1 //===-- PPCISelDAGToDAG.cpp - PPC --pattern matching inst selector --------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines a pattern matching instruction selector for PowerPC,
10 // converting from a legalized dag to a PPC dag.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "MCTargetDesc/PPCMCTargetDesc.h"
15 #include "MCTargetDesc/PPCPredicates.h"
16 #include "PPC.h"
17 #include "PPCISelLowering.h"
18 #include "PPCMachineFunctionInfo.h"
19 #include "PPCSubtarget.h"
20 #include "PPCTargetMachine.h"
21 #include "llvm/ADT/APInt.h"
22 #include "llvm/ADT/DenseMap.h"
23 #include "llvm/ADT/STLExtras.h"
24 #include "llvm/ADT/SmallPtrSet.h"
25 #include "llvm/ADT/SmallVector.h"
26 #include "llvm/ADT/Statistic.h"
27 #include "llvm/Analysis/BranchProbabilityInfo.h"
28 #include "llvm/CodeGen/FunctionLoweringInfo.h"
29 #include "llvm/CodeGen/ISDOpcodes.h"
30 #include "llvm/CodeGen/MachineBasicBlock.h"
31 #include "llvm/CodeGen/MachineFrameInfo.h"
32 #include "llvm/CodeGen/MachineFunction.h"
33 #include "llvm/CodeGen/MachineInstrBuilder.h"
34 #include "llvm/CodeGen/MachineRegisterInfo.h"
35 #include "llvm/CodeGen/SelectionDAG.h"
36 #include "llvm/CodeGen/SelectionDAGISel.h"
37 #include "llvm/CodeGen/SelectionDAGNodes.h"
38 #include "llvm/CodeGen/TargetInstrInfo.h"
39 #include "llvm/CodeGen/TargetRegisterInfo.h"
40 #include "llvm/CodeGen/ValueTypes.h"
41 #include "llvm/IR/BasicBlock.h"
42 #include "llvm/IR/DebugLoc.h"
43 #include "llvm/IR/Function.h"
44 #include "llvm/IR/GlobalValue.h"
45 #include "llvm/IR/InlineAsm.h"
46 #include "llvm/IR/InstrTypes.h"
47 #include "llvm/IR/IntrinsicsPowerPC.h"
48 #include "llvm/IR/Module.h"
49 #include "llvm/Support/Casting.h"
50 #include "llvm/Support/CodeGen.h"
51 #include "llvm/Support/CommandLine.h"
52 #include "llvm/Support/Compiler.h"
53 #include "llvm/Support/Debug.h"
54 #include "llvm/Support/ErrorHandling.h"
55 #include "llvm/Support/KnownBits.h"
56 #include "llvm/Support/MachineValueType.h"
57 #include "llvm/Support/MathExtras.h"
58 #include "llvm/Support/raw_ostream.h"
59 #include <algorithm>
60 #include <cassert>
61 #include <cstdint>
62 #include <iterator>
63 #include <limits>
64 #include <memory>
65 #include <new>
66 #include <tuple>
67 #include <utility>
68 
69 using namespace llvm;
70 
71 #define DEBUG_TYPE "ppc-codegen"
72 
73 STATISTIC(NumSextSetcc,
74           "Number of (sext(setcc)) nodes expanded into GPR sequence.");
75 STATISTIC(NumZextSetcc,
76           "Number of (zext(setcc)) nodes expanded into GPR sequence.");
77 STATISTIC(SignExtensionsAdded,
78           "Number of sign extensions for compare inputs added.");
79 STATISTIC(ZeroExtensionsAdded,
80           "Number of zero extensions for compare inputs added.");
81 STATISTIC(NumLogicOpsOnComparison,
82           "Number of logical ops on i1 values calculated in GPR.");
83 STATISTIC(OmittedForNonExtendUses,
84           "Number of compares not eliminated as they have non-extending uses.");
85 STATISTIC(NumP9Setb,
86           "Number of compares lowered to setb.");
87 
88 // FIXME: Remove this once the bug has been fixed!
89 cl::opt<bool> ANDIGlueBug("expose-ppc-andi-glue-bug",
90 cl::desc("expose the ANDI glue bug on PPC"), cl::Hidden);
91 
92 static cl::opt<bool>
93     UseBitPermRewriter("ppc-use-bit-perm-rewriter", cl::init(true),
94                        cl::desc("use aggressive ppc isel for bit permutations"),
95                        cl::Hidden);
96 static cl::opt<bool> BPermRewriterNoMasking(
97     "ppc-bit-perm-rewriter-stress-rotates",
98     cl::desc("stress rotate selection in aggressive ppc isel for "
99              "bit permutations"),
100     cl::Hidden);
101 
102 static cl::opt<bool> EnableBranchHint(
103   "ppc-use-branch-hint", cl::init(true),
104     cl::desc("Enable static hinting of branches on ppc"),
105     cl::Hidden);
106 
107 static cl::opt<bool> EnableTLSOpt(
108   "ppc-tls-opt", cl::init(true),
109     cl::desc("Enable tls optimization peephole"),
110     cl::Hidden);
111 
112 enum ICmpInGPRType { ICGPR_All, ICGPR_None, ICGPR_I32, ICGPR_I64,
113   ICGPR_NonExtIn, ICGPR_Zext, ICGPR_Sext, ICGPR_ZextI32,
114   ICGPR_SextI32, ICGPR_ZextI64, ICGPR_SextI64 };
115 
116 static cl::opt<ICmpInGPRType> CmpInGPR(
117   "ppc-gpr-icmps", cl::Hidden, cl::init(ICGPR_All),
118   cl::desc("Specify the types of comparisons to emit GPR-only code for."),
119   cl::values(clEnumValN(ICGPR_None, "none", "Do not modify integer comparisons."),
120              clEnumValN(ICGPR_All, "all", "All possible int comparisons in GPRs."),
121              clEnumValN(ICGPR_I32, "i32", "Only i32 comparisons in GPRs."),
122              clEnumValN(ICGPR_I64, "i64", "Only i64 comparisons in GPRs."),
123              clEnumValN(ICGPR_NonExtIn, "nonextin",
124                         "Only comparisons where inputs don't need [sz]ext."),
125              clEnumValN(ICGPR_Zext, "zext", "Only comparisons with zext result."),
126              clEnumValN(ICGPR_ZextI32, "zexti32",
127                         "Only i32 comparisons with zext result."),
128              clEnumValN(ICGPR_ZextI64, "zexti64",
129                         "Only i64 comparisons with zext result."),
130              clEnumValN(ICGPR_Sext, "sext", "Only comparisons with sext result."),
131              clEnumValN(ICGPR_SextI32, "sexti32",
132                         "Only i32 comparisons with sext result."),
133              clEnumValN(ICGPR_SextI64, "sexti64",
134                         "Only i64 comparisons with sext result.")));
135 namespace {
136 
137   //===--------------------------------------------------------------------===//
138   /// PPCDAGToDAGISel - PPC specific code to select PPC machine
139   /// instructions for SelectionDAG operations.
140   ///
141   class PPCDAGToDAGISel : public SelectionDAGISel {
142     const PPCTargetMachine &TM;
143     const PPCSubtarget *Subtarget = nullptr;
144     const PPCTargetLowering *PPCLowering = nullptr;
145     unsigned GlobalBaseReg = 0;
146 
147   public:
148     explicit PPCDAGToDAGISel(PPCTargetMachine &tm, CodeGenOpt::Level OptLevel)
149         : SelectionDAGISel(tm, OptLevel), TM(tm) {}
150 
151     bool runOnMachineFunction(MachineFunction &MF) override {
152       // Make sure we re-emit a set of the global base reg if necessary
153       GlobalBaseReg = 0;
154       Subtarget = &MF.getSubtarget<PPCSubtarget>();
155       PPCLowering = Subtarget->getTargetLowering();
156       if (Subtarget->hasROPProtect()) {
157         // Create a place on the stack for the ROP Protection Hash.
158         // The ROP Protection Hash will always be 8 bytes and aligned to 8
159         // bytes.
160         MachineFrameInfo &MFI = MF.getFrameInfo();
161         PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>();
162         const int Result = MFI.CreateStackObject(8, Align(8), false);
163         FI->setROPProtectionHashSaveIndex(Result);
164       }
165       SelectionDAGISel::runOnMachineFunction(MF);
166 
167       return true;
168     }
169 
170     void PreprocessISelDAG() override;
171     void PostprocessISelDAG() override;
172 
173     /// getI16Imm - Return a target constant with the specified value, of type
174     /// i16.
175     inline SDValue getI16Imm(unsigned Imm, const SDLoc &dl) {
176       return CurDAG->getTargetConstant(Imm, dl, MVT::i16);
177     }
178 
179     /// getI32Imm - Return a target constant with the specified value, of type
180     /// i32.
181     inline SDValue getI32Imm(unsigned Imm, const SDLoc &dl) {
182       return CurDAG->getTargetConstant(Imm, dl, MVT::i32);
183     }
184 
185     /// getI64Imm - Return a target constant with the specified value, of type
186     /// i64.
187     inline SDValue getI64Imm(uint64_t Imm, const SDLoc &dl) {
188       return CurDAG->getTargetConstant(Imm, dl, MVT::i64);
189     }
190 
191     /// getSmallIPtrImm - Return a target constant of pointer type.
192     inline SDValue getSmallIPtrImm(uint64_t Imm, const SDLoc &dl) {
193       return CurDAG->getTargetConstant(
194           Imm, dl, PPCLowering->getPointerTy(CurDAG->getDataLayout()));
195     }
196 
197     /// isRotateAndMask - Returns true if Mask and Shift can be folded into a
198     /// rotate and mask opcode and mask operation.
199     static bool isRotateAndMask(SDNode *N, unsigned Mask, bool isShiftMask,
200                                 unsigned &SH, unsigned &MB, unsigned &ME);
201 
202     /// getGlobalBaseReg - insert code into the entry mbb to materialize the PIC
203     /// base register.  Return the virtual register that holds this value.
204     SDNode *getGlobalBaseReg();
205 
206     void selectFrameIndex(SDNode *SN, SDNode *N, uint64_t Offset = 0);
207 
208     // Select - Convert the specified operand from a target-independent to a
209     // target-specific node if it hasn't already been changed.
210     void Select(SDNode *N) override;
211 
212     bool tryBitfieldInsert(SDNode *N);
213     bool tryBitPermutation(SDNode *N);
214     bool tryIntCompareInGPR(SDNode *N);
215 
216     // tryTLSXFormLoad - Convert an ISD::LOAD fed by a PPCISD::ADD_TLS into
217     // an X-Form load instruction with the offset being a relocation coming from
218     // the PPCISD::ADD_TLS.
219     bool tryTLSXFormLoad(LoadSDNode *N);
220     // tryTLSXFormStore - Convert an ISD::STORE fed by a PPCISD::ADD_TLS into
221     // an X-Form store instruction with the offset being a relocation coming from
222     // the PPCISD::ADD_TLS.
223     bool tryTLSXFormStore(StoreSDNode *N);
224     /// SelectCC - Select a comparison of the specified values with the
225     /// specified condition code, returning the CR# of the expression.
226     SDValue SelectCC(SDValue LHS, SDValue RHS, ISD::CondCode CC,
227                      const SDLoc &dl, SDValue Chain = SDValue());
228 
229     /// SelectAddrImmOffs - Return true if the operand is valid for a preinc
230     /// immediate field.  Note that the operand at this point is already the
231     /// result of a prior SelectAddressRegImm call.
232     bool SelectAddrImmOffs(SDValue N, SDValue &Out) const {
233       if (N.getOpcode() == ISD::TargetConstant ||
234           N.getOpcode() == ISD::TargetGlobalAddress) {
235         Out = N;
236         return true;
237       }
238 
239       return false;
240     }
241 
242     /// SelectDSForm - Returns true if address N can be represented by the
243     /// addressing mode of DSForm instructions (a base register, plus a signed
244     /// 16-bit displacement that is a multiple of 4.
245     bool SelectDSForm(SDNode *Parent, SDValue N, SDValue &Disp, SDValue &Base) {
246       return PPCLowering->SelectOptimalAddrMode(Parent, N, Disp, Base, *CurDAG,
247                                                 Align(4)) == PPC::AM_DSForm;
248     }
249 
250     /// SelectDQForm - Returns true if address N can be represented by the
251     /// addressing mode of DQForm instructions (a base register, plus a signed
252     /// 16-bit displacement that is a multiple of 16.
253     bool SelectDQForm(SDNode *Parent, SDValue N, SDValue &Disp, SDValue &Base) {
254       return PPCLowering->SelectOptimalAddrMode(Parent, N, Disp, Base, *CurDAG,
255                                                 Align(16)) == PPC::AM_DQForm;
256     }
257 
258     /// SelectDForm - Returns true if address N can be represented by
259     /// the addressing mode of DForm instructions (a base register, plus a
260     /// signed 16-bit immediate.
261     bool SelectDForm(SDNode *Parent, SDValue N, SDValue &Disp, SDValue &Base) {
262       return PPCLowering->SelectOptimalAddrMode(Parent, N, Disp, Base, *CurDAG,
263                                                 None) == PPC::AM_DForm;
264     }
265 
266     /// SelectPCRelForm - Returns true if address N can be represented by
267     /// PC-Relative addressing mode.
268     bool SelectPCRelForm(SDNode *Parent, SDValue N, SDValue &Disp,
269                          SDValue &Base) {
270       return PPCLowering->SelectOptimalAddrMode(Parent, N, Disp, Base, *CurDAG,
271                                                 None) == PPC::AM_PCRel;
272     }
273 
274     /// SelectPDForm - Returns true if address N can be represented by Prefixed
275     /// DForm addressing mode (a base register, plus a signed 34-bit immediate.
276     bool SelectPDForm(SDNode *Parent, SDValue N, SDValue &Disp, SDValue &Base) {
277       return PPCLowering->SelectOptimalAddrMode(Parent, N, Disp, Base, *CurDAG,
278                                                 None) == PPC::AM_PrefixDForm;
279     }
280 
281     /// SelectXForm - Returns true if address N can be represented by the
282     /// addressing mode of XForm instructions (an indexed [r+r] operation).
283     bool SelectXForm(SDNode *Parent, SDValue N, SDValue &Disp, SDValue &Base) {
284       return PPCLowering->SelectOptimalAddrMode(Parent, N, Disp, Base, *CurDAG,
285                                                 None) == PPC::AM_XForm;
286     }
287 
288     /// SelectForceXForm - Given the specified address, force it to be
289     /// represented as an indexed [r+r] operation (an XForm instruction).
290     bool SelectForceXForm(SDNode *Parent, SDValue N, SDValue &Disp,
291                           SDValue &Base) {
292       return PPCLowering->SelectForceXFormMode(N, Disp, Base, *CurDAG) ==
293              PPC::AM_XForm;
294     }
295 
296     /// SelectAddrIdx - Given the specified address, check to see if it can be
297     /// represented as an indexed [r+r] operation.
298     /// This is for xform instructions whose associated displacement form is D.
299     /// The last parameter \p 0 means associated D form has no requirment for 16
300     /// bit signed displacement.
301     /// Returns false if it can be represented by [r+imm], which are preferred.
302     bool SelectAddrIdx(SDValue N, SDValue &Base, SDValue &Index) {
303       return PPCLowering->SelectAddressRegReg(N, Base, Index, *CurDAG, None);
304     }
305 
306     /// SelectAddrIdx4 - Given the specified address, check to see if it can be
307     /// represented as an indexed [r+r] operation.
308     /// This is for xform instructions whose associated displacement form is DS.
309     /// The last parameter \p 4 means associated DS form 16 bit signed
310     /// displacement must be a multiple of 4.
311     /// Returns false if it can be represented by [r+imm], which are preferred.
312     bool SelectAddrIdxX4(SDValue N, SDValue &Base, SDValue &Index) {
313       return PPCLowering->SelectAddressRegReg(N, Base, Index, *CurDAG,
314                                               Align(4));
315     }
316 
317     /// SelectAddrIdx16 - Given the specified address, check to see if it can be
318     /// represented as an indexed [r+r] operation.
319     /// This is for xform instructions whose associated displacement form is DQ.
320     /// The last parameter \p 16 means associated DQ form 16 bit signed
321     /// displacement must be a multiple of 16.
322     /// Returns false if it can be represented by [r+imm], which are preferred.
323     bool SelectAddrIdxX16(SDValue N, SDValue &Base, SDValue &Index) {
324       return PPCLowering->SelectAddressRegReg(N, Base, Index, *CurDAG,
325                                               Align(16));
326     }
327 
328     /// SelectAddrIdxOnly - Given the specified address, force it to be
329     /// represented as an indexed [r+r] operation.
330     bool SelectAddrIdxOnly(SDValue N, SDValue &Base, SDValue &Index) {
331       return PPCLowering->SelectAddressRegRegOnly(N, Base, Index, *CurDAG);
332     }
333 
334     /// SelectAddrImm - Returns true if the address N can be represented by
335     /// a base register plus a signed 16-bit displacement [r+imm].
336     /// The last parameter \p 0 means D form has no requirment for 16 bit signed
337     /// displacement.
338     bool SelectAddrImm(SDValue N, SDValue &Disp,
339                        SDValue &Base) {
340       return PPCLowering->SelectAddressRegImm(N, Disp, Base, *CurDAG, None);
341     }
342 
343     /// SelectAddrImmX4 - Returns true if the address N can be represented by
344     /// a base register plus a signed 16-bit displacement that is a multiple of
345     /// 4 (last parameter). Suitable for use by STD and friends.
346     bool SelectAddrImmX4(SDValue N, SDValue &Disp, SDValue &Base) {
347       return PPCLowering->SelectAddressRegImm(N, Disp, Base, *CurDAG, Align(4));
348     }
349 
350     /// SelectAddrImmX16 - Returns true if the address N can be represented by
351     /// a base register plus a signed 16-bit displacement that is a multiple of
352     /// 16(last parameter). Suitable for use by STXV and friends.
353     bool SelectAddrImmX16(SDValue N, SDValue &Disp, SDValue &Base) {
354       return PPCLowering->SelectAddressRegImm(N, Disp, Base, *CurDAG,
355                                               Align(16));
356     }
357 
358     /// SelectAddrImmX34 - Returns true if the address N can be represented by
359     /// a base register plus a signed 34-bit displacement. Suitable for use by
360     /// PSTXVP and friends.
361     bool SelectAddrImmX34(SDValue N, SDValue &Disp, SDValue &Base) {
362       return PPCLowering->SelectAddressRegImm34(N, Disp, Base, *CurDAG);
363     }
364 
365     // Select an address into a single register.
366     bool SelectAddr(SDValue N, SDValue &Base) {
367       Base = N;
368       return true;
369     }
370 
371     bool SelectAddrPCRel(SDValue N, SDValue &Base) {
372       return PPCLowering->SelectAddressPCRel(N, Base);
373     }
374 
375     /// SelectInlineAsmMemoryOperand - Implement addressing mode selection for
376     /// inline asm expressions.  It is always correct to compute the value into
377     /// a register.  The case of adding a (possibly relocatable) constant to a
378     /// register can be improved, but it is wrong to substitute Reg+Reg for
379     /// Reg in an asm, because the load or store opcode would have to change.
380     bool SelectInlineAsmMemoryOperand(const SDValue &Op,
381                                       unsigned ConstraintID,
382                                       std::vector<SDValue> &OutOps) override {
383       switch(ConstraintID) {
384       default:
385         errs() << "ConstraintID: " << ConstraintID << "\n";
386         llvm_unreachable("Unexpected asm memory constraint");
387       case InlineAsm::Constraint_es:
388       case InlineAsm::Constraint_m:
389       case InlineAsm::Constraint_o:
390       case InlineAsm::Constraint_Q:
391       case InlineAsm::Constraint_Z:
392       case InlineAsm::Constraint_Zy:
393         // We need to make sure that this one operand does not end up in r0
394         // (because we might end up lowering this as 0(%op)).
395         const TargetRegisterInfo *TRI = Subtarget->getRegisterInfo();
396         const TargetRegisterClass *TRC = TRI->getPointerRegClass(*MF, /*Kind=*/1);
397         SDLoc dl(Op);
398         SDValue RC = CurDAG->getTargetConstant(TRC->getID(), dl, MVT::i32);
399         SDValue NewOp =
400           SDValue(CurDAG->getMachineNode(TargetOpcode::COPY_TO_REGCLASS,
401                                          dl, Op.getValueType(),
402                                          Op, RC), 0);
403 
404         OutOps.push_back(NewOp);
405         return false;
406       }
407       return true;
408     }
409 
410     StringRef getPassName() const override {
411       return "PowerPC DAG->DAG Pattern Instruction Selection";
412     }
413 
414 // Include the pieces autogenerated from the target description.
415 #include "PPCGenDAGISel.inc"
416 
417 private:
418     bool trySETCC(SDNode *N);
419     bool tryFoldSWTestBRCC(SDNode *N);
420     bool tryAsSingleRLDICL(SDNode *N);
421     bool tryAsSingleRLDICR(SDNode *N);
422     bool tryAsSingleRLWINM(SDNode *N);
423     bool tryAsSingleRLWINM8(SDNode *N);
424     bool tryAsSingleRLWIMI(SDNode *N);
425     bool tryAsPairOfRLDICL(SDNode *N);
426     bool tryAsSingleRLDIMI(SDNode *N);
427 
428     void PeepholePPC64();
429     void PeepholePPC64ZExt();
430     void PeepholeCROps();
431 
432     SDValue combineToCMPB(SDNode *N);
433     void foldBoolExts(SDValue &Res, SDNode *&N);
434 
435     bool AllUsersSelectZero(SDNode *N);
436     void SwapAllSelectUsers(SDNode *N);
437 
438     bool isOffsetMultipleOf(SDNode *N, unsigned Val) const;
439     void transferMemOperands(SDNode *N, SDNode *Result);
440   };
441 
442 } // end anonymous namespace
443 
444 /// getGlobalBaseReg - Output the instructions required to put the
445 /// base address to use for accessing globals into a register.
446 ///
447 SDNode *PPCDAGToDAGISel::getGlobalBaseReg() {
448   if (!GlobalBaseReg) {
449     const TargetInstrInfo &TII = *Subtarget->getInstrInfo();
450     // Insert the set of GlobalBaseReg into the first MBB of the function
451     MachineBasicBlock &FirstMBB = MF->front();
452     MachineBasicBlock::iterator MBBI = FirstMBB.begin();
453     const Module *M = MF->getFunction().getParent();
454     DebugLoc dl;
455 
456     if (PPCLowering->getPointerTy(CurDAG->getDataLayout()) == MVT::i32) {
457       if (Subtarget->isTargetELF()) {
458         GlobalBaseReg = PPC::R30;
459         if (!Subtarget->isSecurePlt() &&
460             M->getPICLevel() == PICLevel::SmallPIC) {
461           BuildMI(FirstMBB, MBBI, dl, TII.get(PPC::MoveGOTtoLR));
462           BuildMI(FirstMBB, MBBI, dl, TII.get(PPC::MFLR), GlobalBaseReg);
463           MF->getInfo<PPCFunctionInfo>()->setUsesPICBase(true);
464         } else {
465           BuildMI(FirstMBB, MBBI, dl, TII.get(PPC::MovePCtoLR));
466           BuildMI(FirstMBB, MBBI, dl, TII.get(PPC::MFLR), GlobalBaseReg);
467           Register TempReg = RegInfo->createVirtualRegister(&PPC::GPRCRegClass);
468           BuildMI(FirstMBB, MBBI, dl,
469                   TII.get(PPC::UpdateGBR), GlobalBaseReg)
470                   .addReg(TempReg, RegState::Define).addReg(GlobalBaseReg);
471           MF->getInfo<PPCFunctionInfo>()->setUsesPICBase(true);
472         }
473       } else {
474         GlobalBaseReg =
475           RegInfo->createVirtualRegister(&PPC::GPRC_and_GPRC_NOR0RegClass);
476         BuildMI(FirstMBB, MBBI, dl, TII.get(PPC::MovePCtoLR));
477         BuildMI(FirstMBB, MBBI, dl, TII.get(PPC::MFLR), GlobalBaseReg);
478       }
479     } else {
480       // We must ensure that this sequence is dominated by the prologue.
481       // FIXME: This is a bit of a big hammer since we don't get the benefits
482       // of shrink-wrapping whenever we emit this instruction. Considering
483       // this is used in any function where we emit a jump table, this may be
484       // a significant limitation. We should consider inserting this in the
485       // block where it is used and then commoning this sequence up if it
486       // appears in multiple places.
487       // Note: on ISA 3.0 cores, we can use lnia (addpcis) instead of
488       // MovePCtoLR8.
489       MF->getInfo<PPCFunctionInfo>()->setShrinkWrapDisabled(true);
490       GlobalBaseReg = RegInfo->createVirtualRegister(&PPC::G8RC_and_G8RC_NOX0RegClass);
491       BuildMI(FirstMBB, MBBI, dl, TII.get(PPC::MovePCtoLR8));
492       BuildMI(FirstMBB, MBBI, dl, TII.get(PPC::MFLR8), GlobalBaseReg);
493     }
494   }
495   return CurDAG->getRegister(GlobalBaseReg,
496                              PPCLowering->getPointerTy(CurDAG->getDataLayout()))
497       .getNode();
498 }
499 
500 // Check if a SDValue has the toc-data attribute.
501 static bool hasTocDataAttr(SDValue Val, unsigned PointerSize) {
502   GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Val);
503   if (!GA)
504     return false;
505 
506   const GlobalVariable *GV = dyn_cast_or_null<GlobalVariable>(GA->getGlobal());
507   if (!GV)
508     return false;
509 
510   if (!GV->hasAttribute("toc-data"))
511     return false;
512 
513   // TODO: These asserts should be updated as more support for the toc data
514   // transformation is added (struct support, etc.).
515 
516   assert(
517       PointerSize >= GV->getAlign().valueOrOne().value() &&
518       "GlobalVariables with an alignment requirement stricter than TOC entry "
519       "size not supported by the toc data transformation.");
520 
521   Type *GVType = GV->getValueType();
522 
523   assert(GVType->isSized() && "A GlobalVariable's size must be known to be "
524                               "supported by the toc data transformation.");
525 
526   if (GVType->isVectorTy())
527     report_fatal_error("A GlobalVariable of Vector type is not currently "
528                        "supported by the toc data transformation.");
529 
530   if (GVType->isArrayTy())
531     report_fatal_error("A GlobalVariable of Array type is not currently "
532                        "supported by the toc data transformation.");
533 
534   if (GVType->isStructTy())
535     report_fatal_error("A GlobalVariable of Struct type is not currently "
536                        "supported by the toc data transformation.");
537 
538   assert(GVType->getPrimitiveSizeInBits() <= PointerSize * 8 &&
539          "A GlobalVariable with size larger than a TOC entry is not currently "
540          "supported by the toc data transformation.");
541 
542   if (GV->hasLocalLinkage() || GV->hasPrivateLinkage())
543     report_fatal_error("A GlobalVariable with private or local linkage is not "
544                        "currently supported by the toc data transformation.");
545 
546   assert(!GV->hasCommonLinkage() &&
547          "Tentative definitions cannot have the mapping class XMC_TD.");
548 
549   return true;
550 }
551 
552 /// isInt32Immediate - This method tests to see if the node is a 32-bit constant
553 /// operand. If so Imm will receive the 32-bit value.
554 static bool isInt32Immediate(SDNode *N, unsigned &Imm) {
555   if (N->getOpcode() == ISD::Constant && N->getValueType(0) == MVT::i32) {
556     Imm = cast<ConstantSDNode>(N)->getZExtValue();
557     return true;
558   }
559   return false;
560 }
561 
562 /// isInt64Immediate - This method tests to see if the node is a 64-bit constant
563 /// operand.  If so Imm will receive the 64-bit value.
564 static bool isInt64Immediate(SDNode *N, uint64_t &Imm) {
565   if (N->getOpcode() == ISD::Constant && N->getValueType(0) == MVT::i64) {
566     Imm = cast<ConstantSDNode>(N)->getZExtValue();
567     return true;
568   }
569   return false;
570 }
571 
572 // isInt32Immediate - This method tests to see if a constant operand.
573 // If so Imm will receive the 32 bit value.
574 static bool isInt32Immediate(SDValue N, unsigned &Imm) {
575   return isInt32Immediate(N.getNode(), Imm);
576 }
577 
578 /// isInt64Immediate - This method tests to see if the value is a 64-bit
579 /// constant operand. If so Imm will receive the 64-bit value.
580 static bool isInt64Immediate(SDValue N, uint64_t &Imm) {
581   return isInt64Immediate(N.getNode(), Imm);
582 }
583 
584 static unsigned getBranchHint(unsigned PCC,
585                               const FunctionLoweringInfo &FuncInfo,
586                               const SDValue &DestMBB) {
587   assert(isa<BasicBlockSDNode>(DestMBB));
588 
589   if (!FuncInfo.BPI) return PPC::BR_NO_HINT;
590 
591   const BasicBlock *BB = FuncInfo.MBB->getBasicBlock();
592   const Instruction *BBTerm = BB->getTerminator();
593 
594   if (BBTerm->getNumSuccessors() != 2) return PPC::BR_NO_HINT;
595 
596   const BasicBlock *TBB = BBTerm->getSuccessor(0);
597   const BasicBlock *FBB = BBTerm->getSuccessor(1);
598 
599   auto TProb = FuncInfo.BPI->getEdgeProbability(BB, TBB);
600   auto FProb = FuncInfo.BPI->getEdgeProbability(BB, FBB);
601 
602   // We only want to handle cases which are easy to predict at static time, e.g.
603   // C++ throw statement, that is very likely not taken, or calling never
604   // returned function, e.g. stdlib exit(). So we set Threshold to filter
605   // unwanted cases.
606   //
607   // Below is LLVM branch weight table, we only want to handle case 1, 2
608   //
609   // Case                  Taken:Nontaken  Example
610   // 1. Unreachable        1048575:1       C++ throw, stdlib exit(),
611   // 2. Invoke-terminating 1:1048575
612   // 3. Coldblock          4:64            __builtin_expect
613   // 4. Loop Branch        124:4           For loop
614   // 5. PH/ZH/FPH          20:12
615   const uint32_t Threshold = 10000;
616 
617   if (std::max(TProb, FProb) / Threshold < std::min(TProb, FProb))
618     return PPC::BR_NO_HINT;
619 
620   LLVM_DEBUG(dbgs() << "Use branch hint for '" << FuncInfo.Fn->getName()
621                     << "::" << BB->getName() << "'\n"
622                     << " -> " << TBB->getName() << ": " << TProb << "\n"
623                     << " -> " << FBB->getName() << ": " << FProb << "\n");
624 
625   const BasicBlockSDNode *BBDN = cast<BasicBlockSDNode>(DestMBB);
626 
627   // If Dest BasicBlock is False-BasicBlock (FBB), swap branch probabilities,
628   // because we want 'TProb' stands for 'branch probability' to Dest BasicBlock
629   if (BBDN->getBasicBlock()->getBasicBlock() != TBB)
630     std::swap(TProb, FProb);
631 
632   return (TProb > FProb) ? PPC::BR_TAKEN_HINT : PPC::BR_NONTAKEN_HINT;
633 }
634 
635 // isOpcWithIntImmediate - This method tests to see if the node is a specific
636 // opcode and that it has a immediate integer right operand.
637 // If so Imm will receive the 32 bit value.
638 static bool isOpcWithIntImmediate(SDNode *N, unsigned Opc, unsigned& Imm) {
639   return N->getOpcode() == Opc
640          && isInt32Immediate(N->getOperand(1).getNode(), Imm);
641 }
642 
643 void PPCDAGToDAGISel::selectFrameIndex(SDNode *SN, SDNode *N, uint64_t Offset) {
644   SDLoc dl(SN);
645   int FI = cast<FrameIndexSDNode>(N)->getIndex();
646   SDValue TFI = CurDAG->getTargetFrameIndex(FI, N->getValueType(0));
647   unsigned Opc = N->getValueType(0) == MVT::i32 ? PPC::ADDI : PPC::ADDI8;
648   if (SN->hasOneUse())
649     CurDAG->SelectNodeTo(SN, Opc, N->getValueType(0), TFI,
650                          getSmallIPtrImm(Offset, dl));
651   else
652     ReplaceNode(SN, CurDAG->getMachineNode(Opc, dl, N->getValueType(0), TFI,
653                                            getSmallIPtrImm(Offset, dl)));
654 }
655 
656 bool PPCDAGToDAGISel::isRotateAndMask(SDNode *N, unsigned Mask,
657                                       bool isShiftMask, unsigned &SH,
658                                       unsigned &MB, unsigned &ME) {
659   // Don't even go down this path for i64, since different logic will be
660   // necessary for rldicl/rldicr/rldimi.
661   if (N->getValueType(0) != MVT::i32)
662     return false;
663 
664   unsigned Shift  = 32;
665   unsigned Indeterminant = ~0;  // bit mask marking indeterminant results
666   unsigned Opcode = N->getOpcode();
667   if (N->getNumOperands() != 2 ||
668       !isInt32Immediate(N->getOperand(1).getNode(), Shift) || (Shift > 31))
669     return false;
670 
671   if (Opcode == ISD::SHL) {
672     // apply shift left to mask if it comes first
673     if (isShiftMask) Mask = Mask << Shift;
674     // determine which bits are made indeterminant by shift
675     Indeterminant = ~(0xFFFFFFFFu << Shift);
676   } else if (Opcode == ISD::SRL) {
677     // apply shift right to mask if it comes first
678     if (isShiftMask) Mask = Mask >> Shift;
679     // determine which bits are made indeterminant by shift
680     Indeterminant = ~(0xFFFFFFFFu >> Shift);
681     // adjust for the left rotate
682     Shift = 32 - Shift;
683   } else if (Opcode == ISD::ROTL) {
684     Indeterminant = 0;
685   } else {
686     return false;
687   }
688 
689   // if the mask doesn't intersect any Indeterminant bits
690   if (Mask && !(Mask & Indeterminant)) {
691     SH = Shift & 31;
692     // make sure the mask is still a mask (wrap arounds may not be)
693     return isRunOfOnes(Mask, MB, ME);
694   }
695   return false;
696 }
697 
698 bool PPCDAGToDAGISel::tryTLSXFormStore(StoreSDNode *ST) {
699   SDValue Base = ST->getBasePtr();
700   if (Base.getOpcode() != PPCISD::ADD_TLS)
701     return false;
702   SDValue Offset = ST->getOffset();
703   if (!Offset.isUndef())
704     return false;
705   if (Base.getOperand(1).getOpcode() == PPCISD::TLS_LOCAL_EXEC_MAT_ADDR)
706     return false;
707 
708   SDLoc dl(ST);
709   EVT MemVT = ST->getMemoryVT();
710   EVT RegVT = ST->getValue().getValueType();
711 
712   unsigned Opcode;
713   switch (MemVT.getSimpleVT().SimpleTy) {
714     default:
715       return false;
716     case MVT::i8: {
717       Opcode = (RegVT == MVT::i32) ? PPC::STBXTLS_32 : PPC::STBXTLS;
718       break;
719     }
720     case MVT::i16: {
721       Opcode = (RegVT == MVT::i32) ? PPC::STHXTLS_32 : PPC::STHXTLS;
722       break;
723     }
724     case MVT::i32: {
725       Opcode = (RegVT == MVT::i32) ? PPC::STWXTLS_32 : PPC::STWXTLS;
726       break;
727     }
728     case MVT::i64: {
729       Opcode = PPC::STDXTLS;
730       break;
731     }
732   }
733   SDValue Chain = ST->getChain();
734   SDVTList VTs = ST->getVTList();
735   SDValue Ops[] = {ST->getValue(), Base.getOperand(0), Base.getOperand(1),
736                    Chain};
737   SDNode *MN = CurDAG->getMachineNode(Opcode, dl, VTs, Ops);
738   transferMemOperands(ST, MN);
739   ReplaceNode(ST, MN);
740   return true;
741 }
742 
743 bool PPCDAGToDAGISel::tryTLSXFormLoad(LoadSDNode *LD) {
744   SDValue Base = LD->getBasePtr();
745   if (Base.getOpcode() != PPCISD::ADD_TLS)
746     return false;
747   SDValue Offset = LD->getOffset();
748   if (!Offset.isUndef())
749     return false;
750   if (Base.getOperand(1).getOpcode() == PPCISD::TLS_LOCAL_EXEC_MAT_ADDR)
751     return false;
752 
753   SDLoc dl(LD);
754   EVT MemVT = LD->getMemoryVT();
755   EVT RegVT = LD->getValueType(0);
756   unsigned Opcode;
757   switch (MemVT.getSimpleVT().SimpleTy) {
758     default:
759       return false;
760     case MVT::i8: {
761       Opcode = (RegVT == MVT::i32) ? PPC::LBZXTLS_32 : PPC::LBZXTLS;
762       break;
763     }
764     case MVT::i16: {
765       Opcode = (RegVT == MVT::i32) ? PPC::LHZXTLS_32 : PPC::LHZXTLS;
766       break;
767     }
768     case MVT::i32: {
769       Opcode = (RegVT == MVT::i32) ? PPC::LWZXTLS_32 : PPC::LWZXTLS;
770       break;
771     }
772     case MVT::i64: {
773       Opcode = PPC::LDXTLS;
774       break;
775     }
776   }
777   SDValue Chain = LD->getChain();
778   SDVTList VTs = LD->getVTList();
779   SDValue Ops[] = {Base.getOperand(0), Base.getOperand(1), Chain};
780   SDNode *MN = CurDAG->getMachineNode(Opcode, dl, VTs, Ops);
781   transferMemOperands(LD, MN);
782   ReplaceNode(LD, MN);
783   return true;
784 }
785 
786 /// Turn an or of two masked values into the rotate left word immediate then
787 /// mask insert (rlwimi) instruction.
788 bool PPCDAGToDAGISel::tryBitfieldInsert(SDNode *N) {
789   SDValue Op0 = N->getOperand(0);
790   SDValue Op1 = N->getOperand(1);
791   SDLoc dl(N);
792 
793   KnownBits LKnown = CurDAG->computeKnownBits(Op0);
794   KnownBits RKnown = CurDAG->computeKnownBits(Op1);
795 
796   unsigned TargetMask = LKnown.Zero.getZExtValue();
797   unsigned InsertMask = RKnown.Zero.getZExtValue();
798 
799   if ((TargetMask | InsertMask) == 0xFFFFFFFF) {
800     unsigned Op0Opc = Op0.getOpcode();
801     unsigned Op1Opc = Op1.getOpcode();
802     unsigned Value, SH = 0;
803     TargetMask = ~TargetMask;
804     InsertMask = ~InsertMask;
805 
806     // If the LHS has a foldable shift and the RHS does not, then swap it to the
807     // RHS so that we can fold the shift into the insert.
808     if (Op0Opc == ISD::AND && Op1Opc == ISD::AND) {
809       if (Op0.getOperand(0).getOpcode() == ISD::SHL ||
810           Op0.getOperand(0).getOpcode() == ISD::SRL) {
811         if (Op1.getOperand(0).getOpcode() != ISD::SHL &&
812             Op1.getOperand(0).getOpcode() != ISD::SRL) {
813           std::swap(Op0, Op1);
814           std::swap(Op0Opc, Op1Opc);
815           std::swap(TargetMask, InsertMask);
816         }
817       }
818     } else if (Op0Opc == ISD::SHL || Op0Opc == ISD::SRL) {
819       if (Op1Opc == ISD::AND && Op1.getOperand(0).getOpcode() != ISD::SHL &&
820           Op1.getOperand(0).getOpcode() != ISD::SRL) {
821         std::swap(Op0, Op1);
822         std::swap(Op0Opc, Op1Opc);
823         std::swap(TargetMask, InsertMask);
824       }
825     }
826 
827     unsigned MB, ME;
828     if (isRunOfOnes(InsertMask, MB, ME)) {
829       if ((Op1Opc == ISD::SHL || Op1Opc == ISD::SRL) &&
830           isInt32Immediate(Op1.getOperand(1), Value)) {
831         Op1 = Op1.getOperand(0);
832         SH  = (Op1Opc == ISD::SHL) ? Value : 32 - Value;
833       }
834       if (Op1Opc == ISD::AND) {
835        // The AND mask might not be a constant, and we need to make sure that
836        // if we're going to fold the masking with the insert, all bits not
837        // know to be zero in the mask are known to be one.
838         KnownBits MKnown = CurDAG->computeKnownBits(Op1.getOperand(1));
839         bool CanFoldMask = InsertMask == MKnown.One.getZExtValue();
840 
841         unsigned SHOpc = Op1.getOperand(0).getOpcode();
842         if ((SHOpc == ISD::SHL || SHOpc == ISD::SRL) && CanFoldMask &&
843             isInt32Immediate(Op1.getOperand(0).getOperand(1), Value)) {
844           // Note that Value must be in range here (less than 32) because
845           // otherwise there would not be any bits set in InsertMask.
846           Op1 = Op1.getOperand(0).getOperand(0);
847           SH  = (SHOpc == ISD::SHL) ? Value : 32 - Value;
848         }
849       }
850 
851       SH &= 31;
852       SDValue Ops[] = { Op0, Op1, getI32Imm(SH, dl), getI32Imm(MB, dl),
853                           getI32Imm(ME, dl) };
854       ReplaceNode(N, CurDAG->getMachineNode(PPC::RLWIMI, dl, MVT::i32, Ops));
855       return true;
856     }
857   }
858   return false;
859 }
860 
861 static unsigned allUsesTruncate(SelectionDAG *CurDAG, SDNode *N) {
862   unsigned MaxTruncation = 0;
863   // Cannot use range-based for loop here as we need the actual use (i.e. we
864   // need the operand number corresponding to the use). A range-based for
865   // will unbox the use and provide an SDNode*.
866   for (SDNode::use_iterator Use = N->use_begin(), UseEnd = N->use_end();
867        Use != UseEnd; ++Use) {
868     unsigned Opc =
869       Use->isMachineOpcode() ? Use->getMachineOpcode() : Use->getOpcode();
870     switch (Opc) {
871     default: return 0;
872     case ISD::TRUNCATE:
873       if (Use->isMachineOpcode())
874         return 0;
875       MaxTruncation =
876         std::max(MaxTruncation, (unsigned)Use->getValueType(0).getSizeInBits());
877       continue;
878     case ISD::STORE: {
879       if (Use->isMachineOpcode())
880         return 0;
881       StoreSDNode *STN = cast<StoreSDNode>(*Use);
882       unsigned MemVTSize = STN->getMemoryVT().getSizeInBits();
883       if (MemVTSize == 64 || Use.getOperandNo() != 0)
884         return 0;
885       MaxTruncation = std::max(MaxTruncation, MemVTSize);
886       continue;
887     }
888     case PPC::STW8:
889     case PPC::STWX8:
890     case PPC::STWU8:
891     case PPC::STWUX8:
892       if (Use.getOperandNo() != 0)
893         return 0;
894       MaxTruncation = std::max(MaxTruncation, 32u);
895       continue;
896     case PPC::STH8:
897     case PPC::STHX8:
898     case PPC::STHU8:
899     case PPC::STHUX8:
900       if (Use.getOperandNo() != 0)
901         return 0;
902       MaxTruncation = std::max(MaxTruncation, 16u);
903       continue;
904     case PPC::STB8:
905     case PPC::STBX8:
906     case PPC::STBU8:
907     case PPC::STBUX8:
908       if (Use.getOperandNo() != 0)
909         return 0;
910       MaxTruncation = std::max(MaxTruncation, 8u);
911       continue;
912     }
913   }
914   return MaxTruncation;
915 }
916 
917 // For any 32 < Num < 64, check if the Imm contains at least Num consecutive
918 // zeros and return the number of bits by the left of these consecutive zeros.
919 static int findContiguousZerosAtLeast(uint64_t Imm, unsigned Num) {
920   unsigned HiTZ = countTrailingZeros<uint32_t>(Hi_32(Imm));
921   unsigned LoLZ = countLeadingZeros<uint32_t>(Lo_32(Imm));
922   if ((HiTZ + LoLZ) >= Num)
923     return (32 + HiTZ);
924   return 0;
925 }
926 
927 // Direct materialization of 64-bit constants by enumerated patterns.
928 static SDNode *selectI64ImmDirect(SelectionDAG *CurDAG, const SDLoc &dl,
929                                   uint64_t Imm, unsigned &InstCnt) {
930   unsigned TZ = countTrailingZeros<uint64_t>(Imm);
931   unsigned LZ = countLeadingZeros<uint64_t>(Imm);
932   unsigned TO = countTrailingOnes<uint64_t>(Imm);
933   unsigned LO = countLeadingOnes<uint64_t>(Imm);
934   unsigned Hi32 = Hi_32(Imm);
935   unsigned Lo32 = Lo_32(Imm);
936   SDNode *Result = nullptr;
937   unsigned Shift = 0;
938 
939   auto getI32Imm = [CurDAG, dl](unsigned Imm) {
940     return CurDAG->getTargetConstant(Imm, dl, MVT::i32);
941   };
942 
943   // Following patterns use 1 instructions to materialize the Imm.
944   InstCnt = 1;
945   // 1-1) Patterns : {zeros}{15-bit valve}
946   //                 {ones}{15-bit valve}
947   if (isInt<16>(Imm)) {
948     SDValue SDImm = CurDAG->getTargetConstant(Imm, dl, MVT::i64);
949     return CurDAG->getMachineNode(PPC::LI8, dl, MVT::i64, SDImm);
950   }
951   // 1-2) Patterns : {zeros}{15-bit valve}{16 zeros}
952   //                 {ones}{15-bit valve}{16 zeros}
953   if (TZ > 15 && (LZ > 32 || LO > 32))
954     return CurDAG->getMachineNode(PPC::LIS8, dl, MVT::i64,
955                                   getI32Imm((Imm >> 16) & 0xffff));
956 
957   // Following patterns use 2 instructions to materialize the Imm.
958   InstCnt = 2;
959   assert(LZ < 64 && "Unexpected leading zeros here.");
960   // Count of ones follwing the leading zeros.
961   unsigned FO = countLeadingOnes<uint64_t>(Imm << LZ);
962   // 2-1) Patterns : {zeros}{31-bit value}
963   //                 {ones}{31-bit value}
964   if (isInt<32>(Imm)) {
965     uint64_t ImmHi16 = (Imm >> 16) & 0xffff;
966     unsigned Opcode = ImmHi16 ? PPC::LIS8 : PPC::LI8;
967     Result = CurDAG->getMachineNode(Opcode, dl, MVT::i64, getI32Imm(ImmHi16));
968     return CurDAG->getMachineNode(PPC::ORI8, dl, MVT::i64, SDValue(Result, 0),
969                                   getI32Imm(Imm & 0xffff));
970   }
971   // 2-2) Patterns : {zeros}{ones}{15-bit value}{zeros}
972   //                 {zeros}{15-bit value}{zeros}
973   //                 {zeros}{ones}{15-bit value}
974   //                 {ones}{15-bit value}{zeros}
975   // We can take advantage of LI's sign-extension semantics to generate leading
976   // ones, and then use RLDIC to mask off the ones in both sides after rotation.
