";
1135   case NVPTXISD::Suld1DI32Clamp:         return "NVPTXISD::Suld1DI32Clamp";
1136   case NVPTXISD::Suld1DI64Clamp:         return "NVPTXISD::Suld1DI64Clamp";
1137   case NVPTXISD::Suld1DV2I8Clamp:        return "NVPTXISD::Suld1DV2I8Clamp";
1138   case NVPTXISD::Suld1DV2I16Clamp:       return "NVPTXISD::Suld1DV2I16Clamp";
1139   case NVPTXISD::Suld1DV2I32Clamp:       return "NVPTXISD::Suld1DV2I32Clamp";
1140   case NVPTXISD::Suld1DV2I64Clamp:       return "NVPTXISD::Suld1DV2I64Clamp";
1141   case NVPTXISD::Suld1DV4I8Clamp:        return "NVPTXISD::Suld1DV4I8Clamp";
1142   case NVPTXISD::Suld1DV4I16Clamp:       return "NVPTXISD::Suld1DV4I16Clamp";
1143   case NVPTXISD::Suld1DV4I32Clamp:       return "NVPTXISD::Suld1DV4I32Clamp";
1144 
1145   case NVPTXISD::Suld1DArrayI8Clamp:   return "NVPTXISD::Suld1DArrayI8Clamp";
1146   case NVPTXISD::Suld1DArrayI16Clamp:  return "NVPTXISD::Suld1DArrayI16Clamp";
1147   case NVPTXISD::Suld1DArrayI32Clamp:  return "NVPTXISD::Suld1DArrayI32Clamp";
1148   case NVPTXISD::Suld1DArrayI64Clamp:  return "NVPTXISD::Suld1DArrayI64Clamp";
1149   case NVPTXISD::Suld1DArrayV2I8Clamp: return "NVPTXISD::Suld1DArrayV2I8Clamp";
1150   case NVPTXISD::Suld1DArrayV2I16Clamp:return "NVPTXISD::Suld1DArrayV2I16Clamp";
1151   case NVPTXISD::Suld1DArrayV2I32Clamp:return "NVPTXISD::Suld1DArrayV2I32Clamp";
1152   case NVPTXISD::Suld1DArrayV2I64Clamp:return "NVPTXISD::Suld1DArrayV2I64Clamp";
1153   case NVPTXISD::Suld1DArrayV4I8Clamp: return "NVPTXISD::Suld1DArrayV4I8Clamp";
1154   case NVPTXISD::Suld1DArrayV4I16Clamp:return "NVPTXISD::Suld1DArrayV4I16Clamp";
1155   case NVPTXISD::Suld1DArrayV4I32Clamp:return "NVPTXISD::Suld1DArrayV4I32Clamp";
1156 
1157   case NVPTXISD::Suld2DI8Clamp:          return "NVPTXISD::Suld2DI8Clamp";
1158   case NVPTXISD::Suld2DI16Clamp:         return "NVPTXISD::Suld2DI16Clamp";
1159   case NVPTXISD::Suld2DI32Clamp:         return "NVPTXISD::Suld2DI32Clamp";
1160   case NVPTXISD::Suld2DI64Clamp:         return "NVPTXISD::Suld2DI64Clamp";
1161   case NVPTXISD::Suld2DV2I8Clamp:        return "NVPTXISD::Suld2DV2I8Clamp";
1162   case NVPTXISD::Suld2DV2I16Clamp:       return "NVPTXISD::Suld2DV2I16Clamp";
1163   case NVPTXISD::Suld2DV2I32Clamp:       return "NVPTXISD::Suld2DV2I32Clamp";
1164   case NVPTXISD::Suld2DV2I64Clamp:       return "NVPTXISD::Suld2DV2I64Clamp";
1165   case NVPTXISD::Suld2DV4I8Clamp:        return "NVPTXISD::Suld2DV4I8Clamp";
1166   case NVPTXISD::Suld2DV4I16Clamp:       return "NVPTXISD::Suld2DV4I16Clamp";
1167   case NVPTXISD::Suld2DV4I32Clamp:       return "NVPTXISD::Suld2DV4I32Clamp";
1168 
1169   case NVPTXISD::Suld2DArrayI8Clamp:   return "NVPTXISD::Suld2DArrayI8Clamp";
1170   case NVPTXISD::Suld2DArrayI16Clamp:  return "NVPTXISD::Suld2DArrayI16Clamp";
1171   case NVPTXISD::Suld2DArrayI32Clamp:  return "NVPTXISD::Suld2DArrayI32Clamp";
1172   case NVPTXISD::Suld2DArrayI64Clamp:  return "NVPTXISD::Suld2DArrayI64Clamp";
1173   case NVPTXISD::Suld2DArrayV2I8Clamp: return "NVPTXISD::Suld2DArrayV2I8Clamp";
1174   case NVPTXISD::Suld2DArrayV2I16Clamp:return "NVPTXISD::Suld2DArrayV2I16Clamp";
1175   case NVPTXISD::Suld2DArrayV2I32Clamp:return "NVPTXISD::Suld2DArrayV2I32Clamp";
1176   case NVPTXISD::Suld2DArrayV2I64Clamp:return "NVPTXISD::Suld2DArrayV2I64Clamp";
1177   case NVPTXISD::Suld2DArrayV4I8Clamp: return "NVPTXISD::Suld2DArrayV4I8Clamp";
1178   case NVPTXISD::Suld2DArrayV4I16Clamp:return "NVPTXISD::Suld2DArrayV4I16Clamp";
1179   case NVPTXISD::Suld2DArrayV4I32Clamp:return "NVPTXISD::Suld2DArrayV4I32Clamp";
1180 
1181   case NVPTXISD::Suld3DI8Clamp:          return "NVPTXISD::Suld3DI8Clamp";
1182   case NVPTXISD::Suld3DI16Clamp:         return "NVPTXISD::Suld3DI16Clamp";
1183   case NVPTXISD::Suld3DI32Clamp:         return "NVPTXISD::Suld3DI32Clamp";
1184   case NVPTXISD::Suld3DI64Clamp:         return "NVPTXISD::Suld3DI64Clamp";
1185   case NVPTXISD::Suld3DV2I8Clamp:        return "NVPTXISD::Suld3DV2I8Clamp";
1186   case NVPTXISD::Suld3DV2I16Clamp:       return "NVPTXISD::Suld3DV2I16Clamp";
1187   case NVPTXISD::Suld3DV2I32Clamp:       return "NVPTXISD::Suld3DV2I32Clamp";
1188   case NVPTXISD::Suld3DV2I64Clamp:       return "NVPTXISD::Suld3DV2I64Clamp";
1189   case NVPTXISD::Suld3DV4I8Clamp:        return "NVPTXISD::Suld3DV4I8Clamp";
1190   case NVPTXISD::Suld3DV4I16Clamp:       return "NVPTXISD::Suld3DV4I16Clamp";
1191   case NVPTXISD::Suld3DV4I32Clamp:       return "NVPTXISD::Suld3DV4I32Clamp";
1192 
1193   case NVPTXISD::Suld1DI8Trap:          return "NVPTXISD::Suld1DI8Trap";
1194   case NVPTXISD::Suld1DI16Trap:         return "NVPTXISD::Suld1DI16Trap";
1195   case NVPTXISD::Suld1DI32Trap:         return "NVPTXISD::Suld1DI32Trap";
1196   case NVPTXISD::Suld1DI64Trap:         return "NVPTXISD::Suld1DI64Trap";
1197   case NVPTXISD::Suld1DV2I8Trap:        return "NVPTXISD::Suld1DV2I8Trap";
1198   case NVPTXISD::Suld1DV2I16Trap:       return "NVPTXISD::Suld1DV2I16Trap";
1199   case NVPTXISD::Suld1DV2I32Trap:       return "NVPTXISD::Suld1DV2I32Trap";
1200   case NVPTXISD::Suld1DV2I64Trap:       return "NVPTXISD::Suld1DV2I64Trap";
1201   case NVPTXISD::Suld1DV4I8Trap:        return "NVPTXISD::Suld1DV4I8Trap";
1202   case NVPTXISD::Suld1DV4I16Trap:       return "NVPTXISD::Suld1DV4I16Trap";
1203   case NVPTXISD::Suld1DV4I32Trap:       return "NVPTXISD::Suld1DV4I32Trap";
1204 
1205   case NVPTXISD::Suld1DArrayI8Trap:     return "NVPTXISD::Suld1DArrayI8Trap";
1206   case NVPTXISD::Suld1DArrayI16Trap:    return "NVPTXISD::Suld1DArrayI16Trap";
1207   case NVPTXISD::Suld1DArrayI32Trap:    return "NVPTXISD::Suld1DArrayI32Trap";
1208   case NVPTXISD::Suld1DArrayI64Trap:    return "NVPTXISD::Suld1DArrayI64Trap";
1209   case NVPTXISD::Suld1DArrayV2I8Trap:   return "NVPTXISD::Suld1DArrayV2I8Trap";
1210   case NVPTXISD::Suld1DArrayV2I16Trap:  return "NVPTXISD::Suld1DArrayV2I16Trap";
1211   case NVPTXISD::Suld1DArrayV2I32Trap:  return "NVPTXISD::Suld1DArrayV2I32Trap";
1212   case NVPTXISD::Suld1DArrayV2I64Trap:  return "NVPTXISD::Suld1DArrayV2I64Trap";
1213   case NVPTXISD::Suld1DArrayV4I8Trap:   return "NVPTXISD::Suld1DArrayV4I8Trap";
1214   case NVPTXISD::Suld1DArrayV4I16Trap:  return "NVPTXISD::Suld1DArrayV4I16Trap";
1215   case NVPTXISD::Suld1DArrayV4I32Trap:  return "NVPTXISD::Suld1DArrayV4I32Trap";
1216 
1217   case NVPTXISD::Suld2DI8Trap:          return "NVPTXISD::Suld2DI8Trap";
1218   case NVPTXISD::Suld2DI16Trap:         return "NVPTXISD::Suld2DI16Trap";
1219   case NVPTXISD::Suld2DI32Trap:         return "NVPTXISD::Suld2DI32Trap";
1220   case NVPTXISD::Suld2DI64Trap:         return "NVPTXISD::Suld2DI64Trap";
1221   case NVPTXISD::Suld2DV2I8Trap:        return "NVPTXISD::Suld2DV2I8Trap";
1222   case NVPTXISD::Suld2DV2I16Trap:       return "NVPTXISD::Suld2DV2I16Trap";
1223   case NVPTXISD::Suld2DV2I32Trap:       return "NVPTXISD::Suld2DV2I32Trap";
1224   case NVPTXISD::Suld2DV2I64Trap:       return "NVPTXISD::Suld2DV2I64Trap";
1225   case NVPTXISD::Suld2DV4I8Trap:        return "NVPTXISD::Suld2DV4I8Trap";
1226   case NVPTXISD::Suld2DV4I16Trap:       return "NVPTXISD::Suld2DV4I16Trap";
1227   case NVPTXISD::Suld2DV4I32Trap:       return "NVPTXISD::Suld2DV4I32Trap";
1228 
1229   case NVPTXISD::Suld2DArrayI8Trap:     return "NVPTXISD::Suld2DArrayI8Trap";
1230   case NVPTXISD::Suld2DArrayI16Trap:    return "NVPTXISD::Suld2DArrayI16Trap";
1231   case NVPTXISD::Suld2DArrayI32Trap:    return "NVPTXISD::Suld2DArrayI32Trap";
1232   case NVPTXISD::Suld2DArrayI64Trap:    return "NVPTXISD::Suld2DArrayI64Trap";
1233   case NVPTXISD::Suld2DArrayV2I8Trap:   return "NVPTXISD::Suld2DArrayV2I8Trap";
1234   case NVPTXISD::Suld2DArrayV2I16Trap:  return "NVPTXISD::Suld2DArrayV2I16Trap";
1235   case NVPTXISD::Suld2DArrayV2I32Trap:  return "NVPTXISD::Suld2DArrayV2I32Trap";
1236   case NVPTXISD::Suld2DArrayV2I64Trap:  return "NVPTXISD::Suld2DArrayV2I64Trap";
1237   case NVPTXISD::Suld2DArrayV4I8Trap:   return "NVPTXISD::Suld2DArrayV4I8Trap";
1238   case NVPTXISD::Suld2DArrayV4I16Trap:  return "NVPTXISD::Suld2DArrayV4I16Trap";
1239   case NVPTXISD::Suld2DArrayV4I32Trap:  return "NVPTXISD::Suld2DArrayV4I32Trap";
1240 
1241   case NVPTXISD::Suld3DI8Trap:          return "NVPTXISD::Suld3DI8Trap";
1242   case NVPTXISD::Suld3DI16Trap:         return "NVPTXISD::Suld3DI16Trap";
1243   case NVPTXISD::Suld3DI32Trap:         return "NVPTXISD::Suld3DI32Trap";
1244   case NVPTXISD::Suld3DI64Trap:         return "NVPTXISD::Suld3DI64Trap";
1245   case NVPTXISD::Suld3DV2I8Trap:        return "NVPTXISD::Suld3DV2I8Trap";
1246   case NVPTXISD::Suld3DV2I16Trap:       return "NVPTXISD::Suld3DV2I16Trap";
1247   case NVPTXISD::Suld3DV2I32Trap:       return "NVPTXISD::Suld3DV2I32Trap";
1248   case NVPTXISD::Suld3DV2I64Trap:       return "NVPTXISD::Suld3DV2I64Trap";
1249   case NVPTXISD::Suld3DV4I8Trap:        return "NVPTXISD::Suld3DV4I8Trap";
1250   case NVPTXISD::Suld3DV4I16Trap:       return "NVPTXISD::Suld3DV4I16Trap";
1251   case NVPTXISD::Suld3DV4I32Trap:       return "NVPTXISD::Suld3DV4I32Trap";
1252 
1253   case NVPTXISD::Suld1DI8Zero:          return "NVPTXISD::Suld1DI8Zero";
1254   case NVPTXISD::Suld1DI16Zero:         return "NVPTXISD::Suld1DI16Zero";
1255   case NVPTXISD::Suld1DI32Zero:         return "NVPTXISD::Suld1DI32Zero";
1256   case NVPTXISD::Suld1DI64Zero:         return "NVPTXISD::Suld1DI64Zero";
1257   case NVPTXISD::Suld1DV2I8Zero:        return "NVPTXISD::Suld1DV2I8Zero";
1258   case NVPTXISD::Suld1DV2I16Zero:       return "NVPTXISD::Suld1DV2I16Zero";
1259   case NVPTXISD::Suld1DV2I32Zero:       return "NVPTXISD::Suld1DV2I32Zero";
1260   case NVPTXISD::Suld1DV2I64Zero:       return "NVPTXISD::Suld1DV2I64Zero";
1261   case NVPTXISD::Suld1DV4I8Zero:        return "NVPTXISD::Suld1DV4I8Zero";
1262   case NVPTXISD::Suld1DV4I16Zero:       return "NVPTXISD::Suld1DV4I16Zero";
1263   case NVPTXISD::Suld1DV4I32Zero:       return "NVPTXISD::Suld1DV4I32Zero";
1264 
1265   case NVPTXISD::Suld1DArrayI8Zero:     return "NVPTXISD::Suld1DArrayI8Zero";
1266   case NVPTXISD::Suld1DArrayI16Zero:    return "NVPTXISD::Suld1DArrayI16Zero";
1267   case NVPTXISD::Suld1DArrayI32Zero:    return "NVPTXISD::Suld1DArrayI32Zero";
1268   case NVPTXISD::Suld1DArrayI64Zero:    return "NVPTXISD::Suld1DArrayI64Zero";
1269   case NVPTXISD::Suld1DArrayV2I8Zero:   return "NVPTXISD::Suld1DArrayV2I8Zero";
1270   case NVPTXISD::Suld1DArrayV2I16Zero:  return "NVPTXISD::Suld1DArrayV2I16Zero";
1271   case NVPTXISD::Suld1DArrayV2I32Zero:  return "NVPTXISD::Suld1DArrayV2I32Zero";
1272   case NVPTXISD::Suld1DArrayV2I64Zero:  return "NVPTXISD::Suld1DArrayV2I64Zero";
1273   case NVPTXISD::Suld1DArrayV4I8Zero:   return "NVPTXISD::Suld1DArrayV4I8Zero";
1274   case NVPTXISD::Suld1DArrayV4I16Zero:  return "NVPTXISD::Suld1DArrayV4I16Zero";
1275   case NVPTXISD::Suld1DArrayV4I32Zero:  return "NVPTXISD::Suld1DArrayV4I32Zero";
1276 
1277   case NVPTXISD::Suld2DI8Zero:          return "NVPTXISD::Suld2DI8Zero";
1278   case NVPTXISD::Suld2DI16Zero:         return "NVPTXISD::Suld2DI16Zero";
1279   case NVPTXISD::Suld2DI32Zero:         return "NVPTXISD::Suld2DI32Zero";
1280   case NVPTXISD::Suld2DI64Zero:         return "NVPTXISD::Suld2DI64Zero";
1281   case NVPTXISD::Suld2DV2I8Zero:        return "NVPTXISD::Suld2DV2I8Zero";
1282   case NVPTXISD::Suld2DV2I16Zero:       return "NVPTXISD::Suld2DV2I16Zero";
1283   case NVPTXISD::Suld2DV2I32Zero:       return "NVPTXISD::Suld2DV2I32Zero";
1284   case NVPTXISD::Suld2DV2I64Zero:       return "NVPTXISD::Suld2DV2I64Zero";
1285   case NVPTXISD::Suld2DV4I8Zero:        return "NVPTXISD::Suld2DV4I8Zero";
1286   case NVPTXISD::Suld2DV4I16Zero:       return "NVPTXISD::Suld2DV4I16Zero";
1287   case NVPTXISD::Suld2DV4I32Zero:       return "NVPTXISD::Suld2DV4I32Zero";
1288 
1289   case NVPTXISD::Suld2DArrayI8Zero:     return "NVPTXISD::Suld2DArrayI8Zero";
1290   case NVPTXISD::Suld2DArrayI16Zero:    return "NVPTXISD::Suld2DArrayI16Zero";
1291   case NVPTXISD::Suld2DArrayI32Zero:    return "NVPTXISD::Suld2DArrayI32Zero";
1292   case NVPTXISD::Suld2DArrayI64Zero:    return "NVPTXISD::Suld2DArrayI64Zero";
1293   case NVPTXISD::Suld2DArrayV2I8Zero:   return "NVPTXISD::Suld2DArrayV2I8Zero";
1294   case NVPTXISD::Suld2DArrayV2I16Zero:  return "NVPTXISD::Suld2DArrayV2I16Zero";
1295   case NVPTXISD::Suld2DArrayV2I32Zero:  return "NVPTXISD::Suld2DArrayV2I32Zero";
1296   case NVPTXISD::Suld2DArrayV2I64Zero:  return "NVPTXISD::Suld2DArrayV2I64Zero";
1297   case NVPTXISD::Suld2DArrayV4I8Zero:   return "NVPTXISD::Suld2DArrayV4I8Zero";
1298   case NVPTXISD::Suld2DArrayV4I16Zero:  return "NVPTXISD::Suld2DArrayV4I16Zero";
1299   case NVPTXISD::Suld2DArrayV4I32Zero:  return "NVPTXISD::Suld2DArrayV4I32Zero";
1300 
1301   case NVPTXISD::Suld3DI8Zero:          return "NVPTXISD::Suld3DI8Zero";
1302   case NVPTXISD::Suld3DI16Zero:         return "NVPTXISD::Suld3DI16Zero";
1303   case NVPTXISD::Suld3DI32Zero:         return "NVPTXISD::Suld3DI32Zero";
1304   case NVPTXISD::Suld3DI64Zero:         return "NVPTXISD::Suld3DI64Zero";
1305   case NVPTXISD::Suld3DV2I8Zero:        return "NVPTXISD::Suld3DV2I8Zero";
1306   case NVPTXISD::Suld3DV2I16Zero:       return "NVPTXISD::Suld3DV2I16Zero";
1307   case NVPTXISD::Suld3DV2I32Zero:       return "NVPTXISD::Suld3DV2I32Zero";
1308   case NVPTXISD::Suld3DV2I64Zero:       return "NVPTXISD::Suld3DV2I64Zero";
1309   case NVPTXISD::Suld3DV4I8Zero:        return "NVPTXISD::Suld3DV4I8Zero";
1310   case NVPTXISD::Suld3DV4I16Zero:       return "NVPTXISD::Suld3DV4I16Zero";
1311   case NVPTXISD::Suld3DV4I32Zero:       return "NVPTXISD::Suld3DV4I32Zero";
1312   }
1313   return nullptr;
1314 }
1315 
1316 TargetLoweringBase::LegalizeTypeAction
1317 NVPTXTargetLowering::getPreferredVectorAction(MVT VT) const {
1318   if (!VT.isScalableVector() && VT.getVectorNumElements() != 1 &&
1319       VT.getScalarType() == MVT::i1)
1320     return TypeSplitVector;
1321   if (Isv2f16Orv2bf16Type(VT))
1322     return TypeLegal;
1323   return TargetLoweringBase::getPreferredVectorAction(VT);
1324 }
1325 
1326 SDValue NVPTXTargetLowering::getSqrtEstimate(SDValue Operand, SelectionDAG &DAG,
1327                                              int Enabled, int &ExtraSteps,
1328                                              bool &UseOneConst,
1329                                              bool Reciprocal) const {
1330   if (!(Enabled == ReciprocalEstimate::Enabled ||
1331         (Enabled == ReciprocalEstimate::Unspecified && !usePrecSqrtF32())))
1332     return SDValue();
1333 
1334   if (ExtraSteps == ReciprocalEstimate::Unspecified)
1335     ExtraSteps = 0;
1336 
1337   SDLoc DL(Operand);
1338   EVT VT = Operand.getValueType();
1339   bool Ftz = useF32FTZ(DAG.getMachineFunction());
1340 
1341   auto MakeIntrinsicCall = [&](Intrinsic::ID IID) {
1342     return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
1343                        DAG.getConstant(IID, DL, MVT::i32), Operand);
1344   };
1345 
1346   // The sqrt and rsqrt refinement processes assume we always start out with an
1347   // approximation of the rsqrt.  Therefore, if we're going to do any refinement
1348   // (i.e. ExtraSteps > 0), we must return an rsqrt.  But if we're *not* doing
1349   // any refinement, we must return a regular sqrt.
1350   if (Reciprocal || ExtraSteps > 0) {
1351     if (VT == MVT::f32)
1352       return MakeIntrinsicCall(Ftz ? Intrinsic::nvvm_rsqrt_approx_ftz_f
1353                                    : Intrinsic::nvvm_rsqrt_approx_f);
1354     else if (VT == MVT::f64)
1355       return MakeIntrinsicCall(Intrinsic::nvvm_rsqrt_approx_d);
1356     else
1357       return SDValue();
1358   } else {
1359     if (VT == MVT::f32)
1360       return MakeIntrinsicCall(Ftz ? Intrinsic::nvvm_sqrt_approx_ftz_f
1361                                    : Intrinsic::nvvm_sqrt_approx_f);
1362     else {
1363       // There's no sqrt.approx.f64 instruction, so we emit
1364       // reciprocal(rsqrt(x)).  This is faster than
1365       // select(x == 0, 0, x * rsqrt(x)).  (In fact, it's faster than plain
1366       // x * rsqrt(x).)
1367       return DAG.getNode(
1368           ISD::INTRINSIC_WO_CHAIN, DL, VT,
1369           DAG.getConstant(Intrinsic::nvvm_rcp_approx_ftz_d, DL, MVT::i32),
1370           MakeIntrinsicCall(Intrinsic::nvvm_rsqrt_approx_d));
1371     }
1372   }
1373 }
1374 
1375 SDValue
1376 NVPTXTargetLowering::LowerGlobalAddress(SDValue Op, SelectionDAG &DAG) const {
1377   SDLoc dl(Op);
1378   const GlobalAddressSDNode *GAN = cast<GlobalAddressSDNode>(Op);
1379   auto PtrVT = getPointerTy(DAG.getDataLayout(), GAN->getAddressSpace());
1380   Op = DAG.getTargetGlobalAddress(GAN->getGlobal(), dl, PtrVT);
1381   return DAG.getNode(NVPTXISD::Wrapper, dl, PtrVT, Op);
1382 }
1383 
1384 static bool IsTypePassedAsArray(const Type *Ty) {
1385   return Ty->isAggregateType() || Ty->isVectorTy() || Ty->isIntegerTy(128) ||
1386          Ty->isHalfTy() || Ty->isBFloatTy();
1387 }
1388 
1389 std::string NVPTXTargetLowering::getPrototype(
1390     const DataLayout &DL, Type *retTy, const ArgListTy &Args,
1391     const SmallVectorImpl<ISD::OutputArg> &Outs, MaybeAlign retAlignment,
1392     std::optional<std::pair<unsigned, const APInt &>> VAInfo,
1393     const CallBase &CB, unsigned UniqueCallSite) const {
1394   auto PtrVT = getPointerTy(DL);
1395 
1396   bool isABI = (STI.getSmVersion() >= 20);
1397   assert(isABI && "Non-ABI compilation is not supported");
1398   if (!isABI)
1399     return "";
1400 
1401   std::string Prototype;
1402   raw_string_ostream O(Prototype);
1403   O << "prototype_" << UniqueCallSite << " : .callprototype ";
1404 
1405   if (retTy->getTypeID() == Type::VoidTyID) {
1406     O << "()";
1407   } else {
1408     O << "(";
1409     if ((retTy->isFloatingPointTy() || retTy->isIntegerTy()) &&
1410         !IsTypePassedAsArray(retTy)) {
1411       unsigned size = 0;
1412       if (auto *ITy = dyn_cast<IntegerType>(retTy)) {
1413         size = ITy->getBitWidth();
1414       } else {
1415         assert(retTy->isFloatingPointTy() &&
1416                "Floating point type expected here");
1417         size = retTy->getPrimitiveSizeInBits();
1418       }
1419       // PTX ABI requires all scalar return values to be at least 32
1420       // bits in size.  fp16 normally uses .b16 as its storage type in
1421       // PTX, so its size must be adjusted here, too.
1422       size = promoteScalarArgumentSize(size);
1423 
1424       O << ".param .b" << size << " _";
1425     } else if (isa<PointerType>(retTy)) {
1426       O << ".param .b" << PtrVT.getSizeInBits() << " _";
1427     } else if (IsTypePassedAsArray(retTy)) {
1428       O << ".param .align " << (retAlignment ? retAlignment->value() : 0)
1429         << " .b8 _[" << DL.getTypeAllocSize(retTy) << "]";
1430     } else {
1431       llvm_unreachable("Unknown return type");
1432     }
1433     O << ") ";
1434   }
1435   O << "_ (";
1436 
1437   bool first = true;
1438 
1439   const Function *F = CB.getFunction();
1440   unsigned NumArgs = VAInfo ? VAInfo->first : Args.size();
1441   for (unsigned i = 0, OIdx = 0; i != NumArgs; ++i, ++OIdx) {
1442     Type *Ty = Args[i].Ty;
1443     if (!first) {
1444       O << ", ";
1445     }
1446     first = false;
1447 
1448     if (!Outs[OIdx].Flags.isByVal()) {
1449       if (IsTypePassedAsArray(Ty)) {
1450         unsigned ParamAlign = 0;
1451         const CallInst *CallI = cast<CallInst>(&CB);
1452         // +1 because index 0 is reserved for return type alignment
1453         if (!getAlign(*CallI, i + 1, ParamAlign))
1454           ParamAlign = getFunctionParamOptimizedAlign(F, Ty, DL).value();
1455         O << ".param .align " << ParamAlign << " .b8 ";
1456         O << "_";
1457         O << "[" << DL.getTypeAllocSize(Ty) << "]";
1458         // update the index for Outs
1459         SmallVector<EVT, 16> vtparts;
1460         ComputeValueVTs(*this, DL, Ty, vtparts);
1461         if (unsigned len = vtparts.size())
1462           OIdx += len - 1;
1463         continue;
1464       }
1465       // i8 types in IR will be i16 types in SDAG
1466       assert((getValueType(DL, Ty) == Outs[OIdx].VT ||
1467               (getValueType(DL, Ty) == MVT::i8 && Outs[OIdx].VT == MVT::i16)) &&
1468              "type mismatch between callee prototype and arguments");
1469       // scalar type
1470       unsigned sz = 0;
1471       if (isa<IntegerType>(Ty)) {
1472         sz = cast<IntegerType>(Ty)->getBitWidth();
1473         sz = promoteScalarArgumentSize(sz);
1474       } else if (isa<PointerType>(Ty)) {
1475         sz = PtrVT.getSizeInBits();
1476       } else {
1477         sz = Ty->getPrimitiveSizeInBits();
1478       }
1479       O << ".param .b" << sz << " ";
1480       O << "_";
1481       continue;
1482     }
1483 
1484     Type *ETy = Args[i].IndirectType;
1485     Align InitialAlign = Outs[OIdx].Flags.getNonZeroByValAlign();
1486     Align ParamByValAlign =
1487         getFunctionByValParamAlign(F, ETy, InitialAlign, DL);
1488 
1489     O << ".param .align " << ParamByValAlign.value() << " .b8 ";
1490     O << "_";
1491     O << "[" << Outs[OIdx].Flags.getByValSize() << "]";
1492   }
1493 
1494   if (VAInfo)
1495     O << (first ? "" : ",") << " .param .align " << VAInfo->second
1496       << " .b8 _[]\n";
1497   O << ")";
1498   if (shouldEmitPTXNoReturn(&CB, *nvTM))
1499     O << " .noreturn";
1500   O << ";";
1501 
1502   return Prototype;
1503 }
1504 
1505 Align NVPTXTargetLowering::getArgumentAlignment(SDValue Callee,
1506                                                 const CallBase *CB, Type *Ty,
1507                                                 unsigned Idx,
1508                                                 const DataLayout &DL) const {
1509   if (!CB) {
1510     // CallSite is zero, fallback to ABI type alignment
1511     return DL.getABITypeAlign(Ty);
1512   }
1513 
1514   unsigned Alignment = 0;
1515   const Function *DirectCallee = CB->getCalledFunction();
1516 
1517   if (!DirectCallee) {
1518     // We don't have a direct function symbol, but that may be because of
1519     // constant cast instructions in the call.
1520 
1521     // With bitcast'd call targets, the instruction will be the call
1522     if (const auto *CI = dyn_cast<CallInst>(CB)) {
1523       // Check if we have call alignment metadata
1524       if (getAlign(*CI, Idx, Alignment))
1525         return Align(Alignment);
1526     }
1527     DirectCallee = getMaybeBitcastedCallee(CB);
1528   }
1529 
1530   // Check for function alignment information if we found that the
1531   // ultimate target is a Function
1532   if (DirectCallee) {
1533     if (getAlign(*DirectCallee, Idx, Alignment))
1534       return Align(Alignment);
1535     // If alignment information is not available, fall back to the
1536     // default function param optimized type alignment
1537     return getFunctionParamOptimizedAlign(DirectCallee, Ty, DL);
1538   }
1539 
1540   // Call is indirect, fall back to the ABI type alignment
1541   return DL.getABITypeAlign(Ty);
1542 }
1543 
1544 SDValue NVPTXTargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI,
1545                                        SmallVectorImpl<SDValue> &InVals) const {
1546 
1547   if (CLI.IsVarArg && (STI.getPTXVersion() < 60 || STI.getSmVersion() < 30))
1548     report_fatal_error(
1549         "Support for variadic functions (unsized array parameter) introduced "
1550         "in PTX ISA version 6.0 and requires target sm_30.");
1551 
1552   SelectionDAG &DAG = CLI.DAG;
1553   SDLoc dl = CLI.DL;
1554   SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs;
1555   SmallVectorImpl<SDValue> &OutVals = CLI.OutVals;
1556   SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins;
1557   SDValue Chain = CLI.Chain;
1558   SDValue Callee = CLI.Callee;
1559   bool &isTailCall = CLI.IsTailCall;
1560   ArgListTy &Args = CLI.getArgs();
1561   Type *RetTy = CLI.RetTy;
1562   const CallBase *CB = CLI.CB;
1563   const DataLayout &DL = DAG.getDataLayout();
1564 
1565   bool isABI = (STI.getSmVersion() >= 20);
1566   assert(isABI && "Non-ABI compilation is not supported");
1567   if (!isABI)
1568     return Chain;
1569 
1570   // Variadic arguments.
