1 //===-- NVPTXISelLowering.cpp - NVPTX DAG Lowering Implementation ---------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines the interfaces that NVPTX uses to lower LLVM code into a
10 // selection DAG.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "NVPTXISelLowering.h"
15 #include "MCTargetDesc/NVPTXBaseInfo.h"
16 #include "NVPTX.h"
17 #include "NVPTXSubtarget.h"
18 #include "NVPTXTargetMachine.h"
19 #include "NVPTXTargetObjectFile.h"
20 #include "NVPTXUtilities.h"
21 #include "llvm/ADT/APInt.h"
22 #include "llvm/ADT/SmallVector.h"
23 #include "llvm/ADT/StringRef.h"
24 #include "llvm/CodeGen/Analysis.h"
25 #include "llvm/CodeGen/MachineFunction.h"
26 #include "llvm/CodeGen/MachineMemOperand.h"
27 #include "llvm/CodeGen/SelectionDAG.h"
28 #include "llvm/CodeGen/SelectionDAGNodes.h"
29 #include "llvm/CodeGen/TargetCallingConv.h"
30 #include "llvm/CodeGen/TargetLowering.h"
31 #include "llvm/CodeGen/ValueTypes.h"
32 #include "llvm/IR/Argument.h"
33 #include "llvm/IR/Attributes.h"
34 #include "llvm/IR/CallSite.h"
35 #include "llvm/IR/Constants.h"
36 #include "llvm/IR/DataLayout.h"
37 #include "llvm/IR/DerivedTypes.h"
38 #include "llvm/IR/Function.h"
39 #include "llvm/IR/GlobalValue.h"
40 #include "llvm/IR/Instruction.h"
41 #include "llvm/IR/Instructions.h"
42 #include "llvm/IR/IntrinsicsNVPTX.h"
43 #include "llvm/IR/Module.h"
44 #include "llvm/IR/Type.h"
45 #include "llvm/IR/Value.h"
46 #include "llvm/Support/Casting.h"
47 #include "llvm/Support/CodeGen.h"
48 #include "llvm/Support/CommandLine.h"
49 #include "llvm/Support/ErrorHandling.h"
50 #include "llvm/Support/MachineValueType.h"
51 #include "llvm/Support/MathExtras.h"
52 #include "llvm/Support/raw_ostream.h"
53 #include "llvm/Target/TargetMachine.h"
54 #include "llvm/Target/TargetOptions.h"
55 #include <algorithm>
56 #include <cassert>
57 #include <cstdint>
58 #include <iterator>
59 #include <sstream>
60 #include <string>
61 #include <utility>
62 #include <vector>
63 
64 #define DEBUG_TYPE "nvptx-lower"
65 
66 using namespace llvm;
67 
68 static unsigned int uniqueCallSite = 0;
69 
70 static cl::opt<bool> sched4reg(
71     "nvptx-sched4reg",
72     cl::desc("NVPTX Specific: schedule for register pressue"), cl::init(false));
73 
74 static cl::opt<unsigned>
75 FMAContractLevelOpt("nvptx-fma-level", cl::ZeroOrMore, cl::Hidden,
76                     cl::desc("NVPTX Specific: FMA contraction (0: don't do it"
77                              " 1: do it  2: do it aggressively"),
78                     cl::init(2));
79 
80 static cl::opt<int> UsePrecDivF32(
81     "nvptx-prec-divf32", cl::ZeroOrMore, cl::Hidden,
82     cl::desc("NVPTX Specifies: 0 use div.approx, 1 use div.full, 2 use"
83              " IEEE Compliant F32 div.rnd if available."),
84     cl::init(2));
85 
86 static cl::opt<bool> UsePrecSqrtF32(
87     "nvptx-prec-sqrtf32", cl::Hidden,
88     cl::desc("NVPTX Specific: 0 use sqrt.approx, 1 use sqrt.rn."),
89     cl::init(true));
90 
91 static cl::opt<bool> FtzEnabled(
92     "nvptx-f32ftz", cl::ZeroOrMore, cl::Hidden,
93     cl::desc("NVPTX Specific: Flush f32 subnormals to sign-preserving zero."),
94     cl::init(false));
95 
96 int NVPTXTargetLowering::getDivF32Level() const {
97   if (UsePrecDivF32.getNumOccurrences() > 0) {
98     // If nvptx-prec-div32=N is used on the command-line, always honor it
99     return UsePrecDivF32;
100   } else {
101     // Otherwise, use div.approx if fast math is enabled
102     if (getTargetMachine().Options.UnsafeFPMath)
103       return 0;
104     else
105       return 2;
106   }
107 }
108 
109 bool NVPTXTargetLowering::usePrecSqrtF32() const {
110   if (UsePrecSqrtF32.getNumOccurrences() > 0) {
111     // If nvptx-prec-sqrtf32 is used on the command-line, always honor it
112     return UsePrecSqrtF32;
113   } else {
114     // Otherwise, use sqrt.approx if fast math is enabled
115     return !getTargetMachine().Options.UnsafeFPMath;
116   }
117 }
118 
119 bool NVPTXTargetLowering::useF32FTZ(const MachineFunction &MF) const {
120   // TODO: Get rid of this flag; there can be only one way to do this.
121   if (FtzEnabled.getNumOccurrences() > 0) {
122     // If nvptx-f32ftz is used on the command-line, always honor it
123     return FtzEnabled;
124   } else {
125     const Function &F = MF.getFunction();
126     // Otherwise, check for an nvptx-f32ftz attribute on the function
127     if (F.hasFnAttribute("nvptx-f32ftz"))
128       return F.getFnAttribute("nvptx-f32ftz").getValueAsString() == "true";
129     else
130       return false;
131   }
132 }
133 
134 static bool IsPTXVectorType(MVT VT) {
135   switch (VT.SimpleTy) {
136   default:
137     return false;
138   case MVT::v2i1:
139   case MVT::v4i1:
140   case MVT::v2i8:
141   case MVT::v4i8:
142   case MVT::v2i16:
143   case MVT::v4i16:
144   case MVT::v2i32:
145   case MVT::v4i32:
146   case MVT::v2i64:
147   case MVT::v2f16:
148   case MVT::v4f16:
149   case MVT::v8f16: // <4 x f16x2>
150   case MVT::v2f32:
151   case MVT::v4f32:
152   case MVT::v2f64:
153     return true;
154   }
155 }
156 
157 /// ComputePTXValueVTs - For the given Type \p Ty, returns the set of primitive
158 /// EVTs that compose it.  Unlike ComputeValueVTs, this will break apart vectors
159 /// into their primitive components.
160 /// NOTE: This is a band-aid for code that expects ComputeValueVTs to return the
161 /// same number of types as the Ins/Outs arrays in LowerFormalArguments,
162 /// LowerCall, and LowerReturn.
163 static void ComputePTXValueVTs(const TargetLowering &TLI, const DataLayout &DL,
164                                Type *Ty, SmallVectorImpl<EVT> &ValueVTs,
165                                SmallVectorImpl<uint64_t> *Offsets = nullptr,
166                                uint64_t StartingOffset = 0) {
167   SmallVector<EVT, 16> TempVTs;
168   SmallVector<uint64_t, 16> TempOffsets;
169 
170   // Special case for i128 - decompose to (i64, i64)
171   if (Ty->isIntegerTy(128)) {
172     ValueVTs.push_back(EVT(MVT::i64));
173     ValueVTs.push_back(EVT(MVT::i64));
174 
175     if (Offsets) {
176       Offsets->push_back(StartingOffset + 0);
177       Offsets->push_back(StartingOffset + 8);
178     }
179 
180     return;
181   }
182 
183   // Given a struct type, recursively traverse the elements with custom ComputePTXValueVTs.
184   if (StructType *STy = dyn_cast<StructType>(Ty)) {
185     auto const *SL = DL.getStructLayout(STy);
186     auto ElementNum = 0;
187     for(auto *EI : STy->elements()) {
188       ComputePTXValueVTs(TLI, DL, EI, ValueVTs, Offsets,
189                          StartingOffset + SL->getElementOffset(ElementNum));
190       ++ElementNum;
191     }
192     return;
193   }
194 
195   ComputeValueVTs(TLI, DL, Ty, TempVTs, &TempOffsets, StartingOffset);
196   for (unsigned i = 0, e = TempVTs.size(); i != e; ++i) {
197     EVT VT = TempVTs[i];
198     uint64_t Off = TempOffsets[i];
199     // Split vectors into individual elements, except for v2f16, which
200     // we will pass as a single scalar.
201     if (VT.isVector()) {
202       unsigned NumElts = VT.getVectorNumElements();
203       EVT EltVT = VT.getVectorElementType();
204       // Vectors with an even number of f16 elements will be passed to
205       // us as an array of v2f16 elements. We must match this so we
206       // stay in sync with Ins/Outs.
207       if (EltVT == MVT::f16 && NumElts % 2 == 0) {
208         EltVT = MVT::v2f16;
209         NumElts /= 2;
210       }
211       for (unsigned j = 0; j != NumElts; ++j) {
212         ValueVTs.push_back(EltVT);
213         if (Offsets)
214           Offsets->push_back(Off + j * EltVT.getStoreSize());
215       }
216     } else {
217       ValueVTs.push_back(VT);
218       if (Offsets)
219         Offsets->push_back(Off);
220     }
221   }
222 }
223 
224 // Check whether we can merge loads/stores of some of the pieces of a
225 // flattened function parameter or return value into a single vector
226 // load/store.
227 //
228 // The flattened parameter is represented as a list of EVTs and
229 // offsets, and the whole structure is aligned to ParamAlignment. This
230 // function determines whether we can load/store pieces of the
231 // parameter starting at index Idx using a single vectorized op of
232 // size AccessSize. If so, it returns the number of param pieces
233 // covered by the vector op. Otherwise, it returns 1.
234 static unsigned CanMergeParamLoadStoresStartingAt(
235     unsigned Idx, uint32_t AccessSize, const SmallVectorImpl<EVT> &ValueVTs,
236     const SmallVectorImpl<uint64_t> &Offsets, unsigned ParamAlignment) {
237   assert(isPowerOf2_32(AccessSize) && "must be a power of 2!");
238 
239   // Can't vectorize if param alignment is not sufficient.
240   if (AccessSize > ParamAlignment)
241     return 1;
242   // Can't vectorize if offset is not aligned.
243   if (Offsets[Idx] & (AccessSize - 1))
244     return 1;
245 
246   EVT EltVT = ValueVTs[Idx];
247   unsigned EltSize = EltVT.getStoreSize();
248 
249   // Element is too large to vectorize.
250   if (EltSize >= AccessSize)
251     return 1;
252 
253   unsigned NumElts = AccessSize / EltSize;
254   // Can't vectorize if AccessBytes if not a multiple of EltSize.
255   if (AccessSize != EltSize * NumElts)
256     return 1;
257 
258   // We don't have enough elements to vectorize.
259   if (Idx + NumElts > ValueVTs.size())
260     return 1;
261 
262   // PTX ISA can only deal with 2- and 4-element vector ops.
263   if (NumElts != 4 && NumElts != 2)
264     return 1;
265 
266   for (unsigned j = Idx + 1; j < Idx + NumElts; ++j) {
267     // Types do not match.
268     if (ValueVTs[j] != EltVT)
269       return 1;
270 
271     // Elements are not contiguous.
272     if (Offsets[j] - Offsets[j - 1] != EltSize)
273       return 1;
274   }
275   // OK. We can vectorize ValueVTs[i..i+NumElts)
276   return NumElts;
277 }
278 
279 // Flags for tracking per-element vectorization state of loads/stores
280 // of a flattened function parameter or return value.
281 enum ParamVectorizationFlags {
282   PVF_INNER = 0x0, // Middle elements of a vector.
283   PVF_FIRST = 0x1, // First element of the vector.
284   PVF_LAST = 0x2,  // Last element of the vector.
285   // Scalar is effectively a 1-element vector.
286   PVF_SCALAR = PVF_FIRST | PVF_LAST
287 };
288 
289 // Computes whether and how we can vectorize the loads/stores of a
290 // flattened function parameter or return value.
291 //
292 // The flattened parameter is represented as the list of ValueVTs and
293 // Offsets, and is aligned to ParamAlignment bytes. We return a vector
294 // of the same size as ValueVTs indicating how each piece should be
295 // loaded/stored (i.e. as a scalar, or as part of a vector
296 // load/store).
297 static SmallVector<ParamVectorizationFlags, 16>
298 VectorizePTXValueVTs(const SmallVectorImpl<EVT> &ValueVTs,
299                      const SmallVectorImpl<uint64_t> &Offsets,
300                      unsigned ParamAlignment) {
301   // Set vector size to match ValueVTs and mark all elements as
302   // scalars by default.
303   SmallVector<ParamVectorizationFlags, 16> VectorInfo;
304   VectorInfo.assign(ValueVTs.size(), PVF_SCALAR);
305 
306   // Check what we can vectorize using 128/64/32-bit accesses.
307   for (int I = 0, E = ValueVTs.size(); I != E; ++I) {
308     // Skip elements we've already processed.
309     assert(VectorInfo[I] == PVF_SCALAR && "Unexpected vector info state.");
310     for (unsigned AccessSize : {16, 8, 4, 2}) {
311       unsigned NumElts = CanMergeParamLoadStoresStartingAt(
312           I, AccessSize, ValueVTs, Offsets, ParamAlignment);
313       // Mark vectorized elements.
314       switch (NumElts) {
315       default:
316         llvm_unreachable("Unexpected return value");
317       case 1:
318         // Can't vectorize using this size, try next smaller size.
319         continue;
320       case 2:
321         assert(I + 1 < E && "Not enough elements.");
322         VectorInfo[I] = PVF_FIRST;
323         VectorInfo[I + 1] = PVF_LAST;
324         I += 1;
325         break;
326       case 4:
327         assert(I + 3 < E && "Not enough elements.");
328         VectorInfo[I] = PVF_FIRST;
329         VectorInfo[I + 1] = PVF_INNER;
330         VectorInfo[I + 2] = PVF_INNER;
331         VectorInfo[I + 3] = PVF_LAST;
332         I += 3;
333         break;
334       }
335       // Break out of the inner loop because we've already succeeded
336       // using largest possible AccessSize.
337       break;
338     }
339   }
340   return VectorInfo;
341 }
342 
343 // NVPTXTargetLowering Constructor.
344 NVPTXTargetLowering::NVPTXTargetLowering(const NVPTXTargetMachine &TM,
345                                          const NVPTXSubtarget &STI)
346     : TargetLowering(TM), nvTM(&TM), STI(STI) {
347   // always lower memset, memcpy, and memmove intrinsics to load/store
348   // instructions, rather
349   // then generating calls to memset, mempcy or memmove.
350   MaxStoresPerMemset = (unsigned) 0xFFFFFFFF;
351   MaxStoresPerMemcpy = (unsigned) 0xFFFFFFFF;
352   MaxStoresPerMemmove = (unsigned) 0xFFFFFFFF;
353 
354   setBooleanContents(ZeroOrNegativeOneBooleanContent);
355   setBooleanVectorContents(ZeroOrNegativeOneBooleanContent);
356 
357   // Jump is Expensive. Don't create extra control flow for 'and', 'or'
358   // condition branches.
359   setJumpIsExpensive(true);
360 
361   // Wide divides are _very_ slow. Try to reduce the width of the divide if
362   // possible.
363   addBypassSlowDiv(64, 32);
364 
365   // By default, use the Source scheduling
366   if (sched4reg)
367     setSchedulingPreference(Sched::RegPressure);
368   else
369     setSchedulingPreference(Sched::Source);
370 
371   auto setFP16OperationAction = [&](unsigned Op, MVT VT, LegalizeAction Action,
372                                     LegalizeAction NoF16Action) {
373     setOperationAction(Op, VT, STI.allowFP16Math() ? Action : NoF16Action);
374   };
375 
376   addRegisterClass(MVT::i1, &NVPTX::Int1RegsRegClass);
377   addRegisterClass(MVT::i16, &NVPTX::Int16RegsRegClass);
378   addRegisterClass(MVT::i32, &NVPTX::Int32RegsRegClass);
379   addRegisterClass(MVT::i64, &NVPTX::Int64RegsRegClass);
380   addRegisterClass(MVT::f32, &NVPTX::Float32RegsRegClass);
381   addRegisterClass(MVT::f64, &NVPTX::Float64RegsRegClass);
382   addRegisterClass(MVT::f16, &NVPTX::Float16RegsRegClass);
383   addRegisterClass(MVT::v2f16, &NVPTX::Float16x2RegsRegClass);
384 
385   // Conversion to/from FP16/FP16x2 is always legal.
386   setOperationAction(ISD::SINT_TO_FP, MVT::f16, Legal);
387   setOperationAction(ISD::FP_TO_SINT, MVT::f16, Legal);
388   setOperationAction(ISD::BUILD_VECTOR, MVT::v2f16, Custom);
389   setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f16, Custom);
390   setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v2f16, Expand);
391   setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v2f16, Expand);
392 
393   setFP16OperationAction(ISD::SETCC, MVT::f16, Legal, Promote);
394   setFP16OperationAction(ISD::SETCC, MVT::v2f16, Legal, Expand);
395 
396   // Operations not directly supported by NVPTX.
397   for (MVT VT : {MVT::f16, MVT::v2f16, MVT::f32, MVT::f64, MVT::i1, MVT::i8,
398                  MVT::i16, MVT::i32, MVT::i64}) {
399     setOperationAction(ISD::SELECT_CC, VT, Expand);
400     setOperationAction(ISD::BR_CC, VT, Expand);
401   }
402 
403   // Some SIGN_EXTEND_INREG can be done using cvt instruction.
404   // For others we will expand to a SHL/SRA pair.
405   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i64, Legal);
406   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i32, Legal);
407   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16, Legal);
408   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8 , Legal);
409   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
410 
411   setOperationAction(ISD::SHL_PARTS, MVT::i32  , Custom);
412   setOperationAction(ISD::SRA_PARTS, MVT::i32  , Custom);
413   setOperationAction(ISD::SRL_PARTS, MVT::i32  , Custom);
414   setOperationAction(ISD::SHL_PARTS, MVT::i64  , Custom);
415   setOperationAction(ISD::SRA_PARTS, MVT::i64  , Custom);
416   setOperationAction(ISD::SRL_PARTS, MVT::i64  , Custom);
417 
418   setOperationAction(ISD::BITREVERSE, MVT::i32, Legal);
419   setOperationAction(ISD::BITREVERSE, MVT::i64, Legal);
420 
421   // TODO: we may consider expanding ROTL/ROTR on older GPUs.  Currently on GPUs
422   // that don't have h/w rotation we lower them to multi-instruction assembly.
423   // See ROT*_sw in NVPTXIntrInfo.td
424   setOperationAction(ISD::ROTL, MVT::i64, Legal);
425   setOperationAction(ISD::ROTR, MVT::i64, Legal);
426   setOperationAction(ISD::ROTL, MVT::i32, Legal);
427   setOperationAction(ISD::ROTR, MVT::i32, Legal);
428 
429   setOperationAction(ISD::ROTL, MVT::i16, Expand);
430   setOperationAction(ISD::ROTR, MVT::i16, Expand);
431   setOperationAction(ISD::ROTL, MVT::i8, Expand);
432   setOperationAction(ISD::ROTR, MVT::i8, Expand);
433   setOperationAction(ISD::BSWAP, MVT::i16, Expand);
434   setOperationAction(ISD::BSWAP, MVT::i32, Expand);
435   setOperationAction(ISD::BSWAP, MVT::i64, Expand);
436 
437   // Indirect branch is not supported.
438   // This also disables Jump Table creation.
439   setOperationAction(ISD::BR_JT, MVT::Other, Expand);
440   setOperationAction(ISD::BRIND, MVT::Other, Expand);
441 
442   setOperationAction(ISD::GlobalAddress, MVT::i32, Custom);
443   setOperationAction(ISD::GlobalAddress, MVT::i64, Custom);
444 
445   // We want to legalize constant related memmove and memcopy
446   // intrinsics.
447   setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::Other, Custom);
448 
449   // Turn FP extload into load/fpextend
450   setLoadExtAction(ISD::EXTLOAD, MVT::f32, MVT::f16, Expand);
451   setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f16, Expand);
452   setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f32, Expand);
453   setLoadExtAction(ISD::EXTLOAD, MVT::v2f32, MVT::v2f16, Expand);
454   setLoadExtAction(ISD::EXTLOAD, MVT::v2f64, MVT::v2f16, Expand);
455   setLoadExtAction(ISD::EXTLOAD, MVT::v2f64, MVT::v2f32, Expand);
456   setLoadExtAction(ISD::EXTLOAD, MVT::v4f32, MVT::v4f16, Expand);
457   setLoadExtAction(ISD::EXTLOAD, MVT::v4f64, MVT::v4f16, Expand);
458   setLoadExtAction(ISD::EXTLOAD, MVT::v4f64, MVT::v4f32, Expand);
459   // Turn FP truncstore into trunc + store.
460   // FIXME: vector types should also be expanded
461   setTruncStoreAction(MVT::f32, MVT::f16, Expand);
462   setTruncStoreAction(MVT::f64, MVT::f16, Expand);
463   setTruncStoreAction(MVT::f64, MVT::f32, Expand);
464 
465   // PTX does not support load / store predicate registers
466   setOperationAction(ISD::LOAD, MVT::i1, Custom);
467   setOperationAction(ISD::STORE, MVT::i1, Custom);
468 
469   for (MVT VT : MVT::integer_valuetypes()) {
470     setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote);
471     setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i1, Promote);
472     setTruncStoreAction(VT, MVT::i1, Expand);
473   }
474 
475   // This is legal in NVPTX
476   setOperationAction(ISD::ConstantFP, MVT::f64, Legal);
477   setOperationAction(ISD::ConstantFP, MVT::f32, Legal);
478   setOperationAction(ISD::ConstantFP, MVT::f16, Legal);
479 
480   // TRAP can be lowered to PTX trap
481   setOperationAction(ISD::TRAP, MVT::Other, Legal);
482 
483   // Register custom handling for vector loads/stores
484   for (MVT VT : MVT::fixedlen_vector_valuetypes()) {
485     if (IsPTXVectorType(VT)) {
486       setOperationAction(ISD::LOAD, VT, Custom);
487       setOperationAction(ISD::STORE, VT, Custom);
488       setOperationAction(ISD::INTRINSIC_W_CHAIN, VT, Custom);
489     }
490   }
491 
492   // Custom handling for i8 intrinsics
493   setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i8, Custom);
494 
495   for (const auto& Ty : {MVT::i16, MVT::i32, MVT::i64}) {
496     setOperationAction(ISD::ABS,  Ty, Legal);
497     setOperationAction(ISD::SMIN, Ty, Legal);
498     setOperationAction(ISD::SMAX, Ty, Legal);
499     setOperationAction(ISD::UMIN, Ty, Legal);
500     setOperationAction(ISD::UMAX, Ty, Legal);
501 
502     setOperationAction(ISD::CTPOP, Ty, Legal);
503     setOperationAction(ISD::CTLZ, Ty, Legal);
504   }
505 
506   setOperationAction(ISD::CTTZ, MVT::i16, Expand);
507   setOperationAction(ISD::CTTZ, MVT::i32, Expand);
508   setOperationAction(ISD::CTTZ, MVT::i64, Expand);
509 
510   // PTX does not directly support SELP of i1, so promote to i32 first
511   setOperationAction(ISD::SELECT, MVT::i1, Custom);
512 
513   // PTX cannot multiply two i64s in a single instruction.
514   setOperationAction(ISD::SMUL_LOHI, MVT::i64, Expand);
515   setOperationAction(ISD::UMUL_LOHI, MVT::i64, Expand);
516 
517   // We have some custom DAG combine patterns for these nodes
518   setTargetDAGCombine(ISD::ADD);
519   setTargetDAGCombine(ISD::AND);
520   setTargetDAGCombine(ISD::FADD);
521   setTargetDAGCombine(ISD::MUL);
522   setTargetDAGCombine(ISD::SHL);
523   setTargetDAGCombine(ISD::SREM);
524   setTargetDAGCombine(ISD::UREM);
525 
526   // setcc for f16x2 needs special handling to prevent legalizer's
527   // attempt to scalarize it due to v2i1 not being legal.
528   if (STI.allowFP16Math())
529     setTargetDAGCombine(ISD::SETCC);
530 
531   // Promote fp16 arithmetic if fp16 hardware isn't available or the
532   // user passed --nvptx-no-fp16-math. The flag is useful because,
533   // although sm_53+ GPUs have some sort of FP16 support in
534   // hardware, only sm_53 and sm_60 have full implementation. Others
535   // only have token amount of hardware and are likely to run faster
536   // by using fp32 units instead.
537   for (const auto &Op : {ISD::FADD, ISD::FMUL, ISD::FSUB, ISD::FMA}) {
538     setFP16OperationAction(Op, MVT::f16, Legal, Promote);
539     setFP16OperationAction(Op, MVT::v2f16, Legal, Expand);
540   }
541 
542   // There's no neg.f16 instruction. Expand to (0-x).
543   setOperationAction(ISD::FNEG, MVT::f16, Expand);
544   setOperationAction(ISD::FNEG, MVT::v2f16, Expand);
545 
546   // (would be) Library functions.
547 
548   // These map to conversion instructions for scalar FP types.
549   for (const auto &Op : {ISD::FCEIL, ISD::FFLOOR, ISD::FNEARBYINT, ISD::FRINT,
550                          ISD::FTRUNC}) {
551     setOperationAction(Op, MVT::f16, Legal);
552     setOperationAction(Op, MVT::f32, Legal);
553     setOperationAction(Op, MVT::f64, Legal);
554     setOperationAction(Op, MVT::v2f16, Expand);
555   }
556 
557   setOperationAction(ISD::FROUND, MVT::f16, Promote);
558   setOperationAction(ISD::FROUND, MVT::v2f16, Expand);
559   setOperationAction(ISD::FROUND, MVT::f32, Custom);
560   setOperationAction(ISD::FROUND, MVT::f64, Custom);
561 
562 
563   // 'Expand' implements FCOPYSIGN without calling an external library.
564   setOperationAction(ISD::FCOPYSIGN, MVT::f16, Expand);
565   setOperationAction(ISD::FCOPYSIGN, MVT::v2f16, Expand);
566   setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand);
567   setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
568 
569   // These map to corresponding instructions for f32/f64. f16 must be
570   // promoted to f32. v2f16 is expanded to f16, which is then promoted
571   // to f32.
572   for (const auto &Op : {ISD::FDIV, ISD::FREM, ISD::FSQRT, ISD::FSIN, ISD::FCOS,
573                          ISD::FABS, ISD::FMINNUM, ISD::FMAXNUM}) {
574     setOperationAction(Op, MVT::f16, Promote);
575     setOperationAction(Op, MVT::f32, Legal);
576     setOperationAction(Op, MVT::f64, Legal);
577     setOperationAction(Op, MVT::v2f16, Expand);
578   }
579   setOperationAction(ISD::FMINNUM, MVT::f16, Promote);
580   setOperationAction(ISD::FMAXNUM, MVT::f16, Promote);
581   setOperationAction(ISD::FMINIMUM, MVT::f16, Promote);
582   setOperationAction(ISD::FMAXIMUM, MVT::f16, Promote);
583 
584   // No FEXP2, FLOG2.  The PTX ex2 and log2 functions are always approximate.
585   // No FPOW or FREM in PTX.