977   if ((LZ + FO + TZ) > 48) {
978     Result = CurDAG->getMachineNode(PPC::LI8, dl, MVT::i64,
979                                     getI32Imm((Imm >> TZ) & 0xffff));
980     return CurDAG->getMachineNode(PPC::RLDIC, dl, MVT::i64, SDValue(Result, 0),
981                                   getI32Imm(TZ), getI32Imm(LZ));
982   }
983   // 2-3) Pattern : {zeros}{15-bit value}{ones}
984   // Shift right the Imm by (48 - LZ) bits to construct a negtive 16 bits value,
985   // therefore we can take advantage of LI's sign-extension semantics, and then
986   // mask them off after rotation.
987   //
988   // +--LZ--||-15-bit-||--TO--+     +-------------|--16-bit--+
989   // |00000001bbbbbbbbb1111111| ->  |00000000000001bbbbbbbbb1|
990   // +------------------------+     +------------------------+
991   // 63                      0      63                      0
992   //          Imm                   (Imm >> (48 - LZ) & 0xffff)
993   // +----sext-----|--16-bit--+     +clear-|-----------------+
994   // |11111111111111bbbbbbbbb1| ->  |00000001bbbbbbbbb1111111|
995   // +------------------------+     +------------------------+
996   // 63                      0      63                      0
997   // LI8: sext many leading zeros   RLDICL: rotate left (48 - LZ), clear left LZ
998   if ((LZ + TO) > 48) {
999     // Since the immediates with (LZ > 32) have been handled by previous
1000     // patterns, here we have (LZ <= 32) to make sure we will not shift right
1001     // the Imm by a negative value.
1002     assert(LZ <= 32 && "Unexpected shift value.");
1003     Result = CurDAG->getMachineNode(PPC::LI8, dl, MVT::i64,
1004                                     getI32Imm((Imm >> (48 - LZ) & 0xffff)));
1005     return CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64, SDValue(Result, 0),
1006                                   getI32Imm(48 - LZ), getI32Imm(LZ));
1007   }
1008   // 2-4) Patterns : {zeros}{ones}{15-bit value}{ones}
1009   //                 {ones}{15-bit value}{ones}
1010   // We can take advantage of LI's sign-extension semantics to generate leading
1011   // ones, and then use RLDICL to mask off the ones in left sides (if required)
1012   // after rotation.
1013   //
1014   // +-LZ-FO||-15-bit-||--TO--+     +-------------|--16-bit--+
1015   // |00011110bbbbbbbbb1111111| ->  |000000000011110bbbbbbbbb|
1016   // +------------------------+     +------------------------+
1017   // 63                      0      63                      0
1018   //            Imm                    (Imm >> TO) & 0xffff
1019   // +----sext-----|--16-bit--+     +LZ|---------------------+
1020   // |111111111111110bbbbbbbbb| ->  |00011110bbbbbbbbb1111111|
1021   // +------------------------+     +------------------------+
1022   // 63                      0      63                      0
1023   // LI8: sext many leading zeros   RLDICL: rotate left TO, clear left LZ
1024   if ((LZ + FO + TO) > 48) {
1025     Result = CurDAG->getMachineNode(PPC::LI8, dl, MVT::i64,
1026                                     getI32Imm((Imm >> TO) & 0xffff));
1027     return CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64, SDValue(Result, 0),
1028                                   getI32Imm(TO), getI32Imm(LZ));
1029   }
1030   // 2-5) Pattern : {32 zeros}{****}{0}{15-bit value}
1031   // If Hi32 is zero and the Lo16(in Lo32) can be presented as a positive 16 bit
1032   // value, we can use LI for Lo16 without generating leading ones then add the
1033   // Hi16(in Lo32).
1034   if (LZ == 32 && ((Lo32 & 0x8000) == 0)) {
1035     Result = CurDAG->getMachineNode(PPC::LI8, dl, MVT::i64,
1036                                     getI32Imm(Lo32 & 0xffff));
1037     return CurDAG->getMachineNode(PPC::ORIS8, dl, MVT::i64, SDValue(Result, 0),
1038                                   getI32Imm(Lo32 >> 16));
1039   }
1040   // 2-6) Patterns : {******}{49 zeros}{******}
1041   //                 {******}{49 ones}{******}
1042   // If the Imm contains 49 consecutive zeros/ones, it means that a total of 15
1043   // bits remain on both sides. Rotate right the Imm to construct an int<16>
1044   // value, use LI for int<16> value and then use RLDICL without mask to rotate
1045   // it back.
1046   //
1047   // 1) findContiguousZerosAtLeast(Imm, 49)
1048   // +------|--zeros-|------+     +---ones--||---15 bit--+
1049   // |bbbbbb0000000000aaaaaa| ->  |0000000000aaaaaabbbbbb|
1050   // +----------------------+     +----------------------+
1051   // 63                    0      63                    0
1052   //
1053   // 2) findContiguousZerosAtLeast(~Imm, 49)
1054   // +------|--ones--|------+     +---ones--||---15 bit--+
1055   // |bbbbbb1111111111aaaaaa| ->  |1111111111aaaaaabbbbbb|
1056   // +----------------------+     +----------------------+
1057   // 63                    0      63                    0
1058   if ((Shift = findContiguousZerosAtLeast(Imm, 49)) ||
1059       (Shift = findContiguousZerosAtLeast(~Imm, 49))) {
1060     uint64_t RotImm = APInt(64, Imm).rotr(Shift).getZExtValue();
1061     Result = CurDAG->getMachineNode(PPC::LI8, dl, MVT::i64,
1062                                     getI32Imm(RotImm & 0xffff));
1063     return CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64, SDValue(Result, 0),
1064                                   getI32Imm(Shift), getI32Imm(0));
1065   }
1066 
1067   // Following patterns use 3 instructions to materialize the Imm.
1068   InstCnt = 3;
1069   // 3-1) Patterns : {zeros}{ones}{31-bit value}{zeros}
1070   //                 {zeros}{31-bit value}{zeros}
1071   //                 {zeros}{ones}{31-bit value}
1072   //                 {ones}{31-bit value}{zeros}
1073   // We can take advantage of LIS's sign-extension semantics to generate leading
1074   // ones, add the remaining bits with ORI, and then use RLDIC to mask off the
1075   // ones in both sides after rotation.
1076   if ((LZ + FO + TZ) > 32) {
1077     uint64_t ImmHi16 = (Imm >> (TZ + 16)) & 0xffff;
1078     unsigned Opcode = ImmHi16 ? PPC::LIS8 : PPC::LI8;
1079     Result = CurDAG->getMachineNode(Opcode, dl, MVT::i64, getI32Imm(ImmHi16));
1080     Result = CurDAG->getMachineNode(PPC::ORI8, dl, MVT::i64, SDValue(Result, 0),
1081                                     getI32Imm((Imm >> TZ) & 0xffff));
1082     return CurDAG->getMachineNode(PPC::RLDIC, dl, MVT::i64, SDValue(Result, 0),
1083                                   getI32Imm(TZ), getI32Imm(LZ));
1084   }
1085   // 3-2) Pattern : {zeros}{31-bit value}{ones}
1086   // Shift right the Imm by (32 - LZ) bits to construct a negtive 32 bits value,
1087   // therefore we can take advantage of LIS's sign-extension semantics, add
1088   // the remaining bits with ORI, and then mask them off after rotation.
1089   // This is similar to Pattern 2-3, please refer to the diagram there.
1090   if ((LZ + TO) > 32) {
1091     // Since the immediates with (LZ > 32) have been handled by previous
1092     // patterns, here we have (LZ <= 32) to make sure we will not shift right
1093     // the Imm by a negative value.
1094     assert(LZ <= 32 && "Unexpected shift value.");
1095     Result = CurDAG->getMachineNode(PPC::LIS8, dl, MVT::i64,
1096                                     getI32Imm((Imm >> (48 - LZ)) & 0xffff));
1097     Result = CurDAG->getMachineNode(PPC::ORI8, dl, MVT::i64, SDValue(Result, 0),
1098                                     getI32Imm((Imm >> (32 - LZ)) & 0xffff));
1099     return CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64, SDValue(Result, 0),
1100                                   getI32Imm(32 - LZ), getI32Imm(LZ));
1101   }
1102   // 3-3) Patterns : {zeros}{ones}{31-bit value}{ones}
1103   //                 {ones}{31-bit value}{ones}
1104   // We can take advantage of LIS's sign-extension semantics to generate leading
1105   // ones, add the remaining bits with ORI, and then use RLDICL to mask off the
1106   // ones in left sides (if required) after rotation.
1107   // This is similar to Pattern 2-4, please refer to the diagram there.
1108   if ((LZ + FO + TO) > 32) {
1109     Result = CurDAG->getMachineNode(PPC::LIS8, dl, MVT::i64,
1110                                     getI32Imm((Imm >> (TO + 16)) & 0xffff));
1111     Result = CurDAG->getMachineNode(PPC::ORI8, dl, MVT::i64, SDValue(Result, 0),
1112                                     getI32Imm((Imm >> TO) & 0xffff));
1113     return CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64, SDValue(Result, 0),
1114                                   getI32Imm(TO), getI32Imm(LZ));
1115   }
1116   // 3-4) Patterns : High word == Low word
1117   if (Hi32 == Lo32) {
1118     // Handle the first 32 bits.
1119     uint64_t ImmHi16 = (Lo32 >> 16) & 0xffff;
1120     unsigned Opcode = ImmHi16 ? PPC::LIS8 : PPC::LI8;
1121     Result = CurDAG->getMachineNode(Opcode, dl, MVT::i64, getI32Imm(ImmHi16));
1122     Result = CurDAG->getMachineNode(PPC::ORI8, dl, MVT::i64, SDValue(Result, 0),
1123                                     getI32Imm(Lo32 & 0xffff));
1124     // Use rldimi to insert the Low word into High word.
1125     SDValue Ops[] = {SDValue(Result, 0), SDValue(Result, 0), getI32Imm(32),
1126                      getI32Imm(0)};
1127     return CurDAG->getMachineNode(PPC::RLDIMI, dl, MVT::i64, Ops);
1128   }
1129   // 3-5) Patterns : {******}{33 zeros}{******}
1130   //                 {******}{33 ones}{******}
1131   // If the Imm contains 33 consecutive zeros/ones, it means that a total of 31
1132   // bits remain on both sides. Rotate right the Imm to construct an int<32>
1133   // value, use LIS + ORI for int<32> value and then use RLDICL without mask to
1134   // rotate it back.
1135   // This is similar to Pattern 2-6, please refer to the diagram there.
1136   if ((Shift = findContiguousZerosAtLeast(Imm, 33)) ||
1137       (Shift = findContiguousZerosAtLeast(~Imm, 33))) {
1138     uint64_t RotImm = APInt(64, Imm).rotr(Shift).getZExtValue();
1139     uint64_t ImmHi16 = (RotImm >> 16) & 0xffff;
1140     unsigned Opcode = ImmHi16 ? PPC::LIS8 : PPC::LI8;
1141     Result = CurDAG->getMachineNode(Opcode, dl, MVT::i64, getI32Imm(ImmHi16));
1142     Result = CurDAG->getMachineNode(PPC::ORI8, dl, MVT::i64, SDValue(Result, 0),
1143                                     getI32Imm(RotImm & 0xffff));
1144     return CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64, SDValue(Result, 0),
1145                                   getI32Imm(Shift), getI32Imm(0));
1146   }
1147 
1148   InstCnt = 0;
1149   return nullptr;
1150 }
1151 
1152 // Try to select instructions to generate a 64 bit immediate using prefix as
1153 // well as non prefix instructions. The function will return the SDNode
1154 // to materialize that constant or it will return nullptr if it does not
1155 // find one. The variable InstCnt is set to the number of instructions that
1156 // were selected.
1157 static SDNode *selectI64ImmDirectPrefix(SelectionDAG *CurDAG, const SDLoc &dl,
1158                                         uint64_t Imm, unsigned &InstCnt) {
1159   unsigned TZ = countTrailingZeros<uint64_t>(Imm);
1160   unsigned LZ = countLeadingZeros<uint64_t>(Imm);
1161   unsigned TO = countTrailingOnes<uint64_t>(Imm);
1162   unsigned FO = countLeadingOnes<uint64_t>(LZ == 64 ? 0 : (Imm << LZ));
1163   unsigned Hi32 = Hi_32(Imm);
1164   unsigned Lo32 = Lo_32(Imm);
1165 
1166   auto getI32Imm = [CurDAG, dl](unsigned Imm) {
1167     return CurDAG->getTargetConstant(Imm, dl, MVT::i32);
1168   };
1169 
1170   auto getI64Imm = [CurDAG, dl](uint64_t Imm) {
1171     return CurDAG->getTargetConstant(Imm, dl, MVT::i64);
1172   };
1173 
1174   // Following patterns use 1 instruction to materialize Imm.
1175   InstCnt = 1;
1176 
1177   // The pli instruction can materialize up to 34 bits directly.
1178   // If a constant fits within 34-bits, emit the pli instruction here directly.
1179   if (isInt<34>(Imm))
1180     return CurDAG->getMachineNode(PPC::PLI8, dl, MVT::i64,
1181                                   CurDAG->getTargetConstant(Imm, dl, MVT::i64));
1182 
1183   // Require at least two instructions.
1184   InstCnt = 2;
1185   SDNode *Result = nullptr;
1186   // Patterns : {zeros}{ones}{33-bit value}{zeros}
1187   //            {zeros}{33-bit value}{zeros}
1188   //            {zeros}{ones}{33-bit value}
1189   //            {ones}{33-bit value}{zeros}
1190   // We can take advantage of PLI's sign-extension semantics to generate leading
1191   // ones, and then use RLDIC to mask off the ones on both sides after rotation.
1192   if ((LZ + FO + TZ) > 30) {
1193     APInt SignedInt34 = APInt(34, (Imm >> TZ) & 0x3ffffffff);
1194     APInt Extended = SignedInt34.sext(64);
1195     Result = CurDAG->getMachineNode(PPC::PLI8, dl, MVT::i64,
1196                                     getI64Imm(*Extended.getRawData()));
1197     return CurDAG->getMachineNode(PPC::RLDIC, dl, MVT::i64, SDValue(Result, 0),
1198                                   getI32Imm(TZ), getI32Imm(LZ));
1199   }
1200   // Pattern : {zeros}{33-bit value}{ones}
1201   // Shift right the Imm by (30 - LZ) bits to construct a negative 34 bit value,
1202   // therefore we can take advantage of PLI's sign-extension semantics, and then
1203   // mask them off after rotation.
1204   //
1205   // +--LZ--||-33-bit-||--TO--+     +-------------|--34-bit--+
1206   // |00000001bbbbbbbbb1111111| ->  |00000000000001bbbbbbbbb1|
1207   // +------------------------+     +------------------------+
1208   // 63                      0      63                      0
1209   //
1210   // +----sext-----|--34-bit--+     +clear-|-----------------+
1211   // |11111111111111bbbbbbbbb1| ->  |00000001bbbbbbbbb1111111|
1212   // +------------------------+     +------------------------+
1213   // 63                      0      63                      0
1214   if ((LZ + TO) > 30) {
1215     APInt SignedInt34 = APInt(34, (Imm >> (30 - LZ)) & 0x3ffffffff);
1216     APInt Extended = SignedInt34.sext(64);
1217     Result = CurDAG->getMachineNode(PPC::PLI8, dl, MVT::i64,
1218                                     getI64Imm(*Extended.getRawData()));
1219     return CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64, SDValue(Result, 0),
1220                                   getI32Imm(30 - LZ), getI32Imm(LZ));
1221   }
1222   // Patterns : {zeros}{ones}{33-bit value}{ones}
1223   //            {ones}{33-bit value}{ones}
1224   // Similar to LI we can take advantage of PLI's sign-extension semantics to
1225   // generate leading ones, and then use RLDICL to mask off the ones in left
1226   // sides (if required) after rotation.
1227   if ((LZ + FO + TO) > 30) {
1228     APInt SignedInt34 = APInt(34, (Imm >> TO) & 0x3ffffffff);
1229     APInt Extended = SignedInt34.sext(64);
1230     Result = CurDAG->getMachineNode(PPC::PLI8, dl, MVT::i64,
1231                                     getI64Imm(*Extended.getRawData()));
1232     return CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64, SDValue(Result, 0),
1233                                   getI32Imm(TO), getI32Imm(LZ));
1234   }
1235   // Patterns : {******}{31 zeros}{******}
1236   //          : {******}{31 ones}{******}
1237   // If Imm contains 31 consecutive zeros/ones then the remaining bit count
1238   // is 33. Rotate right the Imm to construct a int<33> value, we can use PLI
1239   // for the int<33> value and then use RLDICL without a mask to rotate it back.
1240   //
1241   // +------|--ones--|------+     +---ones--||---33 bit--+
1242   // |bbbbbb1111111111aaaaaa| ->  |1111111111aaaaaabbbbbb|
1243   // +----------------------+     +----------------------+
1244   // 63                    0      63                    0
1245   for (unsigned Shift = 0; Shift < 63; ++Shift) {
1246     uint64_t RotImm = APInt(64, Imm).rotr(Shift).getZExtValue();
1247     if (isInt<34>(RotImm)) {
1248       Result =
1249           CurDAG->getMachineNode(PPC::PLI8, dl, MVT::i64, getI64Imm(RotImm));
1250       return CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64,
1251                                     SDValue(Result, 0), getI32Imm(Shift),
1252                                     getI32Imm(0));
1253     }
1254   }
1255 
1256   // Patterns : High word == Low word
1257   // This is basically a splat of a 32 bit immediate.
1258   if (Hi32 == Lo32) {
1259     Result = CurDAG->getMachineNode(PPC::PLI8, dl, MVT::i64, getI64Imm(Hi32));
1260     SDValue Ops[] = {SDValue(Result, 0), SDValue(Result, 0), getI32Imm(32),
1261                      getI32Imm(0)};
1262     return CurDAG->getMachineNode(PPC::RLDIMI, dl, MVT::i64, Ops);
1263   }
1264 
1265   InstCnt = 3;
1266   // Catch-all
1267   // This pattern can form any 64 bit immediate in 3 instructions.
1268   SDNode *ResultHi =
1269       CurDAG->getMachineNode(PPC::PLI8, dl, MVT::i64, getI64Imm(Hi32));
1270   SDNode *ResultLo =
1271       CurDAG->getMachineNode(PPC::PLI8, dl, MVT::i64, getI64Imm(Lo32));
1272   SDValue Ops[] = {SDValue(ResultLo, 0), SDValue(ResultHi, 0), getI32Imm(32),
1273                    getI32Imm(0)};
1274   return CurDAG->getMachineNode(PPC::RLDIMI, dl, MVT::i64, Ops);
1275 }
1276 
1277 static SDNode *selectI64Imm(SelectionDAG *CurDAG, const SDLoc &dl, uint64_t Imm,
1278                             unsigned *InstCnt = nullptr) {
1279   unsigned InstCntDirect = 0;
1280   // No more than 3 instructions is used if we can select the i64 immediate
1281   // directly.
1282   SDNode *Result = selectI64ImmDirect(CurDAG, dl, Imm, InstCntDirect);
1283 
1284   const PPCSubtarget &Subtarget =
1285       CurDAG->getMachineFunction().getSubtarget<PPCSubtarget>();
1286 
1287   // If we have prefixed instructions and there is a chance we can
1288   // materialize the constant with fewer prefixed instructions than
1289   // non-prefixed, try that.
1290   if (Subtarget.hasPrefixInstrs() && InstCntDirect != 1) {
1291     unsigned InstCntDirectP = 0;
1292     SDNode *ResultP = selectI64ImmDirectPrefix(CurDAG, dl, Imm, InstCntDirectP);
1293     // Use the prefix case in either of two cases:
1294     // 1) We have no result from the non-prefix case to use.
1295     // 2) The non-prefix case uses more instructions than the prefix case.
1296     // If the prefix and non-prefix cases use the same number of instructions
1297     // we will prefer the non-prefix case.
1298     if (ResultP && (!Result || InstCntDirectP < InstCntDirect)) {
1299       if (InstCnt)
1300         *InstCnt = InstCntDirectP;
1301       return ResultP;
1302     }
1303   }
1304 
1305   if (Result) {
1306     if (InstCnt)
1307       *InstCnt = InstCntDirect;
1308     return Result;
1309   }
1310   auto getI32Imm = [CurDAG, dl](unsigned Imm) {
1311     return CurDAG->getTargetConstant(Imm, dl, MVT::i32);
1312   };
1313   // Handle the upper 32 bit value.
1314   Result =
1315       selectI64ImmDirect(CurDAG, dl, Imm & 0xffffffff00000000, InstCntDirect);
1316   // Add in the last bits as required.
1317   if (uint32_t Hi16 = (Lo_32(Imm) >> 16) & 0xffff) {
1318     Result = CurDAG->getMachineNode(PPC::ORIS8, dl, MVT::i64,
1319                                     SDValue(Result, 0), getI32Imm(Hi16));
1320     ++InstCntDirect;
1321   }
1322   if (uint32_t Lo16 = Lo_32(Imm) & 0xffff) {
1323     Result = CurDAG->getMachineNode(PPC::ORI8, dl, MVT::i64, SDValue(Result, 0),
1324                                     getI32Imm(Lo16));
1325     ++InstCntDirect;
1326   }
1327   if (InstCnt)
1328     *InstCnt = InstCntDirect;
1329   return Result;
1330 }
1331 
1332 // Select a 64-bit constant.
1333 static SDNode *selectI64Imm(SelectionDAG *CurDAG, SDNode *N) {
1334   SDLoc dl(N);
1335 
1336   // Get 64 bit value.
1337   int64_t Imm = cast<ConstantSDNode>(N)->getZExtValue();
1338   if (unsigned MinSize = allUsesTruncate(CurDAG, N)) {
1339     uint64_t SextImm = SignExtend64(Imm, MinSize);
1340     SDValue SDImm = CurDAG->getTargetConstant(SextImm, dl, MVT::i64);
1341     if (isInt<16>(SextImm))
1342       return CurDAG->getMachineNode(PPC::LI8, dl, MVT::i64, SDImm);
1343   }
1344   return selectI64Imm(CurDAG, dl, Imm);
1345 }
1346 
1347 namespace {
1348 
1349 class BitPermutationSelector {
1350   struct ValueBit {
1351     SDValue V;
1352 
1353     // The bit number in the value, using a convention where bit 0 is the
1354     // lowest-order bit.
1355     unsigned Idx;
1356 
1357     // ConstZero means a bit we need to mask off.
1358     // Variable is a bit comes from an input variable.
1359     // VariableKnownToBeZero is also a bit comes from an input variable,
1360     // but it is known to be already zero. So we do not need to mask them.
1361     enum Kind {
1362       ConstZero,
1363       Variable,
1364       VariableKnownToBeZero
1365     } K;
1366 
1367     ValueBit(SDValue V, unsigned I, Kind K = Variable)
1368       : V(V), Idx(I), K(K) {}
1369     ValueBit(Kind K = Variable) : Idx(UINT32_MAX), K(K) {}
1370 
1371     bool isZero() const {
1372       return K == ConstZero || K == VariableKnownToBeZero;
1373     }
1374 
1375     bool hasValue() const {
1376       return K == Variable || K == VariableKnownToBeZero;
1377     }
1378 
1379     SDValue getValue() const {
1380       assert(hasValue() && "Cannot get the value of a constant bit");
1381       return V;
1382     }
1383 
1384     unsigned getValueBitIndex() const {
1385       assert(hasValue() && "Cannot get the value bit index of a constant bit");
1386       return Idx;
1387     }
1388   };
1389 
1390   // A bit group has the same underlying value and the same rotate factor.
1391   struct BitGroup {
1392     SDValue V;
1393     unsigned RLAmt;
1394     unsigned StartIdx, EndIdx;
1395 
1396     // This rotation amount assumes that the lower 32 bits of the quantity are
1397     // replicated in the high 32 bits by the rotation operator (which is done
1398     // by rlwinm and friends in 64-bit mode).
1399     bool Repl32;
1400     // Did converting to Repl32 == true change the rotation factor? If it did,
1401     // it decreased it by 32.
1402     bool Repl32CR;
1403     // Was this group coalesced after setting Repl32 to true?
1404     bool Repl32Coalesced;
1405 
1406     BitGroup(SDValue V, unsigned R, unsigned S, unsigned E)
1407       : V(V), RLAmt(R), StartIdx(S), EndIdx(E), Repl32(false), Repl32CR(false),
1408         Repl32Coalesced(false) {
1409       LLVM_DEBUG(dbgs() << "\tbit group for " << V.getNode() << " RLAmt = " << R
1410                         << " [" << S << ", " << E << "]\n");
1411     }
1412   };
1413 
1414   // Information on each (Value, RLAmt) pair (like the number of groups
1415   // associated with each) used to choose the lowering method.
1416   struct ValueRotInfo {
1417     SDValue V;
1418     unsigned RLAmt = std::numeric_limits<unsigned>::max();
1419     unsigned NumGroups = 0;
1420     unsigned FirstGroupStartIdx = std::numeric_limits<unsigned>::max();
1421     bool Repl32 = false;
1422 
1423     ValueRotInfo() = default;
1424 
1425     // For sorting (in reverse order) by NumGroups, and then by
1426     // FirstGroupStartIdx.
1427     bool operator < (const ValueRotInfo &Other) const {
1428       // We need to sort so that the non-Repl32 come first because, when we're
1429       // doing masking, the Repl32 bit groups might be subsumed into the 64-bit
1430       // masking operation.
1431       if (Repl32 < Other.Repl32)
1432         return true;
1433       else if (Repl32 > Other.Repl32)
1434         return false;
1435       else if (NumGroups > Other.NumGroups)
1436         return true;
1437       else if (NumGroups < Other.NumGroups)
1438         return false;
1439       else if (RLAmt == 0 && Other.RLAmt != 0)
1440         return true;
1441       else if (RLAmt != 0 && Other.RLAmt == 0)
1442         return false;
1443       else if (FirstGroupStartIdx < Other.FirstGroupStartIdx)
1444         return true;
1445       return false;
1446     }
1447   };
1448 
1449   using ValueBitsMemoizedValue = std::pair<bool, SmallVector<ValueBit, 64>>;
1450   using ValueBitsMemoizer =
1451       DenseMap<SDValue, std::unique_ptr<ValueBitsMemoizedValue>>;
1452   ValueBitsMemoizer Memoizer;
1453 
1454   // Return a pair of bool and a SmallVector pointer to a memoization entry.
1455   // The bool is true if something interesting was deduced, otherwise if we're
1456   // providing only a generic representation of V (or something else likewise
1457   // uninteresting for instruction selection) through the SmallVector.
1458   std::pair<bool, SmallVector<ValueBit, 64> *> getValueBits(SDValue V,
1459                                                             unsigned NumBits) {
1460     auto &ValueEntry = Memoizer[V];
1461     if (ValueEntry)
1462       return std::make_pair(ValueEntry->first, &ValueEntry->second);
1463     ValueEntry.reset(new ValueBitsMemoizedValue());
1464     bool &Interesting = ValueEntry->first;
1465     SmallVector<ValueBit, 64> &Bits = ValueEntry->second;
1466     Bits.resize(NumBits);
1467 
1468     switch (V.getOpcode()) {
1469     default: break;
1470     case ISD::ROTL:
1471       if (isa<ConstantSDNode>(V.getOperand(1))) {
1472         unsigned RotAmt = V.getConstantOperandVal(1);
1473 
1474         const auto &LHSBits = *getValueBits(V.getOperand(0), NumBits).second;
1475 
1476         for (unsigned i = 0; i < NumBits; ++i)
1477           Bits[i] = LHSBits[i < RotAmt ? i + (NumBits - RotAmt) : i - RotAmt];
1478 
1479         return std::make_pair(Interesting = true, &Bits);
1480       }
1481       break;
1482     case ISD::SHL:
1483     case PPCISD::SHL:
1484       if (isa<ConstantSDNode>(V.getOperand(1))) {
1485         unsigned ShiftAmt = V.getConstantOperandVal(1);
1486 
1487         const auto &LHSBits = *getValueBits(V.getOperand(0), NumBits).second;
1488 
1489         for (unsigned i = ShiftAmt; i < NumBits; ++i)
1490           Bits[i] = LHSBits[i - ShiftAmt];
1491 
1492         for (unsigned i = 0; i < ShiftAmt; ++i)
1493           Bits[i] = ValueBit(ValueBit::ConstZero);
1494 
1495         return std::make_pair(Interesting = true, &Bits);
1496       }
1497       break;
1498     case ISD::SRL:
1499     case PPCISD::SRL:
1500       if (isa<ConstantSDNode>(V.getOperand(1))) {
1501         unsigned ShiftAmt = V.getConstantOperandVal(1);
1502 
1503         const auto &LHSBits = *getValueBits(V.getOperand(0), NumBits).second;
1504 
1505         for (unsigned i = 0; i < NumBits - ShiftAmt; ++i)
1506           Bits[i] = LHSBits[i + ShiftAmt];
1507 
1508         for (unsigned i = NumBits - ShiftAmt; i < NumBits; ++i)
1509           Bits[i] = ValueBit(ValueBit::ConstZero);
1510 
1511         return std::make_pair(Interesting = true, &Bits);
1512       }
1513       break;
1514     case ISD::AND:
1515       if (isa<ConstantSDNode>(V.getOperand(1))) {
1516         uint64_t Mask = V.getConstantOperandVal(1);
1517 
1518         const SmallVector<ValueBit, 64> *LHSBits;
1519         // Mark this as interesting, only if the LHS was also interesting. This
1520         // prevents the overall procedure from matching a single immediate 'and'
1521         // (which is non-optimal because such an and might be folded with other
1522         // things if we don't select it here).
1523         std::tie(Interesting, LHSBits) = getValueBits(V.getOperand(0), NumBits);
1524 
1525         for (unsigned i = 0; i < NumBits; ++i)
1526           if (((Mask >> i) & 1) == 1)
1527             Bits[i] = (*LHSBits)[i];
1528           else {
1529             // AND instruction masks this bit. If the input is already zero,
1530             // we have nothing to do here. Otherwise, make the bit ConstZero.
1531             if ((*LHSBits)[i].isZero())
1532               Bits[i] = (*LHSBits)[i];
1533             else
1534               Bits[i] = ValueBit(ValueBit::ConstZero);
1535           }
1536 
1537         return std::make_pair(Interesting, &Bits);
1538       }
1539       break;
1540     case ISD::OR: {
1541       const auto &LHSBits = *getValueBits(V.getOperand(0), NumBits).second;
1542       const auto &RHSBits = *getValueBits(V.getOperand(1), NumBits).second;
1543 
1544       bool AllDisjoint = true;
1545       SDValue LastVal = SDValue();
1546       unsigned LastIdx = 0;
1547       for (unsigned i = 0; i < NumBits; ++i) {
1548         if (LHSBits[i].isZero() && RHSBits[i].isZero()) {
1549           // If both inputs are known to be zero and one is ConstZero and
1550           // another is VariableKnownToBeZero, we can select whichever
1551           // we like. To minimize the number of bit groups, we select
1552           // VariableKnownToBeZero if this bit is the next bit of the same
1553           // input variable from the previous bit. Otherwise, we select
1554           // ConstZero.
1555           if (LHSBits[i].hasValue() && LHSBits[i].getValue() == LastVal &&
1556               LHSBits[i].getValueBitIndex() == LastIdx + 1)
1557             Bits[i] = LHSBits[i];
1558           else if (RHSBits[i].hasValue() && RHSBits[i].getValue() == LastVal &&
1559                    RHSBits[i].getValueBitIndex() == LastIdx + 1)
1560             Bits[i] = RHSBits[i];
1561           else
1562             Bits[i] = ValueBit(ValueBit::ConstZero);
1563         }
1564         else if (LHSBits[i].isZero())
1565           Bits[i] = RHSBits[i];
1566         else if (RHSBits[i].isZero())
1567           Bits[i] = LHSBits[i];
1568         else {
1569           AllDisjoint = false;
1570           break;
1571         }
1572         // We remember the value and bit index of this bit.
1573         if (Bits[i].hasValue()) {
1574           LastVal = Bits[i].getValue();
1575           LastIdx = Bits[i].getValueBitIndex();
1576         }
1577         else {
1578           if (LastVal) LastVal = SDValue();
1579           LastIdx = 0;
1580         }
1581       }
1582 
1583       if (!AllDisjoint)
1584         break;
1585 
1586       return std::make_pair(Interesting = true, &Bits);
1587     }
1588     case ISD::ZERO_EXTEND: {
1589       // We support only the case with zero extension from i32 to i64 so far.
1590       if (V.getValueType() != MVT::i64 ||
1591           V.getOperand(0).getValueType() != MVT::i32)
1592         break;
1593 
1594       const SmallVector<ValueBit, 64> *LHSBits;
1595       const unsigned NumOperandBits = 32;
1596       std::tie(Interesting, LHSBits) = getValueBits(V.getOperand(0),
1597                                                     NumOperandBits);
1598 
1599       for (unsigned i = 0; i < NumOperandBits; ++i)
1600         Bits[i] = (*LHSBits)[i];
1601 
1602       for (unsigned i = NumOperandBits; i < NumBits; ++i)
1603         Bits[i] = ValueBit(ValueBit::ConstZero);
1604 
1605       return std::make_pair(Interesting, &Bits);
1606     }
1607     case ISD::TRUNCATE: {
1608       EVT FromType = V.getOperand(0).getValueType();
1609       EVT ToType = V.getValueType();
1610       // We support only the case with truncate from i64 to i32.
1611       if (FromType != MVT::i64 || ToType != MVT::i32)
1612         break;
1613       const unsigned NumAllBits = FromType.getSizeInBits();
1614       SmallVector<ValueBit, 64> *InBits;
1615       std::tie(Interesting, InBits) = getValueBits(V.getOperand(0),
1616                                                     NumAllBits);
1617       const unsigned NumValidBits = ToType.getSizeInBits();
1618 
1619       // A 32-bit instruction cannot touch upper 32-bit part of 64-bit value.
1620       // So, we cannot include this truncate.
1621       bool UseUpper32bit = false;
1622       for (unsigned i = 0; i < NumValidBits; ++i)
1623         if ((*InBits)[i].hasValue() && (*InBits)[i].getValueBitIndex() >= 32) {
1624           UseUpper32bit = true;
1625           break;
1626         }
1627       if (UseUpper32bit)
1628         break;
1629 
1630       for (unsigned i = 0; i < NumValidBits; ++i)
1631         Bits[i] = (*InBits)[i];
1632 
1633       return std::make_pair(Interesting, &Bits);
1634     }
1635     case ISD::AssertZext: {
1636       // For AssertZext, we look through the operand and
1637       // mark the bits known to be zero.
1638       const SmallVector<ValueBit, 64> *LHSBits;
1639       std::tie(Interesting, LHSBits) = getValueBits(V.getOperand(0),
1640                                                     NumBits);
1641 
1642       EVT FromType = cast<VTSDNode>(V.getOperand(1))->getVT();
1643       const unsigned NumValidBits = FromType.getSizeInBits();
1644       for (unsigned i = 0; i < NumValidBits; ++i)
1645         Bits[i] = (*LHSBits)[i];
1646 
1647       // These bits are known to be zero but the AssertZext may be from a value
1648       // that already has some constant zero bits (i.e. from a masking and).
1649       for (unsigned i = NumValidBits; i < NumBits; ++i)
1650         Bits[i] = (*LHSBits)[i].hasValue()
1651                       ? ValueBit((*LHSBits)[i].getValue(),
1652                                  (*LHSBits)[i].getValueBitIndex(),
1653                                  ValueBit::VariableKnownToBeZero)
1654                       : ValueBit(ValueBit::ConstZero);
1655 
1656       return std::make_pair(Interesting, &Bits);
1657     }
1658     case ISD::LOAD:
1659       LoadSDNode *LD = cast<LoadSDNode>(V);
1660       if (ISD::isZEXTLoad(V.getNode()) && V.getResNo() == 0) {
1661         EVT VT = LD->getMemoryVT();
1662         const unsigned NumValidBits = VT.getSizeInBits();
1663 
1664         for (unsigned i = 0; i < NumValidBits; ++i)
1665           Bits[i] = ValueBit(V, i);
1666 
1667         // These bits are known to be zero.
1668         for (unsigned i = NumValidBits; i < NumBits; ++i)
1669           Bits[i] = ValueBit(V, i, ValueBit::VariableKnownToBeZero);
1670 
1671         // Zero-extending load itself cannot be optimized. So, it is not
1672         // interesting by itself though it gives useful information.
1673         return std::make_pair(Interesting = false, &Bits);
1674       }
1675       break;
1676     }
1677 
1678     for (unsigned i = 0; i < NumBits; ++i)
1679       Bits[i] = ValueBit(V, i);
1680 
1681     return std::make_pair(Interesting = false, &Bits);
1682   }
1683 
1684   // For each value (except the constant ones), compute the left-rotate amount
1685   // to get it from its original to final position.
1686   void computeRotationAmounts() {
1687     NeedMask = false;
1688     RLAmt.resize(Bits.size());
1689     for (unsigned i = 0; i < Bits.size(); ++i)
1690       if (Bits[i].hasValue()) {
1691         unsigned VBI = Bits[i].getValueBitIndex();
1692         if (i >= VBI)
1693           RLAmt[i] = i - VBI;
1694         else
1695           RLAmt[i] = Bits.size() - (VBI - i);
1696       } else if (Bits[i].isZero()) {
1697         NeedMask = true;
1698         RLAmt[i] = UINT32_MAX;
1699       } else {
1700         llvm_unreachable("Unknown value bit type");
1701       }
1702   }
1703 
1704   // Collect groups of consecutive bits with the same underlying value and
1705   // rotation factor. If we're doing late masking, we ignore zeros, otherwise
1706   // they break up groups.
1707   void collectBitGroups(bool LateMask) {
1708     BitGroups.clear();
1709 
1710     unsigned LastRLAmt = RLAmt[0];
1711     SDValue LastValue = Bits[0].hasValue() ? Bits[0].getValue() : SDValue();
1712     unsigned LastGroupStartIdx = 0;
1713     bool IsGroupOfZeros = !Bits[LastGroupStartIdx].hasValue();
1714     for (unsigned i = 1; i < Bits.size(); ++i) {
1715       unsigned ThisRLAmt = RLAmt[i];
1716       SDValue ThisValue = Bits[i].hasValue() ? Bits[i].getValue() : SDValue();
1717       if (LateMask && !ThisValue) {
1718         ThisValue = LastValue;
1719         ThisRLAmt = LastRLAmt;
1720         // If we're doing late masking, then the first bit group always starts
1721         // at zero (even if the first bits were zero).
1722         if (BitGroups.empty())
1723           LastGroupStartIdx = 0;
1724       }
1725 
1726       // If this bit is known to be zero and the current group is a bit group
1727       // of zeros, we do not need to terminate the current bit group even the
1728       // Value or RLAmt does not match here. Instead, we terminate this group
1729       // when the first non-zero bit appears later.
1730       if (IsGroupOfZeros && Bits[i].isZero())
1731         continue;
1732 
1733       // If this bit has the same underlying value and the same rotate factor as
1734       // the last one, then they're part of the same group.
1735       if (ThisRLAmt == LastRLAmt && ThisValue == LastValue)
1736         // We cannot continue the current group if this bits is not known to
1737         // be zero in a bit group of zeros.
1738         if (!(IsGroupOfZeros && ThisValue && !Bits[i].isZero()))
1739           continue;
1740 
1741       if (LastValue.getNode())
1742         BitGroups.push_back(BitGroup(LastValue, LastRLAmt, LastGroupStartIdx,
1743                                      i-1));
1744       LastRLAmt = ThisRLAmt;
1745       LastValue = ThisValue;
1746       LastGroupStartIdx = i;
1747       IsGroupOfZeros = !Bits[LastGroupStartIdx].hasValue();
1748     }
1749     if (LastValue.getNode())
1750       BitGroups.push_back(BitGroup(LastValue, LastRLAmt, LastGroupStartIdx,
1751                                    Bits.size()-1));
1752 
1753     if (BitGroups.empty())
1754       return;
1755 
1756     // We might be able to combine the first and last groups.
1757     if (BitGroups.size() > 1) {
1758       // If the first and last groups are the same, then remove the first group
1759       // in favor of the last group, making the ending index of the last group
1760       // equal to the ending index of the to-be-removed first group.
1761       if (BitGroups[0].StartIdx == 0 &&
1762           BitGroups[BitGroups.size()-1].EndIdx == Bits.size()-1 &&
1763           BitGroups[0].V == BitGroups[BitGroups.size()-1].V &&
1764           BitGroups[0].RLAmt == BitGroups[BitGroups.size()-1].RLAmt) {
1765         LLVM_DEBUG(dbgs() << "\tcombining final bit group with initial one\n");
1766         BitGroups[BitGroups.size()-1].EndIdx = BitGroups[0].EndIdx;
1767         BitGroups.erase(BitGroups.begin());
1768       }
1769     }
1770   }
1771 
1772   // Take all (SDValue, RLAmt) pairs and sort them by the number of groups
1773   // associated with each. If the number of groups are same, we prefer a group
1774   // which does not require rotate, i.e. RLAmt is 0, to avoid the first rotate
1775   // instruction. If there is a degeneracy, pick the one that occurs
1776   // first (in the final value).
1777   void collectValueRotInfo() {
1778     ValueRots.clear();
1779 
1780     for (auto &BG : BitGroups) {
1781       unsigned RLAmtKey = BG.RLAmt + (BG.Repl32 ? 64 : 0);
1782       ValueRotInfo &VRI = ValueRots[std::make_pair(BG.V, RLAmtKey)];
1783       VRI.V = BG.V;
1784       VRI.RLAmt = BG.RLAmt;
1785       VRI.Repl32 = BG.Repl32;
1786       VRI.NumGroups += 1;
1787       VRI.FirstGroupStartIdx = std::min(VRI.FirstGroupStartIdx, BG.StartIdx);
1788     }
1789 
1790     // Now that we've collected the various ValueRotInfo instances, we need to
1791     // sort them.
1792     ValueRotsVec.clear();
1793     for (auto &I : ValueRots) {
1794       ValueRotsVec.push_back(I.second);
1795     }
1796     llvm::sort(ValueRotsVec);
1797   }
1798 
1799   // In 64-bit mode, rlwinm and friends have a rotation operator that
1800   // replicates the low-order 32 bits into the high-order 32-bits. The mask
1801   // indices of these instructions can only be in the lower 32 bits, so they
1802   // can only represent some 64-bit bit groups. However, when they can be used,
1803   // the 32-bit replication can be used to represent, as a single bit group,
1804   // otherwise separate bit groups. We'll convert to replicated-32-bit bit
1805   // groups when possible. Returns true if any of the bit groups were
1806   // converted.
1807   void assignRepl32BitGroups() {
1808     // If we have bits like this:
1809     //
1810     // Indices:    15 14 13 12 11 10 9 8  7  6  5  4  3  2  1  0
1811     // V bits: ... 7  6  5  4  3  2  1 0 31 30 29 28 27 26 25 24
1812     // Groups:    |      RLAmt = 8      |      RLAmt = 40       |
1813     //
1814     // But, making use of a 32-bit operation that replicates the low-order 32
1815     // bits into the high-order 32 bits, this can be one bit group with a RLAmt
1816     // of 8.
1817 
1818     auto IsAllLow32 = [this](BitGroup & BG) {
1819       if (BG.StartIdx <= BG.EndIdx) {
1820         for (unsigned i = BG.StartIdx; i <= BG.EndIdx; ++i) {
1821           if (!Bits[i].hasValue())
1822             continue;
1823           if (Bits[i].getValueBitIndex() >= 32)
1824             return false;
1825         }
1826       } else {
1827         for (unsigned i = BG.StartIdx; i < Bits.size(); ++i) {
1828           if (!Bits[i].hasValue())
1829             continue;
1830           if (Bits[i].getValueBitIndex() >= 32)
1831             return false;
1832         }
1833         for (unsigned i = 0; i <= BG.EndIdx; ++i) {
1834           if (!Bits[i].hasValue())
1835             continue;
1836           if (Bits[i].getValueBitIndex() >= 32)
1837             return false;
1838         }
1839       }
1840 
1841       return true;
1842     };
1843 
1844     for (auto &BG : BitGroups) {
1845       // If this bit group has RLAmt of 0 and will not be merged with
1846       // another bit group, we don't benefit from Repl32. We don't mark
1847       // such group to give more freedom for later instruction selection.
1848       if (BG.RLAmt == 0) {
1849         auto PotentiallyMerged = [this](BitGroup & BG) {
1850           for (auto &BG2 : BitGroups)
1851             if (&BG != &BG2 && BG.V == BG2.V &&
1852                 (BG2.RLAmt == 0 || BG2.RLAmt == 32))
1853               return true;
1854           return false;
1855         };
1856         if (!PotentiallyMerged(BG))
1857           continue;
1858       }
1859       if (BG.StartIdx < 32 && BG.EndIdx < 32) {
1860         if (IsAllLow32(BG)) {
1861           if (BG.RLAmt >= 32) {
1862             BG.RLAmt -= 32;
1863             BG.Repl32CR = true;
1864           }
1865 
1866           BG.Repl32 = true;
1867 
1868           LLVM_DEBUG(dbgs() << "\t32-bit replicated bit group for "
1869                             << BG.V.getNode() << " RLAmt = " << BG.RLAmt << " ["
1870                             << BG.StartIdx << ", " << BG.EndIdx << "]\n");
1871         }
1872       }
1873     }
1874 
1875     // Now walk through the bit groups, consolidating where possible.
1876     for (auto I = BitGroups.begin(); I != BitGroups.end();) {
1877       // We might want to remove this bit group by merging it with the previous
1878       // group (which might be the ending group).
1879       auto IP = (I == BitGroups.begin()) ?
1880                 std::prev(BitGroups.end()) : std::prev(I);
1881       if (I->Repl32 && IP->Repl32 && I->V == IP->V && I->RLAmt == IP->RLAmt &&
1882           I->StartIdx == (IP->EndIdx + 1) % 64 && I != IP) {
1883 
1884         LLVM_DEBUG(dbgs() << "\tcombining 32-bit replicated bit group for "
1885                           << I->V.getNode() << " RLAmt = " << I->RLAmt << " ["
1886                           << I->StartIdx << ", " << I->EndIdx
1887                           << "] with group with range [" << IP->StartIdx << ", "
1888                           << IP->EndIdx << "]\n");
1889 
1890         IP->EndIdx = I->EndIdx;
1891         IP->Repl32CR = IP->Repl32CR || I->Repl32CR;
1892         IP->Repl32Coalesced = true;
1893         I = BitGroups.erase(I);
1894         continue;
1895       } else {
1896         // There is a special case worth handling: If there is a single group
1897         // covering the entire upper 32 bits, and it can be merged with both
1898         // the next and previous groups (which might be the same group), then
1899         // do so. If it is the same group (so there will be only one group in
1900         // total), then we need to reverse the order of the range so that it
1901         // covers the entire 64 bits.