1571   //
1572   // Normally, for each argument, we declare a param scalar or a param
1573   // byte array in the .param space, and store the argument value to that
1574   // param scalar or array starting at offset 0.
1575   //
1576   // In the case of the first variadic argument, we declare a vararg byte array
1577   // with size 0. The exact size of this array isn't known at this point, so
1578   // it'll be patched later. All the variadic arguments will be stored to this
1579   // array at a certain offset (which gets tracked by 'VAOffset'). The offset is
1580   // initially set to 0, so it can be used for non-variadic arguments (which use
1581   // 0 offset) to simplify the code.
1582   //
1583   // After all vararg is processed, 'VAOffset' holds the size of the
1584   // vararg byte array.
1585 
1586   SDValue VADeclareParam;                 // vararg byte array
1587   unsigned FirstVAArg = CLI.NumFixedArgs; // position of the first variadic
1588   unsigned VAOffset = 0;                  // current offset in the param array
1589 
1590   unsigned UniqueCallSite = GlobalUniqueCallSite.fetch_add(1);
1591   SDValue TempChain = Chain;
1592   Chain = DAG.getCALLSEQ_START(Chain, UniqueCallSite, 0, dl);
1593   SDValue InGlue = Chain.getValue(1);
1594 
1595   unsigned ParamCount = 0;
1596   // Args.size() and Outs.size() need not match.
1597   // Outs.size() will be larger
1598   //   * if there is an aggregate argument with multiple fields (each field
1599   //     showing up separately in Outs)
1600   //   * if there is a vector argument with more than typical vector-length
1601   //     elements (generally if more than 4) where each vector element is
1602   //     individually present in Outs.
1603   // So a different index should be used for indexing into Outs/OutVals.
1604   // See similar issue in LowerFormalArguments.
1605   unsigned OIdx = 0;
1606   // Declare the .params or .reg need to pass values
1607   // to the function
1608   for (unsigned i = 0, e = Args.size(); i != e; ++i, ++OIdx) {
1609     EVT VT = Outs[OIdx].VT;
1610     Type *Ty = Args[i].Ty;
1611     bool IsVAArg = (i >= CLI.NumFixedArgs);
1612     bool IsByVal = Outs[OIdx].Flags.isByVal();
1613 
1614     SmallVector<EVT, 16> VTs;
1615     SmallVector<uint64_t, 16> Offsets;
1616 
1617     assert((!IsByVal || Args[i].IndirectType) &&
1618            "byval arg must have indirect type");
1619     Type *ETy = (IsByVal ? Args[i].IndirectType : Ty);
1620     ComputePTXValueVTs(*this, DL, ETy, VTs, &Offsets, IsByVal ? 0 : VAOffset);
1621 
1622     Align ArgAlign;
1623     if (IsByVal) {
1624       // The ByValAlign in the Outs[OIdx].Flags is always set at this point,
1625       // so we don't need to worry whether it's naturally aligned or not.
1626       // See TargetLowering::LowerCallTo().
1627       Align InitialAlign = Outs[OIdx].Flags.getNonZeroByValAlign();
1628       ArgAlign = getFunctionByValParamAlign(CB->getCalledFunction(), ETy,
1629                                             InitialAlign, DL);
1630       if (IsVAArg)
1631         VAOffset = alignTo(VAOffset, ArgAlign);
1632     } else {
1633       ArgAlign = getArgumentAlignment(Callee, CB, Ty, ParamCount + 1, DL);
1634     }
1635 
1636     unsigned TypeSize =
1637         (IsByVal ? Outs[OIdx].Flags.getByValSize() : DL.getTypeAllocSize(Ty));
1638     SDVTList DeclareParamVTs = DAG.getVTList(MVT::Other, MVT::Glue);
1639 
1640     bool NeedAlign; // Does argument declaration specify alignment?
1641     bool PassAsArray = IsByVal || IsTypePassedAsArray(Ty);
1642     if (IsVAArg) {
1643       if (ParamCount == FirstVAArg) {
1644         SDValue DeclareParamOps[] = {
1645             Chain, DAG.getConstant(STI.getMaxRequiredAlignment(), dl, MVT::i32),
1646             DAG.getConstant(ParamCount, dl, MVT::i32),
1647             DAG.getConstant(1, dl, MVT::i32), InGlue};
1648         VADeclareParam = Chain = DAG.getNode(NVPTXISD::DeclareParam, dl,
1649                                              DeclareParamVTs, DeclareParamOps);
1650       }
1651       NeedAlign = PassAsArray;
1652     } else if (PassAsArray) {
1653       // declare .param .align <align> .b8 .param<n>[<size>];
1654       SDValue DeclareParamOps[] = {
1655           Chain, DAG.getConstant(ArgAlign.value(), dl, MVT::i32),
1656           DAG.getConstant(ParamCount, dl, MVT::i32),
1657           DAG.getConstant(TypeSize, dl, MVT::i32), InGlue};
1658       Chain = DAG.getNode(NVPTXISD::DeclareParam, dl, DeclareParamVTs,
1659                           DeclareParamOps);
1660       NeedAlign = true;
1661     } else {
1662       // declare .param .b<size> .param<n>;
1663       if (VT.isInteger() || VT.isFloatingPoint()) {
1664         // PTX ABI requires integral types to be at least 32 bits in
1665         // size. FP16 is loaded/stored using i16, so it's handled
1666         // here as well.
1667         TypeSize = promoteScalarArgumentSize(TypeSize * 8) / 8;
1668       }
1669       SDValue DeclareScalarParamOps[] = {
1670           Chain, DAG.getConstant(ParamCount, dl, MVT::i32),
1671           DAG.getConstant(TypeSize * 8, dl, MVT::i32),
1672           DAG.getConstant(0, dl, MVT::i32), InGlue};
1673       Chain = DAG.getNode(NVPTXISD::DeclareScalarParam, dl, DeclareParamVTs,
1674                           DeclareScalarParamOps);
1675       NeedAlign = false;
1676     }
1677     InGlue = Chain.getValue(1);
1678 
1679     // PTX Interoperability Guide 3.3(A): [Integer] Values shorter
1680     // than 32-bits are sign extended or zero extended, depending on
1681     // whether they are signed or unsigned types. This case applies
1682     // only to scalar parameters and not to aggregate values.
1683     bool ExtendIntegerParam =
1684         Ty->isIntegerTy() && DL.getTypeAllocSizeInBits(Ty) < 32;
1685 
1686     auto VectorInfo = VectorizePTXValueVTs(VTs, Offsets, ArgAlign, IsVAArg);
1687     SmallVector<SDValue, 6> StoreOperands;
1688     for (unsigned j = 0, je = VTs.size(); j != je; ++j) {
1689       EVT EltVT = VTs[j];
1690       int CurOffset = Offsets[j];
1691       MaybeAlign PartAlign;
1692       if (NeedAlign)
1693         PartAlign = commonAlignment(ArgAlign, CurOffset);
1694 
1695       // New store.
1696       if (VectorInfo[j] & PVF_FIRST) {
1697         assert(StoreOperands.empty() && "Unfinished preceding store.");
1698         StoreOperands.push_back(Chain);
1699         StoreOperands.push_back(
1700             DAG.getConstant(IsVAArg ? FirstVAArg : ParamCount, dl, MVT::i32));
1701         StoreOperands.push_back(DAG.getConstant(
1702             IsByVal ? CurOffset + VAOffset : (IsVAArg ? VAOffset : CurOffset),
1703             dl, MVT::i32));
1704       }
1705 
1706       SDValue StVal = OutVals[OIdx];
1707 
1708       MVT PromotedVT;
1709       if (PromoteScalarIntegerPTX(EltVT, &PromotedVT)) {
1710         EltVT = EVT(PromotedVT);
1711       }
1712       if (PromoteScalarIntegerPTX(StVal.getValueType(), &PromotedVT)) {
1713         llvm::ISD::NodeType Ext =
1714             Outs[OIdx].Flags.isSExt() ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
1715         StVal = DAG.getNode(Ext, dl, PromotedVT, StVal);
1716       }
1717 
1718       if (IsByVal) {
1719         auto PtrVT = getPointerTy(DL);
1720         SDValue srcAddr = DAG.getNode(ISD::ADD, dl, PtrVT, StVal,
1721                                       DAG.getConstant(CurOffset, dl, PtrVT));
1722         StVal = DAG.getLoad(EltVT, dl, TempChain, srcAddr, MachinePointerInfo(),
1723                             PartAlign);
1724       } else if (ExtendIntegerParam) {
1725         assert(VTs.size() == 1 && "Scalar can't have multiple parts.");
1726         // zext/sext to i32
1727         StVal = DAG.getNode(Outs[OIdx].Flags.isSExt() ? ISD::SIGN_EXTEND
1728                                                       : ISD::ZERO_EXTEND,
1729                             dl, MVT::i32, StVal);
1730       }
1731 
1732       if (!ExtendIntegerParam && EltVT.getSizeInBits() < 16) {
1733         // Use 16-bit registers for small stores as it's the
1734         // smallest general purpose register size supported by NVPTX.
1735         StVal = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i16, StVal);
1736       }
1737 
1738       // Record the value to store.
1739       StoreOperands.push_back(StVal);
1740 
1741       if (VectorInfo[j] & PVF_LAST) {
1742         unsigned NumElts = StoreOperands.size() - 3;
1743         NVPTXISD::NodeType Op;
1744         switch (NumElts) {
1745         case 1:
1746           Op = NVPTXISD::StoreParam;
1747           break;
1748         case 2:
1749           Op = NVPTXISD::StoreParamV2;
1750           break;
1751         case 4:
1752           Op = NVPTXISD::StoreParamV4;
1753           break;
1754         default:
1755           llvm_unreachable("Invalid vector info.");
1756         }
1757 
1758         StoreOperands.push_back(InGlue);
1759 
1760         // Adjust type of the store op if we've extended the scalar
1761         // return value.
1762         EVT TheStoreType = ExtendIntegerParam ? MVT::i32 : EltVT;
1763 
1764         Chain = DAG.getMemIntrinsicNode(
1765             Op, dl, DAG.getVTList(MVT::Other, MVT::Glue), StoreOperands,
1766             TheStoreType, MachinePointerInfo(), PartAlign,
1767             MachineMemOperand::MOStore);
1768         InGlue = Chain.getValue(1);
1769 
1770         // Cleanup.
1771         StoreOperands.clear();
1772 
1773         // TODO: We may need to support vector types that can be passed
1774         // as scalars in variadic arguments.
1775         if (!IsByVal && IsVAArg) {
1776           assert(NumElts == 1 &&
1777                  "Vectorization is expected to be disabled for variadics.");
1778           VAOffset += DL.getTypeAllocSize(
1779               TheStoreType.getTypeForEVT(*DAG.getContext()));
1780         }
1781       }
1782       if (!IsByVal)
1783         ++OIdx;
1784     }
1785     assert(StoreOperands.empty() && "Unfinished parameter store.");
1786     if (!IsByVal && VTs.size() > 0)
1787       --OIdx;
1788     ++ParamCount;
1789     if (IsByVal && IsVAArg)
1790       VAOffset += TypeSize;
1791   }
1792 
1793   GlobalAddressSDNode *Func = dyn_cast<GlobalAddressSDNode>(Callee.getNode());
1794   MaybeAlign retAlignment = std::nullopt;
1795 
1796   // Handle Result
1797   if (Ins.size() > 0) {
1798     SmallVector<EVT, 16> resvtparts;
1799     ComputeValueVTs(*this, DL, RetTy, resvtparts);
1800 
1801     // Declare
1802     //  .param .align N .b8 retval0[<size-in-bytes>], or
1803     //  .param .b<size-in-bits> retval0
1804     unsigned resultsz = DL.getTypeAllocSizeInBits(RetTy);
1805     if (!IsTypePassedAsArray(RetTy)) {
1806       resultsz = promoteScalarArgumentSize(resultsz);
1807       SDVTList DeclareRetVTs = DAG.getVTList(MVT::Other, MVT::Glue);
1808       SDValue DeclareRetOps[] = { Chain, DAG.getConstant(1, dl, MVT::i32),
1809                                   DAG.getConstant(resultsz, dl, MVT::i32),
1810                                   DAG.getConstant(0, dl, MVT::i32), InGlue };
1811       Chain = DAG.getNode(NVPTXISD::DeclareRet, dl, DeclareRetVTs,
1812                           DeclareRetOps);
1813       InGlue = Chain.getValue(1);
1814     } else {
1815       retAlignment = getArgumentAlignment(Callee, CB, RetTy, 0, DL);
1816       assert(retAlignment && "retAlignment is guaranteed to be set");
1817       SDVTList DeclareRetVTs = DAG.getVTList(MVT::Other, MVT::Glue);
1818       SDValue DeclareRetOps[] = {
1819           Chain, DAG.getConstant(retAlignment->value(), dl, MVT::i32),
1820           DAG.getConstant(resultsz / 8, dl, MVT::i32),
1821           DAG.getConstant(0, dl, MVT::i32), InGlue};
1822       Chain = DAG.getNode(NVPTXISD::DeclareRetParam, dl, DeclareRetVTs,
1823                           DeclareRetOps);
1824       InGlue = Chain.getValue(1);
1825     }
1826   }
1827 
1828   bool HasVAArgs = CLI.IsVarArg && (CLI.Args.size() > CLI.NumFixedArgs);
1829   // Set the size of the vararg param byte array if the callee is a variadic
1830   // function and the variadic part is not empty.
1831   if (HasVAArgs) {
1832     SDValue DeclareParamOps[] = {
1833         VADeclareParam.getOperand(0), VADeclareParam.getOperand(1),
1834         VADeclareParam.getOperand(2), DAG.getConstant(VAOffset, dl, MVT::i32),
1835         VADeclareParam.getOperand(4)};
1836     DAG.MorphNodeTo(VADeclareParam.getNode(), VADeclareParam.getOpcode(),
1837                     VADeclareParam->getVTList(), DeclareParamOps);
1838   }
1839 
1840   // Both indirect calls and libcalls have nullptr Func. In order to distinguish
1841   // between them we must rely on the call site value which is valid for
1842   // indirect calls but is always null for libcalls.
1843   bool isIndirectCall = !Func && CB;
1844 
1845   if (isa<ExternalSymbolSDNode>(Callee)) {
1846     Function* CalleeFunc = nullptr;
1847 
1848     // Try to find the callee in the current module.
1849     Callee = DAG.getSymbolFunctionGlobalAddress(Callee, &CalleeFunc);
1850     assert(CalleeFunc != nullptr && "Libcall callee must be set.");
1851 
1852     // Set the "libcall callee" attribute to indicate that the function
1853     // must always have a declaration.
1854     CalleeFunc->addFnAttr("nvptx-libcall-callee", "true");
1855   }
1856 
1857   if (isIndirectCall) {
1858     // This is indirect function call case : PTX requires a prototype of the
1859     // form
1860     // proto_0 : .callprototype(.param .b32 _) _ (.param .b32 _);
1861     // to be emitted, and the label has to used as the last arg of call
1862     // instruction.
1863     // The prototype is embedded in a string and put as the operand for a
1864     // CallPrototype SDNode which will print out to the value of the string.
1865     SDVTList ProtoVTs = DAG.getVTList(MVT::Other, MVT::Glue);
1866     std::string Proto = getPrototype(
1867         DL, RetTy, Args, Outs, retAlignment,
1868         HasVAArgs
1869             ? std::optional<std::pair<unsigned, const APInt &>>(std::make_pair(
1870                   CLI.NumFixedArgs,
1871                   cast<ConstantSDNode>(VADeclareParam->getOperand(1))
1872                       ->getAPIntValue()))
1873             : std::nullopt,
1874         *CB, UniqueCallSite);
1875     const char *ProtoStr = nvTM->getStrPool().save(Proto).data();
1876     SDValue ProtoOps[] = {
1877         Chain,
1878         DAG.getTargetExternalSymbol(ProtoStr, MVT::i32),
1879         InGlue,
1880     };
1881     Chain = DAG.getNode(NVPTXISD::CallPrototype, dl, ProtoVTs, ProtoOps);
1882     InGlue = Chain.getValue(1);
1883   }
1884   // Op to just print "call"
1885   SDVTList PrintCallVTs = DAG.getVTList(MVT::Other, MVT::Glue);
1886   SDValue PrintCallOps[] = {
1887     Chain, DAG.getConstant((Ins.size() == 0) ? 0 : 1, dl, MVT::i32), InGlue
1888   };
1889   // We model convergent calls as separate opcodes.
1890   unsigned Opcode = isIndirectCall ? NVPTXISD::PrintCall : NVPTXISD::PrintCallUni;
1891   if (CLI.IsConvergent)
1892     Opcode = Opcode == NVPTXISD::PrintCallUni ? NVPTXISD::PrintConvergentCallUni
1893                                               : NVPTXISD::PrintConvergentCall;
1894   Chain = DAG.getNode(Opcode, dl, PrintCallVTs, PrintCallOps);
1895   InGlue = Chain.getValue(1);
1896 
1897   // Ops to print out the function name
1898   SDVTList CallVoidVTs = DAG.getVTList(MVT::Other, MVT::Glue);
1899   SDValue CallVoidOps[] = { Chain, Callee, InGlue };
1900   Chain = DAG.getNode(NVPTXISD::CallVoid, dl, CallVoidVTs, CallVoidOps);
1901   InGlue = Chain.getValue(1);
1902 
1903   // Ops to print out the param list
1904   SDVTList CallArgBeginVTs = DAG.getVTList(MVT::Other, MVT::Glue);
1905   SDValue CallArgBeginOps[] = { Chain, InGlue };
1906   Chain = DAG.getNode(NVPTXISD::CallArgBegin, dl, CallArgBeginVTs,
1907                       CallArgBeginOps);
1908   InGlue = Chain.getValue(1);
1909 
1910   for (unsigned i = 0, e = std::min(CLI.NumFixedArgs + 1, ParamCount); i != e;
1911        ++i) {
1912     unsigned opcode;
1913     if (i == (e - 1))
1914       opcode = NVPTXISD::LastCallArg;
1915     else
1916       opcode = NVPTXISD::CallArg;
1917     SDVTList CallArgVTs = DAG.getVTList(MVT::Other, MVT::Glue);
1918     SDValue CallArgOps[] = { Chain, DAG.getConstant(1, dl, MVT::i32),
1919                              DAG.getConstant(i, dl, MVT::i32), InGlue };
1920     Chain = DAG.getNode(opcode, dl, CallArgVTs, CallArgOps);
1921     InGlue = Chain.getValue(1);
1922   }
1923   SDVTList CallArgEndVTs = DAG.getVTList(MVT::Other, MVT::Glue);
1924   SDValue CallArgEndOps[] = { Chain,
1925                               DAG.getConstant(isIndirectCall ? 0 : 1, dl, MVT::i32),
1926                               InGlue };
1927   Chain = DAG.getNode(NVPTXISD::CallArgEnd, dl, CallArgEndVTs, CallArgEndOps);
1928   InGlue = Chain.getValue(1);
1929 
1930   if (isIndirectCall) {
1931     SDVTList PrototypeVTs = DAG.getVTList(MVT::Other, MVT::Glue);
1932     SDValue PrototypeOps[] = {
1933         Chain, DAG.getConstant(UniqueCallSite, dl, MVT::i32), InGlue};
1934     Chain = DAG.getNode(NVPTXISD::Prototype, dl, PrototypeVTs, PrototypeOps);
1935     InGlue = Chain.getValue(1);
1936   }
1937 
1938   SmallVector<SDValue, 16> ProxyRegOps;
1939   SmallVector<std::optional<MVT>, 16> ProxyRegTruncates;
1940 
1941   // Generate loads from param memory/moves from registers for result
1942   if (Ins.size() > 0) {
1943     SmallVector<EVT, 16> VTs;
1944     SmallVector<uint64_t, 16> Offsets;
1945     ComputePTXValueVTs(*this, DL, RetTy, VTs, &Offsets, 0);
1946     assert(VTs.size() == Ins.size() && "Bad value decomposition");
1947 
1948     Align RetAlign = getArgumentAlignment(Callee, CB, RetTy, 0, DL);
1949     auto VectorInfo = VectorizePTXValueVTs(VTs, Offsets, RetAlign);
1950 
1951     SmallVector<EVT, 6> LoadVTs;
1952     int VecIdx = -1; // Index of the first element of the vector.
1953 
1954     // PTX Interoperability Guide 3.3(A): [Integer] Values shorter than
1955     // 32-bits are sign extended or zero extended, depending on whether
1956     // they are signed or unsigned types.
1957     bool ExtendIntegerRetVal =
1958         RetTy->isIntegerTy() && DL.getTypeAllocSizeInBits(RetTy) < 32;
1959 
1960     for (unsigned i = 0, e = VTs.size(); i != e; ++i) {
1961       bool needTruncate = false;
1962       EVT TheLoadType = VTs[i];
1963       EVT EltType = Ins[i].VT;
1964       Align EltAlign = commonAlignment(RetAlign, Offsets[i]);
1965       MVT PromotedVT;
1966 
1967       if (PromoteScalarIntegerPTX(TheLoadType, &PromotedVT)) {
1968         TheLoadType = EVT(PromotedVT);
1969         EltType = EVT(PromotedVT);
1970         needTruncate = true;
1971       }
1972 
1973       if (ExtendIntegerRetVal) {
1974         TheLoadType = MVT::i32;
1975         EltType = MVT::i32;
1976         needTruncate = true;
1977       } else if (TheLoadType.getSizeInBits() < 16) {
1978         if (VTs[i].isInteger())
1979           needTruncate = true;
1980         EltType = MVT::i16;
1981       }
1982 
1983       // Record index of the very first element of the vector.
1984       if (VectorInfo[i] & PVF_FIRST) {
1985         assert(VecIdx == -1 && LoadVTs.empty() && "Orphaned operand list.");
1986         VecIdx = i;
1987       }
1988 
1989       LoadVTs.push_back(EltType);
1990 
1991       if (VectorInfo[i] & PVF_LAST) {
1992         unsigned NumElts = LoadVTs.size();
1993         LoadVTs.push_back(MVT::Other);
1994         LoadVTs.push_back(MVT::Glue);
1995         NVPTXISD::NodeType Op;
1996         switch (NumElts) {
1997         case 1:
1998           Op = NVPTXISD::LoadParam;
1999           break;
2000         case 2:
2001           Op = NVPTXISD::LoadParamV2;
2002           break;
2003         case 4:
2004           Op = NVPTXISD::LoadParamV4;
2005           break;
2006         default:
2007           llvm_unreachable("Invalid vector info.");
2008         }
2009 
2010         SDValue LoadOperands[] = {
2011             Chain, DAG.getConstant(1, dl, MVT::i32),
2012             DAG.getConstant(Offsets[VecIdx], dl, MVT::i32), InGlue};
2013         SDValue RetVal = DAG.getMemIntrinsicNode(
2014             Op, dl, DAG.getVTList(LoadVTs), LoadOperands, TheLoadType,
2015             MachinePointerInfo(), EltAlign,
2016             MachineMemOperand::MOLoad);
2017 
2018         for (unsigned j = 0; j < NumElts; ++j) {
2019           ProxyRegOps.push_back(RetVal.getValue(j));
2020 
2021           if (needTruncate)
2022             ProxyRegTruncates.push_back(std::optional<MVT>(Ins[VecIdx + j].VT));
2023           else
2024             ProxyRegTruncates.push_back(std::optional<MVT>());
2025         }
2026 
2027         Chain = RetVal.getValue(NumElts);
2028         InGlue = RetVal.getValue(NumElts + 1);
2029 
2030         // Cleanup
2031         VecIdx = -1;
2032         LoadVTs.clear();
2033       }
2034     }
2035   }
2036 
2037   Chain =
2038       DAG.getCALLSEQ_END(Chain, UniqueCallSite, UniqueCallSite + 1, InGlue, dl);
2039   InGlue = Chain.getValue(1);
2040 
2041   // Append ProxyReg instructions to the chain to make sure that `callseq_end`
2042   // will not get lost. Otherwise, during libcalls expansion, the nodes can become
2043   // dangling.
2044   for (unsigned i = 0; i < ProxyRegOps.size(); ++i) {
2045     SDValue Ret = DAG.getNode(
2046       NVPTXISD::ProxyReg, dl,
2047       DAG.getVTList(ProxyRegOps[i].getSimpleValueType(), MVT::Other, MVT::Glue),
2048       { Chain, ProxyRegOps[i], InGlue }
2049     );
2050 
2051     Chain = Ret.getValue(1);
2052     InGlue = Ret.getValue(2);
2053 
2054     if (ProxyRegTruncates[i]) {
2055       Ret = DAG.getNode(ISD::TRUNCATE, dl, *ProxyRegTruncates[i], Ret);
2056     }
2057 
2058     InVals.push_back(Ret);
2059   }
2060 
2061   // set isTailCall to false for now, until we figure out how to express
2062   // tail call optimization in PTX
2063   isTailCall = false;
2064   return Chain;
2065 }
2066 
2067 // By default CONCAT_VECTORS is lowered by ExpandVectorBuildThroughStack()
2068 // (see LegalizeDAG.cpp). This is slow and uses local memory.
2069 // We use extract/insert/build vector just as what LegalizeOp() does in llvm 2.5
2070 SDValue
2071 NVPTXTargetLowering::LowerCONCAT_VECTORS(SDValue Op, SelectionDAG &DAG) const {
2072   SDNode *Node = Op.getNode();
2073   SDLoc dl(Node);
2074   SmallVector<SDValue, 8> Ops;
2075   unsigned NumOperands = Node->getNumOperands();
2076   for (unsigned i = 0; i < NumOperands; ++i) {
2077     SDValue SubOp = Node->getOperand(i);
2078     EVT VVT = SubOp.getNode()->getValueType(0);
2079     EVT EltVT = VVT.getVectorElementType();
2080     unsigned NumSubElem = VVT.getVectorNumElements();
2081     for (unsigned j = 0; j < NumSubElem; ++j) {
2082       Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT, SubOp,
2083                                 DAG.getIntPtrConstant(j, dl)));
2084     }
2085   }
2086   return DAG.getBuildVector(Node->getValueType(0), dl, Ops);
2087 }
2088 
2089 // We can init constant f16x2 with a single .b32 move.  Normally it
2090 // would get lowered as two constant loads and vector-packing move.
2091 //        mov.b16         %h1, 0x4000;
2092 //        mov.b16         %h2, 0x3C00;
2093 //        mov.b32         %hh2, {%h2, %h1};
2094 // Instead we want just a constant move:
2095 //        mov.b32         %hh2, 0x40003C00
2096 //
2097 // This results in better SASS code with CUDA 7.x. Ptxas in CUDA 8.0
2098 // generates good SASS in both cases.
2099 SDValue NVPTXTargetLowering::LowerBUILD_VECTOR(SDValue Op,
2100                                                SelectionDAG &DAG) const {
2101   if (!(Isv2f16Orv2bf16Type(Op->getValueType(0)) &&
2102         isa<ConstantFPSDNode>(Op->getOperand(0)) &&
2103         isa<ConstantFPSDNode>(Op->getOperand(1))))
2104     return Op;
2105 
2106   APInt E0 =
2107       cast<ConstantFPSDNode>(Op->getOperand(0))->getValueAPF().bitcastToAPInt();
2108   APInt E1 =
2109       cast<ConstantFPSDNode>(Op->getOperand(1))->getValueAPF().bitcastToAPInt();
2110   SDValue Const =
2111       DAG.getConstant(E1.zext(32).shl(16) | E0.zext(32), SDLoc(Op), MVT::i32);
2112   return DAG.getNode(ISD::BITCAST, SDLoc(Op), Op->getValueType(0), Const);
2113 }
2114 
2115 SDValue NVPTXTargetLowering::LowerEXTRACT_VECTOR_ELT(SDValue Op,
2116                                                      SelectionDAG &DAG) const {
2117   SDValue Index = Op->getOperand(1);
2118   // Constant index will be matched by tablegen.
2119   if (isa<ConstantSDNode>(Index.getNode()))
2120     return Op;
2121 
2122   // Extract individual elements and select one of them.
2123   SDValue Vector = Op->getOperand(0);
2124   EVT VectorVT = Vector.getValueType();
2125   assert(VectorVT == MVT::v2f16 && "Unexpected vector type.");
2126   EVT EltVT = VectorVT.getVectorElementType();
2127 
2128   SDLoc dl(Op.getNode());
2129   SDValue E0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT, Vector,
2130                            DAG.getIntPtrConstant(0, dl));
2131   SDValue E1 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT, Vector,
2132                            DAG.getIntPtrConstant(1, dl));
2133   return DAG.getSelectCC(dl, Index, DAG.getIntPtrConstant(0, dl), E0, E1,
2134                          ISD::CondCode::SETEQ);
2135 }
2136 
2137 /// LowerShiftRightParts - Lower SRL_PARTS, SRA_PARTS, which
2138 /// 1) returns two i32 values and take a 2 x i32 value to shift plus a shift
2139 ///    amount, or
2140 /// 2) returns two i64 values and take a 2 x i64 value to shift plus a shift
2141 ///    amount.
2142 SDValue NVPTXTargetLowering::LowerShiftRightParts(SDValue Op,
2143                                                   SelectionDAG &DAG) const {
2144   assert(Op.getNumOperands() == 3 && "Not a double-shift!");
2145   assert(Op.getOpcode() == ISD::SRA_PARTS || Op.getOpcode() == ISD::SRL_PARTS);
2146 
2147   EVT VT = Op.getValueType();
2148   unsigned VTBits = VT.getSizeInBits();
2149   SDLoc dl(Op);
2150   SDValue ShOpLo = Op.getOperand(0);
2151   SDValue ShOpHi = Op.getOperand(1);
2152   SDValue ShAmt  = Op.getOperand(2);
2153   unsigned Opc = (Op.getOpcode() == ISD::SRA_PARTS) ? ISD::SRA : ISD::SRL;
2154 
2155   if (VTBits == 32 && STI.getSmVersion() >= 35) {
2156     // For 32bit and sm35, we can use the funnel shift 'shf' instruction.
2157     // {dHi, dLo} = {aHi, aLo} >> Amt
2158     //   dHi = aHi >> Amt
2159     //   dLo = shf.r.clamp aLo, aHi, Amt
2160 
2161     SDValue Hi = DAG.getNode(Opc, dl, VT, ShOpHi, ShAmt);
2162     SDValue Lo = DAG.getNode(NVPTXISD::FUN_SHFR_CLAMP, dl, VT, ShOpLo, ShOpHi,
2163                              ShAmt);
2164 
2165     SDValue Ops[2] = { Lo, Hi };
2166     return DAG.getMergeValues(Ops, dl);
2167   }
2168   else {
2169     // {dHi, dLo} = {aHi, aLo} >> Amt
2170     // - if (Amt>=size) then
2171     //      dLo = aHi >> (Amt-size)
2172     //      dHi = aHi >> Amt (this is either all 0 or all 1)
2173     //   else
2174     //      dLo = (aLo >>logic Amt) | (aHi << (size-Amt))
2175     //      dHi = aHi >> Amt
2176 
2177     SDValue RevShAmt = DAG.getNode(ISD::SUB, dl, MVT::i32,
2178                                    DAG.getConstant(VTBits, dl, MVT::i32),
2179                                    ShAmt);
2180     SDValue Tmp1 = DAG.getNode(ISD::SRL, dl, VT, ShOpLo, ShAmt);
2181     SDValue ExtraShAmt = DAG.getNode(ISD::SUB, dl, MVT::i32, ShAmt,
2182                                      DAG.getConstant(VTBits, dl, MVT::i32));
2183     SDValue Tmp2 = DAG.getNode(ISD::SHL, dl, VT, ShOpHi, RevShAmt);
2184     SDValue FalseVal = DAG.getNode(ISD::OR, dl, VT, Tmp1, Tmp2);
2185     SDValue TrueVal = DAG.getNode(Opc, dl, VT, ShOpHi, ExtraShAmt);
2186 
2187     SDValue Cmp = DAG.getSetCC(dl, MVT::i1, ShAmt,
2188                                DAG.getConstant(VTBits, dl, MVT::i32),
2189                                ISD::SETGE);
2190     SDValue Hi = DAG.getNode(Opc, dl, VT, ShOpHi, ShAmt);
2191     SDValue Lo = DAG.getNode(ISD::SELECT, dl, VT, Cmp, TrueVal, FalseVal);
2192 
2193     SDValue Ops[2] = { Lo, Hi };
2194     return DAG.getMergeValues(Ops, dl);
2195   }
2196 }
2197 
2198 /// LowerShiftLeftParts - Lower SHL_PARTS, which
2199 /// 1) returns two i32 values and take a 2 x i32 value to shift plus a shift
2200 ///    amount, or
2201 /// 2) returns two i64 values and take a 2 x i64 value to shift plus a shift
2202 ///    amount.
