1 //===-- PPCFrameLowering.cpp - PPC Frame Information ----------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file contains the PPC implementation of TargetFrameLowering class.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "PPCFrameLowering.h"
14 #include "MCTargetDesc/PPCPredicates.h"
15 #include "PPCInstrBuilder.h"
16 #include "PPCInstrInfo.h"
17 #include "PPCMachineFunctionInfo.h"
18 #include "PPCSubtarget.h"
19 #include "PPCTargetMachine.h"
20 #include "llvm/ADT/Statistic.h"
21 #include "llvm/CodeGen/LivePhysRegs.h"
22 #include "llvm/CodeGen/MachineFrameInfo.h"
23 #include "llvm/CodeGen/MachineFunction.h"
24 #include "llvm/CodeGen/MachineInstrBuilder.h"
25 #include "llvm/CodeGen/MachineModuleInfo.h"
26 #include "llvm/CodeGen/MachineRegisterInfo.h"
27 #include "llvm/CodeGen/RegisterScavenging.h"
28 #include "llvm/IR/Function.h"
29 #include "llvm/Target/TargetOptions.h"
30 
31 using namespace llvm;
32 
33 #define DEBUG_TYPE "framelowering"
34 STATISTIC(NumPESpillVSR, "Number of spills to vector in prologue");
35 STATISTIC(NumPEReloadVSR, "Number of reloads from vector in epilogue");
36 STATISTIC(NumPrologProbed, "Number of prologues probed");
37 
38 static cl::opt<bool>
39 EnablePEVectorSpills("ppc-enable-pe-vector-spills",
40                      cl::desc("Enable spills in prologue to vector registers."),
41                      cl::init(false), cl::Hidden);
42 
43 static unsigned computeReturnSaveOffset(const PPCSubtarget &STI) {
44   if (STI.isAIXABI())
45     return STI.isPPC64() ? 16 : 8;
46   // SVR4 ABI:
47   return STI.isPPC64() ? 16 : 4;
48 }
49 
50 static unsigned computeTOCSaveOffset(const PPCSubtarget &STI) {
51   if (STI.isAIXABI())
52     return STI.isPPC64() ? 40 : 20;
53   return STI.isELFv2ABI() ? 24 : 40;
54 }
55 
56 static unsigned computeFramePointerSaveOffset(const PPCSubtarget &STI) {
57   // First slot in the general register save area.
58   return STI.isPPC64() ? -8U : -4U;
59 }
60 
61 static unsigned computeLinkageSize(const PPCSubtarget &STI) {
62   if (STI.isAIXABI() || STI.isPPC64())
63     return (STI.isELFv2ABI() ? 4 : 6) * (STI.isPPC64() ? 8 : 4);
64 
65   // 32-bit SVR4 ABI:
66   return 8;
67 }
68 
69 static unsigned computeBasePointerSaveOffset(const PPCSubtarget &STI) {
70   // Third slot in the general purpose register save area.
71   if (STI.is32BitELFABI() && STI.getTargetMachine().isPositionIndependent())
72     return -12U;
73 
74   // Second slot in the general purpose register save area.
75   return STI.isPPC64() ? -16U : -8U;
76 }
77 
78 static unsigned computeCRSaveOffset(const PPCSubtarget &STI) {
79   return (STI.isAIXABI() && !STI.isPPC64()) ? 4 : 8;
80 }
81 
82 PPCFrameLowering::PPCFrameLowering(const PPCSubtarget &STI)
83     : TargetFrameLowering(TargetFrameLowering::StackGrowsDown,
84                           STI.getPlatformStackAlignment(), 0),
85       Subtarget(STI), ReturnSaveOffset(computeReturnSaveOffset(Subtarget)),
86       TOCSaveOffset(computeTOCSaveOffset(Subtarget)),
87       FramePointerSaveOffset(computeFramePointerSaveOffset(Subtarget)),
88       LinkageSize(computeLinkageSize(Subtarget)),
89       BasePointerSaveOffset(computeBasePointerSaveOffset(Subtarget)),
90       CRSaveOffset(computeCRSaveOffset(Subtarget)) {}
91 
92 // With the SVR4 ABI, callee-saved registers have fixed offsets on the stack.
93 const PPCFrameLowering::SpillSlot *PPCFrameLowering::getCalleeSavedSpillSlots(
94     unsigned &NumEntries) const {
95 
96 // Floating-point register save area offsets.
97 #define CALLEE_SAVED_FPRS \
98       {PPC::F31, -8},     \
99       {PPC::F30, -16},    \
100       {PPC::F29, -24},    \
101       {PPC::F28, -32},    \
102       {PPC::F27, -40},    \
103       {PPC::F26, -48},    \
104       {PPC::F25, -56},    \
105       {PPC::F24, -64},    \
106       {PPC::F23, -72},    \
107       {PPC::F22, -80},    \
108       {PPC::F21, -88},    \
109       {PPC::F20, -96},    \
110       {PPC::F19, -104},   \
111       {PPC::F18, -112},   \
112       {PPC::F17, -120},   \
113       {PPC::F16, -128},   \
114       {PPC::F15, -136},   \
115       {PPC::F14, -144}
116 
117 // 32-bit general purpose register save area offsets shared by ELF and
118 // AIX. AIX has an extra CSR with r13.
119 #define CALLEE_SAVED_GPRS32 \
120       {PPC::R31, -4},       \
121       {PPC::R30, -8},       \
122       {PPC::R29, -12},      \
123       {PPC::R28, -16},      \
124       {PPC::R27, -20},      \
125       {PPC::R26, -24},      \
126       {PPC::R25, -28},      \
127       {PPC::R24, -32},      \
128       {PPC::R23, -36},      \
129       {PPC::R22, -40},      \
130       {PPC::R21, -44},      \
131       {PPC::R20, -48},      \
132       {PPC::R19, -52},      \
133       {PPC::R18, -56},      \
134       {PPC::R17, -60},      \
135       {PPC::R16, -64},      \
136       {PPC::R15, -68},      \
137       {PPC::R14, -72}
138 
139 // 64-bit general purpose register save area offsets.
140 #define CALLEE_SAVED_GPRS64 \
141       {PPC::X31, -8},       \
142       {PPC::X30, -16},      \
143       {PPC::X29, -24},      \
144       {PPC::X28, -32},      \
145       {PPC::X27, -40},      \
146       {PPC::X26, -48},      \
147       {PPC::X25, -56},      \
148       {PPC::X24, -64},      \
149       {PPC::X23, -72},      \
150       {PPC::X22, -80},      \
151       {PPC::X21, -88},      \
152       {PPC::X20, -96},      \
153       {PPC::X19, -104},     \
154       {PPC::X18, -112},     \
155       {PPC::X17, -120},     \
156       {PPC::X16, -128},     \
157       {PPC::X15, -136},     \
158       {PPC::X14, -144}
159 
160 // Vector register save area offsets.
161 #define CALLEE_SAVED_VRS \
162       {PPC::V31, -16},   \
163       {PPC::V30, -32},   \
164       {PPC::V29, -48},   \
165       {PPC::V28, -64},   \
166       {PPC::V27, -80},   \
167       {PPC::V26, -96},   \
168       {PPC::V25, -112},  \
169       {PPC::V24, -128},  \
170       {PPC::V23, -144},  \
171       {PPC::V22, -160},  \
172       {PPC::V21, -176},  \
173       {PPC::V20, -192}
174 
175   // Note that the offsets here overlap, but this is fixed up in
176   // processFunctionBeforeFrameFinalized.
177 
178   static const SpillSlot ELFOffsets32[] = {
179       CALLEE_SAVED_FPRS,
180       CALLEE_SAVED_GPRS32,
181 
182       // CR save area offset.  We map each of the nonvolatile CR fields
183       // to the slot for CR2, which is the first of the nonvolatile CR
184       // fields to be assigned, so that we only allocate one save slot.
185       // See PPCRegisterInfo::hasReservedSpillSlot() for more information.
186       {PPC::CR2, -4},
187 
188       // VRSAVE save area offset.
189       {PPC::VRSAVE, -4},
190 
191       CALLEE_SAVED_VRS,
192 
193       // SPE register save area (overlaps Vector save area).
194       {PPC::S31, -8},
195       {PPC::S30, -16},
196       {PPC::S29, -24},
197       {PPC::S28, -32},
198       {PPC::S27, -40},
199       {PPC::S26, -48},
200       {PPC::S25, -56},
201       {PPC::S24, -64},
202       {PPC::S23, -72},
203       {PPC::S22, -80},
204       {PPC::S21, -88},
205       {PPC::S20, -96},
206       {PPC::S19, -104},
207       {PPC::S18, -112},
208       {PPC::S17, -120},
209       {PPC::S16, -128},
210       {PPC::S15, -136},
211       {PPC::S14, -144}};
212 
213   static const SpillSlot ELFOffsets64[] = {
214       CALLEE_SAVED_FPRS,
215       CALLEE_SAVED_GPRS64,
216 
217       // VRSAVE save area offset.
218       {PPC::VRSAVE, -4},
219       CALLEE_SAVED_VRS
220   };
221 
222   static const SpillSlot AIXOffsets32[] = {CALLEE_SAVED_FPRS,
223                                            CALLEE_SAVED_GPRS32,
224                                            // Add AIX's extra CSR.
225                                            {PPC::R13, -76},
226                                            CALLEE_SAVED_VRS};
227 
228   static const SpillSlot AIXOffsets64[] = {
229       CALLEE_SAVED_FPRS, CALLEE_SAVED_GPRS64, CALLEE_SAVED_VRS};
230 
231   if (Subtarget.is64BitELFABI()) {
232     NumEntries = array_lengthof(ELFOffsets64);
233     return ELFOffsets64;
234   }
235 
236   if (Subtarget.is32BitELFABI()) {
237     NumEntries = array_lengthof(ELFOffsets32);
238     return ELFOffsets32;
239   }
240 
241   assert(Subtarget.isAIXABI() && "Unexpected ABI.");
242 
243   if (Subtarget.isPPC64()) {
244     NumEntries = array_lengthof(AIXOffsets64);
245     return AIXOffsets64;
246   }
247 
248   NumEntries = array_lengthof(AIXOffsets32);
249   return AIXOffsets32;
250 }
251 
252 static bool spillsCR(const MachineFunction &MF) {
253   const PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
254   return FuncInfo->isCRSpilled();
255 }
256 
257 static bool hasSpills(const MachineFunction &MF) {
258   const PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
259   return FuncInfo->hasSpills();
260 }
261 
262 static bool hasNonRISpills(const MachineFunction &MF) {
263   const PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
264   return FuncInfo->hasNonRISpills();
265 }
266 
267 /// MustSaveLR - Return true if this function requires that we save the LR
268 /// register onto the stack in the prolog and restore it in the epilog of the
269 /// function.
270 static bool MustSaveLR(const MachineFunction &MF, unsigned LR) {
271   const PPCFunctionInfo *MFI = MF.getInfo<PPCFunctionInfo>();
272 
273   // We need a save/restore of LR if there is any def of LR (which is
274   // defined by calls, including the PIC setup sequence), or if there is
275   // some use of the LR stack slot (e.g. for builtin_return_address).
276   // (LR comes in 32 and 64 bit versions.)
277   MachineRegisterInfo::def_iterator RI = MF.getRegInfo().def_begin(LR);
278   return RI !=MF.getRegInfo().def_end() || MFI->isLRStoreRequired();
279 }
280 
281 /// determineFrameLayoutAndUpdate - Determine the size of the frame and maximum
282 /// call frame size. Update the MachineFunction object with the stack size.
283 uint64_t
284 PPCFrameLowering::determineFrameLayoutAndUpdate(MachineFunction &MF,
285                                                 bool UseEstimate) const {
286   unsigned NewMaxCallFrameSize = 0;
287   uint64_t FrameSize = determineFrameLayout(MF, UseEstimate,
288                                             &NewMaxCallFrameSize);
289   MF.getFrameInfo().setStackSize(FrameSize);
290   MF.getFrameInfo().setMaxCallFrameSize(NewMaxCallFrameSize);
291   return FrameSize;
292 }
293 
294 /// determineFrameLayout - Determine the size of the frame and maximum call
295 /// frame size.
296 uint64_t
297 PPCFrameLowering::determineFrameLayout(const MachineFunction &MF,
298                                        bool UseEstimate,
299                                        unsigned *NewMaxCallFrameSize) const {
300   const MachineFrameInfo &MFI = MF.getFrameInfo();
301   const PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>();
302 
303   // Get the number of bytes to allocate from the FrameInfo
304   uint64_t FrameSize =
305     UseEstimate ? MFI.estimateStackSize(MF) : MFI.getStackSize();
306 
307   // Get stack alignments. The frame must be aligned to the greatest of these:
308   Align TargetAlign = getStackAlign(); // alignment required per the ABI
309   Align MaxAlign = MFI.getMaxAlign();  // algmt required by data in frame
310   Align Alignment = std::max(TargetAlign, MaxAlign);
311 
312   const PPCRegisterInfo *RegInfo = Subtarget.getRegisterInfo();
313 
314   unsigned LR = RegInfo->getRARegister();
315   bool DisableRedZone = MF.getFunction().hasFnAttribute(Attribute::NoRedZone);
316   bool CanUseRedZone = !MFI.hasVarSizedObjects() && // No dynamic alloca.
317                        !MFI.adjustsStack() &&       // No calls.
318                        !MustSaveLR(MF, LR) &&       // No need to save LR.
319                        !FI->mustSaveTOC() &&        // No need to save TOC.
320                        !RegInfo->hasBasePointer(MF); // No special alignment.
321 
322   // Note: for PPC32 SVR4ABI, we can still generate stackless
323   // code if all local vars are reg-allocated.
324   bool FitsInRedZone = FrameSize <= Subtarget.getRedZoneSize();
325 
326   // Check whether we can skip adjusting the stack pointer (by using red zone)
327   if (!DisableRedZone && CanUseRedZone && FitsInRedZone) {
328     // No need for frame
329     return 0;
330   }
331 
332   // Get the maximum call frame size of all the calls.
333   unsigned maxCallFrameSize = MFI.getMaxCallFrameSize();
334 
335   // Maximum call frame needs to be at least big enough for linkage area.
336   unsigned minCallFrameSize = getLinkageSize();
337   maxCallFrameSize = std::max(maxCallFrameSize, minCallFrameSize);
338 
339   // If we have dynamic alloca then maxCallFrameSize needs to be aligned so
340   // that allocations will be aligned.
341   if (MFI.hasVarSizedObjects())
342     maxCallFrameSize = alignTo(maxCallFrameSize, Alignment);
343 
344   // Update the new max call frame size if the caller passes in a valid pointer.
345   if (NewMaxCallFrameSize)
346     *NewMaxCallFrameSize = maxCallFrameSize;
347 
348   // Include call frame size in total.
349   FrameSize += maxCallFrameSize;
350 
351   // Make sure the frame is aligned.
352   FrameSize = alignTo(FrameSize, Alignment);
353 
354   return FrameSize;
355 }
356 
357 // hasFP - Return true if the specified function actually has a dedicated frame
358 // pointer register.
359 bool PPCFrameLowering::hasFP(const MachineFunction &MF) const {
360   const MachineFrameInfo &MFI = MF.getFrameInfo();
361   // FIXME: This is pretty much broken by design: hasFP() might be called really
362   // early, before the stack layout was calculated and thus hasFP() might return
363   // true or false here depending on the time of call.
364   return (MFI.getStackSize()) && needsFP(MF);
365 }
366 
367 // needsFP - Return true if the specified function should have a dedicated frame
368 // pointer register.  This is true if the function has variable sized allocas or
369 // if frame pointer elimination is disabled.
370 bool PPCFrameLowering::needsFP(const MachineFunction &MF) const {
371   const MachineFrameInfo &MFI = MF.getFrameInfo();
372 
373   // Naked functions have no stack frame pushed, so we don't have a frame
374   // pointer.