1902         if (I->StartIdx == 32 && I->EndIdx == 63) {
1903           assert(std::next(I) == BitGroups.end() &&
1904                  "bit group ends at index 63 but there is another?");
1905           auto IN = BitGroups.begin();
1906 
1907           if (IP->Repl32 && IN->Repl32 && I->V == IP->V && I->V == IN->V &&
1908               (I->RLAmt % 32) == IP->RLAmt && (I->RLAmt % 32) == IN->RLAmt &&
1909               IP->EndIdx == 31 && IN->StartIdx == 0 && I != IP &&
1910               IsAllLow32(*I)) {
1911 
1912             LLVM_DEBUG(dbgs() << "\tcombining bit group for " << I->V.getNode()
1913                               << " RLAmt = " << I->RLAmt << " [" << I->StartIdx
1914                               << ", " << I->EndIdx
1915                               << "] with 32-bit replicated groups with ranges ["
1916                               << IP->StartIdx << ", " << IP->EndIdx << "] and ["
1917                               << IN->StartIdx << ", " << IN->EndIdx << "]\n");
1918 
1919             if (IP == IN) {
1920               // There is only one other group; change it to cover the whole
1921               // range (backward, so that it can still be Repl32 but cover the
1922               // whole 64-bit range).
1923               IP->StartIdx = 31;
1924               IP->EndIdx = 30;
1925               IP->Repl32CR = IP->Repl32CR || I->RLAmt >= 32;
1926               IP->Repl32Coalesced = true;
1927               I = BitGroups.erase(I);
1928             } else {
1929               // There are two separate groups, one before this group and one
1930               // after us (at the beginning). We're going to remove this group,
1931               // but also the group at the very beginning.
1932               IP->EndIdx = IN->EndIdx;
1933               IP->Repl32CR = IP->Repl32CR || IN->Repl32CR || I->RLAmt >= 32;
1934               IP->Repl32Coalesced = true;
1935               I = BitGroups.erase(I);
1936               BitGroups.erase(BitGroups.begin());
1937             }
1938 
1939             // This must be the last group in the vector (and we might have
1940             // just invalidated the iterator above), so break here.
1941             break;
1942           }
1943         }
1944       }
1945 
1946       ++I;
1947     }
1948   }
1949 
1950   SDValue getI32Imm(unsigned Imm, const SDLoc &dl) {
1951     return CurDAG->getTargetConstant(Imm, dl, MVT::i32);
1952   }
1953 
1954   uint64_t getZerosMask() {
1955     uint64_t Mask = 0;
1956     for (unsigned i = 0; i < Bits.size(); ++i) {
1957       if (Bits[i].hasValue())
1958         continue;
1959       Mask |= (UINT64_C(1) << i);
1960     }
1961 
1962     return ~Mask;
1963   }
1964 
1965   // This method extends an input value to 64 bit if input is 32-bit integer.
1966   // While selecting instructions in BitPermutationSelector in 64-bit mode,
1967   // an input value can be a 32-bit integer if a ZERO_EXTEND node is included.
1968   // In such case, we extend it to 64 bit to be consistent with other values.
1969   SDValue ExtendToInt64(SDValue V, const SDLoc &dl) {
1970     if (V.getValueSizeInBits() == 64)
1971       return V;
1972 
1973     assert(V.getValueSizeInBits() == 32);
1974     SDValue SubRegIdx = CurDAG->getTargetConstant(PPC::sub_32, dl, MVT::i32);
1975     SDValue ImDef = SDValue(CurDAG->getMachineNode(PPC::IMPLICIT_DEF, dl,
1976                                                    MVT::i64), 0);
1977     SDValue ExtVal = SDValue(CurDAG->getMachineNode(PPC::INSERT_SUBREG, dl,
1978                                                     MVT::i64, ImDef, V,
1979                                                     SubRegIdx), 0);
1980     return ExtVal;
1981   }
1982 
1983   SDValue TruncateToInt32(SDValue V, const SDLoc &dl) {
1984     if (V.getValueSizeInBits() == 32)
1985       return V;
1986 
1987     assert(V.getValueSizeInBits() == 64);
1988     SDValue SubRegIdx = CurDAG->getTargetConstant(PPC::sub_32, dl, MVT::i32);
1989     SDValue SubVal = SDValue(CurDAG->getMachineNode(PPC::EXTRACT_SUBREG, dl,
1990                                                     MVT::i32, V, SubRegIdx), 0);
1991     return SubVal;
1992   }
1993 
1994   // Depending on the number of groups for a particular value, it might be
1995   // better to rotate, mask explicitly (using andi/andis), and then or the
1996   // result. Select this part of the result first.
1997   void SelectAndParts32(const SDLoc &dl, SDValue &Res, unsigned *InstCnt) {
1998     if (BPermRewriterNoMasking)
1999       return;
2000 
2001     for (ValueRotInfo &VRI : ValueRotsVec) {
2002       unsigned Mask = 0;
2003       for (unsigned i = 0; i < Bits.size(); ++i) {
2004         if (!Bits[i].hasValue() || Bits[i].getValue() != VRI.V)
2005           continue;
2006         if (RLAmt[i] != VRI.RLAmt)
2007           continue;
2008         Mask |= (1u << i);
2009       }
2010 
2011       // Compute the masks for andi/andis that would be necessary.
2012       unsigned ANDIMask = (Mask & UINT16_MAX), ANDISMask = Mask >> 16;
2013       assert((ANDIMask != 0 || ANDISMask != 0) &&
2014              "No set bits in mask for value bit groups");
2015       bool NeedsRotate = VRI.RLAmt != 0;
2016 
2017       // We're trying to minimize the number of instructions. If we have one
2018       // group, using one of andi/andis can break even.  If we have three
2019       // groups, we can use both andi and andis and break even (to use both
2020       // andi and andis we also need to or the results together). We need four
2021       // groups if we also need to rotate. To use andi/andis we need to do more
2022       // than break even because rotate-and-mask instructions tend to be easier
2023       // to schedule.
2024 
2025       // FIXME: We've biased here against using andi/andis, which is right for
2026       // POWER cores, but not optimal everywhere. For example, on the A2,
2027       // andi/andis have single-cycle latency whereas the rotate-and-mask
2028       // instructions take two cycles, and it would be better to bias toward
2029       // andi/andis in break-even cases.
2030 
2031       unsigned NumAndInsts = (unsigned) NeedsRotate +
2032                              (unsigned) (ANDIMask != 0) +
2033                              (unsigned) (ANDISMask != 0) +
2034                              (unsigned) (ANDIMask != 0 && ANDISMask != 0) +
2035                              (unsigned) (bool) Res;
2036 
2037       LLVM_DEBUG(dbgs() << "\t\trotation groups for " << VRI.V.getNode()
2038                         << " RL: " << VRI.RLAmt << ":"
2039                         << "\n\t\t\tisel using masking: " << NumAndInsts
2040                         << " using rotates: " << VRI.NumGroups << "\n");
2041 
2042       if (NumAndInsts >= VRI.NumGroups)
2043         continue;
2044 
2045       LLVM_DEBUG(dbgs() << "\t\t\t\tusing masking\n");
2046 
2047       if (InstCnt) *InstCnt += NumAndInsts;
2048 
2049       SDValue VRot;
2050       if (VRI.RLAmt) {
2051         SDValue Ops[] =
2052           { TruncateToInt32(VRI.V, dl), getI32Imm(VRI.RLAmt, dl),
2053             getI32Imm(0, dl), getI32Imm(31, dl) };
2054         VRot = SDValue(CurDAG->getMachineNode(PPC::RLWINM, dl, MVT::i32,
2055                                               Ops), 0);
2056       } else {
2057         VRot = TruncateToInt32(VRI.V, dl);
2058       }
2059 
2060       SDValue ANDIVal, ANDISVal;
2061       if (ANDIMask != 0)
2062         ANDIVal = SDValue(CurDAG->getMachineNode(PPC::ANDI_rec, dl, MVT::i32,
2063                                                  VRot, getI32Imm(ANDIMask, dl)),
2064                           0);
2065       if (ANDISMask != 0)
2066         ANDISVal =
2067             SDValue(CurDAG->getMachineNode(PPC::ANDIS_rec, dl, MVT::i32, VRot,
2068                                            getI32Imm(ANDISMask, dl)),
2069                     0);
2070 
2071       SDValue TotalVal;
2072       if (!ANDIVal)
2073         TotalVal = ANDISVal;
2074       else if (!ANDISVal)
2075         TotalVal = ANDIVal;
2076       else
2077         TotalVal = SDValue(CurDAG->getMachineNode(PPC::OR, dl, MVT::i32,
2078                              ANDIVal, ANDISVal), 0);
2079 
2080       if (!Res)
2081         Res = TotalVal;
2082       else
2083         Res = SDValue(CurDAG->getMachineNode(PPC::OR, dl, MVT::i32,
2084                         Res, TotalVal), 0);
2085 
2086       // Now, remove all groups with this underlying value and rotation
2087       // factor.
2088       eraseMatchingBitGroups([VRI](const BitGroup &BG) {
2089         return BG.V == VRI.V && BG.RLAmt == VRI.RLAmt;
2090       });
2091     }
2092   }
2093 
2094   // Instruction selection for the 32-bit case.
2095   SDNode *Select32(SDNode *N, bool LateMask, unsigned *InstCnt) {
2096     SDLoc dl(N);
2097     SDValue Res;
2098 
2099     if (InstCnt) *InstCnt = 0;
2100 
2101     // Take care of cases that should use andi/andis first.
2102     SelectAndParts32(dl, Res, InstCnt);
2103 
2104     // If we've not yet selected a 'starting' instruction, and we have no zeros
2105     // to fill in, select the (Value, RLAmt) with the highest priority (largest
2106     // number of groups), and start with this rotated value.
2107     if ((!NeedMask || LateMask) && !Res) {
2108       ValueRotInfo &VRI = ValueRotsVec[0];
2109       if (VRI.RLAmt) {
2110         if (InstCnt) *InstCnt += 1;
2111         SDValue Ops[] =
2112           { TruncateToInt32(VRI.V, dl), getI32Imm(VRI.RLAmt, dl),
2113             getI32Imm(0, dl), getI32Imm(31, dl) };
2114         Res = SDValue(CurDAG->getMachineNode(PPC::RLWINM, dl, MVT::i32, Ops),
2115                       0);
2116       } else {
2117         Res = TruncateToInt32(VRI.V, dl);
2118       }
2119 
2120       // Now, remove all groups with this underlying value and rotation factor.
2121       eraseMatchingBitGroups([VRI](const BitGroup &BG) {
2122         return BG.V == VRI.V && BG.RLAmt == VRI.RLAmt;
2123       });
2124     }
2125 
2126     if (InstCnt) *InstCnt += BitGroups.size();
2127 
2128     // Insert the other groups (one at a time).
2129     for (auto &BG : BitGroups) {
2130       if (!Res) {
2131         SDValue Ops[] =
2132           { TruncateToInt32(BG.V, dl), getI32Imm(BG.RLAmt, dl),
2133             getI32Imm(Bits.size() - BG.EndIdx - 1, dl),
2134             getI32Imm(Bits.size() - BG.StartIdx - 1, dl) };
2135         Res = SDValue(CurDAG->getMachineNode(PPC::RLWINM, dl, MVT::i32, Ops), 0);
2136       } else {
2137         SDValue Ops[] =
2138           { Res, TruncateToInt32(BG.V, dl), getI32Imm(BG.RLAmt, dl),
2139               getI32Imm(Bits.size() - BG.EndIdx - 1, dl),
2140             getI32Imm(Bits.size() - BG.StartIdx - 1, dl) };
2141         Res = SDValue(CurDAG->getMachineNode(PPC::RLWIMI, dl, MVT::i32, Ops), 0);
2142       }
2143     }
2144 
2145     if (LateMask) {
2146       unsigned Mask = (unsigned) getZerosMask();
2147 
2148       unsigned ANDIMask = (Mask & UINT16_MAX), ANDISMask = Mask >> 16;
2149       assert((ANDIMask != 0 || ANDISMask != 0) &&
2150              "No set bits in zeros mask?");
2151 
2152       if (InstCnt) *InstCnt += (unsigned) (ANDIMask != 0) +
2153                                (unsigned) (ANDISMask != 0) +
2154                                (unsigned) (ANDIMask != 0 && ANDISMask != 0);
2155 
2156       SDValue ANDIVal, ANDISVal;
2157       if (ANDIMask != 0)
2158         ANDIVal = SDValue(CurDAG->getMachineNode(PPC::ANDI_rec, dl, MVT::i32,
2159                                                  Res, getI32Imm(ANDIMask, dl)),
2160                           0);
2161       if (ANDISMask != 0)
2162         ANDISVal =
2163             SDValue(CurDAG->getMachineNode(PPC::ANDIS_rec, dl, MVT::i32, Res,
2164                                            getI32Imm(ANDISMask, dl)),
2165                     0);
2166 
2167       if (!ANDIVal)
2168         Res = ANDISVal;
2169       else if (!ANDISVal)
2170         Res = ANDIVal;
2171       else
2172         Res = SDValue(CurDAG->getMachineNode(PPC::OR, dl, MVT::i32,
2173                         ANDIVal, ANDISVal), 0);
2174     }
2175 
2176     return Res.getNode();
2177   }
2178 
2179   unsigned SelectRotMask64Count(unsigned RLAmt, bool Repl32,
2180                                 unsigned MaskStart, unsigned MaskEnd,
2181                                 bool IsIns) {
2182     // In the notation used by the instructions, 'start' and 'end' are reversed
2183     // because bits are counted from high to low order.
2184     unsigned InstMaskStart = 64 - MaskEnd - 1,
2185              InstMaskEnd   = 64 - MaskStart - 1;
2186 
2187     if (Repl32)
2188       return 1;
2189 
2190     if ((!IsIns && (InstMaskEnd == 63 || InstMaskStart == 0)) ||
2191         InstMaskEnd == 63 - RLAmt)
2192       return 1;
2193 
2194     return 2;
2195   }
2196 
2197   // For 64-bit values, not all combinations of rotates and masks are
2198   // available. Produce one if it is available.
2199   SDValue SelectRotMask64(SDValue V, const SDLoc &dl, unsigned RLAmt,
2200                           bool Repl32, unsigned MaskStart, unsigned MaskEnd,
2201                           unsigned *InstCnt = nullptr) {
2202     // In the notation used by the instructions, 'start' and 'end' are reversed
2203     // because bits are counted from high to low order.
2204     unsigned InstMaskStart = 64 - MaskEnd - 1,
2205              InstMaskEnd   = 64 - MaskStart - 1;
2206 
2207     if (InstCnt) *InstCnt += 1;
2208 
2209     if (Repl32) {
2210       // This rotation amount assumes that the lower 32 bits of the quantity
2211       // are replicated in the high 32 bits by the rotation operator (which is
2212       // done by rlwinm and friends).
2213       assert(InstMaskStart >= 32 && "Mask cannot start out of range");
2214       assert(InstMaskEnd   >= 32 && "Mask cannot end out of range");
2215       SDValue Ops[] =
2216         { ExtendToInt64(V, dl), getI32Imm(RLAmt, dl),
2217           getI32Imm(InstMaskStart - 32, dl), getI32Imm(InstMaskEnd - 32, dl) };
2218       return SDValue(CurDAG->getMachineNode(PPC::RLWINM8, dl, MVT::i64,
2219                                             Ops), 0);
2220     }
2221 
2222     if (InstMaskEnd == 63) {
2223       SDValue Ops[] =
2224         { ExtendToInt64(V, dl), getI32Imm(RLAmt, dl),
2225           getI32Imm(InstMaskStart, dl) };
2226       return SDValue(CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64, Ops), 0);
2227     }
2228 
2229     if (InstMaskStart == 0) {
2230       SDValue Ops[] =
2231         { ExtendToInt64(V, dl), getI32Imm(RLAmt, dl),
2232           getI32Imm(InstMaskEnd, dl) };
2233       return SDValue(CurDAG->getMachineNode(PPC::RLDICR, dl, MVT::i64, Ops), 0);
2234     }
2235 
2236     if (InstMaskEnd == 63 - RLAmt) {
2237       SDValue Ops[] =
2238         { ExtendToInt64(V, dl), getI32Imm(RLAmt, dl),
2239           getI32Imm(InstMaskStart, dl) };
2240       return SDValue(CurDAG->getMachineNode(PPC::RLDIC, dl, MVT::i64, Ops), 0);
2241     }
2242 
2243     // We cannot do this with a single instruction, so we'll use two. The
2244     // problem is that we're not free to choose both a rotation amount and mask
2245     // start and end independently. We can choose an arbitrary mask start and
2246     // end, but then the rotation amount is fixed. Rotation, however, can be
2247     // inverted, and so by applying an "inverse" rotation first, we can get the
2248     // desired result.
2249     if (InstCnt) *InstCnt += 1;
2250 
2251     // The rotation mask for the second instruction must be MaskStart.
2252     unsigned RLAmt2 = MaskStart;
2253     // The first instruction must rotate V so that the overall rotation amount
2254     // is RLAmt.
2255     unsigned RLAmt1 = (64 + RLAmt - RLAmt2) % 64;
2256     if (RLAmt1)
2257       V = SelectRotMask64(V, dl, RLAmt1, false, 0, 63);
2258     return SelectRotMask64(V, dl, RLAmt2, false, MaskStart, MaskEnd);
2259   }
2260 
2261   // For 64-bit values, not all combinations of rotates and masks are
2262   // available. Produce a rotate-mask-and-insert if one is available.
2263   SDValue SelectRotMaskIns64(SDValue Base, SDValue V, const SDLoc &dl,
2264                              unsigned RLAmt, bool Repl32, unsigned MaskStart,
2265                              unsigned MaskEnd, unsigned *InstCnt = nullptr) {
2266     // In the notation used by the instructions, 'start' and 'end' are reversed
2267     // because bits are counted from high to low order.
2268     unsigned InstMaskStart = 64 - MaskEnd - 1,
2269              InstMaskEnd   = 64 - MaskStart - 1;
2270 
2271     if (InstCnt) *InstCnt += 1;
2272 
2273     if (Repl32) {
2274       // This rotation amount assumes that the lower 32 bits of the quantity
2275       // are replicated in the high 32 bits by the rotation operator (which is
2276       // done by rlwinm and friends).
2277       assert(InstMaskStart >= 32 && "Mask cannot start out of range");
2278       assert(InstMaskEnd   >= 32 && "Mask cannot end out of range");
2279       SDValue Ops[] =
2280         { ExtendToInt64(Base, dl), ExtendToInt64(V, dl), getI32Imm(RLAmt, dl),
2281           getI32Imm(InstMaskStart - 32, dl), getI32Imm(InstMaskEnd - 32, dl) };
2282       return SDValue(CurDAG->getMachineNode(PPC::RLWIMI8, dl, MVT::i64,
2283                                             Ops), 0);
2284     }
2285 
2286     if (InstMaskEnd == 63 - RLAmt) {
2287       SDValue Ops[] =
2288         { ExtendToInt64(Base, dl), ExtendToInt64(V, dl), getI32Imm(RLAmt, dl),
2289           getI32Imm(InstMaskStart, dl) };
2290       return SDValue(CurDAG->getMachineNode(PPC::RLDIMI, dl, MVT::i64, Ops), 0);
2291     }
2292 
2293     // We cannot do this with a single instruction, so we'll use two. The
2294     // problem is that we're not free to choose both a rotation amount and mask
2295     // start and end independently. We can choose an arbitrary mask start and
2296     // end, but then the rotation amount is fixed. Rotation, however, can be
2297     // inverted, and so by applying an "inverse" rotation first, we can get the
2298     // desired result.
2299     if (InstCnt) *InstCnt += 1;
2300 
2301     // The rotation mask for the second instruction must be MaskStart.
2302     unsigned RLAmt2 = MaskStart;
2303     // The first instruction must rotate V so that the overall rotation amount
2304     // is RLAmt.
2305     unsigned RLAmt1 = (64 + RLAmt - RLAmt2) % 64;
2306     if (RLAmt1)
2307       V = SelectRotMask64(V, dl, RLAmt1, false, 0, 63);
2308     return SelectRotMaskIns64(Base, V, dl, RLAmt2, false, MaskStart, MaskEnd);
2309   }
2310 
2311   void SelectAndParts64(const SDLoc &dl, SDValue &Res, unsigned *InstCnt) {
2312     if (BPermRewriterNoMasking)
2313       return;
2314 
2315     // The idea here is the same as in the 32-bit version, but with additional
2316     // complications from the fact that Repl32 might be true. Because we
2317     // aggressively convert bit groups to Repl32 form (which, for small
2318     // rotation factors, involves no other change), and then coalesce, it might
2319     // be the case that a single 64-bit masking operation could handle both
2320     // some Repl32 groups and some non-Repl32 groups. If converting to Repl32
2321     // form allowed coalescing, then we must use a 32-bit rotaton in order to
2322     // completely capture the new combined bit group.
2323 
2324     for (ValueRotInfo &VRI : ValueRotsVec) {
2325       uint64_t Mask = 0;
2326 
2327       // We need to add to the mask all bits from the associated bit groups.
2328       // If Repl32 is false, we need to add bits from bit groups that have
2329       // Repl32 true, but are trivially convertable to Repl32 false. Such a
2330       // group is trivially convertable if it overlaps only with the lower 32
2331       // bits, and the group has not been coalesced.
2332       auto MatchingBG = [VRI](const BitGroup &BG) {
2333         if (VRI.V != BG.V)
2334           return false;
2335 
2336         unsigned EffRLAmt = BG.RLAmt;
2337         if (!VRI.Repl32 && BG.Repl32) {
2338           if (BG.StartIdx < 32 && BG.EndIdx < 32 && BG.StartIdx <= BG.EndIdx &&
2339               !BG.Repl32Coalesced) {
2340             if (BG.Repl32CR)
2341               EffRLAmt += 32;
2342           } else {
2343             return false;
2344           }
2345         } else if (VRI.Repl32 != BG.Repl32) {
2346           return false;
2347         }
2348 
2349         return VRI.RLAmt == EffRLAmt;
2350       };
2351 
2352       for (auto &BG : BitGroups) {
2353         if (!MatchingBG(BG))
2354           continue;
2355 
2356         if (BG.StartIdx <= BG.EndIdx) {
2357           for (unsigned i = BG.StartIdx; i <= BG.EndIdx; ++i)
2358             Mask |= (UINT64_C(1) << i);
2359         } else {
2360           for (unsigned i = BG.StartIdx; i < Bits.size(); ++i)
2361             Mask |= (UINT64_C(1) << i);
2362           for (unsigned i = 0; i <= BG.EndIdx; ++i)
2363             Mask |= (UINT64_C(1) << i);
2364         }
2365       }
2366 
2367       // We can use the 32-bit andi/andis technique if the mask does not
2368       // require any higher-order bits. This can save an instruction compared
2369       // to always using the general 64-bit technique.
2370       bool Use32BitInsts = isUInt<32>(Mask);
2371       // Compute the masks for andi/andis that would be necessary.
2372       unsigned ANDIMask = (Mask & UINT16_MAX),
2373                ANDISMask = (Mask >> 16) & UINT16_MAX;
2374 
2375       bool NeedsRotate = VRI.RLAmt || (VRI.Repl32 && !isUInt<32>(Mask));
2376 
2377       unsigned NumAndInsts = (unsigned) NeedsRotate +
2378                              (unsigned) (bool) Res;
2379       unsigned NumOfSelectInsts = 0;
2380       selectI64Imm(CurDAG, dl, Mask, &NumOfSelectInsts);
2381       assert(NumOfSelectInsts > 0 && "Failed to select an i64 constant.");
2382       if (Use32BitInsts)
2383         NumAndInsts += (unsigned) (ANDIMask != 0) + (unsigned) (ANDISMask != 0) +
2384                        (unsigned) (ANDIMask != 0 && ANDISMask != 0);
2385       else
2386         NumAndInsts += NumOfSelectInsts + /* and */ 1;
2387 
2388       unsigned NumRLInsts = 0;
2389       bool FirstBG = true;
2390       bool MoreBG = false;
2391       for (auto &BG : BitGroups) {
2392         if (!MatchingBG(BG)) {
2393           MoreBG = true;
2394           continue;
2395         }
2396         NumRLInsts +=
2397           SelectRotMask64Count(BG.RLAmt, BG.Repl32, BG.StartIdx, BG.EndIdx,
2398                                !FirstBG);
2399         FirstBG = false;
2400       }
2401 
2402       LLVM_DEBUG(dbgs() << "\t\trotation groups for " << VRI.V.getNode()
2403                         << " RL: " << VRI.RLAmt << (VRI.Repl32 ? " (32):" : ":")
2404                         << "\n\t\t\tisel using masking: " << NumAndInsts
2405                         << " using rotates: " << NumRLInsts << "\n");
2406 
2407       // When we'd use andi/andis, we bias toward using the rotates (andi only
2408       // has a record form, and is cracked on POWER cores). However, when using
2409       // general 64-bit constant formation, bias toward the constant form,
2410       // because that exposes more opportunities for CSE.
2411       if (NumAndInsts > NumRLInsts)
2412         continue;
2413       // When merging multiple bit groups, instruction or is used.
2414       // But when rotate is used, rldimi can inert the rotated value into any
2415       // register, so instruction or can be avoided.
2416       if ((Use32BitInsts || MoreBG) && NumAndInsts == NumRLInsts)
2417         continue;
2418 
2419       LLVM_DEBUG(dbgs() << "\t\t\t\tusing masking\n");
2420 
2421       if (InstCnt) *InstCnt += NumAndInsts;
2422 
2423       SDValue VRot;
2424       // We actually need to generate a rotation if we have a non-zero rotation
2425       // factor or, in the Repl32 case, if we care about any of the
2426       // higher-order replicated bits. In the latter case, we generate a mask
2427       // backward so that it actually includes the entire 64 bits.
2428       if (VRI.RLAmt || (VRI.Repl32 && !isUInt<32>(Mask)))
2429         VRot = SelectRotMask64(VRI.V, dl, VRI.RLAmt, VRI.Repl32,
2430                                VRI.Repl32 ? 31 : 0, VRI.Repl32 ? 30 : 63);
2431       else
2432         VRot = VRI.V;
2433 
2434       SDValue TotalVal;
2435       if (Use32BitInsts) {
2436         assert((ANDIMask != 0 || ANDISMask != 0) &&
2437                "No set bits in mask when using 32-bit ands for 64-bit value");
2438 
2439         SDValue ANDIVal, ANDISVal;
2440         if (ANDIMask != 0)
2441           ANDIVal = SDValue(CurDAG->getMachineNode(PPC::ANDI8_rec, dl, MVT::i64,
2442                                                    ExtendToInt64(VRot, dl),
2443                                                    getI32Imm(ANDIMask, dl)),
2444                             0);
2445         if (ANDISMask != 0)
2446           ANDISVal =
2447               SDValue(CurDAG->getMachineNode(PPC::ANDIS8_rec, dl, MVT::i64,
2448                                              ExtendToInt64(VRot, dl),
2449                                              getI32Imm(ANDISMask, dl)),
2450                       0);
2451 
2452         if (!ANDIVal)
2453           TotalVal = ANDISVal;
2454         else if (!ANDISVal)
2455           TotalVal = ANDIVal;
2456         else
2457           TotalVal = SDValue(CurDAG->getMachineNode(PPC::OR8, dl, MVT::i64,
2458                                ExtendToInt64(ANDIVal, dl), ANDISVal), 0);
2459       } else {
2460         TotalVal = SDValue(selectI64Imm(CurDAG, dl, Mask), 0);
2461         TotalVal =
2462           SDValue(CurDAG->getMachineNode(PPC::AND8, dl, MVT::i64,
2463                                          ExtendToInt64(VRot, dl), TotalVal),
2464                   0);
2465      }
2466 
2467       if (!Res)
2468         Res = TotalVal;
2469       else
2470         Res = SDValue(CurDAG->getMachineNode(PPC::OR8, dl, MVT::i64,
2471                                              ExtendToInt64(Res, dl), TotalVal),
2472                       0);
2473 
2474       // Now, remove all groups with this underlying value and rotation
2475       // factor.
2476       eraseMatchingBitGroups(MatchingBG);
2477     }
2478   }
2479 
2480   // Instruction selection for the 64-bit case.
2481   SDNode *Select64(SDNode *N, bool LateMask, unsigned *InstCnt) {
2482     SDLoc dl(N);
2483     SDValue Res;
2484 
2485     if (InstCnt) *InstCnt = 0;
2486 
2487     // Take care of cases that should use andi/andis first.
2488     SelectAndParts64(dl, Res, InstCnt);
2489 
2490     // If we've not yet selected a 'starting' instruction, and we have no zeros
2491     // to fill in, select the (Value, RLAmt) with the highest priority (largest
2492     // number of groups), and start with this rotated value.
2493     if ((!NeedMask || LateMask) && !Res) {
2494       // If we have both Repl32 groups and non-Repl32 groups, the non-Repl32
2495       // groups will come first, and so the VRI representing the largest number
2496       // of groups might not be first (it might be the first Repl32 groups).
2497       unsigned MaxGroupsIdx = 0;
2498       if (!ValueRotsVec[0].Repl32) {
2499         for (unsigned i = 0, ie = ValueRotsVec.size(); i < ie; ++i)
2500           if (ValueRotsVec[i].Repl32) {
2501             if (ValueRotsVec[i].NumGroups > ValueRotsVec[0].NumGroups)
2502               MaxGroupsIdx = i;
2503             break;
2504           }
2505       }
2506 
2507       ValueRotInfo &VRI = ValueRotsVec[MaxGroupsIdx];
2508       bool NeedsRotate = false;
2509       if (VRI.RLAmt) {
2510         NeedsRotate = true;
2511       } else if (VRI.Repl32) {
2512         for (auto &BG : BitGroups) {
2513           if (BG.V != VRI.V || BG.RLAmt != VRI.RLAmt ||
2514               BG.Repl32 != VRI.Repl32)
2515             continue;
2516 
2517           // We don't need a rotate if the bit group is confined to the lower
2518           // 32 bits.
2519           if (BG.StartIdx < 32 && BG.EndIdx < 32 && BG.StartIdx < BG.EndIdx)
2520             continue;
2521 
2522           NeedsRotate = true;
2523           break;
2524         }
2525       }
2526 
2527       if (NeedsRotate)
2528         Res = SelectRotMask64(VRI.V, dl, VRI.RLAmt, VRI.Repl32,
2529                               VRI.Repl32 ? 31 : 0, VRI.Repl32 ? 30 : 63,
2530                               InstCnt);
2531       else
2532         Res = VRI.V;
2533 
2534       // Now, remove all groups with this underlying value and rotation factor.
2535       if (Res)
2536         eraseMatchingBitGroups([VRI](const BitGroup &BG) {
2537           return BG.V == VRI.V && BG.RLAmt == VRI.RLAmt &&
2538                  BG.Repl32 == VRI.Repl32;
2539         });
2540     }
2541 
2542     // Because 64-bit rotates are more flexible than inserts, we might have a
2543     // preference regarding which one we do first (to save one instruction).
2544     if (!Res)
2545       for (auto I = BitGroups.begin(), IE = BitGroups.end(); I != IE; ++I) {
2546         if (SelectRotMask64Count(I->RLAmt, I->Repl32, I->StartIdx, I->EndIdx,
2547                                 false) <
2548             SelectRotMask64Count(I->RLAmt, I->Repl32, I->StartIdx, I->EndIdx,
2549                                 true)) {
2550           if (I != BitGroups.begin()) {
2551             BitGroup BG = *I;
2552             BitGroups.erase(I);
2553             BitGroups.insert(BitGroups.begin(), BG);
2554           }
2555 
2556           break;
2557         }
2558       }
2559 
2560     // Insert the other groups (one at a time).
2561     for (auto &BG : BitGroups) {
2562       if (!Res)
2563         Res = SelectRotMask64(BG.V, dl, BG.RLAmt, BG.Repl32, BG.StartIdx,
2564                               BG.EndIdx, InstCnt);
2565       else
2566         Res = SelectRotMaskIns64(Res, BG.V, dl, BG.RLAmt, BG.Repl32,
2567                                  BG.StartIdx, BG.EndIdx, InstCnt);
2568     }
2569 
2570     if (LateMask) {
2571       uint64_t Mask = getZerosMask();
2572 
2573       // We can use the 32-bit andi/andis technique if the mask does not
2574       // require any higher-order bits. This can save an instruction compared
2575       // to always using the general 64-bit technique.
2576       bool Use32BitInsts = isUInt<32>(Mask);
2577       // Compute the masks for andi/andis that would be necessary.
2578       unsigned ANDIMask = (Mask & UINT16_MAX),
2579                ANDISMask = (Mask >> 16) & UINT16_MAX;
2580 
2581       if (Use32BitInsts) {
2582         assert((ANDIMask != 0 || ANDISMask != 0) &&
2583                "No set bits in mask when using 32-bit ands for 64-bit value");
2584 
2585         if (InstCnt) *InstCnt += (unsigned) (ANDIMask != 0) +
2586                                  (unsigned) (ANDISMask != 0) +
2587                                  (unsigned) (ANDIMask != 0 && ANDISMask != 0);
2588 
2589         SDValue ANDIVal, ANDISVal;
2590         if (ANDIMask != 0)
2591           ANDIVal = SDValue(CurDAG->getMachineNode(PPC::ANDI8_rec, dl, MVT::i64,
2592                                                    ExtendToInt64(Res, dl),
2593                                                    getI32Imm(ANDIMask, dl)),
2594                             0);
2595         if (ANDISMask != 0)
2596           ANDISVal =
2597               SDValue(CurDAG->getMachineNode(PPC::ANDIS8_rec, dl, MVT::i64,
2598                                              ExtendToInt64(Res, dl),
2599                                              getI32Imm(ANDISMask, dl)),
2600                       0);
2601 
2602         if (!ANDIVal)
2603           Res = ANDISVal;
2604         else if (!ANDISVal)
2605           Res = ANDIVal;
2606         else
2607           Res = SDValue(CurDAG->getMachineNode(PPC::OR8, dl, MVT::i64,
2608                           ExtendToInt64(ANDIVal, dl), ANDISVal), 0);
2609       } else {
2610         unsigned NumOfSelectInsts = 0;
2611         SDValue MaskVal =
2612             SDValue(selectI64Imm(CurDAG, dl, Mask, &NumOfSelectInsts), 0);
2613         Res = SDValue(CurDAG->getMachineNode(PPC::AND8, dl, MVT::i64,
2614                                              ExtendToInt64(Res, dl), MaskVal),
2615                       0);
2616         if (InstCnt)
2617           *InstCnt += NumOfSelectInsts + /* and */ 1;
2618       }
2619     }
2620 
2621     return Res.getNode();
2622   }
2623 
2624   SDNode *Select(SDNode *N, bool LateMask, unsigned *InstCnt = nullptr) {
2625     // Fill in BitGroups.
2626     collectBitGroups(LateMask);
2627     if (BitGroups.empty())
2628       return nullptr;
2629 
2630     // For 64-bit values, figure out when we can use 32-bit instructions.
2631     if (Bits.size() == 64)
2632       assignRepl32BitGroups();
2633 
2634     // Fill in ValueRotsVec.
2635     collectValueRotInfo();
2636 
2637     if (Bits.size() == 32) {
2638       return Select32(N, LateMask, InstCnt);
2639     } else {
2640       assert(Bits.size() == 64 && "Not 64 bits here?");
2641       return Select64(N, LateMask, InstCnt);
2642     }
2643 
2644     return nullptr;
2645   }
2646 
2647   void eraseMatchingBitGroups(function_ref<bool(const BitGroup &)> F) {
2648     erase_if(BitGroups, F);
2649   }
2650 
2651   SmallVector<ValueBit, 64> Bits;
2652 
2653   bool NeedMask = false;
2654   SmallVector<unsigned, 64> RLAmt;
2655 
2656   SmallVector<BitGroup, 16> BitGroups;
2657 
2658   DenseMap<std::pair<SDValue, unsigned>, ValueRotInfo> ValueRots;
2659   SmallVector<ValueRotInfo, 16> ValueRotsVec;
2660 
2661   SelectionDAG *CurDAG = nullptr;
2662 
2663 public:
2664   BitPermutationSelector(SelectionDAG *DAG)
2665     : CurDAG(DAG) {}
2666 
2667   // Here we try to match complex bit permutations into a set of
2668   // rotate-and-shift/shift/and/or instructions, using a set of heuristics
2669   // known to produce optimal code for common cases (like i32 byte swapping).
2670   SDNode *Select(SDNode *N) {
2671     Memoizer.clear();
2672     auto Result =
2673         getValueBits(SDValue(N, 0), N->getValueType(0).getSizeInBits());
2674     if (!Result.first)
2675       return nullptr;
2676     Bits = std::move(*Result.second);
2677 
2678     LLVM_DEBUG(dbgs() << "Considering bit-permutation-based instruction"
2679                          " selection for:    ");
2680     LLVM_DEBUG(N->dump(CurDAG));
2681 
2682     // Fill it RLAmt and set NeedMask.
2683     computeRotationAmounts();
2684 
2685     if (!NeedMask)
2686       return Select(N, false);
2687 
2688     // We currently have two techniques for handling results with zeros: early
2689     // masking (the default) and late masking. Late masking is sometimes more
2690     // efficient, but because the structure of the bit groups is different, it
2691     // is hard to tell without generating both and comparing the results. With
2692     // late masking, we ignore zeros in the resulting value when inserting each
2693     // set of bit groups, and then mask in the zeros at the end. With early
2694     // masking, we only insert the non-zero parts of the result at every step.
2695 
2696     unsigned InstCnt = 0, InstCntLateMask = 0;
2697     LLVM_DEBUG(dbgs() << "\tEarly masking:\n");
2698     SDNode *RN = Select(N, false, &InstCnt);
2699     LLVM_DEBUG(dbgs() << "\t\tisel would use " << InstCnt << " instructions\n");
2700 
2701     LLVM_DEBUG(dbgs() << "\tLate masking:\n");
2702     SDNode *RNLM = Select(N, true, &InstCntLateMask);
2703     LLVM_DEBUG(dbgs() << "\t\tisel would use " << InstCntLateMask
2704                       << " instructions\n");
2705 
2706     if (InstCnt <= InstCntLateMask) {
2707       LLVM_DEBUG(dbgs() << "\tUsing early-masking for isel\n");
2708       return RN;
2709     }
2710 
2711     LLVM_DEBUG(dbgs() << "\tUsing late-masking for isel\n");
2712     return RNLM;
2713   }
2714 };
2715 
2716 class IntegerCompareEliminator {
2717   SelectionDAG *CurDAG;
2718   PPCDAGToDAGISel *S;
2719   // Conversion type for interpreting results of a 32-bit instruction as
2720   // a 64-bit value or vice versa.
2721   enum ExtOrTruncConversion { Ext, Trunc };
2722 
2723   // Modifiers to guide how an ISD::SETCC node's result is to be computed
2724   // in a GPR.
2725   // ZExtOrig - use the original condition code, zero-extend value
2726   // ZExtInvert - invert the condition code, zero-extend value
2727   // SExtOrig - use the original condition code, sign-extend value
2728   // SExtInvert - invert the condition code, sign-extend value
2729   enum SetccInGPROpts { ZExtOrig, ZExtInvert, SExtOrig, SExtInvert };
2730 
2731   // Comparisons against zero to emit GPR code sequences for. Each of these
2732   // sequences may need to be emitted for two or more equivalent patterns.
2733   // For example (a >= 0) == (a > -1). The direction of the comparison (</>)
2734   // matters as well as the extension type: sext (-1/0), zext (1/0).
2735   // GEZExt - (zext (LHS >= 0))
2736   // GESExt - (sext (LHS >= 0))
2737   // LEZExt - (zext (LHS <= 0))
2738   // LESExt - (sext (LHS <= 0))
2739   enum ZeroCompare { GEZExt, GESExt, LEZExt, LESExt };
2740 
2741   SDNode *tryEXTEND(SDNode *N);
2742   SDNode *tryLogicOpOfCompares(SDNode *N);
2743   SDValue computeLogicOpInGPR(SDValue LogicOp);
2744   SDValue signExtendInputIfNeeded(SDValue Input);
2745   SDValue zeroExtendInputIfNeeded(SDValue Input);
2746   SDValue addExtOrTrunc(SDValue NatWidthRes, ExtOrTruncConversion Conv);
2747   SDValue getCompoundZeroComparisonInGPR(SDValue LHS, SDLoc dl,
2748                                         ZeroCompare CmpTy);
2749   SDValue get32BitZExtCompare(SDValue LHS, SDValue RHS, ISD::CondCode CC,
2750                               int64_t RHSValue, SDLoc dl);
2751  SDValue get32BitSExtCompare(SDValue LHS, SDValue RHS, ISD::CondCode CC,
2752                               int64_t RHSValue, SDLoc dl);
2753   SDValue get64BitZExtCompare(SDValue LHS, SDValue RHS, ISD::CondCode CC,
2754                               int64_t RHSValue, SDLoc dl);
2755   SDValue get64BitSExtCompare(SDValue LHS, SDValue RHS, ISD::CondCode CC,
2756                               int64_t RHSValue, SDLoc dl);
2757   SDValue getSETCCInGPR(SDValue Compare, SetccInGPROpts ConvOpts);
2758 
2759 public:
2760   IntegerCompareEliminator(SelectionDAG *DAG,
2761                            PPCDAGToDAGISel *Sel) : CurDAG(DAG), S(Sel) {
2762     assert(CurDAG->getTargetLoweringInfo()
2763            .getPointerTy(CurDAG->getDataLayout()).getSizeInBits() == 64 &&
2764            "Only expecting to use this on 64 bit targets.");
2765   }
2766   SDNode *Select(SDNode *N) {
2767     if (CmpInGPR == ICGPR_None)
2768       return nullptr;
2769     switch (N->getOpcode()) {
2770     default: break;
2771     case ISD::ZERO_EXTEND:
2772       if (CmpInGPR == ICGPR_Sext || CmpInGPR == ICGPR_SextI32 ||
2773           CmpInGPR == ICGPR_SextI64)
2774         return nullptr;
2775       LLVM_FALLTHROUGH;
2776     case ISD::SIGN_EXTEND:
2777       if (CmpInGPR == ICGPR_Zext || CmpInGPR == ICGPR_ZextI32 ||
2778           CmpInGPR == ICGPR_ZextI64)
2779         return nullptr;
2780       return tryEXTEND(N);
2781     case ISD::AND:
2782     case ISD::OR:
2783     case ISD::XOR:
2784       return tryLogicOpOfCompares(N);
2785     }
2786     return nullptr;
2787   }
2788 };
2789 
2790 static bool isLogicOp(unsigned Opc) {
2791   return Opc == ISD::AND || Opc == ISD::OR || Opc == ISD::XOR;
2792 }
2793 // The obvious case for wanting to keep the value in a GPR. Namely, the
2794 // result of the comparison is actually needed in a GPR.
2795 SDNode *IntegerCompareEliminator::tryEXTEND(SDNode *N) {
2796   assert((N->getOpcode() == ISD::ZERO_EXTEND ||
2797           N->getOpcode() == ISD::SIGN_EXTEND) &&
2798          "Expecting a zero/sign extend node!");
2799   SDValue WideRes;
2800   // If we are zero-extending the result of a logical operation on i1
2801   // values, we can keep the values in GPRs.
2802   if (isLogicOp(N->getOperand(0).getOpcode()) &&
2803       N->getOperand(0).getValueType() == MVT::i1 &&
2804       N->getOpcode() == ISD::ZERO_EXTEND)
2805     WideRes = computeLogicOpInGPR(N->getOperand(0));
2806   else if (N->getOperand(0).getOpcode() != ISD::SETCC)
2807     return nullptr;
2808   else
2809     WideRes =
2810       getSETCCInGPR(N->getOperand(0),
2811                     N->getOpcode() == ISD::SIGN_EXTEND ?
2812                     SetccInGPROpts::SExtOrig : SetccInGPROpts::ZExtOrig);
2813 
2814   if (!WideRes)
2815     return nullptr;
2816 
2817   SDLoc dl(N);
2818   bool Input32Bit = WideRes.getValueType() == MVT::i32;
2819   bool Output32Bit = N->getValueType(0) == MVT::i32;
2820 
2821   NumSextSetcc += N->getOpcode() == ISD::SIGN_EXTEND ? 1 : 0;
2822   NumZextSetcc += N->getOpcode() == ISD::SIGN_EXTEND ? 0 : 1;
2823 
2824   SDValue ConvOp = WideRes;
2825   if (Input32Bit != Output32Bit)
2826     ConvOp = addExtOrTrunc(WideRes, Input32Bit ? ExtOrTruncConversion::Ext :
2827                            ExtOrTruncConversion::Trunc);
2828   return ConvOp.getNode();
2829 }
2830 
2831 // Attempt to perform logical operations on the results of comparisons while
2832 // keeping the values in GPRs. Without doing so, these would end up being
2833 // lowered to CR-logical operations which suffer from significant latency and
2834 // low ILP.
2835 SDNode *IntegerCompareEliminator::tryLogicOpOfCompares(SDNode *N) {
2836   if (N->getValueType(0) != MVT::i1)
2837     return nullptr;
2838   assert(isLogicOp(N->getOpcode()) &&
2839          "Expected a logic operation on setcc results.");
2840   SDValue LoweredLogical = computeLogicOpInGPR(SDValue(N, 0));
2841   if (!LoweredLogical)
2842     return nullptr;
2843 
2844   SDLoc dl(N);
2845   bool IsBitwiseNegate = LoweredLogical.getMachineOpcode() == PPC::XORI8;
2846   unsigned SubRegToExtract = IsBitwiseNegate ? PPC::sub_eq : PPC::sub_gt;
2847   SDValue CR0Reg = CurDAG->getRegister(PPC::CR0, MVT::i32);
2848   SDValue LHS = LoweredLogical.getOperand(0);
2849   SDValue RHS = LoweredLogical.getOperand(1);
2850   SDValue WideOp;
2851   SDValue OpToConvToRecForm;
2852 
2853   // Look through any 32-bit to 64-bit implicit extend nodes to find the
2854   // opcode that is input to the XORI.
2855   if (IsBitwiseNegate &&
2856       LoweredLogical.getOperand(0).getMachineOpcode() == PPC::INSERT_SUBREG)
2857     OpToConvToRecForm = LoweredLogical.getOperand(0).getOperand(1);
2858   else if (IsBitwiseNegate)
2859     // If the input to the XORI isn't an extension, that's what we're after.
2860     OpToConvToRecForm = LoweredLogical.getOperand(0);
2861   else
2862     // If this is not an XORI, it is a reg-reg logical op and we can convert
2863     // it to record-form.
2864     OpToConvToRecForm = LoweredLogical;
2865 
2866   // Get the record-form version of the node we're looking to use to get the
2867   // CR result from.
2868   uint16_t NonRecOpc = OpToConvToRecForm.getMachineOpcode();
2869   int NewOpc = PPCInstrInfo::getRecordFormOpcode(NonRecOpc);
2870 
2871   // Convert the right node to record-form. This is either the logical we're
2872   // looking at or it is the input node to the negation (if we're looking at
2873   // a bitwise negation).
