1 //===-- PPCISelLowering.cpp - PPC DAG Lowering Implementation -------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the PPCISelLowering class. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "PPCISelLowering.h" 14 #include "MCTargetDesc/PPCPredicates.h" 15 #include "PPC.h" 16 #include "PPCCCState.h" 17 #include "PPCCallingConv.h" 18 #include "PPCFrameLowering.h" 19 #include "PPCInstrInfo.h" 20 #include "PPCMachineFunctionInfo.h" 21 #include "PPCPerfectShuffle.h" 22 #include "PPCRegisterInfo.h" 23 #include "PPCSubtarget.h" 24 #include "PPCTargetMachine.h" 25 #include "llvm/ADT/APFloat.h" 26 #include "llvm/ADT/APInt.h" 27 #include "llvm/ADT/ArrayRef.h" 28 #include "llvm/ADT/DenseMap.h" 29 #include "llvm/ADT/None.h" 30 #include "llvm/ADT/STLExtras.h" 31 #include "llvm/ADT/SmallPtrSet.h" 32 #include "llvm/ADT/SmallSet.h" 33 #include "llvm/ADT/SmallVector.h" 34 #include "llvm/ADT/Statistic.h" 35 #include "llvm/ADT/StringRef.h" 36 #include "llvm/ADT/StringSwitch.h" 37 #include "llvm/CodeGen/CallingConvLower.h" 38 #include "llvm/CodeGen/ISDOpcodes.h" 39 #include "llvm/CodeGen/MachineBasicBlock.h" 40 #include "llvm/CodeGen/MachineFrameInfo.h" 41 #include "llvm/CodeGen/MachineFunction.h" 42 #include "llvm/CodeGen/MachineInstr.h" 43 #include "llvm/CodeGen/MachineInstrBuilder.h" 44 #include "llvm/CodeGen/MachineJumpTableInfo.h" 45 #include "llvm/CodeGen/MachineLoopInfo.h" 46 #include "llvm/CodeGen/MachineMemOperand.h" 47 #include "llvm/CodeGen/MachineModuleInfo.h" 48 #include "llvm/CodeGen/MachineOperand.h" 49 #include "llvm/CodeGen/MachineRegisterInfo.h" 50 #include "llvm/CodeGen/RuntimeLibcalls.h" 51 #include "llvm/CodeGen/SelectionDAG.h" 52 #include "llvm/CodeGen/SelectionDAGNodes.h" 53 #include "llvm/CodeGen/TargetInstrInfo.h" 54 #include "llvm/CodeGen/TargetLowering.h" 55 #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h" 56 #include "llvm/CodeGen/TargetRegisterInfo.h" 57 #include "llvm/CodeGen/ValueTypes.h" 58 #include "llvm/IR/CallingConv.h" 59 #include "llvm/IR/Constant.h" 60 #include "llvm/IR/Constants.h" 61 #include "llvm/IR/DataLayout.h" 62 #include "llvm/IR/DebugLoc.h" 63 #include "llvm/IR/DerivedTypes.h" 64 #include "llvm/IR/Function.h" 65 #include "llvm/IR/GlobalValue.h" 66 #include "llvm/IR/IRBuilder.h" 67 #include "llvm/IR/Instructions.h" 68 #include "llvm/IR/Intrinsics.h" 69 #include "llvm/IR/IntrinsicsPowerPC.h" 70 #include "llvm/IR/Module.h" 71 #include "llvm/IR/Type.h" 72 #include "llvm/IR/Use.h" 73 #include "llvm/IR/Value.h" 74 #include "llvm/MC/MCContext.h" 75 #include "llvm/MC/MCExpr.h" 76 #include "llvm/MC/MCRegisterInfo.h" 77 #include "llvm/MC/MCSectionXCOFF.h" 78 #include "llvm/MC/MCSymbolXCOFF.h" 79 #include "llvm/Support/AtomicOrdering.h" 80 #include "llvm/Support/BranchProbability.h" 81 #include "llvm/Support/Casting.h" 82 #include "llvm/Support/CodeGen.h" 83 #include "llvm/Support/CommandLine.h" 84 #include "llvm/Support/Compiler.h" 85 #include "llvm/Support/Debug.h" 86 #include "llvm/Support/ErrorHandling.h" 87 #include "llvm/Support/Format.h" 88 #include "llvm/Support/KnownBits.h" 89 #include "llvm/Support/MachineValueType.h" 90 #include "llvm/Support/MathExtras.h" 91 #include "llvm/Support/raw_ostream.h" 92 #include "llvm/Target/TargetMachine.h" 93 #include "llvm/Target/TargetOptions.h" 94 #include <algorithm> 95 #include <cassert> 96 #include <cstdint> 97 #include <iterator> 98 #include <list> 99 #include <utility> 100 #include <vector> 101 102 using namespace llvm; 103 104 #define DEBUG_TYPE "ppc-lowering" 105 106 static cl::opt<bool> DisablePPCPreinc("disable-ppc-preinc", 107 cl::desc("disable preincrement load/store generation on PPC"), cl::Hidden); 108 109 static cl::opt<bool> DisableILPPref("disable-ppc-ilp-pref", 110 cl::desc("disable setting the node scheduling preference to ILP on PPC"), cl::Hidden); 111 112 static cl::opt<bool> DisablePPCUnaligned("disable-ppc-unaligned", 113 cl::desc("disable unaligned load/store generation on PPC"), cl::Hidden); 114 115 static cl::opt<bool> DisableSCO("disable-ppc-sco", 116 cl::desc("disable sibling call optimization on ppc"), cl::Hidden); 117 118 static cl::opt<bool> DisableInnermostLoopAlign32("disable-ppc-innermost-loop-align32", 119 cl::desc("don't always align innermost loop to 32 bytes on ppc"), cl::Hidden); 120 121 static cl::opt<bool> UseAbsoluteJumpTables("ppc-use-absolute-jumptables", 122 cl::desc("use absolute jump tables on ppc"), cl::Hidden); 123 124 static cl::opt<bool> EnableQuadwordAtomics( 125 "ppc-quadword-atomics", 126 cl::desc("enable quadword lock-free atomic operations"), cl::init(false), 127 cl::Hidden); 128 129 STATISTIC(NumTailCalls, "Number of tail calls"); 130 STATISTIC(NumSiblingCalls, "Number of sibling calls"); 131 STATISTIC(ShufflesHandledWithVPERM, "Number of shuffles lowered to a VPERM"); 132 STATISTIC(NumDynamicAllocaProbed, "Number of dynamic stack allocation probed"); 133 134 static bool isNByteElemShuffleMask(ShuffleVectorSDNode *, unsigned, int); 135 136 static SDValue widenVec(SelectionDAG &DAG, SDValue Vec, const SDLoc &dl); 137 138 static const char AIXSSPCanaryWordName[] = "__ssp_canary_word"; 139 140 // FIXME: Remove this once the bug has been fixed! 141 extern cl::opt<bool> ANDIGlueBug; 142 143 PPCTargetLowering::PPCTargetLowering(const PPCTargetMachine &TM, 144 const PPCSubtarget &STI) 145 : TargetLowering(TM), Subtarget(STI) { 146 // Initialize map that relates the PPC addressing modes to the computed flags 147 // of a load/store instruction. The map is used to determine the optimal 148 // addressing mode when selecting load and stores. 149 initializeAddrModeMap(); 150 // On PPC32/64, arguments smaller than 4/8 bytes are extended, so all 151 // arguments are at least 4/8 bytes aligned. 152 bool isPPC64 = Subtarget.isPPC64(); 153 setMinStackArgumentAlignment(isPPC64 ? Align(8) : Align(4)); 154 155 // Set up the register classes. 156 addRegisterClass(MVT::i32, &PPC::GPRCRegClass); 157 if (!useSoftFloat()) { 158 if (hasSPE()) { 159 addRegisterClass(MVT::f32, &PPC::GPRCRegClass); 160 // EFPU2 APU only supports f32 161 if (!Subtarget.hasEFPU2()) 162 addRegisterClass(MVT::f64, &PPC::SPERCRegClass); 163 } else { 164 addRegisterClass(MVT::f32, &PPC::F4RCRegClass); 165 addRegisterClass(MVT::f64, &PPC::F8RCRegClass); 166 } 167 } 168 169 // Match BITREVERSE to customized fast code sequence in the td file. 170 setOperationAction(ISD::BITREVERSE, MVT::i32, Legal); 171 setOperationAction(ISD::BITREVERSE, MVT::i64, Legal); 172 173 // Sub-word ATOMIC_CMP_SWAP need to ensure that the input is zero-extended. 174 setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i32, Custom); 175 176 // Custom lower inline assembly to check for special registers. 177 setOperationAction(ISD::INLINEASM, MVT::Other, Custom); 178 setOperationAction(ISD::INLINEASM_BR, MVT::Other, Custom); 179 180 // PowerPC has an i16 but no i8 (or i1) SEXTLOAD. 181 for (MVT VT : MVT::integer_valuetypes()) { 182 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote); 183 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i8, Expand); 184 } 185 186 if (Subtarget.isISA3_0()) { 187 setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f16, Legal); 188 setLoadExtAction(ISD::EXTLOAD, MVT::f32, MVT::f16, Legal); 189 setTruncStoreAction(MVT::f64, MVT::f16, Legal); 190 setTruncStoreAction(MVT::f32, MVT::f16, Legal); 191 } else { 192 // No extending loads from f16 or HW conversions back and forth. 193 setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f16, Expand); 194 setOperationAction(ISD::FP16_TO_FP, MVT::f64, Expand); 195 setOperationAction(ISD::FP_TO_FP16, MVT::f64, Expand); 196 setLoadExtAction(ISD::EXTLOAD, MVT::f32, MVT::f16, Expand); 197 setOperationAction(ISD::FP16_TO_FP, MVT::f32, Expand); 198 setOperationAction(ISD::FP_TO_FP16, MVT::f32, Expand); 199 setTruncStoreAction(MVT::f64, MVT::f16, Expand); 200 setTruncStoreAction(MVT::f32, MVT::f16, Expand); 201 } 202 203 setTruncStoreAction(MVT::f64, MVT::f32, Expand); 204 205 // PowerPC has pre-inc load and store's. 206 setIndexedLoadAction(ISD::PRE_INC, MVT::i1, Legal); 207 setIndexedLoadAction(ISD::PRE_INC, MVT::i8, Legal); 208 setIndexedLoadAction(ISD::PRE_INC, MVT::i16, Legal); 209 setIndexedLoadAction(ISD::PRE_INC, MVT::i32, Legal); 210 setIndexedLoadAction(ISD::PRE_INC, MVT::i64, Legal); 211 setIndexedStoreAction(ISD::PRE_INC, MVT::i1, Legal); 212 setIndexedStoreAction(ISD::PRE_INC, MVT::i8, Legal); 213 setIndexedStoreAction(ISD::PRE_INC, MVT::i16, Legal); 214 setIndexedStoreAction(ISD::PRE_INC, MVT::i32, Legal); 215 setIndexedStoreAction(ISD::PRE_INC, MVT::i64, Legal); 216 if (!Subtarget.hasSPE()) { 217 setIndexedLoadAction(ISD::PRE_INC, MVT::f32, Legal); 218 setIndexedLoadAction(ISD::PRE_INC, MVT::f64, Legal); 219 setIndexedStoreAction(ISD::PRE_INC, MVT::f32, Legal); 220 setIndexedStoreAction(ISD::PRE_INC, MVT::f64, Legal); 221 } 222 223 // PowerPC uses ADDC/ADDE/SUBC/SUBE to propagate carry. 224 const MVT ScalarIntVTs[] = { MVT::i32, MVT::i64 }; 225 for (MVT VT : ScalarIntVTs) { 226 setOperationAction(ISD::ADDC, VT, Legal); 227 setOperationAction(ISD::ADDE, VT, Legal); 228 setOperationAction(ISD::SUBC, VT, Legal); 229 setOperationAction(ISD::SUBE, VT, Legal); 230 } 231 232 if (Subtarget.useCRBits()) { 233 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand); 234 235 if (isPPC64 || Subtarget.hasFPCVT()) { 236 setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::i1, Promote); 237 AddPromotedToType(ISD::STRICT_SINT_TO_FP, MVT::i1, 238 isPPC64 ? MVT::i64 : MVT::i32); 239 setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::i1, Promote); 240 AddPromotedToType(ISD::STRICT_UINT_TO_FP, MVT::i1, 241 isPPC64 ? MVT::i64 : MVT::i32); 242 243 setOperationAction(ISD::SINT_TO_FP, MVT::i1, Promote); 244 AddPromotedToType (ISD::SINT_TO_FP, MVT::i1, 245 isPPC64 ? MVT::i64 : MVT::i32); 246 setOperationAction(ISD::UINT_TO_FP, MVT::i1, Promote); 247 AddPromotedToType(ISD::UINT_TO_FP, MVT::i1, 248 isPPC64 ? MVT::i64 : MVT::i32); 249 250 setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::i1, Promote); 251 AddPromotedToType(ISD::STRICT_FP_TO_SINT, MVT::i1, 252 isPPC64 ? MVT::i64 : MVT::i32); 253 setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::i1, Promote); 254 AddPromotedToType(ISD::STRICT_FP_TO_UINT, MVT::i1, 255 isPPC64 ? MVT::i64 : MVT::i32); 256 257 setOperationAction(ISD::FP_TO_SINT, MVT::i1, Promote); 258 AddPromotedToType(ISD::FP_TO_SINT, MVT::i1, 259 isPPC64 ? MVT::i64 : MVT::i32); 260 setOperationAction(ISD::FP_TO_UINT, MVT::i1, Promote); 261 AddPromotedToType(ISD::FP_TO_UINT, MVT::i1, 262 isPPC64 ? MVT::i64 : MVT::i32); 263 } else { 264 setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::i1, Custom); 265 setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::i1, Custom); 266 setOperationAction(ISD::SINT_TO_FP, MVT::i1, Custom); 267 setOperationAction(ISD::UINT_TO_FP, MVT::i1, Custom); 268 } 269 270 // PowerPC does not support direct load/store of condition registers. 271 setOperationAction(ISD::LOAD, MVT::i1, Custom); 272 setOperationAction(ISD::STORE, MVT::i1, Custom); 273 274 // FIXME: Remove this once the ANDI glue bug is fixed: 275 if (ANDIGlueBug) 276 setOperationAction(ISD::TRUNCATE, MVT::i1, Custom); 277 278 for (MVT VT : MVT::integer_valuetypes()) { 279 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote); 280 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i1, Promote); 281 setTruncStoreAction(VT, MVT::i1, Expand); 282 } 283 284 addRegisterClass(MVT::i1, &PPC::CRBITRCRegClass); 285 } 286 287 // Expand ppcf128 to i32 by hand for the benefit of llvm-gcc bootstrap on 288 // PPC (the libcall is not available). 289 setOperationAction(ISD::FP_TO_SINT, MVT::ppcf128, Custom); 290 setOperationAction(ISD::FP_TO_UINT, MVT::ppcf128, Custom); 291 setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::ppcf128, Custom); 292 setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::ppcf128, Custom); 293 294 // We do not currently implement these libm ops for PowerPC. 295 setOperationAction(ISD::FFLOOR, MVT::ppcf128, Expand); 296 setOperationAction(ISD::FCEIL, MVT::ppcf128, Expand); 297 setOperationAction(ISD::FTRUNC, MVT::ppcf128, Expand); 298 setOperationAction(ISD::FRINT, MVT::ppcf128, Expand); 299 setOperationAction(ISD::FNEARBYINT, MVT::ppcf128, Expand); 300 setOperationAction(ISD::FREM, MVT::ppcf128, Expand); 301 302 // PowerPC has no SREM/UREM instructions unless we are on P9 303 // On P9 we may use a hardware instruction to compute the remainder. 304 // When the result of both the remainder and the division is required it is 305 // more efficient to compute the remainder from the result of the division 306 // rather than use the remainder instruction. The instructions are legalized 307 // directly because the DivRemPairsPass performs the transformation at the IR 308 // level. 309 if (Subtarget.isISA3_0()) { 310 setOperationAction(ISD::SREM, MVT::i32, Legal); 311 setOperationAction(ISD::UREM, MVT::i32, Legal); 312 setOperationAction(ISD::SREM, MVT::i64, Legal); 313 setOperationAction(ISD::UREM, MVT::i64, Legal); 314 } else { 315 setOperationAction(ISD::SREM, MVT::i32, Expand); 316 setOperationAction(ISD::UREM, MVT::i32, Expand); 317 setOperationAction(ISD::SREM, MVT::i64, Expand); 318 setOperationAction(ISD::UREM, MVT::i64, Expand); 319 } 320 321 // Don't use SMUL_LOHI/UMUL_LOHI or SDIVREM/UDIVREM to lower SREM/UREM. 322 setOperationAction(ISD::UMUL_LOHI, MVT::i32, Expand); 323 setOperationAction(ISD::SMUL_LOHI, MVT::i32, Expand); 324 setOperationAction(ISD::UMUL_LOHI, MVT::i64, Expand); 325 setOperationAction(ISD::SMUL_LOHI, MVT::i64, Expand); 326 setOperationAction(ISD::UDIVREM, MVT::i32, Expand); 327 setOperationAction(ISD::SDIVREM, MVT::i32, Expand); 328 setOperationAction(ISD::UDIVREM, MVT::i64, Expand); 329 setOperationAction(ISD::SDIVREM, MVT::i64, Expand); 330 331 // Handle constrained floating-point operations of scalar. 332 // TODO: Handle SPE specific operation. 333 setOperationAction(ISD::STRICT_FADD, MVT::f32, Legal); 334 setOperationAction(ISD::STRICT_FSUB, MVT::f32, Legal); 335 setOperationAction(ISD::STRICT_FMUL, MVT::f32, Legal); 336 setOperationAction(ISD::STRICT_FDIV, MVT::f32, Legal); 337 setOperationAction(ISD::STRICT_FP_ROUND, MVT::f32, Legal); 338 339 setOperationAction(ISD::STRICT_FADD, MVT::f64, Legal); 340 setOperationAction(ISD::STRICT_FSUB, MVT::f64, Legal); 341 setOperationAction(ISD::STRICT_FMUL, MVT::f64, Legal); 342 setOperationAction(ISD::STRICT_FDIV, MVT::f64, Legal); 343 344 if (!Subtarget.hasSPE()) { 345 setOperationAction(ISD::STRICT_FMA, MVT::f32, Legal); 346 setOperationAction(ISD::STRICT_FMA, MVT::f64, Legal); 347 } 348 349 if (Subtarget.hasVSX()) { 350 setOperationAction(ISD::STRICT_FRINT, MVT::f32, Legal); 351 setOperationAction(ISD::STRICT_FRINT, MVT::f64, Legal); 352 } 353 354 if (Subtarget.hasFSQRT()) { 355 setOperationAction(ISD::STRICT_FSQRT, MVT::f32, Legal); 356 setOperationAction(ISD::STRICT_FSQRT, MVT::f64, Legal); 357 } 358 359 if (Subtarget.hasFPRND()) { 360 setOperationAction(ISD::STRICT_FFLOOR, MVT::f32, Legal); 361 setOperationAction(ISD::STRICT_FCEIL, MVT::f32, Legal); 362 setOperationAction(ISD::STRICT_FTRUNC, MVT::f32, Legal); 363 setOperationAction(ISD::STRICT_FROUND, MVT::f32, Legal); 364 365 setOperationAction(ISD::STRICT_FFLOOR, MVT::f64, Legal); 366 setOperationAction(ISD::STRICT_FCEIL, MVT::f64, Legal); 367 setOperationAction(ISD::STRICT_FTRUNC, MVT::f64, Legal); 368 setOperationAction(ISD::STRICT_FROUND, MVT::f64, Legal); 369 } 370 371 // We don't support sin/cos/sqrt/fmod/pow 372 setOperationAction(ISD::FSIN , MVT::f64, Expand); 373 setOperationAction(ISD::FCOS , MVT::f64, Expand); 374 setOperationAction(ISD::FSINCOS, MVT::f64, Expand); 375 setOperationAction(ISD::FREM , MVT::f64, Expand); 376 setOperationAction(ISD::FPOW , MVT::f64, Expand); 377 setOperationAction(ISD::FSIN , MVT::f32, Expand); 378 setOperationAction(ISD::FCOS , MVT::f32, Expand); 379 setOperationAction(ISD::FSINCOS, MVT::f32, Expand); 380 setOperationAction(ISD::FREM , MVT::f32, Expand); 381 setOperationAction(ISD::FPOW , MVT::f32, Expand); 382 if (Subtarget.hasSPE()) { 383 setOperationAction(ISD::FMA , MVT::f64, Expand); 384 setOperationAction(ISD::FMA , MVT::f32, Expand); 385 } else { 386 setOperationAction(ISD::FMA , MVT::f64, Legal); 387 setOperationAction(ISD::FMA , MVT::f32, Legal); 388 } 389 390 if (Subtarget.hasSPE()) 391 setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f32, Expand); 392 393 setOperationAction(ISD::FLT_ROUNDS_, MVT::i32, Custom); 394 395 // If we're enabling GP optimizations, use hardware square root 396 if (!Subtarget.hasFSQRT() && 397 !(TM.Options.UnsafeFPMath && Subtarget.hasFRSQRTE() && 398 Subtarget.hasFRE())) 399 setOperationAction(ISD::FSQRT, MVT::f64, Expand); 400 401 if (!Subtarget.hasFSQRT() && 402 !(TM.Options.UnsafeFPMath && Subtarget.hasFRSQRTES() && 403 Subtarget.hasFRES())) 404 setOperationAction(ISD::FSQRT, MVT::f32, Expand); 405 406 if (Subtarget.hasFCPSGN()) { 407 setOperationAction(ISD::FCOPYSIGN, MVT::f64, Legal); 408 setOperationAction(ISD::FCOPYSIGN, MVT::f32, Legal); 409 } else { 410 setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand); 411 setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand); 412 } 413 414 if (Subtarget.hasFPRND()) { 415 setOperationAction(ISD::FFLOOR, MVT::f64, Legal); 416 setOperationAction(ISD::FCEIL, MVT::f64, Legal); 417 setOperationAction(ISD::FTRUNC, MVT::f64, Legal); 418 setOperationAction(ISD::FROUND, MVT::f64, Legal); 419 420 setOperationAction(ISD::FFLOOR, MVT::f32, Legal); 421 setOperationAction(ISD::FCEIL, MVT::f32, Legal); 422 setOperationAction(ISD::FTRUNC, MVT::f32, Legal); 423 setOperationAction(ISD::FROUND, MVT::f32, Legal); 424 } 425 426 // PowerPC does not have BSWAP, but we can use vector BSWAP instruction xxbrd 427 // to speed up scalar BSWAP64. 428 // CTPOP or CTTZ were introduced in P8/P9 respectively 429 setOperationAction(ISD::BSWAP, MVT::i32 , Expand); 430 if (Subtarget.hasP9Vector() && Subtarget.isPPC64()) 431 setOperationAction(ISD::BSWAP, MVT::i64 , Custom); 432 else 433 setOperationAction(ISD::BSWAP, MVT::i64 , Expand); 434 if (Subtarget.isISA3_0()) { 435 setOperationAction(ISD::CTTZ , MVT::i32 , Legal); 436 setOperationAction(ISD::CTTZ , MVT::i64 , Legal); 437 } else { 438 setOperationAction(ISD::CTTZ , MVT::i32 , Expand); 439 setOperationAction(ISD::CTTZ , MVT::i64 , Expand); 440 } 441 442 if (Subtarget.hasPOPCNTD() == PPCSubtarget::POPCNTD_Fast) { 443 setOperationAction(ISD::CTPOP, MVT::i32 , Legal); 444 setOperationAction(ISD::CTPOP, MVT::i64 , Legal); 445 } else { 446 setOperationAction(ISD::CTPOP, MVT::i32 , Expand); 447 setOperationAction(ISD::CTPOP, MVT::i64 , Expand); 448 } 449 450 // PowerPC does not have ROTR 451 setOperationAction(ISD::ROTR, MVT::i32 , Expand); 452 setOperationAction(ISD::ROTR, MVT::i64 , Expand); 453 454 if (!Subtarget.useCRBits()) { 455 // PowerPC does not have Select 456 setOperationAction(ISD::SELECT, MVT::i32, Expand); 457 setOperationAction(ISD::SELECT, MVT::i64, Expand); 458 setOperationAction(ISD::SELECT, MVT::f32, Expand); 459 setOperationAction(ISD::SELECT, MVT::f64, Expand); 460 } 461 462 // PowerPC wants to turn select_cc of FP into fsel when possible. 463 setOperationAction(ISD::SELECT_CC, MVT::f32, Custom); 464 setOperationAction(ISD::SELECT_CC, MVT::f64, Custom); 465 466 // PowerPC wants to optimize integer setcc a bit 467 if (!Subtarget.useCRBits()) 468 setOperationAction(ISD::SETCC, MVT::i32, Custom); 469 470 if (Subtarget.hasFPU()) { 471 setOperationAction(ISD::STRICT_FSETCC, MVT::f32, Legal); 472 setOperationAction(ISD::STRICT_FSETCC, MVT::f64, Legal); 473 setOperationAction(ISD::STRICT_FSETCC, MVT::f128, Legal); 474 475 setOperationAction(ISD::STRICT_FSETCCS, MVT::f32, Legal); 476 setOperationAction(ISD::STRICT_FSETCCS, MVT::f64, Legal); 477 setOperationAction(ISD::STRICT_FSETCCS, MVT::f128, Legal); 478 } 479 480 // PowerPC does not have BRCOND which requires SetCC 481 if (!Subtarget.useCRBits()) 482 setOperationAction(ISD::BRCOND, MVT::Other, Expand); 483 484 setOperationAction(ISD::BR_JT, MVT::Other, Expand); 485 486 if (Subtarget.hasSPE()) { 487 // SPE has built-in conversions 488 setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::i32, Legal); 489 setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::i32, Legal); 490 setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::i32, Legal); 491 setOperationAction(ISD::FP_TO_SINT, MVT::i32, Legal); 492 setOperationAction(ISD::SINT_TO_FP, MVT::i32, Legal); 493 setOperationAction(ISD::UINT_TO_FP, MVT::i32, Legal); 494 495 // SPE supports signaling compare of f32/f64. 496 setOperationAction(ISD::STRICT_FSETCCS, MVT::f32, Legal); 497 setOperationAction(ISD::STRICT_FSETCCS, MVT::f64, Legal); 498 } else { 499 // PowerPC turns FP_TO_SINT into FCTIWZ and some load/stores. 500 setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::i32, Custom); 501 setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom); 502 503 // PowerPC does not have [U|S]INT_TO_FP 504 setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::i32, Expand); 505 setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::i32, Expand); 506 setOperationAction(ISD::SINT_TO_FP, MVT::i32, Expand); 507 setOperationAction(ISD::UINT_TO_FP, MVT::i32, Expand); 508 } 509 510 if (Subtarget.hasDirectMove() && isPPC64) { 511 setOperationAction(ISD::BITCAST, MVT::f32, Legal); 512 setOperationAction(ISD::BITCAST, MVT::i32, Legal); 513 setOperationAction(ISD::BITCAST, MVT::i64, Legal); 514 setOperationAction(ISD::BITCAST, MVT::f64, Legal); 515 if (TM.Options.UnsafeFPMath) { 516 setOperationAction(ISD::LRINT, MVT::f64, Legal); 517 setOperationAction(ISD::LRINT, MVT::f32, Legal); 518 setOperationAction(ISD::LLRINT, MVT::f64, Legal); 519 setOperationAction(ISD::LLRINT, MVT::f32, Legal); 520 setOperationAction(ISD::LROUND, MVT::f64, Legal); 521 setOperationAction(ISD::LROUND, MVT::f32, Legal); 522 setOperationAction(ISD::LLROUND, MVT::f64, Legal); 523 setOperationAction(ISD::LLROUND, MVT::f32, Legal); 524 } 525 } else { 526 setOperationAction(ISD::BITCAST, MVT::f32, Expand); 527 setOperationAction(ISD::BITCAST, MVT::i32, Expand); 528 setOperationAction(ISD::BITCAST, MVT::i64, Expand); 529 setOperationAction(ISD::BITCAST, MVT::f64, Expand); 530 } 531 532 // We cannot sextinreg(i1). Expand to shifts. 533 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand); 534 535 // NOTE: EH_SJLJ_SETJMP/_LONGJMP supported here is NOT intended to support 536 // SjLj exception handling but a light-weight setjmp/longjmp replacement to 537 // support continuation, user-level threading, and etc.. As a result, no 538 // other SjLj exception interfaces are implemented and please don't build 539 // your own exception handling based on them. 540 // LLVM/Clang supports zero-cost DWARF exception handling. 541 setOperationAction(ISD::EH_SJLJ_SETJMP, MVT::i32, Custom); 542 setOperationAction(ISD::EH_SJLJ_LONGJMP, MVT::Other, Custom); 543 544 // We want to legalize GlobalAddress and ConstantPool nodes into the 545 // appropriate instructions to materialize the address. 546 setOperationAction(ISD::GlobalAddress, MVT::i32, Custom); 547 setOperationAction(ISD::GlobalTLSAddress, MVT::i32, Custom); 548 setOperationAction(ISD::BlockAddress, MVT::i32, Custom); 549 setOperationAction(ISD::ConstantPool, MVT::i32, Custom); 550 setOperationAction(ISD::JumpTable, MVT::i32, Custom); 551 setOperationAction(ISD::GlobalAddress, MVT::i64, Custom); 552 setOperationAction(ISD::GlobalTLSAddress, MVT::i64, Custom); 553 setOperationAction(ISD::BlockAddress, MVT::i64, Custom); 554 setOperationAction(ISD::ConstantPool, MVT::i64, Custom); 555 setOperationAction(ISD::JumpTable, MVT::i64, Custom); 556 557 // TRAP is legal. 558 setOperationAction(ISD::TRAP, MVT::Other, Legal); 559 560 // TRAMPOLINE is custom lowered. 561 setOperationAction(ISD::INIT_TRAMPOLINE, MVT::Other, Custom); 562 setOperationAction(ISD::ADJUST_TRAMPOLINE, MVT::Other, Custom); 563 564 // VASTART needs to be custom lowered to use the VarArgsFrameIndex 565 setOperationAction(ISD::VASTART , MVT::Other, Custom); 566 567 if (Subtarget.is64BitELFABI()) { 568 // VAARG always uses double-word chunks, so promote anything smaller. 569 setOperationAction(ISD::VAARG, MVT::i1, Promote); 570 AddPromotedToType(ISD::VAARG, MVT::i1, MVT::i64); 571 setOperationAction(ISD::VAARG, MVT::i8, Promote); 572 AddPromotedToType(ISD::VAARG, MVT::i8, MVT::i64); 573 setOperationAction(ISD::VAARG, MVT::i16, Promote); 574 AddPromotedToType(ISD::VAARG, MVT::i16, MVT::i64); 575 setOperationAction(ISD::VAARG, MVT::i32, Promote); 576 AddPromotedToType(ISD::VAARG, MVT::i32, MVT::i64); 577 setOperationAction(ISD::VAARG, MVT::Other, Expand); 578 } else if (Subtarget.is32BitELFABI()) { 579 // VAARG is custom lowered with the 32-bit SVR4 ABI. 580 setOperationAction(ISD::VAARG, MVT::Other, Custom); 581 setOperationAction(ISD::VAARG, MVT::i64, Custom); 582 } else 583 setOperationAction(ISD::VAARG, MVT::Other, Expand); 584 585 // VACOPY is custom lowered with the 32-bit SVR4 ABI. 586 if (Subtarget.is32BitELFABI()) 587 setOperationAction(ISD::VACOPY , MVT::Other, Custom); 588 else 589 setOperationAction(ISD::VACOPY , MVT::Other, Expand); 590 591 // Use the default implementation. 592 setOperationAction(ISD::VAEND , MVT::Other, Expand); 593 setOperationAction(ISD::STACKSAVE , MVT::Other, Expand); 594 setOperationAction(ISD::STACKRESTORE , MVT::Other, Custom); 595 setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32 , Custom); 596 setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i64 , Custom); 597 setOperationAction(ISD::GET_DYNAMIC_AREA_OFFSET, MVT::i32, Custom); 598 setOperationAction(ISD::GET_DYNAMIC_AREA_OFFSET, MVT::i64, Custom); 599 setOperationAction(ISD::EH_DWARF_CFA, MVT::i32, Custom); 600 setOperationAction(ISD::EH_DWARF_CFA, MVT::i64, Custom); 601 602 // We want to custom lower some of our intrinsics. 603 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom); 604 605 // To handle counter-based loop conditions. 606 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i1, Custom); 607 608 setOperationAction(ISD::INTRINSIC_VOID, MVT::i8, Custom); 609 setOperationAction(ISD::INTRINSIC_VOID, MVT::i16, Custom); 610 setOperationAction(ISD::INTRINSIC_VOID, MVT::i32, Custom); 611 setOperationAction(ISD::INTRINSIC_VOID, MVT::Other, Custom); 612 613 // Comparisons that require checking two conditions. 614 if (Subtarget.hasSPE()) { 615 setCondCodeAction(ISD::SETO, MVT::f32, Expand); 616 setCondCodeAction(ISD::SETO, MVT::f64, Expand); 617 setCondCodeAction(ISD::SETUO, MVT::f32, Expand); 618 setCondCodeAction(ISD::SETUO, MVT::f64, Expand); 619 } 620 setCondCodeAction(ISD::SETULT, MVT::f32, Expand); 621 setCondCodeAction(ISD::SETULT, MVT::f64, Expand); 622 setCondCodeAction(ISD::SETUGT, MVT::f32, Expand); 623 setCondCodeAction(ISD::SETUGT, MVT::f64, Expand); 624 setCondCodeAction(ISD::SETUEQ, MVT::f32, Expand); 625 setCondCodeAction(ISD::SETUEQ, MVT::f64, Expand); 626 setCondCodeAction(ISD::SETOGE, MVT::f32, Expand); 627 setCondCodeAction(ISD::SETOGE, MVT::f64, Expand); 628 setCondCodeAction(ISD::SETOLE, MVT::f32, Expand); 629 setCondCodeAction(ISD::SETOLE, MVT::f64, Expand); 630 setCondCodeAction(ISD::SETONE, MVT::f32, Expand); 631 setCondCodeAction(ISD::SETONE, MVT::f64, Expand); 632 633 setOperationAction(ISD::STRICT_FP_EXTEND, MVT::f32, Legal); 634 setOperationAction(ISD::STRICT_FP_EXTEND, MVT::f64, Legal); 635 636 if (Subtarget.has64BitSupport()) { 637 // They also have instructions for converting between i64 and fp. 638 setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::i64, Custom); 639 setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::i64, Expand); 640 setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::i64, Custom); 641 setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::i64, Expand); 642 setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom); 643 setOperationAction(ISD::FP_TO_UINT, MVT::i64, Expand); 644 setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom); 645 setOperationAction(ISD::UINT_TO_FP, MVT::i64, Expand); 646 // This is just the low 32 bits of a (signed) fp->i64 conversion. 647 // We cannot do this with Promote because i64 is not a legal type. 648 setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::i32, Custom); 649 setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom); 650 651 if (Subtarget.hasLFIWAX() || Subtarget.isPPC64()) { 652 setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom); 653 setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::i32, Custom); 654 } 655 } else { 656 // PowerPC does not have FP_TO_UINT on 32-bit implementations. 657 if (Subtarget.hasSPE()) { 658 setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::i32, Legal); 659 setOperationAction(ISD::FP_TO_UINT, MVT::i32, Legal); 660 } else { 661 setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::i32, Expand); 662 setOperationAction(ISD::FP_TO_UINT, MVT::i32, Expand); 663 } 664 } 665 666 // With the instructions enabled under FPCVT, we can do everything. 667 if (Subtarget.hasFPCVT()) { 668 if (Subtarget.has64BitSupport()) { 669 setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::i64, Custom); 670 setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::i64, Custom); 671 setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::i64, Custom); 672 setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::i64, Custom); 673 setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom); 674 setOperationAction(ISD::FP_TO_UINT, MVT::i64, Custom); 675 setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom); 676 setOperationAction(ISD::UINT_TO_FP, MVT::i64, Custom); 677 } 678 679 setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::i32, Custom); 680 setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::i32, Custom); 681 setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::i32, Custom); 682 setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::i32, Custom); 683 setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom); 684 setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom); 685 setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom); 686 setOperationAction(ISD::UINT_TO_FP, MVT::i32, Custom); 687 } 688 689 if (Subtarget.use64BitRegs()) { 690 // 64-bit PowerPC implementations can support i64 types directly 691 addRegisterClass(MVT::i64, &PPC::G8RCRegClass); 692 // BUILD_PAIR can't be handled natively, and should be expanded to shl/or 693 setOperationAction(ISD::BUILD_PAIR, MVT::i64, Expand); 694 // 64-bit PowerPC wants to expand i128 shifts itself. 695 setOperationAction(ISD::SHL_PARTS, MVT::i64, Custom); 696 setOperationAction(ISD::SRA_PARTS, MVT::i64, Custom); 697 setOperationAction(ISD::SRL_PARTS, MVT::i64, Custom); 698 } else { 699 // 32-bit PowerPC wants to expand i64 shifts itself. 700 setOperationAction(ISD::SHL_PARTS, MVT::i32, Custom); 701 setOperationAction(ISD::SRA_PARTS, MVT::i32, Custom); 702 setOperationAction(ISD::SRL_PARTS, MVT::i32, Custom); 703 } 704 705 // PowerPC has better expansions for funnel shifts than the generic 706 // TargetLowering::expandFunnelShift. 707 if (Subtarget.has64BitSupport()) { 708 setOperationAction(ISD::FSHL, MVT::i64, Custom); 709 setOperationAction(ISD::FSHR, MVT::i64, Custom); 710 } 711 setOperationAction(ISD::FSHL, MVT::i32, Custom); 712 setOperationAction(ISD::FSHR, MVT::i32, Custom); 713 714 if (Subtarget.hasVSX()) { 715 setOperationAction(ISD::FMAXNUM_IEEE, MVT::f64, Legal); 716 setOperationAction(ISD::FMAXNUM_IEEE, MVT::f32, Legal); 717 setOperationAction(ISD::FMINNUM_IEEE, MVT::f64, Legal); 718 setOperationAction(ISD::FMINNUM_IEEE, MVT::f32, Legal); 719 } 720 721 if (Subtarget.hasAltivec()) { 722 for (MVT VT : { MVT::v16i8, MVT::v8i16, MVT::v4i32 }) { 723 setOperationAction(ISD::SADDSAT, VT, Legal); 724 setOperationAction(ISD::SSUBSAT, VT, Legal); 725 setOperationAction(ISD::UADDSAT, VT, Legal); 726 setOperationAction(ISD::USUBSAT, VT, Legal); 727 } 728 // First set operation action for all vector types to expand. Then we 729 // will selectively turn on ones that can be effectively codegen'd. 730 for (MVT VT : MVT::fixedlen_vector_valuetypes()) { 731 // add/sub are legal for all supported vector VT's. 732 setOperationAction(ISD::ADD, VT, Legal); 733 setOperationAction(ISD::SUB, VT, Legal); 734 735 // For v2i64, these are only valid with P8Vector. This is corrected after 736 // the loop. 737 if (VT.getSizeInBits() <= 128 && VT.getScalarSizeInBits() <= 64) { 738 setOperationAction(ISD::SMAX, VT, Legal); 739 setOperationAction(ISD::SMIN, VT, Legal); 740 setOperationAction(ISD::UMAX, VT, Legal); 741 setOperationAction(ISD::UMIN, VT, Legal); 742 } 743 else { 744 setOperationAction(ISD::SMAX, VT, Expand); 745 setOperationAction(ISD::SMIN, VT, Expand); 746 setOperationAction(ISD::UMAX, VT, Expand); 747 setOperationAction(ISD::UMIN, VT, Expand); 748 } 749 750 if (Subtarget.hasVSX()) { 751 setOperationAction(ISD::FMAXNUM, VT, Legal); 752 setOperationAction(ISD::FMINNUM, VT, Legal); 753 } 754 755 // Vector instructions introduced in P8 756 if (Subtarget.hasP8Altivec() && (VT.SimpleTy != MVT::v1i128)) { 757 setOperationAction(ISD::CTPOP, VT, Legal); 758 setOperationAction(ISD::CTLZ, VT, Legal); 759 } 760 else { 761 setOperationAction(ISD::CTPOP, VT, Expand); 762 setOperationAction(ISD::CTLZ, VT, Expand); 763 } 764 765 // Vector instructions introduced in P9 766 if (Subtarget.hasP9Altivec() && (VT.SimpleTy != MVT::v1i128)) 767 setOperationAction(ISD::CTTZ, VT, Legal); 768 else 769 setOperationAction(ISD::CTTZ, VT, Expand); 770 771 // We promote all shuffles to v16i8. 772 setOperationAction(ISD::VECTOR_SHUFFLE, VT, Promote); 773 AddPromotedToType (ISD::VECTOR_SHUFFLE, VT, MVT::v16i8); 774 775 // We promote all non-typed operations to v4i32. 776 setOperationAction(ISD::AND , VT, Promote); 777 AddPromotedToType (ISD::AND , VT, MVT::v4i32); 778 setOperationAction(ISD::OR , VT, Promote); 779 AddPromotedToType (ISD::OR , VT, MVT::v4i32); 780 setOperationAction(ISD::XOR , VT, Promote); 781 AddPromotedToType (ISD::XOR , VT, MVT::v4i32); 782 setOperationAction(ISD::LOAD , VT, Promote); 783 AddPromotedToType (ISD::LOAD , VT, MVT::v4i32); 784 setOperationAction(ISD::SELECT, VT, Promote); 785 AddPromotedToType (ISD::SELECT, VT, MVT::v4i32); 786 setOperationAction(ISD::VSELECT, VT, Legal); 787 setOperationAction(ISD::SELECT_CC, VT, Promote); 788 AddPromotedToType (ISD::SELECT_CC, VT, MVT::v4i32); 789 setOperationAction(ISD::STORE, VT, Promote); 790 AddPromotedToType (ISD::STORE, VT, MVT::v4i32); 791 792 // No other operations are legal. 793 setOperationAction(ISD::MUL , VT, Expand); 794 setOperationAction(ISD::SDIV, VT, Expand); 795 setOperationAction(ISD::SREM, VT, Expand); 796 setOperationAction(ISD::UDIV, VT, Expand); 797 setOperationAction(ISD::UREM, VT, Expand); 798 setOperationAction(ISD::FDIV, VT, Expand); 799 setOperationAction(ISD::FREM, VT, Expand); 800 setOperationAction(ISD::FNEG, VT, Expand); 801 setOperationAction(ISD::FSQRT, VT, Expand); 802 setOperationAction(ISD::FLOG, VT, Expand); 803 setOperationAction(ISD::FLOG10, VT, Expand); 804 setOperationAction(ISD::FLOG2, VT, Expand); 805 setOperationAction(ISD::FEXP, VT, Expand); 806 setOperationAction(ISD::FEXP2, VT, Expand); 807 setOperationAction(ISD::FSIN, VT, Expand); 808 setOperationAction(ISD::FCOS, VT, Expand); 809 setOperationAction(ISD::FABS, VT, Expand); 810 setOperationAction(ISD::FFLOOR, VT, Expand); 811 setOperationAction(ISD::FCEIL, VT, Expand); 812 setOperationAction(ISD::FTRUNC, VT, Expand); 813 setOperationAction(ISD::FRINT, VT, Expand); 814 setOperationAction(ISD::FNEARBYINT, VT, Expand); 815 setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Expand); 816 setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Expand); 817 setOperationAction(ISD::BUILD_VECTOR, VT, Expand); 818 setOperationAction(ISD::MULHU, VT, Expand); 819 setOperationAction(ISD::MULHS, VT, Expand); 820 setOperationAction(ISD::UMUL_LOHI, VT, Expand); 821 setOperationAction(ISD::SMUL_LOHI, VT, Expand); 822 setOperationAction(ISD::UDIVREM, VT, Expand); 823 setOperationAction(ISD::SDIVREM, VT, Expand); 824 setOperationAction(ISD::SCALAR_TO_VECTOR, VT, Expand); 825 setOperationAction(ISD::FPOW, VT, Expand); 826 setOperationAction(ISD::BSWAP, VT, Expand); 827 setOperationAction(ISD::SIGN_EXTEND_INREG, VT, Expand); 828 setOperationAction(ISD::ROTL, VT, Expand); 829 setOperationAction(ISD::ROTR, VT, Expand); 830 831 for (MVT InnerVT : MVT::fixedlen_vector_valuetypes()) { 832 setTruncStoreAction(VT, InnerVT, Expand); 833 setLoadExtAction(ISD::SEXTLOAD, VT, InnerVT, Expand); 834 setLoadExtAction(ISD::ZEXTLOAD, VT, InnerVT, Expand); 835 setLoadExtAction(ISD::EXTLOAD, VT, InnerVT, Expand); 836 } 837 } 838 setOperationAction(ISD::SELECT_CC, MVT::v4i32, Expand); 839 if (!Subtarget.hasP8Vector()) { 840 setOperationAction(ISD::SMAX, MVT::v2i64, Expand); 841 setOperationAction(ISD::SMIN, MVT::v2i64, Expand); 842 setOperationAction(ISD::UMAX, MVT::v2i64, Expand); 843 setOperationAction(ISD::UMIN, MVT::v2i64, Expand); 844 } 845 846 // We can custom expand all VECTOR_SHUFFLEs to VPERM, others we can handle 847 // with merges, splats, etc. 848 setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v16i8, Custom); 849 850 // Vector truncates to sub-word integer that fit in an Altivec/VSX register 851 // are cheap, so handle them before they get expanded to scalar. 852 setOperationAction(ISD::TRUNCATE, MVT::v8i8, Custom); 853 setOperationAction(ISD::TRUNCATE, MVT::v4i8, Custom); 854 setOperationAction(ISD::TRUNCATE, MVT::v2i8, Custom); 855 setOperationAction(ISD::TRUNCATE, MVT::v4i16, Custom); 856 setOperationAction(ISD::TRUNCATE, MVT::v2i16, Custom); 857 858 setOperationAction(ISD::AND , MVT::v4i32, Legal); 859 setOperationAction(ISD::OR , MVT::v4i32, Legal); 860 setOperationAction(ISD::XOR , MVT::v4i32, Legal); 861 setOperationAction(ISD::LOAD , MVT::v4i32, Legal); 862 setOperationAction(ISD::SELECT, MVT::v4i32, 863 Subtarget.useCRBits() ? Legal : Expand); 864 setOperationAction(ISD::STORE , MVT::v4i32, Legal); 865 setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::v4i32, Legal); 866 setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::v4i32, Legal); 867 setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::v4i32, Legal); 868 setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::v4i32, Legal); 869 setOperationAction(ISD::FP_TO_SINT, MVT::v4i32, Legal); 870 setOperationAction(ISD::FP_TO_UINT, MVT::v4i32, Legal); 871 setOperationAction(ISD::SINT_TO_FP, MVT::v4i32, Legal); 872 setOperationAction(ISD::UINT_TO_FP, MVT::v4i32, Legal); 873 setOperationAction(ISD::FFLOOR, MVT::v4f32, Legal); 874 setOperationAction(ISD::FCEIL, MVT::v4f32, Legal); 875 setOperationAction(ISD::FTRUNC, MVT::v4f32, Legal); 876 setOperationAction(ISD::FNEARBYINT, MVT::v4f32, Legal); 877 878 // Custom lowering ROTL v1i128 to VECTOR_SHUFFLE v16i8. 879 setOperationAction(ISD::ROTL, MVT::v1i128, Custom); 880 // With hasAltivec set, we can lower ISD::ROTL to vrl(b|h|w). 881 if (Subtarget.hasAltivec()) 882 for (auto VT : {MVT::v4i32, MVT::v8i16, MVT::v16i8}) 883 setOperationAction(ISD::ROTL, VT, Legal); 884 // With hasP8Altivec set, we can lower ISD::ROTL to vrld. 885 if (Subtarget.hasP8Altivec()) 886 setOperationAction(ISD::ROTL, MVT::v2i64, Legal); 887 888 addRegisterClass(MVT::v4f32, &PPC::VRRCRegClass); 889 addRegisterClass(MVT::v4i32, &PPC::VRRCRegClass); 890 addRegisterClass(MVT::v8i16, &PPC::VRRCRegClass); 891 addRegisterClass(MVT::v16i8, &PPC::VRRCRegClass); 892 893 setOperationAction(ISD::MUL, MVT::v4f32, Legal); 894 setOperationAction(ISD::FMA, MVT::v4f32, Legal); 895 896 if (Subtarget.hasVSX()) { 897 setOperationAction(ISD::FDIV, MVT::v4f32, Legal); 898 setOperationAction(ISD::FSQRT, MVT::v4f32, Legal); 899 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v2f64, Custom); 900 } 901 902 if (Subtarget.hasP8Altivec()) 903 setOperationAction(ISD::MUL, MVT::v4i32, Legal); 904 else 905 setOperationAction(ISD::MUL, MVT::v4i32, Custom); 906 907 if (Subtarget.isISA3_1()) { 908 setOperationAction(ISD::MUL, MVT::v2i64, Legal); 909 setOperationAction(ISD::MULHS, MVT::v2i64, Legal); 910 setOperationAction(ISD::MULHU, MVT::v2i64, Legal); 911 setOperationAction(ISD::MULHS, MVT::v4i32, Legal); 912 setOperationAction(ISD::MULHU, MVT::v4i32, Legal); 913 setOperationAction(ISD::UDIV, MVT::v2i64, Legal); 914 setOperationAction(ISD::SDIV, MVT::v2i64, Legal); 915 setOperationAction(ISD::UDIV, MVT::v4i32, Legal); 916 setOperationAction(ISD::SDIV, MVT::v4i32, Legal); 917 setOperationAction(ISD::UREM, MVT::v2i64, Legal); 918 setOperationAction(ISD::SREM, MVT::v2i64, Legal); 919 setOperationAction(ISD::UREM, MVT::v4i32, Legal); 920 setOperationAction(ISD::SREM, MVT::v4i32, Legal); 921 setOperationAction(ISD::UREM, MVT::v1i128, Legal); 922 setOperationAction(ISD::SREM, MVT::v1i128, Legal); 923 setOperationAction(ISD::UDIV, MVT::v1i128, Legal); 924 setOperationAction(ISD::SDIV, MVT::v1i128, Legal); 925 setOperationAction(ISD::ROTL, MVT::v1i128, Legal); 926 } 927 928 setOperationAction(ISD::MUL, MVT::v8i16, Legal); 929 setOperationAction(ISD::MUL, MVT::v16i8, Custom); 930 931 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f32, Custom); 932 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4i32, Custom); 933 934 setOperationAction(ISD::BUILD_VECTOR, MVT::v16i8, Custom); 935 setOperationAction(ISD::BUILD_VECTOR, MVT::v8i16, Custom); 936 setOperationAction(ISD::BUILD_VECTOR, MVT::v4i32, Custom); 937 setOperationAction(ISD::BUILD_VECTOR, MVT::v4f32, Custom); 938 939 // Altivec does not contain unordered floating-point compare instructions 940 setCondCodeAction(ISD::SETUO, MVT::v4f32, Expand); 941 setCondCodeAction(ISD::SETUEQ, MVT::v4f32, Expand); 942 setCondCodeAction(ISD::SETO, MVT::v4f32, Expand); 943 setCondCodeAction(ISD::SETONE, MVT::v4f32, Expand); 944 945 if (Subtarget.hasVSX()) { 946 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v2f64, Legal); 947 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Legal); 948 if (Subtarget.hasP8Vector()) { 949 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f32, Legal); 950 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Legal); 951 } 952 if (Subtarget.hasDirectMove() && isPPC64) { 953 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v16i8, Legal); 954 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v8i16, Legal); 955 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4i32, Legal); 956 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v2i64, Legal); 957 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v16i8, Legal); 958 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v8i16, Legal); 959 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4i32, Legal); 960 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i64, Legal); 961 } 962 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Legal); 963 964 // The nearbyint variants are not allowed to raise the inexact exception 965 // so we can only code-gen them with unsafe math. 966 if (TM.Options.UnsafeFPMath) { 967 setOperationAction(ISD::FNEARBYINT, MVT::f64, Legal); 968 setOperationAction(ISD::FNEARBYINT, MVT::f32, Legal); 969 } 970 971 setOperationAction(ISD::FFLOOR, MVT::v2f64, Legal); 972 setOperationAction(ISD::FCEIL, MVT::v2f64, Legal); 973 setOperationAction(ISD::FTRUNC, MVT::v2f64, Legal); 974 setOperationAction(ISD::FNEARBYINT, MVT::v2f64, Legal); 975 setOperationAction(ISD::FRINT, MVT::v2f64, Legal); 976 setOperationAction(ISD::FROUND, MVT::v2f64, Legal); 977 setOperationAction(ISD::FROUND, MVT::f64, Legal); 978 setOperationAction(ISD::FRINT, MVT::f64, Legal); 979 980 setOperationAction(ISD::FNEARBYINT, MVT::v4f32, Legal); 981 setOperationAction(ISD::FRINT, MVT::v4f32, Legal); 982 setOperationAction(ISD::FROUND, MVT::v4f32, Legal); 983 setOperationAction(ISD::FROUND, MVT::f32, Legal); 984 setOperationAction(ISD::FRINT, MVT::f32, Legal); 985 986 setOperationAction(ISD::MUL, MVT::v2f64, Legal); 987 setOperationAction(ISD::FMA, MVT::v2f64, Legal); 988 989 setOperationAction(ISD::FDIV, MVT::v2f64, Legal); 990 setOperationAction(ISD::FSQRT, MVT::v2f64, Legal); 991 992 // Share the Altivec comparison restrictions. 993 setCondCodeAction(ISD::SETUO, MVT::v2f64, Expand); 994 setCondCodeAction(ISD::SETUEQ, MVT::v2f64, Expand); 995 setCondCodeAction(ISD::SETO, MVT::v2f64, Expand); 996 setCondCodeAction(ISD::SETONE, MVT::v2f64, Expand); 997 998 setOperationAction(ISD::LOAD, MVT::v2f64, Legal); 999 setOperationAction(ISD::STORE, MVT::v2f64, Legal); 1000 1001 setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v2f64, Legal); 1002 1003 if (Subtarget.hasP8Vector()) 1004 addRegisterClass(MVT::f32, &PPC::VSSRCRegClass); 1005 1006 addRegisterClass(MVT::f64, &PPC::VSFRCRegClass); 1007 1008 addRegisterClass(MVT::v4i32, &PPC::VSRCRegClass); 1009 addRegisterClass(MVT::v4f32, &PPC::VSRCRegClass); 1010 addRegisterClass(MVT::v2f64, &PPC::VSRCRegClass); 1011 1012 if (Subtarget.hasP8Altivec()) { 1013 setOperationAction(ISD::SHL, MVT::v2i64, Legal); 1014 setOperationAction(ISD::SRA, MVT::v2i64, Legal); 1015 setOperationAction(ISD::SRL, MVT::v2i64, Legal); 1016 1017 // 128 bit shifts can be accomplished via 3 instructions for SHL and 1018 // SRL, but not for SRA because of the instructions available: 1019 // VS{RL} and VS{RL}O. However due to direct move costs, it's not worth 1020 // doing 1021 setOperationAction(ISD::SHL, MVT::v1i128, Expand); 1022 setOperationAction(ISD::SRL, MVT::v1i128, Expand); 1023 setOperationAction(ISD::SRA, MVT::v1i128, Expand); 1024 1025 setOperationAction(ISD::SETCC, MVT::v2i64, Legal); 1026 } 1027 else { 1028 setOperationAction(ISD::SHL, MVT::v2i64, Expand); 1029 setOperationAction(ISD::SRA, MVT::v2i64, Expand); 1030 setOperationAction(ISD::SRL, MVT::v2i64, Expand); 1031 1032 setOperationAction(ISD::SETCC, MVT::v2i64, Custom); 1033 1034 // VSX v2i64 only supports non-arithmetic operations. 1035 setOperationAction(ISD::ADD, MVT::v2i64, Expand); 1036 setOperationAction(ISD::SUB, MVT::v2i64, Expand); 1037 } 1038 1039 if (Subtarget.isISA3_1()) 1040 setOperationAction(ISD::SETCC, MVT::v1i128, Legal); 1041 else 1042 setOperationAction(ISD::SETCC, MVT::v1i128, Expand); 1043 1044 setOperationAction(ISD::LOAD, MVT::v2i64, Promote); 1045 AddPromotedToType (ISD::LOAD, MVT::v2i64, MVT::v2f64); 1046 setOperationAction(ISD::STORE, MVT::v2i64, Promote); 1047 AddPromotedToType (ISD::STORE, MVT::v2i64, MVT::v2f64); 1048 1049 setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v2i64, Legal); 1050 1051 setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::v2i64, Legal); 1052 setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::v2i64, Legal); 1053 setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::v2i64, Legal); 1054 setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::v2i64, Legal); 1055 setOperationAction(ISD::SINT_TO_FP, MVT::v2i64, Legal); 1056 setOperationAction(ISD::UINT_TO_FP, MVT::v2i64, Legal); 1057 setOperationAction(ISD::FP_TO_SINT, MVT::v2i64, Legal); 1058 setOperationAction(ISD::FP_TO_UINT, MVT::v2i64, Legal); 1059 1060 // Custom handling for partial vectors of integers converted to 1061 // floating point. We already have optimal handling for v2i32 through 1062 // the DAG combine, so those aren't necessary. 1063 setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::v2i8, Custom); 1064 setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::v4i8, Custom); 1065 setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::v2i16, Custom); 1066 setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::v4i16, Custom); 1067 setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::v2i8, Custom); 1068 setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::v4i8, Custom); 1069 setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::v2i16, Custom); 1070 setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::v4i16, Custom); 1071 setOperationAction(ISD::UINT_TO_FP, MVT::v2i8, Custom); 1072 setOperationAction(ISD::UINT_TO_FP, MVT::v4i8, Custom); 1073 setOperationAction(ISD::UINT_TO_FP, MVT::v2i16, Custom); 1074 setOperationAction(ISD::UINT_TO_FP, MVT::v4i16, Custom); 1075 setOperationAction(ISD::SINT_TO_FP, MVT::v2i8, Custom); 1076 setOperationAction(ISD::SINT_TO_FP, MVT::v4i8, Custom); 1077 setOperationAction(ISD::SINT_TO_FP, MVT::v2i16, Custom); 1078 setOperationAction(ISD::SINT_TO_FP, MVT::v4i16, Custom); 1079 1080 setOperationAction(ISD::FNEG, MVT::v4f32, Legal); 1081 setOperationAction(ISD::FNEG, MVT::v2f64, Legal); 1082 setOperationAction(ISD::FABS, MVT::v4f32, Legal); 1083 setOperationAction(ISD::FABS, MVT::v2f64, Legal); 1084 setOperationAction(ISD::FCOPYSIGN, MVT::v4f32, Legal); 1085 setOperationAction(ISD::FCOPYSIGN, MVT::v2f64, Legal); 1086 1087 setOperationAction(ISD::BUILD_VECTOR, MVT::v2i64, Custom); 1088 setOperationAction(ISD::BUILD_VECTOR, MVT::v2f64, Custom); 1089 1090 // Handle constrained floating-point operations of vector. 1091 // The predictor is `hasVSX` because altivec instruction has 1092 // no exception but VSX vector instruction has. 1093 setOperationAction(ISD::STRICT_FADD, MVT::v4f32, Legal); 1094 setOperationAction(ISD::STRICT_FSUB, MVT::v4f32, Legal); 1095 setOperationAction(ISD::STRICT_FMUL, MVT::v4f32, Legal); 1096 setOperationAction(ISD::STRICT_FDIV, MVT::v4f32, Legal); 1097 setOperationAction(ISD::STRICT_FMA, MVT::v4f32, Legal); 1098 setOperationAction(ISD::STRICT_FSQRT, MVT::v4f32, Legal); 1099 setOperationAction(ISD::STRICT_FMAXNUM, MVT::v4f32, Legal); 1100 setOperationAction(ISD::STRICT_FMINNUM, MVT::v4f32, Legal); 1101 setOperationAction(ISD::STRICT_FRINT, MVT::v4f32, Legal); 1102 setOperationAction(ISD::STRICT_FFLOOR, MVT::v4f32, Legal); 1103 setOperationAction(ISD::STRICT_FCEIL, MVT::v4f32, Legal); 1104 setOperationAction(ISD::STRICT_FTRUNC, MVT::v4f32, Legal); 1105 setOperationAction(ISD::STRICT_FROUND, MVT::v4f32, Legal); 1106 1107 setOperationAction(ISD::STRICT_FADD, MVT::v2f64, Legal); 1108 setOperationAction(ISD::STRICT_FSUB, MVT::v2f64, Legal); 1109 setOperationAction(ISD::STRICT_FMUL, MVT::v2f64, Legal); 1110 setOperationAction(ISD::STRICT_FDIV, MVT::v2f64, Legal); 1111 setOperationAction(ISD::STRICT_FMA, MVT::v2f64, Legal); 1112 setOperationAction(ISD::STRICT_FSQRT, MVT::v2f64, Legal); 1113 setOperationAction(ISD::STRICT_FMAXNUM, MVT::v2f64, Legal); 1114 setOperationAction(ISD::STRICT_FMINNUM, MVT::v2f64, Legal); 1115 setOperationAction(ISD::STRICT_FRINT, MVT::v2f64, Legal); 1116 setOperationAction(ISD::STRICT_FFLOOR, MVT::v2f64, Legal); 1117 setOperationAction(ISD::STRICT_FCEIL, MVT::v2f64, Legal); 1118 setOperationAction(ISD::STRICT_FTRUNC, MVT::v2f64, Legal); 1119 setOperationAction(ISD::STRICT_FROUND, MVT::v2f64, Legal); 1120 1121 addRegisterClass(MVT::v2i64, &PPC::VSRCRegClass); 1122 addRegisterClass(MVT::f128, &PPC::VRRCRegClass); 1123 1124 for (MVT FPT : MVT::fp_valuetypes()) 1125 setLoadExtAction(ISD::EXTLOAD, MVT::f128, FPT, Expand); 1126 1127 // Expand the SELECT to SELECT_CC 1128 setOperationAction(ISD::SELECT, MVT::f128, Expand); 1129 1130 setTruncStoreAction(MVT::f128, MVT::f64, Expand); 1131 setTruncStoreAction(MVT::f128, MVT::f32, Expand); 1132 1133 // No implementation for these ops for PowerPC. 1134 setOperationAction(ISD::FSIN, MVT::f128, Expand); 1135 setOperationAction(ISD::FCOS, MVT::f128, Expand); 1136 setOperationAction(ISD::FPOW, MVT::f128, Expand); 1137 setOperationAction(ISD::FPOWI, MVT::f128, Expand); 1138 setOperationAction(ISD::FREM, MVT::f128, Expand); 1139 } 1140 1141 if (Subtarget.hasP8Altivec()) { 1142 addRegisterClass(MVT::v2i64, &PPC::VRRCRegClass); 1143 addRegisterClass(MVT::v1i128, &PPC::VRRCRegClass); 1144 } 1145 1146 if (Subtarget.hasP9Vector()) { 1147 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4i32, Custom); 1148 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4f32, Custom); 1149 1150 // 128 bit shifts can be accomplished via 3 instructions for SHL and 1151 // SRL, but not for SRA because of the instructions available: 1152 // VS{RL} and VS{RL}O. 1153 setOperationAction(ISD::SHL, MVT::v1i128, Legal); 1154 setOperationAction(ISD::SRL, MVT::v1i128, Legal); 1155 setOperationAction(ISD::SRA, MVT::v1i128, Expand); 1156 1157 setOperationAction(ISD::FADD, MVT::f128, Legal); 1158 setOperationAction(ISD::FSUB, MVT::f128, Legal); 1159 setOperationAction(ISD::FDIV, MVT::f128, Legal); 1160 setOperationAction(ISD::FMUL, MVT::f128, Legal); 1161 setOperationAction(ISD::FP_EXTEND, MVT::f128, Legal); 1162 1163 setOperationAction(ISD::FMA, MVT::f128, Legal); 1164 setCondCodeAction(ISD::SETULT, MVT::f128, Expand); 1165 setCondCodeAction(ISD::SETUGT, MVT::f128, Expand); 1166 setCondCodeAction(ISD::SETUEQ, MVT::f128, Expand); 1167 setCondCodeAction(ISD::SETOGE, MVT::f128, Expand); 1168 setCondCodeAction(ISD::SETOLE, MVT::f128, Expand); 1169 setCondCodeAction(ISD::SETONE, MVT::f128, Expand); 1170 1171 setOperationAction(ISD::FTRUNC, MVT::f128, Legal); 1172 setOperationAction(ISD::FRINT, MVT::f128, Legal); 1173 setOperationAction(ISD::FFLOOR, MVT::f128, Legal); 1174 setOperationAction(ISD::FCEIL, MVT::f128, Legal); 1175 setOperationAction(ISD::FNEARBYINT, MVT::f128, Legal); 1176 setOperationAction(ISD::FROUND, MVT::f128, Legal); 1177 1178 setOperationAction(ISD::FP_ROUND, MVT::f64, Legal); 1179 setOperationAction(ISD::FP_ROUND, MVT::f32, Legal); 1180 setOperationAction(ISD::BITCAST, MVT::i128, Custom); 1181 1182 // Handle constrained floating-point operations of fp128 1183 setOperationAction(ISD::STRICT_FADD, MVT::f128, Legal); 1184 setOperationAction(ISD::STRICT_FSUB, MVT::f128, Legal); 1185 setOperationAction(ISD::STRICT_FMUL, MVT::f128, Legal); 1186 setOperationAction(ISD::STRICT_FDIV, MVT::f128, Legal); 1187 setOperationAction(ISD::STRICT_FMA, MVT::f128, Legal); 1188 setOperationAction(ISD::STRICT_FSQRT, MVT::f128, Legal); 1189 setOperationAction(ISD::STRICT_FP_EXTEND, MVT::f128, Legal); 1190 setOperationAction(ISD::STRICT_FP_ROUND, MVT::f64, Legal); 1191 setOperationAction(ISD::STRICT_FP_ROUND, MVT::f32, Legal); 1192 setOperationAction(ISD::STRICT_FRINT, MVT::f128, Legal); 1193 setOperationAction(ISD::STRICT_FNEARBYINT, MVT::f128, Legal); 1194 setOperationAction(ISD::STRICT_FFLOOR, MVT::f128, Legal); 1195 setOperationAction(ISD::STRICT_FCEIL, MVT::f128, Legal); 1196 setOperationAction(ISD::STRICT_FTRUNC, MVT::f128, Legal); 1197 setOperationAction(ISD::STRICT_FROUND, MVT::f128, Legal); 1198 setOperationAction(ISD::FP_EXTEND, MVT::v2f32, Custom); 1199 setOperationAction(ISD::BSWAP, MVT::v8i16, Legal); 1200 setOperationAction(ISD::BSWAP, MVT::v4i32, Legal); 1201 setOperationAction(ISD::BSWAP, MVT::v2i64, Legal); 1202 setOperationAction(ISD::BSWAP, MVT::v1i128, Legal); 1203 } else if (Subtarget.hasVSX()) { 1204 setOperationAction(ISD::LOAD, MVT::f128, Promote); 1205 setOperationAction(ISD::STORE, MVT::f128, Promote); 1206 1207 AddPromotedToType(ISD::LOAD, MVT::f128, MVT::v4i32); 1208 AddPromotedToType(ISD::STORE, MVT::f128, MVT::v4i32); 1209 1210 // Set FADD/FSUB as libcall to avoid the legalizer to expand the 1211 // fp_to_uint and int_to_fp. 1212 setOperationAction(ISD::FADD, MVT::f128, LibCall); 1213 setOperationAction(ISD::FSUB, MVT::f128, LibCall); 1214 1215 setOperationAction(ISD::FMUL, MVT::f128, Expand); 1216 setOperationAction(ISD::FDIV, MVT::f128, Expand); 1217 setOperationAction(ISD::FNEG, MVT::f128, Expand); 1218 setOperationAction(ISD::FABS, MVT::f128, Expand); 1219 setOperationAction(ISD::FSQRT, MVT::f128, Expand); 1220 setOperationAction(ISD::FMA, MVT::f128, Expand); 1221 setOperationAction(ISD::FCOPYSIGN, MVT::f128, Expand); 1222 1223 // Expand the fp_extend if the target type is fp128. 1224 setOperationAction(ISD::FP_EXTEND, MVT::f128, Expand); 1225 setOperationAction(ISD::STRICT_FP_EXTEND, MVT::f128, Expand); 1226 1227 // Expand the fp_round if the source type is fp128. 