586 
587   // Now deduce the information based on the above mentioned
588   // actions
589   computeRegisterProperties(STI.getRegisterInfo());
590 }
591 
592 const char *NVPTXTargetLowering::getTargetNodeName(unsigned Opcode) const {
593   switch ((NVPTXISD::NodeType)Opcode) {
594   case NVPTXISD::FIRST_NUMBER:
595     break;
596   case NVPTXISD::CALL:
597     return "NVPTXISD::CALL";
598   case NVPTXISD::RET_FLAG:
599     return "NVPTXISD::RET_FLAG";
600   case NVPTXISD::LOAD_PARAM:
601     return "NVPTXISD::LOAD_PARAM";
602   case NVPTXISD::Wrapper:
603     return "NVPTXISD::Wrapper";
604   case NVPTXISD::DeclareParam:
605     return "NVPTXISD::DeclareParam";
606   case NVPTXISD::DeclareScalarParam:
607     return "NVPTXISD::DeclareScalarParam";
608   case NVPTXISD::DeclareRet:
609     return "NVPTXISD::DeclareRet";
610   case NVPTXISD::DeclareScalarRet:
611     return "NVPTXISD::DeclareScalarRet";
612   case NVPTXISD::DeclareRetParam:
613     return "NVPTXISD::DeclareRetParam";
614   case NVPTXISD::PrintCall:
615     return "NVPTXISD::PrintCall";
616   case NVPTXISD::PrintConvergentCall:
617     return "NVPTXISD::PrintConvergentCall";
618   case NVPTXISD::PrintCallUni:
619     return "NVPTXISD::PrintCallUni";
620   case NVPTXISD::PrintConvergentCallUni:
621     return "NVPTXISD::PrintConvergentCallUni";
622   case NVPTXISD::LoadParam:
623     return "NVPTXISD::LoadParam";
624   case NVPTXISD::LoadParamV2:
625     return "NVPTXISD::LoadParamV2";
626   case NVPTXISD::LoadParamV4:
627     return "NVPTXISD::LoadParamV4";
628   case NVPTXISD::StoreParam:
629     return "NVPTXISD::StoreParam";
630   case NVPTXISD::StoreParamV2:
631     return "NVPTXISD::StoreParamV2";
632   case NVPTXISD::StoreParamV4:
633     return "NVPTXISD::StoreParamV4";
634   case NVPTXISD::StoreParamS32:
635     return "NVPTXISD::StoreParamS32";
636   case NVPTXISD::StoreParamU32:
637     return "NVPTXISD::StoreParamU32";
638   case NVPTXISD::CallArgBegin:
639     return "NVPTXISD::CallArgBegin";
640   case NVPTXISD::CallArg:
641     return "NVPTXISD::CallArg";
642   case NVPTXISD::LastCallArg:
643     return "NVPTXISD::LastCallArg";
644   case NVPTXISD::CallArgEnd:
645     return "NVPTXISD::CallArgEnd";
646   case NVPTXISD::CallVoid:
647     return "NVPTXISD::CallVoid";
648   case NVPTXISD::CallVal:
649     return "NVPTXISD::CallVal";
650   case NVPTXISD::CallSymbol:
651     return "NVPTXISD::CallSymbol";
652   case NVPTXISD::Prototype:
653     return "NVPTXISD::Prototype";
654   case NVPTXISD::MoveParam:
655     return "NVPTXISD::MoveParam";
656   case NVPTXISD::StoreRetval:
657     return "NVPTXISD::StoreRetval";
658   case NVPTXISD::StoreRetvalV2:
659     return "NVPTXISD::StoreRetvalV2";
660   case NVPTXISD::StoreRetvalV4:
661     return "NVPTXISD::StoreRetvalV4";
662   case NVPTXISD::PseudoUseParam:
663     return "NVPTXISD::PseudoUseParam";
664   case NVPTXISD::RETURN:
665     return "NVPTXISD::RETURN";
666   case NVPTXISD::CallSeqBegin:
667     return "NVPTXISD::CallSeqBegin";
668   case NVPTXISD::CallSeqEnd:
669     return "NVPTXISD::CallSeqEnd";
670   case NVPTXISD::CallPrototype:
671     return "NVPTXISD::CallPrototype";
672   case NVPTXISD::ProxyReg:
673     return "NVPTXISD::ProxyReg";
674   case NVPTXISD::LoadV2:
675     return "NVPTXISD::LoadV2";
676   case NVPTXISD::LoadV4:
677     return "NVPTXISD::LoadV4";
678   case NVPTXISD::LDGV2:
679     return "NVPTXISD::LDGV2";
680   case NVPTXISD::LDGV4:
681     return "NVPTXISD::LDGV4";
682   case NVPTXISD::LDUV2:
683     return "NVPTXISD::LDUV2";
684   case NVPTXISD::LDUV4:
685     return "NVPTXISD::LDUV4";
686   case NVPTXISD::StoreV2:
687     return "NVPTXISD::StoreV2";
688   case NVPTXISD::StoreV4:
689     return "NVPTXISD::StoreV4";
690   case NVPTXISD::FUN_SHFL_CLAMP:
691     return "NVPTXISD::FUN_SHFL_CLAMP";
692   case NVPTXISD::FUN_SHFR_CLAMP:
693     return "NVPTXISD::FUN_SHFR_CLAMP";
694   case NVPTXISD::IMAD:
695     return "NVPTXISD::IMAD";
696   case NVPTXISD::SETP_F16X2:
697     return "NVPTXISD::SETP_F16X2";
698   case NVPTXISD::Dummy:
699     return "NVPTXISD::Dummy";
700   case NVPTXISD::MUL_WIDE_SIGNED:
701     return "NVPTXISD::MUL_WIDE_SIGNED";
702   case NVPTXISD::MUL_WIDE_UNSIGNED:
703     return "NVPTXISD::MUL_WIDE_UNSIGNED";
704   case NVPTXISD::Tex1DFloatS32:        return "NVPTXISD::Tex1DFloatS32";
705   case NVPTXISD::Tex1DFloatFloat:      return "NVPTXISD::Tex1DFloatFloat";
706   case NVPTXISD::Tex1DFloatFloatLevel:
707     return "NVPTXISD::Tex1DFloatFloatLevel";
708   case NVPTXISD::Tex1DFloatFloatGrad:
709     return "NVPTXISD::Tex1DFloatFloatGrad";
710   case NVPTXISD::Tex1DS32S32:          return "NVPTXISD::Tex1DS32S32";
711   case NVPTXISD::Tex1DS32Float:        return "NVPTXISD::Tex1DS32Float";
712   case NVPTXISD::Tex1DS32FloatLevel:
713     return "NVPTXISD::Tex1DS32FloatLevel";
714   case NVPTXISD::Tex1DS32FloatGrad:
715     return "NVPTXISD::Tex1DS32FloatGrad";
716   case NVPTXISD::Tex1DU32S32:          return "NVPTXISD::Tex1DU32S32";
717   case NVPTXISD::Tex1DU32Float:        return "NVPTXISD::Tex1DU32Float";
718   case NVPTXISD::Tex1DU32FloatLevel:
719     return "NVPTXISD::Tex1DU32FloatLevel";
720   case NVPTXISD::Tex1DU32FloatGrad:
721     return "NVPTXISD::Tex1DU32FloatGrad";
722   case NVPTXISD::Tex1DArrayFloatS32:   return "NVPTXISD::Tex1DArrayFloatS32";
723   case NVPTXISD::Tex1DArrayFloatFloat: return "NVPTXISD::Tex1DArrayFloatFloat";
724   case NVPTXISD::Tex1DArrayFloatFloatLevel:
725     return "NVPTXISD::Tex1DArrayFloatFloatLevel";
726   case NVPTXISD::Tex1DArrayFloatFloatGrad:
727     return "NVPTXISD::Tex1DArrayFloatFloatGrad";
728   case NVPTXISD::Tex1DArrayS32S32:     return "NVPTXISD::Tex1DArrayS32S32";
729   case NVPTXISD::Tex1DArrayS32Float:   return "NVPTXISD::Tex1DArrayS32Float";
730   case NVPTXISD::Tex1DArrayS32FloatLevel:
731     return "NVPTXISD::Tex1DArrayS32FloatLevel";
732   case NVPTXISD::Tex1DArrayS32FloatGrad:
733     return "NVPTXISD::Tex1DArrayS32FloatGrad";
734   case NVPTXISD::Tex1DArrayU32S32:     return "NVPTXISD::Tex1DArrayU32S32";
735   case NVPTXISD::Tex1DArrayU32Float:   return "NVPTXISD::Tex1DArrayU32Float";
736   case NVPTXISD::Tex1DArrayU32FloatLevel:
737     return "NVPTXISD::Tex1DArrayU32FloatLevel";
738   case NVPTXISD::Tex1DArrayU32FloatGrad:
739     return "NVPTXISD::Tex1DArrayU32FloatGrad";
740   case NVPTXISD::Tex2DFloatS32:        return "NVPTXISD::Tex2DFloatS32";
741   case NVPTXISD::Tex2DFloatFloat:      return "NVPTXISD::Tex2DFloatFloat";
742   case NVPTXISD::Tex2DFloatFloatLevel:
743     return "NVPTXISD::Tex2DFloatFloatLevel";
744   case NVPTXISD::Tex2DFloatFloatGrad:
745     return "NVPTXISD::Tex2DFloatFloatGrad";
746   case NVPTXISD::Tex2DS32S32:          return "NVPTXISD::Tex2DS32S32";
747   case NVPTXISD::Tex2DS32Float:        return "NVPTXISD::Tex2DS32Float";
748   case NVPTXISD::Tex2DS32FloatLevel:
749     return "NVPTXISD::Tex2DS32FloatLevel";
750   case NVPTXISD::Tex2DS32FloatGrad:
751     return "NVPTXISD::Tex2DS32FloatGrad";
752   case NVPTXISD::Tex2DU32S32:          return "NVPTXISD::Tex2DU32S32";
753   case NVPTXISD::Tex2DU32Float:        return "NVPTXISD::Tex2DU32Float";
754   case NVPTXISD::Tex2DU32FloatLevel:
755     return "NVPTXISD::Tex2DU32FloatLevel";
756   case NVPTXISD::Tex2DU32FloatGrad:
757     return "NVPTXISD::Tex2DU32FloatGrad";
758   case NVPTXISD::Tex2DArrayFloatS32:   return "NVPTXISD::Tex2DArrayFloatS32";
759   case NVPTXISD::Tex2DArrayFloatFloat: return "NVPTXISD::Tex2DArrayFloatFloat";
760   case NVPTXISD::Tex2DArrayFloatFloatLevel:
761     return "NVPTXISD::Tex2DArrayFloatFloatLevel";
762   case NVPTXISD::Tex2DArrayFloatFloatGrad:
763     return "NVPTXISD::Tex2DArrayFloatFloatGrad";
764   case NVPTXISD::Tex2DArrayS32S32:     return "NVPTXISD::Tex2DArrayS32S32";
765   case NVPTXISD::Tex2DArrayS32Float:   return "NVPTXISD::Tex2DArrayS32Float";
766   case NVPTXISD::Tex2DArrayS32FloatLevel:
767     return "NVPTXISD::Tex2DArrayS32FloatLevel";
768   case NVPTXISD::Tex2DArrayS32FloatGrad:
769     return "NVPTXISD::Tex2DArrayS32FloatGrad";
770   case NVPTXISD::Tex2DArrayU32S32:     return "NVPTXISD::Tex2DArrayU32S32";
771   case NVPTXISD::Tex2DArrayU32Float:   return "NVPTXISD::Tex2DArrayU32Float";
772   case NVPTXISD::Tex2DArrayU32FloatLevel:
773     return "NVPTXISD::Tex2DArrayU32FloatLevel";
774   case NVPTXISD::Tex2DArrayU32FloatGrad:
775     return "NVPTXISD::Tex2DArrayU32FloatGrad";
776   case NVPTXISD::Tex3DFloatS32:        return "NVPTXISD::Tex3DFloatS32";
777   case NVPTXISD::Tex3DFloatFloat:      return "NVPTXISD::Tex3DFloatFloat";
778   case NVPTXISD::Tex3DFloatFloatLevel:
779     return "NVPTXISD::Tex3DFloatFloatLevel";
780   case NVPTXISD::Tex3DFloatFloatGrad:
781     return "NVPTXISD::Tex3DFloatFloatGrad";
782   case NVPTXISD::Tex3DS32S32:          return "NVPTXISD::Tex3DS32S32";
783   case NVPTXISD::Tex3DS32Float:        return "NVPTXISD::Tex3DS32Float";
784   case NVPTXISD::Tex3DS32FloatLevel:
785     return "NVPTXISD::Tex3DS32FloatLevel";
786   case NVPTXISD::Tex3DS32FloatGrad:
787     return "NVPTXISD::Tex3DS32FloatGrad";
788   case NVPTXISD::Tex3DU32S32:          return "NVPTXISD::Tex3DU32S32";
789   case NVPTXISD::Tex3DU32Float:        return "NVPTXISD::Tex3DU32Float";
790   case NVPTXISD::Tex3DU32FloatLevel:
791     return "NVPTXISD::Tex3DU32FloatLevel";
792   case NVPTXISD::Tex3DU32FloatGrad:
793     return "NVPTXISD::Tex3DU32FloatGrad";
794   case NVPTXISD::TexCubeFloatFloat:      return "NVPTXISD::TexCubeFloatFloat";
795   case NVPTXISD::TexCubeFloatFloatLevel:
796     return "NVPTXISD::TexCubeFloatFloatLevel";
797   case NVPTXISD::TexCubeS32Float:        return "NVPTXISD::TexCubeS32Float";
798   case NVPTXISD::TexCubeS32FloatLevel:
799     return "NVPTXISD::TexCubeS32FloatLevel";
800   case NVPTXISD::TexCubeU32Float:        return "NVPTXISD::TexCubeU32Float";
801   case NVPTXISD::TexCubeU32FloatLevel:
802     return "NVPTXISD::TexCubeU32FloatLevel";
803   case NVPTXISD::TexCubeArrayFloatFloat:
804     return "NVPTXISD::TexCubeArrayFloatFloat";
805   case NVPTXISD::TexCubeArrayFloatFloatLevel:
806     return "NVPTXISD::TexCubeArrayFloatFloatLevel";
807   case NVPTXISD::TexCubeArrayS32Float:
808     return "NVPTXISD::TexCubeArrayS32Float";
809   case NVPTXISD::TexCubeArrayS32FloatLevel:
810     return "NVPTXISD::TexCubeArrayS32FloatLevel";
811   case NVPTXISD::TexCubeArrayU32Float:
812     return "NVPTXISD::TexCubeArrayU32Float";
813   case NVPTXISD::TexCubeArrayU32FloatLevel:
814     return "NVPTXISD::TexCubeArrayU32FloatLevel";
815   case NVPTXISD::Tld4R2DFloatFloat:
816     return "NVPTXISD::Tld4R2DFloatFloat";
817   case NVPTXISD::Tld4G2DFloatFloat:
818     return "NVPTXISD::Tld4G2DFloatFloat";
819   case NVPTXISD::Tld4B2DFloatFloat:
820     return "NVPTXISD::Tld4B2DFloatFloat";
821   case NVPTXISD::Tld4A2DFloatFloat:
822     return "NVPTXISD::Tld4A2DFloatFloat";
823   case NVPTXISD::Tld4R2DS64Float:
824     return "NVPTXISD::Tld4R2DS64Float";
825   case NVPTXISD::Tld4G2DS64Float:
826     return "NVPTXISD::Tld4G2DS64Float";
827   case NVPTXISD::Tld4B2DS64Float:
828     return "NVPTXISD::Tld4B2DS64Float";
829   case NVPTXISD::Tld4A2DS64Float:
830     return "NVPTXISD::Tld4A2DS64Float";
831   case NVPTXISD::Tld4R2DU64Float:
832     return "NVPTXISD::Tld4R2DU64Float";
833   case NVPTXISD::Tld4G2DU64Float:
834     return "NVPTXISD::Tld4G2DU64Float";
835   case NVPTXISD::Tld4B2DU64Float:
836     return "NVPTXISD::Tld4B2DU64Float";
837   case NVPTXISD::Tld4A2DU64Float:
838     return "NVPTXISD::Tld4A2DU64Float";
839 
840   case NVPTXISD::TexUnified1DFloatS32:
841     return "NVPTXISD::TexUnified1DFloatS32";
842   case NVPTXISD::TexUnified1DFloatFloat:
843     return "NVPTXISD::TexUnified1DFloatFloat";
844   case NVPTXISD::TexUnified1DFloatFloatLevel:
845     return "NVPTXISD::TexUnified1DFloatFloatLevel";
846   case NVPTXISD::TexUnified1DFloatFloatGrad:
847     return "NVPTXISD::TexUnified1DFloatFloatGrad";
848   case NVPTXISD::TexUnified1DS32S32:
849     return "NVPTXISD::TexUnified1DS32S32";
850   case NVPTXISD::TexUnified1DS32Float:
851     return "NVPTXISD::TexUnified1DS32Float";
852   case NVPTXISD::TexUnified1DS32FloatLevel:
853     return "NVPTXISD::TexUnified1DS32FloatLevel";
854   case NVPTXISD::TexUnified1DS32FloatGrad:
855     return "NVPTXISD::TexUnified1DS32FloatGrad";
856   case NVPTXISD::TexUnified1DU32S32:
857     return "NVPTXISD::TexUnified1DU32S32";
858   case NVPTXISD::TexUnified1DU32Float:
859     return "NVPTXISD::TexUnified1DU32Float";
860   case NVPTXISD::TexUnified1DU32FloatLevel:
861     return "NVPTXISD::TexUnified1DU32FloatLevel";
862   case NVPTXISD::TexUnified1DU32FloatGrad:
863     return "NVPTXISD::TexUnified1DU32FloatGrad";
864   case NVPTXISD::TexUnified1DArrayFloatS32:
865     return "NVPTXISD::TexUnified1DArrayFloatS32";
866   case NVPTXISD::TexUnified1DArrayFloatFloat:
867     return "NVPTXISD::TexUnified1DArrayFloatFloat";
868   case NVPTXISD::TexUnified1DArrayFloatFloatLevel:
869     return "NVPTXISD::TexUnified1DArrayFloatFloatLevel";
870   case NVPTXISD::TexUnified1DArrayFloatFloatGrad:
871     return "NVPTXISD::TexUnified1DArrayFloatFloatGrad";
872   case NVPTXISD::TexUnified1DArrayS32S32:
873     return "NVPTXISD::TexUnified1DArrayS32S32";
874   case NVPTXISD::TexUnified1DArrayS32Float:
875     return "NVPTXISD::TexUnified1DArrayS32Float";
876   case NVPTXISD::TexUnified1DArrayS32FloatLevel:
877     return "NVPTXISD::TexUnified1DArrayS32FloatLevel";
878   case NVPTXISD::TexUnified1DArrayS32FloatGrad:
879     return "NVPTXISD::TexUnified1DArrayS32FloatGrad";
880   case NVPTXISD::TexUnified1DArrayU32S32:
881     return "NVPTXISD::TexUnified1DArrayU32S32";
882   case NVPTXISD::TexUnified1DArrayU32Float:
883     return "NVPTXISD::TexUnified1DArrayU32Float";
884   case NVPTXISD::TexUnified1DArrayU32FloatLevel:
885     return "NVPTXISD::TexUnified1DArrayU32FloatLevel";
886   case NVPTXISD::TexUnified1DArrayU32FloatGrad:
887     return "NVPTXISD::TexUnified1DArrayU32FloatGrad";
888   case NVPTXISD::TexUnified2DFloatS32:
889     return "NVPTXISD::TexUnified2DFloatS32";
890   case NVPTXISD::TexUnified2DFloatFloat:
891     return "NVPTXISD::TexUnified2DFloatFloat";
892   case NVPTXISD::TexUnified2DFloatFloatLevel:
893     return "NVPTXISD::TexUnified2DFloatFloatLevel";
894   case NVPTXISD::TexUnified2DFloatFloatGrad:
895     return "NVPTXISD::TexUnified2DFloatFloatGrad";
896   case NVPTXISD::TexUnified2DS32S32:
897     return "NVPTXISD::TexUnified2DS32S32";
898   case NVPTXISD::TexUnified2DS32Float:
899     return "NVPTXISD::TexUnified2DS32Float";
900   case NVPTXISD::TexUnified2DS32FloatLevel:
901     return "NVPTXISD::TexUnified2DS32FloatLevel";
902   case NVPTXISD::TexUnified2DS32FloatGrad:
903     return "NVPTXISD::TexUnified2DS32FloatGrad";
904   case NVPTXISD::TexUnified2DU32S32:
905     return "NVPTXISD::TexUnified2DU32S32";
906   case NVPTXISD::TexUnified2DU32Float:
907     return "NVPTXISD::TexUnified2DU32Float";
908   case NVPTXISD::TexUnified2DU32FloatLevel:
909     return "NVPTXISD::TexUnified2DU32FloatLevel";
910   case NVPTXISD::TexUnified2DU32FloatGrad:
911     return "NVPTXISD::TexUnified2DU32FloatGrad";
912   case NVPTXISD::TexUnified2DArrayFloatS32:
913     return "NVPTXISD::TexUnified2DArrayFloatS32";
914   case NVPTXISD::TexUnified2DArrayFloatFloat:
915     return "NVPTXISD::TexUnified2DArrayFloatFloat";
916   case NVPTXISD::TexUnified2DArrayFloatFloatLevel:
917     return "NVPTXISD::TexUnified2DArrayFloatFloatLevel";
918   case NVPTXISD::TexUnified2DArrayFloatFloatGrad:
919     return "NVPTXISD::TexUnified2DArrayFloatFloatGrad";
920   case NVPTXISD::TexUnified2DArrayS32S32:
921     return "NVPTXISD::TexUnified2DArrayS32S32";
922   case NVPTXISD::TexUnified2DArrayS32Float:
923     return "NVPTXISD::TexUnified2DArrayS32Float";
924   case NVPTXISD::TexUnified2DArrayS32FloatLevel:
925     return "NVPTXISD::TexUnified2DArrayS32FloatLevel";
926   case NVPTXISD::TexUnified2DArrayS32FloatGrad:
927     return "NVPTXISD::TexUnified2DArrayS32FloatGrad";
928   case NVPTXISD::TexUnified2DArrayU32S32:
929     return "NVPTXISD::TexUnified2DArrayU32S32";
930   case NVPTXISD::TexUnified2DArrayU32Float:
931     return "NVPTXISD::TexUnified2DArrayU32Float";
932   case NVPTXISD::TexUnified2DArrayU32FloatLevel:
933     return "NVPTXISD::TexUnified2DArrayU32FloatLevel";
934   case NVPTXISD::TexUnified2DArrayU32FloatGrad:
935     return "NVPTXISD::TexUnified2DArrayU32FloatGrad";
936   case NVPTXISD::TexUnified3DFloatS32:
937     return "NVPTXISD::TexUnified3DFloatS32";
938   case NVPTXISD::TexUnified3DFloatFloat:
939     return "NVPTXISD::TexUnified3DFloatFloat";
940   case NVPTXISD::TexUnified3DFloatFloatLevel:
941     return "NVPTXISD::TexUnified3DFloatFloatLevel";
942   case NVPTXISD::TexUnified3DFloatFloatGrad:
943     return "NVPTXISD::TexUnified3DFloatFloatGrad";
944   case NVPTXISD::TexUnified3DS32S32:
945     return "NVPTXISD::TexUnified3DS32S32";
946   case NVPTXISD::TexUnified3DS32Float:
947     return "NVPTXISD::TexUnified3DS32Float";
948   case NVPTXISD::TexUnified3DS32FloatLevel:
949     return "NVPTXISD::TexUnified3DS32FloatLevel";
950   case NVPTXISD::TexUnified3DS32FloatGrad:
951     return "NVPTXISD::TexUnified3DS32FloatGrad";
952   case NVPTXISD::TexUnified3DU32S32:
953     return "NVPTXISD::TexUnified3DU32S32";
954   case NVPTXISD::TexUnified3DU32Float:
955     return "NVPTXISD::TexUnified3DU32Float";
956   case NVPTXISD::TexUnified3DU32FloatLevel:
957     return "NVPTXISD::TexUnified3DU32FloatLevel";
958   case NVPTXISD::TexUnified3DU32FloatGrad:
959     return "NVPTXISD::TexUnified3DU32FloatGrad";
960   case NVPTXISD::TexUnifiedCubeFloatFloat:
961     return "NVPTXISD::TexUnifiedCubeFloatFloat";
962   case NVPTXISD::TexUnifiedCubeFloatFloatLevel:
963     return "NVPTXISD::TexUnifiedCubeFloatFloatLevel";
964   case NVPTXISD::TexUnifiedCubeS32Float:
965     return "NVPTXISD::TexUnifiedCubeS32Float";
966   case NVPTXISD::TexUnifiedCubeS32FloatLevel:
967     return "NVPTXISD::TexUnifiedCubeS32FloatLevel";
968   case NVPTXISD::TexUnifiedCubeU32Float:
969     return "NVPTXISD::TexUnifiedCubeU32Float";
970   case NVPTXISD::TexUnifiedCubeU32FloatLevel:
971     return "NVPTXISD::TexUnifiedCubeU32FloatLevel";
972   case NVPTXISD::TexUnifiedCubeArrayFloatFloat:
973     return "NVPTXISD::TexUnifiedCubeArrayFloatFloat";
974   case NVPTXISD::TexUnifiedCubeArrayFloatFloatLevel:
975     return "NVPTXISD::TexUnifiedCubeArrayFloatFloatLevel";
976   case NVPTXISD::TexUnifiedCubeArrayS32Float:
977     return "NVPTXISD::TexUnifiedCubeArrayS32Float";
978   case NVPTXISD::TexUnifiedCubeArrayS32FloatLevel:
979     return "NVPTXISD::TexUnifiedCubeArrayS32FloatLevel";
980   case NVPTXISD::TexUnifiedCubeArrayU32Float:
981     return "NVPTXISD::TexUnifiedCubeArrayU32Float";
982   case NVPTXISD::TexUnifiedCubeArrayU32FloatLevel:
983     return "NVPTXISD::TexUnifiedCubeArrayU32FloatLevel";
984   case NVPTXISD::Tld4UnifiedR2DFloatFloat:
985     return "NVPTXISD::Tld4UnifiedR2DFloatFloat";
986   case NVPTXISD::Tld4UnifiedG2DFloatFloat:
987     return "NVPTXISD::Tld4UnifiedG2DFloatFloat";
988   case NVPTXISD::Tld4UnifiedB2DFloatFloat:
989     return "NVPTXISD::Tld4UnifiedB2DFloatFloat";
990   case NVPTXISD::Tld4UnifiedA2DFloatFloat:
991     return "NVPTXISD::Tld4UnifiedA2DFloatFloat";
992   case NVPTXISD::Tld4UnifiedR2DS64Float:
993     return "NVPTXISD::Tld4UnifiedR2DS64Float";
994   case NVPTXISD::Tld4UnifiedG2DS64Float:
995     return "NVPTXISD::Tld4UnifiedG2DS64Float";
996   case NVPTXISD::Tld4UnifiedB2DS64Float:
997     return "NVPTXISD::Tld4UnifiedB2DS64Float";
998   case NVPTXISD::Tld4UnifiedA2DS64Float:
999     return "NVPTXISD::Tld4UnifiedA2DS64Float";
1000   case NVPTXISD::Tld4UnifiedR2DU64Float:
1001     return "NVPTXISD::Tld4UnifiedR2DU64Float";
1002   case NVPTXISD::Tld4UnifiedG2DU64Float:
1003     return "NVPTXISD::Tld4UnifiedG2DU64Float";
1004   case NVPTXISD::Tld4UnifiedB2DU64Float:
1005     return "NVPTXISD::Tld4UnifiedB2DU64Float";
1006   case NVPTXISD::Tld4UnifiedA2DU64Float:
1007     return "NVPTXISD::Tld4UnifiedA2DU64Float";
1008 
1009   case NVPTXISD::Suld1DI8Clamp:          return "NVPTXISD::Suld1DI8Clamp";
1010   case NVPTXISD::Suld1DI16Clamp:         return "NVPTXISD::Suld1DI16Clamp";
1011   case NVPTXISD::Suld1DI32Clamp:         return "NVPTXISD::Suld1DI32Clamp";
1012   case NVPTXISD::Suld1DI64Clamp:         return "NVPTXISD::Suld1DI64Clamp";
1013   case NVPTXISD::Suld1DV2I8Clamp:        return "NVPTXISD::Suld1DV2I8Clamp";
1014   case NVPTXISD::Suld1DV2I16Clamp:       return "NVPTXISD::Suld1DV2I16Clamp";
1015   case NVPTXISD::Suld1DV2I32Clamp:       return "NVPTXISD::Suld1DV2I32Clamp";
1016   case NVPTXISD::Suld1DV2I64Clamp:       return "NVPTXISD::Suld1DV2I64Clamp";
1017   case NVPTXISD::Suld1DV4I8Clamp:        return "NVPTXISD::Suld1DV4I8Clamp";
1018   case NVPTXISD::Suld1DV4I16Clamp:       return "NVPTXISD::Suld1DV4I16Clamp";
1019   case NVPTXISD::Suld1DV4I32Clamp:       return "NVPTXISD::Suld1DV4I32Clamp";
1020 
1021   case NVPTXISD::Suld1DArrayI8Clamp:   return "NVPTXISD::Suld1DArrayI8Clamp";
1022   case NVPTXISD::Suld1DArrayI16Clamp:  return "NVPTXISD::Suld1DArrayI16Clamp";
1023   case NVPTXISD::Suld1DArrayI32Clamp:  return "NVPTXISD::Suld1DArrayI32Clamp";
1024   case NVPTXISD::Suld1DArrayI64Clamp:  return "NVPTXISD::Suld1DArrayI64Clamp";
1025   case NVPTXISD::Suld1DArrayV2I8Clamp: return "NVPTXISD::Suld1DArrayV2I8Clamp";
1026   case NVPTXISD::Suld1DArrayV2I16Clamp:return "NVPTXISD::Suld1DArrayV2I16Clamp";
1027   case NVPTXISD::Suld1DArrayV2I32Clamp:return "NVPTXISD::Suld1DArrayV2I32Clamp";
1028   case NVPTXISD::Suld1DArrayV2I64Clamp:return "NVPTXISD::Suld1DArrayV2I64Clamp";
1029   case NVPTXISD::Suld1DArrayV4I8Clamp: return "NVPTXISD::Suld1DArrayV4I8Clamp";
1030   case NVPTXISD::Suld1DArrayV4I16Clamp:return "NVPTXISD::Suld1DArrayV4I16Clamp";
1031   case NVPTXISD::Suld1DArrayV4I32Clamp:return "NVPTXISD::Suld1DArrayV4I32Clamp";
1032 
1033   case NVPTXISD::Suld2DI8Clamp:          return "NVPTXISD::Suld2DI8Clamp";
1034   case NVPTXISD::Suld2DI16Clamp:         return "NVPTXISD::Suld2DI16Clamp";
1035   case NVPTXISD::Suld2DI32Clamp:         return "NVPTXISD::Suld2DI32Clamp";
1036   case NVPTXISD::Suld2DI64Clamp:         return "NVPTXISD::Suld2DI64Clamp";
1037   case NVPTXISD::Suld2DV2I8Clamp:        return "NVPTXISD::Suld2DV2I8Clamp";
1038   case NVPTXISD::Suld2DV2I16Clamp:       return "NVPTXISD::Suld2DV2I16Clamp";
1039   case NVPTXISD::Suld2DV2I32Clamp:       return "NVPTXISD::Suld2DV2I32Clamp";
1040   case NVPTXISD::Suld2DV2I64Clamp:       return "NVPTXISD::Suld2DV2I64Clamp";
1041   case NVPTXISD::Suld2DV4I8Clamp:        return "NVPTXISD::Suld2DV4I8Clamp";
1042   case NVPTXISD::Suld2DV4I16Clamp:       return "NVPTXISD::Suld2DV4I16Clamp";
1043   case NVPTXISD::Suld2DV4I32Clamp:       return "NVPTXISD::Suld2DV4I32Clamp";
1044 
1045   case NVPTXISD::Suld2DArrayI8Clamp:   return "NVPTXISD::Suld2DArrayI8Clamp";
1046   case NVPTXISD::Suld2DArrayI16Clamp:  return "NVPTXISD::Suld2DArrayI16Clamp";
1047   case NVPTXISD::Suld2DArrayI32Clamp:  return "NVPTXISD::Suld2DArrayI32Clamp";
1048   case NVPTXISD::Suld2DArrayI64Clamp:  return "NVPTXISD::Suld2DArrayI64Clamp";
1049   case NVPTXISD::Suld2DArrayV2I8Clamp: return "NVPTXISD::Suld2DArrayV2I8Clamp";
1050   case NVPTXISD::Suld2DArrayV2I16Clamp:return "NVPTXISD::Suld2DArrayV2I16Clamp";
1051   case NVPTXISD::Suld2DArrayV2I32Clamp:return "NVPTXISD::Suld2DArrayV2I32Clamp";
1052   case NVPTXISD::Suld2DArrayV2I64Clamp:return "NVPTXISD::Suld2DArrayV2I64Clamp";
1053   case NVPTXISD::Suld2DArrayV4I8Clamp: return "NVPTXISD::Suld2DArrayV4I8Clamp";
1054   case NVPTXISD::Suld2DArrayV4I16Clamp:return "NVPTXISD::Suld2DArrayV4I16Clamp";
1055   case NVPTXISD::Suld2DArrayV4I32Clamp:return "NVPTXISD::Suld2DArrayV4I32Clamp";
1056 
1057   case NVPTXISD::Suld3DI8Clamp:          return "NVPTXISD::Suld3DI8Clamp";
1058   case NVPTXISD::Suld3DI16Clamp:         return "NVPTXISD::Suld3DI16Clamp";
1059   case NVPTXISD::Suld3DI32Clamp:         return "NVPTXISD::Suld3DI32Clamp";
1060   case NVPTXISD::Suld3DI64Clamp:         return "NVPTXISD::Suld3DI64Clamp";
1061   case NVPTXISD::Suld3DV2I8Clamp:        return "NVPTXISD::Suld3DV2I8Clamp";
1062   case NVPTXISD::Suld3DV2I16Clamp:       return "NVPTXISD::Suld3DV2I16Clamp";
1063   case NVPTXISD::Suld3DV2I32Clamp:       return "NVPTXISD::Suld3DV2I32Clamp";
1064   case NVPTXISD::Suld3DV2I64Clamp:       return "NVPTXISD::Suld3DV2I64Clamp";
1065   case NVPTXISD::Suld3DV4I8Clamp:        return "NVPTXISD::Suld3DV4I8Clamp";
1066   case NVPTXISD::Suld3DV4I16Clamp:       return "NVPTXISD::Suld3DV4I16Clamp";
1067   case NVPTXISD::Suld3DV4I32Clamp:       return "NVPTXISD::Suld3DV4I32Clamp";
1068 
1069   case NVPTXISD::Suld1DI8Trap:          return "NVPTXISD::Suld1DI8Trap";
1070   case NVPTXISD::Suld1DI16Trap:         return "NVPTXISD::Suld1DI16Trap";
1071   case NVPTXISD::Suld1DI32Trap:         return "NVPTXISD::Suld1DI32Trap";
1072   case NVPTXISD::Suld1DI64Trap:         return "NVPTXISD::Suld1DI64Trap";
1073   case NVPTXISD::Suld1DV2I8Trap:        return "NVPTXISD::Suld1DV2I8Trap";
1074   case NVPTXISD::Suld1DV2I16Trap:       return "NVPTXISD::Suld1DV2I16Trap";
1075   case NVPTXISD::Suld1DV2I32Trap:       return "NVPTXISD::Suld1DV2I32Trap";
1076   case NVPTXISD::Suld1DV2I64Trap:       return "NVPTXISD::Suld1DV2I64Trap";
1077   case NVPTXISD::Suld1DV4I8Trap:        return "NVPTXISD::Suld1DV4I8Trap";
1078   case NVPTXISD::Suld1DV4I16Trap:       return "NVPTXISD::Suld1DV4I16Trap";
1079   case NVPTXISD::Suld1DV4I32Trap:       return "NVPTXISD::Suld1DV4I32Trap";
1080 
1081   case NVPTXISD::Suld1DArrayI8Trap:     return "NVPTXISD::Suld1DArrayI8Trap";
1082   case NVPTXISD::Suld1DArrayI16Trap:    return "NVPTXISD::Suld1DArrayI16Trap";
1083   case NVPTXISD::Suld1DArrayI32Trap:    return "NVPTXISD::Suld1DArrayI32Trap";
1084   case NVPTXISD::Suld1DArrayI64Trap:    return "NVPTXISD::Suld1DArrayI64Trap";
1085   case NVPTXISD::Suld1DArrayV2I8Trap:   return "NVPTXISD::Suld1DArrayV2I8Trap";
1086   case NVPTXISD::Suld1DArrayV2I16Trap:  return "NVPTXISD::Suld1DArrayV2I16Trap";
1087   case NVPTXISD::Suld1DArrayV2I32Trap:  return "NVPTXISD::Suld1DArrayV2I32Trap";
1088   case NVPTXISD::Suld1DArrayV2I64Trap:  return "NVPTXISD::Suld1DArrayV2I64Trap";
1089   case NVPTXISD::Suld1DArrayV4I8Trap:   return "NVPTXISD::Suld1DArrayV4I8Trap";
1090   case NVPTXISD::Suld1DArrayV4I16Trap:  return "NVPTXISD::Suld1DArrayV4I16Trap";
1091   case NVPTXISD::Suld1DArrayV4I32Trap:  return "NVPTXISD::Suld1DArrayV4I32Trap";
1092 
1093   case NVPTXISD::Suld2DI8Trap:          return "NVPTXISD::Suld2DI8Trap";
1094   case NVPTXISD::Suld2DI16Trap:         return "NVPTXISD::Suld2DI16Trap";
1095   case NVPTXISD::Suld2DI32Trap:         return "NVPTXISD::Suld2DI32Trap";
1096   case NVPTXISD::Suld2DI64Trap:         return "NVPTXISD::Suld2DI64Trap";
1097   case NVPTXISD::Suld2DV2I8Trap:        return "NVPTXISD::Suld2DV2I8Trap";
1098   case NVPTXISD::Suld2DV2I16Trap:       return "NVPTXISD::Suld2DV2I16Trap";
1099   case NVPTXISD::Suld2DV2I32Trap:       return "NVPTXISD::Suld2DV2I32Trap";
1100   case NVPTXISD::Suld2DV2I64Trap:       return "NVPTXISD::Suld2DV2I64Trap";
1101   case NVPTXISD::Suld2DV4I8Trap:        return "NVPTXISD::Suld2DV4I8Trap";
1102   case NVPTXISD::Suld2DV4I16Trap:       return "NVPTXISD::Suld2DV4I16Trap";
1103   case NVPTXISD::Suld2DV4I32Trap:       return "NVPTXISD::Suld2DV4I32Trap";
1104 
1105   case NVPTXISD::Suld2DArrayI8Trap:     return "NVPTXISD::Suld2DArrayI8Trap";
1106   case NVPTXISD::Suld2DArrayI16Trap:    return "NVPTXISD::Suld2DArrayI16Trap";
1107   case NVPTXISD::Suld2DArrayI32Trap:    return "NVPTXISD::Suld2DArrayI32Trap";
1108   case NVPTXISD::Suld2DArrayI64Trap:    return "NVPTXISD::Suld2DArrayI64Trap";
1109   case NVPTXISD::Suld2DArrayV2I8Trap:   return "NVPTXISD::Suld2DArrayV2I8Trap";
1110   case NVPTXISD::Suld2DArrayV2I16Trap:  return "NVPTXISD::Suld2DArrayV2I16Trap";
1111   case NVPTXISD::Suld2DArrayV2I32Trap:  return "NVPTXISD::Suld2DArrayV2I32Trap";
1112   case NVPTXISD::Suld2DArrayV2I64Trap:  return "NVPTXISD::Suld2DArrayV2I64Trap";
1113   case NVPTXISD::Suld2DArrayV4I8Trap:   return "NVPTXISD::Suld2DArrayV4I8Trap";
1114   case NVPTXISD::Suld2DArrayV4I16Trap:  return "NVPTXISD::Suld2DArrayV4I16Trap";
1115   case NVPTXISD::Suld2DArrayV4I32Trap:  return "NVPTXISD::Suld2DArrayV4I32Trap";
1116 
1117   case NVPTXISD::Suld3DI8Trap:          return "NVPTXISD::Suld3DI8Trap";
1118   case NVPTXISD::Suld3DI16Trap:         return "NVPTXISD::Suld3DI16Trap";
1119   case NVPTXISD::Suld3DI32Trap:         return "NVPTXISD::Suld3DI32Trap";
1120   case NVPTXISD::Suld3DI64Trap:         return "NVPTXISD::Suld3DI64Trap";
1121   case NVPTXISD::Suld3DV2I8Trap:        return "NVPTXISD::Suld3DV2I8Trap";
1122   case NVPTXISD::Suld3DV2I16Trap:       return "NVPTXISD::Suld3DV2I16Trap";
1123   case NVPTXISD::Suld3DV2I32Trap:       return "NVPTXISD::Suld3DV2I32Trap";
1124   case NVPTXISD::Suld3DV2I64Trap:       return "NVPTXISD::Suld3DV2I64Trap";
1125   case NVPTXISD::Suld3DV4I8Trap:        return "NVPTXISD::Suld3DV4I8Trap";
1126   case NVPTXISD::Suld3DV4I16Trap:       return "NVPTXISD::Suld3DV4I16Trap";
1127   case NVPTXISD::Suld3DV4I32Trap:       return "NVPTXISD::Suld3DV4I32Trap";
1128 
1129   case NVPTXISD::Suld1DI8Zero:          return "NVPTXISD::Suld1DI8Zero";
1130   case NVPTXISD::Suld1DI16Zero:         return "NVPTXISD::Suld1DI16Zero";
1131   case NVPTXISD::Suld1DI32Zero:         return "NVPTXISD::Suld1DI32Zero";
1132   case NVPTXISD::Suld1DI64Zero:         return "NVPTXISD::Suld1DI64Zero";
1133   case NVPTXISD::Suld1DV2I8Zero:        return "NVPTXISD::Suld1DV2I8Zero";
1134   case NVPTXISD::Suld1DV2I16Zero:       return "NVPTXISD::Suld1DV2I16Zero";
1135   case NVPTXISD::Suld1DV2I32Zero:       return "NVPTXISD::Suld1DV2I32Zero";
1136   case NVPTXISD::Suld1DV2I64Zero:       return "NVPTXISD::Suld1DV2I64Zero";
1137   case NVPTXISD::Suld1DV4I8Zero:        return "NVPTXISD::Suld1DV4I8Zero";
1138   case NVPTXISD::Suld1DV4I16Zero:       return "NVPTXISD::Suld1DV4I16Zero";
1139   case NVPTXISD::Suld1DV4I32Zero:       return "NVPTXISD::Suld1DV4I32Zero";
1140 
1141   case NVPTXISD::Suld1DArrayI8Zero:     return "NVPTXISD::Suld1DArrayI8Zero";
1142   case NVPTXISD::Suld1DArrayI16Zero:    return "NVPTXISD::Suld1DArrayI16Zero";
1143   case NVPTXISD::Suld1DArrayI32Zero:    return "NVPTXISD::Suld1DArrayI32Zero";
1144   case NVPTXISD::Suld1DArrayI64Zero:    return "NVPTXISD::Suld1DArrayI64Zero";
1145   case NVPTXISD::Suld1DArrayV2I8Zero:   return "NVPTXISD::Suld1DArrayV2I8Zero";
1146   case NVPTXISD::Suld1DArrayV2I16Zero:  return "NVPTXISD::Suld1DArrayV2I16Zero";
1147   case NVPTXISD::Suld1DArrayV2I32Zero:  return "NVPTXISD::Suld1DArrayV2I32Zero";
1148   case NVPTXISD::Suld1DArrayV2I64Zero:  return "NVPTXISD::Suld1DArrayV2I64Zero";
1149   case NVPTXISD::Suld1DArrayV4I8Zero:   return "NVPTXISD::Suld1DArrayV4I8Zero";
1150   case NVPTXISD::Suld1DArrayV4I16Zero:  return "NVPTXISD::Suld1DArrayV4I16Zero";
1151   case NVPTXISD::Suld1DArrayV4I32Zero:  return "NVPTXISD::Suld1DArrayV4I32Zero";
1152 
1153   case NVPTXISD::Suld2DI8Zero:          return "NVPTXISD::Suld2DI8Zero";
1154   case NVPTXISD::Suld2DI16Zero:         return "NVPTXISD::Suld2DI16Zero";
1155   case NVPTXISD::Suld2DI32Zero:         return "NVPTXISD::Suld2DI32Zero";
1156   case NVPTXISD::Suld2DI64Zero:         return "NVPTXISD::Suld2DI64Zero";
1157   case NVPTXISD::Suld2DV2I8Zero:        return "NVPTXISD::Suld2DV2I8Zero";
1158   case NVPTXISD::Suld2DV2I16Zero:       return "NVPTXISD::Suld2DV2I16Zero";
1159   case NVPTXISD::Suld2DV2I32Zero:       return "NVPTXISD::Suld2DV2I32Zero";
1160   case NVPTXISD::Suld2DV2I64Zero:       return "NVPTXISD::Suld2DV2I64Zero";
1161   case NVPTXISD::Suld2DV4I8Zero:        return "NVPTXISD::Suld2DV4I8Zero";
1162   case NVPTXISD::Suld2DV4I16Zero:       return "NVPTXISD::Suld2DV4I16Zero";
1163   case NVPTXISD::Suld2DV4I32Zero:       return "NVPTXISD::Suld2DV4I32Zero";
1164 
1165   case NVPTXISD::Suld2DArrayI8Zero:     return "NVPTXISD::Suld2DArrayI8Zero";
1166   case NVPTXISD::Suld2DArrayI16Zero:    return "NVPTXISD::Suld2DArrayI16Zero";
1167   case NVPTXISD::Suld2DArrayI32Zero:    return "NVPTXISD::Suld2DArrayI32Zero";
1168   case NVPTXISD::Suld2DArrayI64Zero:    return "NVPTXISD::Suld2DArrayI64Zero";
1169   case NVPTXISD::Suld2DArrayV2I8Zero:   return "NVPTXISD::Suld2DArrayV2I8Zero";
1170   case NVPTXISD::Suld2DArrayV2I16Zero:  return "NVPTXISD::Suld2DArrayV2I16Zero";
1171   case NVPTXISD::Suld2DArrayV2I32Zero:  return "NVPTXISD::Suld2DArrayV2I32Zero";
1172   case NVPTXISD::Suld2DArrayV2I64Zero:  return "NVPTXISD::Suld2DArrayV2I64Zero";
1173   case NVPTXISD::Suld2DArrayV4I8Zero:   return "NVPTXISD::Suld2DArrayV4I8Zero";
1174   case NVPTXISD::Suld2DArrayV4I16Zero:  return "NVPTXISD::Suld2DArrayV4I16Zero";
1175   case NVPTXISD::Suld2DArrayV4I32Zero:  return "NVPTXISD::Suld2DArrayV4I32Zero";
1176 
1177   case NVPTXISD::Suld3DI8Zero:          return "NVPTXISD::Suld3DI8Zero";
1178   case NVPTXISD::Suld3DI16Zero:         return "NVPTXISD::Suld3DI16Zero";
1179   case NVPTXISD::Suld3DI32Zero:         return "NVPTXISD::Suld3DI32Zero";
1180   case NVPTXISD::Suld3DI64Zero:         return "NVPTXISD::Suld3DI64Zero";
1181   case NVPTXISD::Suld3DV2I8Zero:        return "NVPTXISD::Suld3DV2I8Zero";
1182   case NVPTXISD::Suld3DV2I16Zero:       return "NVPTXISD::Suld3DV2I16Zero";
1183   case NVPTXISD::Suld3DV2I32Zero:       return "NVPTXISD::Suld3DV2I32Zero";
1184   case NVPTXISD::Suld3DV2I64Zero:       return "NVPTXISD::Suld3DV2I64Zero";
1185   case NVPTXISD::Suld3DV4I8Zero:        return "NVPTXISD::Suld3DV4I8Zero";
1186   case NVPTXISD::Suld3DV4I16Zero:       return "NVPTXISD::Suld3DV4I16Zero";
1187   case NVPTXISD::Suld3DV4I32Zero:       return "NVPTXISD::Suld3DV4I32Zero";
1188   }
1189   return nullptr;
1190 }
1191 
1192 TargetLoweringBase::LegalizeTypeAction
1193 NVPTXTargetLowering::getPreferredVectorAction(MVT VT) const {
1194   if (VT.getVectorNumElements() != 1 && VT.getScalarType() == MVT::i1)
1195     return TypeSplitVector;
1196   if (VT == MVT::v2f16)
1197     return TypeLegal;
1198   return TargetLoweringBase::getPreferredVectorAction(VT);
1199 }
1200 
1201 SDValue NVPTXTargetLowering::getSqrtEstimate(SDValue Operand, SelectionDAG &DAG,
1202                                              int Enabled, int &ExtraSteps,
1203                                              bool &UseOneConst,
1204                                              bool Reciprocal) const {
1205   if (!(Enabled == ReciprocalEstimate::Enabled ||
1206         (Enabled == ReciprocalEstimate::Unspecified && !usePrecSqrtF32())))
1207     return SDValue();
1208 
1209   if (ExtraSteps == ReciprocalEstimate::Unspecified)
1210     ExtraSteps = 0;
1211 
1212   SDLoc DL(Operand);
1213   EVT VT = Operand.getValueType();
1214   bool Ftz = useF32FTZ(DAG.getMachineFunction());
1215 
1216   auto MakeIntrinsicCall = [&](Intrinsic::ID IID) {
1217     return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
1218                        DAG.getConstant(IID, DL, MVT::i32), Operand);
1219   };
1220 
1221   // The sqrt and rsqrt refinement processes assume we always start out with an
1222   // approximation of the rsqrt.  Therefore, if we're going to do any refinement
1223   // (i.e. ExtraSteps > 0), we must return an rsqrt.  But if we're *not* doing
1224   // any refinement, we must return a regular sqrt.