2874   if (NewOpc != -1 && IsBitwiseNegate) {
2875     // The input to the XORI has a record-form. Use it.
2876     assert(LoweredLogical.getConstantOperandVal(1) == 1 &&
2877            "Expected a PPC::XORI8 only for bitwise negation.");
2878     // Emit the record-form instruction.
2879     std::vector<SDValue> Ops;
2880     for (int i = 0, e = OpToConvToRecForm.getNumOperands(); i < e; i++)
2881       Ops.push_back(OpToConvToRecForm.getOperand(i));
2882 
2883     WideOp =
2884       SDValue(CurDAG->getMachineNode(NewOpc, dl,
2885                                      OpToConvToRecForm.getValueType(),
2886                                      MVT::Glue, Ops), 0);
2887   } else {
2888     assert((NewOpc != -1 || !IsBitwiseNegate) &&
2889            "No record form available for AND8/OR8/XOR8?");
2890     WideOp =
2891         SDValue(CurDAG->getMachineNode(NewOpc == -1 ? PPC::ANDI8_rec : NewOpc,
2892                                        dl, MVT::i64, MVT::Glue, LHS, RHS),
2893                 0);
2894   }
2895 
2896   // Select this node to a single bit from CR0 set by the record-form node
2897   // just created. For bitwise negation, use the EQ bit which is the equivalent
2898   // of negating the result (i.e. it is a bit set when the result of the
2899   // operation is zero).
2900   SDValue SRIdxVal =
2901     CurDAG->getTargetConstant(SubRegToExtract, dl, MVT::i32);
2902   SDValue CRBit =
2903     SDValue(CurDAG->getMachineNode(TargetOpcode::EXTRACT_SUBREG, dl,
2904                                    MVT::i1, CR0Reg, SRIdxVal,
2905                                    WideOp.getValue(1)), 0);
2906   return CRBit.getNode();
2907 }
2908 
2909 // Lower a logical operation on i1 values into a GPR sequence if possible.
2910 // The result can be kept in a GPR if requested.
2911 // Three types of inputs can be handled:
2912 // - SETCC
2913 // - TRUNCATE
2914 // - Logical operation (AND/OR/XOR)
2915 // There is also a special case that is handled (namely a complement operation
2916 // achieved with xor %a, -1).
2917 SDValue IntegerCompareEliminator::computeLogicOpInGPR(SDValue LogicOp) {
2918   assert(isLogicOp(LogicOp.getOpcode()) &&
2919         "Can only handle logic operations here.");
2920   assert(LogicOp.getValueType() == MVT::i1 &&
2921          "Can only handle logic operations on i1 values here.");
2922   SDLoc dl(LogicOp);
2923   SDValue LHS, RHS;
2924 
2925  // Special case: xor %a, -1
2926   bool IsBitwiseNegation = isBitwiseNot(LogicOp);
2927 
2928   // Produces a GPR sequence for each operand of the binary logic operation.
2929   // For SETCC, it produces the respective comparison, for TRUNCATE it truncates
2930   // the value in a GPR and for logic operations, it will recursively produce
2931   // a GPR sequence for the operation.
2932  auto getLogicOperand = [&] (SDValue Operand) -> SDValue {
2933     unsigned OperandOpcode = Operand.getOpcode();
2934     if (OperandOpcode == ISD::SETCC)
2935       return getSETCCInGPR(Operand, SetccInGPROpts::ZExtOrig);
2936     else if (OperandOpcode == ISD::TRUNCATE) {
2937       SDValue InputOp = Operand.getOperand(0);
2938      EVT InVT = InputOp.getValueType();
2939       return SDValue(CurDAG->getMachineNode(InVT == MVT::i32 ? PPC::RLDICL_32 :
2940                                             PPC::RLDICL, dl, InVT, InputOp,
2941                                             S->getI64Imm(0, dl),
2942                                             S->getI64Imm(63, dl)), 0);
2943     } else if (isLogicOp(OperandOpcode))
2944       return computeLogicOpInGPR(Operand);
2945     return SDValue();
2946   };
2947   LHS = getLogicOperand(LogicOp.getOperand(0));
2948   RHS = getLogicOperand(LogicOp.getOperand(1));
2949 
2950   // If a GPR sequence can't be produced for the LHS we can't proceed.
2951   // Not producing a GPR sequence for the RHS is only a problem if this isn't
2952   // a bitwise negation operation.
2953   if (!LHS || (!RHS && !IsBitwiseNegation))
2954     return SDValue();
2955 
2956   NumLogicOpsOnComparison++;
2957 
2958   // We will use the inputs as 64-bit values.
2959   if (LHS.getValueType() == MVT::i32)
2960     LHS = addExtOrTrunc(LHS, ExtOrTruncConversion::Ext);
2961   if (!IsBitwiseNegation && RHS.getValueType() == MVT::i32)
2962     RHS = addExtOrTrunc(RHS, ExtOrTruncConversion::Ext);
2963 
2964   unsigned NewOpc;
2965   switch (LogicOp.getOpcode()) {
2966   default: llvm_unreachable("Unknown logic operation.");
2967   case ISD::AND: NewOpc = PPC::AND8; break;
2968   case ISD::OR:  NewOpc = PPC::OR8;  break;
2969   case ISD::XOR: NewOpc = PPC::XOR8; break;
2970   }
2971 
2972   if (IsBitwiseNegation) {
2973     RHS = S->getI64Imm(1, dl);
2974     NewOpc = PPC::XORI8;
2975   }
2976 
2977   return SDValue(CurDAG->getMachineNode(NewOpc, dl, MVT::i64, LHS, RHS), 0);
2978 
2979 }
2980 
2981 /// If the value isn't guaranteed to be sign-extended to 64-bits, extend it.
2982 /// Otherwise just reinterpret it as a 64-bit value.
2983 /// Useful when emitting comparison code for 32-bit values without using
2984 /// the compare instruction (which only considers the lower 32-bits).
2985 SDValue IntegerCompareEliminator::signExtendInputIfNeeded(SDValue Input) {
2986   assert(Input.getValueType() == MVT::i32 &&
2987          "Can only sign-extend 32-bit values here.");
2988   unsigned Opc = Input.getOpcode();
2989 
2990   // The value was sign extended and then truncated to 32-bits. No need to
2991   // sign extend it again.
2992   if (Opc == ISD::TRUNCATE &&
2993       (Input.getOperand(0).getOpcode() == ISD::AssertSext ||
2994        Input.getOperand(0).getOpcode() == ISD::SIGN_EXTEND))
2995     return addExtOrTrunc(Input, ExtOrTruncConversion::Ext);
2996 
2997   LoadSDNode *InputLoad = dyn_cast<LoadSDNode>(Input);
2998   // The input is a sign-extending load. All ppc sign-extending loads
2999   // sign-extend to the full 64-bits.
3000   if (InputLoad && InputLoad->getExtensionType() == ISD::SEXTLOAD)
3001     return addExtOrTrunc(Input, ExtOrTruncConversion::Ext);
3002 
3003   ConstantSDNode *InputConst = dyn_cast<ConstantSDNode>(Input);
3004   // We don't sign-extend constants.
3005   if (InputConst)
3006     return addExtOrTrunc(Input, ExtOrTruncConversion::Ext);
3007 
3008   SDLoc dl(Input);
3009   SignExtensionsAdded++;
3010   return SDValue(CurDAG->getMachineNode(PPC::EXTSW_32_64, dl,
3011                                         MVT::i64, Input), 0);
3012 }
3013 
3014 /// If the value isn't guaranteed to be zero-extended to 64-bits, extend it.
3015 /// Otherwise just reinterpret it as a 64-bit value.
3016 /// Useful when emitting comparison code for 32-bit values without using
3017 /// the compare instruction (which only considers the lower 32-bits).
3018 SDValue IntegerCompareEliminator::zeroExtendInputIfNeeded(SDValue Input) {
3019   assert(Input.getValueType() == MVT::i32 &&
3020          "Can only zero-extend 32-bit values here.");
3021   unsigned Opc = Input.getOpcode();
3022 
3023   // The only condition under which we can omit the actual extend instruction:
3024   // - The value is a positive constant
3025   // - The value comes from a load that isn't a sign-extending load
3026   // An ISD::TRUNCATE needs to be zero-extended unless it is fed by a zext.
3027   bool IsTruncateOfZExt = Opc == ISD::TRUNCATE &&
3028     (Input.getOperand(0).getOpcode() == ISD::AssertZext ||
3029      Input.getOperand(0).getOpcode() == ISD::ZERO_EXTEND);
3030   if (IsTruncateOfZExt)
3031     return addExtOrTrunc(Input, ExtOrTruncConversion::Ext);
3032 
3033   ConstantSDNode *InputConst = dyn_cast<ConstantSDNode>(Input);
3034   if (InputConst && InputConst->getSExtValue() >= 0)
3035     return addExtOrTrunc(Input, ExtOrTruncConversion::Ext);
3036 
3037   LoadSDNode *InputLoad = dyn_cast<LoadSDNode>(Input);
3038   // The input is a load that doesn't sign-extend (it will be zero-extended).
3039   if (InputLoad && InputLoad->getExtensionType() != ISD::SEXTLOAD)
3040     return addExtOrTrunc(Input, ExtOrTruncConversion::Ext);
3041 
3042   // None of the above, need to zero-extend.
3043   SDLoc dl(Input);
3044   ZeroExtensionsAdded++;
3045   return SDValue(CurDAG->getMachineNode(PPC::RLDICL_32_64, dl, MVT::i64, Input,
3046                                         S->getI64Imm(0, dl),
3047                                         S->getI64Imm(32, dl)), 0);
3048 }
3049 
3050 // Handle a 32-bit value in a 64-bit register and vice-versa. These are of
3051 // course not actual zero/sign extensions that will generate machine code,
3052 // they're just a way to reinterpret a 32 bit value in a register as a
3053 // 64 bit value and vice-versa.
3054 SDValue IntegerCompareEliminator::addExtOrTrunc(SDValue NatWidthRes,
3055                                                 ExtOrTruncConversion Conv) {
3056   SDLoc dl(NatWidthRes);
3057 
3058   // For reinterpreting 32-bit values as 64 bit values, we generate
3059   // INSERT_SUBREG IMPLICIT_DEF:i64, <input>, TargetConstant:i32<1>
3060   if (Conv == ExtOrTruncConversion::Ext) {
3061     SDValue ImDef(CurDAG->getMachineNode(PPC::IMPLICIT_DEF, dl, MVT::i64), 0);
3062     SDValue SubRegIdx =
3063       CurDAG->getTargetConstant(PPC::sub_32, dl, MVT::i32);
3064     return SDValue(CurDAG->getMachineNode(PPC::INSERT_SUBREG, dl, MVT::i64,
3065                                           ImDef, NatWidthRes, SubRegIdx), 0);
3066   }
3067 
3068   assert(Conv == ExtOrTruncConversion::Trunc &&
3069          "Unknown convertion between 32 and 64 bit values.");
3070   // For reinterpreting 64-bit values as 32-bit values, we just need to
3071   // EXTRACT_SUBREG (i.e. extract the low word).
3072   SDValue SubRegIdx =
3073     CurDAG->getTargetConstant(PPC::sub_32, dl, MVT::i32);
3074   return SDValue(CurDAG->getMachineNode(PPC::EXTRACT_SUBREG, dl, MVT::i32,
3075                                         NatWidthRes, SubRegIdx), 0);
3076 }
3077 
3078 // Produce a GPR sequence for compound comparisons (<=, >=) against zero.
3079 // Handle both zero-extensions and sign-extensions.
3080 SDValue
3081 IntegerCompareEliminator::getCompoundZeroComparisonInGPR(SDValue LHS, SDLoc dl,
3082                                                          ZeroCompare CmpTy) {
3083   EVT InVT = LHS.getValueType();
3084   bool Is32Bit = InVT == MVT::i32;
3085   SDValue ToExtend;
3086 
3087   // Produce the value that needs to be either zero or sign extended.
3088   switch (CmpTy) {
3089   case ZeroCompare::GEZExt:
3090   case ZeroCompare::GESExt:
3091     ToExtend = SDValue(CurDAG->getMachineNode(Is32Bit ? PPC::NOR : PPC::NOR8,
3092                                               dl, InVT, LHS, LHS), 0);
3093     break;
3094   case ZeroCompare::LEZExt:
3095   case ZeroCompare::LESExt: {
3096     if (Is32Bit) {
3097       // Upper 32 bits cannot be undefined for this sequence.
3098       LHS = signExtendInputIfNeeded(LHS);
3099       SDValue Neg =
3100         SDValue(CurDAG->getMachineNode(PPC::NEG8, dl, MVT::i64, LHS), 0);
3101       ToExtend =
3102         SDValue(CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64,
3103                                        Neg, S->getI64Imm(1, dl),
3104                                        S->getI64Imm(63, dl)), 0);
3105     } else {
3106       SDValue Addi =
3107         SDValue(CurDAG->getMachineNode(PPC::ADDI8, dl, MVT::i64, LHS,
3108                                        S->getI64Imm(~0ULL, dl)), 0);
3109       ToExtend = SDValue(CurDAG->getMachineNode(PPC::OR8, dl, MVT::i64,
3110                                                 Addi, LHS), 0);
3111     }
3112     break;
3113   }
3114   }
3115 
3116   // For 64-bit sequences, the extensions are the same for the GE/LE cases.
3117   if (!Is32Bit &&
3118       (CmpTy == ZeroCompare::GEZExt || CmpTy == ZeroCompare::LEZExt))
3119     return SDValue(CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64,
3120                                           ToExtend, S->getI64Imm(1, dl),
3121                                           S->getI64Imm(63, dl)), 0);
3122   if (!Is32Bit &&
3123       (CmpTy == ZeroCompare::GESExt || CmpTy == ZeroCompare::LESExt))
3124     return SDValue(CurDAG->getMachineNode(PPC::SRADI, dl, MVT::i64, ToExtend,
3125                                           S->getI64Imm(63, dl)), 0);
3126 
3127   assert(Is32Bit && "Should have handled the 32-bit sequences above.");
3128   // For 32-bit sequences, the extensions differ between GE/LE cases.
3129   switch (CmpTy) {
3130   case ZeroCompare::GEZExt: {
3131     SDValue ShiftOps[] = { ToExtend, S->getI32Imm(1, dl), S->getI32Imm(31, dl),
3132                            S->getI32Imm(31, dl) };
3133     return SDValue(CurDAG->getMachineNode(PPC::RLWINM, dl, MVT::i32,
3134                                           ShiftOps), 0);
3135   }
3136   case ZeroCompare::GESExt:
3137     return SDValue(CurDAG->getMachineNode(PPC::SRAWI, dl, MVT::i32, ToExtend,
3138                                           S->getI32Imm(31, dl)), 0);
3139   case ZeroCompare::LEZExt:
3140     return SDValue(CurDAG->getMachineNode(PPC::XORI8, dl, MVT::i64, ToExtend,
3141                                           S->getI32Imm(1, dl)), 0);
3142   case ZeroCompare::LESExt:
3143     return SDValue(CurDAG->getMachineNode(PPC::ADDI8, dl, MVT::i64, ToExtend,
3144                                           S->getI32Imm(-1, dl)), 0);
3145   }
3146 
3147   // The above case covers all the enumerators so it can't have a default clause
3148   // to avoid compiler warnings.
3149   llvm_unreachable("Unknown zero-comparison type.");
3150 }
3151 
3152 /// Produces a zero-extended result of comparing two 32-bit values according to
3153 /// the passed condition code.
3154 SDValue
3155 IntegerCompareEliminator::get32BitZExtCompare(SDValue LHS, SDValue RHS,
3156                                               ISD::CondCode CC,
3157                                               int64_t RHSValue, SDLoc dl) {
3158   if (CmpInGPR == ICGPR_I64 || CmpInGPR == ICGPR_SextI64 ||
3159       CmpInGPR == ICGPR_ZextI64 || CmpInGPR == ICGPR_Sext)
3160     return SDValue();
3161   bool IsRHSZero = RHSValue == 0;
3162   bool IsRHSOne = RHSValue == 1;
3163   bool IsRHSNegOne = RHSValue == -1LL;
3164   switch (CC) {
3165   default: return SDValue();
3166   case ISD::SETEQ: {
3167     // (zext (setcc %a, %b, seteq)) -> (lshr (cntlzw (xor %a, %b)), 5)
3168     // (zext (setcc %a, 0, seteq))  -> (lshr (cntlzw %a), 5)
3169     SDValue Xor = IsRHSZero ? LHS :
3170       SDValue(CurDAG->getMachineNode(PPC::XOR, dl, MVT::i32, LHS, RHS), 0);
3171     SDValue Clz =
3172       SDValue(CurDAG->getMachineNode(PPC::CNTLZW, dl, MVT::i32, Xor), 0);
3173     SDValue ShiftOps[] = { Clz, S->getI32Imm(27, dl), S->getI32Imm(5, dl),
3174       S->getI32Imm(31, dl) };
3175     return SDValue(CurDAG->getMachineNode(PPC::RLWINM, dl, MVT::i32,
3176                                           ShiftOps), 0);
3177   }
3178   case ISD::SETNE: {
3179     // (zext (setcc %a, %b, setne)) -> (xor (lshr (cntlzw (xor %a, %b)), 5), 1)
3180     // (zext (setcc %a, 0, setne))  -> (xor (lshr (cntlzw %a), 5), 1)
3181     SDValue Xor = IsRHSZero ? LHS :
3182       SDValue(CurDAG->getMachineNode(PPC::XOR, dl, MVT::i32, LHS, RHS), 0);
3183     SDValue Clz =
3184       SDValue(CurDAG->getMachineNode(PPC::CNTLZW, dl, MVT::i32, Xor), 0);
3185     SDValue ShiftOps[] = { Clz, S->getI32Imm(27, dl), S->getI32Imm(5, dl),
3186       S->getI32Imm(31, dl) };
3187     SDValue Shift =
3188       SDValue(CurDAG->getMachineNode(PPC::RLWINM, dl, MVT::i32, ShiftOps), 0);
3189     return SDValue(CurDAG->getMachineNode(PPC::XORI, dl, MVT::i32, Shift,
3190                                           S->getI32Imm(1, dl)), 0);
3191   }
3192   case ISD::SETGE: {
3193     // (zext (setcc %a, %b, setge)) -> (xor (lshr (sub %a, %b), 63), 1)
3194     // (zext (setcc %a, 0, setge))  -> (lshr (~ %a), 31)
3195     if(IsRHSZero)
3196       return getCompoundZeroComparisonInGPR(LHS, dl, ZeroCompare::GEZExt);
3197 
3198     // Not a special case (i.e. RHS == 0). Handle (%a >= %b) as (%b <= %a)
3199     // by swapping inputs and falling through.
3200     std::swap(LHS, RHS);
3201     ConstantSDNode *RHSConst = dyn_cast<ConstantSDNode>(RHS);
3202     IsRHSZero = RHSConst && RHSConst->isZero();
3203     LLVM_FALLTHROUGH;
3204   }
3205   case ISD::SETLE: {
3206     if (CmpInGPR == ICGPR_NonExtIn)
3207       return SDValue();
3208     // (zext (setcc %a, %b, setle)) -> (xor (lshr (sub %b, %a), 63), 1)
3209     // (zext (setcc %a, 0, setle))  -> (xor (lshr (- %a), 63), 1)
3210     if(IsRHSZero) {
3211       if (CmpInGPR == ICGPR_NonExtIn)
3212         return SDValue();
3213       return getCompoundZeroComparisonInGPR(LHS, dl, ZeroCompare::LEZExt);
3214     }
3215 
3216     // The upper 32-bits of the register can't be undefined for this sequence.
3217     LHS = signExtendInputIfNeeded(LHS);
3218     RHS = signExtendInputIfNeeded(RHS);
3219     SDValue Sub =
3220       SDValue(CurDAG->getMachineNode(PPC::SUBF8, dl, MVT::i64, LHS, RHS), 0);
3221     SDValue Shift =
3222       SDValue(CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64, Sub,
3223                                      S->getI64Imm(1, dl), S->getI64Imm(63, dl)),
3224               0);
3225     return
3226       SDValue(CurDAG->getMachineNode(PPC::XORI8, dl,
3227                                      MVT::i64, Shift, S->getI32Imm(1, dl)), 0);
3228   }
3229   case ISD::SETGT: {
3230     // (zext (setcc %a, %b, setgt)) -> (lshr (sub %b, %a), 63)
3231     // (zext (setcc %a, -1, setgt)) -> (lshr (~ %a), 31)
3232     // (zext (setcc %a, 0, setgt))  -> (lshr (- %a), 63)
3233     // Handle SETLT -1 (which is equivalent to SETGE 0).
3234     if (IsRHSNegOne)
3235       return getCompoundZeroComparisonInGPR(LHS, dl, ZeroCompare::GEZExt);
3236 
3237     if (IsRHSZero) {
3238       if (CmpInGPR == ICGPR_NonExtIn)
3239         return SDValue();
3240       // The upper 32-bits of the register can't be undefined for this sequence.
3241       LHS = signExtendInputIfNeeded(LHS);
3242       RHS = signExtendInputIfNeeded(RHS);
3243       SDValue Neg =
3244         SDValue(CurDAG->getMachineNode(PPC::NEG8, dl, MVT::i64, LHS), 0);
3245       return SDValue(CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64,
3246                      Neg, S->getI32Imm(1, dl), S->getI32Imm(63, dl)), 0);
3247     }
3248     // Not a special case (i.e. RHS == 0 or RHS == -1). Handle (%a > %b) as
3249     // (%b < %a) by swapping inputs and falling through.
3250     std::swap(LHS, RHS);
3251     ConstantSDNode *RHSConst = dyn_cast<ConstantSDNode>(RHS);
3252     IsRHSZero = RHSConst && RHSConst->isZero();
3253     IsRHSOne = RHSConst && RHSConst->getSExtValue() == 1;
3254     LLVM_FALLTHROUGH;
3255   }
3256   case ISD::SETLT: {
3257     // (zext (setcc %a, %b, setlt)) -> (lshr (sub %a, %b), 63)
3258     // (zext (setcc %a, 1, setlt))  -> (xor (lshr (- %a), 63), 1)
3259     // (zext (setcc %a, 0, setlt))  -> (lshr %a, 31)
3260     // Handle SETLT 1 (which is equivalent to SETLE 0).
3261     if (IsRHSOne) {
3262       if (CmpInGPR == ICGPR_NonExtIn)
3263         return SDValue();
3264       return getCompoundZeroComparisonInGPR(LHS, dl, ZeroCompare::LEZExt);
3265     }
3266 
3267     if (IsRHSZero) {
3268       SDValue ShiftOps[] = { LHS, S->getI32Imm(1, dl), S->getI32Imm(31, dl),
3269                              S->getI32Imm(31, dl) };
3270       return SDValue(CurDAG->getMachineNode(PPC::RLWINM, dl, MVT::i32,
3271                                             ShiftOps), 0);
3272     }
3273 
3274     if (CmpInGPR == ICGPR_NonExtIn)
3275       return SDValue();
3276     // The upper 32-bits of the register can't be undefined for this sequence.
3277     LHS = signExtendInputIfNeeded(LHS);
3278     RHS = signExtendInputIfNeeded(RHS);
3279     SDValue SUBFNode =
3280       SDValue(CurDAG->getMachineNode(PPC::SUBF8, dl, MVT::i64, RHS, LHS), 0);
3281     return SDValue(CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64,
3282                                     SUBFNode, S->getI64Imm(1, dl),
3283                                     S->getI64Imm(63, dl)), 0);
3284   }
3285   case ISD::SETUGE:
3286     // (zext (setcc %a, %b, setuge)) -> (xor (lshr (sub %b, %a), 63), 1)
3287     // (zext (setcc %a, %b, setule)) -> (xor (lshr (sub %a, %b), 63), 1)
3288     std::swap(LHS, RHS);
3289     LLVM_FALLTHROUGH;
3290   case ISD::SETULE: {
3291     if (CmpInGPR == ICGPR_NonExtIn)
3292       return SDValue();
3293     // The upper 32-bits of the register can't be undefined for this sequence.
3294     LHS = zeroExtendInputIfNeeded(LHS);
3295     RHS = zeroExtendInputIfNeeded(RHS);
3296     SDValue Subtract =
3297       SDValue(CurDAG->getMachineNode(PPC::SUBF8, dl, MVT::i64, LHS, RHS), 0);
3298     SDValue SrdiNode =
3299       SDValue(CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64,
3300                                           Subtract, S->getI64Imm(1, dl),
3301                                           S->getI64Imm(63, dl)), 0);
3302     return SDValue(CurDAG->getMachineNode(PPC::XORI8, dl, MVT::i64, SrdiNode,
3303                                             S->getI32Imm(1, dl)), 0);
3304   }
3305   case ISD::SETUGT:
3306     // (zext (setcc %a, %b, setugt)) -> (lshr (sub %b, %a), 63)
3307     // (zext (setcc %a, %b, setult)) -> (lshr (sub %a, %b), 63)
3308     std::swap(LHS, RHS);
3309     LLVM_FALLTHROUGH;
3310   case ISD::SETULT: {
3311     if (CmpInGPR == ICGPR_NonExtIn)
3312       return SDValue();
3313     // The upper 32-bits of the register can't be undefined for this sequence.
3314     LHS = zeroExtendInputIfNeeded(LHS);
3315     RHS = zeroExtendInputIfNeeded(RHS);
3316     SDValue Subtract =
3317       SDValue(CurDAG->getMachineNode(PPC::SUBF8, dl, MVT::i64, RHS, LHS), 0);
3318     return SDValue(CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64,
3319                                           Subtract, S->getI64Imm(1, dl),
3320                                           S->getI64Imm(63, dl)), 0);
3321   }
3322   }
3323 }
3324 
3325 /// Produces a sign-extended result of comparing two 32-bit values according to
3326 /// the passed condition code.
3327 SDValue
3328 IntegerCompareEliminator::get32BitSExtCompare(SDValue LHS, SDValue RHS,
3329                                               ISD::CondCode CC,
3330                                               int64_t RHSValue, SDLoc dl) {
3331   if (CmpInGPR == ICGPR_I64 || CmpInGPR == ICGPR_SextI64 ||
3332       CmpInGPR == ICGPR_ZextI64 || CmpInGPR == ICGPR_Zext)
3333     return SDValue();
3334   bool IsRHSZero = RHSValue == 0;
3335   bool IsRHSOne = RHSValue == 1;
3336   bool IsRHSNegOne = RHSValue == -1LL;
3337 
3338   switch (CC) {
3339   default: return SDValue();
3340   case ISD::SETEQ: {
3341     // (sext (setcc %a, %b, seteq)) ->
3342     //   (ashr (shl (ctlz (xor %a, %b)), 58), 63)
3343     // (sext (setcc %a, 0, seteq)) ->
3344     //   (ashr (shl (ctlz %a), 58), 63)
3345     SDValue CountInput = IsRHSZero ? LHS :
3346       SDValue(CurDAG->getMachineNode(PPC::XOR, dl, MVT::i32, LHS, RHS), 0);
3347     SDValue Cntlzw =
3348       SDValue(CurDAG->getMachineNode(PPC::CNTLZW, dl, MVT::i32, CountInput), 0);
3349     SDValue SHLOps[] = { Cntlzw, S->getI32Imm(27, dl),
3350                          S->getI32Imm(5, dl), S->getI32Imm(31, dl) };
3351     SDValue Slwi =
3352       SDValue(CurDAG->getMachineNode(PPC::RLWINM, dl, MVT::i32, SHLOps), 0);
3353     return SDValue(CurDAG->getMachineNode(PPC::NEG, dl, MVT::i32, Slwi), 0);
3354   }
3355   case ISD::SETNE: {
3356     // Bitwise xor the operands, count leading zeros, shift right by 5 bits and
3357     // flip the bit, finally take 2's complement.
3358     // (sext (setcc %a, %b, setne)) ->
3359     //   (neg (xor (lshr (ctlz (xor %a, %b)), 5), 1))
3360     // Same as above, but the first xor is not needed.
3361     // (sext (setcc %a, 0, setne)) ->
3362     //   (neg (xor (lshr (ctlz %a), 5), 1))
3363     SDValue Xor = IsRHSZero ? LHS :
3364       SDValue(CurDAG->getMachineNode(PPC::XOR, dl, MVT::i32, LHS, RHS), 0);
3365     SDValue Clz =
3366       SDValue(CurDAG->getMachineNode(PPC::CNTLZW, dl, MVT::i32, Xor), 0);
3367     SDValue ShiftOps[] =
3368       { Clz, S->getI32Imm(27, dl), S->getI32Imm(5, dl), S->getI32Imm(31, dl) };
3369     SDValue Shift =
3370       SDValue(CurDAG->getMachineNode(PPC::RLWINM, dl, MVT::i32, ShiftOps), 0);
3371     SDValue Xori =
3372       SDValue(CurDAG->getMachineNode(PPC::XORI, dl, MVT::i32, Shift,
3373                                      S->getI32Imm(1, dl)), 0);
3374     return SDValue(CurDAG->getMachineNode(PPC::NEG, dl, MVT::i32, Xori), 0);
3375   }
3376   case ISD::SETGE: {
3377     // (sext (setcc %a, %b, setge)) -> (add (lshr (sub %a, %b), 63), -1)
3378     // (sext (setcc %a, 0, setge))  -> (ashr (~ %a), 31)
3379     if (IsRHSZero)
3380       return getCompoundZeroComparisonInGPR(LHS, dl, ZeroCompare::GESExt);
3381 
3382     // Not a special case (i.e. RHS == 0). Handle (%a >= %b) as (%b <= %a)
3383     // by swapping inputs and falling through.
3384     std::swap(LHS, RHS);
3385     ConstantSDNode *RHSConst = dyn_cast<ConstantSDNode>(RHS);
3386     IsRHSZero = RHSConst && RHSConst->isZero();
3387     LLVM_FALLTHROUGH;
3388   }
3389   case ISD::SETLE: {
3390     if (CmpInGPR == ICGPR_NonExtIn)
3391       return SDValue();
3392     // (sext (setcc %a, %b, setge)) -> (add (lshr (sub %b, %a), 63), -1)
3393     // (sext (setcc %a, 0, setle))  -> (add (lshr (- %a), 63), -1)
3394     if (IsRHSZero)
3395       return getCompoundZeroComparisonInGPR(LHS, dl, ZeroCompare::LESExt);
3396 
3397     // The upper 32-bits of the register can't be undefined for this sequence.
3398     LHS = signExtendInputIfNeeded(LHS);
3399     RHS = signExtendInputIfNeeded(RHS);
3400     SDValue SUBFNode =
3401       SDValue(CurDAG->getMachineNode(PPC::SUBF8, dl, MVT::i64, MVT::Glue,
3402                                      LHS, RHS), 0);
3403     SDValue Srdi =
3404       SDValue(CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64,
3405                                      SUBFNode, S->getI64Imm(1, dl),
3406                                      S->getI64Imm(63, dl)), 0);
3407     return SDValue(CurDAG->getMachineNode(PPC::ADDI8, dl, MVT::i64, Srdi,
3408                                           S->getI32Imm(-1, dl)), 0);
3409   }
3410   case ISD::SETGT: {
3411     // (sext (setcc %a, %b, setgt)) -> (ashr (sub %b, %a), 63)
3412     // (sext (setcc %a, -1, setgt)) -> (ashr (~ %a), 31)
3413     // (sext (setcc %a, 0, setgt))  -> (ashr (- %a), 63)
3414     if (IsRHSNegOne)
3415       return getCompoundZeroComparisonInGPR(LHS, dl, ZeroCompare::GESExt);
3416     if (IsRHSZero) {
3417       if (CmpInGPR == ICGPR_NonExtIn)
3418         return SDValue();
3419       // The upper 32-bits of the register can't be undefined for this sequence.
3420       LHS = signExtendInputIfNeeded(LHS);
3421       RHS = signExtendInputIfNeeded(RHS);
3422       SDValue Neg =
3423         SDValue(CurDAG->getMachineNode(PPC::NEG8, dl, MVT::i64, LHS), 0);
3424         return SDValue(CurDAG->getMachineNode(PPC::SRADI, dl, MVT::i64, Neg,
3425                                               S->getI64Imm(63, dl)), 0);
3426     }
3427     // Not a special case (i.e. RHS == 0 or RHS == -1). Handle (%a > %b) as
3428     // (%b < %a) by swapping inputs and falling through.
3429     std::swap(LHS, RHS);
3430     ConstantSDNode *RHSConst = dyn_cast<ConstantSDNode>(RHS);
3431     IsRHSZero = RHSConst && RHSConst->isZero();
3432     IsRHSOne = RHSConst && RHSConst->getSExtValue() == 1;
3433     LLVM_FALLTHROUGH;
3434   }
3435   case ISD::SETLT: {
3436     // (sext (setcc %a, %b, setgt)) -> (ashr (sub %a, %b), 63)
3437     // (sext (setcc %a, 1, setgt))  -> (add (lshr (- %a), 63), -1)
3438     // (sext (setcc %a, 0, setgt))  -> (ashr %a, 31)
3439     if (IsRHSOne) {
3440       if (CmpInGPR == ICGPR_NonExtIn)
3441         return SDValue();
3442       return getCompoundZeroComparisonInGPR(LHS, dl, ZeroCompare::LESExt);
3443     }
3444     if (IsRHSZero)
3445       return SDValue(CurDAG->getMachineNode(PPC::SRAWI, dl, MVT::i32, LHS,
3446                                             S->getI32Imm(31, dl)), 0);
3447 
3448     if (CmpInGPR == ICGPR_NonExtIn)
3449       return SDValue();
3450     // The upper 32-bits of the register can't be undefined for this sequence.
3451     LHS = signExtendInputIfNeeded(LHS);
3452     RHS = signExtendInputIfNeeded(RHS);
3453     SDValue SUBFNode =
3454       SDValue(CurDAG->getMachineNode(PPC::SUBF8, dl, MVT::i64, RHS, LHS), 0);
3455     return SDValue(CurDAG->getMachineNode(PPC::SRADI, dl, MVT::i64,
3456                                           SUBFNode, S->getI64Imm(63, dl)), 0);
3457   }
3458   case ISD::SETUGE:
3459     // (sext (setcc %a, %b, setuge)) -> (add (lshr (sub %a, %b), 63), -1)
3460     // (sext (setcc %a, %b, setule)) -> (add (lshr (sub %b, %a), 63), -1)
3461     std::swap(LHS, RHS);
3462     LLVM_FALLTHROUGH;
3463   case ISD::SETULE: {
3464     if (CmpInGPR == ICGPR_NonExtIn)
3465       return SDValue();
3466     // The upper 32-bits of the register can't be undefined for this sequence.
3467     LHS = zeroExtendInputIfNeeded(LHS);
3468     RHS = zeroExtendInputIfNeeded(RHS);
3469     SDValue Subtract =
3470       SDValue(CurDAG->getMachineNode(PPC::SUBF8, dl, MVT::i64, LHS, RHS), 0);
3471     SDValue Shift =
3472       SDValue(CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64, Subtract,
3473                                      S->getI32Imm(1, dl), S->getI32Imm(63,dl)),
3474               0);
3475     return SDValue(CurDAG->getMachineNode(PPC::ADDI8, dl, MVT::i64, Shift,
3476                                           S->getI32Imm(-1, dl)), 0);
3477   }
3478   case ISD::SETUGT:
3479     // (sext (setcc %a, %b, setugt)) -> (ashr (sub %b, %a), 63)
3480     // (sext (setcc %a, %b, setugt)) -> (ashr (sub %a, %b), 63)
3481     std::swap(LHS, RHS);
3482     LLVM_FALLTHROUGH;
3483   case ISD::SETULT: {
3484     if (CmpInGPR == ICGPR_NonExtIn)
3485       return SDValue();
3486     // The upper 32-bits of the register can't be undefined for this sequence.
3487     LHS = zeroExtendInputIfNeeded(LHS);
3488     RHS = zeroExtendInputIfNeeded(RHS);
3489     SDValue Subtract =
3490       SDValue(CurDAG->getMachineNode(PPC::SUBF8, dl, MVT::i64, RHS, LHS), 0);
3491     return SDValue(CurDAG->getMachineNode(PPC::SRADI, dl, MVT::i64,
3492                                           Subtract, S->getI64Imm(63, dl)), 0);
3493   }
3494   }
3495 }
3496 
3497 /// Produces a zero-extended result of comparing two 64-bit values according to
3498 /// the passed condition code.
3499 SDValue
3500 IntegerCompareEliminator::get64BitZExtCompare(SDValue LHS, SDValue RHS,
3501                                               ISD::CondCode CC,
3502                                               int64_t RHSValue, SDLoc dl) {
3503   if (CmpInGPR == ICGPR_I32 || CmpInGPR == ICGPR_SextI32 ||
3504       CmpInGPR == ICGPR_ZextI32 || CmpInGPR == ICGPR_Sext)
3505     return SDValue();
3506   bool IsRHSZero = RHSValue == 0;
3507   bool IsRHSOne = RHSValue == 1;
3508   bool IsRHSNegOne = RHSValue == -1LL;
3509   switch (CC) {
3510   default: return SDValue();
3511   case ISD::SETEQ: {
3512     // (zext (setcc %a, %b, seteq)) -> (lshr (ctlz (xor %a, %b)), 6)
3513     // (zext (setcc %a, 0, seteq)) ->  (lshr (ctlz %a), 6)
3514     SDValue Xor = IsRHSZero ? LHS :
3515       SDValue(CurDAG->getMachineNode(PPC::XOR8, dl, MVT::i64, LHS, RHS), 0);
3516     SDValue Clz =
3517       SDValue(CurDAG->getMachineNode(PPC::CNTLZD, dl, MVT::i64, Xor), 0);
3518     return SDValue(CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64, Clz,
3519                                           S->getI64Imm(58, dl),
3520                                           S->getI64Imm(63, dl)), 0);
3521   }
3522   case ISD::SETNE: {
3523     // {addc.reg, addc.CA} = (addcarry (xor %a, %b), -1)
3524     // (zext (setcc %a, %b, setne)) -> (sube addc.reg, addc.reg, addc.CA)
3525     // {addcz.reg, addcz.CA} = (addcarry %a, -1)
3526     // (zext (setcc %a, 0, setne)) -> (sube addcz.reg, addcz.reg, addcz.CA)
3527     SDValue Xor = IsRHSZero ? LHS :
3528       SDValue(CurDAG->getMachineNode(PPC::XOR8, dl, MVT::i64, LHS, RHS), 0);
3529     SDValue AC =
3530       SDValue(CurDAG->getMachineNode(PPC::ADDIC8, dl, MVT::i64, MVT::Glue,
3531                                      Xor, S->getI32Imm(~0U, dl)), 0);
3532     return SDValue(CurDAG->getMachineNode(PPC::SUBFE8, dl, MVT::i64, AC,
3533                                           Xor, AC.getValue(1)), 0);
3534   }
3535   case ISD::SETGE: {
3536     // {subc.reg, subc.CA} = (subcarry %a, %b)
3537     // (zext (setcc %a, %b, setge)) ->
3538     //   (adde (lshr %b, 63), (ashr %a, 63), subc.CA)
3539     // (zext (setcc %a, 0, setge)) -> (lshr (~ %a), 63)
3540     if (IsRHSZero)
3541       return getCompoundZeroComparisonInGPR(LHS, dl, ZeroCompare::GEZExt);
3542     std::swap(LHS, RHS);
3543     ConstantSDNode *RHSConst = dyn_cast<ConstantSDNode>(RHS);
3544     IsRHSZero = RHSConst && RHSConst->isZero();
3545     LLVM_FALLTHROUGH;
3546   }
3547   case ISD::SETLE: {
3548     // {subc.reg, subc.CA} = (subcarry %b, %a)
3549     // (zext (setcc %a, %b, setge)) ->
3550     //   (adde (lshr %a, 63), (ashr %b, 63), subc.CA)
3551     // (zext (setcc %a, 0, setge)) -> (lshr (or %a, (add %a, -1)), 63)
3552     if (IsRHSZero)
3553       return getCompoundZeroComparisonInGPR(LHS, dl, ZeroCompare::LEZExt);
3554     SDValue ShiftL =
3555       SDValue(CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64, LHS,
3556                                      S->getI64Imm(1, dl),
3557                                      S->getI64Imm(63, dl)), 0);
3558     SDValue ShiftR =
3559       SDValue(CurDAG->getMachineNode(PPC::SRADI, dl, MVT::i64, RHS,
3560                                      S->getI64Imm(63, dl)), 0);
3561     SDValue SubtractCarry =
3562       SDValue(CurDAG->getMachineNode(PPC::SUBFC8, dl, MVT::i64, MVT::Glue,
3563                                      LHS, RHS), 1);
3564     return SDValue(CurDAG->getMachineNode(PPC::ADDE8, dl, MVT::i64, MVT::Glue,
3565                                           ShiftR, ShiftL, SubtractCarry), 0);
3566   }
3567   case ISD::SETGT: {
3568     // {subc.reg, subc.CA} = (subcarry %b, %a)
3569     // (zext (setcc %a, %b, setgt)) ->
3570     //   (xor (adde (lshr %a, 63), (ashr %b, 63), subc.CA), 1)
3571     // (zext (setcc %a, 0, setgt)) -> (lshr (nor (add %a, -1), %a), 63)
3572     if (IsRHSNegOne)
3573       return getCompoundZeroComparisonInGPR(LHS, dl, ZeroCompare::GEZExt);
3574     if (IsRHSZero) {
3575       SDValue Addi =
3576         SDValue(CurDAG->getMachineNode(PPC::ADDI8, dl, MVT::i64, LHS,
3577                                        S->getI64Imm(~0ULL, dl)), 0);
3578       SDValue Nor =
3579         SDValue(CurDAG->getMachineNode(PPC::NOR8, dl, MVT::i64, Addi, LHS), 0);
3580       return SDValue(CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64, Nor,
3581                                             S->getI64Imm(1, dl),
3582                                             S->getI64Imm(63, dl)), 0);
3583     }
3584     std::swap(LHS, RHS);
3585     ConstantSDNode *RHSConst = dyn_cast<ConstantSDNode>(RHS);
3586     IsRHSZero = RHSConst && RHSConst->isZero();
3587     IsRHSOne = RHSConst && RHSConst->getSExtValue() == 1;
3588     LLVM_FALLTHROUGH;
3589   }
3590   case ISD::SETLT: {
3591     // {subc.reg, subc.CA} = (subcarry %a, %b)
3592     // (zext (setcc %a, %b, setlt)) ->
3593     //   (xor (adde (lshr %b, 63), (ashr %a, 63), subc.CA), 1)
3594     // (zext (setcc %a, 0, setlt)) -> (lshr %a, 63)
3595     if (IsRHSOne)
3596       return getCompoundZeroComparisonInGPR(LHS, dl, ZeroCompare::LEZExt);
3597     if (IsRHSZero)
3598       return SDValue(CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64, LHS,
3599                                             S->getI64Imm(1, dl),
3600                                             S->getI64Imm(63, dl)), 0);
3601     SDValue SRADINode =
3602       SDValue(CurDAG->getMachineNode(PPC::SRADI, dl, MVT::i64,
3603                                      LHS, S->getI64Imm(63, dl)), 0);
3604     SDValue SRDINode =
3605       SDValue(CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64,
3606                                      RHS, S->getI64Imm(1, dl),
3607                                      S->getI64Imm(63, dl)), 0);
3608     SDValue SUBFC8Carry =
3609       SDValue(CurDAG->getMachineNode(PPC::SUBFC8, dl, MVT::i64, MVT::Glue,
3610                                      RHS, LHS), 1);
3611     SDValue ADDE8Node =
3612       SDValue(CurDAG->getMachineNode(PPC::ADDE8, dl, MVT::i64, MVT::Glue,
3613                                      SRDINode, SRADINode, SUBFC8Carry), 0);
3614     return SDValue(CurDAG->getMachineNode(PPC::XORI8, dl, MVT::i64,
3615                                           ADDE8Node, S->getI64Imm(1, dl)), 0);
3616   }
3617   case ISD::SETUGE:
3618     // {subc.reg, subc.CA} = (subcarry %a, %b)
3619     // (zext (setcc %a, %b, setuge)) -> (add (sube %b, %b, subc.CA), 1)
3620     std::swap(LHS, RHS);
3621     LLVM_FALLTHROUGH;
3622   case ISD::SETULE: {
3623     // {subc.reg, subc.CA} = (subcarry %b, %a)
3624     // (zext (setcc %a, %b, setule)) -> (add (sube %a, %a, subc.CA), 1)
3625     SDValue SUBFC8Carry =
3626       SDValue(CurDAG->getMachineNode(PPC::SUBFC8, dl, MVT::i64, MVT::Glue,
3627                                      LHS, RHS), 1);
3628     SDValue SUBFE8Node =
3629       SDValue(CurDAG->getMachineNode(PPC::SUBFE8, dl, MVT::i64, MVT::Glue,
3630                                      LHS, LHS, SUBFC8Carry), 0);
3631     return SDValue(CurDAG->getMachineNode(PPC::ADDI8, dl, MVT::i64,
3632                                           SUBFE8Node, S->getI64Imm(1, dl)), 0);
3633   }
3634   case ISD::SETUGT:
3635     // {subc.reg, subc.CA} = (subcarry %b, %a)
3636     // (zext (setcc %a, %b, setugt)) -> -(sube %b, %b, subc.CA)
3637     std::swap(LHS, RHS);
3638     LLVM_FALLTHROUGH;
3639   case ISD::SETULT: {
3640     // {subc.reg, subc.CA} = (subcarry %a, %b)
3641     // (zext (setcc %a, %b, setult)) -> -(sube %a, %a, subc.CA)
3642     SDValue SubtractCarry =
3643       SDValue(CurDAG->getMachineNode(PPC::SUBFC8, dl, MVT::i64, MVT::Glue,
3644                                      RHS, LHS), 1);
3645     SDValue ExtSub =
3646       SDValue(CurDAG->getMachineNode(PPC::SUBFE8, dl, MVT::i64,
3647                                      LHS, LHS, SubtractCarry), 0);
3648     return SDValue(CurDAG->getMachineNode(PPC::NEG8, dl, MVT::i64,
3649                                           ExtSub), 0);
3650   }
3651   }
3652 }
3653 
3654 /// Produces a sign-extended result of comparing two 64-bit values according to
3655 /// the passed condition code.