2203 SDValue NVPTXTargetLowering::LowerShiftLeftParts(SDValue Op,
2204                                                  SelectionDAG &DAG) const {
2205   assert(Op.getNumOperands() == 3 && "Not a double-shift!");
2206   assert(Op.getOpcode() == ISD::SHL_PARTS);
2207 
2208   EVT VT = Op.getValueType();
2209   unsigned VTBits = VT.getSizeInBits();
2210   SDLoc dl(Op);
2211   SDValue ShOpLo = Op.getOperand(0);
2212   SDValue ShOpHi = Op.getOperand(1);
2213   SDValue ShAmt  = Op.getOperand(2);
2214 
2215   if (VTBits == 32 && STI.getSmVersion() >= 35) {
2216     // For 32bit and sm35, we can use the funnel shift 'shf' instruction.
2217     // {dHi, dLo} = {aHi, aLo} << Amt
2218     //   dHi = shf.l.clamp aLo, aHi, Amt
2219     //   dLo = aLo << Amt
2220 
2221     SDValue Hi = DAG.getNode(NVPTXISD::FUN_SHFL_CLAMP, dl, VT, ShOpLo, ShOpHi,
2222                              ShAmt);
2223     SDValue Lo = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, ShAmt);
2224 
2225     SDValue Ops[2] = { Lo, Hi };
2226     return DAG.getMergeValues(Ops, dl);
2227   }
2228   else {
2229     // {dHi, dLo} = {aHi, aLo} << Amt
2230     // - if (Amt>=size) then
2231     //      dLo = aLo << Amt (all 0)
2232     //      dLo = aLo << (Amt-size)
2233     //   else
2234     //      dLo = aLo << Amt
2235     //      dHi = (aHi << Amt) | (aLo >> (size-Amt))
2236 
2237     SDValue RevShAmt = DAG.getNode(ISD::SUB, dl, MVT::i32,
2238                                    DAG.getConstant(VTBits, dl, MVT::i32),
2239                                    ShAmt);
2240     SDValue Tmp1 = DAG.getNode(ISD::SHL, dl, VT, ShOpHi, ShAmt);
2241     SDValue ExtraShAmt = DAG.getNode(ISD::SUB, dl, MVT::i32, ShAmt,
2242                                      DAG.getConstant(VTBits, dl, MVT::i32));
2243     SDValue Tmp2 = DAG.getNode(ISD::SRL, dl, VT, ShOpLo, RevShAmt);
2244     SDValue FalseVal = DAG.getNode(ISD::OR, dl, VT, Tmp1, Tmp2);
2245     SDValue TrueVal = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, ExtraShAmt);
2246 
2247     SDValue Cmp = DAG.getSetCC(dl, MVT::i1, ShAmt,
2248                                DAG.getConstant(VTBits, dl, MVT::i32),
2249                                ISD::SETGE);
2250     SDValue Lo = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, ShAmt);
2251     SDValue Hi = DAG.getNode(ISD::SELECT, dl, VT, Cmp, TrueVal, FalseVal);
2252 
2253     SDValue Ops[2] = { Lo, Hi };
2254     return DAG.getMergeValues(Ops, dl);
2255   }
2256 }
2257 
2258 SDValue NVPTXTargetLowering::LowerFROUND(SDValue Op, SelectionDAG &DAG) const {
2259   EVT VT = Op.getValueType();
2260 
2261   if (VT == MVT::f32)
2262     return LowerFROUND32(Op, DAG);
2263 
2264   if (VT == MVT::f64)
2265     return LowerFROUND64(Op, DAG);
2266 
2267   llvm_unreachable("unhandled type");
2268 }
2269 
2270 // This is the the rounding method used in CUDA libdevice in C like code:
2271 // float roundf(float A)
2272 // {
2273 //   float RoundedA = (float) (int) ( A > 0 ? (A + 0.5f) : (A - 0.5f));
2274 //   RoundedA = abs(A) > 0x1.0p23 ? A : RoundedA;
2275 //   return abs(A) < 0.5 ? (float)(int)A : RoundedA;
2276 // }
2277 SDValue NVPTXTargetLowering::LowerFROUND32(SDValue Op,
2278                                            SelectionDAG &DAG) const {
2279   SDLoc SL(Op);
2280   SDValue A = Op.getOperand(0);
2281   EVT VT = Op.getValueType();
2282 
2283   SDValue AbsA = DAG.getNode(ISD::FABS, SL, VT, A);
2284 
2285   // RoundedA = (float) (int) ( A > 0 ? (A + 0.5f) : (A - 0.5f))
2286   SDValue Bitcast  = DAG.getNode(ISD::BITCAST, SL, MVT::i32, A);
2287   const int SignBitMask = 0x80000000;
2288   SDValue Sign = DAG.getNode(ISD::AND, SL, MVT::i32, Bitcast,
2289                              DAG.getConstant(SignBitMask, SL, MVT::i32));
2290   const int PointFiveInBits = 0x3F000000;
2291   SDValue PointFiveWithSignRaw =
2292       DAG.getNode(ISD::OR, SL, MVT::i32, Sign,
2293                   DAG.getConstant(PointFiveInBits, SL, MVT::i32));
2294   SDValue PointFiveWithSign =
2295       DAG.getNode(ISD::BITCAST, SL, VT, PointFiveWithSignRaw);
2296   SDValue AdjustedA = DAG.getNode(ISD::FADD, SL, VT, A, PointFiveWithSign);
2297   SDValue RoundedA = DAG.getNode(ISD::FTRUNC, SL, VT, AdjustedA);
2298 
2299   // RoundedA = abs(A) > 0x1.0p23 ? A : RoundedA;
2300   EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
2301   SDValue IsLarge =
2302       DAG.getSetCC(SL, SetCCVT, AbsA, DAG.getConstantFP(pow(2.0, 23.0), SL, VT),
2303                    ISD::SETOGT);
2304   RoundedA = DAG.getNode(ISD::SELECT, SL, VT, IsLarge, A, RoundedA);
2305 
2306   // return abs(A) < 0.5 ? (float)(int)A : RoundedA;
2307   SDValue IsSmall =DAG.getSetCC(SL, SetCCVT, AbsA,
2308                                 DAG.getConstantFP(0.5, SL, VT), ISD::SETOLT);
2309   SDValue RoundedAForSmallA = DAG.getNode(ISD::FTRUNC, SL, VT, A);
2310   return DAG.getNode(ISD::SELECT, SL, VT, IsSmall, RoundedAForSmallA, RoundedA);
2311 }
2312 
2313 // The implementation of round(double) is similar to that of round(float) in
2314 // that they both separate the value range into three regions and use a method
2315 // specific to the region to round the values. However, round(double) first
2316 // calculates the round of the absolute value and then adds the sign back while
2317 // round(float) directly rounds the value with sign.
2318 SDValue NVPTXTargetLowering::LowerFROUND64(SDValue Op,
2319                                            SelectionDAG &DAG) const {
2320   SDLoc SL(Op);
2321   SDValue A = Op.getOperand(0);
2322   EVT VT = Op.getValueType();
2323 
2324   SDValue AbsA = DAG.getNode(ISD::FABS, SL, VT, A);
2325 
2326   // double RoundedA = (double) (int) (abs(A) + 0.5f);
2327   SDValue AdjustedA = DAG.getNode(ISD::FADD, SL, VT, AbsA,
2328                                   DAG.getConstantFP(0.5, SL, VT));
2329   SDValue RoundedA = DAG.getNode(ISD::FTRUNC, SL, VT, AdjustedA);
2330 
2331   // RoundedA = abs(A) < 0.5 ? (double)0 : RoundedA;
2332   EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
2333   SDValue IsSmall =DAG.getSetCC(SL, SetCCVT, AbsA,
2334                                 DAG.getConstantFP(0.5, SL, VT), ISD::SETOLT);
2335   RoundedA = DAG.getNode(ISD::SELECT, SL, VT, IsSmall,
2336                          DAG.getConstantFP(0, SL, VT),
2337                          RoundedA);
2338 
2339   // Add sign to rounded_A
2340   RoundedA = DAG.getNode(ISD::FCOPYSIGN, SL, VT, RoundedA, A);
2341   DAG.getNode(ISD::FTRUNC, SL, VT, A);
2342 
2343   // RoundedA = abs(A) > 0x1.0p52 ? A : RoundedA;
2344   SDValue IsLarge =
2345       DAG.getSetCC(SL, SetCCVT, AbsA, DAG.getConstantFP(pow(2.0, 52.0), SL, VT),
2346                    ISD::SETOGT);
2347   return DAG.getNode(ISD::SELECT, SL, VT, IsLarge, A, RoundedA);
2348 }
2349 
2350 
2351 
2352 SDValue
2353 NVPTXTargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
2354   switch (Op.getOpcode()) {
2355   case ISD::RETURNADDR:
2356     return SDValue();
2357   case ISD::FRAMEADDR:
2358     return SDValue();
2359   case ISD::GlobalAddress:
2360     return LowerGlobalAddress(Op, DAG);
2361   case ISD::INTRINSIC_W_CHAIN:
2362     return Op;
2363   case ISD::BUILD_VECTOR:
2364     return LowerBUILD_VECTOR(Op, DAG);
2365   case ISD::EXTRACT_SUBVECTOR:
2366     return Op;
2367   case ISD::EXTRACT_VECTOR_ELT:
2368     return LowerEXTRACT_VECTOR_ELT(Op, DAG);
2369   case ISD::CONCAT_VECTORS:
2370     return LowerCONCAT_VECTORS(Op, DAG);
2371   case ISD::STORE:
2372     return LowerSTORE(Op, DAG);
2373   case ISD::LOAD:
2374     return LowerLOAD(Op, DAG);
2375   case ISD::SHL_PARTS:
2376     return LowerShiftLeftParts(Op, DAG);
2377   case ISD::SRA_PARTS:
2378   case ISD::SRL_PARTS:
2379     return LowerShiftRightParts(Op, DAG);
2380   case ISD::SELECT:
2381     return LowerSelect(Op, DAG);
2382   case ISD::FROUND:
2383     return LowerFROUND(Op, DAG);
2384   case ISD::VAARG:
2385     return LowerVAARG(Op, DAG);
2386   case ISD::VASTART:
2387     return LowerVASTART(Op, DAG);
2388   default:
2389     llvm_unreachable("Custom lowering not defined for operation");
2390   }
2391 }
2392 
2393 // This function is almost a copy of SelectionDAG::expandVAArg().
2394 // The only diff is that this one produces loads from local address space.
2395 SDValue NVPTXTargetLowering::LowerVAARG(SDValue Op, SelectionDAG &DAG) const {
2396   const TargetLowering *TLI = STI.getTargetLowering();
2397   SDLoc DL(Op);
2398 
2399   SDNode *Node = Op.getNode();
2400   const Value *V = cast<SrcValueSDNode>(Node->getOperand(2))->getValue();
2401   EVT VT = Node->getValueType(0);
2402   auto *Ty = VT.getTypeForEVT(*DAG.getContext());
2403   SDValue Tmp1 = Node->getOperand(0);
2404   SDValue Tmp2 = Node->getOperand(1);
2405   const MaybeAlign MA(Node->getConstantOperandVal(3));
2406 
2407   SDValue VAListLoad = DAG.getLoad(TLI->getPointerTy(DAG.getDataLayout()), DL,
2408                                    Tmp1, Tmp2, MachinePointerInfo(V));
2409   SDValue VAList = VAListLoad;
2410 
2411   if (MA && *MA > TLI->getMinStackArgumentAlignment()) {
2412     VAList = DAG.getNode(
2413         ISD::ADD, DL, VAList.getValueType(), VAList,
2414         DAG.getConstant(MA->value() - 1, DL, VAList.getValueType()));
2415 
2416     VAList = DAG.getNode(
2417         ISD::AND, DL, VAList.getValueType(), VAList,
2418         DAG.getConstant(-(int64_t)MA->value(), DL, VAList.getValueType()));
2419   }
2420 
2421   // Increment the pointer, VAList, to the next vaarg
2422   Tmp1 = DAG.getNode(ISD::ADD, DL, VAList.getValueType(), VAList,
2423                      DAG.getConstant(DAG.getDataLayout().getTypeAllocSize(Ty),
2424                                      DL, VAList.getValueType()));
2425 
2426   // Store the incremented VAList to the legalized pointer
2427   Tmp1 = DAG.getStore(VAListLoad.getValue(1), DL, Tmp1, Tmp2,
2428                       MachinePointerInfo(V));
2429 
2430   const Value *SrcV =
2431       Constant::getNullValue(PointerType::get(Ty, ADDRESS_SPACE_LOCAL));
2432 
2433   // Load the actual argument out of the pointer VAList
2434   return DAG.getLoad(VT, DL, Tmp1, VAList, MachinePointerInfo(SrcV));
2435 }
2436 
2437 SDValue NVPTXTargetLowering::LowerVASTART(SDValue Op, SelectionDAG &DAG) const {
2438   const TargetLowering *TLI = STI.getTargetLowering();
2439   SDLoc DL(Op);
2440   EVT PtrVT = TLI->getPointerTy(DAG.getDataLayout());
2441 
2442   // Store the address of unsized array <function>_vararg[] in the ap object.
2443   SDValue Arg = getParamSymbol(DAG, /* vararg */ -1, PtrVT);
2444   SDValue VAReg = DAG.getNode(NVPTXISD::Wrapper, DL, PtrVT, Arg);
2445 
2446   const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
2447   return DAG.getStore(Op.getOperand(0), DL, VAReg, Op.getOperand(1),
2448                       MachinePointerInfo(SV));
2449 }
2450 
2451 SDValue NVPTXTargetLowering::LowerSelect(SDValue Op, SelectionDAG &DAG) const {
2452   SDValue Op0 = Op->getOperand(0);
2453   SDValue Op1 = Op->getOperand(1);
2454   SDValue Op2 = Op->getOperand(2);
2455   SDLoc DL(Op.getNode());
2456 
2457   assert(Op.getValueType() == MVT::i1 && "Custom lowering enabled only for i1");
2458 
2459   Op1 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i32, Op1);
2460   Op2 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i32, Op2);
2461   SDValue Select = DAG.getNode(ISD::SELECT, DL, MVT::i32, Op0, Op1, Op2);
2462   SDValue Trunc = DAG.getNode(ISD::TRUNCATE, DL, MVT::i1, Select);
2463 
2464   return Trunc;
2465 }
2466 
2467 SDValue NVPTXTargetLowering::LowerLOAD(SDValue Op, SelectionDAG &DAG) const {
2468   if (Op.getValueType() == MVT::i1)
2469     return LowerLOADi1(Op, DAG);
2470 
2471   // v2f16 is legal, so we can't rely on legalizer to handle unaligned
2472   // loads and have to handle it here.
2473   if (Isv2f16Orv2bf16Type(Op.getValueType())) {
2474     LoadSDNode *Load = cast<LoadSDNode>(Op);
2475     EVT MemVT = Load->getMemoryVT();
2476     if (!allowsMemoryAccessForAlignment(*DAG.getContext(), DAG.getDataLayout(),
2477                                         MemVT, *Load->getMemOperand())) {
2478       SDValue Ops[2];
2479       std::tie(Ops[0], Ops[1]) = expandUnalignedLoad(Load, DAG);
2480       return DAG.getMergeValues(Ops, SDLoc(Op));
2481     }
2482   }
2483 
2484   return SDValue();
2485 }
2486 
2487 // v = ld i1* addr
2488 //   =>
2489 // v1 = ld i8* addr (-> i16)
2490 // v = trunc i16 to i1
2491 SDValue NVPTXTargetLowering::LowerLOADi1(SDValue Op, SelectionDAG &DAG) const {
2492   SDNode *Node = Op.getNode();
2493   LoadSDNode *LD = cast<LoadSDNode>(Node);
2494   SDLoc dl(Node);
2495   assert(LD->getExtensionType() == ISD::NON_EXTLOAD);
2496   assert(Node->getValueType(0) == MVT::i1 &&
2497          "Custom lowering for i1 load only");
2498   SDValue newLD = DAG.getLoad(MVT::i16, dl, LD->getChain(), LD->getBasePtr(),
2499                               LD->getPointerInfo(), LD->getAlign(),
2500                               LD->getMemOperand()->getFlags());
2501   SDValue result = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, newLD);
2502   // The legalizer (the caller) is expecting two values from the legalized
2503   // load, so we build a MergeValues node for it. See ExpandUnalignedLoad()
2504   // in LegalizeDAG.cpp which also uses MergeValues.
2505   SDValue Ops[] = { result, LD->getChain() };
2506   return DAG.getMergeValues(Ops, dl);
2507 }
2508 
2509 SDValue NVPTXTargetLowering::LowerSTORE(SDValue Op, SelectionDAG &DAG) const {
2510   StoreSDNode *Store = cast<StoreSDNode>(Op);
2511   EVT VT = Store->getMemoryVT();
2512 
2513   if (VT == MVT::i1)
2514     return LowerSTOREi1(Op, DAG);
2515 
2516   // v2f16 is legal, so we can't rely on legalizer to handle unaligned
2517   // stores and have to handle it here.
2518   if (Isv2f16Orv2bf16Type(VT) &&
2519       !allowsMemoryAccessForAlignment(*DAG.getContext(), DAG.getDataLayout(),
2520                                       VT, *Store->getMemOperand()))
2521     return expandUnalignedStore(Store, DAG);
2522 
2523   // v2f16 and v2bf16 don't need special handling.
2524   if (VT == MVT::v2f16 || VT == MVT::v2bf16)
2525     return SDValue();
2526 
2527   if (VT.isVector())
2528     return LowerSTOREVector(Op, DAG);
2529 
2530   return SDValue();
2531 }
2532 
2533 SDValue
2534 NVPTXTargetLowering::LowerSTOREVector(SDValue Op, SelectionDAG &DAG) const {
2535   SDNode *N = Op.getNode();
2536   SDValue Val = N->getOperand(1);
2537   SDLoc DL(N);
2538   EVT ValVT = Val.getValueType();
2539 
2540   if (ValVT.isVector()) {
2541     // We only handle "native" vector sizes for now, e.g. <4 x double> is not
2542     // legal.  We can (and should) split that into 2 stores of <2 x double> here
2543     // but I'm leaving that as a TODO for now.
2544     if (!ValVT.isSimple())
2545       return SDValue();
2546     switch (ValVT.getSimpleVT().SimpleTy) {
2547     default:
2548       return SDValue();
2549     case MVT::v2i8:
2550     case MVT::v2i16:
2551     case MVT::v2i32:
2552     case MVT::v2i64:
2553     case MVT::v2f16:
2554     case MVT::v2bf16:
2555     case MVT::v2f32:
2556     case MVT::v2f64:
2557     case MVT::v4i8:
2558     case MVT::v4i16:
2559     case MVT::v4i32:
2560     case MVT::v4f16:
2561     case MVT::v4bf16:
2562     case MVT::v4f32:
2563     case MVT::v8f16: // <4 x f16x2>
2564     case MVT::v8bf16: // <4 x bf16x2>
2565       // This is a "native" vector type
2566       break;
2567     }
2568 
2569     MemSDNode *MemSD = cast<MemSDNode>(N);
2570     const DataLayout &TD = DAG.getDataLayout();
2571 
2572     Align Alignment = MemSD->getAlign();
2573     Align PrefAlign =
2574         TD.getPrefTypeAlign(ValVT.getTypeForEVT(*DAG.getContext()));
2575     if (Alignment < PrefAlign) {
2576       // This store is not sufficiently aligned, so bail out and let this vector
2577       // store be scalarized.  Note that we may still be able to emit smaller
2578       // vector stores.  For example, if we are storing a <4 x float> with an
2579       // alignment of 8, this check will fail but the legalizer will try again
2580       // with 2 x <2 x float>, which will succeed with an alignment of 8.
2581       return SDValue();
2582     }
2583 
2584     unsigned Opcode = 0;
2585     EVT EltVT = ValVT.getVectorElementType();
2586     unsigned NumElts = ValVT.getVectorNumElements();
2587 
2588     // Since StoreV2 is a target node, we cannot rely on DAG type legalization.
2589     // Therefore, we must ensure the type is legal.  For i1 and i8, we set the
2590     // stored type to i16 and propagate the "real" type as the memory type.
2591     bool NeedExt = false;
2592     if (EltVT.getSizeInBits() < 16)
2593       NeedExt = true;
2594 
2595     bool StoreF16x2 = false;
2596     switch (NumElts) {
2597     default:
2598       return SDValue();
2599     case 2:
2600       Opcode = NVPTXISD::StoreV2;
2601       break;
2602     case 4:
2603       Opcode = NVPTXISD::StoreV4;
2604       break;
2605     case 8:
2606       // v8f16 is a special case. PTX doesn't have st.v8.f16
2607       // instruction. Instead, we split the vector into v2f16 chunks and
2608       // store them with st.v4.b32.
2609       assert(Isf16Orbf16Type(EltVT.getSimpleVT()) &&
2610              "Wrong type for the vector.");
2611       Opcode = NVPTXISD::StoreV4;
2612       StoreF16x2 = true;
2613       break;
2614     }
2615 
2616     SmallVector<SDValue, 8> Ops;
2617 
2618     // First is the chain
2619     Ops.push_back(N->getOperand(0));
2620 
2621     if (StoreF16x2) {
2622       // Combine f16,f16 -> v2f16
2623       NumElts /= 2;
2624       for (unsigned i = 0; i < NumElts; ++i) {
2625         SDValue E0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, Val,
2626                                  DAG.getIntPtrConstant(i * 2, DL));
2627         SDValue E1 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, Val,
2628                                  DAG.getIntPtrConstant(i * 2 + 1, DL));
2629         EVT VecVT = EVT::getVectorVT(*DAG.getContext(), EltVT, 2);
2630         SDValue V2 = DAG.getNode(ISD::BUILD_VECTOR, DL, VecVT, E0, E1);
2631         Ops.push_back(V2);
2632       }
2633     } else {
2634       // Then the split values
2635       for (unsigned i = 0; i < NumElts; ++i) {
2636         SDValue ExtVal = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, Val,
2637                                      DAG.getIntPtrConstant(i, DL));
2638         if (NeedExt)
2639           ExtVal = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i16, ExtVal);
2640         Ops.push_back(ExtVal);
2641       }
2642     }
2643 
2644     // Then any remaining arguments
2645     Ops.append(N->op_begin() + 2, N->op_end());
2646 
2647     SDValue NewSt =
2648         DAG.getMemIntrinsicNode(Opcode, DL, DAG.getVTList(MVT::Other), Ops,
2649                                 MemSD->getMemoryVT(), MemSD->getMemOperand());
2650 
2651     // return DCI.CombineTo(N, NewSt, true);
2652     return NewSt;
2653   }
2654 
2655   return SDValue();
2656 }
2657 
2658 // st i1 v, addr
2659 //    =>
2660 // v1 = zxt v to i16
2661 // st.u8 i16, addr
2662 SDValue NVPTXTargetLowering::LowerSTOREi1(SDValue Op, SelectionDAG &DAG) const {
2663   SDNode *Node = Op.getNode();
2664   SDLoc dl(Node);
2665   StoreSDNode *ST = cast<StoreSDNode>(Node);
2666   SDValue Tmp1 = ST->getChain();
2667   SDValue Tmp2 = ST->getBasePtr();
2668   SDValue Tmp3 = ST->getValue();
2669   assert(Tmp3.getValueType() == MVT::i1 && "Custom lowering for i1 store only");
2670   Tmp3 = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i16, Tmp3);
2671   SDValue Result =
2672       DAG.getTruncStore(Tmp1, dl, Tmp3, Tmp2, ST->getPointerInfo(), MVT::i8,
2673                         ST->getAlign(), ST->getMemOperand()->getFlags());
2674   return Result;
2675 }
2676 
2677 // This creates target external symbol for a function parameter.
2678 // Name of the symbol is composed from its index and the function name.
2679 // Negative index corresponds to special parameter (unsized array) used for
2680 // passing variable arguments.
2681 SDValue NVPTXTargetLowering::getParamSymbol(SelectionDAG &DAG, int idx,
2682                                             EVT v) const {
2683   StringRef SavedStr = nvTM->getStrPool().save(
2684       getParamName(&DAG.getMachineFunction().getFunction(), idx));
2685   return DAG.getTargetExternalSymbol(SavedStr.data(), v);
2686 }
2687 
2688 SDValue NVPTXTargetLowering::LowerFormalArguments(
2689     SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
2690     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
2691     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
2692   MachineFunction &MF = DAG.getMachineFunction();
2693   const DataLayout &DL = DAG.getDataLayout();
2694   auto PtrVT = getPointerTy(DAG.getDataLayout());
2695 
2696   const Function *F = &MF.getFunction();
2697   const AttributeList &PAL = F->getAttributes();
2698   const TargetLowering *TLI = STI.getTargetLowering();
2699 
2700   SDValue Root = DAG.getRoot();
2701   std::vector<SDValue> OutChains;
2702 
2703   bool isABI = (STI.getSmVersion() >= 20);
2704   assert(isABI && "Non-ABI compilation is not supported");
2705   if (!isABI)
2706     return Chain;
2707 
2708   std::vector<Type *> argTypes;
2709   std::vector<const Argument *> theArgs;
2710   for (const Argument &I : F->args()) {
2711     theArgs.push_back(&I);
2712     argTypes.push_back(I.getType());
2713   }
2714   // argTypes.size() (or theArgs.size()) and Ins.size() need not match.
2715   // Ins.size() will be larger
2716   //   * if there is an aggregate argument with multiple fields (each field
2717   //     showing up separately in Ins)
2718   //   * if there is a vector argument with more than typical vector-length
2719   //     elements (generally if more than 4) where each vector element is
2720   //     individually present in Ins.
2721   // So a different index should be used for indexing into Ins.
2722   // See similar issue in LowerCall.
2723   unsigned InsIdx = 0;
2724 
2725   int idx = 0;
2726   for (unsigned i = 0, e = theArgs.size(); i != e; ++i, ++idx, ++InsIdx) {
2727     Type *Ty = argTypes[i];
2728 
2729     if (theArgs[i]->use_empty()) {
2730       // argument is dead
2731       if (IsTypePassedAsArray(Ty) && !Ty->isVectorTy()) {
2732         SmallVector<EVT, 16> vtparts;
2733 
2734         ComputePTXValueVTs(*this, DAG.getDataLayout(), Ty, vtparts);
2735         if (vtparts.empty())
2736           report_fatal_error("Empty parameter types are not supported");
2737 
2738         for (unsigned parti = 0, parte = vtparts.size(); parti != parte;
2739              ++parti) {
2740           InVals.push_back(DAG.getNode(ISD::UNDEF, dl, Ins[InsIdx].VT));
2741           ++InsIdx;
2742         }
2743         if (vtparts.size() > 0)
2744           --InsIdx;
2745         continue;
2746       }
2747       if (Ty->isVectorTy()) {
2748         EVT ObjectVT = getValueType(DL, Ty);
2749         unsigned NumRegs = TLI->getNumRegisters(F->getContext(), ObjectVT);
2750         for (unsigned parti = 0; parti < NumRegs; ++parti) {
2751           InVals.push_back(DAG.getNode(ISD::UNDEF, dl, Ins[InsIdx].VT));
2752           ++InsIdx;
2753         }
2754         if (NumRegs > 0)
2755           --InsIdx;
2756         continue;
2757       }
2758       InVals.push_back(DAG.getNode(ISD::UNDEF, dl, Ins[InsIdx].VT));
2759       continue;
2760     }
2761 
2762     // In the following cases, assign a node order of "idx+1"
2763     // to newly created nodes. The SDNodes for params have to
2764     // appear in the same order as their order of appearance
2765     // in the original function. "idx+1" holds that order.
2766     if (!PAL.hasParamAttr(i, Attribute::ByVal)) {
2767       bool aggregateIsPacked = false;
2768       if (StructType *STy = dyn_cast<StructType>(Ty))
2769         aggregateIsPacked = STy->isPacked();
2770 
2771       SmallVector<EVT, 16> VTs;
2772       SmallVector<uint64_t, 16> Offsets;
2773       ComputePTXValueVTs(*this, DL, Ty, VTs, &Offsets, 0);
2774       if (VTs.empty())
2775         report_fatal_error("Empty parameter types are not supported");
2776 
2777       auto VectorInfo =
2778           VectorizePTXValueVTs(VTs, Offsets, DL.getABITypeAlign(Ty));
2779 
2780       SDValue Arg = getParamSymbol(DAG, idx, PtrVT);
2781       int VecIdx = -1; // Index of the first element of the current vector.
2782       for (unsigned parti = 0, parte = VTs.size(); parti != parte; ++parti) {
2783         if (VectorInfo[parti] & PVF_FIRST) {
2784           assert(VecIdx == -1 && "Orphaned vector.");
2785           VecIdx = parti;
2786         }
2787 
2788         // That's the last element of this store op.
2789         if (VectorInfo[parti] & PVF_LAST) {
2790           unsigned NumElts = parti - VecIdx + 1;
2791           EVT EltVT = VTs[parti];
2792           // i1 is loaded/stored as i8.
2793           EVT LoadVT = EltVT;
2794           if (EltVT == MVT::i1)
2795             LoadVT = MVT::i8;
2796           else if (Isv2f16Orv2bf16Type(EltVT))
2797             // getLoad needs a vector type, but it can't handle
2798             // vectors which contain v2f16 or v2bf16 elements. So we must load
2799             // using i32 here and then bitcast back.
2800             LoadVT = MVT::i32;
2801 
2802           EVT VecVT = EVT::getVectorVT(F->getContext(), LoadVT, NumElts);
2803           SDValue VecAddr =
2804               DAG.getNode(ISD::ADD, dl, PtrVT, Arg,
2805                           DAG.getConstant(Offsets[VecIdx], dl, PtrVT));
2806           Value *srcValue = Constant::getNullValue(PointerType::get(
2807               EltVT.getTypeForEVT(F->getContext()), ADDRESS_SPACE_PARAM));
2808           SDValue P = DAG.getLoad(VecVT, dl, Root, VecAddr,
2809                                   MachinePointerInfo(srcValue),
2810                                   MaybeAlign(aggregateIsPacked ? 1 : 0),
2811                                   MachineMemOperand::MODereferenceable |
2812                                       MachineMemOperand::MOInvariant);
2813           if (P.getNode())
2814             P.getNode()->setIROrder(idx + 1);
2815           for (unsigned j = 0; j < NumElts; ++j) {
2816             SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, LoadVT, P,
2817                                       DAG.getIntPtrConstant(j, dl));
2818             // We've loaded i1 as an i8 and now must truncate it back to i1
2819             if (EltVT == MVT::i1)
2820               Elt = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, Elt);
2821             // v2f16 was loaded as an i32. Now we must bitcast it back.