1228 for (MVT VT : {MVT::f32, MVT::f64}) { 1229 setOperationAction(ISD::FP_ROUND, VT, Custom); 1230 setOperationAction(ISD::STRICT_FP_ROUND, VT, Custom); 1231 } 1232 1233 setOperationAction(ISD::SETCC, MVT::f128, Custom); 1234 setOperationAction(ISD::STRICT_FSETCC, MVT::f128, Custom); 1235 setOperationAction(ISD::STRICT_FSETCCS, MVT::f128, Custom); 1236 setOperationAction(ISD::BR_CC, MVT::f128, Expand); 1237 1238 // Lower following f128 select_cc pattern: 1239 // select_cc x, y, tv, fv, cc -> select_cc (setcc x, y, cc), 0, tv, fv, NE 1240 setOperationAction(ISD::SELECT_CC, MVT::f128, Custom); 1241 1242 // We need to handle f128 SELECT_CC with integer result type. 1243 setOperationAction(ISD::SELECT_CC, MVT::i32, Custom); 1244 setOperationAction(ISD::SELECT_CC, MVT::i64, isPPC64 ? Custom : Expand); 1245 } 1246 1247 if (Subtarget.hasP9Altivec()) { 1248 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v8i16, Custom); 1249 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v16i8, Custom); 1250 1251 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v4i8, Legal); 1252 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v4i16, Legal); 1253 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v4i32, Legal); 1254 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i8, Legal); 1255 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i16, Legal); 1256 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i32, Legal); 1257 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i64, Legal); 1258 } 1259 1260 if (Subtarget.isISA3_1()) 1261 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v2i64, Custom); 1262 } 1263 1264 if (Subtarget.pairedVectorMemops()) { 1265 addRegisterClass(MVT::v256i1, &PPC::VSRpRCRegClass); 1266 setOperationAction(ISD::LOAD, MVT::v256i1, Custom); 1267 setOperationAction(ISD::STORE, MVT::v256i1, Custom); 1268 } 1269 if (Subtarget.hasMMA()) { 1270 addRegisterClass(MVT::v512i1, &PPC::UACCRCRegClass); 1271 setOperationAction(ISD::LOAD, MVT::v512i1, Custom); 1272 setOperationAction(ISD::STORE, MVT::v512i1, Custom); 1273 setOperationAction(ISD::BUILD_VECTOR, MVT::v512i1, Custom); 1274 } 1275 1276 if (Subtarget.has64BitSupport()) 1277 setOperationAction(ISD::PREFETCH, MVT::Other, Legal); 1278 1279 if (Subtarget.isISA3_1()) 1280 setOperationAction(ISD::SRA, MVT::v1i128, Legal); 1281 1282 setOperationAction(ISD::READCYCLECOUNTER, MVT::i64, isPPC64 ? Legal : Custom); 1283 1284 if (!isPPC64) { 1285 setOperationAction(ISD::ATOMIC_LOAD, MVT::i64, Expand); 1286 setOperationAction(ISD::ATOMIC_STORE, MVT::i64, Expand); 1287 } 1288 1289 if (EnableQuadwordAtomics && Subtarget.hasQuadwordAtomics()) 1290 setMaxAtomicSizeInBitsSupported(128); 1291 1292 setBooleanContents(ZeroOrOneBooleanContent); 1293 1294 if (Subtarget.hasAltivec()) { 1295 // Altivec instructions set fields to all zeros or all ones. 1296 setBooleanVectorContents(ZeroOrNegativeOneBooleanContent); 1297 } 1298 1299 if (!isPPC64) { 1300 // These libcalls are not available in 32-bit. 1301 setLibcallName(RTLIB::SHL_I128, nullptr); 1302 setLibcallName(RTLIB::SRL_I128, nullptr); 1303 setLibcallName(RTLIB::SRA_I128, nullptr); 1304 } 1305 1306 if (!isPPC64) 1307 setMaxAtomicSizeInBitsSupported(32); 1308 1309 setStackPointerRegisterToSaveRestore(isPPC64 ? PPC::X1 : PPC::R1); 1310 1311 // We have target-specific dag combine patterns for the following nodes: 1312 setTargetDAGCombine(ISD::ADD); 1313 setTargetDAGCombine(ISD::SHL); 1314 setTargetDAGCombine(ISD::SRA); 1315 setTargetDAGCombine(ISD::SRL); 1316 setTargetDAGCombine(ISD::MUL); 1317 setTargetDAGCombine(ISD::FMA); 1318 setTargetDAGCombine(ISD::SINT_TO_FP); 1319 setTargetDAGCombine(ISD::BUILD_VECTOR); 1320 if (Subtarget.hasFPCVT()) 1321 setTargetDAGCombine(ISD::UINT_TO_FP); 1322 setTargetDAGCombine(ISD::LOAD); 1323 setTargetDAGCombine(ISD::STORE); 1324 setTargetDAGCombine(ISD::BR_CC); 1325 if (Subtarget.useCRBits()) 1326 setTargetDAGCombine(ISD::BRCOND); 1327 setTargetDAGCombine(ISD::BSWAP); 1328 setTargetDAGCombine(ISD::INTRINSIC_WO_CHAIN); 1329 setTargetDAGCombine(ISD::INTRINSIC_W_CHAIN); 1330 setTargetDAGCombine(ISD::INTRINSIC_VOID); 1331 1332 setTargetDAGCombine(ISD::SIGN_EXTEND); 1333 setTargetDAGCombine(ISD::ZERO_EXTEND); 1334 setTargetDAGCombine(ISD::ANY_EXTEND); 1335 1336 setTargetDAGCombine(ISD::TRUNCATE); 1337 setTargetDAGCombine(ISD::VECTOR_SHUFFLE); 1338 1339 1340 if (Subtarget.useCRBits()) { 1341 setTargetDAGCombine(ISD::TRUNCATE); 1342 setTargetDAGCombine(ISD::SETCC); 1343 setTargetDAGCombine(ISD::SELECT_CC); 1344 } 1345 1346 if (Subtarget.hasP9Altivec()) { 1347 setTargetDAGCombine(ISD::ABS); 1348 setTargetDAGCombine(ISD::VSELECT); 1349 } 1350 1351 setLibcallName(RTLIB::LOG_F128, "logf128"); 1352 setLibcallName(RTLIB::LOG2_F128, "log2f128"); 1353 setLibcallName(RTLIB::LOG10_F128, "log10f128"); 1354 setLibcallName(RTLIB::EXP_F128, "expf128"); 1355 setLibcallName(RTLIB::EXP2_F128, "exp2f128"); 1356 setLibcallName(RTLIB::SIN_F128, "sinf128"); 1357 setLibcallName(RTLIB::COS_F128, "cosf128"); 1358 setLibcallName(RTLIB::POW_F128, "powf128"); 1359 setLibcallName(RTLIB::FMIN_F128, "fminf128"); 1360 setLibcallName(RTLIB::FMAX_F128, "fmaxf128"); 1361 setLibcallName(RTLIB::REM_F128, "fmodf128"); 1362 setLibcallName(RTLIB::SQRT_F128, "sqrtf128"); 1363 setLibcallName(RTLIB::CEIL_F128, "ceilf128"); 1364 setLibcallName(RTLIB::FLOOR_F128, "floorf128"); 1365 setLibcallName(RTLIB::TRUNC_F128, "truncf128"); 1366 setLibcallName(RTLIB::ROUND_F128, "roundf128"); 1367 setLibcallName(RTLIB::LROUND_F128, "lroundf128"); 1368 setLibcallName(RTLIB::LLROUND_F128, "llroundf128"); 1369 setLibcallName(RTLIB::RINT_F128, "rintf128"); 1370 setLibcallName(RTLIB::LRINT_F128, "lrintf128"); 1371 setLibcallName(RTLIB::LLRINT_F128, "llrintf128"); 1372 setLibcallName(RTLIB::NEARBYINT_F128, "nearbyintf128"); 1373 setLibcallName(RTLIB::FMA_F128, "fmaf128"); 1374 1375 // With 32 condition bits, we don't need to sink (and duplicate) compares 1376 // aggressively in CodeGenPrep. 1377 if (Subtarget.useCRBits()) { 1378 setHasMultipleConditionRegisters(); 1379 setJumpIsExpensive(); 1380 } 1381 1382 setMinFunctionAlignment(Align(4)); 1383 1384 switch (Subtarget.getCPUDirective()) { 1385 default: break; 1386 case PPC::DIR_970: 1387 case PPC::DIR_A2: 1388 case PPC::DIR_E500: 1389 case PPC::DIR_E500mc: 1390 case PPC::DIR_E5500: 1391 case PPC::DIR_PWR4: 1392 case PPC::DIR_PWR5: 1393 case PPC::DIR_PWR5X: 1394 case PPC::DIR_PWR6: 1395 case PPC::DIR_PWR6X: 1396 case PPC::DIR_PWR7: 1397 case PPC::DIR_PWR8: 1398 case PPC::DIR_PWR9: 1399 case PPC::DIR_PWR10: 1400 case PPC::DIR_PWR_FUTURE: 1401 setPrefLoopAlignment(Align(16)); 1402 setPrefFunctionAlignment(Align(16)); 1403 break; 1404 } 1405 1406 if (Subtarget.enableMachineScheduler()) 1407 setSchedulingPreference(Sched::Source); 1408 else 1409 setSchedulingPreference(Sched::Hybrid); 1410 1411 computeRegisterProperties(STI.getRegisterInfo()); 1412 1413 // The Freescale cores do better with aggressive inlining of memcpy and 1414 // friends. GCC uses same threshold of 128 bytes (= 32 word stores). 1415 if (Subtarget.getCPUDirective() == PPC::DIR_E500mc || 1416 Subtarget.getCPUDirective() == PPC::DIR_E5500) { 1417 MaxStoresPerMemset = 32; 1418 MaxStoresPerMemsetOptSize = 16; 1419 MaxStoresPerMemcpy = 32; 1420 MaxStoresPerMemcpyOptSize = 8; 1421 MaxStoresPerMemmove = 32; 1422 MaxStoresPerMemmoveOptSize = 8; 1423 } else if (Subtarget.getCPUDirective() == PPC::DIR_A2) { 1424 // The A2 also benefits from (very) aggressive inlining of memcpy and 1425 // friends. The overhead of a the function call, even when warm, can be 1426 // over one hundred cycles. 1427 MaxStoresPerMemset = 128; 1428 MaxStoresPerMemcpy = 128; 1429 MaxStoresPerMemmove = 128; 1430 MaxLoadsPerMemcmp = 128; 1431 } else { 1432 MaxLoadsPerMemcmp = 8; 1433 MaxLoadsPerMemcmpOptSize = 4; 1434 } 1435 1436 IsStrictFPEnabled = true; 1437 1438 // Let the subtarget (CPU) decide if a predictable select is more expensive 1439 // than the corresponding branch. This information is used in CGP to decide 1440 // when to convert selects into branches. 1441 PredictableSelectIsExpensive = Subtarget.isPredictableSelectIsExpensive(); 1442 } 1443 1444 // *********************************** NOTE ************************************ 1445 // For selecting load and store instructions, the addressing modes are defined 1446 // as ComplexPatterns in PPCInstrInfo.td, which are then utilized in the TD 1447 // patterns to match the load the store instructions. 1448 // 1449 // The TD definitions for the addressing modes correspond to their respective 1450 // Select<AddrMode>Form() function in PPCISelDAGToDAG.cpp. These functions rely 1451 // on SelectOptimalAddrMode(), which calls computeMOFlags() to compute the 1452 // address mode flags of a particular node. Afterwards, the computed address 1453 // flags are passed into getAddrModeForFlags() in order to retrieve the optimal 1454 // addressing mode. SelectOptimalAddrMode() then sets the Base and Displacement 1455 // accordingly, based on the preferred addressing mode. 1456 // 1457 // Within PPCISelLowering.h, there are two enums: MemOpFlags and AddrMode. 1458 // MemOpFlags contains all the possible flags that can be used to compute the 1459 // optimal addressing mode for load and store instructions. 1460 // AddrMode contains all the possible load and store addressing modes available 1461 // on Power (such as DForm, DSForm, DQForm, XForm, etc.) 1462 // 1463 // When adding new load and store instructions, it is possible that new address 1464 // flags may need to be added into MemOpFlags, and a new addressing mode will 1465 // need to be added to AddrMode. An entry of the new addressing mode (consisting 1466 // of the minimal and main distinguishing address flags for the new load/store 1467 // instructions) will need to be added into initializeAddrModeMap() below. 1468 // Finally, when adding new addressing modes, the getAddrModeForFlags() will 1469 // need to be updated to account for selecting the optimal addressing mode. 1470 // ***************************************************************************** 1471 /// Initialize the map that relates the different addressing modes of the load 1472 /// and store instructions to a set of flags. This ensures the load/store 1473 /// instruction is correctly matched during instruction selection. 1474 void PPCTargetLowering::initializeAddrModeMap() { 1475 AddrModesMap[PPC::AM_DForm] = { 1476 // LWZ, STW 1477 PPC::MOF_ZExt | PPC::MOF_RPlusSImm16 | PPC::MOF_WordInt, 1478 PPC::MOF_ZExt | PPC::MOF_RPlusLo | PPC::MOF_WordInt, 1479 PPC::MOF_ZExt | PPC::MOF_NotAddNorCst | PPC::MOF_WordInt, 1480 PPC::MOF_ZExt | PPC::MOF_AddrIsSImm32 | PPC::MOF_WordInt, 1481 // LBZ, LHZ, STB, STH 1482 PPC::MOF_ZExt | PPC::MOF_RPlusSImm16 | PPC::MOF_SubWordInt, 1483 PPC::MOF_ZExt | PPC::MOF_RPlusLo | PPC::MOF_SubWordInt, 1484 PPC::MOF_ZExt | PPC::MOF_NotAddNorCst | PPC::MOF_SubWordInt, 1485 PPC::MOF_ZExt | PPC::MOF_AddrIsSImm32 | PPC::MOF_SubWordInt, 1486 // LHA 1487 PPC::MOF_SExt | PPC::MOF_RPlusSImm16 | PPC::MOF_SubWordInt, 1488 PPC::MOF_SExt | PPC::MOF_RPlusLo | PPC::MOF_SubWordInt, 1489 PPC::MOF_SExt | PPC::MOF_NotAddNorCst | PPC::MOF_SubWordInt, 1490 PPC::MOF_SExt | PPC::MOF_AddrIsSImm32 | PPC::MOF_SubWordInt, 1491 // LFS, LFD, STFS, STFD 1492 PPC::MOF_RPlusSImm16 | PPC::MOF_ScalarFloat | PPC::MOF_SubtargetBeforeP9, 1493 PPC::MOF_RPlusLo | PPC::MOF_ScalarFloat | PPC::MOF_SubtargetBeforeP9, 1494 PPC::MOF_NotAddNorCst | PPC::MOF_ScalarFloat | PPC::MOF_SubtargetBeforeP9, 1495 PPC::MOF_AddrIsSImm32 | PPC::MOF_ScalarFloat | PPC::MOF_SubtargetBeforeP9, 1496 }; 1497 AddrModesMap[PPC::AM_DSForm] = { 1498 // LWA 1499 PPC::MOF_SExt | PPC::MOF_RPlusSImm16Mult4 | PPC::MOF_WordInt, 1500 PPC::MOF_SExt | PPC::MOF_NotAddNorCst | PPC::MOF_WordInt, 1501 PPC::MOF_SExt | PPC::MOF_AddrIsSImm32 | PPC::MOF_WordInt, 1502 // LD, STD 1503 PPC::MOF_RPlusSImm16Mult4 | PPC::MOF_DoubleWordInt, 1504 PPC::MOF_NotAddNorCst | PPC::MOF_DoubleWordInt, 1505 PPC::MOF_AddrIsSImm32 | PPC::MOF_DoubleWordInt, 1506 // DFLOADf32, DFLOADf64, DSTOREf32, DSTOREf64 1507 PPC::MOF_RPlusSImm16Mult4 | PPC::MOF_ScalarFloat | PPC::MOF_SubtargetP9, 1508 PPC::MOF_NotAddNorCst | PPC::MOF_ScalarFloat | PPC::MOF_SubtargetP9, 1509 PPC::MOF_AddrIsSImm32 | PPC::MOF_ScalarFloat | PPC::MOF_SubtargetP9, 1510 }; 1511 AddrModesMap[PPC::AM_DQForm] = { 1512 // LXV, STXV 1513 PPC::MOF_RPlusSImm16Mult16 | PPC::MOF_Vector | PPC::MOF_SubtargetP9, 1514 PPC::MOF_NotAddNorCst | PPC::MOF_Vector | PPC::MOF_SubtargetP9, 1515 PPC::MOF_AddrIsSImm32 | PPC::MOF_Vector | PPC::MOF_SubtargetP9, 1516 PPC::MOF_RPlusSImm16Mult16 | PPC::MOF_Vector256 | PPC::MOF_SubtargetP10, 1517 PPC::MOF_NotAddNorCst | PPC::MOF_Vector256 | PPC::MOF_SubtargetP10, 1518 PPC::MOF_AddrIsSImm32 | PPC::MOF_Vector256 | PPC::MOF_SubtargetP10, 1519 }; 1520 } 1521 1522 /// getMaxByValAlign - Helper for getByValTypeAlignment to determine 1523 /// the desired ByVal argument alignment. 1524 static void getMaxByValAlign(Type *Ty, Align &MaxAlign, Align MaxMaxAlign) { 1525 if (MaxAlign == MaxMaxAlign) 1526 return; 1527 if (VectorType *VTy = dyn_cast<VectorType>(Ty)) { 1528 if (MaxMaxAlign >= 32 && 1529 VTy->getPrimitiveSizeInBits().getFixedSize() >= 256) 1530 MaxAlign = Align(32); 1531 else if (VTy->getPrimitiveSizeInBits().getFixedSize() >= 128 && 1532 MaxAlign < 16) 1533 MaxAlign = Align(16); 1534 } else if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) { 1535 Align EltAlign; 1536 getMaxByValAlign(ATy->getElementType(), EltAlign, MaxMaxAlign); 1537 if (EltAlign > MaxAlign) 1538 MaxAlign = EltAlign; 1539 } else if (StructType *STy = dyn_cast<StructType>(Ty)) { 1540 for (auto *EltTy : STy->elements()) { 1541 Align EltAlign; 1542 getMaxByValAlign(EltTy, EltAlign, MaxMaxAlign); 1543 if (EltAlign > MaxAlign) 1544 MaxAlign = EltAlign; 1545 if (MaxAlign == MaxMaxAlign) 1546 break; 1547 } 1548 } 1549 } 1550 1551 /// getByValTypeAlignment - Return the desired alignment for ByVal aggregate 1552 /// function arguments in the caller parameter area. 1553 unsigned PPCTargetLowering::getByValTypeAlignment(Type *Ty, 1554 const DataLayout &DL) const { 1555 // 16byte and wider vectors are passed on 16byte boundary. 1556 // The rest is 8 on PPC64 and 4 on PPC32 boundary. 1557 Align Alignment = Subtarget.isPPC64() ? Align(8) : Align(4); 1558 if (Subtarget.hasAltivec()) 1559 getMaxByValAlign(Ty, Alignment, Align(16)); 1560 return Alignment.value(); 1561 } 1562 1563 bool PPCTargetLowering::useSoftFloat() const { 1564 return Subtarget.useSoftFloat(); 1565 } 1566 1567 bool PPCTargetLowering::hasSPE() const { 1568 return Subtarget.hasSPE(); 1569 } 1570 1571 bool PPCTargetLowering::preferIncOfAddToSubOfNot(EVT VT) const { 1572 return VT.isScalarInteger(); 1573 } 1574 1575 const char *PPCTargetLowering::getTargetNodeName(unsigned Opcode) const { 1576 switch ((PPCISD::NodeType)Opcode) { 1577 case PPCISD::FIRST_NUMBER: break; 1578 case PPCISD::FSEL: return "PPCISD::FSEL"; 1579 case PPCISD::XSMAXCDP: return "PPCISD::XSMAXCDP"; 1580 case PPCISD::XSMINCDP: return "PPCISD::XSMINCDP"; 1581 case PPCISD::FCFID: return "PPCISD::FCFID"; 1582 case PPCISD::FCFIDU: return "PPCISD::FCFIDU"; 1583 case PPCISD::FCFIDS: return "PPCISD::FCFIDS"; 1584 case PPCISD::FCFIDUS: return "PPCISD::FCFIDUS"; 1585 case PPCISD::FCTIDZ: return "PPCISD::FCTIDZ"; 1586 case PPCISD::FCTIWZ: return "PPCISD::FCTIWZ"; 1587 case PPCISD::FCTIDUZ: return "PPCISD::FCTIDUZ"; 1588 case PPCISD::FCTIWUZ: return "PPCISD::FCTIWUZ"; 1589 case PPCISD::FP_TO_UINT_IN_VSR: 1590 return "PPCISD::FP_TO_UINT_IN_VSR,"; 1591 case PPCISD::FP_TO_SINT_IN_VSR: 1592 return "PPCISD::FP_TO_SINT_IN_VSR"; 1593 case PPCISD::FRE: return "PPCISD::FRE"; 1594 case PPCISD::FRSQRTE: return "PPCISD::FRSQRTE"; 1595 case PPCISD::FTSQRT: 1596 return "PPCISD::FTSQRT"; 1597 case PPCISD::FSQRT: 1598 return "PPCISD::FSQRT"; 1599 case PPCISD::STFIWX: return "PPCISD::STFIWX"; 1600 case PPCISD::VPERM: return "PPCISD::VPERM"; 1601 case PPCISD::XXSPLT: return "PPCISD::XXSPLT"; 1602 case PPCISD::XXSPLTI_SP_TO_DP: 1603 return "PPCISD::XXSPLTI_SP_TO_DP"; 1604 case PPCISD::XXSPLTI32DX: 1605 return "PPCISD::XXSPLTI32DX"; 1606 case PPCISD::VECINSERT: return "PPCISD::VECINSERT"; 1607 case PPCISD::XXPERMDI: return "PPCISD::XXPERMDI"; 1608 case PPCISD::VECSHL: return "PPCISD::VECSHL"; 1609 case PPCISD::CMPB: return "PPCISD::CMPB"; 1610 case PPCISD::Hi: return "PPCISD::Hi"; 1611 case PPCISD::Lo: return "PPCISD::Lo"; 1612 case PPCISD::TOC_ENTRY: return "PPCISD::TOC_ENTRY"; 1613 case PPCISD::ATOMIC_CMP_SWAP_8: return "PPCISD::ATOMIC_CMP_SWAP_8"; 1614 case PPCISD::ATOMIC_CMP_SWAP_16: return "PPCISD::ATOMIC_CMP_SWAP_16"; 1615 case PPCISD::DYNALLOC: return "PPCISD::DYNALLOC"; 1616 case PPCISD::DYNAREAOFFSET: return "PPCISD::DYNAREAOFFSET"; 1617 case PPCISD::PROBED_ALLOCA: return "PPCISD::PROBED_ALLOCA"; 1618 case PPCISD::GlobalBaseReg: return "PPCISD::GlobalBaseReg"; 1619 case PPCISD::SRL: return "PPCISD::SRL"; 1620 case PPCISD::SRA: return "PPCISD::SRA"; 1621 case PPCISD::SHL: return "PPCISD::SHL"; 1622 case PPCISD::SRA_ADDZE: return "PPCISD::SRA_ADDZE"; 1623 case PPCISD::CALL: return "PPCISD::CALL"; 1624 case PPCISD::CALL_NOP: return "PPCISD::CALL_NOP"; 1625 case PPCISD::CALL_NOTOC: return "PPCISD::CALL_NOTOC"; 1626 case PPCISD::MTCTR: return "PPCISD::MTCTR"; 1627 case PPCISD::BCTRL: return "PPCISD::BCTRL"; 1628 case PPCISD::BCTRL_LOAD_TOC: return "PPCISD::BCTRL_LOAD_TOC"; 1629 case PPCISD::RET_FLAG: return "PPCISD::RET_FLAG"; 1630 case PPCISD::READ_TIME_BASE: return "PPCISD::READ_TIME_BASE"; 1631 case PPCISD::EH_SJLJ_SETJMP: return "PPCISD::EH_SJLJ_SETJMP"; 1632 case PPCISD::EH_SJLJ_LONGJMP: return "PPCISD::EH_SJLJ_LONGJMP"; 1633 case PPCISD::MFOCRF: return "PPCISD::MFOCRF"; 1634 case PPCISD::MFVSR: return "PPCISD::MFVSR"; 1635 case PPCISD::MTVSRA: return "PPCISD::MTVSRA"; 1636 case PPCISD::MTVSRZ: return "PPCISD::MTVSRZ"; 1637 case PPCISD::SINT_VEC_TO_FP: return "PPCISD::SINT_VEC_TO_FP"; 1638 case PPCISD::UINT_VEC_TO_FP: return "PPCISD::UINT_VEC_TO_FP"; 1639 case PPCISD::SCALAR_TO_VECTOR_PERMUTED: 1640 return "PPCISD::SCALAR_TO_VECTOR_PERMUTED"; 1641 case PPCISD::ANDI_rec_1_EQ_BIT: 1642 return "PPCISD::ANDI_rec_1_EQ_BIT"; 1643 case PPCISD::ANDI_rec_1_GT_BIT: 1644 return "PPCISD::ANDI_rec_1_GT_BIT"; 1645 case PPCISD::VCMP: return "PPCISD::VCMP"; 1646 case PPCISD::VCMP_rec: return "PPCISD::VCMP_rec"; 1647 case PPCISD::LBRX: return "PPCISD::LBRX"; 1648 case PPCISD::STBRX: return "PPCISD::STBRX"; 1649 case PPCISD::LFIWAX: return "PPCISD::LFIWAX"; 1650 case PPCISD::LFIWZX: return "PPCISD::LFIWZX"; 1651 case PPCISD::LXSIZX: return "PPCISD::LXSIZX"; 1652 case PPCISD::STXSIX: return "PPCISD::STXSIX"; 1653 case PPCISD::VEXTS: return "PPCISD::VEXTS"; 1654 case PPCISD::LXVD2X: return "PPCISD::LXVD2X"; 1655 case PPCISD::STXVD2X: return "PPCISD::STXVD2X"; 1656 case PPCISD::LOAD_VEC_BE: return "PPCISD::LOAD_VEC_BE"; 1657 case PPCISD::STORE_VEC_BE: return "PPCISD::STORE_VEC_BE"; 1658 case PPCISD::ST_VSR_SCAL_INT: 1659 return "PPCISD::ST_VSR_SCAL_INT"; 1660 case PPCISD::COND_BRANCH: return "PPCISD::COND_BRANCH"; 1661 case PPCISD::BDNZ: return "PPCISD::BDNZ"; 1662 case PPCISD::BDZ: return "PPCISD::BDZ"; 1663 case PPCISD::MFFS: return "PPCISD::MFFS"; 1664 case PPCISD::FADDRTZ: return "PPCISD::FADDRTZ"; 1665 case PPCISD::TC_RETURN: return "PPCISD::TC_RETURN"; 1666 case PPCISD::CR6SET: return "PPCISD::CR6SET"; 1667 case PPCISD::CR6UNSET: return "PPCISD::CR6UNSET"; 1668 case PPCISD::PPC32_GOT: return "PPCISD::PPC32_GOT"; 1669 case PPCISD::PPC32_PICGOT: return "PPCISD::PPC32_PICGOT"; 1670 case PPCISD::ADDIS_GOT_TPREL_HA: return "PPCISD::ADDIS_GOT_TPREL_HA"; 1671 case PPCISD::LD_GOT_TPREL_L: return "PPCISD::LD_GOT_TPREL_L"; 1672 case PPCISD::ADD_TLS: return "PPCISD::ADD_TLS"; 1673 case PPCISD::ADDIS_TLSGD_HA: return "PPCISD::ADDIS_TLSGD_HA"; 1674 case PPCISD::ADDI_TLSGD_L: return "PPCISD::ADDI_TLSGD_L"; 1675 case PPCISD::GET_TLS_ADDR: return "PPCISD::GET_TLS_ADDR"; 1676 case PPCISD::ADDI_TLSGD_L_ADDR: return "PPCISD::ADDI_TLSGD_L_ADDR"; 1677 case PPCISD::TLSGD_AIX: return "PPCISD::TLSGD_AIX"; 1678 case PPCISD::ADDIS_TLSLD_HA: return "PPCISD::ADDIS_TLSLD_HA"; 1679 case PPCISD::ADDI_TLSLD_L: return "PPCISD::ADDI_TLSLD_L"; 1680 case PPCISD::GET_TLSLD_ADDR: return "PPCISD::GET_TLSLD_ADDR"; 1681 case PPCISD::ADDI_TLSLD_L_ADDR: return "PPCISD::ADDI_TLSLD_L_ADDR"; 1682 case PPCISD::ADDIS_DTPREL_HA: return "PPCISD::ADDIS_DTPREL_HA"; 1683 case PPCISD::ADDI_DTPREL_L: return "PPCISD::ADDI_DTPREL_L"; 1684 case PPCISD::PADDI_DTPREL: 1685 return "PPCISD::PADDI_DTPREL"; 1686 case PPCISD::VADD_SPLAT: return "PPCISD::VADD_SPLAT"; 1687 case PPCISD::SC: return "PPCISD::SC"; 1688 case PPCISD::CLRBHRB: return "PPCISD::CLRBHRB"; 1689 case PPCISD::MFBHRBE: return "PPCISD::MFBHRBE"; 1690 case PPCISD::RFEBB: return "PPCISD::RFEBB"; 1691 case PPCISD::XXSWAPD: return "PPCISD::XXSWAPD"; 1692 case PPCISD::SWAP_NO_CHAIN: return "PPCISD::SWAP_NO_CHAIN"; 1693 case PPCISD::VABSD: return "PPCISD::VABSD"; 1694 case PPCISD::BUILD_FP128: return "PPCISD::BUILD_FP128"; 1695 case PPCISD::BUILD_SPE64: return "PPCISD::BUILD_SPE64"; 1696 case PPCISD::EXTRACT_SPE: return "PPCISD::EXTRACT_SPE"; 1697 case PPCISD::EXTSWSLI: return "PPCISD::EXTSWSLI"; 1698 case PPCISD::LD_VSX_LH: return "PPCISD::LD_VSX_LH"; 1699 case PPCISD::FP_EXTEND_HALF: return "PPCISD::FP_EXTEND_HALF"; 1700 case PPCISD::MAT_PCREL_ADDR: return "PPCISD::MAT_PCREL_ADDR"; 1701 case PPCISD::TLS_DYNAMIC_MAT_PCREL_ADDR: 1702 return "PPCISD::TLS_DYNAMIC_MAT_PCREL_ADDR"; 1703 case PPCISD::TLS_LOCAL_EXEC_MAT_ADDR: 1704 return "PPCISD::TLS_LOCAL_EXEC_MAT_ADDR"; 1705 case PPCISD::ACC_BUILD: return "PPCISD::ACC_BUILD"; 1706 case PPCISD::PAIR_BUILD: return "PPCISD::PAIR_BUILD"; 1707 case PPCISD::EXTRACT_VSX_REG: return "PPCISD::EXTRACT_VSX_REG"; 1708 case PPCISD::XXMFACC: return "PPCISD::XXMFACC"; 1709 case PPCISD::LD_SPLAT: return "PPCISD::LD_SPLAT"; 1710 case PPCISD::FNMSUB: return "PPCISD::FNMSUB"; 1711 case PPCISD::STRICT_FADDRTZ: 1712 return "PPCISD::STRICT_FADDRTZ"; 1713 case PPCISD::STRICT_FCTIDZ: 1714 return "PPCISD::STRICT_FCTIDZ"; 1715 case PPCISD::STRICT_FCTIWZ: 1716 return "PPCISD::STRICT_FCTIWZ"; 1717 case PPCISD::STRICT_FCTIDUZ: 1718 return "PPCISD::STRICT_FCTIDUZ"; 1719 case PPCISD::STRICT_FCTIWUZ: 1720 return "PPCISD::STRICT_FCTIWUZ"; 1721 case PPCISD::STRICT_FCFID: 1722 return "PPCISD::STRICT_FCFID"; 1723 case PPCISD::STRICT_FCFIDU: 1724 return "PPCISD::STRICT_FCFIDU"; 1725 case PPCISD::STRICT_FCFIDS: 1726 return "PPCISD::STRICT_FCFIDS"; 1727 case PPCISD::STRICT_FCFIDUS: 1728 return "PPCISD::STRICT_FCFIDUS"; 1729 case PPCISD::LXVRZX: return "PPCISD::LXVRZX"; 1730 } 1731 return nullptr; 1732 } 1733 1734 EVT PPCTargetLowering::getSetCCResultType(const DataLayout &DL, LLVMContext &C, 1735 EVT VT) const { 1736 if (!VT.isVector()) 1737 return Subtarget.useCRBits() ? MVT::i1 : MVT::i32; 1738 1739 return VT.changeVectorElementTypeToInteger(); 1740 } 1741 1742 bool PPCTargetLowering::enableAggressiveFMAFusion(EVT VT) const { 1743 assert(VT.isFloatingPoint() && "Non-floating-point FMA?"); 1744 return true; 1745 } 1746 1747 //===----------------------------------------------------------------------===// 1748 // Node matching predicates, for use by the tblgen matching code. 1749 //===----------------------------------------------------------------------===// 1750 1751 /// isFloatingPointZero - Return true if this is 0.0 or -0.0. 1752 static bool isFloatingPointZero(SDValue Op) { 1753 if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(Op)) 1754 return CFP->getValueAPF().isZero(); 1755 else if (ISD::isEXTLoad(Op.getNode()) || ISD::isNON_EXTLoad(Op.getNode())) { 1756 // Maybe this has already been legalized into the constant pool? 1757 if (ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(Op.getOperand(1))) 1758 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CP->getConstVal())) 1759 return CFP->getValueAPF().isZero(); 1760 } 1761 return false; 1762 } 1763 1764 /// isConstantOrUndef - Op is either an undef node or a ConstantSDNode. Return 1765 /// true if Op is undef or if it matches the specified value. 1766 static bool isConstantOrUndef(int Op, int Val) { 1767 return Op < 0 || Op == Val; 1768 } 1769 1770 /// isVPKUHUMShuffleMask - Return true if this is the shuffle mask for a 1771 /// VPKUHUM instruction. 1772 /// The ShuffleKind distinguishes between big-endian operations with 1773 /// two different inputs (0), either-endian operations with two identical 1774 /// inputs (1), and little-endian operations with two different inputs (2). 1775 /// For the latter, the input operands are swapped (see PPCInstrAltivec.td). 1776 bool PPC::isVPKUHUMShuffleMask(ShuffleVectorSDNode *N, unsigned ShuffleKind, 1777 SelectionDAG &DAG) { 1778 bool IsLE = DAG.getDataLayout().isLittleEndian(); 1779 if (ShuffleKind == 0) { 1780 if (IsLE) 1781 return false; 1782 for (unsigned i = 0; i != 16; ++i) 1783 if (!isConstantOrUndef(N->getMaskElt(i), i*2+1)) 1784 return false; 1785 } else if (ShuffleKind == 2) { 1786 if (!IsLE) 1787 return false; 1788 for (unsigned i = 0; i != 16; ++i) 1789 if (!isConstantOrUndef(N->getMaskElt(i), i*2)) 1790 return false; 1791 } else if (ShuffleKind == 1) { 1792 unsigned j = IsLE ? 0 : 1; 1793 for (unsigned i = 0; i != 8; ++i) 1794 if (!isConstantOrUndef(N->getMaskElt(i), i*2+j) || 1795 !isConstantOrUndef(N->getMaskElt(i+8), i*2+j)) 1796 return false; 1797 } 1798 return true; 1799 } 1800 1801 /// isVPKUWUMShuffleMask - Return true if this is the shuffle mask for a 1802 /// VPKUWUM instruction. 1803 /// The ShuffleKind distinguishes between big-endian operations with 1804 /// two different inputs (0), either-endian operations with two identical 1805 /// inputs (1), and little-endian operations with two different inputs (2). 1806 /// For the latter, the input operands are swapped (see PPCInstrAltivec.td). 1807 bool PPC::isVPKUWUMShuffleMask(ShuffleVectorSDNode *N, unsigned ShuffleKind, 1808 SelectionDAG &DAG) { 1809 bool IsLE = DAG.getDataLayout().isLittleEndian(); 1810 if (ShuffleKind == 0) { 1811 if (IsLE) 1812 return false; 1813 for (unsigned i = 0; i != 16; i += 2) 1814 if (!isConstantOrUndef(N->getMaskElt(i ), i*2+2) || 1815 !isConstantOrUndef(N->getMaskElt(i+1), i*2+3)) 1816 return false; 1817 } else if (ShuffleKind == 2) { 1818 if (!IsLE) 1819 return false; 1820 for (unsigned i = 0; i != 16; i += 2) 1821 if (!isConstantOrUndef(N->getMaskElt(i ), i*2) || 1822 !isConstantOrUndef(N->getMaskElt(i+1), i*2+1)) 1823 return false; 1824 } else if (ShuffleKind == 1) { 1825 unsigned j = IsLE ? 0 : 2; 1826 for (unsigned i = 0; i != 8; i += 2) 1827 if (!isConstantOrUndef(N->getMaskElt(i ), i*2+j) || 1828 !isConstantOrUndef(N->getMaskElt(i+1), i*2+j+1) || 1829 !isConstantOrUndef(N->getMaskElt(i+8), i*2+j) || 1830 !isConstantOrUndef(N->getMaskElt(i+9), i*2+j+1)) 1831 return false; 1832 } 1833 return true; 1834 } 1835 1836 /// isVPKUDUMShuffleMask - Return true if this is the shuffle mask for a 1837 /// VPKUDUM instruction, AND the VPKUDUM instruction exists for the 1838 /// current subtarget. 1839 /// 1840 /// The ShuffleKind distinguishes between big-endian operations with 1841 /// two different inputs (0), either-endian operations with two identical 1842 /// inputs (1), and little-endian operations with two different inputs (2). 1843 /// For the latter, the input operands are swapped (see PPCInstrAltivec.td). 1844 bool PPC::isVPKUDUMShuffleMask(ShuffleVectorSDNode *N, unsigned ShuffleKind, 1845 SelectionDAG &DAG) { 1846 const PPCSubtarget& Subtarget = 1847 static_cast<const PPCSubtarget&>(DAG.getSubtarget()); 1848 if (!Subtarget.hasP8Vector()) 1849 return false; 1850 1851 bool IsLE = DAG.getDataLayout().isLittleEndian(); 1852 if (ShuffleKind == 0) { 1853 if (IsLE) 1854 return false; 1855 for (unsigned i = 0; i != 16; i += 4) 1856 if (!isConstantOrUndef(N->getMaskElt(i ), i*2+4) || 1857 !isConstantOrUndef(N->getMaskElt(i+1), i*2+5) || 1858 !isConstantOrUndef(N->getMaskElt(i+2), i*2+6) || 1859 !isConstantOrUndef(N->getMaskElt(i+3), i*2+7)) 1860 return false; 1861 } else if (ShuffleKind == 2) { 1862 if (!IsLE) 1863 return false; 1864 for (unsigned i = 0; i != 16; i += 4) 1865 if (!isConstantOrUndef(N->getMaskElt(i ), i*2) || 1866 !isConstantOrUndef(N->getMaskElt(i+1), i*2+1) || 1867 !isConstantOrUndef(N->getMaskElt(i+2), i*2+2) || 1868 !isConstantOrUndef(N->getMaskElt(i+3), i*2+3)) 1869 return false; 1870 } else if (ShuffleKind == 1) { 1871 unsigned j = IsLE ? 0 : 4; 1872 for (unsigned i = 0; i != 8; i += 4) 1873 if (!isConstantOrUndef(N->getMaskElt(i ), i*2+j) || 1874 !isConstantOrUndef(N->getMaskElt(i+1), i*2+j+1) || 1875 !isConstantOrUndef(N->getMaskElt(i+2), i*2+j+2) || 1876 !isConstantOrUndef(N->getMaskElt(i+3), i*2+j+3) || 1877 !isConstantOrUndef(N->getMaskElt(i+8), i*2+j) || 1878 !isConstantOrUndef(N->getMaskElt(i+9), i*2+j+1) || 1879 !isConstantOrUndef(N->getMaskElt(i+10), i*2+j+2) || 1880 !isConstantOrUndef(N->getMaskElt(i+11), i*2+j+3)) 1881 return false; 1882 } 1883 return true; 1884 } 1885 1886 /// isVMerge - Common function, used to match vmrg* shuffles. 1887 /// 1888 static bool isVMerge(ShuffleVectorSDNode *N, unsigned UnitSize, 1889 unsigned LHSStart, unsigned RHSStart) { 1890 if (N->getValueType(0) != MVT::v16i8) 1891 return false; 1892 assert((UnitSize == 1 || UnitSize == 2 || UnitSize == 4) && 1893 "Unsupported merge size!"); 1894 1895 for (unsigned i = 0; i != 8/UnitSize; ++i) // Step over units 1896 for (unsigned j = 0; j != UnitSize; ++j) { // Step over bytes within unit 1897 if (!isConstantOrUndef(N->getMaskElt(i*UnitSize*2+j), 1898 LHSStart+j+i*UnitSize) || 1899 !isConstantOrUndef(N->getMaskElt(i*UnitSize*2+UnitSize+j), 1900 RHSStart+j+i*UnitSize)) 1901 return false; 1902 } 1903 return true; 1904 } 1905 1906 /// isVMRGLShuffleMask - Return true if this is a shuffle mask suitable for 1907 /// a VMRGL* instruction with the specified unit size (1,2 or 4 bytes). 1908 /// The ShuffleKind distinguishes between big-endian merges with two 1909 /// different inputs (0), either-endian merges with two identical inputs (1), 1910 /// and little-endian merges with two different inputs (2). For the latter, 1911 /// the input operands are swapped (see PPCInstrAltivec.td). 1912 bool PPC::isVMRGLShuffleMask(ShuffleVectorSDNode *N, unsigned UnitSize, 1913 unsigned ShuffleKind, SelectionDAG &DAG) { 1914 if (DAG.getDataLayout().isLittleEndian()) { 1915 if (ShuffleKind == 1) // unary 1916 return isVMerge(N, UnitSize, 0, 0); 1917 else if (ShuffleKind == 2) // swapped 1918 return isVMerge(N, UnitSize, 0, 16); 1919 else 1920 return false; 1921 } else { 1922 if (ShuffleKind == 1) // unary 1923 return isVMerge(N, UnitSize, 8, 8); 1924 else if (ShuffleKind == 0) // normal 1925 return isVMerge(N, UnitSize, 8, 24); 1926 else 1927 return false; 1928 } 1929 } 1930 1931 /// isVMRGHShuffleMask - Return true if this is a shuffle mask suitable for 1932 /// a VMRGH* instruction with the specified unit size (1,2 or 4 bytes). 1933 /// The ShuffleKind distinguishes between big-endian merges with two 1934 /// different inputs (0), either-endian merges with two identical inputs (1), 1935 /// and little-endian merges with two different inputs (2). For the latter, 1936 /// the input operands are swapped (see PPCInstrAltivec.td). 1937 bool PPC::isVMRGHShuffleMask(ShuffleVectorSDNode *N, unsigned UnitSize, 1938 unsigned ShuffleKind, SelectionDAG &DAG) { 1939 if (DAG.getDataLayout().isLittleEndian()) { 1940 if (ShuffleKind == 1) // unary 1941 return isVMerge(N, UnitSize, 8, 8); 1942 else if (ShuffleKind == 2) // swapped 1943 return isVMerge(N, UnitSize, 8, 24); 1944 else 1945 return false; 1946 } else { 1947 if (ShuffleKind == 1) // unary 1948 return isVMerge(N, UnitSize, 0, 0); 1949 else if (ShuffleKind == 0) // normal 1950 return isVMerge(N, UnitSize, 0, 16); 1951 else 1952 return false; 1953 } 1954 } 1955 1956 /** 1957 * Common function used to match vmrgew and vmrgow shuffles 1958 * 1959 * The indexOffset determines whether to look for even or odd words in 1960 * the shuffle mask. This is based on the of the endianness of the target 1961 * machine. 1962 * - Little Endian: 1963 * - Use offset of 0 to check for odd elements 1964 * - Use offset of 4 to check for even elements 1965 * - Big Endian: 1966 * - Use offset of 0 to check for even elements 1967 * - Use offset of 4 to check for odd elements 1968 * A detailed description of the vector element ordering for little endian and 1969 * big endian can be found at 1970 * http://www.ibm.com/developerworks/library/l-ibm-xl-c-cpp-compiler/index.html 1971 * Targeting your applications - what little endian and big endian IBM XL C/C++ 1972 * compiler differences mean to you 1973 * 1974 * The mask to the shuffle vector instruction specifies the indices of the 1975 * elements from the two input vectors to place in the result. The elements are 1976 * numbered in array-access order, starting with the first vector. These vectors 1977 * are always of type v16i8, thus each vector will contain 16 elements of size 1978 * 8. More info on the shuffle vector can be found in the 1979 * http://llvm.org/docs/LangRef.html#shufflevector-instruction 1980 * Language Reference. 1981 * 1982 * The RHSStartValue indicates whether the same input vectors are used (unary) 1983 * or two different input vectors are used, based on the following: 1984 * - If the instruction uses the same vector for both inputs, the range of the 1985 * indices will be 0 to 15. In this case, the RHSStart value passed should 1986 * be 0. 1987 * - If the instruction has two different vectors then the range of the 1988 * indices will be 0 to 31. In this case, the RHSStart value passed should 1989 * be 16 (indices 0-15 specify elements in the first vector while indices 16 1990 * to 31 specify elements in the second vector). 1991 * 1992 * \param[in] N The shuffle vector SD Node to analyze 1993 * \param[in] IndexOffset Specifies whether to look for even or odd elements 1994 * \param[in] RHSStartValue Specifies the starting index for the righthand input 1995 * vector to the shuffle_vector instruction 1996 * \return true iff this shuffle vector represents an even or odd word merge 1997 */ 1998 static bool isVMerge(ShuffleVectorSDNode *N, unsigned IndexOffset, 1999 unsigned RHSStartValue) { 2000 if (N->getValueType(0) != MVT::v16i8) 2001 return false; 2002 2003 for (unsigned i = 0; i < 2; ++i) 2004 for (unsigned j = 0; j < 4; ++j) 2005 if (!isConstantOrUndef(N->getMaskElt(i*4+j), 2006 i*RHSStartValue+j+IndexOffset) || 2007 !isConstantOrUndef(N->getMaskElt(i*4+j+8), 2008 i*RHSStartValue+j+IndexOffset+8)) 2009 return false; 2010 return true; 2011 } 2012 2013 /** 2014 * Determine if the specified shuffle mask is suitable for the vmrgew or 2015 * vmrgow instructions. 2016 * 2017 * \param[in] N The shuffle vector SD Node to analyze 2018 * \param[in] CheckEven Check for an even merge (true) or an odd merge (false) 2019 * \param[in] ShuffleKind Identify the type of merge: 2020 * - 0 = big-endian merge with two different inputs; 2021 * - 1 = either-endian merge with two identical inputs; 2022 * - 2 = little-endian merge with two different inputs (inputs are swapped for 2023 * little-endian merges). 2024 * \param[in] DAG The current SelectionDAG 2025 * \return true iff this shuffle mask 2026 */ 2027 bool PPC::isVMRGEOShuffleMask(ShuffleVectorSDNode *N, bool CheckEven, 2028 unsigned ShuffleKind, SelectionDAG &DAG) { 2029 if (DAG.getDataLayout().isLittleEndian()) { 2030 unsigned indexOffset = CheckEven ? 4 : 0; 2031 if (ShuffleKind == 1) // Unary 2032 return isVMerge(N, indexOffset, 0); 2033 else if (ShuffleKind == 2) // swapped 2034 return isVMerge(N, indexOffset, 16); 2035 else 2036 return false; 2037 } 2038 else { 2039 unsigned indexOffset = CheckEven ? 0 : 4; 2040 if (ShuffleKind == 1) // Unary 2041 return isVMerge(N, indexOffset, 0); 2042 else if (ShuffleKind == 0) // Normal 2043 return isVMerge(N, indexOffset, 16); 2044 else 2045 return false; 2046 } 2047 return false; 2048 } 2049 2050 /// isVSLDOIShuffleMask - If this is a vsldoi shuffle mask, return the shift 2051 /// amount, otherwise return -1. 2052 /// The ShuffleKind distinguishes between big-endian operations with two 2053 /// different inputs (0), either-endian operations with two identical inputs 2054 /// (1), and little-endian operations with two different inputs (2). For the 2055 /// latter, the input operands are swapped (see PPCInstrAltivec.td). 2056 int PPC::isVSLDOIShuffleMask(SDNode *N, unsigned ShuffleKind, 2057 SelectionDAG &DAG) { 2058 if (N->getValueType(0) != MVT::v16i8) 2059 return -1; 2060 2061 ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N); 2062 2063 // Find the first non-undef value in the shuffle mask. 2064 unsigned i; 2065 for (i = 0; i != 16 && SVOp->getMaskElt(i) < 0; ++i) 2066 /*search*/; 2067 2068 if (i == 16) return -1; // all undef. 2069 2070 // Otherwise, check to see if the rest of the elements are consecutively 2071 // numbered from this value. 2072 unsigned ShiftAmt = SVOp->getMaskElt(i); 2073 if (ShiftAmt < i) return -1; 2074 2075 ShiftAmt -= i; 2076 bool isLE = DAG.getDataLayout().isLittleEndian(); 2077 2078 if ((ShuffleKind == 0 && !isLE) || (ShuffleKind == 2 && isLE)) { 2079 // Check the rest of the elements to see if they are consecutive. 2080 for (++i; i != 16; ++i) 2081 if (!isConstantOrUndef(SVOp->getMaskElt(i), ShiftAmt+i)) 2082 return -1; 2083 } else if (ShuffleKind == 1) { 2084 // Check the rest of the elements to see if they are consecutive. 2085 for (++i; i != 16; ++i) 2086 if (!isConstantOrUndef(SVOp->getMaskElt(i), (ShiftAmt+i) & 15)) 2087 return -1; 2088 } else 2089 return -1; 2090 2091 if (isLE) 2092 ShiftAmt = 16 - ShiftAmt; 2093 2094 return ShiftAmt; 2095 } 2096 2097 /// isSplatShuffleMask - Return true if the specified VECTOR_SHUFFLE operand 2098 /// specifies a splat of a single element that is suitable for input to 2099 /// one of the splat operations (VSPLTB/VSPLTH/VSPLTW/XXSPLTW/LXVDSX/etc.). 2100 bool PPC::isSplatShuffleMask(ShuffleVectorSDNode *N, unsigned EltSize) { 2101 assert(N->getValueType(0) == MVT::v16i8 && isPowerOf2_32(EltSize) && 2102 EltSize <= 8 && "Can only handle 1,2,4,8 byte element sizes"); 2103 2104 // The consecutive indices need to specify an element, not part of two 2105 // different elements. So abandon ship early if this isn't the case. 2106 if (N->getMaskElt(0) % EltSize != 0) 2107 return false; 2108 2109 // This is a splat operation if each element of the permute is the same, and 2110 // if the value doesn't reference the second vector. 2111 unsigned ElementBase = N->getMaskElt(0); 2112 2113 // FIXME: Handle UNDEF elements too! 2114 if (ElementBase >= 16) 2115 return false; 2116 2117 // Check that the indices are consecutive, in the case of a multi-byte element 2118 // splatted with a v16i8 mask. 2119 for (unsigned i = 1; i != EltSize; ++i) 2120 if (N->getMaskElt(i) < 0 || N->getMaskElt(i) != (int)(i+ElementBase)) 2121 return false; 2122 2123 for (unsigned i = EltSize, e = 16; i != e; i += EltSize) { 2124 if (N->getMaskElt(i) < 0) continue; 2125 for (unsigned j = 0; j != EltSize; ++j) 2126 if (N->getMaskElt(i+j) != N->getMaskElt(j)) 2127 return false; 2128 } 2129 return true; 2130 } 2131 2132 /// Check that the mask is shuffling N byte elements. Within each N byte 2133 /// element of the mask, the indices could be either in increasing or 2134 /// decreasing order as long as they are consecutive. 2135 /// \param[in] N the shuffle vector SD Node to analyze 2136 /// \param[in] Width the element width in bytes, could be 2/4/8/16 (HalfWord/ 2137 /// Word/DoubleWord/QuadWord). 2138 /// \param[in] StepLen the delta indices number among the N byte element, if 2139 /// the mask is in increasing/decreasing order then it is 1/-1. 2140 /// \return true iff the mask is shuffling N byte elements. 2141 static bool isNByteElemShuffleMask(ShuffleVectorSDNode *N, unsigned Width, 2142 int StepLen) { 2143 assert((Width == 2 || Width == 4 || Width == 8 || Width == 16) && 2144 "Unexpected element width."); 2145 assert((StepLen == 1 || StepLen == -1) && "Unexpected element width."); 2146 2147 unsigned NumOfElem = 16 / Width; 2148 unsigned MaskVal[16]; // Width is never greater than 16 2149 for (unsigned i = 0; i < NumOfElem; ++i) { 2150 MaskVal[0] = N->getMaskElt(i * Width); 2151 if ((StepLen == 1) && (MaskVal[0] % Width)) { 2152 return false; 2153 } else if ((StepLen == -1) && ((MaskVal[0] + 1) % Width)) { 2154 return false; 2155 } 2156 2157 for (unsigned int j = 1; j < Width; ++j) { 2158 MaskVal[j] = N->getMaskElt(i * Width + j); 2159 if (MaskVal[j] != MaskVal[j-1] + StepLen) { 2160 return false; 2161 } 2162 } 2163 } 2164 2165 return true; 2166 } 2167 2168 bool PPC::isXXINSERTWMask(ShuffleVectorSDNode *N, unsigned &ShiftElts, 2169 unsigned &InsertAtByte, bool &Swap, bool IsLE) { 2170 if (!isNByteElemShuffleMask(N, 4, 1)) 2171 return false; 2172 2173 // Now we look at mask elements 0,4,8,12 2174 unsigned M0 = N->getMaskElt(0) / 4; 2175 unsigned M1 = N->getMaskElt(4) / 4; 2176 unsigned M2 = N->getMaskElt(8) / 4; 2177 unsigned M3 = N->getMaskElt(12) / 4; 2178 unsigned LittleEndianShifts[] = { 2, 1, 0, 3 }; 2179 unsigned BigEndianShifts[] = { 3, 0, 1, 2 }; 2180 2181 // Below, let H and L be arbitrary elements of the shuffle mask 2182 // where H is in the range [4,7] and L is in the range [0,3]. 2183 // H, 1, 2, 3 or L, 5, 6, 7 2184 if ((M0 > 3 && M1 == 1 && M2 == 2 && M3 == 3) || 2185 (M0 < 4 && M1 == 5 && M2 == 6 && M3 == 7)) { 2186 ShiftElts = IsLE ? LittleEndianShifts[M0 & 0x3] : BigEndianShifts[M0 & 0x3]; 2187 InsertAtByte = IsLE ? 12 : 0; 2188 Swap = M0 < 4; 2189 return true; 2190 } 2191 // 0, H, 2, 3 or 4, L, 6, 7 2192 if ((M1 > 3 && M0 == 0 && M2 == 2 && M3 == 3) || 2193 (M1 < 4 && M0 == 4 && M2 == 6 && M3 == 7)) { 2194 ShiftElts = IsLE ? LittleEndianShifts[M1 & 0x3] : BigEndianShifts[M1 & 0x3]; 2195 InsertAtByte = IsLE ? 8 : 4; 2196 Swap = M1 < 4; 2197 return true; 2198 } 2199 // 0, 1, H, 3 or 4, 5, L, 7 2200 if ((M2 > 3 && M0 == 0 && M1 == 1 && M3 == 3) || 2201 (M2 < 4 && M0 == 4 && M1 == 5 && M3 == 7)) { 2202 ShiftElts = IsLE ? LittleEndianShifts[M2 & 0x3] : BigEndianShifts[M2 & 0x3]; 2203 InsertAtByte = IsLE ? 4 : 8; 2204 Swap = M2 < 4; 2205 return true; 2206 } 2207 // 0, 1, 2, H or 4, 5, 6, L 2208 if ((M3 > 3 && M0 == 0 && M1 == 1 && M2 == 2) || 2209 (M3 < 4 && M0 == 4 && M1 == 5 && M2 == 6)) { 2210 ShiftElts = IsLE ? LittleEndianShifts[M3 & 0x3] : BigEndianShifts[M3 & 0x3]; 2211 InsertAtByte = IsLE ? 0 : 12; 2212 Swap = M3 < 4; 2213 return true; 2214 } 2215 2216 // If both vector operands for the shuffle are the same vector, the mask will 2217 // contain only elements from the first one and the second one will be undef. 2218 if (N->getOperand(1).isUndef()) { 2219 ShiftElts = 0; 2220 Swap = true; 2221 unsigned XXINSERTWSrcElem = IsLE ? 2 : 1; 2222 if (M0 == XXINSERTWSrcElem && M1 == 1 && M2 == 2 && M3 == 3) { 2223 InsertAtByte = IsLE ? 12 : 0; 2224 return true; 2225 } 2226 if (M0 == 0 && M1 == XXINSERTWSrcElem && M2 == 2 && M3 == 3) { 2227 InsertAtByte = IsLE ? 8 : 4; 2228 return true; 2229 } 2230 if (M0 == 0 && M1 == 1 && M2 == XXINSERTWSrcElem && M3 == 3) { 2231 InsertAtByte = IsLE ? 4 : 8; 2232 return true; 2233 } 2234 if (M0 == 0 && M1 == 1 && M2 == 2 && M3 == XXINSERTWSrcElem) { 2235 InsertAtByte = IsLE ? 0 : 12; 2236 return true; 2237 } 2238 } 2239 2240 return false; 2241 } 2242 2243 bool PPC::isXXSLDWIShuffleMask(ShuffleVectorSDNode *N, unsigned &ShiftElts, 2244 bool &Swap, bool IsLE) { 2245 assert(N->getValueType(0) == MVT::v16i8 && "Shuffle vector expects v16i8"); 2246 // Ensure each byte index of the word is consecutive. 2247 if (!isNByteElemShuffleMask(N, 4, 1)) 2248 return false; 2249 2250 // Now we look at mask elements 0,4,8,12, which are the beginning of words. 2251 unsigned M0 = N->getMaskElt(0) / 4; 2252 unsigned M1 = N->getMaskElt(4) / 4; 2253 unsigned M2 = N->getMaskElt(8) / 4; 2254 unsigned M3 = N->getMaskElt(12) / 4; 2255 2256 // If both vector operands for the shuffle are the same vector, the mask will 2257 // contain only elements from the first one and the second one will be undef. 2258 if (N->getOperand(1).isUndef()) { 2259 assert(M0 < 4 && "Indexing into an undef vector?"); 2260 if (M1 != (M0 + 1) % 4 || M2 != (M1 + 1) % 4 || M3 != (M2 + 1) % 4) 2261 return false; 2262 2263 ShiftElts = IsLE ? (4 - M0) % 4 : M0; 2264 Swap = false; 2265 return true; 2266 } 2267 2268 // Ensure each word index of the ShuffleVector Mask is consecutive. 2269 if (M1 != (M0 + 1) % 8 || M2 != (M1 + 1) % 8 || M3 != (M2 + 1) % 8) 2270 return false; 2271 2272 if (IsLE) { 2273 if (M0 == 0 || M0 == 7 || M0 == 6 || M0 == 5) { 2274 // Input vectors don't need to be swapped if the leading element 2275 // of the result is one of the 3 left elements of the second vector 2276 // (or if there is no shift to be done at all). 2277 Swap = false; 2278 ShiftElts = (8 - M0) % 8; 2279 } else if (M0 == 4 || M0 == 3 || M0 == 2 || M0 == 1) { 2280 // Input vectors need to be swapped if the leading element 2281 // of the result is one of the 3 left elements of the first vector 2282 // (or if we're shifting by 4 - thereby simply swapping the vectors). 2283 Swap = true; 2284 ShiftElts = (4 - M0) % 4; 2285 } 2286 2287 return true; 2288 } else { // BE 2289 if (M0 == 0 || M0 == 1 || M0 == 2 || M0 == 3) { 2290 // Input vectors don't need to be swapped if the leading element 2291 // of the result is one of the 4 elements of the first vector. 2292 Swap = false; 2293 ShiftElts = M0; 2294 } else if (M0 == 4 || M0 == 5 || M0 == 6 || M0 == 7) { 2295 // Input vectors need to be swapped if the leading element 2296 // of the result is one of the 4 elements of the right vector. 2297 Swap = true; 2298 ShiftElts = M0 - 4; 2299 } 2300 2301 return true; 2302 } 2303 } 2304 2305 bool static isXXBRShuffleMaskHelper(ShuffleVectorSDNode *N, int Width) { 2306 assert(N->getValueType(0) == MVT::v16i8 && "Shuffle vector expects v16i8"); 2307 2308 if (!isNByteElemShuffleMask(N, Width, -1)) 2309 return false; 2310 2311 for (int i = 0; i < 16; i += Width) 2312 if (N->getMaskElt(i) != i + Width - 1) 2313 return false; 2314 2315 return true; 2316 } 2317 2318 bool PPC::isXXBRHShuffleMask(ShuffleVectorSDNode *N) { 2319 return isXXBRShuffleMaskHelper(N, 2); 2320 } 2321 2322 bool PPC::isXXBRWShuffleMask(ShuffleVectorSDNode *N) { 2323 return isXXBRShuffleMaskHelper(N, 4); 2324 } 2325 2326 bool PPC::isXXBRDShuffleMask(ShuffleVectorSDNode *N) { 2327 return isXXBRShuffleMaskHelper(N, 8); 2328 } 2329 2330 bool PPC::isXXBRQShuffleMask(ShuffleVectorSDNode *N) { 2331 return isXXBRShuffleMaskHelper(N, 16); 2332 } 2333 2334 /// Can node \p N be lowered to an XXPERMDI instruction? If so, set \p Swap 2335 /// if the inputs to the instruction should be swapped and set \p DM to the 2336 /// value for the immediate. 2337 /// Specifically, set \p Swap to true only if \p N can be lowered to XXPERMDI 2338 /// AND element 0 of the result comes from the first input (LE) or second input 2339 /// (BE). Set \p DM to the calculated result (0-3) only if \p N can be lowered. 2340 /// \return true iff the given mask of shuffle node \p N is a XXPERMDI shuffle 2341 /// mask. 2342 bool PPC::isXXPERMDIShuffleMask(ShuffleVectorSDNode *N, unsigned &DM, 2343 bool &Swap, bool IsLE) { 2344 assert(N->getValueType(0) == MVT::v16i8 && "Shuffle vector expects v16i8"); 2345 2346 // Ensure each byte index of the double word is consecutive. 2347 if (!isNByteElemShuffleMask(N, 8, 1)) 2348 return false; 2349 2350 unsigned M0 = N->getMaskElt(0) / 8; 2351 unsigned M1 = N->getMaskElt(8) / 8; 2352 assert(((M0 | M1) < 4) && "A mask element out of bounds?"); 2353 2354 // If both vector operands for the shuffle are the same vector, the mask will 2355 // contain only elements from the first one and the second one will be undef. 2356 if (N->getOperand(1).isUndef()) { 2357 if ((M0 | M1) < 2) { 2358 DM = IsLE ? (((~M1) & 1) << 1) + ((~M0) & 1) : (M0 << 1) + (M1 & 1); 2359 Swap = false; 2360 return true; 2361 } else 2362 return false; 2363 } 2364 2365 if (IsLE) { 2366 if (M0 > 1 && M1 < 2) { 2367 Swap = false; 2368 } else if (M0 < 2 && M1 > 1) { 2369 M0 = (M0 + 2) % 4; 2370 M1 = (M1 + 2) % 4; 2371 Swap = true; 2372 } else 2373 return false; 2374 2375 // Note: if control flow comes here that means Swap is already set above 2376 DM = (((~M1) & 1) << 1) + ((~M0) & 1); 2377 return true; 2378 } else { // BE 2379 if (M0 < 2 && M1 > 1) { 2380 Swap = false; 2381 } else if (M0 > 1 && M1 < 2) { 2382 M0 = (M0 + 2) % 4; 2383 M1 = (M1 + 2) % 4; 2384 Swap = true; 2385 } else 2386 return false; 2387 2388 // Note: if control flow comes here that means Swap is already set above 2389 DM = (M0 << 1) + (M1 & 1); 2390 return true; 2391 } 2392 } 2393 2394 2395 /// getSplatIdxForPPCMnemonics - Return the splat index as a value that is 2396 /// appropriate for PPC mnemonics (which have a big endian bias - namely 2397 /// elements are counted from the left of the vector register). 2398 unsigned PPC::getSplatIdxForPPCMnemonics(SDNode *N, unsigned EltSize, 2399 SelectionDAG &DAG) { 2400 ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N); 2401 assert(isSplatShuffleMask(SVOp, EltSize)); 2402 if (DAG.getDataLayout().isLittleEndian()) 2403 return (16 / EltSize) - 1 - (SVOp->getMaskElt(0) / EltSize); 2404 else 2405 return SVOp->getMaskElt(0) / EltSize; 2406 } 2407 2408 /// get_VSPLTI_elt - If this is a build_vector of constants which can be formed 2409 /// by using a vspltis[bhw] instruction of the specified element size, return 2410 /// the constant being splatted. The ByteSize field indicates the number of 2411 /// bytes of each element [124] -> [bhw]. 2412 SDValue PPC::get_VSPLTI_elt(SDNode *N, unsigned ByteSize, SelectionDAG &DAG) { 2413 SDValue OpVal(nullptr, 0); 2414 2415 // If ByteSize of the splat is bigger than the element size of the 2416 // build_vector, then we have a case where we are checking for a splat where 2417 // multiple elements of the buildvector are folded together into a single 2418 // logical element of the splat (e.g. "vsplish 1" to splat {0,1}*8). 2419 unsigned EltSize = 16/N->getNumOperands(); 2420 if (EltSize < ByteSize) { 2421 unsigned Multiple = ByteSize/EltSize; // Number of BV entries per spltval. 2422 SDValue UniquedVals[4]; 2423 assert(Multiple > 1 && Multiple <= 4 && "How can this happen?"); 2424 2425 // See if all of the elements in the buildvector agree across. 2426 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) { 2427 if (N->getOperand(i).isUndef()) continue; 2428 // If the element isn't a constant, bail fully out. 2429 if (!isa<ConstantSDNode>(N->getOperand(i))) return SDValue(); 2430 2431 if (!UniquedVals[i&(Multiple-1)].getNode()) 2432 UniquedVals[i&(Multiple-1)] = N->getOperand(i); 2433 else if (UniquedVals[i&(Multiple-1)] != N->getOperand(i)) 2434 return SDValue(); // no match. 2435 } 2436 2437 // Okay, if we reached this point, UniquedVals[0..Multiple-1] contains 2438 // either constant or undef values that are identical for each chunk. See 2439 // if these chunks can form into a larger vspltis*. 2440 2441 // Check to see if all of the leading entries are either 0 or -1. If 2442 // neither, then this won't fit into the immediate field. 2443 bool LeadingZero = true; 2444 bool LeadingOnes = true; 2445 for (unsigned i = 0; i != Multiple-1; ++i) { 2446 if (!UniquedVals[i].getNode()) continue; // Must have been undefs. 2447 2448 LeadingZero &= isNullConstant(UniquedVals[i]); 2449 LeadingOnes &= isAllOnesConstant(UniquedVals[i]); 2450 } 2451 // Finally, check the least significant entry. 2452 if (LeadingZero) { 2453 if (!UniquedVals[Multiple-1].getNode()) 2454 return DAG.getTargetConstant(0, SDLoc(N), MVT::i32); // 0,0,0,undef 2455 int Val = cast<ConstantSDNode>(UniquedVals[Multiple-1])->getZExtValue(); 2456 if (Val < 16) // 0,0,0,4 -> vspltisw(4) 2457 return DAG.getTargetConstant(Val, SDLoc(N), MVT::i32); 2458 } 2459 if (LeadingOnes) { 2460 if (!UniquedVals[Multiple-1].getNode()) 2461 return DAG.getTargetConstant(~0U, SDLoc(N), MVT::i32); // -1,-1,-1,undef 2462 int Val =cast<ConstantSDNode>(UniquedVals[Multiple-1])->getSExtValue(); 2463 if (Val >= -16) // -1,-1,-1,-2 -> vspltisw(-2) 2464 return DAG.getTargetConstant(Val, SDLoc(N), MVT::i32); 2465 } 2466 2467 return SDValue(); 2468 } 2469 2470 // Check to see if this buildvec has a single non-undef value in its elements. 2471 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) { 2472 if (N->getOperand(i).isUndef()) continue; 2473 if (!OpVal.getNode()) 2474 OpVal = N->getOperand(i); 2475 else if (OpVal != N->getOperand(i)) 2476 return SDValue(); 2477 } 2478 2479 if (!OpVal.getNode()) return SDValue(); // All UNDEF: use implicit def. 2480 2481 unsigned ValSizeInBytes = EltSize; 2482 uint64_t Value = 0; 2483 if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(OpVal)) { 2484 Value = CN->getZExtValue(); 2485 } else if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(OpVal)) { 2486 assert(CN->getValueType(0) == MVT::f32 && "Only one legal FP vector type!"); 2487 Value = FloatToBits(CN->getValueAPF().convertToFloat()); 2488 } 2489 2490 // If the splat value is larger than the element value, then we can never do 2491 // this splat. The only case that we could fit the replicated bits into our 2492 // immediate field for would be zero, and we prefer to use vxor for it. 2493 if (ValSizeInBytes < ByteSize) return SDValue(); 2494 2495 // If the element value is larger than the splat value, check if it consists 2496 // of a repeated bit pattern of size ByteSize. 2497 if (!APInt(ValSizeInBytes * 8, Value).isSplat(ByteSize * 8)) 2498 return SDValue(); 2499 2500 // Properly sign extend the value. 2501 int MaskVal = SignExtend32(Value, ByteSize * 8); 2502 2503 // If this is zero, don't match, zero matches ISD::isBuildVectorAllZeros. 2504 if (MaskVal == 0) return SDValue(); 2505 2506 // Finally, if this value fits in a 5 bit sext field, return it 2507 if (SignExtend32<5>(MaskVal) == MaskVal) 2508 return DAG.getTargetConstant(MaskVal, SDLoc(N), MVT::i32); 2509 return SDValue(); 2510 } 2511 2512 //===----------------------------------------------------------------------===// 2513 // Addressing Mode Selection 2514 //===----------------------------------------------------------------------===// 2515 2516 /// isIntS16Immediate - This method tests to see if the node is either a 32-bit 2517 /// or 64-bit immediate, and if the value can be accurately represented as a 2518 /// sign extension from a 16-bit value. If so, this returns true and the 2519 /// immediate. 2520 bool llvm::isIntS16Immediate(SDNode *N, int16_t &Imm) { 2521 if (!isa<ConstantSDNode>(N)) 2522 return false; 2523 2524 Imm = (int16_t)cast<ConstantSDNode>(N)->getZExtValue(); 2525 if (N->getValueType(0) == MVT::i32) 2526 return Imm == (int32_t)cast<ConstantSDNode>(N)->getZExtValue(); 2527 else 2528 return Imm == (int64_t)cast<ConstantSDNode>(N)->getZExtValue(); 2529 } 2530 bool llvm::isIntS16Immediate(SDValue Op, int16_t &Imm) { 2531 return isIntS16Immediate(Op.getNode(), Imm); 2532 } 2533 2534 /// Used when computing address flags for selecting loads and stores. 2535 /// If we have an OR, check if the LHS and RHS are provably disjoint. 2536 /// An OR of two provably disjoint values is equivalent to an ADD. 2537 /// Most PPC load/store instructions compute the effective address as a sum, 2538 /// so doing this conversion is useful. 2539 static bool provablyDisjointOr(SelectionDAG &DAG, const SDValue &N) { 2540 if (N.getOpcode() != ISD::OR) 2541 return false; 2542 KnownBits LHSKnown = DAG.computeKnownBits(N.getOperand(0)); 2543 if (!LHSKnown.Zero.getBoolValue()) 2544 return false; 2545 KnownBits RHSKnown = DAG.computeKnownBits(N.getOperand(1)); 2546 return (~(LHSKnown.Zero | RHSKnown.Zero) == 0); 2547 } 2548 2549 /// SelectAddressEVXRegReg - Given the specified address, check to see if it can 2550 /// be represented as an indexed [r+r] operation. 