3656 SDValue
3657 IntegerCompareEliminator::get64BitSExtCompare(SDValue LHS, SDValue RHS,
3658                                               ISD::CondCode CC,
3659                                               int64_t RHSValue, SDLoc dl) {
3660   if (CmpInGPR == ICGPR_I32 || CmpInGPR == ICGPR_SextI32 ||
3661       CmpInGPR == ICGPR_ZextI32 || CmpInGPR == ICGPR_Zext)
3662     return SDValue();
3663   bool IsRHSZero = RHSValue == 0;
3664   bool IsRHSOne = RHSValue == 1;
3665   bool IsRHSNegOne = RHSValue == -1LL;
3666   switch (CC) {
3667   default: return SDValue();
3668   case ISD::SETEQ: {
3669     // {addc.reg, addc.CA} = (addcarry (xor %a, %b), -1)
3670     // (sext (setcc %a, %b, seteq)) -> (sube addc.reg, addc.reg, addc.CA)
3671     // {addcz.reg, addcz.CA} = (addcarry %a, -1)
3672     // (sext (setcc %a, 0, seteq)) -> (sube addcz.reg, addcz.reg, addcz.CA)
3673     SDValue AddInput = IsRHSZero ? LHS :
3674       SDValue(CurDAG->getMachineNode(PPC::XOR8, dl, MVT::i64, LHS, RHS), 0);
3675     SDValue Addic =
3676       SDValue(CurDAG->getMachineNode(PPC::ADDIC8, dl, MVT::i64, MVT::Glue,
3677                                      AddInput, S->getI32Imm(~0U, dl)), 0);
3678     return SDValue(CurDAG->getMachineNode(PPC::SUBFE8, dl, MVT::i64, Addic,
3679                                           Addic, Addic.getValue(1)), 0);
3680   }
3681   case ISD::SETNE: {
3682     // {subfc.reg, subfc.CA} = (subcarry 0, (xor %a, %b))
3683     // (sext (setcc %a, %b, setne)) -> (sube subfc.reg, subfc.reg, subfc.CA)
3684     // {subfcz.reg, subfcz.CA} = (subcarry 0, %a)
3685     // (sext (setcc %a, 0, setne)) -> (sube subfcz.reg, subfcz.reg, subfcz.CA)
3686     SDValue Xor = IsRHSZero ? LHS :
3687       SDValue(CurDAG->getMachineNode(PPC::XOR8, dl, MVT::i64, LHS, RHS), 0);
3688     SDValue SC =
3689       SDValue(CurDAG->getMachineNode(PPC::SUBFIC8, dl, MVT::i64, MVT::Glue,
3690                                      Xor, S->getI32Imm(0, dl)), 0);
3691     return SDValue(CurDAG->getMachineNode(PPC::SUBFE8, dl, MVT::i64, SC,
3692                                           SC, SC.getValue(1)), 0);
3693   }
3694   case ISD::SETGE: {
3695     // {subc.reg, subc.CA} = (subcarry %a, %b)
3696     // (zext (setcc %a, %b, setge)) ->
3697     //   (- (adde (lshr %b, 63), (ashr %a, 63), subc.CA))
3698     // (zext (setcc %a, 0, setge)) -> (~ (ashr %a, 63))
3699     if (IsRHSZero)
3700       return getCompoundZeroComparisonInGPR(LHS, dl, ZeroCompare::GESExt);
3701     std::swap(LHS, RHS);
3702     ConstantSDNode *RHSConst = dyn_cast<ConstantSDNode>(RHS);
3703     IsRHSZero = RHSConst && RHSConst->isZero();
3704     LLVM_FALLTHROUGH;
3705   }
3706   case ISD::SETLE: {
3707     // {subc.reg, subc.CA} = (subcarry %b, %a)
3708     // (zext (setcc %a, %b, setge)) ->
3709     //   (- (adde (lshr %a, 63), (ashr %b, 63), subc.CA))
3710     // (zext (setcc %a, 0, setge)) -> (ashr (or %a, (add %a, -1)), 63)
3711     if (IsRHSZero)
3712       return getCompoundZeroComparisonInGPR(LHS, dl, ZeroCompare::LESExt);
3713     SDValue ShiftR =
3714       SDValue(CurDAG->getMachineNode(PPC::SRADI, dl, MVT::i64, RHS,
3715                                      S->getI64Imm(63, dl)), 0);
3716     SDValue ShiftL =
3717       SDValue(CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64, LHS,
3718                                      S->getI64Imm(1, dl),
3719                                      S->getI64Imm(63, dl)), 0);
3720     SDValue SubtractCarry =
3721       SDValue(CurDAG->getMachineNode(PPC::SUBFC8, dl, MVT::i64, MVT::Glue,
3722                                      LHS, RHS), 1);
3723     SDValue Adde =
3724       SDValue(CurDAG->getMachineNode(PPC::ADDE8, dl, MVT::i64, MVT::Glue,
3725                                      ShiftR, ShiftL, SubtractCarry), 0);
3726     return SDValue(CurDAG->getMachineNode(PPC::NEG8, dl, MVT::i64, Adde), 0);
3727   }
3728   case ISD::SETGT: {
3729     // {subc.reg, subc.CA} = (subcarry %b, %a)
3730     // (zext (setcc %a, %b, setgt)) ->
3731     //   -(xor (adde (lshr %a, 63), (ashr %b, 63), subc.CA), 1)
3732     // (zext (setcc %a, 0, setgt)) -> (ashr (nor (add %a, -1), %a), 63)
3733     if (IsRHSNegOne)
3734       return getCompoundZeroComparisonInGPR(LHS, dl, ZeroCompare::GESExt);
3735     if (IsRHSZero) {
3736       SDValue Add =
3737         SDValue(CurDAG->getMachineNode(PPC::ADDI8, dl, MVT::i64, LHS,
3738                                        S->getI64Imm(-1, dl)), 0);
3739       SDValue Nor =
3740         SDValue(CurDAG->getMachineNode(PPC::NOR8, dl, MVT::i64, Add, LHS), 0);
3741       return SDValue(CurDAG->getMachineNode(PPC::SRADI, dl, MVT::i64, Nor,
3742                                             S->getI64Imm(63, dl)), 0);
3743     }
3744     std::swap(LHS, RHS);
3745     ConstantSDNode *RHSConst = dyn_cast<ConstantSDNode>(RHS);
3746     IsRHSZero = RHSConst && RHSConst->isZero();
3747     IsRHSOne = RHSConst && RHSConst->getSExtValue() == 1;
3748     LLVM_FALLTHROUGH;
3749   }
3750   case ISD::SETLT: {
3751     // {subc.reg, subc.CA} = (subcarry %a, %b)
3752     // (zext (setcc %a, %b, setlt)) ->
3753     //   -(xor (adde (lshr %b, 63), (ashr %a, 63), subc.CA), 1)
3754     // (zext (setcc %a, 0, setlt)) -> (ashr %a, 63)
3755     if (IsRHSOne)
3756       return getCompoundZeroComparisonInGPR(LHS, dl, ZeroCompare::LESExt);
3757     if (IsRHSZero) {
3758       return SDValue(CurDAG->getMachineNode(PPC::SRADI, dl, MVT::i64, LHS,
3759                                             S->getI64Imm(63, dl)), 0);
3760     }
3761     SDValue SRADINode =
3762       SDValue(CurDAG->getMachineNode(PPC::SRADI, dl, MVT::i64,
3763                                      LHS, S->getI64Imm(63, dl)), 0);
3764     SDValue SRDINode =
3765       SDValue(CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64,
3766                                      RHS, S->getI64Imm(1, dl),
3767                                      S->getI64Imm(63, dl)), 0);
3768     SDValue SUBFC8Carry =
3769       SDValue(CurDAG->getMachineNode(PPC::SUBFC8, dl, MVT::i64, MVT::Glue,
3770                                      RHS, LHS), 1);
3771     SDValue ADDE8Node =
3772       SDValue(CurDAG->getMachineNode(PPC::ADDE8, dl, MVT::i64,
3773                                      SRDINode, SRADINode, SUBFC8Carry), 0);
3774     SDValue XORI8Node =
3775       SDValue(CurDAG->getMachineNode(PPC::XORI8, dl, MVT::i64,
3776                                      ADDE8Node, S->getI64Imm(1, dl)), 0);
3777     return SDValue(CurDAG->getMachineNode(PPC::NEG8, dl, MVT::i64,
3778                                           XORI8Node), 0);
3779   }
3780   case ISD::SETUGE:
3781     // {subc.reg, subc.CA} = (subcarry %a, %b)
3782     // (sext (setcc %a, %b, setuge)) -> ~(sube %b, %b, subc.CA)
3783     std::swap(LHS, RHS);
3784     LLVM_FALLTHROUGH;
3785   case ISD::SETULE: {
3786     // {subc.reg, subc.CA} = (subcarry %b, %a)
3787     // (sext (setcc %a, %b, setule)) -> ~(sube %a, %a, subc.CA)
3788     SDValue SubtractCarry =
3789       SDValue(CurDAG->getMachineNode(PPC::SUBFC8, dl, MVT::i64, MVT::Glue,
3790                                      LHS, RHS), 1);
3791     SDValue ExtSub =
3792       SDValue(CurDAG->getMachineNode(PPC::SUBFE8, dl, MVT::i64, MVT::Glue, LHS,
3793                                      LHS, SubtractCarry), 0);
3794     return SDValue(CurDAG->getMachineNode(PPC::NOR8, dl, MVT::i64,
3795                                           ExtSub, ExtSub), 0);
3796   }
3797   case ISD::SETUGT:
3798     // {subc.reg, subc.CA} = (subcarry %b, %a)
3799     // (sext (setcc %a, %b, setugt)) -> (sube %b, %b, subc.CA)
3800     std::swap(LHS, RHS);
3801     LLVM_FALLTHROUGH;
3802   case ISD::SETULT: {
3803     // {subc.reg, subc.CA} = (subcarry %a, %b)
3804     // (sext (setcc %a, %b, setult)) -> (sube %a, %a, subc.CA)
3805     SDValue SubCarry =
3806       SDValue(CurDAG->getMachineNode(PPC::SUBFC8, dl, MVT::i64, MVT::Glue,
3807                                      RHS, LHS), 1);
3808     return SDValue(CurDAG->getMachineNode(PPC::SUBFE8, dl, MVT::i64,
3809                                      LHS, LHS, SubCarry), 0);
3810   }
3811   }
3812 }
3813 
3814 /// Do all uses of this SDValue need the result in a GPR?
3815 /// This is meant to be used on values that have type i1 since
3816 /// it is somewhat meaningless to ask if values of other types
3817 /// should be kept in GPR's.
3818 static bool allUsesExtend(SDValue Compare, SelectionDAG *CurDAG) {
3819   assert(Compare.getOpcode() == ISD::SETCC &&
3820          "An ISD::SETCC node required here.");
3821 
3822   // For values that have a single use, the caller should obviously already have
3823   // checked if that use is an extending use. We check the other uses here.
3824   if (Compare.hasOneUse())
3825     return true;
3826   // We want the value in a GPR if it is being extended, used for a select, or
3827   // used in logical operations.
3828   for (auto CompareUse : Compare.getNode()->uses())
3829     if (CompareUse->getOpcode() != ISD::SIGN_EXTEND &&
3830         CompareUse->getOpcode() != ISD::ZERO_EXTEND &&
3831         CompareUse->getOpcode() != ISD::SELECT &&
3832         !isLogicOp(CompareUse->getOpcode())) {
3833       OmittedForNonExtendUses++;
3834       return false;
3835     }
3836   return true;
3837 }
3838 
3839 /// Returns an equivalent of a SETCC node but with the result the same width as
3840 /// the inputs. This can also be used for SELECT_CC if either the true or false
3841 /// values is a power of two while the other is zero.
3842 SDValue IntegerCompareEliminator::getSETCCInGPR(SDValue Compare,
3843                                                 SetccInGPROpts ConvOpts) {
3844   assert((Compare.getOpcode() == ISD::SETCC ||
3845           Compare.getOpcode() == ISD::SELECT_CC) &&
3846          "An ISD::SETCC node required here.");
3847 
3848   // Don't convert this comparison to a GPR sequence because there are uses
3849   // of the i1 result (i.e. uses that require the result in the CR).
3850   if ((Compare.getOpcode() == ISD::SETCC) && !allUsesExtend(Compare, CurDAG))
3851     return SDValue();
3852 
3853   SDValue LHS = Compare.getOperand(0);
3854   SDValue RHS = Compare.getOperand(1);
3855 
3856   // The condition code is operand 2 for SETCC and operand 4 for SELECT_CC.
3857   int CCOpNum = Compare.getOpcode() == ISD::SELECT_CC ? 4 : 2;
3858   ISD::CondCode CC =
3859     cast<CondCodeSDNode>(Compare.getOperand(CCOpNum))->get();
3860   EVT InputVT = LHS.getValueType();
3861   if (InputVT != MVT::i32 && InputVT != MVT::i64)
3862     return SDValue();
3863 
3864   if (ConvOpts == SetccInGPROpts::ZExtInvert ||
3865       ConvOpts == SetccInGPROpts::SExtInvert)
3866     CC = ISD::getSetCCInverse(CC, InputVT);
3867 
3868   bool Inputs32Bit = InputVT == MVT::i32;
3869 
3870   SDLoc dl(Compare);
3871   ConstantSDNode *RHSConst = dyn_cast<ConstantSDNode>(RHS);
3872   int64_t RHSValue = RHSConst ? RHSConst->getSExtValue() : INT64_MAX;
3873   bool IsSext = ConvOpts == SetccInGPROpts::SExtOrig ||
3874     ConvOpts == SetccInGPROpts::SExtInvert;
3875 
3876   if (IsSext && Inputs32Bit)
3877     return get32BitSExtCompare(LHS, RHS, CC, RHSValue, dl);
3878   else if (Inputs32Bit)
3879     return get32BitZExtCompare(LHS, RHS, CC, RHSValue, dl);
3880   else if (IsSext)
3881     return get64BitSExtCompare(LHS, RHS, CC, RHSValue, dl);
3882   return get64BitZExtCompare(LHS, RHS, CC, RHSValue, dl);
3883 }
3884 
3885 } // end anonymous namespace
3886 
3887 bool PPCDAGToDAGISel::tryIntCompareInGPR(SDNode *N) {
3888   if (N->getValueType(0) != MVT::i32 &&
3889       N->getValueType(0) != MVT::i64)
3890     return false;
3891 
3892   // This optimization will emit code that assumes 64-bit registers
3893   // so we don't want to run it in 32-bit mode. Also don't run it
3894   // on functions that are not to be optimized.
3895   if (TM.getOptLevel() == CodeGenOpt::None || !TM.isPPC64())
3896     return false;
3897 
3898   // For POWER10, it is more profitable to use the set boolean extension
3899   // instructions rather than the integer compare elimination codegen.
3900   // Users can override this via the command line option, `--ppc-gpr-icmps`.
3901   if (!(CmpInGPR.getNumOccurrences() > 0) && Subtarget->isISA3_1())
3902     return false;
3903 
3904   switch (N->getOpcode()) {
3905   default: break;
3906   case ISD::ZERO_EXTEND:
3907   case ISD::SIGN_EXTEND:
3908   case ISD::AND:
3909   case ISD::OR:
3910   case ISD::XOR: {
3911     IntegerCompareEliminator ICmpElim(CurDAG, this);
3912     if (SDNode *New = ICmpElim.Select(N)) {
3913       ReplaceNode(N, New);
3914       return true;
3915     }
3916   }
3917   }
3918   return false;
3919 }
3920 
3921 bool PPCDAGToDAGISel::tryBitPermutation(SDNode *N) {
3922   if (N->getValueType(0) != MVT::i32 &&
3923       N->getValueType(0) != MVT::i64)
3924     return false;
3925 
3926   if (!UseBitPermRewriter)
3927     return false;
3928 
3929   switch (N->getOpcode()) {
3930   default: break;
3931   case ISD::ROTL:
3932   case ISD::SHL:
3933   case ISD::SRL:
3934   case ISD::AND:
3935   case ISD::OR: {
3936     BitPermutationSelector BPS(CurDAG);
3937     if (SDNode *New = BPS.Select(N)) {
3938       ReplaceNode(N, New);
3939       return true;
3940     }
3941     return false;
3942   }
3943   }
3944 
3945   return false;
3946 }
3947 
3948 /// SelectCC - Select a comparison of the specified values with the specified
3949 /// condition code, returning the CR# of the expression.
3950 SDValue PPCDAGToDAGISel::SelectCC(SDValue LHS, SDValue RHS, ISD::CondCode CC,
3951                                   const SDLoc &dl, SDValue Chain) {
3952   // Always select the LHS.
3953   unsigned Opc;
3954 
3955   if (LHS.getValueType() == MVT::i32) {
3956     unsigned Imm;
3957     if (CC == ISD::SETEQ || CC == ISD::SETNE) {
3958       if (isInt32Immediate(RHS, Imm)) {
3959         // SETEQ/SETNE comparison with 16-bit immediate, fold it.
3960         if (isUInt<16>(Imm))
3961           return SDValue(CurDAG->getMachineNode(PPC::CMPLWI, dl, MVT::i32, LHS,
3962                                                 getI32Imm(Imm & 0xFFFF, dl)),
3963                          0);
3964         // If this is a 16-bit signed immediate, fold it.
3965         if (isInt<16>((int)Imm))
3966           return SDValue(CurDAG->getMachineNode(PPC::CMPWI, dl, MVT::i32, LHS,
3967                                                 getI32Imm(Imm & 0xFFFF, dl)),
3968                          0);
3969 
3970         // For non-equality comparisons, the default code would materialize the
3971         // constant, then compare against it, like this:
3972         //   lis r2, 4660
3973         //   ori r2, r2, 22136
3974         //   cmpw cr0, r3, r2
3975         // Since we are just comparing for equality, we can emit this instead:
3976         //   xoris r0,r3,0x1234
3977         //   cmplwi cr0,r0,0x5678
3978         //   beq cr0,L6
3979         SDValue Xor(CurDAG->getMachineNode(PPC::XORIS, dl, MVT::i32, LHS,
3980                                            getI32Imm(Imm >> 16, dl)), 0);
3981         return SDValue(CurDAG->getMachineNode(PPC::CMPLWI, dl, MVT::i32, Xor,
3982                                               getI32Imm(Imm & 0xFFFF, dl)), 0);
3983       }
3984       Opc = PPC::CMPLW;
3985     } else if (ISD::isUnsignedIntSetCC(CC)) {
3986       if (isInt32Immediate(RHS, Imm) && isUInt<16>(Imm))
3987         return SDValue(CurDAG->getMachineNode(PPC::CMPLWI, dl, MVT::i32, LHS,
3988                                               getI32Imm(Imm & 0xFFFF, dl)), 0);
3989       Opc = PPC::CMPLW;
3990     } else {
3991       int16_t SImm;
3992       if (isIntS16Immediate(RHS, SImm))
3993         return SDValue(CurDAG->getMachineNode(PPC::CMPWI, dl, MVT::i32, LHS,
3994                                               getI32Imm((int)SImm & 0xFFFF,
3995                                                         dl)),
3996                          0);
3997       Opc = PPC::CMPW;
3998     }
3999   } else if (LHS.getValueType() == MVT::i64) {
4000     uint64_t Imm;
4001     if (CC == ISD::SETEQ || CC == ISD::SETNE) {
4002       if (isInt64Immediate(RHS.getNode(), Imm)) {
4003         // SETEQ/SETNE comparison with 16-bit immediate, fold it.
4004         if (isUInt<16>(Imm))
4005           return SDValue(CurDAG->getMachineNode(PPC::CMPLDI, dl, MVT::i64, LHS,
4006                                                 getI32Imm(Imm & 0xFFFF, dl)),
4007                          0);
4008         // If this is a 16-bit signed immediate, fold it.
4009         if (isInt<16>(Imm))
4010           return SDValue(CurDAG->getMachineNode(PPC::CMPDI, dl, MVT::i64, LHS,
4011                                                 getI32Imm(Imm & 0xFFFF, dl)),
4012                          0);
4013 
4014         // For non-equality comparisons, the default code would materialize the
4015         // constant, then compare against it, like this:
4016         //   lis r2, 4660
4017         //   ori r2, r2, 22136
4018         //   cmpd cr0, r3, r2
4019         // Since we are just comparing for equality, we can emit this instead:
4020         //   xoris r0,r3,0x1234
4021         //   cmpldi cr0,r0,0x5678
4022         //   beq cr0,L6
4023         if (isUInt<32>(Imm)) {
4024           SDValue Xor(CurDAG->getMachineNode(PPC::XORIS8, dl, MVT::i64, LHS,
4025                                              getI64Imm(Imm >> 16, dl)), 0);
4026           return SDValue(CurDAG->getMachineNode(PPC::CMPLDI, dl, MVT::i64, Xor,
4027                                                 getI64Imm(Imm & 0xFFFF, dl)),
4028                          0);
4029         }
4030       }
4031       Opc = PPC::CMPLD;
4032     } else if (ISD::isUnsignedIntSetCC(CC)) {
4033       if (isInt64Immediate(RHS.getNode(), Imm) && isUInt<16>(Imm))
4034         return SDValue(CurDAG->getMachineNode(PPC::CMPLDI, dl, MVT::i64, LHS,
4035                                               getI64Imm(Imm & 0xFFFF, dl)), 0);
4036       Opc = PPC::CMPLD;
4037     } else {
4038       int16_t SImm;
4039       if (isIntS16Immediate(RHS, SImm))
4040         return SDValue(CurDAG->getMachineNode(PPC::CMPDI, dl, MVT::i64, LHS,
4041                                               getI64Imm(SImm & 0xFFFF, dl)),
4042                          0);
4043       Opc = PPC::CMPD;
4044     }
4045   } else if (LHS.getValueType() == MVT::f32) {
4046     if (Subtarget->hasSPE()) {
4047       switch (CC) {
4048         default:
4049         case ISD::SETEQ:
4050         case ISD::SETNE:
4051           Opc = PPC::EFSCMPEQ;
4052           break;
4053         case ISD::SETLT:
4054         case ISD::SETGE:
4055         case ISD::SETOLT:
4056         case ISD::SETOGE:
4057         case ISD::SETULT:
4058         case ISD::SETUGE:
4059           Opc = PPC::EFSCMPLT;
4060           break;
4061         case ISD::SETGT:
4062         case ISD::SETLE:
4063         case ISD::SETOGT:
4064         case ISD::SETOLE:
4065         case ISD::SETUGT:
4066         case ISD::SETULE:
4067           Opc = PPC::EFSCMPGT;
4068           break;
4069       }
4070     } else
4071       Opc = PPC::FCMPUS;
4072   } else if (LHS.getValueType() == MVT::f64) {
4073     if (Subtarget->hasSPE()) {
4074       switch (CC) {
4075         default:
4076         case ISD::SETEQ:
4077         case ISD::SETNE:
4078           Opc = PPC::EFDCMPEQ;
4079           break;
4080         case ISD::SETLT:
4081         case ISD::SETGE:
4082         case ISD::SETOLT:
4083         case ISD::SETOGE:
4084         case ISD::SETULT:
4085         case ISD::SETUGE:
4086           Opc = PPC::EFDCMPLT;
4087           break;
4088         case ISD::SETGT:
4089         case ISD::SETLE:
4090         case ISD::SETOGT:
4091         case ISD::SETOLE:
4092         case ISD::SETUGT:
4093         case ISD::SETULE:
4094           Opc = PPC::EFDCMPGT;
4095           break;
4096       }
4097     } else
4098       Opc = Subtarget->hasVSX() ? PPC::XSCMPUDP : PPC::FCMPUD;
4099   } else {
4100     assert(LHS.getValueType() == MVT::f128 && "Unknown vt!");
4101     assert(Subtarget->hasP9Vector() && "XSCMPUQP requires Power9 Vector");
4102     Opc = PPC::XSCMPUQP;
4103   }
4104   if (Chain)
4105     return SDValue(
4106         CurDAG->getMachineNode(Opc, dl, MVT::i32, MVT::Other, LHS, RHS, Chain),
4107         0);
4108   else
4109     return SDValue(CurDAG->getMachineNode(Opc, dl, MVT::i32, LHS, RHS), 0);
4110 }
4111 
4112 static PPC::Predicate getPredicateForSetCC(ISD::CondCode CC, const EVT &VT,
4113                                            const PPCSubtarget *Subtarget) {
4114   // For SPE instructions, the result is in GT bit of the CR
4115   bool UseSPE = Subtarget->hasSPE() && VT.isFloatingPoint();
4116 
4117   switch (CC) {
4118   case ISD::SETUEQ:
4119   case ISD::SETONE:
4120   case ISD::SETOLE:
4121   case ISD::SETOGE:
4122     llvm_unreachable("Should be lowered by legalize!");
4123   default: llvm_unreachable("Unknown condition!");
4124   case ISD::SETOEQ:
4125   case ISD::SETEQ:
4126     return UseSPE ? PPC::PRED_GT : PPC::PRED_EQ;
4127   case ISD::SETUNE:
4128   case ISD::SETNE:
4129     return UseSPE ? PPC::PRED_LE : PPC::PRED_NE;
4130   case ISD::SETOLT:
4131   case ISD::SETLT:
4132     return UseSPE ? PPC::PRED_GT : PPC::PRED_LT;
4133   case ISD::SETULE:
4134   case ISD::SETLE:
4135     return PPC::PRED_LE;
4136   case ISD::SETOGT:
4137   case ISD::SETGT:
4138     return PPC::PRED_GT;
4139   case ISD::SETUGE:
4140   case ISD::SETGE:
4141     return UseSPE ? PPC::PRED_LE : PPC::PRED_GE;
4142   case ISD::SETO:   return PPC::PRED_NU;
4143   case ISD::SETUO:  return PPC::PRED_UN;
4144     // These two are invalid for floating point.  Assume we have int.
4145   case ISD::SETULT: return PPC::PRED_LT;
4146   case ISD::SETUGT: return PPC::PRED_GT;
4147   }
4148 }
4149 
4150 /// getCRIdxForSetCC - Return the index of the condition register field
4151 /// associated with the SetCC condition, and whether or not the field is
4152 /// treated as inverted.  That is, lt = 0; ge = 0 inverted.
4153 static unsigned getCRIdxForSetCC(ISD::CondCode CC, bool &Invert) {
4154   Invert = false;
4155   switch (CC) {
4156   default: llvm_unreachable("Unknown condition!");
4157   case ISD::SETOLT:
4158   case ISD::SETLT:  return 0;                  // Bit #0 = SETOLT
4159   case ISD::SETOGT:
4160   case ISD::SETGT:  return 1;                  // Bit #1 = SETOGT
4161   case ISD::SETOEQ:
4162   case ISD::SETEQ:  return 2;                  // Bit #2 = SETOEQ
4163   case ISD::SETUO:  return 3;                  // Bit #3 = SETUO
4164   case ISD::SETUGE:
4165   case ISD::SETGE:  Invert = true; return 0;   // !Bit #0 = SETUGE
4166   case ISD::SETULE:
4167   case ISD::SETLE:  Invert = true; return 1;   // !Bit #1 = SETULE
4168   case ISD::SETUNE:
4169   case ISD::SETNE:  Invert = true; return 2;   // !Bit #2 = SETUNE
4170   case ISD::SETO:   Invert = true; return 3;   // !Bit #3 = SETO
4171   case ISD::SETUEQ:
4172   case ISD::SETOGE:
4173   case ISD::SETOLE:
4174   case ISD::SETONE:
4175     llvm_unreachable("Invalid branch code: should be expanded by legalize");
4176   // These are invalid for floating point.  Assume integer.
4177   case ISD::SETULT: return 0;
4178   case ISD::SETUGT: return 1;
4179   }
4180 }
4181 
4182 // getVCmpInst: return the vector compare instruction for the specified
4183 // vector type and condition code. Since this is for altivec specific code,
4184 // only support the altivec types (v16i8, v8i16, v4i32, v2i64, v1i128,
4185 // and v4f32).
4186 static unsigned int getVCmpInst(MVT VecVT, ISD::CondCode CC,
4187                                 bool HasVSX, bool &Swap, bool &Negate) {
4188   Swap = false;
4189   Negate = false;
4190 
4191   if (VecVT.isFloatingPoint()) {
4192     /* Handle some cases by swapping input operands.  */
4193     switch (CC) {
4194       case ISD::SETLE: CC = ISD::SETGE; Swap = true; break;
4195       case ISD::SETLT: CC = ISD::SETGT; Swap = true; break;
4196       case ISD::SETOLE: CC = ISD::SETOGE; Swap = true; break;
4197       case ISD::SETOLT: CC = ISD::SETOGT; Swap = true; break;
4198       case ISD::SETUGE: CC = ISD::SETULE; Swap = true; break;
4199       case ISD::SETUGT: CC = ISD::SETULT; Swap = true; break;
4200       default: break;
4201     }
4202     /* Handle some cases by negating the result.  */
4203     switch (CC) {
4204       case ISD::SETNE: CC = ISD::SETEQ; Negate = true; break;
4205       case ISD::SETUNE: CC = ISD::SETOEQ; Negate = true; break;
4206       case ISD::SETULE: CC = ISD::SETOGT; Negate = true; break;
4207       case ISD::SETULT: CC = ISD::SETOGE; Negate = true; break;
4208       default: break;
4209     }
4210     /* We have instructions implementing the remaining cases.  */
4211     switch (CC) {
4212       case ISD::SETEQ:
4213       case ISD::SETOEQ:
4214         if (VecVT == MVT::v4f32)
4215           return HasVSX ? PPC::XVCMPEQSP : PPC::VCMPEQFP;
4216         else if (VecVT == MVT::v2f64)
4217           return PPC::XVCMPEQDP;
4218         break;
4219       case ISD::SETGT:
4220       case ISD::SETOGT:
4221         if (VecVT == MVT::v4f32)
4222           return HasVSX ? PPC::XVCMPGTSP : PPC::VCMPGTFP;
4223         else if (VecVT == MVT::v2f64)
4224           return PPC::XVCMPGTDP;
4225         break;
4226       case ISD::SETGE:
4227       case ISD::SETOGE:
4228         if (VecVT == MVT::v4f32)
4229           return HasVSX ? PPC::XVCMPGESP : PPC::VCMPGEFP;
4230         else if (VecVT == MVT::v2f64)
4231           return PPC::XVCMPGEDP;
4232         break;
4233       default:
4234         break;
4235     }
4236     llvm_unreachable("Invalid floating-point vector compare condition");
4237   } else {
4238     /* Handle some cases by swapping input operands.  */
4239     switch (CC) {
4240       case ISD::SETGE: CC = ISD::SETLE; Swap = true; break;
4241       case ISD::SETLT: CC = ISD::SETGT; Swap = true; break;
4242       case ISD::SETUGE: CC = ISD::SETULE; Swap = true; break;
4243       case ISD::SETULT: CC = ISD::SETUGT; Swap = true; break;
4244       default: break;
4245     }
4246     /* Handle some cases by negating the result.  */
4247     switch (CC) {
4248       case ISD::SETNE: CC = ISD::SETEQ; Negate = true; break;
4249       case ISD::SETUNE: CC = ISD::SETUEQ; Negate = true; break;
4250       case ISD::SETLE: CC = ISD::SETGT; Negate = true; break;
4251       case ISD::SETULE: CC = ISD::SETUGT; Negate = true; break;
4252       default: break;
4253     }
4254     /* We have instructions implementing the remaining cases.  */
4255     switch (CC) {
4256       case ISD::SETEQ:
4257       case ISD::SETUEQ:
4258         if (VecVT == MVT::v16i8)
4259           return PPC::VCMPEQUB;
4260         else if (VecVT == MVT::v8i16)
4261           return PPC::VCMPEQUH;
4262         else if (VecVT == MVT::v4i32)
4263           return PPC::VCMPEQUW;
4264         else if (VecVT == MVT::v2i64)
4265           return PPC::VCMPEQUD;
4266         else if (VecVT == MVT::v1i128)
4267           return PPC::VCMPEQUQ;
4268         break;
4269       case ISD::SETGT:
4270         if (VecVT == MVT::v16i8)
4271           return PPC::VCMPGTSB;
4272         else if (VecVT == MVT::v8i16)
4273           return PPC::VCMPGTSH;
4274         else if (VecVT == MVT::v4i32)
4275           return PPC::VCMPGTSW;
4276         else if (VecVT == MVT::v2i64)
4277           return PPC::VCMPGTSD;
4278         else if (VecVT == MVT::v1i128)
4279            return PPC::VCMPGTSQ;
4280         break;
4281       case ISD::SETUGT:
4282         if (VecVT == MVT::v16i8)
4283           return PPC::VCMPGTUB;
4284         else if (VecVT == MVT::v8i16)
4285           return PPC::VCMPGTUH;
4286         else if (VecVT == MVT::v4i32)
4287           return PPC::VCMPGTUW;
4288         else if (VecVT == MVT::v2i64)
4289           return PPC::VCMPGTUD;
4290         else if (VecVT == MVT::v1i128)
4291            return PPC::VCMPGTUQ;
4292         break;
4293       default:
4294         break;
4295     }
4296     llvm_unreachable("Invalid integer vector compare condition");
4297   }
4298 }
4299 
4300 bool PPCDAGToDAGISel::trySETCC(SDNode *N) {
4301   SDLoc dl(N);
4302   unsigned Imm;
4303   bool IsStrict = N->isStrictFPOpcode();
4304   ISD::CondCode CC =
4305       cast<CondCodeSDNode>(N->getOperand(IsStrict ? 3 : 2))->get();
4306   EVT PtrVT =
4307       CurDAG->getTargetLoweringInfo().getPointerTy(CurDAG->getDataLayout());
4308   bool isPPC64 = (PtrVT == MVT::i64);
4309   SDValue Chain = IsStrict ? N->getOperand(0) : SDValue();
4310 
4311   SDValue LHS = N->getOperand(IsStrict ? 1 : 0);
4312   SDValue RHS = N->getOperand(IsStrict ? 2 : 1);
4313 
4314   if (!IsStrict && !Subtarget->useCRBits() && isInt32Immediate(RHS, Imm)) {
4315     // We can codegen setcc op, imm very efficiently compared to a brcond.
4316     // Check for those cases here.
4317     // setcc op, 0
4318     if (Imm == 0) {
4319       SDValue Op = LHS;
4320       switch (CC) {
4321       default: break;
4322       case ISD::SETEQ: {
4323         Op = SDValue(CurDAG->getMachineNode(PPC::CNTLZW, dl, MVT::i32, Op), 0);
4324         SDValue Ops[] = { Op, getI32Imm(27, dl), getI32Imm(5, dl),
4325                           getI32Imm(31, dl) };
4326         CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops);
4327         return true;
4328       }
4329       case ISD::SETNE: {
4330         if (isPPC64) break;
4331         SDValue AD =
4332           SDValue(CurDAG->getMachineNode(PPC::ADDIC, dl, MVT::i32, MVT::Glue,
4333                                          Op, getI32Imm(~0U, dl)), 0);
4334         CurDAG->SelectNodeTo(N, PPC::SUBFE, MVT::i32, AD, Op, AD.getValue(1));
4335         return true;
4336       }
4337       case ISD::SETLT: {
4338         SDValue Ops[] = { Op, getI32Imm(1, dl), getI32Imm(31, dl),
4339                           getI32Imm(31, dl) };
4340         CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops);
4341         return true;
4342       }
4343       case ISD::SETGT: {
4344         SDValue T =
4345           SDValue(CurDAG->getMachineNode(PPC::NEG, dl, MVT::i32, Op), 0);
4346         T = SDValue(CurDAG->getMachineNode(PPC::ANDC, dl, MVT::i32, T, Op), 0);
4347         SDValue Ops[] = { T, getI32Imm(1, dl), getI32Imm(31, dl),
4348                           getI32Imm(31, dl) };
4349         CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops);
4350         return true;
4351       }
4352       }
4353     } else if (Imm == ~0U) {        // setcc op, -1
4354       SDValue Op = LHS;
4355       switch (CC) {
4356       default: break;
4357       case ISD::SETEQ:
4358         if (isPPC64) break;
4359         Op = SDValue(CurDAG->getMachineNode(PPC::ADDIC, dl, MVT::i32, MVT::Glue,
4360                                             Op, getI32Imm(1, dl)), 0);
4361         CurDAG->SelectNodeTo(N, PPC::ADDZE, MVT::i32,
4362                              SDValue(CurDAG->getMachineNode(PPC::LI, dl,
4363                                                             MVT::i32,
4364                                                             getI32Imm(0, dl)),
4365                                      0), Op.getValue(1));
4366         return true;
4367       case ISD::SETNE: {
4368         if (isPPC64) break;
4369         Op = SDValue(CurDAG->getMachineNode(PPC::NOR, dl, MVT::i32, Op, Op), 0);
4370         SDNode *AD = CurDAG->getMachineNode(PPC::ADDIC, dl, MVT::i32, MVT::Glue,
4371                                             Op, getI32Imm(~0U, dl));
4372         CurDAG->SelectNodeTo(N, PPC::SUBFE, MVT::i32, SDValue(AD, 0), Op,
4373                              SDValue(AD, 1));
4374         return true;
4375       }
4376       case ISD::SETLT: {
4377         SDValue AD = SDValue(CurDAG->getMachineNode(PPC::ADDI, dl, MVT::i32, Op,
4378                                                     getI32Imm(1, dl)), 0);
4379         SDValue AN = SDValue(CurDAG->getMachineNode(PPC::AND, dl, MVT::i32, AD,
4380                                                     Op), 0);
4381         SDValue Ops[] = { AN, getI32Imm(1, dl), getI32Imm(31, dl),
4382                           getI32Imm(31, dl) };
4383         CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops);
4384         return true;
4385       }
4386       case ISD::SETGT: {
4387         SDValue Ops[] = { Op, getI32Imm(1, dl), getI32Imm(31, dl),
4388                           getI32Imm(31, dl) };
4389         Op = SDValue(CurDAG->getMachineNode(PPC::RLWINM, dl, MVT::i32, Ops), 0);
4390         CurDAG->SelectNodeTo(N, PPC::XORI, MVT::i32, Op, getI32Imm(1, dl));
4391         return true;
4392       }
4393       }
4394     }
4395   }
4396 
4397   // Altivec Vector compare instructions do not set any CR register by default and
4398   // vector compare operations return the same type as the operands.
4399   if (!IsStrict && LHS.getValueType().isVector()) {
4400     if (Subtarget->hasSPE())
4401       return false;
4402 
4403     EVT VecVT = LHS.getValueType();
4404     bool Swap, Negate;
4405     unsigned int VCmpInst =
4406         getVCmpInst(VecVT.getSimpleVT(), CC, Subtarget->hasVSX(), Swap, Negate);
4407     if (Swap)
4408       std::swap(LHS, RHS);
4409 
4410     EVT ResVT = VecVT.changeVectorElementTypeToInteger();
4411     if (Negate) {
4412       SDValue VCmp(CurDAG->getMachineNode(VCmpInst, dl, ResVT, LHS, RHS), 0);
4413       CurDAG->SelectNodeTo(N, Subtarget->hasVSX() ? PPC::XXLNOR : PPC::VNOR,
4414                            ResVT, VCmp, VCmp);
4415       return true;
4416     }
4417 
4418     CurDAG->SelectNodeTo(N, VCmpInst, ResVT, LHS, RHS);
4419     return true;
4420   }
4421 
4422   if (Subtarget->useCRBits())
4423     return false;
4424 
4425   bool Inv;
4426   unsigned Idx = getCRIdxForSetCC(CC, Inv);
4427   SDValue CCReg = SelectCC(LHS, RHS, CC, dl, Chain);
4428   if (IsStrict)
4429     CurDAG->ReplaceAllUsesOfValueWith(SDValue(N, 1), CCReg.getValue(1));
4430   SDValue IntCR;
4431 
4432   // SPE e*cmp* instructions only set the 'gt' bit, so hard-code that
4433   // The correct compare instruction is already set by SelectCC()
4434   if (Subtarget->hasSPE() && LHS.getValueType().isFloatingPoint()) {
4435     Idx = 1;
4436   }
4437 
4438   // Force the ccreg into CR7.
4439   SDValue CR7Reg = CurDAG->getRegister(PPC::CR7, MVT::i32);
4440 
4441   SDValue InFlag;  // Null incoming flag value.
4442   CCReg = CurDAG->getCopyToReg(CurDAG->getEntryNode(), dl, CR7Reg, CCReg,
4443                                InFlag).getValue(1);
4444 
4445   IntCR = SDValue(CurDAG->getMachineNode(PPC::MFOCRF, dl, MVT::i32, CR7Reg,
4446                                          CCReg), 0);
4447 
4448   SDValue Ops[] = { IntCR, getI32Imm((32 - (3 - Idx)) & 31, dl),
4449                       getI32Imm(31, dl), getI32Imm(31, dl) };
4450   if (!Inv) {
4451     CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops);
4452     return true;
4453   }
4454 
4455   // Get the specified bit.
4456   SDValue Tmp =
4457     SDValue(CurDAG->getMachineNode(PPC::RLWINM, dl, MVT::i32, Ops), 0);
4458   CurDAG->SelectNodeTo(N, PPC::XORI, MVT::i32, Tmp, getI32Imm(1, dl));
4459   return true;
4460 }
4461 
4462 /// Does this node represent a load/store node whose address can be represented
4463 /// with a register plus an immediate that's a multiple of \p Val:
4464 bool PPCDAGToDAGISel::isOffsetMultipleOf(SDNode *N, unsigned Val) const {
4465   LoadSDNode *LDN = dyn_cast<LoadSDNode>(N);
4466   StoreSDNode *STN = dyn_cast<StoreSDNode>(N);
4467   MemIntrinsicSDNode *MIN = dyn_cast<MemIntrinsicSDNode>(N);
4468   SDValue AddrOp;
4469   if (LDN || (MIN && MIN->getOpcode() == PPCISD::LD_SPLAT))
4470     AddrOp = N->getOperand(1);
4471   else if (STN)
4472     AddrOp = STN->getOperand(2);
4473 
4474   // If the address points a frame object or a frame object with an offset,
4475   // we need to check the object alignment.
4476   short Imm = 0;
4477   if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(
4478           AddrOp.getOpcode() == ISD::ADD ? AddrOp.getOperand(0) :
4479                                            AddrOp)) {
4480     // If op0 is a frame index that is under aligned, we can't do it either,
4481     // because it is translated to r31 or r1 + slot + offset. We won't know the
4482     // slot number until the stack frame is finalized.
4483     const MachineFrameInfo &MFI = CurDAG->getMachineFunction().getFrameInfo();
4484     unsigned SlotAlign = MFI.getObjectAlign(FI->getIndex()).value();
4485     if ((SlotAlign % Val) != 0)
4486       return false;
4487 
4488     // If we have an offset, we need further check on the offset.
4489     if (AddrOp.getOpcode() != ISD::ADD)
4490       return true;
4491   }
4492 
4493   if (AddrOp.getOpcode() == ISD::ADD)
4494     return isIntS16Immediate(AddrOp.getOperand(1), Imm) && !(Imm % Val);
4495 
4496   // If the address comes from the outside, the offset will be zero.
4497   return AddrOp.getOpcode() == ISD::CopyFromReg;
4498 }
4499 
4500 void PPCDAGToDAGISel::transferMemOperands(SDNode *N, SDNode *Result) {
4501   // Transfer memoperands.
4502   MachineMemOperand *MemOp = cast<MemSDNode>(N)->getMemOperand();
4503   CurDAG->setNodeMemRefs(cast<MachineSDNode>(Result), {MemOp});
4504 }
4505 
4506 static bool mayUseP9Setb(SDNode *N, const ISD::CondCode &CC, SelectionDAG *DAG,
4507                          bool &NeedSwapOps, bool &IsUnCmp) {
4508 
4509   assert(N->getOpcode() == ISD::SELECT_CC && "Expecting a SELECT_CC here.");
4510 
4511   SDValue LHS = N->getOperand(0);
4512   SDValue RHS = N->getOperand(1);
4513   SDValue TrueRes = N->getOperand(2);
4514   SDValue FalseRes = N->getOperand(3);
4515   ConstantSDNode *TrueConst = dyn_cast<ConstantSDNode>(TrueRes);
4516   if (!TrueConst || (N->getSimpleValueType(0) != MVT::i64 &&
4517                      N->getSimpleValueType(0) != MVT::i32))
4518     return false;
4519 
4520   // We are looking for any of:
4521   // (select_cc lhs, rhs,  1, (sext (setcc [lr]hs, [lr]hs, cc2)), cc1)
4522   // (select_cc lhs, rhs, -1, (zext (setcc [lr]hs, [lr]hs, cc2)), cc1)
4523   // (select_cc lhs, rhs,  0, (select_cc [lr]hs, [lr]hs,  1, -1, cc2), seteq)
4524   // (select_cc lhs, rhs,  0, (select_cc [lr]hs, [lr]hs, -1,  1, cc2), seteq)
4525   int64_t TrueResVal = TrueConst->getSExtValue();
4526   if ((TrueResVal < -1 || TrueResVal > 1) ||
4527       (TrueResVal == -1 && FalseRes.getOpcode() != ISD::ZERO_EXTEND) ||
4528       (TrueResVal == 1 && FalseRes.getOpcode() != ISD::SIGN_EXTEND) ||
4529       (TrueResVal == 0 &&
4530        (FalseRes.getOpcode() != ISD::SELECT_CC || CC != ISD::SETEQ)))
4531     return false;
4532 
4533   SDValue SetOrSelCC = FalseRes.getOpcode() == ISD::SELECT_CC
4534                            ? FalseRes
4535                            : FalseRes.getOperand(0);
4536   bool InnerIsSel = SetOrSelCC.getOpcode() == ISD::SELECT_CC;
4537   if (SetOrSelCC.getOpcode() != ISD::SETCC &&
4538       SetOrSelCC.getOpcode() != ISD::SELECT_CC)
4539     return false;
4540 
4541   // Without this setb optimization, the outer SELECT_CC will be manually
4542   // selected to SELECT_CC_I4/SELECT_CC_I8 Pseudo, then expand-isel-pseudos pass
4543   // transforms pseudo instruction to isel instruction. When there are more than
4544   // one use for result like zext/sext, with current optimization we only see
4545   // isel is replaced by setb but can't see any significant gain. Since
4546   // setb has longer latency than original isel, we should avoid this. Another
4547   // point is that setb requires comparison always kept, it can break the
4548   // opportunity to get the comparison away if we have in future.
4549   if (!SetOrSelCC.hasOneUse() || (!InnerIsSel && !FalseRes.hasOneUse()))
4550     return false;
4551 
4552   SDValue InnerLHS = SetOrSelCC.getOperand(0);
4553   SDValue InnerRHS = SetOrSelCC.getOperand(1);
4554   ISD::CondCode InnerCC =
4555       cast<CondCodeSDNode>(SetOrSelCC.getOperand(InnerIsSel ? 4 : 2))->get();
4556   // If the inner comparison is a select_cc, make sure the true/false values are
4557   // 1/-1 and canonicalize it if needed.
4558   if (InnerIsSel) {
4559     ConstantSDNode *SelCCTrueConst =
4560         dyn_cast<ConstantSDNode>(SetOrSelCC.getOperand(2));
4561     ConstantSDNode *SelCCFalseConst =
4562         dyn_cast<ConstantSDNode>(SetOrSelCC.getOperand(3));
4563     if (!SelCCTrueConst || !SelCCFalseConst)
4564       return false;
4565     int64_t SelCCTVal = SelCCTrueConst->getSExtValue();
4566     int64_t SelCCFVal = SelCCFalseConst->getSExtValue();
4567     // The values must be -1/1 (requiring a swap) or 1/-1.