2822             else if (Isv2f16Orv2bf16Type(EltVT))
2823               Elt = DAG.getNode(ISD::BITCAST, dl, EltVT, Elt);
2824 
2825             // If a promoted integer type is used, truncate down to the original
2826             MVT PromotedVT;
2827             if (PromoteScalarIntegerPTX(EltVT, &PromotedVT)) {
2828               Elt = DAG.getNode(ISD::TRUNCATE, dl, EltVT, Elt);
2829             }
2830 
2831             // Extend the element if necessary (e.g. an i8 is loaded
2832             // into an i16 register)
2833             if (Ins[InsIdx].VT.isInteger() &&
2834                 Ins[InsIdx].VT.getFixedSizeInBits() >
2835                     LoadVT.getFixedSizeInBits()) {
2836               unsigned Extend = Ins[InsIdx].Flags.isSExt() ? ISD::SIGN_EXTEND
2837                                                            : ISD::ZERO_EXTEND;
2838               Elt = DAG.getNode(Extend, dl, Ins[InsIdx].VT, Elt);
2839             }
2840             InVals.push_back(Elt);
2841           }
2842 
2843           // Reset vector tracking state.
2844           VecIdx = -1;
2845         }
2846         ++InsIdx;
2847       }
2848       if (VTs.size() > 0)
2849         --InsIdx;
2850       continue;
2851     }
2852 
2853     // Param has ByVal attribute
2854     // Return MoveParam(param symbol).
2855     // Ideally, the param symbol can be returned directly,
2856     // but when SDNode builder decides to use it in a CopyToReg(),
2857     // machine instruction fails because TargetExternalSymbol
2858     // (not lowered) is target dependent, and CopyToReg assumes
2859     // the source is lowered.
2860     EVT ObjectVT = getValueType(DL, Ty);
2861     assert(ObjectVT == Ins[InsIdx].VT &&
2862            "Ins type did not match function type");
2863     SDValue Arg = getParamSymbol(DAG, idx, PtrVT);
2864     SDValue p = DAG.getNode(NVPTXISD::MoveParam, dl, ObjectVT, Arg);
2865     if (p.getNode())
2866       p.getNode()->setIROrder(idx + 1);
2867     InVals.push_back(p);
2868   }
2869 
2870   if (!OutChains.empty())
2871     DAG.setRoot(DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains));
2872 
2873   return Chain;
2874 }
2875 
2876 SDValue
2877 NVPTXTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv,
2878                                  bool isVarArg,
2879                                  const SmallVectorImpl<ISD::OutputArg> &Outs,
2880                                  const SmallVectorImpl<SDValue> &OutVals,
2881                                  const SDLoc &dl, SelectionDAG &DAG) const {
2882   const MachineFunction &MF = DAG.getMachineFunction();
2883   const Function &F = MF.getFunction();
2884   Type *RetTy = MF.getFunction().getReturnType();
2885 
2886   bool isABI = (STI.getSmVersion() >= 20);
2887   assert(isABI && "Non-ABI compilation is not supported");
2888   if (!isABI)
2889     return Chain;
2890 
2891   const DataLayout &DL = DAG.getDataLayout();
2892   SmallVector<SDValue, 16> PromotedOutVals;
2893   SmallVector<EVT, 16> VTs;
2894   SmallVector<uint64_t, 16> Offsets;
2895   ComputePTXValueVTs(*this, DL, RetTy, VTs, &Offsets);
2896   assert(VTs.size() == OutVals.size() && "Bad return value decomposition");
2897 
2898   for (unsigned i = 0, e = VTs.size(); i != e; ++i) {
2899     SDValue PromotedOutVal = OutVals[i];
2900     MVT PromotedVT;
2901     if (PromoteScalarIntegerPTX(VTs[i], &PromotedVT)) {
2902       VTs[i] = EVT(PromotedVT);
2903     }
2904     if (PromoteScalarIntegerPTX(PromotedOutVal.getValueType(), &PromotedVT)) {
2905       llvm::ISD::NodeType Ext =
2906           Outs[i].Flags.isSExt() ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
2907       PromotedOutVal = DAG.getNode(Ext, dl, PromotedVT, PromotedOutVal);
2908     }
2909     PromotedOutVals.push_back(PromotedOutVal);
2910   }
2911 
2912   auto VectorInfo = VectorizePTXValueVTs(
2913       VTs, Offsets,
2914       RetTy->isSized() ? getFunctionParamOptimizedAlign(&F, RetTy, DL)
2915                        : Align(1));
2916 
2917   // PTX Interoperability Guide 3.3(A): [Integer] Values shorter than
2918   // 32-bits are sign extended or zero extended, depending on whether
2919   // they are signed or unsigned types.
2920   bool ExtendIntegerRetVal =
2921       RetTy->isIntegerTy() && DL.getTypeAllocSizeInBits(RetTy) < 32;
2922 
2923   SmallVector<SDValue, 6> StoreOperands;
2924   for (unsigned i = 0, e = VTs.size(); i != e; ++i) {
2925     // New load/store. Record chain and offset operands.
2926     if (VectorInfo[i] & PVF_FIRST) {
2927       assert(StoreOperands.empty() && "Orphaned operand list.");
2928       StoreOperands.push_back(Chain);
2929       StoreOperands.push_back(DAG.getConstant(Offsets[i], dl, MVT::i32));
2930     }
2931 
2932     SDValue OutVal = OutVals[i];
2933     SDValue RetVal = PromotedOutVals[i];
2934 
2935     if (ExtendIntegerRetVal) {
2936       RetVal = DAG.getNode(Outs[i].Flags.isSExt() ? ISD::SIGN_EXTEND
2937                                                   : ISD::ZERO_EXTEND,
2938                            dl, MVT::i32, RetVal);
2939     } else if (OutVal.getValueSizeInBits() < 16) {
2940       // Use 16-bit registers for small load-stores as it's the
2941       // smallest general purpose register size supported by NVPTX.
2942       RetVal = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i16, RetVal);
2943     }
2944 
2945     // Record the value to return.
2946     StoreOperands.push_back(RetVal);
2947 
2948     // That's the last element of this store op.
2949     if (VectorInfo[i] & PVF_LAST) {
2950       NVPTXISD::NodeType Op;
2951       unsigned NumElts = StoreOperands.size() - 2;
2952       switch (NumElts) {
2953       case 1:
2954         Op = NVPTXISD::StoreRetval;
2955         break;
2956       case 2:
2957         Op = NVPTXISD::StoreRetvalV2;
2958         break;
2959       case 4:
2960         Op = NVPTXISD::StoreRetvalV4;
2961         break;
2962       default:
2963         llvm_unreachable("Invalid vector info.");
2964       }
2965 
2966       // Adjust type of load/store op if we've extended the scalar
2967       // return value.
2968       EVT TheStoreType = ExtendIntegerRetVal ? MVT::i32 : VTs[i];
2969       Chain = DAG.getMemIntrinsicNode(
2970           Op, dl, DAG.getVTList(MVT::Other), StoreOperands, TheStoreType,
2971           MachinePointerInfo(), Align(1), MachineMemOperand::MOStore);
2972       // Cleanup vector state.
2973       StoreOperands.clear();
2974     }
2975   }
2976 
2977   return DAG.getNode(NVPTXISD::RET_GLUE, dl, MVT::Other, Chain);
2978 }
2979 
2980 void NVPTXTargetLowering::LowerAsmOperandForConstraint(
2981     SDValue Op, std::string &Constraint, std::vector<SDValue> &Ops,
2982     SelectionDAG &DAG) const {
2983   if (Constraint.length() > 1)
2984     return;
2985   else
2986     TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
2987 }
2988 
2989 static unsigned getOpcForTextureInstr(unsigned Intrinsic) {
2990   switch (Intrinsic) {
2991   default:
2992     return 0;
2993 
2994   case Intrinsic::nvvm_tex_1d_v4f32_s32:
2995     return NVPTXISD::Tex1DFloatS32;
2996   case Intrinsic::nvvm_tex_1d_v4f32_f32:
2997     return NVPTXISD::Tex1DFloatFloat;
2998   case Intrinsic::nvvm_tex_1d_level_v4f32_f32:
2999     return NVPTXISD::Tex1DFloatFloatLevel;
3000   case Intrinsic::nvvm_tex_1d_grad_v4f32_f32:
3001     return NVPTXISD::Tex1DFloatFloatGrad;
3002   case Intrinsic::nvvm_tex_1d_v4s32_s32:
3003     return NVPTXISD::Tex1DS32S32;
3004   case Intrinsic::nvvm_tex_1d_v4s32_f32:
3005     return NVPTXISD::Tex1DS32Float;
3006   case Intrinsic::nvvm_tex_1d_level_v4s32_f32:
3007     return NVPTXISD::Tex1DS32FloatLevel;
3008   case Intrinsic::nvvm_tex_1d_grad_v4s32_f32:
3009     return NVPTXISD::Tex1DS32FloatGrad;
3010   case Intrinsic::nvvm_tex_1d_v4u32_s32:
3011     return NVPTXISD::Tex1DU32S32;
3012   case Intrinsic::nvvm_tex_1d_v4u32_f32:
3013     return NVPTXISD::Tex1DU32Float;
3014   case Intrinsic::nvvm_tex_1d_level_v4u32_f32:
3015     return NVPTXISD::Tex1DU32FloatLevel;
3016   case Intrinsic::nvvm_tex_1d_grad_v4u32_f32:
3017     return NVPTXISD::Tex1DU32FloatGrad;
3018 
3019   case Intrinsic::nvvm_tex_1d_array_v4f32_s32:
3020     return NVPTXISD::Tex1DArrayFloatS32;
3021   case Intrinsic::nvvm_tex_1d_array_v4f32_f32:
3022     return NVPTXISD::Tex1DArrayFloatFloat;
3023   case Intrinsic::nvvm_tex_1d_array_level_v4f32_f32:
3024     return NVPTXISD::Tex1DArrayFloatFloatLevel;
3025   case Intrinsic::nvvm_tex_1d_array_grad_v4f32_f32:
3026     return NVPTXISD::Tex1DArrayFloatFloatGrad;
3027   case Intrinsic::nvvm_tex_1d_array_v4s32_s32:
3028     return NVPTXISD::Tex1DArrayS32S32;
3029   case Intrinsic::nvvm_tex_1d_array_v4s32_f32:
3030     return NVPTXISD::Tex1DArrayS32Float;
3031   case Intrinsic::nvvm_tex_1d_array_level_v4s32_f32:
3032     return NVPTXISD::Tex1DArrayS32FloatLevel;
3033   case Intrinsic::nvvm_tex_1d_array_grad_v4s32_f32:
3034     return NVPTXISD::Tex1DArrayS32FloatGrad;
3035   case Intrinsic::nvvm_tex_1d_array_v4u32_s32:
3036     return NVPTXISD::Tex1DArrayU32S32;
3037   case Intrinsic::nvvm_tex_1d_array_v4u32_f32:
3038     return NVPTXISD::Tex1DArrayU32Float;
3039   case Intrinsic::nvvm_tex_1d_array_level_v4u32_f32:
3040     return NVPTXISD::Tex1DArrayU32FloatLevel;
3041   case Intrinsic::nvvm_tex_1d_array_grad_v4u32_f32:
3042     return NVPTXISD::Tex1DArrayU32FloatGrad;
3043 
3044   case Intrinsic::nvvm_tex_2d_v4f32_s32:
3045     return NVPTXISD::Tex2DFloatS32;
3046   case Intrinsic::nvvm_tex_2d_v4f32_f32:
3047     return NVPTXISD::Tex2DFloatFloat;
3048   case Intrinsic::nvvm_tex_2d_level_v4f32_f32:
3049     return NVPTXISD::Tex2DFloatFloatLevel;
3050   case Intrinsic::nvvm_tex_2d_grad_v4f32_f32:
3051     return NVPTXISD::Tex2DFloatFloatGrad;
3052   case Intrinsic::nvvm_tex_2d_v4s32_s32:
3053     return NVPTXISD::Tex2DS32S32;
3054   case Intrinsic::nvvm_tex_2d_v4s32_f32:
3055     return NVPTXISD::Tex2DS32Float;
3056   case Intrinsic::nvvm_tex_2d_level_v4s32_f32:
3057     return NVPTXISD::Tex2DS32FloatLevel;
3058   case Intrinsic::nvvm_tex_2d_grad_v4s32_f32:
3059     return NVPTXISD::Tex2DS32FloatGrad;
3060   case Intrinsic::nvvm_tex_2d_v4u32_s32:
3061     return NVPTXISD::Tex2DU32S32;
3062   case Intrinsic::nvvm_tex_2d_v4u32_f32:
3063     return NVPTXISD::Tex2DU32Float;
3064   case Intrinsic::nvvm_tex_2d_level_v4u32_f32:
3065     return NVPTXISD::Tex2DU32FloatLevel;
3066   case Intrinsic::nvvm_tex_2d_grad_v4u32_f32:
3067     return NVPTXISD::Tex2DU32FloatGrad;
3068 
3069   case Intrinsic::nvvm_tex_2d_array_v4f32_s32:
3070     return NVPTXISD::Tex2DArrayFloatS32;
3071   case Intrinsic::nvvm_tex_2d_array_v4f32_f32:
3072     return NVPTXISD::Tex2DArrayFloatFloat;
3073   case Intrinsic::nvvm_tex_2d_array_level_v4f32_f32:
3074     return NVPTXISD::Tex2DArrayFloatFloatLevel;
3075   case Intrinsic::nvvm_tex_2d_array_grad_v4f32_f32:
3076     return NVPTXISD::Tex2DArrayFloatFloatGrad;
3077   case Intrinsic::nvvm_tex_2d_array_v4s32_s32:
3078     return NVPTXISD::Tex2DArrayS32S32;
3079   case Intrinsic::nvvm_tex_2d_array_v4s32_f32:
3080     return NVPTXISD::Tex2DArrayS32Float;
3081   case Intrinsic::nvvm_tex_2d_array_level_v4s32_f32:
3082     return NVPTXISD::Tex2DArrayS32FloatLevel;
3083   case Intrinsic::nvvm_tex_2d_array_grad_v4s32_f32:
3084     return NVPTXISD::Tex2DArrayS32FloatGrad;
3085   case Intrinsic::nvvm_tex_2d_array_v4u32_s32:
3086     return NVPTXISD::Tex2DArrayU32S32;
3087   case Intrinsic::nvvm_tex_2d_array_v4u32_f32:
3088     return NVPTXISD::Tex2DArrayU32Float;
3089   case Intrinsic::nvvm_tex_2d_array_level_v4u32_f32:
3090     return NVPTXISD::Tex2DArrayU32FloatLevel;
3091   case Intrinsic::nvvm_tex_2d_array_grad_v4u32_f32:
3092     return NVPTXISD::Tex2DArrayU32FloatGrad;
3093 
3094   case Intrinsic::nvvm_tex_3d_v4f32_s32:
3095     return NVPTXISD::Tex3DFloatS32;
3096   case Intrinsic::nvvm_tex_3d_v4f32_f32:
3097     return NVPTXISD::Tex3DFloatFloat;
3098   case Intrinsic::nvvm_tex_3d_level_v4f32_f32:
3099     return NVPTXISD::Tex3DFloatFloatLevel;
3100   case Intrinsic::nvvm_tex_3d_grad_v4f32_f32:
3101     return NVPTXISD::Tex3DFloatFloatGrad;
3102   case Intrinsic::nvvm_tex_3d_v4s32_s32:
3103     return NVPTXISD::Tex3DS32S32;
3104   case Intrinsic::nvvm_tex_3d_v4s32_f32:
3105     return NVPTXISD::Tex3DS32Float;
3106   case Intrinsic::nvvm_tex_3d_level_v4s32_f32:
3107     return NVPTXISD::Tex3DS32FloatLevel;
3108   case Intrinsic::nvvm_tex_3d_grad_v4s32_f32:
3109     return NVPTXISD::Tex3DS32FloatGrad;
3110   case Intrinsic::nvvm_tex_3d_v4u32_s32:
3111     return NVPTXISD::Tex3DU32S32;
3112   case Intrinsic::nvvm_tex_3d_v4u32_f32:
3113     return NVPTXISD::Tex3DU32Float;
3114   case Intrinsic::nvvm_tex_3d_level_v4u32_f32:
3115     return NVPTXISD::Tex3DU32FloatLevel;
3116   case Intrinsic::nvvm_tex_3d_grad_v4u32_f32:
3117     return NVPTXISD::Tex3DU32FloatGrad;
3118 
3119   case Intrinsic::nvvm_tex_cube_v4f32_f32:
3120     return NVPTXISD::TexCubeFloatFloat;
3121   case Intrinsic::nvvm_tex_cube_level_v4f32_f32:
3122     return NVPTXISD::TexCubeFloatFloatLevel;
3123   case Intrinsic::nvvm_tex_cube_v4s32_f32:
3124     return NVPTXISD::TexCubeS32Float;
3125   case Intrinsic::nvvm_tex_cube_level_v4s32_f32:
3126     return NVPTXISD::TexCubeS32FloatLevel;
3127   case Intrinsic::nvvm_tex_cube_v4u32_f32:
3128     return NVPTXISD::TexCubeU32Float;
3129   case Intrinsic::nvvm_tex_cube_level_v4u32_f32:
3130     return NVPTXISD::TexCubeU32FloatLevel;
3131 
3132   case Intrinsic::nvvm_tex_cube_array_v4f32_f32:
3133     return NVPTXISD::TexCubeArrayFloatFloat;
3134   case Intrinsic::nvvm_tex_cube_array_level_v4f32_f32:
3135     return NVPTXISD::TexCubeArrayFloatFloatLevel;
3136   case Intrinsic::nvvm_tex_cube_array_v4s32_f32:
3137     return NVPTXISD::TexCubeArrayS32Float;
3138   case Intrinsic::nvvm_tex_cube_array_level_v4s32_f32:
3139     return NVPTXISD::TexCubeArrayS32FloatLevel;
3140   case Intrinsic::nvvm_tex_cube_array_v4u32_f32:
3141     return NVPTXISD::TexCubeArrayU32Float;
3142   case Intrinsic::nvvm_tex_cube_array_level_v4u32_f32:
3143     return NVPTXISD::TexCubeArrayU32FloatLevel;
3144 
3145   case Intrinsic::nvvm_tld4_r_2d_v4f32_f32:
3146     return NVPTXISD::Tld4R2DFloatFloat;
3147   case Intrinsic::nvvm_tld4_g_2d_v4f32_f32:
3148     return NVPTXISD::Tld4G2DFloatFloat;
3149   case Intrinsic::nvvm_tld4_b_2d_v4f32_f32:
3150     return NVPTXISD::Tld4B2DFloatFloat;
3151   case Intrinsic::nvvm_tld4_a_2d_v4f32_f32:
3152     return NVPTXISD::Tld4A2DFloatFloat;
3153   case Intrinsic::nvvm_tld4_r_2d_v4s32_f32:
3154     return NVPTXISD::Tld4R2DS64Float;
3155   case Intrinsic::nvvm_tld4_g_2d_v4s32_f32:
3156     return NVPTXISD::Tld4G2DS64Float;
3157   case Intrinsic::nvvm_tld4_b_2d_v4s32_f32:
3158     return NVPTXISD::Tld4B2DS64Float;
3159   case Intrinsic::nvvm_tld4_a_2d_v4s32_f32:
3160     return NVPTXISD::Tld4A2DS64Float;
3161   case Intrinsic::nvvm_tld4_r_2d_v4u32_f32:
3162     return NVPTXISD::Tld4R2DU64Float;
3163   case Intrinsic::nvvm_tld4_g_2d_v4u32_f32:
3164     return NVPTXISD::Tld4G2DU64Float;
3165   case Intrinsic::nvvm_tld4_b_2d_v4u32_f32:
3166     return NVPTXISD::Tld4B2DU64Float;
3167   case Intrinsic::nvvm_tld4_a_2d_v4u32_f32:
3168     return NVPTXISD::Tld4A2DU64Float;
3169 
3170   case Intrinsic::nvvm_tex_unified_1d_v4f32_s32:
3171     return NVPTXISD::TexUnified1DFloatS32;
3172   case Intrinsic::nvvm_tex_unified_1d_v4f32_f32:
3173     return NVPTXISD::TexUnified1DFloatFloat;
3174   case Intrinsic::nvvm_tex_unified_1d_level_v4f32_f32:
3175     return NVPTXISD::TexUnified1DFloatFloatLevel;
3176   case Intrinsic::nvvm_tex_unified_1d_grad_v4f32_f32:
3177     return NVPTXISD::TexUnified1DFloatFloatGrad;
3178   case Intrinsic::nvvm_tex_unified_1d_v4s32_s32:
3179     return NVPTXISD::TexUnified1DS32S32;
3180   case Intrinsic::nvvm_tex_unified_1d_v4s32_f32:
3181     return NVPTXISD::TexUnified1DS32Float;
3182   case Intrinsic::nvvm_tex_unified_1d_level_v4s32_f32:
3183     return NVPTXISD::TexUnified1DS32FloatLevel;
3184   case Intrinsic::nvvm_tex_unified_1d_grad_v4s32_f32:
3185     return NVPTXISD::TexUnified1DS32FloatGrad;
3186   case Intrinsic::nvvm_tex_unified_1d_v4u32_s32:
3187     return NVPTXISD::TexUnified1DU32S32;
3188   case Intrinsic::nvvm_tex_unified_1d_v4u32_f32:
3189     return NVPTXISD::TexUnified1DU32Float;
3190   case Intrinsic::nvvm_tex_unified_1d_level_v4u32_f32:
3191     return NVPTXISD::TexUnified1DU32FloatLevel;
3192   case Intrinsic::nvvm_tex_unified_1d_grad_v4u32_f32:
3193     return NVPTXISD::TexUnified1DU32FloatGrad;
3194 
3195   case Intrinsic::nvvm_tex_unified_1d_array_v4f32_s32:
3196     return NVPTXISD::TexUnified1DArrayFloatS32;
3197   case Intrinsic::nvvm_tex_unified_1d_array_v4f32_f32:
3198     return NVPTXISD::TexUnified1DArrayFloatFloat;
3199   case Intrinsic::nvvm_tex_unified_1d_array_level_v4f32_f32:
3200     return NVPTXISD::TexUnified1DArrayFloatFloatLevel;
3201   case Intrinsic::nvvm_tex_unified_1d_array_grad_v4f32_f32:
3202     return NVPTXISD::TexUnified1DArrayFloatFloatGrad;
3203   case Intrinsic::nvvm_tex_unified_1d_array_v4s32_s32:
3204     return NVPTXISD::TexUnified1DArrayS32S32;
3205   case Intrinsic::nvvm_tex_unified_1d_array_v4s32_f32:
3206     return NVPTXISD::TexUnified1DArrayS32Float;
3207   case Intrinsic::nvvm_tex_unified_1d_array_level_v4s32_f32:
3208     return NVPTXISD::TexUnified1DArrayS32FloatLevel;
3209   case Intrinsic::nvvm_tex_unified_1d_array_grad_v4s32_f32:
3210     return NVPTXISD::TexUnified1DArrayS32FloatGrad;
3211   case Intrinsic::nvvm_tex_unified_1d_array_v4u32_s32:
3212     return NVPTXISD::TexUnified1DArrayU32S32;
3213   case Intrinsic::nvvm_tex_unified_1d_array_v4u32_f32:
3214     return NVPTXISD::TexUnified1DArrayU32Float;
3215   case Intrinsic::nvvm_tex_unified_1d_array_level_v4u32_f32:
3216     return NVPTXISD::TexUnified1DArrayU32FloatLevel;
3217   case Intrinsic::nvvm_tex_unified_1d_array_grad_v4u32_f32:
3218     return NVPTXISD::TexUnified1DArrayU32FloatGrad;
3219 
3220   case Intrinsic::nvvm_tex_unified_2d_v4f32_s32:
3221     return NVPTXISD::TexUnified2DFloatS32;
3222   case Intrinsic::nvvm_tex_unified_2d_v4f32_f32:
3223     return NVPTXISD::TexUnified2DFloatFloat;
3224   case Intrinsic::nvvm_tex_unified_2d_level_v4f32_f32:
3225     return NVPTXISD::TexUnified2DFloatFloatLevel;
3226   case Intrinsic::nvvm_tex_unified_2d_grad_v4f32_f32:
3227     return NVPTXISD::TexUnified2DFloatFloatGrad;
3228   case Intrinsic::nvvm_tex_unified_2d_v4s32_s32:
3229     return NVPTXISD::TexUnified2DS32S32;
3230   case Intrinsic::nvvm_tex_unified_2d_v4s32_f32:
3231     return NVPTXISD::TexUnified2DS32Float;
3232   case Intrinsic::nvvm_tex_unified_2d_level_v4s32_f32:
3233     return NVPTXISD::TexUnified2DS32FloatLevel;
3234   case Intrinsic::nvvm_tex_unified_2d_grad_v4s32_f32:
3235     return NVPTXISD::TexUnified2DS32FloatGrad;
3236   case Intrinsic::nvvm_tex_unified_2d_v4u32_s32:
3237     return NVPTXISD::TexUnified2DU32S32;
3238   case Intrinsic::nvvm_tex_unified_2d_v4u32_f32:
3239     return NVPTXISD::TexUnified2DU32Float;
3240   case Intrinsic::nvvm_tex_unified_2d_level_v4u32_f32:
3241     return NVPTXISD::TexUnified2DU32FloatLevel;
3242   case Intrinsic::nvvm_tex_unified_2d_grad_v4u32_f32:
3243     return NVPTXISD::TexUnified2DU32FloatGrad;
3244 
3245   case Intrinsic::nvvm_tex_unified_2d_array_v4f32_s32:
3246     return NVPTXISD::TexUnified2DArrayFloatS32;
3247   case Intrinsic::nvvm_tex_unified_2d_array_v4f32_f32:
3248     return NVPTXISD::TexUnified2DArrayFloatFloat;
3249   case Intrinsic::nvvm_tex_unified_2d_array_level_v4f32_f32:
3250     return NVPTXISD::TexUnified2DArrayFloatFloatLevel;
3251   case Intrinsic::nvvm_tex_unified_2d_array_grad_v4f32_f32:
3252     return NVPTXISD::TexUnified2DArrayFloatFloatGrad;
3253   case Intrinsic::nvvm_tex_unified_2d_array_v4s32_s32:
3254     return NVPTXISD::TexUnified2DArrayS32S32;
3255   case Intrinsic::nvvm_tex_unified_2d_array_v4s32_f32:
3256     return NVPTXISD::TexUnified2DArrayS32Float;
3257   case Intrinsic::nvvm_tex_unified_2d_array_level_v4s32_f32:
3258     return NVPTXISD::TexUnified2DArrayS32FloatLevel;
3259   case Intrinsic::nvvm_tex_unified_2d_array_grad_v4s32_f32:
3260     return NVPTXISD::TexUnified2DArrayS32FloatGrad;
3261   case Intrinsic::nvvm_tex_unified_2d_array_v4u32_s32:
3262     return NVPTXISD::TexUnified2DArrayU32S32;
3263   case Intrinsic::nvvm_tex_unified_2d_array_v4u32_f32:
3264     return NVPTXISD::TexUnified2DArrayU32Float;
3265   case Intrinsic::nvvm_tex_unified_2d_array_level_v4u32_f32:
3266     return NVPTXISD::TexUnified2DArrayU32FloatLevel;
3267   case Intrinsic::nvvm_tex_unified_2d_array_grad_v4u32_f32:
3268     return NVPTXISD::TexUnified2DArrayU32FloatGrad;
3269 