375   if (MF.getFunction().hasFnAttribute(Attribute::Naked))
376     return false;
377 
378   return MF.getTarget().Options.DisableFramePointerElim(MF) ||
379          MFI.hasVarSizedObjects() || MFI.hasStackMap() || MFI.hasPatchPoint() ||
380          MF.exposesReturnsTwice() ||
381          (MF.getTarget().Options.GuaranteedTailCallOpt &&
382           MF.getInfo<PPCFunctionInfo>()->hasFastCall());
383 }
384 
385 void PPCFrameLowering::replaceFPWithRealFP(MachineFunction &MF) const {
386   bool is31 = needsFP(MF);
387   unsigned FPReg  = is31 ? PPC::R31 : PPC::R1;
388   unsigned FP8Reg = is31 ? PPC::X31 : PPC::X1;
389 
390   const PPCRegisterInfo *RegInfo = Subtarget.getRegisterInfo();
391   bool HasBP = RegInfo->hasBasePointer(MF);
392   unsigned BPReg  = HasBP ? (unsigned) RegInfo->getBaseRegister(MF) : FPReg;
393   unsigned BP8Reg = HasBP ? (unsigned) PPC::X30 : FP8Reg;
394 
395   for (MachineBasicBlock &MBB : MF)
396     for (MachineBasicBlock::iterator MBBI = MBB.end(); MBBI != MBB.begin();) {
397       --MBBI;
398       for (unsigned I = 0, E = MBBI->getNumOperands(); I != E; ++I) {
399         MachineOperand &MO = MBBI->getOperand(I);
400         if (!MO.isReg())
401           continue;
402 
403         switch (MO.getReg()) {
404         case PPC::FP:
405           MO.setReg(FPReg);
406           break;
407         case PPC::FP8:
408           MO.setReg(FP8Reg);
409           break;
410         case PPC::BP:
411           MO.setReg(BPReg);
412           break;
413         case PPC::BP8:
414           MO.setReg(BP8Reg);
415           break;
416 
417         }
418       }
419     }
420 }
421 
422 /*  This function will do the following:
423     - If MBB is an entry or exit block, set SR1 and SR2 to R0 and R12
424       respectively (defaults recommended by the ABI) and return true
425     - If MBB is not an entry block, initialize the register scavenger and look
426       for available registers.
427     - If the defaults (R0/R12) are available, return true
428     - If TwoUniqueRegsRequired is set to true, it looks for two unique
429       registers. Otherwise, look for a single available register.
430       - If the required registers are found, set SR1 and SR2 and return true.
431       - If the required registers are not found, set SR2 or both SR1 and SR2 to
432         PPC::NoRegister and return false.
433 
434     Note that if both SR1 and SR2 are valid parameters and TwoUniqueRegsRequired
435     is not set, this function will attempt to find two different registers, but
436     still return true if only one register is available (and set SR1 == SR2).
437 */
438 bool
439 PPCFrameLowering::findScratchRegister(MachineBasicBlock *MBB,
440                                       bool UseAtEnd,
441                                       bool TwoUniqueRegsRequired,
442                                       Register *SR1,
443                                       Register *SR2) const {
444   RegScavenger RS;
445   Register R0 =  Subtarget.isPPC64() ? PPC::X0 : PPC::R0;
446   Register R12 = Subtarget.isPPC64() ? PPC::X12 : PPC::R12;
447 
448   // Set the defaults for the two scratch registers.
449   if (SR1)
450     *SR1 = R0;
451 
452   if (SR2) {
453     assert (SR1 && "Asking for the second scratch register but not the first?");
454     *SR2 = R12;
455   }
456 
457   // If MBB is an entry or exit block, use R0 and R12 as the scratch registers.
458   if ((UseAtEnd && MBB->isReturnBlock()) ||
459       (!UseAtEnd && (&MBB->getParent()->front() == MBB)))
460     return true;
461 
462   RS.enterBasicBlock(*MBB);
463 
464   if (UseAtEnd && !MBB->empty()) {
465     // The scratch register will be used at the end of the block, so must
466     // consider all registers used within the block
467 
468     MachineBasicBlock::iterator MBBI = MBB->getFirstTerminator();
469     // If no terminator, back iterator up to previous instruction.
470     if (MBBI == MBB->end())
471       MBBI = std::prev(MBBI);
472 
473     if (MBBI != MBB->begin())
474       RS.forward(MBBI);
475   }
476 
477   // If the two registers are available, we're all good.
478   // Note that we only return here if both R0 and R12 are available because
479   // although the function may not require two unique registers, it may benefit
480   // from having two so we should try to provide them.
481   if (!RS.isRegUsed(R0) && !RS.isRegUsed(R12))
482     return true;
483 
484   // Get the list of callee-saved registers for the target.
485   const PPCRegisterInfo *RegInfo = Subtarget.getRegisterInfo();
486   const MCPhysReg *CSRegs = RegInfo->getCalleeSavedRegs(MBB->getParent());
487 
488   // Get all the available registers in the block.
489   BitVector BV = RS.getRegsAvailable(Subtarget.isPPC64() ? &PPC::G8RCRegClass :
490                                      &PPC::GPRCRegClass);
491 
492   // We shouldn't use callee-saved registers as scratch registers as they may be
493   // available when looking for a candidate block for shrink wrapping but not
494   // available when the actual prologue/epilogue is being emitted because they
495   // were added as live-in to the prologue block by PrologueEpilogueInserter.
496   for (int i = 0; CSRegs[i]; ++i)
497     BV.reset(CSRegs[i]);
498 
499   // Set the first scratch register to the first available one.
500   if (SR1) {
501     int FirstScratchReg = BV.find_first();
502     *SR1 = FirstScratchReg == -1 ? (unsigned)PPC::NoRegister : FirstScratchReg;
503   }
504 
505   // If there is another one available, set the second scratch register to that.
506   // Otherwise, set it to either PPC::NoRegister if this function requires two
507   // or to whatever SR1 is set to if this function doesn't require two.
508   if (SR2) {
509     int SecondScratchReg = BV.find_next(*SR1);
510     if (SecondScratchReg != -1)
511       *SR2 = SecondScratchReg;
512     else
513       *SR2 = TwoUniqueRegsRequired ? Register() : *SR1;
514   }
515 
516   // Now that we've done our best to provide both registers, double check
517   // whether we were unable to provide enough.
518   if (BV.count() < (TwoUniqueRegsRequired ? 2U : 1U))
519     return false;
520 
521   return true;
522 }
523 
524 // We need a scratch register for spilling LR and for spilling CR. By default,
525 // we use two scratch registers to hide latency. However, if only one scratch
526 // register is available, we can adjust for that by not overlapping the spill
527 // code. However, if we need to realign the stack (i.e. have a base pointer)
528 // and the stack frame is large, we need two scratch registers.
529 // Also, stack probe requires two scratch registers, one for old sp, one for
530 // large frame and large probe size.
531 bool
532 PPCFrameLowering::twoUniqueScratchRegsRequired(MachineBasicBlock *MBB) const {
533   const PPCRegisterInfo *RegInfo = Subtarget.getRegisterInfo();
534   MachineFunction &MF = *(MBB->getParent());
535   bool HasBP = RegInfo->hasBasePointer(MF);
536   unsigned FrameSize = determineFrameLayout(MF);
537   int NegFrameSize = -FrameSize;
538   bool IsLargeFrame = !isInt<16>(NegFrameSize);
539   MachineFrameInfo &MFI = MF.getFrameInfo();
540   Align MaxAlign = MFI.getMaxAlign();
541   bool HasRedZone = Subtarget.isPPC64() || !Subtarget.isSVR4ABI();
542   const PPCTargetLowering &TLI = *Subtarget.getTargetLowering();
543 
544   return ((IsLargeFrame || !HasRedZone) && HasBP && MaxAlign > 1) ||
545          TLI.hasInlineStackProbe(MF);
546 }
547 
548 bool PPCFrameLowering::canUseAsPrologue(const MachineBasicBlock &MBB) const {
549   MachineBasicBlock *TmpMBB = const_cast<MachineBasicBlock *>(&MBB);
550 
551   return findScratchRegister(TmpMBB, false,
552                              twoUniqueScratchRegsRequired(TmpMBB));
553 }
554 
555 bool PPCFrameLowering::canUseAsEpilogue(const MachineBasicBlock &MBB) const {
556   MachineBasicBlock *TmpMBB = const_cast<MachineBasicBlock *>(&MBB);
557 
558   return findScratchRegister(TmpMBB, true);
559 }
560 
561 bool PPCFrameLowering::stackUpdateCanBeMoved(MachineFunction &MF) const {
562   const PPCRegisterInfo *RegInfo = Subtarget.getRegisterInfo();
563   PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>();
564 
565   // Abort if there is no register info or function info.
566   if (!RegInfo || !FI)
567     return false;
568 
569   // Only move the stack update on ELFv2 ABI and PPC64.
570   if (!Subtarget.isELFv2ABI() || !Subtarget.isPPC64())
571     return false;
572 
573   // Check the frame size first and return false if it does not fit the
574   // requirements.
575   // We need a non-zero frame size as well as a frame that will fit in the red
576   // zone. This is because by moving the stack pointer update we are now storing
577   // to the red zone until the stack pointer is updated. If we get an interrupt
578   // inside the prologue but before the stack update we now have a number of
579   // stores to the red zone and those stores must all fit.
580   MachineFrameInfo &MFI = MF.getFrameInfo();
581   unsigned FrameSize = MFI.getStackSize();
582   if (!FrameSize || FrameSize > Subtarget.getRedZoneSize())
583     return false;
584 
585   // Frame pointers and base pointers complicate matters so don't do anything
586   // if we have them. For example having a frame pointer will sometimes require
587   // a copy of r1 into r31 and that makes keeping track of updates to r1 more
588   // difficult. Similar situation exists with setjmp.
589   if (hasFP(MF) || RegInfo->hasBasePointer(MF) || MF.exposesReturnsTwice())
590     return false;
591 
592   // Calls to fast_cc functions use different rules for passing parameters on
593   // the stack from the ABI and using PIC base in the function imposes
594   // similar restrictions to using the base pointer. It is not generally safe
595   // to move the stack pointer update in these situations.
596   if (FI->hasFastCall() || FI->usesPICBase())
597     return false;
598 
599   // Finally we can move the stack update if we do not require register
600   // scavenging. Register scavenging can introduce more spills and so
601   // may make the frame size larger than we have computed.
602   return !RegInfo->requiresFrameIndexScavenging(MF);
603 }
604 
605 void PPCFrameLowering::emitPrologue(MachineFunction &MF,
606                                     MachineBasicBlock &MBB) const {
607   MachineBasicBlock::iterator MBBI = MBB.begin();
608   MachineFrameInfo &MFI = MF.getFrameInfo();
609   const PPCInstrInfo &TII = *Subtarget.getInstrInfo();
610   const PPCRegisterInfo *RegInfo = Subtarget.getRegisterInfo();
611   const PPCTargetLowering &TLI = *Subtarget.getTargetLowering();
612 
613   MachineModuleInfo &MMI = MF.getMMI();
614   const MCRegisterInfo *MRI = MMI.getContext().getRegisterInfo();
615   DebugLoc dl;
616   // AIX assembler does not support cfi directives.
617   const bool needsCFI = MF.needsFrameMoves() && !Subtarget.isAIXABI();
618 
619   // Get processor type.
620   bool isPPC64 = Subtarget.isPPC64();
621   // Get the ABI.
622   bool isSVR4ABI = Subtarget.isSVR4ABI();
623   bool isELFv2ABI = Subtarget.isELFv2ABI();
624   assert((isSVR4ABI || Subtarget.isAIXABI()) && "Unsupported PPC ABI.");
625 
626   // Work out frame sizes.
627   uint64_t FrameSize = determineFrameLayoutAndUpdate(MF);
628   int64_t NegFrameSize = -FrameSize;
629   if (!isPPC64 && (!isInt<32>(FrameSize) || !isInt<32>(NegFrameSize)))
630     llvm_unreachable("Unhandled stack size!");
631 
632   if (MFI.isFrameAddressTaken())
633     replaceFPWithRealFP(MF);
634 
635   // Check if the link register (LR) must be saved.
636   PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>();
637   bool MustSaveLR = FI->mustSaveLR();
638   bool MustSaveTOC = FI->mustSaveTOC();
639   const SmallVectorImpl<Register> &MustSaveCRs = FI->getMustSaveCRs();
640   bool MustSaveCR = !MustSaveCRs.empty();
641   // Do we have a frame pointer and/or base pointer for this function?
642   bool HasFP = hasFP(MF);
643   bool HasBP = RegInfo->hasBasePointer(MF);
644   bool HasRedZone = isPPC64 || !isSVR4ABI;
645   bool HasROPProtect = Subtarget.hasROPProtect();
646   bool HasPrivileged = Subtarget.hasPrivileged();
647 
648   Register SPReg       = isPPC64 ? PPC::X1  : PPC::R1;
649   Register BPReg = RegInfo->getBaseRegister(MF);
650   Register FPReg       = isPPC64 ? PPC::X31 : PPC::R31;
651   Register LRReg       = isPPC64 ? PPC::LR8 : PPC::LR;
652   Register TOCReg      = isPPC64 ? PPC::X2 :  PPC::R2;
653   Register ScratchReg;
654   Register TempReg     = isPPC64 ? PPC::X12 : PPC::R12; // another scratch reg
655   //  ...(R12/X12 is volatile in both Darwin & SVR4, & can't be a function arg.)
656   const MCInstrDesc& MFLRInst = TII.get(isPPC64 ? PPC::MFLR8
657                                                 : PPC::MFLR );
658   const MCInstrDesc& StoreInst = TII.get(isPPC64 ? PPC::STD
659                                                  : PPC::STW );
660   const MCInstrDesc& StoreUpdtInst = TII.get(isPPC64 ? PPC::STDU
661                                                      : PPC::STWU );
662   const MCInstrDesc& StoreUpdtIdxInst = TII.get(isPPC64 ? PPC::STDUX
663                                                         : PPC::STWUX);
664   const MCInstrDesc& OrInst = TII.get(isPPC64 ? PPC::OR8
665                                               : PPC::OR );
666   const MCInstrDesc& SubtractCarryingInst = TII.get(isPPC64 ? PPC::SUBFC8
667                                                             : PPC::SUBFC);
668   const MCInstrDesc& SubtractImmCarryingInst = TII.get(isPPC64 ? PPC::SUBFIC8
669                                                                : PPC::SUBFIC);
670   const MCInstrDesc &MoveFromCondRegInst = TII.get(isPPC64 ? PPC::MFCR8
671                                                            : PPC::MFCR);
672   const MCInstrDesc &StoreWordInst = TII.get(isPPC64 ? PPC::STW8 : PPC::STW);
673   const MCInstrDesc &HashST =
674       TII.get(isPPC64 ? (HasPrivileged ? PPC::HASHSTP8 : PPC::HASHST8)
675                       : (HasPrivileged ? PPC::HASHSTP : PPC::HASHST));
676 
677   // Regarding this assert: Even though LR is saved in the caller's frame (i.e.,
678   // LROffset is positive), that slot is callee-owned. Because PPC32 SVR4 has no
679   // Red Zone, an asynchronous event (a form of "callee") could claim a frame &
680   // overwrite it, so PPC32 SVR4 must claim at least a minimal frame to save LR.
681   assert((isPPC64 || !isSVR4ABI || !(!FrameSize && (MustSaveLR || HasFP))) &&
682          "FrameSize must be >0 to save/restore the FP or LR for 32-bit SVR4.");
683 
684   // Using the same bool variable as below to suppress compiler warnings.
685   bool SingleScratchReg = findScratchRegister(
686       &MBB, false, twoUniqueScratchRegsRequired(&MBB), &ScratchReg, &TempReg);
687   assert(SingleScratchReg &&
688          "Required number of registers not available in this block");
689 
690   SingleScratchReg = ScratchReg == TempReg;
691 
692   int64_t LROffset = getReturnSaveOffset();
693 
694   int64_t FPOffset = 0;
695   if (HasFP) {
696     MachineFrameInfo &MFI = MF.getFrameInfo();
697     int FPIndex = FI->getFramePointerSaveIndex();
698     assert(FPIndex && "No Frame Pointer Save Slot!");
699     FPOffset = MFI.getObjectOffset(FPIndex);
700   }
701 
702   int64_t BPOffset = 0;
703   if (HasBP) {
704     MachineFrameInfo &MFI = MF.getFrameInfo();
705     int BPIndex = FI->getBasePointerSaveIndex();
706     assert(BPIndex && "No Base Pointer Save Slot!");
707     BPOffset = MFI.getObjectOffset(BPIndex);
708   }
709 
710   int64_t PBPOffset = 0;
711   if (FI->usesPICBase()) {
712     MachineFrameInfo &MFI = MF.getFrameInfo();
713     int PBPIndex = FI->getPICBasePointerSaveIndex();
714     assert(PBPIndex && "No PIC Base Pointer Save Slot!");
715     PBPOffset = MFI.getObjectOffset(PBPIndex);
716   }
717 
718   // Get stack alignments.
719   Align MaxAlign = MFI.getMaxAlign();
720   if (HasBP && MaxAlign > 1)
721     assert(Log2(MaxAlign) < 16 && "Invalid alignment!");
722 
723   // Frames of 32KB & larger require special handling because they cannot be
724   // indexed into with a simple STDU/STWU/STD/STW immediate offset operand.