4568     if (SelCCTVal == -1 && SelCCFVal == 1) {
4569       std::swap(InnerLHS, InnerRHS);
4570     } else if (SelCCTVal != 1 || SelCCFVal != -1)
4571       return false;
4572   }
4573 
4574   // Canonicalize unsigned case
4575   if (InnerCC == ISD::SETULT || InnerCC == ISD::SETUGT) {
4576     IsUnCmp = true;
4577     InnerCC = (InnerCC == ISD::SETULT) ? ISD::SETLT : ISD::SETGT;
4578   }
4579 
4580   bool InnerSwapped = false;
4581   if (LHS == InnerRHS && RHS == InnerLHS)
4582     InnerSwapped = true;
4583   else if (LHS != InnerLHS || RHS != InnerRHS)
4584     return false;
4585 
4586   switch (CC) {
4587   // (select_cc lhs, rhs,  0, \
4588   //     (select_cc [lr]hs, [lr]hs, 1, -1, setlt/setgt), seteq)
4589   case ISD::SETEQ:
4590     if (!InnerIsSel)
4591       return false;
4592     if (InnerCC != ISD::SETLT && InnerCC != ISD::SETGT)
4593       return false;
4594     NeedSwapOps = (InnerCC == ISD::SETGT) ? InnerSwapped : !InnerSwapped;
4595     break;
4596 
4597   // (select_cc lhs, rhs, -1, (zext (setcc [lr]hs, [lr]hs, setne)), setu?lt)
4598   // (select_cc lhs, rhs, -1, (zext (setcc lhs, rhs, setgt)), setu?lt)
4599   // (select_cc lhs, rhs, -1, (zext (setcc rhs, lhs, setlt)), setu?lt)
4600   // (select_cc lhs, rhs, 1, (sext (setcc [lr]hs, [lr]hs, setne)), setu?lt)
4601   // (select_cc lhs, rhs, 1, (sext (setcc lhs, rhs, setgt)), setu?lt)
4602   // (select_cc lhs, rhs, 1, (sext (setcc rhs, lhs, setlt)), setu?lt)
4603   case ISD::SETULT:
4604     if (!IsUnCmp && InnerCC != ISD::SETNE)
4605       return false;
4606     IsUnCmp = true;
4607     LLVM_FALLTHROUGH;
4608   case ISD::SETLT:
4609     if (InnerCC == ISD::SETNE || (InnerCC == ISD::SETGT && !InnerSwapped) ||
4610         (InnerCC == ISD::SETLT && InnerSwapped))
4611       NeedSwapOps = (TrueResVal == 1);
4612     else
4613       return false;
4614     break;
4615 
4616   // (select_cc lhs, rhs, 1, (sext (setcc [lr]hs, [lr]hs, setne)), setu?gt)
4617   // (select_cc lhs, rhs, 1, (sext (setcc lhs, rhs, setlt)), setu?gt)
4618   // (select_cc lhs, rhs, 1, (sext (setcc rhs, lhs, setgt)), setu?gt)
4619   // (select_cc lhs, rhs, -1, (zext (setcc [lr]hs, [lr]hs, setne)), setu?gt)
4620   // (select_cc lhs, rhs, -1, (zext (setcc lhs, rhs, setlt)), setu?gt)
4621   // (select_cc lhs, rhs, -1, (zext (setcc rhs, lhs, setgt)), setu?gt)
4622   case ISD::SETUGT:
4623     if (!IsUnCmp && InnerCC != ISD::SETNE)
4624       return false;
4625     IsUnCmp = true;
4626     LLVM_FALLTHROUGH;
4627   case ISD::SETGT:
4628     if (InnerCC == ISD::SETNE || (InnerCC == ISD::SETLT && !InnerSwapped) ||
4629         (InnerCC == ISD::SETGT && InnerSwapped))
4630       NeedSwapOps = (TrueResVal == -1);
4631     else
4632       return false;
4633     break;
4634 
4635   default:
4636     return false;
4637   }
4638 
4639   LLVM_DEBUG(dbgs() << "Found a node that can be lowered to a SETB: ");
4640   LLVM_DEBUG(N->dump());
4641 
4642   return true;
4643 }
4644 
4645 // Return true if it's a software square-root/divide operand.
4646 static bool isSWTestOp(SDValue N) {
4647   if (N.getOpcode() == PPCISD::FTSQRT)
4648     return true;
4649   if (N.getNumOperands() < 1 || !isa<ConstantSDNode>(N.getOperand(0)) ||
4650       N.getOpcode() != ISD::INTRINSIC_WO_CHAIN)
4651     return false;
4652   switch (N.getConstantOperandVal(0)) {
4653   case Intrinsic::ppc_vsx_xvtdivdp:
4654   case Intrinsic::ppc_vsx_xvtdivsp:
4655   case Intrinsic::ppc_vsx_xvtsqrtdp:
4656   case Intrinsic::ppc_vsx_xvtsqrtsp:
4657     return true;
4658   }
4659   return false;
4660 }
4661 
4662 bool PPCDAGToDAGISel::tryFoldSWTestBRCC(SDNode *N) {
4663   assert(N->getOpcode() == ISD::BR_CC && "ISD::BR_CC is expected.");
4664   // We are looking for following patterns, where `truncate to i1` actually has
4665   // the same semantic with `and 1`.
4666   // (br_cc seteq, (truncateToi1 SWTestOp), 0) -> (BCC PRED_NU, SWTestOp)
4667   // (br_cc seteq, (and SWTestOp, 2), 0) -> (BCC PRED_NE, SWTestOp)
4668   // (br_cc seteq, (and SWTestOp, 4), 0) -> (BCC PRED_LE, SWTestOp)
4669   // (br_cc seteq, (and SWTestOp, 8), 0) -> (BCC PRED_GE, SWTestOp)
4670   // (br_cc setne, (truncateToi1 SWTestOp), 0) -> (BCC PRED_UN, SWTestOp)
4671   // (br_cc setne, (and SWTestOp, 2), 0) -> (BCC PRED_EQ, SWTestOp)
4672   // (br_cc setne, (and SWTestOp, 4), 0) -> (BCC PRED_GT, SWTestOp)
4673   // (br_cc setne, (and SWTestOp, 8), 0) -> (BCC PRED_LT, SWTestOp)
4674   ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(1))->get();
4675   if (CC != ISD::SETEQ && CC != ISD::SETNE)
4676     return false;
4677 
4678   SDValue CmpRHS = N->getOperand(3);
4679   if (!isa<ConstantSDNode>(CmpRHS) ||
4680       cast<ConstantSDNode>(CmpRHS)->getSExtValue() != 0)
4681     return false;
4682 
4683   SDValue CmpLHS = N->getOperand(2);
4684   if (CmpLHS.getNumOperands() < 1 || !isSWTestOp(CmpLHS.getOperand(0)))
4685     return false;
4686 
4687   unsigned PCC = 0;
4688   bool IsCCNE = CC == ISD::SETNE;
4689   if (CmpLHS.getOpcode() == ISD::AND &&
4690       isa<ConstantSDNode>(CmpLHS.getOperand(1)))
4691     switch (CmpLHS.getConstantOperandVal(1)) {
4692     case 1:
4693       PCC = IsCCNE ? PPC::PRED_UN : PPC::PRED_NU;
4694       break;
4695     case 2:
4696       PCC = IsCCNE ? PPC::PRED_EQ : PPC::PRED_NE;
4697       break;
4698     case 4:
4699       PCC = IsCCNE ? PPC::PRED_GT : PPC::PRED_LE;
4700       break;
4701     case 8:
4702       PCC = IsCCNE ? PPC::PRED_LT : PPC::PRED_GE;
4703       break;
4704     default:
4705       return false;
4706     }
4707   else if (CmpLHS.getOpcode() == ISD::TRUNCATE &&
4708            CmpLHS.getValueType() == MVT::i1)
4709     PCC = IsCCNE ? PPC::PRED_UN : PPC::PRED_NU;
4710 
4711   if (PCC) {
4712     SDLoc dl(N);
4713     SDValue Ops[] = {getI32Imm(PCC, dl), CmpLHS.getOperand(0), N->getOperand(4),
4714                      N->getOperand(0)};
4715     CurDAG->SelectNodeTo(N, PPC::BCC, MVT::Other, Ops);
4716     return true;
4717   }
4718   return false;
4719 }
4720 
4721 bool PPCDAGToDAGISel::tryAsSingleRLWINM(SDNode *N) {
4722   assert(N->getOpcode() == ISD::AND && "ISD::AND SDNode expected");
4723   unsigned Imm;
4724   if (!isInt32Immediate(N->getOperand(1), Imm))
4725     return false;
4726 
4727   SDLoc dl(N);
4728   SDValue Val = N->getOperand(0);
4729   unsigned SH, MB, ME;
4730   // If this is an and of a value rotated between 0 and 31 bits and then and'd
4731   // with a mask, emit rlwinm
4732   if (isRotateAndMask(Val.getNode(), Imm, false, SH, MB, ME)) {
4733     Val = Val.getOperand(0);
4734     SDValue Ops[] = {Val, getI32Imm(SH, dl), getI32Imm(MB, dl),
4735                      getI32Imm(ME, dl)};
4736     CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops);
4737     return true;
4738   }
4739 
4740   // If this is just a masked value where the input is not handled, and
4741   // is not a rotate-left (handled by a pattern in the .td file), emit rlwinm
4742   if (isRunOfOnes(Imm, MB, ME) && Val.getOpcode() != ISD::ROTL) {
4743     SDValue Ops[] = {Val, getI32Imm(0, dl), getI32Imm(MB, dl),
4744                      getI32Imm(ME, dl)};
4745     CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops);
4746     return true;
4747   }
4748 
4749   // AND X, 0 -> 0, not "rlwinm 32".
4750   if (Imm == 0) {
4751     ReplaceUses(SDValue(N, 0), N->getOperand(1));
4752     return true;
4753   }
4754 
4755   return false;
4756 }
4757 
4758 bool PPCDAGToDAGISel::tryAsSingleRLWINM8(SDNode *N) {
4759   assert(N->getOpcode() == ISD::AND && "ISD::AND SDNode expected");
4760   uint64_t Imm64;
4761   if (!isInt64Immediate(N->getOperand(1).getNode(), Imm64))
4762     return false;
4763 
4764   unsigned MB, ME;
4765   if (isRunOfOnes64(Imm64, MB, ME) && MB >= 32 && MB <= ME) {
4766     //                MB  ME
4767     // +----------------------+
4768     // |xxxxxxxxxxx00011111000|
4769     // +----------------------+
4770     //  0         32         64
4771     // We can only do it if the MB is larger than 32 and MB <= ME
4772     // as RLWINM will replace the contents of [0 - 32) with [32 - 64) even
4773     // we didn't rotate it.
4774     SDLoc dl(N);
4775     SDValue Ops[] = {N->getOperand(0), getI64Imm(0, dl), getI64Imm(MB - 32, dl),
4776                      getI64Imm(ME - 32, dl)};
4777     CurDAG->SelectNodeTo(N, PPC::RLWINM8, MVT::i64, Ops);
4778     return true;
4779   }
4780 
4781   return false;
4782 }
4783 
4784 bool PPCDAGToDAGISel::tryAsPairOfRLDICL(SDNode *N) {
4785   assert(N->getOpcode() == ISD::AND && "ISD::AND SDNode expected");
4786   uint64_t Imm64;
4787   if (!isInt64Immediate(N->getOperand(1).getNode(), Imm64))
4788     return false;
4789 
4790   // Do nothing if it is 16-bit imm as the pattern in the .td file handle
4791   // it well with "andi.".
4792   if (isUInt<16>(Imm64))
4793     return false;
4794 
4795   SDLoc Loc(N);
4796   SDValue Val = N->getOperand(0);
4797 
4798   // Optimized with two rldicl's as follows:
4799   // Add missing bits on left to the mask and check that the mask is a
4800   // wrapped run of ones, i.e.
4801   // Change pattern |0001111100000011111111|
4802   //             to |1111111100000011111111|.
4803   unsigned NumOfLeadingZeros = countLeadingZeros(Imm64);
4804   if (NumOfLeadingZeros != 0)
4805     Imm64 |= maskLeadingOnes<uint64_t>(NumOfLeadingZeros);
4806 
4807   unsigned MB, ME;
4808   if (!isRunOfOnes64(Imm64, MB, ME))
4809     return false;
4810 
4811   //         ME     MB                   MB-ME+63
4812   // +----------------------+     +----------------------+
4813   // |1111111100000011111111| ->  |0000001111111111111111|
4814   // +----------------------+     +----------------------+
4815   //  0                    63      0                    63
4816   // There are ME + 1 ones on the left and (MB - ME + 63) & 63 zeros in between.
4817   unsigned OnesOnLeft = ME + 1;
4818   unsigned ZerosInBetween = (MB - ME + 63) & 63;
4819   // Rotate left by OnesOnLeft (so leading ones are now trailing ones) and clear
4820   // on the left the bits that are already zeros in the mask.
4821   Val = SDValue(CurDAG->getMachineNode(PPC::RLDICL, Loc, MVT::i64, Val,
4822                                        getI64Imm(OnesOnLeft, Loc),
4823                                        getI64Imm(ZerosInBetween, Loc)),
4824                 0);
4825   //        MB-ME+63                      ME     MB
4826   // +----------------------+     +----------------------+
4827   // |0000001111111111111111| ->  |0001111100000011111111|
4828   // +----------------------+     +----------------------+
4829   //  0                    63      0                    63
4830   // Rotate back by 64 - OnesOnLeft to undo previous rotate. Then clear on the
4831   // left the number of ones we previously added.
4832   SDValue Ops[] = {Val, getI64Imm(64 - OnesOnLeft, Loc),
4833                    getI64Imm(NumOfLeadingZeros, Loc)};
4834   CurDAG->SelectNodeTo(N, PPC::RLDICL, MVT::i64, Ops);
4835   return true;
4836 }
4837 
4838 bool PPCDAGToDAGISel::tryAsSingleRLWIMI(SDNode *N) {
4839   assert(N->getOpcode() == ISD::AND && "ISD::AND SDNode expected");
4840   unsigned Imm;
4841   if (!isInt32Immediate(N->getOperand(1), Imm))
4842     return false;
4843 
4844   SDValue Val = N->getOperand(0);
4845   unsigned Imm2;
4846   // ISD::OR doesn't get all the bitfield insertion fun.
4847   // (and (or x, c1), c2) where isRunOfOnes(~(c1^c2)) might be a
4848   // bitfield insert.
4849   if (Val.getOpcode() != ISD::OR || !isInt32Immediate(Val.getOperand(1), Imm2))
4850     return false;
4851 
4852   // The idea here is to check whether this is equivalent to:
4853   //   (c1 & m) | (x & ~m)
4854   // where m is a run-of-ones mask. The logic here is that, for each bit in
4855   // c1 and c2:
4856   //  - if both are 1, then the output will be 1.
4857   //  - if both are 0, then the output will be 0.
4858   //  - if the bit in c1 is 0, and the bit in c2 is 1, then the output will
4859   //    come from x.
4860   //  - if the bit in c1 is 1, and the bit in c2 is 0, then the output will
4861   //    be 0.
4862   //  If that last condition is never the case, then we can form m from the
4863   //  bits that are the same between c1 and c2.
4864   unsigned MB, ME;
4865   if (isRunOfOnes(~(Imm ^ Imm2), MB, ME) && !(~Imm & Imm2)) {
4866     SDLoc dl(N);
4867     SDValue Ops[] = {Val.getOperand(0), Val.getOperand(1), getI32Imm(0, dl),
4868                      getI32Imm(MB, dl), getI32Imm(ME, dl)};
4869     ReplaceNode(N, CurDAG->getMachineNode(PPC::RLWIMI, dl, MVT::i32, Ops));
4870     return true;
4871   }
4872 
4873   return false;
4874 }
4875 
4876 bool PPCDAGToDAGISel::tryAsSingleRLDICL(SDNode *N) {
4877   assert(N->getOpcode() == ISD::AND && "ISD::AND SDNode expected");
4878   uint64_t Imm64;
4879   if (!isInt64Immediate(N->getOperand(1).getNode(), Imm64) || !isMask_64(Imm64))
4880     return false;
4881 
4882   // If this is a 64-bit zero-extension mask, emit rldicl.
4883   unsigned MB = 64 - countTrailingOnes(Imm64);
4884   unsigned SH = 0;
4885   unsigned Imm;
4886   SDValue Val = N->getOperand(0);
4887   SDLoc dl(N);
4888 
4889   if (Val.getOpcode() == ISD::ANY_EXTEND) {
4890     auto Op0 = Val.getOperand(0);
4891     if (Op0.getOpcode() == ISD::SRL &&
4892         isInt32Immediate(Op0.getOperand(1).getNode(), Imm) && Imm <= MB) {
4893 
4894       auto ResultType = Val.getNode()->getValueType(0);
4895       auto ImDef = CurDAG->getMachineNode(PPC::IMPLICIT_DEF, dl, ResultType);
4896       SDValue IDVal(ImDef, 0);
4897 
4898       Val = SDValue(CurDAG->getMachineNode(PPC::INSERT_SUBREG, dl, ResultType,
4899                                            IDVal, Op0.getOperand(0),
4900                                            getI32Imm(1, dl)),
4901                     0);
4902       SH = 64 - Imm;
4903     }
4904   }
4905 
4906   // If the operand is a logical right shift, we can fold it into this
4907   // instruction: rldicl(rldicl(x, 64-n, n), 0, mb) -> rldicl(x, 64-n, mb)
4908   // for n <= mb. The right shift is really a left rotate followed by a
4909   // mask, and this mask is a more-restrictive sub-mask of the mask implied
4910   // by the shift.
4911   if (Val.getOpcode() == ISD::SRL &&
4912       isInt32Immediate(Val.getOperand(1).getNode(), Imm) && Imm <= MB) {
4913     assert(Imm < 64 && "Illegal shift amount");
4914     Val = Val.getOperand(0);
4915     SH = 64 - Imm;
4916   }
4917 
4918   SDValue Ops[] = {Val, getI32Imm(SH, dl), getI32Imm(MB, dl)};
4919   CurDAG->SelectNodeTo(N, PPC::RLDICL, MVT::i64, Ops);
4920   return true;
4921 }
4922 
4923 bool PPCDAGToDAGISel::tryAsSingleRLDICR(SDNode *N) {
4924   assert(N->getOpcode() == ISD::AND && "ISD::AND SDNode expected");
4925   uint64_t Imm64;
4926   if (!isInt64Immediate(N->getOperand(1).getNode(), Imm64) ||
4927       !isMask_64(~Imm64))
4928     return false;
4929 
4930   // If this is a negated 64-bit zero-extension mask,
4931   // i.e. the immediate is a sequence of ones from most significant side
4932   // and all zero for reminder, we should use rldicr.
4933   unsigned MB = 63 - countTrailingOnes(~Imm64);
4934   unsigned SH = 0;
4935   SDLoc dl(N);
4936   SDValue Ops[] = {N->getOperand(0), getI32Imm(SH, dl), getI32Imm(MB, dl)};
4937   CurDAG->SelectNodeTo(N, PPC::RLDICR, MVT::i64, Ops);
4938   return true;
4939 }
4940 
4941 bool PPCDAGToDAGISel::tryAsSingleRLDIMI(SDNode *N) {
4942   assert(N->getOpcode() == ISD::OR && "ISD::OR SDNode expected");
4943   uint64_t Imm64;
4944   unsigned MB, ME;
4945   SDValue N0 = N->getOperand(0);
4946 
4947   // We won't get fewer instructions if the imm is 32-bit integer.
4948   // rldimi requires the imm to have consecutive ones with both sides zero.
4949   // Also, make sure the first Op has only one use, otherwise this may increase
4950   // register pressure since rldimi is destructive.
4951   if (!isInt64Immediate(N->getOperand(1).getNode(), Imm64) ||
4952       isUInt<32>(Imm64) || !isRunOfOnes64(Imm64, MB, ME) || !N0.hasOneUse())
4953     return false;
4954 
4955   unsigned SH = 63 - ME;
4956   SDLoc Dl(N);
4957   // Use select64Imm for making LI instr instead of directly putting Imm64
4958   SDValue Ops[] = {
4959       N->getOperand(0),
4960       SDValue(selectI64Imm(CurDAG, getI64Imm(-1, Dl).getNode()), 0),
4961       getI32Imm(SH, Dl), getI32Imm(MB, Dl)};
4962   CurDAG->SelectNodeTo(N, PPC::RLDIMI, MVT::i64, Ops);
4963   return true;
4964 }
4965 
4966 // Select - Convert the specified operand from a target-independent to a
4967 // target-specific node if it hasn't already been changed.
4968 void PPCDAGToDAGISel::Select(SDNode *N) {
4969   SDLoc dl(N);
4970   if (N->isMachineOpcode()) {
4971     N->setNodeId(-1);
4972     return;   // Already selected.
4973   }
4974 
4975   // In case any misguided DAG-level optimizations form an ADD with a
4976   // TargetConstant operand, crash here instead of miscompiling (by selecting
4977   // an r+r add instead of some kind of r+i add).
4978   if (N->getOpcode() == ISD::ADD &&
4979       N->getOperand(1).getOpcode() == ISD::TargetConstant)
4980     llvm_unreachable("Invalid ADD with TargetConstant operand");
4981 
4982   // Try matching complex bit permutations before doing anything else.
4983   if (tryBitPermutation(N))
4984     return;
4985 
4986   // Try to emit integer compares as GPR-only sequences (i.e. no use of CR).
4987   if (tryIntCompareInGPR(N))
4988     return;
4989 
4990   switch (N->getOpcode()) {
4991   default: break;
4992 
4993   case ISD::Constant:
4994     if (N->getValueType(0) == MVT::i64) {
4995       ReplaceNode(N, selectI64Imm(CurDAG, N));
4996       return;
4997     }
4998     break;
4999 
5000   case ISD::INTRINSIC_VOID: {
5001     auto IntrinsicID = N->getConstantOperandVal(1);
5002     if (IntrinsicID == Intrinsic::ppc_tdw || IntrinsicID == Intrinsic::ppc_tw) {
5003       unsigned Opcode = IntrinsicID == Intrinsic::ppc_tdw ? PPC::TDI : PPC::TWI;
5004       SDValue Ops[] = {N->getOperand(4), N->getOperand(2), N->getOperand(3)};
5005       int16_t SImmOperand2;
5006       int16_t SImmOperand3;
5007       int16_t SImmOperand4;
5008       bool isOperand2IntS16Immediate =
5009           isIntS16Immediate(N->getOperand(2), SImmOperand2);
5010       bool isOperand3IntS16Immediate =
5011           isIntS16Immediate(N->getOperand(3), SImmOperand3);
5012       // We will emit PPC::TD or PPC::TW if the 2nd and 3rd operands are reg +
5013       // reg or imm + imm. The imm + imm form will be optimized to either an
5014       // unconditional trap or a nop in a later pass.
5015       if (isOperand2IntS16Immediate == isOperand3IntS16Immediate)
5016         Opcode = IntrinsicID == Intrinsic::ppc_tdw ? PPC::TD : PPC::TW;
5017       else if (isOperand3IntS16Immediate)
5018         // The 2nd and 3rd operands are reg + imm.
5019         Ops[2] = getI32Imm(int(SImmOperand3) & 0xFFFF, dl);
5020       else {
5021         // The 2nd and 3rd operands are imm + reg.
5022         bool isOperand4IntS16Immediate =
5023             isIntS16Immediate(N->getOperand(4), SImmOperand4);
5024         (void)isOperand4IntS16Immediate;
5025         assert(isOperand4IntS16Immediate &&
5026                "The 4th operand is not an Immediate");
5027         // We need to flip the condition immediate TO.
5028         int16_t TO = int(SImmOperand4) & 0x1F;
5029         // We swap the first and second bit of TO if they are not same.
5030         if ((TO & 0x1) != ((TO & 0x2) >> 1))
5031           TO = (TO & 0x1) ? TO + 1 : TO - 1;
5032         // We swap the fourth and fifth bit of TO if they are not same.
5033         if ((TO & 0x8) != ((TO & 0x10) >> 1))
5034           TO = (TO & 0x8) ? TO + 8 : TO - 8;
5035         Ops[0] = getI32Imm(TO, dl);
5036         Ops[1] = N->getOperand(3);
5037         Ops[2] = getI32Imm(int(SImmOperand2) & 0xFFFF, dl);
5038       }
5039       CurDAG->SelectNodeTo(N, Opcode, MVT::Other, Ops);
5040       return;
5041     }
5042     break;
5043   }
5044 
5045   case ISD::INTRINSIC_WO_CHAIN: {
5046     // We emit the PPC::FSELS instruction here because of type conflicts with
5047     // the comparison operand. The FSELS instruction is defined to use an 8-byte
5048     // comparison like the FSELD version. The fsels intrinsic takes a 4-byte
5049     // value for the comparison. When selecting through a .td file, a type
5050     // error is raised. Must check this first so we never break on the
5051     // !Subtarget->isISA3_1() check.
5052     auto IntID = N->getConstantOperandVal(0);
5053     if (IntID == Intrinsic::ppc_fsels) {
5054       SDValue Ops[] = {N->getOperand(1), N->getOperand(2), N->getOperand(3)};
5055       CurDAG->SelectNodeTo(N, PPC::FSELS, MVT::f32, Ops);
5056       return;
5057     }
5058 
5059     if (IntID == Intrinsic::ppc_bcdadd_p || IntID == Intrinsic::ppc_bcdsub_p) {
5060       auto Pred = N->getConstantOperandVal(1);
5061       unsigned Opcode =
5062           IntID == Intrinsic::ppc_bcdadd_p ? PPC::BCDADD_rec : PPC::BCDSUB_rec;
5063       unsigned SubReg = 0;
5064       unsigned ShiftVal = 0;
5065       bool Reverse = false;
5066       switch (Pred) {
5067       case 0:
5068         SubReg = PPC::sub_eq;
5069         ShiftVal = 1;
5070         break;
5071       case 1:
5072         SubReg = PPC::sub_eq;
5073         ShiftVal = 1;
5074         Reverse = true;
5075         break;
5076       case 2:
5077         SubReg = PPC::sub_lt;
5078         ShiftVal = 3;
5079         break;
5080       case 3:
5081         SubReg = PPC::sub_lt;
5082         ShiftVal = 3;
5083         Reverse = true;
5084         break;
5085       case 4:
5086         SubReg = PPC::sub_gt;
5087         ShiftVal = 2;
5088         break;
5089       case 5:
5090         SubReg = PPC::sub_gt;
5091         ShiftVal = 2;
5092         Reverse = true;
5093         break;
5094       case 6:
5095         SubReg = PPC::sub_un;
5096         break;
5097       case 7:
5098         SubReg = PPC::sub_un;
5099         Reverse = true;
5100         break;
5101       }
5102 
5103       EVT VTs[] = {MVT::v16i8, MVT::Glue};
5104       SDValue Ops[] = {N->getOperand(2), N->getOperand(3),
5105                        CurDAG->getTargetConstant(0, dl, MVT::i32)};
5106       SDValue BCDOp = SDValue(CurDAG->getMachineNode(Opcode, dl, VTs, Ops), 0);
5107       SDValue CR6Reg = CurDAG->getRegister(PPC::CR6, MVT::i32);
5108       // On Power10, we can use SETBC[R]. On prior architectures, we have to use
5109       // MFOCRF and shift/negate the value.
5110       if (Subtarget->isISA3_1()) {
5111         SDValue SubRegIdx = CurDAG->getTargetConstant(SubReg, dl, MVT::i32);
5112         SDValue CRBit = SDValue(
5113             CurDAG->getMachineNode(TargetOpcode::EXTRACT_SUBREG, dl, MVT::i1,
5114                                    CR6Reg, SubRegIdx, BCDOp.getValue(1)),
5115             0);
5116         CurDAG->SelectNodeTo(N, Reverse ? PPC::SETBCR : PPC::SETBC, MVT::i32,
5117                              CRBit);
5118       } else {
5119         SDValue Move =
5120             SDValue(CurDAG->getMachineNode(PPC::MFOCRF, dl, MVT::i32, CR6Reg,
5121                                            BCDOp.getValue(1)),
5122                     0);
5123         SDValue Ops[] = {Move, getI32Imm((32 - (4 + ShiftVal)) & 31, dl),
5124                          getI32Imm(31, dl), getI32Imm(31, dl)};
5125         if (!Reverse)
5126           CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops);
5127         else {
5128           SDValue Shift = SDValue(
5129               CurDAG->getMachineNode(PPC::RLWINM, dl, MVT::i32, Ops), 0);
5130           CurDAG->SelectNodeTo(N, PPC::XORI, MVT::i32, Shift, getI32Imm(1, dl));
5131         }
5132       }
5133       return;
5134     }
5135 
5136     if (!Subtarget->isISA3_1())
5137       break;
5138     unsigned Opcode = 0;
5139     switch (IntID) {
5140     default:
5141       break;
5142     case Intrinsic::ppc_altivec_vstribr_p:
5143       Opcode = PPC::VSTRIBR_rec;
5144       break;
5145     case Intrinsic::ppc_altivec_vstribl_p:
5146       Opcode = PPC::VSTRIBL_rec;
5147       break;
5148     case Intrinsic::ppc_altivec_vstrihr_p:
5149       Opcode = PPC::VSTRIHR_rec;
5150       break;
5151     case Intrinsic::ppc_altivec_vstrihl_p:
5152       Opcode = PPC::VSTRIHL_rec;
5153       break;
5154     }
5155     if (!Opcode)
5156       break;
5157 
5158     // Generate the appropriate vector string isolate intrinsic to match.
5159     EVT VTs[] = {MVT::v16i8, MVT::Glue};
5160     SDValue VecStrOp =
5161         SDValue(CurDAG->getMachineNode(Opcode, dl, VTs, N->getOperand(2)), 0);
5162     // Vector string isolate instructions update the EQ bit of CR6.
5163     // Generate a SETBC instruction to extract the bit and place it in a GPR.
5164     SDValue SubRegIdx = CurDAG->getTargetConstant(PPC::sub_eq, dl, MVT::i32);
5165     SDValue CR6Reg = CurDAG->getRegister(PPC::CR6, MVT::i32);
5166     SDValue CRBit = SDValue(
5167         CurDAG->getMachineNode(TargetOpcode::EXTRACT_SUBREG, dl, MVT::i1,
5168                                CR6Reg, SubRegIdx, VecStrOp.getValue(1)),
5169         0);
5170     CurDAG->SelectNodeTo(N, PPC::SETBC, MVT::i32, CRBit);
5171     return;
5172   }
5173 
5174   case ISD::SETCC:
5175   case ISD::STRICT_FSETCC:
5176   case ISD::STRICT_FSETCCS:
5177     if (trySETCC(N))
5178       return;
5179     break;
5180   // These nodes will be transformed into GETtlsADDR32 node, which
5181   // later becomes BL_TLS __tls_get_addr(sym at tlsgd)@PLT
5182   case PPCISD::ADDI_TLSLD_L_ADDR:
5183   case PPCISD::ADDI_TLSGD_L_ADDR: {
5184     const Module *Mod = MF->getFunction().getParent();
5185     if (PPCLowering->getPointerTy(CurDAG->getDataLayout()) != MVT::i32 ||
5186         !Subtarget->isSecurePlt() || !Subtarget->isTargetELF() ||
5187         Mod->getPICLevel() == PICLevel::SmallPIC)
5188       break;
5189     // Attach global base pointer on GETtlsADDR32 node in order to
5190     // generate secure plt code for TLS symbols.
5191     getGlobalBaseReg();
5192   } break;
5193   case PPCISD::CALL: {
5194     if (PPCLowering->getPointerTy(CurDAG->getDataLayout()) != MVT::i32 ||
5195         !TM.isPositionIndependent() || !Subtarget->isSecurePlt() ||
5196         !Subtarget->isTargetELF())
5197       break;
5198 
5199     SDValue Op = N->getOperand(1);
5200 
5201     if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Op)) {
5202       if (GA->getTargetFlags() == PPCII::MO_PLT)
5203         getGlobalBaseReg();
5204     }
5205     else if (ExternalSymbolSDNode *ES = dyn_cast<ExternalSymbolSDNode>(Op)) {
5206       if (ES->getTargetFlags() == PPCII::MO_PLT)
5207         getGlobalBaseReg();
5208     }
5209   }
5210     break;
5211 
5212   case PPCISD::GlobalBaseReg:
5213     ReplaceNode(N, getGlobalBaseReg());
5214     return;
5215 
5216   case ISD::FrameIndex:
5217     selectFrameIndex(N, N);
5218     return;
5219 
5220   case PPCISD::MFOCRF: {
5221     SDValue InFlag = N->getOperand(1);
5222     ReplaceNode(N, CurDAG->getMachineNode(PPC::MFOCRF, dl, MVT::i32,
5223                                           N->getOperand(0), InFlag));
5224     return;
5225   }
5226 
5227   case PPCISD::READ_TIME_BASE:
5228     ReplaceNode(N, CurDAG->getMachineNode(PPC::ReadTB, dl, MVT::i32, MVT::i32,
5229                                           MVT::Other, N->getOperand(0)));
5230     return;
5231 
5232   case PPCISD::SRA_ADDZE: {
5233     SDValue N0 = N->getOperand(0);
5234     SDValue ShiftAmt =
5235       CurDAG->getTargetConstant(*cast<ConstantSDNode>(N->getOperand(1))->
5236                                   getConstantIntValue(), dl,
5237                                   N->getValueType(0));
5238     if (N->getValueType(0) == MVT::i64) {
5239       SDNode *Op =
5240         CurDAG->getMachineNode(PPC::SRADI, dl, MVT::i64, MVT::Glue,
5241                                N0, ShiftAmt);
5242       CurDAG->SelectNodeTo(N, PPC::ADDZE8, MVT::i64, SDValue(Op, 0),
5243                            SDValue(Op, 1));
5244       return;
5245     } else {
5246       assert(N->getValueType(0) == MVT::i32 &&
5247              "Expecting i64 or i32 in PPCISD::SRA_ADDZE");
5248       SDNode *Op =
5249         CurDAG->getMachineNode(PPC::SRAWI, dl, MVT::i32, MVT::Glue,
5250                                N0, ShiftAmt);
5251       CurDAG->SelectNodeTo(N, PPC::ADDZE, MVT::i32, SDValue(Op, 0),
5252                            SDValue(Op, 1));
5253       return;
5254     }
5255   }
5256 
5257   case ISD::STORE: {
5258     // Change TLS initial-exec D-form stores to X-form stores.
5259     StoreSDNode *ST = cast<StoreSDNode>(N);
5260     if (EnableTLSOpt && Subtarget->isELFv2ABI() &&
5261         ST->getAddressingMode() != ISD::PRE_INC)
5262       if (tryTLSXFormStore(ST))
5263         return;
5264     break;
5265   }
5266   case ISD::LOAD: {
5267     // Handle preincrement loads.
5268     LoadSDNode *LD = cast<LoadSDNode>(N);
5269     EVT LoadedVT = LD->getMemoryVT();
5270 
5271     // Normal loads are handled by code generated from the .td file.
5272     if (LD->getAddressingMode() != ISD::PRE_INC) {
5273       // Change TLS initial-exec D-form loads to X-form loads.
5274       if (EnableTLSOpt && Subtarget->isELFv2ABI())
5275         if (tryTLSXFormLoad(LD))
5276           return;
5277       break;
5278     }
5279 
5280     SDValue Offset = LD->getOffset();
5281     if (Offset.getOpcode() == ISD::TargetConstant ||
5282         Offset.getOpcode() == ISD::TargetGlobalAddress) {
5283 
5284       unsigned Opcode;
5285       bool isSExt = LD->getExtensionType() == ISD::SEXTLOAD;
5286       if (LD->getValueType(0) != MVT::i64) {
5287         // Handle PPC32 integer and normal FP loads.
5288         assert((!isSExt || LoadedVT == MVT::i16) && "Invalid sext update load");
5289         switch (LoadedVT.getSimpleVT().SimpleTy) {
5290           default: llvm_unreachable("Invalid PPC load type!");
5291           case MVT::f64: Opcode = PPC::LFDU; break;
5292           case MVT::f32: Opcode = PPC::LFSU; break;
5293           case MVT::i32: Opcode = PPC::LWZU; break;
5294           case MVT::i16: Opcode = isSExt ? PPC::LHAU : PPC::LHZU; break;
5295           case MVT::i1:
5296           case MVT::i8:  Opcode = PPC::LBZU; break;
5297         }
5298       } else {
5299         assert(LD->getValueType(0) == MVT::i64 && "Unknown load result type!");
5300         assert((!isSExt || LoadedVT == MVT::i16) && "Invalid sext update load");
5301         switch (LoadedVT.getSimpleVT().SimpleTy) {
5302           default: llvm_unreachable("Invalid PPC load type!");
5303           case MVT::i64: Opcode = PPC::LDU; break;
5304           case MVT::i32: Opcode = PPC::LWZU8; break;
5305           case MVT::i16: Opcode = isSExt ? PPC::LHAU8 : PPC::LHZU8; break;
5306           case MVT::i1:
5307           case MVT::i8:  Opcode = PPC::LBZU8; break;
5308         }
5309       }
5310 
5311       SDValue Chain = LD->getChain();
5312       SDValue Base = LD->getBasePtr();
5313       SDValue Ops[] = { Offset, Base, Chain };
5314       SDNode *MN = CurDAG->getMachineNode(
5315           Opcode, dl, LD->getValueType(0),
5316           PPCLowering->getPointerTy(CurDAG->getDataLayout()), MVT::Other, Ops);
5317       transferMemOperands(N, MN);
5318       ReplaceNode(N, MN);
5319       return;
5320     } else {
5321       unsigned Opcode;
5322       bool isSExt = LD->getExtensionType() == ISD::SEXTLOAD;
5323       if (LD->getValueType(0) != MVT::i64) {
5324         // Handle PPC32 integer and normal FP loads.
5325         assert((!isSExt || LoadedVT == MVT::i16) && "Invalid sext update load");
5326         switch (LoadedVT.getSimpleVT().SimpleTy) {
5327           default: llvm_unreachable("Invalid PPC load type!");
5328           case MVT::f64: Opcode = PPC::LFDUX; break;
5329           case MVT::f32: Opcode = PPC::LFSUX; break;
5330           case MVT::i32: Opcode = PPC::LWZUX; break;
5331           case MVT::i16: Opcode = isSExt ? PPC::LHAUX : PPC::LHZUX; break;
5332           case MVT::i1:
5333           case MVT::i8:  Opcode = PPC::LBZUX; break;
5334         }
5335       } else {
5336         assert(LD->getValueType(0) == MVT::i64 && "Unknown load result type!");
5337         assert((!isSExt || LoadedVT == MVT::i16 || LoadedVT == MVT::i32) &&
5338                "Invalid sext update load");
5339         switch (LoadedVT.getSimpleVT().SimpleTy) {
5340           default: llvm_unreachable("Invalid PPC load type!");
5341           case MVT::i64: Opcode = PPC::LDUX; break;
5342           case MVT::i32: Opcode = isSExt ? PPC::LWAUX  : PPC::LWZUX8; break;
5343           case MVT::i16: Opcode = isSExt ? PPC::LHAUX8 : PPC::LHZUX8; break;
5344           case MVT::i1:
5345           case MVT::i8:  Opcode = PPC::LBZUX8; break;
5346         }
5347       }
5348 
5349       SDValue Chain = LD->getChain();
5350       SDValue Base = LD->getBasePtr();
5351       SDValue Ops[] = { Base, Offset, Chain };
5352       SDNode *MN = CurDAG->getMachineNode(
5353           Opcode, dl, LD->getValueType(0),
5354           PPCLowering->getPointerTy(CurDAG->getDataLayout()), MVT::Other, Ops);
5355       transferMemOperands(N, MN);
5356       ReplaceNode(N, MN);
5357       return;
5358     }
5359   }
5360 
5361   case ISD::AND:
5362     // If this is an 'and' with a mask, try to emit rlwinm/rldicl/rldicr
5363     if (tryAsSingleRLWINM(N) || tryAsSingleRLWIMI(N) || tryAsSingleRLDICL(N) ||
5364         tryAsSingleRLDICR(N) || tryAsSingleRLWINM8(N) || tryAsPairOfRLDICL(N))
5365       return;
5366 
5367     // Other cases are autogenerated.
5368     break;
5369   case ISD::OR: {
5370     if (N->getValueType(0) == MVT::i32)
5371       if (tryBitfieldInsert(N))
5372         return;
5373 
5374     int16_t Imm;
5375     if (N->getOperand(0)->getOpcode() == ISD::FrameIndex &&
5376         isIntS16Immediate(N->getOperand(1), Imm)) {
5377       KnownBits LHSKnown = CurDAG->computeKnownBits(N->getOperand(0));
5378 
5379       // If this is equivalent to an add, then we can fold it with the
5380       // FrameIndex calculation.
5381       if ((LHSKnown.Zero.getZExtValue()|~(uint64_t)Imm) == ~0ULL) {
5382         selectFrameIndex(N, N->getOperand(0).getNode(), (int64_t)Imm);
5383         return;
5384       }
5385     }
5386 
5387     // If this is 'or' against an imm with consecutive ones and both sides zero,
5388     // try to emit rldimi
5389     if (tryAsSingleRLDIMI(N))
5390       return;
5391 
5392     // OR with a 32-bit immediate can be handled by ori + oris
5393     // without creating an immediate in a GPR.
5394     uint64_t Imm64 = 0;
5395     bool IsPPC64 = Subtarget->isPPC64();
5396     if (IsPPC64 && isInt64Immediate(N->getOperand(1), Imm64) &&
5397         (Imm64 & ~0xFFFFFFFFuLL) == 0) {
5398       // If ImmHi (ImmHi) is zero, only one ori (oris) is generated later.
5399       uint64_t ImmHi = Imm64 >> 16;
5400       uint64_t ImmLo = Imm64 & 0xFFFF;
5401       if (ImmHi != 0 && ImmLo != 0) {
5402         SDNode *Lo = CurDAG->getMachineNode(PPC::ORI8, dl, MVT::i64,
5403                                             N->getOperand(0),
5404                                             getI16Imm(ImmLo, dl));
5405         SDValue Ops1[] = { SDValue(Lo, 0), getI16Imm(ImmHi, dl)};
5406         CurDAG->SelectNodeTo(N, PPC::ORIS8, MVT::i64, Ops1);
5407         return;
5408       }
5409     }
5410 
5411     // Other cases are autogenerated.
5412     break;
5413   }
5414   case ISD::XOR: {
5415     // XOR with a 32-bit immediate can be handled by xori + xoris
5416     // without creating an immediate in a GPR.
5417     uint64_t Imm64 = 0;
5418     bool IsPPC64 = Subtarget->isPPC64();
5419     if (IsPPC64 && isInt64Immediate(N->getOperand(1), Imm64) &&
5420         (Imm64 & ~0xFFFFFFFFuLL) == 0) {
5421       // If ImmHi (ImmHi) is zero, only one xori (xoris) is generated later.
5422       uint64_t ImmHi = Imm64 >> 16;
5423       uint64_t ImmLo = Imm64 & 0xFFFF;
5424       if (ImmHi != 0 && ImmLo != 0) {
5425         SDNode *Lo = CurDAG->getMachineNode(PPC::XORI8, dl, MVT::i64,
5426                                             N->getOperand(0),
5427                                             getI16Imm(ImmLo, dl));
5428         SDValue Ops1[] = { SDValue(Lo, 0), getI16Imm(ImmHi, dl)};
5429         CurDAG->SelectNodeTo(N, PPC::XORIS8, MVT::i64, Ops1);
5430         return;
5431       }
5432     }
5433 
5434     break;
5435   }
5436   case ISD::ADD: {
5437     int16_t Imm;
5438     if (N->getOperand(0)->getOpcode() == ISD::FrameIndex &&
5439         isIntS16Immediate(N->getOperand(1), Imm)) {
5440       selectFrameIndex(N, N->getOperand(0).getNode(), (int64_t)Imm);
5441       return;
5442     }
5443 
5444     break;
5445   }
5446   case ISD::SHL: {
5447     unsigned Imm, SH, MB, ME;
5448     if (isOpcWithIntImmediate(N->getOperand(0).getNode(), ISD::AND, Imm) &&
5449         isRotateAndMask(N, Imm, true, SH, MB, ME)) {
5450       SDValue Ops[] = { N->getOperand(0).getOperand(0),
5451                           getI32Imm(SH, dl), getI32Imm(MB, dl),
5452                           getI32Imm(ME, dl) };
5453       CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops);
5454       return;
5455     }
5456 
5457     // Other cases are autogenerated.
5458     break;
5459   }
5460   case ISD::SRL: {
5461     unsigned Imm, SH, MB, ME;
5462     if (isOpcWithIntImmediate(N->getOperand(0).getNode(), ISD::AND, Imm) &&
5463         isRotateAndMask(N, Imm, true, SH, MB, ME)) {
5464       SDValue Ops[] = { N->getOperand(0).getOperand(0),
5465                           getI32Imm(SH, dl), getI32Imm(MB, dl),
5466                           getI32Imm(ME, dl) };
5467       CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops);
5468       return;
5469     }
5470 
5471     // Other cases are autogenerated.
5472     break;
5473   }
5474   case ISD::MUL: {
5475     SDValue Op1 = N->getOperand(1);
5476     if (Op1.getOpcode() != ISD::Constant ||
5477         (Op1.getValueType() != MVT::i64 && Op1.getValueType() != MVT::i32))
5478       break;
5479 
5480     // If the multiplier fits int16, we can handle it with mulli.
5481     int64_t Imm = cast<ConstantSDNode>(Op1)->getZExtValue();
5482     unsigned Shift = countTrailingZeros<uint64_t>(Imm);
5483     if (isInt<16>(Imm) || !Shift)
5484       break;
5485 
5486     // If the shifted value fits int16, we can do this transformation:
5487     // (mul X, c1 << c2) -> (rldicr (mulli X, c1) c2). We do this in ISEL due to
5488     // DAGCombiner prefers (shl (mul X, c1), c2) -> (mul X, c1 << c2).