2551 bool PPCTargetLowering::SelectAddressEVXRegReg(SDValue N, SDValue &Base, 2552 SDValue &Index, 2553 SelectionDAG &DAG) const { 2554 for (SDNode::use_iterator UI = N->use_begin(), E = N->use_end(); 2555 UI != E; ++UI) { 2556 if (MemSDNode *Memop = dyn_cast<MemSDNode>(*UI)) { 2557 if (Memop->getMemoryVT() == MVT::f64) { 2558 Base = N.getOperand(0); 2559 Index = N.getOperand(1); 2560 return true; 2561 } 2562 } 2563 } 2564 return false; 2565 } 2566 2567 /// isIntS34Immediate - This method tests if value of node given can be 2568 /// accurately represented as a sign extension from a 34-bit value. If so, 2569 /// this returns true and the immediate. 2570 bool llvm::isIntS34Immediate(SDNode *N, int64_t &Imm) { 2571 if (!isa<ConstantSDNode>(N)) 2572 return false; 2573 2574 Imm = (int64_t)cast<ConstantSDNode>(N)->getZExtValue(); 2575 return isInt<34>(Imm); 2576 } 2577 bool llvm::isIntS34Immediate(SDValue Op, int64_t &Imm) { 2578 return isIntS34Immediate(Op.getNode(), Imm); 2579 } 2580 2581 /// SelectAddressRegReg - Given the specified addressed, check to see if it 2582 /// can be represented as an indexed [r+r] operation. Returns false if it 2583 /// can be more efficiently represented as [r+imm]. If \p EncodingAlignment is 2584 /// non-zero and N can be represented by a base register plus a signed 16-bit 2585 /// displacement, make a more precise judgement by checking (displacement % \p 2586 /// EncodingAlignment). 2587 bool PPCTargetLowering::SelectAddressRegReg( 2588 SDValue N, SDValue &Base, SDValue &Index, SelectionDAG &DAG, 2589 MaybeAlign EncodingAlignment) const { 2590 // If we have a PC Relative target flag don't select as [reg+reg]. It will be 2591 // a [pc+imm]. 2592 if (SelectAddressPCRel(N, Base)) 2593 return false; 2594 2595 int16_t Imm = 0; 2596 if (N.getOpcode() == ISD::ADD) { 2597 // Is there any SPE load/store (f64), which can't handle 16bit offset? 2598 // SPE load/store can only handle 8-bit offsets. 2599 if (hasSPE() && SelectAddressEVXRegReg(N, Base, Index, DAG)) 2600 return true; 2601 if (isIntS16Immediate(N.getOperand(1), Imm) && 2602 (!EncodingAlignment || isAligned(*EncodingAlignment, Imm))) 2603 return false; // r+i 2604 if (N.getOperand(1).getOpcode() == PPCISD::Lo) 2605 return false; // r+i 2606 2607 Base = N.getOperand(0); 2608 Index = N.getOperand(1); 2609 return true; 2610 } else if (N.getOpcode() == ISD::OR) { 2611 if (isIntS16Immediate(N.getOperand(1), Imm) && 2612 (!EncodingAlignment || isAligned(*EncodingAlignment, Imm))) 2613 return false; // r+i can fold it if we can. 2614 2615 // If this is an or of disjoint bitfields, we can codegen this as an add 2616 // (for better address arithmetic) if the LHS and RHS of the OR are provably 2617 // disjoint. 2618 KnownBits LHSKnown = DAG.computeKnownBits(N.getOperand(0)); 2619 2620 if (LHSKnown.Zero.getBoolValue()) { 2621 KnownBits RHSKnown = DAG.computeKnownBits(N.getOperand(1)); 2622 // If all of the bits are known zero on the LHS or RHS, the add won't 2623 // carry. 2624 if (~(LHSKnown.Zero | RHSKnown.Zero) == 0) { 2625 Base = N.getOperand(0); 2626 Index = N.getOperand(1); 2627 return true; 2628 } 2629 } 2630 } 2631 2632 return false; 2633 } 2634 2635 // If we happen to be doing an i64 load or store into a stack slot that has 2636 // less than a 4-byte alignment, then the frame-index elimination may need to 2637 // use an indexed load or store instruction (because the offset may not be a 2638 // multiple of 4). The extra register needed to hold the offset comes from the 2639 // register scavenger, and it is possible that the scavenger will need to use 2640 // an emergency spill slot. As a result, we need to make sure that a spill slot 2641 // is allocated when doing an i64 load/store into a less-than-4-byte-aligned 2642 // stack slot. 2643 static void fixupFuncForFI(SelectionDAG &DAG, int FrameIdx, EVT VT) { 2644 // FIXME: This does not handle the LWA case. 2645 if (VT != MVT::i64) 2646 return; 2647 2648 // NOTE: We'll exclude negative FIs here, which come from argument 2649 // lowering, because there are no known test cases triggering this problem 2650 // using packed structures (or similar). We can remove this exclusion if 2651 // we find such a test case. The reason why this is so test-case driven is 2652 // because this entire 'fixup' is only to prevent crashes (from the 2653 // register scavenger) on not-really-valid inputs. For example, if we have: 2654 // %a = alloca i1 2655 // %b = bitcast i1* %a to i64* 2656 // store i64* a, i64 b 2657 // then the store should really be marked as 'align 1', but is not. If it 2658 // were marked as 'align 1' then the indexed form would have been 2659 // instruction-selected initially, and the problem this 'fixup' is preventing 2660 // won't happen regardless. 2661 if (FrameIdx < 0) 2662 return; 2663 2664 MachineFunction &MF = DAG.getMachineFunction(); 2665 MachineFrameInfo &MFI = MF.getFrameInfo(); 2666 2667 if (MFI.getObjectAlign(FrameIdx) >= Align(4)) 2668 return; 2669 2670 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 2671 FuncInfo->setHasNonRISpills(); 2672 } 2673 2674 /// Returns true if the address N can be represented by a base register plus 2675 /// a signed 16-bit displacement [r+imm], and if it is not better 2676 /// represented as reg+reg. If \p EncodingAlignment is non-zero, only accept 2677 /// displacements that are multiples of that value. 2678 bool PPCTargetLowering::SelectAddressRegImm( 2679 SDValue N, SDValue &Disp, SDValue &Base, SelectionDAG &DAG, 2680 MaybeAlign EncodingAlignment) const { 2681 // FIXME dl should come from parent load or store, not from address 2682 SDLoc dl(N); 2683 2684 // If we have a PC Relative target flag don't select as [reg+imm]. It will be 2685 // a [pc+imm]. 2686 if (SelectAddressPCRel(N, Base)) 2687 return false; 2688 2689 // If this can be more profitably realized as r+r, fail. 2690 if (SelectAddressRegReg(N, Disp, Base, DAG, EncodingAlignment)) 2691 return false; 2692 2693 if (N.getOpcode() == ISD::ADD) { 2694 int16_t imm = 0; 2695 if (isIntS16Immediate(N.getOperand(1), imm) && 2696 (!EncodingAlignment || isAligned(*EncodingAlignment, imm))) { 2697 Disp = DAG.getTargetConstant(imm, dl, N.getValueType()); 2698 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N.getOperand(0))) { 2699 Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType()); 2700 fixupFuncForFI(DAG, FI->getIndex(), N.getValueType()); 2701 } else { 2702 Base = N.getOperand(0); 2703 } 2704 return true; // [r+i] 2705 } else if (N.getOperand(1).getOpcode() == PPCISD::Lo) { 2706 // Match LOAD (ADD (X, Lo(G))). 2707 assert(!cast<ConstantSDNode>(N.getOperand(1).getOperand(1))->getZExtValue() 2708 && "Cannot handle constant offsets yet!"); 2709 Disp = N.getOperand(1).getOperand(0); // The global address. 2710 assert(Disp.getOpcode() == ISD::TargetGlobalAddress || 2711 Disp.getOpcode() == ISD::TargetGlobalTLSAddress || 2712 Disp.getOpcode() == ISD::TargetConstantPool || 2713 Disp.getOpcode() == ISD::TargetJumpTable); 2714 Base = N.getOperand(0); 2715 return true; // [&g+r] 2716 } 2717 } else if (N.getOpcode() == ISD::OR) { 2718 int16_t imm = 0; 2719 if (isIntS16Immediate(N.getOperand(1), imm) && 2720 (!EncodingAlignment || isAligned(*EncodingAlignment, imm))) { 2721 // If this is an or of disjoint bitfields, we can codegen this as an add 2722 // (for better address arithmetic) if the LHS and RHS of the OR are 2723 // provably disjoint. 2724 KnownBits LHSKnown = DAG.computeKnownBits(N.getOperand(0)); 2725 2726 if ((LHSKnown.Zero.getZExtValue()|~(uint64_t)imm) == ~0ULL) { 2727 // If all of the bits are known zero on the LHS or RHS, the add won't 2728 // carry. 2729 if (FrameIndexSDNode *FI = 2730 dyn_cast<FrameIndexSDNode>(N.getOperand(0))) { 2731 Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType()); 2732 fixupFuncForFI(DAG, FI->getIndex(), N.getValueType()); 2733 } else { 2734 Base = N.getOperand(0); 2735 } 2736 Disp = DAG.getTargetConstant(imm, dl, N.getValueType()); 2737 return true; 2738 } 2739 } 2740 } else if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N)) { 2741 // Loading from a constant address. 2742 2743 // If this address fits entirely in a 16-bit sext immediate field, codegen 2744 // this as "d, 0" 2745 int16_t Imm; 2746 if (isIntS16Immediate(CN, Imm) && 2747 (!EncodingAlignment || isAligned(*EncodingAlignment, Imm))) { 2748 Disp = DAG.getTargetConstant(Imm, dl, CN->getValueType(0)); 2749 Base = DAG.getRegister(Subtarget.isPPC64() ? PPC::ZERO8 : PPC::ZERO, 2750 CN->getValueType(0)); 2751 return true; 2752 } 2753 2754 // Handle 32-bit sext immediates with LIS + addr mode. 2755 if ((CN->getValueType(0) == MVT::i32 || 2756 (int64_t)CN->getZExtValue() == (int)CN->getZExtValue()) && 2757 (!EncodingAlignment || 2758 isAligned(*EncodingAlignment, CN->getZExtValue()))) { 2759 int Addr = (int)CN->getZExtValue(); 2760 2761 // Otherwise, break this down into an LIS + disp. 2762 Disp = DAG.getTargetConstant((short)Addr, dl, MVT::i32); 2763 2764 Base = DAG.getTargetConstant((Addr - (signed short)Addr) >> 16, dl, 2765 MVT::i32); 2766 unsigned Opc = CN->getValueType(0) == MVT::i32 ? PPC::LIS : PPC::LIS8; 2767 Base = SDValue(DAG.getMachineNode(Opc, dl, CN->getValueType(0), Base), 0); 2768 return true; 2769 } 2770 } 2771 2772 Disp = DAG.getTargetConstant(0, dl, getPointerTy(DAG.getDataLayout())); 2773 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N)) { 2774 Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType()); 2775 fixupFuncForFI(DAG, FI->getIndex(), N.getValueType()); 2776 } else 2777 Base = N; 2778 return true; // [r+0] 2779 } 2780 2781 /// Similar to the 16-bit case but for instructions that take a 34-bit 2782 /// displacement field (prefixed loads/stores). 2783 bool PPCTargetLowering::SelectAddressRegImm34(SDValue N, SDValue &Disp, 2784 SDValue &Base, 2785 SelectionDAG &DAG) const { 2786 // Only on 64-bit targets. 2787 if (N.getValueType() != MVT::i64) 2788 return false; 2789 2790 SDLoc dl(N); 2791 int64_t Imm = 0; 2792 2793 if (N.getOpcode() == ISD::ADD) { 2794 if (!isIntS34Immediate(N.getOperand(1), Imm)) 2795 return false; 2796 Disp = DAG.getTargetConstant(Imm, dl, N.getValueType()); 2797 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N.getOperand(0))) 2798 Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType()); 2799 else 2800 Base = N.getOperand(0); 2801 return true; 2802 } 2803 2804 if (N.getOpcode() == ISD::OR) { 2805 if (!isIntS34Immediate(N.getOperand(1), Imm)) 2806 return false; 2807 // If this is an or of disjoint bitfields, we can codegen this as an add 2808 // (for better address arithmetic) if the LHS and RHS of the OR are 2809 // provably disjoint. 2810 KnownBits LHSKnown = DAG.computeKnownBits(N.getOperand(0)); 2811 if ((LHSKnown.Zero.getZExtValue() | ~(uint64_t)Imm) != ~0ULL) 2812 return false; 2813 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N.getOperand(0))) 2814 Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType()); 2815 else 2816 Base = N.getOperand(0); 2817 Disp = DAG.getTargetConstant(Imm, dl, N.getValueType()); 2818 return true; 2819 } 2820 2821 if (isIntS34Immediate(N, Imm)) { // If the address is a 34-bit const. 2822 Disp = DAG.getTargetConstant(Imm, dl, N.getValueType()); 2823 Base = DAG.getRegister(PPC::ZERO8, N.getValueType()); 2824 return true; 2825 } 2826 2827 return false; 2828 } 2829 2830 /// SelectAddressRegRegOnly - Given the specified addressed, force it to be 2831 /// represented as an indexed [r+r] operation. 2832 bool PPCTargetLowering::SelectAddressRegRegOnly(SDValue N, SDValue &Base, 2833 SDValue &Index, 2834 SelectionDAG &DAG) const { 2835 // Check to see if we can easily represent this as an [r+r] address. This 2836 // will fail if it thinks that the address is more profitably represented as 2837 // reg+imm, e.g. where imm = 0. 2838 if (SelectAddressRegReg(N, Base, Index, DAG)) 2839 return true; 2840 2841 // If the address is the result of an add, we will utilize the fact that the 2842 // address calculation includes an implicit add. However, we can reduce 2843 // register pressure if we do not materialize a constant just for use as the 2844 // index register. We only get rid of the add if it is not an add of a 2845 // value and a 16-bit signed constant and both have a single use. 2846 int16_t imm = 0; 2847 if (N.getOpcode() == ISD::ADD && 2848 (!isIntS16Immediate(N.getOperand(1), imm) || 2849 !N.getOperand(1).hasOneUse() || !N.getOperand(0).hasOneUse())) { 2850 Base = N.getOperand(0); 2851 Index = N.getOperand(1); 2852 return true; 2853 } 2854 2855 // Otherwise, do it the hard way, using R0 as the base register. 2856 Base = DAG.getRegister(Subtarget.isPPC64() ? PPC::ZERO8 : PPC::ZERO, 2857 N.getValueType()); 2858 Index = N; 2859 return true; 2860 } 2861 2862 template <typename Ty> static bool isValidPCRelNode(SDValue N) { 2863 Ty *PCRelCand = dyn_cast<Ty>(N); 2864 return PCRelCand && (PCRelCand->getTargetFlags() & PPCII::MO_PCREL_FLAG); 2865 } 2866 2867 /// Returns true if this address is a PC Relative address. 2868 /// PC Relative addresses are marked with the flag PPCII::MO_PCREL_FLAG 2869 /// or if the node opcode is PPCISD::MAT_PCREL_ADDR. 2870 bool PPCTargetLowering::SelectAddressPCRel(SDValue N, SDValue &Base) const { 2871 // This is a materialize PC Relative node. Always select this as PC Relative. 2872 Base = N; 2873 if (N.getOpcode() == PPCISD::MAT_PCREL_ADDR) 2874 return true; 2875 if (isValidPCRelNode<ConstantPoolSDNode>(N) || 2876 isValidPCRelNode<GlobalAddressSDNode>(N) || 2877 isValidPCRelNode<JumpTableSDNode>(N) || 2878 isValidPCRelNode<BlockAddressSDNode>(N)) 2879 return true; 2880 return false; 2881 } 2882 2883 /// Returns true if we should use a direct load into vector instruction 2884 /// (such as lxsd or lfd), instead of a load into gpr + direct move sequence. 2885 static bool usePartialVectorLoads(SDNode *N, const PPCSubtarget& ST) { 2886 2887 // If there are any other uses other than scalar to vector, then we should 2888 // keep it as a scalar load -> direct move pattern to prevent multiple 2889 // loads. 2890 LoadSDNode *LD = dyn_cast<LoadSDNode>(N); 2891 if (!LD) 2892 return false; 2893 2894 EVT MemVT = LD->getMemoryVT(); 2895 if (!MemVT.isSimple()) 2896 return false; 2897 switch(MemVT.getSimpleVT().SimpleTy) { 2898 case MVT::i64: 2899 break; 2900 case MVT::i32: 2901 if (!ST.hasP8Vector()) 2902 return false; 2903 break; 2904 case MVT::i16: 2905 case MVT::i8: 2906 if (!ST.hasP9Vector()) 2907 return false; 2908 break; 2909 default: 2910 return false; 2911 } 2912 2913 SDValue LoadedVal(N, 0); 2914 if (!LoadedVal.hasOneUse()) 2915 return false; 2916 2917 for (SDNode::use_iterator UI = LD->use_begin(), UE = LD->use_end(); 2918 UI != UE; ++UI) 2919 if (UI.getUse().get().getResNo() == 0 && 2920 UI->getOpcode() != ISD::SCALAR_TO_VECTOR && 2921 UI->getOpcode() != PPCISD::SCALAR_TO_VECTOR_PERMUTED) 2922 return false; 2923 2924 return true; 2925 } 2926 2927 /// getPreIndexedAddressParts - returns true by value, base pointer and 2928 /// offset pointer and addressing mode by reference if the node's address 2929 /// can be legally represented as pre-indexed load / store address. 2930 bool PPCTargetLowering::getPreIndexedAddressParts(SDNode *N, SDValue &Base, 2931 SDValue &Offset, 2932 ISD::MemIndexedMode &AM, 2933 SelectionDAG &DAG) const { 2934 if (DisablePPCPreinc) return false; 2935 2936 bool isLoad = true; 2937 SDValue Ptr; 2938 EVT VT; 2939 unsigned Alignment; 2940 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) { 2941 Ptr = LD->getBasePtr(); 2942 VT = LD->getMemoryVT(); 2943 Alignment = LD->getAlignment(); 2944 } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) { 2945 Ptr = ST->getBasePtr(); 2946 VT = ST->getMemoryVT(); 2947 Alignment = ST->getAlignment(); 2948 isLoad = false; 2949 } else 2950 return false; 2951 2952 // Do not generate pre-inc forms for specific loads that feed scalar_to_vector 2953 // instructions because we can fold these into a more efficient instruction 2954 // instead, (such as LXSD). 2955 if (isLoad && usePartialVectorLoads(N, Subtarget)) { 2956 return false; 2957 } 2958 2959 // PowerPC doesn't have preinc load/store instructions for vectors 2960 if (VT.isVector()) 2961 return false; 2962 2963 if (SelectAddressRegReg(Ptr, Base, Offset, DAG)) { 2964 // Common code will reject creating a pre-inc form if the base pointer 2965 // is a frame index, or if N is a store and the base pointer is either 2966 // the same as or a predecessor of the value being stored. Check for 2967 // those situations here, and try with swapped Base/Offset instead. 2968 bool Swap = false; 2969 2970 if (isa<FrameIndexSDNode>(Base) || isa<RegisterSDNode>(Base)) 2971 Swap = true; 2972 else if (!isLoad) { 2973 SDValue Val = cast<StoreSDNode>(N)->getValue(); 2974 if (Val == Base || Base.getNode()->isPredecessorOf(Val.getNode())) 2975 Swap = true; 2976 } 2977 2978 if (Swap) 2979 std::swap(Base, Offset); 2980 2981 AM = ISD::PRE_INC; 2982 return true; 2983 } 2984 2985 // LDU/STU can only handle immediates that are a multiple of 4. 2986 if (VT != MVT::i64) { 2987 if (!SelectAddressRegImm(Ptr, Offset, Base, DAG, None)) 2988 return false; 2989 } else { 2990 // LDU/STU need an address with at least 4-byte alignment. 2991 if (Alignment < 4) 2992 return false; 2993 2994 if (!SelectAddressRegImm(Ptr, Offset, Base, DAG, Align(4))) 2995 return false; 2996 } 2997 2998 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) { 2999 // PPC64 doesn't have lwau, but it does have lwaux. Reject preinc load of 3000 // sext i32 to i64 when addr mode is r+i. 3001 if (LD->getValueType(0) == MVT::i64 && LD->getMemoryVT() == MVT::i32 && 3002 LD->getExtensionType() == ISD::SEXTLOAD && 3003 isa<ConstantSDNode>(Offset)) 3004 return false; 3005 } 3006 3007 AM = ISD::PRE_INC; 3008 return true; 3009 } 3010 3011 //===----------------------------------------------------------------------===// 3012 // LowerOperation implementation 3013 //===----------------------------------------------------------------------===// 3014 3015 /// Return true if we should reference labels using a PICBase, set the HiOpFlags 3016 /// and LoOpFlags to the target MO flags. 3017 static void getLabelAccessInfo(bool IsPIC, const PPCSubtarget &Subtarget, 3018 unsigned &HiOpFlags, unsigned &LoOpFlags, 3019 const GlobalValue *GV = nullptr) { 3020 HiOpFlags = PPCII::MO_HA; 3021 LoOpFlags = PPCII::MO_LO; 3022 3023 // Don't use the pic base if not in PIC relocation model. 3024 if (IsPIC) { 3025 HiOpFlags |= PPCII::MO_PIC_FLAG; 3026 LoOpFlags |= PPCII::MO_PIC_FLAG; 3027 } 3028 } 3029 3030 static SDValue LowerLabelRef(SDValue HiPart, SDValue LoPart, bool isPIC, 3031 SelectionDAG &DAG) { 3032 SDLoc DL(HiPart); 3033 EVT PtrVT = HiPart.getValueType(); 3034 SDValue Zero = DAG.getConstant(0, DL, PtrVT); 3035 3036 SDValue Hi = DAG.getNode(PPCISD::Hi, DL, PtrVT, HiPart, Zero); 3037 SDValue Lo = DAG.getNode(PPCISD::Lo, DL, PtrVT, LoPart, Zero); 3038 3039 // With PIC, the first instruction is actually "GR+hi(&G)". 3040 if (isPIC) 3041 Hi = DAG.getNode(ISD::ADD, DL, PtrVT, 3042 DAG.getNode(PPCISD::GlobalBaseReg, DL, PtrVT), Hi); 3043 3044 // Generate non-pic code that has direct accesses to the constant pool. 3045 // The address of the global is just (hi(&g)+lo(&g)). 3046 return DAG.getNode(ISD::ADD, DL, PtrVT, Hi, Lo); 3047 } 3048 3049 static void setUsesTOCBasePtr(MachineFunction &MF) { 3050 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 3051 FuncInfo->setUsesTOCBasePtr(); 3052 } 3053 3054 static void setUsesTOCBasePtr(SelectionDAG &DAG) { 3055 setUsesTOCBasePtr(DAG.getMachineFunction()); 3056 } 3057 3058 SDValue PPCTargetLowering::getTOCEntry(SelectionDAG &DAG, const SDLoc &dl, 3059 SDValue GA) const { 3060 const bool Is64Bit = Subtarget.isPPC64(); 3061 EVT VT = Is64Bit ? MVT::i64 : MVT::i32; 3062 SDValue Reg = Is64Bit ? DAG.getRegister(PPC::X2, VT) 3063 : Subtarget.isAIXABI() 3064 ? DAG.getRegister(PPC::R2, VT) 3065 : DAG.getNode(PPCISD::GlobalBaseReg, dl, VT); 3066 SDValue Ops[] = { GA, Reg }; 3067 return DAG.getMemIntrinsicNode( 3068 PPCISD::TOC_ENTRY, dl, DAG.getVTList(VT, MVT::Other), Ops, VT, 3069 MachinePointerInfo::getGOT(DAG.getMachineFunction()), None, 3070 MachineMemOperand::MOLoad); 3071 } 3072 3073 SDValue PPCTargetLowering::LowerConstantPool(SDValue Op, 3074 SelectionDAG &DAG) const { 3075 EVT PtrVT = Op.getValueType(); 3076 ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op); 3077 const Constant *C = CP->getConstVal(); 3078 3079 // 64-bit SVR4 ABI and AIX ABI code are always position-independent. 3080 // The actual address of the GlobalValue is stored in the TOC. 3081 if (Subtarget.is64BitELFABI() || Subtarget.isAIXABI()) { 3082 if (Subtarget.isUsingPCRelativeCalls()) { 3083 SDLoc DL(CP); 3084 EVT Ty = getPointerTy(DAG.getDataLayout()); 3085 SDValue ConstPool = DAG.getTargetConstantPool( 3086 C, Ty, CP->getAlign(), CP->getOffset(), PPCII::MO_PCREL_FLAG); 3087 return DAG.getNode(PPCISD::MAT_PCREL_ADDR, DL, Ty, ConstPool); 3088 } 3089 setUsesTOCBasePtr(DAG); 3090 SDValue GA = DAG.getTargetConstantPool(C, PtrVT, CP->getAlign(), 0); 3091 return getTOCEntry(DAG, SDLoc(CP), GA); 3092 } 3093 3094 unsigned MOHiFlag, MOLoFlag; 3095 bool IsPIC = isPositionIndependent(); 3096 getLabelAccessInfo(IsPIC, Subtarget, MOHiFlag, MOLoFlag); 3097 3098 if (IsPIC && Subtarget.isSVR4ABI()) { 3099 SDValue GA = 3100 DAG.getTargetConstantPool(C, PtrVT, CP->getAlign(), PPCII::MO_PIC_FLAG); 3101 return getTOCEntry(DAG, SDLoc(CP), GA); 3102 } 3103 3104 SDValue CPIHi = 3105 DAG.getTargetConstantPool(C, PtrVT, CP->getAlign(), 0, MOHiFlag); 3106 SDValue CPILo = 3107 DAG.getTargetConstantPool(C, PtrVT, CP->getAlign(), 0, MOLoFlag); 3108 return LowerLabelRef(CPIHi, CPILo, IsPIC, DAG); 3109 } 3110 3111 // For 64-bit PowerPC, prefer the more compact relative encodings. 3112 // This trades 32 bits per jump table entry for one or two instructions 3113 // on the jump site. 3114 unsigned PPCTargetLowering::getJumpTableEncoding() const { 3115 if (isJumpTableRelative()) 3116 return MachineJumpTableInfo::EK_LabelDifference32; 3117 3118 return TargetLowering::getJumpTableEncoding(); 3119 } 3120 3121 bool PPCTargetLowering::isJumpTableRelative() const { 3122 if (UseAbsoluteJumpTables) 3123 return false; 3124 if (Subtarget.isPPC64() || Subtarget.isAIXABI()) 3125 return true; 3126 return TargetLowering::isJumpTableRelative(); 3127 } 3128 3129 SDValue PPCTargetLowering::getPICJumpTableRelocBase(SDValue Table, 3130 SelectionDAG &DAG) const { 3131 if (!Subtarget.isPPC64() || Subtarget.isAIXABI()) 3132 return TargetLowering::getPICJumpTableRelocBase(Table, DAG); 3133 3134 switch (getTargetMachine().getCodeModel()) { 3135 case CodeModel::Small: 3136 case CodeModel::Medium: 3137 return TargetLowering::getPICJumpTableRelocBase(Table, DAG); 3138 default: 3139 return DAG.getNode(PPCISD::GlobalBaseReg, SDLoc(), 3140 getPointerTy(DAG.getDataLayout())); 3141 } 3142 } 3143 3144 const MCExpr * 3145 PPCTargetLowering::getPICJumpTableRelocBaseExpr(const MachineFunction *MF, 3146 unsigned JTI, 3147 MCContext &Ctx) const { 3148 if (!Subtarget.isPPC64() || Subtarget.isAIXABI()) 3149 return TargetLowering::getPICJumpTableRelocBaseExpr(MF, JTI, Ctx); 3150 3151 switch (getTargetMachine().getCodeModel()) { 3152 case CodeModel::Small: 3153 case CodeModel::Medium: 3154 return TargetLowering::getPICJumpTableRelocBaseExpr(MF, JTI, Ctx); 3155 default: 3156 return MCSymbolRefExpr::create(MF->getPICBaseSymbol(), Ctx); 3157 } 3158 } 3159 3160 SDValue PPCTargetLowering::LowerJumpTable(SDValue Op, SelectionDAG &DAG) const { 3161 EVT PtrVT = Op.getValueType(); 3162 JumpTableSDNode *JT = cast<JumpTableSDNode>(Op); 3163 3164 // isUsingPCRelativeCalls() returns true when PCRelative is enabled 3165 if (Subtarget.isUsingPCRelativeCalls()) { 3166 SDLoc DL(JT); 3167 EVT Ty = getPointerTy(DAG.getDataLayout()); 3168 SDValue GA = 3169 DAG.getTargetJumpTable(JT->getIndex(), Ty, PPCII::MO_PCREL_FLAG); 3170 SDValue MatAddr = DAG.getNode(PPCISD::MAT_PCREL_ADDR, DL, Ty, GA); 3171 return MatAddr; 3172 } 3173 3174 // 64-bit SVR4 ABI and AIX ABI code are always position-independent. 3175 // The actual address of the GlobalValue is stored in the TOC. 3176 if (Subtarget.is64BitELFABI() || Subtarget.isAIXABI()) { 3177 setUsesTOCBasePtr(DAG); 3178 SDValue GA = DAG.getTargetJumpTable(JT->getIndex(), PtrVT); 3179 return getTOCEntry(DAG, SDLoc(JT), GA); 3180 } 3181 3182 unsigned MOHiFlag, MOLoFlag; 3183 bool IsPIC = isPositionIndependent(); 3184 getLabelAccessInfo(IsPIC, Subtarget, MOHiFlag, MOLoFlag); 3185 3186 if (IsPIC && Subtarget.isSVR4ABI()) { 3187 SDValue GA = DAG.getTargetJumpTable(JT->getIndex(), PtrVT, 3188 PPCII::MO_PIC_FLAG); 3189 return getTOCEntry(DAG, SDLoc(GA), GA); 3190 } 3191 3192 SDValue JTIHi = DAG.getTargetJumpTable(JT->getIndex(), PtrVT, MOHiFlag); 3193 SDValue JTILo = DAG.getTargetJumpTable(JT->getIndex(), PtrVT, MOLoFlag); 3194 return LowerLabelRef(JTIHi, JTILo, IsPIC, DAG); 3195 } 3196 3197 SDValue PPCTargetLowering::LowerBlockAddress(SDValue Op, 3198 SelectionDAG &DAG) const { 3199 EVT PtrVT = Op.getValueType(); 3200 BlockAddressSDNode *BASDN = cast<BlockAddressSDNode>(Op); 3201 const BlockAddress *BA = BASDN->getBlockAddress(); 3202 3203 // isUsingPCRelativeCalls() returns true when PCRelative is enabled 3204 if (Subtarget.isUsingPCRelativeCalls()) { 3205 SDLoc DL(BASDN); 3206 EVT Ty = getPointerTy(DAG.getDataLayout()); 3207 SDValue GA = DAG.getTargetBlockAddress(BA, Ty, BASDN->getOffset(), 3208 PPCII::MO_PCREL_FLAG); 3209 SDValue MatAddr = DAG.getNode(PPCISD::MAT_PCREL_ADDR, DL, Ty, GA); 3210 return MatAddr; 3211 } 3212 3213 // 64-bit SVR4 ABI and AIX ABI code are always position-independent. 3214 // The actual BlockAddress is stored in the TOC. 3215 if (Subtarget.is64BitELFABI() || Subtarget.isAIXABI()) { 3216 setUsesTOCBasePtr(DAG); 3217 SDValue GA = DAG.getTargetBlockAddress(BA, PtrVT, BASDN->getOffset()); 3218 return getTOCEntry(DAG, SDLoc(BASDN), GA); 3219 } 3220 3221 // 32-bit position-independent ELF stores the BlockAddress in the .got. 3222 if (Subtarget.is32BitELFABI() && isPositionIndependent()) 3223 return getTOCEntry( 3224 DAG, SDLoc(BASDN), 3225 DAG.getTargetBlockAddress(BA, PtrVT, BASDN->getOffset())); 3226 3227 unsigned MOHiFlag, MOLoFlag; 3228 bool IsPIC = isPositionIndependent(); 3229 getLabelAccessInfo(IsPIC, Subtarget, MOHiFlag, MOLoFlag); 3230 SDValue TgtBAHi = DAG.getTargetBlockAddress(BA, PtrVT, 0, MOHiFlag); 3231 SDValue TgtBALo = DAG.getTargetBlockAddress(BA, PtrVT, 0, MOLoFlag); 3232 return LowerLabelRef(TgtBAHi, TgtBALo, IsPIC, DAG); 3233 } 3234 3235 SDValue PPCTargetLowering::LowerGlobalTLSAddress(SDValue Op, 3236 SelectionDAG &DAG) const { 3237 if (Subtarget.isAIXABI()) 3238 return LowerGlobalTLSAddressAIX(Op, DAG); 3239 3240 return LowerGlobalTLSAddressLinux(Op, DAG); 3241 } 3242 3243 SDValue PPCTargetLowering::LowerGlobalTLSAddressAIX(SDValue Op, 3244 SelectionDAG &DAG) const { 3245 GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op); 3246 3247 if (DAG.getTarget().useEmulatedTLS()) 3248 report_fatal_error("Emulated TLS is not yet supported on AIX"); 3249 3250 SDLoc dl(GA); 3251 const GlobalValue *GV = GA->getGlobal(); 3252 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 3253 3254 // The general-dynamic model is the only access model supported for now, so 3255 // all the GlobalTLSAddress nodes are lowered with this model. 3256 // We need to generate two TOC entries, one for the variable offset, one for 3257 // the region handle. The global address for the TOC entry of the region 3258 // handle is created with the MO_TLSGDM_FLAG flag and the global address 3259 // for the TOC entry of the variable offset is created with MO_TLSGD_FLAG. 3260 SDValue VariableOffsetTGA = 3261 DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, PPCII::MO_TLSGD_FLAG); 3262 SDValue RegionHandleTGA = 3263 DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, PPCII::MO_TLSGDM_FLAG); 3264 SDValue VariableOffset = getTOCEntry(DAG, dl, VariableOffsetTGA); 3265 SDValue RegionHandle = getTOCEntry(DAG, dl, RegionHandleTGA); 3266 return DAG.getNode(PPCISD::TLSGD_AIX, dl, PtrVT, VariableOffset, 3267 RegionHandle); 3268 } 3269 3270 SDValue PPCTargetLowering::LowerGlobalTLSAddressLinux(SDValue Op, 3271 SelectionDAG &DAG) const { 3272 // FIXME: TLS addresses currently use medium model code sequences, 3273 // which is the most useful form. Eventually support for small and 3274 // large models could be added if users need it, at the cost of 3275 // additional complexity. 3276 GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op); 3277 if (DAG.getTarget().useEmulatedTLS()) 3278 return LowerToTLSEmulatedModel(GA, DAG); 3279 3280 SDLoc dl(GA); 3281 const GlobalValue *GV = GA->getGlobal(); 3282 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 3283 bool is64bit = Subtarget.isPPC64(); 3284 const Module *M = DAG.getMachineFunction().getFunction().getParent(); 3285 PICLevel::Level picLevel = M->getPICLevel(); 3286 3287 const TargetMachine &TM = getTargetMachine(); 3288 TLSModel::Model Model = TM.getTLSModel(GV); 3289 3290 if (Model == TLSModel::LocalExec) { 3291 if (Subtarget.isUsingPCRelativeCalls()) { 3292 SDValue TLSReg = DAG.getRegister(PPC::X13, MVT::i64); 3293 SDValue TGA = DAG.getTargetGlobalAddress( 3294 GV, dl, PtrVT, 0, (PPCII::MO_PCREL_FLAG | PPCII::MO_TPREL_FLAG)); 3295 SDValue MatAddr = 3296 DAG.getNode(PPCISD::TLS_LOCAL_EXEC_MAT_ADDR, dl, PtrVT, TGA); 3297 return DAG.getNode(PPCISD::ADD_TLS, dl, PtrVT, TLSReg, MatAddr); 3298 } 3299 3300 SDValue TGAHi = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 3301 PPCII::MO_TPREL_HA); 3302 SDValue TGALo = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 3303 PPCII::MO_TPREL_LO); 3304 SDValue TLSReg = is64bit ? DAG.getRegister(PPC::X13, MVT::i64) 3305 : DAG.getRegister(PPC::R2, MVT::i32); 3306 3307 SDValue Hi = DAG.getNode(PPCISD::Hi, dl, PtrVT, TGAHi, TLSReg); 3308 return DAG.getNode(PPCISD::Lo, dl, PtrVT, TGALo, Hi); 3309 } 3310 3311 if (Model == TLSModel::InitialExec) { 3312 bool IsPCRel = Subtarget.isUsingPCRelativeCalls(); 3313 SDValue TGA = DAG.getTargetGlobalAddress( 3314 GV, dl, PtrVT, 0, IsPCRel ? PPCII::MO_GOT_TPREL_PCREL_FLAG : 0); 3315 SDValue TGATLS = DAG.getTargetGlobalAddress( 3316 GV, dl, PtrVT, 0, 3317 IsPCRel ? (PPCII::MO_TLS | PPCII::MO_PCREL_FLAG) : PPCII::MO_TLS); 3318 SDValue TPOffset; 3319 if (IsPCRel) { 3320 SDValue MatPCRel = DAG.getNode(PPCISD::MAT_PCREL_ADDR, dl, PtrVT, TGA); 3321 TPOffset = DAG.getLoad(MVT::i64, dl, DAG.getEntryNode(), MatPCRel, 3322 MachinePointerInfo()); 3323 } else { 3324 SDValue GOTPtr; 3325 if (is64bit) { 3326 setUsesTOCBasePtr(DAG); 3327 SDValue GOTReg = DAG.getRegister(PPC::X2, MVT::i64); 3328 GOTPtr = 3329 DAG.getNode(PPCISD::ADDIS_GOT_TPREL_HA, dl, PtrVT, GOTReg, TGA); 3330 } else { 3331 if (!TM.isPositionIndependent()) 3332 GOTPtr = DAG.getNode(PPCISD::PPC32_GOT, dl, PtrVT); 3333 else if (picLevel == PICLevel::SmallPIC) 3334 GOTPtr = DAG.getNode(PPCISD::GlobalBaseReg, dl, PtrVT); 3335 else 3336 GOTPtr = DAG.getNode(PPCISD::PPC32_PICGOT, dl, PtrVT); 3337 } 3338 TPOffset = DAG.getNode(PPCISD::LD_GOT_TPREL_L, dl, PtrVT, TGA, GOTPtr); 3339 } 3340 return DAG.getNode(PPCISD::ADD_TLS, dl, PtrVT, TPOffset, TGATLS); 3341 } 3342 3343 if (Model == TLSModel::GeneralDynamic) { 3344 if (Subtarget.isUsingPCRelativeCalls()) { 3345 SDValue TGA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 3346 PPCII::MO_GOT_TLSGD_PCREL_FLAG); 3347 return DAG.getNode(PPCISD::TLS_DYNAMIC_MAT_PCREL_ADDR, dl, PtrVT, TGA); 3348 } 3349 3350 SDValue TGA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 0); 3351 SDValue GOTPtr; 3352 if (is64bit) { 3353 setUsesTOCBasePtr(DAG); 3354 SDValue GOTReg = DAG.getRegister(PPC::X2, MVT::i64); 3355 GOTPtr = DAG.getNode(PPCISD::ADDIS_TLSGD_HA, dl, PtrVT, 3356 GOTReg, TGA); 3357 } else { 3358 if (picLevel == PICLevel::SmallPIC) 3359 GOTPtr = DAG.getNode(PPCISD::GlobalBaseReg, dl, PtrVT); 3360 else 3361 GOTPtr = DAG.getNode(PPCISD::PPC32_PICGOT, dl, PtrVT); 3362 } 3363 return DAG.getNode(PPCISD::ADDI_TLSGD_L_ADDR, dl, PtrVT, 3364 GOTPtr, TGA, TGA); 3365 } 3366 3367 if (Model == TLSModel::LocalDynamic) { 3368 if (Subtarget.isUsingPCRelativeCalls()) { 3369 SDValue TGA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 3370 PPCII::MO_GOT_TLSLD_PCREL_FLAG); 3371 SDValue MatPCRel = 3372 DAG.getNode(PPCISD::TLS_DYNAMIC_MAT_PCREL_ADDR, dl, PtrVT, TGA); 3373 return DAG.getNode(PPCISD::PADDI_DTPREL, dl, PtrVT, MatPCRel, TGA); 3374 } 3375 3376 SDValue TGA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 0); 3377 SDValue GOTPtr; 3378 if (is64bit) { 3379 setUsesTOCBasePtr(DAG); 3380 SDValue GOTReg = DAG.getRegister(PPC::X2, MVT::i64); 3381 GOTPtr = DAG.getNode(PPCISD::ADDIS_TLSLD_HA, dl, PtrVT, 3382 GOTReg, TGA); 3383 } else { 3384 if (picLevel == PICLevel::SmallPIC) 3385 GOTPtr = DAG.getNode(PPCISD::GlobalBaseReg, dl, PtrVT); 3386 else 3387 GOTPtr = DAG.getNode(PPCISD::PPC32_PICGOT, dl, PtrVT); 3388 } 3389 SDValue TLSAddr = DAG.getNode(PPCISD::ADDI_TLSLD_L_ADDR, dl, 3390 PtrVT, GOTPtr, TGA, TGA); 3391 SDValue DtvOffsetHi = DAG.getNode(PPCISD::ADDIS_DTPREL_HA, dl, 3392 PtrVT, TLSAddr, TGA); 3393 return DAG.getNode(PPCISD::ADDI_DTPREL_L, dl, PtrVT, DtvOffsetHi, TGA); 3394 } 3395 3396 llvm_unreachable("Unknown TLS model!"); 3397 } 3398 3399 SDValue PPCTargetLowering::LowerGlobalAddress(SDValue Op, 3400 SelectionDAG &DAG) const { 3401 EVT PtrVT = Op.getValueType(); 3402 GlobalAddressSDNode *GSDN = cast<GlobalAddressSDNode>(Op); 3403 SDLoc DL(GSDN); 3404 const GlobalValue *GV = GSDN->getGlobal(); 3405 3406 // 64-bit SVR4 ABI & AIX ABI code is always position-independent. 3407 // The actual address of the GlobalValue is stored in the TOC. 3408 if (Subtarget.is64BitELFABI() || Subtarget.isAIXABI()) { 3409 if (Subtarget.isUsingPCRelativeCalls()) { 3410 EVT Ty = getPointerTy(DAG.getDataLayout()); 3411 if (isAccessedAsGotIndirect(Op)) { 3412 SDValue GA = DAG.getTargetGlobalAddress(GV, DL, Ty, GSDN->getOffset(), 3413 PPCII::MO_PCREL_FLAG | 3414 PPCII::MO_GOT_FLAG); 3415 SDValue MatPCRel = DAG.getNode(PPCISD::MAT_PCREL_ADDR, DL, Ty, GA); 3416 SDValue Load = DAG.getLoad(MVT::i64, DL, DAG.getEntryNode(), MatPCRel, 3417 MachinePointerInfo()); 3418 return Load; 3419 } else { 3420 SDValue GA = DAG.getTargetGlobalAddress(GV, DL, Ty, GSDN->getOffset(), 3421 PPCII::MO_PCREL_FLAG); 3422 return DAG.getNode(PPCISD::MAT_PCREL_ADDR, DL, Ty, GA); 3423 } 3424 } 3425 setUsesTOCBasePtr(DAG); 3426 SDValue GA = DAG.getTargetGlobalAddress(GV, DL, PtrVT, GSDN->getOffset()); 3427 return getTOCEntry(DAG, DL, GA); 3428 } 3429 3430 unsigned MOHiFlag, MOLoFlag; 3431 bool IsPIC = isPositionIndependent(); 3432 getLabelAccessInfo(IsPIC, Subtarget, MOHiFlag, MOLoFlag, GV); 3433 3434 if (IsPIC && Subtarget.isSVR4ABI()) { 3435 SDValue GA = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 3436 GSDN->getOffset(), 3437 PPCII::MO_PIC_FLAG); 3438 return getTOCEntry(DAG, DL, GA); 3439 } 3440 3441 SDValue GAHi = 3442 DAG.getTargetGlobalAddress(GV, DL, PtrVT, GSDN->getOffset(), MOHiFlag); 3443 SDValue GALo = 3444 DAG.getTargetGlobalAddress(GV, DL, PtrVT, GSDN->getOffset(), MOLoFlag); 3445 3446 return LowerLabelRef(GAHi, GALo, IsPIC, DAG); 3447 } 3448 3449 SDValue PPCTargetLowering::LowerSETCC(SDValue Op, SelectionDAG &DAG) const { 3450 bool IsStrict = Op->isStrictFPOpcode(); 3451 ISD::CondCode CC = 3452 cast<CondCodeSDNode>(Op.getOperand(IsStrict ? 3 : 2))->get(); 3453 SDValue LHS = Op.getOperand(IsStrict ? 1 : 0); 3454 SDValue RHS = Op.getOperand(IsStrict ? 2 : 1); 3455 SDValue Chain = IsStrict ? Op.getOperand(0) : SDValue(); 3456 EVT LHSVT = LHS.getValueType(); 3457 SDLoc dl(Op); 3458 3459 // Soften the setcc with libcall if it is fp128. 3460 if (LHSVT == MVT::f128) { 3461 assert(!Subtarget.hasP9Vector() && 3462 "SETCC for f128 is already legal under Power9!"); 3463 softenSetCCOperands(DAG, LHSVT, LHS, RHS, CC, dl, LHS, RHS, Chain, 3464 Op->getOpcode() == ISD::STRICT_FSETCCS); 3465 if (RHS.getNode()) 3466 LHS = DAG.getNode(ISD::SETCC, dl, Op.getValueType(), LHS, RHS, 3467 DAG.getCondCode(CC)); 3468 if (IsStrict) 3469 return DAG.getMergeValues({LHS, Chain}, dl); 3470 return LHS; 3471 } 3472 3473 assert(!IsStrict && "Don't know how to handle STRICT_FSETCC!"); 3474 3475 if (Op.getValueType() == MVT::v2i64) { 3476 // When the operands themselves are v2i64 values, we need to do something 3477 // special because VSX has no underlying comparison operations for these. 3478 if (LHS.getValueType() == MVT::v2i64) { 3479 // Equality can be handled by casting to the legal type for Altivec 3480 // comparisons, everything else needs to be expanded. 3481 if (CC == ISD::SETEQ || CC == ISD::SETNE) { 3482 return DAG.getNode( 3483 ISD::BITCAST, dl, MVT::v2i64, 3484 DAG.getSetCC(dl, MVT::v4i32, 3485 DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, LHS), 3486 DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, RHS), CC)); 3487 } 3488 3489 return SDValue(); 3490 } 3491 3492 // We handle most of these in the usual way. 3493 return Op; 3494 } 3495 3496 // If we're comparing for equality to zero, expose the fact that this is 3497 // implemented as a ctlz/srl pair on ppc, so that the dag combiner can 3498 // fold the new nodes. 3499 if (SDValue V = lowerCmpEqZeroToCtlzSrl(Op, DAG)) 3500 return V; 3501 3502 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(RHS)) { 3503 // Leave comparisons against 0 and -1 alone for now, since they're usually 3504 // optimized. FIXME: revisit this when we can custom lower all setcc 3505 // optimizations. 3506 if (C->isAllOnesValue() || C->isNullValue()) 3507 return SDValue(); 3508 } 3509 3510 // If we have an integer seteq/setne, turn it into a compare against zero 3511 // by xor'ing the rhs with the lhs, which is faster than setting a 3512 // condition register, reading it back out, and masking the correct bit. The 3513 // normal approach here uses sub to do this instead of xor. Using xor exposes 3514 // the result to other bit-twiddling opportunities. 3515 if (LHSVT.isInteger() && (CC == ISD::SETEQ || CC == ISD::SETNE)) { 3516 EVT VT = Op.getValueType(); 3517 SDValue Sub = DAG.getNode(ISD::XOR, dl, LHSVT, LHS, RHS); 3518 return DAG.getSetCC(dl, VT, Sub, DAG.getConstant(0, dl, LHSVT), CC); 3519 } 3520 return SDValue(); 3521 } 3522 3523 SDValue PPCTargetLowering::LowerVAARG(SDValue Op, SelectionDAG &DAG) const { 3524 SDNode *Node = Op.getNode(); 3525 EVT VT = Node->getValueType(0); 3526 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 3527 SDValue InChain = Node->getOperand(0); 3528 SDValue VAListPtr = Node->getOperand(1); 3529 const Value *SV = cast<SrcValueSDNode>(Node->getOperand(2))->getValue(); 3530 SDLoc dl(Node); 3531 3532 assert(!Subtarget.isPPC64() && "LowerVAARG is PPC32 only"); 3533 3534 // gpr_index 3535 SDValue GprIndex = DAG.getExtLoad(ISD::ZEXTLOAD, dl, MVT::i32, InChain, 3536 VAListPtr, MachinePointerInfo(SV), MVT::i8); 3537 InChain = GprIndex.getValue(1); 3538 3539 if (VT == MVT::i64) { 3540 // Check if GprIndex is even 3541 SDValue GprAnd = DAG.getNode(ISD::AND, dl, MVT::i32, GprIndex, 3542 DAG.getConstant(1, dl, MVT::i32)); 3543 SDValue CC64 = DAG.getSetCC(dl, MVT::i32, GprAnd, 3544 DAG.getConstant(0, dl, MVT::i32), ISD::SETNE); 3545 SDValue GprIndexPlusOne = DAG.getNode(ISD::ADD, dl, MVT::i32, GprIndex, 3546 DAG.getConstant(1, dl, MVT::i32)); 3547 // Align GprIndex to be even if it isn't 3548 GprIndex = DAG.getNode(ISD::SELECT, dl, MVT::i32, CC64, GprIndexPlusOne, 3549 GprIndex); 3550 } 3551 3552 // fpr index is 1 byte after gpr 3553 SDValue FprPtr = DAG.getNode(ISD::ADD, dl, PtrVT, VAListPtr, 3554 DAG.getConstant(1, dl, MVT::i32)); 3555 3556 // fpr 3557 SDValue FprIndex = DAG.getExtLoad(ISD::ZEXTLOAD, dl, MVT::i32, InChain, 3558 FprPtr, MachinePointerInfo(SV), MVT::i8); 3559 InChain = FprIndex.getValue(1); 3560 3561 SDValue RegSaveAreaPtr = DAG.getNode(ISD::ADD, dl, PtrVT, VAListPtr, 3562 DAG.getConstant(8, dl, MVT::i32)); 3563 3564 SDValue OverflowAreaPtr = DAG.getNode(ISD::ADD, dl, PtrVT, VAListPtr, 3565 DAG.getConstant(4, dl, MVT::i32)); 3566 3567 // areas 3568 SDValue OverflowArea = 3569 DAG.getLoad(MVT::i32, dl, InChain, OverflowAreaPtr, MachinePointerInfo()); 3570 InChain = OverflowArea.getValue(1); 3571 3572 SDValue RegSaveArea = 3573 DAG.getLoad(MVT::i32, dl, InChain, RegSaveAreaPtr, MachinePointerInfo()); 3574 InChain = RegSaveArea.getValue(1); 3575 3576 // select overflow_area if index > 8 3577 SDValue CC = DAG.getSetCC(dl, MVT::i32, VT.isInteger() ? GprIndex : FprIndex, 3578 DAG.getConstant(8, dl, MVT::i32), ISD::SETLT); 3579 3580 // adjustment constant gpr_index * 4/8 3581 SDValue RegConstant = DAG.getNode(ISD::MUL, dl, MVT::i32, 3582 VT.isInteger() ? GprIndex : FprIndex, 3583 DAG.getConstant(VT.isInteger() ? 4 : 8, dl, 3584 MVT::i32)); 3585 3586 // OurReg = RegSaveArea + RegConstant 3587 SDValue OurReg = DAG.getNode(ISD::ADD, dl, PtrVT, RegSaveArea, 3588 RegConstant); 3589 3590 // Floating types are 32 bytes into RegSaveArea 3591 if (VT.isFloatingPoint()) 3592 OurReg = DAG.getNode(ISD::ADD, dl, PtrVT, OurReg, 3593 DAG.getConstant(32, dl, MVT::i32)); 3594 3595 // increase {f,g}pr_index by 1 (or 2 if VT is i64) 3596 SDValue IndexPlus1 = DAG.getNode(ISD::ADD, dl, MVT::i32, 3597 VT.isInteger() ? GprIndex : FprIndex, 3598 DAG.getConstant(VT == MVT::i64 ? 2 : 1, dl, 3599 MVT::i32)); 3600 3601 InChain = DAG.getTruncStore(InChain, dl, IndexPlus1, 3602 VT.isInteger() ? VAListPtr : FprPtr, 3603 MachinePointerInfo(SV), MVT::i8); 3604 3605 // determine if we should load from reg_save_area or overflow_area 3606 SDValue Result = DAG.getNode(ISD::SELECT, dl, PtrVT, CC, OurReg, OverflowArea); 3607 3608 // increase overflow_area by 4/8 if gpr/fpr > 8 3609 SDValue OverflowAreaPlusN = DAG.getNode(ISD::ADD, dl, PtrVT, OverflowArea, 3610 DAG.getConstant(VT.isInteger() ? 4 : 8, 3611 dl, MVT::i32)); 3612 3613 OverflowArea = DAG.getNode(ISD::SELECT, dl, MVT::i32, CC, OverflowArea, 3614 OverflowAreaPlusN); 3615 3616 InChain = DAG.getTruncStore(InChain, dl, OverflowArea, OverflowAreaPtr, 3617 MachinePointerInfo(), MVT::i32); 3618 3619 return DAG.getLoad(VT, dl, InChain, Result, MachinePointerInfo()); 3620 } 3621 3622 SDValue PPCTargetLowering::LowerVACOPY(SDValue Op, SelectionDAG &DAG) const { 3623 assert(!Subtarget.isPPC64() && "LowerVACOPY is PPC32 only"); 3624 3625 // We have to copy the entire va_list struct: 3626 // 2*sizeof(char) + 2 Byte alignment + 2*sizeof(char*) = 12 Byte 3627 return DAG.getMemcpy(Op.getOperand(0), Op, Op.getOperand(1), Op.getOperand(2), 3628 DAG.getConstant(12, SDLoc(Op), MVT::i32), Align(8), 3629 false, true, false, MachinePointerInfo(), 3630 MachinePointerInfo()); 3631 } 3632 3633 SDValue PPCTargetLowering::LowerADJUST_TRAMPOLINE(SDValue Op, 3634 SelectionDAG &DAG) const { 3635 if (Subtarget.isAIXABI()) 3636 report_fatal_error("ADJUST_TRAMPOLINE operation is not supported on AIX."); 3637 3638 return Op.getOperand(0); 3639 } 3640 3641 SDValue PPCTargetLowering::LowerINLINEASM(SDValue Op, SelectionDAG &DAG) const { 3642 MachineFunction &MF = DAG.getMachineFunction(); 3643 PPCFunctionInfo &MFI = *MF.getInfo<PPCFunctionInfo>(); 3644 3645 assert((Op.getOpcode() == ISD::INLINEASM || 3646 Op.getOpcode() == ISD::INLINEASM_BR) && 3647 "Expecting Inline ASM node."); 3648 3649 // If an LR store is already known to be required then there is not point in 3650 // checking this ASM as well. 3651 if (MFI.isLRStoreRequired()) 3652 return Op; 3653 3654 // Inline ASM nodes have an optional last operand that is an incoming Flag of 3655 // type MVT::Glue. We want to ignore this last operand if that is the case. 3656 unsigned NumOps = Op.getNumOperands(); 3657 if (Op.getOperand(NumOps - 1).getValueType() == MVT::Glue) 3658 --NumOps; 3659 3660 // Check all operands that may contain the LR. 3661 for (unsigned i = InlineAsm::Op_FirstOperand; i != NumOps;) { 3662 unsigned Flags = cast<ConstantSDNode>(Op.getOperand(i))->getZExtValue(); 3663 unsigned NumVals = InlineAsm::getNumOperandRegisters(Flags); 3664 ++i; // Skip the ID value. 3665 3666 switch (InlineAsm::getKind(Flags)) { 3667 default: 3668 llvm_unreachable("Bad flags!"); 3669 case InlineAsm::Kind_RegUse: 3670 case InlineAsm::Kind_Imm: 3671 case InlineAsm::Kind_Mem: 3672 i += NumVals; 3673 break; 3674 case InlineAsm::Kind_Clobber: 3675 case InlineAsm::Kind_RegDef: 3676 case InlineAsm::Kind_RegDefEarlyClobber: { 3677 for (; NumVals; --NumVals, ++i) { 3678 Register Reg = cast<RegisterSDNode>(Op.getOperand(i))->getReg(); 3679 if (Reg != PPC::LR && Reg != PPC::LR8) 3680 continue; 3681 MFI.setLRStoreRequired(); 3682 return Op; 3683 } 3684 break; 3685 } 3686 } 3687 } 3688 3689 return Op; 3690 } 3691 3692 SDValue PPCTargetLowering::LowerINIT_TRAMPOLINE(SDValue Op, 3693 SelectionDAG &DAG) const { 3694 if (Subtarget.isAIXABI()) 3695 report_fatal_error("INIT_TRAMPOLINE operation is not supported on AIX."); 3696 3697 SDValue Chain = Op.getOperand(0); 3698 SDValue Trmp = Op.getOperand(1); // trampoline 3699 SDValue FPtr = Op.getOperand(2); // nested function 3700 SDValue Nest = Op.getOperand(3); // 'nest' parameter value 3701 SDLoc dl(Op); 3702 3703 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 3704 bool isPPC64 = (PtrVT == MVT::i64); 3705 Type *IntPtrTy = DAG.getDataLayout().getIntPtrType(*DAG.getContext()); 3706 3707 TargetLowering::ArgListTy Args; 3708 TargetLowering::ArgListEntry Entry; 3709 3710 Entry.Ty = IntPtrTy; 3711 Entry.Node = Trmp; Args.push_back(Entry); 3712 3713 // TrampSize == (isPPC64 ? 48 : 40); 3714 Entry.Node = DAG.getConstant(isPPC64 ? 48 : 40, dl, 3715 isPPC64 ? MVT::i64 : MVT::i32); 3716 Args.push_back(Entry); 3717 3718 Entry.Node = FPtr; Args.push_back(Entry); 3719 Entry.Node = Nest; Args.push_back(Entry); 3720 3721 // Lower to a call to __trampoline_setup(Trmp, TrampSize, FPtr, ctx_reg) 3722 TargetLowering::CallLoweringInfo CLI(DAG); 3723 CLI.setDebugLoc(dl).setChain(Chain).setLibCallee( 3724 CallingConv::C, Type::getVoidTy(*DAG.getContext()), 3725 DAG.getExternalSymbol("__trampoline_setup", PtrVT), std::move(Args)); 3726 3727 std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI); 3728 return CallResult.second; 3729 } 3730 3731 SDValue PPCTargetLowering::LowerVASTART(SDValue Op, SelectionDAG &DAG) const { 3732 MachineFunction &MF = DAG.getMachineFunction(); 3733 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 3734 EVT PtrVT = getPointerTy(MF.getDataLayout()); 3735 3736 SDLoc dl(Op); 3737 3738 if (Subtarget.isPPC64() || Subtarget.isAIXABI()) { 3739 // vastart just stores the address of the VarArgsFrameIndex slot into the 3740 // memory location argument. 3741 SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT); 3742 const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue(); 3743 return DAG.getStore(Op.getOperand(0), dl, FR, Op.getOperand(1), 3744 MachinePointerInfo(SV)); 3745 } 3746 3747 // For the 32-bit SVR4 ABI we follow the layout of the va_list struct. 3748 // We suppose the given va_list is already allocated. 3749 // 3750 // typedef struct { 3751 // char gpr; /* index into the array of 8 GPRs 3752 // * stored in the register save area 3753 // * gpr=0 corresponds to r3, 3754 // * gpr=1 to r4, etc. 3755 // */ 3756 // char fpr; /* index into the array of 8 FPRs 3757 // * stored in the register save area 3758 // * fpr=0 corresponds to f1, 3759 // * fpr=1 to f2, etc. 3760 // */ 3761 // char *overflow_arg_area; 3762 // /* location on stack that holds 3763 // * the next overflow argument 3764 // */ 3765 // char *reg_save_area; 3766 // /* where r3:r10 and f1:f8 (if saved) 3767 // * are stored 3768 // */ 3769 // } va_list[1]; 3770 3771 SDValue ArgGPR = DAG.getConstant(FuncInfo->getVarArgsNumGPR(), dl, MVT::i32); 3772 SDValue ArgFPR = DAG.getConstant(FuncInfo->getVarArgsNumFPR(), dl, MVT::i32); 3773 SDValue StackOffsetFI = DAG.getFrameIndex(FuncInfo->getVarArgsStackOffset(), 3774 PtrVT); 3775 SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), 3776 PtrVT); 3777 3778 uint64_t FrameOffset = PtrVT.getSizeInBits()/8; 3779 SDValue ConstFrameOffset = DAG.getConstant(FrameOffset, dl, PtrVT); 3780 3781 uint64_t StackOffset = PtrVT.getSizeInBits()/8 - 1; 3782 SDValue ConstStackOffset = DAG.getConstant(StackOffset, dl, PtrVT); 3783 3784 uint64_t FPROffset = 1; 3785 SDValue ConstFPROffset = DAG.getConstant(FPROffset, dl, PtrVT); 3786 3787 const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue(); 3788 3789 // Store first byte : number of int regs 3790 SDValue firstStore = 3791 DAG.getTruncStore(Op.getOperand(0), dl, ArgGPR, Op.getOperand(1), 3792 MachinePointerInfo(SV), MVT::i8); 3793 uint64_t nextOffset = FPROffset; 3794 SDValue nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, Op.getOperand(1), 3795 ConstFPROffset); 3796 3797 // Store second byte : number of float regs 3798 SDValue secondStore = 3799 DAG.getTruncStore(firstStore, dl, ArgFPR, nextPtr, 3800 MachinePointerInfo(SV, nextOffset), MVT::i8); 3801 nextOffset += StackOffset; 3802 nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, nextPtr, ConstStackOffset); 3803 3804 // Store second word : arguments given on stack 3805 SDValue thirdStore = DAG.getStore(secondStore, dl, StackOffsetFI, nextPtr, 3806 MachinePointerInfo(SV, nextOffset)); 3807 nextOffset += FrameOffset; 3808 nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, nextPtr, ConstFrameOffset); 3809 3810 // Store third word : arguments given in registers 3811 return DAG.getStore(thirdStore, dl, FR, nextPtr, 3812 MachinePointerInfo(SV, nextOffset)); 3813 } 3814 3815 /// FPR - The set of FP registers that should be allocated for arguments 3816 /// on Darwin and AIX. 3817 static const MCPhysReg FPR[] = {PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, 3818 PPC::F6, PPC::F7, PPC::F8, PPC::F9, PPC::F10, 3819 PPC::F11, PPC::F12, PPC::F13}; 3820 3821 /// CalculateStackSlotSize - Calculates the size reserved for this argument on 3822 /// the stack. 3823 static unsigned CalculateStackSlotSize(EVT ArgVT, ISD::ArgFlagsTy Flags, 3824 unsigned PtrByteSize) { 3825 unsigned ArgSize = ArgVT.getStoreSize(); 3826 if (Flags.isByVal()) 3827 ArgSize = Flags.getByValSize(); 3828 3829 // Round up to multiples of the pointer size, except for array members, 3830 // which are always packed. 3831 if (!Flags.isInConsecutiveRegs()) 3832 ArgSize = ((ArgSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize; 3833 3834 return ArgSize; 3835 } 3836 3837 /// CalculateStackSlotAlignment - Calculates the alignment of this argument 3838 /// on the stack. 3839 static Align CalculateStackSlotAlignment(EVT ArgVT, EVT OrigVT, 3840 ISD::ArgFlagsTy Flags, 3841 unsigned PtrByteSize) { 3842 Align Alignment(PtrByteSize); 3843 3844 // Altivec parameters are padded to a 16 byte boundary. 3845 if (ArgVT == MVT::v4f32 || ArgVT == MVT::v4i32 || 3846 ArgVT == MVT::v8i16 || ArgVT == MVT::v16i8 || 3847 ArgVT == MVT::v2f64 || ArgVT == MVT::v2i64 || 3848 ArgVT == MVT::v1i128 || ArgVT == MVT::f128) 3849 Alignment = Align(16); 3850 3851 // ByVal parameters are aligned as requested. 3852 if (Flags.isByVal()) { 3853 auto BVAlign = Flags.getNonZeroByValAlign(); 3854 if (BVAlign > PtrByteSize) { 3855 if (BVAlign.value() % PtrByteSize != 0) 3856 llvm_unreachable( 3857 "ByVal alignment is not a multiple of the pointer size"); 3858 3859 Alignment = BVAlign; 3860 } 3861 } 3862 3863 // Array members are always packed to their original alignment. 3864 if (Flags.isInConsecutiveRegs()) { 3865 // If the array member was split into multiple registers, the first 3866 // needs to be aligned to the size of the full type. (Except for 3867 // ppcf128, which is only aligned as its f64 components.) 3868 if (Flags.isSplit() && OrigVT != MVT::ppcf128) 3869 Alignment = Align(OrigVT.getStoreSize()); 3870 else 3871 Alignment = Align(ArgVT.getStoreSize()); 3872 } 3873 3874 return Alignment; 3875 } 3876 3877 /// CalculateStackSlotUsed - Return whether this argument will use its 3878 /// stack slot (instead of being passed in registers). ArgOffset, 3879 /// AvailableFPRs, and AvailableVRs must hold the current argument 3880 /// position, and will be updated to account for this argument. 3881 static bool CalculateStackSlotUsed(EVT ArgVT, EVT OrigVT, ISD::ArgFlagsTy Flags, 3882 unsigned PtrByteSize, unsigned LinkageSize, 3883 unsigned ParamAreaSize, unsigned &ArgOffset, 3884 unsigned &AvailableFPRs, 3885 unsigned &AvailableVRs) { 3886 bool UseMemory = false; 3887 3888 // Respect alignment of argument on the stack. 3889 Align Alignment = 3890 CalculateStackSlotAlignment(ArgVT, OrigVT, Flags, PtrByteSize); 3891 ArgOffset = alignTo(ArgOffset, Alignment); 3892 // If there's no space left in the argument save area, we must 3893 // use memory (this check also catches zero-sized arguments). 3894 if (ArgOffset >= LinkageSize + ParamAreaSize) 3895 UseMemory = true; 3896 3897 // Allocate argument on the stack. 3898 ArgOffset += CalculateStackSlotSize(ArgVT, Flags, PtrByteSize); 3899 if (Flags.isInConsecutiveRegsLast()) 3900 ArgOffset = ((ArgOffset + PtrByteSize - 1)/PtrByteSize) * PtrByteSize; 3901 // If we overran the argument save area, we must use memory 3902 // (this check catches arguments passed partially in memory) 3903 if (ArgOffset > LinkageSize + ParamAreaSize) 3904 UseMemory = true; 3905 3906 // However, if the argument is actually passed in an FPR or a VR, 3907 // we don't use memory after all. 3908 if (!Flags.isByVal()) { 3909 if (ArgVT == MVT::f32 || ArgVT == MVT::f64) 3910 if (AvailableFPRs > 0) { 3911 --AvailableFPRs; 3912 return false; 3913 } 3914 if (ArgVT == MVT::v4f32 || ArgVT == MVT::v4i32 || 3915 ArgVT == MVT::v8i16 || ArgVT == MVT::v16i8 || 3916 ArgVT == MVT::v2f64 || ArgVT == MVT::v2i64 || 3917 ArgVT == MVT::v1i128 || ArgVT == MVT::f128) 3918 if (AvailableVRs > 0) { 3919 --AvailableVRs; 3920 return false; 3921 } 3922 } 3923 3924 return UseMemory; 3925 } 3926 3927 /// EnsureStackAlignment - Round stack frame size up from NumBytes to 3928 /// ensure minimum alignment required for target. 3929 static unsigned EnsureStackAlignment(const PPCFrameLowering *Lowering, 3930 unsigned NumBytes) { 3931 return alignTo(NumBytes, Lowering->getStackAlign()); 3932 } 3933 3934 SDValue PPCTargetLowering::LowerFormalArguments( 3935 SDValue Chain, CallingConv::ID CallConv, bool isVarArg, 3936 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl, 3937 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { 3938 if (Subtarget.isAIXABI()) 3939 return LowerFormalArguments_AIX(Chain, CallConv, isVarArg, Ins, dl, DAG, 3940 InVals); 3941 if (Subtarget.is64BitELFABI()) 3942 return LowerFormalArguments_64SVR4(Chain, CallConv, isVarArg, Ins, dl, DAG, 3943 InVals); 3944 assert(Subtarget.is32BitELFABI()); 3945 return LowerFormalArguments_32SVR4(Chain, CallConv, isVarArg, Ins, dl, DAG, 3946 InVals); 3947 } 3948 3949 SDValue PPCTargetLowering::LowerFormalArguments_32SVR4( 3950 SDValue Chain, CallingConv::ID CallConv, bool isVarArg, 3951 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl, 3952 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { 3953 3954 // 32-bit SVR4 ABI Stack Frame Layout: 3955 // +-----------------------------------+ 3956 // +--> | Back chain | 3957 // | +-----------------------------------+ 3958 // | | Floating-point register save area | 3959 // | +-----------------------------------+ 3960 // | | General register save area | 3961 // | +-----------------------------------+ 3962 // | | CR save word | 3963 // | +-----------------------------------+ 3964 // | | VRSAVE save word | 3965 // | +-----------------------------------+ 3966 // | | Alignment padding | 3967 // | +-----------------------------------+ 3968 // | | Vector register save area | 3969 // | +-----------------------------------+ 3970 // | | Local variable space | 3971 // | +-----------------------------------+ 3972 // | | Parameter list area | 3973 // | +-----------------------------------+ 3974 // | | LR save word | 3975 // | +-----------------------------------+ 3976 // SP--> +--- | Back chain | 3977 // +-----------------------------------+ 3978 // 3979 // Specifications: 3980 // System V Application Binary Interface PowerPC Processor Supplement 3981 // AltiVec Technology Programming Interface Manual 3982 3983 MachineFunction &MF = DAG.getMachineFunction(); 3984 MachineFrameInfo &MFI = MF.getFrameInfo(); 3985 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 3986 3987 EVT PtrVT = getPointerTy(MF.getDataLayout()); 3988 // Potential tail calls could cause overwriting of argument stack slots. 