725   bool isLargeFrame = !isInt<16>(NegFrameSize);
726 
727   // Check if we can move the stack update instruction (stdu) down the prologue
728   // past the callee saves. Hopefully this will avoid the situation where the
729   // saves are waiting for the update on the store with update to complete.
730   MachineBasicBlock::iterator StackUpdateLoc = MBBI;
731   bool MovingStackUpdateDown = false;
732 
733   // Check if we can move the stack update.
734   if (stackUpdateCanBeMoved(MF)) {
735     const std::vector<CalleeSavedInfo> &Info = MFI.getCalleeSavedInfo();
736     for (CalleeSavedInfo CSI : Info) {
737       // If the callee saved register is spilled to a register instead of the
738       // stack then the spill no longer uses the stack pointer.
739       // This can lead to two consequences:
740       // 1) We no longer need to update the stack because the function does not
741       //    spill any callee saved registers to stack.
742       // 2) We have a situation where we still have to update the stack pointer
743       //    even though some registers are spilled to other registers. In
744       //    this case the current code moves the stack update to an incorrect
745       //    position.
746       // In either case we should abort moving the stack update operation.
747       if (CSI.isSpilledToReg()) {
748         StackUpdateLoc = MBBI;
749         MovingStackUpdateDown = false;
750         break;
751       }
752 
753       int FrIdx = CSI.getFrameIdx();
754       // If the frame index is not negative the callee saved info belongs to a
755       // stack object that is not a fixed stack object. We ignore non-fixed
756       // stack objects because we won't move the stack update pointer past them.
757       if (FrIdx >= 0)
758         continue;
759 
760       if (MFI.isFixedObjectIndex(FrIdx) && MFI.getObjectOffset(FrIdx) < 0) {
761         StackUpdateLoc++;
762         MovingStackUpdateDown = true;
763       } else {
764         // We need all of the Frame Indices to meet these conditions.
765         // If they do not, abort the whole operation.
766         StackUpdateLoc = MBBI;
767         MovingStackUpdateDown = false;
768         break;
769       }
770     }
771 
772     // If the operation was not aborted then update the object offset.
773     if (MovingStackUpdateDown) {
774       for (CalleeSavedInfo CSI : Info) {
775         int FrIdx = CSI.getFrameIdx();
776         if (FrIdx < 0)
777           MFI.setObjectOffset(FrIdx, MFI.getObjectOffset(FrIdx) + NegFrameSize);
778       }
779     }
780   }
781 
782   // Where in the prologue we move the CR fields depends on how many scratch
783   // registers we have, and if we need to save the link register or not. This
784   // lambda is to avoid duplicating the logic in 2 places.
785   auto BuildMoveFromCR = [&]() {
786     if (isELFv2ABI && MustSaveCRs.size() == 1) {
787     // In the ELFv2 ABI, we are not required to save all CR fields.
788     // If only one CR field is clobbered, it is more efficient to use
789     // mfocrf to selectively save just that field, because mfocrf has short
790     // latency compares to mfcr.
791       assert(isPPC64 && "V2 ABI is 64-bit only.");
792       MachineInstrBuilder MIB =
793           BuildMI(MBB, MBBI, dl, TII.get(PPC::MFOCRF8), TempReg);
794       MIB.addReg(MustSaveCRs[0], RegState::Kill);
795     } else {
796       MachineInstrBuilder MIB =
797           BuildMI(MBB, MBBI, dl, MoveFromCondRegInst, TempReg);
798       for (unsigned CRfield : MustSaveCRs)
799         MIB.addReg(CRfield, RegState::ImplicitKill);
800     }
801   };
802 
803   // If we need to spill the CR and the LR but we don't have two separate
804   // registers available, we must spill them one at a time
805   if (MustSaveCR && SingleScratchReg && MustSaveLR) {
806     BuildMoveFromCR();
807     BuildMI(MBB, MBBI, dl, StoreWordInst)
808         .addReg(TempReg, getKillRegState(true))
809         .addImm(CRSaveOffset)
810         .addReg(SPReg);
811   }
812 
813   if (MustSaveLR)
814     BuildMI(MBB, MBBI, dl, MFLRInst, ScratchReg);
815 
816   if (MustSaveCR && !(SingleScratchReg && MustSaveLR))
817     BuildMoveFromCR();
818 
819   if (HasRedZone) {
820     if (HasFP)
821       BuildMI(MBB, MBBI, dl, StoreInst)
822         .addReg(FPReg)
823         .addImm(FPOffset)
824         .addReg(SPReg);
825     if (FI->usesPICBase())
826       BuildMI(MBB, MBBI, dl, StoreInst)
827         .addReg(PPC::R30)
828         .addImm(PBPOffset)
829         .addReg(SPReg);
830     if (HasBP)
831       BuildMI(MBB, MBBI, dl, StoreInst)
832         .addReg(BPReg)
833         .addImm(BPOffset)
834         .addReg(SPReg);
835   }
836 
837   // Generate the instruction to store the LR. In the case where ROP protection
838   // is required the register holding the LR should not be killed as it will be
839   // used by the hash store instruction.
840   if (MustSaveLR) {
841     BuildMI(MBB, StackUpdateLoc, dl, StoreInst)
842         .addReg(ScratchReg, getKillRegState(!HasROPProtect))
843         .addImm(LROffset)
844         .addReg(SPReg);
845 
846     // Add the ROP protection Hash Store instruction.
847     // NOTE: This is technically a violation of the ABI. The hash can be saved
848     // up to 512 bytes into the Protected Zone. This can be outside of the
849     // initial 288 byte volatile program storage region in the Protected Zone.
850     // However, this restriction will be removed in an upcoming revision of the
851     // ABI.
852     if (HasROPProtect) {
853       const int SaveIndex = FI->getROPProtectionHashSaveIndex();
854       const int64_t ImmOffset = MFI.getObjectOffset(SaveIndex);
855       assert((ImmOffset <= -8 && ImmOffset >= -512) &&
856              "ROP hash save offset out of range.");
857       assert(((ImmOffset & 0x7) == 0) &&
858              "ROP hash save offset must be 8 byte aligned.");
859       BuildMI(MBB, StackUpdateLoc, dl, HashST)
860           .addReg(ScratchReg, getKillRegState(true))
861           .addImm(ImmOffset)
862           .addReg(SPReg);
863     }
864   }
865 
866   if (MustSaveCR &&
867       !(SingleScratchReg && MustSaveLR)) {
868     assert(HasRedZone && "A red zone is always available on PPC64");
869     BuildMI(MBB, MBBI, dl, StoreWordInst)
870       .addReg(TempReg, getKillRegState(true))
871       .addImm(CRSaveOffset)
872       .addReg(SPReg);
873   }
874 
875   // Skip the rest if this is a leaf function & all spills fit in the Red Zone.
876   if (!FrameSize)
877     return;
878 
879   // Adjust stack pointer: r1 += NegFrameSize.
880   // If there is a preferred stack alignment, align R1 now
881 
882   if (HasBP && HasRedZone) {
883     // Save a copy of r1 as the base pointer.
884     BuildMI(MBB, MBBI, dl, OrInst, BPReg)
885       .addReg(SPReg)
886       .addReg(SPReg);
887   }
888 
889   // Have we generated a STUX instruction to claim stack frame? If so,
890   // the negated frame size will be placed in ScratchReg.
891   bool HasSTUX = false;
892 
893   // If FrameSize <= TLI.getStackProbeSize(MF), as POWER ABI requires backchain
894   // pointer is always stored at SP, we will get a free probe due to an essential
895   // STU(X) instruction.
896   if (TLI.hasInlineStackProbe(MF) && FrameSize > TLI.getStackProbeSize(MF)) {
897     // To be consistent with other targets, a pseudo instruction is emitted and
898     // will be later expanded in `inlineStackProbe`.
899     BuildMI(MBB, MBBI, dl,
900             TII.get(isPPC64 ? PPC::PROBED_STACKALLOC_64
901                             : PPC::PROBED_STACKALLOC_32))
902         .addDef(TempReg)
903         .addDef(ScratchReg) // ScratchReg stores the old sp.
904         .addImm(NegFrameSize);
905     // FIXME: HasSTUX is only read if HasRedZone is not set, in such case, we
906     // update the ScratchReg to meet the assumption that ScratchReg contains
907     // the NegFrameSize. This solution is rather tricky.
908     if (!HasRedZone) {
909       BuildMI(MBB, MBBI, dl, TII.get(PPC::SUBF), ScratchReg)
910           .addReg(ScratchReg)
911           .addReg(SPReg);
912       HasSTUX = true;
913     }
914   } else {
915     // This condition must be kept in sync with canUseAsPrologue.
916     if (HasBP && MaxAlign > 1) {
917       if (isPPC64)
918         BuildMI(MBB, MBBI, dl, TII.get(PPC::RLDICL), ScratchReg)
919             .addReg(SPReg)
920             .addImm(0)
921             .addImm(64 - Log2(MaxAlign));
922       else // PPC32...
923         BuildMI(MBB, MBBI, dl, TII.get(PPC::RLWINM), ScratchReg)
924             .addReg(SPReg)
925             .addImm(0)
926             .addImm(32 - Log2(MaxAlign))
927             .addImm(31);
928       if (!isLargeFrame) {
929         BuildMI(MBB, MBBI, dl, SubtractImmCarryingInst, ScratchReg)
930             .addReg(ScratchReg, RegState::Kill)
931             .addImm(NegFrameSize);
932       } else {
933         assert(!SingleScratchReg && "Only a single scratch reg available");
934         TII.materializeImmPostRA(MBB, MBBI, dl, TempReg, NegFrameSize);
935         BuildMI(MBB, MBBI, dl, SubtractCarryingInst, ScratchReg)
936             .addReg(ScratchReg, RegState::Kill)
937             .addReg(TempReg, RegState::Kill);
938       }
939 
940       BuildMI(MBB, MBBI, dl, StoreUpdtIdxInst, SPReg)
941           .addReg(SPReg, RegState::Kill)
942           .addReg(SPReg)
943           .addReg(ScratchReg);
944       HasSTUX = true;
945 
946     } else if (!isLargeFrame) {
947       BuildMI(MBB, StackUpdateLoc, dl, StoreUpdtInst, SPReg)
948           .addReg(SPReg)
949           .addImm(NegFrameSize)
950           .addReg(SPReg);
951 
952     } else {
953       TII.materializeImmPostRA(MBB, MBBI, dl, ScratchReg, NegFrameSize);
954       BuildMI(MBB, MBBI, dl, StoreUpdtIdxInst, SPReg)
955           .addReg(SPReg, RegState::Kill)
956           .addReg(SPReg)
957           .addReg(ScratchReg);
958       HasSTUX = true;
959     }
960   }
961 
962   // Save the TOC register after the stack pointer update if a prologue TOC
963   // save is required for the function.
964   if (MustSaveTOC) {
965     assert(isELFv2ABI && "TOC saves in the prologue only supported on ELFv2");
966     BuildMI(MBB, StackUpdateLoc, dl, TII.get(PPC::STD))
967       .addReg(TOCReg, getKillRegState(true))
968       .addImm(TOCSaveOffset)
969       .addReg(SPReg);
970   }
971 
972   if (!HasRedZone) {
973     assert(!isPPC64 && "A red zone is always available on PPC64");
974     if (HasSTUX) {
975       // The negated frame size is in ScratchReg, and the SPReg has been
976       // decremented by the frame size: SPReg = old SPReg + ScratchReg.
977       // Since FPOffset, PBPOffset, etc. are relative to the beginning of
978       // the stack frame (i.e. the old SP), ideally, we would put the old
979       // SP into a register and use it as the base for the stores. The
980       // problem is that the only available register may be ScratchReg,
981       // which could be R0, and R0 cannot be used as a base address.
982 
983       // First, set ScratchReg to the old SP. This may need to be modified
984       // later.
985       BuildMI(MBB, MBBI, dl, TII.get(PPC::SUBF), ScratchReg)
986         .addReg(ScratchReg, RegState::Kill)
987         .addReg(SPReg);
988 
989       if (ScratchReg == PPC::R0) {
990         // R0 cannot be used as a base register, but it can be used as an
991         // index in a store-indexed.
992         int LastOffset = 0;
993         if (HasFP)  {
994           // R0 += (FPOffset-LastOffset).
995           // Need addic, since addi treats R0 as 0.
996           BuildMI(MBB, MBBI, dl, TII.get(PPC::ADDIC), ScratchReg)
997             .addReg(ScratchReg)
998             .addImm(FPOffset-LastOffset);
999           LastOffset = FPOffset;
1000           // Store FP into *R0.
1001           BuildMI(MBB, MBBI, dl, TII.get(PPC::STWX))
1002             .addReg(FPReg, RegState::Kill)  // Save FP.
1003             .addReg(PPC::ZERO)
1004             .addReg(ScratchReg);  // This will be the index (R0 is ok here).
1005         }
1006         if (FI->usesPICBase()) {
1007           // R0 += (PBPOffset-LastOffset).
1008           BuildMI(MBB, MBBI, dl, TII.get(PPC::ADDIC), ScratchReg)
1009             .addReg(ScratchReg)
1010             .addImm(PBPOffset-LastOffset);
1011           LastOffset = PBPOffset;
1012           BuildMI(MBB, MBBI, dl, TII.get(PPC::STWX))
1013             .addReg(PPC::R30, RegState::Kill)  // Save PIC base pointer.
1014             .addReg(PPC::ZERO)
1015             .addReg(ScratchReg);  // This will be the index (R0 is ok here).
1016         }
1017         if (HasBP) {
1018           // R0 += (BPOffset-LastOffset).
1019           BuildMI(MBB, MBBI, dl, TII.get(PPC::ADDIC), ScratchReg)
1020             .addReg(ScratchReg)
1021             .addImm(BPOffset-LastOffset);
1022           LastOffset = BPOffset;
1023           BuildMI(MBB, MBBI, dl, TII.get(PPC::STWX))
1024             .addReg(BPReg, RegState::Kill)  // Save BP.
1025             .addReg(PPC::ZERO)
1026             .addReg(ScratchReg);  // This will be the index (R0 is ok here).
1027           // BP = R0-LastOffset
1028           BuildMI(MBB, MBBI, dl, TII.get(PPC::ADDIC), BPReg)
1029             .addReg(ScratchReg, RegState::Kill)
1030             .addImm(-LastOffset);
1031         }
1032       } else {
1033         // ScratchReg is not R0, so use it as the base register. It is
1034         // already set to the old SP, so we can use the offsets directly.
1035 
1036         // Now that the stack frame has been allocated, save all the necessary
1037         // registers using ScratchReg as the base address.
1038         if (HasFP)
1039           BuildMI(MBB, MBBI, dl, StoreInst)
1040             .addReg(FPReg)
1041             .addImm(FPOffset)
1042             .addReg(ScratchReg);
1043         if (FI->usesPICBase())
1044           BuildMI(MBB, MBBI, dl, StoreInst)
1045             .addReg(PPC::R30)
1046             .addImm(PBPOffset)
1047             .addReg(ScratchReg);
1048         if (HasBP) {
1049           BuildMI(MBB, MBBI, dl, StoreInst)
1050             .addReg(BPReg)
1051             .addImm(BPOffset)
1052             .addReg(ScratchReg);
1053           BuildMI(MBB, MBBI, dl, OrInst, BPReg)
1054             .addReg(ScratchReg, RegState::Kill)
1055             .addReg(ScratchReg);
1056         }
1057       }
1058     } else {
1059       // The frame size is a known 16-bit constant (fitting in the immediate
1060       // field of STWU). To be here we have to be compiling for PPC32.
1061       // Since the SPReg has been decreased by FrameSize, add it back to each
1062       // offset.
1063       if (HasFP)
1064         BuildMI(MBB, MBBI, dl, StoreInst)
1065           .addReg(FPReg)
1066           .addImm(FrameSize + FPOffset)
1067           .addReg(SPReg);
1068       if (FI->usesPICBase())
1069         BuildMI(MBB, MBBI, dl, StoreInst)
1070           .addReg(PPC::R30)
1071           .addImm(FrameSize + PBPOffset)
1072           .addReg(SPReg);
1073       if (HasBP) {
1074         BuildMI(MBB, MBBI, dl, StoreInst)
1075           .addReg(BPReg)
1076           .addImm(FrameSize + BPOffset)
1077           .addReg(SPReg);
1078         BuildMI(MBB, MBBI, dl, TII.get(PPC::ADDI), BPReg)
1079           .addReg(SPReg)
1080           .addImm(FrameSize);
1081       }
1082     }
1083   }
1084 
1085   // Add Call Frame Information for the instructions we generated above.
1086   if (needsCFI) {
1087     unsigned CFIIndex;
1088 
1089     if (HasBP) {
1090       // Define CFA in terms of BP. Do this in preference to using FP/SP,
1091       // because if the stack needed aligning then CFA won't be at a fixed
1092       // offset from FP/SP.