3270   case Intrinsic::nvvm_tex_unified_3d_v4f32_s32:
3271     return NVPTXISD::TexUnified3DFloatS32;
3272   case Intrinsic::nvvm_tex_unified_3d_v4f32_f32:
3273     return NVPTXISD::TexUnified3DFloatFloat;
3274   case Intrinsic::nvvm_tex_unified_3d_level_v4f32_f32:
3275     return NVPTXISD::TexUnified3DFloatFloatLevel;
3276   case Intrinsic::nvvm_tex_unified_3d_grad_v4f32_f32:
3277     return NVPTXISD::TexUnified3DFloatFloatGrad;
3278   case Intrinsic::nvvm_tex_unified_3d_v4s32_s32:
3279     return NVPTXISD::TexUnified3DS32S32;
3280   case Intrinsic::nvvm_tex_unified_3d_v4s32_f32:
3281     return NVPTXISD::TexUnified3DS32Float;
3282   case Intrinsic::nvvm_tex_unified_3d_level_v4s32_f32:
3283     return NVPTXISD::TexUnified3DS32FloatLevel;
3284   case Intrinsic::nvvm_tex_unified_3d_grad_v4s32_f32:
3285     return NVPTXISD::TexUnified3DS32FloatGrad;
3286   case Intrinsic::nvvm_tex_unified_3d_v4u32_s32:
3287     return NVPTXISD::TexUnified3DU32S32;
3288   case Intrinsic::nvvm_tex_unified_3d_v4u32_f32:
3289     return NVPTXISD::TexUnified3DU32Float;
3290   case Intrinsic::nvvm_tex_unified_3d_level_v4u32_f32:
3291     return NVPTXISD::TexUnified3DU32FloatLevel;
3292   case Intrinsic::nvvm_tex_unified_3d_grad_v4u32_f32:
3293     return NVPTXISD::TexUnified3DU32FloatGrad;
3294 
3295   case Intrinsic::nvvm_tex_unified_cube_v4f32_f32:
3296     return NVPTXISD::TexUnifiedCubeFloatFloat;
3297   case Intrinsic::nvvm_tex_unified_cube_level_v4f32_f32:
3298     return NVPTXISD::TexUnifiedCubeFloatFloatLevel;
3299   case Intrinsic::nvvm_tex_unified_cube_v4s32_f32:
3300     return NVPTXISD::TexUnifiedCubeS32Float;
3301   case Intrinsic::nvvm_tex_unified_cube_level_v4s32_f32:
3302     return NVPTXISD::TexUnifiedCubeS32FloatLevel;
3303   case Intrinsic::nvvm_tex_unified_cube_v4u32_f32:
3304     return NVPTXISD::TexUnifiedCubeU32Float;
3305   case Intrinsic::nvvm_tex_unified_cube_level_v4u32_f32:
3306     return NVPTXISD::TexUnifiedCubeU32FloatLevel;
3307 
3308   case Intrinsic::nvvm_tex_unified_cube_array_v4f32_f32:
3309     return NVPTXISD::TexUnifiedCubeArrayFloatFloat;
3310   case Intrinsic::nvvm_tex_unified_cube_array_level_v4f32_f32:
3311     return NVPTXISD::TexUnifiedCubeArrayFloatFloatLevel;
3312   case Intrinsic::nvvm_tex_unified_cube_array_v4s32_f32:
3313     return NVPTXISD::TexUnifiedCubeArrayS32Float;
3314   case Intrinsic::nvvm_tex_unified_cube_array_level_v4s32_f32:
3315     return NVPTXISD::TexUnifiedCubeArrayS32FloatLevel;
3316   case Intrinsic::nvvm_tex_unified_cube_array_v4u32_f32:
3317     return NVPTXISD::TexUnifiedCubeArrayU32Float;
3318   case Intrinsic::nvvm_tex_unified_cube_array_level_v4u32_f32:
3319     return NVPTXISD::TexUnifiedCubeArrayU32FloatLevel;
3320 
3321   case Intrinsic::nvvm_tld4_unified_r_2d_v4f32_f32:
3322     return NVPTXISD::Tld4UnifiedR2DFloatFloat;
3323   case Intrinsic::nvvm_tld4_unified_g_2d_v4f32_f32:
3324     return NVPTXISD::Tld4UnifiedG2DFloatFloat;
3325   case Intrinsic::nvvm_tld4_unified_b_2d_v4f32_f32:
3326     return NVPTXISD::Tld4UnifiedB2DFloatFloat;
3327   case Intrinsic::nvvm_tld4_unified_a_2d_v4f32_f32:
3328     return NVPTXISD::Tld4UnifiedA2DFloatFloat;
3329   case Intrinsic::nvvm_tld4_unified_r_2d_v4s32_f32:
3330     return NVPTXISD::Tld4UnifiedR2DS64Float;
3331   case Intrinsic::nvvm_tld4_unified_g_2d_v4s32_f32:
3332     return NVPTXISD::Tld4UnifiedG2DS64Float;
3333   case Intrinsic::nvvm_tld4_unified_b_2d_v4s32_f32:
3334     return NVPTXISD::Tld4UnifiedB2DS64Float;
3335   case Intrinsic::nvvm_tld4_unified_a_2d_v4s32_f32:
3336     return NVPTXISD::Tld4UnifiedA2DS64Float;
3337   case Intrinsic::nvvm_tld4_unified_r_2d_v4u32_f32:
3338     return NVPTXISD::Tld4UnifiedR2DU64Float;
3339   case Intrinsic::nvvm_tld4_unified_g_2d_v4u32_f32:
3340     return NVPTXISD::Tld4UnifiedG2DU64Float;
3341   case Intrinsic::nvvm_tld4_unified_b_2d_v4u32_f32:
3342     return NVPTXISD::Tld4UnifiedB2DU64Float;
3343   case Intrinsic::nvvm_tld4_unified_a_2d_v4u32_f32:
3344     return NVPTXISD::Tld4UnifiedA2DU64Float;
3345   }
3346 }
3347 
3348 static unsigned getOpcForSurfaceInstr(unsigned Intrinsic) {
3349   switch (Intrinsic) {
3350   default:
3351     return 0;
3352   case Intrinsic::nvvm_suld_1d_i8_clamp:
3353     return NVPTXISD::Suld1DI8Clamp;
3354   case Intrinsic::nvvm_suld_1d_i16_clamp:
3355     return NVPTXISD::Suld1DI16Clamp;
3356   case Intrinsic::nvvm_suld_1d_i32_clamp:
3357     return NVPTXISD::Suld1DI32Clamp;
3358   case Intrinsic::nvvm_suld_1d_i64_clamp:
3359     return NVPTXISD::Suld1DI64Clamp;
3360   case Intrinsic::nvvm_suld_1d_v2i8_clamp:
3361     return NVPTXISD::Suld1DV2I8Clamp;
3362   case Intrinsic::nvvm_suld_1d_v2i16_clamp:
3363     return NVPTXISD::Suld1DV2I16Clamp;
3364   case Intrinsic::nvvm_suld_1d_v2i32_clamp:
3365     return NVPTXISD::Suld1DV2I32Clamp;
3366   case Intrinsic::nvvm_suld_1d_v2i64_clamp:
3367     return NVPTXISD::Suld1DV2I64Clamp;
3368   case Intrinsic::nvvm_suld_1d_v4i8_clamp:
3369     return NVPTXISD::Suld1DV4I8Clamp;
3370   case Intrinsic::nvvm_suld_1d_v4i16_clamp:
3371     return NVPTXISD::Suld1DV4I16Clamp;
3372   case Intrinsic::nvvm_suld_1d_v4i32_clamp:
3373     return NVPTXISD::Suld1DV4I32Clamp;
3374   case Intrinsic::nvvm_suld_1d_array_i8_clamp:
3375     return NVPTXISD::Suld1DArrayI8Clamp;
3376   case Intrinsic::nvvm_suld_1d_array_i16_clamp:
3377     return NVPTXISD::Suld1DArrayI16Clamp;
3378   case Intrinsic::nvvm_suld_1d_array_i32_clamp:
3379     return NVPTXISD::Suld1DArrayI32Clamp;
3380   case Intrinsic::nvvm_suld_1d_array_i64_clamp:
3381     return NVPTXISD::Suld1DArrayI64Clamp;
3382   case Intrinsic::nvvm_suld_1d_array_v2i8_clamp:
3383     return NVPTXISD::Suld1DArrayV2I8Clamp;
3384   case Intrinsic::nvvm_suld_1d_array_v2i16_clamp:
3385     return NVPTXISD::Suld1DArrayV2I16Clamp;
3386   case Intrinsic::nvvm_suld_1d_array_v2i32_clamp:
3387     return NVPTXISD::Suld1DArrayV2I32Clamp;
3388   case Intrinsic::nvvm_suld_1d_array_v2i64_clamp:
3389     return NVPTXISD::Suld1DArrayV2I64Clamp;
3390   case Intrinsic::nvvm_suld_1d_array_v4i8_clamp:
3391     return NVPTXISD::Suld1DArrayV4I8Clamp;
3392   case Intrinsic::nvvm_suld_1d_array_v4i16_clamp:
3393     return NVPTXISD::Suld1DArrayV4I16Clamp;
3394   case Intrinsic::nvvm_suld_1d_array_v4i32_clamp:
3395     return NVPTXISD::Suld1DArrayV4I32Clamp;
3396   case Intrinsic::nvvm_suld_2d_i8_clamp:
3397     return NVPTXISD::Suld2DI8Clamp;
3398   case Intrinsic::nvvm_suld_2d_i16_clamp:
3399     return NVPTXISD::Suld2DI16Clamp;
3400   case Intrinsic::nvvm_suld_2d_i32_clamp:
3401     return NVPTXISD::Suld2DI32Clamp;
3402   case Intrinsic::nvvm_suld_2d_i64_clamp:
3403     return NVPTXISD::Suld2DI64Clamp;
3404   case Intrinsic::nvvm_suld_2d_v2i8_clamp:
3405     return NVPTXISD::Suld2DV2I8Clamp;
3406   case Intrinsic::nvvm_suld_2d_v2i16_clamp:
3407     return NVPTXISD::Suld2DV2I16Clamp;
3408   case Intrinsic::nvvm_suld_2d_v2i32_clamp:
3409     return NVPTXISD::Suld2DV2I32Clamp;
3410   case Intrinsic::nvvm_suld_2d_v2i64_clamp:
3411     return NVPTXISD::Suld2DV2I64Clamp;
3412   case Intrinsic::nvvm_suld_2d_v4i8_clamp:
3413     return NVPTXISD::Suld2DV4I8Clamp;
3414   case Intrinsic::nvvm_suld_2d_v4i16_clamp:
3415     return NVPTXISD::Suld2DV4I16Clamp;
3416   case Intrinsic::nvvm_suld_2d_v4i32_clamp:
3417     return NVPTXISD::Suld2DV4I32Clamp;
3418   case Intrinsic::nvvm_suld_2d_array_i8_clamp:
3419     return NVPTXISD::Suld2DArrayI8Clamp;
3420   case Intrinsic::nvvm_suld_2d_array_i16_clamp:
3421     return NVPTXISD::Suld2DArrayI16Clamp;
3422   case Intrinsic::nvvm_suld_2d_array_i32_clamp:
3423     return NVPTXISD::Suld2DArrayI32Clamp;
3424   case Intrinsic::nvvm_suld_2d_array_i64_clamp:
3425     return NVPTXISD::Suld2DArrayI64Clamp;
3426   case Intrinsic::nvvm_suld_2d_array_v2i8_clamp:
3427     return NVPTXISD::Suld2DArrayV2I8Clamp;
3428   case Intrinsic::nvvm_suld_2d_array_v2i16_clamp:
3429     return NVPTXISD::Suld2DArrayV2I16Clamp;
3430   case Intrinsic::nvvm_suld_2d_array_v2i32_clamp:
3431     return NVPTXISD::Suld2DArrayV2I32Clamp;
3432   case Intrinsic::nvvm_suld_2d_array_v2i64_clamp:
3433     return NVPTXISD::Suld2DArrayV2I64Clamp;
3434   case Intrinsic::nvvm_suld_2d_array_v4i8_clamp:
3435     return NVPTXISD::Suld2DArrayV4I8Clamp;
3436   case Intrinsic::nvvm_suld_2d_array_v4i16_clamp:
3437     return NVPTXISD::Suld2DArrayV4I16Clamp;
3438   case Intrinsic::nvvm_suld_2d_array_v4i32_clamp:
3439     return NVPTXISD::Suld2DArrayV4I32Clamp;
3440   case Intrinsic::nvvm_suld_3d_i8_clamp:
3441     return NVPTXISD::Suld3DI8Clamp;
3442   case Intrinsic::nvvm_suld_3d_i16_clamp:
3443     return NVPTXISD::Suld3DI16Clamp;
3444   case Intrinsic::nvvm_suld_3d_i32_clamp:
3445     return NVPTXISD::Suld3DI32Clamp;
3446   case Intrinsic::nvvm_suld_3d_i64_clamp:
3447     return NVPTXISD::Suld3DI64Clamp;
3448   case Intrinsic::nvvm_suld_3d_v2i8_clamp:
3449     return NVPTXISD::Suld3DV2I8Clamp;
3450   case Intrinsic::nvvm_suld_3d_v2i16_clamp:
3451     return NVPTXISD::Suld3DV2I16Clamp;
3452   case Intrinsic::nvvm_suld_3d_v2i32_clamp:
3453     return NVPTXISD::Suld3DV2I32Clamp;
3454   case Intrinsic::nvvm_suld_3d_v2i64_clamp:
3455     return NVPTXISD::Suld3DV2I64Clamp;
3456   case Intrinsic::nvvm_suld_3d_v4i8_clamp:
3457     return NVPTXISD::Suld3DV4I8Clamp;
3458   case Intrinsic::nvvm_suld_3d_v4i16_clamp:
3459     return NVPTXISD::Suld3DV4I16Clamp;
3460   case Intrinsic::nvvm_suld_3d_v4i32_clamp:
3461     return NVPTXISD::Suld3DV4I32Clamp;
3462   case Intrinsic::nvvm_suld_1d_i8_trap:
3463     return NVPTXISD::Suld1DI8Trap;
3464   case Intrinsic::nvvm_suld_1d_i16_trap:
3465     return NVPTXISD::Suld1DI16Trap;
3466   case Intrinsic::nvvm_suld_1d_i32_trap:
3467     return NVPTXISD::Suld1DI32Trap;
3468   case Intrinsic::nvvm_suld_1d_i64_trap:
3469     return NVPTXISD::Suld1DI64Trap;
3470   case Intrinsic::nvvm_suld_1d_v2i8_trap:
3471     return NVPTXISD::Suld1DV2I8Trap;
3472   case Intrinsic::nvvm_suld_1d_v2i16_trap:
3473     return NVPTXISD::Suld1DV2I16Trap;
3474   case Intrinsic::nvvm_suld_1d_v2i32_trap:
3475     return NVPTXISD::Suld1DV2I32Trap;
3476   case Intrinsic::nvvm_suld_1d_v2i64_trap:
3477     return NVPTXISD::Suld1DV2I64Trap;
3478   case Intrinsic::nvvm_suld_1d_v4i8_trap:
3479     return NVPTXISD::Suld1DV4I8Trap;
3480   case Intrinsic::nvvm_suld_1d_v4i16_trap:
3481     return NVPTXISD::Suld1DV4I16Trap;
3482   case Intrinsic::nvvm_suld_1d_v4i32_trap:
3483     return NVPTXISD::Suld1DV4I32Trap;
3484   case Intrinsic::nvvm_suld_1d_array_i8_trap:
3485     return NVPTXISD::Suld1DArrayI8Trap;
3486   case Intrinsic::nvvm_suld_1d_array_i16_trap:
3487     return NVPTXISD::Suld1DArrayI16Trap;
3488   case Intrinsic::nvvm_suld_1d_array_i32_trap:
3489     return NVPTXISD::Suld1DArrayI32Trap;
3490   case Intrinsic::nvvm_suld_1d_array_i64_trap:
3491     return NVPTXISD::Suld1DArrayI64Trap;
3492   case Intrinsic::nvvm_suld_1d_array_v2i8_trap:
3493     return NVPTXISD::Suld1DArrayV2I8Trap;
3494   case Intrinsic::nvvm_suld_1d_array_v2i16_trap:
3495     return NVPTXISD::Suld1DArrayV2I16Trap;
3496   case Intrinsic::nvvm_suld_1d_array_v2i32_trap:
3497     return NVPTXISD::Suld1DArrayV2I32Trap;
3498   case Intrinsic::nvvm_suld_1d_array_v2i64_trap:
3499     return NVPTXISD::Suld1DArrayV2I64Trap;
3500   case Intrinsic::nvvm_suld_1d_array_v4i8_trap:
3501     return NVPTXISD::Suld1DArrayV4I8Trap;
3502   case Intrinsic::nvvm_suld_1d_array_v4i16_trap:
3503     return NVPTXISD::Suld1DArrayV4I16Trap;
3504   case Intrinsic::nvvm_suld_1d_array_v4i32_trap:
3505     return NVPTXISD::Suld1DArrayV4I32Trap;
3506   case Intrinsic::nvvm_suld_2d_i8_trap:
3507     return NVPTXISD::Suld2DI8Trap;
3508   case Intrinsic::nvvm_suld_2d_i16_trap:
3509     return NVPTXISD::Suld2DI16Trap;
3510   case Intrinsic::nvvm_suld_2d_i32_trap:
3511     return NVPTXISD::Suld2DI32Trap;
3512   case Intrinsic::nvvm_suld_2d_i64_trap:
3513     return NVPTXISD::Suld2DI64Trap;
3514   case Intrinsic::nvvm_suld_2d_v2i8_trap:
3515     return NVPTXISD::Suld2DV2I8Trap;
3516   case Intrinsic::nvvm_suld_2d_v2i16_trap:
3517     return NVPTXISD::Suld2DV2I16Trap;
3518   case Intrinsic::nvvm_suld_2d_v2i32_trap:
3519     return NVPTXISD::Suld2DV2I32Trap;
3520   case Intrinsic::nvvm_suld_2d_v2i64_trap:
3521     return NVPTXISD::Suld2DV2I64Trap;
3522   case Intrinsic::nvvm_suld_2d_v4i8_trap:
3523     return NVPTXISD::Suld2DV4I8Trap;
3524   case Intrinsic::nvvm_suld_2d_v4i16_trap:
3525     return NVPTXISD::Suld2DV4I16Trap;
3526   case Intrinsic::nvvm_suld_2d_v4i32_trap:
3527     return NVPTXISD::Suld2DV4I32Trap;
3528   case Intrinsic::nvvm_suld_2d_array_i8_trap:
3529     return NVPTXISD::Suld2DArrayI8Trap;
3530   case Intrinsic::nvvm_suld_2d_array_i16_trap:
3531     return NVPTXISD::Suld2DArrayI16Trap;
3532   case Intrinsic::nvvm_suld_2d_array_i32_trap:
3533     return NVPTXISD::Suld2DArrayI32Trap;
3534   case Intrinsic::nvvm_suld_2d_array_i64_trap:
3535     return NVPTXISD::Suld2DArrayI64Trap;
3536   case Intrinsic::nvvm_suld_2d_array_v2i8_trap:
3537     return NVPTXISD::Suld2DArrayV2I8Trap;
3538   case Intrinsic::nvvm_suld_2d_array_v2i16_trap:
3539     return NVPTXISD::Suld2DArrayV2I16Trap;
3540   case Intrinsic::nvvm_suld_2d_array_v2i32_trap:
3541     return NVPTXISD::Suld2DArrayV2I32Trap;
3542   case Intrinsic::nvvm_suld_2d_array_v2i64_trap:
3543     return NVPTXISD::Suld2DArrayV2I64Trap;
3544   case Intrinsic::nvvm_suld_2d_array_v4i8_trap:
3545     return NVPTXISD::Suld2DArrayV4I8Trap;
3546   case Intrinsic::nvvm_suld_2d_array_v4i16_trap:
3547     return NVPTXISD::Suld2DArrayV4I16Trap;
3548   case Intrinsic::nvvm_suld_2d_array_v4i32_trap:
3549     return NVPTXISD::Suld2DArrayV4I32Trap;
3550   case Intrinsic::nvvm_suld_3d_i8_trap:
3551     return NVPTXISD::Suld3DI8Trap;
3552   case Intrinsic::nvvm_suld_3d_i16_trap:
3553     return NVPTXISD::Suld3DI16Trap;
3554   case Intrinsic::nvvm_suld_3d_i32_trap:
3555     return NVPTXISD::Suld3DI32Trap;
3556   case Intrinsic::nvvm_suld_3d_i64_trap:
3557     return NVPTXISD::Suld3DI64Trap;
3558   case Intrinsic::nvvm_suld_3d_v2i8_trap:
3559     return NVPTXISD::Suld3DV2I8Trap;
3560   case Intrinsic::nvvm_suld_3d_v2i16_trap:
3561     return NVPTXISD::Suld3DV2I16Trap;
3562   case Intrinsic::nvvm_suld_3d_v2i32_trap:
3563     return NVPTXISD::Suld3DV2I32Trap;
3564   case Intrinsic::nvvm_suld_3d_v2i64_trap:
3565     return NVPTXISD::Suld3DV2I64Trap;
3566   case Intrinsic::nvvm_suld_3d_v4i8_trap:
3567     return NVPTXISD::Suld3DV4I8Trap;
3568   case Intrinsic::nvvm_suld_3d_v4i16_trap:
3569     return NVPTXISD::Suld3DV4I16Trap;
3570   case Intrinsic::nvvm_suld_3d_v4i32_trap:
3571     return NVPTXISD::Suld3DV4I32Trap;
3572   case Intrinsic::nvvm_suld_1d_i8_zero:
3573     return NVPTXISD::Suld1DI8Zero;
3574   case Intrinsic::nvvm_suld_1d_i16_zero:
3575     return NVPTXISD::Suld1DI16Zero;
3576   case Intrinsic::nvvm_suld_1d_i32_zero:
3577     return NVPTXISD::Suld1DI32Zero;
3578   case Intrinsic::nvvm_suld_1d_i64_zero:
3579     return NVPTXISD::Suld1DI64Zero;
3580   case Intrinsic::nvvm_suld_1d_v2i8_zero:
3581     return NVPTXISD::Suld1DV2I8Zero;
3582   case Intrinsic::nvvm_suld_1d_v2i16_zero:
3583     return NVPTXISD::Suld1DV2I16Zero;
3584   case Intrinsic::nvvm_suld_1d_v2i32_zero:
3585     return NVPTXISD::Suld1DV2I32Zero;
3586   case Intrinsic::nvvm_suld_1d_v2i64_zero:
3587     return NVPTXISD::Suld1DV2I64Zero;
3588   case Intrinsic::nvvm_suld_1d_v4i8_zero:
3589     return NVPTXISD::Suld1DV4I8Zero;
3590   case Intrinsic::nvvm_suld_1d_v4i16_zero:
3591     return NVPTXISD::Suld1DV4I16Zero;
3592   case Intrinsic::nvvm_suld_1d_v4i32_zero:
3593     return NVPTXISD::Suld1DV4I32Zero;
3594   case Intrinsic::nvvm_suld_1d_array_i8_zero:
3595     return NVPTXISD::Suld1DArrayI8Zero;
3596   case Intrinsic::nvvm_suld_1d_array_i16_zero:
3597     return NVPTXISD::Suld1DArrayI16Zero;
3598   case Intrinsic::nvvm_suld_1d_array_i32_zero:
3599     return NVPTXISD::Suld1DArrayI32Zero;
3600   case Intrinsic::nvvm_suld_1d_array_i64_zero:
3601     return NVPTXISD::Suld1DArrayI64Zero;
3602   case Intrinsic::nvvm_suld_1d_array_v2i8_zero:
3603     return NVPTXISD::Suld1DArrayV2I8Zero;
3604   case Intrinsic::nvvm_suld_1d_array_v2i16_zero:
3605     return NVPTXISD::Suld1DArrayV2I16Zero;
3606   case Intrinsic::nvvm_suld_1d_array_v2i32_zero:
3607     return NVPTXISD::Suld1DArrayV2I32Zero;
3608   case Intrinsic::nvvm_suld_1d_array_v2i64_zero:
3609     return NVPTXISD::Suld1DArrayV2I64Zero;
3610   case Intrinsic::nvvm_suld_1d_array_v4i8_zero:
3611     return NVPTXISD::Suld1DArrayV4I8Zero;
3612   case Intrinsic::nvvm_suld_1d_array_v4i16_zero:
3613     return NVPTXISD::Suld1DArrayV4I16Zero;
3614   case Intrinsic::nvvm_suld_1d_array_v4i32_zero:
3615     return NVPTXISD::Suld1DArrayV4I32Zero;
3616   case Intrinsic::nvvm_suld_2d_i8_zero:
3617     return NVPTXISD::Suld2DI8Zero;
3618   case Intrinsic::nvvm_suld_2d_i16_zero:
3619     return NVPTXISD::Suld2DI16Zero;
3620   case Intrinsic::nvvm_suld_2d_i32_zero:
3621     return NVPTXISD::Suld2DI32Zero;
3622   case Intrinsic::nvvm_suld_2d_i64_zero:
3623     return NVPTXISD::Suld2DI64Zero;
3624   case Intrinsic::nvvm_suld_2d_v2i8_zero:
3625     return NVPTXISD::Suld2DV2I8Zero;
3626   case Intrinsic::nvvm_suld_2d_v2i16_zero:
3627     return NVPTXISD::Suld2DV2I16Zero;
3628   case Intrinsic::nvvm_suld_2d_v2i32_zero:
3629     return NVPTXISD::Suld2DV2I32Zero;
3630   case Intrinsic::nvvm_suld_2d_v2i64_zero:
3631     return NVPTXISD::Suld2DV2I64Zero;
3632   case Intrinsic::nvvm_suld_2d_v4i8_zero:
3633     return NVPTXISD::Suld2DV4I8Zero;
3634   case Intrinsic::nvvm_suld_2d_v4i16_zero:
3635     return NVPTXISD::Suld2DV4I16Zero;
3636   case Intrinsic::nvvm_suld_2d_v4i32_zero:
3637     return NVPTXISD::Suld2DV4I32Zero;
3638   case Intrinsic::nvvm_suld_2d_array_i8_zero:
3639     return NVPTXISD::Suld2DArrayI8Zero;
3640   case Intrinsic::nvvm_suld_2d_array_i16_zero:
3641     return NVPTXISD::Suld2DArrayI16Zero;
3642   case Intrinsic::nvvm_suld_2d_array_i32_zero:
3643     return NVPTXISD::Suld2DArrayI32Zero;
3644   case Intrinsic::nvvm_suld_2d_array_i64_zero:
3645     return NVPTXISD::Suld2DArrayI64Zero;
3646   case Intrinsic::nvvm_suld_2d_array_v2i8_zero:
3647     return NVPTXISD::Suld2DArrayV2I8Zero;
3648   case Intrinsic::nvvm_suld_2d_array_v2i16_zero:
3649     return NVPTXISD::Suld2DArrayV2I16Zero;
3650   case Intrinsic::nvvm_suld_2d_array_v2i32_zero:
3651     return NVPTXISD::Suld2DArrayV2I32Zero;
3652   case Intrinsic::nvvm_suld_2d_array_v2i64_zero:
3653     return NVPTXISD::Suld2DArrayV2I64Zero;
3654   case Intrinsic::nvvm_suld_2d_array_v4i8_zero:
3655     return NVPTXISD::Suld2DArrayV4I8Zero;
3656   case Intrinsic::nvvm_suld_2d_array_v4i16_zero:
3657     return NVPTXISD::Suld2DArrayV4I16Zero;
3658   case Intrinsic::nvvm_suld_2d_array_v4i32_zero:
3659     return NVPTXISD::Suld2DArrayV4I32Zero;
3660   case Intrinsic::nvvm_suld_3d_i8_zero:
3661     return NVPTXISD::Suld3DI8Zero;
3662   case Intrinsic::nvvm_suld_3d_i16_zero:
3663     return NVPTXISD::Suld3DI16Zero;
3664   case Intrinsic::nvvm_suld_3d_i32_zero:
3665     return NVPTXISD::Suld3DI32Zero;
3666   case Intrinsic::nvvm_suld_3d_i64_zero:
3667     return NVPTXISD::Suld3DI64Zero;
3668   case Intrinsic::nvvm_suld_3d_v2i8_zero:
3669     return NVPTXISD::Suld3DV2I8Zero;
3670   case Intrinsic::nvvm_suld_3d_v2i16_zero:
3671     return NVPTXISD::Suld3DV2I16Zero;
3672   case Intrinsic::nvvm_suld_3d_v2i32_zero:
3673     return NVPTXISD::Suld3DV2I32Zero;
3674   case Intrinsic::nvvm_suld_3d_v2i64_zero:
3675     return NVPTXISD::Suld3DV2I64Zero;
3676   case Intrinsic::nvvm_suld_3d_v4i8_zero:
3677     return NVPTXISD::Suld3DV4I8Zero;
3678   case Intrinsic::nvvm_suld_3d_v4i16_zero:
3679     return NVPTXISD::Suld3DV4I16Zero;
3680   case Intrinsic::nvvm_suld_3d_v4i32_zero:
3681     return NVPTXISD::Suld3DV4I32Zero;
3682   }
3683 }
3684 
3685 // llvm.ptx.memcpy.const and llvm.ptx.memmove.const need to be modeled as
3686 // TgtMemIntrinsic
3687 // because we need the information that is only available in the "Value" type
3688 // of destination
3689 // pointer. In particular, the address space information.
3690 bool NVPTXTargetLowering::getTgtMemIntrinsic(
3691     IntrinsicInfo &Info, const CallInst &I,
3692     MachineFunction &MF, unsigned Intrinsic) const {
3693   switch (Intrinsic) {
3694   default:
3695     return false;
3696   case Intrinsic::nvvm_match_all_sync_i32p:
3697   case Intrinsic::nvvm_match_all_sync_i64p:
3698     Info.opc = ISD::INTRINSIC_W_CHAIN;
3699     // memVT is bogus. These intrinsics have IntrInaccessibleMemOnly attribute
3700     // in order to model data exchange with other threads, but perform no real
3701     // memory accesses.
3702     Info.memVT = MVT::i1;
3703 
3704     // Our result depends on both our and other thread's arguments.