3989 bool isImmutable = !(getTargetMachine().Options.GuaranteedTailCallOpt && 3990 (CallConv == CallingConv::Fast)); 3991 const Align PtrAlign(4); 3992 3993 // Assign locations to all of the incoming arguments. 3994 SmallVector<CCValAssign, 16> ArgLocs; 3995 PPCCCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), ArgLocs, 3996 *DAG.getContext()); 3997 3998 // Reserve space for the linkage area on the stack. 3999 unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize(); 4000 CCInfo.AllocateStack(LinkageSize, PtrAlign); 4001 if (useSoftFloat()) 4002 CCInfo.PreAnalyzeFormalArguments(Ins); 4003 4004 CCInfo.AnalyzeFormalArguments(Ins, CC_PPC32_SVR4); 4005 CCInfo.clearWasPPCF128(); 4006 4007 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) { 4008 CCValAssign &VA = ArgLocs[i]; 4009 4010 // Arguments stored in registers. 4011 if (VA.isRegLoc()) { 4012 const TargetRegisterClass *RC; 4013 EVT ValVT = VA.getValVT(); 4014 4015 switch (ValVT.getSimpleVT().SimpleTy) { 4016 default: 4017 llvm_unreachable("ValVT not supported by formal arguments Lowering"); 4018 case MVT::i1: 4019 case MVT::i32: 4020 RC = &PPC::GPRCRegClass; 4021 break; 4022 case MVT::f32: 4023 if (Subtarget.hasP8Vector()) 4024 RC = &PPC::VSSRCRegClass; 4025 else if (Subtarget.hasSPE()) 4026 RC = &PPC::GPRCRegClass; 4027 else 4028 RC = &PPC::F4RCRegClass; 4029 break; 4030 case MVT::f64: 4031 if (Subtarget.hasVSX()) 4032 RC = &PPC::VSFRCRegClass; 4033 else if (Subtarget.hasSPE()) 4034 // SPE passes doubles in GPR pairs. 4035 RC = &PPC::GPRCRegClass; 4036 else 4037 RC = &PPC::F8RCRegClass; 4038 break; 4039 case MVT::v16i8: 4040 case MVT::v8i16: 4041 case MVT::v4i32: 4042 RC = &PPC::VRRCRegClass; 4043 break; 4044 case MVT::v4f32: 4045 RC = &PPC::VRRCRegClass; 4046 break; 4047 case MVT::v2f64: 4048 case MVT::v2i64: 4049 RC = &PPC::VRRCRegClass; 4050 break; 4051 } 4052 4053 SDValue ArgValue; 4054 // Transform the arguments stored in physical registers into 4055 // virtual ones. 4056 if (VA.getLocVT() == MVT::f64 && Subtarget.hasSPE()) { 4057 assert(i + 1 < e && "No second half of double precision argument"); 4058 unsigned RegLo = MF.addLiveIn(VA.getLocReg(), RC); 4059 unsigned RegHi = MF.addLiveIn(ArgLocs[++i].getLocReg(), RC); 4060 SDValue ArgValueLo = DAG.getCopyFromReg(Chain, dl, RegLo, MVT::i32); 4061 SDValue ArgValueHi = DAG.getCopyFromReg(Chain, dl, RegHi, MVT::i32); 4062 if (!Subtarget.isLittleEndian()) 4063 std::swap (ArgValueLo, ArgValueHi); 4064 ArgValue = DAG.getNode(PPCISD::BUILD_SPE64, dl, MVT::f64, ArgValueLo, 4065 ArgValueHi); 4066 } else { 4067 unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC); 4068 ArgValue = DAG.getCopyFromReg(Chain, dl, Reg, 4069 ValVT == MVT::i1 ? MVT::i32 : ValVT); 4070 if (ValVT == MVT::i1) 4071 ArgValue = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, ArgValue); 4072 } 4073 4074 InVals.push_back(ArgValue); 4075 } else { 4076 // Argument stored in memory. 4077 assert(VA.isMemLoc()); 4078 4079 // Get the extended size of the argument type in stack 4080 unsigned ArgSize = VA.getLocVT().getStoreSize(); 4081 // Get the actual size of the argument type 4082 unsigned ObjSize = VA.getValVT().getStoreSize(); 4083 unsigned ArgOffset = VA.getLocMemOffset(); 4084 // Stack objects in PPC32 are right justified. 4085 ArgOffset += ArgSize - ObjSize; 4086 int FI = MFI.CreateFixedObject(ArgSize, ArgOffset, isImmutable); 4087 4088 // Create load nodes to retrieve arguments from the stack. 4089 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 4090 InVals.push_back( 4091 DAG.getLoad(VA.getValVT(), dl, Chain, FIN, MachinePointerInfo())); 4092 } 4093 } 4094 4095 // Assign locations to all of the incoming aggregate by value arguments. 4096 // Aggregates passed by value are stored in the local variable space of the 4097 // caller's stack frame, right above the parameter list area. 4098 SmallVector<CCValAssign, 16> ByValArgLocs; 4099 CCState CCByValInfo(CallConv, isVarArg, DAG.getMachineFunction(), 4100 ByValArgLocs, *DAG.getContext()); 4101 4102 // Reserve stack space for the allocations in CCInfo. 4103 CCByValInfo.AllocateStack(CCInfo.getNextStackOffset(), PtrAlign); 4104 4105 CCByValInfo.AnalyzeFormalArguments(Ins, CC_PPC32_SVR4_ByVal); 4106 4107 // Area that is at least reserved in the caller of this function. 4108 unsigned MinReservedArea = CCByValInfo.getNextStackOffset(); 4109 MinReservedArea = std::max(MinReservedArea, LinkageSize); 4110 4111 // Set the size that is at least reserved in caller of this function. Tail 4112 // call optimized function's reserved stack space needs to be aligned so that 4113 // taking the difference between two stack areas will result in an aligned 4114 // stack. 4115 MinReservedArea = 4116 EnsureStackAlignment(Subtarget.getFrameLowering(), MinReservedArea); 4117 FuncInfo->setMinReservedArea(MinReservedArea); 4118 4119 SmallVector<SDValue, 8> MemOps; 4120 4121 // If the function takes variable number of arguments, make a frame index for 4122 // the start of the first vararg value... for expansion of llvm.va_start. 4123 if (isVarArg) { 4124 static const MCPhysReg GPArgRegs[] = { 4125 PPC::R3, PPC::R4, PPC::R5, PPC::R6, 4126 PPC::R7, PPC::R8, PPC::R9, PPC::R10, 4127 }; 4128 const unsigned NumGPArgRegs = array_lengthof(GPArgRegs); 4129 4130 static const MCPhysReg FPArgRegs[] = { 4131 PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, PPC::F6, PPC::F7, 4132 PPC::F8 4133 }; 4134 unsigned NumFPArgRegs = array_lengthof(FPArgRegs); 4135 4136 if (useSoftFloat() || hasSPE()) 4137 NumFPArgRegs = 0; 4138 4139 FuncInfo->setVarArgsNumGPR(CCInfo.getFirstUnallocated(GPArgRegs)); 4140 FuncInfo->setVarArgsNumFPR(CCInfo.getFirstUnallocated(FPArgRegs)); 4141 4142 // Make room for NumGPArgRegs and NumFPArgRegs. 4143 int Depth = NumGPArgRegs * PtrVT.getSizeInBits()/8 + 4144 NumFPArgRegs * MVT(MVT::f64).getSizeInBits()/8; 4145 4146 FuncInfo->setVarArgsStackOffset( 4147 MFI.CreateFixedObject(PtrVT.getSizeInBits()/8, 4148 CCInfo.getNextStackOffset(), true)); 4149 4150 FuncInfo->setVarArgsFrameIndex( 4151 MFI.CreateStackObject(Depth, Align(8), false)); 4152 SDValue FIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT); 4153 4154 // The fixed integer arguments of a variadic function are stored to the 4155 // VarArgsFrameIndex on the stack so that they may be loaded by 4156 // dereferencing the result of va_next. 4157 for (unsigned GPRIndex = 0; GPRIndex != NumGPArgRegs; ++GPRIndex) { 4158 // Get an existing live-in vreg, or add a new one. 4159 unsigned VReg = MF.getRegInfo().getLiveInVirtReg(GPArgRegs[GPRIndex]); 4160 if (!VReg) 4161 VReg = MF.addLiveIn(GPArgRegs[GPRIndex], &PPC::GPRCRegClass); 4162 4163 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT); 4164 SDValue Store = 4165 DAG.getStore(Val.getValue(1), dl, Val, FIN, MachinePointerInfo()); 4166 MemOps.push_back(Store); 4167 // Increment the address by four for the next argument to store 4168 SDValue PtrOff = DAG.getConstant(PtrVT.getSizeInBits()/8, dl, PtrVT); 4169 FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff); 4170 } 4171 4172 // FIXME 32-bit SVR4: We only need to save FP argument registers if CR bit 6 4173 // is set. 4174 // The double arguments are stored to the VarArgsFrameIndex 4175 // on the stack. 4176 for (unsigned FPRIndex = 0; FPRIndex != NumFPArgRegs; ++FPRIndex) { 4177 // Get an existing live-in vreg, or add a new one. 4178 unsigned VReg = MF.getRegInfo().getLiveInVirtReg(FPArgRegs[FPRIndex]); 4179 if (!VReg) 4180 VReg = MF.addLiveIn(FPArgRegs[FPRIndex], &PPC::F8RCRegClass); 4181 4182 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::f64); 4183 SDValue Store = 4184 DAG.getStore(Val.getValue(1), dl, Val, FIN, MachinePointerInfo()); 4185 MemOps.push_back(Store); 4186 // Increment the address by eight for the next argument to store 4187 SDValue PtrOff = DAG.getConstant(MVT(MVT::f64).getSizeInBits()/8, dl, 4188 PtrVT); 4189 FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff); 4190 } 4191 } 4192 4193 if (!MemOps.empty()) 4194 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOps); 4195 4196 return Chain; 4197 } 4198 4199 // PPC64 passes i8, i16, and i32 values in i64 registers. Promote 4200 // value to MVT::i64 and then truncate to the correct register size. 4201 SDValue PPCTargetLowering::extendArgForPPC64(ISD::ArgFlagsTy Flags, 4202 EVT ObjectVT, SelectionDAG &DAG, 4203 SDValue ArgVal, 4204 const SDLoc &dl) const { 4205 if (Flags.isSExt()) 4206 ArgVal = DAG.getNode(ISD::AssertSext, dl, MVT::i64, ArgVal, 4207 DAG.getValueType(ObjectVT)); 4208 else if (Flags.isZExt()) 4209 ArgVal = DAG.getNode(ISD::AssertZext, dl, MVT::i64, ArgVal, 4210 DAG.getValueType(ObjectVT)); 4211 4212 return DAG.getNode(ISD::TRUNCATE, dl, ObjectVT, ArgVal); 4213 } 4214 4215 SDValue PPCTargetLowering::LowerFormalArguments_64SVR4( 4216 SDValue Chain, CallingConv::ID CallConv, bool isVarArg, 4217 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl, 4218 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { 4219 // TODO: add description of PPC stack frame format, or at least some docs. 4220 // 4221 bool isELFv2ABI = Subtarget.isELFv2ABI(); 4222 bool isLittleEndian = Subtarget.isLittleEndian(); 4223 MachineFunction &MF = DAG.getMachineFunction(); 4224 MachineFrameInfo &MFI = MF.getFrameInfo(); 4225 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 4226 4227 assert(!(CallConv == CallingConv::Fast && isVarArg) && 4228 "fastcc not supported on varargs functions"); 4229 4230 EVT PtrVT = getPointerTy(MF.getDataLayout()); 4231 // Potential tail calls could cause overwriting of argument stack slots. 4232 bool isImmutable = !(getTargetMachine().Options.GuaranteedTailCallOpt && 4233 (CallConv == CallingConv::Fast)); 4234 unsigned PtrByteSize = 8; 4235 unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize(); 4236 4237 static const MCPhysReg GPR[] = { 4238 PPC::X3, PPC::X4, PPC::X5, PPC::X6, 4239 PPC::X7, PPC::X8, PPC::X9, PPC::X10, 4240 }; 4241 static const MCPhysReg VR[] = { 4242 PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8, 4243 PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13 4244 }; 4245 4246 const unsigned Num_GPR_Regs = array_lengthof(GPR); 4247 const unsigned Num_FPR_Regs = useSoftFloat() ? 0 : 13; 4248 const unsigned Num_VR_Regs = array_lengthof(VR); 4249 4250 // Do a first pass over the arguments to determine whether the ABI 4251 // guarantees that our caller has allocated the parameter save area 4252 // on its stack frame. In the ELFv1 ABI, this is always the case; 4253 // in the ELFv2 ABI, it is true if this is a vararg function or if 4254 // any parameter is located in a stack slot. 4255 4256 bool HasParameterArea = !isELFv2ABI || isVarArg; 4257 unsigned ParamAreaSize = Num_GPR_Regs * PtrByteSize; 4258 unsigned NumBytes = LinkageSize; 4259 unsigned AvailableFPRs = Num_FPR_Regs; 4260 unsigned AvailableVRs = Num_VR_Regs; 4261 for (unsigned i = 0, e = Ins.size(); i != e; ++i) { 4262 if (Ins[i].Flags.isNest()) 4263 continue; 4264 4265 if (CalculateStackSlotUsed(Ins[i].VT, Ins[i].ArgVT, Ins[i].Flags, 4266 PtrByteSize, LinkageSize, ParamAreaSize, 4267 NumBytes, AvailableFPRs, AvailableVRs)) 4268 HasParameterArea = true; 4269 } 4270 4271 // Add DAG nodes to load the arguments or copy them out of registers. On 4272 // entry to a function on PPC, the arguments start after the linkage area, 4273 // although the first ones are often in registers. 4274 4275 unsigned ArgOffset = LinkageSize; 4276 unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0; 4277 SmallVector<SDValue, 8> MemOps; 4278 Function::const_arg_iterator FuncArg = MF.getFunction().arg_begin(); 4279 unsigned CurArgIdx = 0; 4280 for (unsigned ArgNo = 0, e = Ins.size(); ArgNo != e; ++ArgNo) { 4281 SDValue ArgVal; 4282 bool needsLoad = false; 4283 EVT ObjectVT = Ins[ArgNo].VT; 4284 EVT OrigVT = Ins[ArgNo].ArgVT; 4285 unsigned ObjSize = ObjectVT.getStoreSize(); 4286 unsigned ArgSize = ObjSize; 4287 ISD::ArgFlagsTy Flags = Ins[ArgNo].Flags; 4288 if (Ins[ArgNo].isOrigArg()) { 4289 std::advance(FuncArg, Ins[ArgNo].getOrigArgIndex() - CurArgIdx); 4290 CurArgIdx = Ins[ArgNo].getOrigArgIndex(); 4291 } 4292 // We re-align the argument offset for each argument, except when using the 4293 // fast calling convention, when we need to make sure we do that only when 4294 // we'll actually use a stack slot. 4295 unsigned CurArgOffset; 4296 Align Alignment; 4297 auto ComputeArgOffset = [&]() { 4298 /* Respect alignment of argument on the stack. */ 4299 Alignment = 4300 CalculateStackSlotAlignment(ObjectVT, OrigVT, Flags, PtrByteSize); 4301 ArgOffset = alignTo(ArgOffset, Alignment); 4302 CurArgOffset = ArgOffset; 4303 }; 4304 4305 if (CallConv != CallingConv::Fast) { 4306 ComputeArgOffset(); 4307 4308 /* Compute GPR index associated with argument offset. */ 4309 GPR_idx = (ArgOffset - LinkageSize) / PtrByteSize; 4310 GPR_idx = std::min(GPR_idx, Num_GPR_Regs); 4311 } 4312 4313 // FIXME the codegen can be much improved in some cases. 4314 // We do not have to keep everything in memory. 4315 if (Flags.isByVal()) { 4316 assert(Ins[ArgNo].isOrigArg() && "Byval arguments cannot be implicit"); 4317 4318 if (CallConv == CallingConv::Fast) 4319 ComputeArgOffset(); 4320 4321 // ObjSize is the true size, ArgSize rounded up to multiple of registers. 4322 ObjSize = Flags.getByValSize(); 4323 ArgSize = ((ObjSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize; 4324 // Empty aggregate parameters do not take up registers. Examples: 4325 // struct { } a; 4326 // union { } b; 4327 // int c[0]; 4328 // etc. However, we have to provide a place-holder in InVals, so 4329 // pretend we have an 8-byte item at the current address for that 4330 // purpose. 4331 if (!ObjSize) { 4332 int FI = MFI.CreateFixedObject(PtrByteSize, ArgOffset, true); 4333 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 4334 InVals.push_back(FIN); 4335 continue; 4336 } 4337 4338 // Create a stack object covering all stack doublewords occupied 4339 // by the argument. If the argument is (fully or partially) on 4340 // the stack, or if the argument is fully in registers but the 4341 // caller has allocated the parameter save anyway, we can refer 4342 // directly to the caller's stack frame. Otherwise, create a 4343 // local copy in our own frame. 4344 int FI; 4345 if (HasParameterArea || 4346 ArgSize + ArgOffset > LinkageSize + Num_GPR_Regs * PtrByteSize) 4347 FI = MFI.CreateFixedObject(ArgSize, ArgOffset, false, true); 4348 else 4349 FI = MFI.CreateStackObject(ArgSize, Alignment, false); 4350 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 4351 4352 // Handle aggregates smaller than 8 bytes. 4353 if (ObjSize < PtrByteSize) { 4354 // The value of the object is its address, which differs from the 4355 // address of the enclosing doubleword on big-endian systems. 4356 SDValue Arg = FIN; 4357 if (!isLittleEndian) { 4358 SDValue ArgOff = DAG.getConstant(PtrByteSize - ObjSize, dl, PtrVT); 4359 Arg = DAG.getNode(ISD::ADD, dl, ArgOff.getValueType(), Arg, ArgOff); 4360 } 4361 InVals.push_back(Arg); 4362 4363 if (GPR_idx != Num_GPR_Regs) { 4364 unsigned VReg = MF.addLiveIn(GPR[GPR_idx++], &PPC::G8RCRegClass); 4365 FuncInfo->addLiveInAttr(VReg, Flags); 4366 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT); 4367 SDValue Store; 4368 4369 if (ObjSize==1 || ObjSize==2 || ObjSize==4) { 4370 EVT ObjType = (ObjSize == 1 ? MVT::i8 : 4371 (ObjSize == 2 ? MVT::i16 : MVT::i32)); 4372 Store = DAG.getTruncStore(Val.getValue(1), dl, Val, Arg, 4373 MachinePointerInfo(&*FuncArg), ObjType); 4374 } else { 4375 // For sizes that don't fit a truncating store (3, 5, 6, 7), 4376 // store the whole register as-is to the parameter save area 4377 // slot. 4378 Store = DAG.getStore(Val.getValue(1), dl, Val, FIN, 4379 MachinePointerInfo(&*FuncArg)); 4380 } 4381 4382 MemOps.push_back(Store); 4383 } 4384 // Whether we copied from a register or not, advance the offset 4385 // into the parameter save area by a full doubleword. 4386 ArgOffset += PtrByteSize; 4387 continue; 4388 } 4389 4390 // The value of the object is its address, which is the address of 4391 // its first stack doubleword. 4392 InVals.push_back(FIN); 4393 4394 // Store whatever pieces of the object are in registers to memory. 4395 for (unsigned j = 0; j < ArgSize; j += PtrByteSize) { 4396 if (GPR_idx == Num_GPR_Regs) 4397 break; 4398 4399 unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass); 4400 FuncInfo->addLiveInAttr(VReg, Flags); 4401 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT); 4402 SDValue Addr = FIN; 4403 if (j) { 4404 SDValue Off = DAG.getConstant(j, dl, PtrVT); 4405 Addr = DAG.getNode(ISD::ADD, dl, Off.getValueType(), Addr, Off); 4406 } 4407 SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, Addr, 4408 MachinePointerInfo(&*FuncArg, j)); 4409 MemOps.push_back(Store); 4410 ++GPR_idx; 4411 } 4412 ArgOffset += ArgSize; 4413 continue; 4414 } 4415 4416 switch (ObjectVT.getSimpleVT().SimpleTy) { 4417 default: llvm_unreachable("Unhandled argument type!"); 4418 case MVT::i1: 4419 case MVT::i32: 4420 case MVT::i64: 4421 if (Flags.isNest()) { 4422 // The 'nest' parameter, if any, is passed in R11. 4423 unsigned VReg = MF.addLiveIn(PPC::X11, &PPC::G8RCRegClass); 4424 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64); 4425 4426 if (ObjectVT == MVT::i32 || ObjectVT == MVT::i1) 4427 ArgVal = extendArgForPPC64(Flags, ObjectVT, DAG, ArgVal, dl); 4428 4429 break; 4430 } 4431 4432 // These can be scalar arguments or elements of an integer array type 4433 // passed directly. Clang may use those instead of "byval" aggregate 4434 // types to avoid forcing arguments to memory unnecessarily. 4435 if (GPR_idx != Num_GPR_Regs) { 4436 unsigned VReg = MF.addLiveIn(GPR[GPR_idx++], &PPC::G8RCRegClass); 4437 FuncInfo->addLiveInAttr(VReg, Flags); 4438 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64); 4439 4440 if (ObjectVT == MVT::i32 || ObjectVT == MVT::i1) 4441 // PPC64 passes i8, i16, and i32 values in i64 registers. Promote 4442 // value to MVT::i64 and then truncate to the correct register size. 4443 ArgVal = extendArgForPPC64(Flags, ObjectVT, DAG, ArgVal, dl); 4444 } else { 4445 if (CallConv == CallingConv::Fast) 4446 ComputeArgOffset(); 4447 4448 needsLoad = true; 4449 ArgSize = PtrByteSize; 4450 } 4451 if (CallConv != CallingConv::Fast || needsLoad) 4452 ArgOffset += 8; 4453 break; 4454 4455 case MVT::f32: 4456 case MVT::f64: 4457 // These can be scalar arguments or elements of a float array type 4458 // passed directly. The latter are used to implement ELFv2 homogenous 4459 // float aggregates. 4460 if (FPR_idx != Num_FPR_Regs) { 4461 unsigned VReg; 4462 4463 if (ObjectVT == MVT::f32) 4464 VReg = MF.addLiveIn(FPR[FPR_idx], 4465 Subtarget.hasP8Vector() 4466 ? &PPC::VSSRCRegClass 4467 : &PPC::F4RCRegClass); 4468 else 4469 VReg = MF.addLiveIn(FPR[FPR_idx], Subtarget.hasVSX() 4470 ? &PPC::VSFRCRegClass 4471 : &PPC::F8RCRegClass); 4472 4473 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT); 4474 ++FPR_idx; 4475 } else if (GPR_idx != Num_GPR_Regs && CallConv != CallingConv::Fast) { 4476 // FIXME: We may want to re-enable this for CallingConv::Fast on the P8 4477 // once we support fp <-> gpr moves. 4478 4479 // This can only ever happen in the presence of f32 array types, 4480 // since otherwise we never run out of FPRs before running out 4481 // of GPRs. 4482 unsigned VReg = MF.addLiveIn(GPR[GPR_idx++], &PPC::G8RCRegClass); 4483 FuncInfo->addLiveInAttr(VReg, Flags); 4484 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64); 4485 4486 if (ObjectVT == MVT::f32) { 4487 if ((ArgOffset % PtrByteSize) == (isLittleEndian ? 4 : 0)) 4488 ArgVal = DAG.getNode(ISD::SRL, dl, MVT::i64, ArgVal, 4489 DAG.getConstant(32, dl, MVT::i32)); 4490 ArgVal = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, ArgVal); 4491 } 4492 4493 ArgVal = DAG.getNode(ISD::BITCAST, dl, ObjectVT, ArgVal); 4494 } else { 4495 if (CallConv == CallingConv::Fast) 4496 ComputeArgOffset(); 4497 4498 needsLoad = true; 4499 } 4500 4501 // When passing an array of floats, the array occupies consecutive 4502 // space in the argument area; only round up to the next doubleword 4503 // at the end of the array. Otherwise, each float takes 8 bytes. 4504 if (CallConv != CallingConv::Fast || needsLoad) { 4505 ArgSize = Flags.isInConsecutiveRegs() ? ObjSize : PtrByteSize; 4506 ArgOffset += ArgSize; 4507 if (Flags.isInConsecutiveRegsLast()) 4508 ArgOffset = ((ArgOffset + PtrByteSize - 1)/PtrByteSize) * PtrByteSize; 4509 } 4510 break; 4511 case MVT::v4f32: 4512 case MVT::v4i32: 4513 case MVT::v8i16: 4514 case MVT::v16i8: 4515 case MVT::v2f64: 4516 case MVT::v2i64: 4517 case MVT::v1i128: 4518 case MVT::f128: 4519 // These can be scalar arguments or elements of a vector array type 4520 // passed directly. The latter are used to implement ELFv2 homogenous 4521 // vector aggregates. 4522 if (VR_idx != Num_VR_Regs) { 4523 unsigned VReg = MF.addLiveIn(VR[VR_idx], &PPC::VRRCRegClass); 4524 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT); 4525 ++VR_idx; 4526 } else { 4527 if (CallConv == CallingConv::Fast) 4528 ComputeArgOffset(); 4529 needsLoad = true; 4530 } 4531 if (CallConv != CallingConv::Fast || needsLoad) 4532 ArgOffset += 16; 4533 break; 4534 } 4535 4536 // We need to load the argument to a virtual register if we determined 4537 // above that we ran out of physical registers of the appropriate type. 4538 if (needsLoad) { 4539 if (ObjSize < ArgSize && !isLittleEndian) 4540 CurArgOffset += ArgSize - ObjSize; 4541 int FI = MFI.CreateFixedObject(ObjSize, CurArgOffset, isImmutable); 4542 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 4543 ArgVal = DAG.getLoad(ObjectVT, dl, Chain, FIN, MachinePointerInfo()); 4544 } 4545 4546 InVals.push_back(ArgVal); 4547 } 4548 4549 // Area that is at least reserved in the caller of this function. 4550 unsigned MinReservedArea; 4551 if (HasParameterArea) 4552 MinReservedArea = std::max(ArgOffset, LinkageSize + 8 * PtrByteSize); 4553 else 4554 MinReservedArea = LinkageSize; 4555 4556 // Set the size that is at least reserved in caller of this function. Tail 4557 // call optimized functions' reserved stack space needs to be aligned so that 4558 // taking the difference between two stack areas will result in an aligned 4559 // stack. 4560 MinReservedArea = 4561 EnsureStackAlignment(Subtarget.getFrameLowering(), MinReservedArea); 4562 FuncInfo->setMinReservedArea(MinReservedArea); 4563 4564 // If the function takes variable number of arguments, make a frame index for 4565 // the start of the first vararg value... for expansion of llvm.va_start. 4566 // On ELFv2ABI spec, it writes: 4567 // C programs that are intended to be *portable* across different compilers 4568 // and architectures must use the header file <stdarg.h> to deal with variable 4569 // argument lists. 4570 if (isVarArg && MFI.hasVAStart()) { 4571 int Depth = ArgOffset; 4572 4573 FuncInfo->setVarArgsFrameIndex( 4574 MFI.CreateFixedObject(PtrByteSize, Depth, true)); 4575 SDValue FIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT); 4576 4577 // If this function is vararg, store any remaining integer argument regs 4578 // to their spots on the stack so that they may be loaded by dereferencing 4579 // the result of va_next. 4580 for (GPR_idx = (ArgOffset - LinkageSize) / PtrByteSize; 4581 GPR_idx < Num_GPR_Regs; ++GPR_idx) { 4582 unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass); 4583 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT); 4584 SDValue Store = 4585 DAG.getStore(Val.getValue(1), dl, Val, FIN, MachinePointerInfo()); 4586 MemOps.push_back(Store); 4587 // Increment the address by four for the next argument to store 4588 SDValue PtrOff = DAG.getConstant(PtrByteSize, dl, PtrVT); 4589 FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff); 4590 } 4591 } 4592 4593 if (!MemOps.empty()) 4594 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOps); 4595 4596 return Chain; 4597 } 4598 4599 /// CalculateTailCallSPDiff - Get the amount the stack pointer has to be 4600 /// adjusted to accommodate the arguments for the tailcall. 4601 static int CalculateTailCallSPDiff(SelectionDAG& DAG, bool isTailCall, 4602 unsigned ParamSize) { 4603 4604 if (!isTailCall) return 0; 4605 4606 PPCFunctionInfo *FI = DAG.getMachineFunction().getInfo<PPCFunctionInfo>(); 4607 unsigned CallerMinReservedArea = FI->getMinReservedArea(); 4608 int SPDiff = (int)CallerMinReservedArea - (int)ParamSize; 4609 // Remember only if the new adjustment is bigger. 4610 if (SPDiff < FI->getTailCallSPDelta()) 4611 FI->setTailCallSPDelta(SPDiff); 4612 4613 return SPDiff; 4614 } 4615 4616 static bool isFunctionGlobalAddress(SDValue Callee); 4617 4618 static bool callsShareTOCBase(const Function *Caller, SDValue Callee, 4619 const TargetMachine &TM) { 4620 // It does not make sense to call callsShareTOCBase() with a caller that 4621 // is PC Relative since PC Relative callers do not have a TOC. 4622 #ifndef NDEBUG 4623 const PPCSubtarget *STICaller = &TM.getSubtarget<PPCSubtarget>(*Caller); 4624 assert(!STICaller->isUsingPCRelativeCalls() && 4625 "PC Relative callers do not have a TOC and cannot share a TOC Base"); 4626 #endif 4627 4628 // Callee is either a GlobalAddress or an ExternalSymbol. ExternalSymbols 4629 // don't have enough information to determine if the caller and callee share 4630 // the same TOC base, so we have to pessimistically assume they don't for 4631 // correctness. 4632 GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee); 4633 if (!G) 4634 return false; 4635 4636 const GlobalValue *GV = G->getGlobal(); 4637 4638 // If the callee is preemptable, then the static linker will use a plt-stub 4639 // which saves the toc to the stack, and needs a nop after the call 4640 // instruction to convert to a toc-restore. 4641 if (!TM.shouldAssumeDSOLocal(*Caller->getParent(), GV)) 4642 return false; 4643 4644 // Functions with PC Relative enabled may clobber the TOC in the same DSO. 4645 // We may need a TOC restore in the situation where the caller requires a 4646 // valid TOC but the callee is PC Relative and does not. 4647 const Function *F = dyn_cast<Function>(GV); 4648 const GlobalAlias *Alias = dyn_cast<GlobalAlias>(GV); 4649 4650 // If we have an Alias we can try to get the function from there. 4651 if (Alias) { 4652 const GlobalObject *GlobalObj = Alias->getBaseObject(); 4653 F = dyn_cast<Function>(GlobalObj); 4654 } 4655 4656 // If we still have no valid function pointer we do not have enough 4657 // information to determine if the callee uses PC Relative calls so we must 4658 // assume that it does. 4659 if (!F) 4660 return false; 4661 4662 // If the callee uses PC Relative we cannot guarantee that the callee won't 4663 // clobber the TOC of the caller and so we must assume that the two 4664 // functions do not share a TOC base. 4665 const PPCSubtarget *STICallee = &TM.getSubtarget<PPCSubtarget>(*F); 4666 if (STICallee->isUsingPCRelativeCalls()) 4667 return false; 4668 4669 // If the GV is not a strong definition then we need to assume it can be 4670 // replaced by another function at link time. The function that replaces 4671 // it may not share the same TOC as the caller since the callee may be 4672 // replaced by a PC Relative version of the same function. 4673 if (!GV->isStrongDefinitionForLinker()) 4674 return false; 4675 4676 // The medium and large code models are expected to provide a sufficiently 4677 // large TOC to provide all data addressing needs of a module with a 4678 // single TOC. 4679 if (CodeModel::Medium == TM.getCodeModel() || 4680 CodeModel::Large == TM.getCodeModel()) 4681 return true; 4682 4683 // Any explicitly-specified sections and section prefixes must also match. 4684 // Also, if we're using -ffunction-sections, then each function is always in 4685 // a different section (the same is true for COMDAT functions). 4686 if (TM.getFunctionSections() || GV->hasComdat() || Caller->hasComdat() || 4687 GV->getSection() != Caller->getSection()) 4688 return false; 4689 if (const auto *F = dyn_cast<Function>(GV)) { 4690 if (F->getSectionPrefix() != Caller->getSectionPrefix()) 4691 return false; 4692 } 4693 4694 return true; 4695 } 4696 4697 static bool 4698 needStackSlotPassParameters(const PPCSubtarget &Subtarget, 4699 const SmallVectorImpl<ISD::OutputArg> &Outs) { 4700 assert(Subtarget.is64BitELFABI()); 4701 4702 const unsigned PtrByteSize = 8; 4703 const unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize(); 4704 4705 static const MCPhysReg GPR[] = { 4706 PPC::X3, PPC::X4, PPC::X5, PPC::X6, 4707 PPC::X7, PPC::X8, PPC::X9, PPC::X10, 4708 }; 4709 static const MCPhysReg VR[] = { 4710 PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8, 4711 PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13 4712 }; 4713 4714 const unsigned NumGPRs = array_lengthof(GPR); 4715 const unsigned NumFPRs = 13; 4716 const unsigned NumVRs = array_lengthof(VR); 4717 const unsigned ParamAreaSize = NumGPRs * PtrByteSize; 4718 4719 unsigned NumBytes = LinkageSize; 4720 unsigned AvailableFPRs = NumFPRs; 4721 unsigned AvailableVRs = NumVRs; 4722 4723 for (const ISD::OutputArg& Param : Outs) { 4724 if (Param.Flags.isNest()) continue; 4725 4726 if (CalculateStackSlotUsed(Param.VT, Param.ArgVT, Param.Flags, PtrByteSize, 4727 LinkageSize, ParamAreaSize, NumBytes, 4728 AvailableFPRs, AvailableVRs)) 4729 return true; 4730 } 4731 return false; 4732 } 4733 4734 static bool hasSameArgumentList(const Function *CallerFn, const CallBase &CB) { 4735 if (CB.arg_size() != CallerFn->arg_size()) 4736 return false; 4737 4738 auto CalleeArgIter = CB.arg_begin(); 4739 auto CalleeArgEnd = CB.arg_end(); 4740 Function::const_arg_iterator CallerArgIter = CallerFn->arg_begin(); 4741 4742 for (; CalleeArgIter != CalleeArgEnd; ++CalleeArgIter, ++CallerArgIter) { 4743 const Value* CalleeArg = *CalleeArgIter; 4744 const Value* CallerArg = &(*CallerArgIter); 4745 if (CalleeArg == CallerArg) 4746 continue; 4747 4748 // e.g. @caller([4 x i64] %a, [4 x i64] %b) { 4749 // tail call @callee([4 x i64] undef, [4 x i64] %b) 4750 // } 4751 // 1st argument of callee is undef and has the same type as caller. 4752 if (CalleeArg->getType() == CallerArg->getType() && 4753 isa<UndefValue>(CalleeArg)) 4754 continue; 4755 4756 return false; 4757 } 4758 4759 return true; 4760 } 4761 4762 // Returns true if TCO is possible between the callers and callees 4763 // calling conventions. 4764 static bool 4765 areCallingConvEligibleForTCO_64SVR4(CallingConv::ID CallerCC, 4766 CallingConv::ID CalleeCC) { 4767 // Tail calls are possible with fastcc and ccc. 4768 auto isTailCallableCC = [] (CallingConv::ID CC){ 4769 return CC == CallingConv::C || CC == CallingConv::Fast; 4770 }; 4771 if (!isTailCallableCC(CallerCC) || !isTailCallableCC(CalleeCC)) 4772 return false; 4773 4774 // We can safely tail call both fastcc and ccc callees from a c calling 4775 // convention caller. If the caller is fastcc, we may have less stack space 4776 // than a non-fastcc caller with the same signature so disable tail-calls in 4777 // that case. 4778 return CallerCC == CallingConv::C || CallerCC == CalleeCC; 4779 } 4780 4781 bool PPCTargetLowering::IsEligibleForTailCallOptimization_64SVR4( 4782 SDValue Callee, CallingConv::ID CalleeCC, const CallBase *CB, bool isVarArg, 4783 const SmallVectorImpl<ISD::OutputArg> &Outs, 4784 const SmallVectorImpl<ISD::InputArg> &Ins, SelectionDAG &DAG) const { 4785 bool TailCallOpt = getTargetMachine().Options.GuaranteedTailCallOpt; 4786 4787 if (DisableSCO && !TailCallOpt) return false; 4788 4789 // Variadic argument functions are not supported. 4790 if (isVarArg) return false; 4791 4792 auto &Caller = DAG.getMachineFunction().getFunction(); 4793 // Check that the calling conventions are compatible for tco. 4794 if (!areCallingConvEligibleForTCO_64SVR4(Caller.getCallingConv(), CalleeCC)) 4795 return false; 4796 4797 // Caller contains any byval parameter is not supported. 4798 if (any_of(Ins, [](const ISD::InputArg &IA) { return IA.Flags.isByVal(); })) 4799 return false; 4800 4801 // Callee contains any byval parameter is not supported, too. 4802 // Note: This is a quick work around, because in some cases, e.g. 4803 // caller's stack size > callee's stack size, we are still able to apply 4804 // sibling call optimization. For example, gcc is able to do SCO for caller1 4805 // in the following example, but not for caller2. 4806 // struct test { 4807 // long int a; 4808 // char ary[56]; 4809 // } gTest; 4810 // __attribute__((noinline)) int callee(struct test v, struct test *b) { 4811 // b->a = v.a; 4812 // return 0; 4813 // } 4814 // void caller1(struct test a, struct test c, struct test *b) { 4815 // callee(gTest, b); } 4816 // void caller2(struct test *b) { callee(gTest, b); } 4817 if (any_of(Outs, [](const ISD::OutputArg& OA) { return OA.Flags.isByVal(); })) 4818 return false; 4819 4820 // If callee and caller use different calling conventions, we cannot pass 4821 // parameters on stack since offsets for the parameter area may be different. 4822 if (Caller.getCallingConv() != CalleeCC && 4823 needStackSlotPassParameters(Subtarget, Outs)) 4824 return false; 4825 4826 // All variants of 64-bit ELF ABIs without PC-Relative addressing require that 4827 // the caller and callee share the same TOC for TCO/SCO. If the caller and 4828 // callee potentially have different TOC bases then we cannot tail call since 4829 // we need to restore the TOC pointer after the call. 4830 // ref: https://bugzilla.mozilla.org/show_bug.cgi?id=973977 4831 // We cannot guarantee this for indirect calls or calls to external functions. 4832 // When PC-Relative addressing is used, the concept of the TOC is no longer 4833 // applicable so this check is not required. 4834 // Check first for indirect calls. 4835 if (!Subtarget.isUsingPCRelativeCalls() && 4836 !isFunctionGlobalAddress(Callee) && !isa<ExternalSymbolSDNode>(Callee)) 4837 return false; 4838 4839 // Check if we share the TOC base. 4840 if (!Subtarget.isUsingPCRelativeCalls() && 4841 !callsShareTOCBase(&Caller, Callee, getTargetMachine())) 4842 return false; 4843 4844 // TCO allows altering callee ABI, so we don't have to check further. 4845 if (CalleeCC == CallingConv::Fast && TailCallOpt) 4846 return true; 4847 4848 if (DisableSCO) return false; 4849 4850 // If callee use the same argument list that caller is using, then we can 4851 // apply SCO on this case. If it is not, then we need to check if callee needs 4852 // stack for passing arguments. 4853 // PC Relative tail calls may not have a CallBase. 4854 // If there is no CallBase we cannot verify if we have the same argument 4855 // list so assume that we don't have the same argument list. 4856 if (CB && !hasSameArgumentList(&Caller, *CB) && 4857 needStackSlotPassParameters(Subtarget, Outs)) 4858 return false; 4859 else if (!CB && needStackSlotPassParameters(Subtarget, Outs)) 4860 return false; 4861 4862 return true; 4863 } 4864 4865 /// IsEligibleForTailCallOptimization - Check whether the call is eligible 4866 /// for tail call optimization. Targets which want to do tail call 4867 /// optimization should implement this function. 4868 bool 4869 PPCTargetLowering::IsEligibleForTailCallOptimization(SDValue Callee, 4870 CallingConv::ID CalleeCC, 4871 bool isVarArg, 4872 const SmallVectorImpl<ISD::InputArg> &Ins, 4873 SelectionDAG& DAG) const { 4874 if (!getTargetMachine().Options.GuaranteedTailCallOpt) 4875 return false; 4876 4877 // Variable argument functions are not supported. 4878 if (isVarArg) 4879 return false; 4880 4881 MachineFunction &MF = DAG.getMachineFunction(); 4882 CallingConv::ID CallerCC = MF.getFunction().getCallingConv(); 4883 if (CalleeCC == CallingConv::Fast && CallerCC == CalleeCC) { 4884 // Functions containing by val parameters are not supported. 4885 for (unsigned i = 0; i != Ins.size(); i++) { 4886 ISD::ArgFlagsTy Flags = Ins[i].Flags; 4887 if (Flags.isByVal()) return false; 4888 } 4889 4890 // Non-PIC/GOT tail calls are supported. 4891 if (getTargetMachine().getRelocationModel() != Reloc::PIC_) 4892 return true; 4893 4894 // At the moment we can only do local tail calls (in same module, hidden 4895 // or protected) if we are generating PIC. 4896 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) 4897 return G->getGlobal()->hasHiddenVisibility() 4898 || G->getGlobal()->hasProtectedVisibility(); 4899 } 4900 4901 return false; 4902 } 4903 4904 /// isCallCompatibleAddress - Return the immediate to use if the specified 4905 /// 32-bit value is representable in the immediate field of a BxA instruction. 4906 static SDNode *isBLACompatibleAddress(SDValue Op, SelectionDAG &DAG) { 4907 ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op); 4908 if (!C) return nullptr; 4909 4910 int Addr = C->getZExtValue(); 4911 if ((Addr & 3) != 0 || // Low 2 bits are implicitly zero. 4912 SignExtend32<26>(Addr) != Addr) 4913 return nullptr; // Top 6 bits have to be sext of immediate. 4914 4915 return DAG 4916 .getConstant( 4917 (int)C->getZExtValue() >> 2, SDLoc(Op), 4918 DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout())) 4919 .getNode(); 4920 } 4921 4922 namespace { 4923 4924 struct TailCallArgumentInfo { 4925 SDValue Arg; 4926 SDValue FrameIdxOp; 4927 int FrameIdx = 0; 4928 4929 TailCallArgumentInfo() = default; 4930 }; 4931 4932 } // end anonymous namespace 4933 4934 /// StoreTailCallArgumentsToStackSlot - Stores arguments to their stack slot. 4935 static void StoreTailCallArgumentsToStackSlot( 4936 SelectionDAG &DAG, SDValue Chain, 4937 const SmallVectorImpl<TailCallArgumentInfo> &TailCallArgs, 4938 SmallVectorImpl<SDValue> &MemOpChains, const SDLoc &dl) { 4939 for (unsigned i = 0, e = TailCallArgs.size(); i != e; ++i) { 4940 SDValue Arg = TailCallArgs[i].Arg; 4941 SDValue FIN = TailCallArgs[i].FrameIdxOp; 4942 int FI = TailCallArgs[i].FrameIdx; 4943 // Store relative to framepointer. 4944 MemOpChains.push_back(DAG.getStore( 4945 Chain, dl, Arg, FIN, 4946 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI))); 4947 } 4948 } 4949 4950 /// EmitTailCallStoreFPAndRetAddr - Move the frame pointer and return address to 4951 /// the appropriate stack slot for the tail call optimized function call. 4952 static SDValue EmitTailCallStoreFPAndRetAddr(SelectionDAG &DAG, SDValue Chain, 4953 SDValue OldRetAddr, SDValue OldFP, 4954 int SPDiff, const SDLoc &dl) { 4955 if (SPDiff) { 4956 // Calculate the new stack slot for the return address. 4957 MachineFunction &MF = DAG.getMachineFunction(); 4958 const PPCSubtarget &Subtarget = MF.getSubtarget<PPCSubtarget>(); 4959 const PPCFrameLowering *FL = Subtarget.getFrameLowering(); 4960 bool isPPC64 = Subtarget.isPPC64(); 4961 int SlotSize = isPPC64 ? 8 : 4; 4962 int NewRetAddrLoc = SPDiff + FL->getReturnSaveOffset(); 4963 int NewRetAddr = MF.getFrameInfo().CreateFixedObject(SlotSize, 4964 NewRetAddrLoc, true); 4965 EVT VT = isPPC64 ? MVT::i64 : MVT::i32; 4966 SDValue NewRetAddrFrIdx = DAG.getFrameIndex(NewRetAddr, VT); 4967 Chain = DAG.getStore(Chain, dl, OldRetAddr, NewRetAddrFrIdx, 4968 MachinePointerInfo::getFixedStack(MF, NewRetAddr)); 4969 } 4970 return Chain; 4971 } 4972 4973 /// CalculateTailCallArgDest - Remember Argument for later processing. Calculate 4974 /// the position of the argument. 4975 static void 4976 CalculateTailCallArgDest(SelectionDAG &DAG, MachineFunction &MF, bool isPPC64, 4977 SDValue Arg, int SPDiff, unsigned ArgOffset, 4978 SmallVectorImpl<TailCallArgumentInfo>& TailCallArguments) { 4979 int Offset = ArgOffset + SPDiff; 4980 uint32_t OpSize = (Arg.getValueSizeInBits() + 7) / 8; 4981 int FI = MF.getFrameInfo().CreateFixedObject(OpSize, Offset, true); 4982 EVT VT = isPPC64 ? MVT::i64 : MVT::i32; 4983 SDValue FIN = DAG.getFrameIndex(FI, VT); 4984 TailCallArgumentInfo Info; 4985 Info.Arg = Arg; 4986 Info.FrameIdxOp = FIN; 4987 Info.FrameIdx = FI; 4988 TailCallArguments.push_back(Info); 4989 } 4990 4991 /// EmitTCFPAndRetAddrLoad - Emit load from frame pointer and return address 4992 /// stack slot. Returns the chain as result and the loaded frame pointers in 4993 /// LROpOut/FPOpout. Used when tail calling. 4994 SDValue PPCTargetLowering::EmitTailCallLoadFPAndRetAddr( 4995 SelectionDAG &DAG, int SPDiff, SDValue Chain, SDValue &LROpOut, 4996 SDValue &FPOpOut, const SDLoc &dl) const { 4997 if (SPDiff) { 4998 // Load the LR and FP stack slot for later adjusting. 4999 EVT VT = Subtarget.isPPC64() ? MVT::i64 : MVT::i32; 5000 LROpOut = getReturnAddrFrameIndex(DAG); 5001 LROpOut = DAG.getLoad(VT, dl, Chain, LROpOut, MachinePointerInfo()); 5002 Chain = SDValue(LROpOut.getNode(), 1); 5003 } 5004 return Chain; 5005 } 5006 5007 /// CreateCopyOfByValArgument - Make a copy of an aggregate at address specified 5008 /// by "Src" to address "Dst" of size "Size". Alignment information is 5009 /// specified by the specific parameter attribute. The copy will be passed as 5010 /// a byval function parameter. 5011 /// Sometimes what we are copying is the end of a larger object, the part that 5012 /// does not fit in registers. 5013 static SDValue CreateCopyOfByValArgument(SDValue Src, SDValue Dst, 5014 SDValue Chain, ISD::ArgFlagsTy Flags, 5015 SelectionDAG &DAG, const SDLoc &dl) { 5016 SDValue SizeNode = DAG.getConstant(Flags.getByValSize(), dl, MVT::i32); 5017 return DAG.getMemcpy(Chain, dl, Dst, Src, SizeNode, 5018 Flags.getNonZeroByValAlign(), false, false, false, 5019 MachinePointerInfo(), MachinePointerInfo()); 5020 } 5021 5022 /// LowerMemOpCallTo - Store the argument to the stack or remember it in case of 5023 /// tail calls. 5024 static void LowerMemOpCallTo( 5025 SelectionDAG &DAG, MachineFunction &MF, SDValue Chain, SDValue Arg, 5026 SDValue PtrOff, int SPDiff, unsigned ArgOffset, bool isPPC64, 5027 bool isTailCall, bool isVector, SmallVectorImpl<SDValue> &MemOpChains, 5028 SmallVectorImpl<TailCallArgumentInfo> &TailCallArguments, const SDLoc &dl) { 5029 EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()); 5030 if (!isTailCall) { 5031 if (isVector) { 5032 SDValue StackPtr; 5033 if (isPPC64) 5034 StackPtr = DAG.getRegister(PPC::X1, MVT::i64); 5035 else 5036 StackPtr = DAG.getRegister(PPC::R1, MVT::i32); 5037 PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, 5038 DAG.getConstant(ArgOffset, dl, PtrVT)); 5039 } 5040 MemOpChains.push_back( 5041 DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo())); 5042 // Calculate and remember argument location. 5043 } else CalculateTailCallArgDest(DAG, MF, isPPC64, Arg, SPDiff, ArgOffset, 5044 TailCallArguments); 5045 } 5046 5047 static void 5048 PrepareTailCall(SelectionDAG &DAG, SDValue &InFlag, SDValue &Chain, 5049 const SDLoc &dl, int SPDiff, unsigned NumBytes, SDValue LROp, 5050 SDValue FPOp, 5051 SmallVectorImpl<TailCallArgumentInfo> &TailCallArguments) { 5052 // Emit a sequence of copyto/copyfrom virtual registers for arguments that 5053 // might overwrite each other in case of tail call optimization. 5054 SmallVector<SDValue, 8> MemOpChains2; 5055 // Do not flag preceding copytoreg stuff together with the following stuff. 5056 InFlag = SDValue(); 5057 StoreTailCallArgumentsToStackSlot(DAG, Chain, TailCallArguments, 5058 MemOpChains2, dl); 5059 if (!MemOpChains2.empty()) 5060 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains2); 5061 5062 // Store the return address to the appropriate stack slot. 5063 Chain = EmitTailCallStoreFPAndRetAddr(DAG, Chain, LROp, FPOp, SPDiff, dl); 5064 5065 // Emit callseq_end just before tailcall node. 5066 Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, dl, true), 5067 DAG.getIntPtrConstant(0, dl, true), InFlag, dl); 5068 InFlag = Chain.getValue(1); 5069 } 5070 5071 // Is this global address that of a function that can be called by name? (as 5072 // opposed to something that must hold a descriptor for an indirect call). 5073 static bool isFunctionGlobalAddress(SDValue Callee) { 5074 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) { 5075 if (Callee.getOpcode() == ISD::GlobalTLSAddress || 5076 Callee.getOpcode() == ISD::TargetGlobalTLSAddress) 5077 return false; 5078 5079 return G->getGlobal()->getValueType()->isFunctionTy(); 5080 } 5081 5082 return false; 5083 } 5084 5085 SDValue PPCTargetLowering::LowerCallResult( 5086 SDValue Chain, SDValue InFlag, CallingConv::ID CallConv, bool isVarArg, 5087 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl, 5088 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { 5089 SmallVector<CCValAssign, 16> RVLocs; 5090 CCState CCRetInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs, 5091 *DAG.getContext()); 5092 5093 CCRetInfo.AnalyzeCallResult( 5094 Ins, (Subtarget.isSVR4ABI() && CallConv == CallingConv::Cold) 5095 ? RetCC_PPC_Cold 5096 : RetCC_PPC); 5097 5098 // Copy all of the result registers out of their specified physreg. 5099 for (unsigned i = 0, e = RVLocs.size(); i != e; ++i) { 5100 CCValAssign &VA = RVLocs[i]; 5101 assert(VA.isRegLoc() && "Can only return in registers!"); 5102 5103 SDValue Val; 5104 5105 if (Subtarget.hasSPE() && VA.getLocVT() == MVT::f64) { 5106 SDValue Lo = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), MVT::i32, 5107 InFlag); 5108 Chain = Lo.getValue(1); 5109 InFlag = Lo.getValue(2); 5110 VA = RVLocs[++i]; // skip ahead to next loc 5111 SDValue Hi = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), MVT::i32, 5112 InFlag); 5113 Chain = Hi.getValue(1); 5114 InFlag = Hi.getValue(2); 5115 if (!Subtarget.isLittleEndian()) 5116 std::swap (Lo, Hi); 5117 Val = DAG.getNode(PPCISD::BUILD_SPE64, dl, MVT::f64, Lo, Hi); 5118 } else { 5119 Val = DAG.getCopyFromReg(Chain, dl, 5120 VA.getLocReg(), VA.getLocVT(), InFlag); 5121 Chain = Val.getValue(1); 5122 InFlag = Val.getValue(2); 5123 } 5124 5125 switch (VA.getLocInfo()) { 5126 default: llvm_unreachable("Unknown loc info!"); 5127 case CCValAssign::Full: break; 5128 case CCValAssign::AExt: 5129 Val = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), Val); 5130 break; 5131 case CCValAssign::ZExt: 5132 Val = DAG.getNode(ISD::AssertZext, dl, VA.getLocVT(), Val, 5133 DAG.getValueType(VA.getValVT())); 5134 Val = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), Val); 5135 break; 5136 case CCValAssign::SExt: 5137 Val = DAG.getNode(ISD::AssertSext, dl, VA.getLocVT(), Val, 5138 DAG.getValueType(VA.getValVT())); 5139 Val = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), Val); 5140 break; 5141 } 5142 5143 InVals.push_back(Val); 5144 } 5145 5146 return Chain; 5147 } 5148 5149 static bool isIndirectCall(const SDValue &Callee, SelectionDAG &DAG, 5150 const PPCSubtarget &Subtarget, bool isPatchPoint) { 5151 // PatchPoint calls are not indirect. 5152 if (isPatchPoint) 5153 return false; 5154 5155 if (isFunctionGlobalAddress(Callee) || isa<ExternalSymbolSDNode>(Callee)) 5156 return false; 5157 5158 // Darwin, and 32-bit ELF can use a BLA. The descriptor based ABIs can not 5159 // becuase the immediate function pointer points to a descriptor instead of 5160 // a function entry point. The ELFv2 ABI cannot use a BLA because the function 5161 // pointer immediate points to the global entry point, while the BLA would 5162 // need to jump to the local entry point (see rL211174). 5163 if (!Subtarget.usesFunctionDescriptors() && !Subtarget.isELFv2ABI() && 5164 isBLACompatibleAddress(Callee, DAG)) 5165 return false; 5166 5167 return true; 5168 } 5169 5170 // AIX and 64-bit ELF ABIs w/o PCRel require a TOC save/restore around calls. 5171 static inline bool isTOCSaveRestoreRequired(const PPCSubtarget &Subtarget) { 5172 return Subtarget.isAIXABI() || 5173 (Subtarget.is64BitELFABI() && !Subtarget.isUsingPCRelativeCalls()); 5174 } 5175 5176 static unsigned getCallOpcode(PPCTargetLowering::CallFlags CFlags, 5177 const Function &Caller, 5178 const SDValue &Callee, 5179 const PPCSubtarget &Subtarget, 5180 const TargetMachine &TM) { 5181 if (CFlags.IsTailCall) 5182 return PPCISD::TC_RETURN; 5183 5184 // This is a call through a function pointer. 5185 if (CFlags.IsIndirect) { 5186 // AIX and the 64-bit ELF ABIs need to maintain the TOC pointer accross 5187 // indirect calls. The save of the caller's TOC pointer to the stack will be 5188 // inserted into the DAG as part of call lowering. The restore of the TOC 5189 // pointer is modeled by using a pseudo instruction for the call opcode that 5190 // represents the 2 instruction sequence of an indirect branch and link, 5191 // immediately followed by a load of the TOC pointer from the the stack save 5192 // slot into gpr2. For 64-bit ELFv2 ABI with PCRel, do not restore the TOC 5193 // as it is not saved or used. 5194 return isTOCSaveRestoreRequired(Subtarget) ? PPCISD::BCTRL_LOAD_TOC 5195 : PPCISD::BCTRL; 5196 } 5197 5198 if (Subtarget.isUsingPCRelativeCalls()) { 5199 assert(Subtarget.is64BitELFABI() && "PC Relative is only on ELF ABI."); 5200 return PPCISD::CALL_NOTOC; 5201 } 5202 5203 // The ABIs that maintain a TOC pointer accross calls need to have a nop 5204 // immediately following the call instruction if the caller and callee may 5205 // have different TOC bases. At link time if the linker determines the calls 5206 // may not share a TOC base, the call is redirected to a trampoline inserted 5207 // by the linker. The trampoline will (among other things) save the callers 5208 // TOC pointer at an ABI designated offset in the linkage area and the linker 5209 // will rewrite the nop to be a load of the TOC pointer from the linkage area 5210 // into gpr2. 5211 if (Subtarget.isAIXABI() || Subtarget.is64BitELFABI()) 5212 return callsShareTOCBase(&Caller, Callee, TM) ? PPCISD::CALL 5213 : PPCISD::CALL_NOP; 5214 5215 return PPCISD::CALL; 5216 } 5217 5218 static SDValue transformCallee(const SDValue &Callee, SelectionDAG &DAG, 5219 const SDLoc &dl, const PPCSubtarget &Subtarget) { 5220 if (!Subtarget.usesFunctionDescriptors() && !Subtarget.isELFv2ABI()) 5221 if (SDNode *Dest = isBLACompatibleAddress(Callee, DAG)) 5222 return SDValue(Dest, 0); 5223 5224 // Returns true if the callee is local, and false otherwise. 5225 auto isLocalCallee = [&]() { 5226 const GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee); 5227 const Module *Mod = DAG.getMachineFunction().getFunction().getParent(); 5228 const GlobalValue *GV = G ? G->getGlobal() : nullptr; 5229 5230 return DAG.getTarget().shouldAssumeDSOLocal(*Mod, GV) && 5231 !dyn_cast_or_null<GlobalIFunc>(GV); 5232 }; 5233 5234 // The PLT is only used in 32-bit ELF PIC mode. Attempting to use the PLT in 5235 // a static relocation model causes some versions of GNU LD (2.17.50, at 5236 // least) to force BSS-PLT, instead of secure-PLT, even if all objects are 5237 // built with secure-PLT. 5238 bool UsePlt = 5239 Subtarget.is32BitELFABI() && !isLocalCallee() && 5240 Subtarget.getTargetMachine().getRelocationModel() == Reloc::PIC_; 5241 5242 const auto getAIXFuncEntryPointSymbolSDNode = [&](const GlobalValue *GV) { 5243 const TargetMachine &TM = Subtarget.getTargetMachine(); 5244 const TargetLoweringObjectFile *TLOF = TM.getObjFileLowering(); 5245 MCSymbolXCOFF *S = 5246 cast<MCSymbolXCOFF>(TLOF->getFunctionEntryPointSymbol(GV, TM)); 5247 5248 MVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()); 5249 return DAG.getMCSymbol(S, PtrVT); 5250 }; 5251 5252 if (isFunctionGlobalAddress(Callee)) { 5253 const GlobalValue *GV = cast<GlobalAddressSDNode>(Callee)->getGlobal(); 5254 5255 if (Subtarget.isAIXABI()) { 5256 assert(!isa<GlobalIFunc>(GV) && "IFunc is not supported on AIX."); 5257 return getAIXFuncEntryPointSymbolSDNode(GV); 5258 } 5259 return DAG.getTargetGlobalAddress(GV, dl, Callee.getValueType(), 0, 5260 UsePlt ? PPCII::MO_PLT : 0); 5261 } 5262 5263 if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) { 5264 const char *SymName = S->getSymbol(); 5265 if (Subtarget.isAIXABI()) { 5266 // If there exists a user-declared function whose name is the same as the 5267 // ExternalSymbol's, then we pick up the user-declared version. 5268 const Module *Mod = DAG.getMachineFunction().getFunction().getParent(); 5269 if (const Function *F = 5270 dyn_cast_or_null<Function>(Mod->getNamedValue(SymName))) 5271 return getAIXFuncEntryPointSymbolSDNode(F); 5272 5273 // On AIX, direct function calls reference the symbol for the function's 5274 // entry point, which is named by prepending a "." before the function's 5275 // C-linkage name. A Qualname is returned here because an external 5276 // function entry point is a csect with XTY_ER property. 5277 const auto getExternalFunctionEntryPointSymbol = [&](StringRef SymName) { 5278 auto &Context = DAG.getMachineFunction().getMMI().getContext(); 5279 MCSectionXCOFF *Sec = Context.getXCOFFSection( 5280 (Twine(".") + Twine(SymName)).str(), SectionKind::getMetadata(), 5281 XCOFF::CsectProperties(XCOFF::XMC_PR, XCOFF::XTY_ER)); 5282 return Sec->getQualNameSymbol(); 5283 }; 5284 5285 SymName = getExternalFunctionEntryPointSymbol(SymName)->getName().data(); 5286 } 5287 return DAG.getTargetExternalSymbol(SymName, Callee.getValueType(), 5288 UsePlt ? PPCII::MO_PLT : 0); 5289 } 5290 5291 // No transformation needed. 5292 assert(Callee.getNode() && "What no callee?"); 5293 return Callee; 5294 } 5295 5296 static SDValue getOutputChainFromCallSeq(SDValue CallSeqStart) { 5297 assert(CallSeqStart.getOpcode() == ISD::CALLSEQ_START && 5298 "Expected a CALLSEQ_STARTSDNode."); 5299 5300 // The last operand is the chain, except when the node has glue. If the node 5301 // has glue, then the last operand is the glue, and the chain is the second 5302 // last operand. 5303 SDValue LastValue = CallSeqStart.getValue(CallSeqStart->getNumValues() - 1); 5304 if (LastValue.getValueType() != MVT::Glue) 5305 return LastValue; 5306 5307 return CallSeqStart.getValue(CallSeqStart->getNumValues() - 2); 5308 } 5309 5310 // Creates the node that moves a functions address into the count register 5311 // to prepare for an indirect call instruction. 5312 static void prepareIndirectCall(SelectionDAG &DAG, SDValue &Callee, 5313 SDValue &Glue, SDValue &Chain, 5314 const SDLoc &dl) { 5315 SDValue MTCTROps[] = {Chain, Callee, Glue}; 5316 EVT ReturnTypes[] = {MVT::Other, MVT::Glue}; 5317 Chain = DAG.getNode(PPCISD::MTCTR, dl, makeArrayRef(ReturnTypes, 2), 5318 makeArrayRef(MTCTROps, Glue.getNode() ? 3 : 2)); 5319 // The glue is the second value produced. 5320 Glue = Chain.getValue(1); 5321 } 5322 5323 static void prepareDescriptorIndirectCall(SelectionDAG &DAG, SDValue &Callee, 5324 SDValue &Glue, SDValue &Chain, 5325 SDValue CallSeqStart, 5326 const CallBase *CB, const SDLoc &dl, 5327 bool hasNest, 5328 const PPCSubtarget &Subtarget) { 5329 // Function pointers in the 64-bit SVR4 ABI do not point to the function 5330 // entry point, but to the function descriptor (the function entry point 5331 // address is part of the function descriptor though). 5332 // The function descriptor is a three doubleword structure with the 5333 // following fields: function entry point, TOC base address and 5334 // environment pointer. 5335 // Thus for a call through a function pointer, the following actions need 5336 // to be performed: 5337 // 1. Save the TOC of the caller in the TOC save area of its stack 5338 // frame (this is done in LowerCall_Darwin() or LowerCall_64SVR4()). 5339 // 2. Load the address of the function entry point from the function 5340 // descriptor. 5341 // 3. Load the TOC of the callee from the function descriptor into r2. 5342 // 4. Load the environment pointer from the function descriptor into 5343 // r11. 