1225   if (Reciprocal || ExtraSteps > 0) {
1226     if (VT == MVT::f32)
1227       return MakeIntrinsicCall(Ftz ? Intrinsic::nvvm_rsqrt_approx_ftz_f
1228                                    : Intrinsic::nvvm_rsqrt_approx_f);
1229     else if (VT == MVT::f64)
1230       return MakeIntrinsicCall(Intrinsic::nvvm_rsqrt_approx_d);
1231     else
1232       return SDValue();
1233   } else {
1234     if (VT == MVT::f32)
1235       return MakeIntrinsicCall(Ftz ? Intrinsic::nvvm_sqrt_approx_ftz_f
1236                                    : Intrinsic::nvvm_sqrt_approx_f);
1237     else {
1238       // There's no sqrt.approx.f64 instruction, so we emit
1239       // reciprocal(rsqrt(x)).  This is faster than
1240       // select(x == 0, 0, x * rsqrt(x)).  (In fact, it's faster than plain
1241       // x * rsqrt(x).)
1242       return DAG.getNode(
1243           ISD::INTRINSIC_WO_CHAIN, DL, VT,
1244           DAG.getConstant(Intrinsic::nvvm_rcp_approx_ftz_d, DL, MVT::i32),
1245           MakeIntrinsicCall(Intrinsic::nvvm_rsqrt_approx_d));
1246     }
1247   }
1248 }
1249 
1250 SDValue
1251 NVPTXTargetLowering::LowerGlobalAddress(SDValue Op, SelectionDAG &DAG) const {
1252   SDLoc dl(Op);
1253   const GlobalAddressSDNode *GAN = cast<GlobalAddressSDNode>(Op);
1254   auto PtrVT = getPointerTy(DAG.getDataLayout(), GAN->getAddressSpace());
1255   Op = DAG.getTargetGlobalAddress(GAN->getGlobal(), dl, PtrVT);
1256   return DAG.getNode(NVPTXISD::Wrapper, dl, PtrVT, Op);
1257 }
1258 
1259 std::string NVPTXTargetLowering::getPrototype(
1260     const DataLayout &DL, Type *retTy, const ArgListTy &Args,
1261     const SmallVectorImpl<ISD::OutputArg> &Outs, unsigned retAlignment,
1262     ImmutableCallSite CS) const {
1263   auto PtrVT = getPointerTy(DL);
1264 
1265   bool isABI = (STI.getSmVersion() >= 20);
1266   assert(isABI && "Non-ABI compilation is not supported");
1267   if (!isABI)
1268     return "";
1269 
1270   std::stringstream O;
1271   O << "prototype_" << uniqueCallSite << " : .callprototype ";
1272 
1273   if (retTy->getTypeID() == Type::VoidTyID) {
1274     O << "()";
1275   } else {
1276     O << "(";
1277     if (retTy->isFloatingPointTy() || (retTy->isIntegerTy() && !retTy->isIntegerTy(128))) {
1278       unsigned size = 0;
1279       if (auto *ITy = dyn_cast<IntegerType>(retTy)) {
1280         size = ITy->getBitWidth();
1281       } else {
1282         assert(retTy->isFloatingPointTy() &&
1283                "Floating point type expected here");
1284         size = retTy->getPrimitiveSizeInBits();
1285       }
1286       // PTX ABI requires all scalar return values to be at least 32
1287       // bits in size.  fp16 normally uses .b16 as its storage type in
1288       // PTX, so its size must be adjusted here, too.
1289       if (size < 32)
1290         size = 32;
1291 
1292       O << ".param .b" << size << " _";
1293     } else if (isa<PointerType>(retTy)) {
1294       O << ".param .b" << PtrVT.getSizeInBits() << " _";
1295     } else if (retTy->isAggregateType() || retTy->isVectorTy() ||
1296                retTy->isIntegerTy(128)) {
1297       O << ".param .align " << retAlignment << " .b8 _["
1298         << DL.getTypeAllocSize(retTy) << "]";
1299     } else {
1300       llvm_unreachable("Unknown return type");
1301     }
1302     O << ") ";
1303   }
1304   O << "_ (";
1305 
1306   bool first = true;
1307 
1308   unsigned OIdx = 0;
1309   for (unsigned i = 0, e = Args.size(); i != e; ++i, ++OIdx) {
1310     Type *Ty = Args[i].Ty;
1311     if (!first) {
1312       O << ", ";
1313     }
1314     first = false;
1315 
1316     if (!Outs[OIdx].Flags.isByVal()) {
1317       if (Ty->isAggregateType() || Ty->isVectorTy() || Ty->isIntegerTy(128)) {
1318         unsigned align = 0;
1319         const CallInst *CallI = cast<CallInst>(CS.getInstruction());
1320         // +1 because index 0 is reserved for return type alignment
1321         if (!getAlign(*CallI, i + 1, align))
1322           align = DL.getABITypeAlignment(Ty);
1323         unsigned sz = DL.getTypeAllocSize(Ty);
1324         O << ".param .align " << align << " .b8 ";
1325         O << "_";
1326         O << "[" << sz << "]";
1327         // update the index for Outs
1328         SmallVector<EVT, 16> vtparts;
1329         ComputeValueVTs(*this, DL, Ty, vtparts);
1330         if (unsigned len = vtparts.size())
1331           OIdx += len - 1;
1332         continue;
1333       }
1334       // i8 types in IR will be i16 types in SDAG
1335       assert((getValueType(DL, Ty) == Outs[OIdx].VT ||
1336               (getValueType(DL, Ty) == MVT::i8 && Outs[OIdx].VT == MVT::i16)) &&
1337              "type mismatch between callee prototype and arguments");
1338       // scalar type
1339       unsigned sz = 0;
1340       if (isa<IntegerType>(Ty)) {
1341         sz = cast<IntegerType>(Ty)->getBitWidth();
1342         if (sz < 32)
1343           sz = 32;
1344       } else if (isa<PointerType>(Ty)) {
1345         sz = PtrVT.getSizeInBits();
1346       } else if (Ty->isHalfTy())
1347         // PTX ABI requires all scalar parameters to be at least 32
1348         // bits in size.  fp16 normally uses .b16 as its storage type
1349         // in PTX, so its size must be adjusted here, too.
1350         sz = 32;
1351       else
1352         sz = Ty->getPrimitiveSizeInBits();
1353       O << ".param .b" << sz << " ";
1354       O << "_";
1355       continue;
1356     }
1357     auto *PTy = dyn_cast<PointerType>(Ty);
1358     assert(PTy && "Param with byval attribute should be a pointer type");
1359     Type *ETy = PTy->getElementType();
1360 
1361     unsigned align = Outs[OIdx].Flags.getByValAlign();
1362     unsigned sz = DL.getTypeAllocSize(ETy);
1363     O << ".param .align " << align << " .b8 ";
1364     O << "_";
1365     O << "[" << sz << "]";
1366   }
1367   O << ");";
1368   return O.str();
1369 }
1370 
1371 unsigned NVPTXTargetLowering::getArgumentAlignment(SDValue Callee,
1372                                                    ImmutableCallSite CS,
1373                                                    Type *Ty, unsigned Idx,
1374                                                    const DataLayout &DL) const {
1375   if (!CS) {
1376     // CallSite is zero, fallback to ABI type alignment
1377     return DL.getABITypeAlignment(Ty);
1378   }
1379 
1380   unsigned Align = 0;
1381   const Value *DirectCallee = CS.getCalledFunction();
1382 
1383   if (!DirectCallee) {
1384     // We don't have a direct function symbol, but that may be because of
1385     // constant cast instructions in the call.
1386     const Instruction *CalleeI = CS.getInstruction();
1387     assert(CalleeI && "Call target is not a function or derived value?");
1388 
1389     // With bitcast'd call targets, the instruction will be the call
1390     if (isa<CallInst>(CalleeI)) {
1391       // Check if we have call alignment metadata
1392       if (getAlign(*cast<CallInst>(CalleeI), Idx, Align))
1393         return Align;
1394 
1395       const Value *CalleeV = cast<CallInst>(CalleeI)->getCalledValue();
1396       // Ignore any bitcast instructions
1397       while (isa<ConstantExpr>(CalleeV)) {
1398         const ConstantExpr *CE = cast<ConstantExpr>(CalleeV);
1399         if (!CE->isCast())
1400           break;
1401         // Look through the bitcast
1402         CalleeV = cast<ConstantExpr>(CalleeV)->getOperand(0);
1403       }
1404 
1405       // We have now looked past all of the bitcasts.  Do we finally have a
1406       // Function?
1407       if (isa<Function>(CalleeV))
1408         DirectCallee = CalleeV;
1409     }
1410   }
1411 
1412   // Check for function alignment information if we found that the
1413   // ultimate target is a Function
1414   if (DirectCallee)
1415     if (getAlign(*cast<Function>(DirectCallee), Idx, Align))
1416       return Align;
1417 
1418   // Call is indirect or alignment information is not available, fall back to
1419   // the ABI type alignment
1420   return DL.getABITypeAlignment(Ty);
1421 }
1422 
1423 SDValue NVPTXTargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI,
1424                                        SmallVectorImpl<SDValue> &InVals) const {
1425   SelectionDAG &DAG = CLI.DAG;
1426   SDLoc dl = CLI.DL;
1427   SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs;
1428   SmallVectorImpl<SDValue> &OutVals = CLI.OutVals;
1429   SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins;
1430   SDValue Chain = CLI.Chain;
1431   SDValue Callee = CLI.Callee;
1432   bool &isTailCall = CLI.IsTailCall;
1433   ArgListTy &Args = CLI.getArgs();
1434   Type *RetTy = CLI.RetTy;
1435   ImmutableCallSite CS = CLI.CS;
1436   const DataLayout &DL = DAG.getDataLayout();
1437 
1438   bool isABI = (STI.getSmVersion() >= 20);
1439   assert(isABI && "Non-ABI compilation is not supported");
1440   if (!isABI)
1441     return Chain;
1442 
1443   SDValue tempChain = Chain;
1444   Chain = DAG.getCALLSEQ_START(Chain, uniqueCallSite, 0, dl);
1445   SDValue InFlag = Chain.getValue(1);
1446 
1447   unsigned paramCount = 0;
1448   // Args.size() and Outs.size() need not match.
1449   // Outs.size() will be larger
1450   //   * if there is an aggregate argument with multiple fields (each field
1451   //     showing up separately in Outs)
1452   //   * if there is a vector argument with more than typical vector-length
1453   //     elements (generally if more than 4) where each vector element is
1454   //     individually present in Outs.
1455   // So a different index should be used for indexing into Outs/OutVals.
1456   // See similar issue in LowerFormalArguments.
1457   unsigned OIdx = 0;
1458   // Declare the .params or .reg need to pass values
1459   // to the function
1460   for (unsigned i = 0, e = Args.size(); i != e; ++i, ++OIdx) {
1461     EVT VT = Outs[OIdx].VT;
1462     Type *Ty = Args[i].Ty;
1463 
1464     if (!Outs[OIdx].Flags.isByVal()) {
1465       SmallVector<EVT, 16> VTs;
1466       SmallVector<uint64_t, 16> Offsets;
1467       ComputePTXValueVTs(*this, DL, Ty, VTs, &Offsets);
1468       unsigned ArgAlign =
1469           getArgumentAlignment(Callee, CS, Ty, paramCount + 1, DL);
1470       unsigned AllocSize = DL.getTypeAllocSize(Ty);
1471       SDVTList DeclareParamVTs = DAG.getVTList(MVT::Other, MVT::Glue);
1472       bool NeedAlign; // Does argument declaration specify alignment?
1473       if (Ty->isAggregateType() || Ty->isVectorTy() || Ty->isIntegerTy(128)) {
1474         // declare .param .align <align> .b8 .param<n>[<size>];
1475         SDValue DeclareParamOps[] = {
1476             Chain, DAG.getConstant(ArgAlign, dl, MVT::i32),
1477             DAG.getConstant(paramCount, dl, MVT::i32),
1478             DAG.getConstant(AllocSize, dl, MVT::i32), InFlag};
1479         Chain = DAG.getNode(NVPTXISD::DeclareParam, dl, DeclareParamVTs,
1480                             DeclareParamOps);
1481         NeedAlign = true;
1482       } else {
1483         // declare .param .b<size> .param<n>;
1484         if ((VT.isInteger() || VT.isFloatingPoint()) && AllocSize < 4) {
1485           // PTX ABI requires integral types to be at least 32 bits in
1486           // size. FP16 is loaded/stored using i16, so it's handled
1487           // here as well.
1488           AllocSize = 4;
1489         }
1490         SDValue DeclareScalarParamOps[] = {
1491             Chain, DAG.getConstant(paramCount, dl, MVT::i32),
1492             DAG.getConstant(AllocSize * 8, dl, MVT::i32),
1493             DAG.getConstant(0, dl, MVT::i32), InFlag};
1494         Chain = DAG.getNode(NVPTXISD::DeclareScalarParam, dl, DeclareParamVTs,
1495                             DeclareScalarParamOps);
1496         NeedAlign = false;
1497       }
1498       InFlag = Chain.getValue(1);
1499 
1500       // PTX Interoperability Guide 3.3(A): [Integer] Values shorter
1501       // than 32-bits are sign extended or zero extended, depending on
1502       // whether they are signed or unsigned types. This case applies
1503       // only to scalar parameters and not to aggregate values.
1504       bool ExtendIntegerParam =
1505           Ty->isIntegerTy() && DL.getTypeAllocSizeInBits(Ty) < 32;
1506 
1507       auto VectorInfo = VectorizePTXValueVTs(VTs, Offsets, ArgAlign);
1508       SmallVector<SDValue, 6> StoreOperands;
1509       for (unsigned j = 0, je = VTs.size(); j != je; ++j) {
1510         // New store.
1511         if (VectorInfo[j] & PVF_FIRST) {
1512           assert(StoreOperands.empty() && "Unfinished preceding store.");
1513           StoreOperands.push_back(Chain);
1514           StoreOperands.push_back(DAG.getConstant(paramCount, dl, MVT::i32));
1515           StoreOperands.push_back(DAG.getConstant(Offsets[j], dl, MVT::i32));
1516         }
1517 
1518         EVT EltVT = VTs[j];
1519         SDValue StVal = OutVals[OIdx];
1520         if (ExtendIntegerParam) {
1521           assert(VTs.size() == 1 && "Scalar can't have multiple parts.");
1522           // zext/sext to i32
1523           StVal = DAG.getNode(Outs[OIdx].Flags.isSExt() ? ISD::SIGN_EXTEND
1524                                                         : ISD::ZERO_EXTEND,
1525                               dl, MVT::i32, StVal);
1526         } else if (EltVT.getSizeInBits() < 16) {
1527           // Use 16-bit registers for small stores as it's the
1528           // smallest general purpose register size supported by NVPTX.
1529           StVal = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i16, StVal);
1530         }
1531 
1532         // Record the value to store.
1533         StoreOperands.push_back(StVal);
1534 
1535         if (VectorInfo[j] & PVF_LAST) {
1536           unsigned NumElts = StoreOperands.size() - 3;
1537           NVPTXISD::NodeType Op;
1538           switch (NumElts) {
1539           case 1:
1540             Op = NVPTXISD::StoreParam;
1541             break;
1542           case 2:
1543             Op = NVPTXISD::StoreParamV2;
1544             break;
1545           case 4:
1546             Op = NVPTXISD::StoreParamV4;
1547             break;
1548           default:
1549             llvm_unreachable("Invalid vector info.");
1550           }
1551 
1552           StoreOperands.push_back(InFlag);
1553 
1554           // Adjust type of the store op if we've extended the scalar
1555           // return value.
1556           EVT TheStoreType = ExtendIntegerParam ? MVT::i32 : VTs[j];
1557           unsigned EltAlign =
1558               NeedAlign ? GreatestCommonDivisor64(ArgAlign, Offsets[j]) : 0;
1559 
1560           Chain = DAG.getMemIntrinsicNode(
1561               Op, dl, DAG.getVTList(MVT::Other, MVT::Glue), StoreOperands,
1562               TheStoreType, MachinePointerInfo(), EltAlign,
1563               MachineMemOperand::MOStore);
1564           InFlag = Chain.getValue(1);
1565 
1566           // Cleanup.
1567           StoreOperands.clear();
1568         }
1569         ++OIdx;
1570       }
1571       assert(StoreOperands.empty() && "Unfinished parameter store.");
1572       if (VTs.size() > 0)
1573         --OIdx;
1574       ++paramCount;
1575       continue;
1576     }
1577 
1578     // ByVal arguments
1579     SmallVector<EVT, 16> VTs;
1580     SmallVector<uint64_t, 16> Offsets;
1581     auto *PTy = dyn_cast<PointerType>(Args[i].Ty);
1582     assert(PTy && "Type of a byval parameter should be pointer");
1583     ComputePTXValueVTs(*this, DL, PTy->getElementType(), VTs, &Offsets, 0);
1584 
1585     // declare .param .align <align> .b8 .param<n>[<size>];
1586     unsigned sz = Outs[OIdx].Flags.getByValSize();
1587     SDVTList DeclareParamVTs = DAG.getVTList(MVT::Other, MVT::Glue);
1588     unsigned ArgAlign = Outs[OIdx].Flags.getByValAlign();
1589     // The ByValAlign in the Outs[OIdx].Flags is alway set at this point,
1590     // so we don't need to worry about natural alignment or not.
1591     // See TargetLowering::LowerCallTo().
1592 
1593     // Enforce minumum alignment of 4 to work around ptxas miscompile
1594     // for sm_50+. See corresponding alignment adjustment in
1595     // emitFunctionParamList() for details.
1596     if (ArgAlign < 4)
1597       ArgAlign = 4;
1598     SDValue DeclareParamOps[] = {Chain, DAG.getConstant(ArgAlign, dl, MVT::i32),
1599                                  DAG.getConstant(paramCount, dl, MVT::i32),
1600                                  DAG.getConstant(sz, dl, MVT::i32), InFlag};
1601     Chain = DAG.getNode(NVPTXISD::DeclareParam, dl, DeclareParamVTs,
1602                         DeclareParamOps);
1603     InFlag = Chain.getValue(1);
1604     for (unsigned j = 0, je = VTs.size(); j != je; ++j) {
1605       EVT elemtype = VTs[j];
1606       int curOffset = Offsets[j];
1607       unsigned PartAlign = GreatestCommonDivisor64(ArgAlign, curOffset);
1608       auto PtrVT = getPointerTy(DL);
1609       SDValue srcAddr = DAG.getNode(ISD::ADD, dl, PtrVT, OutVals[OIdx],
1610                                     DAG.getConstant(curOffset, dl, PtrVT));
1611       SDValue theVal = DAG.getLoad(elemtype, dl, tempChain, srcAddr,
1612                                    MachinePointerInfo(), PartAlign);
1613       if (elemtype.getSizeInBits() < 16) {
1614         theVal = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i16, theVal);
1615       }
1616       SDVTList CopyParamVTs = DAG.getVTList(MVT::Other, MVT::Glue);
1617       SDValue CopyParamOps[] = { Chain,
1618                                  DAG.getConstant(paramCount, dl, MVT::i32),
1619                                  DAG.getConstant(curOffset, dl, MVT::i32),
1620                                  theVal, InFlag };
1621       Chain = DAG.getMemIntrinsicNode(NVPTXISD::StoreParam, dl, CopyParamVTs,
1622                                       CopyParamOps, elemtype,
1623                                       MachinePointerInfo(), /* Align */ 0,
1624                                       MachineMemOperand::MOStore);
1625 
1626       InFlag = Chain.getValue(1);
1627     }
1628     ++paramCount;
1629   }
1630 
1631   GlobalAddressSDNode *Func = dyn_cast<GlobalAddressSDNode>(Callee.getNode());
1632   unsigned retAlignment = 0;
1633 
1634   // Handle Result
1635   if (Ins.size() > 0) {
1636     SmallVector<EVT, 16> resvtparts;
1637     ComputeValueVTs(*this, DL, RetTy, resvtparts);
1638 
1639     // Declare
1640     //  .param .align 16 .b8 retval0[<size-in-bytes>], or
1641     //  .param .b<size-in-bits> retval0
1642     unsigned resultsz = DL.getTypeAllocSizeInBits(RetTy);
1643     // Emit ".param .b<size-in-bits> retval0" instead of byte arrays only for
1644     // these three types to match the logic in
1645     // NVPTXAsmPrinter::printReturnValStr and NVPTXTargetLowering::getPrototype.
1646     // Plus, this behavior is consistent with nvcc's.
1647     if (RetTy->isFloatingPointTy() || RetTy->isPointerTy() ||
1648         (RetTy->isIntegerTy() && !RetTy->isIntegerTy(128))) {
1649       // Scalar needs to be at least 32bit wide
1650       if (resultsz < 32)
1651         resultsz = 32;
1652       SDVTList DeclareRetVTs = DAG.getVTList(MVT::Other, MVT::Glue);
1653       SDValue DeclareRetOps[] = { Chain, DAG.getConstant(1, dl, MVT::i32),
1654                                   DAG.getConstant(resultsz, dl, MVT::i32),
1655                                   DAG.getConstant(0, dl, MVT::i32), InFlag };
1656       Chain = DAG.getNode(NVPTXISD::DeclareRet, dl, DeclareRetVTs,
1657                           DeclareRetOps);
1658       InFlag = Chain.getValue(1);
1659     } else {
1660       retAlignment = getArgumentAlignment(Callee, CS, RetTy, 0, DL);
1661       SDVTList DeclareRetVTs = DAG.getVTList(MVT::Other, MVT::Glue);
1662       SDValue DeclareRetOps[] = { Chain,
1663                                   DAG.getConstant(retAlignment, dl, MVT::i32),
1664                                   DAG.getConstant(resultsz / 8, dl, MVT::i32),
1665                                   DAG.getConstant(0, dl, MVT::i32), InFlag };
1666       Chain = DAG.getNode(NVPTXISD::DeclareRetParam, dl, DeclareRetVTs,
1667                           DeclareRetOps);
1668       InFlag = Chain.getValue(1);
1669     }
1670   }
1671 
1672   // Both indirect calls and libcalls have nullptr Func. In order to distinguish
1673   // between them we must rely on the call site value which is valid for
1674   // indirect calls but is always null for libcalls.
1675   bool isIndirectCall = !Func && CS;
1676 
1677   if (isa<ExternalSymbolSDNode>(Callee)) {
1678     Function* CalleeFunc = nullptr;
1679 
1680     // Try to find the callee in the current module.
1681     Callee = DAG.getSymbolFunctionGlobalAddress(Callee, &CalleeFunc);
1682     assert(CalleeFunc != nullptr && "Libcall callee must be set.");
1683 
1684     // Set the "libcall callee" attribute to indicate that the function
1685     // must always have a declaration.
1686     CalleeFunc->addFnAttr("nvptx-libcall-callee", "true");
1687   }
1688 
1689   if (isIndirectCall) {
1690     // This is indirect function call case : PTX requires a prototype of the
1691     // form
1692     // proto_0 : .callprototype(.param .b32 _) _ (.param .b32 _);
1693     // to be emitted, and the label has to used as the last arg of call
1694     // instruction.
1695     // The prototype is embedded in a string and put as the operand for a
1696     // CallPrototype SDNode which will print out to the value of the string.
1697     SDVTList ProtoVTs = DAG.getVTList(MVT::Other, MVT::Glue);
1698     std::string Proto = getPrototype(DL, RetTy, Args, Outs, retAlignment, CS);
1699     const char *ProtoStr =
1700       nvTM->getManagedStrPool()->getManagedString(Proto.c_str())->c_str();
1701     SDValue ProtoOps[] = {
1702       Chain, DAG.getTargetExternalSymbol(ProtoStr, MVT::i32), InFlag,
1703     };
1704     Chain = DAG.getNode(NVPTXISD::CallPrototype, dl, ProtoVTs, ProtoOps);
1705     InFlag = Chain.getValue(1);
1706   }
1707   // Op to just print "call"
1708   SDVTList PrintCallVTs = DAG.getVTList(MVT::Other, MVT::Glue);
1709   SDValue PrintCallOps[] = {
1710     Chain, DAG.getConstant((Ins.size() == 0) ? 0 : 1, dl, MVT::i32), InFlag
1711   };
1712   // We model convergent calls as separate opcodes.
1713   unsigned Opcode = isIndirectCall ? NVPTXISD::PrintCall : NVPTXISD::PrintCallUni;
1714   if (CLI.IsConvergent)
1715     Opcode = Opcode == NVPTXISD::PrintCallUni ? NVPTXISD::PrintConvergentCallUni
1716                                               : NVPTXISD::PrintConvergentCall;
1717   Chain = DAG.getNode(Opcode, dl, PrintCallVTs, PrintCallOps);
1718   InFlag = Chain.getValue(1);
1719 
1720   // Ops to print out the function name
1721   SDVTList CallVoidVTs = DAG.getVTList(MVT::Other, MVT::Glue);
1722   SDValue CallVoidOps[] = { Chain, Callee, InFlag };
1723   Chain = DAG.getNode(NVPTXISD::CallVoid, dl, CallVoidVTs, CallVoidOps);
1724   InFlag = Chain.getValue(1);
1725 
1726   // Ops to print out the param list
1727   SDVTList CallArgBeginVTs = DAG.getVTList(MVT::Other, MVT::Glue);
1728   SDValue CallArgBeginOps[] = { Chain, InFlag };
1729   Chain = DAG.getNode(NVPTXISD::CallArgBegin, dl, CallArgBeginVTs,
1730                       CallArgBeginOps);
1731   InFlag = Chain.getValue(1);
1732 
1733   for (unsigned i = 0, e = paramCount; i != e; ++i) {
1734     unsigned opcode;
1735     if (i == (e - 1))
1736       opcode = NVPTXISD::LastCallArg;
1737     else
1738       opcode = NVPTXISD::CallArg;
1739     SDVTList CallArgVTs = DAG.getVTList(MVT::Other, MVT::Glue);
1740     SDValue CallArgOps[] = { Chain, DAG.getConstant(1, dl, MVT::i32),
1741                              DAG.getConstant(i, dl, MVT::i32), InFlag };
1742     Chain = DAG.getNode(opcode, dl, CallArgVTs, CallArgOps);
1743     InFlag = Chain.getValue(1);
1744   }
1745   SDVTList CallArgEndVTs = DAG.getVTList(MVT::Other, MVT::Glue);
1746   SDValue CallArgEndOps[] = { Chain,
1747                               DAG.getConstant(isIndirectCall ? 0 : 1, dl, MVT::i32),
1748                               InFlag };
1749   Chain = DAG.getNode(NVPTXISD::CallArgEnd, dl, CallArgEndVTs, CallArgEndOps);
1750   InFlag = Chain.getValue(1);
1751 
1752   if (isIndirectCall) {
1753     SDVTList PrototypeVTs = DAG.getVTList(MVT::Other, MVT::Glue);
1754     SDValue PrototypeOps[] = { Chain,
1755                                DAG.getConstant(uniqueCallSite, dl, MVT::i32),
1756                                InFlag };
1757     Chain = DAG.getNode(NVPTXISD::Prototype, dl, PrototypeVTs, PrototypeOps);
1758     InFlag = Chain.getValue(1);
1759   }
1760 
1761   SmallVector<SDValue, 16> ProxyRegOps;
1762   SmallVector<Optional<MVT>, 16> ProxyRegTruncates;
1763 
1764   // Generate loads from param memory/moves from registers for result
1765   if (Ins.size() > 0) {
1766     SmallVector<EVT, 16> VTs;
1767     SmallVector<uint64_t, 16> Offsets;
1768     ComputePTXValueVTs(*this, DL, RetTy, VTs, &Offsets, 0);
1769     assert(VTs.size() == Ins.size() && "Bad value decomposition");
1770 
1771     unsigned RetAlign = getArgumentAlignment(Callee, CS, RetTy, 0, DL);
1772     auto VectorInfo = VectorizePTXValueVTs(VTs, Offsets, RetAlign);
1773 
1774     SmallVector<EVT, 6> LoadVTs;
1775     int VecIdx = -1; // Index of the first element of the vector.
1776 
1777     // PTX Interoperability Guide 3.3(A): [Integer] Values shorter than
1778     // 32-bits are sign extended or zero extended, depending on whether
1779     // they are signed or unsigned types.
1780     bool ExtendIntegerRetVal =
1781         RetTy->isIntegerTy() && DL.getTypeAllocSizeInBits(RetTy) < 32;
1782 
1783     for (unsigned i = 0, e = VTs.size(); i != e; ++i) {
1784       bool needTruncate = false;
1785       EVT TheLoadType = VTs[i];
1786       EVT EltType = Ins[i].VT;
1787       unsigned EltAlign = GreatestCommonDivisor64(RetAlign, Offsets[i]);
1788       if (ExtendIntegerRetVal) {
1789         TheLoadType = MVT::i32;
1790         EltType = MVT::i32;
1791         needTruncate = true;
1792       } else if (TheLoadType.getSizeInBits() < 16) {
1793         if (VTs[i].isInteger())
1794           needTruncate = true;
1795         EltType = MVT::i16;
1796       }
1797 
1798       // Record index of the very first element of the vector.
1799       if (VectorInfo[i] & PVF_FIRST) {
1800         assert(VecIdx == -1 && LoadVTs.empty() && "Orphaned operand list.");
1801         VecIdx = i;
1802       }
1803 
1804       LoadVTs.push_back(EltType);
1805 
1806       if (VectorInfo[i] & PVF_LAST) {
1807         unsigned NumElts = LoadVTs.size();
1808         LoadVTs.push_back(MVT::Other);
1809         LoadVTs.push_back(MVT::Glue);
1810         NVPTXISD::NodeType Op;
1811         switch (NumElts) {
1812         case 1:
1813           Op = NVPTXISD::LoadParam;
1814           break;
1815         case 2:
1816           Op = NVPTXISD::LoadParamV2;
1817           break;
1818         case 4:
1819           Op = NVPTXISD::LoadParamV4;
1820           break;
1821         default:
1822           llvm_unreachable("Invalid vector info.");
1823         }
1824 
1825         SDValue LoadOperands[] = {
1826             Chain, DAG.getConstant(1, dl, MVT::i32),
1827             DAG.getConstant(Offsets[VecIdx], dl, MVT::i32), InFlag};
1828         SDValue RetVal = DAG.getMemIntrinsicNode(
1829             Op, dl, DAG.getVTList(LoadVTs), LoadOperands, TheLoadType,
1830             MachinePointerInfo(), EltAlign,
1831             MachineMemOperand::MOLoad);
1832 
1833         for (unsigned j = 0; j < NumElts; ++j) {
1834           ProxyRegOps.push_back(RetVal.getValue(j));
1835 
1836           if (needTruncate)
1837             ProxyRegTruncates.push_back(Optional<MVT>(Ins[VecIdx + j].VT));
1838           else
1839             ProxyRegTruncates.push_back(Optional<MVT>());
1840         }
1841 
1842         Chain = RetVal.getValue(NumElts);
1843         InFlag = RetVal.getValue(NumElts + 1);
1844 
1845         // Cleanup
1846         VecIdx = -1;
1847         LoadVTs.clear();
1848       }
1849     }
1850   }
1851 
1852   Chain = DAG.getCALLSEQ_END(Chain,
1853                              DAG.getIntPtrConstant(uniqueCallSite, dl, true),
1854                              DAG.getIntPtrConstant(uniqueCallSite + 1, dl,
1855                                                    true),
1856                              InFlag, dl);
1857   InFlag = Chain.getValue(1);
1858   uniqueCallSite++;
1859 
1860   // Append ProxyReg instructions to the chain to make sure that `callseq_end`
1861   // will not get lost. Otherwise, during libcalls expansion, the nodes can become
1862   // dangling.