3705     Info.flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore;
3706     return true;
3707   case Intrinsic::nvvm_wmma_m16n16k16_load_a_f16_col:
3708   case Intrinsic::nvvm_wmma_m16n16k16_load_a_f16_row:
3709   case Intrinsic::nvvm_wmma_m16n16k16_load_a_f16_col_stride:
3710   case Intrinsic::nvvm_wmma_m16n16k16_load_a_f16_row_stride:
3711   case Intrinsic::nvvm_wmma_m16n16k16_load_b_f16_col:
3712   case Intrinsic::nvvm_wmma_m16n16k16_load_b_f16_row:
3713   case Intrinsic::nvvm_wmma_m16n16k16_load_b_f16_col_stride:
3714   case Intrinsic::nvvm_wmma_m16n16k16_load_b_f16_row_stride:
3715   case Intrinsic::nvvm_wmma_m32n8k16_load_a_f16_col:
3716   case Intrinsic::nvvm_wmma_m32n8k16_load_a_f16_row:
3717   case Intrinsic::nvvm_wmma_m32n8k16_load_a_f16_col_stride:
3718   case Intrinsic::nvvm_wmma_m32n8k16_load_a_f16_row_stride:
3719   case Intrinsic::nvvm_wmma_m32n8k16_load_b_f16_col:
3720   case Intrinsic::nvvm_wmma_m32n8k16_load_b_f16_row:
3721   case Intrinsic::nvvm_wmma_m32n8k16_load_b_f16_col_stride:
3722   case Intrinsic::nvvm_wmma_m32n8k16_load_b_f16_row_stride:
3723   case Intrinsic::nvvm_wmma_m8n32k16_load_a_f16_col:
3724   case Intrinsic::nvvm_wmma_m8n32k16_load_a_f16_row:
3725   case Intrinsic::nvvm_wmma_m8n32k16_load_a_f16_col_stride:
3726   case Intrinsic::nvvm_wmma_m8n32k16_load_a_f16_row_stride:
3727   case Intrinsic::nvvm_wmma_m8n32k16_load_b_f16_col:
3728   case Intrinsic::nvvm_wmma_m8n32k16_load_b_f16_row:
3729   case Intrinsic::nvvm_wmma_m8n32k16_load_b_f16_col_stride:
3730   case Intrinsic::nvvm_wmma_m8n32k16_load_b_f16_row_stride: {
3731     Info.opc = ISD::INTRINSIC_W_CHAIN;
3732     Info.memVT = MVT::v8f16;
3733     Info.ptrVal = I.getArgOperand(0);
3734     Info.offset = 0;
3735     Info.flags = MachineMemOperand::MOLoad;
3736     Info.align = Align(16);
3737     return true;
3738   }
3739   case Intrinsic::nvvm_wmma_m16n16k16_load_a_s8_col:
3740   case Intrinsic::nvvm_wmma_m16n16k16_load_a_s8_col_stride:
3741   case Intrinsic::nvvm_wmma_m16n16k16_load_a_u8_col_stride:
3742   case Intrinsic::nvvm_wmma_m16n16k16_load_a_u8_col:
3743   case Intrinsic::nvvm_wmma_m16n16k16_load_a_s8_row:
3744   case Intrinsic::nvvm_wmma_m16n16k16_load_a_s8_row_stride:
3745   case Intrinsic::nvvm_wmma_m16n16k16_load_a_u8_row_stride:
3746   case Intrinsic::nvvm_wmma_m16n16k16_load_a_u8_row:
3747   case Intrinsic::nvvm_wmma_m8n32k16_load_a_bf16_col:
3748   case Intrinsic::nvvm_wmma_m8n32k16_load_a_bf16_col_stride:
3749   case Intrinsic::nvvm_wmma_m8n32k16_load_a_bf16_row:
3750   case Intrinsic::nvvm_wmma_m8n32k16_load_a_bf16_row_stride:
3751   case Intrinsic::nvvm_wmma_m16n16k16_load_b_s8_col:
3752   case Intrinsic::nvvm_wmma_m16n16k16_load_b_s8_col_stride:
3753   case Intrinsic::nvvm_wmma_m16n16k16_load_b_u8_col_stride:
3754   case Intrinsic::nvvm_wmma_m16n16k16_load_b_u8_col:
3755   case Intrinsic::nvvm_wmma_m16n16k16_load_b_s8_row:
3756   case Intrinsic::nvvm_wmma_m16n16k16_load_b_s8_row_stride:
3757   case Intrinsic::nvvm_wmma_m16n16k16_load_b_u8_row_stride:
3758   case Intrinsic::nvvm_wmma_m16n16k16_load_b_u8_row:
3759   case Intrinsic::nvvm_wmma_m32n8k16_load_b_bf16_col:
3760   case Intrinsic::nvvm_wmma_m32n8k16_load_b_bf16_col_stride:
3761   case Intrinsic::nvvm_wmma_m32n8k16_load_b_bf16_row:
3762   case Intrinsic::nvvm_wmma_m32n8k16_load_b_bf16_row_stride: {
3763     Info.opc = ISD::INTRINSIC_W_CHAIN;
3764     Info.memVT = MVT::v2i32;
3765     Info.ptrVal = I.getArgOperand(0);
3766     Info.offset = 0;
3767     Info.flags = MachineMemOperand::MOLoad;
3768     Info.align = Align(8);
3769     return true;
3770   }
3771 
3772   case Intrinsic::nvvm_wmma_m32n8k16_load_a_s8_col:
3773   case Intrinsic::nvvm_wmma_m32n8k16_load_a_s8_col_stride:
3774   case Intrinsic::nvvm_wmma_m32n8k16_load_a_u8_col_stride:
3775   case Intrinsic::nvvm_wmma_m32n8k16_load_a_u8_col:
3776   case Intrinsic::nvvm_wmma_m32n8k16_load_a_s8_row:
3777   case Intrinsic::nvvm_wmma_m32n8k16_load_a_s8_row_stride:
3778   case Intrinsic::nvvm_wmma_m32n8k16_load_a_u8_row_stride:
3779   case Intrinsic::nvvm_wmma_m32n8k16_load_a_u8_row:
3780   case Intrinsic::nvvm_wmma_m16n16k16_load_a_bf16_col:
3781   case Intrinsic::nvvm_wmma_m16n16k16_load_a_bf16_col_stride:
3782   case Intrinsic::nvvm_wmma_m16n16k16_load_a_bf16_row:
3783   case Intrinsic::nvvm_wmma_m16n16k16_load_a_bf16_row_stride:
3784   case Intrinsic::nvvm_wmma_m16n16k8_load_a_tf32_col:
3785   case Intrinsic::nvvm_wmma_m16n16k8_load_a_tf32_col_stride:
3786   case Intrinsic::nvvm_wmma_m16n16k8_load_a_tf32_row:
3787   case Intrinsic::nvvm_wmma_m16n16k8_load_a_tf32_row_stride:
3788 
3789   case Intrinsic::nvvm_wmma_m8n32k16_load_b_s8_col:
3790   case Intrinsic::nvvm_wmma_m8n32k16_load_b_s8_col_stride:
3791   case Intrinsic::nvvm_wmma_m8n32k16_load_b_u8_col_stride:
3792   case Intrinsic::nvvm_wmma_m8n32k16_load_b_u8_col:
3793   case Intrinsic::nvvm_wmma_m8n32k16_load_b_s8_row:
3794   case Intrinsic::nvvm_wmma_m8n32k16_load_b_s8_row_stride:
3795   case Intrinsic::nvvm_wmma_m8n32k16_load_b_u8_row_stride:
3796   case Intrinsic::nvvm_wmma_m8n32k16_load_b_u8_row:
3797   case Intrinsic::nvvm_wmma_m16n16k16_load_b_bf16_col:
3798   case Intrinsic::nvvm_wmma_m16n16k16_load_b_bf16_col_stride:
3799   case Intrinsic::nvvm_wmma_m16n16k16_load_b_bf16_row:
3800   case Intrinsic::nvvm_wmma_m16n16k16_load_b_bf16_row_stride:
3801   case Intrinsic::nvvm_wmma_m16n16k8_load_b_tf32_col:
3802   case Intrinsic::nvvm_wmma_m16n16k8_load_b_tf32_col_stride:
3803   case Intrinsic::nvvm_wmma_m16n16k8_load_b_tf32_row:
3804   case Intrinsic::nvvm_wmma_m16n16k8_load_b_tf32_row_stride:
3805   case Intrinsic::nvvm_ldmatrix_sync_aligned_m8n8_x4_b16:
3806   case Intrinsic::nvvm_ldmatrix_sync_aligned_m8n8_x4_trans_b16: {
3807     Info.opc = ISD::INTRINSIC_W_CHAIN;
3808     Info.memVT = MVT::v4i32;
3809     Info.ptrVal = I.getArgOperand(0);
3810     Info.offset = 0;
3811     Info.flags = MachineMemOperand::MOLoad;
3812     Info.align = Align(16);
3813     return true;
3814   }
3815 
3816   case Intrinsic::nvvm_wmma_m32n8k16_load_b_s8_col:
3817   case Intrinsic::nvvm_wmma_m32n8k16_load_b_s8_col_stride:
3818   case Intrinsic::nvvm_wmma_m32n8k16_load_b_u8_col_stride:
3819   case Intrinsic::nvvm_wmma_m32n8k16_load_b_u8_col:
3820   case Intrinsic::nvvm_wmma_m32n8k16_load_b_s8_row:
3821   case Intrinsic::nvvm_wmma_m32n8k16_load_b_s8_row_stride:
3822   case Intrinsic::nvvm_wmma_m32n8k16_load_b_u8_row_stride:
3823   case Intrinsic::nvvm_wmma_m32n8k16_load_b_u8_row:
3824 
3825   case Intrinsic::nvvm_wmma_m8n32k16_load_a_s8_col:
3826   case Intrinsic::nvvm_wmma_m8n32k16_load_a_s8_col_stride:
3827   case Intrinsic::nvvm_wmma_m8n32k16_load_a_u8_col_stride:
3828   case Intrinsic::nvvm_wmma_m8n32k16_load_a_u8_col:
3829   case Intrinsic::nvvm_wmma_m8n32k16_load_a_s8_row:
3830   case Intrinsic::nvvm_wmma_m8n32k16_load_a_s8_row_stride:
3831   case Intrinsic::nvvm_wmma_m8n32k16_load_a_u8_row_stride:
3832   case Intrinsic::nvvm_wmma_m8n32k16_load_a_u8_row:
3833   case Intrinsic::nvvm_wmma_m8n8k128_load_a_b1_row:
3834   case Intrinsic::nvvm_wmma_m8n8k128_load_a_b1_row_stride:
3835   case Intrinsic::nvvm_wmma_m8n8k128_load_b_b1_col:
3836   case Intrinsic::nvvm_wmma_m8n8k128_load_b_b1_col_stride:
3837   case Intrinsic::nvvm_wmma_m8n8k32_load_a_s4_row:
3838   case Intrinsic::nvvm_wmma_m8n8k32_load_a_s4_row_stride:
3839   case Intrinsic::nvvm_wmma_m8n8k32_load_a_u4_row_stride:
3840   case Intrinsic::nvvm_wmma_m8n8k32_load_a_u4_row:
3841   case Intrinsic::nvvm_wmma_m8n8k32_load_b_s4_col:
3842   case Intrinsic::nvvm_wmma_m8n8k32_load_b_s4_col_stride:
3843   case Intrinsic::nvvm_wmma_m8n8k32_load_b_u4_col_stride:
3844   case Intrinsic::nvvm_wmma_m8n8k32_load_b_u4_col:
3845   case Intrinsic::nvvm_ldmatrix_sync_aligned_m8n8_x1_b16:
3846   case Intrinsic::nvvm_ldmatrix_sync_aligned_m8n8_x1_trans_b16: {
3847     Info.opc = ISD::INTRINSIC_W_CHAIN;
3848     Info.memVT = MVT::i32;
3849     Info.ptrVal = I.getArgOperand(0);
3850     Info.offset = 0;
3851     Info.flags = MachineMemOperand::MOLoad;
3852     Info.align = Align(4);
3853     return true;
3854   }
3855 
3856   case Intrinsic::nvvm_wmma_m16n16k16_load_c_f16_col:
3857   case Intrinsic::nvvm_wmma_m16n16k16_load_c_f16_row:
3858   case Intrinsic::nvvm_wmma_m16n16k16_load_c_f16_col_stride:
3859   case Intrinsic::nvvm_wmma_m16n16k16_load_c_f16_row_stride:
3860   case Intrinsic::nvvm_wmma_m32n8k16_load_c_f16_col:
3861   case Intrinsic::nvvm_wmma_m32n8k16_load_c_f16_row:
3862   case Intrinsic::nvvm_wmma_m32n8k16_load_c_f16_col_stride:
3863   case Intrinsic::nvvm_wmma_m32n8k16_load_c_f16_row_stride:
3864   case Intrinsic::nvvm_wmma_m8n32k16_load_c_f16_col:
3865   case Intrinsic::nvvm_wmma_m8n32k16_load_c_f16_row:
3866   case Intrinsic::nvvm_wmma_m8n32k16_load_c_f16_col_stride:
3867   case Intrinsic::nvvm_wmma_m8n32k16_load_c_f16_row_stride: {
3868     Info.opc = ISD::INTRINSIC_W_CHAIN;
3869     Info.memVT = MVT::v4f16;
3870     Info.ptrVal = I.getArgOperand(0);
3871     Info.offset = 0;
3872     Info.flags = MachineMemOperand::MOLoad;
3873     Info.align = Align(16);
3874     return true;
3875   }
3876 
3877   case Intrinsic::nvvm_wmma_m16n16k16_load_c_f32_col:
3878   case Intrinsic::nvvm_wmma_m16n16k16_load_c_f32_row:
3879   case Intrinsic::nvvm_wmma_m16n16k16_load_c_f32_col_stride:
3880   case Intrinsic::nvvm_wmma_m16n16k16_load_c_f32_row_stride:
3881   case Intrinsic::nvvm_wmma_m32n8k16_load_c_f32_col:
3882   case Intrinsic::nvvm_wmma_m32n8k16_load_c_f32_row:
3883   case Intrinsic::nvvm_wmma_m32n8k16_load_c_f32_col_stride:
3884   case Intrinsic::nvvm_wmma_m32n8k16_load_c_f32_row_stride:
3885   case Intrinsic::nvvm_wmma_m8n32k16_load_c_f32_col:
3886   case Intrinsic::nvvm_wmma_m8n32k16_load_c_f32_row:
3887   case Intrinsic::nvvm_wmma_m8n32k16_load_c_f32_col_stride:
3888   case Intrinsic::nvvm_wmma_m8n32k16_load_c_f32_row_stride:
3889   case Intrinsic::nvvm_wmma_m16n16k8_load_c_f32_col:
3890   case Intrinsic::nvvm_wmma_m16n16k8_load_c_f32_row:
3891   case Intrinsic::nvvm_wmma_m16n16k8_load_c_f32_col_stride:
3892   case Intrinsic::nvvm_wmma_m16n16k8_load_c_f32_row_stride: {
3893     Info.opc = ISD::INTRINSIC_W_CHAIN;
3894     Info.memVT = MVT::v8f32;
3895     Info.ptrVal = I.getArgOperand(0);
3896     Info.offset = 0;
3897     Info.flags = MachineMemOperand::MOLoad;
3898     Info.align = Align(16);
3899     return true;
3900   }
3901 
3902   case Intrinsic::nvvm_wmma_m32n8k16_load_a_bf16_col:
3903   case Intrinsic::nvvm_wmma_m32n8k16_load_a_bf16_col_stride:
3904   case Intrinsic::nvvm_wmma_m32n8k16_load_a_bf16_row:
3905   case Intrinsic::nvvm_wmma_m32n8k16_load_a_bf16_row_stride:
3906 
3907   case Intrinsic::nvvm_wmma_m8n32k16_load_b_bf16_col:
3908   case Intrinsic::nvvm_wmma_m8n32k16_load_b_bf16_col_stride:
3909   case Intrinsic::nvvm_wmma_m8n32k16_load_b_bf16_row:
3910   case Intrinsic::nvvm_wmma_m8n32k16_load_b_bf16_row_stride:
3911 
3912   case Intrinsic::nvvm_wmma_m16n16k16_load_c_s32_col:
3913   case Intrinsic::nvvm_wmma_m16n16k16_load_c_s32_col_stride:
3914   case Intrinsic::nvvm_wmma_m16n16k16_load_c_s32_row:
3915   case Intrinsic::nvvm_wmma_m16n16k16_load_c_s32_row_stride:
3916   case Intrinsic::nvvm_wmma_m32n8k16_load_c_s32_col:
3917   case Intrinsic::nvvm_wmma_m32n8k16_load_c_s32_col_stride:
3918   case Intrinsic::nvvm_wmma_m32n8k16_load_c_s32_row:
3919   case Intrinsic::nvvm_wmma_m32n8k16_load_c_s32_row_stride:
3920   case Intrinsic::nvvm_wmma_m8n32k16_load_c_s32_col:
3921   case Intrinsic::nvvm_wmma_m8n32k16_load_c_s32_col_stride:
3922   case Intrinsic::nvvm_wmma_m8n32k16_load_c_s32_row:
3923   case Intrinsic::nvvm_wmma_m8n32k16_load_c_s32_row_stride: {
3924     Info.opc = ISD::INTRINSIC_W_CHAIN;
3925     Info.memVT = MVT::v8i32;
3926     Info.ptrVal = I.getArgOperand(0);
3927     Info.offset = 0;
3928     Info.flags = MachineMemOperand::MOLoad;
3929     Info.align = Align(16);
3930     return true;
3931   }
3932 
3933   case Intrinsic::nvvm_wmma_m8n8k128_load_c_s32_col:
3934   case Intrinsic::nvvm_wmma_m8n8k128_load_c_s32_col_stride:
3935   case Intrinsic::nvvm_wmma_m8n8k128_load_c_s32_row:
3936   case Intrinsic::nvvm_wmma_m8n8k128_load_c_s32_row_stride:
3937   case Intrinsic::nvvm_wmma_m8n8k32_load_c_s32_col:
3938   case Intrinsic::nvvm_wmma_m8n8k32_load_c_s32_col_stride:
3939   case Intrinsic::nvvm_wmma_m8n8k32_load_c_s32_row:
3940   case Intrinsic::nvvm_wmma_m8n8k32_load_c_s32_row_stride:
3941   case Intrinsic::nvvm_ldmatrix_sync_aligned_m8n8_x2_b16:
3942   case Intrinsic::nvvm_ldmatrix_sync_aligned_m8n8_x2_trans_b16: {
3943     Info.opc = ISD::INTRINSIC_W_CHAIN;
3944     Info.memVT = MVT::v2i32;
3945     Info.ptrVal = I.getArgOperand(0);
3946     Info.offset = 0;
3947     Info.flags = MachineMemOperand::MOLoad;
3948     Info.align = Align(8);
3949     return true;
3950   }
3951 
3952   case Intrinsic::nvvm_wmma_m8n8k4_load_a_f64_col:
3953   case Intrinsic::nvvm_wmma_m8n8k4_load_a_f64_col_stride:
3954   case Intrinsic::nvvm_wmma_m8n8k4_load_a_f64_row:
3955   case Intrinsic::nvvm_wmma_m8n8k4_load_a_f64_row_stride:
3956 
3957   case Intrinsic::nvvm_wmma_m8n8k4_load_b_f64_col:
3958   case Intrinsic::nvvm_wmma_m8n8k4_load_b_f64_col_stride:
3959   case Intrinsic::nvvm_wmma_m8n8k4_load_b_f64_row:
3960   case Intrinsic::nvvm_wmma_m8n8k4_load_b_f64_row_stride: {
3961     Info.opc = ISD::INTRINSIC_W_CHAIN;
3962     Info.memVT = MVT::f64;
3963     Info.ptrVal = I.getArgOperand(0);
3964     Info.offset = 0;
3965     Info.flags = MachineMemOperand::MOLoad;
3966     Info.align = Align(8);
3967     return true;
3968   }
3969 
3970   case Intrinsic::nvvm_wmma_m8n8k4_load_c_f64_col:
3971   case Intrinsic::nvvm_wmma_m8n8k4_load_c_f64_col_stride:
3972   case Intrinsic::nvvm_wmma_m8n8k4_load_c_f64_row:
3973   case Intrinsic::nvvm_wmma_m8n8k4_load_c_f64_row_stride: {
3974     Info.opc = ISD::INTRINSIC_W_CHAIN;
3975     Info.memVT = MVT::v2f64;
3976     Info.ptrVal = I.getArgOperand(0);
3977     Info.offset = 0;
3978     Info.flags = MachineMemOperand::MOLoad;
3979     Info.align = Align(16);
3980     return true;
3981   }
3982 
3983   case Intrinsic::nvvm_wmma_m16n16k16_store_d_f16_col:
3984   case Intrinsic::nvvm_wmma_m16n16k16_store_d_f16_row:
3985   case Intrinsic::nvvm_wmma_m16n16k16_store_d_f16_col_stride:
3986   case Intrinsic::nvvm_wmma_m16n16k16_store_d_f16_row_stride:
3987   case Intrinsic::nvvm_wmma_m32n8k16_store_d_f16_col:
3988   case Intrinsic::nvvm_wmma_m32n8k16_store_d_f16_row:
3989   case Intrinsic::nvvm_wmma_m32n8k16_store_d_f16_col_stride:
3990   case Intrinsic::nvvm_wmma_m32n8k16_store_d_f16_row_stride:
3991   case Intrinsic::nvvm_wmma_m8n32k16_store_d_f16_col:
3992   case Intrinsic::nvvm_wmma_m8n32k16_store_d_f16_row:
3993   case Intrinsic::nvvm_wmma_m8n32k16_store_d_f16_col_stride:
3994   case Intrinsic::nvvm_wmma_m8n32k16_store_d_f16_row_stride: {
3995     Info.opc = ISD::INTRINSIC_VOID;
3996     Info.memVT = MVT::v4f16;
3997     Info.ptrVal = I.getArgOperand(0);
3998     Info.offset = 0;
3999     Info.flags = MachineMemOperand::MOStore;
4000     Info.align = Align(16);
4001     return true;
4002   }
4003 
4004   case Intrinsic::nvvm_wmma_m16n16k16_store_d_f32_col:
4005   case Intrinsic::nvvm_wmma_m16n16k16_store_d_f32_row:
4006   case Intrinsic::nvvm_wmma_m16n16k16_store_d_f32_col_stride:
4007   case Intrinsic::nvvm_wmma_m16n16k16_store_d_f32_row_stride:
4008   case Intrinsic::nvvm_wmma_m32n8k16_store_d_f32_col:
4009   case Intrinsic::nvvm_wmma_m32n8k16_store_d_f32_row:
4010   case Intrinsic::nvvm_wmma_m32n8k16_store_d_f32_col_stride:
4011   case Intrinsic::nvvm_wmma_m32n8k16_store_d_f32_row_stride:
4012   case Intrinsic::nvvm_wmma_m8n32k16_store_d_f32_col:
4013   case Intrinsic::nvvm_wmma_m8n32k16_store_d_f32_row:
4014   case Intrinsic::nvvm_wmma_m8n32k16_store_d_f32_col_stride:
4015   case Intrinsic::nvvm_wmma_m8n32k16_store_d_f32_row_stride:
4016   case Intrinsic::nvvm_wmma_m16n16k8_store_d_f32_col:
4017   case Intrinsic::nvvm_wmma_m16n16k8_store_d_f32_row:
4018   case Intrinsic::nvvm_wmma_m16n16k8_store_d_f32_col_stride:
4019   case Intrinsic::nvvm_wmma_m16n16k8_store_d_f32_row_stride: {
4020     Info.opc = ISD::INTRINSIC_VOID;
4021     Info.memVT = MVT::v8f32;
4022     Info.ptrVal = I.getArgOperand(0);
4023     Info.offset = 0;
4024     Info.flags = MachineMemOperand::MOStore;
4025     Info.align = Align(16);
4026     return true;
4027   }
4028 
4029   case Intrinsic::nvvm_wmma_m16n16k16_store_d_s32_col:
4030   case Intrinsic::nvvm_wmma_m16n16k16_store_d_s32_col_stride:
4031   case Intrinsic::nvvm_wmma_m16n16k16_store_d_s32_row:
4032   case Intrinsic::nvvm_wmma_m16n16k16_store_d_s32_row_stride:
4033   case Intrinsic::nvvm_wmma_m32n8k16_store_d_s32_col:
4034   case Intrinsic::nvvm_wmma_m32n8k16_store_d_s32_col_stride:
4035   case Intrinsic::nvvm_wmma_m32n8k16_store_d_s32_row:
4036   case Intrinsic::nvvm_wmma_m32n8k16_store_d_s32_row_stride:
4037   case Intrinsic::nvvm_wmma_m8n32k16_store_d_s32_col:
4038   case Intrinsic::nvvm_wmma_m8n32k16_store_d_s32_col_stride:
4039   case Intrinsic::nvvm_wmma_m8n32k16_store_d_s32_row:
4040   case Intrinsic::nvvm_wmma_m8n32k16_store_d_s32_row_stride: {
4041     Info.opc = ISD::INTRINSIC_VOID;
4042     Info.memVT = MVT::v8i32;
4043     Info.ptrVal = I.getArgOperand(0);
4044     Info.offset = 0;
4045     Info.flags = MachineMemOperand::MOStore;
4046     Info.align = Align(16);
4047     return true;
4048   }
4049 
4050   case Intrinsic::nvvm_wmma_m8n8k128_store_d_s32_col:
4051   case Intrinsic::nvvm_wmma_m8n8k128_store_d_s32_col_stride:
4052   case Intrinsic::nvvm_wmma_m8n8k128_store_d_s32_row:
4053   case Intrinsic::nvvm_wmma_m8n8k128_store_d_s32_row_stride:
4054   case Intrinsic::nvvm_wmma_m8n8k32_store_d_s32_col:
4055   case Intrinsic::nvvm_wmma_m8n8k32_store_d_s32_col_stride:
4056   case Intrinsic::nvvm_wmma_m8n8k32_store_d_s32_row:
4057   case Intrinsic::nvvm_wmma_m8n8k32_store_d_s32_row_stride: {
4058     Info.opc = ISD::INTRINSIC_VOID;
4059     Info.memVT = MVT::v2i32;
4060     Info.ptrVal = I.getArgOperand(0);
4061     Info.offset = 0;
4062     Info.flags = MachineMemOperand::MOStore;
4063     Info.align = Align(8);
4064     return true;
4065   }
4066 
4067   case Intrinsic::nvvm_wmma_m8n8k4_store_d_f64_col:
4068   case Intrinsic::nvvm_wmma_m8n8k4_store_d_f64_col_stride:
4069   case Intrinsic::nvvm_wmma_m8n8k4_store_d_f64_row:
4070   case Intrinsic::nvvm_wmma_m8n8k4_store_d_f64_row_stride: {
4071     Info.opc = ISD::INTRINSIC_VOID;
4072     Info.memVT = MVT::v2f64;
4073     Info.ptrVal = I.getArgOperand(0);
4074     Info.offset = 0;
4075     Info.flags = MachineMemOperand::MOStore;
4076     Info.align = Align(16);
4077     return true;
4078   }
4079 
4080   case Intrinsic::nvvm_atomic_load_inc_32:
4081   case Intrinsic::nvvm_atomic_load_dec_32:
4082 
4083   case Intrinsic::nvvm_atomic_add_gen_f_cta:
4084   case Intrinsic::nvvm_atomic_add_gen_f_sys:
4085   case Intrinsic::nvvm_atomic_add_gen_i_cta:
4086   case Intrinsic::nvvm_atomic_add_gen_i_sys:
4087   case Intrinsic::nvvm_atomic_and_gen_i_cta:
4088   case Intrinsic::nvvm_atomic_and_gen_i_sys:
4089   case Intrinsic::nvvm_atomic_cas_gen_i_cta:
4090   case Intrinsic::nvvm_atomic_cas_gen_i_sys:
4091   case Intrinsic::nvvm_atomic_dec_gen_i_cta:
4092   case Intrinsic::nvvm_atomic_dec_gen_i_sys:
4093   case Intrinsic::nvvm_atomic_inc_gen_i_cta:
4094   case Intrinsic::nvvm_atomic_inc_gen_i_sys:
4095   case Intrinsic::nvvm_atomic_max_gen_i_cta:
4096   case Intrinsic::nvvm_atomic_max_gen_i_sys:
4097   case Intrinsic::nvvm_atomic_min_gen_i_cta:
4098   case Intrinsic::nvvm_atomic_min_gen_i_sys:
4099   case Intrinsic::nvvm_atomic_or_gen_i_cta:
4100   case Intrinsic::nvvm_atomic_or_gen_i_sys:
4101   case Intrinsic::nvvm_atomic_exch_gen_i_cta:
4102   case Intrinsic::nvvm_atomic_exch_gen_i_sys:
4103   case Intrinsic::nvvm_atomic_xor_gen_i_cta:
4104   case Intrinsic::nvvm_atomic_xor_gen_i_sys: {
4105     auto &DL = I.getModule()->getDataLayout();
4106     Info.opc = ISD::INTRINSIC_W_CHAIN;
4107     Info.memVT = getValueType(DL, I.getType());
4108     Info.ptrVal = I.getArgOperand(0);
4109     Info.offset = 0;
4110     Info.flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore;
4111     Info.align.reset();
4112     return true;
4113   }
4114 
4115   case Intrinsic::nvvm_ldu_global_i:
4116   case Intrinsic::nvvm_ldu_global_f:
4117   case Intrinsic::nvvm_ldu_global_p: {
4118     auto &DL = I.getModule()->getDataLayout();
4119     Info.opc = ISD::INTRINSIC_W_CHAIN;
4120     if (Intrinsic == Intrinsic::nvvm_ldu_global_i)
4121       Info.memVT = getValueType(DL, I.getType());
4122     else if(Intrinsic == Intrinsic::nvvm_ldu_global_p)
4123       Info.memVT = getPointerTy(DL);
4124     else
4125       Info.memVT = getValueType(DL, I.getType());
4126     Info.ptrVal = I.getArgOperand(0);
4127     Info.offset = 0;
4128     Info.flags = MachineMemOperand::MOLoad;
4129     Info.align = cast<ConstantInt>(I.getArgOperand(1))->getMaybeAlignValue();
4130 
4131     return true;
4132   }
4133   case Intrinsic::nvvm_ldg_global_i:
4134   case Intrinsic::nvvm_ldg_global_f:
4135   case Intrinsic::nvvm_ldg_global_p: {
4136     auto &DL = I.getModule()->getDataLayout();
4137 
4138     Info.opc = ISD::INTRINSIC_W_CHAIN;
4139     if (Intrinsic == Intrinsic::nvvm_ldg_global_i)
4140       Info.memVT = getValueType(DL, I.getType());
4141     else if(Intrinsic == Intrinsic::nvvm_ldg_global_p)
4142       Info.memVT = getPointerTy(DL);
4143     else
4144       Info.memVT = getValueType(DL, I.getType());
4145     Info.ptrVal = I.getArgOperand(0);
4146     Info.offset = 0;
4147     Info.flags = MachineMemOperand::MOLoad;
4148     Info.align = cast<ConstantInt>(I.getArgOperand(1))->getMaybeAlignValue();
4149 
4150     return true;
4151   }
4152 
4153   case Intrinsic::nvvm_tex_1d_v4f32_s32:
4154   case Intrinsic::nvvm_tex_1d_v4f32_f32:
4155   case Intrinsic::nvvm_tex_1d_level_v4f32_f32:
4156   case Intrinsic::nvvm_tex_1d_grad_v4f32_f32:
4157   case Intrinsic::nvvm_tex_1d_array_v4f32_s32:
4158   case Intrinsic::nvvm_tex_1d_array_v4f32_f32:
4159   case Intrinsic::nvvm_tex_1d_array_level_v4f32_f32:
4160   case Intrinsic::nvvm_tex_1d_array_grad_v4f32_f32:
4161   case Intrinsic::nvvm_tex_2d_v4f32_s32:
4162   case Intrinsic::nvvm_tex_2d_v4f32_f32:
4163   case Intrinsic::nvvm_tex_2d_level_v4f32_f32:
4164   case Intrinsic::nvvm_tex_2d_grad_v4f32_f32:
4165   case Intrinsic::nvvm_tex_2d_array_v4f32_s32:
4166   case Intrinsic::nvvm_tex_2d_array_v4f32_f32:
4167   case Intrinsic::nvvm_tex_2d_array_level_v4f32_f32:
4168   case Intrinsic::nvvm_tex_2d_array_grad_v4f32_f32:
4169   case Intrinsic::nvvm_tex_3d_v4f32_s32:
4170   case Intrinsic::nvvm_tex_3d_v4f32_f32:
4171   case Intrinsic::nvvm_tex_3d_level_v4f32_f32:
4172   case Intrinsic::nvvm_tex_3d_grad_v4f32_f32:
4173   case Intrinsic::nvvm_tex_cube_v4f32_f32:
4174   case Intrinsic::nvvm_tex_cube_level_v4f32_f32:
4175   case Intrinsic::nvvm_tex_cube_array_v4f32_f32:
4176   case Intrinsic::nvvm_tex_cube_array_level_v4f32_f32:
4177   case Intrinsic::nvvm_tld4_r_2d_v4f32_f32:
4178   case Intrinsic::nvvm_tld4_g_2d_v4f32_f32:
4179   case Intrinsic::nvvm_tld4_b_2d_v4f32_f32:
4180   case Intrinsic::nvvm_tld4_a_2d_v4f32_f32:
4181   case Intrinsic::nvvm_tex_unified_1d_v4f32_s32:
4182   case Intrinsic::nvvm_tex_unified_1d_v4f32_f32:
4183   case Intrinsic::nvvm_tex_unified_1d_level_v4f32_f32:
4184   case Intrinsic::nvvm_tex_unified_1d_grad_v4f32_f32:
4185   case Intrinsic::nvvm_tex_unified_1d_array_v4f32_s32:
4186   case Intrinsic::nvvm_tex_unified_1d_array_v4f32_f32:
4187   case Intrinsic::nvvm_tex_unified_1d_array_level_v4f32_f32:
4188   case Intrinsic::nvvm_tex_unified_1d_array_grad_v4f32_f32:
4189   case Intrinsic::nvvm_tex_unified_2d_v4f32_s32:
4190   case Intrinsic::nvvm_tex_unified_2d_v4f32_f32:
4191   case Intrinsic::nvvm_tex_unified_2d_level_v4f32_f32:
4192   case Intrinsic::nvvm_tex_unified_2d_grad_v4f32_f32:
4193   case Intrinsic::nvvm_tex_unified_2d_array_v4f32_s32:
4194   case Intrinsic::nvvm_tex_unified_2d_array_v4f32_f32:
4195   case Intrinsic::nvvm_tex_unified_2d_array_level_v4f32_f32:
4196   case Intrinsic::nvvm_tex_unified_2d_array_grad_v4f32_f32:
4197   case Intrinsic::nvvm_tex_unified_3d_v4f32_s32:
4198   case Intrinsic::nvvm_tex_unified_3d_v4f32_f32:
4199   case Intrinsic::nvvm_tex_unified_3d_level_v4f32_f32:
4200   case Intrinsic::nvvm_tex_unified_3d_grad_v4f32_f32:
4201   case Intrinsic::nvvm_tex_unified_cube_v4f32_f32:
4202   case Intrinsic::nvvm_tex_unified_cube_level_v4f32_f32:
4203   case Intrinsic::nvvm_tex_unified_cube_array_v4f32_f32:
4204   case Intrinsic::nvvm_tex_unified_cube_array_level_v4f32_f32:
4205   case Intrinsic::nvvm_tld4_unified_r_2d_v4f32_f32:
4206   case Intrinsic::nvvm_tld4_unified_g_2d_v4f32_f32:
4207   case Intrinsic::nvvm_tld4_unified_b_2d_v4f32_f32:
4208   case Intrinsic::nvvm_tld4_unified_a_2d_v4f32_f32:
4209     Info.opc = getOpcForTextureInstr(Intrinsic);
4210     Info.memVT = MVT::v4f32;
4211     Info.ptrVal = nullptr;
4212     Info.offset = 0;
4213     Info.flags = MachineMemOperand::MOLoad;
4214     Info.align = Align(16);
4215     return true;
4216 
4217   case Intrinsic::nvvm_tex_1d_v4s32_s32:
4218   case Intrinsic::nvvm_tex_1d_v4s32_f32:
4219   case Intrinsic::nvvm_tex_1d_level_v4s32_f32:
4220   case Intrinsic::nvvm_tex_1d_grad_v4s32_f32:
4221   case Intrinsic::nvvm_tex_1d_array_v4s32_s32:
4222   case Intrinsic::nvvm_tex_1d_array_v4s32_f32:
4223   case Intrinsic::nvvm_tex_1d_array_level_v4s32_f32:
4224   case Intrinsic::nvvm_tex_1d_array_grad_v4s32_f32:
4225   case Intrinsic::nvvm_tex_2d_v4s32_s32:
4226   case Intrinsic::nvvm_tex_2d_v4s32_f32:
4227   case Intrinsic::nvvm_tex_2d_level_v4s32_f32:
4228   case Intrinsic::nvvm_tex_2d_grad_v4s32_f32:
4229   case Intrinsic::nvvm_tex_2d_array_v4s32_s32:
4230   case Intrinsic::nvvm_tex_2d_array_v4s32_f32:
4231   case Intrinsic::nvvm_tex_2d_array_level_v4s32_f32:
4232   case Intrinsic::nvvm_tex_2d_array_grad_v4s32_f32:
4233   case Intrinsic::nvvm_tex_3d_v4s32_s32:
4234   case Intrinsic::nvvm_tex_3d_v4s32_f32:
4235   case Intrinsic::nvvm_tex_3d_level_v4s32_f32:
4236   case Intrinsic::nvvm_tex_3d_grad_v4s32_f32:
4237   case Intrinsic::nvvm_tex_cube_v4s32_f32:
4238   case Intrinsic::nvvm_tex_cube_level_v4s32_f32:
4239   case Intrinsic::nvvm_tex_cube_array_v4s32_f32:
4240   case Intrinsic::nvvm_tex_cube_array_level_v4s32_f32:
4241   case Intrinsic::nvvm_tex_cube_v4u32_f32:
4242   case Intrinsic::nvvm_tex_cube_level_v4u32_f32:
4243   case Intrinsic::nvvm_tex_cube_array_v4u32_f32:
4244   case Intrinsic::nvvm_tex_cube_array_level_v4u32_f32:
4245   case Intrinsic::nvvm_tex_1d_v4u32_s32:
4246   case Intrinsic::nvvm_tex_1d_v4u32_f32:
4247   case Intrinsic::nvvm_tex_1d_level_v4u32_f32:
4248   case Intrinsic::nvvm_tex_1d_grad_v4u32_f32:
4249   case Intrinsic::nvvm_tex_1d_array_v4u32_s32:
4250   case Intrinsic::nvvm_tex_1d_array_v4u32_f32:
4251   case Intrinsic::nvvm_tex_1d_array_level_v4u32_f32:
4252   case Intrinsic::nvvm_tex_1d_array_grad_v4u32_f32:
4253   case Intrinsic::nvvm_tex_2d_v4u32_s32:
4254   case Intrinsic::nvvm_tex_2d_v4u32_f32:
4255   case Intrinsic::nvvm_tex_2d_level_v4u32_f32:
4256   case Intrinsic::nvvm_tex_2d_grad_v4u32_f32:
4257   case Intrinsic::nvvm_tex_2d_array_v4u32_s32:
4258   case Intrinsic::nvvm_tex_2d_array_v4u32_f32:
4259   case Intrinsic::nvvm_tex_2d_array_level_v4u32_f32:
4260   case Intrinsic::nvvm_tex_2d_array_grad_v4u32_f32:
4261   case Intrinsic::nvvm_tex_3d_v4u32_s32:
4262   case Intrinsic::nvvm_tex_3d_v4u32_f32:
4263   case Intrinsic::nvvm_tex_3d_level_v4u32_f32:
4264   case Intrinsic::nvvm_tex_3d_grad_v4u32_f32:
4265   case Intrinsic::nvvm_tld4_r_2d_v4s32_f32:
4266   case Intrinsic::nvvm_tld4_g_2d_v4s32_f32:
4267   case Intrinsic::nvvm_tld4_b_2d_v4s32_f32:
4268   case Intrinsic::nvvm_tld4_a_2d_v4s32_f32:
4269   case Intrinsic::nvvm_tld4_r_2d_v4u32_f32:
4270   case Intrinsic::nvvm_tld4_g_2d_v4u32_f32:
4271   case Intrinsic::nvvm_tld4_b_2d_v4u32_f32:
4272   case Intrinsic::nvvm_tld4_a_2d_v4u32_f32:
4273   case Intrinsic::nvvm_tex_unified_1d_v4s32_s32:
4274   case Intrinsic::nvvm_tex_unified_1d_v4s32_f32:
4275   case Intrinsic::nvvm_tex_unified_1d_level_v4s32_f32:
4276   case Intrinsic::nvvm_tex_unified_1d_grad_v4s32_f32:
4277   case Intrinsic::nvvm_tex_unified_1d_array_v4s32_s32:
4278   case Intrinsic::nvvm_tex_unified_1d_array_v4s32_f32:
4279   case Intrinsic::nvvm_tex_unified_1d_array_level_v4s32_f32:
4280   case Intrinsic::nvvm_tex_unified_1d_array_grad_v4s32_f32:
4281   case Intrinsic::nvvm_tex_unified_2d_v4s32_s32:
4282   case Intrinsic::nvvm_tex_unified_2d_v4s32_f32:
4283   case Intrinsic::nvvm_tex_unified_2d_level_v4s32_f32:
4284   case Intrinsic::nvvm_tex_unified_2d_grad_v4s32_f32:
4285   case Intrinsic::nvvm_tex_unified_2d_array_v4s32_s32:
4286   case Intrinsic::nvvm_tex_unified_2d_array_v4s32_f32:
4287   case Intrinsic::nvvm_tex_unified_2d_array_level_v4s32_f32:
4288   case Intrinsic::nvvm_tex_unified_2d_array_grad_v4s32_f32:
4289   case Intrinsic::nvvm_tex_unified_3d_v4s32_s32:
4290   case Intrinsic::nvvm_tex_unified_3d_v4s32_f32:
4291   case Intrinsic::nvvm_tex_unified_3d_level_v4s32_f32:
4292   case Intrinsic::nvvm_tex_unified_3d_grad_v4s32_f32:
4293   case Intrinsic::nvvm_tex_unified_1d_v4u32_s32:
4294   case Intrinsic::nvvm_tex_unified_1d_v4u32_f32:
4295   case Intrinsic::nvvm_tex_unified_1d_level_v4u32_f32:
4296   case Intrinsic::nvvm_tex_unified_1d_grad_v4u32_f32:
4297   case Intrinsic::nvvm_tex_unified_1d_array_v4u32_s32:
4298   case Intrinsic::nvvm_tex_unified_1d_array_v4u32_f32:
4299   case Intrinsic::nvvm_tex_unified_1d_array_level_v4u32_f32:
4300   case Intrinsic::nvvm_tex_unified_1d_array_grad_v4u32_f32:
4301   case Intrinsic::nvvm_tex_unified_2d_v4u32_s32:
4302   case Intrinsic::nvvm_tex_unified_2d_v4u32_f32:
4303   case Intrinsic::nvvm_tex_unified_2d_level_v4u32_f32:
4304   case Intrinsic::nvvm_tex_unified_2d_grad_v4u32_f32:
4305   case Intrinsic::nvvm_tex_unified_2d_array_v4u32_s32:
4306   case Intrinsic::nvvm_tex_unified_2d_array_v4u32_f32:
4307   case Intrinsic::nvvm_tex_unified_2d_array_level_v4u32_f32:
4308   case Intrinsic::nvvm_tex_unified_2d_array_grad_v4u32_f32:
4309   case Intrinsic::nvvm_tex_unified_3d_v4u32_s32:
4310   case Intrinsic::nvvm_tex_unified_3d_v4u32_f32:
4311   case Intrinsic::nvvm_tex_unified_3d_level_v4u32_f32:
4312   case Intrinsic::nvvm_tex_unified_3d_grad_v4u32_f32:
4313   case Intrinsic::nvvm_tex_unified_cube_v4s32_f32:
4314   case Intrinsic::nvvm_tex_unified_cube_level_v4s32_f32:
4315   case Intrinsic::nvvm_tex_unified_cube_array_v4s32_f32:
4316   case Intrinsic::nvvm_tex_unified_cube_array_level_v4s32_f32:
4317   case Intrinsic::nvvm_tex_unified_cube_v4u32_f32:
4318   case Intrinsic::nvvm_tex_unified_cube_level_v4u32_f32:
4319   case Intrinsic::nvvm_tex_unified_cube_array_v4u32_f32:
4320   case Intrinsic::nvvm_tex_unified_cube_array_level_v4u32_f32:
4321   case Intrinsic::nvvm_tld4_unified_r_2d_v4s32_f32:
4322   case Intrinsic::nvvm_tld4_unified_g_2d_v4s32_f32:
4323   case Intrinsic::nvvm_tld4_unified_b_2d_v4s32_f32:
4324   case Intrinsic::nvvm_tld4_unified_a_2d_v4s32_f32:
4325   case Intrinsic::nvvm_tld4_unified_r_2d_v4u32_f32:
4326   case Intrinsic::nvvm_tld4_unified_g_2d_v4u32_f32:
4327   case Intrinsic::nvvm_tld4_unified_b_2d_v4u32_f32:
4328   case Intrinsic::nvvm_tld4_unified_a_2d_v4u32_f32:
4329     Info.opc = getOpcForTextureInstr(Intrinsic);
4330     Info.memVT = MVT::v4i32;
4331     Info.ptrVal = nullptr;
4332     Info.offset = 0;
4333     Info.flags = MachineMemOperand::MOLoad;
4334     Info.align = Align(16);
4335     return true;
4336 
4337   case Intrinsic::nvvm_suld_1d_i8_clamp:
4338   case Intrinsic::nvvm_suld_1d_v2i8_clamp:
4339   case Intrinsic::nvvm_suld_1d_v4i8_clamp:
4340   case Intrinsic::nvvm_suld_1d_array_i8_clamp:
4341   case Intrinsic::nvvm_suld_1d_array_v2i8_clamp:
4342   case Intrinsic::nvvm_suld_1d_array_v4i8_clamp:
4343   case Intrinsic::nvvm_suld_2d_i8_clamp:
4344   case Intrinsic::nvvm_suld_2d_v2i8_clamp:
4345   case Intrinsic::nvvm_suld_2d_v4i8_clamp:
4346   case Intrinsic::nvvm_suld_2d_array_i8_clamp:
4347   case Intrinsic::nvvm_suld_2d_array_v2i8_clamp:
4348   case Intrinsic::nvvm_suld_2d_array_v4i8_clamp:
4349   case Intrinsic::nvvm_suld_3d_i8_clamp:
4350   case Intrinsic::nvvm_suld_3d_v2i8_clamp:
4351   case Intrinsic::nvvm_suld_3d_v4i8_clamp:
4352   case Intrinsic::nvvm_suld_1d_i8_trap:
4353   case Intrinsic::nvvm_suld_1d_v2i8_trap:
4354   case Intrinsic::nvvm_suld_1d_v4i8_trap:
4355   case Intrinsic::nvvm_suld_1d_array_i8_trap:
4356   case Intrinsic::nvvm_suld_1d_array_v2i8_trap:
4357   case Intrinsic::nvvm_suld_1d_array_v4i8_trap:
4358   case Intrinsic::nvvm_suld_2d_i8_trap:
4359   case Intrinsic::nvvm_suld_2d_v2i8_trap:
4360   case Intrinsic::nvvm_suld_2d_v4i8_trap:
4361   case Intrinsic::nvvm_suld_2d_array_i8_trap:
4362   case Intrinsic::nvvm_suld_2d_array_v2i8_trap:
4363   case Intrinsic::nvvm_suld_2d_array_v4i8_trap:
4364   case Intrinsic::nvvm_suld_3d_i8_trap:
4365   case Intrinsic::nvvm_suld_3d_v2i8_trap:
4366   case Intrinsic::nvvm_suld_3d_v4i8_trap:
4367   case Intrinsic::nvvm_suld_1d_i8_zero:
4368   case Intrinsic::nvvm_suld_1d_v2i8_zero:
4369   case Intrinsic::nvvm_suld_1d_v4i8_zero:
4370   case Intrinsic::nvvm_suld_1d_array_i8_zero:
4371   case Intrinsic::nvvm_suld_1d_array_v2i8_zero:
4372   case Intrinsic::nvvm_suld_1d_array_v4i8_zero:
4373   case Intrinsic::nvvm_suld_2d_i8_zero:
4374   case Intrinsic::nvvm_suld_2d_v2i8_zero:
4375   case Intrinsic::nvvm_suld_2d_v4i8_zero:
4376   case Intrinsic::nvvm_suld_2d_array_i8_zero:
4377   case Intrinsic::nvvm_suld_2d_array_v2i8_zero:
4378   case Intrinsic::nvvm_suld_2d_array_v4i8_zero:
4379   case Intrinsic::nvvm_suld_3d_i8_zero:
4380   case Intrinsic::nvvm_suld_3d_v2i8_zero:
4381   case Intrinsic::nvvm_suld_3d_v4i8_zero:
4382     Info.opc = getOpcForSurfaceInstr(Intrinsic);
4383     Info.memVT = MVT::i8;
4384     Info.ptrVal = nullptr;
4385     Info.offset = 0;
4386     Info.flags = MachineMemOperand::MOLoad;
4387     Info.align = Align(16);
4388     return true;
4389 
4390   case Intrinsic::nvvm_suld_1d_i16_clamp:
4391   case Intrinsic::nvvm_suld_1d_v2i16_clamp:
4392   case Intrinsic::nvvm_suld_1d_v4i16_clamp:
4393   case Intrinsic::nvvm_suld_1d_array_i16_clamp:
4394   case Intrinsic::nvvm_suld_1d_array_v2i16_clamp:
4395   case Intrinsic::nvvm_suld_1d_array_v4i16_clamp:
4396   case Intrinsic::nvvm_suld_2d_i16_clamp:
4397   case Intrinsic::nvvm_suld_2d_v2i16_clamp:
4398   case Intrinsic::nvvm_suld_2d_v4i16_clamp:
4399   case Intrinsic::nvvm_suld_2d_array_i16_clamp:
4400   case Intrinsic::nvvm_suld_2d_array_v2i16_clamp:
4401   case Intrinsic::nvvm_suld_2d_array_v4i16_clamp:
4402   case Intrinsic::nvvm_suld_3d_i16_clamp:
4403   case Intrinsic::nvvm_suld_3d_v2i16_clamp:
4404   case Intrinsic::nvvm_suld_3d_v4i16_clamp:
4405   case Intrinsic::nvvm_suld_1d_i16_trap:
4406   case Intrinsic::nvvm_suld_1d_v2i16_trap:
4407   case Intrinsic::nvvm_suld_1d_v4i16_trap:
4408   case Intrinsic::nvvm_suld_1d_array_i16_trap:
4409   case Intrinsic::nvvm_suld_1d_array_v2i16_trap:
4410   case Intrinsic::nvvm_suld_1d_array_v4i16_trap:
4411   case Intrinsic::nvvm_suld_2d_i16_trap:
4412   case Intrinsic::nvvm_suld_2d_v2i16_trap:
4413   case Intrinsic::nvvm_suld_2d_v4i16_trap:
4414   case Intrinsic::nvvm_suld_2d_array_i16_trap:
4415   case Intrinsic::nvvm_suld_2d_array_v2i16_trap:
4416   case Intrinsic::nvvm_suld_2d_array_v4i16_trap:
4417   case Intrinsic::nvvm_suld_3d_i16_trap:
4418   case Intrinsic::nvvm_suld_3d_v2i16_trap:
4419   case Intrinsic::nvvm_suld_3d_v4i16_trap:
4420   case Intrinsic::nvvm_suld_1d_i16_zero:
4421   case Intrinsic::nvvm_suld_1d_v2i16_zero:
4422   case Intrinsic::nvvm_suld_1d_v4i16_zero:
4423   case Intrinsic::nvvm_suld_1d_array_i16_zero:
4424   case Intrinsic::nvvm_suld_1d_array_v2i16_zero:
4425   case Intrinsic::nvvm_suld_1d_array_v4i16_zero:
4426   case Intrinsic::nvvm_suld_2d_i16_zero:
4427   case Intrinsic::nvvm_suld_2d_v2i16_zero:
4428   case Intrinsic::nvvm_suld_2d_v4i16_zero:
4429   case Intrinsic::nvvm_suld_2d_array_i16_zero:
4430   case Intrinsic::nvvm_suld_2d_array_v2i16_zero:
4431   case Intrinsic::nvvm_suld_2d_array_v4i16_zero:
4432   case Intrinsic::nvvm_suld_3d_i16_zero:
4433   case Intrinsic::nvvm_suld_3d_v2i16_zero:
4434   case Intrinsic::nvvm_suld_3d_v4i16_zero:
4435     Info.opc = getOpcForSurfaceInstr(Intrinsic);
4436     Info.memVT = MVT::i16;
4437     Info.ptrVal = nullptr;
4438     Info.offset = 0;
4439     Info.flags = MachineMemOperand::MOLoad;
4440     Info.align = Align(16);
4441     return true;
4442 
4443   case Intrinsic::nvvm_suld_1d_i32_clamp:
4444   case Intrinsic::nvvm_suld_1d_v2i32_clamp:
4445   case Intrinsic::nvvm_suld_1d_v4i32_clamp:
4446   case Intrinsic::nvvm_suld_1d_array_i32_clamp:
4447   case Intrinsic::nvvm_suld_1d_array_v2i32_clamp:
4448   case Intrinsic::nvvm_suld_1d_array_v4i32_clamp:
4449   case Intrinsic::nvvm_suld_2d_i32_clamp:
4450   case Intrinsic::nvvm_suld_2d_v2i32_clamp:
4451   case Intrinsic::nvvm_suld_2d_v4i32_clamp:
4452   case Intrinsic::nvvm_suld_2d_array_i32_clamp:
4453   case Intrinsic::nvvm_suld_2d_array_v2i32_clamp:
4454   case Intrinsic::nvvm_suld_2d_array_v4i32_clamp:
4455   case Intrinsic::nvvm_suld_3d_i32_clamp:
4456   case Intrinsic::nvvm_suld_3d_v2i32_clamp:
4457   case Intrinsic::nvvm_suld_3d_v4i32_clamp:
4458   case Intrinsic::nvvm_suld_1d_i32_trap:
4459   case Intrinsic::nvvm_suld_1d_v2i32_trap:
4460   case Intrinsic::nvvm_suld_1d_v4i32_trap:
4461   case Intrinsic::nvvm_suld_1d_array_i32_trap:
4462   case Intrinsic::nvvm_suld_1d_array_v2i32_trap:
4463   case Intrinsic::nvvm_suld_1d_array_v4i32_trap:
4464   case Intrinsic::nvvm_suld_2d_i32_trap:
4465   case Intrinsic::nvvm_suld_2d_v2i32_trap:
4466   case Intrinsic::nvvm_suld_2d_v4i32_trap:
4467   case Intrinsic::nvvm_suld_2d_array_i32_trap:
4468   case Intrinsic::nvvm_suld_2d_array_v2i32_trap:
4469   case Intrinsic::nvvm_suld_2d_array_v4i32_trap:
4470   case Intrinsic::nvvm_suld_3d_i32_trap:
4471   case Intrinsic::nvvm_suld_3d_v2i32_trap:
4472   case Intrinsic::nvvm_suld_3d_v4i32_trap:
4473   case Intrinsic::nvvm_suld_1d_i32_zero:
4474   case Intrinsic::nvvm_suld_1d_v2i32_zero:
4475   case Intrinsic::nvvm_suld_1d_v4i32_zero:
4476   case Intrinsic::nvvm_suld_1d_array_i32_zero:
4477   case Intrinsic::nvvm_suld_1d_array_v2i32_zero:
4478   case Intrinsic::nvvm_suld_1d_array_v4i32_zero:
4479   case Intrinsic::nvvm_suld_2d_i32_zero:
4480   case Intrinsic::nvvm_suld_2d_v2i32_zero:
4481   case Intrinsic::nvvm_suld_2d_v4i32_zero:
4482   case Intrinsic::nvvm_suld_2d_array_i32_zero:
4483   case Intrinsic::nvvm_suld_2d_array_v2i32_zero:
4484   case Intrinsic::nvvm_suld_2d_array_v4i32_zero:
4485   case Intrinsic::nvvm_suld_3d_i32_zero:
4486   case Intrinsic::nvvm_suld_3d_v2i32_zero:
4487   case Intrinsic::nvvm_suld_3d_v4i32_zero:
4488     Info.opc = getOpcForSurfaceInstr(Intrinsic);
4489     Info.memVT = MVT::i32;
4490     Info.ptrVal = nullptr;
4491     Info.offset = 0;
4492     Info.flags = MachineMemOperand::MOLoad;
4493     Info.align = Align(16);
4494     return true;
4495 
4496   case Intrinsic::nvvm_suld_1d_i64_clamp:
4497   case Intrinsic::nvvm_suld_1d_v2i64_clamp:
4498   case Intrinsic::nvvm_suld_1d_array_i64_clamp:
4499   case Intrinsic::nvvm_suld_1d_array_v2i64_clamp:
4500   case Intrinsic::nvvm_suld_2d_i64_clamp:
4501   case Intrinsic::nvvm_suld_2d_v2i64_clamp:
4502   case Intrinsic::nvvm_suld_2d_array_i64_clamp:
4503   case Intrinsic::nvvm_suld_2d_array_v2i64_clamp:
4504   case Intrinsic::nvvm_suld_3d_i64_clamp:
4505   case Intrinsic::nvvm_suld_3d_v2i64_clamp:
4506   case Intrinsic::nvvm_suld_1d_i64_trap:
4507   case Intrinsic::nvvm_suld_1d_v2i64_trap:
4508   case Intrinsic::nvvm_suld_1d_array_i64_trap:
4509   case Intrinsic::nvvm_suld_1d_array_v2i64_trap:
4510   case Intrinsic::nvvm_suld_2d_i64_trap:
4511   case Intrinsic::nvvm_suld_2d_v2i64_trap:
4512   case Intrinsic::nvvm_suld_2d_array_i64_trap:
4513   case Intrinsic::nvvm_suld_2d_array_v2i64_trap:
4514   case Intrinsic::nvvm_suld_3d_i64_trap:
4515   case Intrinsic::nvvm_suld_3d_v2i64_trap:
4516   case Intrinsic::nvvm_suld_1d_i64_zero:
4517   case Intrinsic::nvvm_suld_1d_v2i64_zero:
4518   case Intrinsic::nvvm_suld_1d_array_i64_zero:
4519   case Intrinsic::nvvm_suld_1d_array_v2i64_zero:
4520   case Intrinsic::nvvm_suld_2d_i64_zero:
4521   case Intrinsic::nvvm_suld_2d_v2i64_zero:
4522   case Intrinsic::nvvm_suld_2d_array_i64_zero:
4523   case Intrinsic::nvvm_suld_2d_array_v2i64_zero:
4524   case Intrinsic::nvvm_suld_3d_i64_zero:
4525   case Intrinsic::nvvm_suld_3d_v2i64_zero:
4526     Info.opc = getOpcForSurfaceInstr(Intrinsic);
4527     Info.memVT = MVT::i64;
4528     Info.ptrVal = nullptr;
4529     Info.offset = 0;
4530     Info.flags = MachineMemOperand::MOLoad;
4531     Info.align = Align(16);
4532     return true;
4533   }
4534   return false;
4535 }
4536 
4537 /// getFunctionParamOptimizedAlign - since function arguments are passed via
4538 /// .param space, we may want to increase their alignment in a way that
4539 /// ensures that we can effectively vectorize their loads & stores. We can
4540 /// increase alignment only if the function has internal or has private
4541 /// linkage as for other linkage types callers may already rely on default
4542 /// alignment. To allow using 128-bit vectorized loads/stores, this function
4543 /// ensures that alignment is 16 or greater.
4544 Align NVPTXTargetLowering::getFunctionParamOptimizedAlign(
4545     const Function *F, Type *ArgTy, const DataLayout &DL) const {
4546   const uint64_t ABITypeAlign = DL.getABITypeAlign(ArgTy).value();
4547 
4548   // If a function has linkage different from internal or private, we
4549   // must use default ABI alignment as external users rely on it. Same
4550   // for a function that may be called from a function pointer.
4551   if (!F || !F->hasLocalLinkage() ||
4552       F->hasAddressTaken(/*Users=*/nullptr,
4553                          /*IgnoreCallbackUses=*/false,
4554                          /*IgnoreAssumeLikeCalls=*/true,
4555                          /*IgnoreLLVMUsed=*/true))
4556     return Align(ABITypeAlign);
4557 
4558   assert(!isKernelFunction(*F) && "Expect kernels to have non-local linkage");
4559   return Align(std::max(uint64_t(16), ABITypeAlign));
4560 }
4561 
4562 /// Helper for computing alignment of a device function byval parameter.
4563 Align NVPTXTargetLowering::getFunctionByValParamAlign(
4564     const Function *F, Type *ArgTy, Align InitialAlign,
4565     const DataLayout &DL) const {
4566   Align ArgAlign = InitialAlign;
4567   // Try to increase alignment to enhance vectorization options.
4568   if (F)
4569     ArgAlign = std::max(ArgAlign, getFunctionParamOptimizedAlign(F, ArgTy, DL));
4570 
4571   // Old ptx versions have a bug. When PTX code takes address of
4572   // byval parameter with alignment < 4, ptxas generates code to
4573   // spill argument into memory. Alas on sm_50+ ptxas generates
4574   // SASS code that fails with misaligned access. To work around
4575   // the problem, make sure that we align byval parameters by at
4576   // least 4. This bug seems to be fixed at least starting from
4577   // ptxas > 9.0.
4578   // TODO: remove this after verifying the bug is not reproduced
4579   // on non-deprecated ptxas versions.
4580   if (ForceMinByValParamAlign)
4581     ArgAlign = std::max(ArgAlign, Align(4));
4582 
4583   return ArgAlign;
4584 }
4585 
4586 // Helper for getting a function parameter name. Name is composed from
4587 // its index and the function name. Negative index corresponds to special
4588 // parameter (unsized array) used for passing variable arguments.
4589 std::string NVPTXTargetLowering::getParamName(const Function *F,
4590                                               int Idx) const {
4591   std::string ParamName;
4592   raw_string_ostream ParamStr(ParamName);
4593 
4594   ParamStr << getTargetMachine().getSymbol(F)->getName();
4595   if (Idx < 0)
4596     ParamStr << "_vararg";
4597   else
4598     ParamStr << "_param_" << Idx;
4599 
4600   return ParamName;
4601 }
4602 
4603 /// isLegalAddressingMode - Return true if the addressing mode represented
4604 /// by AM is legal for this target, for a load/store of the specified type.
4605 /// Used to guide target specific optimizations, like loop strength reduction
4606 /// (LoopStrengthReduce.cpp) and memory optimization for address mode
4607 /// (CodeGenPrepare.cpp)
4608 bool NVPTXTargetLowering::isLegalAddressingMode(const DataLayout &DL,
4609                                                 const AddrMode &AM, Type *Ty,
4610                                                 unsigned AS, Instruction *I) const {
4611   // AddrMode - This represents an addressing mode of:
4612   //    BaseGV + BaseOffs + BaseReg + Scale*ScaleReg
4613   //
4614   // The legal address modes are
4615   // - [avar]
4616   // - [areg]
4617   // - [areg+immoff]
4618   // - [immAddr]
4619 
4620   if (AM.BaseGV) {
4621     return !AM.BaseOffs && !AM.HasBaseReg && !AM.Scale;
4622   }
4623 
4624   switch (AM.Scale) {
4625   case 0: // "r", "r+i" or "i" is allowed
4626     break;
4627   case 1:
4628     if (AM.HasBaseReg) // "r+r+i" or "r+r" is not allowed.
4629       return false;
4630     // Otherwise we have r+i.
4631     break;
4632   default:
4633     // No scale > 1 is allowed
4634     return false;
4635   }
4636   return true;
4637 }
4638 
4639 //===----------------------------------------------------------------------===//
4640 //                         NVPTX Inline Assembly Support
4641 //===----------------------------------------------------------------------===//
4642 
4643 /// getConstraintType - Given a constraint letter, return the type of
4644 /// constraint it is for this target.
4645 NVPTXTargetLowering::ConstraintType
4646 NVPTXTargetLowering::getConstraintType(StringRef Constraint) const {
4647   if (Constraint.size() == 1) {
4648     switch (Constraint[0]) {
4649     default:
4650       break;
4651     case 'b':
4652     case 'r':
4653     case 'h':
4654     case 'c':
4655     case 'l':
4656     case 'f':
4657     case 'd':
4658     case '0':
4659     case 'N':
4660       return C_RegisterClass;
4661     }
4662   }
4663   return TargetLowering::getConstraintType(Constraint);
4664 }
4665 
4666 std::pair<unsigned, const TargetRegisterClass *>
4667 NVPTXTargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI,
4668                                                   StringRef Constraint,
4669                                                   MVT VT) const {
4670   if (Constraint.size() == 1) {
4671     switch (Constraint[0]) {
4672     case 'b':
4673       return std::make_pair(0U, &NVPTX::Int1RegsRegClass);
4674     case 'c':
4675       return std::make_pair(0U, &NVPTX::Int16RegsRegClass);
4676     case 'h':
4677       return std::make_pair(0U, &NVPTX::Int16RegsRegClass);
4678     case 'r':
4679       return std::make_pair(0U, &NVPTX::Int32RegsRegClass);
4680     case 'l':
4681     case 'N':
4682       return std::make_pair(0U, &NVPTX::Int64RegsRegClass);
4683     case 'f':
4684       return std::make_pair(0U, &NVPTX::Float32RegsRegClass);
4685     case 'd':
4686       return std::make_pair(0U, &NVPTX::Float64RegsRegClass);
4687     }
4688   }
4689   return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT);
4690 }
4691 
4692 //===----------------------------------------------------------------------===//
4693 //                         NVPTX DAG Combining
4694 //===----------------------------------------------------------------------===//
4695 
4696 bool NVPTXTargetLowering::allowFMA(MachineFunction &MF,
4697                                    CodeGenOpt::Level OptLevel) const {
4698   // Always honor command-line argument
4699   if (FMAContractLevelOpt.getNumOccurrences() > 0)
4700     return FMAContractLevelOpt > 0;
4701 
4702   // Do not contract if we're not optimizing the code.
4703   if (OptLevel == 0)
4704     return false;
4705 
4706   // Honor TargetOptions flags that explicitly say fusion is okay.
4707   if (MF.getTarget().Options.AllowFPOpFusion == FPOpFusion::Fast)
4708     return true;
4709 
4710   return allowUnsafeFPMath(MF);
4711 }
4712 
4713 bool NVPTXTargetLowering::allowUnsafeFPMath(MachineFunction &MF) const {
4714   // Honor TargetOptions flags that explicitly say unsafe math is okay.
4715   if (MF.getTarget().Options.UnsafeFPMath)
4716     return true;
4717 
4718   // Allow unsafe math if unsafe-fp-math attribute explicitly says so.
4719   const Function &F = MF.getFunction();
4720   return F.getFnAttribute("unsafe-fp-math").getValueAsBool();
4721 }
4722 
4723 /// PerformADDCombineWithOperands - Try DAG combinations for an ADD with
4724 /// operands N0 and N1.  This is a helper for PerformADDCombine that is
4725 /// called with the default operands, and if that fails, with commuted
4726 /// operands.
4727 static SDValue PerformADDCombineWithOperands(SDNode *N, SDValue N0, SDValue N1,
4728                                            TargetLowering::DAGCombinerInfo &DCI,
4729                                              const NVPTXSubtarget &Subtarget,
4730                                              CodeGenOpt::Level OptLevel) {
4731   SelectionDAG  &DAG = DCI.DAG;
4732   // Skip non-integer, non-scalar case
4733   EVT VT=N0.getValueType();
4734   if (VT.isVector())
4735     return SDValue();
4736 
4737   // fold (add (mul a, b), c) -> (mad a, b, c)
4738   //
4739   if (N0.getOpcode() == ISD::MUL) {
4740     assert (VT.isInteger());
4741     // For integer:
4742     // Since integer multiply-add costs the same as integer multiply
4743     // but is more costly than integer add, do the fusion only when
4744     // the mul is only used in the add.
4745     if (OptLevel==CodeGenOpt::None || VT != MVT::i32 ||
4746         !N0.getNode()->hasOneUse())
4747       return SDValue();
4748 
4749     // Do the folding
4750     return DAG.getNode(NVPTXISD::IMAD, SDLoc(N), VT,
4751                        N0.getOperand(0), N0.getOperand(1), N1);
4752   }
4753   else if (N0.getOpcode() == ISD::FMUL) {
4754     if (VT == MVT::f32 || VT == MVT::f64) {
4755       const auto *TLI = static_cast<const NVPTXTargetLowering *>(
4756           &DAG.getTargetLoweringInfo());
4757       if (!TLI->allowFMA(DAG.getMachineFunction(), OptLevel))
4758         return SDValue();
4759 
4760       // For floating point:
4761       // Do the fusion only when the mul has less than 5 uses and all
4762       // are add.