1093       unsigned Reg = MRI->getDwarfRegNum(BPReg, true);
1094       CFIIndex = MF.addFrameInst(
1095           MCCFIInstruction::createDefCfaRegister(nullptr, Reg));
1096     } else {
1097       // Adjust the definition of CFA to account for the change in SP.
1098       assert(NegFrameSize);
1099       CFIIndex = MF.addFrameInst(
1100           MCCFIInstruction::cfiDefCfaOffset(nullptr, -NegFrameSize));
1101     }
1102     BuildMI(MBB, MBBI, dl, TII.get(TargetOpcode::CFI_INSTRUCTION))
1103         .addCFIIndex(CFIIndex);
1104 
1105     if (HasFP) {
1106       // Describe where FP was saved, at a fixed offset from CFA.
1107       unsigned Reg = MRI->getDwarfRegNum(FPReg, true);
1108       CFIIndex = MF.addFrameInst(
1109           MCCFIInstruction::createOffset(nullptr, Reg, FPOffset));
1110       BuildMI(MBB, MBBI, dl, TII.get(TargetOpcode::CFI_INSTRUCTION))
1111           .addCFIIndex(CFIIndex);
1112     }
1113 
1114     if (FI->usesPICBase()) {
1115       // Describe where FP was saved, at a fixed offset from CFA.
1116       unsigned Reg = MRI->getDwarfRegNum(PPC::R30, true);
1117       CFIIndex = MF.addFrameInst(
1118           MCCFIInstruction::createOffset(nullptr, Reg, PBPOffset));
1119       BuildMI(MBB, MBBI, dl, TII.get(TargetOpcode::CFI_INSTRUCTION))
1120           .addCFIIndex(CFIIndex);
1121     }
1122 
1123     if (HasBP) {
1124       // Describe where BP was saved, at a fixed offset from CFA.
1125       unsigned Reg = MRI->getDwarfRegNum(BPReg, true);
1126       CFIIndex = MF.addFrameInst(
1127           MCCFIInstruction::createOffset(nullptr, Reg, BPOffset));
1128       BuildMI(MBB, MBBI, dl, TII.get(TargetOpcode::CFI_INSTRUCTION))
1129           .addCFIIndex(CFIIndex);
1130     }
1131 
1132     if (MustSaveLR) {
1133       // Describe where LR was saved, at a fixed offset from CFA.
1134       unsigned Reg = MRI->getDwarfRegNum(LRReg, true);
1135       CFIIndex = MF.addFrameInst(
1136           MCCFIInstruction::createOffset(nullptr, Reg, LROffset));
1137       BuildMI(MBB, MBBI, dl, TII.get(TargetOpcode::CFI_INSTRUCTION))
1138           .addCFIIndex(CFIIndex);
1139     }
1140   }
1141 
1142   // If there is a frame pointer, copy R1 into R31
1143   if (HasFP) {
1144     BuildMI(MBB, MBBI, dl, OrInst, FPReg)
1145       .addReg(SPReg)
1146       .addReg(SPReg);
1147 
1148     if (!HasBP && needsCFI) {
1149       // Change the definition of CFA from SP+offset to FP+offset, because SP
1150       // will change at every alloca.
1151       unsigned Reg = MRI->getDwarfRegNum(FPReg, true);
1152       unsigned CFIIndex = MF.addFrameInst(
1153           MCCFIInstruction::createDefCfaRegister(nullptr, Reg));
1154 
1155       BuildMI(MBB, MBBI, dl, TII.get(TargetOpcode::CFI_INSTRUCTION))
1156           .addCFIIndex(CFIIndex);
1157     }
1158   }
1159 
1160   if (needsCFI) {
1161     // Describe where callee saved registers were saved, at fixed offsets from
1162     // CFA.
1163     const std::vector<CalleeSavedInfo> &CSI = MFI.getCalleeSavedInfo();
1164     for (const CalleeSavedInfo &I : CSI) {
1165       Register Reg = I.getReg();
1166       if (Reg == PPC::LR || Reg == PPC::LR8 || Reg == PPC::RM) continue;
1167 
1168       // This is a bit of a hack: CR2LT, CR2GT, CR2EQ and CR2UN are just
1169       // subregisters of CR2. We just need to emit a move of CR2.
1170       if (PPC::CRBITRCRegClass.contains(Reg))
1171         continue;
1172 
1173       if ((Reg == PPC::X2 || Reg == PPC::R2) && MustSaveTOC)
1174         continue;
1175 
1176       // For SVR4, don't emit a move for the CR spill slot if we haven't
1177       // spilled CRs.
1178       if (isSVR4ABI && (PPC::CR2 <= Reg && Reg <= PPC::CR4)
1179           && !MustSaveCR)
1180         continue;
1181 
1182       // For 64-bit SVR4 when we have spilled CRs, the spill location
1183       // is SP+8, not a frame-relative slot.
1184       if (isSVR4ABI && isPPC64 && (PPC::CR2 <= Reg && Reg <= PPC::CR4)) {
1185         // In the ELFv1 ABI, only CR2 is noted in CFI and stands in for
1186         // the whole CR word.  In the ELFv2 ABI, every CR that was
1187         // actually saved gets its own CFI record.
1188         Register CRReg = isELFv2ABI? Reg : PPC::CR2;
1189         unsigned CFIIndex = MF.addFrameInst(MCCFIInstruction::createOffset(
1190             nullptr, MRI->getDwarfRegNum(CRReg, true), CRSaveOffset));
1191         BuildMI(MBB, MBBI, dl, TII.get(TargetOpcode::CFI_INSTRUCTION))
1192             .addCFIIndex(CFIIndex);
1193         continue;
1194       }
1195 
1196       if (I.isSpilledToReg()) {
1197         unsigned SpilledReg = I.getDstReg();
1198         unsigned CFIRegister = MF.addFrameInst(MCCFIInstruction::createRegister(
1199             nullptr, MRI->getDwarfRegNum(Reg, true),
1200             MRI->getDwarfRegNum(SpilledReg, true)));
1201         BuildMI(MBB, MBBI, dl, TII.get(TargetOpcode::CFI_INSTRUCTION))
1202           .addCFIIndex(CFIRegister);
1203       } else {
1204         int64_t Offset = MFI.getObjectOffset(I.getFrameIdx());
1205         // We have changed the object offset above but we do not want to change
1206         // the actual offsets in the CFI instruction so we have to undo the
1207         // offset change here.
1208         if (MovingStackUpdateDown)
1209           Offset -= NegFrameSize;
1210 
1211         unsigned CFIIndex = MF.addFrameInst(MCCFIInstruction::createOffset(
1212             nullptr, MRI->getDwarfRegNum(Reg, true), Offset));
1213         BuildMI(MBB, MBBI, dl, TII.get(TargetOpcode::CFI_INSTRUCTION))
1214             .addCFIIndex(CFIIndex);
1215       }
1216     }
1217   }
1218 }
1219 
1220 void PPCFrameLowering::inlineStackProbe(MachineFunction &MF,
1221                                         MachineBasicBlock &PrologMBB) const {
1222   bool isPPC64 = Subtarget.isPPC64();
1223   const PPCTargetLowering &TLI = *Subtarget.getTargetLowering();
1224   const PPCInstrInfo &TII = *Subtarget.getInstrInfo();
1225   MachineFrameInfo &MFI = MF.getFrameInfo();
1226   MachineModuleInfo &MMI = MF.getMMI();
1227   const MCRegisterInfo *MRI = MMI.getContext().getRegisterInfo();
1228   // AIX assembler does not support cfi directives.
1229   const bool needsCFI = MF.needsFrameMoves() && !Subtarget.isAIXABI();
1230   auto StackAllocMIPos = llvm::find_if(PrologMBB, [](MachineInstr &MI) {
1231     int Opc = MI.getOpcode();
1232     return Opc == PPC::PROBED_STACKALLOC_64 || Opc == PPC::PROBED_STACKALLOC_32;
1233   });
1234   if (StackAllocMIPos == PrologMBB.end())
1235     return;
1236   const BasicBlock *ProbedBB = PrologMBB.getBasicBlock();
1237   MachineBasicBlock *CurrentMBB = &PrologMBB;
1238   DebugLoc DL = PrologMBB.findDebugLoc(StackAllocMIPos);
1239   MachineInstr &MI = *StackAllocMIPos;
1240   int64_t NegFrameSize = MI.getOperand(2).getImm();
1241   unsigned ProbeSize = TLI.getStackProbeSize(MF);
1242   int64_t NegProbeSize = -(int64_t)ProbeSize;
1243   assert(isInt<32>(NegProbeSize) && "Unhandled probe size");
1244   int64_t NumBlocks = NegFrameSize / NegProbeSize;
1245   int64_t NegResidualSize = NegFrameSize % NegProbeSize;
1246   Register SPReg = isPPC64 ? PPC::X1 : PPC::R1;
1247   Register ScratchReg = MI.getOperand(0).getReg();
1248   Register FPReg = MI.getOperand(1).getReg();
1249   const PPCRegisterInfo *RegInfo = Subtarget.getRegisterInfo();
1250   bool HasBP = RegInfo->hasBasePointer(MF);
1251   Register BPReg = RegInfo->getBaseRegister(MF);
1252   Align MaxAlign = MFI.getMaxAlign();
1253   bool HasRedZone = Subtarget.isPPC64() || !Subtarget.isSVR4ABI();
1254   const MCInstrDesc &CopyInst = TII.get(isPPC64 ? PPC::OR8 : PPC::OR);
1255   // Subroutines to generate .cfi_* directives.
1256   auto buildDefCFAReg = [&](MachineBasicBlock &MBB,
1257                             MachineBasicBlock::iterator MBBI, Register Reg) {
1258     unsigned RegNum = MRI->getDwarfRegNum(Reg, true);
1259     unsigned CFIIndex = MF.addFrameInst(
1260         MCCFIInstruction::createDefCfaRegister(nullptr, RegNum));
1261     BuildMI(MBB, MBBI, DL, TII.get(TargetOpcode::CFI_INSTRUCTION))
1262         .addCFIIndex(CFIIndex);
1263   };
1264   auto buildDefCFA = [&](MachineBasicBlock &MBB,
1265                          MachineBasicBlock::iterator MBBI, Register Reg,
1266                          int Offset) {
1267     unsigned RegNum = MRI->getDwarfRegNum(Reg, true);
1268     unsigned CFIIndex = MBB.getParent()->addFrameInst(
1269         MCCFIInstruction::cfiDefCfa(nullptr, RegNum, Offset));
1270     BuildMI(MBB, MBBI, DL, TII.get(TargetOpcode::CFI_INSTRUCTION))
1271         .addCFIIndex(CFIIndex);
1272   };
1273   // Subroutine to determine if we can use the Imm as part of d-form.
1274   auto CanUseDForm = [](int64_t Imm) { return isInt<16>(Imm) && Imm % 4 == 0; };
1275   // Subroutine to materialize the Imm into TempReg.
1276   auto MaterializeImm = [&](MachineBasicBlock &MBB,
1277                             MachineBasicBlock::iterator MBBI, int64_t Imm,
1278                             Register &TempReg) {
1279     assert(isInt<32>(Imm) && "Unhandled imm");
1280     if (isInt<16>(Imm))
1281       BuildMI(MBB, MBBI, DL, TII.get(isPPC64 ? PPC::LI8 : PPC::LI), TempReg)
1282           .addImm(Imm);
1283     else {
1284       BuildMI(MBB, MBBI, DL, TII.get(isPPC64 ? PPC::LIS8 : PPC::LIS), TempReg)
1285           .addImm(Imm >> 16);
1286       BuildMI(MBB, MBBI, DL, TII.get(isPPC64 ? PPC::ORI8 : PPC::ORI), TempReg)
1287           .addReg(TempReg)
1288           .addImm(Imm & 0xFFFF);
1289     }
1290   };
1291   // Subroutine to store frame pointer and decrease stack pointer by probe size.
1292   auto allocateAndProbe = [&](MachineBasicBlock &MBB,
1293                               MachineBasicBlock::iterator MBBI, int64_t NegSize,
1294                               Register NegSizeReg, bool UseDForm,
1295                               Register StoreReg) {
1296     if (UseDForm)
1297       BuildMI(MBB, MBBI, DL, TII.get(isPPC64 ? PPC::STDU : PPC::STWU), SPReg)
1298           .addReg(StoreReg)
1299           .addImm(NegSize)
1300           .addReg(SPReg);
1301     else
1302       BuildMI(MBB, MBBI, DL, TII.get(isPPC64 ? PPC::STDUX : PPC::STWUX), SPReg)
1303           .addReg(StoreReg)
1304           .addReg(SPReg)
1305           .addReg(NegSizeReg);
1306   };
1307   // Used to probe stack when realignment is required.
1308   // Note that, according to ABI's requirement, *sp must always equals the
1309   // value of back-chain pointer, only st(w|d)u(x) can be used to update sp.
1310   // Following is pseudo code:
1311   // final_sp = (sp & align) + negframesize;
1312   // neg_gap = final_sp - sp;
1313   // while (neg_gap < negprobesize) {
1314   //   stdu fp, negprobesize(sp);
1315   //   neg_gap -= negprobesize;
1316   // }
1317   // stdux fp, sp, neg_gap
1318   //
1319   // When HasBP & HasRedzone, back-chain pointer is already saved in BPReg
1320   // before probe code, we don't need to save it, so we get one additional reg
1321   // that can be used to materialize the probeside if needed to use xform.
1322   // Otherwise, we can NOT materialize probeside, so we can only use Dform for
1323   // now.
1324   //
1325   // The allocations are:
1326   // if (HasBP && HasRedzone) {
1327   //   r0: materialize the probesize if needed so that we can use xform.
1328   //   r12: `neg_gap`
1329   // } else {
1330   //   r0: back-chain pointer
1331   //   r12: `neg_gap`.
1332   // }
1333   auto probeRealignedStack = [&](MachineBasicBlock &MBB,
1334                                  MachineBasicBlock::iterator MBBI,
1335                                  Register ScratchReg, Register TempReg) {
1336     assert(HasBP && "The function is supposed to have base pointer when its "
1337                     "stack is realigned.");
1338     assert(isPowerOf2_64(ProbeSize) && "Probe size should be power of 2");
1339 
1340     // FIXME: We can eliminate this limitation if we get more infomation about
1341     // which part of redzone are already used. Used redzone can be treated
1342     // probed. But there might be `holes' in redzone probed, this could
1343     // complicate the implementation.
1344     assert(ProbeSize >= Subtarget.getRedZoneSize() &&
1345            "Probe size should be larger or equal to the size of red-zone so "
1346            "that red-zone is not clobbered by probing.");
1347 
1348     Register &FinalStackPtr = TempReg;
1349     // FIXME: We only support NegProbeSize materializable by DForm currently.
1350     // When HasBP && HasRedzone, we can use xform if we have an additional idle
1351     // register.
1352     NegProbeSize = std::max(NegProbeSize, -((int64_t)1 << 15));
1353     assert(isInt<16>(NegProbeSize) &&
1354            "NegProbeSize should be materializable by DForm");
1355     Register CRReg = PPC::CR0;
1356     // Layout of output assembly kinda like:
1357     // bb.0:
1358     //   ...
1359     //   sub $scratchreg, $finalsp, r1
1360     //   cmpdi $scratchreg, <negprobesize>
1361     //   bge bb.2
1362     // bb.1:
1363     //   stdu <backchain>, <negprobesize>(r1)
1364     //   sub $scratchreg, $scratchreg, negprobesize
1365     //   cmpdi $scratchreg, <negprobesize>
1366     //   blt bb.1
1367     // bb.2:
1368     //   stdux <backchain>, r1, $scratchreg
1369     MachineFunction::iterator MBBInsertPoint = std::next(MBB.getIterator());
1370     MachineBasicBlock *ProbeLoopBodyMBB = MF.CreateMachineBasicBlock(ProbedBB);
1371     MF.insert(MBBInsertPoint, ProbeLoopBodyMBB);
1372     MachineBasicBlock *ProbeExitMBB = MF.CreateMachineBasicBlock(ProbedBB);
1373     MF.insert(MBBInsertPoint, ProbeExitMBB);
1374     // bb.2
1375     {
1376       Register BackChainPointer = HasRedZone ? BPReg : TempReg;
1377       allocateAndProbe(*ProbeExitMBB, ProbeExitMBB->end(), 0, ScratchReg, false,
1378                        BackChainPointer);
1379       if (HasRedZone)
1380         // PROBED_STACKALLOC_64 assumes Operand(1) stores the old sp, copy BPReg
1381         // to TempReg to satisfy it.