1863   for (unsigned i = 0; i < ProxyRegOps.size(); ++i) {
1864     SDValue Ret = DAG.getNode(
1865       NVPTXISD::ProxyReg, dl,
1866       DAG.getVTList(ProxyRegOps[i].getSimpleValueType(), MVT::Other, MVT::Glue),
1867       { Chain, ProxyRegOps[i], InFlag }
1868     );
1869 
1870     Chain = Ret.getValue(1);
1871     InFlag = Ret.getValue(2);
1872 
1873     if (ProxyRegTruncates[i].hasValue()) {
1874       Ret = DAG.getNode(ISD::TRUNCATE, dl, ProxyRegTruncates[i].getValue(), Ret);
1875     }
1876 
1877     InVals.push_back(Ret);
1878   }
1879 
1880   // set isTailCall to false for now, until we figure out how to express
1881   // tail call optimization in PTX
1882   isTailCall = false;
1883   return Chain;
1884 }
1885 
1886 // By default CONCAT_VECTORS is lowered by ExpandVectorBuildThroughStack()
1887 // (see LegalizeDAG.cpp). This is slow and uses local memory.
1888 // We use extract/insert/build vector just as what LegalizeOp() does in llvm 2.5
1889 SDValue
1890 NVPTXTargetLowering::LowerCONCAT_VECTORS(SDValue Op, SelectionDAG &DAG) const {
1891   SDNode *Node = Op.getNode();
1892   SDLoc dl(Node);
1893   SmallVector<SDValue, 8> Ops;
1894   unsigned NumOperands = Node->getNumOperands();
1895   for (unsigned i = 0; i < NumOperands; ++i) {
1896     SDValue SubOp = Node->getOperand(i);
1897     EVT VVT = SubOp.getNode()->getValueType(0);
1898     EVT EltVT = VVT.getVectorElementType();
1899     unsigned NumSubElem = VVT.getVectorNumElements();
1900     for (unsigned j = 0; j < NumSubElem; ++j) {
1901       Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT, SubOp,
1902                                 DAG.getIntPtrConstant(j, dl)));
1903     }
1904   }
1905   return DAG.getBuildVector(Node->getValueType(0), dl, Ops);
1906 }
1907 
1908 // We can init constant f16x2 with a single .b32 move.  Normally it
1909 // would get lowered as two constant loads and vector-packing move.
1910 //        mov.b16         %h1, 0x4000;
1911 //        mov.b16         %h2, 0x3C00;
1912 //        mov.b32         %hh2, {%h2, %h1};
1913 // Instead we want just a constant move:
1914 //        mov.b32         %hh2, 0x40003C00
1915 //
1916 // This results in better SASS code with CUDA 7.x. Ptxas in CUDA 8.0
1917 // generates good SASS in both cases.
1918 SDValue NVPTXTargetLowering::LowerBUILD_VECTOR(SDValue Op,
1919                                                SelectionDAG &DAG) const {
1920   //return Op;
1921   if (!(Op->getValueType(0) == MVT::v2f16 &&
1922         isa<ConstantFPSDNode>(Op->getOperand(0)) &&
1923         isa<ConstantFPSDNode>(Op->getOperand(1))))
1924     return Op;
1925 
1926   APInt E0 =
1927       cast<ConstantFPSDNode>(Op->getOperand(0))->getValueAPF().bitcastToAPInt();
1928   APInt E1 =
1929       cast<ConstantFPSDNode>(Op->getOperand(1))->getValueAPF().bitcastToAPInt();
1930   SDValue Const =
1931       DAG.getConstant(E1.zext(32).shl(16) | E0.zext(32), SDLoc(Op), MVT::i32);
1932   return DAG.getNode(ISD::BITCAST, SDLoc(Op), MVT::v2f16, Const);
1933 }
1934 
1935 SDValue NVPTXTargetLowering::LowerEXTRACT_VECTOR_ELT(SDValue Op,
1936                                                      SelectionDAG &DAG) const {
1937   SDValue Index = Op->getOperand(1);
1938   // Constant index will be matched by tablegen.
1939   if (isa<ConstantSDNode>(Index.getNode()))
1940     return Op;
1941 
1942   // Extract individual elements and select one of them.
1943   SDValue Vector = Op->getOperand(0);
1944   EVT VectorVT = Vector.getValueType();
1945   assert(VectorVT == MVT::v2f16 && "Unexpected vector type.");
1946   EVT EltVT = VectorVT.getVectorElementType();
1947 
1948   SDLoc dl(Op.getNode());
1949   SDValue E0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT, Vector,
1950                            DAG.getIntPtrConstant(0, dl));
1951   SDValue E1 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT, Vector,
1952                            DAG.getIntPtrConstant(1, dl));
1953   return DAG.getSelectCC(dl, Index, DAG.getIntPtrConstant(0, dl), E0, E1,
1954                          ISD::CondCode::SETEQ);
1955 }
1956 
1957 /// LowerShiftRightParts - Lower SRL_PARTS, SRA_PARTS, which
1958 /// 1) returns two i32 values and take a 2 x i32 value to shift plus a shift
1959 ///    amount, or
1960 /// 2) returns two i64 values and take a 2 x i64 value to shift plus a shift
1961 ///    amount.
1962 SDValue NVPTXTargetLowering::LowerShiftRightParts(SDValue Op,
1963                                                   SelectionDAG &DAG) const {
1964   assert(Op.getNumOperands() == 3 && "Not a double-shift!");
1965   assert(Op.getOpcode() == ISD::SRA_PARTS || Op.getOpcode() == ISD::SRL_PARTS);
1966 
1967   EVT VT = Op.getValueType();
1968   unsigned VTBits = VT.getSizeInBits();
1969   SDLoc dl(Op);
1970   SDValue ShOpLo = Op.getOperand(0);
1971   SDValue ShOpHi = Op.getOperand(1);
1972   SDValue ShAmt  = Op.getOperand(2);
1973   unsigned Opc = (Op.getOpcode() == ISD::SRA_PARTS) ? ISD::SRA : ISD::SRL;
1974 
1975   if (VTBits == 32 && STI.getSmVersion() >= 35) {
1976     // For 32bit and sm35, we can use the funnel shift 'shf' instruction.
1977     // {dHi, dLo} = {aHi, aLo} >> Amt
1978     //   dHi = aHi >> Amt
1979     //   dLo = shf.r.clamp aLo, aHi, Amt
1980 
1981     SDValue Hi = DAG.getNode(Opc, dl, VT, ShOpHi, ShAmt);
1982     SDValue Lo = DAG.getNode(NVPTXISD::FUN_SHFR_CLAMP, dl, VT, ShOpLo, ShOpHi,
1983                              ShAmt);
1984 
1985     SDValue Ops[2] = { Lo, Hi };
1986     return DAG.getMergeValues(Ops, dl);
1987   }
1988   else {
1989     // {dHi, dLo} = {aHi, aLo} >> Amt
1990     // - if (Amt>=size) then
1991     //      dLo = aHi >> (Amt-size)
1992     //      dHi = aHi >> Amt (this is either all 0 or all 1)
1993     //   else
1994     //      dLo = (aLo >>logic Amt) | (aHi << (size-Amt))
1995     //      dHi = aHi >> Amt
1996 
1997     SDValue RevShAmt = DAG.getNode(ISD::SUB, dl, MVT::i32,
1998                                    DAG.getConstant(VTBits, dl, MVT::i32),
1999                                    ShAmt);
2000     SDValue Tmp1 = DAG.getNode(ISD::SRL, dl, VT, ShOpLo, ShAmt);
2001     SDValue ExtraShAmt = DAG.getNode(ISD::SUB, dl, MVT::i32, ShAmt,
2002                                      DAG.getConstant(VTBits, dl, MVT::i32));
2003     SDValue Tmp2 = DAG.getNode(ISD::SHL, dl, VT, ShOpHi, RevShAmt);
2004     SDValue FalseVal = DAG.getNode(ISD::OR, dl, VT, Tmp1, Tmp2);
2005     SDValue TrueVal = DAG.getNode(Opc, dl, VT, ShOpHi, ExtraShAmt);
2006 
2007     SDValue Cmp = DAG.getSetCC(dl, MVT::i1, ShAmt,
2008                                DAG.getConstant(VTBits, dl, MVT::i32),
2009                                ISD::SETGE);
2010     SDValue Hi = DAG.getNode(Opc, dl, VT, ShOpHi, ShAmt);
2011     SDValue Lo = DAG.getNode(ISD::SELECT, dl, VT, Cmp, TrueVal, FalseVal);
2012 
2013     SDValue Ops[2] = { Lo, Hi };
2014     return DAG.getMergeValues(Ops, dl);
2015   }
2016 }
2017 
2018 /// LowerShiftLeftParts - Lower SHL_PARTS, which
2019 /// 1) returns two i32 values and take a 2 x i32 value to shift plus a shift
2020 ///    amount, or
2021 /// 2) returns two i64 values and take a 2 x i64 value to shift plus a shift
2022 ///    amount.
2023 SDValue NVPTXTargetLowering::LowerShiftLeftParts(SDValue Op,
2024                                                  SelectionDAG &DAG) const {
2025   assert(Op.getNumOperands() == 3 && "Not a double-shift!");
2026   assert(Op.getOpcode() == ISD::SHL_PARTS);
2027 
2028   EVT VT = Op.getValueType();
2029   unsigned VTBits = VT.getSizeInBits();
2030   SDLoc dl(Op);
2031   SDValue ShOpLo = Op.getOperand(0);
2032   SDValue ShOpHi = Op.getOperand(1);
2033   SDValue ShAmt  = Op.getOperand(2);
2034 
2035   if (VTBits == 32 && STI.getSmVersion() >= 35) {
2036     // For 32bit and sm35, we can use the funnel shift 'shf' instruction.
2037     // {dHi, dLo} = {aHi, aLo} << Amt
2038     //   dHi = shf.l.clamp aLo, aHi, Amt
2039     //   dLo = aLo << Amt
2040 
2041     SDValue Hi = DAG.getNode(NVPTXISD::FUN_SHFL_CLAMP, dl, VT, ShOpLo, ShOpHi,
2042                              ShAmt);
2043     SDValue Lo = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, ShAmt);
2044 
2045     SDValue Ops[2] = { Lo, Hi };
2046     return DAG.getMergeValues(Ops, dl);
2047   }
2048   else {
2049     // {dHi, dLo} = {aHi, aLo} << Amt
2050     // - if (Amt>=size) then
2051     //      dLo = aLo << Amt (all 0)
2052     //      dLo = aLo << (Amt-size)
2053     //   else
2054     //      dLo = aLo << Amt
2055     //      dHi = (aHi << Amt) | (aLo >> (size-Amt))
2056 
2057     SDValue RevShAmt = DAG.getNode(ISD::SUB, dl, MVT::i32,
2058                                    DAG.getConstant(VTBits, dl, MVT::i32),
2059                                    ShAmt);
2060     SDValue Tmp1 = DAG.getNode(ISD::SHL, dl, VT, ShOpHi, ShAmt);
2061     SDValue ExtraShAmt = DAG.getNode(ISD::SUB, dl, MVT::i32, ShAmt,
2062                                      DAG.getConstant(VTBits, dl, MVT::i32));
2063     SDValue Tmp2 = DAG.getNode(ISD::SRL, dl, VT, ShOpLo, RevShAmt);
2064     SDValue FalseVal = DAG.getNode(ISD::OR, dl, VT, Tmp1, Tmp2);
2065     SDValue TrueVal = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, ExtraShAmt);
2066 
2067     SDValue Cmp = DAG.getSetCC(dl, MVT::i1, ShAmt,
2068                                DAG.getConstant(VTBits, dl, MVT::i32),
2069                                ISD::SETGE);
2070     SDValue Lo = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, ShAmt);
2071     SDValue Hi = DAG.getNode(ISD::SELECT, dl, VT, Cmp, TrueVal, FalseVal);
2072 
2073     SDValue Ops[2] = { Lo, Hi };
2074     return DAG.getMergeValues(Ops, dl);
2075   }
2076 }
2077 
2078 SDValue NVPTXTargetLowering::LowerFROUND(SDValue Op, SelectionDAG &DAG) const {
2079   EVT VT = Op.getValueType();
2080 
2081   if (VT == MVT::f32)
2082     return LowerFROUND32(Op, DAG);
2083 
2084   if (VT == MVT::f64)
2085     return LowerFROUND64(Op, DAG);
2086 
2087   llvm_unreachable("unhandled type");
2088 }
2089 
2090 // This is the the rounding method used in CUDA libdevice in C like code:
2091 // float roundf(float A)
2092 // {
2093 //   float RoundedA = (float) (int) ( A > 0 ? (A + 0.5f) : (A - 0.5f));
2094 //   RoundedA = abs(A) > 0x1.0p23 ? A : RoundedA;
2095 //   return abs(A) < 0.5 ? (float)(int)A : RoundedA;
2096 // }
2097 SDValue NVPTXTargetLowering::LowerFROUND32(SDValue Op,
2098                                            SelectionDAG &DAG) const {
2099   SDLoc SL(Op);
2100   SDValue A = Op.getOperand(0);
2101   EVT VT = Op.getValueType();
2102 
2103   SDValue AbsA = DAG.getNode(ISD::FABS, SL, VT, A);
2104 
2105   // RoundedA = (float) (int) ( A > 0 ? (A + 0.5f) : (A - 0.5f))
2106   SDValue Bitcast  = DAG.getNode(ISD::BITCAST, SL, MVT::i32, A);
2107   const int SignBitMask = 0x80000000;
2108   SDValue Sign = DAG.getNode(ISD::AND, SL, MVT::i32, Bitcast,
2109                              DAG.getConstant(SignBitMask, SL, MVT::i32));
2110   const int PointFiveInBits = 0x3F000000;
2111   SDValue PointFiveWithSignRaw =
2112       DAG.getNode(ISD::OR, SL, MVT::i32, Sign,
2113                   DAG.getConstant(PointFiveInBits, SL, MVT::i32));
2114   SDValue PointFiveWithSign =
2115       DAG.getNode(ISD::BITCAST, SL, VT, PointFiveWithSignRaw);
2116   SDValue AdjustedA = DAG.getNode(ISD::FADD, SL, VT, A, PointFiveWithSign);
2117   SDValue RoundedA = DAG.getNode(ISD::FTRUNC, SL, VT, AdjustedA);
2118 
2119   // RoundedA = abs(A) > 0x1.0p23 ? A : RoundedA;
2120   EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
2121   SDValue IsLarge =
2122       DAG.getSetCC(SL, SetCCVT, AbsA, DAG.getConstantFP(pow(2.0, 23.0), SL, VT),
2123                    ISD::SETOGT);
2124   RoundedA = DAG.getNode(ISD::SELECT, SL, VT, IsLarge, A, RoundedA);
2125 
2126   // return abs(A) < 0.5 ? (float)(int)A : RoundedA;
2127   SDValue IsSmall =DAG.getSetCC(SL, SetCCVT, AbsA,
2128                                 DAG.getConstantFP(0.5, SL, VT), ISD::SETOLT);
2129   SDValue RoundedAForSmallA = DAG.getNode(ISD::FTRUNC, SL, VT, A);
2130   return DAG.getNode(ISD::SELECT, SL, VT, IsSmall, RoundedAForSmallA, RoundedA);
2131 }
2132 
2133 // The implementation of round(double) is similar to that of round(float) in
2134 // that they both separate the value range into three regions and use a method
2135 // specific to the region to round the values. However, round(double) first
2136 // calculates the round of the absolute value and then adds the sign back while
2137 // round(float) directly rounds the value with sign.
2138 SDValue NVPTXTargetLowering::LowerFROUND64(SDValue Op,
2139                                            SelectionDAG &DAG) const {
2140   SDLoc SL(Op);
2141   SDValue A = Op.getOperand(0);
2142   EVT VT = Op.getValueType();
2143 
2144   SDValue AbsA = DAG.getNode(ISD::FABS, SL, VT, A);
2145 
2146   // double RoundedA = (double) (int) (abs(A) + 0.5f);
2147   SDValue AdjustedA = DAG.getNode(ISD::FADD, SL, VT, AbsA,
2148                                   DAG.getConstantFP(0.5, SL, VT));
2149   SDValue RoundedA = DAG.getNode(ISD::FTRUNC, SL, VT, AdjustedA);
2150 
2151   // RoundedA = abs(A) < 0.5 ? (double)0 : RoundedA;
2152   EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
2153   SDValue IsSmall =DAG.getSetCC(SL, SetCCVT, AbsA,
2154                                 DAG.getConstantFP(0.5, SL, VT), ISD::SETOLT);
2155   RoundedA = DAG.getNode(ISD::SELECT, SL, VT, IsSmall,
2156                          DAG.getConstantFP(0, SL, VT),
2157                          RoundedA);
2158 
2159   // Add sign to rounded_A
2160   RoundedA = DAG.getNode(ISD::FCOPYSIGN, SL, VT, RoundedA, A);
2161   DAG.getNode(ISD::FTRUNC, SL, VT, A);
2162 
2163   // RoundedA = abs(A) > 0x1.0p52 ? A : RoundedA;
2164   SDValue IsLarge =
2165       DAG.getSetCC(SL, SetCCVT, AbsA, DAG.getConstantFP(pow(2.0, 52.0), SL, VT),
2166                    ISD::SETOGT);
2167   return DAG.getNode(ISD::SELECT, SL, VT, IsLarge, A, RoundedA);
2168 }
2169 
2170 
2171 
2172 SDValue
2173 NVPTXTargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
2174   switch (Op.getOpcode()) {
2175   case ISD::RETURNADDR:
2176     return SDValue();
2177   case ISD::FRAMEADDR:
2178     return SDValue();
2179   case ISD::GlobalAddress:
2180     return LowerGlobalAddress(Op, DAG);
2181   case ISD::INTRINSIC_W_CHAIN:
2182     return Op;
2183   case ISD::BUILD_VECTOR:
2184     return LowerBUILD_VECTOR(Op, DAG);
2185   case ISD::EXTRACT_SUBVECTOR:
2186     return Op;
2187   case ISD::EXTRACT_VECTOR_ELT:
2188     return LowerEXTRACT_VECTOR_ELT(Op, DAG);
2189   case ISD::CONCAT_VECTORS:
2190     return LowerCONCAT_VECTORS(Op, DAG);
2191   case ISD::STORE:
2192     return LowerSTORE(Op, DAG);
2193   case ISD::LOAD:
2194     return LowerLOAD(Op, DAG);
2195   case ISD::SHL_PARTS:
2196     return LowerShiftLeftParts(Op, DAG);
2197   case ISD::SRA_PARTS:
2198   case ISD::SRL_PARTS:
2199     return LowerShiftRightParts(Op, DAG);
2200   case ISD::SELECT:
2201     return LowerSelect(Op, DAG);
2202   case ISD::FROUND:
2203     return LowerFROUND(Op, DAG);
2204   default:
2205     llvm_unreachable("Custom lowering not defined for operation");
2206   }
2207 }
2208 
2209 SDValue NVPTXTargetLowering::LowerSelect(SDValue Op, SelectionDAG &DAG) const {
2210   SDValue Op0 = Op->getOperand(0);
2211   SDValue Op1 = Op->getOperand(1);
2212   SDValue Op2 = Op->getOperand(2);
2213   SDLoc DL(Op.getNode());
2214 
2215   assert(Op.getValueType() == MVT::i1 && "Custom lowering enabled only for i1");
2216 
2217   Op1 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i32, Op1);
2218   Op2 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i32, Op2);
2219   SDValue Select = DAG.getNode(ISD::SELECT, DL, MVT::i32, Op0, Op1, Op2);
2220   SDValue Trunc = DAG.getNode(ISD::TRUNCATE, DL, MVT::i1, Select);
2221 
2222   return Trunc;
2223 }
2224 
2225 SDValue NVPTXTargetLowering::LowerLOAD(SDValue Op, SelectionDAG &DAG) const {
2226   if (Op.getValueType() == MVT::i1)
2227     return LowerLOADi1(Op, DAG);
2228 
2229   // v2f16 is legal, so we can't rely on legalizer to handle unaligned
2230   // loads and have to handle it here.
2231   if (Op.getValueType() == MVT::v2f16) {
2232     LoadSDNode *Load = cast<LoadSDNode>(Op);
2233     EVT MemVT = Load->getMemoryVT();
2234     if (!allowsMemoryAccessForAlignment(*DAG.getContext(), DAG.getDataLayout(),
2235                                         MemVT, *Load->getMemOperand())) {
2236       SDValue Ops[2];
2237       std::tie(Ops[0], Ops[1]) = expandUnalignedLoad(Load, DAG);
2238       return DAG.getMergeValues(Ops, SDLoc(Op));
2239     }
2240   }
2241 
2242   return SDValue();
2243 }
2244 
2245 // v = ld i1* addr
2246 //   =>
2247 // v1 = ld i8* addr (-> i16)
2248 // v = trunc i16 to i1
2249 SDValue NVPTXTargetLowering::LowerLOADi1(SDValue Op, SelectionDAG &DAG) const {
2250   SDNode *Node = Op.getNode();
2251   LoadSDNode *LD = cast<LoadSDNode>(Node);
2252   SDLoc dl(Node);
2253   assert(LD->getExtensionType() == ISD::NON_EXTLOAD);
2254   assert(Node->getValueType(0) == MVT::i1 &&
2255          "Custom lowering for i1 load only");
2256   SDValue newLD = DAG.getLoad(MVT::i16, dl, LD->getChain(), LD->getBasePtr(),
2257                               LD->getPointerInfo(), LD->getAlignment(),
2258                               LD->getMemOperand()->getFlags());
2259   SDValue result = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, newLD);
2260   // The legalizer (the caller) is expecting two values from the legalized
2261   // load, so we build a MergeValues node for it. See ExpandUnalignedLoad()
2262   // in LegalizeDAG.cpp which also uses MergeValues.
2263   SDValue Ops[] = { result, LD->getChain() };
2264   return DAG.getMergeValues(Ops, dl);
2265 }
2266 
2267 SDValue NVPTXTargetLowering::LowerSTORE(SDValue Op, SelectionDAG &DAG) const {
2268   StoreSDNode *Store = cast<StoreSDNode>(Op);
2269   EVT VT = Store->getMemoryVT();
2270 
2271   if (VT == MVT::i1)
2272     return LowerSTOREi1(Op, DAG);
2273 
2274   // v2f16 is legal, so we can't rely on legalizer to handle unaligned
2275   // stores and have to handle it here.
2276   if (VT == MVT::v2f16 &&
2277       !allowsMemoryAccessForAlignment(*DAG.getContext(), DAG.getDataLayout(),
2278                                       VT, *Store->getMemOperand()))
2279     return expandUnalignedStore(Store, DAG);
2280 
2281   if (VT.isVector())
2282     return LowerSTOREVector(Op, DAG);
2283 
2284   return SDValue();
2285 }
2286 
2287 SDValue
2288 NVPTXTargetLowering::LowerSTOREVector(SDValue Op, SelectionDAG &DAG) const {
2289   SDNode *N = Op.getNode();
2290   SDValue Val = N->getOperand(1);
2291   SDLoc DL(N);
2292   EVT ValVT = Val.getValueType();
2293 
2294   if (ValVT.isVector()) {
2295     // We only handle "native" vector sizes for now, e.g. <4 x double> is not
2296     // legal.  We can (and should) split that into 2 stores of <2 x double> here
2297     // but I'm leaving that as a TODO for now.
2298     if (!ValVT.isSimple())
2299       return SDValue();
2300     switch (ValVT.getSimpleVT().SimpleTy) {
2301     default:
2302       return SDValue();
2303     case MVT::v2i8:
2304     case MVT::v2i16:
2305     case MVT::v2i32:
2306     case MVT::v2i64:
2307     case MVT::v2f16:
2308     case MVT::v2f32:
2309     case MVT::v2f64:
2310     case MVT::v4i8:
2311     case MVT::v4i16:
2312     case MVT::v4i32:
2313     case MVT::v4f16:
2314     case MVT::v4f32:
2315     case MVT::v8f16: // <4 x f16x2>
2316       // This is a "native" vector type
2317       break;
2318     }
2319 
2320     MemSDNode *MemSD = cast<MemSDNode>(N);
2321     const DataLayout &TD = DAG.getDataLayout();
2322 
2323     unsigned Align = MemSD->getAlignment();
2324     unsigned PrefAlign =
2325         TD.getPrefTypeAlignment(ValVT.getTypeForEVT(*DAG.getContext()));
2326     if (Align < PrefAlign) {
2327       // This store is not sufficiently aligned, so bail out and let this vector
2328       // store be scalarized.  Note that we may still be able to emit smaller
2329       // vector stores.  For example, if we are storing a <4 x float> with an
2330       // alignment of 8, this check will fail but the legalizer will try again
2331       // with 2 x <2 x float>, which will succeed with an alignment of 8.
2332       return SDValue();
2333     }
2334 
2335     unsigned Opcode = 0;
2336     EVT EltVT = ValVT.getVectorElementType();
2337     unsigned NumElts = ValVT.getVectorNumElements();
2338 
2339     // Since StoreV2 is a target node, we cannot rely on DAG type legalization.
2340     // Therefore, we must ensure the type is legal.  For i1 and i8, we set the
2341     // stored type to i16 and propagate the "real" type as the memory type.
2342     bool NeedExt = false;
2343     if (EltVT.getSizeInBits() < 16)
2344       NeedExt = true;
2345 
2346     bool StoreF16x2 = false;
2347     switch (NumElts) {
2348     default:
2349       return SDValue();
2350     case 2:
2351       Opcode = NVPTXISD::StoreV2;
2352       break;
2353     case 4:
2354       Opcode = NVPTXISD::StoreV4;
2355       break;
2356     case 8:
2357       // v8f16 is a special case. PTX doesn't have st.v8.f16
2358       // instruction. Instead, we split the vector into v2f16 chunks and
2359       // store them with st.v4.b32.
2360       assert(EltVT == MVT::f16 && "Wrong type for the vector.");
2361       Opcode = NVPTXISD::StoreV4;
2362       StoreF16x2 = true;
2363       break;
2364     }
2365 
2366     SmallVector<SDValue, 8> Ops;
2367 
2368     // First is the chain
2369     Ops.push_back(N->getOperand(0));
2370 
2371     if (StoreF16x2) {
2372       // Combine f16,f16 -> v2f16
2373       NumElts /= 2;
2374       for (unsigned i = 0; i < NumElts; ++i) {
2375         SDValue E0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::f16, Val,
2376                                  DAG.getIntPtrConstant(i * 2, DL));
2377         SDValue E1 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::f16, Val,
2378                                  DAG.getIntPtrConstant(i * 2 + 1, DL));
2379         SDValue V2 = DAG.getNode(ISD::BUILD_VECTOR, DL, MVT::v2f16, E0, E1);
2380         Ops.push_back(V2);
2381       }
2382     } else {
2383       // Then the split values
2384       for (unsigned i = 0; i < NumElts; ++i) {
2385         SDValue ExtVal = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, Val,
2386                                      DAG.getIntPtrConstant(i, DL));
2387         if (NeedExt)
2388           ExtVal = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i16, ExtVal);
2389         Ops.push_back(ExtVal);
2390       }
2391     }
2392 
2393     // Then any remaining arguments
2394     Ops.append(N->op_begin() + 2, N->op_end());
2395 
2396     SDValue NewSt =
2397         DAG.getMemIntrinsicNode(Opcode, DL, DAG.getVTList(MVT::Other), Ops,
2398                                 MemSD->getMemoryVT(), MemSD->getMemOperand());
2399 
2400     // return DCI.CombineTo(N, NewSt, true);
2401     return NewSt;
2402   }
2403 
2404   return SDValue();
2405 }
2406 
2407 // st i1 v, addr
2408 //    =>
2409 // v1 = zxt v to i16
2410 // st.u8 i16, addr
2411 SDValue NVPTXTargetLowering::LowerSTOREi1(SDValue Op, SelectionDAG &DAG) const {
2412   SDNode *Node = Op.getNode();
2413   SDLoc dl(Node);
2414   StoreSDNode *ST = cast<StoreSDNode>(Node);
2415   SDValue Tmp1 = ST->getChain();
2416   SDValue Tmp2 = ST->getBasePtr();
2417   SDValue Tmp3 = ST->getValue();
2418   assert(Tmp3.getValueType() == MVT::i1 && "Custom lowering for i1 store only");
2419   Tmp3 = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i16, Tmp3);
2420   SDValue Result =
2421       DAG.getTruncStore(Tmp1, dl, Tmp3, Tmp2, ST->getPointerInfo(), MVT::i8,
2422                         ST->getAlignment(), ST->getMemOperand()->getFlags());
2423   return Result;
2424 }
2425 
2426 SDValue
2427 NVPTXTargetLowering::getParamSymbol(SelectionDAG &DAG, int idx, EVT v) const {
2428   std::string ParamSym;
2429   raw_string_ostream ParamStr(ParamSym);
2430 
2431   ParamStr << DAG.getMachineFunction().getName() << "_param_" << idx;
2432   ParamStr.flush();
2433 
2434   std::string *SavedStr =
2435     nvTM->getManagedStrPool()->getManagedString(ParamSym.c_str());
2436   return DAG.getTargetExternalSymbol(SavedStr->c_str(), v);
2437 }
2438 
2439 // Check to see if the kernel argument is image*_t or sampler_t
2440 
2441 static bool isImageOrSamplerVal(const Value *arg, const Module *context) {
2442   static const char *const specialTypes[] = { "struct._image2d_t",
2443                                               "struct._image3d_t",
2444                                               "struct._sampler_t" };
2445 
2446   Type *Ty = arg->getType();
2447   auto *PTy = dyn_cast<PointerType>(Ty);
2448 
2449   if (!PTy)
2450     return false;
2451 
2452   if (!context)
2453     return false;
2454 
2455   auto *STy = dyn_cast<StructType>(PTy->getElementType());
2456   if (!STy || STy->isLiteral())
2457     return false;
2458 
2459   return std::find(std::begin(specialTypes), std::end(specialTypes),
2460                    STy->getName()) != std::end(specialTypes);
2461 }
2462 
2463 SDValue NVPTXTargetLowering::LowerFormalArguments(
2464     SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
2465     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
2466     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
2467   MachineFunction &MF = DAG.getMachineFunction();
2468   const DataLayout &DL = DAG.getDataLayout();
2469   auto PtrVT = getPointerTy(DAG.getDataLayout());
2470 
2471   const Function *F = &MF.getFunction();
2472   const AttributeList &PAL = F->getAttributes();
2473   const TargetLowering *TLI = STI.getTargetLowering();
2474 
2475   SDValue Root = DAG.getRoot();
2476   std::vector<SDValue> OutChains;
2477 
2478   bool isABI = (STI.getSmVersion() >= 20);
2479   assert(isABI && "Non-ABI compilation is not supported");
2480   if (!isABI)
2481     return Chain;
2482 
2483   std::vector<Type *> argTypes;
2484   std::vector<const Argument *> theArgs;
2485   for (const Argument &I : F->args()) {
2486     theArgs.push_back(&I);
2487     argTypes.push_back(I.getType());
2488   }
2489   // argTypes.size() (or theArgs.size()) and Ins.size() need not match.
2490   // Ins.size() will be larger
2491   //   * if there is an aggregate argument with multiple fields (each field
2492   //     showing up separately in Ins)
2493   //   * if there is a vector argument with more than typical vector-length
2494   //     elements (generally if more than 4) where each vector element is
2495   //     individually present in Ins.
2496   // So a different index should be used for indexing into Ins.
2497   // See similar issue in LowerCall.
2498   unsigned InsIdx = 0;
2499 
2500   int idx = 0;
2501   for (unsigned i = 0, e = theArgs.size(); i != e; ++i, ++idx, ++InsIdx) {
2502     Type *Ty = argTypes[i];
2503 
2504     // If the kernel argument is image*_t or sampler_t, convert it to
2505     // a i32 constant holding the parameter position. This can later
2506     // matched in the AsmPrinter to output the correct mangled name.
2507     if (isImageOrSamplerVal(
2508             theArgs[i],
2509             (theArgs[i]->getParent() ? theArgs[i]->getParent()->getParent()
2510                                      : nullptr))) {
2511       assert(isKernelFunction(*F) &&
2512              "Only kernels can have image/sampler params");
2513       InVals.push_back(DAG.getConstant(i + 1, dl, MVT::i32));
2514       continue;
2515     }
2516 
2517     if (theArgs[i]->use_empty()) {
2518       // argument is dead
2519       if (Ty->isAggregateType() || Ty->isIntegerTy(128)) {
2520         SmallVector<EVT, 16> vtparts;
2521 
2522         ComputePTXValueVTs(*this, DAG.getDataLayout(), Ty, vtparts);
2523         assert(vtparts.size() > 0 && "empty aggregate type not expected");
2524         for (unsigned parti = 0, parte = vtparts.size(); parti != parte;
2525              ++parti) {
2526           InVals.push_back(DAG.getNode(ISD::UNDEF, dl, Ins[InsIdx].VT));
2527           ++InsIdx;
2528         }
2529         if (vtparts.size() > 0)
2530           --InsIdx;
2531         continue;
2532       }
2533       if (Ty->isVectorTy()) {
2534         EVT ObjectVT = getValueType(DL, Ty);
2535         unsigned NumRegs = TLI->getNumRegisters(F->getContext(), ObjectVT);
2536         for (unsigned parti = 0; parti < NumRegs; ++parti) {
2537           InVals.push_back(DAG.getNode(ISD::UNDEF, dl, Ins[InsIdx].VT));
2538           ++InsIdx;
2539         }
2540         if (NumRegs > 0)
2541           --InsIdx;
2542         continue;
2543       }
2544       InVals.push_back(DAG.getNode(ISD::UNDEF, dl, Ins[InsIdx].VT));
2545       continue;
2546     }
2547 
2548     // In the following cases, assign a node order of "idx+1"
2549     // to newly created nodes. The SDNodes for params have to
2550     // appear in the same order as their order of appearance
2551     // in the original function. "idx+1" holds that order.
2552     if (!PAL.hasParamAttribute(i, Attribute::ByVal)) {
2553       bool aggregateIsPacked = false;
2554       if (StructType *STy = dyn_cast<StructType>(Ty))
2555         aggregateIsPacked = STy->isPacked();
2556 
2557       SmallVector<EVT, 16> VTs;
2558       SmallVector<uint64_t, 16> Offsets;
2559       ComputePTXValueVTs(*this, DL, Ty, VTs, &Offsets, 0);
2560       assert(VTs.size() > 0 && "Unexpected empty type.");
2561       auto VectorInfo =
2562           VectorizePTXValueVTs(VTs, Offsets, DL.getABITypeAlignment(Ty));
2563 
2564       SDValue Arg = getParamSymbol(DAG, idx, PtrVT);
2565       int VecIdx = -1; // Index of the first element of the current vector.
2566       for (unsigned parti = 0, parte = VTs.size(); parti != parte; ++parti) {
2567         if (VectorInfo[parti] & PVF_FIRST) {
2568           assert(VecIdx == -1 && "Orphaned vector.");
2569           VecIdx = parti;
2570         }
2571 
2572         // That's the last element of this store op.
2573         if (VectorInfo[parti] & PVF_LAST) {
2574           unsigned NumElts = parti - VecIdx + 1;
2575           EVT EltVT = VTs[parti];
2576           // i1 is loaded/stored as i8.
2577           EVT LoadVT = EltVT;
2578           if (EltVT == MVT::i1)
2579             LoadVT = MVT::i8;
2580           else if (EltVT == MVT::v2f16)
2581             // getLoad needs a vector type, but it can't handle
2582             // vectors which contain v2f16 elements. So we must load
2583             // using i32 here and then bitcast back.
2584             LoadVT = MVT::i32;
2585 
2586           EVT VecVT = EVT::getVectorVT(F->getContext(), LoadVT, NumElts);
2587           SDValue VecAddr =
2588               DAG.getNode(ISD::ADD, dl, PtrVT, Arg,
2589                           DAG.getConstant(Offsets[VecIdx], dl, PtrVT));
2590           Value *srcValue = Constant::getNullValue(PointerType::get(
2591               EltVT.getTypeForEVT(F->getContext()), ADDRESS_SPACE_PARAM));
2592           SDValue P =
2593               DAG.getLoad(VecVT, dl, Root, VecAddr,
2594                           MachinePointerInfo(srcValue), aggregateIsPacked,
2595                           MachineMemOperand::MODereferenceable |
2596                               MachineMemOperand::MOInvariant);
2597           if (P.getNode())
2598             P.getNode()->setIROrder(idx + 1);
2599           for (unsigned j = 0; j < NumElts; ++j) {
2600             SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, LoadVT, P,
2601                                       DAG.getIntPtrConstant(j, dl));
2602             // We've loaded i1 as an i8 and now must truncate it back to i1
2603             if (EltVT == MVT::i1)
2604               Elt = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, Elt);
2605             // v2f16 was loaded as an i32. Now we must bitcast it back.