5489     uint64_t ImmSh = Imm >> Shift;
5490     if (!isInt<16>(ImmSh))
5491       break;
5492 
5493     uint64_t SextImm = SignExtend64(ImmSh & 0xFFFF, 16);
5494     if (Op1.getValueType() == MVT::i64) {
5495       SDValue SDImm = CurDAG->getTargetConstant(SextImm, dl, MVT::i64);
5496       SDNode *MulNode = CurDAG->getMachineNode(PPC::MULLI8, dl, MVT::i64,
5497                                                N->getOperand(0), SDImm);
5498 
5499       SDValue Ops[] = {SDValue(MulNode, 0), getI32Imm(Shift, dl),
5500                        getI32Imm(63 - Shift, dl)};
5501       CurDAG->SelectNodeTo(N, PPC::RLDICR, MVT::i64, Ops);
5502       return;
5503     } else {
5504       SDValue SDImm = CurDAG->getTargetConstant(SextImm, dl, MVT::i32);
5505       SDNode *MulNode = CurDAG->getMachineNode(PPC::MULLI, dl, MVT::i32,
5506                                               N->getOperand(0), SDImm);
5507 
5508       SDValue Ops[] = {SDValue(MulNode, 0), getI32Imm(Shift, dl),
5509                        getI32Imm(0, dl), getI32Imm(31 - Shift, dl)};
5510       CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops);
5511       return;
5512     }
5513     break;
5514   }
5515   // FIXME: Remove this once the ANDI glue bug is fixed:
5516   case PPCISD::ANDI_rec_1_EQ_BIT:
5517   case PPCISD::ANDI_rec_1_GT_BIT: {
5518     if (!ANDIGlueBug)
5519       break;
5520 
5521     EVT InVT = N->getOperand(0).getValueType();
5522     assert((InVT == MVT::i64 || InVT == MVT::i32) &&
5523            "Invalid input type for ANDI_rec_1_EQ_BIT");
5524 
5525     unsigned Opcode = (InVT == MVT::i64) ? PPC::ANDI8_rec : PPC::ANDI_rec;
5526     SDValue AndI(CurDAG->getMachineNode(Opcode, dl, InVT, MVT::Glue,
5527                                         N->getOperand(0),
5528                                         CurDAG->getTargetConstant(1, dl, InVT)),
5529                  0);
5530     SDValue CR0Reg = CurDAG->getRegister(PPC::CR0, MVT::i32);
5531     SDValue SRIdxVal = CurDAG->getTargetConstant(
5532         N->getOpcode() == PPCISD::ANDI_rec_1_EQ_BIT ? PPC::sub_eq : PPC::sub_gt,
5533         dl, MVT::i32);
5534 
5535     CurDAG->SelectNodeTo(N, TargetOpcode::EXTRACT_SUBREG, MVT::i1, CR0Reg,
5536                          SRIdxVal, SDValue(AndI.getNode(), 1) /* glue */);
5537     return;
5538   }
5539   case ISD::SELECT_CC: {
5540     ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(4))->get();
5541     EVT PtrVT =
5542         CurDAG->getTargetLoweringInfo().getPointerTy(CurDAG->getDataLayout());
5543     bool isPPC64 = (PtrVT == MVT::i64);
5544 
5545     // If this is a select of i1 operands, we'll pattern match it.
5546     if (Subtarget->useCRBits() && N->getOperand(0).getValueType() == MVT::i1)
5547       break;
5548 
5549     if (Subtarget->isISA3_0() && Subtarget->isPPC64()) {
5550       bool NeedSwapOps = false;
5551       bool IsUnCmp = false;
5552       if (mayUseP9Setb(N, CC, CurDAG, NeedSwapOps, IsUnCmp)) {
5553         SDValue LHS = N->getOperand(0);
5554         SDValue RHS = N->getOperand(1);
5555         if (NeedSwapOps)
5556           std::swap(LHS, RHS);
5557 
5558         // Make use of SelectCC to generate the comparison to set CR bits, for
5559         // equality comparisons having one literal operand, SelectCC probably
5560         // doesn't need to materialize the whole literal and just use xoris to
5561         // check it first, it leads the following comparison result can't
5562         // exactly represent GT/LT relationship. So to avoid this we specify
5563         // SETGT/SETUGT here instead of SETEQ.
5564         SDValue GenCC =
5565             SelectCC(LHS, RHS, IsUnCmp ? ISD::SETUGT : ISD::SETGT, dl);
5566         CurDAG->SelectNodeTo(
5567             N, N->getSimpleValueType(0) == MVT::i64 ? PPC::SETB8 : PPC::SETB,
5568             N->getValueType(0), GenCC);
5569         NumP9Setb++;
5570         return;
5571       }
5572     }
5573 
5574     // Handle the setcc cases here.  select_cc lhs, 0, 1, 0, cc
5575     if (!isPPC64)
5576       if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N->getOperand(1)))
5577         if (ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N->getOperand(2)))
5578           if (ConstantSDNode *N3C = dyn_cast<ConstantSDNode>(N->getOperand(3)))
5579             if (N1C->isZero() && N3C->isZero() && N2C->getZExtValue() == 1ULL &&
5580                 CC == ISD::SETNE &&
5581                 // FIXME: Implement this optzn for PPC64.
5582                 N->getValueType(0) == MVT::i32) {
5583               SDNode *Tmp =
5584                 CurDAG->getMachineNode(PPC::ADDIC, dl, MVT::i32, MVT::Glue,
5585                                        N->getOperand(0), getI32Imm(~0U, dl));
5586               CurDAG->SelectNodeTo(N, PPC::SUBFE, MVT::i32, SDValue(Tmp, 0),
5587                                    N->getOperand(0), SDValue(Tmp, 1));
5588               return;
5589             }
5590 
5591     SDValue CCReg = SelectCC(N->getOperand(0), N->getOperand(1), CC, dl);
5592 
5593     if (N->getValueType(0) == MVT::i1) {
5594       // An i1 select is: (c & t) | (!c & f).
5595       bool Inv;
5596       unsigned Idx = getCRIdxForSetCC(CC, Inv);
5597 
5598       unsigned SRI;
5599       switch (Idx) {
5600       default: llvm_unreachable("Invalid CC index");
5601       case 0: SRI = PPC::sub_lt; break;
5602       case 1: SRI = PPC::sub_gt; break;
5603       case 2: SRI = PPC::sub_eq; break;
5604       case 3: SRI = PPC::sub_un; break;
5605       }
5606 
5607       SDValue CCBit = CurDAG->getTargetExtractSubreg(SRI, dl, MVT::i1, CCReg);
5608 
5609       SDValue NotCCBit(CurDAG->getMachineNode(PPC::CRNOR, dl, MVT::i1,
5610                                               CCBit, CCBit), 0);
5611       SDValue C =    Inv ? NotCCBit : CCBit,
5612               NotC = Inv ? CCBit    : NotCCBit;
5613 
5614       SDValue CAndT(CurDAG->getMachineNode(PPC::CRAND, dl, MVT::i1,
5615                                            C, N->getOperand(2)), 0);
5616       SDValue NotCAndF(CurDAG->getMachineNode(PPC::CRAND, dl, MVT::i1,
5617                                               NotC, N->getOperand(3)), 0);
5618 
5619       CurDAG->SelectNodeTo(N, PPC::CROR, MVT::i1, CAndT, NotCAndF);
5620       return;
5621     }
5622 
5623     unsigned BROpc =
5624         getPredicateForSetCC(CC, N->getOperand(0).getValueType(), Subtarget);
5625 
5626     unsigned SelectCCOp;
5627     if (N->getValueType(0) == MVT::i32)
5628       SelectCCOp = PPC::SELECT_CC_I4;
5629     else if (N->getValueType(0) == MVT::i64)
5630       SelectCCOp = PPC::SELECT_CC_I8;
5631     else if (N->getValueType(0) == MVT::f32) {
5632       if (Subtarget->hasP8Vector())
5633         SelectCCOp = PPC::SELECT_CC_VSSRC;
5634       else if (Subtarget->hasSPE())
5635         SelectCCOp = PPC::SELECT_CC_SPE4;
5636       else
5637         SelectCCOp = PPC::SELECT_CC_F4;
5638     } else if (N->getValueType(0) == MVT::f64) {
5639       if (Subtarget->hasVSX())
5640         SelectCCOp = PPC::SELECT_CC_VSFRC;
5641       else if (Subtarget->hasSPE())
5642         SelectCCOp = PPC::SELECT_CC_SPE;
5643       else
5644         SelectCCOp = PPC::SELECT_CC_F8;
5645     } else if (N->getValueType(0) == MVT::f128)
5646       SelectCCOp = PPC::SELECT_CC_F16;
5647     else if (Subtarget->hasSPE())
5648       SelectCCOp = PPC::SELECT_CC_SPE;
5649     else if (N->getValueType(0) == MVT::v2f64 ||
5650              N->getValueType(0) == MVT::v2i64)
5651       SelectCCOp = PPC::SELECT_CC_VSRC;
5652     else
5653       SelectCCOp = PPC::SELECT_CC_VRRC;
5654 
5655     SDValue Ops[] = { CCReg, N->getOperand(2), N->getOperand(3),
5656                         getI32Imm(BROpc, dl) };
5657     CurDAG->SelectNodeTo(N, SelectCCOp, N->getValueType(0), Ops);
5658     return;
5659   }
5660   case ISD::VECTOR_SHUFFLE:
5661     if (Subtarget->hasVSX() && (N->getValueType(0) == MVT::v2f64 ||
5662                                 N->getValueType(0) == MVT::v2i64)) {
5663       ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N);
5664 
5665       SDValue Op1 = N->getOperand(SVN->getMaskElt(0) < 2 ? 0 : 1),
5666               Op2 = N->getOperand(SVN->getMaskElt(1) < 2 ? 0 : 1);
5667       unsigned DM[2];
5668 
5669       for (int i = 0; i < 2; ++i)
5670         if (SVN->getMaskElt(i) <= 0 || SVN->getMaskElt(i) == 2)
5671           DM[i] = 0;
5672         else
5673           DM[i] = 1;
5674 
5675       if (Op1 == Op2 && DM[0] == 0 && DM[1] == 0 &&
5676           Op1.getOpcode() == ISD::SCALAR_TO_VECTOR &&
5677           isa<LoadSDNode>(Op1.getOperand(0))) {
5678         LoadSDNode *LD = cast<LoadSDNode>(Op1.getOperand(0));
5679         SDValue Base, Offset;
5680 
5681         if (LD->isUnindexed() && LD->hasOneUse() && Op1.hasOneUse() &&
5682             (LD->getMemoryVT() == MVT::f64 ||
5683              LD->getMemoryVT() == MVT::i64) &&
5684             SelectAddrIdxOnly(LD->getBasePtr(), Base, Offset)) {
5685           SDValue Chain = LD->getChain();
5686           SDValue Ops[] = { Base, Offset, Chain };
5687           MachineMemOperand *MemOp = LD->getMemOperand();
5688           SDNode *NewN = CurDAG->SelectNodeTo(N, PPC::LXVDSX,
5689                                               N->getValueType(0), Ops);
5690           CurDAG->setNodeMemRefs(cast<MachineSDNode>(NewN), {MemOp});
5691           return;
5692         }
5693       }
5694 
5695       // For little endian, we must swap the input operands and adjust
5696       // the mask elements (reverse and invert them).
5697       if (Subtarget->isLittleEndian()) {
5698         std::swap(Op1, Op2);
5699         unsigned tmp = DM[0];
5700         DM[0] = 1 - DM[1];
5701         DM[1] = 1 - tmp;
5702       }
5703 
5704       SDValue DMV = CurDAG->getTargetConstant(DM[1] | (DM[0] << 1), dl,
5705                                               MVT::i32);
5706       SDValue Ops[] = { Op1, Op2, DMV };
5707       CurDAG->SelectNodeTo(N, PPC::XXPERMDI, N->getValueType(0), Ops);
5708       return;
5709     }
5710 
5711     break;
5712   case PPCISD::BDNZ:
5713   case PPCISD::BDZ: {
5714     bool IsPPC64 = Subtarget->isPPC64();
5715     SDValue Ops[] = { N->getOperand(1), N->getOperand(0) };
5716     CurDAG->SelectNodeTo(N, N->getOpcode() == PPCISD::BDNZ
5717                                 ? (IsPPC64 ? PPC::BDNZ8 : PPC::BDNZ)
5718                                 : (IsPPC64 ? PPC::BDZ8 : PPC::BDZ),
5719                          MVT::Other, Ops);
5720     return;
5721   }
5722   case PPCISD::COND_BRANCH: {
5723     // Op #0 is the Chain.
5724     // Op #1 is the PPC::PRED_* number.
5725     // Op #2 is the CR#
5726     // Op #3 is the Dest MBB
5727     // Op #4 is the Flag.
5728     // Prevent PPC::PRED_* from being selected into LI.
5729     unsigned PCC = cast<ConstantSDNode>(N->getOperand(1))->getZExtValue();
5730     if (EnableBranchHint)
5731       PCC |= getBranchHint(PCC, *FuncInfo, N->getOperand(3));
5732 
5733     SDValue Pred = getI32Imm(PCC, dl);
5734     SDValue Ops[] = { Pred, N->getOperand(2), N->getOperand(3),
5735       N->getOperand(0), N->getOperand(4) };
5736     CurDAG->SelectNodeTo(N, PPC::BCC, MVT::Other, Ops);
5737     return;
5738   }
5739   case ISD::BR_CC: {
5740     if (tryFoldSWTestBRCC(N))
5741       return;
5742     ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(1))->get();
5743     unsigned PCC =
5744         getPredicateForSetCC(CC, N->getOperand(2).getValueType(), Subtarget);
5745 
5746     if (N->getOperand(2).getValueType() == MVT::i1) {
5747       unsigned Opc;
5748       bool Swap;
5749       switch (PCC) {
5750       default: llvm_unreachable("Unexpected Boolean-operand predicate");
5751       case PPC::PRED_LT: Opc = PPC::CRANDC; Swap = true;  break;
5752       case PPC::PRED_LE: Opc = PPC::CRORC;  Swap = true;  break;
5753       case PPC::PRED_EQ: Opc = PPC::CREQV;  Swap = false; break;
5754       case PPC::PRED_GE: Opc = PPC::CRORC;  Swap = false; break;
5755       case PPC::PRED_GT: Opc = PPC::CRANDC; Swap = false; break;
5756       case PPC::PRED_NE: Opc = PPC::CRXOR;  Swap = false; break;
5757       }
5758 
5759       // A signed comparison of i1 values produces the opposite result to an
5760       // unsigned one if the condition code includes less-than or greater-than.
5761       // This is because 1 is the most negative signed i1 number and the most
5762       // positive unsigned i1 number. The CR-logical operations used for such
5763       // comparisons are non-commutative so for signed comparisons vs. unsigned
5764       // ones, the input operands just need to be swapped.
5765       if (ISD::isSignedIntSetCC(CC))
5766         Swap = !Swap;
5767 
5768       SDValue BitComp(CurDAG->getMachineNode(Opc, dl, MVT::i1,
5769                                              N->getOperand(Swap ? 3 : 2),
5770                                              N->getOperand(Swap ? 2 : 3)), 0);
5771       CurDAG->SelectNodeTo(N, PPC::BC, MVT::Other, BitComp, N->getOperand(4),
5772                            N->getOperand(0));
5773       return;
5774     }
5775 
5776     if (EnableBranchHint)
5777       PCC |= getBranchHint(PCC, *FuncInfo, N->getOperand(4));
5778 
5779     SDValue CondCode = SelectCC(N->getOperand(2), N->getOperand(3), CC, dl);
5780     SDValue Ops[] = { getI32Imm(PCC, dl), CondCode,
5781                         N->getOperand(4), N->getOperand(0) };
5782     CurDAG->SelectNodeTo(N, PPC::BCC, MVT::Other, Ops);
5783     return;
5784   }
5785   case ISD::BRIND: {
5786     // FIXME: Should custom lower this.
5787     SDValue Chain = N->getOperand(0);
5788     SDValue Target = N->getOperand(1);
5789     unsigned Opc = Target.getValueType() == MVT::i32 ? PPC::MTCTR : PPC::MTCTR8;
5790     unsigned Reg = Target.getValueType() == MVT::i32 ? PPC::BCTR : PPC::BCTR8;
5791     Chain = SDValue(CurDAG->getMachineNode(Opc, dl, MVT::Glue, Target,
5792                                            Chain), 0);
5793     CurDAG->SelectNodeTo(N, Reg, MVT::Other, Chain);
5794     return;
5795   }
5796   case PPCISD::TOC_ENTRY: {
5797     const bool isPPC64 = Subtarget->isPPC64();
5798     const bool isELFABI = Subtarget->isSVR4ABI();
5799     const bool isAIXABI = Subtarget->isAIXABI();
5800 
5801     // PowerPC only support small, medium and large code model.
5802     const CodeModel::Model CModel = TM.getCodeModel();
5803     assert(!(CModel == CodeModel::Tiny || CModel == CodeModel::Kernel) &&
5804            "PowerPC doesn't support tiny or kernel code models.");
5805 
5806     if (isAIXABI && CModel == CodeModel::Medium)
5807       report_fatal_error("Medium code model is not supported on AIX.");
5808 
5809     // For 64-bit ELF small code model, we allow SelectCodeCommon to handle
5810     // this, selecting one of LDtoc, LDtocJTI, LDtocCPT, and LDtocBA. For AIX
5811     // small code model, we need to check for a toc-data attribute.
5812     if (isPPC64 && !isAIXABI && CModel == CodeModel::Small)
5813       break;
5814 
5815     auto replaceWith = [this, &dl](unsigned OpCode, SDNode *TocEntry,
5816                                    EVT OperandTy) {
5817       SDValue GA = TocEntry->getOperand(0);
5818       SDValue TocBase = TocEntry->getOperand(1);
5819       SDNode *MN = CurDAG->getMachineNode(OpCode, dl, OperandTy, GA, TocBase);
5820       transferMemOperands(TocEntry, MN);
5821       ReplaceNode(TocEntry, MN);
5822     };
5823 
5824     // Handle 32-bit small code model.
5825     if (!isPPC64 && CModel == CodeModel::Small) {
5826       // Transforms the ISD::TOC_ENTRY node to passed in Opcode, either
5827       // PPC::ADDItoc, or PPC::LWZtoc
5828       if (isELFABI) {
5829         assert(TM.isPositionIndependent() &&
5830                "32-bit ELF can only have TOC entries in position independent"
5831                " code.");
5832         // 32-bit ELF always uses a small code model toc access.
5833         replaceWith(PPC::LWZtoc, N, MVT::i32);
5834         return;
5835       }
5836 
5837       assert(isAIXABI && "ELF ABI already handled");
5838 
5839       if (hasTocDataAttr(N->getOperand(0),
5840                          CurDAG->getDataLayout().getPointerSize())) {
5841         replaceWith(PPC::ADDItoc, N, MVT::i32);
5842         return;
5843       }
5844 
5845       replaceWith(PPC::LWZtoc, N, MVT::i32);
5846       return;
5847     }
5848 
5849     if (isPPC64 && CModel == CodeModel::Small) {
5850       assert(isAIXABI && "ELF ABI handled in common SelectCode");
5851 
5852       if (hasTocDataAttr(N->getOperand(0),
5853                          CurDAG->getDataLayout().getPointerSize())) {
5854         replaceWith(PPC::ADDItoc8, N, MVT::i64);
5855         return;
5856       }
5857       // Break if it doesn't have toc data attribute. Proceed with common
5858       // SelectCode.
5859       break;
5860     }
5861 
5862     assert(CModel != CodeModel::Small && "All small code models handled.");
5863 
5864     assert((isPPC64 || (isAIXABI && !isPPC64)) && "We are dealing with 64-bit"
5865            " ELF/AIX or 32-bit AIX in the following.");
5866 
5867     // Transforms the ISD::TOC_ENTRY node for 32-bit AIX large code model mode
5868     // or 64-bit medium (ELF-only) or large (ELF and AIX) code model code. We
5869     // generate two instructions as described below. The first source operand
5870     // is a symbol reference. If it must be toc-referenced according to
5871     // Subtarget, we generate:
5872     // [32-bit AIX]
5873     //   LWZtocL(@sym, ADDIStocHA(%r2, @sym))
5874     // [64-bit ELF/AIX]
5875     //   LDtocL(@sym, ADDIStocHA8(%x2, @sym))
5876     // Otherwise we generate:
5877     //   ADDItocL(ADDIStocHA8(%x2, @sym), @sym)
5878     SDValue GA = N->getOperand(0);
5879     SDValue TOCbase = N->getOperand(1);
5880 
5881     EVT VT = isPPC64 ? MVT::i64 : MVT::i32;
5882     SDNode *Tmp = CurDAG->getMachineNode(
5883         isPPC64 ? PPC::ADDIStocHA8 : PPC::ADDIStocHA, dl, VT, TOCbase, GA);
5884 
5885     if (PPCLowering->isAccessedAsGotIndirect(GA)) {
5886       // If it is accessed as got-indirect, we need an extra LWZ/LD to load
5887       // the address.
5888       SDNode *MN = CurDAG->getMachineNode(
5889           isPPC64 ? PPC::LDtocL : PPC::LWZtocL, dl, VT, GA, SDValue(Tmp, 0));
5890 
5891       transferMemOperands(N, MN);
5892       ReplaceNode(N, MN);
5893       return;
5894     }
5895 
5896     // Build the address relative to the TOC-pointer.
5897     ReplaceNode(N, CurDAG->getMachineNode(PPC::ADDItocL, dl, MVT::i64,
5898                                           SDValue(Tmp, 0), GA));
5899     return;
5900   }
5901   case PPCISD::PPC32_PICGOT:
5902     // Generate a PIC-safe GOT reference.
5903     assert(Subtarget->is32BitELFABI() &&
5904            "PPCISD::PPC32_PICGOT is only supported for 32-bit SVR4");
5905     CurDAG->SelectNodeTo(N, PPC::PPC32PICGOT,
5906                          PPCLowering->getPointerTy(CurDAG->getDataLayout()),
5907                          MVT::i32);
5908     return;
5909 
5910   case PPCISD::VADD_SPLAT: {
5911     // This expands into one of three sequences, depending on whether
5912     // the first operand is odd or even, positive or negative.
5913     assert(isa<ConstantSDNode>(N->getOperand(0)) &&
5914            isa<ConstantSDNode>(N->getOperand(1)) &&
5915            "Invalid operand on VADD_SPLAT!");
5916 
5917     int Elt     = N->getConstantOperandVal(0);
5918     int EltSize = N->getConstantOperandVal(1);
5919     unsigned Opc1, Opc2, Opc3;
5920     EVT VT;
5921 
5922     if (EltSize == 1) {
5923       Opc1 = PPC::VSPLTISB;
5924       Opc2 = PPC::VADDUBM;
5925       Opc3 = PPC::VSUBUBM;
5926       VT = MVT::v16i8;
5927     } else if (EltSize == 2) {
5928       Opc1 = PPC::VSPLTISH;
5929       Opc2 = PPC::VADDUHM;
5930       Opc3 = PPC::VSUBUHM;
5931       VT = MVT::v8i16;
5932     } else {
5933       assert(EltSize == 4 && "Invalid element size on VADD_SPLAT!");
5934       Opc1 = PPC::VSPLTISW;
5935       Opc2 = PPC::VADDUWM;
5936       Opc3 = PPC::VSUBUWM;
5937       VT = MVT::v4i32;
5938     }
5939 
5940     if ((Elt & 1) == 0) {
5941       // Elt is even, in the range [-32,-18] + [16,30].
5942       //
5943       // Convert: VADD_SPLAT elt, size
5944       // Into:    tmp = VSPLTIS[BHW] elt
5945       //          VADDU[BHW]M tmp, tmp
5946       // Where:   [BHW] = B for size = 1, H for size = 2, W for size = 4
5947       SDValue EltVal = getI32Imm(Elt >> 1, dl);
5948       SDNode *Tmp = CurDAG->getMachineNode(Opc1, dl, VT, EltVal);
5949       SDValue TmpVal = SDValue(Tmp, 0);
5950       ReplaceNode(N, CurDAG->getMachineNode(Opc2, dl, VT, TmpVal, TmpVal));
5951       return;
5952     } else if (Elt > 0) {
5953       // Elt is odd and positive, in the range [17,31].
5954       //
5955       // Convert: VADD_SPLAT elt, size
5956       // Into:    tmp1 = VSPLTIS[BHW] elt-16
5957       //          tmp2 = VSPLTIS[BHW] -16
5958       //          VSUBU[BHW]M tmp1, tmp2
5959       SDValue EltVal = getI32Imm(Elt - 16, dl);
5960       SDNode *Tmp1 = CurDAG->getMachineNode(Opc1, dl, VT, EltVal);
5961       EltVal = getI32Imm(-16, dl);
5962       SDNode *Tmp2 = CurDAG->getMachineNode(Opc1, dl, VT, EltVal);
5963       ReplaceNode(N, CurDAG->getMachineNode(Opc3, dl, VT, SDValue(Tmp1, 0),
5964                                             SDValue(Tmp2, 0)));
5965       return;
5966     } else {
5967       // Elt is odd and negative, in the range [-31,-17].
5968       //
5969       // Convert: VADD_SPLAT elt, size
5970       // Into:    tmp1 = VSPLTIS[BHW] elt+16
5971       //          tmp2 = VSPLTIS[BHW] -16
5972       //          VADDU[BHW]M tmp1, tmp2
5973       SDValue EltVal = getI32Imm(Elt + 16, dl);
5974       SDNode *Tmp1 = CurDAG->getMachineNode(Opc1, dl, VT, EltVal);
5975       EltVal = getI32Imm(-16, dl);
5976       SDNode *Tmp2 = CurDAG->getMachineNode(Opc1, dl, VT, EltVal);
5977       ReplaceNode(N, CurDAG->getMachineNode(Opc2, dl, VT, SDValue(Tmp1, 0),
5978                                             SDValue(Tmp2, 0)));
5979       return;
5980     }
5981   }
5982   case PPCISD::LD_SPLAT: {
5983     // Here we want to handle splat load for type v16i8 and v8i16 when there is
5984     // no direct move, we don't need to use stack for this case. If target has
5985     // direct move, we should be able to get the best selection in the .td file.
5986     if (!Subtarget->hasAltivec() || Subtarget->hasDirectMove())
5987       break;
5988 
5989     EVT Type = N->getValueType(0);
5990     if (Type != MVT::v16i8 && Type != MVT::v8i16)
5991       break;
5992 
5993     // If the alignment for the load is 16 or bigger, we don't need the
5994     // permutated mask to get the required value. The value must be the 0
5995     // element in big endian target or 7/15 in little endian target in the
5996     // result vsx register of lvx instruction.
5997     // Select the instruction in the .td file.
5998     if (cast<MemIntrinsicSDNode>(N)->getAlign() >= Align(16) &&
5999         isOffsetMultipleOf(N, 16))
6000       break;
6001 
6002     SDValue ZeroReg =
6003         CurDAG->getRegister(Subtarget->isPPC64() ? PPC::ZERO8 : PPC::ZERO,
6004                             Subtarget->isPPC64() ? MVT::i64 : MVT::i32);
6005     unsigned LIOpcode = Subtarget->isPPC64() ? PPC::LI8 : PPC::LI;
6006     // v16i8 LD_SPLAT addr
6007     // ======>
6008     // Mask = LVSR/LVSL 0, addr
6009     // LoadLow = LVX 0, addr
6010     // Perm = VPERM LoadLow, LoadLow, Mask
6011     // Splat = VSPLTB 15/0, Perm
6012     //
6013     // v8i16 LD_SPLAT addr
6014     // ======>
6015     // Mask = LVSR/LVSL 0, addr
6016     // LoadLow = LVX 0, addr
6017     // LoadHigh = LVX (LI, 1), addr
6018     // Perm = VPERM LoadLow, LoadHigh, Mask
6019     // Splat = VSPLTH 7/0, Perm
6020     unsigned SplatOp = (Type == MVT::v16i8) ? PPC::VSPLTB : PPC::VSPLTH;
6021     unsigned SplatElemIndex =
6022         Subtarget->isLittleEndian() ? ((Type == MVT::v16i8) ? 15 : 7) : 0;
6023 
6024     SDNode *Mask = CurDAG->getMachineNode(
6025         Subtarget->isLittleEndian() ? PPC::LVSR : PPC::LVSL, dl, Type, ZeroReg,
6026         N->getOperand(1));
6027 
6028     SDNode *LoadLow =
6029         CurDAG->getMachineNode(PPC::LVX, dl, MVT::v16i8, MVT::Other,
6030                                {ZeroReg, N->getOperand(1), N->getOperand(0)});
6031 
6032     SDNode *LoadHigh = LoadLow;
6033     if (Type == MVT::v8i16) {
6034       LoadHigh = CurDAG->getMachineNode(
6035           PPC::LVX, dl, MVT::v16i8, MVT::Other,
6036           {SDValue(CurDAG->getMachineNode(
6037                        LIOpcode, dl, MVT::i32,
6038                        CurDAG->getTargetConstant(1, dl, MVT::i8)),
6039                    0),
6040            N->getOperand(1), SDValue(LoadLow, 1)});
6041     }
6042 
6043     CurDAG->ReplaceAllUsesOfValueWith(SDValue(N, 1), SDValue(LoadHigh, 1));
6044     transferMemOperands(N, LoadHigh);
6045 
6046     SDNode *Perm =
6047         CurDAG->getMachineNode(PPC::VPERM, dl, Type, SDValue(LoadLow, 0),
6048                                SDValue(LoadHigh, 0), SDValue(Mask, 0));
6049     CurDAG->SelectNodeTo(N, SplatOp, Type,
6050                          CurDAG->getTargetConstant(SplatElemIndex, dl, MVT::i8),
6051                          SDValue(Perm, 0));
6052     return;
6053   }
6054   }
6055 
6056   SelectCode(N);
6057 }
6058 
6059 // If the target supports the cmpb instruction, do the idiom recognition here.
6060 // We don't do this as a DAG combine because we don't want to do it as nodes
6061 // are being combined (because we might miss part of the eventual idiom). We
6062 // don't want to do it during instruction selection because we want to reuse
6063 // the logic for lowering the masking operations already part of the
6064 // instruction selector.
6065 SDValue PPCDAGToDAGISel::combineToCMPB(SDNode *N) {
6066   SDLoc dl(N);
6067 
6068   assert(N->getOpcode() == ISD::OR &&
6069          "Only OR nodes are supported for CMPB");
6070 
6071   SDValue Res;
6072   if (!Subtarget->hasCMPB())
6073     return Res;
6074 
6075   if (N->getValueType(0) != MVT::i32 &&
6076       N->getValueType(0) != MVT::i64)
6077     return Res;
6078 
6079   EVT VT = N->getValueType(0);
6080 
6081   SDValue RHS, LHS;
6082   bool BytesFound[8] = {false, false, false, false, false, false, false, false};
6083   uint64_t Mask = 0, Alt = 0;
6084 
6085   auto IsByteSelectCC = [this](SDValue O, unsigned &b,
6086                                uint64_t &Mask, uint64_t &Alt,
6087                                SDValue &LHS, SDValue &RHS) {
6088     if (O.getOpcode() != ISD::SELECT_CC)
6089       return false;
6090     ISD::CondCode CC = cast<CondCodeSDNode>(O.getOperand(4))->get();
6091 
6092     if (!isa<ConstantSDNode>(O.getOperand(2)) ||
6093         !isa<ConstantSDNode>(O.getOperand(3)))
6094       return false;
6095 
6096     uint64_t PM = O.getConstantOperandVal(2);
6097     uint64_t PAlt = O.getConstantOperandVal(3);
6098     for (b = 0; b < 8; ++b) {
6099       uint64_t Mask = UINT64_C(0xFF) << (8*b);
6100       if (PM && (PM & Mask) == PM && (PAlt & Mask) == PAlt)
6101         break;
6102     }
6103 
6104     if (b == 8)
6105       return false;
6106     Mask |= PM;
6107     Alt  |= PAlt;
6108 
6109     if (!isa<ConstantSDNode>(O.getOperand(1)) ||
6110         O.getConstantOperandVal(1) != 0) {
6111       SDValue Op0 = O.getOperand(0), Op1 = O.getOperand(1);
6112       if (Op0.getOpcode() == ISD::TRUNCATE)
6113         Op0 = Op0.getOperand(0);
6114       if (Op1.getOpcode() == ISD::TRUNCATE)
6115         Op1 = Op1.getOperand(0);
6116 
6117       if (Op0.getOpcode() == ISD::SRL && Op1.getOpcode() == ISD::SRL &&
6118           Op0.getOperand(1) == Op1.getOperand(1) && CC == ISD::SETEQ &&
6119           isa<ConstantSDNode>(Op0.getOperand(1))) {
6120 
6121         unsigned Bits = Op0.getValueSizeInBits();
6122         if (b != Bits/8-1)
6123           return false;
6124         if (Op0.getConstantOperandVal(1) != Bits-8)
6125           return false;
6126 
6127         LHS = Op0.getOperand(0);
6128         RHS = Op1.getOperand(0);
6129         return true;
6130       }
6131 
6132       // When we have small integers (i16 to be specific), the form present
6133       // post-legalization uses SETULT in the SELECT_CC for the
6134       // higher-order byte, depending on the fact that the
6135       // even-higher-order bytes are known to all be zero, for example:
6136       //   select_cc (xor $lhs, $rhs), 256, 65280, 0, setult
6137       // (so when the second byte is the same, because all higher-order
6138       // bits from bytes 3 and 4 are known to be zero, the result of the
6139       // xor can be at most 255)
6140       if (Op0.getOpcode() == ISD::XOR && CC == ISD::SETULT &&
6141           isa<ConstantSDNode>(O.getOperand(1))) {
6142 
6143         uint64_t ULim = O.getConstantOperandVal(1);
6144         if (ULim != (UINT64_C(1) << b*8))
6145           return false;
6146 
6147         // Now we need to make sure that the upper bytes are known to be
6148         // zero.
6149         unsigned Bits = Op0.getValueSizeInBits();
6150         if (!CurDAG->MaskedValueIsZero(
6151                 Op0, APInt::getHighBitsSet(Bits, Bits - (b + 1) * 8)))
6152           return false;
6153 
6154         LHS = Op0.getOperand(0);
6155         RHS = Op0.getOperand(1);
6156         return true;
6157       }
6158 
6159       return false;
6160     }
6161 
6162     if (CC != ISD::SETEQ)
6163       return false;
6164 
6165     SDValue Op = O.getOperand(0);
6166     if (Op.getOpcode() == ISD::AND) {
6167       if (!isa<ConstantSDNode>(Op.getOperand(1)))
6168         return false;
6169       if (Op.getConstantOperandVal(1) != (UINT64_C(0xFF) << (8*b)))
6170         return false;
6171 
6172       SDValue XOR = Op.getOperand(0);
6173       if (XOR.getOpcode() == ISD::TRUNCATE)
6174         XOR = XOR.getOperand(0);
6175       if (XOR.getOpcode() != ISD::XOR)
6176         return false;
6177 
6178       LHS = XOR.getOperand(0);
6179       RHS = XOR.getOperand(1);
6180       return true;
6181     } else if (Op.getOpcode() == ISD::SRL) {
6182       if (!isa<ConstantSDNode>(Op.getOperand(1)))
6183         return false;
6184       unsigned Bits = Op.getValueSizeInBits();
6185       if (b != Bits/8-1)
6186         return false;
6187       if (Op.getConstantOperandVal(1) != Bits-8)
6188         return false;
6189 
6190       SDValue XOR = Op.getOperand(0);
6191       if (XOR.getOpcode() == ISD::TRUNCATE)
6192         XOR = XOR.getOperand(0);
6193       if (XOR.getOpcode() != ISD::XOR)
6194         return false;
6195 
6196       LHS = XOR.getOperand(0);
6197       RHS = XOR.getOperand(1);
6198       return true;
6199     }
6200 
6201     return false;
6202   };
6203 
6204   SmallVector<SDValue, 8> Queue(1, SDValue(N, 0));
6205   while (!Queue.empty()) {
6206     SDValue V = Queue.pop_back_val();
6207 
6208     for (const SDValue &O : V.getNode()->ops()) {
6209       unsigned b = 0;
6210       uint64_t M = 0, A = 0;
6211       SDValue OLHS, ORHS;
6212       if (O.getOpcode() == ISD::OR) {
6213         Queue.push_back(O);
6214       } else if (IsByteSelectCC(O, b, M, A, OLHS, ORHS)) {
6215         if (!LHS) {
6216           LHS = OLHS;
6217           RHS = ORHS;
6218           BytesFound[b] = true;
6219           Mask |= M;
6220           Alt  |= A;
6221         } else if ((LHS == ORHS && RHS == OLHS) ||
6222                    (RHS == ORHS && LHS == OLHS)) {
6223           BytesFound[b] = true;
6224           Mask |= M;
6225           Alt  |= A;
6226         } else {
6227           return Res;
6228         }
6229       } else {
6230         return Res;
6231       }
6232     }
6233   }
6234 
6235   unsigned LastB = 0, BCnt = 0;
6236   for (unsigned i = 0; i < 8; ++i)
6237     if (BytesFound[LastB]) {
6238       ++BCnt;
6239       LastB = i;
6240     }
6241 
6242   if (!LastB || BCnt < 2)
6243     return Res;
6244 
6245   // Because we'll be zero-extending the output anyway if don't have a specific
6246   // value for each input byte (via the Mask), we can 'anyext' the inputs.
6247   if (LHS.getValueType() != VT) {
6248     LHS = CurDAG->getAnyExtOrTrunc(LHS, dl, VT);
6249     RHS = CurDAG->getAnyExtOrTrunc(RHS, dl, VT);
6250   }
6251 
6252   Res = CurDAG->getNode(PPCISD::CMPB, dl, VT, LHS, RHS);
6253 
6254   bool NonTrivialMask = ((int64_t) Mask) != INT64_C(-1);
6255   if (NonTrivialMask && !Alt) {
6256     // Res = Mask & CMPB
6257     Res = CurDAG->getNode(ISD::AND, dl, VT, Res,
6258                           CurDAG->getConstant(Mask, dl, VT));
6259   } else if (Alt) {
6260     // Res = (CMPB & Mask) | (~CMPB & Alt)
6261     // Which, as suggested here:
6262     //   https://graphics.stanford.edu/~seander/bithacks.html#MaskedMerge
6263     // can be written as:
6264     // Res = Alt ^ ((Alt ^ Mask) & CMPB)
6265     // useful because the (Alt ^ Mask) can be pre-computed.
6266     Res = CurDAG->getNode(ISD::AND, dl, VT, Res,
6267                           CurDAG->getConstant(Mask ^ Alt, dl, VT));
6268     Res = CurDAG->getNode(ISD::XOR, dl, VT, Res,
6269                           CurDAG->getConstant(Alt, dl, VT));
6270   }
6271 
6272   return Res;
6273 }
6274 
6275 // When CR bit registers are enabled, an extension of an i1 variable to a i32
6276 // or i64 value is lowered in terms of a SELECT_I[48] operation, and thus
6277 // involves constant materialization of a 0 or a 1 or both. If the result of
6278 // the extension is then operated upon by some operator that can be constant
6279 // folded with a constant 0 or 1, and that constant can be materialized using
6280 // only one instruction (like a zero or one), then we should fold in those
6281 // operations with the select.
6282 void PPCDAGToDAGISel::foldBoolExts(SDValue &Res, SDNode *&N) {
6283   if (!Subtarget->useCRBits())
6284     return;
6285 
6286   if (N->getOpcode() != ISD::ZERO_EXTEND &&
6287       N->getOpcode() != ISD::SIGN_EXTEND &&
6288       N->getOpcode() != ISD::ANY_EXTEND)
6289     return;
6290 
6291   if (N->getOperand(0).getValueType() != MVT::i1)
6292     return;
6293 
6294   if (!N->hasOneUse())
6295     return;
6296 
6297   SDLoc dl(N);
6298   EVT VT = N->getValueType(0);
6299   SDValue Cond = N->getOperand(0);
6300   SDValue ConstTrue =
6301     CurDAG->getConstant(N->getOpcode() == ISD::SIGN_EXTEND ? -1 : 1, dl, VT);
6302   SDValue ConstFalse = CurDAG->getConstant(0, dl, VT);
6303 
6304   do {
6305     SDNode *User = *N->use_begin();
6306     if (User->getNumOperands() != 2)
6307       break;
6308 
6309     auto TryFold = [this, N, User, dl](SDValue Val) {
6310       SDValue UserO0 = User->getOperand(0), UserO1 = User->getOperand(1);
6311       SDValue O0 = UserO0.getNode() == N ? Val : UserO0;
6312       SDValue O1 = UserO1.getNode() == N ? Val : UserO1;
6313 
6314       return CurDAG->FoldConstantArithmetic(User->getOpcode(), dl,
6315                                             User->getValueType(0), {O0, O1});
6316     };
6317 
6318     // FIXME: When the semantics of the interaction between select and undef
6319     // are clearly defined, it may turn out to be unnecessary to break here.
6320     SDValue TrueRes = TryFold(ConstTrue);
6321     if (!TrueRes || TrueRes.isUndef())
6322       break;
6323     SDValue FalseRes = TryFold(ConstFalse);
6324     if (!FalseRes || FalseRes.isUndef())
6325       break;
6326 
6327     // For us to materialize these using one instruction, we must be able to
6328     // represent them as signed 16-bit integers.
6329     uint64_t True  = cast<ConstantSDNode>(TrueRes)->getZExtValue(),
6330              False = cast<ConstantSDNode>(FalseRes)->getZExtValue();
6331     if (!isInt<16>(True) || !isInt<16>(False))
6332       break;
6333 
6334     // We can replace User with a new SELECT node, and try again to see if we
6335     // can fold the select with its user.
6336     Res = CurDAG->getSelect(dl, User->getValueType(0), Cond, TrueRes, FalseRes);
6337     N = User;
6338     ConstTrue = TrueRes;
6339     ConstFalse = FalseRes;
6340   } while (N->hasOneUse());
6341 }
6342 
6343 void PPCDAGToDAGISel::PreprocessISelDAG() {
6344   SelectionDAG::allnodes_iterator Position = CurDAG->allnodes_end();
6345 
6346   bool MadeChange = false;
6347   while (Position != CurDAG->allnodes_begin()) {
6348     SDNode *N = &*--Position;
6349     if (N->use_empty())
6350       continue;
6351 
6352     SDValue Res;
6353     switch (N->getOpcode()) {
6354     default: break;
6355     case ISD::OR:
6356       Res = combineToCMPB(N);
6357       break;
6358     }
6359 
6360     if (!Res)
6361       foldBoolExts(Res, N);
6362 
6363     if (Res) {
6364       LLVM_DEBUG(dbgs() << "PPC DAG preprocessing replacing:\nOld:    ");
6365       LLVM_DEBUG(N->dump(CurDAG));
6366       LLVM_DEBUG(dbgs() << "\nNew: ");
6367       LLVM_DEBUG(Res.getNode()->dump(CurDAG));
6368       LLVM_DEBUG(dbgs() << "\n");
6369 
6370       CurDAG->ReplaceAllUsesOfValueWith(SDValue(N, 0), Res);
6371       MadeChange = true;
6372     }
6373   }
6374 
6375   if (MadeChange)
6376     CurDAG->RemoveDeadNodes();
6377 }
6378 
6379 /// PostprocessISelDAG - Perform some late peephole optimizations
6380 /// on the DAG representation.
6381 void PPCDAGToDAGISel::PostprocessISelDAG() {
6382   // Skip peepholes at -O0.
6383   if (TM.getOptLevel() == CodeGenOpt::None)
6384     return;
6385 
6386   PeepholePPC64();
6387   PeepholeCROps();
6388   PeepholePPC64ZExt();
6389 }
6390 
6391 // Check if all users of this node will become isel where the second operand
6392 // is the constant zero. If this is so, and if we can negate the condition,
6393 // then we can flip the true and false operands. This will allow the zero to
6394 // be folded with the isel so that we don't need to materialize a register
6395 // containing zero.
6396 bool PPCDAGToDAGISel::AllUsersSelectZero(SDNode *N) {
6397   for (const SDNode *User : N->uses()) {
6398     if (!User->isMachineOpcode())
6399       return false;
6400     if (User->getMachineOpcode() != PPC::SELECT_I4 &&
6401         User->getMachineOpcode() != PPC::SELECT_I8)
6402       return false;
6403 
6404     SDNode *Op1 = User->getOperand(1).getNode();
6405     SDNode *Op2 = User->getOperand(2).getNode();
6406     // If we have a degenerate select with two equal operands, swapping will
6407     // not do anything, and we may run into an infinite loop.