1382         BuildMI(*ProbeExitMBB, ProbeExitMBB->end(), DL, CopyInst, TempReg)
1383             .addReg(BPReg)
1384             .addReg(BPReg);
1385       ProbeExitMBB->splice(ProbeExitMBB->end(), &MBB, MBBI, MBB.end());
1386       ProbeExitMBB->transferSuccessorsAndUpdatePHIs(&MBB);
1387     }
1388     // bb.0
1389     {
1390       BuildMI(&MBB, DL, TII.get(isPPC64 ? PPC::SUBF8 : PPC::SUBF), ScratchReg)
1391           .addReg(SPReg)
1392           .addReg(FinalStackPtr);
1393       if (!HasRedZone)
1394         BuildMI(&MBB, DL, CopyInst, TempReg).addReg(SPReg).addReg(SPReg);
1395       BuildMI(&MBB, DL, TII.get(isPPC64 ? PPC::CMPDI : PPC::CMPWI), CRReg)
1396           .addReg(ScratchReg)
1397           .addImm(NegProbeSize);
1398       BuildMI(&MBB, DL, TII.get(PPC::BCC))
1399           .addImm(PPC::PRED_GE)
1400           .addReg(CRReg)
1401           .addMBB(ProbeExitMBB);
1402       MBB.addSuccessor(ProbeLoopBodyMBB);
1403       MBB.addSuccessor(ProbeExitMBB);
1404     }
1405     // bb.1
1406     {
1407       Register BackChainPointer = HasRedZone ? BPReg : TempReg;
1408       allocateAndProbe(*ProbeLoopBodyMBB, ProbeLoopBodyMBB->end(), NegProbeSize,
1409                        0, true /*UseDForm*/, BackChainPointer);
1410       BuildMI(ProbeLoopBodyMBB, DL, TII.get(isPPC64 ? PPC::ADDI8 : PPC::ADDI),
1411               ScratchReg)
1412           .addReg(ScratchReg)
1413           .addImm(-NegProbeSize);
1414       BuildMI(ProbeLoopBodyMBB, DL, TII.get(isPPC64 ? PPC::CMPDI : PPC::CMPWI),
1415               CRReg)
1416           .addReg(ScratchReg)
1417           .addImm(NegProbeSize);
1418       BuildMI(ProbeLoopBodyMBB, DL, TII.get(PPC::BCC))
1419           .addImm(PPC::PRED_LT)
1420           .addReg(CRReg)
1421           .addMBB(ProbeLoopBodyMBB);
1422       ProbeLoopBodyMBB->addSuccessor(ProbeExitMBB);
1423       ProbeLoopBodyMBB->addSuccessor(ProbeLoopBodyMBB);
1424     }
1425     // Update liveins.
1426     recomputeLiveIns(*ProbeLoopBodyMBB);
1427     recomputeLiveIns(*ProbeExitMBB);
1428     return ProbeExitMBB;
1429   };
1430   // For case HasBP && MaxAlign > 1, we have to realign the SP by performing
1431   // SP = SP - SP % MaxAlign, thus make the probe more like dynamic probe since
1432   // the offset subtracted from SP is determined by SP's runtime value.
1433   if (HasBP && MaxAlign > 1) {
1434     // Calculate final stack pointer.
1435     if (isPPC64)
1436       BuildMI(*CurrentMBB, {MI}, DL, TII.get(PPC::RLDICL), ScratchReg)
1437           .addReg(SPReg)
1438           .addImm(0)
1439           .addImm(64 - Log2(MaxAlign));
1440     else
1441       BuildMI(*CurrentMBB, {MI}, DL, TII.get(PPC::RLWINM), ScratchReg)
1442           .addReg(SPReg)
1443           .addImm(0)
1444           .addImm(32 - Log2(MaxAlign))
1445           .addImm(31);
1446     BuildMI(*CurrentMBB, {MI}, DL, TII.get(isPPC64 ? PPC::SUBF8 : PPC::SUBF),
1447             FPReg)
1448         .addReg(ScratchReg)
1449         .addReg(SPReg);
1450     MaterializeImm(*CurrentMBB, {MI}, NegFrameSize, ScratchReg);
1451     BuildMI(*CurrentMBB, {MI}, DL, TII.get(isPPC64 ? PPC::ADD8 : PPC::ADD4),
1452             FPReg)
1453         .addReg(ScratchReg)
1454         .addReg(FPReg);
1455     CurrentMBB = probeRealignedStack(*CurrentMBB, {MI}, ScratchReg, FPReg);
1456     if (needsCFI)
1457       buildDefCFAReg(*CurrentMBB, {MI}, FPReg);
1458   } else {
1459     // Initialize current frame pointer.
1460     BuildMI(*CurrentMBB, {MI}, DL, CopyInst, FPReg).addReg(SPReg).addReg(SPReg);
1461     // Use FPReg to calculate CFA.
1462     if (needsCFI)
1463       buildDefCFA(*CurrentMBB, {MI}, FPReg, 0);
1464     // Probe residual part.
1465     if (NegResidualSize) {
1466       bool ResidualUseDForm = CanUseDForm(NegResidualSize);
1467       if (!ResidualUseDForm)
1468         MaterializeImm(*CurrentMBB, {MI}, NegResidualSize, ScratchReg);
1469       allocateAndProbe(*CurrentMBB, {MI}, NegResidualSize, ScratchReg,
1470                        ResidualUseDForm, FPReg);
1471     }
1472     bool UseDForm = CanUseDForm(NegProbeSize);
1473     // If number of blocks is small, just probe them directly.
1474     if (NumBlocks < 3) {
1475       if (!UseDForm)
1476         MaterializeImm(*CurrentMBB, {MI}, NegProbeSize, ScratchReg);
1477       for (int i = 0; i < NumBlocks; ++i)
1478         allocateAndProbe(*CurrentMBB, {MI}, NegProbeSize, ScratchReg, UseDForm,
1479                          FPReg);
1480       if (needsCFI) {
1481         // Restore using SPReg to calculate CFA.
1482         buildDefCFAReg(*CurrentMBB, {MI}, SPReg);
1483       }
1484     } else {
1485       // Since CTR is a volatile register and current shrinkwrap implementation
1486       // won't choose an MBB in a loop as the PrologMBB, it's safe to synthesize a
1487       // CTR loop to probe.
1488       // Calculate trip count and stores it in CTRReg.
1489       MaterializeImm(*CurrentMBB, {MI}, NumBlocks, ScratchReg);
1490       BuildMI(*CurrentMBB, {MI}, DL, TII.get(isPPC64 ? PPC::MTCTR8 : PPC::MTCTR))
1491           .addReg(ScratchReg, RegState::Kill);
1492       if (!UseDForm)
1493         MaterializeImm(*CurrentMBB, {MI}, NegProbeSize, ScratchReg);
1494       // Create MBBs of the loop.
1495       MachineFunction::iterator MBBInsertPoint =
1496           std::next(CurrentMBB->getIterator());
1497       MachineBasicBlock *LoopMBB = MF.CreateMachineBasicBlock(ProbedBB);
1498       MF.insert(MBBInsertPoint, LoopMBB);
1499       MachineBasicBlock *ExitMBB = MF.CreateMachineBasicBlock(ProbedBB);
1500       MF.insert(MBBInsertPoint, ExitMBB);
1501       // Synthesize the loop body.
1502       allocateAndProbe(*LoopMBB, LoopMBB->end(), NegProbeSize, ScratchReg,
1503                        UseDForm, FPReg);
1504       BuildMI(LoopMBB, DL, TII.get(isPPC64 ? PPC::BDNZ8 : PPC::BDNZ))
1505           .addMBB(LoopMBB);
1506       LoopMBB->addSuccessor(ExitMBB);
1507       LoopMBB->addSuccessor(LoopMBB);
1508       // Synthesize the exit MBB.
1509       ExitMBB->splice(ExitMBB->end(), CurrentMBB,
1510                       std::next(MachineBasicBlock::iterator(MI)),
1511                       CurrentMBB->end());
1512       ExitMBB->transferSuccessorsAndUpdatePHIs(CurrentMBB);
1513       CurrentMBB->addSuccessor(LoopMBB);
1514       if (needsCFI) {
1515         // Restore using SPReg to calculate CFA.
1516         buildDefCFAReg(*ExitMBB, ExitMBB->begin(), SPReg);
1517       }
1518       // Update liveins.
1519       recomputeLiveIns(*LoopMBB);
1520       recomputeLiveIns(*ExitMBB);
1521     }
1522   }
1523   ++NumPrologProbed;
1524   MI.eraseFromParent();
1525 }
1526 
1527 void PPCFrameLowering::emitEpilogue(MachineFunction &MF,
1528                                     MachineBasicBlock &MBB) const {
1529   MachineBasicBlock::iterator MBBI = MBB.getFirstTerminator();
1530   DebugLoc dl;
1531 
1532   if (MBBI != MBB.end())
1533     dl = MBBI->getDebugLoc();
1534 
1535   const PPCInstrInfo &TII = *Subtarget.getInstrInfo();
1536   const PPCRegisterInfo *RegInfo = Subtarget.getRegisterInfo();
1537 
1538   // Get alignment info so we know how to restore the SP.
1539   const MachineFrameInfo &MFI = MF.getFrameInfo();
1540 
1541   // Get the number of bytes allocated from the FrameInfo.
1542   int64_t FrameSize = MFI.getStackSize();
1543 
1544   // Get processor type.
1545   bool isPPC64 = Subtarget.isPPC64();
1546 
1547   // Check if the link register (LR) has been saved.
1548   PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>();
1549   bool MustSaveLR = FI->mustSaveLR();
1550   const SmallVectorImpl<Register> &MustSaveCRs = FI->getMustSaveCRs();
1551   bool MustSaveCR = !MustSaveCRs.empty();
1552   // Do we have a frame pointer and/or base pointer for this function?
1553   bool HasFP = hasFP(MF);
1554   bool HasBP = RegInfo->hasBasePointer(MF);
1555   bool HasRedZone = Subtarget.isPPC64() || !Subtarget.isSVR4ABI();
1556   bool HasROPProtect = Subtarget.hasROPProtect();
1557   bool HasPrivileged = Subtarget.hasPrivileged();
1558 
1559   Register SPReg      = isPPC64 ? PPC::X1  : PPC::R1;
1560   Register BPReg = RegInfo->getBaseRegister(MF);
1561   Register FPReg      = isPPC64 ? PPC::X31 : PPC::R31;
1562   Register ScratchReg;
1563   Register TempReg     = isPPC64 ? PPC::X12 : PPC::R12; // another scratch reg
1564   const MCInstrDesc& MTLRInst = TII.get( isPPC64 ? PPC::MTLR8
1565                                                  : PPC::MTLR );
1566   const MCInstrDesc& LoadInst = TII.get( isPPC64 ? PPC::LD
1567                                                  : PPC::LWZ );
1568   const MCInstrDesc& LoadImmShiftedInst = TII.get( isPPC64 ? PPC::LIS8
1569                                                            : PPC::LIS );
1570   const MCInstrDesc& OrInst = TII.get(isPPC64 ? PPC::OR8
1571                                               : PPC::OR );
1572   const MCInstrDesc& OrImmInst = TII.get( isPPC64 ? PPC::ORI8
1573                                                   : PPC::ORI );
1574   const MCInstrDesc& AddImmInst = TII.get( isPPC64 ? PPC::ADDI8
1575                                                    : PPC::ADDI );
1576   const MCInstrDesc& AddInst = TII.get( isPPC64 ? PPC::ADD8
1577                                                 : PPC::ADD4 );
1578   const MCInstrDesc& LoadWordInst = TII.get( isPPC64 ? PPC::LWZ8
1579                                                      : PPC::LWZ);
1580   const MCInstrDesc& MoveToCRInst = TII.get( isPPC64 ? PPC::MTOCRF8
1581                                                      : PPC::MTOCRF);
1582   const MCInstrDesc &HashChk =
1583       TII.get(isPPC64 ? (HasPrivileged ? PPC::HASHCHKP8 : PPC::HASHCHK8)
1584                       : (HasPrivileged ? PPC::HASHCHKP : PPC::HASHCHK));
1585   int64_t LROffset = getReturnSaveOffset();
1586 
1587   int64_t FPOffset = 0;
1588 
1589   // Using the same bool variable as below to suppress compiler warnings.
1590   bool SingleScratchReg = findScratchRegister(&MBB, true, false, &ScratchReg,
1591                                               &TempReg);
1592   assert(SingleScratchReg &&
1593          "Could not find an available scratch register");
1594 
1595   SingleScratchReg = ScratchReg == TempReg;
1596 
1597   if (HasFP) {
1598     int FPIndex = FI->getFramePointerSaveIndex();
1599     assert(FPIndex && "No Frame Pointer Save Slot!");
1600     FPOffset = MFI.getObjectOffset(FPIndex);
1601   }
1602 
1603   int64_t BPOffset = 0;
1604   if (HasBP) {
1605       int BPIndex = FI->getBasePointerSaveIndex();
1606       assert(BPIndex && "No Base Pointer Save Slot!");
1607       BPOffset = MFI.getObjectOffset(BPIndex);
1608   }
1609 
1610   int64_t PBPOffset = 0;
1611   if (FI->usesPICBase()) {
1612     int PBPIndex = FI->getPICBasePointerSaveIndex();
1613     assert(PBPIndex && "No PIC Base Pointer Save Slot!");
1614     PBPOffset = MFI.getObjectOffset(PBPIndex);
1615   }
1616 
1617   bool IsReturnBlock = (MBBI != MBB.end() && MBBI->isReturn());
1618 
1619   if (IsReturnBlock) {
1620     unsigned RetOpcode = MBBI->getOpcode();
1621     bool UsesTCRet =  RetOpcode == PPC::TCRETURNri ||
1622                       RetOpcode == PPC::TCRETURNdi ||
1623                       RetOpcode == PPC::TCRETURNai ||
1624                       RetOpcode == PPC::TCRETURNri8 ||
1625                       RetOpcode == PPC::TCRETURNdi8 ||
1626                       RetOpcode == PPC::TCRETURNai8;
1627 
1628     if (UsesTCRet) {
1629       int MaxTCRetDelta = FI->getTailCallSPDelta();
1630       MachineOperand &StackAdjust = MBBI->getOperand(1);
1631       assert(StackAdjust.isImm() && "Expecting immediate value.");
1632       // Adjust stack pointer.
1633       int StackAdj = StackAdjust.getImm();
1634       int Delta = StackAdj - MaxTCRetDelta;
1635       assert((Delta >= 0) && "Delta must be positive");
1636       if (MaxTCRetDelta>0)
1637         FrameSize += (StackAdj +Delta);
1638       else
1639         FrameSize += StackAdj;
1640     }
1641   }
1642 
1643   // Frames of 32KB & larger require special handling because they cannot be
1644   // indexed into with a simple LD/LWZ immediate offset operand.
1645   bool isLargeFrame = !isInt<16>(FrameSize);
1646 
1647   // On targets without red zone, the SP needs to be restored last, so that
1648   // all live contents of the stack frame are upwards of the SP. This means
1649   // that we cannot restore SP just now, since there may be more registers
1650   // to restore from the stack frame (e.g. R31). If the frame size is not
1651   // a simple immediate value, we will need a spare register to hold the
1652   // restored SP. If the frame size is known and small, we can simply adjust
1653   // the offsets of the registers to be restored, and still use SP to restore
1654   // them. In such case, the final update of SP will be to add the frame
1655   // size to it.
1656   // To simplify the code, set RBReg to the base register used to restore
1657   // values from the stack, and set SPAdd to the value that needs to be added
1658   // to the SP at the end. The default values are as if red zone was present.
1659   unsigned RBReg = SPReg;
1660   uint64_t SPAdd = 0;
1661 
1662   // Check if we can move the stack update instruction up the epilogue
1663   // past the callee saves. This will allow the move to LR instruction
1664   // to be executed before the restores of the callee saves which means
1665   // that the callee saves can hide the latency from the MTLR instrcution.
1666   MachineBasicBlock::iterator StackUpdateLoc = MBBI;
1667   if (stackUpdateCanBeMoved(MF)) {
1668     const std::vector<CalleeSavedInfo> & Info = MFI.getCalleeSavedInfo();
1669     for (CalleeSavedInfo CSI : Info) {
1670       // If the callee saved register is spilled to another register abort the
1671       // stack update movement.
1672       if (CSI.isSpilledToReg()) {
1673         StackUpdateLoc = MBBI;
1674         break;
1675       }
1676       int FrIdx = CSI.getFrameIdx();
1677       // If the frame index is not negative the callee saved info belongs to a
1678       // stack object that is not a fixed stack object. We ignore non-fixed
1679       // stack objects because we won't move the update of the stack pointer
1680       // past them.