4763       // The heuristic is that if a use is not an add, then that use
4764       // cannot be fused into fma, therefore mul is still needed anyway.
4765       // If there are more than 4 uses, even if they are all add, fusing
4766       // them will increase register pressue.
4767       //
4768       int numUses = 0;
4769       int nonAddCount = 0;
4770       for (const SDNode *User : N0.getNode()->uses()) {
4771         numUses++;
4772         if (User->getOpcode() != ISD::FADD)
4773           ++nonAddCount;
4774       }
4775       if (numUses >= 5)
4776         return SDValue();
4777       if (nonAddCount) {
4778         int orderNo = N->getIROrder();
4779         int orderNo2 = N0.getNode()->getIROrder();
4780         // simple heuristics here for considering potential register
4781         // pressure, the logics here is that the differnce are used
4782         // to measure the distance between def and use, the longer distance
4783         // more likely cause register pressure.
4784         if (orderNo - orderNo2 < 500)
4785           return SDValue();
4786 
4787         // Now, check if at least one of the FMUL's operands is live beyond the node N,
4788         // which guarantees that the FMA will not increase register pressure at node N.
4789         bool opIsLive = false;
4790         const SDNode *left = N0.getOperand(0).getNode();
4791         const SDNode *right = N0.getOperand(1).getNode();
4792 
4793         if (isa<ConstantSDNode>(left) || isa<ConstantSDNode>(right))
4794           opIsLive = true;
4795 
4796         if (!opIsLive)
4797           for (const SDNode *User : left->uses()) {
4798             int orderNo3 = User->getIROrder();
4799             if (orderNo3 > orderNo) {
4800               opIsLive = true;
4801               break;
4802             }
4803           }
4804 
4805         if (!opIsLive)
4806           for (const SDNode *User : right->uses()) {
4807             int orderNo3 = User->getIROrder();
4808             if (orderNo3 > orderNo) {
4809               opIsLive = true;
4810               break;
4811             }
4812           }
4813 
4814         if (!opIsLive)
4815           return SDValue();
4816       }
4817 
4818       return DAG.getNode(ISD::FMA, SDLoc(N), VT,
4819                          N0.getOperand(0), N0.getOperand(1), N1);
4820     }
4821   }
4822 
4823   return SDValue();
4824 }
4825 
4826 static SDValue PerformStoreRetvalCombine(SDNode *N) {
4827   // Operands from the 2nd to the last one are the values to be stored
4828   for (std::size_t I = 2, OpsCount = N->ops().size(); I != OpsCount; ++I)
4829     if (!N->getOperand(I).isUndef())
4830       return SDValue();
4831 
4832   // Operand 0 is the previous value in the chain. Cannot return EntryToken
4833   // as the previous value will become unused and eliminated later.
4834   return N->getOperand(0);
4835 }
4836 
4837 /// PerformADDCombine - Target-specific dag combine xforms for ISD::ADD.
4838 ///
4839 static SDValue PerformADDCombine(SDNode *N,
4840                                  TargetLowering::DAGCombinerInfo &DCI,
4841                                  const NVPTXSubtarget &Subtarget,
4842                                  CodeGenOpt::Level OptLevel) {
4843   SDValue N0 = N->getOperand(0);
4844   SDValue N1 = N->getOperand(1);
4845 
4846   // First try with the default operand order.
4847   if (SDValue Result =
4848           PerformADDCombineWithOperands(N, N0, N1, DCI, Subtarget, OptLevel))
4849     return Result;
4850 
4851   // If that didn't work, try again with the operands commuted.
4852   return PerformADDCombineWithOperands(N, N1, N0, DCI, Subtarget, OptLevel);
4853 }
4854 
4855 static SDValue PerformANDCombine(SDNode *N,
4856                                  TargetLowering::DAGCombinerInfo &DCI) {
4857   // The type legalizer turns a vector load of i8 values into a zextload to i16
4858   // registers, optionally ANY_EXTENDs it (if target type is integer),
4859   // and ANDs off the high 8 bits. Since we turn this load into a
4860   // target-specific DAG node, the DAG combiner fails to eliminate these AND
4861   // nodes. Do that here.
4862   SDValue Val = N->getOperand(0);
4863   SDValue Mask = N->getOperand(1);
4864 
4865   if (isa<ConstantSDNode>(Val)) {
4866     std::swap(Val, Mask);
4867   }
4868 
4869   SDValue AExt;
4870   // Generally, we will see zextload -> IMOV16rr -> ANY_EXTEND -> and
4871   if (Val.getOpcode() == ISD::ANY_EXTEND) {
4872     AExt = Val;
4873     Val = Val->getOperand(0);
4874   }
4875 
4876   if (Val->isMachineOpcode() && Val->getMachineOpcode() == NVPTX::IMOV16rr) {
4877     Val = Val->getOperand(0);
4878   }
4879 
4880   if (Val->getOpcode() == NVPTXISD::LoadV2 ||
4881       Val->getOpcode() == NVPTXISD::LoadV4) {
4882     ConstantSDNode *MaskCnst = dyn_cast<ConstantSDNode>(Mask);
4883     if (!MaskCnst) {
4884       // Not an AND with a constant
4885       return SDValue();
4886     }
4887 
4888     uint64_t MaskVal = MaskCnst->getZExtValue();
4889     if (MaskVal != 0xff) {
4890       // Not an AND that chops off top 8 bits
4891       return SDValue();
4892     }
4893 
4894     MemSDNode *Mem = dyn_cast<MemSDNode>(Val);
4895     if (!Mem) {
4896       // Not a MemSDNode?!?
4897       return SDValue();
4898     }
4899 
4900     EVT MemVT = Mem->getMemoryVT();
4901     if (MemVT != MVT::v2i8 && MemVT != MVT::v4i8) {
4902       // We only handle the i8 case
4903       return SDValue();
4904     }
4905 
4906     unsigned ExtType =
4907       cast<ConstantSDNode>(Val->getOperand(Val->getNumOperands()-1))->
4908         getZExtValue();
4909     if (ExtType == ISD::SEXTLOAD) {
4910       // If for some reason the load is a sextload, the and is needed to zero
4911       // out the high 8 bits
4912       return SDValue();
4913     }
4914 
4915     bool AddTo = false;
4916     if (AExt.getNode() != nullptr) {
4917       // Re-insert the ext as a zext.
4918       Val = DCI.DAG.getNode(ISD::ZERO_EXTEND, SDLoc(N),
4919                             AExt.getValueType(), Val);
4920       AddTo = true;
4921     }
4922 
4923     // If we get here, the AND is unnecessary.  Just replace it with the load
4924     DCI.CombineTo(N, Val, AddTo);
4925   }
4926 
4927   return SDValue();
4928 }
4929 
4930 static SDValue PerformREMCombine(SDNode *N,
4931                                  TargetLowering::DAGCombinerInfo &DCI,
4932                                  CodeGenOpt::Level OptLevel) {
4933   assert(N->getOpcode() == ISD::SREM || N->getOpcode() == ISD::UREM);
4934 
4935   // Don't do anything at less than -O2.
4936   if (OptLevel < CodeGenOpt::Default)
4937     return SDValue();
4938 
4939   SelectionDAG &DAG = DCI.DAG;
4940   SDLoc DL(N);
4941   EVT VT = N->getValueType(0);
4942   bool IsSigned = N->getOpcode() == ISD::SREM;
4943   unsigned DivOpc = IsSigned ? ISD::SDIV : ISD::UDIV;
4944 
4945   const SDValue &Num = N->getOperand(0);
4946   const SDValue &Den = N->getOperand(1);
4947 
4948   for (const SDNode *U : Num->uses()) {
4949     if (U->getOpcode() == DivOpc && U->getOperand(0) == Num &&
4950         U->getOperand(1) == Den) {
4951       // Num % Den -> Num - (Num / Den) * Den
4952       return DAG.getNode(ISD::SUB, DL, VT, Num,
4953                          DAG.getNode(ISD::MUL, DL, VT,
4954                                      DAG.getNode(DivOpc, DL, VT, Num, Den),
4955                                      Den));
4956     }
4957   }
4958   return SDValue();
4959 }
4960 
4961 enum OperandSignedness {
4962   Signed = 0,
4963   Unsigned,
4964   Unknown
4965 };
4966 
4967 /// IsMulWideOperandDemotable - Checks if the provided DAG node is an operand
4968 /// that can be demoted to \p OptSize bits without loss of information. The
4969 /// signedness of the operand, if determinable, is placed in \p S.
4970 static bool IsMulWideOperandDemotable(SDValue Op,
4971                                       unsigned OptSize,
4972                                       OperandSignedness &S) {
4973   S = Unknown;
4974 
4975   if (Op.getOpcode() == ISD::SIGN_EXTEND ||
4976       Op.getOpcode() == ISD::SIGN_EXTEND_INREG) {
4977     EVT OrigVT = Op.getOperand(0).getValueType();
4978     if (OrigVT.getFixedSizeInBits() <= OptSize) {
4979       S = Signed;
4980       return true;
4981     }
4982   } else if (Op.getOpcode() == ISD::ZERO_EXTEND) {
4983     EVT OrigVT = Op.getOperand(0).getValueType();
4984     if (OrigVT.getFixedSizeInBits() <= OptSize) {
4985       S = Unsigned;
4986       return true;
4987     }
4988   }
4989 
4990   return false;
4991 }
4992 
4993 /// AreMulWideOperandsDemotable - Checks if the given LHS and RHS operands can
4994 /// be demoted to \p OptSize bits without loss of information. If the operands
4995 /// contain a constant, it should appear as the RHS operand. The signedness of
4996 /// the operands is placed in \p IsSigned.
4997 static bool AreMulWideOperandsDemotable(SDValue LHS, SDValue RHS,
4998                                         unsigned OptSize,
4999                                         bool &IsSigned) {
5000   OperandSignedness LHSSign;
5001 
5002   // The LHS operand must be a demotable op
5003   if (!IsMulWideOperandDemotable(LHS, OptSize, LHSSign))
5004     return false;
5005 
5006   // We should have been able to determine the signedness from the LHS
5007   if (LHSSign == Unknown)
5008     return false;
5009 
5010   IsSigned = (LHSSign == Signed);
5011 
5012   // The RHS can be a demotable op or a constant
5013   if (ConstantSDNode *CI = dyn_cast<ConstantSDNode>(RHS)) {
5014     const APInt &Val = CI->getAPIntValue();
5015     if (LHSSign == Unsigned) {
5016       return Val.isIntN(OptSize);
5017     } else {
5018       return Val.isSignedIntN(OptSize);
5019     }
5020   } else {
5021     OperandSignedness RHSSign;
5022     if (!IsMulWideOperandDemotable(RHS, OptSize, RHSSign))
5023       return false;
5024 
5025     return LHSSign == RHSSign;
5026   }
5027 }
5028 
5029 /// TryMULWIDECombine - Attempt to replace a multiply of M bits with a multiply
5030 /// of M/2 bits that produces an M-bit result (i.e. mul.wide). This transform
5031 /// works on both multiply DAG nodes and SHL DAG nodes with a constant shift
5032 /// amount.
5033 static SDValue TryMULWIDECombine(SDNode *N,
5034                                  TargetLowering::DAGCombinerInfo &DCI) {
5035   EVT MulType = N->getValueType(0);
5036   if (MulType != MVT::i32 && MulType != MVT::i64) {
5037     return SDValue();
5038   }
5039 
5040   SDLoc DL(N);
5041   unsigned OptSize = MulType.getSizeInBits() >> 1;
5042   SDValue LHS = N->getOperand(0);
5043   SDValue RHS = N->getOperand(1);
5044 
5045   // Canonicalize the multiply so the constant (if any) is on the right
5046   if (N->getOpcode() == ISD::MUL) {
5047     if (isa<ConstantSDNode>(LHS)) {
5048       std::swap(LHS, RHS);
5049     }
5050   }
5051 
5052   // If we have a SHL, determine the actual multiply amount
5053   if (N->getOpcode() == ISD::SHL) {
5054     ConstantSDNode *ShlRHS = dyn_cast<ConstantSDNode>(RHS);
5055     if (!ShlRHS) {
5056       return SDValue();
5057     }
5058 
5059     APInt ShiftAmt = ShlRHS->getAPIntValue();
5060     unsigned BitWidth = MulType.getSizeInBits();
5061     if (ShiftAmt.sge(0) && ShiftAmt.slt(BitWidth)) {
5062       APInt MulVal = APInt(BitWidth, 1) << ShiftAmt;
5063       RHS = DCI.DAG.getConstant(MulVal, DL, MulType);
5064     } else {
5065       return SDValue();
5066     }
5067   }
5068 
5069   bool Signed;
5070   // Verify that our operands are demotable
5071   if (!AreMulWideOperandsDemotable(LHS, RHS, OptSize, Signed)) {
5072     return SDValue();
5073   }
5074 
5075   EVT DemotedVT;
5076   if (MulType == MVT::i32) {
5077     DemotedVT = MVT::i16;
5078   } else {
5079     DemotedVT = MVT::i32;
5080   }
5081 
5082   // Truncate the operands to the correct size. Note that these are just for
5083   // type consistency and will (likely) be eliminated in later phases.
5084   SDValue TruncLHS =
5085     DCI.DAG.getNode(ISD::TRUNCATE, DL, DemotedVT, LHS);
5086   SDValue TruncRHS =
5087     DCI.DAG.getNode(ISD::TRUNCATE, DL, DemotedVT, RHS);
5088 
5089   unsigned Opc;
5090   if (Signed) {
5091     Opc = NVPTXISD::MUL_WIDE_SIGNED;
5092   } else {
5093     Opc = NVPTXISD::MUL_WIDE_UNSIGNED;
5094   }
5095 
5096   return DCI.DAG.getNode(Opc, DL, MulType, TruncLHS, TruncRHS);
5097 }
5098 
5099 /// PerformMULCombine - Runs PTX-specific DAG combine patterns on MUL nodes.
5100 static SDValue PerformMULCombine(SDNode *N,
5101                                  TargetLowering::DAGCombinerInfo &DCI,
5102                                  CodeGenOpt::Level OptLevel) {
5103   if (OptLevel > 0) {
5104     // Try mul.wide combining at OptLevel > 0
5105     if (SDValue Ret = TryMULWIDECombine(N, DCI))
5106       return Ret;
5107   }
5108 
5109   return SDValue();
5110 }
5111 
5112 /// PerformSHLCombine - Runs PTX-specific DAG combine patterns on SHL nodes.
5113 static SDValue PerformSHLCombine(SDNode *N,
5114                                  TargetLowering::DAGCombinerInfo &DCI,
5115                                  CodeGenOpt::Level OptLevel) {
5116   if (OptLevel > 0) {
5117     // Try mul.wide combining at OptLevel > 0
5118     if (SDValue Ret = TryMULWIDECombine(N, DCI))
5119       return Ret;
5120   }
5121 
5122   return SDValue();
5123 }
5124 
5125 static SDValue PerformSETCCCombine(SDNode *N,
5126                                    TargetLowering::DAGCombinerInfo &DCI) {
5127   EVT CCType = N->getValueType(0);
5128   SDValue A = N->getOperand(0);
5129   SDValue B = N->getOperand(1);
5130 
5131   if (CCType != MVT::v2i1 || A.getValueType() != MVT::v2f16)
5132     return SDValue();
5133 
5134   SDLoc DL(N);
5135   // setp.f16x2 returns two scalar predicates, which we need to
5136   // convert back to v2i1. The returned result will be scalarized by
5137   // the legalizer, but the comparison will remain a single vector
5138   // instruction.
5139   SDValue CCNode = DCI.DAG.getNode(NVPTXISD::SETP_F16X2, DL,
5140                                    DCI.DAG.getVTList(MVT::i1, MVT::i1),
5141                                    {A, B, N->getOperand(2)});
5142   return DCI.DAG.getNode(ISD::BUILD_VECTOR, DL, CCType, CCNode.getValue(0),
5143                          CCNode.getValue(1));
5144 }
5145 
5146 SDValue NVPTXTargetLowering::PerformDAGCombine(SDNode *N,
5147                                                DAGCombinerInfo &DCI) const {
5148   CodeGenOpt::Level OptLevel = getTargetMachine().getOptLevel();
5149   switch (N->getOpcode()) {
5150     default: break;
5151     case ISD::ADD:
5152     case ISD::FADD:
5153       return PerformADDCombine(N, DCI, STI, OptLevel);
5154     case ISD::MUL:
5155       return PerformMULCombine(N, DCI, OptLevel);
5156     case ISD::SHL:
5157       return PerformSHLCombine(N, DCI, OptLevel);
5158     case ISD::AND:
5159       return PerformANDCombine(N, DCI);
5160     case ISD::UREM:
5161     case ISD::SREM:
5162       return PerformREMCombine(N, DCI, OptLevel);
5163     case ISD::SETCC:
5164       return PerformSETCCCombine(N, DCI);
5165     case NVPTXISD::StoreRetval:
5166     case NVPTXISD::StoreRetvalV2:
5167     case NVPTXISD::StoreRetvalV4:
5168       return PerformStoreRetvalCombine(N);
5169   }
5170   return SDValue();
5171 }
5172 
5173 /// ReplaceVectorLoad - Convert vector loads into multi-output scalar loads.
5174 static void ReplaceLoadVector(SDNode *N, SelectionDAG &DAG,
5175                               SmallVectorImpl<SDValue> &Results) {
5176   EVT ResVT = N->getValueType(0);
5177   SDLoc DL(N);
5178 
5179   assert(ResVT.isVector() && "Vector load must have vector type");
5180 
5181   // We only handle "native" vector sizes for now, e.g. <4 x double> is not
5182   // legal.  We can (and should) split that into 2 loads of <2 x double> here
5183   // but I'm leaving that as a TODO for now.
5184   assert(ResVT.isSimple() && "Can only handle simple types");
5185   switch (ResVT.getSimpleVT().SimpleTy) {
5186   default:
5187     return;
5188   case MVT::v2i8:
5189   case MVT::v2i16:
5190   case MVT::v2i32:
5191   case MVT::v2i64:
5192   case MVT::v2f16:
5193   case MVT::v2f32:
5194   case MVT::v2f64:
5195   case MVT::v4i8:
5196   case MVT::v4i16:
5197   case MVT::v4i32:
5198   case MVT::v4f16:
5199   case MVT::v4f32:
5200   case MVT::v8f16: // <4 x f16x2>
5201     // This is a "native" vector type
5202     break;
5203   }
5204 
5205   LoadSDNode *LD = cast<LoadSDNode>(N);
5206 
5207   Align Alignment = LD->getAlign();
5208   auto &TD = DAG.getDataLayout();
5209   Align PrefAlign =
5210       TD.getPrefTypeAlign(LD->getMemoryVT().getTypeForEVT(*DAG.getContext()));
5211   if (Alignment < PrefAlign) {
5212     // This load is not sufficiently aligned, so bail out and let this vector
5213     // load be scalarized.  Note that we may still be able to emit smaller
5214     // vector loads.  For example, if we are loading a <4 x float> with an
5215     // alignment of 8, this check will fail but the legalizer will try again
5216     // with 2 x <2 x float>, which will succeed with an alignment of 8.
5217     return;
5218   }
5219 
5220   EVT EltVT = ResVT.getVectorElementType();
5221   unsigned NumElts = ResVT.getVectorNumElements();
5222 
5223   // Since LoadV2 is a target node, we cannot rely on DAG type legalization.
5224   // Therefore, we must ensure the type is legal.  For i1 and i8, we set the
5225   // loaded type to i16 and propagate the "real" type as the memory type.
5226   bool NeedTrunc = false;
5227   if (EltVT.getSizeInBits() < 16) {
5228     EltVT = MVT::i16;
5229     NeedTrunc = true;
5230   }
5231 
5232   unsigned Opcode = 0;
5233   SDVTList LdResVTs;
5234   bool LoadF16x2 = false;
5235 
5236   switch (NumElts) {
5237   default:
5238     return;
5239   case 2:
5240     Opcode = NVPTXISD::LoadV2;
5241     LdResVTs = DAG.getVTList(EltVT, EltVT, MVT::Other);
5242     break;
5243   case 4: {
5244     Opcode = NVPTXISD::LoadV4;
5245     EVT ListVTs[] = { EltVT, EltVT, EltVT, EltVT, MVT::Other };
5246     LdResVTs = DAG.getVTList(ListVTs);
5247     break;
5248   }
5249   case 8: {
5250     // v8f16 is a special case. PTX doesn't have ld.v8.f16
5251     // instruction. Instead, we split the vector into v2f16 chunks and
5252     // load them with ld.v4.b32.
5253     assert(Isf16Orbf16Type(EltVT.getSimpleVT()) &&
5254            "Unsupported v8 vector type.");
5255     LoadF16x2 = true;
5256     Opcode = NVPTXISD::LoadV4;
5257     EVT VVT = (EltVT == MVT::f16) ? MVT::v2f16 : MVT::v2bf16;
5258     EVT ListVTs[] = {VVT, VVT, VVT, VVT, MVT::Other};
5259     LdResVTs = DAG.getVTList(ListVTs);
5260     break;
5261   }
5262   }
5263 
5264   // Copy regular operands
5265   SmallVector<SDValue, 8> OtherOps(N->op_begin(), N->op_end());
5266 
5267   // The select routine does not have access to the LoadSDNode instance, so
5268   // pass along the extension information
5269   OtherOps.push_back(DAG.getIntPtrConstant(LD->getExtensionType(), DL));
5270 
5271   SDValue NewLD = DAG.getMemIntrinsicNode(Opcode, DL, LdResVTs, OtherOps,
5272                                           LD->getMemoryVT(),
5273                                           LD->getMemOperand());
5274 
5275   SmallVector<SDValue, 8> ScalarRes;
5276   if (LoadF16x2) {
5277     // Split v2f16 subvectors back into individual elements.
5278     NumElts /= 2;
5279     for (unsigned i = 0; i < NumElts; ++i) {
5280       SDValue SubVector = NewLD.getValue(i);
5281       SDValue E0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, SubVector,
5282                                DAG.getIntPtrConstant(0, DL));
5283       SDValue E1 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, SubVector,
5284                                DAG.getIntPtrConstant(1, DL));
5285       ScalarRes.push_back(E0);
5286       ScalarRes.push_back(E1);
5287     }
5288   } else {
5289     for (unsigned i = 0; i < NumElts; ++i) {
5290       SDValue Res = NewLD.getValue(i);
5291       if (NeedTrunc)
5292         Res = DAG.getNode(ISD::TRUNCATE, DL, ResVT.getVectorElementType(), Res);
5293       ScalarRes.push_back(Res);
5294     }
5295   }
5296 
5297   SDValue LoadChain = NewLD.getValue(NumElts);
5298 
5299   SDValue BuildVec = DAG.getBuildVector(ResVT, DL, ScalarRes);
5300 
5301   Results.push_back(BuildVec);
5302   Results.push_back(LoadChain);
5303 }
5304 
5305 static void ReplaceINTRINSIC_W_CHAIN(SDNode *N, SelectionDAG &DAG,
5306                                      SmallVectorImpl<SDValue> &Results) {
5307   SDValue Chain = N->getOperand(0);
5308   SDValue Intrin = N->getOperand(1);
5309   SDLoc DL(N);
5310 
5311   // Get the intrinsic ID
5312   unsigned IntrinNo = cast<ConstantSDNode>(Intrin.getNode())->getZExtValue();
5313   switch (IntrinNo) {
5314   default:
5315     return;
5316   case Intrinsic::nvvm_ldg_global_i:
5317   case Intrinsic::nvvm_ldg_global_f:
5318   case Intrinsic::nvvm_ldg_global_p:
5319   case Intrinsic::nvvm_ldu_global_i:
5320   case Intrinsic::nvvm_ldu_global_f:
5321   case Intrinsic::nvvm_ldu_global_p: {
5322     EVT ResVT = N->getValueType(0);
5323 
5324     if (ResVT.isVector()) {
5325       // Vector LDG/LDU
5326 
5327       unsigned NumElts = ResVT.getVectorNumElements();
5328       EVT EltVT = ResVT.getVectorElementType();
5329 
5330       // Since LDU/LDG are target nodes, we cannot rely on DAG type
5331       // legalization.
5332       // Therefore, we must ensure the type is legal.  For i1 and i8, we set the
5333       // loaded type to i16 and propagate the "real" type as the memory type.
5334       bool NeedTrunc = false;
5335       if (EltVT.getSizeInBits() < 16) {
5336         EltVT = MVT::i16;
5337         NeedTrunc = true;
5338       }
5339 
5340       unsigned Opcode = 0;
5341       SDVTList LdResVTs;
5342 
5343       switch (NumElts) {
5344       default:
5345         return;
5346       case 2:
5347         switch (IntrinNo) {
5348         default:
5349           return;
5350         case Intrinsic::nvvm_ldg_global_i:
5351         case Intrinsic::nvvm_ldg_global_f:
5352         case Intrinsic::nvvm_ldg_global_p:
5353           Opcode = NVPTXISD::LDGV2;
5354           break;
5355         case Intrinsic::nvvm_ldu_global_i:
5356         case Intrinsic::nvvm_ldu_global_f:
5357         case Intrinsic::nvvm_ldu_global_p:
5358           Opcode = NVPTXISD::LDUV2;
5359           break;
5360         }
5361         LdResVTs = DAG.getVTList(EltVT, EltVT, MVT::Other);
5362         break;
5363       case 4: {
5364         switch (IntrinNo) {
5365         default:
5366           return;
5367         case Intrinsic::nvvm_ldg_global_i:
5368         case Intrinsic::nvvm_ldg_global_f:
5369         case Intrinsic::nvvm_ldg_global_p:
5370           Opcode = NVPTXISD::LDGV4;
5371           break;
5372         case Intrinsic::nvvm_ldu_global_i:
5373         case Intrinsic::nvvm_ldu_global_f:
5374         case Intrinsic::nvvm_ldu_global_p:
5375           Opcode = NVPTXISD::LDUV4;
5376           break;
5377         }
5378         EVT ListVTs[] = { EltVT, EltVT, EltVT, EltVT, MVT::Other };
5379         LdResVTs = DAG.getVTList(ListVTs);
5380         break;
5381       }
5382       }
5383 
5384       SmallVector<SDValue, 8> OtherOps;
5385 
5386       // Copy regular operands
5387 
5388       OtherOps.push_back(Chain); // Chain
5389                                  // Skip operand 1 (intrinsic ID)
5390       // Others
5391       OtherOps.append(N->op_begin() + 2, N->op_end());
5392 
5393       MemIntrinsicSDNode *MemSD = cast<MemIntrinsicSDNode>(N);
5394 
5395       SDValue NewLD = DAG.getMemIntrinsicNode(Opcode, DL, LdResVTs, OtherOps,
5396                                               MemSD->getMemoryVT(),
5397                                               MemSD->getMemOperand());
5398 
5399       SmallVector<SDValue, 4> ScalarRes;
5400 
5401       for (unsigned i = 0; i < NumElts; ++i) {
5402         SDValue Res = NewLD.getValue(i);
5403         if (NeedTrunc)
5404           Res =
5405               DAG.getNode(ISD::TRUNCATE, DL, ResVT.getVectorElementType(), Res);
5406         ScalarRes.push_back(Res);
5407       }
5408 
5409       SDValue LoadChain = NewLD.getValue(NumElts);
5410 
5411       SDValue BuildVec =
5412           DAG.getBuildVector(ResVT, DL, ScalarRes);
5413 
5414       Results.push_back(BuildVec);
5415       Results.push_back(LoadChain);
5416     } else {
5417       // i8 LDG/LDU
5418       assert(ResVT.isSimple() && ResVT.getSimpleVT().SimpleTy == MVT::i8 &&
5419              "Custom handling of non-i8 ldu/ldg?");
5420 
5421       // Just copy all operands as-is
5422       SmallVector<SDValue, 4> Ops(N->op_begin(), N->op_end());
5423 
5424       // Force output to i16
5425       SDVTList LdResVTs = DAG.getVTList(MVT::i16, MVT::Other);
5426 
5427       MemIntrinsicSDNode *MemSD = cast<MemIntrinsicSDNode>(N);
5428 
5429       // We make sure the memory type is i8, which will be used during isel
5430       // to select the proper instruction.
5431       SDValue NewLD =
5432           DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, DL, LdResVTs, Ops,
5433                                   MVT::i8, MemSD->getMemOperand());
5434 
5435       Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i8,
5436                                     NewLD.getValue(0)));
5437       Results.push_back(NewLD.getValue(1));
5438     }
5439   }
5440   }
5441 }
5442 
5443 void NVPTXTargetLowering::ReplaceNodeResults(
5444     SDNode *N, SmallVectorImpl<SDValue> &Results, SelectionDAG &DAG) const {
5445   switch (N->getOpcode()) {
5446   default:
5447     report_fatal_error("Unhandled custom legalization");
5448   case ISD::LOAD:
5449     ReplaceLoadVector(N, DAG, Results);
5450     return;
5451   case ISD::INTRINSIC_W_CHAIN:
5452     ReplaceINTRINSIC_W_CHAIN(N, DAG, Results);
5453     return;
5454   }
5455 }
5456 
5457 NVPTXTargetLowering::AtomicExpansionKind
5458 NVPTXTargetLowering::shouldExpandAtomicRMWInIR(AtomicRMWInst *AI) const {
5459   Type *Ty = AI->getValOperand()->getType();
5460 
5461   if (AI->isFloatingPointOperation()) {
5462     if (AI->getOperation() == AtomicRMWInst::BinOp::FAdd) {
5463       if (Ty->isFloatTy())
5464         return AtomicExpansionKind::None;
5465       if (Ty->isDoubleTy() && STI.hasAtomAddF64())
5466         return AtomicExpansionKind::None;
5467     }
5468     return AtomicExpansionKind::CmpXChg;
5469   }
5470 
5471   assert(Ty->isIntegerTy() && "Ty should be integer at this point");
5472   auto ITy = cast<llvm::IntegerType>(Ty);
5473 
5474   switch (AI->getOperation()) {
5475   default:
5476     return AtomicExpansionKind::CmpXChg;
5477   case AtomicRMWInst::BinOp::And:
5478   case AtomicRMWInst::BinOp::Or:
5479   case AtomicRMWInst::BinOp::Xor:
5480   case AtomicRMWInst::BinOp::Xchg:
5481     switch (ITy->getBitWidth()) {
5482     case 8:
5483     case 16:
5484       return AtomicExpansionKind::CmpXChg;
5485     case 32:
5486       return AtomicExpansionKind::None;
5487     case 64:
5488       if (STI.hasAtomBitwise64())
5489         return AtomicExpansionKind::None;
5490       return AtomicExpansionKind::CmpXChg;
5491     default:
5492       llvm_unreachable("unsupported width encountered");
5493     }
5494   case AtomicRMWInst::BinOp::Add:
5495   case AtomicRMWInst::BinOp::Sub:
5496   case AtomicRMWInst::BinOp::Max:
5497   case AtomicRMWInst::BinOp::Min:
5498   case AtomicRMWInst::BinOp::UMax:
5499   case AtomicRMWInst::BinOp::UMin:
5500     switch (ITy->getBitWidth()) {
5501     case 8:
5502     case 16:
5503       return AtomicExpansionKind::CmpXChg;
5504     case 32:
5505       return AtomicExpansionKind::None;
5506     case 64:
5507       if (STI.hasAtomMinMax64())
5508         return AtomicExpansionKind::None;
5509       return AtomicExpansionKind::CmpXChg;
5510     default:
5511       llvm_unreachable("unsupported width encountered");
5512     }
5513   }
5514 
5515   return AtomicExpansionKind::CmpXChg;
5516 }
5517 
5518 // Pin NVPTXTargetObjectFile's vtables to this file.
5519 NVPTXTargetObjectFile::~NVPTXTargetObjectFile() = default;
5520 
5521 MCSection *NVPTXTargetObjectFile::SelectSectionForGlobal(
5522     const GlobalObject *GO, SectionKind Kind, const TargetMachine &TM) const {
5523   return getDataSection();
5524 }
5525