6408     if (Op1 == Op2)
6409       return false;
6410 
6411     if (!Op2->isMachineOpcode())
6412       return false;
6413 
6414     if (Op2->getMachineOpcode() != PPC::LI &&
6415         Op2->getMachineOpcode() != PPC::LI8)
6416       return false;
6417 
6418     ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op2->getOperand(0));
6419     if (!C)
6420       return false;
6421 
6422     if (!C->isZero())
6423       return false;
6424   }
6425 
6426   return true;
6427 }
6428 
6429 void PPCDAGToDAGISel::SwapAllSelectUsers(SDNode *N) {
6430   SmallVector<SDNode *, 4> ToReplace;
6431   for (SDNode *User : N->uses()) {
6432     assert((User->getMachineOpcode() == PPC::SELECT_I4 ||
6433             User->getMachineOpcode() == PPC::SELECT_I8) &&
6434            "Must have all select users");
6435     ToReplace.push_back(User);
6436   }
6437 
6438   for (SDNode *User : ToReplace) {
6439     SDNode *ResNode =
6440       CurDAG->getMachineNode(User->getMachineOpcode(), SDLoc(User),
6441                              User->getValueType(0), User->getOperand(0),
6442                              User->getOperand(2),
6443                              User->getOperand(1));
6444 
6445     LLVM_DEBUG(dbgs() << "CR Peephole replacing:\nOld:    ");
6446     LLVM_DEBUG(User->dump(CurDAG));
6447     LLVM_DEBUG(dbgs() << "\nNew: ");
6448     LLVM_DEBUG(ResNode->dump(CurDAG));
6449     LLVM_DEBUG(dbgs() << "\n");
6450 
6451     ReplaceUses(User, ResNode);
6452   }
6453 }
6454 
6455 void PPCDAGToDAGISel::PeepholeCROps() {
6456   bool IsModified;
6457   do {
6458     IsModified = false;
6459     for (SDNode &Node : CurDAG->allnodes()) {
6460       MachineSDNode *MachineNode = dyn_cast<MachineSDNode>(&Node);
6461       if (!MachineNode || MachineNode->use_empty())
6462         continue;
6463       SDNode *ResNode = MachineNode;
6464 
6465       bool Op1Set   = false, Op1Unset = false,
6466            Op1Not   = false,
6467            Op2Set   = false, Op2Unset = false,
6468            Op2Not   = false;
6469 
6470       unsigned Opcode = MachineNode->getMachineOpcode();
6471       switch (Opcode) {
6472       default: break;
6473       case PPC::CRAND:
6474       case PPC::CRNAND:
6475       case PPC::CROR:
6476       case PPC::CRXOR:
6477       case PPC::CRNOR:
6478       case PPC::CREQV:
6479       case PPC::CRANDC:
6480       case PPC::CRORC: {
6481         SDValue Op = MachineNode->getOperand(1);
6482         if (Op.isMachineOpcode()) {
6483           if (Op.getMachineOpcode() == PPC::CRSET)
6484             Op2Set = true;
6485           else if (Op.getMachineOpcode() == PPC::CRUNSET)
6486             Op2Unset = true;
6487           else if (Op.getMachineOpcode() == PPC::CRNOR &&
6488                    Op.getOperand(0) == Op.getOperand(1))
6489             Op2Not = true;
6490         }
6491         LLVM_FALLTHROUGH;
6492       }
6493       case PPC::BC:
6494       case PPC::BCn:
6495       case PPC::SELECT_I4:
6496       case PPC::SELECT_I8:
6497       case PPC::SELECT_F4:
6498       case PPC::SELECT_F8:
6499       case PPC::SELECT_SPE:
6500       case PPC::SELECT_SPE4:
6501       case PPC::SELECT_VRRC:
6502       case PPC::SELECT_VSFRC:
6503       case PPC::SELECT_VSSRC:
6504       case PPC::SELECT_VSRC: {
6505         SDValue Op = MachineNode->getOperand(0);
6506         if (Op.isMachineOpcode()) {
6507           if (Op.getMachineOpcode() == PPC::CRSET)
6508             Op1Set = true;
6509           else if (Op.getMachineOpcode() == PPC::CRUNSET)
6510             Op1Unset = true;
6511           else if (Op.getMachineOpcode() == PPC::CRNOR &&
6512                    Op.getOperand(0) == Op.getOperand(1))
6513             Op1Not = true;
6514         }
6515         }
6516         break;
6517       }
6518 
6519       bool SelectSwap = false;
6520       switch (Opcode) {
6521       default: break;
6522       case PPC::CRAND:
6523         if (MachineNode->getOperand(0) == MachineNode->getOperand(1))
6524           // x & x = x
6525           ResNode = MachineNode->getOperand(0).getNode();
6526         else if (Op1Set)
6527           // 1 & y = y
6528           ResNode = MachineNode->getOperand(1).getNode();
6529         else if (Op2Set)
6530           // x & 1 = x
6531           ResNode = MachineNode->getOperand(0).getNode();
6532         else if (Op1Unset || Op2Unset)
6533           // x & 0 = 0 & y = 0
6534           ResNode = CurDAG->getMachineNode(PPC::CRUNSET, SDLoc(MachineNode),
6535                                            MVT::i1);
6536         else if (Op1Not)
6537           // ~x & y = andc(y, x)
6538           ResNode = CurDAG->getMachineNode(PPC::CRANDC, SDLoc(MachineNode),
6539                                            MVT::i1, MachineNode->getOperand(1),
6540                                            MachineNode->getOperand(0).
6541                                              getOperand(0));
6542         else if (Op2Not)
6543           // x & ~y = andc(x, y)
6544           ResNode = CurDAG->getMachineNode(PPC::CRANDC, SDLoc(MachineNode),
6545                                            MVT::i1, MachineNode->getOperand(0),
6546                                            MachineNode->getOperand(1).
6547                                              getOperand(0));
6548         else if (AllUsersSelectZero(MachineNode)) {
6549           ResNode = CurDAG->getMachineNode(PPC::CRNAND, SDLoc(MachineNode),
6550                                            MVT::i1, MachineNode->getOperand(0),
6551                                            MachineNode->getOperand(1));
6552           SelectSwap = true;
6553         }
6554         break;
6555       case PPC::CRNAND:
6556         if (MachineNode->getOperand(0) == MachineNode->getOperand(1))
6557           // nand(x, x) -> nor(x, x)
6558           ResNode = CurDAG->getMachineNode(PPC::CRNOR, SDLoc(MachineNode),
6559                                            MVT::i1, MachineNode->getOperand(0),
6560                                            MachineNode->getOperand(0));
6561         else if (Op1Set)
6562           // nand(1, y) -> nor(y, y)
6563           ResNode = CurDAG->getMachineNode(PPC::CRNOR, SDLoc(MachineNode),
6564                                            MVT::i1, MachineNode->getOperand(1),
6565                                            MachineNode->getOperand(1));
6566         else if (Op2Set)
6567           // nand(x, 1) -> nor(x, x)
6568           ResNode = CurDAG->getMachineNode(PPC::CRNOR, SDLoc(MachineNode),
6569                                            MVT::i1, MachineNode->getOperand(0),
6570                                            MachineNode->getOperand(0));
6571         else if (Op1Unset || Op2Unset)
6572           // nand(x, 0) = nand(0, y) = 1
6573           ResNode = CurDAG->getMachineNode(PPC::CRSET, SDLoc(MachineNode),
6574                                            MVT::i1);
6575         else if (Op1Not)
6576           // nand(~x, y) = ~(~x & y) = x | ~y = orc(x, y)
6577           ResNode = CurDAG->getMachineNode(PPC::CRORC, SDLoc(MachineNode),
6578                                            MVT::i1, MachineNode->getOperand(0).
6579                                                       getOperand(0),
6580                                            MachineNode->getOperand(1));
6581         else if (Op2Not)
6582           // nand(x, ~y) = ~x | y = orc(y, x)
6583           ResNode = CurDAG->getMachineNode(PPC::CRORC, SDLoc(MachineNode),
6584                                            MVT::i1, MachineNode->getOperand(1).
6585                                                       getOperand(0),
6586                                            MachineNode->getOperand(0));
6587         else if (AllUsersSelectZero(MachineNode)) {
6588           ResNode = CurDAG->getMachineNode(PPC::CRAND, SDLoc(MachineNode),
6589                                            MVT::i1, MachineNode->getOperand(0),
6590                                            MachineNode->getOperand(1));
6591           SelectSwap = true;
6592         }
6593         break;
6594       case PPC::CROR:
6595         if (MachineNode->getOperand(0) == MachineNode->getOperand(1))
6596           // x | x = x
6597           ResNode = MachineNode->getOperand(0).getNode();
6598         else if (Op1Set || Op2Set)
6599           // x | 1 = 1 | y = 1
6600           ResNode = CurDAG->getMachineNode(PPC::CRSET, SDLoc(MachineNode),
6601                                            MVT::i1);
6602         else if (Op1Unset)
6603           // 0 | y = y
6604           ResNode = MachineNode->getOperand(1).getNode();
6605         else if (Op2Unset)
6606           // x | 0 = x
6607           ResNode = MachineNode->getOperand(0).getNode();
6608         else if (Op1Not)
6609           // ~x | y = orc(y, x)
6610           ResNode = CurDAG->getMachineNode(PPC::CRORC, SDLoc(MachineNode),
6611                                            MVT::i1, MachineNode->getOperand(1),
6612                                            MachineNode->getOperand(0).
6613                                              getOperand(0));
6614         else if (Op2Not)
6615           // x | ~y = orc(x, y)
6616           ResNode = CurDAG->getMachineNode(PPC::CRORC, SDLoc(MachineNode),
6617                                            MVT::i1, MachineNode->getOperand(0),
6618                                            MachineNode->getOperand(1).
6619                                              getOperand(0));
6620         else if (AllUsersSelectZero(MachineNode)) {
6621           ResNode = CurDAG->getMachineNode(PPC::CRNOR, SDLoc(MachineNode),
6622                                            MVT::i1, MachineNode->getOperand(0),
6623                                            MachineNode->getOperand(1));
6624           SelectSwap = true;
6625         }
6626         break;
6627       case PPC::CRXOR:
6628         if (MachineNode->getOperand(0) == MachineNode->getOperand(1))
6629           // xor(x, x) = 0
6630           ResNode = CurDAG->getMachineNode(PPC::CRUNSET, SDLoc(MachineNode),
6631                                            MVT::i1);
6632         else if (Op1Set)
6633           // xor(1, y) -> nor(y, y)
6634           ResNode = CurDAG->getMachineNode(PPC::CRNOR, SDLoc(MachineNode),
6635                                            MVT::i1, MachineNode->getOperand(1),
6636                                            MachineNode->getOperand(1));
6637         else if (Op2Set)
6638           // xor(x, 1) -> nor(x, x)
6639           ResNode = CurDAG->getMachineNode(PPC::CRNOR, SDLoc(MachineNode),
6640                                            MVT::i1, MachineNode->getOperand(0),
6641                                            MachineNode->getOperand(0));
6642         else if (Op1Unset)
6643           // xor(0, y) = y
6644           ResNode = MachineNode->getOperand(1).getNode();
6645         else if (Op2Unset)
6646           // xor(x, 0) = x
6647           ResNode = MachineNode->getOperand(0).getNode();
6648         else if (Op1Not)
6649           // xor(~x, y) = eqv(x, y)
6650           ResNode = CurDAG->getMachineNode(PPC::CREQV, SDLoc(MachineNode),
6651                                            MVT::i1, MachineNode->getOperand(0).
6652                                                       getOperand(0),
6653                                            MachineNode->getOperand(1));
6654         else if (Op2Not)
6655           // xor(x, ~y) = eqv(x, y)
6656           ResNode = CurDAG->getMachineNode(PPC::CREQV, SDLoc(MachineNode),
6657                                            MVT::i1, MachineNode->getOperand(0),
6658                                            MachineNode->getOperand(1).
6659                                              getOperand(0));
6660         else if (AllUsersSelectZero(MachineNode)) {
6661           ResNode = CurDAG->getMachineNode(PPC::CREQV, SDLoc(MachineNode),
6662                                            MVT::i1, MachineNode->getOperand(0),
6663                                            MachineNode->getOperand(1));
6664           SelectSwap = true;
6665         }
6666         break;
6667       case PPC::CRNOR:
6668         if (Op1Set || Op2Set)
6669           // nor(1, y) -> 0
6670           ResNode = CurDAG->getMachineNode(PPC::CRUNSET, SDLoc(MachineNode),
6671                                            MVT::i1);
6672         else if (Op1Unset)
6673           // nor(0, y) = ~y -> nor(y, y)
6674           ResNode = CurDAG->getMachineNode(PPC::CRNOR, SDLoc(MachineNode),
6675                                            MVT::i1, MachineNode->getOperand(1),
6676                                            MachineNode->getOperand(1));
6677         else if (Op2Unset)
6678           // nor(x, 0) = ~x
6679           ResNode = CurDAG->getMachineNode(PPC::CRNOR, SDLoc(MachineNode),
6680                                            MVT::i1, MachineNode->getOperand(0),
6681                                            MachineNode->getOperand(0));
6682         else if (Op1Not)
6683           // nor(~x, y) = andc(x, y)
6684           ResNode = CurDAG->getMachineNode(PPC::CRANDC, SDLoc(MachineNode),
6685                                            MVT::i1, MachineNode->getOperand(0).
6686                                                       getOperand(0),
6687                                            MachineNode->getOperand(1));
6688         else if (Op2Not)
6689           // nor(x, ~y) = andc(y, x)
6690           ResNode = CurDAG->getMachineNode(PPC::CRANDC, SDLoc(MachineNode),
6691                                            MVT::i1, MachineNode->getOperand(1).
6692                                                       getOperand(0),
6693                                            MachineNode->getOperand(0));
6694         else if (AllUsersSelectZero(MachineNode)) {
6695           ResNode = CurDAG->getMachineNode(PPC::CROR, SDLoc(MachineNode),
6696                                            MVT::i1, MachineNode->getOperand(0),
6697                                            MachineNode->getOperand(1));
6698           SelectSwap = true;
6699         }
6700         break;
6701       case PPC::CREQV:
6702         if (MachineNode->getOperand(0) == MachineNode->getOperand(1))
6703           // eqv(x, x) = 1
6704           ResNode = CurDAG->getMachineNode(PPC::CRSET, SDLoc(MachineNode),
6705                                            MVT::i1);
6706         else if (Op1Set)
6707           // eqv(1, y) = y
6708           ResNode = MachineNode->getOperand(1).getNode();
6709         else if (Op2Set)
6710           // eqv(x, 1) = x
6711           ResNode = MachineNode->getOperand(0).getNode();
6712         else if (Op1Unset)
6713           // eqv(0, y) = ~y -> nor(y, y)
6714           ResNode = CurDAG->getMachineNode(PPC::CRNOR, SDLoc(MachineNode),
6715                                            MVT::i1, MachineNode->getOperand(1),
6716                                            MachineNode->getOperand(1));
6717         else if (Op2Unset)
6718           // eqv(x, 0) = ~x
6719           ResNode = CurDAG->getMachineNode(PPC::CRNOR, SDLoc(MachineNode),
6720                                            MVT::i1, MachineNode->getOperand(0),
6721                                            MachineNode->getOperand(0));
6722         else if (Op1Not)
6723           // eqv(~x, y) = xor(x, y)
6724           ResNode = CurDAG->getMachineNode(PPC::CRXOR, SDLoc(MachineNode),
6725                                            MVT::i1, MachineNode->getOperand(0).
6726                                                       getOperand(0),
6727                                            MachineNode->getOperand(1));
6728         else if (Op2Not)
6729           // eqv(x, ~y) = xor(x, y)
6730           ResNode = CurDAG->getMachineNode(PPC::CRXOR, SDLoc(MachineNode),
6731                                            MVT::i1, MachineNode->getOperand(0),
6732                                            MachineNode->getOperand(1).
6733                                              getOperand(0));
6734         else if (AllUsersSelectZero(MachineNode)) {
6735           ResNode = CurDAG->getMachineNode(PPC::CRXOR, SDLoc(MachineNode),
6736                                            MVT::i1, MachineNode->getOperand(0),
6737                                            MachineNode->getOperand(1));
6738           SelectSwap = true;
6739         }
6740         break;
6741       case PPC::CRANDC:
6742         if (MachineNode->getOperand(0) == MachineNode->getOperand(1))
6743           // andc(x, x) = 0
6744           ResNode = CurDAG->getMachineNode(PPC::CRUNSET, SDLoc(MachineNode),
6745                                            MVT::i1);
6746         else if (Op1Set)
6747           // andc(1, y) = ~y
6748           ResNode = CurDAG->getMachineNode(PPC::CRNOR, SDLoc(MachineNode),
6749                                            MVT::i1, MachineNode->getOperand(1),
6750                                            MachineNode->getOperand(1));
6751         else if (Op1Unset || Op2Set)
6752           // andc(0, y) = andc(x, 1) = 0
6753           ResNode = CurDAG->getMachineNode(PPC::CRUNSET, SDLoc(MachineNode),
6754                                            MVT::i1);
6755         else if (Op2Unset)
6756           // andc(x, 0) = x
6757           ResNode = MachineNode->getOperand(0).getNode();
6758         else if (Op1Not)
6759           // andc(~x, y) = ~(x | y) = nor(x, y)
6760           ResNode = CurDAG->getMachineNode(PPC::CRNOR, SDLoc(MachineNode),
6761                                            MVT::i1, MachineNode->getOperand(0).
6762                                                       getOperand(0),
6763                                            MachineNode->getOperand(1));
6764         else if (Op2Not)
6765           // andc(x, ~y) = x & y
6766           ResNode = CurDAG->getMachineNode(PPC::CRAND, SDLoc(MachineNode),
6767                                            MVT::i1, MachineNode->getOperand(0),
6768                                            MachineNode->getOperand(1).
6769                                              getOperand(0));
6770         else if (AllUsersSelectZero(MachineNode)) {
6771           ResNode = CurDAG->getMachineNode(PPC::CRORC, SDLoc(MachineNode),
6772                                            MVT::i1, MachineNode->getOperand(1),
6773                                            MachineNode->getOperand(0));
6774           SelectSwap = true;
6775         }
6776         break;
6777       case PPC::CRORC:
6778         if (MachineNode->getOperand(0) == MachineNode->getOperand(1))
6779           // orc(x, x) = 1
6780           ResNode = CurDAG->getMachineNode(PPC::CRSET, SDLoc(MachineNode),
6781                                            MVT::i1);
6782         else if (Op1Set || Op2Unset)
6783           // orc(1, y) = orc(x, 0) = 1
6784           ResNode = CurDAG->getMachineNode(PPC::CRSET, SDLoc(MachineNode),
6785                                            MVT::i1);
6786         else if (Op2Set)
6787           // orc(x, 1) = x
6788           ResNode = MachineNode->getOperand(0).getNode();
6789         else if (Op1Unset)
6790           // orc(0, y) = ~y
6791           ResNode = CurDAG->getMachineNode(PPC::CRNOR, SDLoc(MachineNode),
6792                                            MVT::i1, MachineNode->getOperand(1),
6793                                            MachineNode->getOperand(1));
6794         else if (Op1Not)
6795           // orc(~x, y) = ~(x & y) = nand(x, y)
6796           ResNode = CurDAG->getMachineNode(PPC::CRNAND, SDLoc(MachineNode),
6797                                            MVT::i1, MachineNode->getOperand(0).
6798                                                       getOperand(0),
6799                                            MachineNode->getOperand(1));
6800         else if (Op2Not)
6801           // orc(x, ~y) = x | y
6802           ResNode = CurDAG->getMachineNode(PPC::CROR, SDLoc(MachineNode),
6803                                            MVT::i1, MachineNode->getOperand(0),
6804                                            MachineNode->getOperand(1).
6805                                              getOperand(0));
6806         else if (AllUsersSelectZero(MachineNode)) {
6807           ResNode = CurDAG->getMachineNode(PPC::CRANDC, SDLoc(MachineNode),
6808                                            MVT::i1, MachineNode->getOperand(1),
6809                                            MachineNode->getOperand(0));
6810           SelectSwap = true;
6811         }
6812         break;
6813       case PPC::SELECT_I4:
6814       case PPC::SELECT_I8:
6815       case PPC::SELECT_F4:
6816       case PPC::SELECT_F8:
6817       case PPC::SELECT_SPE:
6818       case PPC::SELECT_SPE4:
6819       case PPC::SELECT_VRRC:
6820       case PPC::SELECT_VSFRC:
6821       case PPC::SELECT_VSSRC:
6822       case PPC::SELECT_VSRC:
6823         if (Op1Set)
6824           ResNode = MachineNode->getOperand(1).getNode();
6825         else if (Op1Unset)
6826           ResNode = MachineNode->getOperand(2).getNode();
6827         else if (Op1Not)
6828           ResNode = CurDAG->getMachineNode(MachineNode->getMachineOpcode(),
6829                                            SDLoc(MachineNode),
6830                                            MachineNode->getValueType(0),
6831                                            MachineNode->getOperand(0).
6832                                              getOperand(0),
6833                                            MachineNode->getOperand(2),
6834                                            MachineNode->getOperand(1));
6835         break;
6836       case PPC::BC:
6837       case PPC::BCn:
6838         if (Op1Not)
6839           ResNode = CurDAG->getMachineNode(Opcode == PPC::BC ? PPC::BCn :
6840                                                                PPC::BC,
6841                                            SDLoc(MachineNode),
6842                                            MVT::Other,
6843                                            MachineNode->getOperand(0).
6844                                              getOperand(0),
6845                                            MachineNode->getOperand(1),
6846                                            MachineNode->getOperand(2));
6847         // FIXME: Handle Op1Set, Op1Unset here too.
6848         break;
6849       }
6850 
6851       // If we're inverting this node because it is used only by selects that
6852       // we'd like to swap, then swap the selects before the node replacement.
6853       if (SelectSwap)
6854         SwapAllSelectUsers(MachineNode);
6855 
6856       if (ResNode != MachineNode) {
6857         LLVM_DEBUG(dbgs() << "CR Peephole replacing:\nOld:    ");
6858         LLVM_DEBUG(MachineNode->dump(CurDAG));
6859         LLVM_DEBUG(dbgs() << "\nNew: ");
6860         LLVM_DEBUG(ResNode->dump(CurDAG));
6861         LLVM_DEBUG(dbgs() << "\n");
6862 
6863         ReplaceUses(MachineNode, ResNode);
6864         IsModified = true;
6865       }
6866     }
6867     if (IsModified)
6868       CurDAG->RemoveDeadNodes();
6869   } while (IsModified);
6870 }
6871 
6872 // Gather the set of 32-bit operations that are known to have their
6873 // higher-order 32 bits zero, where ToPromote contains all such operations.
6874 static bool PeepholePPC64ZExtGather(SDValue Op32,
6875                                     SmallPtrSetImpl<SDNode *> &ToPromote) {
6876   if (!Op32.isMachineOpcode())
6877     return false;
6878 
6879   // First, check for the "frontier" instructions (those that will clear the
6880   // higher-order 32 bits.
6881 
6882   // For RLWINM and RLWNM, we need to make sure that the mask does not wrap
6883   // around. If it does not, then these instructions will clear the
6884   // higher-order bits.
6885   if ((Op32.getMachineOpcode() == PPC::RLWINM ||
6886        Op32.getMachineOpcode() == PPC::RLWNM) &&
6887       Op32.getConstantOperandVal(2) <= Op32.getConstantOperandVal(3)) {
6888     ToPromote.insert(Op32.getNode());
6889     return true;
6890   }
6891 
6892   // SLW and SRW always clear the higher-order bits.
6893   if (Op32.getMachineOpcode() == PPC::SLW ||
6894       Op32.getMachineOpcode() == PPC::SRW) {
6895     ToPromote.insert(Op32.getNode());
6896     return true;
6897   }
6898 
6899   // For LI and LIS, we need the immediate to be positive (so that it is not
6900   // sign extended).
6901   if (Op32.getMachineOpcode() == PPC::LI ||
6902       Op32.getMachineOpcode() == PPC::LIS) {
6903     if (!isUInt<15>(Op32.getConstantOperandVal(0)))
6904       return false;
6905 
6906     ToPromote.insert(Op32.getNode());
6907     return true;
6908   }
6909 
6910   // LHBRX and LWBRX always clear the higher-order bits.
6911   if (Op32.getMachineOpcode() == PPC::LHBRX ||
6912       Op32.getMachineOpcode() == PPC::LWBRX) {
6913     ToPromote.insert(Op32.getNode());
6914     return true;
6915   }
6916 
6917   // CNT[LT]ZW always produce a 64-bit value in [0,32], and so is zero extended.
6918   if (Op32.getMachineOpcode() == PPC::CNTLZW ||
6919       Op32.getMachineOpcode() == PPC::CNTTZW) {
6920     ToPromote.insert(Op32.getNode());
6921     return true;
6922   }
6923 
6924   // Next, check for those instructions we can look through.
6925 
6926   // Assuming the mask does not wrap around, then the higher-order bits are
6927   // taken directly from the first operand.
6928   if (Op32.getMachineOpcode() == PPC::RLWIMI &&
6929       Op32.getConstantOperandVal(3) <= Op32.getConstantOperandVal(4)) {
6930     SmallPtrSet<SDNode *, 16> ToPromote1;
6931     if (!PeepholePPC64ZExtGather(Op32.getOperand(0), ToPromote1))
6932       return false;
6933 
6934     ToPromote.insert(Op32.getNode());
6935     ToPromote.insert(ToPromote1.begin(), ToPromote1.end());
6936     return true;
6937   }
6938 
6939   // For OR, the higher-order bits are zero if that is true for both operands.
6940   // For SELECT_I4, the same is true (but the relevant operand numbers are
6941   // shifted by 1).
6942   if (Op32.getMachineOpcode() == PPC::OR ||
6943       Op32.getMachineOpcode() == PPC::SELECT_I4) {
6944     unsigned B = Op32.getMachineOpcode() == PPC::SELECT_I4 ? 1 : 0;
6945     SmallPtrSet<SDNode *, 16> ToPromote1;
6946     if (!PeepholePPC64ZExtGather(Op32.getOperand(B+0), ToPromote1))
6947       return false;
6948     if (!PeepholePPC64ZExtGather(Op32.getOperand(B+1), ToPromote1))
6949       return false;
6950 
6951     ToPromote.insert(Op32.getNode());
6952     ToPromote.insert(ToPromote1.begin(), ToPromote1.end());
6953     return true;
6954   }
6955 
6956   // For ORI and ORIS, we need the higher-order bits of the first operand to be
6957   // zero, and also for the constant to be positive (so that it is not sign
6958   // extended).
6959   if (Op32.getMachineOpcode() == PPC::ORI ||
6960       Op32.getMachineOpcode() == PPC::ORIS) {
6961     SmallPtrSet<SDNode *, 16> ToPromote1;
6962     if (!PeepholePPC64ZExtGather(Op32.getOperand(0), ToPromote1))
6963       return false;
6964     if (!isUInt<15>(Op32.getConstantOperandVal(1)))
6965       return false;
6966 
6967     ToPromote.insert(Op32.getNode());
6968     ToPromote.insert(ToPromote1.begin(), ToPromote1.end());
6969     return true;
6970   }
6971 
6972   // The higher-order bits of AND are zero if that is true for at least one of
6973   // the operands.
6974   if (Op32.getMachineOpcode() == PPC::AND) {
6975     SmallPtrSet<SDNode *, 16> ToPromote1, ToPromote2;
6976     bool Op0OK =
6977       PeepholePPC64ZExtGather(Op32.getOperand(0), ToPromote1);
6978     bool Op1OK =
6979       PeepholePPC64ZExtGather(Op32.getOperand(1), ToPromote2);
6980     if (!Op0OK && !Op1OK)
6981       return false;
6982 
6983     ToPromote.insert(Op32.getNode());
6984 
6985     if (Op0OK)
6986       ToPromote.insert(ToPromote1.begin(), ToPromote1.end());
6987 
6988     if (Op1OK)
6989       ToPromote.insert(ToPromote2.begin(), ToPromote2.end());
6990 
6991     return true;
6992   }
6993 
6994   // For ANDI and ANDIS, the higher-order bits are zero if either that is true
6995   // of the first operand, or if the second operand is positive (so that it is
6996   // not sign extended).
6997   if (Op32.getMachineOpcode() == PPC::ANDI_rec ||
6998       Op32.getMachineOpcode() == PPC::ANDIS_rec) {
6999     SmallPtrSet<SDNode *, 16> ToPromote1;
7000     bool Op0OK =
7001       PeepholePPC64ZExtGather(Op32.getOperand(0), ToPromote1);
7002     bool Op1OK = isUInt<15>(Op32.getConstantOperandVal(1));
7003     if (!Op0OK && !Op1OK)
7004       return false;
7005 
7006     ToPromote.insert(Op32.getNode());
7007 
7008     if (Op0OK)
7009       ToPromote.insert(ToPromote1.begin(), ToPromote1.end());
7010 
7011     return true;
7012   }
7013 
7014   return false;
7015 }
7016 
7017 void PPCDAGToDAGISel::PeepholePPC64ZExt() {
7018   if (!Subtarget->isPPC64())
7019     return;
7020 
7021   // When we zero-extend from i32 to i64, we use a pattern like this:
7022   // def : Pat<(i64 (zext i32:$in)),
7023   //           (RLDICL (INSERT_SUBREG (i64 (IMPLICIT_DEF)), $in, sub_32),
7024   //                   0, 32)>;
7025   // There are several 32-bit shift/rotate instructions, however, that will
7026   // clear the higher-order bits of their output, rendering the RLDICL
7027   // unnecessary. When that happens, we remove it here, and redefine the
7028   // relevant 32-bit operation to be a 64-bit operation.
7029 
7030   SelectionDAG::allnodes_iterator Position = CurDAG->allnodes_end();
7031 
7032   bool MadeChange = false;
7033   while (Position != CurDAG->allnodes_begin()) {
7034     SDNode *N = &*--Position;
7035     // Skip dead nodes and any non-machine opcodes.
7036     if (N->use_empty() || !N->isMachineOpcode())
7037       continue;
7038 
7039     if (N->getMachineOpcode() != PPC::RLDICL)
7040       continue;
7041 
7042     if (N->getConstantOperandVal(1) != 0 ||
7043         N->getConstantOperandVal(2) != 32)
7044       continue;
7045 
7046     SDValue ISR = N->getOperand(0);
7047     if (!ISR.isMachineOpcode() ||
7048         ISR.getMachineOpcode() != TargetOpcode::INSERT_SUBREG)
7049       continue;
7050 
7051     if (!ISR.hasOneUse())
7052       continue;
7053 
7054     if (ISR.getConstantOperandVal(2) != PPC::sub_32)
7055       continue;
7056 
7057     SDValue IDef = ISR.getOperand(0);
7058     if (!IDef.isMachineOpcode() ||
7059         IDef.getMachineOpcode() != TargetOpcode::IMPLICIT_DEF)
7060       continue;
7061 
7062     // We now know that we're looking at a canonical i32 -> i64 zext. See if we
7063     // can get rid of it.
7064 
7065     SDValue Op32 = ISR->getOperand(1);
7066     if (!Op32.isMachineOpcode())
7067       continue;
7068 
7069     // There are some 32-bit instructions that always clear the high-order 32
7070     // bits, there are also some instructions (like AND) that we can look
7071     // through.
7072     SmallPtrSet<SDNode *, 16> ToPromote;
7073     if (!PeepholePPC64ZExtGather(Op32, ToPromote))
7074       continue;
7075 
7076     // If the ToPromote set contains nodes that have uses outside of the set
7077     // (except for the original INSERT_SUBREG), then abort the transformation.
7078     bool OutsideUse = false;
7079     for (SDNode *PN : ToPromote) {
7080       for (SDNode *UN : PN->uses()) {
7081         if (!ToPromote.count(UN) && UN != ISR.getNode()) {
7082           OutsideUse = true;
7083           break;
7084         }
7085       }
7086 
7087       if (OutsideUse)
7088         break;
7089     }
7090     if (OutsideUse)
7091       continue;
7092 
7093     MadeChange = true;
7094 
7095     // We now know that this zero extension can be removed by promoting to
7096     // nodes in ToPromote to 64-bit operations, where for operations in the
7097     // frontier of the set, we need to insert INSERT_SUBREGs for their
7098     // operands.
7099     for (SDNode *PN : ToPromote) {
7100       unsigned NewOpcode;
7101       switch (PN->getMachineOpcode()) {
7102       default:
7103         llvm_unreachable("Don't know the 64-bit variant of this instruction");
7104       case PPC::RLWINM:    NewOpcode = PPC::RLWINM8; break;
7105       case PPC::RLWNM:     NewOpcode = PPC::RLWNM8; break;
7106       case PPC::SLW:       NewOpcode = PPC::SLW8; break;
7107       case PPC::SRW:       NewOpcode = PPC::SRW8; break;
7108       case PPC::LI:        NewOpcode = PPC::LI8; break;
7109       case PPC::LIS:       NewOpcode = PPC::LIS8; break;
7110       case PPC::LHBRX:     NewOpcode = PPC::LHBRX8; break;
7111       case PPC::LWBRX:     NewOpcode = PPC::LWBRX8; break;
7112       case PPC::CNTLZW:    NewOpcode = PPC::CNTLZW8; break;
7113       case PPC::CNTTZW:    NewOpcode = PPC::CNTTZW8; break;
7114       case PPC::RLWIMI:    NewOpcode = PPC::RLWIMI8; break;
7115       case PPC::OR:        NewOpcode = PPC::OR8; break;
7116       case PPC::SELECT_I4: NewOpcode = PPC::SELECT_I8; break;
7117       case PPC::ORI:       NewOpcode = PPC::ORI8; break;
7118       case PPC::ORIS:      NewOpcode = PPC::ORIS8; break;
7119       case PPC::AND:       NewOpcode = PPC::AND8; break;
7120       case PPC::ANDI_rec:
7121         NewOpcode = PPC::ANDI8_rec;
7122         break;
7123       case PPC::ANDIS_rec:
7124         NewOpcode = PPC::ANDIS8_rec;
7125         break;
7126       }
7127 
7128       // Note: During the replacement process, the nodes will be in an
7129       // inconsistent state (some instructions will have operands with values
7130       // of the wrong type). Once done, however, everything should be right
7131       // again.
7132 
7133       SmallVector<SDValue, 4> Ops;
7134       for (const SDValue &V : PN->ops()) {
7135         if (!ToPromote.count(V.getNode()) && V.getValueType() == MVT::i32 &&
7136             !isa<ConstantSDNode>(V)) {
7137           SDValue ReplOpOps[] = { ISR.getOperand(0), V, ISR.getOperand(2) };
7138           SDNode *ReplOp =
7139             CurDAG->getMachineNode(TargetOpcode::INSERT_SUBREG, SDLoc(V),
7140                                    ISR.getNode()->getVTList(), ReplOpOps);
7141           Ops.push_back(SDValue(ReplOp, 0));
7142         } else {
7143           Ops.push_back(V);
7144         }
7145       }
7146 
7147       // Because all to-be-promoted nodes only have users that are other
7148       // promoted nodes (or the original INSERT_SUBREG), we can safely replace
7149       // the i32 result value type with i64.
7150 
7151       SmallVector<EVT, 2> NewVTs;
7152       SDVTList VTs = PN->getVTList();
7153       for (unsigned i = 0, ie = VTs.NumVTs; i != ie; ++i)
7154         if (VTs.VTs[i] == MVT::i32)
7155           NewVTs.push_back(MVT::i64);
7156         else
7157           NewVTs.push_back(VTs.VTs[i]);
7158 
7159       LLVM_DEBUG(dbgs() << "PPC64 ZExt Peephole morphing:\nOld:    ");
7160       LLVM_DEBUG(PN->dump(CurDAG));
7161 
7162       CurDAG->SelectNodeTo(PN, NewOpcode, CurDAG->getVTList(NewVTs), Ops);
7163 
7164       LLVM_DEBUG(dbgs() << "\nNew: ");
7165       LLVM_DEBUG(PN->dump(CurDAG));
7166       LLVM_DEBUG(dbgs() << "\n");
7167     }
7168 
7169     // Now we replace the original zero extend and its associated INSERT_SUBREG
7170     // with the value feeding the INSERT_SUBREG (which has now been promoted to
7171     // return an i64).
7172 
7173     LLVM_DEBUG(dbgs() << "PPC64 ZExt Peephole replacing:\nOld:    ");
7174     LLVM_DEBUG(N->dump(CurDAG));
7175     LLVM_DEBUG(dbgs() << "\nNew: ");
7176     LLVM_DEBUG(Op32.getNode()->dump(CurDAG));
7177     LLVM_DEBUG(dbgs() << "\n");
7178 
7179     ReplaceUses(N, Op32.getNode());
7180   }
7181 
7182   if (MadeChange)
7183     CurDAG->RemoveDeadNodes();
7184 }
7185 
7186 static bool isVSXSwap(SDValue N) {
7187   if (!N->isMachineOpcode())
7188     return false;
7189   unsigned Opc = N->getMachineOpcode();
7190 
7191   // Single-operand XXPERMDI or the regular XXPERMDI/XXSLDWI where the immediate
7192   // operand is 2.
7193   if (Opc == PPC::XXPERMDIs) {
7194     return isa<ConstantSDNode>(N->getOperand(1)) &&
7195            N->getConstantOperandVal(1) == 2;
7196   } else if (Opc == PPC::XXPERMDI || Opc == PPC::XXSLDWI) {
7197     return N->getOperand(0) == N->getOperand(1) &&
7198            isa<ConstantSDNode>(N->getOperand(2)) &&
7199            N->getConstantOperandVal(2) == 2;
7200   }
7201 
7202   return false;
7203 }
7204 
7205 // TODO: Make this complete and replace with a table-gen bit.
7206 static bool isLaneInsensitive(SDValue N) {
7207   if (!N->isMachineOpcode())
7208     return false;
7209   unsigned Opc = N->getMachineOpcode();
7210 
7211   switch (Opc) {
7212   default:
7213     return false;
7214   case PPC::VAVGSB:
7215   case PPC::VAVGUB:
7216   case PPC::VAVGSH:
7217   case PPC::VAVGUH:
7218   case PPC::VAVGSW:
7219   case PPC::VAVGUW:
7220   case PPC::VMAXFP:
7221   case PPC::VMAXSB:
7222   case PPC::VMAXUB:
7223   case PPC::VMAXSH:
7224   case PPC::VMAXUH:
7225   case PPC::VMAXSW:
7226   case PPC::VMAXUW:
7227   case PPC::VMINFP:
7228   case PPC::VMINSB:
7229   case PPC::VMINUB:
7230   case PPC::VMINSH:
7231   case PPC::VMINUH:
7232   case PPC::VMINSW:
7233   case PPC::VMINUW:
7234   case PPC::VADDFP:
7235   case PPC::VADDUBM:
7236   case PPC::VADDUHM:
7237   case PPC::VADDUWM:
7238   case PPC::VSUBFP:
7239   case PPC::VSUBUBM:
7240   case PPC::VSUBUHM:
7241   case PPC::VSUBUWM:
7242   case PPC::VAND:
7243   case PPC::VANDC:
7244   case PPC::VOR:
7245   case PPC::VORC:
7246   case PPC::VXOR:
7247   case PPC::VNOR:
7248   case PPC::VMULUWM:
7249     return true;
7250   }
7251 }
7252 
7253 // Try to simplify (xxswap (vec-op (xxswap) (xxswap))) where vec-op is
7254 // lane-insensitive.
7255 static void reduceVSXSwap(SDNode *N, SelectionDAG *DAG) {
7256   // Our desired xxswap might be source of COPY_TO_REGCLASS.
7257   // TODO: Can we put this a common method for DAG?
7258   auto SkipRCCopy = [](SDValue V) {
7259     while (V->isMachineOpcode() &&
7260            V->getMachineOpcode() == TargetOpcode::COPY_TO_REGCLASS) {
7261       // All values in the chain should have single use.
7262       if (V->use_empty() || !V->use_begin()->isOnlyUserOf(V.getNode()))
7263         return SDValue();
7264       V = V->getOperand(0);
7265     }
7266     return V.hasOneUse() ? V : SDValue();
7267   };
7268 
7269   SDValue VecOp = SkipRCCopy(N->getOperand(0));
7270   if (!VecOp || !isLaneInsensitive(VecOp))
7271     return;
7272 
7273   SDValue LHS = SkipRCCopy(VecOp.getOperand(0)),
7274           RHS = SkipRCCopy(VecOp.getOperand(1));
7275   if (!LHS || !RHS || !isVSXSwap(LHS) || !isVSXSwap(RHS))
7276     return;
7277 
7278   // These swaps may still have chain-uses here, count on dead code elimination
7279   // in following passes to remove them.
7280   DAG->ReplaceAllUsesOfValueWith(LHS, LHS.getOperand(0));
7281   DAG->ReplaceAllUsesOfValueWith(RHS, RHS.getOperand(0));
7282   DAG->ReplaceAllUsesOfValueWith(SDValue(N, 0), N->getOperand(0));
7283 }
7284 
7285 void PPCDAGToDAGISel::PeepholePPC64() {
7286   SelectionDAG::allnodes_iterator Position = CurDAG->allnodes_end();
7287 
7288   while (Position != CurDAG->allnodes_begin()) {
7289     SDNode *N = &*--Position;
7290     // Skip dead nodes and any non-machine opcodes.
7291     if (N->use_empty() || !N->isMachineOpcode())
7292       continue;
7293 
7294     if (isVSXSwap(SDValue(N, 0)))
7295       reduceVSXSwap(N, CurDAG);
7296 
7297     unsigned FirstOp;
7298     unsigned StorageOpcode = N->getMachineOpcode();
7299     bool RequiresMod4Offset = false;
7300 
7301     switch (StorageOpcode) {
7302     default: continue;
7303 
7304     case PPC::LWA:
7305     case PPC::LD:
7306     case PPC::DFLOADf64:
7307     case PPC::DFLOADf32:
7308       RequiresMod4Offset = true;
7309       LLVM_FALLTHROUGH;
7310     case PPC::LBZ:
7311     case PPC::LBZ8:
7312     case PPC::LFD:
7313     case PPC::LFS:
7314     case PPC::LHA:
7315     case PPC::LHA8:
7316     case PPC::LHZ:
7317     case PPC::LHZ8:
7318     case PPC::LWZ:
7319     case PPC::LWZ8:
7320       FirstOp = 0;
7321       break;
7322 
7323     case PPC::STD:
7324     case PPC::DFSTOREf64:
7325     case PPC::DFSTOREf32:
7326       RequiresMod4Offset = true;
7327       LLVM_FALLTHROUGH;
7328     case PPC::STB:
7329     case PPC::STB8:
7330     case PPC::STFD:
7331     case PPC::STFS:
7332     case PPC::STH:
7333     case PPC::STH8:
7334     case PPC::STW:
7335     case PPC::STW8:
7336       FirstOp = 1;
7337       break;
7338     }
7339 
7340     // If this is a load or store with a zero offset, or within the alignment,
7341     // we may be able to fold an add-immediate into the memory operation.
7342     // The check against alignment is below, as it can't occur until we check
7343     // the arguments to N
7344     if (!isa<ConstantSDNode>(N->getOperand(FirstOp)))
7345       continue;
7346 
7347     SDValue Base = N->getOperand(FirstOp + 1);
7348     if (!Base.isMachineOpcode())
7349       continue;
7350 
7351     unsigned Flags = 0;
7352     bool ReplaceFlags = true;
7353 
7354     // When the feeding operation is an add-immediate of some sort,
7355     // determine whether we need to add relocation information to the
7356     // target flags on the immediate operand when we fold it into the
7357     // load instruction.
7358     //
7359     // For something like ADDItocL, the relocation information is
7360     // inferred from the opcode; when we process it in the AsmPrinter,
7361     // we add the necessary relocation there.  A load, though, can receive
7362     // relocation from various flavors of ADDIxxx, so we need to carry
7363     // the relocation information in the target flags.
7364     switch (Base.getMachineOpcode()) {
7365     default: continue;
7366 
7367     case PPC::ADDI8:
7368     case PPC::ADDI:
7369       // In some cases (such as TLS) the relocation information
7370       // is already in place on the operand, so copying the operand
7371       // is sufficient.
7372       ReplaceFlags = false;
7373       // For these cases, the immediate may not be divisible by 4, in
7374       // which case the fold is illegal for DS-form instructions.  (The
7375       // other cases provide aligned addresses and are always safe.)
7376       if (RequiresMod4Offset &&
7377           (!isa<ConstantSDNode>(Base.getOperand(1)) ||
7378            Base.getConstantOperandVal(1) % 4 != 0))
7379         continue;
7380       break;
7381     case PPC::ADDIdtprelL:
7382       Flags = PPCII::MO_DTPREL_LO;
7383       break;
7384     case PPC::ADDItlsldL:
7385       Flags = PPCII::MO_TLSLD_LO;
7386       break;
7387     case PPC::ADDItocL:
7388       Flags = PPCII::MO_TOC_LO;
7389       break;
7390     }
7391 
7392     SDValue ImmOpnd = Base.getOperand(1);
7393 
7394     // On PPC64, the TOC base pointer is guaranteed by the ABI only to have
7395     // 8-byte alignment, and so we can only use offsets less than 8 (otherwise,
7396     // we might have needed different @ha relocation values for the offset
7397     // pointers).
7398     int MaxDisplacement = 7;
7399     if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(ImmOpnd)) {
7400       const GlobalValue *GV = GA->getGlobal();
7401       Align Alignment = GV->getPointerAlignment(CurDAG->getDataLayout());
7402       MaxDisplacement = std::min((int)Alignment.value() - 1, MaxDisplacement);
7403     }
7404 
7405     bool UpdateHBase = false;
7406     SDValue HBase = Base.getOperand(0);
7407 
7408     int Offset = N->getConstantOperandVal(FirstOp);
7409     if (ReplaceFlags) {
7410       if (Offset < 0 || Offset > MaxDisplacement) {
7411         // If we have a addi(toc@l)/addis(toc@ha) pair, and the addis has only
7412         // one use, then we can do this for any offset, we just need to also
7413         // update the offset (i.e. the symbol addend) on the addis also.
7414         if (Base.getMachineOpcode() != PPC::ADDItocL)
7415           continue;
7416 
7417         if (!HBase.isMachineOpcode() ||
7418             HBase.getMachineOpcode() != PPC::ADDIStocHA8)
7419           continue;
7420 
7421         if (!Base.hasOneUse() || !HBase.hasOneUse())
7422           continue;
7423 
7424         SDValue HImmOpnd = HBase.getOperand(1);
7425         if (HImmOpnd != ImmOpnd)
7426           continue;
7427 
7428         UpdateHBase = true;
7429       }
7430     } else {
7431       // If we're directly folding the addend from an addi instruction, then:
7432       //  1. In general, the offset on the memory access must be zero.
7433       //  2. If the addend is a constant, then it can be combined with a
7434       //     non-zero offset, but only if the result meets the encoding
7435       //     requirements.
7436       if (auto *C = dyn_cast<ConstantSDNode>(ImmOpnd)) {
7437         Offset += C->getSExtValue();
7438 
7439         if (RequiresMod4Offset && (Offset % 4) != 0)
7440           continue;
7441 
7442         if (!isInt<16>(Offset))
7443           continue;
7444 
7445         ImmOpnd = CurDAG->getTargetConstant(Offset, SDLoc(ImmOpnd),
7446                                             ImmOpnd.getValueType());
7447       } else if (Offset != 0) {
7448         continue;
7449       }
7450     }
7451 
7452     // We found an opportunity.  Reverse the operands from the add
7453     // immediate and substitute them into the load or store.  If
7454     // needed, update the target flags for the immediate operand to
7455     // reflect the necessary relocation information.
7456     LLVM_DEBUG(dbgs() << "Folding add-immediate into mem-op:\nBase:    ");
7457     LLVM_DEBUG(Base->dump(CurDAG));
7458     LLVM_DEBUG(dbgs() << "\nN: ");
7459     LLVM_DEBUG(N->dump(CurDAG));
7460     LLVM_DEBUG(dbgs() << "\n");
7461 
7462     // If the relocation information isn't already present on the
7463     // immediate operand, add it now.
7464     if (ReplaceFlags) {
7465       if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(ImmOpnd)) {
7466         SDLoc dl(GA);
7467         const GlobalValue *GV = GA->getGlobal();
7468         Align Alignment = GV->getPointerAlignment(CurDAG->getDataLayout());
7469         // We can't perform this optimization for data whose alignment
7470         // is insufficient for the instruction encoding.
7471         if (Alignment < 4 && (RequiresMod4Offset || (Offset % 4) != 0)) {
7472           LLVM_DEBUG(dbgs() << "Rejected this candidate for alignment.\n\n");
7473           continue;
7474         }
7475         ImmOpnd = CurDAG->getTargetGlobalAddress(GV, dl, MVT::i64, Offset, Flags);
7476       } else if (ConstantPoolSDNode *CP =
7477                  dyn_cast<ConstantPoolSDNode>(ImmOpnd)) {
7478         const Constant *C = CP->getConstVal();
7479         ImmOpnd = CurDAG->getTargetConstantPool(C, MVT::i64, CP->getAlign(),
7480                                                 Offset, Flags);
7481       }
7482     }
7483 
7484     if (FirstOp == 1) // Store
7485       (void)CurDAG->UpdateNodeOperands(N, N->getOperand(0), ImmOpnd,
7486                                        Base.getOperand(0), N->getOperand(3));
7487     else // Load
7488       (void)CurDAG->UpdateNodeOperands(N, ImmOpnd, Base.getOperand(0),
7489                                        N->getOperand(2));
7490 
7491     if (UpdateHBase)
7492       (void)CurDAG->UpdateNodeOperands(HBase.getNode(), HBase.getOperand(0),
7493                                        ImmOpnd);
7494 
7495     // The add-immediate may now be dead, in which case remove it.
7496     if (Base.getNode()->use_empty())
7497       CurDAG->RemoveDeadNode(Base.getNode());
7498   }
7499 }
7500 
7501 /// createPPCISelDag - This pass converts a legalized DAG into a
7502 /// PowerPC-specific DAG, ready for instruction scheduling.
7503 ///
7504 FunctionPass *llvm::createPPCISelDag(PPCTargetMachine &TM,
7505                                      CodeGenOpt::Level OptLevel) {
7506   return new PPCDAGToDAGISel(TM, OptLevel);
7507 }
7508