1681       if (FrIdx >= 0)
1682         continue;
1683 
1684       if (MFI.isFixedObjectIndex(FrIdx) && MFI.getObjectOffset(FrIdx) < 0)
1685         StackUpdateLoc--;
1686       else {
1687         // Abort the operation as we can't update all CSR restores.
1688         StackUpdateLoc = MBBI;
1689         break;
1690       }
1691     }
1692   }
1693 
1694   if (FrameSize) {
1695     // In the prologue, the loaded (or persistent) stack pointer value is
1696     // offset by the STDU/STDUX/STWU/STWUX instruction. For targets with red
1697     // zone add this offset back now.
1698 
1699     // If the function has a base pointer, the stack pointer has been copied
1700     // to it so we can restore it by copying in the other direction.
1701     if (HasRedZone && HasBP) {
1702       BuildMI(MBB, MBBI, dl, OrInst, RBReg).
1703         addReg(BPReg).
1704         addReg(BPReg);
1705     }
1706     // If this function contained a fastcc call and GuaranteedTailCallOpt is
1707     // enabled (=> hasFastCall()==true) the fastcc call might contain a tail
1708     // call which invalidates the stack pointer value in SP(0). So we use the
1709     // value of R31 in this case. Similar situation exists with setjmp.
1710     else if (FI->hasFastCall() || MF.exposesReturnsTwice()) {
1711       assert(HasFP && "Expecting a valid frame pointer.");
1712       if (!HasRedZone)
1713         RBReg = FPReg;
1714       if (!isLargeFrame) {
1715         BuildMI(MBB, MBBI, dl, AddImmInst, RBReg)
1716           .addReg(FPReg).addImm(FrameSize);
1717       } else {
1718         TII.materializeImmPostRA(MBB, MBBI, dl, ScratchReg, FrameSize);
1719         BuildMI(MBB, MBBI, dl, AddInst)
1720           .addReg(RBReg)
1721           .addReg(FPReg)
1722           .addReg(ScratchReg);
1723       }
1724     } else if (!isLargeFrame && !HasBP && !MFI.hasVarSizedObjects()) {
1725       if (HasRedZone) {
1726         BuildMI(MBB, StackUpdateLoc, dl, AddImmInst, SPReg)
1727           .addReg(SPReg)
1728           .addImm(FrameSize);
1729       } else {
1730         // Make sure that adding FrameSize will not overflow the max offset
1731         // size.
1732         assert(FPOffset <= 0 && BPOffset <= 0 && PBPOffset <= 0 &&
1733                "Local offsets should be negative");
1734         SPAdd = FrameSize;
1735         FPOffset += FrameSize;
1736         BPOffset += FrameSize;
1737         PBPOffset += FrameSize;
1738       }
1739     } else {
1740       // We don't want to use ScratchReg as a base register, because it
1741       // could happen to be R0. Use FP instead, but make sure to preserve it.
1742       if (!HasRedZone) {
1743         // If FP is not saved, copy it to ScratchReg.
1744         if (!HasFP)
1745           BuildMI(MBB, MBBI, dl, OrInst, ScratchReg)
1746             .addReg(FPReg)
1747             .addReg(FPReg);
1748         RBReg = FPReg;
1749       }
1750       BuildMI(MBB, StackUpdateLoc, dl, LoadInst, RBReg)
1751         .addImm(0)
1752         .addReg(SPReg);
1753     }
1754   }
1755   assert(RBReg != ScratchReg && "Should have avoided ScratchReg");
1756   // If there is no red zone, ScratchReg may be needed for holding a useful
1757   // value (although not the base register). Make sure it is not overwritten
1758   // too early.
1759 
1760   // If we need to restore both the LR and the CR and we only have one
1761   // available scratch register, we must do them one at a time.
1762   if (MustSaveCR && SingleScratchReg && MustSaveLR) {
1763     // Here TempReg == ScratchReg, and in the absence of red zone ScratchReg
1764     // is live here.
1765     assert(HasRedZone && "Expecting red zone");
1766     BuildMI(MBB, MBBI, dl, LoadWordInst, TempReg)
1767       .addImm(CRSaveOffset)
1768       .addReg(SPReg);
1769     for (unsigned i = 0, e = MustSaveCRs.size(); i != e; ++i)
1770       BuildMI(MBB, MBBI, dl, MoveToCRInst, MustSaveCRs[i])
1771         .addReg(TempReg, getKillRegState(i == e-1));
1772   }
1773 
1774   // Delay restoring of the LR if ScratchReg is needed. This is ok, since
1775   // LR is stored in the caller's stack frame. ScratchReg will be needed
1776   // if RBReg is anything other than SP. We shouldn't use ScratchReg as
1777   // a base register anyway, because it may happen to be R0.
1778   bool LoadedLR = false;
1779   if (MustSaveLR && RBReg == SPReg && isInt<16>(LROffset+SPAdd)) {
1780     BuildMI(MBB, StackUpdateLoc, dl, LoadInst, ScratchReg)
1781       .addImm(LROffset+SPAdd)
1782       .addReg(RBReg);
1783     LoadedLR = true;
1784   }
1785 
1786   if (MustSaveCR && !(SingleScratchReg && MustSaveLR)) {
1787     assert(RBReg == SPReg && "Should be using SP as a base register");
1788     BuildMI(MBB, MBBI, dl, LoadWordInst, TempReg)
1789       .addImm(CRSaveOffset)
1790       .addReg(RBReg);
1791   }
1792 
1793   if (HasFP) {
1794     // If there is red zone, restore FP directly, since SP has already been
1795     // restored. Otherwise, restore the value of FP into ScratchReg.
1796     if (HasRedZone || RBReg == SPReg)
1797       BuildMI(MBB, MBBI, dl, LoadInst, FPReg)
1798         .addImm(FPOffset)
1799         .addReg(SPReg);
1800     else
1801       BuildMI(MBB, MBBI, dl, LoadInst, ScratchReg)
1802         .addImm(FPOffset)
1803         .addReg(RBReg);
1804   }
1805 
1806   if (FI->usesPICBase())
1807     BuildMI(MBB, MBBI, dl, LoadInst, PPC::R30)
1808       .addImm(PBPOffset)
1809       .addReg(RBReg);
1810 
1811   if (HasBP)
1812     BuildMI(MBB, MBBI, dl, LoadInst, BPReg)
1813       .addImm(BPOffset)
1814       .addReg(RBReg);
1815 
1816   // There is nothing more to be loaded from the stack, so now we can
1817   // restore SP: SP = RBReg + SPAdd.
1818   if (RBReg != SPReg || SPAdd != 0) {
1819     assert(!HasRedZone && "This should not happen with red zone");
1820     // If SPAdd is 0, generate a copy.
1821     if (SPAdd == 0)
1822       BuildMI(MBB, MBBI, dl, OrInst, SPReg)
1823         .addReg(RBReg)
1824         .addReg(RBReg);
1825     else
1826       BuildMI(MBB, MBBI, dl, AddImmInst, SPReg)
1827         .addReg(RBReg)
1828         .addImm(SPAdd);
1829 
1830     assert(RBReg != ScratchReg && "Should be using FP or SP as base register");
1831     if (RBReg == FPReg)
1832       BuildMI(MBB, MBBI, dl, OrInst, FPReg)
1833         .addReg(ScratchReg)
1834         .addReg(ScratchReg);
1835 
1836     // Now load the LR from the caller's stack frame.
1837     if (MustSaveLR && !LoadedLR)
1838       BuildMI(MBB, MBBI, dl, LoadInst, ScratchReg)
1839         .addImm(LROffset)
1840         .addReg(SPReg);
1841   }
1842 
1843   if (MustSaveCR &&
1844       !(SingleScratchReg && MustSaveLR))
1845     for (unsigned i = 0, e = MustSaveCRs.size(); i != e; ++i)
1846       BuildMI(MBB, MBBI, dl, MoveToCRInst, MustSaveCRs[i])
1847         .addReg(TempReg, getKillRegState(i == e-1));
1848 
1849   if (MustSaveLR) {
1850     // If ROP protection is required, an extra instruction is added to compute a
1851     // hash and then compare it to the hash stored in the prologue.
1852     if (HasROPProtect) {
1853       const int SaveIndex = FI->getROPProtectionHashSaveIndex();
1854       const int64_t ImmOffset = MFI.getObjectOffset(SaveIndex);
1855       assert((ImmOffset <= -8 && ImmOffset >= -512) &&
1856              "ROP hash check location offset out of range.");
1857       assert(((ImmOffset & 0x7) == 0) &&
1858              "ROP hash check location offset must be 8 byte aligned.");
1859       BuildMI(MBB, StackUpdateLoc, dl, HashChk)
1860           .addReg(ScratchReg)
1861           .addImm(ImmOffset)
1862           .addReg(SPReg);
1863     }
1864     BuildMI(MBB, StackUpdateLoc, dl, MTLRInst).addReg(ScratchReg);
1865   }
1866 
1867   // Callee pop calling convention. Pop parameter/linkage area. Used for tail
1868   // call optimization
1869   if (IsReturnBlock) {
1870     unsigned RetOpcode = MBBI->getOpcode();
1871     if (MF.getTarget().Options.GuaranteedTailCallOpt &&
1872         (RetOpcode == PPC::BLR || RetOpcode == PPC::BLR8) &&
1873         MF.getFunction().getCallingConv() == CallingConv::Fast) {
1874       PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>();
1875       unsigned CallerAllocatedAmt = FI->getMinReservedArea();
1876 
1877       if (CallerAllocatedAmt && isInt<16>(CallerAllocatedAmt)) {
1878         BuildMI(MBB, MBBI, dl, AddImmInst, SPReg)
1879           .addReg(SPReg).addImm(CallerAllocatedAmt);
1880       } else {
1881         BuildMI(MBB, MBBI, dl, LoadImmShiftedInst, ScratchReg)
1882           .addImm(CallerAllocatedAmt >> 16);
1883         BuildMI(MBB, MBBI, dl, OrImmInst, ScratchReg)
1884           .addReg(ScratchReg, RegState::Kill)
1885           .addImm(CallerAllocatedAmt & 0xFFFF);
1886         BuildMI(MBB, MBBI, dl, AddInst)
1887           .addReg(SPReg)
1888           .addReg(FPReg)
1889           .addReg(ScratchReg);
1890       }
1891     } else {
1892       createTailCallBranchInstr(MBB);
1893     }
1894   }
1895 }
1896 
1897 void PPCFrameLowering::createTailCallBranchInstr(MachineBasicBlock &MBB) const {
1898   MachineBasicBlock::iterator MBBI = MBB.getFirstTerminator();
1899 
1900   // If we got this far a first terminator should exist.
1901   assert(MBBI != MBB.end() && "Failed to find the first terminator.");
1902 
1903   DebugLoc dl = MBBI->getDebugLoc();
1904   const PPCInstrInfo &TII = *Subtarget.getInstrInfo();
1905 
1906   // Create branch instruction for pseudo tail call return instruction.
1907   // The TCRETURNdi variants are direct calls. Valid targets for those are
1908   // MO_GlobalAddress operands as well as MO_ExternalSymbol with PC-Rel
1909   // since we can tail call external functions with PC-Rel (i.e. we don't need
1910   // to worry about different TOC pointers). Some of the external functions will
1911   // be MO_GlobalAddress while others like memcpy for example, are going to
1912   // be MO_ExternalSymbol.
1913   unsigned RetOpcode = MBBI->getOpcode();
1914   if (RetOpcode == PPC::TCRETURNdi) {
1915     MBBI = MBB.getLastNonDebugInstr();
1916     MachineOperand &JumpTarget = MBBI->getOperand(0);
1917     if (JumpTarget.isGlobal())
1918       BuildMI(MBB, MBBI, dl, TII.get(PPC::TAILB)).
1919         addGlobalAddress(JumpTarget.getGlobal(), JumpTarget.getOffset());
1920     else if (JumpTarget.isSymbol())
1921       BuildMI(MBB, MBBI, dl, TII.get(PPC::TAILB)).
1922         addExternalSymbol(JumpTarget.getSymbolName());
1923     else
1924       llvm_unreachable("Expecting Global or External Symbol");
1925   } else if (RetOpcode == PPC::TCRETURNri) {
1926     MBBI = MBB.getLastNonDebugInstr();
1927     assert(MBBI->getOperand(0).isReg() && "Expecting register operand.");
1928     BuildMI(MBB, MBBI, dl, TII.get(PPC::TAILBCTR));
1929   } else if (RetOpcode == PPC::TCRETURNai) {
1930     MBBI = MBB.getLastNonDebugInstr();
1931     MachineOperand &JumpTarget = MBBI->getOperand(0);
1932     BuildMI(MBB, MBBI, dl, TII.get(PPC::TAILBA)).addImm(JumpTarget.getImm());
1933   } else if (RetOpcode == PPC::TCRETURNdi8) {
1934     MBBI = MBB.getLastNonDebugInstr();
1935     MachineOperand &JumpTarget = MBBI->getOperand(0);
1936     if (JumpTarget.isGlobal())
1937       BuildMI(MBB, MBBI, dl, TII.get(PPC::TAILB8)).
1938         addGlobalAddress(JumpTarget.getGlobal(), JumpTarget.getOffset());
1939     else if (JumpTarget.isSymbol())
1940       BuildMI(MBB, MBBI, dl, TII.get(PPC::TAILB8)).
1941         addExternalSymbol(JumpTarget.getSymbolName());
1942     else
1943       llvm_unreachable("Expecting Global or External Symbol");
1944   } else if (RetOpcode == PPC::TCRETURNri8) {
1945     MBBI = MBB.getLastNonDebugInstr();
1946     assert(MBBI->getOperand(0).isReg() && "Expecting register operand.");
1947     BuildMI(MBB, MBBI, dl, TII.get(PPC::TAILBCTR8));
1948   } else if (RetOpcode == PPC::TCRETURNai8) {
1949     MBBI = MBB.getLastNonDebugInstr();
1950     MachineOperand &JumpTarget = MBBI->getOperand(0);
1951     BuildMI(MBB, MBBI, dl, TII.get(PPC::TAILBA8)).addImm(JumpTarget.getImm());
1952   }
1953 }
1954 
1955 void PPCFrameLowering::determineCalleeSaves(MachineFunction &MF,
1956                                             BitVector &SavedRegs,
1957                                             RegScavenger *RS) const {
1958   TargetFrameLowering::determineCalleeSaves(MF, SavedRegs, RS);
1959 
1960   const PPCRegisterInfo *RegInfo = Subtarget.getRegisterInfo();
1961 
1962   // Do not explicitly save the callee saved VSRp registers.
1963   // The individual VSR subregisters will be saved instead.
1964   SavedRegs.reset(PPC::VSRp26);
1965   SavedRegs.reset(PPC::VSRp27);
1966   SavedRegs.reset(PPC::VSRp28);
1967   SavedRegs.reset(PPC::VSRp29);
1968   SavedRegs.reset(PPC::VSRp30);
1969   SavedRegs.reset(PPC::VSRp31);
1970 
1971   //  Save and clear the LR state.
1972   PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>();
1973   unsigned LR = RegInfo->getRARegister();
1974   FI->setMustSaveLR(MustSaveLR(MF, LR));
1975   SavedRegs.reset(LR);
1976 
1977   //  Save R31 if necessary
1978   int FPSI = FI->getFramePointerSaveIndex();
1979   const bool isPPC64 = Subtarget.isPPC64();
1980   MachineFrameInfo &MFI = MF.getFrameInfo();
1981 
1982   // If the frame pointer save index hasn't been defined yet.
1983   if (!FPSI && needsFP(MF)) {
1984     // Find out what the fix offset of the frame pointer save area.
1985     int FPOffset = getFramePointerSaveOffset();
1986     // Allocate the frame index for frame pointer save area.
1987     FPSI = MFI.CreateFixedObject(isPPC64? 8 : 4, FPOffset, true);
1988     // Save the result.
1989     FI->setFramePointerSaveIndex(FPSI);
1990   }
1991 
1992   int BPSI = FI->getBasePointerSaveIndex();
1993   if (!BPSI && RegInfo->hasBasePointer(MF)) {
1994     int BPOffset = getBasePointerSaveOffset();
1995     // Allocate the frame index for the base pointer save area.
1996     BPSI = MFI.CreateFixedObject(isPPC64? 8 : 4, BPOffset, true);
1997     // Save the result.
1998     FI->setBasePointerSaveIndex(BPSI);
1999   }
2000 
2001   // Reserve stack space for the PIC Base register (R30).
2002   // Only used in SVR4 32-bit.
2003   if (FI->usesPICBase()) {
2004     int PBPSI = MFI.CreateFixedObject(4, -8, true);
2005     FI->setPICBasePointerSaveIndex(PBPSI);
2006   }
2007 
2008   // Make sure we don't explicitly spill r31, because, for example, we have
2009   // some inline asm which explicitly clobbers it, when we otherwise have a
2010   // frame pointer and are using r31's spill slot for the prologue/epilogue
2011   // code. Same goes for the base pointer and the PIC base register.