5344 // 5. Branch to the function entry point address. 5345 // 6. On return of the callee, the TOC of the caller needs to be 5346 // restored (this is done in FinishCall()). 5347 // 5348 // The loads are scheduled at the beginning of the call sequence, and the 5349 // register copies are flagged together to ensure that no other 5350 // operations can be scheduled in between. E.g. without flagging the 5351 // copies together, a TOC access in the caller could be scheduled between 5352 // the assignment of the callee TOC and the branch to the callee, which leads 5353 // to incorrect code. 5354 5355 // Start by loading the function address from the descriptor. 5356 SDValue LDChain = getOutputChainFromCallSeq(CallSeqStart); 5357 auto MMOFlags = Subtarget.hasInvariantFunctionDescriptors() 5358 ? (MachineMemOperand::MODereferenceable | 5359 MachineMemOperand::MOInvariant) 5360 : MachineMemOperand::MONone; 5361 5362 MachinePointerInfo MPI(CB ? CB->getCalledOperand() : nullptr); 5363 5364 // Registers used in building the DAG. 5365 const MCRegister EnvPtrReg = Subtarget.getEnvironmentPointerRegister(); 5366 const MCRegister TOCReg = Subtarget.getTOCPointerRegister(); 5367 5368 // Offsets of descriptor members. 5369 const unsigned TOCAnchorOffset = Subtarget.descriptorTOCAnchorOffset(); 5370 const unsigned EnvPtrOffset = Subtarget.descriptorEnvironmentPointerOffset(); 5371 5372 const MVT RegVT = Subtarget.isPPC64() ? MVT::i64 : MVT::i32; 5373 const unsigned Alignment = Subtarget.isPPC64() ? 8 : 4; 5374 5375 // One load for the functions entry point address. 5376 SDValue LoadFuncPtr = DAG.getLoad(RegVT, dl, LDChain, Callee, MPI, 5377 Alignment, MMOFlags); 5378 5379 // One for loading the TOC anchor for the module that contains the called 5380 // function. 5381 SDValue TOCOff = DAG.getIntPtrConstant(TOCAnchorOffset, dl); 5382 SDValue AddTOC = DAG.getNode(ISD::ADD, dl, RegVT, Callee, TOCOff); 5383 SDValue TOCPtr = 5384 DAG.getLoad(RegVT, dl, LDChain, AddTOC, 5385 MPI.getWithOffset(TOCAnchorOffset), Alignment, MMOFlags); 5386 5387 // One for loading the environment pointer. 5388 SDValue PtrOff = DAG.getIntPtrConstant(EnvPtrOffset, dl); 5389 SDValue AddPtr = DAG.getNode(ISD::ADD, dl, RegVT, Callee, PtrOff); 5390 SDValue LoadEnvPtr = 5391 DAG.getLoad(RegVT, dl, LDChain, AddPtr, 5392 MPI.getWithOffset(EnvPtrOffset), Alignment, MMOFlags); 5393 5394 5395 // Then copy the newly loaded TOC anchor to the TOC pointer. 5396 SDValue TOCVal = DAG.getCopyToReg(Chain, dl, TOCReg, TOCPtr, Glue); 5397 Chain = TOCVal.getValue(0); 5398 Glue = TOCVal.getValue(1); 5399 5400 // If the function call has an explicit 'nest' parameter, it takes the 5401 // place of the environment pointer. 5402 assert((!hasNest || !Subtarget.isAIXABI()) && 5403 "Nest parameter is not supported on AIX."); 5404 if (!hasNest) { 5405 SDValue EnvVal = DAG.getCopyToReg(Chain, dl, EnvPtrReg, LoadEnvPtr, Glue); 5406 Chain = EnvVal.getValue(0); 5407 Glue = EnvVal.getValue(1); 5408 } 5409 5410 // The rest of the indirect call sequence is the same as the non-descriptor 5411 // DAG. 5412 prepareIndirectCall(DAG, LoadFuncPtr, Glue, Chain, dl); 5413 } 5414 5415 static void 5416 buildCallOperands(SmallVectorImpl<SDValue> &Ops, 5417 PPCTargetLowering::CallFlags CFlags, const SDLoc &dl, 5418 SelectionDAG &DAG, 5419 SmallVector<std::pair<unsigned, SDValue>, 8> &RegsToPass, 5420 SDValue Glue, SDValue Chain, SDValue &Callee, int SPDiff, 5421 const PPCSubtarget &Subtarget) { 5422 const bool IsPPC64 = Subtarget.isPPC64(); 5423 // MVT for a general purpose register. 5424 const MVT RegVT = IsPPC64 ? MVT::i64 : MVT::i32; 5425 5426 // First operand is always the chain. 5427 Ops.push_back(Chain); 5428 5429 // If it's a direct call pass the callee as the second operand. 5430 if (!CFlags.IsIndirect) 5431 Ops.push_back(Callee); 5432 else { 5433 assert(!CFlags.IsPatchPoint && "Patch point calls are not indirect."); 5434 5435 // For the TOC based ABIs, we have saved the TOC pointer to the linkage area 5436 // on the stack (this would have been done in `LowerCall_64SVR4` or 5437 // `LowerCall_AIX`). The call instruction is a pseudo instruction that 5438 // represents both the indirect branch and a load that restores the TOC 5439 // pointer from the linkage area. The operand for the TOC restore is an add 5440 // of the TOC save offset to the stack pointer. This must be the second 5441 // operand: after the chain input but before any other variadic arguments. 5442 // For 64-bit ELFv2 ABI with PCRel, do not restore the TOC as it is not 5443 // saved or used. 5444 if (isTOCSaveRestoreRequired(Subtarget)) { 5445 const MCRegister StackPtrReg = Subtarget.getStackPointerRegister(); 5446 5447 SDValue StackPtr = DAG.getRegister(StackPtrReg, RegVT); 5448 unsigned TOCSaveOffset = Subtarget.getFrameLowering()->getTOCSaveOffset(); 5449 SDValue TOCOff = DAG.getIntPtrConstant(TOCSaveOffset, dl); 5450 SDValue AddTOC = DAG.getNode(ISD::ADD, dl, RegVT, StackPtr, TOCOff); 5451 Ops.push_back(AddTOC); 5452 } 5453 5454 // Add the register used for the environment pointer. 5455 if (Subtarget.usesFunctionDescriptors() && !CFlags.HasNest) 5456 Ops.push_back(DAG.getRegister(Subtarget.getEnvironmentPointerRegister(), 5457 RegVT)); 5458 5459 5460 // Add CTR register as callee so a bctr can be emitted later. 5461 if (CFlags.IsTailCall) 5462 Ops.push_back(DAG.getRegister(IsPPC64 ? PPC::CTR8 : PPC::CTR, RegVT)); 5463 } 5464 5465 // If this is a tail call add stack pointer delta. 5466 if (CFlags.IsTailCall) 5467 Ops.push_back(DAG.getConstant(SPDiff, dl, MVT::i32)); 5468 5469 // Add argument registers to the end of the list so that they are known live 5470 // into the call. 5471 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) 5472 Ops.push_back(DAG.getRegister(RegsToPass[i].first, 5473 RegsToPass[i].second.getValueType())); 5474 5475 // We cannot add R2/X2 as an operand here for PATCHPOINT, because there is 5476 // no way to mark dependencies as implicit here. 5477 // We will add the R2/X2 dependency in EmitInstrWithCustomInserter. 5478 if ((Subtarget.is64BitELFABI() || Subtarget.isAIXABI()) && 5479 !CFlags.IsPatchPoint && !Subtarget.isUsingPCRelativeCalls()) 5480 Ops.push_back(DAG.getRegister(Subtarget.getTOCPointerRegister(), RegVT)); 5481 5482 // Add implicit use of CR bit 6 for 32-bit SVR4 vararg calls 5483 if (CFlags.IsVarArg && Subtarget.is32BitELFABI()) 5484 Ops.push_back(DAG.getRegister(PPC::CR1EQ, MVT::i32)); 5485 5486 // Add a register mask operand representing the call-preserved registers. 5487 const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo(); 5488 const uint32_t *Mask = 5489 TRI->getCallPreservedMask(DAG.getMachineFunction(), CFlags.CallConv); 5490 assert(Mask && "Missing call preserved mask for calling convention"); 5491 Ops.push_back(DAG.getRegisterMask(Mask)); 5492 5493 // If the glue is valid, it is the last operand. 5494 if (Glue.getNode()) 5495 Ops.push_back(Glue); 5496 } 5497 5498 SDValue PPCTargetLowering::FinishCall( 5499 CallFlags CFlags, const SDLoc &dl, SelectionDAG &DAG, 5500 SmallVector<std::pair<unsigned, SDValue>, 8> &RegsToPass, SDValue Glue, 5501 SDValue Chain, SDValue CallSeqStart, SDValue &Callee, int SPDiff, 5502 unsigned NumBytes, const SmallVectorImpl<ISD::InputArg> &Ins, 5503 SmallVectorImpl<SDValue> &InVals, const CallBase *CB) const { 5504 5505 if ((Subtarget.is64BitELFABI() && !Subtarget.isUsingPCRelativeCalls()) || 5506 Subtarget.isAIXABI()) 5507 setUsesTOCBasePtr(DAG); 5508 5509 unsigned CallOpc = 5510 getCallOpcode(CFlags, DAG.getMachineFunction().getFunction(), Callee, 5511 Subtarget, DAG.getTarget()); 5512 5513 if (!CFlags.IsIndirect) 5514 Callee = transformCallee(Callee, DAG, dl, Subtarget); 5515 else if (Subtarget.usesFunctionDescriptors()) 5516 prepareDescriptorIndirectCall(DAG, Callee, Glue, Chain, CallSeqStart, CB, 5517 dl, CFlags.HasNest, Subtarget); 5518 else 5519 prepareIndirectCall(DAG, Callee, Glue, Chain, dl); 5520 5521 // Build the operand list for the call instruction. 5522 SmallVector<SDValue, 8> Ops; 5523 buildCallOperands(Ops, CFlags, dl, DAG, RegsToPass, Glue, Chain, Callee, 5524 SPDiff, Subtarget); 5525 5526 // Emit tail call. 5527 if (CFlags.IsTailCall) { 5528 // Indirect tail call when using PC Relative calls do not have the same 5529 // constraints. 5530 assert(((Callee.getOpcode() == ISD::Register && 5531 cast<RegisterSDNode>(Callee)->getReg() == PPC::CTR) || 5532 Callee.getOpcode() == ISD::TargetExternalSymbol || 5533 Callee.getOpcode() == ISD::TargetGlobalAddress || 5534 isa<ConstantSDNode>(Callee) || 5535 (CFlags.IsIndirect && Subtarget.isUsingPCRelativeCalls())) && 5536 "Expecting a global address, external symbol, absolute value, " 5537 "register or an indirect tail call when PC Relative calls are " 5538 "used."); 5539 // PC Relative calls also use TC_RETURN as the way to mark tail calls. 5540 assert(CallOpc == PPCISD::TC_RETURN && 5541 "Unexpected call opcode for a tail call."); 5542 DAG.getMachineFunction().getFrameInfo().setHasTailCall(); 5543 return DAG.getNode(CallOpc, dl, MVT::Other, Ops); 5544 } 5545 5546 std::array<EVT, 2> ReturnTypes = {{MVT::Other, MVT::Glue}}; 5547 Chain = DAG.getNode(CallOpc, dl, ReturnTypes, Ops); 5548 DAG.addNoMergeSiteInfo(Chain.getNode(), CFlags.NoMerge); 5549 Glue = Chain.getValue(1); 5550 5551 // When performing tail call optimization the callee pops its arguments off 5552 // the stack. Account for this here so these bytes can be pushed back on in 5553 // PPCFrameLowering::eliminateCallFramePseudoInstr. 5554 int BytesCalleePops = (CFlags.CallConv == CallingConv::Fast && 5555 getTargetMachine().Options.GuaranteedTailCallOpt) 5556 ? NumBytes 5557 : 0; 5558 5559 Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, dl, true), 5560 DAG.getIntPtrConstant(BytesCalleePops, dl, true), 5561 Glue, dl); 5562 Glue = Chain.getValue(1); 5563 5564 return LowerCallResult(Chain, Glue, CFlags.CallConv, CFlags.IsVarArg, Ins, dl, 5565 DAG, InVals); 5566 } 5567 5568 SDValue 5569 PPCTargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI, 5570 SmallVectorImpl<SDValue> &InVals) const { 5571 SelectionDAG &DAG = CLI.DAG; 5572 SDLoc &dl = CLI.DL; 5573 SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs; 5574 SmallVectorImpl<SDValue> &OutVals = CLI.OutVals; 5575 SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins; 5576 SDValue Chain = CLI.Chain; 5577 SDValue Callee = CLI.Callee; 5578 bool &isTailCall = CLI.IsTailCall; 5579 CallingConv::ID CallConv = CLI.CallConv; 5580 bool isVarArg = CLI.IsVarArg; 5581 bool isPatchPoint = CLI.IsPatchPoint; 5582 const CallBase *CB = CLI.CB; 5583 5584 if (isTailCall) { 5585 if (Subtarget.useLongCalls() && !(CB && CB->isMustTailCall())) 5586 isTailCall = false; 5587 else if (Subtarget.isSVR4ABI() && Subtarget.isPPC64()) 5588 isTailCall = IsEligibleForTailCallOptimization_64SVR4( 5589 Callee, CallConv, CB, isVarArg, Outs, Ins, DAG); 5590 else 5591 isTailCall = IsEligibleForTailCallOptimization(Callee, CallConv, isVarArg, 5592 Ins, DAG); 5593 if (isTailCall) { 5594 ++NumTailCalls; 5595 if (!getTargetMachine().Options.GuaranteedTailCallOpt) 5596 ++NumSiblingCalls; 5597 5598 // PC Relative calls no longer guarantee that the callee is a Global 5599 // Address Node. The callee could be an indirect tail call in which 5600 // case the SDValue for the callee could be a load (to load the address 5601 // of a function pointer) or it may be a register copy (to move the 5602 // address of the callee from a function parameter into a virtual 5603 // register). It may also be an ExternalSymbolSDNode (ex memcopy). 5604 assert((Subtarget.isUsingPCRelativeCalls() || 5605 isa<GlobalAddressSDNode>(Callee)) && 5606 "Callee should be an llvm::Function object."); 5607 5608 LLVM_DEBUG(dbgs() << "TCO caller: " << DAG.getMachineFunction().getName() 5609 << "\nTCO callee: "); 5610 LLVM_DEBUG(Callee.dump()); 5611 } 5612 } 5613 5614 if (!isTailCall && CB && CB->isMustTailCall()) 5615 report_fatal_error("failed to perform tail call elimination on a call " 5616 "site marked musttail"); 5617 5618 // When long calls (i.e. indirect calls) are always used, calls are always 5619 // made via function pointer. If we have a function name, first translate it 5620 // into a pointer. 5621 if (Subtarget.useLongCalls() && isa<GlobalAddressSDNode>(Callee) && 5622 !isTailCall) 5623 Callee = LowerGlobalAddress(Callee, DAG); 5624 5625 CallFlags CFlags( 5626 CallConv, isTailCall, isVarArg, isPatchPoint, 5627 isIndirectCall(Callee, DAG, Subtarget, isPatchPoint), 5628 // hasNest 5629 Subtarget.is64BitELFABI() && 5630 any_of(Outs, [](ISD::OutputArg Arg) { return Arg.Flags.isNest(); }), 5631 CLI.NoMerge); 5632 5633 if (Subtarget.isAIXABI()) 5634 return LowerCall_AIX(Chain, Callee, CFlags, Outs, OutVals, Ins, dl, DAG, 5635 InVals, CB); 5636 5637 assert(Subtarget.isSVR4ABI()); 5638 if (Subtarget.isPPC64()) 5639 return LowerCall_64SVR4(Chain, Callee, CFlags, Outs, OutVals, Ins, dl, DAG, 5640 InVals, CB); 5641 return LowerCall_32SVR4(Chain, Callee, CFlags, Outs, OutVals, Ins, dl, DAG, 5642 InVals, CB); 5643 } 5644 5645 SDValue PPCTargetLowering::LowerCall_32SVR4( 5646 SDValue Chain, SDValue Callee, CallFlags CFlags, 5647 const SmallVectorImpl<ISD::OutputArg> &Outs, 5648 const SmallVectorImpl<SDValue> &OutVals, 5649 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl, 5650 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals, 5651 const CallBase *CB) const { 5652 // See PPCTargetLowering::LowerFormalArguments_32SVR4() for a description 5653 // of the 32-bit SVR4 ABI stack frame layout. 5654 5655 const CallingConv::ID CallConv = CFlags.CallConv; 5656 const bool IsVarArg = CFlags.IsVarArg; 5657 const bool IsTailCall = CFlags.IsTailCall; 5658 5659 assert((CallConv == CallingConv::C || 5660 CallConv == CallingConv::Cold || 5661 CallConv == CallingConv::Fast) && "Unknown calling convention!"); 5662 5663 const Align PtrAlign(4); 5664 5665 MachineFunction &MF = DAG.getMachineFunction(); 5666 5667 // Mark this function as potentially containing a function that contains a 5668 // tail call. As a consequence the frame pointer will be used for dynamicalloc 5669 // and restoring the callers stack pointer in this functions epilog. This is 5670 // done because by tail calling the called function might overwrite the value 5671 // in this function's (MF) stack pointer stack slot 0(SP). 5672 if (getTargetMachine().Options.GuaranteedTailCallOpt && 5673 CallConv == CallingConv::Fast) 5674 MF.getInfo<PPCFunctionInfo>()->setHasFastCall(); 5675 5676 // Count how many bytes are to be pushed on the stack, including the linkage 5677 // area, parameter list area and the part of the local variable space which 5678 // contains copies of aggregates which are passed by value. 5679 5680 // Assign locations to all of the outgoing arguments. 5681 SmallVector<CCValAssign, 16> ArgLocs; 5682 PPCCCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext()); 5683 5684 // Reserve space for the linkage area on the stack. 5685 CCInfo.AllocateStack(Subtarget.getFrameLowering()->getLinkageSize(), 5686 PtrAlign); 5687 if (useSoftFloat()) 5688 CCInfo.PreAnalyzeCallOperands(Outs); 5689 5690 if (IsVarArg) { 5691 // Handle fixed and variable vector arguments differently. 5692 // Fixed vector arguments go into registers as long as registers are 5693 // available. Variable vector arguments always go into memory. 5694 unsigned NumArgs = Outs.size(); 5695 5696 for (unsigned i = 0; i != NumArgs; ++i) { 5697 MVT ArgVT = Outs[i].VT; 5698 ISD::ArgFlagsTy ArgFlags = Outs[i].Flags; 5699 bool Result; 5700 5701 if (Outs[i].IsFixed) { 5702 Result = CC_PPC32_SVR4(i, ArgVT, ArgVT, CCValAssign::Full, ArgFlags, 5703 CCInfo); 5704 } else { 5705 Result = CC_PPC32_SVR4_VarArg(i, ArgVT, ArgVT, CCValAssign::Full, 5706 ArgFlags, CCInfo); 5707 } 5708 5709 if (Result) { 5710 #ifndef NDEBUG 5711 errs() << "Call operand #" << i << " has unhandled type " 5712 << EVT(ArgVT).getEVTString() << "\n"; 5713 #endif 5714 llvm_unreachable(nullptr); 5715 } 5716 } 5717 } else { 5718 // All arguments are treated the same. 5719 CCInfo.AnalyzeCallOperands(Outs, CC_PPC32_SVR4); 5720 } 5721 CCInfo.clearWasPPCF128(); 5722 5723 // Assign locations to all of the outgoing aggregate by value arguments. 5724 SmallVector<CCValAssign, 16> ByValArgLocs; 5725 CCState CCByValInfo(CallConv, IsVarArg, MF, ByValArgLocs, *DAG.getContext()); 5726 5727 // Reserve stack space for the allocations in CCInfo. 5728 CCByValInfo.AllocateStack(CCInfo.getNextStackOffset(), PtrAlign); 5729 5730 CCByValInfo.AnalyzeCallOperands(Outs, CC_PPC32_SVR4_ByVal); 5731 5732 // Size of the linkage area, parameter list area and the part of the local 5733 // space variable where copies of aggregates which are passed by value are 5734 // stored. 5735 unsigned NumBytes = CCByValInfo.getNextStackOffset(); 5736 5737 // Calculate by how many bytes the stack has to be adjusted in case of tail 5738 // call optimization. 5739 int SPDiff = CalculateTailCallSPDiff(DAG, IsTailCall, NumBytes); 5740 5741 // Adjust the stack pointer for the new arguments... 5742 // These operations are automatically eliminated by the prolog/epilog pass 5743 Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, dl); 5744 SDValue CallSeqStart = Chain; 5745 5746 // Load the return address and frame pointer so it can be moved somewhere else 5747 // later. 5748 SDValue LROp, FPOp; 5749 Chain = EmitTailCallLoadFPAndRetAddr(DAG, SPDiff, Chain, LROp, FPOp, dl); 5750 5751 // Set up a copy of the stack pointer for use loading and storing any 5752 // arguments that may not fit in the registers available for argument 5753 // passing. 5754 SDValue StackPtr = DAG.getRegister(PPC::R1, MVT::i32); 5755 5756 SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass; 5757 SmallVector<TailCallArgumentInfo, 8> TailCallArguments; 5758 SmallVector<SDValue, 8> MemOpChains; 5759 5760 bool seenFloatArg = false; 5761 // Walk the register/memloc assignments, inserting copies/loads. 5762 // i - Tracks the index into the list of registers allocated for the call 5763 // RealArgIdx - Tracks the index into the list of actual function arguments 5764 // j - Tracks the index into the list of byval arguments 5765 for (unsigned i = 0, RealArgIdx = 0, j = 0, e = ArgLocs.size(); 5766 i != e; 5767 ++i, ++RealArgIdx) { 5768 CCValAssign &VA = ArgLocs[i]; 5769 SDValue Arg = OutVals[RealArgIdx]; 5770 ISD::ArgFlagsTy Flags = Outs[RealArgIdx].Flags; 5771 5772 if (Flags.isByVal()) { 5773 // Argument is an aggregate which is passed by value, thus we need to 5774 // create a copy of it in the local variable space of the current stack 5775 // frame (which is the stack frame of the caller) and pass the address of 5776 // this copy to the callee. 5777 assert((j < ByValArgLocs.size()) && "Index out of bounds!"); 5778 CCValAssign &ByValVA = ByValArgLocs[j++]; 5779 assert((VA.getValNo() == ByValVA.getValNo()) && "ValNo mismatch!"); 5780 5781 // Memory reserved in the local variable space of the callers stack frame. 5782 unsigned LocMemOffset = ByValVA.getLocMemOffset(); 5783 5784 SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset, dl); 5785 PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(MF.getDataLayout()), 5786 StackPtr, PtrOff); 5787 5788 // Create a copy of the argument in the local area of the current 5789 // stack frame. 5790 SDValue MemcpyCall = 5791 CreateCopyOfByValArgument(Arg, PtrOff, 5792 CallSeqStart.getNode()->getOperand(0), 5793 Flags, DAG, dl); 5794 5795 // This must go outside the CALLSEQ_START..END. 5796 SDValue NewCallSeqStart = DAG.getCALLSEQ_START(MemcpyCall, NumBytes, 0, 5797 SDLoc(MemcpyCall)); 5798 DAG.ReplaceAllUsesWith(CallSeqStart.getNode(), 5799 NewCallSeqStart.getNode()); 5800 Chain = CallSeqStart = NewCallSeqStart; 5801 5802 // Pass the address of the aggregate copy on the stack either in a 5803 // physical register or in the parameter list area of the current stack 5804 // frame to the callee. 5805 Arg = PtrOff; 5806 } 5807 5808 // When useCRBits() is true, there can be i1 arguments. 5809 // It is because getRegisterType(MVT::i1) => MVT::i1, 5810 // and for other integer types getRegisterType() => MVT::i32. 5811 // Extend i1 and ensure callee will get i32. 5812 if (Arg.getValueType() == MVT::i1) 5813 Arg = DAG.getNode(Flags.isSExt() ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND, 5814 dl, MVT::i32, Arg); 5815 5816 if (VA.isRegLoc()) { 5817 seenFloatArg |= VA.getLocVT().isFloatingPoint(); 5818 // Put argument in a physical register. 5819 if (Subtarget.hasSPE() && Arg.getValueType() == MVT::f64) { 5820 bool IsLE = Subtarget.isLittleEndian(); 5821 SDValue SVal = DAG.getNode(PPCISD::EXTRACT_SPE, dl, MVT::i32, Arg, 5822 DAG.getIntPtrConstant(IsLE ? 0 : 1, dl)); 5823 RegsToPass.push_back(std::make_pair(VA.getLocReg(), SVal.getValue(0))); 5824 SVal = DAG.getNode(PPCISD::EXTRACT_SPE, dl, MVT::i32, Arg, 5825 DAG.getIntPtrConstant(IsLE ? 1 : 0, dl)); 5826 RegsToPass.push_back(std::make_pair(ArgLocs[++i].getLocReg(), 5827 SVal.getValue(0))); 5828 } else 5829 RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg)); 5830 } else { 5831 // Put argument in the parameter list area of the current stack frame. 5832 assert(VA.isMemLoc()); 5833 unsigned LocMemOffset = VA.getLocMemOffset(); 5834 5835 if (!IsTailCall) { 5836 SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset, dl); 5837 PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(MF.getDataLayout()), 5838 StackPtr, PtrOff); 5839 5840 MemOpChains.push_back( 5841 DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo())); 5842 } else { 5843 // Calculate and remember argument location. 5844 CalculateTailCallArgDest(DAG, MF, false, Arg, SPDiff, LocMemOffset, 5845 TailCallArguments); 5846 } 5847 } 5848 } 5849 5850 if (!MemOpChains.empty()) 5851 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains); 5852 5853 // Build a sequence of copy-to-reg nodes chained together with token chain 5854 // and flag operands which copy the outgoing args into the appropriate regs. 5855 SDValue InFlag; 5856 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) { 5857 Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first, 5858 RegsToPass[i].second, InFlag); 5859 InFlag = Chain.getValue(1); 5860 } 5861 5862 // Set CR bit 6 to true if this is a vararg call with floating args passed in 5863 // registers. 5864 if (IsVarArg) { 5865 SDVTList VTs = DAG.getVTList(MVT::Other, MVT::Glue); 5866 SDValue Ops[] = { Chain, InFlag }; 5867 5868 Chain = DAG.getNode(seenFloatArg ? PPCISD::CR6SET : PPCISD::CR6UNSET, 5869 dl, VTs, makeArrayRef(Ops, InFlag.getNode() ? 2 : 1)); 5870 5871 InFlag = Chain.getValue(1); 5872 } 5873 5874 if (IsTailCall) 5875 PrepareTailCall(DAG, InFlag, Chain, dl, SPDiff, NumBytes, LROp, FPOp, 5876 TailCallArguments); 5877 5878 return FinishCall(CFlags, dl, DAG, RegsToPass, InFlag, Chain, CallSeqStart, 5879 Callee, SPDiff, NumBytes, Ins, InVals, CB); 5880 } 5881 5882 // Copy an argument into memory, being careful to do this outside the 5883 // call sequence for the call to which the argument belongs. 5884 SDValue PPCTargetLowering::createMemcpyOutsideCallSeq( 5885 SDValue Arg, SDValue PtrOff, SDValue CallSeqStart, ISD::ArgFlagsTy Flags, 5886 SelectionDAG &DAG, const SDLoc &dl) const { 5887 SDValue MemcpyCall = CreateCopyOfByValArgument(Arg, PtrOff, 5888 CallSeqStart.getNode()->getOperand(0), 5889 Flags, DAG, dl); 5890 // The MEMCPY must go outside the CALLSEQ_START..END. 5891 int64_t FrameSize = CallSeqStart.getConstantOperandVal(1); 5892 SDValue NewCallSeqStart = DAG.getCALLSEQ_START(MemcpyCall, FrameSize, 0, 5893 SDLoc(MemcpyCall)); 5894 DAG.ReplaceAllUsesWith(CallSeqStart.getNode(), 5895 NewCallSeqStart.getNode()); 5896 return NewCallSeqStart; 5897 } 5898 5899 SDValue PPCTargetLowering::LowerCall_64SVR4( 5900 SDValue Chain, SDValue Callee, CallFlags CFlags, 5901 const SmallVectorImpl<ISD::OutputArg> &Outs, 5902 const SmallVectorImpl<SDValue> &OutVals, 5903 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl, 5904 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals, 5905 const CallBase *CB) const { 5906 bool isELFv2ABI = Subtarget.isELFv2ABI(); 5907 bool isLittleEndian = Subtarget.isLittleEndian(); 5908 unsigned NumOps = Outs.size(); 5909 bool IsSibCall = false; 5910 bool IsFastCall = CFlags.CallConv == CallingConv::Fast; 5911 5912 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 5913 unsigned PtrByteSize = 8; 5914 5915 MachineFunction &MF = DAG.getMachineFunction(); 5916 5917 if (CFlags.IsTailCall && !getTargetMachine().Options.GuaranteedTailCallOpt) 5918 IsSibCall = true; 5919 5920 // Mark this function as potentially containing a function that contains a 5921 // tail call. As a consequence the frame pointer will be used for dynamicalloc 5922 // and restoring the callers stack pointer in this functions epilog. This is 5923 // done because by tail calling the called function might overwrite the value 5924 // in this function's (MF) stack pointer stack slot 0(SP). 5925 if (getTargetMachine().Options.GuaranteedTailCallOpt && IsFastCall) 5926 MF.getInfo<PPCFunctionInfo>()->setHasFastCall(); 5927 5928 assert(!(IsFastCall && CFlags.IsVarArg) && 5929 "fastcc not supported on varargs functions"); 5930 5931 // Count how many bytes are to be pushed on the stack, including the linkage 5932 // area, and parameter passing area. On ELFv1, the linkage area is 48 bytes 5933 // reserved space for [SP][CR][LR][2 x unused][TOC]; on ELFv2, the linkage 5934 // area is 32 bytes reserved space for [SP][CR][LR][TOC]. 5935 unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize(); 5936 unsigned NumBytes = LinkageSize; 5937 unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0; 5938 5939 static const MCPhysReg GPR[] = { 5940 PPC::X3, PPC::X4, PPC::X5, PPC::X6, 5941 PPC::X7, PPC::X8, PPC::X9, PPC::X10, 5942 }; 5943 static const MCPhysReg VR[] = { 5944 PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8, 5945 PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13 5946 }; 5947 5948 const unsigned NumGPRs = array_lengthof(GPR); 5949 const unsigned NumFPRs = useSoftFloat() ? 0 : 13; 5950 const unsigned NumVRs = array_lengthof(VR); 5951 5952 // On ELFv2, we can avoid allocating the parameter area if all the arguments 5953 // can be passed to the callee in registers. 5954 // For the fast calling convention, there is another check below. 5955 // Note: We should keep consistent with LowerFormalArguments_64SVR4() 5956 bool HasParameterArea = !isELFv2ABI || CFlags.IsVarArg || IsFastCall; 5957 if (!HasParameterArea) { 5958 unsigned ParamAreaSize = NumGPRs * PtrByteSize; 5959 unsigned AvailableFPRs = NumFPRs; 5960 unsigned AvailableVRs = NumVRs; 5961 unsigned NumBytesTmp = NumBytes; 5962 for (unsigned i = 0; i != NumOps; ++i) { 5963 if (Outs[i].Flags.isNest()) continue; 5964 if (CalculateStackSlotUsed(Outs[i].VT, Outs[i].ArgVT, Outs[i].Flags, 5965 PtrByteSize, LinkageSize, ParamAreaSize, 5966 NumBytesTmp, AvailableFPRs, AvailableVRs)) 5967 HasParameterArea = true; 5968 } 5969 } 5970 5971 // When using the fast calling convention, we don't provide backing for 5972 // arguments that will be in registers. 5973 unsigned NumGPRsUsed = 0, NumFPRsUsed = 0, NumVRsUsed = 0; 5974 5975 // Avoid allocating parameter area for fastcc functions if all the arguments 5976 // can be passed in the registers. 5977 if (IsFastCall) 5978 HasParameterArea = false; 5979 5980 // Add up all the space actually used. 5981 for (unsigned i = 0; i != NumOps; ++i) { 5982 ISD::ArgFlagsTy Flags = Outs[i].Flags; 5983 EVT ArgVT = Outs[i].VT; 5984 EVT OrigVT = Outs[i].ArgVT; 5985 5986 if (Flags.isNest()) 5987 continue; 5988 5989 if (IsFastCall) { 5990 if (Flags.isByVal()) { 5991 NumGPRsUsed += (Flags.getByValSize()+7)/8; 5992 if (NumGPRsUsed > NumGPRs) 5993 HasParameterArea = true; 5994 } else { 5995 switch (ArgVT.getSimpleVT().SimpleTy) { 5996 default: llvm_unreachable("Unexpected ValueType for argument!"); 5997 case MVT::i1: 5998 case MVT::i32: 5999 case MVT::i64: 6000 if (++NumGPRsUsed <= NumGPRs) 6001 continue; 6002 break; 6003 case MVT::v4i32: 6004 case MVT::v8i16: 6005 case MVT::v16i8: 6006 case MVT::v2f64: 6007 case MVT::v2i64: 6008 case MVT::v1i128: 6009 case MVT::f128: 6010 if (++NumVRsUsed <= NumVRs) 6011 continue; 6012 break; 6013 case MVT::v4f32: 6014 if (++NumVRsUsed <= NumVRs) 6015 continue; 6016 break; 6017 case MVT::f32: 6018 case MVT::f64: 6019 if (++NumFPRsUsed <= NumFPRs) 6020 continue; 6021 break; 6022 } 6023 HasParameterArea = true; 6024 } 6025 } 6026 6027 /* Respect alignment of argument on the stack. */ 6028 auto Alignement = 6029 CalculateStackSlotAlignment(ArgVT, OrigVT, Flags, PtrByteSize); 6030 NumBytes = alignTo(NumBytes, Alignement); 6031 6032 NumBytes += CalculateStackSlotSize(ArgVT, Flags, PtrByteSize); 6033 if (Flags.isInConsecutiveRegsLast()) 6034 NumBytes = ((NumBytes + PtrByteSize - 1)/PtrByteSize) * PtrByteSize; 6035 } 6036 6037 unsigned NumBytesActuallyUsed = NumBytes; 6038 6039 // In the old ELFv1 ABI, 6040 // the prolog code of the callee may store up to 8 GPR argument registers to 6041 // the stack, allowing va_start to index over them in memory if its varargs. 6042 // Because we cannot tell if this is needed on the caller side, we have to 6043 // conservatively assume that it is needed. As such, make sure we have at 6044 // least enough stack space for the caller to store the 8 GPRs. 6045 // In the ELFv2 ABI, we allocate the parameter area iff a callee 6046 // really requires memory operands, e.g. a vararg function. 6047 if (HasParameterArea) 6048 NumBytes = std::max(NumBytes, LinkageSize + 8 * PtrByteSize); 6049 else 6050 NumBytes = LinkageSize; 6051 6052 // Tail call needs the stack to be aligned. 6053 if (getTargetMachine().Options.GuaranteedTailCallOpt && IsFastCall) 6054 NumBytes = EnsureStackAlignment(Subtarget.getFrameLowering(), NumBytes); 6055 6056 int SPDiff = 0; 6057 6058 // Calculate by how many bytes the stack has to be adjusted in case of tail 6059 // call optimization. 6060 if (!IsSibCall) 6061 SPDiff = CalculateTailCallSPDiff(DAG, CFlags.IsTailCall, NumBytes); 6062 6063 // To protect arguments on the stack from being clobbered in a tail call, 6064 // force all the loads to happen before doing any other lowering. 6065 if (CFlags.IsTailCall) 6066 Chain = DAG.getStackArgumentTokenFactor(Chain); 6067 6068 // Adjust the stack pointer for the new arguments... 6069 // These operations are automatically eliminated by the prolog/epilog pass 6070 if (!IsSibCall) 6071 Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, dl); 6072 SDValue CallSeqStart = Chain; 6073 6074 // Load the return address and frame pointer so it can be move somewhere else 6075 // later. 6076 SDValue LROp, FPOp; 6077 Chain = EmitTailCallLoadFPAndRetAddr(DAG, SPDiff, Chain, LROp, FPOp, dl); 6078 6079 // Set up a copy of the stack pointer for use loading and storing any 6080 // arguments that may not fit in the registers available for argument 6081 // passing. 6082 SDValue StackPtr = DAG.getRegister(PPC::X1, MVT::i64); 6083 6084 // Figure out which arguments are going to go in registers, and which in 6085 // memory. Also, if this is a vararg function, floating point operations 6086 // must be stored to our stack, and loaded into integer regs as well, if 6087 // any integer regs are available for argument passing. 6088 unsigned ArgOffset = LinkageSize; 6089 6090 SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass; 6091 SmallVector<TailCallArgumentInfo, 8> TailCallArguments; 6092 6093 SmallVector<SDValue, 8> MemOpChains; 6094 for (unsigned i = 0; i != NumOps; ++i) { 6095 SDValue Arg = OutVals[i]; 6096 ISD::ArgFlagsTy Flags = Outs[i].Flags; 6097 EVT ArgVT = Outs[i].VT; 6098 EVT OrigVT = Outs[i].ArgVT; 6099 6100 // PtrOff will be used to store the current argument to the stack if a 6101 // register cannot be found for it. 6102 SDValue PtrOff; 6103 6104 // We re-align the argument offset for each argument, except when using the 6105 // fast calling convention, when we need to make sure we do that only when 6106 // we'll actually use a stack slot. 6107 auto ComputePtrOff = [&]() { 6108 /* Respect alignment of argument on the stack. */ 6109 auto Alignment = 6110 CalculateStackSlotAlignment(ArgVT, OrigVT, Flags, PtrByteSize); 6111 ArgOffset = alignTo(ArgOffset, Alignment); 6112 6113 PtrOff = DAG.getConstant(ArgOffset, dl, StackPtr.getValueType()); 6114 6115 PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff); 6116 }; 6117 6118 if (!IsFastCall) { 6119 ComputePtrOff(); 6120 6121 /* Compute GPR index associated with argument offset. */ 6122 GPR_idx = (ArgOffset - LinkageSize) / PtrByteSize; 6123 GPR_idx = std::min(GPR_idx, NumGPRs); 6124 } 6125 6126 // Promote integers to 64-bit values. 6127 if (Arg.getValueType() == MVT::i32 || Arg.getValueType() == MVT::i1) { 6128 // FIXME: Should this use ANY_EXTEND if neither sext nor zext? 6129 unsigned ExtOp = Flags.isSExt() ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND; 6130 Arg = DAG.getNode(ExtOp, dl, MVT::i64, Arg); 6131 } 6132 6133 // FIXME memcpy is used way more than necessary. Correctness first. 6134 // Note: "by value" is code for passing a structure by value, not 6135 // basic types. 6136 if (Flags.isByVal()) { 6137 // Note: Size includes alignment padding, so 6138 // struct x { short a; char b; } 6139 // will have Size = 4. With #pragma pack(1), it will have Size = 3. 6140 // These are the proper values we need for right-justifying the 6141 // aggregate in a parameter register. 6142 unsigned Size = Flags.getByValSize(); 6143 6144 // An empty aggregate parameter takes up no storage and no 6145 // registers. 6146 if (Size == 0) 6147 continue; 6148 6149 if (IsFastCall) 6150 ComputePtrOff(); 6151 6152 // All aggregates smaller than 8 bytes must be passed right-justified. 6153 if (Size==1 || Size==2 || Size==4) { 6154 EVT VT = (Size==1) ? MVT::i8 : ((Size==2) ? MVT::i16 : MVT::i32); 6155 if (GPR_idx != NumGPRs) { 6156 SDValue Load = DAG.getExtLoad(ISD::EXTLOAD, dl, PtrVT, Chain, Arg, 6157 MachinePointerInfo(), VT); 6158 MemOpChains.push_back(Load.getValue(1)); 6159 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); 6160 6161 ArgOffset += PtrByteSize; 6162 continue; 6163 } 6164 } 6165 6166 if (GPR_idx == NumGPRs && Size < 8) { 6167 SDValue AddPtr = PtrOff; 6168 if (!isLittleEndian) { 6169 SDValue Const = DAG.getConstant(PtrByteSize - Size, dl, 6170 PtrOff.getValueType()); 6171 AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, Const); 6172 } 6173 Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, AddPtr, 6174 CallSeqStart, 6175 Flags, DAG, dl); 6176 ArgOffset += PtrByteSize; 6177 continue; 6178 } 6179 // Copy entire object into memory. There are cases where gcc-generated 6180 // code assumes it is there, even if it could be put entirely into 6181 // registers. (This is not what the doc says.) 6182 6183 // FIXME: The above statement is likely due to a misunderstanding of the 6184 // documents. All arguments must be copied into the parameter area BY 6185 // THE CALLEE in the event that the callee takes the address of any 6186 // formal argument. That has not yet been implemented. However, it is 6187 // reasonable to use the stack area as a staging area for the register 6188 // load. 6189 6190 // Skip this for small aggregates, as we will use the same slot for a 6191 // right-justified copy, below. 6192 if (Size >= 8) 6193 Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, PtrOff, 6194 CallSeqStart, 6195 Flags, DAG, dl); 6196 6197 // When a register is available, pass a small aggregate right-justified. 6198 if (Size < 8 && GPR_idx != NumGPRs) { 6199 // The easiest way to get this right-justified in a register 6200 // is to copy the structure into the rightmost portion of a 6201 // local variable slot, then load the whole slot into the 6202 // register. 6203 // FIXME: The memcpy seems to produce pretty awful code for 6204 // small aggregates, particularly for packed ones. 6205 // FIXME: It would be preferable to use the slot in the 6206 // parameter save area instead of a new local variable. 6207 SDValue AddPtr = PtrOff; 6208 if (!isLittleEndian) { 6209 SDValue Const = DAG.getConstant(8 - Size, dl, PtrOff.getValueType()); 6210 AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, Const); 6211 } 6212 Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, AddPtr, 6213 CallSeqStart, 6214 Flags, DAG, dl); 6215 6216 // Load the slot into the register. 6217 SDValue Load = 6218 DAG.getLoad(PtrVT, dl, Chain, PtrOff, MachinePointerInfo()); 6219 MemOpChains.push_back(Load.getValue(1)); 6220 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); 6221 6222 // Done with this argument. 6223 ArgOffset += PtrByteSize; 6224 continue; 6225 } 6226 6227 // For aggregates larger than PtrByteSize, copy the pieces of the 6228 // object that fit into registers from the parameter save area. 6229 for (unsigned j=0; j<Size; j+=PtrByteSize) { 6230 SDValue Const = DAG.getConstant(j, dl, PtrOff.getValueType()); 6231 SDValue AddArg = DAG.getNode(ISD::ADD, dl, PtrVT, Arg, Const); 6232 if (GPR_idx != NumGPRs) { 6233 SDValue Load = 6234 DAG.getLoad(PtrVT, dl, Chain, AddArg, MachinePointerInfo()); 6235 MemOpChains.push_back(Load.getValue(1)); 6236 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); 6237 ArgOffset += PtrByteSize; 6238 } else { 6239 ArgOffset += ((Size - j + PtrByteSize-1)/PtrByteSize)*PtrByteSize; 6240 break; 6241 } 6242 } 6243 continue; 6244 } 6245 6246 switch (Arg.getSimpleValueType().SimpleTy) { 6247 default: llvm_unreachable("Unexpected ValueType for argument!"); 6248 case MVT::i1: 6249 case MVT::i32: 6250 case MVT::i64: 6251 if (Flags.isNest()) { 6252 // The 'nest' parameter, if any, is passed in R11. 6253 RegsToPass.push_back(std::make_pair(PPC::X11, Arg)); 6254 break; 6255 } 6256 6257 // These can be scalar arguments or elements of an integer array type 6258 // passed directly. Clang may use those instead of "byval" aggregate 6259 // types to avoid forcing arguments to memory unnecessarily. 6260 if (GPR_idx != NumGPRs) { 6261 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Arg)); 6262 } else { 6263 if (IsFastCall) 6264 ComputePtrOff(); 6265 6266 assert(HasParameterArea && 6267 "Parameter area must exist to pass an argument in memory."); 6268 LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset, 6269 true, CFlags.IsTailCall, false, MemOpChains, 6270 TailCallArguments, dl); 6271 if (IsFastCall) 6272 ArgOffset += PtrByteSize; 6273 } 6274 if (!IsFastCall) 6275 ArgOffset += PtrByteSize; 6276 break; 6277 case MVT::f32: 6278 case MVT::f64: { 6279 // These can be scalar arguments or elements of a float array type 6280 // passed directly. The latter are used to implement ELFv2 homogenous 6281 // float aggregates. 6282 6283 // Named arguments go into FPRs first, and once they overflow, the 6284 // remaining arguments go into GPRs and then the parameter save area. 6285 // Unnamed arguments for vararg functions always go to GPRs and 6286 // then the parameter save area. For now, put all arguments to vararg 6287 // routines always in both locations (FPR *and* GPR or stack slot). 6288 bool NeedGPROrStack = CFlags.IsVarArg || FPR_idx == NumFPRs; 6289 bool NeededLoad = false; 6290 6291 // First load the argument into the next available FPR. 6292 if (FPR_idx != NumFPRs) 6293 RegsToPass.push_back(std::make_pair(FPR[FPR_idx++], Arg)); 6294 6295 // Next, load the argument into GPR or stack slot if needed. 6296 if (!NeedGPROrStack) 6297 ; 6298 else if (GPR_idx != NumGPRs && !IsFastCall) { 6299 // FIXME: We may want to re-enable this for CallingConv::Fast on the P8 6300 // once we support fp <-> gpr moves. 6301 6302 // In the non-vararg case, this can only ever happen in the 6303 // presence of f32 array types, since otherwise we never run 6304 // out of FPRs before running out of GPRs. 6305 SDValue ArgVal; 6306 6307 // Double values are always passed in a single GPR. 6308 if (Arg.getValueType() != MVT::f32) { 6309 ArgVal = DAG.getNode(ISD::BITCAST, dl, MVT::i64, Arg); 6310 6311 // Non-array float values are extended and passed in a GPR. 6312 } else if (!Flags.isInConsecutiveRegs()) { 6313 ArgVal = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Arg); 6314 ArgVal = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i64, ArgVal); 6315 6316 // If we have an array of floats, we collect every odd element 6317 // together with its predecessor into one GPR. 6318 } else if (ArgOffset % PtrByteSize != 0) { 6319 SDValue Lo, Hi; 6320 Lo = DAG.getNode(ISD::BITCAST, dl, MVT::i32, OutVals[i - 1]); 6321 Hi = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Arg); 6322 if (!isLittleEndian) 6323 std::swap(Lo, Hi); 6324 ArgVal = DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Lo, Hi); 6325 6326 // The final element, if even, goes into the first half of a GPR. 6327 } else if (Flags.isInConsecutiveRegsLast()) { 6328 ArgVal = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Arg); 6329 ArgVal = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i64, ArgVal); 6330 if (!isLittleEndian) 6331 ArgVal = DAG.getNode(ISD::SHL, dl, MVT::i64, ArgVal, 6332 DAG.getConstant(32, dl, MVT::i32)); 6333 6334 // Non-final even elements are skipped; they will be handled 6335 // together the with subsequent argument on the next go-around. 6336 } else 6337 ArgVal = SDValue(); 6338 6339 if (ArgVal.getNode()) 6340 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], ArgVal)); 6341 } else { 6342 if (IsFastCall) 6343 ComputePtrOff(); 6344 6345 // Single-precision floating-point values are mapped to the 6346 // second (rightmost) word of the stack doubleword. 6347 if (Arg.getValueType() == MVT::f32 && 6348 !isLittleEndian && !Flags.isInConsecutiveRegs()) { 6349 SDValue ConstFour = DAG.getConstant(4, dl, PtrOff.getValueType()); 6350 PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, ConstFour); 6351 } 6352 6353 assert(HasParameterArea && 6354 "Parameter area must exist to pass an argument in memory."); 6355 LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset, 6356 true, CFlags.IsTailCall, false, MemOpChains, 6357 TailCallArguments, dl); 6358 6359 NeededLoad = true; 6360 } 6361 // When passing an array of floats, the array occupies consecutive 6362 // space in the argument area; only round up to the next doubleword 6363 // at the end of the array. Otherwise, each float takes 8 bytes. 6364 if (!IsFastCall || NeededLoad) { 6365 ArgOffset += (Arg.getValueType() == MVT::f32 && 6366 Flags.isInConsecutiveRegs()) ? 4 : 8; 6367 if (Flags.isInConsecutiveRegsLast()) 6368 ArgOffset = ((ArgOffset + PtrByteSize - 1)/PtrByteSize) * PtrByteSize; 6369 } 6370 break; 6371 } 6372 case MVT::v4f32: 6373 case MVT::v4i32: 6374 case MVT::v8i16: 6375 case MVT::v16i8: 6376 case MVT::v2f64: 6377 case MVT::v2i64: 6378 case MVT::v1i128: 6379 case MVT::f128: 6380 // These can be scalar arguments or elements of a vector array type 6381 // passed directly. The latter are used to implement ELFv2 homogenous 6382 // vector aggregates. 6383 6384 // For a varargs call, named arguments go into VRs or on the stack as 6385 // usual; unnamed arguments always go to the stack or the corresponding 6386 // GPRs when within range. For now, we always put the value in both 6387 // locations (or even all three). 6388 if (CFlags.IsVarArg) { 6389 assert(HasParameterArea && 6390 "Parameter area must exist if we have a varargs call."); 6391 // We could elide this store in the case where the object fits 6392 // entirely in R registers. Maybe later. 6393 SDValue Store = 6394 DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo()); 6395 MemOpChains.push_back(Store); 6396 if (VR_idx != NumVRs) { 6397 SDValue Load = 6398 DAG.getLoad(MVT::v4f32, dl, Store, PtrOff, MachinePointerInfo()); 6399 MemOpChains.push_back(Load.getValue(1)); 6400 RegsToPass.push_back(std::make_pair(VR[VR_idx++], Load)); 6401 } 6402 ArgOffset += 16; 6403 for (unsigned i=0; i<16; i+=PtrByteSize) { 6404 if (GPR_idx == NumGPRs) 6405 break; 6406 SDValue Ix = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, 6407 DAG.getConstant(i, dl, PtrVT)); 6408 SDValue Load = 6409 DAG.getLoad(PtrVT, dl, Store, Ix, MachinePointerInfo()); 6410 MemOpChains.push_back(Load.getValue(1)); 6411 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); 6412 } 6413 break; 6414 } 6415 6416 // Non-varargs Altivec params go into VRs or on the stack. 6417 if (VR_idx != NumVRs) { 6418 RegsToPass.push_back(std::make_pair(VR[VR_idx++], Arg)); 6419 } else { 6420 if (IsFastCall) 6421 ComputePtrOff(); 6422 6423 assert(HasParameterArea && 6424 "Parameter area must exist to pass an argument in memory."); 6425 LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset, 6426 true, CFlags.IsTailCall, true, MemOpChains, 6427 TailCallArguments, dl); 6428 if (IsFastCall) 6429 ArgOffset += 16; 6430 } 6431 6432 if (!IsFastCall) 6433 ArgOffset += 16; 6434 break; 6435 } 6436 } 6437 6438 assert((!HasParameterArea || NumBytesActuallyUsed == ArgOffset) && 6439 "mismatch in size of parameter area"); 6440 (void)NumBytesActuallyUsed; 6441 6442 if (!MemOpChains.empty()) 6443 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains); 6444 6445 // Check if this is an indirect call (MTCTR/BCTRL). 6446 // See prepareDescriptorIndirectCall and buildCallOperands for more 6447 // information about calls through function pointers in the 64-bit SVR4 ABI. 6448 if (CFlags.IsIndirect) { 6449 // For 64-bit ELFv2 ABI with PCRel, do not save the TOC of the 6450 // caller in the TOC save area. 6451 if (isTOCSaveRestoreRequired(Subtarget)) { 6452 assert(!CFlags.IsTailCall && "Indirect tails calls not supported"); 6453 // Load r2 into a virtual register and store it to the TOC save area. 6454 setUsesTOCBasePtr(DAG); 6455 SDValue Val = DAG.getCopyFromReg(Chain, dl, PPC::X2, MVT::i64); 6456 // TOC save area offset. 6457 unsigned TOCSaveOffset = Subtarget.getFrameLowering()->getTOCSaveOffset(); 6458 SDValue PtrOff = DAG.getIntPtrConstant(TOCSaveOffset, dl); 6459 SDValue AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff); 6460 Chain = DAG.getStore(Val.getValue(1), dl, Val, AddPtr, 6461 MachinePointerInfo::getStack( 6462 DAG.getMachineFunction(), TOCSaveOffset)); 6463 } 6464 // In the ELFv2 ABI, R12 must contain the address of an indirect callee. 6465 // This does not mean the MTCTR instruction must use R12; it's easier 6466 // to model this as an extra parameter, so do that. 6467 if (isELFv2ABI && !CFlags.IsPatchPoint) 6468 RegsToPass.push_back(std::make_pair((unsigned)PPC::X12, Callee)); 6469 } 6470 6471 // Build a sequence of copy-to-reg nodes chained together with token chain 6472 // and flag operands which copy the outgoing args into the appropriate regs. 6473 SDValue InFlag; 6474 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) { 6475 Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first, 6476 RegsToPass[i].second, InFlag); 6477 InFlag = Chain.getValue(1); 6478 } 6479 6480 if (CFlags.IsTailCall && !IsSibCall) 6481 PrepareTailCall(DAG, InFlag, Chain, dl, SPDiff, NumBytes, LROp, FPOp, 6482 TailCallArguments); 6483 6484 return FinishCall(CFlags, dl, DAG, RegsToPass, InFlag, Chain, CallSeqStart, 6485 Callee, SPDiff, NumBytes, Ins, InVals, CB); 6486 } 6487 6488 // Returns true when the shadow of a general purpose argument register 6489 // in the parameter save area is aligned to at least 'RequiredAlign'. 6490 static bool isGPRShadowAligned(MCPhysReg Reg, Align RequiredAlign) { 6491 assert(RequiredAlign.value() <= 16 && 6492 "Required alignment greater than stack alignment."); 6493 switch (Reg) { 6494 default: 6495 report_fatal_error("called on invalid register."); 6496 case PPC::R5: 6497 case PPC::R9: 6498 case PPC::X3: 6499 case PPC::X5: 6500 case PPC::X7: 6501 case PPC::X9: 6502 // These registers are 16 byte aligned which is the most strict aligment 6503 // we can support. 6504 return true; 6505 case PPC::R3: 6506 case PPC::R7: 6507 case PPC::X4: 6508 case PPC::X6: 6509 case PPC::X8: 6510 case PPC::X10: 6511 // The shadow of these registers in the PSA is 8 byte aligned. 6512 return RequiredAlign <= 8; 6513 case PPC::R4: 6514 case PPC::R6: 6515 case PPC::R8: 6516 case PPC::R10: 6517 return RequiredAlign <= 4; 6518 } 6519 } 6520 6521 static bool CC_AIX(unsigned ValNo, MVT ValVT, MVT LocVT, 6522 CCValAssign::LocInfo LocInfo, ISD::ArgFlagsTy ArgFlags, 6523 CCState &S) { 6524 AIXCCState &State = static_cast<AIXCCState &>(S); 6525 const PPCSubtarget &Subtarget = static_cast<const PPCSubtarget &>( 6526 State.getMachineFunction().getSubtarget()); 6527 const bool IsPPC64 = Subtarget.isPPC64(); 6528 const Align PtrAlign = IsPPC64 ? Align(8) : Align(4); 6529 const MVT RegVT = IsPPC64 ? MVT::i64 : MVT::i32; 6530 6531 if (ValVT == MVT::f128) 6532 report_fatal_error("f128 is unimplemented on AIX."); 6533 6534 if (ArgFlags.isNest()) 6535 report_fatal_error("Nest arguments are unimplemented."); 6536 6537 static const MCPhysReg GPR_32[] = {// 32-bit registers. 6538 PPC::R3, PPC::R4, PPC::R5, PPC::R6, 6539 PPC::R7, PPC::R8, PPC::R9, PPC::R10}; 6540 static const MCPhysReg GPR_64[] = {// 64-bit registers. 6541 PPC::X3, PPC::X4, PPC::X5, PPC::X6, 6542 PPC::X7, PPC::X8, PPC::X9, PPC::X10}; 6543 6544 static const MCPhysReg VR[] = {// Vector registers. 6545 PPC::V2, PPC::V3, PPC::V4, PPC::V5, 6546 PPC::V6, PPC::V7, PPC::V8, PPC::V9, 6547 PPC::V10, PPC::V11, PPC::V12, PPC::V13}; 6548 6549 if (ArgFlags.isByVal()) { 6550 if (ArgFlags.getNonZeroByValAlign() > PtrAlign) 6551 report_fatal_error("Pass-by-value arguments with alignment greater than " 6552 "register width are not supported."); 6553 6554 const unsigned ByValSize = ArgFlags.getByValSize(); 6555 6556 // An empty aggregate parameter takes up no storage and no registers, 6557 // but needs a MemLoc for a stack slot for the formal arguments side. 6558 if (ByValSize == 0) { 6559 State.addLoc(CCValAssign::getMem(ValNo, MVT::INVALID_SIMPLE_VALUE_TYPE, 6560 State.getNextStackOffset(), RegVT, 6561 LocInfo)); 6562 return false; 6563 } 6564 6565 const unsigned StackSize = alignTo(ByValSize, PtrAlign); 6566 unsigned Offset = State.AllocateStack(StackSize, PtrAlign); 6567 for (const unsigned E = Offset + StackSize; Offset < E; 6568 Offset += PtrAlign.value()) { 6569 if (unsigned Reg = State.AllocateReg(IsPPC64 ? GPR_64 : GPR_32)) 6570 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, RegVT, LocInfo)); 6571 else { 6572 State.addLoc(CCValAssign::getMem(ValNo, MVT::INVALID_SIMPLE_VALUE_TYPE, 6573 Offset, MVT::INVALID_SIMPLE_VALUE_TYPE, 6574 LocInfo)); 6575 break; 6576 } 6577 } 6578 return false; 6579 } 6580 6581 // Arguments always reserve parameter save area. 6582 switch (ValVT.SimpleTy) { 6583 default: 6584 report_fatal_error("Unhandled value type for argument."); 6585 case MVT::i64: 6586 // i64 arguments should have been split to i32 for PPC32. 6587 assert(IsPPC64 && "PPC32 should have split i64 values."); 6588 LLVM_FALLTHROUGH; 6589 case MVT::i1: 6590 case MVT::i32: { 6591 const unsigned Offset = State.AllocateStack(PtrAlign.value(), PtrAlign); 6592 // AIX integer arguments are always passed in register width. 6593 if (ValVT.getFixedSizeInBits() < RegVT.getFixedSizeInBits()) 6594 LocInfo = ArgFlags.isSExt() ? CCValAssign::LocInfo::SExt 6595 : CCValAssign::LocInfo::ZExt; 6596 if (unsigned Reg = State.AllocateReg(IsPPC64 ? GPR_64 : GPR_32)) 6597 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, RegVT, LocInfo)); 6598 else 6599 State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset, RegVT, LocInfo)); 6600 6601 return false; 6602 } 6603 case MVT::f32: 6604 case MVT::f64: { 6605 // Parameter save area (PSA) is reserved even if the float passes in fpr. 6606 const unsigned StoreSize = LocVT.getStoreSize(); 6607 // Floats are always 4-byte aligned in the PSA on AIX. 6608 // This includes f64 in 64-bit mode for ABI compatibility. 6609 const unsigned Offset = 6610 State.AllocateStack(IsPPC64 ? 8 : StoreSize, Align(4)); 6611 unsigned FReg = State.AllocateReg(FPR); 6612 if (FReg) 6613 State.addLoc(CCValAssign::getReg(ValNo, ValVT, FReg, LocVT, LocInfo)); 6614 6615 // Reserve and initialize GPRs or initialize the PSA as required. 6616 for (unsigned I = 0; I < StoreSize; I += PtrAlign.value()) { 6617 if (unsigned Reg = State.AllocateReg(IsPPC64 ? GPR_64 : GPR_32)) { 6618 assert(FReg && "An FPR should be available when a GPR is reserved."); 6619 if (State.isVarArg()) { 6620 // Successfully reserved GPRs are only initialized for vararg calls. 6621 // Custom handling is required for: 6622 // f64 in PPC32 needs to be split into 2 GPRs. 6623 // f32 in PPC64 needs to occupy only lower 32 bits of 64-bit GPR. 6624 State.addLoc( 6625 CCValAssign::getCustomReg(ValNo, ValVT, Reg, RegVT, LocInfo)); 6626 } 6627 } else { 6628 // If there are insufficient GPRs, the PSA needs to be initialized. 6629 // Initialization occurs even if an FPR was initialized for 6630 // compatibility with the AIX XL compiler. The full memory for the 6631 // argument will be initialized even if a prior word is saved in GPR. 6632 // A custom memLoc is used when the argument also passes in FPR so 6633 // that the callee handling can skip over it easily. 6634 State.addLoc( 6635 FReg ? CCValAssign::getCustomMem(ValNo, ValVT, Offset, LocVT, 6636 LocInfo) 6637 : CCValAssign::getMem(ValNo, ValVT, Offset, LocVT, LocInfo)); 6638 break; 6639 } 6640 } 6641 6642 return false; 6643 } 6644 case MVT::v4f32: 6645 case MVT::v4i32: 6646 case MVT::v8i16: 6647 case MVT::v16i8: 6648 case MVT::v2i64: 6649 case MVT::v2f64: 6650 case MVT::v1i128: { 6651 const unsigned VecSize = 16; 6652 const Align VecAlign(VecSize); 6653 6654 if (!State.isVarArg()) { 6655 // If there are vector registers remaining we don't consume any stack 6656 // space. 6657 if (unsigned VReg = State.AllocateReg(VR)) { 6658 State.addLoc(CCValAssign::getReg(ValNo, ValVT, VReg, LocVT, LocInfo)); 6659 return false; 6660 } 6661 // Vectors passed on the stack do not shadow GPRs or FPRs even though they 6662 // might be allocated in the portion of the PSA that is shadowed by the 6663 // GPRs. 6664 const unsigned Offset = State.AllocateStack(VecSize, VecAlign); 6665 State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset, LocVT, LocInfo)); 6666 return false; 6667 } 6668 6669 const unsigned PtrSize = IsPPC64 ? 8 : 4; 6670 ArrayRef<MCPhysReg> GPRs = IsPPC64 ? GPR_64 : GPR_32; 6671 6672 unsigned NextRegIndex = State.getFirstUnallocated(GPRs); 6673 // Burn any underaligned registers and their shadowed stack space until 6674 // we reach the required alignment. 6675 while (NextRegIndex != GPRs.size() && 6676 !isGPRShadowAligned(GPRs[NextRegIndex], VecAlign)) { 6677 // Shadow allocate register and its stack shadow. 6678 unsigned Reg = State.AllocateReg(GPRs); 6679 State.AllocateStack(PtrSize, PtrAlign); 6680 assert(Reg && "Allocating register unexpectedly failed."); 6681 (void)Reg; 6682 NextRegIndex = State.getFirstUnallocated(GPRs); 6683 } 6684 6685 // Vectors that are passed as fixed arguments are handled differently. 6686 // They are passed in VRs if any are available (unlike arguments passed 6687 // through ellipses) and shadow GPRs (unlike arguments to non-vaarg 6688 // functions) 6689 if (State.isFixed(ValNo)) { 6690 if (unsigned VReg = State.AllocateReg(VR)) { 6691 State.addLoc(CCValAssign::getReg(ValNo, ValVT, VReg, LocVT, LocInfo)); 6692 // Shadow allocate GPRs and stack space even though we pass in a VR. 6693 for (unsigned I = 0; I != VecSize; I += PtrSize) 6694 State.AllocateReg(GPRs); 6695 State.AllocateStack(VecSize, VecAlign); 6696 return false; 6697 } 6698 // No vector registers remain so pass on the stack. 6699 const unsigned Offset = State.AllocateStack(VecSize, VecAlign); 6700 State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset, LocVT, LocInfo)); 6701 return false; 6702 } 6703 6704 // If all GPRS are consumed then we pass the argument fully on the stack. 