2606             else if (EltVT == MVT::v2f16)
2607               Elt = DAG.getNode(ISD::BITCAST, dl, MVT::v2f16, Elt);
2608             // Extend the element if necessary (e.g. an i8 is loaded
2609             // into an i16 register)
2610             if (Ins[InsIdx].VT.isInteger() &&
2611                 Ins[InsIdx].VT.getSizeInBits() > LoadVT.getSizeInBits()) {
2612               unsigned Extend = Ins[InsIdx].Flags.isSExt() ? ISD::SIGN_EXTEND
2613                                                            : ISD::ZERO_EXTEND;
2614               Elt = DAG.getNode(Extend, dl, Ins[InsIdx].VT, Elt);
2615             }
2616             InVals.push_back(Elt);
2617           }
2618 
2619           // Reset vector tracking state.
2620           VecIdx = -1;
2621         }
2622         ++InsIdx;
2623       }
2624       if (VTs.size() > 0)
2625         --InsIdx;
2626       continue;
2627     }
2628 
2629     // Param has ByVal attribute
2630     // Return MoveParam(param symbol).
2631     // Ideally, the param symbol can be returned directly,
2632     // but when SDNode builder decides to use it in a CopyToReg(),
2633     // machine instruction fails because TargetExternalSymbol
2634     // (not lowered) is target dependent, and CopyToReg assumes
2635     // the source is lowered.
2636     EVT ObjectVT = getValueType(DL, Ty);
2637     assert(ObjectVT == Ins[InsIdx].VT &&
2638            "Ins type did not match function type");
2639     SDValue Arg = getParamSymbol(DAG, idx, PtrVT);
2640     SDValue p = DAG.getNode(NVPTXISD::MoveParam, dl, ObjectVT, Arg);
2641     if (p.getNode())
2642       p.getNode()->setIROrder(idx + 1);
2643     InVals.push_back(p);
2644   }
2645 
2646   // Clang will check explicit VarArg and issue error if any. However, Clang
2647   // will let code with
2648   // implicit var arg like f() pass. See bug 617733.
2649   // We treat this case as if the arg list is empty.
2650   // if (F.isVarArg()) {
2651   // assert(0 && "VarArg not supported yet!");
2652   //}
2653 
2654   if (!OutChains.empty())
2655     DAG.setRoot(DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains));
2656 
2657   return Chain;
2658 }
2659 
2660 SDValue
2661 NVPTXTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv,
2662                                  bool isVarArg,
2663                                  const SmallVectorImpl<ISD::OutputArg> &Outs,
2664                                  const SmallVectorImpl<SDValue> &OutVals,
2665                                  const SDLoc &dl, SelectionDAG &DAG) const {
2666   MachineFunction &MF = DAG.getMachineFunction();
2667   Type *RetTy = MF.getFunction().getReturnType();
2668 
2669   bool isABI = (STI.getSmVersion() >= 20);
2670   assert(isABI && "Non-ABI compilation is not supported");
2671   if (!isABI)
2672     return Chain;
2673 
2674   const DataLayout DL = DAG.getDataLayout();
2675   SmallVector<EVT, 16> VTs;
2676   SmallVector<uint64_t, 16> Offsets;
2677   ComputePTXValueVTs(*this, DL, RetTy, VTs, &Offsets);
2678   assert(VTs.size() == OutVals.size() && "Bad return value decomposition");
2679 
2680   auto VectorInfo = VectorizePTXValueVTs(
2681       VTs, Offsets, RetTy->isSized() ? DL.getABITypeAlignment(RetTy) : 1);
2682 
2683   // PTX Interoperability Guide 3.3(A): [Integer] Values shorter than
2684   // 32-bits are sign extended or zero extended, depending on whether
2685   // they are signed or unsigned types.
2686   bool ExtendIntegerRetVal =
2687       RetTy->isIntegerTy() && DL.getTypeAllocSizeInBits(RetTy) < 32;
2688 
2689   SmallVector<SDValue, 6> StoreOperands;
2690   for (unsigned i = 0, e = VTs.size(); i != e; ++i) {
2691     // New load/store. Record chain and offset operands.
2692     if (VectorInfo[i] & PVF_FIRST) {
2693       assert(StoreOperands.empty() && "Orphaned operand list.");
2694       StoreOperands.push_back(Chain);
2695       StoreOperands.push_back(DAG.getConstant(Offsets[i], dl, MVT::i32));
2696     }
2697 
2698     SDValue RetVal = OutVals[i];
2699     if (ExtendIntegerRetVal) {
2700       RetVal = DAG.getNode(Outs[i].Flags.isSExt() ? ISD::SIGN_EXTEND
2701                                                   : ISD::ZERO_EXTEND,
2702                            dl, MVT::i32, RetVal);
2703     } else if (RetVal.getValueSizeInBits() < 16) {
2704       // Use 16-bit registers for small load-stores as it's the
2705       // smallest general purpose register size supported by NVPTX.
2706       RetVal = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i16, RetVal);
2707     }
2708 
2709     // Record the value to return.
2710     StoreOperands.push_back(RetVal);
2711 
2712     // That's the last element of this store op.
2713     if (VectorInfo[i] & PVF_LAST) {
2714       NVPTXISD::NodeType Op;
2715       unsigned NumElts = StoreOperands.size() - 2;
2716       switch (NumElts) {
2717       case 1:
2718         Op = NVPTXISD::StoreRetval;
2719         break;
2720       case 2:
2721         Op = NVPTXISD::StoreRetvalV2;
2722         break;
2723       case 4:
2724         Op = NVPTXISD::StoreRetvalV4;
2725         break;
2726       default:
2727         llvm_unreachable("Invalid vector info.");
2728       }
2729 
2730       // Adjust type of load/store op if we've extended the scalar
2731       // return value.
2732       EVT TheStoreType = ExtendIntegerRetVal ? MVT::i32 : VTs[i];
2733       Chain = DAG.getMemIntrinsicNode(Op, dl, DAG.getVTList(MVT::Other),
2734                                       StoreOperands, TheStoreType,
2735                                       MachinePointerInfo(), /* Align */ 1,
2736                                       MachineMemOperand::MOStore);
2737       // Cleanup vector state.
2738       StoreOperands.clear();
2739     }
2740   }
2741 
2742   return DAG.getNode(NVPTXISD::RET_FLAG, dl, MVT::Other, Chain);
2743 }
2744 
2745 void NVPTXTargetLowering::LowerAsmOperandForConstraint(
2746     SDValue Op, std::string &Constraint, std::vector<SDValue> &Ops,
2747     SelectionDAG &DAG) const {
2748   if (Constraint.length() > 1)
2749     return;
2750   else
2751     TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
2752 }
2753 
2754 static unsigned getOpcForTextureInstr(unsigned Intrinsic) {
2755   switch (Intrinsic) {
2756   default:
2757     return 0;
2758 
2759   case Intrinsic::nvvm_tex_1d_v4f32_s32:
2760     return NVPTXISD::Tex1DFloatS32;
2761   case Intrinsic::nvvm_tex_1d_v4f32_f32:
2762     return NVPTXISD::Tex1DFloatFloat;
2763   case Intrinsic::nvvm_tex_1d_level_v4f32_f32:
2764     return NVPTXISD::Tex1DFloatFloatLevel;
2765   case Intrinsic::nvvm_tex_1d_grad_v4f32_f32:
2766     return NVPTXISD::Tex1DFloatFloatGrad;
2767   case Intrinsic::nvvm_tex_1d_v4s32_s32:
2768     return NVPTXISD::Tex1DS32S32;
2769   case Intrinsic::nvvm_tex_1d_v4s32_f32:
2770     return NVPTXISD::Tex1DS32Float;
2771   case Intrinsic::nvvm_tex_1d_level_v4s32_f32:
2772     return NVPTXISD::Tex1DS32FloatLevel;
2773   case Intrinsic::nvvm_tex_1d_grad_v4s32_f32:
2774     return NVPTXISD::Tex1DS32FloatGrad;
2775   case Intrinsic::nvvm_tex_1d_v4u32_s32:
2776     return NVPTXISD::Tex1DU32S32;
2777   case Intrinsic::nvvm_tex_1d_v4u32_f32:
2778     return NVPTXISD::Tex1DU32Float;
2779   case Intrinsic::nvvm_tex_1d_level_v4u32_f32:
2780     return NVPTXISD::Tex1DU32FloatLevel;
2781   case Intrinsic::nvvm_tex_1d_grad_v4u32_f32:
2782     return NVPTXISD::Tex1DU32FloatGrad;
2783 
2784   case Intrinsic::nvvm_tex_1d_array_v4f32_s32:
2785     return NVPTXISD::Tex1DArrayFloatS32;
2786   case Intrinsic::nvvm_tex_1d_array_v4f32_f32:
2787     return NVPTXISD::Tex1DArrayFloatFloat;
2788   case Intrinsic::nvvm_tex_1d_array_level_v4f32_f32:
2789     return NVPTXISD::Tex1DArrayFloatFloatLevel;
2790   case Intrinsic::nvvm_tex_1d_array_grad_v4f32_f32:
2791     return NVPTXISD::Tex1DArrayFloatFloatGrad;
2792   case Intrinsic::nvvm_tex_1d_array_v4s32_s32:
2793     return NVPTXISD::Tex1DArrayS32S32;
2794   case Intrinsic::nvvm_tex_1d_array_v4s32_f32:
2795     return NVPTXISD::Tex1DArrayS32Float;
2796   case Intrinsic::nvvm_tex_1d_array_level_v4s32_f32:
2797     return NVPTXISD::Tex1DArrayS32FloatLevel;
2798   case Intrinsic::nvvm_tex_1d_array_grad_v4s32_f32:
2799     return NVPTXISD::Tex1DArrayS32FloatGrad;
2800   case Intrinsic::nvvm_tex_1d_array_v4u32_s32:
2801     return NVPTXISD::Tex1DArrayU32S32;
2802   case Intrinsic::nvvm_tex_1d_array_v4u32_f32:
2803     return NVPTXISD::Tex1DArrayU32Float;
2804   case Intrinsic::nvvm_tex_1d_array_level_v4u32_f32:
2805     return NVPTXISD::Tex1DArrayU32FloatLevel;
2806   case Intrinsic::nvvm_tex_1d_array_grad_v4u32_f32:
2807     return NVPTXISD::Tex1DArrayU32FloatGrad;
2808 
2809   case Intrinsic::nvvm_tex_2d_v4f32_s32:
2810     return NVPTXISD::Tex2DFloatS32;
2811   case Intrinsic::nvvm_tex_2d_v4f32_f32:
2812     return NVPTXISD::Tex2DFloatFloat;
2813   case Intrinsic::nvvm_tex_2d_level_v4f32_f32:
2814     return NVPTXISD::Tex2DFloatFloatLevel;
2815   case Intrinsic::nvvm_tex_2d_grad_v4f32_f32:
2816     return NVPTXISD::Tex2DFloatFloatGrad;
2817   case Intrinsic::nvvm_tex_2d_v4s32_s32:
2818     return NVPTXISD::Tex2DS32S32;
2819   case Intrinsic::nvvm_tex_2d_v4s32_f32:
2820     return NVPTXISD::Tex2DS32Float;
2821   case Intrinsic::nvvm_tex_2d_level_v4s32_f32:
2822     return NVPTXISD::Tex2DS32FloatLevel;
2823   case Intrinsic::nvvm_tex_2d_grad_v4s32_f32:
2824     return NVPTXISD::Tex2DS32FloatGrad;
2825   case Intrinsic::nvvm_tex_2d_v4u32_s32:
2826     return NVPTXISD::Tex2DU32S32;
2827   case Intrinsic::nvvm_tex_2d_v4u32_f32:
2828     return NVPTXISD::Tex2DU32Float;
2829   case Intrinsic::nvvm_tex_2d_level_v4u32_f32:
2830     return NVPTXISD::Tex2DU32FloatLevel;
2831   case Intrinsic::nvvm_tex_2d_grad_v4u32_f32:
2832     return NVPTXISD::Tex2DU32FloatGrad;
2833 
2834   case Intrinsic::nvvm_tex_2d_array_v4f32_s32:
2835     return NVPTXISD::Tex2DArrayFloatS32;
2836   case Intrinsic::nvvm_tex_2d_array_v4f32_f32:
2837     return NVPTXISD::Tex2DArrayFloatFloat;
2838   case Intrinsic::nvvm_tex_2d_array_level_v4f32_f32:
2839     return NVPTXISD::Tex2DArrayFloatFloatLevel;
2840   case Intrinsic::nvvm_tex_2d_array_grad_v4f32_f32:
2841     return NVPTXISD::Tex2DArrayFloatFloatGrad;
2842   case Intrinsic::nvvm_tex_2d_array_v4s32_s32:
2843     return NVPTXISD::Tex2DArrayS32S32;
2844   case Intrinsic::nvvm_tex_2d_array_v4s32_f32:
2845     return NVPTXISD::Tex2DArrayS32Float;
2846   case Intrinsic::nvvm_tex_2d_array_level_v4s32_f32:
2847     return NVPTXISD::Tex2DArrayS32FloatLevel;
2848   case Intrinsic::nvvm_tex_2d_array_grad_v4s32_f32:
2849     return NVPTXISD::Tex2DArrayS32FloatGrad;
2850   case Intrinsic::nvvm_tex_2d_array_v4u32_s32:
2851     return NVPTXISD::Tex2DArrayU32S32;
2852   case Intrinsic::nvvm_tex_2d_array_v4u32_f32:
2853     return NVPTXISD::Tex2DArrayU32Float;
2854   case Intrinsic::nvvm_tex_2d_array_level_v4u32_f32:
2855     return NVPTXISD::Tex2DArrayU32FloatLevel;
2856   case Intrinsic::nvvm_tex_2d_array_grad_v4u32_f32:
2857     return NVPTXISD::Tex2DArrayU32FloatGrad;
2858 
2859   case Intrinsic::nvvm_tex_3d_v4f32_s32:
2860     return NVPTXISD::Tex3DFloatS32;
2861   case Intrinsic::nvvm_tex_3d_v4f32_f32:
2862     return NVPTXISD::Tex3DFloatFloat;
2863   case Intrinsic::nvvm_tex_3d_level_v4f32_f32:
2864     return NVPTXISD::Tex3DFloatFloatLevel;
2865   case Intrinsic::nvvm_tex_3d_grad_v4f32_f32:
2866     return NVPTXISD::Tex3DFloatFloatGrad;
2867   case Intrinsic::nvvm_tex_3d_v4s32_s32:
2868     return NVPTXISD::Tex3DS32S32;
2869   case Intrinsic::nvvm_tex_3d_v4s32_f32:
2870     return NVPTXISD::Tex3DS32Float;
2871   case Intrinsic::nvvm_tex_3d_level_v4s32_f32:
2872     return NVPTXISD::Tex3DS32FloatLevel;
2873   case Intrinsic::nvvm_tex_3d_grad_v4s32_f32:
2874     return NVPTXISD::Tex3DS32FloatGrad;
2875   case Intrinsic::nvvm_tex_3d_v4u32_s32:
2876     return NVPTXISD::Tex3DU32S32;
2877   case Intrinsic::nvvm_tex_3d_v4u32_f32:
2878     return NVPTXISD::Tex3DU32Float;
2879   case Intrinsic::nvvm_tex_3d_level_v4u32_f32:
2880     return NVPTXISD::Tex3DU32FloatLevel;
2881   case Intrinsic::nvvm_tex_3d_grad_v4u32_f32:
2882     return NVPTXISD::Tex3DU32FloatGrad;
2883 
2884   case Intrinsic::nvvm_tex_cube_v4f32_f32:
2885     return NVPTXISD::TexCubeFloatFloat;
2886   case Intrinsic::nvvm_tex_cube_level_v4f32_f32:
2887     return NVPTXISD::TexCubeFloatFloatLevel;
2888   case Intrinsic::nvvm_tex_cube_v4s32_f32:
2889     return NVPTXISD::TexCubeS32Float;
2890   case Intrinsic::nvvm_tex_cube_level_v4s32_f32:
2891     return NVPTXISD::TexCubeS32FloatLevel;
2892   case Intrinsic::nvvm_tex_cube_v4u32_f32:
2893     return NVPTXISD::TexCubeU32Float;
2894   case Intrinsic::nvvm_tex_cube_level_v4u32_f32:
2895     return NVPTXISD::TexCubeU32FloatLevel;
2896 
2897   case Intrinsic::nvvm_tex_cube_array_v4f32_f32:
2898     return NVPTXISD::TexCubeArrayFloatFloat;
2899   case Intrinsic::nvvm_tex_cube_array_level_v4f32_f32:
2900     return NVPTXISD::TexCubeArrayFloatFloatLevel;
2901   case Intrinsic::nvvm_tex_cube_array_v4s32_f32:
2902     return NVPTXISD::TexCubeArrayS32Float;
2903   case Intrinsic::nvvm_tex_cube_array_level_v4s32_f32:
2904     return NVPTXISD::TexCubeArrayS32FloatLevel;
2905   case Intrinsic::nvvm_tex_cube_array_v4u32_f32:
2906     return NVPTXISD::TexCubeArrayU32Float;
2907   case Intrinsic::nvvm_tex_cube_array_level_v4u32_f32:
2908     return NVPTXISD::TexCubeArrayU32FloatLevel;
2909 
2910   case Intrinsic::nvvm_tld4_r_2d_v4f32_f32:
2911     return NVPTXISD::Tld4R2DFloatFloat;
2912   case Intrinsic::nvvm_tld4_g_2d_v4f32_f32:
2913     return NVPTXISD::Tld4G2DFloatFloat;
2914   case Intrinsic::nvvm_tld4_b_2d_v4f32_f32:
2915     return NVPTXISD::Tld4B2DFloatFloat;
2916   case Intrinsic::nvvm_tld4_a_2d_v4f32_f32:
2917     return NVPTXISD::Tld4A2DFloatFloat;
2918   case Intrinsic::nvvm_tld4_r_2d_v4s32_f32:
2919     return NVPTXISD::Tld4R2DS64Float;
2920   case Intrinsic::nvvm_tld4_g_2d_v4s32_f32:
2921     return NVPTXISD::Tld4G2DS64Float;
2922   case Intrinsic::nvvm_tld4_b_2d_v4s32_f32:
2923     return NVPTXISD::Tld4B2DS64Float;
2924   case Intrinsic::nvvm_tld4_a_2d_v4s32_f32:
2925     return NVPTXISD::Tld4A2DS64Float;
2926   case Intrinsic::nvvm_tld4_r_2d_v4u32_f32:
2927     return NVPTXISD::Tld4R2DU64Float;
2928   case Intrinsic::nvvm_tld4_g_2d_v4u32_f32:
2929     return NVPTXISD::Tld4G2DU64Float;
2930   case Intrinsic::nvvm_tld4_b_2d_v4u32_f32:
2931     return NVPTXISD::Tld4B2DU64Float;
2932   case Intrinsic::nvvm_tld4_a_2d_v4u32_f32:
2933     return NVPTXISD::Tld4A2DU64Float;
2934 
2935   case Intrinsic::nvvm_tex_unified_1d_v4f32_s32:
2936     return NVPTXISD::TexUnified1DFloatS32;
2937   case Intrinsic::nvvm_tex_unified_1d_v4f32_f32:
2938     return NVPTXISD::TexUnified1DFloatFloat;
2939   case Intrinsic::nvvm_tex_unified_1d_level_v4f32_f32:
2940     return NVPTXISD::TexUnified1DFloatFloatLevel;
2941   case Intrinsic::nvvm_tex_unified_1d_grad_v4f32_f32:
2942     return NVPTXISD::TexUnified1DFloatFloatGrad;
2943   case Intrinsic::nvvm_tex_unified_1d_v4s32_s32:
2944     return NVPTXISD::TexUnified1DS32S32;
2945   case Intrinsic::nvvm_tex_unified_1d_v4s32_f32:
2946     return NVPTXISD::TexUnified1DS32Float;
2947   case Intrinsic::nvvm_tex_unified_1d_level_v4s32_f32:
2948     return NVPTXISD::TexUnified1DS32FloatLevel;
2949   case Intrinsic::nvvm_tex_unified_1d_grad_v4s32_f32:
2950     return NVPTXISD::TexUnified1DS32FloatGrad;
2951   case Intrinsic::nvvm_tex_unified_1d_v4u32_s32:
2952     return NVPTXISD::TexUnified1DU32S32;
2953   case Intrinsic::nvvm_tex_unified_1d_v4u32_f32:
2954     return NVPTXISD::TexUnified1DU32Float;
2955   case Intrinsic::nvvm_tex_unified_1d_level_v4u32_f32:
2956     return NVPTXISD::TexUnified1DU32FloatLevel;
2957   case Intrinsic::nvvm_tex_unified_1d_grad_v4u32_f32:
2958     return NVPTXISD::TexUnified1DU32FloatGrad;
2959 
2960   case Intrinsic::nvvm_tex_unified_1d_array_v4f32_s32:
2961     return NVPTXISD::TexUnified1DArrayFloatS32;
2962   case Intrinsic::nvvm_tex_unified_1d_array_v4f32_f32:
2963     return NVPTXISD::TexUnified1DArrayFloatFloat;
2964   case Intrinsic::nvvm_tex_unified_1d_array_level_v4f32_f32:
2965     return NVPTXISD::TexUnified1DArrayFloatFloatLevel;
2966   case Intrinsic::nvvm_tex_unified_1d_array_grad_v4f32_f32:
2967     return NVPTXISD::TexUnified1DArrayFloatFloatGrad;
2968   case Intrinsic::nvvm_tex_unified_1d_array_v4s32_s32:
2969     return NVPTXISD::TexUnified1DArrayS32S32;
2970   case Intrinsic::nvvm_tex_unified_1d_array_v4s32_f32:
2971     return NVPTXISD::TexUnified1DArrayS32Float;
2972   case Intrinsic::nvvm_tex_unified_1d_array_level_v4s32_f32:
2973     return NVPTXISD::TexUnified1DArrayS32FloatLevel;
2974   case Intrinsic::nvvm_tex_unified_1d_array_grad_v4s32_f32:
2975     return NVPTXISD::TexUnified1DArrayS32FloatGrad;
2976   case Intrinsic::nvvm_tex_unified_1d_array_v4u32_s32:
2977     return NVPTXISD::TexUnified1DArrayU32S32;
2978   case Intrinsic::nvvm_tex_unified_1d_array_v4u32_f32:
2979     return NVPTXISD::TexUnified1DArrayU32Float;
2980   case Intrinsic::nvvm_tex_unified_1d_array_level_v4u32_f32:
2981     return NVPTXISD::TexUnified1DArrayU32FloatLevel;
2982   case Intrinsic::nvvm_tex_unified_1d_array_grad_v4u32_f32:
2983     return NVPTXISD::TexUnified1DArrayU32FloatGrad;
2984 
2985   case Intrinsic::nvvm_tex_unified_2d_v4f32_s32:
2986     return NVPTXISD::TexUnified2DFloatS32;
2987   case Intrinsic::nvvm_tex_unified_2d_v4f32_f32:
2988     return NVPTXISD::TexUnified2DFloatFloat;
2989   case Intrinsic::nvvm_tex_unified_2d_level_v4f32_f32:
2990     return NVPTXISD::TexUnified2DFloatFloatLevel;
2991   case Intrinsic::nvvm_tex_unified_2d_grad_v4f32_f32:
2992     return NVPTXISD::TexUnified2DFloatFloatGrad;
2993   case Intrinsic::nvvm_tex_unified_2d_v4s32_s32:
2994     return NVPTXISD::TexUnified2DS32S32;
2995   case Intrinsic::nvvm_tex_unified_2d_v4s32_f32:
2996     return NVPTXISD::TexUnified2DS32Float;
2997   case Intrinsic::nvvm_tex_unified_2d_level_v4s32_f32:
2998     return NVPTXISD::TexUnified2DS32FloatLevel;
2999   case Intrinsic::nvvm_tex_unified_2d_grad_v4s32_f32:
3000     return NVPTXISD::TexUnified2DS32FloatGrad;
3001   case Intrinsic::nvvm_tex_unified_2d_v4u32_s32:
3002     return NVPTXISD::TexUnified2DU32S32;
3003   case Intrinsic::nvvm_tex_unified_2d_v4u32_f32:
3004     return NVPTXISD::TexUnified2DU32Float;
3005   case Intrinsic::nvvm_tex_unified_2d_level_v4u32_f32:
3006     return NVPTXISD::TexUnified2DU32FloatLevel;
3007   case Intrinsic::nvvm_tex_unified_2d_grad_v4u32_f32:
3008     return NVPTXISD::TexUnified2DU32FloatGrad;
3009 
3010   case Intrinsic::nvvm_tex_unified_2d_array_v4f32_s32:
3011     return NVPTXISD::TexUnified2DArrayFloatS32;
3012   case Intrinsic::nvvm_tex_unified_2d_array_v4f32_f32:
3013     return NVPTXISD::TexUnified2DArrayFloatFloat;
3014   case Intrinsic::nvvm_tex_unified_2d_array_level_v4f32_f32:
3015     return NVPTXISD::TexUnified2DArrayFloatFloatLevel;
3016   case Intrinsic::nvvm_tex_unified_2d_array_grad_v4f32_f32:
3017     return NVPTXISD::TexUnified2DArrayFloatFloatGrad;
3018   case Intrinsic::nvvm_tex_unified_2d_array_v4s32_s32:
3019     return NVPTXISD::TexUnified2DArrayS32S32;
3020   case Intrinsic::nvvm_tex_unified_2d_array_v4s32_f32:
3021     return NVPTXISD::TexUnified2DArrayS32Float;
3022   case Intrinsic::nvvm_tex_unified_2d_array_level_v4s32_f32:
3023     return NVPTXISD::TexUnified2DArrayS32FloatLevel;
3024   case Intrinsic::nvvm_tex_unified_2d_array_grad_v4s32_f32:
3025     return NVPTXISD::TexUnified2DArrayS32FloatGrad;
3026   case Intrinsic::nvvm_tex_unified_2d_array_v4u32_s32:
3027     return NVPTXISD::TexUnified2DArrayU32S32;
3028   case Intrinsic::nvvm_tex_unified_2d_array_v4u32_f32:
3029     return NVPTXISD::TexUnified2DArrayU32Float;
3030   case Intrinsic::nvvm_tex_unified_2d_array_level_v4u32_f32:
3031     return NVPTXISD::TexUnified2DArrayU32FloatLevel;
3032   case Intrinsic::nvvm_tex_unified_2d_array_grad_v4u32_f32:
3033     return NVPTXISD::TexUnified2DArrayU32FloatGrad;
3034 
3035   case Intrinsic::nvvm_tex_unified_3d_v4f32_s32:
3036     return NVPTXISD::TexUnified3DFloatS32;
3037   case Intrinsic::nvvm_tex_unified_3d_v4f32_f32:
3038     return NVPTXISD::TexUnified3DFloatFloat;
3039   case Intrinsic::nvvm_tex_unified_3d_level_v4f32_f32:
3040     return NVPTXISD::TexUnified3DFloatFloatLevel;
3041   case Intrinsic::nvvm_tex_unified_3d_grad_v4f32_f32:
3042     return NVPTXISD::TexUnified3DFloatFloatGrad;
3043   case Intrinsic::nvvm_tex_unified_3d_v4s32_s32:
3044     return NVPTXISD::TexUnified3DS32S32;
3045   case Intrinsic::nvvm_tex_unified_3d_v4s32_f32:
3046     return NVPTXISD::TexUnified3DS32Float;
3047   case Intrinsic::nvvm_tex_unified_3d_level_v4s32_f32:
3048     return NVPTXISD::TexUnified3DS32FloatLevel;
3049   case Intrinsic::nvvm_tex_unified_3d_grad_v4s32_f32:
3050     return NVPTXISD::TexUnified3DS32FloatGrad;
3051   case Intrinsic::nvvm_tex_unified_3d_v4u32_s32:
3052     return NVPTXISD::TexUnified3DU32S32;
3053   case Intrinsic::nvvm_tex_unified_3d_v4u32_f32:
3054     return NVPTXISD::TexUnified3DU32Float;
3055   case Intrinsic::nvvm_tex_unified_3d_level_v4u32_f32:
3056     return NVPTXISD::TexUnified3DU32FloatLevel;
3057   case Intrinsic::nvvm_tex_unified_3d_grad_v4u32_f32:
3058     return NVPTXISD::TexUnified3DU32FloatGrad;
3059 
3060   case Intrinsic::nvvm_tex_unified_cube_v4f32_f32:
3061     return NVPTXISD::TexUnifiedCubeFloatFloat;
3062   case Intrinsic::nvvm_tex_unified_cube_level_v4f32_f32:
3063     return NVPTXISD::TexUnifiedCubeFloatFloatLevel;
3064   case Intrinsic::nvvm_tex_unified_cube_v4s32_f32:
3065     return NVPTXISD::TexUnifiedCubeS32Float;
3066   case Intrinsic::nvvm_tex_unified_cube_level_v4s32_f32:
3067     return NVPTXISD::TexUnifiedCubeS32FloatLevel;
3068   case Intrinsic::nvvm_tex_unified_cube_v4u32_f32:
3069     return NVPTXISD::TexUnifiedCubeU32Float;
3070   case Intrinsic::nvvm_tex_unified_cube_level_v4u32_f32:
3071     return NVPTXISD::TexUnifiedCubeU32FloatLevel;
3072 
3073   case Intrinsic::nvvm_tex_unified_cube_array_v4f32_f32:
3074     return NVPTXISD::TexUnifiedCubeArrayFloatFloat;
3075   case Intrinsic::nvvm_tex_unified_cube_array_level_v4f32_f32:
3076     return NVPTXISD::TexUnifiedCubeArrayFloatFloatLevel;
3077   case Intrinsic::nvvm_tex_unified_cube_array_v4s32_f32:
3078     return NVPTXISD::TexUnifiedCubeArrayS32Float;
3079   case Intrinsic::nvvm_tex_unified_cube_array_level_v4s32_f32:
3080     return NVPTXISD::TexUnifiedCubeArrayS32FloatLevel;
3081   case Intrinsic::nvvm_tex_unified_cube_array_v4u32_f32:
3082     return NVPTXISD::TexUnifiedCubeArrayU32Float;
3083   case Intrinsic::nvvm_tex_unified_cube_array_level_v4u32_f32:
3084     return NVPTXISD::TexUnifiedCubeArrayU32FloatLevel;
3085 
3086   case Intrinsic::nvvm_tld4_unified_r_2d_v4f32_f32:
3087     return NVPTXISD::Tld4UnifiedR2DFloatFloat;
3088   case Intrinsic::nvvm_tld4_unified_g_2d_v4f32_f32:
3089     return NVPTXISD::Tld4UnifiedG2DFloatFloat;
3090   case Intrinsic::nvvm_tld4_unified_b_2d_v4f32_f32:
3091     return NVPTXISD::Tld4UnifiedB2DFloatFloat;
3092   case Intrinsic::nvvm_tld4_unified_a_2d_v4f32_f32:
3093     return NVPTXISD::Tld4UnifiedA2DFloatFloat;
3094   case Intrinsic::nvvm_tld4_unified_r_2d_v4s32_f32:
3095     return NVPTXISD::Tld4UnifiedR2DS64Float;
3096   case Intrinsic::nvvm_tld4_unified_g_2d_v4s32_f32:
3097     return NVPTXISD::Tld4UnifiedG2DS64Float;
3098   case Intrinsic::nvvm_tld4_unified_b_2d_v4s32_f32:
3099     return NVPTXISD::Tld4UnifiedB2DS64Float;
3100   case Intrinsic::nvvm_tld4_unified_a_2d_v4s32_f32:
3101     return NVPTXISD::Tld4UnifiedA2DS64Float;
3102   case Intrinsic::nvvm_tld4_unified_r_2d_v4u32_f32:
3103     return NVPTXISD::Tld4UnifiedR2DU64Float;
3104   case Intrinsic::nvvm_tld4_unified_g_2d_v4u32_f32:
3105     return NVPTXISD::Tld4UnifiedG2DU64Float;
3106   case Intrinsic::nvvm_tld4_unified_b_2d_v4u32_f32:
3107     return NVPTXISD::Tld4UnifiedB2DU64Float;
3108   case Intrinsic::nvvm_tld4_unified_a_2d_v4u32_f32:
3109     return NVPTXISD::Tld4UnifiedA2DU64Float;
3110   }
3111 }
3112 
3113 static unsigned getOpcForSurfaceInstr(unsigned Intrinsic) {
3114   switch (Intrinsic) {
3115   default:
3116     return 0;
3117   case Intrinsic::nvvm_suld_1d_i8_clamp:
3118     return NVPTXISD::Suld1DI8Clamp;
3119   case Intrinsic::nvvm_suld_1d_i16_clamp:
3120     return NVPTXISD::Suld1DI16Clamp;
3121   case Intrinsic::nvvm_suld_1d_i32_clamp:
3122     return NVPTXISD::Suld1DI32Clamp;
3123   case Intrinsic::nvvm_suld_1d_i64_clamp:
3124     return NVPTXISD::Suld1DI64Clamp;
3125   case Intrinsic::nvvm_suld_1d_v2i8_clamp:
3126     return NVPTXISD::Suld1DV2I8Clamp;
3127   case Intrinsic::nvvm_suld_1d_v2i16_clamp:
3128     return NVPTXISD::Suld1DV2I16Clamp;
3129   case Intrinsic::nvvm_suld_1d_v2i32_clamp:
3130     return NVPTXISD::Suld1DV2I32Clamp;
3131   case Intrinsic::nvvm_suld_1d_v2i64_clamp:
3132     return NVPTXISD::Suld1DV2I64Clamp;
3133   case Intrinsic::nvvm_suld_1d_v4i8_clamp:
3134     return NVPTXISD::Suld1DV4I8Clamp;
3135   case Intrinsic::nvvm_suld_1d_v4i16_clamp:
3136     return NVPTXISD::Suld1DV4I16Clamp;
3137   case Intrinsic::nvvm_suld_1d_v4i32_clamp:
3138     return NVPTXISD::Suld1DV4I32Clamp;
3139   case Intrinsic::nvvm_suld_1d_array_i8_clamp:
3140     return NVPTXISD::Suld1DArrayI8Clamp;
3141   case Intrinsic::nvvm_suld_1d_array_i16_clamp:
3142     return NVPTXISD::Suld1DArrayI16Clamp;
3143   case Intrinsic::nvvm_suld_1d_array_i32_clamp:
3144     return NVPTXISD::Suld1DArrayI32Clamp;
3145   case Intrinsic::nvvm_suld_1d_array_i64_clamp:
3146     return NVPTXISD::Suld1DArrayI64Clamp;
3147   case Intrinsic::nvvm_suld_1d_array_v2i8_clamp:
3148     return NVPTXISD::Suld1DArrayV2I8Clamp;
3149   case Intrinsic::nvvm_suld_1d_array_v2i16_clamp:
3150     return NVPTXISD::Suld1DArrayV2I16Clamp;
3151   case Intrinsic::nvvm_suld_1d_array_v2i32_clamp:
3152     return NVPTXISD::Suld1DArrayV2I32Clamp;
3153   case Intrinsic::nvvm_suld_1d_array_v2i64_clamp:
3154     return NVPTXISD::Suld1DArrayV2I64Clamp;
3155   case Intrinsic::nvvm_suld_1d_array_v4i8_clamp:
3156     return NVPTXISD::Suld1DArrayV4I8Clamp;
3157   case Intrinsic::nvvm_suld_1d_array_v4i16_clamp:
3158     return NVPTXISD::Suld1DArrayV4I16Clamp;
3159   case Intrinsic::nvvm_suld_1d_array_v4i32_clamp:
3160     return NVPTXISD::Suld1DArrayV4I32Clamp;
3161   case Intrinsic::nvvm_suld_2d_i8_clamp:
3162     return NVPTXISD::Suld2DI8Clamp;
3163   case Intrinsic::nvvm_suld_2d_i16_clamp:
3164     return NVPTXISD::Suld2DI16Clamp;
3165   case Intrinsic::nvvm_suld_2d_i32_clamp:
3166     return NVPTXISD::Suld2DI32Clamp;
3167   case Intrinsic::nvvm_suld_2d_i64_clamp:
3168     return NVPTXISD::Suld2DI64Clamp;
3169   case Intrinsic::nvvm_suld_2d_v2i8_clamp:
3170     return NVPTXISD::Suld2DV2I8Clamp;
3171   case Intrinsic::nvvm_suld_2d_v2i16_clamp:
3172     return NVPTXISD::Suld2DV2I16Clamp;
3173   case Intrinsic::nvvm_suld_2d_v2i32_clamp:
3174     return NVPTXISD::Suld2DV2I32Clamp;
3175   case Intrinsic::nvvm_suld_2d_v2i64_clamp:
3176     return NVPTXISD::Suld2DV2I64Clamp;
3177   case Intrinsic::nvvm_suld_2d_v4i8_clamp:
3178     return NVPTXISD::Suld2DV4I8Clamp;
3179   case Intrinsic::nvvm_suld_2d_v4i16_clamp:
3180     return NVPTXISD::Suld2DV4I16Clamp;
3181   case Intrinsic::nvvm_suld_2d_v4i32_clamp:
3182     return NVPTXISD::Suld2DV4I32Clamp;
3183   case Intrinsic::nvvm_suld_2d_array_i8_clamp:
3184     return NVPTXISD::Suld2DArrayI8Clamp;
3185   case Intrinsic::nvvm_suld_2d_array_i16_clamp:
3186     return NVPTXISD::Suld2DArrayI16Clamp;
3187   case Intrinsic::nvvm_suld_2d_array_i32_clamp:
3188     return NVPTXISD::Suld2DArrayI32Clamp;
3189   case Intrinsic::nvvm_suld_2d_array_i64_clamp:
3190     return NVPTXISD::Suld2DArrayI64Clamp;
3191   case Intrinsic::nvvm_suld_2d_array_v2i8_clamp:
3192     return NVPTXISD::Suld2DArrayV2I8Clamp;
3193   case Intrinsic::nvvm_suld_2d_array_v2i16_clamp:
3194     return NVPTXISD::Suld2DArrayV2I16Clamp;
3195   case Intrinsic::nvvm_suld_2d_array_v2i32_clamp:
3196     return NVPTXISD::Suld2DArrayV2I32Clamp;
3197   case Intrinsic::nvvm_suld_2d_array_v2i64_clamp:
3198     return NVPTXISD::Suld2DArrayV2I64Clamp;
3199   case Intrinsic::nvvm_suld_2d_array_v4i8_clamp:
3200     return NVPTXISD::Suld2DArrayV4I8Clamp;
3201   case Intrinsic::nvvm_suld_2d_array_v4i16_clamp:
3202     return NVPTXISD::Suld2DArrayV4I16Clamp;
3203   case Intrinsic::nvvm_suld_2d_array_v4i32_clamp:
3204     return NVPTXISD::Suld2DArrayV4I32Clamp;
3205   case Intrinsic::nvvm_suld_3d_i8_clamp:
3206     return NVPTXISD::Suld3DI8Clamp;
3207   case Intrinsic::nvvm_suld_3d_i16_clamp:
3208     return NVPTXISD::Suld3DI16Clamp;
3209   case Intrinsic::nvvm_suld_3d_i32_clamp:
3210     return NVPTXISD::Suld3DI32Clamp;
3211   case Intrinsic::nvvm_suld_3d_i64_clamp:
3212     return NVPTXISD::Suld3DI64Clamp;
3213   case Intrinsic::nvvm_suld_3d_v2i8_clamp:
3214     return NVPTXISD::Suld3DV2I8Clamp;
3215   case Intrinsic::nvvm_suld_3d_v2i16_clamp:
3216     return NVPTXISD::Suld3DV2I16Clamp;
3217   case Intrinsic::nvvm_suld_3d_v2i32_clamp:
3218     return NVPTXISD::Suld3DV2I32Clamp;
3219   case Intrinsic::nvvm_suld_3d_v2i64_clamp:
3220     return NVPTXISD::Suld3DV2I64Clamp;
3221   case Intrinsic::nvvm_suld_3d_v4i8_clamp:
3222     return NVPTXISD::Suld3DV4I8Clamp;
3223   case Intrinsic::nvvm_suld_3d_v4i16_clamp:
3224     return NVPTXISD::Suld3DV4I16Clamp;
3225   case Intrinsic::nvvm_suld_3d_v4i32_clamp:
3226     return NVPTXISD::Suld3DV4I32Clamp;
3227   case Intrinsic::nvvm_suld_1d_i8_trap:
3228     return NVPTXISD::Suld1DI8Trap;
3229   case Intrinsic::nvvm_suld_1d_i16_trap:
3230     return NVPTXISD::Suld1DI16Trap;
3231   case Intrinsic::nvvm_suld_1d_i32_trap:
3232     return NVPTXISD::Suld1DI32Trap;
3233   case Intrinsic::nvvm_suld_1d_i64_trap:
3234     return NVPTXISD::Suld1DI64Trap;
3235   case Intrinsic::nvvm_suld_1d_v2i8_trap:
3236     return NVPTXISD::Suld1DV2I8Trap;
3237   case Intrinsic::nvvm_suld_1d_v2i16_trap:
3238     return NVPTXISD::Suld1DV2I16Trap;
3239   case Intrinsic::nvvm_suld_1d_v2i32_trap:
3240     return NVPTXISD::Suld1DV2I32Trap;
3241   case Intrinsic::nvvm_suld_1d_v2i64_trap:
3242     return NVPTXISD::Suld1DV2I64Trap;
3243   case Intrinsic::nvvm_suld_1d_v4i8_trap:
3244     return NVPTXISD::Suld1DV4I8Trap;
3245   case Intrinsic::nvvm_suld_1d_v4i16_trap:
3246     return NVPTXISD::Suld1DV4I16Trap;
3247   case Intrinsic::nvvm_suld_1d_v4i32_trap:
3248     return NVPTXISD::Suld1DV4I32Trap;
3249   case Intrinsic::nvvm_suld_1d_array_i8_trap:
3250     return NVPTXISD::Suld1DArrayI8Trap;
3251   case Intrinsic::nvvm_suld_1d_array_i16_trap:
3252     return NVPTXISD::Suld1DArrayI16Trap;
3253   case Intrinsic::nvvm_suld_1d_array_i32_trap:
3254     return NVPTXISD::Suld1DArrayI32Trap;
3255   case Intrinsic::nvvm_suld_1d_array_i64_trap:
3256     return NVPTXISD::Suld1DArrayI64Trap;
3257   case Intrinsic::nvvm_suld_1d_array_v2i8_trap:
3258     return NVPTXISD::Suld1DArrayV2I8Trap;
3259   case Intrinsic::nvvm_suld_1d_array_v2i16_trap:
3260     return NVPTXISD::Suld1DArrayV2I16Trap;
3261   case Intrinsic::nvvm_suld_1d_array_v2i32_trap:
3262     return NVPTXISD::Suld1DArrayV2I32Trap;
3263   case Intrinsic::nvvm_suld_1d_array_v2i64_trap:
3264     return NVPTXISD::Suld1DArrayV2I64Trap;
3265   case Intrinsic::nvvm_suld_1d_array_v4i8_trap:
3266     return NVPTXISD::Suld1DArrayV4I8Trap;
3267   case Intrinsic::nvvm_suld_1d_array_v4i16_trap:
3268     return NVPTXISD::Suld1DArrayV4I16Trap;
3269   case Intrinsic::nvvm_suld_1d_array_v4i32_trap:
3270     return NVPTXISD::Suld1DArrayV4I32Trap;
3271   case Intrinsic::nvvm_suld_2d_i8_trap:
3272     return NVPTXISD::Suld2DI8Trap;
3273   case Intrinsic::nvvm_suld_2d_i16_trap:
3274     return NVPTXISD::Suld2DI16Trap;
3275   case Intrinsic::nvvm_suld_2d_i32_trap:
3276     return NVPTXISD::Suld2DI32Trap;
3277   case Intrinsic::nvvm_suld_2d_i64_trap:
3278     return NVPTXISD::Suld2DI64Trap;
3279   case Intrinsic::nvvm_suld_2d_v2i8_trap:
3280     return NVPTXISD::Suld2DV2I8Trap;
3281   case Intrinsic::nvvm_suld_2d_v2i16_trap:
3282     return NVPTXISD::Suld2DV2I16Trap;
3283   case Intrinsic::nvvm_suld_2d_v2i32_trap:
3284     return NVPTXISD::Suld2DV2I32Trap;
3285   case Intrinsic::nvvm_suld_2d_v2i64_trap:
3286     return NVPTXISD::Suld2DV2I64Trap;
3287   case Intrinsic::nvvm_suld_2d_v4i8_trap:
3288     return NVPTXISD::Suld2DV4I8Trap;
3289   case Intrinsic::nvvm_suld_2d_v4i16_trap:
3290     return NVPTXISD::Suld2DV4I16Trap;
3291   case Intrinsic::nvvm_suld_2d_v4i32_trap:
3292     return NVPTXISD::Suld2DV4I32Trap;
3293   case Intrinsic::nvvm_suld_2d_array_i8_trap:
3294     return NVPTXISD::Suld2DArrayI8Trap;
3295   case Intrinsic::nvvm_suld_2d_array_i16_trap:
3296     return NVPTXISD::Suld2DArrayI16Trap;
3297   case Intrinsic::nvvm_suld_2d_array_i32_trap:
3298     return NVPTXISD::Suld2DArrayI32Trap;
3299   case Intrinsic::nvvm_suld_2d_array_i64_trap:
3300     return NVPTXISD::Suld2DArrayI64Trap;
3301   case Intrinsic::nvvm_suld_2d_array_v2i8_trap:
3302     return NVPTXISD::Suld2DArrayV2I8Trap;
3303   case Intrinsic::nvvm_suld_2d_array_v2i16_trap:
3304     return NVPTXISD::Suld2DArrayV2I16Trap;
3305   case Intrinsic::nvvm_suld_2d_array_v2i32_trap:
3306     return NVPTXISD::Suld2DArrayV2I32Trap;
3307   case Intrinsic::nvvm_suld_2d_array_v2i64_trap:
3308     return NVPTXISD::Suld2DArrayV2I64Trap;
3309   case Intrinsic::nvvm_suld_2d_array_v4i8_trap:
3310     return NVPTXISD::Suld2DArrayV4I8Trap;
3311   case Intrinsic::nvvm_suld_2d_array_v4i16_trap:
3312     return NVPTXISD::Suld2DArrayV4I16Trap;
3313   case Intrinsic::nvvm_suld_2d_array_v4i32_trap:
3314     return NVPTXISD::Suld2DArrayV4I32Trap;
3315   case Intrinsic::nvvm_suld_3d_i8_trap:
3316     return NVPTXISD::Suld3DI8Trap;
3317   case Intrinsic::nvvm_suld_3d_i16_trap:
3318     return NVPTXISD::Suld3DI16Trap;
3319   case Intrinsic::nvvm_suld_3d_i32_trap:
3320     return NVPTXISD::Suld3DI32Trap;
3321   case Intrinsic::nvvm_suld_3d_i64_trap:
3322     return NVPTXISD::Suld3DI64Trap;
3323   case Intrinsic::nvvm_suld_3d_v2i8_trap:
3324     return NVPTXISD::Suld3DV2I8Trap;
3325   case Intrinsic::nvvm_suld_3d_v2i16_trap:
3326     return NVPTXISD::Suld3DV2I16Trap;
3327   case Intrinsic::nvvm_suld_3d_v2i32_trap:
3328     return NVPTXISD::Suld3DV2I32Trap;
3329   case Intrinsic::nvvm_suld_3d_v2i64_trap:
3330     return NVPTXISD::Suld3DV2I64Trap;
3331   case Intrinsic::nvvm_suld_3d_v4i8_trap:
3332     return NVPTXISD::Suld3DV4I8Trap;
3333   case Intrinsic::nvvm_suld_3d_v4i16_trap:
3334     return NVPTXISD::Suld3DV4I16Trap;
3335   case Intrinsic::nvvm_suld_3d_v4i32_trap:
3336     return NVPTXISD::Suld3DV4I32Trap;
3337   case Intrinsic::nvvm_suld_1d_i8_zero:
3338     return NVPTXISD::Suld1DI8Zero;
3339   case Intrinsic::nvvm_suld_1d_i16_zero:
3340     return NVPTXISD::Suld1DI16Zero;
3341   case Intrinsic::nvvm_suld_1d_i32_zero:
3342     return NVPTXISD::Suld1DI32Zero;
3343   case Intrinsic::nvvm_suld_1d_i64_zero:
3344     return NVPTXISD::Suld1DI64Zero;
3345   case Intrinsic::nvvm_suld_1d_v2i8_zero:
3346     return NVPTXISD::Suld1DV2I8Zero;
3347   case Intrinsic::nvvm_suld_1d_v2i16_zero:
3348     return NVPTXISD::Suld1DV2I16Zero;
3349   case Intrinsic::nvvm_suld_1d_v2i32_zero:
3350     return NVPTXISD::Suld1DV2I32Zero;
3351   case Intrinsic::nvvm_suld_1d_v2i64_zero:
3352     return NVPTXISD::Suld1DV2I64Zero;
3353   case Intrinsic::nvvm_suld_1d_v4i8_zero:
3354     return NVPTXISD::Suld1DV4I8Zero;
3355   case Intrinsic::nvvm_suld_1d_v4i16_zero:
3356     return NVPTXISD::Suld1DV4I16Zero;
3357   case Intrinsic::nvvm_suld_1d_v4i32_zero:
3358     return NVPTXISD::Suld1DV4I32Zero;
3359   case Intrinsic::nvvm_suld_1d_array_i8_zero:
3360     return NVPTXISD::Suld1DArrayI8Zero;
3361   case Intrinsic::nvvm_suld_1d_array_i16_zero:
3362     return NVPTXISD::Suld1DArrayI16Zero;
3363   case Intrinsic::nvvm_suld_1d_array_i32_zero:
3364     return NVPTXISD::Suld1DArrayI32Zero;
3365   case Intrinsic::nvvm_suld_1d_array_i64_zero:
3366     return NVPTXISD::Suld1DArrayI64Zero;
3367   case Intrinsic::nvvm_suld_1d_array_v2i8_zero:
3368     return NVPTXISD::Suld1DArrayV2I8Zero;
3369   case Intrinsic::nvvm_suld_1d_array_v2i16_zero:
3370     return NVPTXISD::Suld1DArrayV2I16Zero;
3371   case Intrinsic::nvvm_suld_1d_array_v2i32_zero:
3372     return NVPTXISD::Suld1DArrayV2I32Zero;
3373   case Intrinsic::nvvm_suld_1d_array_v2i64_zero:
3374     return NVPTXISD::Suld1DArrayV2I64Zero;
3375   case Intrinsic::nvvm_suld_1d_array_v4i8_zero:
3376     return NVPTXISD::Suld1DArrayV4I8Zero;
3377   case Intrinsic::nvvm_suld_1d_array_v4i16_zero:
3378     return NVPTXISD::Suld1DArrayV4I16Zero;
3379   case Intrinsic::nvvm_suld_1d_array_v4i32_zero:
3380     return NVPTXISD::Suld1DArrayV4I32Zero;
3381   case Intrinsic::nvvm_suld_2d_i8_zero:
3382     return NVPTXISD::Suld2DI8Zero;
3383   case Intrinsic::nvvm_suld_2d_i16_zero:
3384     return NVPTXISD::Suld2DI16Zero;
3385   case Intrinsic::nvvm_suld_2d_i32_zero:
3386     return NVPTXISD::Suld2DI32Zero;
3387   case Intrinsic::nvvm_suld_2d_i64_zero:
3388     return NVPTXISD::Suld2DI64Zero;
3389   case Intrinsic::nvvm_suld_2d_v2i8_zero:
3390     return NVPTXISD::Suld2DV2I8Zero;
3391   case Intrinsic::nvvm_suld_2d_v2i16_zero:
3392     return NVPTXISD::Suld2DV2I16Zero;
3393   case Intrinsic::nvvm_suld_2d_v2i32_zero:
3394     return NVPTXISD::Suld2DV2I32Zero;
3395   case Intrinsic::nvvm_suld_2d_v2i64_zero:
3396     return NVPTXISD::Suld2DV2I64Zero;
3397   case Intrinsic::nvvm_suld_2d_v4i8_zero:
3398     return NVPTXISD::Suld2DV4I8Zero;
3399   case Intrinsic::nvvm_suld_2d_v4i16_zero:
3400     return NVPTXISD::Suld2DV4I16Zero;
3401   case Intrinsic::nvvm_suld_2d_v4i32_zero:
3402     return NVPTXISD::Suld2DV4I32Zero;
3403   case Intrinsic::nvvm_suld_2d_array_i8_zero:
3404     return NVPTXISD::Suld2DArrayI8Zero;
3405   case Intrinsic::nvvm_suld_2d_array_i16_zero:
3406     return NVPTXISD::Suld2DArrayI16Zero;
3407   case Intrinsic::nvvm_suld_2d_array_i32_zero:
3408     return NVPTXISD::Suld2DArrayI32Zero;
3409   case Intrinsic::nvvm_suld_2d_array_i64_zero:
3410     return NVPTXISD::Suld2DArrayI64Zero;
3411   case Intrinsic::nvvm_suld_2d_array_v2i8_zero:
3412     return NVPTXISD::Suld2DArrayV2I8Zero;
3413   case Intrinsic::nvvm_suld_2d_array_v2i16_zero:
3414     return NVPTXISD::Suld2DArrayV2I16Zero;
3415   case Intrinsic::nvvm_suld_2d_array_v2i32_zero:
3416     return NVPTXISD::Suld2DArrayV2I32Zero;
3417   case Intrinsic::nvvm_suld_2d_array_v2i64_zero:
3418     return NVPTXISD::Suld2DArrayV2I64Zero;
3419   case Intrinsic::nvvm_suld_2d_array_v4i8_zero:
3420     return NVPTXISD::Suld2DArrayV4I8Zero;
3421   case Intrinsic::nvvm_suld_2d_array_v4i16_zero:
3422     return NVPTXISD::Suld2DArrayV4I16Zero;
3423   case Intrinsic::nvvm_suld_2d_array_v4i32_zero:
3424     return NVPTXISD::Suld2DArrayV4I32Zero;
3425   case Intrinsic::nvvm_suld_3d_i8_zero:
3426     return NVPTXISD::Suld3DI8Zero;
3427   case Intrinsic::nvvm_suld_3d_i16_zero:
3428     return NVPTXISD::Suld3DI16Zero;
3429   case Intrinsic::nvvm_suld_3d_i32_zero:
3430     return NVPTXISD::Suld3DI32Zero;
3431   case Intrinsic::nvvm_suld_3d_i64_zero:
3432     return NVPTXISD::Suld3DI64Zero;
3433   case Intrinsic::nvvm_suld_3d_v2i8_zero:
3434     return NVPTXISD::Suld3DV2I8Zero;
3435   case Intrinsic::nvvm_suld_3d_v2i16_zero:
3436     return NVPTXISD::Suld3DV2I16Zero;
3437   case Intrinsic::nvvm_suld_3d_v2i32_zero:
3438     return NVPTXISD::Suld3DV2I32Zero;
3439   case Intrinsic::nvvm_suld_3d_v2i64_zero:
3440     return NVPTXISD::Suld3DV2I64Zero;
3441   case Intrinsic::nvvm_suld_3d_v4i8_zero:
3442     return NVPTXISD::Suld3DV4I8Zero;
3443   case Intrinsic::nvvm_suld_3d_v4i16_zero:
3444     return NVPTXISD::Suld3DV4I16Zero;
3445   case Intrinsic::nvvm_suld_3d_v4i32_zero:
3446     return NVPTXISD::Suld3DV4I32Zero;
3447   }
3448 }
3449 
3450 // llvm.ptx.memcpy.const and llvm.ptx.memmove.const need to be modeled as
3451 // TgtMemIntrinsic
3452 // because we need the information that is only available in the "Value" type
3453 // of destination
3454 // pointer. In particular, the address space information.
3455 bool NVPTXTargetLowering::getTgtMemIntrinsic(
3456     IntrinsicInfo &Info, const CallInst &I,
3457     MachineFunction &MF, unsigned Intrinsic) const {
3458   switch (Intrinsic) {
3459   default:
3460     return false;
3461   case Intrinsic::nvvm_match_all_sync_i32p:
3462   case Intrinsic::nvvm_match_all_sync_i64p:
3463     Info.opc = ISD::INTRINSIC_W_CHAIN;
3464     // memVT is bogus. These intrinsics have IntrInaccessibleMemOnly attribute
3465     // in order to model data exchange with other threads, but perform no real
3466     // memory accesses.
3467     Info.memVT = MVT::i1;
3468 
3469     // Our result depends on both our and other thread's arguments.
3470     Info.flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore;
3471     return true;
3472   case Intrinsic::nvvm_wmma_m16n16k16_load_a_f16_col:
3473   case Intrinsic::nvvm_wmma_m16n16k16_load_a_f16_row:
3474   case Intrinsic::nvvm_wmma_m16n16k16_load_a_f16_col_stride:
3475   case Intrinsic::nvvm_wmma_m16n16k16_load_a_f16_row_stride:
3476   case Intrinsic::nvvm_wmma_m16n16k16_load_b_f16_col:
3477   case Intrinsic::nvvm_wmma_m16n16k16_load_b_f16_row:
3478   case Intrinsic::nvvm_wmma_m16n16k16_load_b_f16_col_stride:
3479   case Intrinsic::nvvm_wmma_m16n16k16_load_b_f16_row_stride:
3480   case Intrinsic::nvvm_wmma_m32n8k16_load_a_f16_col:
3481   case Intrinsic::nvvm_wmma_m32n8k16_load_a_f16_row:
3482   case Intrinsic::nvvm_wmma_m32n8k16_load_a_f16_col_stride:
3483   case Intrinsic::nvvm_wmma_m32n8k16_load_a_f16_row_stride:
3484   case Intrinsic::nvvm_wmma_m32n8k16_load_b_f16_col:
3485   case Intrinsic::nvvm_wmma_m32n8k16_load_b_f16_row:
3486   case Intrinsic::nvvm_wmma_m32n8k16_load_b_f16_col_stride:
3487   case Intrinsic::nvvm_wmma_m32n8k16_load_b_f16_row_stride:
3488   case Intrinsic::nvvm_wmma_m8n32k16_load_a_f16_col:
3489   case Intrinsic::nvvm_wmma_m8n32k16_load_a_f16_row:
3490   case Intrinsic::nvvm_wmma_m8n32k16_load_a_f16_col_stride:
3491   case Intrinsic::nvvm_wmma_m8n32k16_load_a_f16_row_stride:
3492   case Intrinsic::nvvm_wmma_m8n32k16_load_b_f16_col:
3493   case Intrinsic::nvvm_wmma_m8n32k16_load_b_f16_row:
3494   case Intrinsic::nvvm_wmma_m8n32k16_load_b_f16_col_stride:
3495   case Intrinsic::nvvm_wmma_m8n32k16_load_b_f16_row_stride: {
3496     Info.opc = ISD::INTRINSIC_W_CHAIN;
3497     Info.memVT = MVT::v8f16;
3498     Info.ptrVal = I.getArgOperand(0);
3499     Info.offset = 0;
3500     Info.flags = MachineMemOperand::MOLoad;
3501     Info.align = Align(16);
3502     return true;
3503   }
3504   case Intrinsic::nvvm_wmma_m16n16k16_load_a_s8_col:
3505   case Intrinsic::nvvm_wmma_m16n16k16_load_a_s8_col_stride:
3506   case Intrinsic::nvvm_wmma_m16n16k16_load_a_u8_col_stride:
3507   case Intrinsic::nvvm_wmma_m16n16k16_load_a_u8_col:
3508   case Intrinsic::nvvm_wmma_m16n16k16_load_a_s8_row:
3509   case Intrinsic::nvvm_wmma_m16n16k16_load_a_s8_row_stride:
3510   case Intrinsic::nvvm_wmma_m16n16k16_load_a_u8_row_stride:
3511   case Intrinsic::nvvm_wmma_m16n16k16_load_a_u8_row:
3512   case Intrinsic::nvvm_wmma_m16n16k16_load_b_s8_col:
3513   case Intrinsic::nvvm_wmma_m16n16k16_load_b_s8_col_stride:
3514   case Intrinsic::nvvm_wmma_m16n16k16_load_b_u8_col_stride:
3515   case Intrinsic::nvvm_wmma_m16n16k16_load_b_u8_col:
3516   case Intrinsic::nvvm_wmma_m16n16k16_load_b_s8_row:
3517   case Intrinsic::nvvm_wmma_m16n16k16_load_b_s8_row_stride:
3518   case Intrinsic::nvvm_wmma_m16n16k16_load_b_u8_row_stride:
3519   case Intrinsic::nvvm_wmma_m16n16k16_load_b_u8_row: {
3520     Info.opc = ISD::INTRINSIC_W_CHAIN;
3521     Info.memVT = MVT::v2i32;
3522     Info.ptrVal = I.getArgOperand(0);
3523     Info.offset = 0;
3524     Info.flags = MachineMemOperand::MOLoad;
3525     Info.align = Align(8);
3526     return true;
3527   }
3528 
3529   case Intrinsic::nvvm_wmma_m32n8k16_load_a_s8_col:
3530   case Intrinsic::nvvm_wmma_m32n8k16_load_a_s8_col_stride:
3531   case Intrinsic::nvvm_wmma_m32n8k16_load_a_u8_col_stride:
3532   case Intrinsic::nvvm_wmma_m32n8k16_load_a_u8_col:
3533   case Intrinsic::nvvm_wmma_m32n8k16_load_a_s8_row:
3534   case Intrinsic::nvvm_wmma_m32n8k16_load_a_s8_row_stride:
3535   case Intrinsic::nvvm_wmma_m32n8k16_load_a_u8_row_stride:
3536   case Intrinsic::nvvm_wmma_m32n8k16_load_a_u8_row:
3537 
3538   case Intrinsic::nvvm_wmma_m8n32k16_load_b_s8_col:
3539   case Intrinsic::nvvm_wmma_m8n32k16_load_b_s8_col_stride:
3540   case Intrinsic::nvvm_wmma_m8n32k16_load_b_u8_col_stride:
3541   case Intrinsic::nvvm_wmma_m8n32k16_load_b_u8_col:
3542   case Intrinsic::nvvm_wmma_m8n32k16_load_b_s8_row:
3543   case Intrinsic::nvvm_wmma_m8n32k16_load_b_s8_row_stride:
3544   case Intrinsic::nvvm_wmma_m8n32k16_load_b_u8_row_stride:
3545   case Intrinsic::nvvm_wmma_m8n32k16_load_b_u8_row: {
3546     Info.opc = ISD::INTRINSIC_W_CHAIN;
3547     Info.memVT = MVT::v4i32;
3548     Info.ptrVal = I.getArgOperand(0);
3549     Info.offset = 0;
3550     Info.flags = MachineMemOperand::MOLoad;
3551     Info.align = Align(16);
3552     return true;
3553   }
3554 
3555   case Intrinsic::nvvm_wmma_m32n8k16_load_b_s8_col:
3556   case Intrinsic::nvvm_wmma_m32n8k16_load_b_s8_col_stride:
3557   case Intrinsic::nvvm_wmma_m32n8k16_load_b_u8_col_stride:
3558   case Intrinsic::nvvm_wmma_m32n8k16_load_b_u8_col:
3559   case Intrinsic::nvvm_wmma_m32n8k16_load_b_s8_row:
3560   case Intrinsic::nvvm_wmma_m32n8k16_load_b_s8_row_stride:
3561   case Intrinsic::nvvm_wmma_m32n8k16_load_b_u8_row_stride:
3562   case Intrinsic::nvvm_wmma_m32n8k16_load_b_u8_row:
3563 
3564   case Intrinsic::nvvm_wmma_m8n32k16_load_a_s8_col:
3565   case Intrinsic::nvvm_wmma_m8n32k16_load_a_s8_col_stride:
3566   case Intrinsic::nvvm_wmma_m8n32k16_load_a_u8_col_stride:
3567   case Intrinsic::nvvm_wmma_m8n32k16_load_a_u8_col:
3568   case Intrinsic::nvvm_wmma_m8n32k16_load_a_s8_row:
3569   case Intrinsic::nvvm_wmma_m8n32k16_load_a_s8_row_stride:
3570   case Intrinsic::nvvm_wmma_m8n32k16_load_a_u8_row_stride:
3571   case Intrinsic::nvvm_wmma_m8n32k16_load_a_u8_row:
3572   case Intrinsic::nvvm_wmma_m8n8k128_load_a_b1_row:
3573   case Intrinsic::nvvm_wmma_m8n8k128_load_a_b1_row_stride:
3574   case Intrinsic::nvvm_wmma_m8n8k128_load_b_b1_col:
3575   case Intrinsic::nvvm_wmma_m8n8k128_load_b_b1_col_stride:
3576   case Intrinsic::nvvm_wmma_m8n8k32_load_a_s4_row:
3577   case Intrinsic::nvvm_wmma_m8n8k32_load_a_s4_row_stride:
3578   case Intrinsic::nvvm_wmma_m8n8k32_load_a_u4_row_stride:
3579   case Intrinsic::nvvm_wmma_m8n8k32_load_a_u4_row:
3580   case Intrinsic::nvvm_wmma_m8n8k32_load_b_s4_col:
3581   case Intrinsic::nvvm_wmma_m8n8k32_load_b_s4_col_stride:
3582   case Intrinsic::nvvm_wmma_m8n8k32_load_b_u4_col_stride:
3583   case Intrinsic::nvvm_wmma_m8n8k32_load_b_u4_col: {
3584     Info.opc = ISD::INTRINSIC_W_CHAIN;
3585     Info.memVT = MVT::i32;
3586     Info.ptrVal = I.getArgOperand(0);
3587     Info.offset = 0;
3588     Info.flags = MachineMemOperand::MOLoad;
3589     Info.align = Align(4);
3590     return true;
3591   }
3592 
3593   case Intrinsic::nvvm_wmma_m16n16k16_load_c_f16_col:
3594   case Intrinsic::nvvm_wmma_m16n16k16_load_c_f16_row:
3595   case Intrinsic::nvvm_wmma_m16n16k16_load_c_f16_col_stride:
3596   case Intrinsic::nvvm_wmma_m16n16k16_load_c_f16_row_stride:
3597   case Intrinsic::nvvm_wmma_m32n8k16_load_c_f16_col:
3598   case Intrinsic::nvvm_wmma_m32n8k16_load_c_f16_row:
3599   case Intrinsic::nvvm_wmma_m32n8k16_load_c_f16_col_stride:
3600   case Intrinsic::nvvm_wmma_m32n8k16_load_c_f16_row_stride:
3601   case Intrinsic::nvvm_wmma_m8n32k16_load_c_f16_col:
3602   case Intrinsic::nvvm_wmma_m8n32k16_load_c_f16_row:
3603   case Intrinsic::nvvm_wmma_m8n32k16_load_c_f16_col_stride:
3604   case Intrinsic::nvvm_wmma_m8n32k16_load_c_f16_row_stride: {
3605     Info.opc = ISD::INTRINSIC_W_CHAIN;
3606     Info.memVT = MVT::v4f16;
3607     Info.ptrVal = I.getArgOperand(0);
3608     Info.offset = 0;
3609     Info.flags = MachineMemOperand::MOLoad;
3610     Info.align = Align(16);
3611     return true;
3612   }
3613 
3614   case Intrinsic::nvvm_wmma_m16n16k16_load_c_f32_col:
3615   case Intrinsic::nvvm_wmma_m16n16k16_load_c_f32_row:
3616   case Intrinsic::nvvm_wmma_m16n16k16_load_c_f32_col_stride:
3617   case Intrinsic::nvvm_wmma_m16n16k16_load_c_f32_row_stride:
3618   case Intrinsic::nvvm_wmma_m32n8k16_load_c_f32_col:
3619   case Intrinsic::nvvm_wmma_m32n8k16_load_c_f32_row:
3620   case Intrinsic::nvvm_wmma_m32n8k16_load_c_f32_col_stride:
3621   case Intrinsic::nvvm_wmma_m32n8k16_load_c_f32_row_stride:
3622   case Intrinsic::nvvm_wmma_m8n32k16_load_c_f32_col:
3623   case Intrinsic::nvvm_wmma_m8n32k16_load_c_f32_row:
3624   case Intrinsic::nvvm_wmma_m8n32k16_load_c_f32_col_stride:
3625   case Intrinsic::nvvm_wmma_m8n32k16_load_c_f32_row_stride: {
3626     Info.opc = ISD::INTRINSIC_W_CHAIN;
3627     Info.memVT = MVT::v8f32;
3628     Info.ptrVal = I.getArgOperand(0);
3629     Info.offset = 0;
3630     Info.flags = MachineMemOperand::MOLoad;
3631     Info.align = Align(16);
3632     return true;
3633   }
3634 
3635   case Intrinsic::nvvm_wmma_m16n16k16_load_c_s32_col:
3636   case Intrinsic::nvvm_wmma_m16n16k16_load_c_s32_col_stride:
3637   case Intrinsic::nvvm_wmma_m16n16k16_load_c_s32_row:
3638   case Intrinsic::nvvm_wmma_m16n16k16_load_c_s32_row_stride:
3639   case Intrinsic::nvvm_wmma_m32n8k16_load_c_s32_col:
3640   case Intrinsic::nvvm_wmma_m32n8k16_load_c_s32_col_stride:
3641   case Intrinsic::nvvm_wmma_m32n8k16_load_c_s32_row:
3642   case Intrinsic::nvvm_wmma_m32n8k16_load_c_s32_row_stride:
3643   case Intrinsic::nvvm_wmma_m8n32k16_load_c_s32_col:
3644   case Intrinsic::nvvm_wmma_m8n32k16_load_c_s32_col_stride:
3645   case Intrinsic::nvvm_wmma_m8n32k16_load_c_s32_row:
3646   case Intrinsic::nvvm_wmma_m8n32k16_load_c_s32_row_stride: {
3647     Info.opc = ISD::INTRINSIC_W_CHAIN;
3648     Info.memVT = MVT::v8i32;
3649     Info.ptrVal = I.getArgOperand(0);
3650     Info.offset = 0;
3651     Info.flags = MachineMemOperand::MOLoad;
3652     Info.align = Align(16);
3653     return true;
3654   }
3655 
3656   case Intrinsic::nvvm_wmma_m8n8k128_load_c_s32_col:
3657   case Intrinsic::nvvm_wmma_m8n8k128_load_c_s32_col_stride:
3658   case Intrinsic::nvvm_wmma_m8n8k128_load_c_s32_row:
3659   case Intrinsic::nvvm_wmma_m8n8k128_load_c_s32_row_stride:
3660   case Intrinsic::nvvm_wmma_m8n8k32_load_c_s32_col:
3661   case Intrinsic::nvvm_wmma_m8n8k32_load_c_s32_col_stride:
3662   case Intrinsic::nvvm_wmma_m8n8k32_load_c_s32_row:
3663   case Intrinsic::nvvm_wmma_m8n8k32_load_c_s32_row_stride: {
3664     Info.opc = ISD::INTRINSIC_W_CHAIN;
3665     Info.memVT = MVT::v2i32;
3666     Info.ptrVal = I.getArgOperand(0);
3667     Info.offset = 0;
3668     Info.flags = MachineMemOperand::MOLoad;
3669     Info.align = Align(8);
3670     return true;
3671   }
3672 
3673   case Intrinsic::nvvm_wmma_m16n16k16_store_d_f16_col:
3674   case Intrinsic::nvvm_wmma_m16n16k16_store_d_f16_row:
3675   case Intrinsic::nvvm_wmma_m16n16k16_store_d_f16_col_stride:
3676   case Intrinsic::nvvm_wmma_m16n16k16_store_d_f16_row_stride:
3677   case Intrinsic::nvvm_wmma_m32n8k16_store_d_f16_col:
3678   case Intrinsic::nvvm_wmma_m32n8k16_store_d_f16_row:
3679   case Intrinsic::nvvm_wmma_m32n8k16_store_d_f16_col_stride:
3680   case Intrinsic::nvvm_wmma_m32n8k16_store_d_f16_row_stride:
3681   case Intrinsic::nvvm_wmma_m8n32k16_store_d_f16_col:
3682   case Intrinsic::nvvm_wmma_m8n32k16_store_d_f16_row:
3683   case Intrinsic::nvvm_wmma_m8n32k16_store_d_f16_col_stride:
3684   case Intrinsic::nvvm_wmma_m8n32k16_store_d_f16_row_stride: {
3685     Info.opc = ISD::INTRINSIC_VOID;
3686     Info.memVT = MVT::v4f16;
3687     Info.ptrVal = I.getArgOperand(0);
3688     Info.offset = 0;
3689     Info.flags = MachineMemOperand::MOStore;
3690     Info.align = Align(16);
3691     return true;
3692   }
3693 
3694   case Intrinsic::nvvm_wmma_m16n16k16_store_d_f32_col:
3695   case Intrinsic::nvvm_wmma_m16n16k16_store_d_f32_row:
3696   case Intrinsic::nvvm_wmma_m16n16k16_store_d_f32_col_stride:
3697   case Intrinsic::nvvm_wmma_m16n16k16_store_d_f32_row_stride:
3698   case Intrinsic::nvvm_wmma_m32n8k16_store_d_f32_col:
3699   case Intrinsic::nvvm_wmma_m32n8k16_store_d_f32_row:
3700   case Intrinsic::nvvm_wmma_m32n8k16_store_d_f32_col_stride:
3701   case Intrinsic::nvvm_wmma_m32n8k16_store_d_f32_row_stride:
3702   case Intrinsic::nvvm_wmma_m8n32k16_store_d_f32_col:
3703   case Intrinsic::nvvm_wmma_m8n32k16_store_d_f32_row:
3704   case Intrinsic::nvvm_wmma_m8n32k16_store_d_f32_col_stride:
3705   case Intrinsic::nvvm_wmma_m8n32k16_store_d_f32_row_stride: {
3706     Info.opc = ISD::INTRINSIC_VOID;
3707     Info.memVT = MVT::v8f32;
3708     Info.ptrVal = I.getArgOperand(0);
3709     Info.offset = 0;
3710     Info.flags = MachineMemOperand::MOStore;
3711     Info.align = Align(16);
3712     return true;
3713   }
3714 
3715   case Intrinsic::nvvm_wmma_m16n16k16_store_d_s32_col:
3716   case Intrinsic::nvvm_wmma_m16n16k16_store_d_s32_col_stride:
3717   case Intrinsic::nvvm_wmma_m16n16k16_store_d_s32_row:
3718   case Intrinsic::nvvm_wmma_m16n16k16_store_d_s32_row_stride:
3719   case Intrinsic::nvvm_wmma_m32n8k16_store_d_s32_col:
3720   case Intrinsic::nvvm_wmma_m32n8k16_store_d_s32_col_stride:
3721   case Intrinsic::nvvm_wmma_m32n8k16_store_d_s32_row:
3722   case Intrinsic::nvvm_wmma_m32n8k16_store_d_s32_row_stride:
3723   case Intrinsic::nvvm_wmma_m8n32k16_store_d_s32_col:
3724   case Intrinsic::nvvm_wmma_m8n32k16_store_d_s32_col_stride:
3725   case Intrinsic::nvvm_wmma_m8n32k16_store_d_s32_row:
3726   case Intrinsic::nvvm_wmma_m8n32k16_store_d_s32_row_stride: {
3727     Info.opc = ISD::INTRINSIC_VOID;
3728     Info.memVT = MVT::v8i32;
3729     Info.ptrVal = I.getArgOperand(0);
3730     Info.offset = 0;
3731     Info.flags = MachineMemOperand::MOStore;
3732     Info.align = Align(16);
3733     return true;
3734   }
3735 
3736   case Intrinsic::nvvm_wmma_m8n8k128_store_d_s32_col:
3737   case Intrinsic::nvvm_wmma_m8n8k128_store_d_s32_col_stride:
3738   case Intrinsic::nvvm_wmma_m8n8k128_store_d_s32_row:
3739   case Intrinsic::nvvm_wmma_m8n8k128_store_d_s32_row_stride:
3740   case Intrinsic::nvvm_wmma_m8n8k32_store_d_s32_col:
3741   case Intrinsic::nvvm_wmma_m8n8k32_store_d_s32_col_stride:
3742   case Intrinsic::nvvm_wmma_m8n8k32_store_d_s32_row:
3743   case Intrinsic::nvvm_wmma_m8n8k32_store_d_s32_row_stride: {
3744     Info.opc = ISD::INTRINSIC_VOID;
3745     Info.memVT = MVT::v2i32;
3746     Info.ptrVal = I.getArgOperand(0);
3747     Info.offset = 0;
3748     Info.flags = MachineMemOperand::MOStore;
3749     Info.align = Align(8);
3750     return true;
3751   }
3752 
3753   case Intrinsic::nvvm_atomic_load_inc_32:
3754   case Intrinsic::nvvm_atomic_load_dec_32:
3755 
3756   case Intrinsic::nvvm_atomic_add_gen_f_cta:
3757   case Intrinsic::nvvm_atomic_add_gen_f_sys:
3758   case Intrinsic::nvvm_atomic_add_gen_i_cta:
3759   case Intrinsic::nvvm_atomic_add_gen_i_sys:
3760   case Intrinsic::nvvm_atomic_and_gen_i_cta:
3761   case Intrinsic::nvvm_atomic_and_gen_i_sys:
3762   case Intrinsic::nvvm_atomic_cas_gen_i_cta:
3763   case Intrinsic::nvvm_atomic_cas_gen_i_sys:
3764   case Intrinsic::nvvm_atomic_dec_gen_i_cta:
3765   case Intrinsic::nvvm_atomic_dec_gen_i_sys:
3766   case Intrinsic::nvvm_atomic_inc_gen_i_cta:
3767   case Intrinsic::nvvm_atomic_inc_gen_i_sys:
3768   case Intrinsic::nvvm_atomic_max_gen_i_cta:
3769   case Intrinsic::nvvm_atomic_max_gen_i_sys:
3770   case Intrinsic::nvvm_atomic_min_gen_i_cta:
3771   case Intrinsic::nvvm_atomic_min_gen_i_sys:
3772   case Intrinsic::nvvm_atomic_or_gen_i_cta:
3773   case Intrinsic::nvvm_atomic_or_gen_i_sys:
3774   case Intrinsic::nvvm_atomic_exch_gen_i_cta:
3775   case Intrinsic::nvvm_atomic_exch_gen_i_sys:
3776   case Intrinsic::nvvm_atomic_xor_gen_i_cta:
3777   case Intrinsic::nvvm_atomic_xor_gen_i_sys: {
3778     auto &DL = I.getModule()->getDataLayout();
3779     Info.opc = ISD::INTRINSIC_W_CHAIN;
3780     Info.memVT = getValueType(DL, I.getType());
3781     Info.ptrVal = I.getArgOperand(0);
3782     Info.offset = 0;
3783     Info.flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore;
3784     Info.align.reset();
3785     return true;
3786   }
3787 
3788   case Intrinsic::nvvm_ldu_global_i:
3789   case Intrinsic::nvvm_ldu_global_f:
3790   case Intrinsic::nvvm_ldu_global_p: {
3791     auto &DL = I.getModule()->getDataLayout();
3792     Info.opc = ISD::INTRINSIC_W_CHAIN;
3793     if (Intrinsic == Intrinsic::nvvm_ldu_global_i)
3794       Info.memVT = getValueType(DL, I.getType());
3795     else if(Intrinsic == Intrinsic::nvvm_ldu_global_p)
3796       Info.memVT = getPointerTy(DL);
3797     else
3798       Info.memVT = getValueType(DL, I.getType());
3799     Info.ptrVal = I.getArgOperand(0);
3800     Info.offset = 0;
3801     Info.flags = MachineMemOperand::MOLoad;
3802     Info.align =
3803         MaybeAlign(cast<ConstantInt>(I.getArgOperand(1))->getZExtValue());
3804 
3805     return true;
3806   }
3807   case Intrinsic::nvvm_ldg_global_i:
3808   case Intrinsic::nvvm_ldg_global_f:
3809   case Intrinsic::nvvm_ldg_global_p: {
3810     auto &DL = I.getModule()->getDataLayout();
3811 
3812     Info.opc = ISD::INTRINSIC_W_CHAIN;
3813     if (Intrinsic == Intrinsic::nvvm_ldg_global_i)
3814       Info.memVT = getValueType(DL, I.getType());
3815     else if(Intrinsic == Intrinsic::nvvm_ldg_global_p)
3816       Info.memVT = getPointerTy(DL);
3817     else
3818       Info.memVT = getValueType(DL, I.getType());
3819     Info.ptrVal = I.getArgOperand(0);
3820     Info.offset = 0;
3821     Info.flags = MachineMemOperand::MOLoad;
3822     Info.align =
3823         MaybeAlign(cast<ConstantInt>(I.getArgOperand(1))->getZExtValue());
3824 
3825     return true;
3826   }
3827 
3828   case Intrinsic::nvvm_tex_1d_v4f32_s32:
3829   case Intrinsic::nvvm_tex_1d_v4f32_f32:
3830   case Intrinsic::nvvm_tex_1d_level_v4f32_f32:
3831   case Intrinsic::nvvm_tex_1d_grad_v4f32_f32:
3832   case Intrinsic::nvvm_tex_1d_array_v4f32_s32:
3833   case Intrinsic::nvvm_tex_1d_array_v4f32_f32:
3834   case Intrinsic::nvvm_tex_1d_array_level_v4f32_f32:
3835   case Intrinsic::nvvm_tex_1d_array_grad_v4f32_f32:
3836   case Intrinsic::nvvm_tex_2d_v4f32_s32:
3837   case Intrinsic::nvvm_tex_2d_v4f32_f32:
3838   case Intrinsic::nvvm_tex_2d_level_v4f32_f32:
3839   case Intrinsic::nvvm_tex_2d_grad_v4f32_f32:
3840   case Intrinsic::nvvm_tex_2d_array_v4f32_s32:
3841   case Intrinsic::nvvm_tex_2d_array_v4f32_f32:
3842   case Intrinsic::nvvm_tex_2d_array_level_v4f32_f32:
3843   case Intrinsic::nvvm_tex_2d_array_grad_v4f32_f32:
3844   case Intrinsic::nvvm_tex_3d_v4f32_s32:
3845   case Intrinsic::nvvm_tex_3d_v4f32_f32:
3846   case Intrinsic::nvvm_tex_3d_level_v4f32_f32:
3847   case Intrinsic::nvvm_tex_3d_grad_v4f32_f32:
3848   case Intrinsic::nvvm_tex_cube_v4f32_f32:
3849   case Intrinsic::nvvm_tex_cube_level_v4f32_f32:
3850   case Intrinsic::nvvm_tex_cube_array_v4f32_f32:
3851   case Intrinsic::nvvm_tex_cube_array_level_v4f32_f32:
3852   case Intrinsic::nvvm_tld4_r_2d_v4f32_f32:
3853   case Intrinsic::nvvm_tld4_g_2d_v4f32_f32:
3854   case Intrinsic::nvvm_tld4_b_2d_v4f32_f32:
3855   case Intrinsic::nvvm_tld4_a_2d_v4f32_f32:
3856   case Intrinsic::nvvm_tex_unified_1d_v4f32_s32:
3857   case Intrinsic::nvvm_tex_unified_1d_v4f32_f32:
3858   case Intrinsic::nvvm_tex_unified_1d_level_v4f32_f32:
3859   case Intrinsic::nvvm_tex_unified_1d_grad_v4f32_f32:
3860   case Intrinsic::nvvm_tex_unified_1d_array_v4f32_s32:
3861   case Intrinsic::nvvm_tex_unified_1d_array_v4f32_f32:
3862   case Intrinsic::nvvm_tex_unified_1d_array_level_v4f32_f32:
3863   case Intrinsic::nvvm_tex_unified_1d_array_grad_v4f32_f32:
3864   case Intrinsic::nvvm_tex_unified_2d_v4f32_s32:
3865   case Intrinsic::nvvm_tex_unified_2d_v4f32_f32:
3866   case Intrinsic::nvvm_tex_unified_2d_level_v4f32_f32:
3867   case Intrinsic::nvvm_tex_unified_2d_grad_v4f32_f32:
3868   case Intrinsic::nvvm_tex_unified_2d_array_v4f32_s32:
3869   case Intrinsic::nvvm_tex_unified_2d_array_v4f32_f32:
3870   case Intrinsic::nvvm_tex_unified_2d_array_level_v4f32_f32:
3871   case Intrinsic::nvvm_tex_unified_2d_array_grad_v4f32_f32:
3872   case Intrinsic::nvvm_tex_unified_3d_v4f32_s32:
3873   case Intrinsic::nvvm_tex_unified_3d_v4f32_f32:
3874   case Intrinsic::nvvm_tex_unified_3d_level_v4f32_f32:
3875   case Intrinsic::nvvm_tex_unified_3d_grad_v4f32_f32:
3876   case Intrinsic::nvvm_tex_unified_cube_v4f32_f32:
3877   case Intrinsic::nvvm_tex_unified_cube_level_v4f32_f32:
3878   case Intrinsic::nvvm_tex_unified_cube_array_v4f32_f32:
3879   case Intrinsic::nvvm_tex_unified_cube_array_level_v4f32_f32:
3880   case Intrinsic::nvvm_tld4_unified_r_2d_v4f32_f32:
3881   case Intrinsic::nvvm_tld4_unified_g_2d_v4f32_f32:
3882   case Intrinsic::nvvm_tld4_unified_b_2d_v4f32_f32:
3883   case Intrinsic::nvvm_tld4_unified_a_2d_v4f32_f32:
3884     Info.opc = getOpcForTextureInstr(Intrinsic);
3885     Info.memVT = MVT::v4f32;
3886     Info.ptrVal = nullptr;
3887     Info.offset = 0;
3888     Info.flags = MachineMemOperand::MOLoad;
3889     Info.align = Align(16);
3890     return true;
3891 
3892   case Intrinsic::nvvm_tex_1d_v4s32_s32:
3893   case Intrinsic::nvvm_tex_1d_v4s32_f32:
3894   case Intrinsic::nvvm_tex_1d_level_v4s32_f32:
3895   case Intrinsic::nvvm_tex_1d_grad_v4s32_f32:
3896   case Intrinsic::nvvm_tex_1d_array_v4s32_s32:
3897   case Intrinsic::nvvm_tex_1d_array_v4s32_f32:
3898   case Intrinsic::nvvm_tex_1d_array_level_v4s32_f32:
3899   case Intrinsic::nvvm_tex_1d_array_grad_v4s32_f32:
3900   case Intrinsic::nvvm_tex_2d_v4s32_s32:
3901   case Intrinsic::nvvm_tex_2d_v4s32_f32:
3902   case Intrinsic::nvvm_tex_2d_level_v4s32_f32:
3903   case Intrinsic::nvvm_tex_2d_grad_v4s32_f32:
3904   case Intrinsic::nvvm_tex_2d_array_v4s32_s32:
3905   case Intrinsic::nvvm_tex_2d_array_v4s32_f32:
3906   case Intrinsic::nvvm_tex_2d_array_level_v4s32_f32:
3907   case Intrinsic::nvvm_tex_2d_array_grad_v4s32_f32:
3908   case Intrinsic::nvvm_tex_3d_v4s32_s32:
3909   case Intrinsic::nvvm_tex_3d_v4s32_f32:
3910   case Intrinsic::nvvm_tex_3d_level_v4s32_f32:
3911   case Intrinsic::nvvm_tex_3d_grad_v4s32_f32:
3912   case Intrinsic::nvvm_tex_cube_v4s32_f32:
3913   case Intrinsic::nvvm_tex_cube_level_v4s32_f32:
3914   case Intrinsic::nvvm_tex_cube_array_v4s32_f32:
3915   case Intrinsic::nvvm_tex_cube_array_level_v4s32_f32:
3916   case Intrinsic::nvvm_tex_cube_v4u32_f32:
3917   case Intrinsic::nvvm_tex_cube_level_v4u32_f32:
3918   case Intrinsic::nvvm_tex_cube_array_v4u32_f32:
3919   case Intrinsic::nvvm_tex_cube_array_level_v4u32_f32:
3920   case Intrinsic::nvvm_tex_1d_v4u32_s32:
3921   case Intrinsic::nvvm_tex_1d_v4u32_f32:
3922   case Intrinsic::nvvm_tex_1d_level_v4u32_f32:
3923   case Intrinsic::nvvm_tex_1d_grad_v4u32_f32:
3924   case Intrinsic::nvvm_tex_1d_array_v4u32_s32:
3925   case Intrinsic::nvvm_tex_1d_array_v4u32_f32:
3926   case Intrinsic::nvvm_tex_1d_array_level_v4u32_f32:
3927   case Intrinsic::nvvm_tex_1d_array_grad_v4u32_f32:
3928   case Intrinsic::nvvm_tex_2d_v4u32_s32:
3929   case Intrinsic::nvvm_tex_2d_v4u32_f32:
3930   case Intrinsic::nvvm_tex_2d_level_v4u32_f32:
3931   case Intrinsic::nvvm_tex_2d_grad_v4u32_f32:
3932   case Intrinsic::nvvm_tex_2d_array_v4u32_s32:
3933   case Intrinsic::nvvm_tex_2d_array_v4u32_f32:
3934   case Intrinsic::nvvm_tex_2d_array_level_v4u32_f32:
3935   case Intrinsic::nvvm_tex_2d_array_grad_v4u32_f32:
3936   case Intrinsic::nvvm_tex_3d_v4u32_s32:
3937   case Intrinsic::nvvm_tex_3d_v4u32_f32:
3938   case Intrinsic::nvvm_tex_3d_level_v4u32_f32:
3939   case Intrinsic::nvvm_tex_3d_grad_v4u32_f32:
3940   case Intrinsic::nvvm_tld4_r_2d_v4s32_f32:
3941   case Intrinsic::nvvm_tld4_g_2d_v4s32_f32:
3942   case Intrinsic::nvvm_tld4_b_2d_v4s32_f32:
3943   case Intrinsic::nvvm_tld4_a_2d_v4s32_f32:
3944   case Intrinsic::nvvm_tld4_r_2d_v4u32_f32:
3945   case Intrinsic::nvvm_tld4_g_2d_v4u32_f32:
3946   case Intrinsic::nvvm_tld4_b_2d_v4u32_f32:
3947   case Intrinsic::nvvm_tld4_a_2d_v4u32_f32:
3948   case Intrinsic::nvvm_tex_unified_1d_v4s32_s32:
3949   case Intrinsic::nvvm_tex_unified_1d_v4s32_f32:
3950   case Intrinsic::nvvm_tex_unified_1d_level_v4s32_f32:
3951   case Intrinsic::nvvm_tex_unified_1d_grad_v4s32_f32:
3952   case Intrinsic::nvvm_tex_unified_1d_array_v4s32_s32:
3953   case Intrinsic::nvvm_tex_unified_1d_array_v4s32_f32:
3954   case Intrinsic::nvvm_tex_unified_1d_array_level_v4s32_f32:
3955   case Intrinsic::nvvm_tex_unified_1d_array_grad_v4s32_f32:
3956   case Intrinsic::nvvm_tex_unified_2d_v4s32_s32:
3957   case Intrinsic::nvvm_tex_unified_2d_v4s32_f32:
3958   case Intrinsic::nvvm_tex_unified_2d_level_v4s32_f32:
3959   case Intrinsic::nvvm_tex_unified_2d_grad_v4s32_f32:
3960   case Intrinsic::nvvm_tex_unified_2d_array_v4s32_s32:
3961   case Intrinsic::nvvm_tex_unified_2d_array_v4s32_f32:
3962   case Intrinsic::nvvm_tex_unified_2d_array_level_v4s32_f32:
3963   case Intrinsic::nvvm_tex_unified_2d_array_grad_v4s32_f32:
3964   case Intrinsic::nvvm_tex_unified_3d_v4s32_s32:
3965   case Intrinsic::nvvm_tex_unified_3d_v4s32_f32:
3966   case Intrinsic::nvvm_tex_unified_3d_level_v4s32_f32:
3967   case Intrinsic::nvvm_tex_unified_3d_grad_v4s32_f32:
3968   case Intrinsic::nvvm_tex_unified_1d_v4u32_s32:
3969   case Intrinsic::nvvm_tex_unified_1d_v4u32_f32:
3970   case Intrinsic::nvvm_tex_unified_1d_level_v4u32_f32:
3971   case Intrinsic::nvvm_tex_unified_1d_grad_v4u32_f32:
3972   case Intrinsic::nvvm_tex_unified_1d_array_v4u32_s32:
3973   case Intrinsic::nvvm_tex_unified_1d_array_v4u32_f32:
3974   case Intrinsic::nvvm_tex_unified_1d_array_level_v4u32_f32:
3975   case Intrinsic::nvvm_tex_unified_1d_array_grad_v4u32_f32:
3976   case Intrinsic::nvvm_tex_unified_2d_v4u32_s32:
3977   case Intrinsic::nvvm_tex_unified_2d_v4u32_f32:
3978   case Intrinsic::nvvm_tex_unified_2d_level_v4u32_f32:
3979   case Intrinsic::nvvm_tex_unified_2d_grad_v4u32_f32:
3980   case Intrinsic::nvvm_tex_unified_2d_array_v4u32_s32:
3981   case Intrinsic::nvvm_tex_unified_2d_array_v4u32_f32:
3982   case Intrinsic::nvvm_tex_unified_2d_array_level_v4u32_f32:
3983   case Intrinsic::nvvm_tex_unified_2d_array_grad_v4u32_f32:
3984   case Intrinsic::nvvm_tex_unified_3d_v4u32_s32:
3985   case Intrinsic::nvvm_tex_unified_3d_v4u32_f32:
3986   case Intrinsic::nvvm_tex_unified_3d_level_v4u32_f32:
3987   case Intrinsic::nvvm_tex_unified_3d_grad_v4u32_f32:
3988   case Intrinsic::nvvm_tex_unified_cube_v4s32_f32:
3989   case Intrinsic::nvvm_tex_unified_cube_level_v4s32_f32:
3990   case Intrinsic::nvvm_tex_unified_cube_array_v4s32_f32:
3991   case Intrinsic::nvvm_tex_unified_cube_array_level_v4s32_f32:
3992   case Intrinsic::nvvm_tex_unified_cube_v4u32_f32:
3993   case Intrinsic::nvvm_tex_unified_cube_level_v4u32_f32:
3994   case Intrinsic::nvvm_tex_unified_cube_array_v4u32_f32:
3995   case Intrinsic::nvvm_tex_unified_cube_array_level_v4u32_f32:
3996   case Intrinsic::nvvm_tld4_unified_r_2d_v4s32_f32:
3997   case Intrinsic::nvvm_tld4_unified_g_2d_v4s32_f32:
3998   case Intrinsic::nvvm_tld4_unified_b_2d_v4s32_f32:
3999   case Intrinsic::nvvm_tld4_unified_a_2d_v4s32_f32:
4000   case Intrinsic::nvvm_tld4_unified_r_2d_v4u32_f32:
4001   case Intrinsic::nvvm_tld4_unified_g_2d_v4u32_f32:
4002   case Intrinsic::nvvm_tld4_unified_b_2d_v4u32_f32:
4003   case Intrinsic::nvvm_tld4_unified_a_2d_v4u32_f32:
4004     Info.opc = getOpcForTextureInstr(Intrinsic);
4005     Info.memVT = MVT::v4i32;
4006     Info.ptrVal = nullptr;
4007     Info.offset = 0;
4008     Info.flags = MachineMemOperand::MOLoad;
4009     Info.align = Align(16);
4010     return true;
4011 
4012   case Intrinsic::nvvm_suld_1d_i8_clamp:
4013   case Intrinsic::nvvm_suld_1d_v2i8_clamp:
4014   case Intrinsic::nvvm_suld_1d_v4i8_clamp:
4015   case Intrinsic::nvvm_suld_1d_array_i8_clamp:
4016   case Intrinsic::nvvm_suld_1d_array_v2i8_clamp:
4017   case Intrinsic::nvvm_suld_1d_array_v4i8_clamp:
4018   case Intrinsic::nvvm_suld_2d_i8_clamp:
4019   case Intrinsic::nvvm_suld_2d_v2i8_clamp:
4020   case Intrinsic::nvvm_suld_2d_v4i8_clamp:
4021   case Intrinsic::nvvm_suld_2d_array_i8_clamp:
4022   case Intrinsic::nvvm_suld_2d_array_v2i8_clamp:
4023   case Intrinsic::nvvm_suld_2d_array_v4i8_clamp:
4024   case Intrinsic::nvvm_suld_3d_i8_clamp:
4025   case Intrinsic::nvvm_suld_3d_v2i8_clamp:
4026   case Intrinsic::nvvm_suld_3d_v4i8_clamp:
4027   case Intrinsic::nvvm_suld_1d_i8_trap:
4028   case Intrinsic::nvvm_suld_1d_v2i8_trap:
4029   case Intrinsic::nvvm_suld_1d_v4i8_trap:
4030   case Intrinsic::nvvm_suld_1d_array_i8_trap:
4031   case Intrinsic::nvvm_suld_1d_array_v2i8_trap:
4032   case Intrinsic::nvvm_suld_1d_array_v4i8_trap:
4033   case Intrinsic::nvvm_suld_2d_i8_trap:
4034   case Intrinsic::nvvm_suld_2d_v2i8_trap:
4035   case Intrinsic::nvvm_suld_2d_v4i8_trap:
4036   case Intrinsic::nvvm_suld_2d_array_i8_trap:
4037   case Intrinsic::nvvm_suld_2d_array_v2i8_trap:
4038   case Intrinsic::nvvm_suld_2d_array_v4i8_trap:
4039   case Intrinsic::nvvm_suld_3d_i8_trap:
4040   case Intrinsic::nvvm_suld_3d_v2i8_trap:
4041   case Intrinsic::nvvm_suld_3d_v4i8_trap:
4042   case Intrinsic::nvvm_suld_1d_i8_zero:
4043   case Intrinsic::nvvm_suld_1d_v2i8_zero:
4044   case Intrinsic::nvvm_suld_1d_v4i8_zero:
4045   case Intrinsic::nvvm_suld_1d_array_i8_zero:
4046   case Intrinsic::nvvm_suld_1d_array_v2i8_zero:
4047   case Intrinsic::nvvm_suld_1d_array_v4i8_zero:
4048   case Intrinsic::nvvm_suld_2d_i8_zero:
4049   case Intrinsic::nvvm_suld_2d_v2i8_zero:
4050   case Intrinsic::nvvm_suld_2d_v4i8_zero:
4051   case Intrinsic::nvvm_suld_2d_array_i8_zero:
4052   case Intrinsic::nvvm_suld_2d_array_v2i8_zero:
4053   case Intrinsic::nvvm_suld_2d_array_v4i8_zero:
4054   case Intrinsic::nvvm_suld_3d_i8_zero:
4055   case Intrinsic::nvvm_suld_3d_v2i8_zero:
4056   case Intrinsic::nvvm_suld_3d_v4i8_zero:
4057     Info.opc = getOpcForSurfaceInstr(Intrinsic);
4058     Info.memVT = MVT::i8;
4059     Info.ptrVal = nullptr;
4060     Info.offset = 0;
4061     Info.flags = MachineMemOperand::MOLoad;
4062     Info.align = Align(16);
4063     return true;
4064 
4065   case Intrinsic::nvvm_suld_1d_i16_clamp:
4066   case Intrinsic::nvvm_suld_1d_v2i16_clamp:
4067   case Intrinsic::nvvm_suld_1d_v4i16_clamp:
4068   case Intrinsic::nvvm_suld_1d_array_i16_clamp:
4069   case Intrinsic::nvvm_suld_1d_array_v2i16_clamp:
4070   case Intrinsic::nvvm_suld_1d_array_v4i16_clamp:
4071   case Intrinsic::nvvm_suld_2d_i16_clamp:
4072   case Intrinsic::nvvm_suld_2d_v2i16_clamp:
4073   case Intrinsic::nvvm_suld_2d_v4i16_clamp:
4074   case Intrinsic::nvvm_suld_2d_array_i16_clamp:
4075   case Intrinsic::nvvm_suld_2d_array_v2i16_clamp:
4076   case Intrinsic::nvvm_suld_2d_array_v4i16_clamp:
4077   case Intrinsic::nvvm_suld_3d_i16_clamp:
4078   case Intrinsic::nvvm_suld_3d_v2i16_clamp:
4079   case Intrinsic::nvvm_suld_3d_v4i16_clamp:
4080   case Intrinsic::nvvm_suld_1d_i16_trap:
4081   case Intrinsic::nvvm_suld_1d_v2i16_trap:
4082   case Intrinsic::nvvm_suld_1d_v4i16_trap:
4083   case Intrinsic::nvvm_suld_1d_array_i16_trap:
4084   case Intrinsic::nvvm_suld_1d_array_v2i16_trap:
4085   case Intrinsic::nvvm_suld_1d_array_v4i16_trap:
4086   case Intrinsic::nvvm_suld_2d_i16_trap:
4087   case Intrinsic::nvvm_suld_2d_v2i16_trap:
4088   case Intrinsic::nvvm_suld_2d_v4i16_trap:
4089   case Intrinsic::nvvm_suld_2d_array_i16_trap:
4090   case Intrinsic::nvvm_suld_2d_array_v2i16_trap:
4091   case Intrinsic::nvvm_suld_2d_array_v4i16_trap:
4092   case Intrinsic::nvvm_suld_3d_i16_trap:
4093   case Intrinsic::nvvm_suld_3d_v2i16_trap:
4094   case Intrinsic::nvvm_suld_3d_v4i16_trap:
4095   case Intrinsic::nvvm_suld_1d_i16_zero:
4096   case Intrinsic::nvvm_suld_1d_v2i16_zero:
4097   case Intrinsic::nvvm_suld_1d_v4i16_zero:
4098   case Intrinsic::nvvm_suld_1d_array_i16_zero:
4099   case Intrinsic::nvvm_suld_1d_array_v2i16_zero:
4100   case Intrinsic::nvvm_suld_1d_array_v4i16_zero:
4101   case Intrinsic::nvvm_suld_2d_i16_zero:
4102   case Intrinsic::nvvm_suld_2d_v2i16_zero:
4103   case Intrinsic::nvvm_suld_2d_v4i16_zero:
4104   case Intrinsic::nvvm_suld_2d_array_i16_zero:
4105   case Intrinsic::nvvm_suld_2d_array_v2i16_zero:
4106   case Intrinsic::nvvm_suld_2d_array_v4i16_zero:
4107   case Intrinsic::nvvm_suld_3d_i16_zero:
4108   case Intrinsic::nvvm_suld_3d_v2i16_zero:
4109   case Intrinsic::nvvm_suld_3d_v4i16_zero:
4110     Info.opc = getOpcForSurfaceInstr(Intrinsic);
4111     Info.memVT = MVT::i16;
4112     Info.ptrVal = nullptr;
4113     Info.offset = 0;
4114     Info.flags = MachineMemOperand::MOLoad;
4115     Info.align = Align(16);
4116     return true;
4117 
4118   case Intrinsic::nvvm_suld_1d_i32_clamp:
4119   case Intrinsic::nvvm_suld_1d_v2i32_clamp:
4120   case Intrinsic::nvvm_suld_1d_v4i32_clamp:
4121   case Intrinsic::nvvm_suld_1d_array_i32_clamp:
4122   case Intrinsic::nvvm_suld_1d_array_v2i32_clamp:
4123   case Intrinsic::nvvm_suld_1d_array_v4i32_clamp:
4124   case Intrinsic::nvvm_suld_2d_i32_clamp:
4125   case Intrinsic::nvvm_suld_2d_v2i32_clamp:
4126   case Intrinsic::nvvm_suld_2d_v4i32_clamp:
4127   case Intrinsic::nvvm_suld_2d_array_i32_clamp:
4128   case Intrinsic::nvvm_suld_2d_array_v2i32_clamp:
4129   case Intrinsic::nvvm_suld_2d_array_v4i32_clamp:
4130   case Intrinsic::nvvm_suld_3d_i32_clamp:
4131   case Intrinsic::nvvm_suld_3d_v2i32_clamp:
4132   case Intrinsic::nvvm_suld_3d_v4i32_clamp:
4133   case Intrinsic::nvvm_suld_1d_i32_trap:
4134   case Intrinsic::nvvm_suld_1d_v2i32_trap:
4135   case Intrinsic::nvvm_suld_1d_v4i32_trap:
4136   case Intrinsic::nvvm_suld_1d_array_i32_trap:
4137   case Intrinsic::nvvm_suld_1d_array_v2i32_trap:
4138   case Intrinsic::nvvm_suld_1d_array_v4i32_trap:
4139   case Intrinsic::nvvm_suld_2d_i32_trap:
4140   case Intrinsic::nvvm_suld_2d_v2i32_trap:
4141   case Intrinsic::nvvm_suld_2d_v4i32_trap:
4142   case Intrinsic::nvvm_suld_2d_array_i32_trap:
4143   case Intrinsic::nvvm_suld_2d_array_v2i32_trap:
4144   case Intrinsic::nvvm_suld_2d_array_v4i32_trap:
4145   case Intrinsic::nvvm_suld_3d_i32_trap:
4146   case Intrinsic::nvvm_suld_3d_v2i32_trap:
4147   case Intrinsic::nvvm_suld_3d_v4i32_trap:
4148   case Intrinsic::nvvm_suld_1d_i32_zero:
4149   case Intrinsic::nvvm_suld_1d_v2i32_zero:
4150   case Intrinsic::nvvm_suld_1d_v4i32_zero:
4151   case Intrinsic::nvvm_suld_1d_array_i32_zero:
4152   case Intrinsic::nvvm_suld_1d_array_v2i32_zero:
4153   case Intrinsic::nvvm_suld_1d_array_v4i32_zero:
4154   case Intrinsic::nvvm_suld_2d_i32_zero:
4155   case Intrinsic::nvvm_suld_2d_v2i32_zero:
4156   case Intrinsic::nvvm_suld_2d_v4i32_zero:
4157   case Intrinsic::nvvm_suld_2d_array_i32_zero:
4158   case Intrinsic::nvvm_suld_2d_array_v2i32_zero:
4159   case Intrinsic::nvvm_suld_2d_array_v4i32_zero:
4160   case Intrinsic::nvvm_suld_3d_i32_zero:
4161   case Intrinsic::nvvm_suld_3d_v2i32_zero:
4162   case Intrinsic::nvvm_suld_3d_v4i32_zero:
4163     Info.opc = getOpcForSurfaceInstr(Intrinsic);
4164     Info.memVT = MVT::i32;
4165     Info.ptrVal = nullptr;
4166     Info.offset = 0;
4167     Info.flags = MachineMemOperand::MOLoad;
4168     Info.align = Align(16);
4169     return true;
4170 
4171   case Intrinsic::nvvm_suld_1d_i64_clamp:
4172   case Intrinsic::nvvm_suld_1d_v2i64_clamp:
4173   case Intrinsic::nvvm_suld_1d_array_i64_clamp:
4174   case Intrinsic::nvvm_suld_1d_array_v2i64_clamp:
4175   case Intrinsic::nvvm_suld_2d_i64_clamp:
4176   case Intrinsic::nvvm_suld_2d_v2i64_clamp:
4177   case Intrinsic::nvvm_suld_2d_array_i64_clamp:
4178   case Intrinsic::nvvm_suld_2d_array_v2i64_clamp:
4179   case Intrinsic::nvvm_suld_3d_i64_clamp:
4180   case Intrinsic::nvvm_suld_3d_v2i64_clamp:
4181   case Intrinsic::nvvm_suld_1d_i64_trap:
4182   case Intrinsic::nvvm_suld_1d_v2i64_trap:
4183   case Intrinsic::nvvm_suld_1d_array_i64_trap:
4184   case Intrinsic::nvvm_suld_1d_array_v2i64_trap:
4185   case Intrinsic::nvvm_suld_2d_i64_trap:
4186   case Intrinsic::nvvm_suld_2d_v2i64_trap:
4187   case Intrinsic::nvvm_suld_2d_array_i64_trap:
4188   case Intrinsic::nvvm_suld_2d_array_v2i64_trap:
4189   case Intrinsic::nvvm_suld_3d_i64_trap:
4190   case Intrinsic::nvvm_suld_3d_v2i64_trap:
4191   case Intrinsic::nvvm_suld_1d_i64_zero:
4192   case Intrinsic::nvvm_suld_1d_v2i64_zero:
4193   case Intrinsic::nvvm_suld_1d_array_i64_zero:
4194   case Intrinsic::nvvm_suld_1d_array_v2i64_zero:
4195   case Intrinsic::nvvm_suld_2d_i64_zero:
4196   case Intrinsic::nvvm_suld_2d_v2i64_zero:
4197   case Intrinsic::nvvm_suld_2d_array_i64_zero:
4198   case Intrinsic::nvvm_suld_2d_array_v2i64_zero:
4199   case Intrinsic::nvvm_suld_3d_i64_zero:
4200   case Intrinsic::nvvm_suld_3d_v2i64_zero:
4201     Info.opc = getOpcForSurfaceInstr(Intrinsic);
4202     Info.memVT = MVT::i64;
4203     Info.ptrVal = nullptr;
4204     Info.offset = 0;
4205     Info.flags = MachineMemOperand::MOLoad;
4206     Info.align = Align(16);
4207     return true;
4208   }
4209   return false;
4210 }
4211 
4212 /// isLegalAddressingMode - Return true if the addressing mode represented
4213 /// by AM is legal for this target, for a load/store of the specified type.