2012   if (needsFP(MF))
2013     SavedRegs.reset(isPPC64 ? PPC::X31 : PPC::R31);
2014   if (RegInfo->hasBasePointer(MF))
2015     SavedRegs.reset(RegInfo->getBaseRegister(MF));
2016   if (FI->usesPICBase())
2017     SavedRegs.reset(PPC::R30);
2018 
2019   // Reserve stack space to move the linkage area to in case of a tail call.
2020   int TCSPDelta = 0;
2021   if (MF.getTarget().Options.GuaranteedTailCallOpt &&
2022       (TCSPDelta = FI->getTailCallSPDelta()) < 0) {
2023     MFI.CreateFixedObject(-1 * TCSPDelta, TCSPDelta, true);
2024   }
2025 
2026   // Allocate the nonvolatile CR spill slot iff the function uses CR 2, 3, or 4.
2027   // For 64-bit SVR4, and all flavors of AIX we create a FixedStack
2028   // object at the offset of the CR-save slot in the linkage area. The actual
2029   // save and restore of the condition register will be created as part of the
2030   // prologue and epilogue insertion, but the FixedStack object is needed to
2031   // keep the CalleSavedInfo valid.
2032   if ((SavedRegs.test(PPC::CR2) || SavedRegs.test(PPC::CR3) ||
2033        SavedRegs.test(PPC::CR4))) {
2034     const uint64_t SpillSize = 4; // Condition register is always 4 bytes.
2035     const int64_t SpillOffset =
2036         Subtarget.isPPC64() ? 8 : Subtarget.isAIXABI() ? 4 : -4;
2037     int FrameIdx =
2038         MFI.CreateFixedObject(SpillSize, SpillOffset,
2039                               /* IsImmutable */ true, /* IsAliased */ false);
2040     FI->setCRSpillFrameIndex(FrameIdx);
2041   }
2042 }
2043 
2044 void PPCFrameLowering::processFunctionBeforeFrameFinalized(MachineFunction &MF,
2045                                                        RegScavenger *RS) const {
2046   // Get callee saved register information.
2047   MachineFrameInfo &MFI = MF.getFrameInfo();
2048   const std::vector<CalleeSavedInfo> &CSI = MFI.getCalleeSavedInfo();
2049 
2050   // If the function is shrink-wrapped, and if the function has a tail call, the
2051   // tail call might not be in the new RestoreBlock, so real branch instruction
2052   // won't be generated by emitEpilogue(), because shrink-wrap has chosen new
2053   // RestoreBlock. So we handle this case here.
2054   if (MFI.getSavePoint() && MFI.hasTailCall()) {
2055     MachineBasicBlock *RestoreBlock = MFI.getRestorePoint();
2056     for (MachineBasicBlock &MBB : MF) {
2057       if (MBB.isReturnBlock() && (&MBB) != RestoreBlock)
2058         createTailCallBranchInstr(MBB);
2059     }
2060   }
2061 
2062   // Early exit if no callee saved registers are modified!
2063   if (CSI.empty() && !needsFP(MF)) {
2064     addScavengingSpillSlot(MF, RS);
2065     return;
2066   }
2067 
2068   unsigned MinGPR = PPC::R31;
2069   unsigned MinG8R = PPC::X31;
2070   unsigned MinFPR = PPC::F31;
2071   unsigned MinVR = Subtarget.hasSPE() ? PPC::S31 : PPC::V31;
2072 
2073   bool HasGPSaveArea = false;
2074   bool HasG8SaveArea = false;
2075   bool HasFPSaveArea = false;
2076   bool HasVRSaveArea = false;
2077 
2078   SmallVector<CalleeSavedInfo, 18> GPRegs;
2079   SmallVector<CalleeSavedInfo, 18> G8Regs;
2080   SmallVector<CalleeSavedInfo, 18> FPRegs;
2081   SmallVector<CalleeSavedInfo, 18> VRegs;
2082 
2083   for (const CalleeSavedInfo &I : CSI) {
2084     Register Reg = I.getReg();
2085     assert((!MF.getInfo<PPCFunctionInfo>()->mustSaveTOC() ||
2086             (Reg != PPC::X2 && Reg != PPC::R2)) &&
2087            "Not expecting to try to spill R2 in a function that must save TOC");
2088     if (PPC::GPRCRegClass.contains(Reg)) {
2089       HasGPSaveArea = true;
2090 
2091       GPRegs.push_back(I);
2092 
2093       if (Reg < MinGPR) {
2094         MinGPR = Reg;
2095       }
2096     } else if (PPC::G8RCRegClass.contains(Reg)) {
2097       HasG8SaveArea = true;
2098 
2099       G8Regs.push_back(I);
2100 
2101       if (Reg < MinG8R) {
2102         MinG8R = Reg;
2103       }
2104     } else if (PPC::F8RCRegClass.contains(Reg)) {
2105       HasFPSaveArea = true;
2106 
2107       FPRegs.push_back(I);
2108 
2109       if (Reg < MinFPR) {
2110         MinFPR = Reg;
2111       }
2112     } else if (PPC::CRBITRCRegClass.contains(Reg) ||
2113                PPC::CRRCRegClass.contains(Reg)) {
2114       ; // do nothing, as we already know whether CRs are spilled
2115     } else if (PPC::VRRCRegClass.contains(Reg) ||
2116                PPC::SPERCRegClass.contains(Reg)) {
2117       // Altivec and SPE are mutually exclusive, but have the same stack
2118       // alignment requirements, so overload the save area for both cases.
2119       HasVRSaveArea = true;
2120 
2121       VRegs.push_back(I);
2122 
2123       if (Reg < MinVR) {
2124         MinVR = Reg;
2125       }
2126     } else {
2127       llvm_unreachable("Unknown RegisterClass!");
2128     }
2129   }
2130 
2131   PPCFunctionInfo *PFI = MF.getInfo<PPCFunctionInfo>();
2132   const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo();
2133 
2134   int64_t LowerBound = 0;
2135 
2136   // Take into account stack space reserved for tail calls.
2137   int TCSPDelta = 0;
2138   if (MF.getTarget().Options.GuaranteedTailCallOpt &&
2139       (TCSPDelta = PFI->getTailCallSPDelta()) < 0) {
2140     LowerBound = TCSPDelta;
2141   }
2142 
2143   // The Floating-point register save area is right below the back chain word
2144   // of the previous stack frame.
2145   if (HasFPSaveArea) {
2146     for (unsigned i = 0, e = FPRegs.size(); i != e; ++i) {
2147       int FI = FPRegs[i].getFrameIdx();
2148 
2149       MFI.setObjectOffset(FI, LowerBound + MFI.getObjectOffset(FI));
2150     }
2151 
2152     LowerBound -= (31 - TRI->getEncodingValue(MinFPR) + 1) * 8;
2153   }
2154 
2155   // Check whether the frame pointer register is allocated. If so, make sure it
2156   // is spilled to the correct offset.
2157   if (needsFP(MF)) {
2158     int FI = PFI->getFramePointerSaveIndex();
2159     assert(FI && "No Frame Pointer Save Slot!");
2160     MFI.setObjectOffset(FI, LowerBound + MFI.getObjectOffset(FI));
2161     // FP is R31/X31, so no need to update MinGPR/MinG8R.
2162     HasGPSaveArea = true;
2163   }
2164 
2165   if (PFI->usesPICBase()) {
2166     int FI = PFI->getPICBasePointerSaveIndex();
2167     assert(FI && "No PIC Base Pointer Save Slot!");
2168     MFI.setObjectOffset(FI, LowerBound + MFI.getObjectOffset(FI));
2169 
2170     MinGPR = std::min<unsigned>(MinGPR, PPC::R30);
2171     HasGPSaveArea = true;
2172   }
2173 
2174   const PPCRegisterInfo *RegInfo = Subtarget.getRegisterInfo();
2175   if (RegInfo->hasBasePointer(MF)) {
2176     int FI = PFI->getBasePointerSaveIndex();
2177     assert(FI && "No Base Pointer Save Slot!");
2178     MFI.setObjectOffset(FI, LowerBound + MFI.getObjectOffset(FI));
2179 
2180     Register BP = RegInfo->getBaseRegister(MF);
2181     if (PPC::G8RCRegClass.contains(BP)) {
2182       MinG8R = std::min<unsigned>(MinG8R, BP);
2183       HasG8SaveArea = true;
2184     } else if (PPC::GPRCRegClass.contains(BP)) {
2185       MinGPR = std::min<unsigned>(MinGPR, BP);
2186       HasGPSaveArea = true;
2187     }
2188   }
2189 
2190   // General register save area starts right below the Floating-point
2191   // register save area.
2192   if (HasGPSaveArea || HasG8SaveArea) {
2193     // Move general register save area spill slots down, taking into account
2194     // the size of the Floating-point register save area.
2195     for (unsigned i = 0, e = GPRegs.size(); i != e; ++i) {
2196       if (!GPRegs[i].isSpilledToReg()) {
2197         int FI = GPRegs[i].getFrameIdx();
2198         MFI.setObjectOffset(FI, LowerBound + MFI.getObjectOffset(FI));
2199       }
2200     }
2201 
2202     // Move general register save area spill slots down, taking into account
2203     // the size of the Floating-point register save area.
2204     for (unsigned i = 0, e = G8Regs.size(); i != e; ++i) {
2205       if (!G8Regs[i].isSpilledToReg()) {
2206         int FI = G8Regs[i].getFrameIdx();
2207         MFI.setObjectOffset(FI, LowerBound + MFI.getObjectOffset(FI));
2208       }
2209     }
2210 
2211     unsigned MinReg =
2212       std::min<unsigned>(TRI->getEncodingValue(MinGPR),
2213                          TRI->getEncodingValue(MinG8R));
2214 
2215     const unsigned GPRegSize = Subtarget.isPPC64() ? 8 : 4;
2216     LowerBound -= (31 - MinReg + 1) * GPRegSize;
2217   }
2218 
2219   // For 32-bit only, the CR save area is below the general register
2220   // save area.  For 64-bit SVR4, the CR save area is addressed relative
2221   // to the stack pointer and hence does not need an adjustment here.
2222   // Only CR2 (the first nonvolatile spilled) has an associated frame
2223   // index so that we have a single uniform save area.
2224   if (spillsCR(MF) && Subtarget.is32BitELFABI()) {
2225     // Adjust the frame index of the CR spill slot.
2226     for (const auto &CSInfo : CSI) {
2227       if (CSInfo.getReg() == PPC::CR2) {
2228         int FI = CSInfo.getFrameIdx();
2229         MFI.setObjectOffset(FI, LowerBound + MFI.getObjectOffset(FI));
2230         break;
2231       }
2232     }
2233 
2234     LowerBound -= 4; // The CR save area is always 4 bytes long.
2235   }
2236 
2237   // Both Altivec and SPE have the same alignment and padding requirements
2238   // within the stack frame.
2239   if (HasVRSaveArea) {
2240     // Insert alignment padding, we need 16-byte alignment. Note: for positive
2241     // number the alignment formula is : y = (x + (n-1)) & (~(n-1)). But since
2242     // we are using negative number here (the stack grows downward). We should
2243     // use formula : y = x & (~(n-1)). Where x is the size before aligning, n
2244     // is the alignment size ( n = 16 here) and y is the size after aligning.
2245     assert(LowerBound <= 0 && "Expect LowerBound have a non-positive value!");
2246     LowerBound &= ~(15);
2247 
2248     for (unsigned i = 0, e = VRegs.size(); i != e; ++i) {
2249       int FI = VRegs[i].getFrameIdx();
2250 
2251       MFI.setObjectOffset(FI, LowerBound + MFI.getObjectOffset(FI));
2252     }
2253   }
2254 
2255   addScavengingSpillSlot(MF, RS);
2256 }
2257 
2258 void
2259 PPCFrameLowering::addScavengingSpillSlot(MachineFunction &MF,
2260                                          RegScavenger *RS) const {
2261   // Reserve a slot closest to SP or frame pointer if we have a dynalloc or
2262   // a large stack, which will require scavenging a register to materialize a
2263   // large offset.
2264 
2265   // We need to have a scavenger spill slot for spills if the frame size is
2266   // large. In case there is no free register for large-offset addressing,
2267   // this slot is used for the necessary emergency spill. Also, we need the
2268   // slot for dynamic stack allocations.
2269 
2270   // The scavenger might be invoked if the frame offset does not fit into
2271   // the 16-bit immediate. We don't know the complete frame size here
2272   // because we've not yet computed callee-saved register spills or the
2273   // needed alignment padding.
2274   unsigned StackSize = determineFrameLayout(MF, true);
2275   MachineFrameInfo &MFI = MF.getFrameInfo();
2276   if (MFI.hasVarSizedObjects() || spillsCR(MF) || hasNonRISpills(MF) ||
2277       (hasSpills(MF) && !isInt<16>(StackSize))) {
2278     const TargetRegisterClass &GPRC = PPC::GPRCRegClass;
2279     const TargetRegisterClass &G8RC = PPC::G8RCRegClass;
2280     const TargetRegisterClass &RC = Subtarget.isPPC64() ? G8RC : GPRC;
2281     const TargetRegisterInfo &TRI = *Subtarget.getRegisterInfo();
2282     unsigned Size = TRI.getSpillSize(RC);
2283     Align Alignment = TRI.getSpillAlign(RC);
2284     RS->addScavengingFrameIndex(MFI.CreateStackObject(Size, Alignment, false));
2285 
2286     // Might we have over-aligned allocas?
2287     bool HasAlVars =
2288         MFI.hasVarSizedObjects() && MFI.getMaxAlign() > getStackAlign();
2289 
2290     // These kinds of spills might need two registers.
2291     if (spillsCR(MF) || HasAlVars)
2292       RS->addScavengingFrameIndex(
2293           MFI.CreateStackObject(Size, Alignment, false));
2294   }
2295 }
2296 
2297 // This function checks if a callee saved gpr can be spilled to a volatile
2298 // vector register. This occurs for leaf functions when the option
2299 // ppc-enable-pe-vector-spills is enabled. If there are any remaining registers
2300 // which were not spilled to vectors, return false so the target independent
2301 // code can handle them by assigning a FrameIdx to a stack slot.
2302 bool PPCFrameLowering::assignCalleeSavedSpillSlots(
2303     MachineFunction &MF, const TargetRegisterInfo *TRI,
2304     std::vector<CalleeSavedInfo> &CSI) const {
2305 
2306   if (CSI.empty())
2307     return true; // Early exit if no callee saved registers are modified!
2308 
2309   // Early exit if cannot spill gprs to volatile vector registers.
2310   MachineFrameInfo &MFI = MF.getFrameInfo();
2311   if (!EnablePEVectorSpills || MFI.hasCalls() || !Subtarget.hasP9Vector())
2312     return false;
2313 
2314   // Build a BitVector of VSRs that can be used for spilling GPRs.
2315   BitVector BVAllocatable = TRI->getAllocatableSet(MF);
2316   BitVector BVCalleeSaved(TRI->getNumRegs());
2317   const PPCRegisterInfo *RegInfo = Subtarget.getRegisterInfo();
2318   const MCPhysReg *CSRegs = RegInfo->getCalleeSavedRegs(&MF);
2319   for (unsigned i = 0; CSRegs[i]; ++i)
2320     BVCalleeSaved.set(CSRegs[i]);
2321 
2322   for (unsigned Reg : BVAllocatable.set_bits()) {
2323     // Set to 0 if the register is not a volatile VSX register, or if it is
2324     // used in the function.
2325     if (BVCalleeSaved[Reg] || !PPC::VSRCRegClass.contains(Reg) ||
2326         MF.getRegInfo().isPhysRegUsed(Reg))
2327       BVAllocatable.reset(Reg);
2328   }
2329 
2330   bool AllSpilledToReg = true;
2331   unsigned LastVSRUsedForSpill = 0;
2332   for (auto &CS : CSI) {
2333     if (BVAllocatable.none())
2334       return false;
2335 
2336     Register Reg = CS.getReg();
2337 
2338     if (!PPC::G8RCRegClass.contains(Reg)) {
2339       AllSpilledToReg = false;
2340       continue;
2341     }
2342 
2343     // For P9, we can reuse LastVSRUsedForSpill to spill two GPRs
2344     // into one VSR using the mtvsrdd instruction.