6705 if (NextRegIndex == GPRs.size()) { 6706 const unsigned Offset = State.AllocateStack(VecSize, VecAlign); 6707 State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset, LocVT, LocInfo)); 6708 return false; 6709 } 6710 6711 // Corner case for 32-bit codegen. We have 2 registers to pass the first 6712 // half of the argument, and then need to pass the remaining half on the 6713 // stack. 6714 if (GPRs[NextRegIndex] == PPC::R9) { 6715 const unsigned Offset = State.AllocateStack(VecSize, VecAlign); 6716 State.addLoc( 6717 CCValAssign::getCustomMem(ValNo, ValVT, Offset, LocVT, LocInfo)); 6718 6719 const unsigned FirstReg = State.AllocateReg(PPC::R9); 6720 const unsigned SecondReg = State.AllocateReg(PPC::R10); 6721 assert(FirstReg && SecondReg && 6722 "Allocating R9 or R10 unexpectedly failed."); 6723 State.addLoc( 6724 CCValAssign::getCustomReg(ValNo, ValVT, FirstReg, RegVT, LocInfo)); 6725 State.addLoc( 6726 CCValAssign::getCustomReg(ValNo, ValVT, SecondReg, RegVT, LocInfo)); 6727 return false; 6728 } 6729 6730 // We have enough GPRs to fully pass the vector argument, and we have 6731 // already consumed any underaligned registers. Start with the custom 6732 // MemLoc and then the custom RegLocs. 6733 const unsigned Offset = State.AllocateStack(VecSize, VecAlign); 6734 State.addLoc( 6735 CCValAssign::getCustomMem(ValNo, ValVT, Offset, LocVT, LocInfo)); 6736 for (unsigned I = 0; I != VecSize; I += PtrSize) { 6737 const unsigned Reg = State.AllocateReg(GPRs); 6738 assert(Reg && "Failed to allocated register for vararg vector argument"); 6739 State.addLoc( 6740 CCValAssign::getCustomReg(ValNo, ValVT, Reg, RegVT, LocInfo)); 6741 } 6742 return false; 6743 } 6744 } 6745 return true; 6746 } 6747 6748 // So far, this function is only used by LowerFormalArguments_AIX() 6749 static const TargetRegisterClass *getRegClassForSVT(MVT::SimpleValueType SVT, 6750 bool IsPPC64, 6751 bool HasP8Vector, 6752 bool HasVSX) { 6753 assert((IsPPC64 || SVT != MVT::i64) && 6754 "i64 should have been split for 32-bit codegen."); 6755 6756 switch (SVT) { 6757 default: 6758 report_fatal_error("Unexpected value type for formal argument"); 6759 case MVT::i1: 6760 case MVT::i32: 6761 case MVT::i64: 6762 return IsPPC64 ? &PPC::G8RCRegClass : &PPC::GPRCRegClass; 6763 case MVT::f32: 6764 return HasP8Vector ? &PPC::VSSRCRegClass : &PPC::F4RCRegClass; 6765 case MVT::f64: 6766 return HasVSX ? &PPC::VSFRCRegClass : &PPC::F8RCRegClass; 6767 case MVT::v4f32: 6768 case MVT::v4i32: 6769 case MVT::v8i16: 6770 case MVT::v16i8: 6771 case MVT::v2i64: 6772 case MVT::v2f64: 6773 case MVT::v1i128: 6774 return &PPC::VRRCRegClass; 6775 } 6776 } 6777 6778 static SDValue truncateScalarIntegerArg(ISD::ArgFlagsTy Flags, EVT ValVT, 6779 SelectionDAG &DAG, SDValue ArgValue, 6780 MVT LocVT, const SDLoc &dl) { 6781 assert(ValVT.isScalarInteger() && LocVT.isScalarInteger()); 6782 assert(ValVT.getFixedSizeInBits() < LocVT.getFixedSizeInBits()); 6783 6784 if (Flags.isSExt()) 6785 ArgValue = DAG.getNode(ISD::AssertSext, dl, LocVT, ArgValue, 6786 DAG.getValueType(ValVT)); 6787 else if (Flags.isZExt()) 6788 ArgValue = DAG.getNode(ISD::AssertZext, dl, LocVT, ArgValue, 6789 DAG.getValueType(ValVT)); 6790 6791 return DAG.getNode(ISD::TRUNCATE, dl, ValVT, ArgValue); 6792 } 6793 6794 static unsigned mapArgRegToOffsetAIX(unsigned Reg, const PPCFrameLowering *FL) { 6795 const unsigned LASize = FL->getLinkageSize(); 6796 6797 if (PPC::GPRCRegClass.contains(Reg)) { 6798 assert(Reg >= PPC::R3 && Reg <= PPC::R10 && 6799 "Reg must be a valid argument register!"); 6800 return LASize + 4 * (Reg - PPC::R3); 6801 } 6802 6803 if (PPC::G8RCRegClass.contains(Reg)) { 6804 assert(Reg >= PPC::X3 && Reg <= PPC::X10 && 6805 "Reg must be a valid argument register!"); 6806 return LASize + 8 * (Reg - PPC::X3); 6807 } 6808 6809 llvm_unreachable("Only general purpose registers expected."); 6810 } 6811 6812 // AIX ABI Stack Frame Layout: 6813 // 6814 // Low Memory +--------------------------------------------+ 6815 // SP +---> | Back chain | ---+ 6816 // | +--------------------------------------------+ | 6817 // | | Saved Condition Register | | 6818 // | +--------------------------------------------+ | 6819 // | | Saved Linkage Register | | 6820 // | +--------------------------------------------+ | Linkage Area 6821 // | | Reserved for compilers | | 6822 // | +--------------------------------------------+ | 6823 // | | Reserved for binders | | 6824 // | +--------------------------------------------+ | 6825 // | | Saved TOC pointer | ---+ 6826 // | +--------------------------------------------+ 6827 // | | Parameter save area | 6828 // | +--------------------------------------------+ 6829 // | | Alloca space | 6830 // | +--------------------------------------------+ 6831 // | | Local variable space | 6832 // | +--------------------------------------------+ 6833 // | | Float/int conversion temporary | 6834 // | +--------------------------------------------+ 6835 // | | Save area for AltiVec registers | 6836 // | +--------------------------------------------+ 6837 // | | AltiVec alignment padding | 6838 // | +--------------------------------------------+ 6839 // | | Save area for VRSAVE register | 6840 // | +--------------------------------------------+ 6841 // | | Save area for General Purpose registers | 6842 // | +--------------------------------------------+ 6843 // | | Save area for Floating Point registers | 6844 // | +--------------------------------------------+ 6845 // +---- | Back chain | 6846 // High Memory +--------------------------------------------+ 6847 // 6848 // Specifications: 6849 // AIX 7.2 Assembler Language Reference 6850 // Subroutine linkage convention 6851 6852 SDValue PPCTargetLowering::LowerFormalArguments_AIX( 6853 SDValue Chain, CallingConv::ID CallConv, bool isVarArg, 6854 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl, 6855 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { 6856 6857 assert((CallConv == CallingConv::C || CallConv == CallingConv::Cold || 6858 CallConv == CallingConv::Fast) && 6859 "Unexpected calling convention!"); 6860 6861 if (getTargetMachine().Options.GuaranteedTailCallOpt) 6862 report_fatal_error("Tail call support is unimplemented on AIX."); 6863 6864 if (useSoftFloat()) 6865 report_fatal_error("Soft float support is unimplemented on AIX."); 6866 6867 const PPCSubtarget &Subtarget = 6868 static_cast<const PPCSubtarget &>(DAG.getSubtarget()); 6869 6870 const bool IsPPC64 = Subtarget.isPPC64(); 6871 const unsigned PtrByteSize = IsPPC64 ? 8 : 4; 6872 6873 // Assign locations to all of the incoming arguments. 6874 SmallVector<CCValAssign, 16> ArgLocs; 6875 MachineFunction &MF = DAG.getMachineFunction(); 6876 MachineFrameInfo &MFI = MF.getFrameInfo(); 6877 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 6878 AIXCCState CCInfo(CallConv, isVarArg, MF, ArgLocs, *DAG.getContext()); 6879 6880 const EVT PtrVT = getPointerTy(MF.getDataLayout()); 6881 // Reserve space for the linkage area on the stack. 6882 const unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize(); 6883 CCInfo.AllocateStack(LinkageSize, Align(PtrByteSize)); 6884 CCInfo.AnalyzeFormalArguments(Ins, CC_AIX); 6885 6886 SmallVector<SDValue, 8> MemOps; 6887 6888 for (size_t I = 0, End = ArgLocs.size(); I != End; /* No increment here */) { 6889 CCValAssign &VA = ArgLocs[I++]; 6890 MVT LocVT = VA.getLocVT(); 6891 MVT ValVT = VA.getValVT(); 6892 ISD::ArgFlagsTy Flags = Ins[VA.getValNo()].Flags; 6893 // For compatibility with the AIX XL compiler, the float args in the 6894 // parameter save area are initialized even if the argument is available 6895 // in register. The caller is required to initialize both the register 6896 // and memory, however, the callee can choose to expect it in either. 6897 // The memloc is dismissed here because the argument is retrieved from 6898 // the register. 6899 if (VA.isMemLoc() && VA.needsCustom() && ValVT.isFloatingPoint()) 6900 continue; 6901 6902 auto HandleMemLoc = [&]() { 6903 const unsigned LocSize = LocVT.getStoreSize(); 6904 const unsigned ValSize = ValVT.getStoreSize(); 6905 assert((ValSize <= LocSize) && 6906 "Object size is larger than size of MemLoc"); 6907 int CurArgOffset = VA.getLocMemOffset(); 6908 // Objects are right-justified because AIX is big-endian. 6909 if (LocSize > ValSize) 6910 CurArgOffset += LocSize - ValSize; 6911 // Potential tail calls could cause overwriting of argument stack slots. 6912 const bool IsImmutable = 6913 !(getTargetMachine().Options.GuaranteedTailCallOpt && 6914 (CallConv == CallingConv::Fast)); 6915 int FI = MFI.CreateFixedObject(ValSize, CurArgOffset, IsImmutable); 6916 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 6917 SDValue ArgValue = 6918 DAG.getLoad(ValVT, dl, Chain, FIN, MachinePointerInfo()); 6919 InVals.push_back(ArgValue); 6920 }; 6921 6922 // Vector arguments to VaArg functions are passed both on the stack, and 6923 // in any available GPRs. Load the value from the stack and add the GPRs 6924 // as live ins. 6925 if (VA.isMemLoc() && VA.needsCustom()) { 6926 assert(ValVT.isVector() && "Unexpected Custom MemLoc type."); 6927 assert(isVarArg && "Only use custom memloc for vararg."); 6928 // ValNo of the custom MemLoc, so we can compare it to the ValNo of the 6929 // matching custom RegLocs. 6930 const unsigned OriginalValNo = VA.getValNo(); 6931 (void)OriginalValNo; 6932 6933 auto HandleCustomVecRegLoc = [&]() { 6934 assert(I != End && ArgLocs[I].isRegLoc() && ArgLocs[I].needsCustom() && 6935 "Missing custom RegLoc."); 6936 VA = ArgLocs[I++]; 6937 assert(VA.getValVT().isVector() && 6938 "Unexpected Val type for custom RegLoc."); 6939 assert(VA.getValNo() == OriginalValNo && 6940 "ValNo mismatch between custom MemLoc and RegLoc."); 6941 MVT::SimpleValueType SVT = VA.getLocVT().SimpleTy; 6942 MF.addLiveIn(VA.getLocReg(), 6943 getRegClassForSVT(SVT, IsPPC64, Subtarget.hasP8Vector(), 6944 Subtarget.hasVSX())); 6945 }; 6946 6947 HandleMemLoc(); 6948 // In 64-bit there will be exactly 2 custom RegLocs that follow, and in 6949 // in 32-bit there will be 2 custom RegLocs if we are passing in R9 and 6950 // R10. 6951 HandleCustomVecRegLoc(); 6952 HandleCustomVecRegLoc(); 6953 6954 // If we are targeting 32-bit, there might be 2 extra custom RegLocs if 6955 // we passed the vector in R5, R6, R7 and R8. 6956 if (I != End && ArgLocs[I].isRegLoc() && ArgLocs[I].needsCustom()) { 6957 assert(!IsPPC64 && 6958 "Only 2 custom RegLocs expected for 64-bit codegen."); 6959 HandleCustomVecRegLoc(); 6960 HandleCustomVecRegLoc(); 6961 } 6962 6963 continue; 6964 } 6965 6966 if (VA.isRegLoc()) { 6967 if (VA.getValVT().isScalarInteger()) 6968 FuncInfo->appendParameterType(PPCFunctionInfo::FixedType); 6969 else if (VA.getValVT().isFloatingPoint() && !VA.getValVT().isVector()) { 6970 switch (VA.getValVT().SimpleTy) { 6971 default: 6972 report_fatal_error("Unhandled value type for argument."); 6973 case MVT::f32: 6974 FuncInfo->appendParameterType(PPCFunctionInfo::ShortFloatingPoint); 6975 break; 6976 case MVT::f64: 6977 FuncInfo->appendParameterType(PPCFunctionInfo::LongFloatingPoint); 6978 break; 6979 } 6980 } else if (VA.getValVT().isVector()) { 6981 switch (VA.getValVT().SimpleTy) { 6982 default: 6983 report_fatal_error("Unhandled value type for argument."); 6984 case MVT::v16i8: 6985 FuncInfo->appendParameterType(PPCFunctionInfo::VectorChar); 6986 break; 6987 case MVT::v8i16: 6988 FuncInfo->appendParameterType(PPCFunctionInfo::VectorShort); 6989 break; 6990 case MVT::v4i32: 6991 case MVT::v2i64: 6992 case MVT::v1i128: 6993 FuncInfo->appendParameterType(PPCFunctionInfo::VectorInt); 6994 break; 6995 case MVT::v4f32: 6996 case MVT::v2f64: 6997 FuncInfo->appendParameterType(PPCFunctionInfo::VectorFloat); 6998 break; 6999 } 7000 } 7001 } 7002 7003 if (Flags.isByVal() && VA.isMemLoc()) { 7004 const unsigned Size = 7005 alignTo(Flags.getByValSize() ? Flags.getByValSize() : PtrByteSize, 7006 PtrByteSize); 7007 const int FI = MF.getFrameInfo().CreateFixedObject( 7008 Size, VA.getLocMemOffset(), /* IsImmutable */ false, 7009 /* IsAliased */ true); 7010 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 7011 InVals.push_back(FIN); 7012 7013 continue; 7014 } 7015 7016 if (Flags.isByVal()) { 7017 assert(VA.isRegLoc() && "MemLocs should already be handled."); 7018 7019 const MCPhysReg ArgReg = VA.getLocReg(); 7020 const PPCFrameLowering *FL = Subtarget.getFrameLowering(); 7021 7022 if (Flags.getNonZeroByValAlign() > PtrByteSize) 7023 report_fatal_error("Over aligned byvals not supported yet."); 7024 7025 const unsigned StackSize = alignTo(Flags.getByValSize(), PtrByteSize); 7026 const int FI = MF.getFrameInfo().CreateFixedObject( 7027 StackSize, mapArgRegToOffsetAIX(ArgReg, FL), /* IsImmutable */ false, 7028 /* IsAliased */ true); 7029 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 7030 InVals.push_back(FIN); 7031 7032 // Add live ins for all the RegLocs for the same ByVal. 7033 const TargetRegisterClass *RegClass = 7034 IsPPC64 ? &PPC::G8RCRegClass : &PPC::GPRCRegClass; 7035 7036 auto HandleRegLoc = [&, RegClass, LocVT](const MCPhysReg PhysReg, 7037 unsigned Offset) { 7038 const unsigned VReg = MF.addLiveIn(PhysReg, RegClass); 7039 // Since the callers side has left justified the aggregate in the 7040 // register, we can simply store the entire register into the stack 7041 // slot. 7042 SDValue CopyFrom = DAG.getCopyFromReg(Chain, dl, VReg, LocVT); 7043 // The store to the fixedstack object is needed becuase accessing a 7044 // field of the ByVal will use a gep and load. Ideally we will optimize 7045 // to extracting the value from the register directly, and elide the 7046 // stores when the arguments address is not taken, but that will need to 7047 // be future work. 7048 SDValue Store = DAG.getStore( 7049 CopyFrom.getValue(1), dl, CopyFrom, 7050 DAG.getObjectPtrOffset(dl, FIN, TypeSize::Fixed(Offset)), 7051 MachinePointerInfo::getFixedStack(MF, FI, Offset)); 7052 7053 MemOps.push_back(Store); 7054 }; 7055 7056 unsigned Offset = 0; 7057 HandleRegLoc(VA.getLocReg(), Offset); 7058 Offset += PtrByteSize; 7059 for (; Offset != StackSize && ArgLocs[I].isRegLoc(); 7060 Offset += PtrByteSize) { 7061 assert(ArgLocs[I].getValNo() == VA.getValNo() && 7062 "RegLocs should be for ByVal argument."); 7063 7064 const CCValAssign RL = ArgLocs[I++]; 7065 HandleRegLoc(RL.getLocReg(), Offset); 7066 FuncInfo->appendParameterType(PPCFunctionInfo::FixedType); 7067 } 7068 7069 if (Offset != StackSize) { 7070 assert(ArgLocs[I].getValNo() == VA.getValNo() && 7071 "Expected MemLoc for remaining bytes."); 7072 assert(ArgLocs[I].isMemLoc() && "Expected MemLoc for remaining bytes."); 7073 // Consume the MemLoc.The InVal has already been emitted, so nothing 7074 // more needs to be done. 7075 ++I; 7076 } 7077 7078 continue; 7079 } 7080 7081 if (VA.isRegLoc() && !VA.needsCustom()) { 7082 MVT::SimpleValueType SVT = ValVT.SimpleTy; 7083 Register VReg = 7084 MF.addLiveIn(VA.getLocReg(), 7085 getRegClassForSVT(SVT, IsPPC64, Subtarget.hasP8Vector(), 7086 Subtarget.hasVSX())); 7087 SDValue ArgValue = DAG.getCopyFromReg(Chain, dl, VReg, LocVT); 7088 if (ValVT.isScalarInteger() && 7089 (ValVT.getFixedSizeInBits() < LocVT.getFixedSizeInBits())) { 7090 ArgValue = 7091 truncateScalarIntegerArg(Flags, ValVT, DAG, ArgValue, LocVT, dl); 7092 } 7093 InVals.push_back(ArgValue); 7094 continue; 7095 } 7096 if (VA.isMemLoc()) { 7097 HandleMemLoc(); 7098 continue; 7099 } 7100 } 7101 7102 // On AIX a minimum of 8 words is saved to the parameter save area. 7103 const unsigned MinParameterSaveArea = 8 * PtrByteSize; 7104 // Area that is at least reserved in the caller of this function. 7105 unsigned CallerReservedArea = 7106 std::max(CCInfo.getNextStackOffset(), LinkageSize + MinParameterSaveArea); 7107 7108 // Set the size that is at least reserved in caller of this function. Tail 7109 // call optimized function's reserved stack space needs to be aligned so 7110 // that taking the difference between two stack areas will result in an 7111 // aligned stack. 7112 CallerReservedArea = 7113 EnsureStackAlignment(Subtarget.getFrameLowering(), CallerReservedArea); 7114 FuncInfo->setMinReservedArea(CallerReservedArea); 7115 7116 if (isVarArg) { 7117 FuncInfo->setVarArgsFrameIndex( 7118 MFI.CreateFixedObject(PtrByteSize, CCInfo.getNextStackOffset(), true)); 7119 SDValue FIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT); 7120 7121 static const MCPhysReg GPR_32[] = {PPC::R3, PPC::R4, PPC::R5, PPC::R6, 7122 PPC::R7, PPC::R8, PPC::R9, PPC::R10}; 7123 7124 static const MCPhysReg GPR_64[] = {PPC::X3, PPC::X4, PPC::X5, PPC::X6, 7125 PPC::X7, PPC::X8, PPC::X9, PPC::X10}; 7126 const unsigned NumGPArgRegs = array_lengthof(IsPPC64 ? GPR_64 : GPR_32); 7127 7128 // The fixed integer arguments of a variadic function are stored to the 7129 // VarArgsFrameIndex on the stack so that they may be loaded by 7130 // dereferencing the result of va_next. 7131 for (unsigned GPRIndex = 7132 (CCInfo.getNextStackOffset() - LinkageSize) / PtrByteSize; 7133 GPRIndex < NumGPArgRegs; ++GPRIndex) { 7134 7135 const unsigned VReg = 7136 IsPPC64 ? MF.addLiveIn(GPR_64[GPRIndex], &PPC::G8RCRegClass) 7137 : MF.addLiveIn(GPR_32[GPRIndex], &PPC::GPRCRegClass); 7138 7139 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT); 7140 SDValue Store = 7141 DAG.getStore(Val.getValue(1), dl, Val, FIN, MachinePointerInfo()); 7142 MemOps.push_back(Store); 7143 // Increment the address for the next argument to store. 7144 SDValue PtrOff = DAG.getConstant(PtrByteSize, dl, PtrVT); 7145 FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff); 7146 } 7147 } 7148 7149 if (!MemOps.empty()) 7150 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOps); 7151 7152 return Chain; 7153 } 7154 7155 SDValue PPCTargetLowering::LowerCall_AIX( 7156 SDValue Chain, SDValue Callee, CallFlags CFlags, 7157 const SmallVectorImpl<ISD::OutputArg> &Outs, 7158 const SmallVectorImpl<SDValue> &OutVals, 7159 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl, 7160 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals, 7161 const CallBase *CB) const { 7162 // See PPCTargetLowering::LowerFormalArguments_AIX() for a description of the 7163 // AIX ABI stack frame layout. 7164 7165 assert((CFlags.CallConv == CallingConv::C || 7166 CFlags.CallConv == CallingConv::Cold || 7167 CFlags.CallConv == CallingConv::Fast) && 7168 "Unexpected calling convention!"); 7169 7170 if (CFlags.IsPatchPoint) 7171 report_fatal_error("This call type is unimplemented on AIX."); 7172 7173 const PPCSubtarget& Subtarget = 7174 static_cast<const PPCSubtarget&>(DAG.getSubtarget()); 7175 7176 MachineFunction &MF = DAG.getMachineFunction(); 7177 SmallVector<CCValAssign, 16> ArgLocs; 7178 AIXCCState CCInfo(CFlags.CallConv, CFlags.IsVarArg, MF, ArgLocs, 7179 *DAG.getContext()); 7180 7181 // Reserve space for the linkage save area (LSA) on the stack. 7182 // In both PPC32 and PPC64 there are 6 reserved slots in the LSA: 7183 // [SP][CR][LR][2 x reserved][TOC]. 7184 // The LSA is 24 bytes (6x4) in PPC32 and 48 bytes (6x8) in PPC64. 7185 const unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize(); 7186 const bool IsPPC64 = Subtarget.isPPC64(); 7187 const EVT PtrVT = getPointerTy(DAG.getDataLayout()); 7188 const unsigned PtrByteSize = IsPPC64 ? 8 : 4; 7189 CCInfo.AllocateStack(LinkageSize, Align(PtrByteSize)); 7190 CCInfo.AnalyzeCallOperands(Outs, CC_AIX); 7191 7192 // The prolog code of the callee may store up to 8 GPR argument registers to 7193 // the stack, allowing va_start to index over them in memory if the callee 7194 // is variadic. 7195 // Because we cannot tell if this is needed on the caller side, we have to 7196 // conservatively assume that it is needed. As such, make sure we have at 7197 // least enough stack space for the caller to store the 8 GPRs. 7198 const unsigned MinParameterSaveAreaSize = 8 * PtrByteSize; 7199 const unsigned NumBytes = std::max(LinkageSize + MinParameterSaveAreaSize, 7200 CCInfo.getNextStackOffset()); 7201 7202 // Adjust the stack pointer for the new arguments... 7203 // These operations are automatically eliminated by the prolog/epilog pass. 7204 Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, dl); 7205 SDValue CallSeqStart = Chain; 7206 7207 SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass; 7208 SmallVector<SDValue, 8> MemOpChains; 7209 7210 // Set up a copy of the stack pointer for loading and storing any 7211 // arguments that may not fit in the registers available for argument 7212 // passing. 7213 const SDValue StackPtr = IsPPC64 ? DAG.getRegister(PPC::X1, MVT::i64) 7214 : DAG.getRegister(PPC::R1, MVT::i32); 7215 7216 for (unsigned I = 0, E = ArgLocs.size(); I != E;) { 7217 const unsigned ValNo = ArgLocs[I].getValNo(); 7218 SDValue Arg = OutVals[ValNo]; 7219 ISD::ArgFlagsTy Flags = Outs[ValNo].Flags; 7220 7221 if (Flags.isByVal()) { 7222 const unsigned ByValSize = Flags.getByValSize(); 7223 7224 // Nothing to do for zero-sized ByVals on the caller side. 7225 if (!ByValSize) { 7226 ++I; 7227 continue; 7228 } 7229 7230 auto GetLoad = [&](EVT VT, unsigned LoadOffset) { 7231 return DAG.getExtLoad( 7232 ISD::ZEXTLOAD, dl, PtrVT, Chain, 7233 (LoadOffset != 0) 7234 ? DAG.getObjectPtrOffset(dl, Arg, TypeSize::Fixed(LoadOffset)) 7235 : Arg, 7236 MachinePointerInfo(), VT); 7237 }; 7238 7239 unsigned LoadOffset = 0; 7240 7241 // Initialize registers, which are fully occupied by the by-val argument. 7242 while (LoadOffset + PtrByteSize <= ByValSize && ArgLocs[I].isRegLoc()) { 7243 SDValue Load = GetLoad(PtrVT, LoadOffset); 7244 MemOpChains.push_back(Load.getValue(1)); 7245 LoadOffset += PtrByteSize; 7246 const CCValAssign &ByValVA = ArgLocs[I++]; 7247 assert(ByValVA.getValNo() == ValNo && 7248 "Unexpected location for pass-by-value argument."); 7249 RegsToPass.push_back(std::make_pair(ByValVA.getLocReg(), Load)); 7250 } 7251 7252 if (LoadOffset == ByValSize) 7253 continue; 7254 7255 // There must be one more loc to handle the remainder. 7256 assert(ArgLocs[I].getValNo() == ValNo && 7257 "Expected additional location for by-value argument."); 7258 7259 if (ArgLocs[I].isMemLoc()) { 7260 assert(LoadOffset < ByValSize && "Unexpected memloc for by-val arg."); 7261 const CCValAssign &ByValVA = ArgLocs[I++]; 7262 ISD::ArgFlagsTy MemcpyFlags = Flags; 7263 // Only memcpy the bytes that don't pass in register. 7264 MemcpyFlags.setByValSize(ByValSize - LoadOffset); 7265 Chain = CallSeqStart = createMemcpyOutsideCallSeq( 7266 (LoadOffset != 0) 7267 ? DAG.getObjectPtrOffset(dl, Arg, TypeSize::Fixed(LoadOffset)) 7268 : Arg, 7269 DAG.getObjectPtrOffset(dl, StackPtr, 7270 TypeSize::Fixed(ByValVA.getLocMemOffset())), 7271 CallSeqStart, MemcpyFlags, DAG, dl); 7272 continue; 7273 } 7274 7275 // Initialize the final register residue. 7276 // Any residue that occupies the final by-val arg register must be 7277 // left-justified on AIX. Loads must be a power-of-2 size and cannot be 7278 // larger than the ByValSize. For example: a 7 byte by-val arg requires 4, 7279 // 2 and 1 byte loads. 7280 const unsigned ResidueBytes = ByValSize % PtrByteSize; 7281 assert(ResidueBytes != 0 && LoadOffset + PtrByteSize > ByValSize && 7282 "Unexpected register residue for by-value argument."); 7283 SDValue ResidueVal; 7284 for (unsigned Bytes = 0; Bytes != ResidueBytes;) { 7285 const unsigned N = PowerOf2Floor(ResidueBytes - Bytes); 7286 const MVT VT = 7287 N == 1 ? MVT::i8 7288 : ((N == 2) ? MVT::i16 : (N == 4 ? MVT::i32 : MVT::i64)); 7289 SDValue Load = GetLoad(VT, LoadOffset); 7290 MemOpChains.push_back(Load.getValue(1)); 7291 LoadOffset += N; 7292 Bytes += N; 7293 7294 // By-val arguments are passed left-justfied in register. 7295 // Every load here needs to be shifted, otherwise a full register load 7296 // should have been used. 7297 assert(PtrVT.getSimpleVT().getSizeInBits() > (Bytes * 8) && 7298 "Unexpected load emitted during handling of pass-by-value " 7299 "argument."); 7300 unsigned NumSHLBits = PtrVT.getSimpleVT().getSizeInBits() - (Bytes * 8); 7301 EVT ShiftAmountTy = 7302 getShiftAmountTy(Load->getValueType(0), DAG.getDataLayout()); 7303 SDValue SHLAmt = DAG.getConstant(NumSHLBits, dl, ShiftAmountTy); 7304 SDValue ShiftedLoad = 7305 DAG.getNode(ISD::SHL, dl, Load.getValueType(), Load, SHLAmt); 7306 ResidueVal = ResidueVal ? DAG.getNode(ISD::OR, dl, PtrVT, ResidueVal, 7307 ShiftedLoad) 7308 : ShiftedLoad; 7309 } 7310 7311 const CCValAssign &ByValVA = ArgLocs[I++]; 7312 RegsToPass.push_back(std::make_pair(ByValVA.getLocReg(), ResidueVal)); 7313 continue; 7314 } 7315 7316 CCValAssign &VA = ArgLocs[I++]; 7317 const MVT LocVT = VA.getLocVT(); 7318 const MVT ValVT = VA.getValVT(); 7319 7320 switch (VA.getLocInfo()) { 7321 default: 7322 report_fatal_error("Unexpected argument extension type."); 7323 case CCValAssign::Full: 7324 break; 7325 case CCValAssign::ZExt: 7326 Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, VA.getLocVT(), Arg); 7327 break; 7328 case CCValAssign::SExt: 7329 Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, VA.getLocVT(), Arg); 7330 break; 7331 } 7332 7333 if (VA.isRegLoc() && !VA.needsCustom()) { 7334 RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg)); 7335 continue; 7336 } 7337 7338 // Vector arguments passed to VarArg functions need custom handling when 7339 // they are passed (at least partially) in GPRs. 7340 if (VA.isMemLoc() && VA.needsCustom() && ValVT.isVector()) { 7341 assert(CFlags.IsVarArg && "Custom MemLocs only used for Vector args."); 7342 // Store value to its stack slot. 7343 SDValue PtrOff = 7344 DAG.getConstant(VA.getLocMemOffset(), dl, StackPtr.getValueType()); 7345 PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff); 7346 SDValue Store = 7347 DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo()); 7348 MemOpChains.push_back(Store); 7349 const unsigned OriginalValNo = VA.getValNo(); 7350 // Then load the GPRs from the stack 7351 unsigned LoadOffset = 0; 7352 auto HandleCustomVecRegLoc = [&]() { 7353 assert(I != E && "Unexpected end of CCvalAssigns."); 7354 assert(ArgLocs[I].isRegLoc() && ArgLocs[I].needsCustom() && 7355 "Expected custom RegLoc."); 7356 CCValAssign RegVA = ArgLocs[I++]; 7357 assert(RegVA.getValNo() == OriginalValNo && 7358 "Custom MemLoc ValNo and custom RegLoc ValNo must match."); 7359 SDValue Add = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, 7360 DAG.getConstant(LoadOffset, dl, PtrVT)); 7361 SDValue Load = DAG.getLoad(PtrVT, dl, Store, Add, MachinePointerInfo()); 7362 MemOpChains.push_back(Load.getValue(1)); 7363 RegsToPass.push_back(std::make_pair(RegVA.getLocReg(), Load)); 7364 LoadOffset += PtrByteSize; 7365 }; 7366 7367 // In 64-bit there will be exactly 2 custom RegLocs that follow, and in 7368 // in 32-bit there will be 2 custom RegLocs if we are passing in R9 and 7369 // R10. 7370 HandleCustomVecRegLoc(); 7371 HandleCustomVecRegLoc(); 7372 7373 if (I != E && ArgLocs[I].isRegLoc() && ArgLocs[I].needsCustom() && 7374 ArgLocs[I].getValNo() == OriginalValNo) { 7375 assert(!IsPPC64 && 7376 "Only 2 custom RegLocs expected for 64-bit codegen."); 7377 HandleCustomVecRegLoc(); 7378 HandleCustomVecRegLoc(); 7379 } 7380 7381 continue; 7382 } 7383 7384 if (VA.isMemLoc()) { 7385 SDValue PtrOff = 7386 DAG.getConstant(VA.getLocMemOffset(), dl, StackPtr.getValueType()); 7387 PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff); 7388 MemOpChains.push_back( 7389 DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo())); 7390 7391 continue; 7392 } 7393 7394 if (!ValVT.isFloatingPoint()) 7395 report_fatal_error( 7396 "Unexpected register handling for calling convention."); 7397 7398 // Custom handling is used for GPR initializations for vararg float 7399 // arguments. 7400 assert(VA.isRegLoc() && VA.needsCustom() && CFlags.IsVarArg && 7401 LocVT.isInteger() && 7402 "Custom register handling only expected for VarArg."); 7403 7404 SDValue ArgAsInt = 7405 DAG.getBitcast(MVT::getIntegerVT(ValVT.getSizeInBits()), Arg); 7406 7407 if (Arg.getValueType().getStoreSize() == LocVT.getStoreSize()) 7408 // f32 in 32-bit GPR 7409 // f64 in 64-bit GPR 7410 RegsToPass.push_back(std::make_pair(VA.getLocReg(), ArgAsInt)); 7411 else if (Arg.getValueType().getFixedSizeInBits() < 7412 LocVT.getFixedSizeInBits()) 7413 // f32 in 64-bit GPR. 7414 RegsToPass.push_back(std::make_pair( 7415 VA.getLocReg(), DAG.getZExtOrTrunc(ArgAsInt, dl, LocVT))); 7416 else { 7417 // f64 in two 32-bit GPRs 7418 // The 2 GPRs are marked custom and expected to be adjacent in ArgLocs. 7419 assert(Arg.getValueType() == MVT::f64 && CFlags.IsVarArg && !IsPPC64 && 7420 "Unexpected custom register for argument!"); 7421 CCValAssign &GPR1 = VA; 7422 SDValue MSWAsI64 = DAG.getNode(ISD::SRL, dl, MVT::i64, ArgAsInt, 7423 DAG.getConstant(32, dl, MVT::i8)); 7424 RegsToPass.push_back(std::make_pair( 7425 GPR1.getLocReg(), DAG.getZExtOrTrunc(MSWAsI64, dl, MVT::i32))); 7426 7427 if (I != E) { 7428 // If only 1 GPR was available, there will only be one custom GPR and 7429 // the argument will also pass in memory. 7430 CCValAssign &PeekArg = ArgLocs[I]; 7431 if (PeekArg.isRegLoc() && PeekArg.getValNo() == PeekArg.getValNo()) { 7432 assert(PeekArg.needsCustom() && "A second custom GPR is expected."); 7433 CCValAssign &GPR2 = ArgLocs[I++]; 7434 RegsToPass.push_back(std::make_pair( 7435 GPR2.getLocReg(), DAG.getZExtOrTrunc(ArgAsInt, dl, MVT::i32))); 7436 } 7437 } 7438 } 7439 } 7440 7441 if (!MemOpChains.empty()) 7442 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains); 7443 7444 // For indirect calls, we need to save the TOC base to the stack for 7445 // restoration after the call. 7446 if (CFlags.IsIndirect) { 7447 assert(!CFlags.IsTailCall && "Indirect tail-calls not supported."); 7448 const MCRegister TOCBaseReg = Subtarget.getTOCPointerRegister(); 7449 const MCRegister StackPtrReg = Subtarget.getStackPointerRegister(); 7450 const MVT PtrVT = Subtarget.isPPC64() ? MVT::i64 : MVT::i32; 7451 const unsigned TOCSaveOffset = 7452 Subtarget.getFrameLowering()->getTOCSaveOffset(); 7453 7454 setUsesTOCBasePtr(DAG); 7455 SDValue Val = DAG.getCopyFromReg(Chain, dl, TOCBaseReg, PtrVT); 7456 SDValue PtrOff = DAG.getIntPtrConstant(TOCSaveOffset, dl); 7457 SDValue StackPtr = DAG.getRegister(StackPtrReg, PtrVT); 7458 SDValue AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff); 7459 Chain = DAG.getStore( 7460 Val.getValue(1), dl, Val, AddPtr, 7461 MachinePointerInfo::getStack(DAG.getMachineFunction(), TOCSaveOffset)); 7462 } 7463 7464 // Build a sequence of copy-to-reg nodes chained together with token chain 7465 // and flag operands which copy the outgoing args into the appropriate regs. 7466 SDValue InFlag; 7467 for (auto Reg : RegsToPass) { 7468 Chain = DAG.getCopyToReg(Chain, dl, Reg.first, Reg.second, InFlag); 7469 InFlag = Chain.getValue(1); 7470 } 7471 7472 const int SPDiff = 0; 7473 return FinishCall(CFlags, dl, DAG, RegsToPass, InFlag, Chain, CallSeqStart, 7474 Callee, SPDiff, NumBytes, Ins, InVals, CB); 7475 } 7476 7477 bool 7478 PPCTargetLowering::CanLowerReturn(CallingConv::ID CallConv, 7479 MachineFunction &MF, bool isVarArg, 7480 const SmallVectorImpl<ISD::OutputArg> &Outs, 7481 LLVMContext &Context) const { 7482 SmallVector<CCValAssign, 16> RVLocs; 7483 CCState CCInfo(CallConv, isVarArg, MF, RVLocs, Context); 7484 return CCInfo.CheckReturn( 7485 Outs, (Subtarget.isSVR4ABI() && CallConv == CallingConv::Cold) 7486 ? RetCC_PPC_Cold 7487 : RetCC_PPC); 7488 } 7489 7490 SDValue 7491 PPCTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv, 7492 bool isVarArg, 7493 const SmallVectorImpl<ISD::OutputArg> &Outs, 7494 const SmallVectorImpl<SDValue> &OutVals, 7495 const SDLoc &dl, SelectionDAG &DAG) const { 7496 SmallVector<CCValAssign, 16> RVLocs; 7497 CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs, 7498 *DAG.getContext()); 7499 CCInfo.AnalyzeReturn(Outs, 7500 (Subtarget.isSVR4ABI() && CallConv == CallingConv::Cold) 7501 ? RetCC_PPC_Cold 7502 : RetCC_PPC); 7503 7504 SDValue Flag; 7505 SmallVector<SDValue, 4> RetOps(1, Chain); 7506 7507 // Copy the result values into the output registers. 7508 for (unsigned i = 0, RealResIdx = 0; i != RVLocs.size(); ++i, ++RealResIdx) { 7509 CCValAssign &VA = RVLocs[i]; 7510 assert(VA.isRegLoc() && "Can only return in registers!"); 7511 7512 SDValue Arg = OutVals[RealResIdx]; 7513 7514 switch (VA.getLocInfo()) { 7515 default: llvm_unreachable("Unknown loc info!"); 7516 case CCValAssign::Full: break; 7517 case CCValAssign::AExt: 7518 Arg = DAG.getNode(ISD::ANY_EXTEND, dl, VA.getLocVT(), Arg); 7519 break; 7520 case CCValAssign::ZExt: 7521 Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, VA.getLocVT(), Arg); 7522 break; 7523 case CCValAssign::SExt: 7524 Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, VA.getLocVT(), Arg); 7525 break; 7526 } 7527 if (Subtarget.hasSPE() && VA.getLocVT() == MVT::f64) { 7528 bool isLittleEndian = Subtarget.isLittleEndian(); 7529 // Legalize ret f64 -> ret 2 x i32. 7530 SDValue SVal = 7531 DAG.getNode(PPCISD::EXTRACT_SPE, dl, MVT::i32, Arg, 7532 DAG.getIntPtrConstant(isLittleEndian ? 0 : 1, dl)); 7533 Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), SVal, Flag); 7534 RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT())); 7535 SVal = DAG.getNode(PPCISD::EXTRACT_SPE, dl, MVT::i32, Arg, 7536 DAG.getIntPtrConstant(isLittleEndian ? 1 : 0, dl)); 7537 Flag = Chain.getValue(1); 7538 VA = RVLocs[++i]; // skip ahead to next loc 7539 Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), SVal, Flag); 7540 } else 7541 Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), Arg, Flag); 7542 Flag = Chain.getValue(1); 7543 RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT())); 7544 } 7545 7546 RetOps[0] = Chain; // Update chain. 7547 7548 // Add the flag if we have it. 7549 if (Flag.getNode()) 7550 RetOps.push_back(Flag); 7551 7552 return DAG.getNode(PPCISD::RET_FLAG, dl, MVT::Other, RetOps); 7553 } 7554 7555 SDValue 7556 PPCTargetLowering::LowerGET_DYNAMIC_AREA_OFFSET(SDValue Op, 7557 SelectionDAG &DAG) const { 7558 SDLoc dl(Op); 7559 7560 // Get the correct type for integers. 7561 EVT IntVT = Op.getValueType(); 7562 7563 // Get the inputs. 7564 SDValue Chain = Op.getOperand(0); 7565 SDValue FPSIdx = getFramePointerFrameIndex(DAG); 7566 // Build a DYNAREAOFFSET node. 7567 SDValue Ops[2] = {Chain, FPSIdx}; 7568 SDVTList VTs = DAG.getVTList(IntVT); 7569 return DAG.getNode(PPCISD::DYNAREAOFFSET, dl, VTs, Ops); 7570 } 7571 7572 SDValue PPCTargetLowering::LowerSTACKRESTORE(SDValue Op, 7573 SelectionDAG &DAG) const { 7574 // When we pop the dynamic allocation we need to restore the SP link. 7575 SDLoc dl(Op); 7576 7577 // Get the correct type for pointers. 7578 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 7579 7580 // Construct the stack pointer operand. 7581 bool isPPC64 = Subtarget.isPPC64(); 7582 unsigned SP = isPPC64 ? PPC::X1 : PPC::R1; 7583 SDValue StackPtr = DAG.getRegister(SP, PtrVT); 7584 7585 // Get the operands for the STACKRESTORE. 7586 SDValue Chain = Op.getOperand(0); 7587 SDValue SaveSP = Op.getOperand(1); 7588 7589 // Load the old link SP. 7590 SDValue LoadLinkSP = 7591 DAG.getLoad(PtrVT, dl, Chain, StackPtr, MachinePointerInfo()); 7592 7593 // Restore the stack pointer. 7594 Chain = DAG.getCopyToReg(LoadLinkSP.getValue(1), dl, SP, SaveSP); 7595 7596 // Store the old link SP. 7597 return DAG.getStore(Chain, dl, LoadLinkSP, StackPtr, MachinePointerInfo()); 7598 } 7599 7600 SDValue PPCTargetLowering::getReturnAddrFrameIndex(SelectionDAG &DAG) const { 7601 MachineFunction &MF = DAG.getMachineFunction(); 7602 bool isPPC64 = Subtarget.isPPC64(); 7603 EVT PtrVT = getPointerTy(MF.getDataLayout()); 7604 7605 // Get current frame pointer save index. The users of this index will be 7606 // primarily DYNALLOC instructions. 7607 PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>(); 7608 int RASI = FI->getReturnAddrSaveIndex(); 7609 7610 // If the frame pointer save index hasn't been defined yet. 7611 if (!RASI) { 7612 // Find out what the fix offset of the frame pointer save area. 7613 int LROffset = Subtarget.getFrameLowering()->getReturnSaveOffset(); 7614 // Allocate the frame index for frame pointer save area. 7615 RASI = MF.getFrameInfo().CreateFixedObject(isPPC64? 8 : 4, LROffset, false); 7616 // Save the result. 7617 FI->setReturnAddrSaveIndex(RASI); 7618 } 7619 return DAG.getFrameIndex(RASI, PtrVT); 7620 } 7621 7622 SDValue 7623 PPCTargetLowering::getFramePointerFrameIndex(SelectionDAG & DAG) const { 7624 MachineFunction &MF = DAG.getMachineFunction(); 7625 bool isPPC64 = Subtarget.isPPC64(); 7626 EVT PtrVT = getPointerTy(MF.getDataLayout()); 7627 7628 // Get current frame pointer save index. The users of this index will be 7629 // primarily DYNALLOC instructions. 7630 PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>(); 7631 int FPSI = FI->getFramePointerSaveIndex(); 7632 7633 // If the frame pointer save index hasn't been defined yet. 7634 if (!FPSI) { 7635 // Find out what the fix offset of the frame pointer save area. 7636 int FPOffset = Subtarget.getFrameLowering()->getFramePointerSaveOffset(); 7637 // Allocate the frame index for frame pointer save area. 7638 FPSI = MF.getFrameInfo().CreateFixedObject(isPPC64? 8 : 4, FPOffset, true); 7639 // Save the result. 7640 FI->setFramePointerSaveIndex(FPSI); 7641 } 7642 return DAG.getFrameIndex(FPSI, PtrVT); 7643 } 7644 7645 SDValue PPCTargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op, 7646 SelectionDAG &DAG) const { 7647 MachineFunction &MF = DAG.getMachineFunction(); 7648 // Get the inputs. 7649 SDValue Chain = Op.getOperand(0); 7650 SDValue Size = Op.getOperand(1); 7651 SDLoc dl(Op); 7652 7653 // Get the correct type for pointers. 7654 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 7655 // Negate the size. 7656 SDValue NegSize = DAG.getNode(ISD::SUB, dl, PtrVT, 7657 DAG.getConstant(0, dl, PtrVT), Size); 7658 // Construct a node for the frame pointer save index. 7659 SDValue FPSIdx = getFramePointerFrameIndex(DAG); 7660 SDValue Ops[3] = { Chain, NegSize, FPSIdx }; 7661 SDVTList VTs = DAG.getVTList(PtrVT, MVT::Other); 7662 if (hasInlineStackProbe(MF)) 7663 return DAG.getNode(PPCISD::PROBED_ALLOCA, dl, VTs, Ops); 7664 return DAG.getNode(PPCISD::DYNALLOC, dl, VTs, Ops); 7665 } 7666 7667 SDValue PPCTargetLowering::LowerEH_DWARF_CFA(SDValue Op, 7668 SelectionDAG &DAG) const { 7669 MachineFunction &MF = DAG.getMachineFunction(); 7670 7671 bool isPPC64 = Subtarget.isPPC64(); 7672 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 7673 7674 int FI = MF.getFrameInfo().CreateFixedObject(isPPC64 ? 8 : 4, 0, false); 7675 return DAG.getFrameIndex(FI, PtrVT); 7676 } 7677 7678 SDValue PPCTargetLowering::lowerEH_SJLJ_SETJMP(SDValue Op, 7679 SelectionDAG &DAG) const { 7680 SDLoc DL(Op); 7681 return DAG.getNode(PPCISD::EH_SJLJ_SETJMP, DL, 7682 DAG.getVTList(MVT::i32, MVT::Other), 7683 Op.getOperand(0), Op.getOperand(1)); 7684 } 7685 7686 SDValue PPCTargetLowering::lowerEH_SJLJ_LONGJMP(SDValue Op, 7687 SelectionDAG &DAG) const { 7688 SDLoc DL(Op); 7689 return DAG.getNode(PPCISD::EH_SJLJ_LONGJMP, DL, MVT::Other, 7690 Op.getOperand(0), Op.getOperand(1)); 7691 } 7692 7693 SDValue PPCTargetLowering::LowerLOAD(SDValue Op, SelectionDAG &DAG) const { 7694 if (Op.getValueType().isVector()) 7695 return LowerVectorLoad(Op, DAG); 7696 7697 assert(Op.getValueType() == MVT::i1 && 7698 "Custom lowering only for i1 loads"); 7699 7700 // First, load 8 bits into 32 bits, then truncate to 1 bit. 7701 7702 SDLoc dl(Op); 7703 LoadSDNode *LD = cast<LoadSDNode>(Op); 7704 7705 SDValue Chain = LD->getChain(); 7706 SDValue BasePtr = LD->getBasePtr(); 7707 MachineMemOperand *MMO = LD->getMemOperand(); 7708 7709 SDValue NewLD = 7710 DAG.getExtLoad(ISD::EXTLOAD, dl, getPointerTy(DAG.getDataLayout()), Chain, 7711 BasePtr, MVT::i8, MMO); 7712 SDValue Result = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, NewLD); 7713 7714 SDValue Ops[] = { Result, SDValue(NewLD.getNode(), 1) }; 7715 return DAG.getMergeValues(Ops, dl); 7716 } 7717 7718 SDValue PPCTargetLowering::LowerSTORE(SDValue Op, SelectionDAG &DAG) const { 7719 if (Op.getOperand(1).getValueType().isVector()) 7720 return LowerVectorStore(Op, DAG); 7721 7722 assert(Op.getOperand(1).getValueType() == MVT::i1 && 7723 "Custom lowering only for i1 stores"); 7724 7725 // First, zero extend to 32 bits, then use a truncating store to 8 bits. 7726 7727 SDLoc dl(Op); 7728 StoreSDNode *ST = cast<StoreSDNode>(Op); 7729 7730 SDValue Chain = ST->getChain(); 7731 SDValue BasePtr = ST->getBasePtr(); 7732 SDValue Value = ST->getValue(); 7733 MachineMemOperand *MMO = ST->getMemOperand(); 7734 7735 Value = DAG.getNode(ISD::ZERO_EXTEND, dl, getPointerTy(DAG.getDataLayout()), 7736 Value); 7737 return DAG.getTruncStore(Chain, dl, Value, BasePtr, MVT::i8, MMO); 7738 } 7739 7740 // FIXME: Remove this once the ANDI glue bug is fixed: 7741 SDValue PPCTargetLowering::LowerTRUNCATE(SDValue Op, SelectionDAG &DAG) const { 7742 assert(Op.getValueType() == MVT::i1 && 7743 "Custom lowering only for i1 results"); 7744 7745 SDLoc DL(Op); 7746 return DAG.getNode(PPCISD::ANDI_rec_1_GT_BIT, DL, MVT::i1, Op.getOperand(0)); 7747 } 7748 7749 SDValue PPCTargetLowering::LowerTRUNCATEVector(SDValue Op, 7750 SelectionDAG &DAG) const { 7751 7752 // Implements a vector truncate that fits in a vector register as a shuffle. 7753 // We want to legalize vector truncates down to where the source fits in 7754 // a vector register (and target is therefore smaller than vector register 7755 // size). At that point legalization will try to custom lower the sub-legal 7756 // result and get here - where we can contain the truncate as a single target 7757 // operation. 7758 7759 // For example a trunc <2 x i16> to <2 x i8> could be visualized as follows: 7760 // <MSB1|LSB1, MSB2|LSB2> to <LSB1, LSB2> 7761 // 7762 // We will implement it for big-endian ordering as this (where x denotes 7763 // undefined): 7764 // < MSB1|LSB1, MSB2|LSB2, uu, uu, uu, uu, uu, uu> to 7765 // < LSB1, LSB2, u, u, u, u, u, u, u, u, u, u, u, u, u, u> 7766 // 7767 // The same operation in little-endian ordering will be: 7768 // <uu, uu, uu, uu, uu, uu, LSB2|MSB2, LSB1|MSB1> to 7769 // <u, u, u, u, u, u, u, u, u, u, u, u, u, u, LSB2, LSB1> 7770 7771 EVT TrgVT = Op.getValueType(); 7772 assert(TrgVT.isVector() && "Vector type expected."); 7773 unsigned TrgNumElts = TrgVT.getVectorNumElements(); 7774 EVT EltVT = TrgVT.getVectorElementType(); 7775 if (!isOperationCustom(Op.getOpcode(), TrgVT) || 7776 TrgVT.getSizeInBits() > 128 || !isPowerOf2_32(TrgNumElts) || 7777 !isPowerOf2_32(EltVT.getSizeInBits())) 7778 return SDValue(); 7779 7780 SDValue N1 = Op.getOperand(0); 7781 EVT SrcVT = N1.getValueType(); 7782 unsigned SrcSize = SrcVT.getSizeInBits(); 7783 if (SrcSize > 256 || 7784 !isPowerOf2_32(SrcVT.getVectorNumElements()) || 7785 !isPowerOf2_32(SrcVT.getVectorElementType().getSizeInBits())) 7786 return SDValue(); 7787 if (SrcSize == 256 && SrcVT.getVectorNumElements() < 2) 7788 return SDValue(); 7789 7790 unsigned WideNumElts = 128 / EltVT.getSizeInBits(); 7791 EVT WideVT = EVT::getVectorVT(*DAG.getContext(), EltVT, WideNumElts); 7792 7793 SDLoc DL(Op); 7794 SDValue Op1, Op2; 7795 if (SrcSize == 256) { 7796 EVT VecIdxTy = getVectorIdxTy(DAG.getDataLayout()); 7797 EVT SplitVT = 7798 N1.getValueType().getHalfNumVectorElementsVT(*DAG.getContext()); 7799 unsigned SplitNumElts = SplitVT.getVectorNumElements(); 7800 Op1 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, SplitVT, N1, 7801 DAG.getConstant(0, DL, VecIdxTy)); 7802 Op2 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, SplitVT, N1, 7803 DAG.getConstant(SplitNumElts, DL, VecIdxTy)); 7804 } 7805 else { 7806 Op1 = SrcSize == 128 ? N1 : widenVec(DAG, N1, DL); 7807 Op2 = DAG.getUNDEF(WideVT); 7808 } 7809 7810 // First list the elements we want to keep. 7811 unsigned SizeMult = SrcSize / TrgVT.getSizeInBits(); 7812 SmallVector<int, 16> ShuffV; 7813 if (Subtarget.isLittleEndian()) 7814 for (unsigned i = 0; i < TrgNumElts; ++i) 7815 ShuffV.push_back(i * SizeMult); 7816 else 7817 for (unsigned i = 1; i <= TrgNumElts; ++i) 7818 ShuffV.push_back(i * SizeMult - 1); 7819 7820 // Populate the remaining elements with undefs. 7821 for (unsigned i = TrgNumElts; i < WideNumElts; ++i) 7822 // ShuffV.push_back(i + WideNumElts); 7823 ShuffV.push_back(WideNumElts + 1); 7824 7825 Op1 = DAG.getNode(ISD::BITCAST, DL, WideVT, Op1); 7826 Op2 = DAG.getNode(ISD::BITCAST, DL, WideVT, Op2); 7827 return DAG.getVectorShuffle(WideVT, DL, Op1, Op2, ShuffV); 7828 } 7829 7830 /// LowerSELECT_CC - Lower floating point select_cc's into fsel instruction when 7831 /// possible. 7832 SDValue PPCTargetLowering::LowerSELECT_CC(SDValue Op, SelectionDAG &DAG) const { 7833 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get(); 7834 EVT ResVT = Op.getValueType(); 7835 EVT CmpVT = Op.getOperand(0).getValueType(); 7836 SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1); 7837 SDValue TV = Op.getOperand(2), FV = Op.getOperand(3); 7838 SDLoc dl(Op); 7839 7840 // Without power9-vector, we don't have native instruction for f128 comparison. 7841 // Following transformation to libcall is needed for setcc: 7842 // select_cc lhs, rhs, tv, fv, cc -> select_cc (setcc cc, x, y), 0, tv, fv, NE 7843 if (!Subtarget.hasP9Vector() && CmpVT == MVT::f128) { 7844 SDValue Z = DAG.getSetCC( 7845 dl, getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), CmpVT), 7846 LHS, RHS, CC); 7847 SDValue Zero = DAG.getConstant(0, dl, Z.getValueType()); 7848 return DAG.getSelectCC(dl, Z, Zero, TV, FV, ISD::SETNE); 7849 } 7850 7851 // Not FP, or using SPE? Not a fsel. 7852 if (!CmpVT.isFloatingPoint() || !TV.getValueType().isFloatingPoint() || 7853 Subtarget.hasSPE()) 7854 return Op; 7855 7856 SDNodeFlags Flags = Op.getNode()->getFlags(); 7857 7858 // We have xsmaxcdp/xsmincdp which are OK to emit even in the 7859 // presence of infinities. 7860 if (Subtarget.hasP9Vector() && LHS == TV && RHS == FV) { 7861 switch (CC) { 7862 default: 7863 break; 7864 case ISD::SETOGT: 7865 case ISD::SETGT: 7866 return DAG.getNode(PPCISD::XSMAXCDP, dl, Op.getValueType(), LHS, RHS); 7867 case ISD::SETOLT: 7868 case ISD::SETLT: 7869 return DAG.getNode(PPCISD::XSMINCDP, dl, Op.getValueType(), LHS, RHS); 7870 } 7871 } 7872 7873 // We might be able to do better than this under some circumstances, but in 7874 // general, fsel-based lowering of select is a finite-math-only optimization. 7875 // For more information, see section F.3 of the 2.06 ISA specification. 7876 // With ISA 3.0 7877 if ((!DAG.getTarget().Options.NoInfsFPMath && !Flags.hasNoInfs()) || 7878 (!DAG.getTarget().Options.NoNaNsFPMath && !Flags.hasNoNaNs())) 7879 return Op; 7880 7881 // If the RHS of the comparison is a 0.0, we don't need to do the 7882 // subtraction at all. 7883 SDValue Sel1; 7884 if (isFloatingPointZero(RHS)) 7885 switch (CC) { 7886 default: break; // SETUO etc aren't handled by fsel. 7887 case ISD::SETNE: 7888 std::swap(TV, FV); 7889 LLVM_FALLTHROUGH; 7890 case ISD::SETEQ: 7891 if (LHS.getValueType() == MVT::f32) // Comparison is always 64-bits 7892 LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, LHS); 7893 Sel1 = DAG.getNode(PPCISD::FSEL, dl, ResVT, LHS, TV, FV); 7894 if (Sel1.getValueType() == MVT::f32) // Comparison is always 64-bits 7895 Sel1 = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Sel1); 7896 return DAG.getNode(PPCISD::FSEL, dl, ResVT, 7897 DAG.getNode(ISD::FNEG, dl, MVT::f64, LHS), Sel1, FV); 7898 case ISD::SETULT: 7899 case ISD::SETLT: 7900 std::swap(TV, FV); // fsel is natively setge, swap operands for setlt 7901 LLVM_FALLTHROUGH; 7902 case ISD::SETOGE: 7903 case ISD::SETGE: 7904 if (LHS.getValueType() == MVT::f32) // Comparison is always 64-bits 7905 LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, LHS); 7906 return DAG.getNode(PPCISD::FSEL, dl, ResVT, LHS, TV, FV); 7907 case ISD::SETUGT: 7908 case ISD::SETGT: 7909 std::swap(TV, FV); // fsel is natively setge, swap operands for setlt 7910 LLVM_FALLTHROUGH; 7911 case ISD::SETOLE: 7912 case ISD::SETLE: 7913 if (LHS.getValueType() == MVT::f32) // Comparison is always 64-bits 7914 LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, LHS); 7915 return DAG.getNode(PPCISD::FSEL, dl, ResVT, 7916 DAG.getNode(ISD::FNEG, dl, MVT::f64, LHS), TV, FV); 7917 } 7918 7919 SDValue Cmp; 7920 switch (CC) { 7921 default: break; // SETUO etc aren't handled by fsel. 7922 case ISD::SETNE: 7923 std::swap(TV, FV); 7924 LLVM_FALLTHROUGH; 7925 case ISD::SETEQ: 7926 Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, LHS, RHS, Flags); 7927 if (Cmp.getValueType() == MVT::f32) // Comparison is always 64-bits 7928 Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp); 7929 Sel1 = DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, TV, FV); 7930 if (Sel1.getValueType() == MVT::f32) // Comparison is always 64-bits 7931 Sel1 = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Sel1); 7932 return DAG.getNode(PPCISD::FSEL, dl, ResVT, 7933 DAG.getNode(ISD::FNEG, dl, MVT::f64, Cmp), Sel1, FV); 7934 case ISD::SETULT: 7935 case ISD::SETLT: 7936 Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, LHS, RHS, Flags); 7937 if (Cmp.getValueType() == MVT::f32) // Comparison is always 64-bits 7938 Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp); 7939 return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, FV, TV); 7940 case ISD::SETOGE: 7941 case ISD::SETGE: 7942 Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, LHS, RHS, Flags); 7943 if (Cmp.getValueType() == MVT::f32) // Comparison is always 64-bits 7944 Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp); 7945 return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, TV, FV); 7946 case ISD::SETUGT: 7947 case ISD::SETGT: 7948 Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, RHS, LHS, Flags); 7949 if (Cmp.getValueType() == MVT::f32) // Comparison is always 64-bits 7950 Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp); 7951 return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, FV, TV); 7952 case ISD::SETOLE: 7953 case ISD::SETLE: 7954 Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, RHS, LHS, Flags); 7955 if (Cmp.getValueType() == MVT::f32) // Comparison is always 64-bits 7956 Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp); 7957 return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, TV, FV); 7958 } 7959 return Op; 7960 } 7961 7962 static unsigned getPPCStrictOpcode(unsigned Opc) { 7963 switch (Opc) { 7964 default: 7965 llvm_unreachable("No strict version of this opcode!"); 7966 case PPCISD::FCTIDZ: 7967 return PPCISD::STRICT_FCTIDZ; 7968 case PPCISD::FCTIWZ: 7969 return PPCISD::STRICT_FCTIWZ; 7970 case PPCISD::FCTIDUZ: 7971 return PPCISD::STRICT_FCTIDUZ; 7972 case PPCISD::FCTIWUZ: 7973 return PPCISD::STRICT_FCTIWUZ; 7974 case PPCISD::FCFID: 7975 return PPCISD::STRICT_FCFID; 7976 case PPCISD::FCFIDU: 7977 return PPCISD::STRICT_FCFIDU; 7978 case PPCISD::FCFIDS: 7979 return PPCISD::STRICT_FCFIDS; 7980 case PPCISD::FCFIDUS: 7981 return PPCISD::STRICT_FCFIDUS; 7982 } 7983 } 7984 7985 static SDValue convertFPToInt(SDValue Op, SelectionDAG &DAG, 7986 const PPCSubtarget &Subtarget) { 7987 SDLoc dl(Op); 7988 bool IsStrict = Op->isStrictFPOpcode(); 7989 bool IsSigned = Op.getOpcode() == ISD::FP_TO_SINT || 7990 Op.getOpcode() == ISD::STRICT_FP_TO_SINT; 7991 7992 // TODO: Any other flags to propagate? 7993 SDNodeFlags Flags; 7994 Flags.setNoFPExcept(Op->getFlags().hasNoFPExcept()); 7995 7996 // For strict nodes, source is the second operand. 7997 SDValue Src = Op.getOperand(IsStrict ? 1 : 0); 7998 SDValue Chain = IsStrict ? Op.getOperand(0) : SDValue(); 7999 assert(Src.getValueType().isFloatingPoint()); 8000 if (Src.getValueType() == MVT::f32) { 8001 if (IsStrict) { 8002 Src = 8003 DAG.getNode(ISD::STRICT_FP_EXTEND, dl, 8004 DAG.getVTList(MVT::f64, MVT::Other), {Chain, Src}, Flags); 8005 Chain = Src.getValue(1); 8006 } else 8007 Src = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Src); 8008 } 8009 SDValue Conv; 8010 unsigned Opc = ISD::DELETED_NODE; 8011 switch (Op.getSimpleValueType().SimpleTy) { 8012 default: llvm_unreachable("Unhandled FP_TO_INT type in custom expander!"); 8013 case MVT::i32: 8014 Opc = IsSigned ? PPCISD::FCTIWZ 8015 : (Subtarget.hasFPCVT() ? PPCISD::FCTIWUZ : PPCISD::FCTIDZ); 8016 break; 8017 case MVT::i64: 8018 assert((IsSigned || Subtarget.hasFPCVT()) && 8019 "i64 FP_TO_UINT is supported only with FPCVT"); 8020 Opc = IsSigned ? PPCISD::FCTIDZ : PPCISD::FCTIDUZ; 8021 } 8022 if (IsStrict) { 8023 Opc = getPPCStrictOpcode(Opc); 8024 Conv = DAG.getNode(Opc, dl, DAG.getVTList(MVT::f64, MVT::Other), 8025 {Chain, Src}, Flags); 8026 } else { 8027 Conv = DAG.getNode(Opc, dl, MVT::f64, Src); 8028 } 8029 return Conv; 8030 } 8031 8032 void PPCTargetLowering::LowerFP_TO_INTForReuse(SDValue Op, ReuseLoadInfo &RLI, 8033 SelectionDAG &DAG, 8034 const SDLoc &dl) const { 8035 SDValue Tmp = convertFPToInt(Op, DAG, Subtarget); 8036 bool IsSigned = Op.getOpcode() == ISD::FP_TO_SINT || 8037 Op.getOpcode() == ISD::STRICT_FP_TO_SINT; 8038 bool IsStrict = Op->isStrictFPOpcode(); 8039 8040 // Convert the FP value to an int value through memory. 8041 bool i32Stack = Op.getValueType() == MVT::i32 && Subtarget.hasSTFIWX() && 8042 (IsSigned || Subtarget.hasFPCVT()); 8043 SDValue FIPtr = DAG.CreateStackTemporary(i32Stack ? MVT::i32 : MVT::f64); 8044 int FI = cast<FrameIndexSDNode>(FIPtr)->getIndex(); 8045 MachinePointerInfo MPI = 8046 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI); 8047 8048 // Emit a store to the stack slot. 8049 SDValue Chain = IsStrict ? Tmp.getValue(1) : DAG.getEntryNode(); 8050 Align Alignment(DAG.getEVTAlign(Tmp.getValueType())); 8051 if (i32Stack) { 8052 MachineFunction &MF = DAG.getMachineFunction(); 8053 Alignment = Align(4); 8054 MachineMemOperand *MMO = 8055 MF.getMachineMemOperand(MPI, MachineMemOperand::MOStore, 4, Alignment); 8056 SDValue Ops[] = { Chain, Tmp, FIPtr }; 8057 Chain = DAG.getMemIntrinsicNode(PPCISD::STFIWX, dl, 8058 DAG.getVTList(MVT::Other), Ops, MVT::i32, MMO); 8059 } else 8060 Chain = DAG.getStore(Chain, dl, Tmp, FIPtr, MPI, Alignment); 8061 8062 // Result is a load from the stack slot. If loading 4 bytes, make sure to 8063 // add in a bias on big endian. 8064 if (Op.getValueType() == MVT::i32 && !i32Stack) { 8065 FIPtr = DAG.getNode(ISD::ADD, dl, FIPtr.getValueType(), FIPtr, 8066 DAG.getConstant(4, dl, FIPtr.getValueType())); 8067 MPI = MPI.getWithOffset(Subtarget.isLittleEndian() ? 0 : 4); 8068 } 8069 8070 RLI.Chain = Chain; 8071 RLI.Ptr = FIPtr; 8072 RLI.MPI = MPI; 8073 RLI.Alignment = Alignment; 8074 } 8075 8076 /// Custom lowers floating point to integer conversions to use 8077 /// the direct move instructions available in ISA 2.07 to avoid the 8078 /// need for load/store combinations. 8079 SDValue PPCTargetLowering::LowerFP_TO_INTDirectMove(SDValue Op, 8080 SelectionDAG &DAG, 8081 const SDLoc &dl) const { 8082 SDValue Conv = convertFPToInt(Op, DAG, Subtarget); 8083 SDValue Mov = DAG.getNode(PPCISD::MFVSR, dl, Op.getValueType(), Conv); 8084 if (Op->isStrictFPOpcode()) 8085 return DAG.getMergeValues({Mov, Conv.getValue(1)}, dl); 8086 else 8087 return Mov; 8088 } 8089 8090 SDValue PPCTargetLowering::LowerFP_TO_INT(SDValue Op, SelectionDAG &DAG, 8091 const SDLoc &dl) const { 8092 bool IsStrict = Op->isStrictFPOpcode(); 8093 bool IsSigned = Op.getOpcode() == ISD::FP_TO_SINT || 8094 Op.getOpcode() == ISD::STRICT_FP_TO_SINT; 8095 SDValue Src = Op.getOperand(IsStrict ? 1 : 0); 8096 EVT SrcVT = Src.getValueType(); 8097 EVT DstVT = Op.getValueType(); 8098 8099 // FP to INT conversions are legal for f128. 8100 if (SrcVT == MVT::f128) 8101 return Subtarget.hasP9Vector() ? Op : SDValue(); 8102 8103 // Expand ppcf128 to i32 by hand for the benefit of llvm-gcc bootstrap on 8104 // PPC (the libcall is not available). 