4214 /// Used to guide target specific optimizations, like loop strength reduction
4215 /// (LoopStrengthReduce.cpp) and memory optimization for address mode
4216 /// (CodeGenPrepare.cpp)
4217 bool NVPTXTargetLowering::isLegalAddressingMode(const DataLayout &DL,
4218                                                 const AddrMode &AM, Type *Ty,
4219                                                 unsigned AS, Instruction *I) const {
4220   // AddrMode - This represents an addressing mode of:
4221   //    BaseGV + BaseOffs + BaseReg + Scale*ScaleReg
4222   //
4223   // The legal address modes are
4224   // - [avar]
4225   // - [areg]
4226   // - [areg+immoff]
4227   // - [immAddr]
4228 
4229   if (AM.BaseGV) {
4230     return !AM.BaseOffs && !AM.HasBaseReg && !AM.Scale;
4231   }
4232 
4233   switch (AM.Scale) {
4234   case 0: // "r", "r+i" or "i" is allowed
4235     break;
4236   case 1:
4237     if (AM.HasBaseReg) // "r+r+i" or "r+r" is not allowed.
4238       return false;
4239     // Otherwise we have r+i.
4240     break;
4241   default:
4242     // No scale > 1 is allowed
4243     return false;
4244   }
4245   return true;
4246 }
4247 
4248 //===----------------------------------------------------------------------===//
4249 //                         NVPTX Inline Assembly Support
4250 //===----------------------------------------------------------------------===//
4251 
4252 /// getConstraintType - Given a constraint letter, return the type of
4253 /// constraint it is for this target.
4254 NVPTXTargetLowering::ConstraintType
4255 NVPTXTargetLowering::getConstraintType(StringRef Constraint) const {
4256   if (Constraint.size() == 1) {
4257     switch (Constraint[0]) {
4258     default:
4259       break;
4260     case 'b':
4261     case 'r':
4262     case 'h':
4263     case 'c':
4264     case 'l':
4265     case 'f':
4266     case 'd':
4267     case '0':
4268     case 'N':
4269       return C_RegisterClass;
4270     }
4271   }
4272   return TargetLowering::getConstraintType(Constraint);
4273 }
4274 
4275 std::pair<unsigned, const TargetRegisterClass *>
4276 NVPTXTargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI,
4277                                                   StringRef Constraint,
4278                                                   MVT VT) const {
4279   if (Constraint.size() == 1) {
4280     switch (Constraint[0]) {
4281     case 'b':
4282       return std::make_pair(0U, &NVPTX::Int1RegsRegClass);
4283     case 'c':
4284       return std::make_pair(0U, &NVPTX::Int16RegsRegClass);
4285     case 'h':
4286       return std::make_pair(0U, &NVPTX::Int16RegsRegClass);
4287     case 'r':
4288       return std::make_pair(0U, &NVPTX::Int32RegsRegClass);
4289     case 'l':
4290     case 'N':
4291       return std::make_pair(0U, &NVPTX::Int64RegsRegClass);
4292     case 'f':
4293       return std::make_pair(0U, &NVPTX::Float32RegsRegClass);
4294     case 'd':
4295       return std::make_pair(0U, &NVPTX::Float64RegsRegClass);
4296     }
4297   }
4298   return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT);
4299 }
4300 
4301 //===----------------------------------------------------------------------===//
4302 //                         NVPTX DAG Combining
4303 //===----------------------------------------------------------------------===//
4304 
4305 bool NVPTXTargetLowering::allowFMA(MachineFunction &MF,
4306                                    CodeGenOpt::Level OptLevel) const {
4307   // Always honor command-line argument
4308   if (FMAContractLevelOpt.getNumOccurrences() > 0)
4309     return FMAContractLevelOpt > 0;
4310 
4311   // Do not contract if we're not optimizing the code.
4312   if (OptLevel == 0)
4313     return false;
4314 
4315   // Honor TargetOptions flags that explicitly say fusion is okay.
4316   if (MF.getTarget().Options.AllowFPOpFusion == FPOpFusion::Fast)
4317     return true;
4318 
4319   return allowUnsafeFPMath(MF);
4320 }
4321 
4322 bool NVPTXTargetLowering::allowUnsafeFPMath(MachineFunction &MF) const {
4323   // Honor TargetOptions flags that explicitly say unsafe math is okay.
4324   if (MF.getTarget().Options.UnsafeFPMath)
4325     return true;
4326 
4327   // Allow unsafe math if unsafe-fp-math attribute explicitly says so.
4328   const Function &F = MF.getFunction();
4329   if (F.hasFnAttribute("unsafe-fp-math")) {
4330     Attribute Attr = F.getFnAttribute("unsafe-fp-math");
4331     StringRef Val = Attr.getValueAsString();
4332     if (Val == "true")
4333       return true;
4334   }
4335 
4336   return false;
4337 }
4338 
4339 /// PerformADDCombineWithOperands - Try DAG combinations for an ADD with
4340 /// operands N0 and N1.  This is a helper for PerformADDCombine that is
4341 /// called with the default operands, and if that fails, with commuted
4342 /// operands.
4343 static SDValue PerformADDCombineWithOperands(SDNode *N, SDValue N0, SDValue N1,
4344                                            TargetLowering::DAGCombinerInfo &DCI,
4345                                              const NVPTXSubtarget &Subtarget,
4346                                              CodeGenOpt::Level OptLevel) {
4347   SelectionDAG  &DAG = DCI.DAG;
4348   // Skip non-integer, non-scalar case
4349   EVT VT=N0.getValueType();
4350   if (VT.isVector())
4351     return SDValue();
4352 
4353   // fold (add (mul a, b), c) -> (mad a, b, c)
4354   //
4355   if (N0.getOpcode() == ISD::MUL) {
4356     assert (VT.isInteger());
4357     // For integer:
4358     // Since integer multiply-add costs the same as integer multiply
4359     // but is more costly than integer add, do the fusion only when
4360     // the mul is only used in the add.
4361     if (OptLevel==CodeGenOpt::None || VT != MVT::i32 ||
4362         !N0.getNode()->hasOneUse())
4363       return SDValue();
4364 
4365     // Do the folding
4366     return DAG.getNode(NVPTXISD::IMAD, SDLoc(N), VT,
4367                        N0.getOperand(0), N0.getOperand(1), N1);
4368   }
4369   else if (N0.getOpcode() == ISD::FMUL) {
4370     if (VT == MVT::f32 || VT == MVT::f64) {
4371       const auto *TLI = static_cast<const NVPTXTargetLowering *>(
4372           &DAG.getTargetLoweringInfo());
4373       if (!TLI->allowFMA(DAG.getMachineFunction(), OptLevel))
4374         return SDValue();
4375 
4376       // For floating point:
4377       // Do the fusion only when the mul has less than 5 uses and all
4378       // are add.
4379       // The heuristic is that if a use is not an add, then that use
4380       // cannot be fused into fma, therefore mul is still needed anyway.
4381       // If there are more than 4 uses, even if they are all add, fusing
4382       // them will increase register pressue.
4383       //
4384       int numUses = 0;
4385       int nonAddCount = 0;
4386       for (SDNode::use_iterator UI = N0.getNode()->use_begin(),
4387            UE = N0.getNode()->use_end();
4388            UI != UE; ++UI) {
4389         numUses++;
4390         SDNode *User = *UI;
4391         if (User->getOpcode() != ISD::FADD)
4392           ++nonAddCount;
4393       }
4394       if (numUses >= 5)
4395         return SDValue();
4396       if (nonAddCount) {
4397         int orderNo = N->getIROrder();
4398         int orderNo2 = N0.getNode()->getIROrder();
4399         // simple heuristics here for considering potential register
4400         // pressure, the logics here is that the differnce are used
4401         // to measure the distance between def and use, the longer distance
4402         // more likely cause register pressure.
4403         if (orderNo - orderNo2 < 500)
4404           return SDValue();
4405 
4406         // Now, check if at least one of the FMUL's operands is live beyond the node N,
4407         // which guarantees that the FMA will not increase register pressure at node N.
4408         bool opIsLive = false;
4409         const SDNode *left = N0.getOperand(0).getNode();
4410         const SDNode *right = N0.getOperand(1).getNode();
4411 
4412         if (isa<ConstantSDNode>(left) || isa<ConstantSDNode>(right))
4413           opIsLive = true;
4414 
4415         if (!opIsLive)
4416           for (SDNode::use_iterator UI = left->use_begin(), UE = left->use_end(); UI != UE; ++UI) {
4417             SDNode *User = *UI;
4418             int orderNo3 = User->getIROrder();
4419             if (orderNo3 > orderNo) {
4420               opIsLive = true;
4421               break;
4422             }
4423           }
4424 
4425         if (!opIsLive)
4426           for (SDNode::use_iterator UI = right->use_begin(), UE = right->use_end(); UI != UE; ++UI) {
4427             SDNode *User = *UI;
4428             int orderNo3 = User->getIROrder();
4429             if (orderNo3 > orderNo) {
4430               opIsLive = true;
4431               break;
4432             }
4433           }
4434 
4435         if (!opIsLive)
4436           return SDValue();
4437       }
4438 
4439       return DAG.getNode(ISD::FMA, SDLoc(N), VT,
4440                          N0.getOperand(0), N0.getOperand(1), N1);
4441     }
4442   }
4443 
4444   return SDValue();
4445 }
4446 
4447 /// PerformADDCombine - Target-specific dag combine xforms for ISD::ADD.
4448 ///
4449 static SDValue PerformADDCombine(SDNode *N,
4450                                  TargetLowering::DAGCombinerInfo &DCI,
4451                                  const NVPTXSubtarget &Subtarget,
4452                                  CodeGenOpt::Level OptLevel) {
4453   SDValue N0 = N->getOperand(0);
4454   SDValue N1 = N->getOperand(1);
4455 
4456   // First try with the default operand order.
4457   if (SDValue Result =
4458           PerformADDCombineWithOperands(N, N0, N1, DCI, Subtarget, OptLevel))
4459     return Result;
4460 
4461   // If that didn't work, try again with the operands commuted.
4462   return PerformADDCombineWithOperands(N, N1, N0, DCI, Subtarget, OptLevel);
4463 }
4464 
4465 static SDValue PerformANDCombine(SDNode *N,
4466                                  TargetLowering::DAGCombinerInfo &DCI) {
4467   // The type legalizer turns a vector load of i8 values into a zextload to i16
4468   // registers, optionally ANY_EXTENDs it (if target type is integer),
4469   // and ANDs off the high 8 bits. Since we turn this load into a
4470   // target-specific DAG node, the DAG combiner fails to eliminate these AND
4471   // nodes. Do that here.
4472   SDValue Val = N->getOperand(0);
4473   SDValue Mask = N->getOperand(1);
4474 
4475   if (isa<ConstantSDNode>(Val)) {
4476     std::swap(Val, Mask);
4477   }
4478 
4479   SDValue AExt;
4480   // Generally, we will see zextload -> IMOV16rr -> ANY_EXTEND -> and
4481   if (Val.getOpcode() == ISD::ANY_EXTEND) {
4482     AExt = Val;
4483     Val = Val->getOperand(0);
4484   }
4485 
4486   if (Val->isMachineOpcode() && Val->getMachineOpcode() == NVPTX::IMOV16rr) {
4487     Val = Val->getOperand(0);
4488   }
4489 
4490   if (Val->getOpcode() == NVPTXISD::LoadV2 ||
4491       Val->getOpcode() == NVPTXISD::LoadV4) {
4492     ConstantSDNode *MaskCnst = dyn_cast<ConstantSDNode>(Mask);
4493     if (!MaskCnst) {
4494       // Not an AND with a constant
4495       return SDValue();
4496     }
4497 
4498     uint64_t MaskVal = MaskCnst->getZExtValue();
4499     if (MaskVal != 0xff) {
4500       // Not an AND that chops off top 8 bits
4501       return SDValue();
4502     }
4503 
4504     MemSDNode *Mem = dyn_cast<MemSDNode>(Val);
4505     if (!Mem) {
4506       // Not a MemSDNode?!?
4507       return SDValue();
4508     }
4509 
4510     EVT MemVT = Mem->getMemoryVT();
4511     if (MemVT != MVT::v2i8 && MemVT != MVT::v4i8) {
4512       // We only handle the i8 case
4513       return SDValue();
4514     }
4515 
4516     unsigned ExtType =
4517       cast<ConstantSDNode>(Val->getOperand(Val->getNumOperands()-1))->
4518         getZExtValue();
4519     if (ExtType == ISD::SEXTLOAD) {
4520       // If for some reason the load is a sextload, the and is needed to zero
4521       // out the high 8 bits
4522       return SDValue();
4523     }
4524 
4525     bool AddTo = false;
4526     if (AExt.getNode() != nullptr) {
4527       // Re-insert the ext as a zext.
4528       Val = DCI.DAG.getNode(ISD::ZERO_EXTEND, SDLoc(N),
4529                             AExt.getValueType(), Val);
4530       AddTo = true;
4531     }
4532 
4533     // If we get here, the AND is unnecessary.  Just replace it with the load
4534     DCI.CombineTo(N, Val, AddTo);
4535   }
4536 
4537   return SDValue();
4538 }
4539 
4540 static SDValue PerformREMCombine(SDNode *N,
4541                                  TargetLowering::DAGCombinerInfo &DCI,
4542                                  CodeGenOpt::Level OptLevel) {
4543   assert(N->getOpcode() == ISD::SREM || N->getOpcode() == ISD::UREM);
4544 
4545   // Don't do anything at less than -O2.
4546   if (OptLevel < CodeGenOpt::Default)
4547     return SDValue();
4548 
4549   SelectionDAG &DAG = DCI.DAG;
4550   SDLoc DL(N);
4551   EVT VT = N->getValueType(0);
4552   bool IsSigned = N->getOpcode() == ISD::SREM;
4553   unsigned DivOpc = IsSigned ? ISD::SDIV : ISD::UDIV;
4554 
4555   const SDValue &Num = N->getOperand(0);
4556   const SDValue &Den = N->getOperand(1);
4557 
4558   for (const SDNode *U : Num->uses()) {
4559     if (U->getOpcode() == DivOpc && U->getOperand(0) == Num &&
4560         U->getOperand(1) == Den) {
4561       // Num % Den -> Num - (Num / Den) * Den
4562       return DAG.getNode(ISD::SUB, DL, VT, Num,
4563                          DAG.getNode(ISD::MUL, DL, VT,
4564                                      DAG.getNode(DivOpc, DL, VT, Num, Den),
4565                                      Den));
4566     }
4567   }
4568   return SDValue();
4569 }
4570 
4571 enum OperandSignedness {
4572   Signed = 0,
4573   Unsigned,
4574   Unknown
4575 };
4576 
4577 /// IsMulWideOperandDemotable - Checks if the provided DAG node is an operand
4578 /// that can be demoted to \p OptSize bits without loss of information. The
4579 /// signedness of the operand, if determinable, is placed in \p S.
4580 static bool IsMulWideOperandDemotable(SDValue Op,
4581                                       unsigned OptSize,
4582                                       OperandSignedness &S) {
4583   S = Unknown;
4584 
4585   if (Op.getOpcode() == ISD::SIGN_EXTEND ||
4586       Op.getOpcode() == ISD::SIGN_EXTEND_INREG) {
4587     EVT OrigVT = Op.getOperand(0).getValueType();
4588     if (OrigVT.getSizeInBits() <= OptSize) {
4589       S = Signed;
4590       return true;
4591     }
4592   } else if (Op.getOpcode() == ISD::ZERO_EXTEND) {
4593     EVT OrigVT = Op.getOperand(0).getValueType();
4594     if (OrigVT.getSizeInBits() <= OptSize) {
4595       S = Unsigned;
4596       return true;
4597     }
4598   }
4599 
4600   return false;
4601 }
4602 
4603 /// AreMulWideOperandsDemotable - Checks if the given LHS and RHS operands can
4604 /// be demoted to \p OptSize bits without loss of information. If the operands
4605 /// contain a constant, it should appear as the RHS operand. The signedness of
4606 /// the operands is placed in \p IsSigned.
4607 static bool AreMulWideOperandsDemotable(SDValue LHS, SDValue RHS,
4608                                         unsigned OptSize,
4609                                         bool &IsSigned) {
4610   OperandSignedness LHSSign;
4611 
4612   // The LHS operand must be a demotable op
4613   if (!IsMulWideOperandDemotable(LHS, OptSize, LHSSign))
4614     return false;
4615 
4616   // We should have been able to determine the signedness from the LHS
4617   if (LHSSign == Unknown)
4618     return false;
4619 
4620   IsSigned = (LHSSign == Signed);
4621 
4622   // The RHS can be a demotable op or a constant
4623   if (ConstantSDNode *CI = dyn_cast<ConstantSDNode>(RHS)) {
4624     const APInt &Val = CI->getAPIntValue();
4625     if (LHSSign == Unsigned) {
4626       return Val.isIntN(OptSize);
4627     } else {
4628       return Val.isSignedIntN(OptSize);
4629     }
4630   } else {
4631     OperandSignedness RHSSign;
4632     if (!IsMulWideOperandDemotable(RHS, OptSize, RHSSign))
4633       return false;
4634 
4635     return LHSSign == RHSSign;
4636   }
4637 }
4638 
4639 /// TryMULWIDECombine - Attempt to replace a multiply of M bits with a multiply
4640 /// of M/2 bits that produces an M-bit result (i.e. mul.wide). This transform
4641 /// works on both multiply DAG nodes and SHL DAG nodes with a constant shift
4642 /// amount.
4643 static SDValue TryMULWIDECombine(SDNode *N,
4644                                  TargetLowering::DAGCombinerInfo &DCI) {
4645   EVT MulType = N->getValueType(0);
4646   if (MulType != MVT::i32 && MulType != MVT::i64) {
4647     return SDValue();
4648   }
4649 
4650   SDLoc DL(N);
4651   unsigned OptSize = MulType.getSizeInBits() >> 1;
4652   SDValue LHS = N->getOperand(0);
4653   SDValue RHS = N->getOperand(1);
4654 
4655   // Canonicalize the multiply so the constant (if any) is on the right
4656   if (N->getOpcode() == ISD::MUL) {
4657     if (isa<ConstantSDNode>(LHS)) {
4658       std::swap(LHS, RHS);
4659     }
4660   }
4661 
4662   // If we have a SHL, determine the actual multiply amount
4663   if (N->getOpcode() == ISD::SHL) {
4664     ConstantSDNode *ShlRHS = dyn_cast<ConstantSDNode>(RHS);
4665     if (!ShlRHS) {
4666       return SDValue();
4667     }
4668 
4669     APInt ShiftAmt = ShlRHS->getAPIntValue();
4670     unsigned BitWidth = MulType.getSizeInBits();
4671     if (ShiftAmt.sge(0) && ShiftAmt.slt(BitWidth)) {
4672       APInt MulVal = APInt(BitWidth, 1) << ShiftAmt;
4673       RHS = DCI.DAG.getConstant(MulVal, DL, MulType);
4674     } else {
4675       return SDValue();
4676     }
4677   }
4678 
4679   bool Signed;
4680   // Verify that our operands are demotable
4681   if (!AreMulWideOperandsDemotable(LHS, RHS, OptSize, Signed)) {
4682     return SDValue();
4683   }
4684 
4685   EVT DemotedVT;
4686   if (MulType == MVT::i32) {
4687     DemotedVT = MVT::i16;
4688   } else {
4689     DemotedVT = MVT::i32;
4690   }
4691 
4692   // Truncate the operands to the correct size. Note that these are just for
4693   // type consistency and will (likely) be eliminated in later phases.
4694   SDValue TruncLHS =
4695     DCI.DAG.getNode(ISD::TRUNCATE, DL, DemotedVT, LHS);
4696   SDValue TruncRHS =
4697     DCI.DAG.getNode(ISD::TRUNCATE, DL, DemotedVT, RHS);
4698 
4699   unsigned Opc;
4700   if (Signed) {
4701     Opc = NVPTXISD::MUL_WIDE_SIGNED;
4702   } else {
4703     Opc = NVPTXISD::MUL_WIDE_UNSIGNED;
4704   }
4705 
4706   return DCI.DAG.getNode(Opc, DL, MulType, TruncLHS, TruncRHS);
4707 }
4708 
4709 /// PerformMULCombine - Runs PTX-specific DAG combine patterns on MUL nodes.
4710 static SDValue PerformMULCombine(SDNode *N,
4711                                  TargetLowering::DAGCombinerInfo &DCI,
4712                                  CodeGenOpt::Level OptLevel) {
4713   if (OptLevel > 0) {
4714     // Try mul.wide combining at OptLevel > 0
4715     if (SDValue Ret = TryMULWIDECombine(N, DCI))
4716       return Ret;
4717   }
4718 
4719   return SDValue();
4720 }
4721 
4722 /// PerformSHLCombine - Runs PTX-specific DAG combine patterns on SHL nodes.
4723 static SDValue PerformSHLCombine(SDNode *N,
4724                                  TargetLowering::DAGCombinerInfo &DCI,
4725                                  CodeGenOpt::Level OptLevel) {
4726   if (OptLevel > 0) {
4727     // Try mul.wide combining at OptLevel > 0
4728     if (SDValue Ret = TryMULWIDECombine(N, DCI))
4729       return Ret;
4730   }
4731 
4732   return SDValue();
4733 }
4734 
4735 static SDValue PerformSETCCCombine(SDNode *N,
4736                                    TargetLowering::DAGCombinerInfo &DCI) {
4737   EVT CCType = N->getValueType(0);
4738   SDValue A = N->getOperand(0);
4739   SDValue B = N->getOperand(1);
4740 
4741   if (CCType != MVT::v2i1 || A.getValueType() != MVT::v2f16)
4742     return SDValue();
4743 
4744   SDLoc DL(N);
4745   // setp.f16x2 returns two scalar predicates, which we need to
4746   // convert back to v2i1. The returned result will be scalarized by
4747   // the legalizer, but the comparison will remain a single vector
4748   // instruction.
4749   SDValue CCNode = DCI.DAG.getNode(NVPTXISD::SETP_F16X2, DL,
4750                                    DCI.DAG.getVTList(MVT::i1, MVT::i1),
4751                                    {A, B, N->getOperand(2)});
4752   return DCI.DAG.getNode(ISD::BUILD_VECTOR, DL, CCType, CCNode.getValue(0),
4753                          CCNode.getValue(1));
4754 }
4755 
4756 SDValue NVPTXTargetLowering::PerformDAGCombine(SDNode *N,
4757                                                DAGCombinerInfo &DCI) const {
4758   CodeGenOpt::Level OptLevel = getTargetMachine().getOptLevel();
4759   switch (N->getOpcode()) {
4760     default: break;
4761     case ISD::ADD:
4762     case ISD::FADD:
4763       return PerformADDCombine(N, DCI, STI, OptLevel);
4764     case ISD::MUL:
4765       return PerformMULCombine(N, DCI, OptLevel);
4766     case ISD::SHL:
4767       return PerformSHLCombine(N, DCI, OptLevel);
4768     case ISD::AND:
4769       return PerformANDCombine(N, DCI);
4770     case ISD::UREM:
4771     case ISD::SREM:
4772       return PerformREMCombine(N, DCI, OptLevel);
4773     case ISD::SETCC:
4774       return PerformSETCCCombine(N, DCI);
4775   }
4776   return SDValue();
4777 }
4778 
4779 /// ReplaceVectorLoad - Convert vector loads into multi-output scalar loads.
4780 static void ReplaceLoadVector(SDNode *N, SelectionDAG &DAG,
4781                               SmallVectorImpl<SDValue> &Results) {
4782   EVT ResVT = N->getValueType(0);
4783   SDLoc DL(N);
4784 
4785   assert(ResVT.isVector() && "Vector load must have vector type");
4786 
4787   // We only handle "native" vector sizes for now, e.g. <4 x double> is not
4788   // legal.  We can (and should) split that into 2 loads of <2 x double> here
4789   // but I'm leaving that as a TODO for now.
4790   assert(ResVT.isSimple() && "Can only handle simple types");
4791   switch (ResVT.getSimpleVT().SimpleTy) {
4792   default:
4793     return;
4794   case MVT::v2i8:
4795   case MVT::v2i16:
4796   case MVT::v2i32:
4797   case MVT::v2i64:
4798   case MVT::v2f16:
4799   case MVT::v2f32:
4800   case MVT::v2f64:
4801   case MVT::v4i8:
4802   case MVT::v4i16:
4803   case MVT::v4i32:
4804   case MVT::v4f16:
4805   case MVT::v4f32:
4806   case MVT::v8f16: // <4 x f16x2>
4807     // This is a "native" vector type
4808     break;
4809   }
4810 
4811   LoadSDNode *LD = cast<LoadSDNode>(N);
4812 
4813   unsigned Align = LD->getAlignment();
4814   auto &TD = DAG.getDataLayout();
4815   unsigned PrefAlign =
4816       TD.getPrefTypeAlignment(ResVT.getTypeForEVT(*DAG.getContext()));
4817   if (Align < PrefAlign) {
4818     // This load is not sufficiently aligned, so bail out and let this vector
4819     // load be scalarized.  Note that we may still be able to emit smaller
4820     // vector loads.  For example, if we are loading a <4 x float> with an
4821     // alignment of 8, this check will fail but the legalizer will try again
4822     // with 2 x <2 x float>, which will succeed with an alignment of 8.
4823     return;
4824   }
4825 
4826   EVT EltVT = ResVT.getVectorElementType();
4827   unsigned NumElts = ResVT.getVectorNumElements();
4828 
4829   // Since LoadV2 is a target node, we cannot rely on DAG type legalization.
4830   // Therefore, we must ensure the type is legal.  For i1 and i8, we set the
4831   // loaded type to i16 and propagate the "real" type as the memory type.
4832   bool NeedTrunc = false;
4833   if (EltVT.getSizeInBits() < 16) {
4834     EltVT = MVT::i16;
4835     NeedTrunc = true;
4836   }
4837 
4838   unsigned Opcode = 0;
4839   SDVTList LdResVTs;
4840   bool LoadF16x2 = false;
4841 
4842   switch (NumElts) {
4843   default:
4844     return;
4845   case 2:
4846     Opcode = NVPTXISD::LoadV2;
4847     LdResVTs = DAG.getVTList(EltVT, EltVT, MVT::Other);
4848     break;
4849   case 4: {
4850     Opcode = NVPTXISD::LoadV4;
4851     EVT ListVTs[] = { EltVT, EltVT, EltVT, EltVT, MVT::Other };
4852     LdResVTs = DAG.getVTList(ListVTs);
4853     break;
4854   }
4855   case 8: {
4856     // v8f16 is a special case. PTX doesn't have ld.v8.f16
4857     // instruction. Instead, we split the vector into v2f16 chunks and
4858     // load them with ld.v4.b32.
4859     assert(EltVT == MVT::f16 && "Unsupported v8 vector type.");
4860     LoadF16x2 = true;
4861     Opcode = NVPTXISD::LoadV4;
4862     EVT ListVTs[] = {MVT::v2f16, MVT::v2f16, MVT::v2f16, MVT::v2f16,
4863                      MVT::Other};
4864     LdResVTs = DAG.getVTList(ListVTs);
4865     break;
4866   }
4867   }
4868 
4869   // Copy regular operands
4870   SmallVector<SDValue, 8> OtherOps(N->op_begin(), N->op_end());
4871 
4872   // The select routine does not have access to the LoadSDNode instance, so
4873   // pass along the extension information
4874   OtherOps.push_back(DAG.getIntPtrConstant(LD->getExtensionType(), DL));
4875 
4876   SDValue NewLD = DAG.getMemIntrinsicNode(Opcode, DL, LdResVTs, OtherOps,
4877                                           LD->getMemoryVT(),
4878                                           LD->getMemOperand());
4879 
4880   SmallVector<SDValue, 8> ScalarRes;
4881   if (LoadF16x2) {
4882     // Split v2f16 subvectors back into individual elements.
4883     NumElts /= 2;
4884     for (unsigned i = 0; i < NumElts; ++i) {
4885       SDValue SubVector = NewLD.getValue(i);
4886       SDValue E0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, SubVector,
4887                                DAG.getIntPtrConstant(0, DL));
4888       SDValue E1 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, SubVector,
4889                                DAG.getIntPtrConstant(1, DL));
4890       ScalarRes.push_back(E0);
4891       ScalarRes.push_back(E1);
4892     }
4893   } else {
4894     for (unsigned i = 0; i < NumElts; ++i) {
4895       SDValue Res = NewLD.getValue(i);
4896       if (NeedTrunc)
4897         Res = DAG.getNode(ISD::TRUNCATE, DL, ResVT.getVectorElementType(), Res);
4898       ScalarRes.push_back(Res);
4899     }
4900   }
4901 
4902   SDValue LoadChain = NewLD.getValue(NumElts);
4903 
4904   SDValue BuildVec = DAG.getBuildVector(ResVT, DL, ScalarRes);
4905 
4906   Results.push_back(BuildVec);
4907   Results.push_back(LoadChain);
4908 }
4909 
4910 static void ReplaceINTRINSIC_W_CHAIN(SDNode *N, SelectionDAG &DAG,
4911                                      SmallVectorImpl<SDValue> &Results) {
4912   SDValue Chain = N->getOperand(0);
4913   SDValue Intrin = N->getOperand(1);
4914   SDLoc DL(N);
4915 
4916   // Get the intrinsic ID
4917   unsigned IntrinNo = cast<ConstantSDNode>(Intrin.getNode())->getZExtValue();
4918   switch (IntrinNo) {
4919   default:
4920     return;
4921   case Intrinsic::nvvm_ldg_global_i:
4922   case Intrinsic::nvvm_ldg_global_f:
4923   case Intrinsic::nvvm_ldg_global_p:
4924   case Intrinsic::nvvm_ldu_global_i:
4925   case Intrinsic::nvvm_ldu_global_f:
4926   case Intrinsic::nvvm_ldu_global_p: {
4927     EVT ResVT = N->getValueType(0);
4928 
4929     if (ResVT.isVector()) {
4930       // Vector LDG/LDU
4931 
4932       unsigned NumElts = ResVT.getVectorNumElements();
4933       EVT EltVT = ResVT.getVectorElementType();
4934 
4935       // Since LDU/LDG are target nodes, we cannot rely on DAG type
4936       // legalization.
4937       // Therefore, we must ensure the type is legal.  For i1 and i8, we set the
4938       // loaded type to i16 and propagate the "real" type as the memory type.
4939       bool NeedTrunc = false;
4940       if (EltVT.getSizeInBits() < 16) {
4941         EltVT = MVT::i16;
4942         NeedTrunc = true;
4943       }
4944 
4945       unsigned Opcode = 0;
4946       SDVTList LdResVTs;
4947 
4948       switch (NumElts) {
4949       default:
4950         return;
4951       case 2:
4952         switch (IntrinNo) {
4953         default:
4954           return;
4955         case Intrinsic::nvvm_ldg_global_i:
4956         case Intrinsic::nvvm_ldg_global_f:
4957         case Intrinsic::nvvm_ldg_global_p:
4958           Opcode = NVPTXISD::LDGV2;
4959           break;
4960         case Intrinsic::nvvm_ldu_global_i:
4961         case Intrinsic::nvvm_ldu_global_f:
4962         case Intrinsic::nvvm_ldu_global_p:
4963           Opcode = NVPTXISD::LDUV2;
4964           break;
4965         }
4966         LdResVTs = DAG.getVTList(EltVT, EltVT, MVT::Other);
4967         break;
4968       case 4: {
4969         switch (IntrinNo) {
4970         default:
4971           return;
4972         case Intrinsic::nvvm_ldg_global_i:
4973         case Intrinsic::nvvm_ldg_global_f:
4974         case Intrinsic::nvvm_ldg_global_p:
4975           Opcode = NVPTXISD::LDGV4;
4976           break;
4977         case Intrinsic::nvvm_ldu_global_i:
4978         case Intrinsic::nvvm_ldu_global_f:
4979         case Intrinsic::nvvm_ldu_global_p:
4980           Opcode = NVPTXISD::LDUV4;
4981           break;
4982         }
4983         EVT ListVTs[] = { EltVT, EltVT, EltVT, EltVT, MVT::Other };
4984         LdResVTs = DAG.getVTList(ListVTs);
4985         break;
4986       }
4987       }
4988 
4989       SmallVector<SDValue, 8> OtherOps;
4990 
4991       // Copy regular operands
4992 
4993       OtherOps.push_back(Chain); // Chain
4994                                  // Skip operand 1 (intrinsic ID)
4995       // Others
4996       OtherOps.append(N->op_begin() + 2, N->op_end());
4997 
4998       MemIntrinsicSDNode *MemSD = cast<MemIntrinsicSDNode>(N);
4999 
5000       SDValue NewLD = DAG.getMemIntrinsicNode(Opcode, DL, LdResVTs, OtherOps,
5001                                               MemSD->getMemoryVT(),
5002                                               MemSD->getMemOperand());
5003 
5004       SmallVector<SDValue, 4> ScalarRes;
5005 
5006       for (unsigned i = 0; i < NumElts; ++i) {
5007         SDValue Res = NewLD.getValue(i);
5008         if (NeedTrunc)
5009           Res =
5010               DAG.getNode(ISD::TRUNCATE, DL, ResVT.getVectorElementType(), Res);
5011         ScalarRes.push_back(Res);
5012       }
5013 
5014       SDValue LoadChain = NewLD.getValue(NumElts);
5015 
5016       SDValue BuildVec =
5017           DAG.getBuildVector(ResVT, DL, ScalarRes);
5018 
5019       Results.push_back(BuildVec);
5020       Results.push_back(LoadChain);
5021     } else {
5022       // i8 LDG/LDU
5023       assert(ResVT.isSimple() && ResVT.getSimpleVT().SimpleTy == MVT::i8 &&
5024              "Custom handling of non-i8 ldu/ldg?");
5025 
5026       // Just copy all operands as-is
5027       SmallVector<SDValue, 4> Ops(N->op_begin(), N->op_end());
5028 
5029       // Force output to i16
5030       SDVTList LdResVTs = DAG.getVTList(MVT::i16, MVT::Other);
5031 
5032       MemIntrinsicSDNode *MemSD = cast<MemIntrinsicSDNode>(N);
5033 
5034       // We make sure the memory type is i8, which will be used during isel
5035       // to select the proper instruction.
5036       SDValue NewLD =
5037           DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, DL, LdResVTs, Ops,
5038                                   MVT::i8, MemSD->getMemOperand());
5039 
5040       Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i8,
5041                                     NewLD.getValue(0)));
5042       Results.push_back(NewLD.getValue(1));
5043     }
5044   }
5045   }
5046 }
5047 
5048 void NVPTXTargetLowering::ReplaceNodeResults(
5049     SDNode *N, SmallVectorImpl<SDValue> &Results, SelectionDAG &DAG) const {
5050   switch (N->getOpcode()) {
5051   default:
5052     report_fatal_error("Unhandled custom legalization");
5053   case ISD::LOAD:
5054     ReplaceLoadVector(N, DAG, Results);
5055     return;
5056   case ISD::INTRINSIC_W_CHAIN:
5057     ReplaceINTRINSIC_W_CHAIN(N, DAG, Results);
5058     return;
5059   }
5060 }
5061 
5062 // Pin NVPTXTargetObjectFile's vtables to this file.
5063 NVPTXTargetObjectFile::~NVPTXTargetObjectFile() {}
5064 
5065 MCSection *NVPTXTargetObjectFile::SelectSectionForGlobal(
5066     const GlobalObject *GO, SectionKind Kind, const TargetMachine &TM) const {
5067   return getDataSection();
5068 }
5069