2345     if (LastVSRUsedForSpill != 0) {
2346       CS.setDstReg(LastVSRUsedForSpill);
2347       BVAllocatable.reset(LastVSRUsedForSpill);
2348       LastVSRUsedForSpill = 0;
2349       continue;
2350     }
2351 
2352     unsigned VolatileVFReg = BVAllocatable.find_first();
2353     if (VolatileVFReg < BVAllocatable.size()) {
2354       CS.setDstReg(VolatileVFReg);
2355       LastVSRUsedForSpill = VolatileVFReg;
2356     } else {
2357       AllSpilledToReg = false;
2358     }
2359   }
2360   return AllSpilledToReg;
2361 }
2362 
2363 bool PPCFrameLowering::spillCalleeSavedRegisters(
2364     MachineBasicBlock &MBB, MachineBasicBlock::iterator MI,
2365     ArrayRef<CalleeSavedInfo> CSI, const TargetRegisterInfo *TRI) const {
2366 
2367   MachineFunction *MF = MBB.getParent();
2368   const PPCInstrInfo &TII = *Subtarget.getInstrInfo();
2369   PPCFunctionInfo *FI = MF->getInfo<PPCFunctionInfo>();
2370   bool MustSaveTOC = FI->mustSaveTOC();
2371   DebugLoc DL;
2372   bool CRSpilled = false;
2373   MachineInstrBuilder CRMIB;
2374   BitVector Spilled(TRI->getNumRegs());
2375 
2376   VSRContainingGPRs.clear();
2377 
2378   // Map each VSR to GPRs to be spilled with into it. Single VSR can contain one
2379   // or two GPRs, so we need table to record information for later save/restore.
2380   for (const CalleeSavedInfo &Info : CSI) {
2381     if (Info.isSpilledToReg()) {
2382       auto &SpilledVSR =
2383           VSRContainingGPRs.FindAndConstruct(Info.getDstReg()).second;
2384       assert(SpilledVSR.second == 0 &&
2385              "Can't spill more than two GPRs into VSR!");
2386       if (SpilledVSR.first == 0)
2387         SpilledVSR.first = Info.getReg();
2388       else
2389         SpilledVSR.second = Info.getReg();
2390     }
2391   }
2392 
2393   for (const CalleeSavedInfo &I : CSI) {
2394     Register Reg = I.getReg();
2395 
2396     // CR2 through CR4 are the nonvolatile CR fields.
2397     bool IsCRField = PPC::CR2 <= Reg && Reg <= PPC::CR4;
2398 
2399     // Add the callee-saved register as live-in; it's killed at the spill.
2400     // Do not do this for callee-saved registers that are live-in to the
2401     // function because they will already be marked live-in and this will be
2402     // adding it for a second time. It is an error to add the same register
2403     // to the set more than once.
2404     const MachineRegisterInfo &MRI = MF->getRegInfo();
2405     bool IsLiveIn = MRI.isLiveIn(Reg);
2406     if (!IsLiveIn)
2407        MBB.addLiveIn(Reg);
2408 
2409     if (CRSpilled && IsCRField) {
2410       CRMIB.addReg(Reg, RegState::ImplicitKill);
2411       continue;
2412     }
2413 
2414     // The actual spill will happen in the prologue.
2415     if ((Reg == PPC::X2 || Reg == PPC::R2) && MustSaveTOC)
2416       continue;
2417 
2418     // Insert the spill to the stack frame.
2419     if (IsCRField) {
2420       PPCFunctionInfo *FuncInfo = MF->getInfo<PPCFunctionInfo>();
2421       if (!Subtarget.is32BitELFABI()) {
2422         // The actual spill will happen at the start of the prologue.
2423         FuncInfo->addMustSaveCR(Reg);
2424       } else {
2425         CRSpilled = true;
2426         FuncInfo->setSpillsCR();
2427 
2428         // 32-bit:  FP-relative.  Note that we made sure CR2-CR4 all have
2429         // the same frame index in PPCRegisterInfo::hasReservedSpillSlot.
2430         CRMIB = BuildMI(*MF, DL, TII.get(PPC::MFCR), PPC::R12)
2431                   .addReg(Reg, RegState::ImplicitKill);
2432 
2433         MBB.insert(MI, CRMIB);
2434         MBB.insert(MI, addFrameReference(BuildMI(*MF, DL, TII.get(PPC::STW))
2435                                          .addReg(PPC::R12,
2436                                                  getKillRegState(true)),
2437                                          I.getFrameIdx()));
2438       }
2439     } else {
2440       if (I.isSpilledToReg()) {
2441         unsigned Dst = I.getDstReg();
2442 
2443         if (Spilled[Dst])
2444           continue;
2445 
2446         if (VSRContainingGPRs[Dst].second != 0) {
2447           assert(Subtarget.hasP9Vector() &&
2448                  "mtvsrdd is unavailable on pre-P9 targets.");
2449 
2450           NumPESpillVSR += 2;
2451           BuildMI(MBB, MI, DL, TII.get(PPC::MTVSRDD), Dst)
2452               .addReg(VSRContainingGPRs[Dst].first, getKillRegState(true))
2453               .addReg(VSRContainingGPRs[Dst].second, getKillRegState(true));
2454         } else if (VSRContainingGPRs[Dst].second == 0) {
2455           assert(Subtarget.hasP8Vector() &&
2456                  "Can't move GPR to VSR on pre-P8 targets.");
2457 
2458           ++NumPESpillVSR;
2459           BuildMI(MBB, MI, DL, TII.get(PPC::MTVSRD),
2460                   TRI->getSubReg(Dst, PPC::sub_64))
2461               .addReg(VSRContainingGPRs[Dst].first, getKillRegState(true));
2462         } else {
2463           llvm_unreachable("More than two GPRs spilled to a VSR!");
2464         }
2465         Spilled.set(Dst);
2466       } else {
2467         const TargetRegisterClass *RC = TRI->getMinimalPhysRegClass(Reg);
2468         // Use !IsLiveIn for the kill flag.
2469         // We do not want to kill registers that are live in this function
2470         // before their use because they will become undefined registers.
2471         // Functions without NoUnwind need to preserve the order of elements in
2472         // saved vector registers.
2473         if (Subtarget.needsSwapsForVSXMemOps() &&
2474             !MF->getFunction().hasFnAttribute(Attribute::NoUnwind))
2475           TII.storeRegToStackSlotNoUpd(MBB, MI, Reg, !IsLiveIn,
2476                                        I.getFrameIdx(), RC, TRI);
2477         else
2478           TII.storeRegToStackSlot(MBB, MI, Reg, !IsLiveIn, I.getFrameIdx(),
2479                                   RC, TRI);
2480       }
2481     }
2482   }
2483   return true;
2484 }
2485 
2486 static void restoreCRs(bool is31, bool CR2Spilled, bool CR3Spilled,
2487                        bool CR4Spilled, MachineBasicBlock &MBB,
2488                        MachineBasicBlock::iterator MI,
2489                        ArrayRef<CalleeSavedInfo> CSI, unsigned CSIIndex) {
2490 
2491   MachineFunction *MF = MBB.getParent();
2492   const PPCInstrInfo &TII = *MF->getSubtarget<PPCSubtarget>().getInstrInfo();
2493   DebugLoc DL;
2494   unsigned MoveReg = PPC::R12;
2495 
2496   // 32-bit:  FP-relative
2497   MBB.insert(MI,
2498              addFrameReference(BuildMI(*MF, DL, TII.get(PPC::LWZ), MoveReg),
2499                                CSI[CSIIndex].getFrameIdx()));
2500 
2501   unsigned RestoreOp = PPC::MTOCRF;
2502   if (CR2Spilled)
2503     MBB.insert(MI, BuildMI(*MF, DL, TII.get(RestoreOp), PPC::CR2)
2504                .addReg(MoveReg, getKillRegState(!CR3Spilled && !CR4Spilled)));
2505 
2506   if (CR3Spilled)
2507     MBB.insert(MI, BuildMI(*MF, DL, TII.get(RestoreOp), PPC::CR3)
2508                .addReg(MoveReg, getKillRegState(!CR4Spilled)));
2509 
2510   if (CR4Spilled)
2511     MBB.insert(MI, BuildMI(*MF, DL, TII.get(RestoreOp), PPC::CR4)
2512                .addReg(MoveReg, getKillRegState(true)));
2513 }
2514 
2515 MachineBasicBlock::iterator PPCFrameLowering::
2516 eliminateCallFramePseudoInstr(MachineFunction &MF, MachineBasicBlock &MBB,
2517                               MachineBasicBlock::iterator I) const {
2518   const TargetInstrInfo &TII = *Subtarget.getInstrInfo();
2519   if (MF.getTarget().Options.GuaranteedTailCallOpt &&
2520       I->getOpcode() == PPC::ADJCALLSTACKUP) {
2521     // Add (actually subtract) back the amount the callee popped on return.
2522     if (int CalleeAmt =  I->getOperand(1).getImm()) {
2523       bool is64Bit = Subtarget.isPPC64();
2524       CalleeAmt *= -1;
2525       unsigned StackReg = is64Bit ? PPC::X1 : PPC::R1;
2526       unsigned TmpReg = is64Bit ? PPC::X0 : PPC::R0;
2527       unsigned ADDIInstr = is64Bit ? PPC::ADDI8 : PPC::ADDI;
2528       unsigned ADDInstr = is64Bit ? PPC::ADD8 : PPC::ADD4;
2529       unsigned LISInstr = is64Bit ? PPC::LIS8 : PPC::LIS;
2530       unsigned ORIInstr = is64Bit ? PPC::ORI8 : PPC::ORI;
2531       const DebugLoc &dl = I->getDebugLoc();
2532 
2533       if (isInt<16>(CalleeAmt)) {
2534         BuildMI(MBB, I, dl, TII.get(ADDIInstr), StackReg)
2535           .addReg(StackReg, RegState::Kill)
2536           .addImm(CalleeAmt);
2537       } else {
2538         MachineBasicBlock::iterator MBBI = I;
2539         BuildMI(MBB, MBBI, dl, TII.get(LISInstr), TmpReg)
2540           .addImm(CalleeAmt >> 16);
2541         BuildMI(MBB, MBBI, dl, TII.get(ORIInstr), TmpReg)
2542           .addReg(TmpReg, RegState::Kill)
2543           .addImm(CalleeAmt & 0xFFFF);
2544         BuildMI(MBB, MBBI, dl, TII.get(ADDInstr), StackReg)
2545           .addReg(StackReg, RegState::Kill)
2546           .addReg(TmpReg);
2547       }
2548     }
2549   }
2550   // Simply discard ADJCALLSTACKDOWN, ADJCALLSTACKUP instructions.
2551   return MBB.erase(I);
2552 }
2553 
2554 static bool isCalleeSavedCR(unsigned Reg) {
2555   return PPC::CR2 == Reg || Reg == PPC::CR3 || Reg == PPC::CR4;
2556 }
2557 
2558 bool PPCFrameLowering::restoreCalleeSavedRegisters(
2559     MachineBasicBlock &MBB, MachineBasicBlock::iterator MI,
2560     MutableArrayRef<CalleeSavedInfo> CSI, const TargetRegisterInfo *TRI) const {
2561   MachineFunction *MF = MBB.getParent();
2562   const PPCInstrInfo &TII = *Subtarget.getInstrInfo();
2563   PPCFunctionInfo *FI = MF->getInfo<PPCFunctionInfo>();
2564   bool MustSaveTOC = FI->mustSaveTOC();
2565   bool CR2Spilled = false;
2566   bool CR3Spilled = false;
2567   bool CR4Spilled = false;
2568   unsigned CSIIndex = 0;
2569   BitVector Restored(TRI->getNumRegs());
2570 
2571   // Initialize insertion-point logic; we will be restoring in reverse
2572   // order of spill.
2573   MachineBasicBlock::iterator I = MI, BeforeI = I;
2574   bool AtStart = I == MBB.begin();
2575 
2576   if (!AtStart)
2577     --BeforeI;
2578 
2579   for (unsigned i = 0, e = CSI.size(); i != e; ++i) {
2580     Register Reg = CSI[i].getReg();
2581 
2582     if ((Reg == PPC::X2 || Reg == PPC::R2) && MustSaveTOC)
2583       continue;
2584 
2585     // Restore of callee saved condition register field is handled during
2586     // epilogue insertion.
2587     if (isCalleeSavedCR(Reg) && !Subtarget.is32BitELFABI())
2588       continue;
2589 
2590     if (Reg == PPC::CR2) {
2591       CR2Spilled = true;
2592       // The spill slot is associated only with CR2, which is the
2593       // first nonvolatile spilled.  Save it here.
2594       CSIIndex = i;
2595       continue;
2596     } else if (Reg == PPC::CR3) {
2597       CR3Spilled = true;
2598       continue;
2599     } else if (Reg == PPC::CR4) {
2600       CR4Spilled = true;
2601       continue;
2602     } else {
2603       // On 32-bit ELF when we first encounter a non-CR register after seeing at
2604       // least one CR register, restore all spilled CRs together.
2605       if (CR2Spilled || CR3Spilled || CR4Spilled) {
2606         bool is31 = needsFP(*MF);
2607         restoreCRs(is31, CR2Spilled, CR3Spilled, CR4Spilled, MBB, I, CSI,
2608                    CSIIndex);
2609         CR2Spilled = CR3Spilled = CR4Spilled = false;
2610       }
2611 
2612       if (CSI[i].isSpilledToReg()) {
2613         DebugLoc DL;
2614         unsigned Dst = CSI[i].getDstReg();
2615 
2616         if (Restored[Dst])
2617           continue;
2618 
2619         if (VSRContainingGPRs[Dst].second != 0) {
2620           assert(Subtarget.hasP9Vector());
2621           NumPEReloadVSR += 2;
2622           BuildMI(MBB, I, DL, TII.get(PPC::MFVSRLD),
2623                   VSRContainingGPRs[Dst].second)
2624               .addReg(Dst);
2625           BuildMI(MBB, I, DL, TII.get(PPC::MFVSRD),
2626                   VSRContainingGPRs[Dst].first)
2627               .addReg(TRI->getSubReg(Dst, PPC::sub_64), getKillRegState(true));
2628         } else if (VSRContainingGPRs[Dst].second == 0) {
2629           assert(Subtarget.hasP8Vector());
2630           ++NumPEReloadVSR;
2631           BuildMI(MBB, I, DL, TII.get(PPC::MFVSRD),
2632                   VSRContainingGPRs[Dst].first)
2633               .addReg(TRI->getSubReg(Dst, PPC::sub_64), getKillRegState(true));
2634         } else {
2635           llvm_unreachable("More than two GPRs spilled to a VSR!");
2636         }
2637 
2638         Restored.set(Dst);
2639 
2640       } else {
2641        // Default behavior for non-CR saves.
2642         const TargetRegisterClass *RC = TRI->getMinimalPhysRegClass(Reg);
2643 
2644         // Functions without NoUnwind need to preserve the order of elements in
2645         // saved vector registers.
2646         if (Subtarget.needsSwapsForVSXMemOps() &&
2647             !MF->getFunction().hasFnAttribute(Attribute::NoUnwind))
2648           TII.loadRegFromStackSlotNoUpd(MBB, I, Reg, CSI[i].getFrameIdx(), RC,
2649                                         TRI);
2650         else
2651           TII.loadRegFromStackSlot(MBB, I, Reg, CSI[i].getFrameIdx(), RC, TRI);
2652 
2653         assert(I != MBB.begin() &&
2654                "loadRegFromStackSlot didn't insert any code!");
2655       }
2656     }
2657 
2658     // Insert in reverse order.
2659     if (AtStart)
2660       I = MBB.begin();
2661     else {
2662       I = BeforeI;
2663       ++I;
2664     }
2665   }
2666 
2667   // If we haven't yet spilled the CRs, do so now.
2668   if (CR2Spilled || CR3Spilled || CR4Spilled) {
2669     assert(Subtarget.is32BitELFABI() &&
2670            "Only set CR[2|3|4]Spilled on 32-bit SVR4.");
2671     bool is31 = needsFP(*MF);
2672     restoreCRs(is31, CR2Spilled, CR3Spilled, CR4Spilled, MBB, I, CSI, CSIIndex);
2673   }
2674 
2675   return true;
2676 }
2677 
2678 uint64_t PPCFrameLowering::getTOCSaveOffset() const {
2679   return TOCSaveOffset;
2680 }
2681 
2682 uint64_t PPCFrameLowering::getFramePointerSaveOffset() const {
2683   return FramePointerSaveOffset;
2684 }
2685 
2686 uint64_t PPCFrameLowering::getBasePointerSaveOffset() const {
2687   return BasePointerSaveOffset;
2688 }
2689 
2690 bool PPCFrameLowering::enableShrinkWrapping(const MachineFunction &MF) const {
2691   if (MF.getInfo<PPCFunctionInfo>()->shrinkWrapDisabled())
2692     return false;
2693   return !MF.getSubtarget<PPCSubtarget>().is32BitELFABI();
2694 }
2695