8105 if (SrcVT == MVT::ppcf128) { 8106 if (DstVT == MVT::i32) { 8107 // TODO: Conservatively pass only nofpexcept flag here. Need to check and 8108 // set other fast-math flags to FP operations in both strict and 8109 // non-strict cases. (FP_TO_SINT, FSUB) 8110 SDNodeFlags Flags; 8111 Flags.setNoFPExcept(Op->getFlags().hasNoFPExcept()); 8112 8113 if (IsSigned) { 8114 SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::f64, Src, 8115 DAG.getIntPtrConstant(0, dl)); 8116 SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::f64, Src, 8117 DAG.getIntPtrConstant(1, dl)); 8118 8119 // Add the two halves of the long double in round-to-zero mode, and use 8120 // a smaller FP_TO_SINT. 8121 if (IsStrict) { 8122 SDValue Res = DAG.getNode(PPCISD::STRICT_FADDRTZ, dl, 8123 DAG.getVTList(MVT::f64, MVT::Other), 8124 {Op.getOperand(0), Lo, Hi}, Flags); 8125 return DAG.getNode(ISD::STRICT_FP_TO_SINT, dl, 8126 DAG.getVTList(MVT::i32, MVT::Other), 8127 {Res.getValue(1), Res}, Flags); 8128 } else { 8129 SDValue Res = DAG.getNode(PPCISD::FADDRTZ, dl, MVT::f64, Lo, Hi); 8130 return DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, Res); 8131 } 8132 } else { 8133 const uint64_t TwoE31[] = {0x41e0000000000000LL, 0}; 8134 APFloat APF = APFloat(APFloat::PPCDoubleDouble(), APInt(128, TwoE31)); 8135 SDValue Cst = DAG.getConstantFP(APF, dl, SrcVT); 8136 SDValue SignMask = DAG.getConstant(0x80000000, dl, DstVT); 8137 if (IsStrict) { 8138 // Sel = Src < 0x80000000 8139 // FltOfs = select Sel, 0.0, 0x80000000 8140 // IntOfs = select Sel, 0, 0x80000000 8141 // Result = fp_to_sint(Src - FltOfs) ^ IntOfs 8142 SDValue Chain = Op.getOperand(0); 8143 EVT SetCCVT = 8144 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), SrcVT); 8145 EVT DstSetCCVT = 8146 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), DstVT); 8147 SDValue Sel = DAG.getSetCC(dl, SetCCVT, Src, Cst, ISD::SETLT, 8148 Chain, true); 8149 Chain = Sel.getValue(1); 8150 8151 SDValue FltOfs = DAG.getSelect( 8152 dl, SrcVT, Sel, DAG.getConstantFP(0.0, dl, SrcVT), Cst); 8153 Sel = DAG.getBoolExtOrTrunc(Sel, dl, DstSetCCVT, DstVT); 8154 8155 SDValue Val = DAG.getNode(ISD::STRICT_FSUB, dl, 8156 DAG.getVTList(SrcVT, MVT::Other), 8157 {Chain, Src, FltOfs}, Flags); 8158 Chain = Val.getValue(1); 8159 SDValue SInt = DAG.getNode(ISD::STRICT_FP_TO_SINT, dl, 8160 DAG.getVTList(DstVT, MVT::Other), 8161 {Chain, Val}, Flags); 8162 Chain = SInt.getValue(1); 8163 SDValue IntOfs = DAG.getSelect( 8164 dl, DstVT, Sel, DAG.getConstant(0, dl, DstVT), SignMask); 8165 SDValue Result = DAG.getNode(ISD::XOR, dl, DstVT, SInt, IntOfs); 8166 return DAG.getMergeValues({Result, Chain}, dl); 8167 } else { 8168 // X>=2^31 ? (int)(X-2^31)+0x80000000 : (int)X 8169 // FIXME: generated code sucks. 8170 SDValue True = DAG.getNode(ISD::FSUB, dl, MVT::ppcf128, Src, Cst); 8171 True = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, True); 8172 True = DAG.getNode(ISD::ADD, dl, MVT::i32, True, SignMask); 8173 SDValue False = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, Src); 8174 return DAG.getSelectCC(dl, Src, Cst, True, False, ISD::SETGE); 8175 } 8176 } 8177 } 8178 8179 return SDValue(); 8180 } 8181 8182 if (Subtarget.hasDirectMove() && Subtarget.isPPC64()) 8183 return LowerFP_TO_INTDirectMove(Op, DAG, dl); 8184 8185 ReuseLoadInfo RLI; 8186 LowerFP_TO_INTForReuse(Op, RLI, DAG, dl); 8187 8188 return DAG.getLoad(Op.getValueType(), dl, RLI.Chain, RLI.Ptr, RLI.MPI, 8189 RLI.Alignment, RLI.MMOFlags(), RLI.AAInfo, RLI.Ranges); 8190 } 8191 8192 // We're trying to insert a regular store, S, and then a load, L. If the 8193 // incoming value, O, is a load, we might just be able to have our load use the 8194 // address used by O. However, we don't know if anything else will store to 8195 // that address before we can load from it. To prevent this situation, we need 8196 // to insert our load, L, into the chain as a peer of O. To do this, we give L 8197 // the same chain operand as O, we create a token factor from the chain results 8198 // of O and L, and we replace all uses of O's chain result with that token 8199 // factor (see spliceIntoChain below for this last part). 8200 bool PPCTargetLowering::canReuseLoadAddress(SDValue Op, EVT MemVT, 8201 ReuseLoadInfo &RLI, 8202 SelectionDAG &DAG, 8203 ISD::LoadExtType ET) const { 8204 // Conservatively skip reusing for constrained FP nodes. 8205 if (Op->isStrictFPOpcode()) 8206 return false; 8207 8208 SDLoc dl(Op); 8209 bool ValidFPToUint = Op.getOpcode() == ISD::FP_TO_UINT && 8210 (Subtarget.hasFPCVT() || Op.getValueType() == MVT::i32); 8211 if (ET == ISD::NON_EXTLOAD && 8212 (ValidFPToUint || Op.getOpcode() == ISD::FP_TO_SINT) && 8213 isOperationLegalOrCustom(Op.getOpcode(), 8214 Op.getOperand(0).getValueType())) { 8215 8216 LowerFP_TO_INTForReuse(Op, RLI, DAG, dl); 8217 return true; 8218 } 8219 8220 LoadSDNode *LD = dyn_cast<LoadSDNode>(Op); 8221 if (!LD || LD->getExtensionType() != ET || LD->isVolatile() || 8222 LD->isNonTemporal()) 8223 return false; 8224 if (LD->getMemoryVT() != MemVT) 8225 return false; 8226 8227 // If the result of the load is an illegal type, then we can't build a 8228 // valid chain for reuse since the legalised loads and token factor node that 8229 // ties the legalised loads together uses a different output chain then the 8230 // illegal load. 8231 if (!isTypeLegal(LD->getValueType(0))) 8232 return false; 8233 8234 RLI.Ptr = LD->getBasePtr(); 8235 if (LD->isIndexed() && !LD->getOffset().isUndef()) { 8236 assert(LD->getAddressingMode() == ISD::PRE_INC && 8237 "Non-pre-inc AM on PPC?"); 8238 RLI.Ptr = DAG.getNode(ISD::ADD, dl, RLI.Ptr.getValueType(), RLI.Ptr, 8239 LD->getOffset()); 8240 } 8241 8242 RLI.Chain = LD->getChain(); 8243 RLI.MPI = LD->getPointerInfo(); 8244 RLI.IsDereferenceable = LD->isDereferenceable(); 8245 RLI.IsInvariant = LD->isInvariant(); 8246 RLI.Alignment = LD->getAlign(); 8247 RLI.AAInfo = LD->getAAInfo(); 8248 RLI.Ranges = LD->getRanges(); 8249 8250 RLI.ResChain = SDValue(LD, LD->isIndexed() ? 2 : 1); 8251 return true; 8252 } 8253 8254 // Given the head of the old chain, ResChain, insert a token factor containing 8255 // it and NewResChain, and make users of ResChain now be users of that token 8256 // factor. 8257 // TODO: Remove and use DAG::makeEquivalentMemoryOrdering() instead. 8258 void PPCTargetLowering::spliceIntoChain(SDValue ResChain, 8259 SDValue NewResChain, 8260 SelectionDAG &DAG) const { 8261 if (!ResChain) 8262 return; 8263 8264 SDLoc dl(NewResChain); 8265 8266 SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 8267 NewResChain, DAG.getUNDEF(MVT::Other)); 8268 assert(TF.getNode() != NewResChain.getNode() && 8269 "A new TF really is required here"); 8270 8271 DAG.ReplaceAllUsesOfValueWith(ResChain, TF); 8272 DAG.UpdateNodeOperands(TF.getNode(), ResChain, NewResChain); 8273 } 8274 8275 /// Analyze profitability of direct move 8276 /// prefer float load to int load plus direct move 8277 /// when there is no integer use of int load 8278 bool PPCTargetLowering::directMoveIsProfitable(const SDValue &Op) const { 8279 SDNode *Origin = Op.getOperand(0).getNode(); 8280 if (Origin->getOpcode() != ISD::LOAD) 8281 return true; 8282 8283 // If there is no LXSIBZX/LXSIHZX, like Power8, 8284 // prefer direct move if the memory size is 1 or 2 bytes. 8285 MachineMemOperand *MMO = cast<LoadSDNode>(Origin)->getMemOperand(); 8286 if (!Subtarget.hasP9Vector() && MMO->getSize() <= 2) 8287 return true; 8288 8289 for (SDNode::use_iterator UI = Origin->use_begin(), 8290 UE = Origin->use_end(); 8291 UI != UE; ++UI) { 8292 8293 // Only look at the users of the loaded value. 8294 if (UI.getUse().get().getResNo() != 0) 8295 continue; 8296 8297 if (UI->getOpcode() != ISD::SINT_TO_FP && 8298 UI->getOpcode() != ISD::UINT_TO_FP && 8299 UI->getOpcode() != ISD::STRICT_SINT_TO_FP && 8300 UI->getOpcode() != ISD::STRICT_UINT_TO_FP) 8301 return true; 8302 } 8303 8304 return false; 8305 } 8306 8307 static SDValue convertIntToFP(SDValue Op, SDValue Src, SelectionDAG &DAG, 8308 const PPCSubtarget &Subtarget, 8309 SDValue Chain = SDValue()) { 8310 bool IsSigned = Op.getOpcode() == ISD::SINT_TO_FP || 8311 Op.getOpcode() == ISD::STRICT_SINT_TO_FP; 8312 SDLoc dl(Op); 8313 8314 // TODO: Any other flags to propagate? 8315 SDNodeFlags Flags; 8316 Flags.setNoFPExcept(Op->getFlags().hasNoFPExcept()); 8317 8318 // If we have FCFIDS, then use it when converting to single-precision. 8319 // Otherwise, convert to double-precision and then round. 8320 bool IsSingle = Op.getValueType() == MVT::f32 && Subtarget.hasFPCVT(); 8321 unsigned ConvOpc = IsSingle ? (IsSigned ? PPCISD::FCFIDS : PPCISD::FCFIDUS) 8322 : (IsSigned ? PPCISD::FCFID : PPCISD::FCFIDU); 8323 EVT ConvTy = IsSingle ? MVT::f32 : MVT::f64; 8324 if (Op->isStrictFPOpcode()) { 8325 if (!Chain) 8326 Chain = Op.getOperand(0); 8327 return DAG.getNode(getPPCStrictOpcode(ConvOpc), dl, 8328 DAG.getVTList(ConvTy, MVT::Other), {Chain, Src}, Flags); 8329 } else 8330 return DAG.getNode(ConvOpc, dl, ConvTy, Src); 8331 } 8332 8333 /// Custom lowers integer to floating point conversions to use 8334 /// the direct move instructions available in ISA 2.07 to avoid the 8335 /// need for load/store combinations. 8336 SDValue PPCTargetLowering::LowerINT_TO_FPDirectMove(SDValue Op, 8337 SelectionDAG &DAG, 8338 const SDLoc &dl) const { 8339 assert((Op.getValueType() == MVT::f32 || 8340 Op.getValueType() == MVT::f64) && 8341 "Invalid floating point type as target of conversion"); 8342 assert(Subtarget.hasFPCVT() && 8343 "Int to FP conversions with direct moves require FPCVT"); 8344 SDValue Src = Op.getOperand(Op->isStrictFPOpcode() ? 1 : 0); 8345 bool WordInt = Src.getSimpleValueType().SimpleTy == MVT::i32; 8346 bool Signed = Op.getOpcode() == ISD::SINT_TO_FP || 8347 Op.getOpcode() == ISD::STRICT_SINT_TO_FP; 8348 unsigned MovOpc = (WordInt && !Signed) ? PPCISD::MTVSRZ : PPCISD::MTVSRA; 8349 SDValue Mov = DAG.getNode(MovOpc, dl, MVT::f64, Src); 8350 return convertIntToFP(Op, Mov, DAG, Subtarget); 8351 } 8352 8353 static SDValue widenVec(SelectionDAG &DAG, SDValue Vec, const SDLoc &dl) { 8354 8355 EVT VecVT = Vec.getValueType(); 8356 assert(VecVT.isVector() && "Expected a vector type."); 8357 assert(VecVT.getSizeInBits() < 128 && "Vector is already full width."); 8358 8359 EVT EltVT = VecVT.getVectorElementType(); 8360 unsigned WideNumElts = 128 / EltVT.getSizeInBits(); 8361 EVT WideVT = EVT::getVectorVT(*DAG.getContext(), EltVT, WideNumElts); 8362 8363 unsigned NumConcat = WideNumElts / VecVT.getVectorNumElements(); 8364 SmallVector<SDValue, 16> Ops(NumConcat); 8365 Ops[0] = Vec; 8366 SDValue UndefVec = DAG.getUNDEF(VecVT); 8367 for (unsigned i = 1; i < NumConcat; ++i) 8368 Ops[i] = UndefVec; 8369 8370 return DAG.getNode(ISD::CONCAT_VECTORS, dl, WideVT, Ops); 8371 } 8372 8373 SDValue PPCTargetLowering::LowerINT_TO_FPVector(SDValue Op, SelectionDAG &DAG, 8374 const SDLoc &dl) const { 8375 bool IsStrict = Op->isStrictFPOpcode(); 8376 unsigned Opc = Op.getOpcode(); 8377 SDValue Src = Op.getOperand(IsStrict ? 1 : 0); 8378 assert((Opc == ISD::UINT_TO_FP || Opc == ISD::SINT_TO_FP || 8379 Opc == ISD::STRICT_UINT_TO_FP || Opc == ISD::STRICT_SINT_TO_FP) && 8380 "Unexpected conversion type"); 8381 assert((Op.getValueType() == MVT::v2f64 || Op.getValueType() == MVT::v4f32) && 8382 "Supports conversions to v2f64/v4f32 only."); 8383 8384 // TODO: Any other flags to propagate? 8385 SDNodeFlags Flags; 8386 Flags.setNoFPExcept(Op->getFlags().hasNoFPExcept()); 8387 8388 bool SignedConv = Opc == ISD::SINT_TO_FP || Opc == ISD::STRICT_SINT_TO_FP; 8389 bool FourEltRes = Op.getValueType() == MVT::v4f32; 8390 8391 SDValue Wide = widenVec(DAG, Src, dl); 8392 EVT WideVT = Wide.getValueType(); 8393 unsigned WideNumElts = WideVT.getVectorNumElements(); 8394 MVT IntermediateVT = FourEltRes ? MVT::v4i32 : MVT::v2i64; 8395 8396 SmallVector<int, 16> ShuffV; 8397 for (unsigned i = 0; i < WideNumElts; ++i) 8398 ShuffV.push_back(i + WideNumElts); 8399 8400 int Stride = FourEltRes ? WideNumElts / 4 : WideNumElts / 2; 8401 int SaveElts = FourEltRes ? 4 : 2; 8402 if (Subtarget.isLittleEndian()) 8403 for (int i = 0; i < SaveElts; i++) 8404 ShuffV[i * Stride] = i; 8405 else 8406 for (int i = 1; i <= SaveElts; i++) 8407 ShuffV[i * Stride - 1] = i - 1; 8408 8409 SDValue ShuffleSrc2 = 8410 SignedConv ? DAG.getUNDEF(WideVT) : DAG.getConstant(0, dl, WideVT); 8411 SDValue Arrange = DAG.getVectorShuffle(WideVT, dl, Wide, ShuffleSrc2, ShuffV); 8412 8413 SDValue Extend; 8414 if (SignedConv) { 8415 Arrange = DAG.getBitcast(IntermediateVT, Arrange); 8416 EVT ExtVT = Src.getValueType(); 8417 if (Subtarget.hasP9Altivec()) 8418 ExtVT = EVT::getVectorVT(*DAG.getContext(), WideVT.getVectorElementType(), 8419 IntermediateVT.getVectorNumElements()); 8420 8421 Extend = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, IntermediateVT, Arrange, 8422 DAG.getValueType(ExtVT)); 8423 } else 8424 Extend = DAG.getNode(ISD::BITCAST, dl, IntermediateVT, Arrange); 8425 8426 if (IsStrict) 8427 return DAG.getNode(Opc, dl, DAG.getVTList(Op.getValueType(), MVT::Other), 8428 {Op.getOperand(0), Extend}, Flags); 8429 8430 return DAG.getNode(Opc, dl, Op.getValueType(), Extend); 8431 } 8432 8433 SDValue PPCTargetLowering::LowerINT_TO_FP(SDValue Op, 8434 SelectionDAG &DAG) const { 8435 SDLoc dl(Op); 8436 bool IsSigned = Op.getOpcode() == ISD::SINT_TO_FP || 8437 Op.getOpcode() == ISD::STRICT_SINT_TO_FP; 8438 bool IsStrict = Op->isStrictFPOpcode(); 8439 SDValue Src = Op.getOperand(IsStrict ? 1 : 0); 8440 SDValue Chain = IsStrict ? Op.getOperand(0) : DAG.getEntryNode(); 8441 8442 // TODO: Any other flags to propagate? 8443 SDNodeFlags Flags; 8444 Flags.setNoFPExcept(Op->getFlags().hasNoFPExcept()); 8445 8446 EVT InVT = Src.getValueType(); 8447 EVT OutVT = Op.getValueType(); 8448 if (OutVT.isVector() && OutVT.isFloatingPoint() && 8449 isOperationCustom(Op.getOpcode(), InVT)) 8450 return LowerINT_TO_FPVector(Op, DAG, dl); 8451 8452 // Conversions to f128 are legal. 8453 if (Op.getValueType() == MVT::f128) 8454 return Subtarget.hasP9Vector() ? Op : SDValue(); 8455 8456 // Don't handle ppc_fp128 here; let it be lowered to a libcall. 8457 if (Op.getValueType() != MVT::f32 && Op.getValueType() != MVT::f64) 8458 return SDValue(); 8459 8460 if (Src.getValueType() == MVT::i1) { 8461 SDValue Sel = DAG.getNode(ISD::SELECT, dl, Op.getValueType(), Src, 8462 DAG.getConstantFP(1.0, dl, Op.getValueType()), 8463 DAG.getConstantFP(0.0, dl, Op.getValueType())); 8464 if (IsStrict) 8465 return DAG.getMergeValues({Sel, Chain}, dl); 8466 else 8467 return Sel; 8468 } 8469 8470 // If we have direct moves, we can do all the conversion, skip the store/load 8471 // however, without FPCVT we can't do most conversions. 8472 if (Subtarget.hasDirectMove() && directMoveIsProfitable(Op) && 8473 Subtarget.isPPC64() && Subtarget.hasFPCVT()) 8474 return LowerINT_TO_FPDirectMove(Op, DAG, dl); 8475 8476 assert((IsSigned || Subtarget.hasFPCVT()) && 8477 "UINT_TO_FP is supported only with FPCVT"); 8478 8479 if (Src.getValueType() == MVT::i64) { 8480 SDValue SINT = Src; 8481 // When converting to single-precision, we actually need to convert 8482 // to double-precision first and then round to single-precision. 8483 // To avoid double-rounding effects during that operation, we have 8484 // to prepare the input operand. Bits that might be truncated when 8485 // converting to double-precision are replaced by a bit that won't 8486 // be lost at this stage, but is below the single-precision rounding 8487 // position. 8488 // 8489 // However, if -enable-unsafe-fp-math is in effect, accept double 8490 // rounding to avoid the extra overhead. 8491 if (Op.getValueType() == MVT::f32 && 8492 !Subtarget.hasFPCVT() && 8493 !DAG.getTarget().Options.UnsafeFPMath) { 8494 8495 // Twiddle input to make sure the low 11 bits are zero. (If this 8496 // is the case, we are guaranteed the value will fit into the 53 bit 8497 // mantissa of an IEEE double-precision value without rounding.) 8498 // If any of those low 11 bits were not zero originally, make sure 8499 // bit 12 (value 2048) is set instead, so that the final rounding 8500 // to single-precision gets the correct result. 8501 SDValue Round = DAG.getNode(ISD::AND, dl, MVT::i64, 8502 SINT, DAG.getConstant(2047, dl, MVT::i64)); 8503 Round = DAG.getNode(ISD::ADD, dl, MVT::i64, 8504 Round, DAG.getConstant(2047, dl, MVT::i64)); 8505 Round = DAG.getNode(ISD::OR, dl, MVT::i64, Round, SINT); 8506 Round = DAG.getNode(ISD::AND, dl, MVT::i64, 8507 Round, DAG.getConstant(-2048, dl, MVT::i64)); 8508 8509 // However, we cannot use that value unconditionally: if the magnitude 8510 // of the input value is small, the bit-twiddling we did above might 8511 // end up visibly changing the output. Fortunately, in that case, we 8512 // don't need to twiddle bits since the original input will convert 8513 // exactly to double-precision floating-point already. Therefore, 8514 // construct a conditional to use the original value if the top 11 8515 // bits are all sign-bit copies, and use the rounded value computed 8516 // above otherwise. 8517 SDValue Cond = DAG.getNode(ISD::SRA, dl, MVT::i64, 8518 SINT, DAG.getConstant(53, dl, MVT::i32)); 8519 Cond = DAG.getNode(ISD::ADD, dl, MVT::i64, 8520 Cond, DAG.getConstant(1, dl, MVT::i64)); 8521 Cond = DAG.getSetCC( 8522 dl, 8523 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::i64), 8524 Cond, DAG.getConstant(1, dl, MVT::i64), ISD::SETUGT); 8525 8526 SINT = DAG.getNode(ISD::SELECT, dl, MVT::i64, Cond, Round, SINT); 8527 } 8528 8529 ReuseLoadInfo RLI; 8530 SDValue Bits; 8531 8532 MachineFunction &MF = DAG.getMachineFunction(); 8533 if (canReuseLoadAddress(SINT, MVT::i64, RLI, DAG)) { 8534 Bits = DAG.getLoad(MVT::f64, dl, RLI.Chain, RLI.Ptr, RLI.MPI, 8535 RLI.Alignment, RLI.MMOFlags(), RLI.AAInfo, RLI.Ranges); 8536 spliceIntoChain(RLI.ResChain, Bits.getValue(1), DAG); 8537 } else if (Subtarget.hasLFIWAX() && 8538 canReuseLoadAddress(SINT, MVT::i32, RLI, DAG, ISD::SEXTLOAD)) { 8539 MachineMemOperand *MMO = 8540 MF.getMachineMemOperand(RLI.MPI, MachineMemOperand::MOLoad, 4, 8541 RLI.Alignment, RLI.AAInfo, RLI.Ranges); 8542 SDValue Ops[] = { RLI.Chain, RLI.Ptr }; 8543 Bits = DAG.getMemIntrinsicNode(PPCISD::LFIWAX, dl, 8544 DAG.getVTList(MVT::f64, MVT::Other), 8545 Ops, MVT::i32, MMO); 8546 spliceIntoChain(RLI.ResChain, Bits.getValue(1), DAG); 8547 } else if (Subtarget.hasFPCVT() && 8548 canReuseLoadAddress(SINT, MVT::i32, RLI, DAG, ISD::ZEXTLOAD)) { 8549 MachineMemOperand *MMO = 8550 MF.getMachineMemOperand(RLI.MPI, MachineMemOperand::MOLoad, 4, 8551 RLI.Alignment, RLI.AAInfo, RLI.Ranges); 8552 SDValue Ops[] = { RLI.Chain, RLI.Ptr }; 8553 Bits = DAG.getMemIntrinsicNode(PPCISD::LFIWZX, dl, 8554 DAG.getVTList(MVT::f64, MVT::Other), 8555 Ops, MVT::i32, MMO); 8556 spliceIntoChain(RLI.ResChain, Bits.getValue(1), DAG); 8557 } else if (((Subtarget.hasLFIWAX() && 8558 SINT.getOpcode() == ISD::SIGN_EXTEND) || 8559 (Subtarget.hasFPCVT() && 8560 SINT.getOpcode() == ISD::ZERO_EXTEND)) && 8561 SINT.getOperand(0).getValueType() == MVT::i32) { 8562 MachineFrameInfo &MFI = MF.getFrameInfo(); 8563 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 8564 8565 int FrameIdx = MFI.CreateStackObject(4, Align(4), false); 8566 SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT); 8567 8568 SDValue Store = DAG.getStore(Chain, dl, SINT.getOperand(0), FIdx, 8569 MachinePointerInfo::getFixedStack( 8570 DAG.getMachineFunction(), FrameIdx)); 8571 Chain = Store; 8572 8573 assert(cast<StoreSDNode>(Store)->getMemoryVT() == MVT::i32 && 8574 "Expected an i32 store"); 8575 8576 RLI.Ptr = FIdx; 8577 RLI.Chain = Chain; 8578 RLI.MPI = 8579 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx); 8580 RLI.Alignment = Align(4); 8581 8582 MachineMemOperand *MMO = 8583 MF.getMachineMemOperand(RLI.MPI, MachineMemOperand::MOLoad, 4, 8584 RLI.Alignment, RLI.AAInfo, RLI.Ranges); 8585 SDValue Ops[] = { RLI.Chain, RLI.Ptr }; 8586 Bits = DAG.getMemIntrinsicNode(SINT.getOpcode() == ISD::ZERO_EXTEND ? 8587 PPCISD::LFIWZX : PPCISD::LFIWAX, 8588 dl, DAG.getVTList(MVT::f64, MVT::Other), 8589 Ops, MVT::i32, MMO); 8590 Chain = Bits.getValue(1); 8591 } else 8592 Bits = DAG.getNode(ISD::BITCAST, dl, MVT::f64, SINT); 8593 8594 SDValue FP = convertIntToFP(Op, Bits, DAG, Subtarget, Chain); 8595 if (IsStrict) 8596 Chain = FP.getValue(1); 8597 8598 if (Op.getValueType() == MVT::f32 && !Subtarget.hasFPCVT()) { 8599 if (IsStrict) 8600 FP = DAG.getNode(ISD::STRICT_FP_ROUND, dl, 8601 DAG.getVTList(MVT::f32, MVT::Other), 8602 {Chain, FP, DAG.getIntPtrConstant(0, dl)}, Flags); 8603 else 8604 FP = DAG.getNode(ISD::FP_ROUND, dl, MVT::f32, FP, 8605 DAG.getIntPtrConstant(0, dl)); 8606 } 8607 return FP; 8608 } 8609 8610 assert(Src.getValueType() == MVT::i32 && 8611 "Unhandled INT_TO_FP type in custom expander!"); 8612 // Since we only generate this in 64-bit mode, we can take advantage of 8613 // 64-bit registers. In particular, sign extend the input value into the 8614 // 64-bit register with extsw, store the WHOLE 64-bit value into the stack 8615 // then lfd it and fcfid it. 8616 MachineFunction &MF = DAG.getMachineFunction(); 8617 MachineFrameInfo &MFI = MF.getFrameInfo(); 8618 EVT PtrVT = getPointerTy(MF.getDataLayout()); 8619 8620 SDValue Ld; 8621 if (Subtarget.hasLFIWAX() || Subtarget.hasFPCVT()) { 8622 ReuseLoadInfo RLI; 8623 bool ReusingLoad; 8624 if (!(ReusingLoad = canReuseLoadAddress(Src, MVT::i32, RLI, DAG))) { 8625 int FrameIdx = MFI.CreateStackObject(4, Align(4), false); 8626 SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT); 8627 8628 SDValue Store = DAG.getStore(Chain, dl, Src, FIdx, 8629 MachinePointerInfo::getFixedStack( 8630 DAG.getMachineFunction(), FrameIdx)); 8631 Chain = Store; 8632 8633 assert(cast<StoreSDNode>(Store)->getMemoryVT() == MVT::i32 && 8634 "Expected an i32 store"); 8635 8636 RLI.Ptr = FIdx; 8637 RLI.Chain = Chain; 8638 RLI.MPI = 8639 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx); 8640 RLI.Alignment = Align(4); 8641 } 8642 8643 MachineMemOperand *MMO = 8644 MF.getMachineMemOperand(RLI.MPI, MachineMemOperand::MOLoad, 4, 8645 RLI.Alignment, RLI.AAInfo, RLI.Ranges); 8646 SDValue Ops[] = { RLI.Chain, RLI.Ptr }; 8647 Ld = DAG.getMemIntrinsicNode(IsSigned ? PPCISD::LFIWAX : PPCISD::LFIWZX, dl, 8648 DAG.getVTList(MVT::f64, MVT::Other), Ops, 8649 MVT::i32, MMO); 8650 Chain = Ld.getValue(1); 8651 if (ReusingLoad) 8652 spliceIntoChain(RLI.ResChain, Ld.getValue(1), DAG); 8653 } else { 8654 assert(Subtarget.isPPC64() && 8655 "i32->FP without LFIWAX supported only on PPC64"); 8656 8657 int FrameIdx = MFI.CreateStackObject(8, Align(8), false); 8658 SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT); 8659 8660 SDValue Ext64 = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::i64, Src); 8661 8662 // STD the extended value into the stack slot. 8663 SDValue Store = DAG.getStore( 8664 Chain, dl, Ext64, FIdx, 8665 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx)); 8666 Chain = Store; 8667 8668 // Load the value as a double. 8669 Ld = DAG.getLoad( 8670 MVT::f64, dl, Chain, FIdx, 8671 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx)); 8672 Chain = Ld.getValue(1); 8673 } 8674 8675 // FCFID it and return it. 8676 SDValue FP = convertIntToFP(Op, Ld, DAG, Subtarget, Chain); 8677 if (IsStrict) 8678 Chain = FP.getValue(1); 8679 if (Op.getValueType() == MVT::f32 && !Subtarget.hasFPCVT()) { 8680 if (IsStrict) 8681 FP = DAG.getNode(ISD::STRICT_FP_ROUND, dl, 8682 DAG.getVTList(MVT::f32, MVT::Other), 8683 {Chain, FP, DAG.getIntPtrConstant(0, dl)}, Flags); 8684 else 8685 FP = DAG.getNode(ISD::FP_ROUND, dl, MVT::f32, FP, 8686 DAG.getIntPtrConstant(0, dl)); 8687 } 8688 return FP; 8689 } 8690 8691 SDValue PPCTargetLowering::LowerFLT_ROUNDS_(SDValue Op, 8692 SelectionDAG &DAG) const { 8693 SDLoc dl(Op); 8694 /* 8695 The rounding mode is in bits 30:31 of FPSR, and has the following 8696 settings: 8697 00 Round to nearest 8698 01 Round to 0 8699 10 Round to +inf 8700 11 Round to -inf 8701 8702 FLT_ROUNDS, on the other hand, expects the following: 8703 -1 Undefined 8704 0 Round to 0 8705 1 Round to nearest 8706 2 Round to +inf 8707 3 Round to -inf 8708 8709 To perform the conversion, we do: 8710 ((FPSCR & 0x3) ^ ((~FPSCR & 0x3) >> 1)) 8711 */ 8712 8713 MachineFunction &MF = DAG.getMachineFunction(); 8714 EVT VT = Op.getValueType(); 8715 EVT PtrVT = getPointerTy(MF.getDataLayout()); 8716 8717 // Save FP Control Word to register 8718 SDValue Chain = Op.getOperand(0); 8719 SDValue MFFS = DAG.getNode(PPCISD::MFFS, dl, {MVT::f64, MVT::Other}, Chain); 8720 Chain = MFFS.getValue(1); 8721 8722 SDValue CWD; 8723 if (isTypeLegal(MVT::i64)) { 8724 CWD = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, 8725 DAG.getNode(ISD::BITCAST, dl, MVT::i64, MFFS)); 8726 } else { 8727 // Save FP register to stack slot 8728 int SSFI = MF.getFrameInfo().CreateStackObject(8, Align(8), false); 8729 SDValue StackSlot = DAG.getFrameIndex(SSFI, PtrVT); 8730 Chain = DAG.getStore(Chain, dl, MFFS, StackSlot, MachinePointerInfo()); 8731 8732 // Load FP Control Word from low 32 bits of stack slot. 8733 assert(hasBigEndianPartOrdering(MVT::i64, MF.getDataLayout()) && 8734 "Stack slot adjustment is valid only on big endian subtargets!"); 8735 SDValue Four = DAG.getConstant(4, dl, PtrVT); 8736 SDValue Addr = DAG.getNode(ISD::ADD, dl, PtrVT, StackSlot, Four); 8737 CWD = DAG.getLoad(MVT::i32, dl, Chain, Addr, MachinePointerInfo()); 8738 Chain = CWD.getValue(1); 8739 } 8740 8741 // Transform as necessary 8742 SDValue CWD1 = 8743 DAG.getNode(ISD::AND, dl, MVT::i32, 8744 CWD, DAG.getConstant(3, dl, MVT::i32)); 8745 SDValue CWD2 = 8746 DAG.getNode(ISD::SRL, dl, MVT::i32, 8747 DAG.getNode(ISD::AND, dl, MVT::i32, 8748 DAG.getNode(ISD::XOR, dl, MVT::i32, 8749 CWD, DAG.getConstant(3, dl, MVT::i32)), 8750 DAG.getConstant(3, dl, MVT::i32)), 8751 DAG.getConstant(1, dl, MVT::i32)); 8752 8753 SDValue RetVal = 8754 DAG.getNode(ISD::XOR, dl, MVT::i32, CWD1, CWD2); 8755 8756 RetVal = 8757 DAG.getNode((VT.getSizeInBits() < 16 ? ISD::TRUNCATE : ISD::ZERO_EXTEND), 8758 dl, VT, RetVal); 8759 8760 return DAG.getMergeValues({RetVal, Chain}, dl); 8761 } 8762 8763 SDValue PPCTargetLowering::LowerSHL_PARTS(SDValue Op, SelectionDAG &DAG) const { 8764 EVT VT = Op.getValueType(); 8765 unsigned BitWidth = VT.getSizeInBits(); 8766 SDLoc dl(Op); 8767 assert(Op.getNumOperands() == 3 && 8768 VT == Op.getOperand(1).getValueType() && 8769 "Unexpected SHL!"); 8770 8771 // Expand into a bunch of logical ops. Note that these ops 8772 // depend on the PPC behavior for oversized shift amounts. 8773 SDValue Lo = Op.getOperand(0); 8774 SDValue Hi = Op.getOperand(1); 8775 SDValue Amt = Op.getOperand(2); 8776 EVT AmtVT = Amt.getValueType(); 8777 8778 SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT, 8779 DAG.getConstant(BitWidth, dl, AmtVT), Amt); 8780 SDValue Tmp2 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Amt); 8781 SDValue Tmp3 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Tmp1); 8782 SDValue Tmp4 = DAG.getNode(ISD::OR , dl, VT, Tmp2, Tmp3); 8783 SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt, 8784 DAG.getConstant(-BitWidth, dl, AmtVT)); 8785 SDValue Tmp6 = DAG.getNode(PPCISD::SHL, dl, VT, Lo, Tmp5); 8786 SDValue OutHi = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp6); 8787 SDValue OutLo = DAG.getNode(PPCISD::SHL, dl, VT, Lo, Amt); 8788 SDValue OutOps[] = { OutLo, OutHi }; 8789 return DAG.getMergeValues(OutOps, dl); 8790 } 8791 8792 SDValue PPCTargetLowering::LowerSRL_PARTS(SDValue Op, SelectionDAG &DAG) const { 8793 EVT VT = Op.getValueType(); 8794 SDLoc dl(Op); 8795 unsigned BitWidth = VT.getSizeInBits(); 8796 assert(Op.getNumOperands() == 3 && 8797 VT == Op.getOperand(1).getValueType() && 8798 "Unexpected SRL!"); 8799 8800 // Expand into a bunch of logical ops. Note that these ops 8801 // depend on the PPC behavior for oversized shift amounts. 8802 SDValue Lo = Op.getOperand(0); 8803 SDValue Hi = Op.getOperand(1); 8804 SDValue Amt = Op.getOperand(2); 8805 EVT AmtVT = Amt.getValueType(); 8806 8807 SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT, 8808 DAG.getConstant(BitWidth, dl, AmtVT), Amt); 8809 SDValue Tmp2 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Amt); 8810 SDValue Tmp3 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Tmp1); 8811 SDValue Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3); 8812 SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt, 8813 DAG.getConstant(-BitWidth, dl, AmtVT)); 8814 SDValue Tmp6 = DAG.getNode(PPCISD::SRL, dl, VT, Hi, Tmp5); 8815 SDValue OutLo = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp6); 8816 SDValue OutHi = DAG.getNode(PPCISD::SRL, dl, VT, Hi, Amt); 8817 SDValue OutOps[] = { OutLo, OutHi }; 8818 return DAG.getMergeValues(OutOps, dl); 8819 } 8820 8821 SDValue PPCTargetLowering::LowerSRA_PARTS(SDValue Op, SelectionDAG &DAG) const { 8822 SDLoc dl(Op); 8823 EVT VT = Op.getValueType(); 8824 unsigned BitWidth = VT.getSizeInBits(); 8825 assert(Op.getNumOperands() == 3 && 8826 VT == Op.getOperand(1).getValueType() && 8827 "Unexpected SRA!"); 8828 8829 // Expand into a bunch of logical ops, followed by a select_cc. 8830 SDValue Lo = Op.getOperand(0); 8831 SDValue Hi = Op.getOperand(1); 8832 SDValue Amt = Op.getOperand(2); 8833 EVT AmtVT = Amt.getValueType(); 8834 8835 SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT, 8836 DAG.getConstant(BitWidth, dl, AmtVT), Amt); 8837 SDValue Tmp2 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Amt); 8838 SDValue Tmp3 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Tmp1); 8839 SDValue Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3); 8840 SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt, 8841 DAG.getConstant(-BitWidth, dl, AmtVT)); 8842 SDValue Tmp6 = DAG.getNode(PPCISD::SRA, dl, VT, Hi, Tmp5); 8843 SDValue OutHi = DAG.getNode(PPCISD::SRA, dl, VT, Hi, Amt); 8844 SDValue OutLo = DAG.getSelectCC(dl, Tmp5, DAG.getConstant(0, dl, AmtVT), 8845 Tmp4, Tmp6, ISD::SETLE); 8846 SDValue OutOps[] = { OutLo, OutHi }; 8847 return DAG.getMergeValues(OutOps, dl); 8848 } 8849 8850 SDValue PPCTargetLowering::LowerFunnelShift(SDValue Op, 8851 SelectionDAG &DAG) const { 8852 SDLoc dl(Op); 8853 EVT VT = Op.getValueType(); 8854 unsigned BitWidth = VT.getSizeInBits(); 8855 8856 bool IsFSHL = Op.getOpcode() == ISD::FSHL; 8857 SDValue X = Op.getOperand(0); 8858 SDValue Y = Op.getOperand(1); 8859 SDValue Z = Op.getOperand(2); 8860 EVT AmtVT = Z.getValueType(); 8861 8862 // fshl: (X << (Z % BW)) | (Y >> (BW - (Z % BW))) 8863 // fshr: (X << (BW - (Z % BW))) | (Y >> (Z % BW)) 8864 // This is simpler than TargetLowering::expandFunnelShift because we can rely 8865 // on PowerPC shift by BW being well defined. 8866 Z = DAG.getNode(ISD::AND, dl, AmtVT, Z, 8867 DAG.getConstant(BitWidth - 1, dl, AmtVT)); 8868 SDValue SubZ = 8869 DAG.getNode(ISD::SUB, dl, AmtVT, DAG.getConstant(BitWidth, dl, AmtVT), Z); 8870 X = DAG.getNode(PPCISD::SHL, dl, VT, X, IsFSHL ? Z : SubZ); 8871 Y = DAG.getNode(PPCISD::SRL, dl, VT, Y, IsFSHL ? SubZ : Z); 8872 return DAG.getNode(ISD::OR, dl, VT, X, Y); 8873 } 8874 8875 //===----------------------------------------------------------------------===// 8876 // Vector related lowering. 8877 // 8878 8879 /// getCanonicalConstSplat - Build a canonical splat immediate of Val with an 8880 /// element size of SplatSize. Cast the result to VT. 8881 static SDValue getCanonicalConstSplat(uint64_t Val, unsigned SplatSize, EVT VT, 8882 SelectionDAG &DAG, const SDLoc &dl) { 8883 static const MVT VTys[] = { // canonical VT to use for each size. 8884 MVT::v16i8, MVT::v8i16, MVT::Other, MVT::v4i32 8885 }; 8886 8887 EVT ReqVT = VT != MVT::Other ? VT : VTys[SplatSize-1]; 8888 8889 // For a splat with all ones, turn it to vspltisb 0xFF to canonicalize. 8890 if (Val == ((1LLU << (SplatSize * 8)) - 1)) { 8891 SplatSize = 1; 8892 Val = 0xFF; 8893 } 8894 8895 EVT CanonicalVT = VTys[SplatSize-1]; 8896 8897 // Build a canonical splat for this value. 8898 return DAG.getBitcast(ReqVT, DAG.getConstant(Val, dl, CanonicalVT)); 8899 } 8900 8901 /// BuildIntrinsicOp - Return a unary operator intrinsic node with the 8902 /// specified intrinsic ID. 8903 static SDValue BuildIntrinsicOp(unsigned IID, SDValue Op, SelectionDAG &DAG, 8904 const SDLoc &dl, EVT DestVT = MVT::Other) { 8905 if (DestVT == MVT::Other) DestVT = Op.getValueType(); 8906 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT, 8907 DAG.getConstant(IID, dl, MVT::i32), Op); 8908 } 8909 8910 /// BuildIntrinsicOp - Return a binary operator intrinsic node with the 8911 /// specified intrinsic ID. 8912 static SDValue BuildIntrinsicOp(unsigned IID, SDValue LHS, SDValue RHS, 8913 SelectionDAG &DAG, const SDLoc &dl, 8914 EVT DestVT = MVT::Other) { 8915 if (DestVT == MVT::Other) DestVT = LHS.getValueType(); 8916 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT, 8917 DAG.getConstant(IID, dl, MVT::i32), LHS, RHS); 8918 } 8919 8920 /// BuildIntrinsicOp - Return a ternary operator intrinsic node with the 8921 /// specified intrinsic ID. 8922 static SDValue BuildIntrinsicOp(unsigned IID, SDValue Op0, SDValue Op1, 8923 SDValue Op2, SelectionDAG &DAG, const SDLoc &dl, 8924 EVT DestVT = MVT::Other) { 8925 if (DestVT == MVT::Other) DestVT = Op0.getValueType(); 8926 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT, 8927 DAG.getConstant(IID, dl, MVT::i32), Op0, Op1, Op2); 8928 } 8929 8930 /// BuildVSLDOI - Return a VECTOR_SHUFFLE that is a vsldoi of the specified 8931 /// amount. The result has the specified value type. 8932 static SDValue BuildVSLDOI(SDValue LHS, SDValue RHS, unsigned Amt, EVT VT, 8933 SelectionDAG &DAG, const SDLoc &dl) { 8934 // Force LHS/RHS to be the right type. 8935 LHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, LHS); 8936 RHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, RHS); 8937 8938 int Ops[16]; 8939 for (unsigned i = 0; i != 16; ++i) 8940 Ops[i] = i + Amt; 8941 SDValue T = DAG.getVectorShuffle(MVT::v16i8, dl, LHS, RHS, Ops); 8942 return DAG.getNode(ISD::BITCAST, dl, VT, T); 8943 } 8944 8945 /// Do we have an efficient pattern in a .td file for this node? 8946 /// 8947 /// \param V - pointer to the BuildVectorSDNode being matched 8948 /// \param HasDirectMove - does this subtarget have VSR <-> GPR direct moves? 8949 /// 8950 /// There are some patterns where it is beneficial to keep a BUILD_VECTOR 8951 /// node as a BUILD_VECTOR node rather than expanding it. The patterns where 8952 /// the opposite is true (expansion is beneficial) are: 8953 /// - The node builds a vector out of integers that are not 32 or 64-bits 8954 /// - The node builds a vector out of constants 8955 /// - The node is a "load-and-splat" 8956 /// In all other cases, we will choose to keep the BUILD_VECTOR. 8957 static bool haveEfficientBuildVectorPattern(BuildVectorSDNode *V, 8958 bool HasDirectMove, 8959 bool HasP8Vector) { 8960 EVT VecVT = V->getValueType(0); 8961 bool RightType = VecVT == MVT::v2f64 || 8962 (HasP8Vector && VecVT == MVT::v4f32) || 8963 (HasDirectMove && (VecVT == MVT::v2i64 || VecVT == MVT::v4i32)); 8964 if (!RightType) 8965 return false; 8966 8967 bool IsSplat = true; 8968 bool IsLoad = false; 8969 SDValue Op0 = V->getOperand(0); 8970 8971 // This function is called in a block that confirms the node is not a constant 8972 // splat. So a constant BUILD_VECTOR here means the vector is built out of 8973 // different constants. 8974 if (V->isConstant()) 8975 return false; 8976 for (int i = 0, e = V->getNumOperands(); i < e; ++i) { 8977 if (V->getOperand(i).isUndef()) 8978 return false; 8979 // We want to expand nodes that represent load-and-splat even if the 8980 // loaded value is a floating point truncation or conversion to int. 8981 if (V->getOperand(i).getOpcode() == ISD::LOAD || 8982 (V->getOperand(i).getOpcode() == ISD::FP_ROUND && 8983 V->getOperand(i).getOperand(0).getOpcode() == ISD::LOAD) || 8984 (V->getOperand(i).getOpcode() == ISD::FP_TO_SINT && 8985 V->getOperand(i).getOperand(0).getOpcode() == ISD::LOAD) || 8986 (V->getOperand(i).getOpcode() == ISD::FP_TO_UINT && 8987 V->getOperand(i).getOperand(0).getOpcode() == ISD::LOAD)) 8988 IsLoad = true; 8989 // If the operands are different or the input is not a load and has more 8990 // uses than just this BV node, then it isn't a splat. 8991 if (V->getOperand(i) != Op0 || 8992 (!IsLoad && !V->isOnlyUserOf(V->getOperand(i).getNode()))) 8993 IsSplat = false; 8994 } 8995 return !(IsSplat && IsLoad); 8996 } 8997 8998 // Lower BITCAST(f128, (build_pair i64, i64)) to BUILD_FP128. 8999 SDValue PPCTargetLowering::LowerBITCAST(SDValue Op, SelectionDAG &DAG) const { 9000 9001 SDLoc dl(Op); 9002 SDValue Op0 = Op->getOperand(0); 9003 9004 if ((Op.getValueType() != MVT::f128) || 9005 (Op0.getOpcode() != ISD::BUILD_PAIR) || 9006 (Op0.getOperand(0).getValueType() != MVT::i64) || 9007 (Op0.getOperand(1).getValueType() != MVT::i64)) 9008 return SDValue(); 9009 9010 return DAG.getNode(PPCISD::BUILD_FP128, dl, MVT::f128, Op0.getOperand(0), 9011 Op0.getOperand(1)); 9012 } 9013 9014 static const SDValue *getNormalLoadInput(const SDValue &Op, bool &IsPermuted) { 9015 const SDValue *InputLoad = &Op; 9016 if (InputLoad->getOpcode() == ISD::BITCAST) 9017 InputLoad = &InputLoad->getOperand(0); 9018 if (InputLoad->getOpcode() == ISD::SCALAR_TO_VECTOR || 9019 InputLoad->getOpcode() == PPCISD::SCALAR_TO_VECTOR_PERMUTED) { 9020 IsPermuted = InputLoad->getOpcode() == PPCISD::SCALAR_TO_VECTOR_PERMUTED; 9021 InputLoad = &InputLoad->getOperand(0); 9022 } 9023 if (InputLoad->getOpcode() != ISD::LOAD) 9024 return nullptr; 9025 LoadSDNode *LD = cast<LoadSDNode>(*InputLoad); 9026 return ISD::isNormalLoad(LD) ? InputLoad : nullptr; 9027 } 9028 9029 // Convert the argument APFloat to a single precision APFloat if there is no 9030 // loss in information during the conversion to single precision APFloat and the 9031 // resulting number is not a denormal number. Return true if successful. 9032 bool llvm::convertToNonDenormSingle(APFloat &ArgAPFloat) { 9033 APFloat APFloatToConvert = ArgAPFloat; 9034 bool LosesInfo = true; 9035 APFloatToConvert.convert(APFloat::IEEEsingle(), APFloat::rmNearestTiesToEven, 9036 &LosesInfo); 9037 bool Success = (!LosesInfo && !APFloatToConvert.isDenormal()); 9038 if (Success) 9039 ArgAPFloat = APFloatToConvert; 9040 return Success; 9041 } 9042 9043 // Bitcast the argument APInt to a double and convert it to a single precision 9044 // APFloat, bitcast the APFloat to an APInt and assign it to the original 9045 // argument if there is no loss in information during the conversion from 9046 // double to single precision APFloat and the resulting number is not a denormal 9047 // number. Return true if successful. 9048 bool llvm::convertToNonDenormSingle(APInt &ArgAPInt) { 9049 double DpValue = ArgAPInt.bitsToDouble(); 9050 APFloat APFloatDp(DpValue); 9051 bool Success = convertToNonDenormSingle(APFloatDp); 9052 if (Success) 9053 ArgAPInt = APFloatDp.bitcastToAPInt(); 9054 return Success; 9055 } 9056 9057 // Nondestructive check for convertTonNonDenormSingle. 9058 bool llvm::checkConvertToNonDenormSingle(APFloat &ArgAPFloat) { 9059 // Only convert if it loses info, since XXSPLTIDP should 9060 // handle the other case. 9061 APFloat APFloatToConvert = ArgAPFloat; 9062 bool LosesInfo = true; 9063 APFloatToConvert.convert(APFloat::IEEEsingle(), APFloat::rmNearestTiesToEven, 9064 &LosesInfo); 9065 9066 return (!LosesInfo && !APFloatToConvert.isDenormal()); 9067 } 9068 9069 // If this is a case we can't handle, return null and let the default 9070 // expansion code take care of it. If we CAN select this case, and if it 9071 // selects to a single instruction, return Op. Otherwise, if we can codegen 9072 // this case more efficiently than a constant pool load, lower it to the 9073 // sequence of ops that should be used. 9074 SDValue PPCTargetLowering::LowerBUILD_VECTOR(SDValue Op, 9075 SelectionDAG &DAG) const { 9076 SDLoc dl(Op); 9077 BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(Op.getNode()); 9078 assert(BVN && "Expected a BuildVectorSDNode in LowerBUILD_VECTOR"); 9079 9080 // Check if this is a splat of a constant value. 9081 APInt APSplatBits, APSplatUndef; 9082 unsigned SplatBitSize; 9083 bool HasAnyUndefs; 9084 bool BVNIsConstantSplat = 9085 BVN->isConstantSplat(APSplatBits, APSplatUndef, SplatBitSize, 9086 HasAnyUndefs, 0, !Subtarget.isLittleEndian()); 9087 9088 // If it is a splat of a double, check if we can shrink it to a 32 bit 9089 // non-denormal float which when converted back to double gives us the same 9090 // double. This is to exploit the XXSPLTIDP instruction. 9091 // If we lose precision, we use XXSPLTI32DX. 9092 if (BVNIsConstantSplat && (SplatBitSize == 64) && 9093 Subtarget.hasPrefixInstrs()) { 9094 // Check the type first to short-circuit so we don't modify APSplatBits if 9095 // this block isn't executed. 9096 if ((Op->getValueType(0) == MVT::v2f64) && 9097 convertToNonDenormSingle(APSplatBits)) { 9098 SDValue SplatNode = DAG.getNode( 9099 PPCISD::XXSPLTI_SP_TO_DP, dl, MVT::v2f64, 9100 DAG.getTargetConstant(APSplatBits.getZExtValue(), dl, MVT::i32)); 9101 return DAG.getBitcast(Op.getValueType(), SplatNode); 9102 } else { 9103 // We may lose precision, so we have to use XXSPLTI32DX. 9104 9105 uint32_t Hi = 9106 (uint32_t)((APSplatBits.getZExtValue() & 0xFFFFFFFF00000000LL) >> 32); 9107 uint32_t Lo = 9108 (uint32_t)(APSplatBits.getZExtValue() & 0xFFFFFFFF); 9109 SDValue SplatNode = DAG.getUNDEF(MVT::v2i64); 9110 9111 if (!Hi || !Lo) 9112 // If either load is 0, then we should generate XXLXOR to set to 0. 9113 SplatNode = DAG.getTargetConstant(0, dl, MVT::v2i64); 9114 9115 if (Hi) 9116 SplatNode = DAG.getNode( 9117 PPCISD::XXSPLTI32DX, dl, MVT::v2i64, SplatNode, 9118 DAG.getTargetConstant(0, dl, MVT::i32), 9119 DAG.getTargetConstant(Hi, dl, MVT::i32)); 9120 9121 if (Lo) 9122 SplatNode = 9123 DAG.getNode(PPCISD::XXSPLTI32DX, dl, MVT::v2i64, SplatNode, 9124 DAG.getTargetConstant(1, dl, MVT::i32), 9125 DAG.getTargetConstant(Lo, dl, MVT::i32)); 9126 9127 return DAG.getBitcast(Op.getValueType(), SplatNode); 9128 } 9129 } 9130 9131 if (!BVNIsConstantSplat || SplatBitSize > 32) { 9132 9133 bool IsPermutedLoad = false; 9134 const SDValue *InputLoad = 9135 getNormalLoadInput(Op.getOperand(0), IsPermutedLoad); 9136 // Handle load-and-splat patterns as we have instructions that will do this 9137 // in one go. 9138 if (InputLoad && DAG.isSplatValue(Op, true)) { 9139 LoadSDNode *LD = cast<LoadSDNode>(*InputLoad); 9140 9141 // We have handling for 4 and 8 byte elements. 9142 unsigned ElementSize = LD->getMemoryVT().getScalarSizeInBits(); 9143 9144 // Checking for a single use of this load, we have to check for vector 9145 // width (128 bits) / ElementSize uses (since each operand of the 9146 // BUILD_VECTOR is a separate use of the value. 9147 unsigned NumUsesOfInputLD = 128 / ElementSize; 9148 for (SDValue BVInOp : Op->ops()) 9149 if (BVInOp.isUndef()) 9150 NumUsesOfInputLD--; 9151 assert(NumUsesOfInputLD > 0 && "No uses of input LD of a build_vector?"); 9152 if (InputLoad->getNode()->hasNUsesOfValue(NumUsesOfInputLD, 0) && 9153 ((Subtarget.hasVSX() && ElementSize == 64) || 9154 (Subtarget.hasP9Vector() && ElementSize == 32))) { 9155 SDValue Ops[] = { 9156 LD->getChain(), // Chain 9157 LD->getBasePtr(), // Ptr 9158 DAG.getValueType(Op.getValueType()) // VT 9159 }; 9160 SDValue LdSplt = DAG.getMemIntrinsicNode( 9161 PPCISD::LD_SPLAT, dl, DAG.getVTList(Op.getValueType(), MVT::Other), 9162 Ops, LD->getMemoryVT(), LD->getMemOperand()); 9163 // Replace all uses of the output chain of the original load with the 9164 // output chain of the new load. 9165 DAG.ReplaceAllUsesOfValueWith(InputLoad->getValue(1), 9166 LdSplt.getValue(1)); 9167 return LdSplt; 9168 } 9169 } 9170 9171 // In 64BIT mode BUILD_VECTOR nodes that are not constant splats of up to 9172 // 32-bits can be lowered to VSX instructions under certain conditions. 9173 // Without VSX, there is no pattern more efficient than expanding the node. 9174 if (Subtarget.hasVSX() && Subtarget.isPPC64() && 9175 haveEfficientBuildVectorPattern(BVN, Subtarget.hasDirectMove(), 9176 Subtarget.hasP8Vector())) 9177 return Op; 9178 return SDValue(); 9179 } 9180 9181 uint64_t SplatBits = APSplatBits.getZExtValue(); 9182 uint64_t SplatUndef = APSplatUndef.getZExtValue(); 9183 unsigned SplatSize = SplatBitSize / 8; 9184 9185 // First, handle single instruction cases. 9186 9187 // All zeros? 9188 if (SplatBits == 0) { 9189 // Canonicalize all zero vectors to be v4i32. 9190 if (Op.getValueType() != MVT::v4i32 || HasAnyUndefs) { 9191 SDValue Z = DAG.getConstant(0, dl, MVT::v4i32); 9192 Op = DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Z); 9193 } 9194 return Op; 9195 } 9196 9197 // We have XXSPLTIW for constant splats four bytes wide. 9198 // Given vector length is a multiple of 4, 2-byte splats can be replaced 9199 // with 4-byte splats. We replicate the SplatBits in case of 2-byte splat to 9200 // make a 4-byte splat element. For example: 2-byte splat of 0xABAB can be 9201 // turned into a 4-byte splat of 0xABABABAB. 9202 if (Subtarget.hasPrefixInstrs() && SplatSize == 2) 9203 return getCanonicalConstSplat(SplatBits | (SplatBits << 16), SplatSize * 2, 9204 Op.getValueType(), DAG, dl); 9205 9206 if (Subtarget.hasPrefixInstrs() && SplatSize == 4) 9207 return getCanonicalConstSplat(SplatBits, SplatSize, Op.getValueType(), DAG, 9208 dl); 9209 9210 // We have XXSPLTIB for constant splats one byte wide. 9211 if (Subtarget.hasP9Vector() && SplatSize == 1) 9212 return getCanonicalConstSplat(SplatBits, SplatSize, Op.getValueType(), DAG, 9213 dl); 9214 9215 // If the sign extended value is in the range [-16,15], use VSPLTI[bhw]. 9216 int32_t SextVal= (int32_t(SplatBits << (32-SplatBitSize)) >> 9217 (32-SplatBitSize)); 9218 if (SextVal >= -16 && SextVal <= 15) 9219 return getCanonicalConstSplat(SextVal, SplatSize, Op.getValueType(), DAG, 9220 dl); 9221 9222 // Two instruction sequences. 9223 9224 // If this value is in the range [-32,30] and is even, use: 9225 // VSPLTI[bhw](val/2) + VSPLTI[bhw](val/2) 9226 // If this value is in the range [17,31] and is odd, use: 9227 // VSPLTI[bhw](val-16) - VSPLTI[bhw](-16) 9228 // If this value is in the range [-31,-17] and is odd, use: 9229 // VSPLTI[bhw](val+16) + VSPLTI[bhw](-16) 9230 // Note the last two are three-instruction sequences. 9231 if (SextVal >= -32 && SextVal <= 31) { 9232 // To avoid having these optimizations undone by constant folding, 9233 // we convert to a pseudo that will be expanded later into one of 9234 // the above forms. 9235 SDValue Elt = DAG.getConstant(SextVal, dl, MVT::i32); 9236 EVT VT = (SplatSize == 1 ? MVT::v16i8 : 9237 (SplatSize == 2 ? MVT::v8i16 : MVT::v4i32)); 9238 SDValue EltSize = DAG.getConstant(SplatSize, dl, MVT::i32); 9239 SDValue RetVal = DAG.getNode(PPCISD::VADD_SPLAT, dl, VT, Elt, EltSize); 9240 if (VT == Op.getValueType()) 9241 return RetVal; 9242 else 9243 return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), RetVal); 9244 } 9245 9246 // If this is 0x8000_0000 x 4, turn into vspltisw + vslw. If it is 9247 // 0x7FFF_FFFF x 4, turn it into not(0x8000_0000). This is important 9248 // for fneg/fabs. 9249 if (SplatSize == 4 && SplatBits == (0x7FFFFFFF&~SplatUndef)) { 9250 // Make -1 and vspltisw -1: 9251 SDValue OnesV = getCanonicalConstSplat(-1, 4, MVT::v4i32, DAG, dl); 9252 9253 // Make the VSLW intrinsic, computing 0x8000_0000. 9254 SDValue Res = BuildIntrinsicOp(Intrinsic::ppc_altivec_vslw, OnesV, 9255 OnesV, DAG, dl); 9256 9257 // xor by OnesV to invert it. 9258 Res = DAG.getNode(ISD::XOR, dl, MVT::v4i32, Res, OnesV); 9259 return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res); 9260 } 9261 9262 // Check to see if this is a wide variety of vsplti*, binop self cases. 9263 static const signed char SplatCsts[] = { 9264 -1, 1, -2, 2, -3, 3, -4, 4, -5, 5, -6, 6, -7, 7, 9265 -8, 8, -9, 9, -10, 10, -11, 11, -12, 12, -13, 13, 14, -14, 15, -15, -16 9266 }; 9267 9268 for (unsigned idx = 0; idx < array_lengthof(SplatCsts); ++idx) { 9269 // Indirect through the SplatCsts array so that we favor 'vsplti -1' for 9270 // cases which are ambiguous (e.g. formation of 0x8000_0000). 'vsplti -1' 9271 int i = SplatCsts[idx]; 9272 9273 // Figure out what shift amount will be used by altivec if shifted by i in 9274 // this splat size. 9275 unsigned TypeShiftAmt = i & (SplatBitSize-1); 9276 9277 // vsplti + shl self. 9278 if (SextVal == (int)((unsigned)i << TypeShiftAmt)) { 9279 SDValue Res = getCanonicalConstSplat(i, SplatSize, MVT::Other, DAG, dl); 9280 static const unsigned IIDs[] = { // Intrinsic to use for each size. 9281 Intrinsic::ppc_altivec_vslb, Intrinsic::ppc_altivec_vslh, 0, 9282 Intrinsic::ppc_altivec_vslw 9283 }; 9284 Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl); 9285 return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res); 9286 } 9287 9288 // vsplti + srl self. 9289 if (SextVal == (int)((unsigned)i >> TypeShiftAmt)) { 9290 SDValue Res = getCanonicalConstSplat(i, SplatSize, MVT::Other, DAG, dl); 9291 static const unsigned IIDs[] = { // Intrinsic to use for each size. 9292 Intrinsic::ppc_altivec_vsrb, Intrinsic::ppc_altivec_vsrh, 0, 9293 Intrinsic::ppc_altivec_vsrw 9294 }; 9295 Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl); 9296 return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res); 9297 } 9298 9299 // vsplti + rol self. 9300 if (SextVal == (int)(((unsigned)i << TypeShiftAmt) | 9301 ((unsigned)i >> (SplatBitSize-TypeShiftAmt)))) { 9302 SDValue Res = getCanonicalConstSplat(i, SplatSize, MVT::Other, DAG, dl); 9303 static const unsigned IIDs[] = { // Intrinsic to use for each size. 9304 Intrinsic::ppc_altivec_vrlb, Intrinsic::ppc_altivec_vrlh, 0, 9305 Intrinsic::ppc_altivec_vrlw 9306 }; 9307 Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl); 9308 return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res); 9309 } 9310 9311 // t = vsplti c, result = vsldoi t, t, 1 9312 if (SextVal == (int)(((unsigned)i << 8) | (i < 0 ? 0xFF : 0))) { 9313 SDValue T = getCanonicalConstSplat(i, SplatSize, MVT::v16i8, DAG, dl); 9314 unsigned Amt = Subtarget.isLittleEndian() ? 15 : 1; 9315 return BuildVSLDOI(T, T, Amt, Op.getValueType(), DAG, dl); 9316 } 9317 // t = vsplti c, result = vsldoi t, t, 2 9318 if (SextVal == (int)(((unsigned)i << 16) | (i < 0 ? 0xFFFF : 0))) { 9319 SDValue T = getCanonicalConstSplat(i, SplatSize, MVT::v16i8, DAG, dl); 9320 unsigned Amt = Subtarget.isLittleEndian() ? 14 : 2; 9321 return BuildVSLDOI(T, T, Amt, Op.getValueType(), DAG, dl); 9322 } 9323 // t = vsplti c, result = vsldoi t, t, 3 9324 if (SextVal == (int)(((unsigned)i << 24) | (i < 0 ? 0xFFFFFF : 0))) { 9325 SDValue T = getCanonicalConstSplat(i, SplatSize, MVT::v16i8, DAG, dl); 9326 unsigned Amt = Subtarget.isLittleEndian() ? 13 : 3; 9327 return BuildVSLDOI(T, T, Amt, Op.getValueType(), DAG, dl); 9328 } 9329 } 9330 9331 return SDValue(); 9332 } 9333 9334 /// GeneratePerfectShuffle - Given an entry in the perfect-shuffle table, emit 9335 /// the specified operations to build the shuffle. 9336 static SDValue GeneratePerfectShuffle(unsigned PFEntry, SDValue LHS, 9337 SDValue RHS, SelectionDAG &DAG, 9338 const SDLoc &dl) { 9339 unsigned OpNum = (PFEntry >> 26) & 0x0F; 9340 unsigned LHSID = (PFEntry >> 13) & ((1 << 13)-1); 9341 unsigned RHSID = (PFEntry >> 0) & ((1 << 13)-1); 9342 9343 enum { 9344 OP_COPY = 0, // Copy, used for things like <u,u,u,3> to say it is <0,1,2,3> 9345 OP_VMRGHW, 9346 OP_VMRGLW, 9347 OP_VSPLTISW0, 9348 OP_VSPLTISW1, 9349 OP_VSPLTISW2, 9350 OP_VSPLTISW3, 9351 OP_VSLDOI4, 9352 OP_VSLDOI8, 9353 OP_VSLDOI12 9354 }; 9355 9356 if (OpNum == OP_COPY) { 9357 if (LHSID == (1*9+2)*9+3) return LHS; 9358 assert(LHSID == ((4*9+5)*9+6)*9+7 && "Illegal OP_COPY!"); 9359 return RHS; 9360 } 9361 9362 SDValue OpLHS, OpRHS; 9363 OpLHS = GeneratePerfectShuffle(PerfectShuffleTable[LHSID], LHS, RHS, DAG, dl); 9364 OpRHS = GeneratePerfectShuffle(PerfectShuffleTable[RHSID], LHS, RHS, DAG, dl); 9365 9366 int ShufIdxs[16]; 9367 switch (OpNum) { 9368 default: llvm_unreachable("Unknown i32 permute!"); 9369 case OP_VMRGHW: 9370 ShufIdxs[ 0] = 0; ShufIdxs[ 1] = 1; ShufIdxs[ 2] = 2; ShufIdxs[ 3] = 3; 9371 ShufIdxs[ 4] = 16; ShufIdxs[ 5] = 17; ShufIdxs[ 6] = 18; ShufIdxs[ 7] = 19; 9372 ShufIdxs[ 8] = 4; ShufIdxs[ 9] = 5; ShufIdxs[10] = 6; ShufIdxs[11] = 7; 9373 ShufIdxs[12] = 20; ShufIdxs[13] = 21; ShufIdxs[14] = 22; ShufIdxs[15] = 23; 9374 break; 9375 case OP_VMRGLW: 9376 ShufIdxs[ 0] = 8; ShufIdxs[ 1] = 9; ShufIdxs[ 2] = 10; ShufIdxs[ 3] = 11; 9377 ShufIdxs[ 4] = 24; ShufIdxs[ 5] = 25; ShufIdxs[ 6] = 26; ShufIdxs[ 7] = 27; 9378 ShufIdxs[ 8] = 12; ShufIdxs[ 9] = 13; ShufIdxs[10] = 14; ShufIdxs[11] = 15; 9379 ShufIdxs[12] = 28; ShufIdxs[13] = 29; ShufIdxs[14] = 30; ShufIdxs[15] = 31; 9380 break; 9381 case OP_VSPLTISW0: 9382 for (unsigned i = 0; i != 16; ++i) 9383 ShufIdxs[i] = (i&3)+0; 9384 break; 9385 case OP_VSPLTISW1: 9386 for (unsigned i = 0; i != 16; ++i) 9387 ShufIdxs[i] = (i&3)+4; 9388 break; 9389 case OP_VSPLTISW2: 9390 for (unsigned i = 0; i != 16; ++i) 9391 ShufIdxs[i] = (i&3)+8; 9392 break; 9393 case OP_VSPLTISW3: 9394 for (unsigned i = 0; i != 16; ++i) 9395 ShufIdxs[i] = (i&3)+12; 9396 break; 9397 case OP_VSLDOI4: 9398 return BuildVSLDOI(OpLHS, OpRHS, 4, OpLHS.getValueType(), DAG, dl); 9399 case OP_VSLDOI8: 9400 return BuildVSLDOI(OpLHS, OpRHS, 8, OpLHS.getValueType(), DAG, dl); 9401 case OP_VSLDOI12: 9402 return BuildVSLDOI(OpLHS, OpRHS, 12, OpLHS.getValueType(), DAG, dl); 9403 } 9404 EVT VT = OpLHS.getValueType(); 9405 OpLHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OpLHS); 9406 OpRHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OpRHS); 9407 SDValue T = DAG.getVectorShuffle(MVT::v16i8, dl, OpLHS, OpRHS, ShufIdxs); 9408 return DAG.getNode(ISD::BITCAST, dl, VT, T); 9409 } 9410 9411 /// lowerToVINSERTB - Return the SDValue if this VECTOR_SHUFFLE can be handled 9412 /// by the VINSERTB instruction introduced in ISA 3.0, else just return default 9413 /// SDValue. 9414 SDValue PPCTargetLowering::lowerToVINSERTB(ShuffleVectorSDNode *N, 9415 SelectionDAG &DAG) const { 9416 const unsigned BytesInVector = 16; 9417 bool IsLE = Subtarget.isLittleEndian(); 9418 SDLoc dl(N); 9419 SDValue V1 = N->getOperand(0); 9420 SDValue V2 = N->getOperand(1); 9421 unsigned ShiftElts = 0, InsertAtByte = 0; 9422 bool Swap = false; 9423 9424 // Shifts required to get the byte we want at element 7. 9425 unsigned LittleEndianShifts[] = {8, 7, 6, 5, 4, 3, 2, 1, 9426 0, 15, 14, 13, 12, 11, 10, 9}; 9427 unsigned BigEndianShifts[] = {9, 10, 11, 12, 13, 14, 15, 0, 9428 1, 2, 3, 4, 5, 6, 7, 8}; 9429 9430 ArrayRef<int> Mask = N->getMask(); 9431 int OriginalOrder[] = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15}; 9432 9433 // For each mask element, find out if we're just inserting something 9434 // from V2 into V1 or vice versa. 9435 // Possible permutations inserting an element from V2 into V1: 9436 // X, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 9437 // 0, X, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 9438 // ... 9439 // 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, X 9440 // Inserting from V1 into V2 will be similar, except mask range will be 9441 // [16,31]. 9442 9443 bool FoundCandidate = false; 9444 // If both vector operands for the shuffle are the same vector, the mask 9445 // will contain only elements from the first one and the second one will be 9446 // undef. 9447 unsigned VINSERTBSrcElem = IsLE ? 8 : 7; 9448 // Go through the mask of half-words to find an element that's being moved 9449 // from one vector to the other. 9450 for (unsigned i = 0; i < BytesInVector; ++i) { 9451 unsigned CurrentElement = Mask[i]; 9452 // If 2nd operand is undefined, we should only look for element 7 in the 9453 // Mask. 9454 if (V2.isUndef() && CurrentElement != VINSERTBSrcElem) 9455 continue; 9456 9457 bool OtherElementsInOrder = true; 9458 // Examine the other elements in the Mask to see if they're in original 9459 // order. 9460 for (unsigned j = 0; j < BytesInVector; ++j) { 9461 if (j == i) 9462 continue; 9463 // If CurrentElement is from V1 [0,15], then we the rest of the Mask to be 9464 // from V2 [16,31] and vice versa. Unless the 2nd operand is undefined, 9465 // in which we always assume we're always picking from the 1st operand. 9466 int MaskOffset = 9467 (!V2.isUndef() && CurrentElement < BytesInVector) ? BytesInVector : 0; 9468 if (Mask[j] != OriginalOrder[j] + MaskOffset) { 9469 OtherElementsInOrder = false; 9470 break; 9471 } 9472 } 9473 // If other elements are in original order, we record the number of shifts 9474 // we need to get the element we want into element 7. Also record which byte 9475 // in the vector we should insert into. 9476 if (OtherElementsInOrder) { 9477 // If 2nd operand is undefined, we assume no shifts and no swapping. 9478 if (V2.isUndef()) { 9479 ShiftElts = 0; 9480 Swap = false; 9481 } else { 9482 // Only need the last 4-bits for shifts because operands will be swapped if CurrentElement is >= 2^4. 9483 ShiftElts = IsLE ? LittleEndianShifts[CurrentElement & 0xF] 9484 : BigEndianShifts[CurrentElement & 0xF]; 9485 Swap = CurrentElement < BytesInVector; 9486 } 9487 InsertAtByte = IsLE ? BytesInVector - (i + 1) : i; 9488 FoundCandidate = true; 9489 break; 9490 } 9491 } 9492 9493 if (!FoundCandidate) 9494 return SDValue(); 9495 9496 // Candidate found, construct the proper SDAG sequence with VINSERTB, 9497 // optionally with VECSHL if shift is required. 9498 if (Swap) 9499 std::swap(V1, V2); 9500 if (V2.isUndef()) 9501 V2 = V1; 9502 if (ShiftElts) { 9503 SDValue Shl = DAG.getNode(PPCISD::VECSHL, dl, MVT::v16i8, V2, V2, 9504 DAG.getConstant(ShiftElts, dl, MVT::i32)); 9505 return DAG.getNode(PPCISD::VECINSERT, dl, MVT::v16i8, V1, Shl, 9506 DAG.getConstant(InsertAtByte, dl, MVT::i32)); 9507 } 9508 return DAG.getNode(PPCISD::VECINSERT, dl, MVT::v16i8, V1, V2, 9509 DAG.getConstant(InsertAtByte, dl, MVT::i32)); 9510 } 9511 9512 /// lowerToVINSERTH - Return the SDValue if this VECTOR_SHUFFLE can be handled 9513 /// by the VINSERTH instruction introduced in ISA 3.0, else just return default 9514 /// SDValue. 9515 SDValue PPCTargetLowering::lowerToVINSERTH(ShuffleVectorSDNode *N, 9516 SelectionDAG &DAG) const { 9517 const unsigned NumHalfWords = 8; 9518 const unsigned BytesInVector = NumHalfWords * 2; 9519 // Check that the shuffle is on half-words. 9520 if (!isNByteElemShuffleMask(N, 2, 1)) 9521 return SDValue(); 9522 9523 bool IsLE = Subtarget.isLittleEndian(); 9524 SDLoc dl(N); 9525 SDValue V1 = N->getOperand(0); 9526 SDValue V2 = N->getOperand(1); 9527 unsigned ShiftElts = 0, InsertAtByte = 0; 9528 bool Swap = false; 9529 9530 // Shifts required to get the half-word we want at element 3. 9531 unsigned LittleEndianShifts[] = {4, 3, 2, 1, 0, 7, 6, 5}; 9532 unsigned BigEndianShifts[] = {5, 6, 7, 0, 1, 2, 3, 4}; 9533 9534 uint32_t Mask = 0; 9535 uint32_t OriginalOrderLow = 0x1234567; 9536 uint32_t OriginalOrderHigh = 0x89ABCDEF; 9537 // Now we look at mask elements 0,2,4,6,8,10,12,14. Pack the mask into a 9538 // 32-bit space, only need 4-bit nibbles per element. 9539 for (unsigned i = 0; i < NumHalfWords; ++i) { 9540 unsigned MaskShift = (NumHalfWords - 1 - i) * 4; 9541 Mask |= ((uint32_t)(N->getMaskElt(i * 2) / 2) << MaskShift); 9542 } 9543 9544 // For each mask element, find out if we're just inserting something 9545 // from V2 into V1 or vice versa. Possible permutations inserting an element 9546 // from V2 into V1: 9547 // X, 1, 2, 3, 4, 5, 6, 7 9548 // 0, X, 2, 3, 4, 5, 6, 7 9549 // 0, 1, X, 3, 4, 5, 6, 7 9550 // 0, 1, 2, X, 4, 5, 6, 7 9551 // 0, 1, 2, 3, X, 5, 6, 7 9552 // 0, 1, 2, 3, 4, X, 6, 7 9553 // 0, 1, 2, 3, 4, 5, X, 7 9554 // 0, 1, 2, 3, 4, 5, 6, X 9555 // Inserting from V1 into V2 will be similar, except mask range will be [8,15]. 9556 9557 bool FoundCandidate = false; 9558 // Go through the mask of half-words to find an element that's being moved 9559 // from one vector to the other. 9560 for (unsigned i = 0; i < NumHalfWords; ++i) { 9561 unsigned MaskShift = (NumHalfWords - 1 - i) * 4; 9562 uint32_t MaskOneElt = (Mask >> MaskShift) & 0xF; 9563 uint32_t MaskOtherElts = ~(0xF << MaskShift); 9564 uint32_t TargetOrder = 0x0; 9565 9566 // If both vector operands for the shuffle are the same vector, the mask 9567 // will contain only elements from the first one and the second one will be 9568 // undef. 9569 if (V2.isUndef()) { 9570 ShiftElts = 0; 9571 unsigned VINSERTHSrcElem = IsLE ? 4 : 3; 9572 TargetOrder = OriginalOrderLow; 9573 Swap = false; 9574 // Skip if not the correct element or mask of other elements don't equal 9575 // to our expected order. 9576 if (MaskOneElt == VINSERTHSrcElem && 9577 (Mask & MaskOtherElts) == (TargetOrder & MaskOtherElts)) { 9578 InsertAtByte = IsLE ? BytesInVector - (i + 1) * 2 : i * 2; 9579 FoundCandidate = true; 9580 break; 9581 } 9582 } else { // If both operands are defined. 9583 // Target order is [8,15] if the current mask is between [0,7]. 9584 TargetOrder = 9585 (MaskOneElt < NumHalfWords) ? OriginalOrderHigh : OriginalOrderLow; 9586 // Skip if mask of other elements don't equal our expected order. 9587 if ((Mask & MaskOtherElts) == (TargetOrder & MaskOtherElts)) { 9588 // We only need the last 3 bits for the number of shifts. 9589 ShiftElts = IsLE ? LittleEndianShifts[MaskOneElt & 0x7] 9590 : BigEndianShifts[MaskOneElt & 0x7]; 9591 InsertAtByte = IsLE ? BytesInVector - (i + 1) * 2 : i * 2; 9592 Swap = MaskOneElt < NumHalfWords; 9593 FoundCandidate = true; 9594 break; 9595 } 9596 } 9597 } 9598 9599 if (!FoundCandidate) 9600 return SDValue(); 9601 9602 // Candidate found, construct the proper SDAG sequence with VINSERTH, 9603 // optionally with VECSHL if shift is required. 9604 if (Swap) 9605 std::swap(V1, V2); 9606 if (V2.isUndef()) 9607 V2 = V1; 9608 SDValue Conv1 = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V1); 9609 if (ShiftElts) { 9610 // Double ShiftElts because we're left shifting on v16i8 type. 9611 SDValue Shl = DAG.getNode(PPCISD::VECSHL, dl, MVT::v16i8, V2, V2, 9612 DAG.getConstant(2 * ShiftElts, dl, MVT::i32)); 9613 SDValue Conv2 = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, Shl); 9614 SDValue Ins = DAG.getNode(PPCISD::VECINSERT, dl, MVT::v8i16, Conv1, Conv2, 9615 DAG.getConstant(InsertAtByte, dl, MVT::i32)); 9616 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Ins); 9617 } 9618 SDValue Conv2 = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V2); 9619 SDValue Ins = DAG.getNode(PPCISD::VECINSERT, dl, MVT::v8i16, Conv1, Conv2, 9620 DAG.getConstant(InsertAtByte, dl, MVT::i32)); 9621 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Ins); 9622 } 9623 9624 /// lowerToXXSPLTI32DX - Return the SDValue if this VECTOR_SHUFFLE can be 9625 /// handled by the XXSPLTI32DX instruction introduced in ISA 3.1, otherwise 9626 /// return the default SDValue. 9627 SDValue PPCTargetLowering::lowerToXXSPLTI32DX(ShuffleVectorSDNode *SVN, 9628 SelectionDAG &DAG) const { 9629 // The LHS and RHS may be bitcasts to v16i8 as we canonicalize shuffles 9630 // to v16i8. Peek through the bitcasts to get the actual operands. 9631 SDValue LHS = peekThroughBitcasts(SVN->getOperand(0)); 9632 SDValue RHS = peekThroughBitcasts(SVN->getOperand(1)); 9633 9634 auto ShuffleMask = SVN->getMask(); 9635 SDValue VecShuffle(SVN, 0); 9636 SDLoc DL(SVN); 9637 9638 // Check that we have a four byte shuffle. 9639 if (!isNByteElemShuffleMask(SVN, 4, 1)) 9640 return SDValue(); 9641 9642 // Canonicalize the RHS being a BUILD_VECTOR when lowering to xxsplti32dx. 9643 if (RHS->getOpcode() != ISD::BUILD_VECTOR) { 9644 std::swap(LHS, RHS); 9645 VecShuffle = DAG.getCommutedVectorShuffle(*SVN); 9646 ShuffleMask = cast<ShuffleVectorSDNode>(VecShuffle)->getMask(); 9647 } 9648 9649 // Ensure that the RHS is a vector of constants. 9650 BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(RHS.getNode()); 9651 if (!BVN) 9652 return SDValue(); 9653 9654 // Check if RHS is a splat of 4-bytes (or smaller). 9655 APInt APSplatValue, APSplatUndef; 9656 unsigned SplatBitSize; 9657 bool HasAnyUndefs; 9658 if (!BVN->isConstantSplat(APSplatValue, APSplatUndef, SplatBitSize, 9659 HasAnyUndefs, 0, !Subtarget.isLittleEndian()) || 9660 SplatBitSize > 32) 9661 return SDValue(); 9662 9663 // Check that the shuffle mask matches the semantics of XXSPLTI32DX. 9664 // The instruction splats a constant C into two words of the source vector 9665 // producing { C, Unchanged, C, Unchanged } or { Unchanged, C, Unchanged, C }. 9666 // Thus we check that the shuffle mask is the equivalent of 9667 // <0, [4-7], 2, [4-7]> or <[4-7], 1, [4-7], 3> respectively. 9668 // Note: the check above of isNByteElemShuffleMask() ensures that the bytes 9669 // within each word are consecutive, so we only need to check the first byte. 9670 SDValue Index; 9671 bool IsLE = Subtarget.isLittleEndian(); 9672 if ((ShuffleMask[0] == 0 && ShuffleMask[8] == 8) && 9673 (ShuffleMask[4] % 4 == 0 && ShuffleMask[12] % 4 == 0 && 9674 ShuffleMask[4] > 15 && ShuffleMask[12] > 15)) 9675 Index = DAG.getTargetConstant(IsLE ? 0 : 1, DL, MVT::i32); 9676 else if ((ShuffleMask[4] == 4 && ShuffleMask[12] == 12) && 9677 (ShuffleMask[0] % 4 == 0 && ShuffleMask[8] % 4 == 0 && 9678 ShuffleMask[0] > 15 && ShuffleMask[8] > 15)) 9679 Index = DAG.getTargetConstant(IsLE ? 1 : 0, DL, MVT::i32); 9680 else 9681 return SDValue(); 9682 9683 // If the splat is narrower than 32-bits, we need to get the 32-bit value 9684 // for XXSPLTI32DX. 9685 unsigned SplatVal = APSplatValue.getZExtValue(); 9686 for (; SplatBitSize < 32; SplatBitSize <<= 1) 9687 SplatVal |= (SplatVal << SplatBitSize); 9688 9689 SDValue SplatNode = DAG.getNode( 9690 PPCISD::XXSPLTI32DX, DL, MVT::v2i64, DAG.getBitcast(MVT::v2i64, LHS), 9691 Index, DAG.getTargetConstant(SplatVal, DL, MVT::i32)); 9692 return DAG.getNode(ISD::BITCAST, DL, MVT::v16i8, SplatNode); 9693 } 9694 9695 /// LowerROTL - Custom lowering for ROTL(v1i128) to vector_shuffle(v16i8). 9696 /// We lower ROTL(v1i128) to vector_shuffle(v16i8) only if shift amount is 9697 /// a multiple of 8. Otherwise convert it to a scalar rotation(i128) 9698 /// i.e (or (shl x, C1), (srl x, 128-C1)). 9699 SDValue PPCTargetLowering::LowerROTL(SDValue Op, SelectionDAG &DAG) const { 9700 assert(Op.getOpcode() == ISD::ROTL && "Should only be called for ISD::ROTL"); 9701 assert(Op.getValueType() == MVT::v1i128 && 9702 "Only set v1i128 as custom, other type shouldn't reach here!"); 9703 SDLoc dl(Op); 9704 SDValue N0 = peekThroughBitcasts(Op.getOperand(0)); 9705 SDValue N1 = peekThroughBitcasts(Op.getOperand(1)); 9706 unsigned SHLAmt = N1.getConstantOperandVal(0); 9707 if (SHLAmt % 8 == 0) { 9708 SmallVector<int, 16> Mask(16, 0); 9709 std::iota(Mask.begin(), Mask.end(), 0); 9710 std::rotate(Mask.begin(), Mask.begin() + SHLAmt / 8, Mask.end()); 9711 if (SDValue Shuffle = 9712 DAG.getVectorShuffle(MVT::v16i8, dl, DAG.getBitcast(MVT::v16i8, N0), 9713 DAG.getUNDEF(MVT::v16i8), Mask)) 9714 return DAG.getNode(ISD::BITCAST, dl, MVT::v1i128, Shuffle); 9715 } 9716 SDValue ArgVal = DAG.getBitcast(MVT::i128, N0); 9717 SDValue SHLOp = DAG.getNode(ISD::SHL, dl, MVT::i128, ArgVal, 9718 DAG.getConstant(SHLAmt, dl, MVT::i32)); 9719 SDValue SRLOp = DAG.getNode(ISD::SRL, dl, MVT::i128, ArgVal, 9720 DAG.getConstant(128 - SHLAmt, dl, MVT::i32)); 9721 SDValue OROp = DAG.getNode(ISD::OR, dl, MVT::i128, SHLOp, SRLOp); 9722 return DAG.getNode(ISD::BITCAST, dl, MVT::v1i128, OROp); 9723 } 9724 9725 /// LowerVECTOR_SHUFFLE - Return the code we lower for VECTOR_SHUFFLE. If this 9726 /// is a shuffle we can handle in a single instruction, return it. Otherwise, 9727 /// return the code it can be lowered into. Worst case, it can always be 9728 /// lowered into a vperm. 9729 SDValue PPCTargetLowering::LowerVECTOR_SHUFFLE(SDValue Op, 9730 SelectionDAG &DAG) const { 9731 SDLoc dl(Op); 9732 SDValue V1 = Op.getOperand(0); 9733 SDValue V2 = Op.getOperand(1); 9734 ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op); 9735 9736 // Any nodes that were combined in the target-independent combiner prior 9737 // to vector legalization will not be sent to the target combine. Try to 9738 // combine it here. 9739 if (SDValue NewShuffle = combineVectorShuffle(SVOp, DAG)) { 9740 if (!isa<ShuffleVectorSDNode>(NewShuffle)) 9741 return NewShuffle; 9742 Op = NewShuffle; 9743 SVOp = cast<ShuffleVectorSDNode>(Op); 9744 V1 = Op.getOperand(0); 9745 V2 = Op.getOperand(1); 9746 } 9747 EVT VT = Op.getValueType(); 9748 bool isLittleEndian = Subtarget.isLittleEndian(); 9749 9750 unsigned ShiftElts, InsertAtByte; 9751 bool Swap = false; 9752 9753 // If this is a load-and-splat, we can do that with a single instruction 9754 // in some cases. However if the load has multiple uses, we don't want to 9755 // combine it because that will just produce multiple loads. 9756 bool IsPermutedLoad = false; 9757 const SDValue *InputLoad = getNormalLoadInput(V1, IsPermutedLoad); 9758 if (InputLoad && Subtarget.hasVSX() && V2.isUndef() && 9759 (PPC::isSplatShuffleMask(SVOp, 4) || PPC::isSplatShuffleMask(SVOp, 8)) && 9760 InputLoad->hasOneUse()) { 9761 bool IsFourByte = PPC::isSplatShuffleMask(SVOp, 4); 9762 int SplatIdx = 9763 PPC::getSplatIdxForPPCMnemonics(SVOp, IsFourByte ? 4 : 8, DAG); 9764 9765 // The splat index for permuted loads will be in the left half of the vector 9766 // which is strictly wider than the loaded value by 8 bytes. So we need to 9767 // adjust the splat index to point to the correct address in memory. 9768 if (IsPermutedLoad) { 9769 assert((isLittleEndian || IsFourByte) && 9770 "Unexpected size for permuted load on big endian target"); 9771 SplatIdx += IsFourByte ? 2 : 1; 9772 assert((SplatIdx < (IsFourByte ? 4 : 2)) && 9773 "Splat of a value outside of the loaded memory"); 9774 } 9775 9776 LoadSDNode *LD = cast<LoadSDNode>(*InputLoad); 9777 // For 4-byte load-and-splat, we need Power9. 9778 if ((IsFourByte && Subtarget.hasP9Vector()) || !IsFourByte) { 9779 uint64_t Offset = 0; 9780 if (IsFourByte) 9781 Offset = isLittleEndian ? (3 - SplatIdx) * 4 : SplatIdx * 4; 9782 else 9783 Offset = isLittleEndian ? (1 - SplatIdx) * 8 : SplatIdx * 8; 9784 9785 // If the width of the load is the same as the width of the splat, 9786 // loading with an offset would load the wrong memory. 9787 if (LD->getValueType(0).getSizeInBits() == (IsFourByte ? 32 : 64)) 9788 Offset = 0; 9789 9790 SDValue BasePtr = LD->getBasePtr(); 9791 if (Offset != 0) 9792 BasePtr = DAG.getNode(ISD::ADD, dl, getPointerTy(DAG.getDataLayout()), 9793 BasePtr, DAG.getIntPtrConstant(Offset, dl)); 9794 SDValue Ops[] = { 9795 LD->getChain(), // Chain 9796 BasePtr, // BasePtr 9797 DAG.getValueType(Op.getValueType()) // VT 9798 }; 9799 SDVTList VTL = 9800 DAG.getVTList(IsFourByte ? MVT::v4i32 : MVT::v2i64, MVT::Other); 9801 SDValue LdSplt = 9802 DAG.getMemIntrinsicNode(PPCISD::LD_SPLAT, dl, VTL, 9803 Ops, LD->getMemoryVT(), LD->getMemOperand()); 9804 DAG.ReplaceAllUsesOfValueWith(InputLoad->getValue(1), LdSplt.getValue(1)); 9805 if (LdSplt.getValueType() != SVOp->getValueType(0)) 9806 LdSplt = DAG.getBitcast(SVOp->getValueType(0), LdSplt); 9807 return LdSplt; 9808 } 9809 } 9810 if (Subtarget.hasP9Vector() && 9811 PPC::isXXINSERTWMask(SVOp, ShiftElts, InsertAtByte, Swap, 9812 isLittleEndian)) { 9813 if (Swap) 9814 std::swap(V1, V2); 9815 SDValue Conv1 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V1); 9816 SDValue Conv2 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V2); 9817 if (ShiftElts) { 9818 SDValue Shl = DAG.getNode(PPCISD::VECSHL, dl, MVT::v4i32, Conv2, Conv2, 9819 DAG.getConstant(ShiftElts, dl, MVT::i32)); 9820 SDValue Ins = DAG.getNode(PPCISD::VECINSERT, dl, MVT::v4i32, Conv1, Shl, 9821 DAG.getConstant(InsertAtByte, dl, MVT::i32)); 9822 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Ins); 9823 } 9824 SDValue Ins = DAG.getNode(PPCISD::VECINSERT, dl, MVT::v4i32, Conv1, Conv2, 9825 DAG.getConstant(InsertAtByte, dl, MVT::i32)); 9826 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Ins); 9827 } 9828 9829 if (Subtarget.hasPrefixInstrs()) { 9830 SDValue SplatInsertNode; 9831 if ((SplatInsertNode = lowerToXXSPLTI32DX(SVOp, DAG))) 9832 return SplatInsertNode; 9833 } 9834 9835 if (Subtarget.hasP9Altivec()) { 9836 SDValue NewISDNode; 9837 if ((NewISDNode = lowerToVINSERTH(SVOp, DAG))) 9838 return NewISDNode; 9839 9840 if ((NewISDNode = lowerToVINSERTB(SVOp, DAG))) 9841 return NewISDNode; 9842 } 9843 9844 if (Subtarget.hasVSX() && 9845 PPC::isXXSLDWIShuffleMask(SVOp, ShiftElts, Swap, isLittleEndian)) { 9846 if (Swap) 9847 std::swap(V1, V2); 9848 SDValue Conv1 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V1); 9849 SDValue Conv2 = 9850 DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V2.isUndef() ? V1 : V2); 9851 9852 SDValue Shl = DAG.getNode(PPCISD::VECSHL, dl, MVT::v4i32, Conv1, Conv2, 9853 DAG.getConstant(ShiftElts, dl, MVT::i32)); 9854 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Shl); 9855 } 9856 9857 if (Subtarget.hasVSX() && 9858 PPC::isXXPERMDIShuffleMask(SVOp, ShiftElts, Swap, isLittleEndian)) { 9859 if (Swap) 9860 std::swap(V1, V2); 9861 SDValue Conv1 = DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, V1); 9862 SDValue Conv2 = 9863 DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, V2.isUndef() ? V1 : V2); 9864 9865 SDValue PermDI = DAG.getNode(PPCISD::XXPERMDI, dl, MVT::v2i64, Conv1, Conv2, 9866 DAG.getConstant(ShiftElts, dl, MVT::i32)); 9867 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, PermDI); 9868 } 9869 9870 if (Subtarget.hasP9Vector()) { 9871 if (PPC::isXXBRHShuffleMask(SVOp)) { 9872 SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V1); 9873 SDValue ReveHWord = DAG.getNode(ISD::BSWAP, dl, MVT::v8i16, Conv); 9874 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, ReveHWord); 9875 } else if (PPC::isXXBRWShuffleMask(SVOp)) { 9876 SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V1); 9877 SDValue ReveWord = DAG.getNode(ISD::BSWAP, dl, MVT::v4i32, Conv); 9878 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, ReveWord); 9879 } else if (PPC::isXXBRDShuffleMask(SVOp)) { 9880 SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, V1); 9881 SDValue ReveDWord = DAG.getNode(ISD::BSWAP, dl, MVT::v2i64, Conv); 9882 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, ReveDWord); 9883 } else if (PPC::isXXBRQShuffleMask(SVOp)) { 9884 SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v1i128, V1); 9885 SDValue ReveQWord = DAG.getNode(ISD::BSWAP, dl, MVT::v1i128, Conv); 9886 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, ReveQWord); 9887 } 9888 } 9889 9890 if (Subtarget.hasVSX()) { 9891 if (V2.isUndef() && PPC::isSplatShuffleMask(SVOp, 4)) { 9892 int SplatIdx = PPC::getSplatIdxForPPCMnemonics(SVOp, 4, DAG); 9893 9894 SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V1); 9895 SDValue Splat = DAG.getNode(PPCISD::XXSPLT, dl, MVT::v4i32, Conv, 9896 DAG.getConstant(SplatIdx, dl, MVT::i32)); 9897 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Splat); 9898 } 9899 9900 // Left shifts of 8 bytes are actually swaps. Convert accordingly. 9901 if (V2.isUndef() && PPC::isVSLDOIShuffleMask(SVOp, 1, DAG) == 8) { 9902 SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, V1); 9903 SDValue Swap = DAG.getNode(PPCISD::SWAP_NO_CHAIN, dl, MVT::v2f64, Conv); 9904 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Swap); 9905 } 9906 } 9907 9908 // Cases that are handled by instructions that take permute immediates 9909 // (such as vsplt*) should be left as VECTOR_SHUFFLE nodes so they can be 9910 // selected by the instruction selector. 9911 if (V2.isUndef()) { 9912 if (PPC::isSplatShuffleMask(SVOp, 1) || 9913 PPC::isSplatShuffleMask(SVOp, 2) || 9914 PPC::isSplatShuffleMask(SVOp, 4) || 9915 PPC::isVPKUWUMShuffleMask(SVOp, 1, DAG) || 9916 PPC::isVPKUHUMShuffleMask(SVOp, 1, DAG) || 9917 PPC::isVSLDOIShuffleMask(SVOp, 1, DAG) != -1 || 9918 PPC::isVMRGLShuffleMask(SVOp, 1, 1, DAG) || 9919 PPC::isVMRGLShuffleMask(SVOp, 2, 1, DAG) || 9920 PPC::isVMRGLShuffleMask(SVOp, 4, 1, DAG) || 9921 PPC::isVMRGHShuffleMask(SVOp, 1, 1, DAG) || 9922 PPC::isVMRGHShuffleMask(SVOp, 2, 1, DAG) || 9923 PPC::isVMRGHShuffleMask(SVOp, 4, 1, DAG) || 9924 (Subtarget.hasP8Altivec() && ( 9925 PPC::isVPKUDUMShuffleMask(SVOp, 1, DAG) || 9926 PPC::isVMRGEOShuffleMask(SVOp, true, 1, DAG) || 9927 PPC::isVMRGEOShuffleMask(SVOp, false, 1, DAG)))) { 9928 return Op; 9929 } 9930 } 9931 9932 // Altivec has a variety of "shuffle immediates" that take two vector inputs 9933 // and produce a fixed permutation. If any of these match, do not lower to 9934 // VPERM. 9935 unsigned int ShuffleKind = isLittleEndian ? 2 : 0; 9936 if (PPC::isVPKUWUMShuffleMask(SVOp, ShuffleKind, DAG) || 9937 PPC::isVPKUHUMShuffleMask(SVOp, ShuffleKind, DAG) || 9938 PPC::isVSLDOIShuffleMask(SVOp, ShuffleKind, DAG) != -1 || 9939 PPC::isVMRGLShuffleMask(SVOp, 1, ShuffleKind, DAG) || 9940 PPC::isVMRGLShuffleMask(SVOp, 2, ShuffleKind, DAG) || 9941 PPC::isVMRGLShuffleMask(SVOp, 4, ShuffleKind, DAG) || 9942 PPC::isVMRGHShuffleMask(SVOp, 1, ShuffleKind, DAG) || 9943 PPC::isVMRGHShuffleMask(SVOp, 2, ShuffleKind, DAG) || 9944 PPC::isVMRGHShuffleMask(SVOp, 4, ShuffleKind, DAG) || 9945 (Subtarget.hasP8Altivec() && ( 9946 PPC::isVPKUDUMShuffleMask(SVOp, ShuffleKind, DAG) || 9947 PPC::isVMRGEOShuffleMask(SVOp, true, ShuffleKind, DAG) || 9948 PPC::isVMRGEOShuffleMask(SVOp, false, ShuffleKind, DAG)))) 9949 return Op; 9950 9951 // Check to see if this is a shuffle of 4-byte values. If so, we can use our 9952 // perfect shuffle table to emit an optimal matching sequence. 9953 ArrayRef<int> PermMask = SVOp->getMask(); 9954 9955 unsigned PFIndexes[4]; 9956 bool isFourElementShuffle = true; 9957 for (unsigned i = 0; i != 4 && isFourElementShuffle; ++i) { // Element number 9958 unsigned EltNo = 8; // Start out undef. 9959 for (unsigned j = 0; j != 4; ++j) { // Intra-element byte. 9960 if (PermMask[i*4+j] < 0) 9961 continue; // Undef, ignore it. 9962 9963 unsigned ByteSource = PermMask[i*4+j]; 9964 if ((ByteSource & 3) != j) { 9965 isFourElementShuffle = false; 9966 break; 9967 } 9968 9969 if (EltNo == 8) { 9970 EltNo = ByteSource/4; 9971 } else if (EltNo != ByteSource/4) { 9972 isFourElementShuffle = false; 9973 break; 9974 } 9975 } 9976 PFIndexes[i] = EltNo; 9977 } 9978 9979 // If this shuffle can be expressed as a shuffle of 4-byte elements, use the 9980 // perfect shuffle vector to determine if it is cost effective to do this as 9981 // discrete instructions, or whether we should use a vperm. 9982 // For now, we skip this for little endian until such time as we have a 9983 // little-endian perfect shuffle table. 9984 if (isFourElementShuffle && !isLittleEndian) { 9985 // Compute the index in the perfect shuffle table. 9986 unsigned PFTableIndex = 9987 PFIndexes[0]*9*9*9+PFIndexes[1]*9*9+PFIndexes[2]*9+PFIndexes[3]; 9988 9989 unsigned PFEntry = PerfectShuffleTable[PFTableIndex]; 9990 unsigned Cost = (PFEntry >> 30); 9991 9992 // Determining when to avoid vperm is tricky. Many things affect the cost 9993 // of vperm, particularly how many times the perm mask needs to be computed. 9994 // For example, if the perm mask can be hoisted out of a loop or is already 9995 // used (perhaps because there are multiple permutes with the same shuffle 9996 // mask?) the vperm has a cost of 1. OTOH, hoisting the permute mask out of 9997 // the loop requires an extra register. 9998 // 9999 // As a compromise, we only emit discrete instructions if the shuffle can be 10000 // generated in 3 or fewer operations. When we have loop information 10001 // available, if this block is within a loop, we should avoid using vperm 10002 // for 3-operation perms and use a constant pool load instead. 10003 if (Cost < 3) 10004 return GeneratePerfectShuffle(PFEntry, V1, V2, DAG, dl); 10005 } 10006 10007 // Lower this to a VPERM(V1, V2, V3) expression, where V3 is a constant 10008 // vector that will get spilled to the constant pool. 10009 if (V2.isUndef()) V2 = V1; 10010 10011 // The SHUFFLE_VECTOR mask is almost exactly what we want for vperm, except 10012 // that it is in input element units, not in bytes. Convert now. 10013 10014 // For little endian, the order of the input vectors is reversed, and 10015 // the permutation mask is complemented with respect to 31. This is 10016 // necessary to produce proper semantics with the big-endian-biased vperm 10017 // instruction. 10018 EVT EltVT = V1.getValueType().getVectorElementType(); 10019 unsigned BytesPerElement = EltVT.getSizeInBits()/8; 10020 10021 SmallVector<SDValue, 16> ResultMask; 10022 for (unsigned i = 0, e = VT.getVectorNumElements(); i != e; ++i) { 10023 unsigned SrcElt = PermMask[i] < 0 ? 0 : PermMask[i]; 10024 10025 for (unsigned j = 0; j != BytesPerElement; ++j) 10026 if (isLittleEndian) 10027 ResultMask.push_back(DAG.getConstant(31 - (SrcElt*BytesPerElement + j), 10028 dl, MVT::i32)); 10029 else 10030 ResultMask.push_back(DAG.getConstant(SrcElt*BytesPerElement + j, dl, 10031 MVT::i32)); 10032 } 10033 10034 ShufflesHandledWithVPERM++; 10035 SDValue VPermMask = DAG.getBuildVector(MVT::v16i8, dl, ResultMask); 10036 LLVM_DEBUG(dbgs() << "Emitting a VPERM for the following shuffle:\n"); 10037 LLVM_DEBUG(SVOp->dump()); 10038 LLVM_DEBUG(dbgs() << "With the following permute control vector:\n"); 10039 LLVM_DEBUG(VPermMask.dump()); 10040 10041 if (isLittleEndian) 10042 return DAG.getNode(PPCISD::VPERM, dl, V1.getValueType(), 10043 V2, V1, VPermMask); 10044 else 10045 return DAG.getNode(PPCISD::VPERM, dl, V1.getValueType(), 10046 V1, V2, VPermMask); 10047 } 10048 10049 /// getVectorCompareInfo - Given an intrinsic, return false if it is not a 10050 /// vector comparison. If it is, return true and fill in Opc/isDot with 10051 /// information about the intrinsic. 10052 static bool getVectorCompareInfo(SDValue Intrin, int &CompareOpc, 10053 bool &isDot, const PPCSubtarget &Subtarget) { 10054 unsigned IntrinsicID = 10055 cast<ConstantSDNode>(Intrin.getOperand(0))->getZExtValue(); 10056 CompareOpc = -1; 10057 isDot = false; 10058 switch (IntrinsicID) { 10059 default: 10060 return false; 10061 // Comparison predicates. 10062 case Intrinsic::ppc_altivec_vcmpbfp_p: 10063 CompareOpc = 966; 10064 isDot = true; 10065 break; 10066 case Intrinsic::ppc_altivec_vcmpeqfp_p: 10067 CompareOpc = 198; 10068 isDot = true; 10069 break; 10070 case Intrinsic::ppc_altivec_vcmpequb_p: 10071 CompareOpc = 6; 10072 isDot = true; 10073 break; 10074 case Intrinsic::ppc_altivec_vcmpequh_p: 10075 CompareOpc = 70; 10076 isDot = true; 10077 break; 10078 case Intrinsic::ppc_altivec_vcmpequw_p: 10079 CompareOpc = 134; 10080 isDot = true; 10081 break; 10082 case Intrinsic::ppc_altivec_vcmpequd_p: 10083 if (Subtarget.hasVSX() || Subtarget.hasP8Altivec()) { 10084 CompareOpc = 199; 10085 isDot = true; 10086 } else 10087 return false; 10088 break; 10089 case Intrinsic::ppc_altivec_vcmpneb_p: 10090 case Intrinsic::ppc_altivec_vcmpneh_p: 10091 case Intrinsic::ppc_altivec_vcmpnew_p: 10092 case Intrinsic::ppc_altivec_vcmpnezb_p: 10093 case Intrinsic::ppc_altivec_vcmpnezh_p: 10094 case Intrinsic::ppc_altivec_vcmpnezw_p: 10095 if (Subtarget.hasP9Altivec()) { 10096 switch (IntrinsicID) { 10097 default: 10098 llvm_unreachable("Unknown comparison intrinsic."); 10099 case Intrinsic::ppc_altivec_vcmpneb_p: 10100 CompareOpc = 7; 10101 break; 10102 case Intrinsic::ppc_altivec_vcmpneh_p: 10103 CompareOpc = 71; 10104 break; 10105 case Intrinsic::ppc_altivec_vcmpnew_p: 10106 CompareOpc = 135; 10107 break; 10108 case Intrinsic::ppc_altivec_vcmpnezb_p: 10109 CompareOpc = 263; 10110 break; 10111 case Intrinsic::ppc_altivec_vcmpnezh_p: 10112 CompareOpc = 327; 10113 break; 10114 case Intrinsic::ppc_altivec_vcmpnezw_p: 10115 CompareOpc = 391; 10116 break; 10117 } 10118 isDot = true; 10119 } else 10120 return false; 10121 break; 10122 case Intrinsic::ppc_altivec_vcmpgefp_p: 10123 CompareOpc = 454; 10124 isDot = true; 10125 break; 10126 case Intrinsic::ppc_altivec_vcmpgtfp_p: 10127 CompareOpc = 710; 10128 isDot = true; 10129 break; 10130 case Intrinsic::ppc_altivec_vcmpgtsb_p: 10131 CompareOpc = 774; 10132 isDot = true; 10133 break; 10134 case Intrinsic::ppc_altivec_vcmpgtsh_p: 10135 CompareOpc = 838; 10136 isDot = true; 10137 break; 10138 case Intrinsic::ppc_altivec_vcmpgtsw_p: 10139 CompareOpc = 902; 10140 isDot = true; 10141 break; 10142 case Intrinsic::ppc_altivec_vcmpgtsd_p: 10143 if (Subtarget.hasVSX() || Subtarget.hasP8Altivec()) { 10144 CompareOpc = 967; 10145 isDot = true; 10146 } else 10147 return false; 10148 break; 10149 case Intrinsic::ppc_altivec_vcmpgtub_p: 10150 CompareOpc = 518; 10151 isDot = true; 10152 break; 10153 case Intrinsic::ppc_altivec_vcmpgtuh_p: 10154 CompareOpc = 582; 10155 isDot = true; 10156 break; 10157 case Intrinsic::ppc_altivec_vcmpgtuw_p: 10158 CompareOpc = 646; 10159 isDot = true; 10160 break; 10161 case Intrinsic::ppc_altivec_vcmpgtud_p: 10162 if (Subtarget.hasVSX() || Subtarget.hasP8Altivec()) { 10163 CompareOpc = 711; 10164 isDot = true; 10165 } else 10166 return false; 10167 break; 10168 10169 case Intrinsic::ppc_altivec_vcmpequq: 10170 case Intrinsic::ppc_altivec_vcmpgtsq: 10171 case Intrinsic::ppc_altivec_vcmpgtuq: 10172 if (!Subtarget.isISA3_1()) 10173 return false; 10174 switch (IntrinsicID) { 10175 default: 10176 llvm_unreachable("Unknown comparison intrinsic."); 10177 case Intrinsic::ppc_altivec_vcmpequq: 10178 CompareOpc = 455; 10179 break; 10180 case Intrinsic::ppc_altivec_vcmpgtsq: 10181 CompareOpc = 903; 10182 break; 10183 case Intrinsic::ppc_altivec_vcmpgtuq: 10184 CompareOpc = 647; 10185 break; 10186 } 10187 break; 10188 10189 // VSX predicate comparisons use the same infrastructure 10190 case Intrinsic::ppc_vsx_xvcmpeqdp_p: 10191 case Intrinsic::ppc_vsx_xvcmpgedp_p: 10192 case Intrinsic::ppc_vsx_xvcmpgtdp_p: 10193 case Intrinsic::ppc_vsx_xvcmpeqsp_p: 10194 case Intrinsic::ppc_vsx_xvcmpgesp_p: 10195 case Intrinsic::ppc_vsx_xvcmpgtsp_p: 10196 if (Subtarget.hasVSX()) { 10197 switch (IntrinsicID) { 10198 case Intrinsic::ppc_vsx_xvcmpeqdp_p: 10199 CompareOpc = 99; 10200 break; 10201 case Intrinsic::ppc_vsx_xvcmpgedp_p: 10202 CompareOpc = 115; 10203 break; 10204 case Intrinsic::ppc_vsx_xvcmpgtdp_p: 10205 CompareOpc = 107; 10206 break; 10207 case Intrinsic::ppc_vsx_xvcmpeqsp_p: 10208 CompareOpc = 67; 10209 break; 10210 case Intrinsic::ppc_vsx_xvcmpgesp_p: 10211 CompareOpc = 83; 10212 break; 10213 case Intrinsic::ppc_vsx_xvcmpgtsp_p: 10214 CompareOpc = 75; 10215 break; 10216 } 10217 isDot = true; 10218 } else 10219 return false; 10220 break; 10221 10222 // Normal Comparisons. 10223 case Intrinsic::ppc_altivec_vcmpbfp: 10224 CompareOpc = 966; 10225 break; 10226 case Intrinsic::ppc_altivec_vcmpeqfp: 10227 CompareOpc = 198; 10228 break; 10229 case Intrinsic::ppc_altivec_vcmpequb: 10230 CompareOpc = 6; 10231 break; 10232 case Intrinsic::ppc_altivec_vcmpequh: 10233 CompareOpc = 70; 10234 break; 10235 case Intrinsic::ppc_altivec_vcmpequw: 10236 CompareOpc = 134; 10237 break; 10238 case Intrinsic::ppc_altivec_vcmpequd: 10239 if (Subtarget.hasP8Altivec()) 10240 CompareOpc = 199; 10241 else 10242 return false; 10243 break; 10244 case Intrinsic::ppc_altivec_vcmpneb: 10245 case Intrinsic::ppc_altivec_vcmpneh: 10246 case Intrinsic::ppc_altivec_vcmpnew: 10247 case Intrinsic::ppc_altivec_vcmpnezb: 10248 case Intrinsic::ppc_altivec_vcmpnezh: 10249 case Intrinsic::ppc_altivec_vcmpnezw: 10250 if (Subtarget.hasP9Altivec()) 10251 switch (IntrinsicID) { 10252 default: 10253 llvm_unreachable("Unknown comparison intrinsic."); 10254 case Intrinsic::ppc_altivec_vcmpneb: 10255 CompareOpc = 7; 10256 break; 10257 case Intrinsic::ppc_altivec_vcmpneh: 10258 CompareOpc = 71; 10259 break; 10260 case Intrinsic::ppc_altivec_vcmpnew: 10261 CompareOpc = 135; 10262 break; 10263 case Intrinsic::ppc_altivec_vcmpnezb: 10264 CompareOpc = 263; 10265 break; 10266 case Intrinsic::ppc_altivec_vcmpnezh: 10267 CompareOpc = 327; 10268 break; 10269 case Intrinsic::ppc_altivec_vcmpnezw: 10270 CompareOpc = 391; 10271 break; 10272 } 10273 else 10274 return false; 10275 break; 10276 case Intrinsic::ppc_altivec_vcmpgefp: 10277 CompareOpc = 454; 10278 break; 10279 case Intrinsic::ppc_altivec_vcmpgtfp: 10280 CompareOpc = 710; 10281 break; 10282 case Intrinsic::ppc_altivec_vcmpgtsb: 10283 CompareOpc = 774; 10284 break; 10285 case Intrinsic::ppc_altivec_vcmpgtsh: 10286 CompareOpc = 838; 10287 break; 10288 case Intrinsic::ppc_altivec_vcmpgtsw: 10289 CompareOpc = 902; 10290 break; 10291 case Intrinsic::ppc_altivec_vcmpgtsd: 10292 if (Subtarget.hasP8Altivec()) 10293 CompareOpc = 967; 10294 else 10295 return false; 10296 break; 10297 case Intrinsic::ppc_altivec_vcmpgtub: 10298 CompareOpc = 518; 10299 break; 10300 case Intrinsic::ppc_altivec_vcmpgtuh: 10301 CompareOpc = 582; 10302 break; 10303 case Intrinsic::ppc_altivec_vcmpgtuw: 10304 CompareOpc = 646; 10305 break; 10306 case Intrinsic::ppc_altivec_vcmpgtud: 10307 if (Subtarget.hasP8Altivec()) 10308 CompareOpc = 711; 10309 else 10310 return false; 10311 break; 10312 case Intrinsic::ppc_altivec_vcmpequq_p: 10313 case Intrinsic::ppc_altivec_vcmpgtsq_p: 10314 case Intrinsic::ppc_altivec_vcmpgtuq_p: 10315 if (!Subtarget.isISA3_1()) 10316 return false; 10317 switch (IntrinsicID) { 10318 default: 10319 llvm_unreachable("Unknown comparison intrinsic."); 10320 case Intrinsic::ppc_altivec_vcmpequq_p: 10321 CompareOpc = 455; 10322 break; 10323 case Intrinsic::ppc_altivec_vcmpgtsq_p: 10324 CompareOpc = 903; 10325 break; 10326 case Intrinsic::ppc_altivec_vcmpgtuq_p: 10327 CompareOpc = 647; 10328 break; 10329 } 10330 isDot = true; 10331 break; 10332 } 10333 return true; 10334 } 10335 10336 /// LowerINTRINSIC_WO_CHAIN - If this is an intrinsic that we want to custom 10337 /// lower, do it, otherwise return null. 10338 SDValue PPCTargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op, 10339 SelectionDAG &DAG) const { 10340 unsigned IntrinsicID = 10341 cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 10342 10343 SDLoc dl(Op); 10344 10345 switch (IntrinsicID) { 10346 case Intrinsic::thread_pointer: 10347 // Reads the thread pointer register, used for __builtin_thread_pointer. 10348 if (Subtarget.isPPC64()) 10349 return DAG.getRegister(PPC::X13, MVT::i64); 10350 return DAG.getRegister(PPC::R2, MVT::i32); 10351 10352 case Intrinsic::ppc_mma_disassemble_acc: 10353 case Intrinsic::ppc_vsx_disassemble_pair: { 10354 int NumVecs = 2; 10355 SDValue WideVec = Op.getOperand(1); 10356 if (IntrinsicID == Intrinsic::ppc_mma_disassemble_acc) { 10357 NumVecs = 4; 10358 WideVec = DAG.getNode(PPCISD::XXMFACC, dl, MVT::v512i1, WideVec); 10359 } 10360 SmallVector<SDValue, 4> RetOps; 10361 for (int VecNo = 0; VecNo < NumVecs; VecNo++) { 10362 SDValue Extract = DAG.getNode( 10363 PPCISD::EXTRACT_VSX_REG, dl, MVT::v16i8, WideVec, 10364 DAG.getConstant(Subtarget.isLittleEndian() ? NumVecs - 1 - VecNo 10365 : VecNo, 10366 dl, getPointerTy(DAG.getDataLayout()))); 10367 RetOps.push_back(Extract); 10368 } 10369 return DAG.getMergeValues(RetOps, dl); 10370 } 10371 } 10372 10373 // If this is a lowered altivec predicate compare, CompareOpc is set to the 10374 // opcode number of the comparison. 10375 int CompareOpc; 10376 bool isDot; 10377 if (!getVectorCompareInfo(Op, CompareOpc, isDot, Subtarget)) 10378 return SDValue(); // Don't custom lower most intrinsics. 10379 10380 // If this is a non-dot comparison, make the VCMP node and we are done. 10381 if (!isDot) { 10382 SDValue Tmp = DAG.getNode(PPCISD::VCMP, dl, Op.getOperand(2).getValueType(), 10383 Op.getOperand(1), Op.getOperand(2), 10384 DAG.getConstant(CompareOpc, dl, MVT::i32)); 10385 return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Tmp); 10386 } 10387 10388 // Create the PPCISD altivec 'dot' comparison node. 10389 SDValue Ops[] = { 10390 Op.getOperand(2), // LHS 10391 Op.getOperand(3), // RHS 10392 DAG.getConstant(CompareOpc, dl, MVT::i32) 10393 }; 10394 EVT VTs[] = { Op.getOperand(2).getValueType(), MVT::Glue }; 10395 SDValue CompNode = DAG.getNode(PPCISD::VCMP_rec, dl, VTs, Ops); 10396 10397 // Now that we have the comparison, emit a copy from the CR to a GPR. 10398 // This is flagged to the above dot comparison. 10399 SDValue Flags = DAG.getNode(PPCISD::MFOCRF, dl, MVT::i32, 10400 DAG.getRegister(PPC::CR6, MVT::i32), 10401 CompNode.getValue(1)); 10402 10403 // Unpack the result based on how the target uses it. 10404 unsigned BitNo; // Bit # of CR6. 10405 bool InvertBit; // Invert result? 10406 switch (cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue()) { 10407 default: // Can't happen, don't crash on invalid number though. 10408 case 0: // Return the value of the EQ bit of CR6. 10409 BitNo = 0; InvertBit = false; 10410 break; 10411 case 1: // Return the inverted value of the EQ bit of CR6. 10412 BitNo = 0; InvertBit = true; 10413 break; 10414 case 2: // Return the value of the LT bit of CR6. 10415 BitNo = 2; InvertBit = false; 10416 break; 10417 case 3: // Return the inverted value of the LT bit of CR6. 10418 BitNo = 2; InvertBit = true; 10419 break; 10420 } 10421 10422 // Shift the bit into the low position. 10423 Flags = DAG.getNode(ISD::SRL, dl, MVT::i32, Flags, 10424 DAG.getConstant(8 - (3 - BitNo), dl, MVT::i32)); 10425 // Isolate the bit. 10426 Flags = DAG.getNode(ISD::AND, dl, MVT::i32, Flags, 10427 DAG.getConstant(1, dl, MVT::i32)); 10428 10429 // If we are supposed to, toggle the bit. 10430 if (InvertBit) 10431 Flags = DAG.getNode(ISD::XOR, dl, MVT::i32, Flags, 10432 DAG.getConstant(1, dl, MVT::i32)); 10433 return Flags; 10434 } 10435 10436 SDValue PPCTargetLowering::LowerINTRINSIC_VOID(SDValue Op, 10437 SelectionDAG &DAG) const { 10438 // SelectionDAGBuilder::visitTargetIntrinsic may insert one extra chain to 10439 // the beginning of the argument list. 10440 int ArgStart = isa<ConstantSDNode>(Op.getOperand(0)) ? 0 : 1; 10441 SDLoc DL(Op); 10442 switch (cast<ConstantSDNode>(Op.getOperand(ArgStart))->getZExtValue()) { 10443 case Intrinsic::ppc_cfence: { 10444 assert(ArgStart == 1 && "llvm.ppc.cfence must carry a chain argument."); 10445 assert(Subtarget.isPPC64() && "Only 64-bit is supported for now."); 10446 return SDValue(DAG.getMachineNode(PPC::CFENCE8, DL, MVT::Other, 10447 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, 10448 Op.getOperand(ArgStart + 1)), 10449 Op.getOperand(0)), 10450 0); 10451 } 10452 default: 10453 break; 10454 } 10455 return SDValue(); 10456 } 10457 10458 // Lower scalar BSWAP64 to xxbrd. 10459 SDValue PPCTargetLowering::LowerBSWAP(SDValue Op, SelectionDAG &DAG) const { 10460 SDLoc dl(Op); 10461 if (!Subtarget.isPPC64()) 10462 return Op; 10463 // MTVSRDD 10464 Op = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v2i64, Op.getOperand(0), 10465 Op.getOperand(0)); 10466 // XXBRD 10467 Op = DAG.getNode(ISD::BSWAP, dl, MVT::v2i64, Op); 10468 // MFVSRD 10469 int VectorIndex = 0; 10470 if (Subtarget.isLittleEndian()) 10471 VectorIndex = 1; 10472 Op = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i64, Op, 10473 DAG.getTargetConstant(VectorIndex, dl, MVT::i32)); 10474 return Op; 10475 } 10476 10477 // ATOMIC_CMP_SWAP for i8/i16 needs to zero-extend its input since it will be 10478 // compared to a value that is atomically loaded (atomic loads zero-extend). 10479 SDValue PPCTargetLowering::LowerATOMIC_CMP_SWAP(SDValue Op, 10480 SelectionDAG &DAG) const { 10481 assert(Op.getOpcode() == ISD::ATOMIC_CMP_SWAP && 10482 "Expecting an atomic compare-and-swap here."); 10483 SDLoc dl(Op); 10484 auto *AtomicNode = cast<AtomicSDNode>(Op.getNode()); 10485 EVT MemVT = AtomicNode->getMemoryVT(); 10486 if (MemVT.getSizeInBits() >= 32) 10487 return Op; 10488 10489 SDValue CmpOp = Op.getOperand(2); 10490 // If this is already correctly zero-extended, leave it alone. 10491 auto HighBits = APInt::getHighBitsSet(32, 32 - MemVT.getSizeInBits()); 10492 if (DAG.MaskedValueIsZero(CmpOp, HighBits)) 10493 return Op; 10494 10495 // Clear the high bits of the compare operand. 10496 unsigned MaskVal = (1 << MemVT.getSizeInBits()) - 1; 10497 SDValue NewCmpOp = 10498 DAG.getNode(ISD::AND, dl, MVT::i32, CmpOp, 10499 DAG.getConstant(MaskVal, dl, MVT::i32)); 10500 10501 // Replace the existing compare operand with the properly zero-extended one. 10502 SmallVector<SDValue, 4> Ops; 10503 for (int i = 0, e = AtomicNode->getNumOperands(); i < e; i++) 10504 Ops.push_back(AtomicNode->getOperand(i)); 10505 Ops[2] = NewCmpOp; 10506 MachineMemOperand *MMO = AtomicNode->getMemOperand(); 10507 SDVTList Tys = DAG.getVTList(MVT::i32, MVT::Other); 10508 auto NodeTy = 10509 (MemVT == MVT::i8) ? PPCISD::ATOMIC_CMP_SWAP_8 : PPCISD::ATOMIC_CMP_SWAP_16; 10510 return DAG.getMemIntrinsicNode(NodeTy, dl, Tys, Ops, MemVT, MMO); 10511 } 10512 10513 SDValue PPCTargetLowering::LowerSCALAR_TO_VECTOR(SDValue Op, 10514 SelectionDAG &DAG) const { 10515 SDLoc dl(Op); 10516 // Create a stack slot that is 16-byte aligned. 10517 MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); 10518 int FrameIdx = MFI.CreateStackObject(16, Align(16), false); 10519 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 10520 SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT); 10521 10522 // Store the input value into Value#0 of the stack slot. 10523 SDValue Store = DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0), FIdx, 10524 MachinePointerInfo()); 10525 // Load it out. 10526 return DAG.getLoad(Op.getValueType(), dl, Store, FIdx, MachinePointerInfo()); 10527 } 10528 10529 SDValue PPCTargetLowering::LowerINSERT_VECTOR_ELT(SDValue Op, 10530 SelectionDAG &DAG) const { 10531 assert(Op.getOpcode() == ISD::INSERT_VECTOR_ELT && 10532 "Should only be called for ISD::INSERT_VECTOR_ELT"); 10533 10534 ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(2)); 10535 10536 EVT VT = Op.getValueType(); 10537 SDLoc dl(Op); 10538 SDValue V1 = Op.getOperand(0); 10539 SDValue V2 = Op.getOperand(1); 10540 SDValue V3 = Op.getOperand(2); 10541 10542 if (VT == MVT::v2f64 && C) 10543 return Op; 10544 10545 if (Subtarget.isISA3_1()) { 10546 if ((VT == MVT::v2i64 || VT == MVT::v2f64) && !Subtarget.isPPC64()) 10547 return SDValue(); 10548 // On P10, we have legal lowering for constant and variable indices for 10549 // integer vectors. 10550 if (VT == MVT::v16i8 || VT == MVT::v8i16 || VT == MVT::v4i32 || 10551 VT == MVT::v2i64) 10552 return DAG.getNode(PPCISD::VECINSERT, dl, VT, V1, V2, V3); 10553 // For f32 and f64 vectors, we have legal lowering for variable indices. 10554 // For f32 we also have legal lowering when the element is loaded from 10555 // memory. 10556 if (VT == MVT::v4f32 || VT == MVT::v2f64) { 10557 if (!C || (VT == MVT::v4f32 && dyn_cast<LoadSDNode>(V2))) 10558 return DAG.getNode(PPCISD::VECINSERT, dl, VT, V1, V2, V3); 10559 return Op; 10560 } 10561 } 10562 10563 // Before P10, we have legal lowering for constant indices but not for 10564 // variable ones. 10565 if (!C) 10566 return SDValue(); 10567 10568 // We can use MTVSRZ + VECINSERT for v8i16 and v16i8 types. 10569 if (VT == MVT::v8i16 || VT == MVT::v16i8) { 10570 SDValue Mtvsrz = DAG.getNode(PPCISD::MTVSRZ, dl, VT, V2); 10571 unsigned BytesInEachElement = VT.getVectorElementType().getSizeInBits() / 8; 10572 unsigned InsertAtElement = C->getZExtValue(); 10573 unsigned InsertAtByte = InsertAtElement * BytesInEachElement; 10574 if (Subtarget.isLittleEndian()) { 10575 InsertAtByte = (16 - BytesInEachElement) - InsertAtByte; 10576 } 10577 return DAG.getNode(PPCISD::VECINSERT, dl, VT, V1, Mtvsrz, 10578 DAG.getConstant(InsertAtByte, dl, MVT::i32)); 10579 } 10580 return Op; 10581 } 10582 10583 SDValue PPCTargetLowering::LowerVectorLoad(SDValue Op, 10584 SelectionDAG &DAG) const { 10585 SDLoc dl(Op); 10586 LoadSDNode *LN = cast<LoadSDNode>(Op.getNode()); 10587 SDValue LoadChain = LN->getChain(); 10588 SDValue BasePtr = LN->getBasePtr(); 10589 EVT VT = Op.getValueType(); 10590 10591 if (VT != MVT::v256i1 && VT != MVT::v512i1) 10592 return Op; 10593 10594 // Type v256i1 is used for pairs and v512i1 is used for accumulators. 10595 // Here we create 2 or 4 v16i8 loads to load the pair or accumulator value in 10596 // 2 or 4 vsx registers. 10597 assert((VT != MVT::v512i1 || Subtarget.hasMMA()) && 10598 "Type unsupported without MMA"); 10599 assert((VT != MVT::v256i1 || Subtarget.pairedVectorMemops()) && 10600 "Type unsupported without paired vector support"); 10601 Align Alignment = LN->getAlign(); 10602 SmallVector<SDValue, 4> Loads; 10603 SmallVector<SDValue, 4> LoadChains; 10604 unsigned NumVecs = VT.getSizeInBits() / 128; 10605 for (unsigned Idx = 0; Idx < NumVecs; ++Idx) { 10606 SDValue Load = 10607 DAG.getLoad(MVT::v16i8, dl, LoadChain, BasePtr, 10608 LN->getPointerInfo().getWithOffset(Idx * 16), 10609 commonAlignment(Alignment, Idx * 16), 10610 LN->getMemOperand()->getFlags(), LN->getAAInfo()); 10611 BasePtr = DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr, 10612 DAG.getConstant(16, dl, BasePtr.getValueType())); 10613 Loads.push_back(Load); 10614 LoadChains.push_back(Load.getValue(1)); 10615 } 10616 if (Subtarget.isLittleEndian()) { 10617 std::reverse(Loads.begin(), Loads.end()); 10618 std::reverse(LoadChains.begin(), LoadChains.end()); 10619 } 10620 SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, LoadChains); 10621 SDValue Value = 10622 DAG.getNode(VT == MVT::v512i1 ? PPCISD::ACC_BUILD : PPCISD::PAIR_BUILD, 10623 dl, VT, Loads); 10624 SDValue RetOps[] = {Value, TF}; 10625 return DAG.getMergeValues(RetOps, dl); 10626 } 10627 10628 SDValue PPCTargetLowering::LowerVectorStore(SDValue Op, 10629 SelectionDAG &DAG) const { 10630 SDLoc dl(Op); 10631 StoreSDNode *SN = cast<StoreSDNode>(Op.getNode()); 10632 SDValue StoreChain = SN->getChain(); 10633 SDValue BasePtr = SN->getBasePtr(); 10634 SDValue Value = SN->getValue(); 10635 EVT StoreVT = Value.getValueType(); 10636 10637 if (StoreVT != MVT::v256i1 && StoreVT != MVT::v512i1) 10638 return Op; 10639 10640 // Type v256i1 is used for pairs and v512i1 is used for accumulators. 10641 // Here we create 2 or 4 v16i8 stores to store the pair or accumulator 10642 // underlying registers individually. 10643 assert((StoreVT != MVT::v512i1 || Subtarget.hasMMA()) && 10644 "Type unsupported without MMA"); 10645 assert((StoreVT != MVT::v256i1 || Subtarget.pairedVectorMemops()) && 10646 "Type unsupported without paired vector support"); 10647 Align Alignment = SN->getAlign(); 10648 SmallVector<SDValue, 4> Stores; 10649 unsigned NumVecs = 2; 10650 if (StoreVT == MVT::v512i1) { 10651 Value = DAG.getNode(PPCISD::XXMFACC, dl, MVT::v512i1, Value); 10652 NumVecs = 4; 10653 } 10654 for (unsigned Idx = 0; Idx < NumVecs; ++Idx) { 10655 unsigned VecNum = Subtarget.isLittleEndian() ? NumVecs - 1 - Idx : Idx; 10656 SDValue Elt = DAG.getNode(PPCISD::EXTRACT_VSX_REG, dl, MVT::v16i8, Value, 10657 DAG.getConstant(VecNum, dl, getPointerTy(DAG.getDataLayout()))); 10658 SDValue Store = 10659 DAG.getStore(StoreChain, dl, Elt, BasePtr, 10660 SN->getPointerInfo().getWithOffset(Idx * 16), 10661 commonAlignment(Alignment, Idx * 16), 10662 SN->getMemOperand()->getFlags(), SN->getAAInfo()); 10663 BasePtr = DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr, 10664 DAG.getConstant(16, dl, BasePtr.getValueType())); 10665 Stores.push_back(Store); 10666 } 10667 SDValue TF = DAG.getTokenFactor(dl, Stores); 10668 return TF; 10669 } 10670 10671 SDValue PPCTargetLowering::LowerMUL(SDValue Op, SelectionDAG &DAG) const { 10672 SDLoc dl(Op); 10673 if (Op.getValueType() == MVT::v4i32) { 10674 SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1); 10675 10676 SDValue Zero = getCanonicalConstSplat(0, 1, MVT::v4i32, DAG, dl); 10677 // +16 as shift amt. 10678 SDValue Neg16 = getCanonicalConstSplat(-16, 4, MVT::v4i32, DAG, dl); 10679 SDValue RHSSwap = // = vrlw RHS, 16 10680 BuildIntrinsicOp(Intrinsic::ppc_altivec_vrlw, RHS, Neg16, DAG, dl); 10681 10682 // Shrinkify inputs to v8i16. 10683 LHS = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, LHS); 10684 RHS = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, RHS); 10685 RHSSwap = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, RHSSwap); 10686 10687 // Low parts multiplied together, generating 32-bit results (we ignore the 10688 // top parts). 10689 SDValue LoProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmulouh, 10690 LHS, RHS, DAG, dl, MVT::v4i32); 10691 10692 SDValue HiProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmsumuhm, 10693 LHS, RHSSwap, Zero, DAG, dl, MVT::v4i32); 10694 // Shift the high parts up 16 bits. 10695 HiProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vslw, HiProd, 10696 Neg16, DAG, dl); 10697 return DAG.getNode(ISD::ADD, dl, MVT::v4i32, LoProd, HiProd); 10698 } else if (Op.getValueType() == MVT::v16i8) { 10699 SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1); 10700 bool isLittleEndian = Subtarget.isLittleEndian(); 10701 10702 // Multiply the even 8-bit parts, producing 16-bit sums. 10703 SDValue EvenParts = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmuleub, 10704 LHS, RHS, DAG, dl, MVT::v8i16); 10705 EvenParts = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, EvenParts); 10706 10707 // Multiply the odd 8-bit parts, producing 16-bit sums. 10708 SDValue OddParts = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmuloub, 10709 LHS, RHS, DAG, dl, MVT::v8i16); 10710 OddParts = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OddParts); 10711 10712 // Merge the results together. Because vmuleub and vmuloub are 10713 // instructions with a big-endian bias, we must reverse the 10714 // element numbering and reverse the meaning of "odd" and "even" 10715 // when generating little endian code. 10716 int Ops[16]; 10717 for (unsigned i = 0; i != 8; ++i) { 10718 if (isLittleEndian) { 10719 Ops[i*2 ] = 2*i; 10720 Ops[i*2+1] = 2*i+16; 10721 } else { 10722 Ops[i*2 ] = 2*i+1; 10723 Ops[i*2+1] = 2*i+1+16; 10724 } 10725 } 10726 if (isLittleEndian) 10727 return DAG.getVectorShuffle(MVT::v16i8, dl, OddParts, EvenParts, Ops); 10728 else 10729 return DAG.getVectorShuffle(MVT::v16i8, dl, EvenParts, OddParts, Ops); 10730 } else { 10731 llvm_unreachable("Unknown mul to lower!"); 10732 } 10733 } 10734 10735 SDValue PPCTargetLowering::LowerFP_ROUND(SDValue Op, SelectionDAG &DAG) const { 10736 bool IsStrict = Op->isStrictFPOpcode(); 10737 if (Op.getOperand(IsStrict ? 1 : 0).getValueType() == MVT::f128 && 10738 !Subtarget.hasP9Vector()) 10739 return SDValue(); 10740 10741 return Op; 10742 } 10743 10744 // Custom lowering for fpext vf32 to v2f64 10745 SDValue PPCTargetLowering::LowerFP_EXTEND(SDValue Op, SelectionDAG &DAG) const { 10746 10747 assert(Op.getOpcode() == ISD::FP_EXTEND && 10748 "Should only be called for ISD::FP_EXTEND"); 10749 10750 // FIXME: handle extends from half precision float vectors on P9. 10751 // We only want to custom lower an extend from v2f32 to v2f64. 10752 if (Op.getValueType() != MVT::v2f64 || 10753 Op.getOperand(0).getValueType() != MVT::v2f32) 10754 return SDValue(); 10755 10756 SDLoc dl(Op); 10757 SDValue Op0 = Op.getOperand(0); 10758 10759 switch (Op0.getOpcode()) { 10760 default: 10761 return SDValue(); 10762 case ISD::EXTRACT_SUBVECTOR: { 10763 assert(Op0.getNumOperands() == 2 && 10764 isa<ConstantSDNode>(Op0->getOperand(1)) && 10765 "Node should have 2 operands with second one being a constant!"); 10766 10767 if (Op0.getOperand(0).getValueType() != MVT::v4f32) 10768 return SDValue(); 10769 10770 // Custom lower is only done for high or low doubleword. 10771 int Idx = cast<ConstantSDNode>(Op0.getOperand(1))->getZExtValue(); 10772 if (Idx % 2 != 0) 10773 return SDValue(); 10774 10775 // Since input is v4f32, at this point Idx is either 0 or 2. 10776 // Shift to get the doubleword position we want. 10777 int DWord = Idx >> 1; 10778 10779 // High and low word positions are different on little endian. 10780 if (Subtarget.isLittleEndian()) 10781 DWord ^= 0x1; 10782 10783 return DAG.getNode(PPCISD::FP_EXTEND_HALF, dl, MVT::v2f64, 10784 Op0.getOperand(0), DAG.getConstant(DWord, dl, MVT::i32)); 10785 } 10786 case ISD::FADD: 10787 case ISD::FMUL: 10788 case ISD::FSUB: { 10789 SDValue NewLoad[2]; 10790 for (unsigned i = 0, ie = Op0.getNumOperands(); i != ie; ++i) { 10791 // Ensure both input are loads. 10792 SDValue LdOp = Op0.getOperand(i); 10793 if (LdOp.getOpcode() != ISD::LOAD) 10794 return SDValue(); 10795 // Generate new load node. 10796 LoadSDNode *LD = cast<LoadSDNode>(LdOp); 10797 SDValue LoadOps[] = {LD->getChain(), LD->getBasePtr()}; 10798 NewLoad[i] = DAG.getMemIntrinsicNode( 10799 PPCISD::LD_VSX_LH, dl, DAG.getVTList(MVT::v4f32, MVT::Other), LoadOps, 10800 LD->getMemoryVT(), LD->getMemOperand()); 10801 } 10802 SDValue NewOp = 10803 DAG.getNode(Op0.getOpcode(), SDLoc(Op0), MVT::v4f32, NewLoad[0], 10804 NewLoad[1], Op0.getNode()->getFlags()); 10805 return DAG.getNode(PPCISD::FP_EXTEND_HALF, dl, MVT::v2f64, NewOp, 10806 DAG.getConstant(0, dl, MVT::i32)); 10807 } 10808 case ISD::LOAD: { 10809 LoadSDNode *LD = cast<LoadSDNode>(Op0); 10810 SDValue LoadOps[] = {LD->getChain(), LD->getBasePtr()}; 10811 SDValue NewLd = DAG.getMemIntrinsicNode( 10812 PPCISD::LD_VSX_LH, dl, DAG.getVTList(MVT::v4f32, MVT::Other), LoadOps, 10813 LD->getMemoryVT(), LD->getMemOperand()); 10814 return DAG.getNode(PPCISD::FP_EXTEND_HALF, dl, MVT::v2f64, NewLd, 10815 DAG.getConstant(0, dl, MVT::i32)); 10816 } 10817 } 10818 llvm_unreachable("ERROR:Should return for all cases within swtich."); 10819 } 10820 10821 /// LowerOperation - Provide custom lowering hooks for some operations. 10822 /// 10823 SDValue PPCTargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const { 10824 switch (Op.getOpcode()) { 10825 default: llvm_unreachable("Wasn't expecting to be able to lower this!"); 10826 case ISD::ConstantPool: return LowerConstantPool(Op, DAG); 10827 case ISD::BlockAddress: return LowerBlockAddress(Op, DAG); 10828 case ISD::GlobalAddress: return LowerGlobalAddress(Op, DAG); 10829 case ISD::GlobalTLSAddress: return LowerGlobalTLSAddress(Op, DAG); 10830 case ISD::JumpTable: return LowerJumpTable(Op, DAG); 10831 case ISD::STRICT_FSETCC: 10832 case ISD::STRICT_FSETCCS: 10833 case ISD::SETCC: return LowerSETCC(Op, DAG); 10834 case ISD::INIT_TRAMPOLINE: return LowerINIT_TRAMPOLINE(Op, DAG); 10835 case ISD::ADJUST_TRAMPOLINE: return LowerADJUST_TRAMPOLINE(Op, DAG); 10836 10837 case ISD::INLINEASM: 10838 case ISD::INLINEASM_BR: return LowerINLINEASM(Op, DAG); 10839 // Variable argument lowering. 10840 case ISD::VASTART: return LowerVASTART(Op, DAG); 10841 case ISD::VAARG: return LowerVAARG(Op, DAG); 10842 case ISD::VACOPY: return LowerVACOPY(Op, DAG); 10843 10844 case ISD::STACKRESTORE: return LowerSTACKRESTORE(Op, DAG); 10845 case ISD::DYNAMIC_STACKALLOC: return LowerDYNAMIC_STACKALLOC(Op, DAG); 10846 case ISD::GET_DYNAMIC_AREA_OFFSET: 10847 return LowerGET_DYNAMIC_AREA_OFFSET(Op, DAG); 10848 10849 // Exception handling lowering. 10850 case ISD::EH_DWARF_CFA: return LowerEH_DWARF_CFA(Op, DAG); 10851 case ISD::EH_SJLJ_SETJMP: return lowerEH_SJLJ_SETJMP(Op, DAG); 10852 case ISD::EH_SJLJ_LONGJMP: return lowerEH_SJLJ_LONGJMP(Op, DAG); 10853 10854 case ISD::LOAD: return LowerLOAD(Op, DAG); 10855 case ISD::STORE: return LowerSTORE(Op, DAG); 10856 case ISD::TRUNCATE: return LowerTRUNCATE(Op, DAG); 10857 case ISD::SELECT_CC: return LowerSELECT_CC(Op, DAG); 10858 case ISD::STRICT_FP_TO_UINT: 10859 case ISD::STRICT_FP_TO_SINT: 10860 case ISD::FP_TO_UINT: 10861 case ISD::FP_TO_SINT: return LowerFP_TO_INT(Op, DAG, SDLoc(Op)); 10862 case ISD::STRICT_UINT_TO_FP: 10863 case ISD::STRICT_SINT_TO_FP: 10864 case ISD::UINT_TO_FP: 10865 case ISD::SINT_TO_FP: return LowerINT_TO_FP(Op, DAG); 10866 case ISD::FLT_ROUNDS_: return LowerFLT_ROUNDS_(Op, DAG); 10867 10868 // Lower 64-bit shifts. 10869 case ISD::SHL_PARTS: return LowerSHL_PARTS(Op, DAG); 10870 case ISD::SRL_PARTS: return LowerSRL_PARTS(Op, DAG); 10871 case ISD::SRA_PARTS: return LowerSRA_PARTS(Op, DAG); 10872 10873 case ISD::FSHL: return LowerFunnelShift(Op, DAG); 10874 case ISD::FSHR: return LowerFunnelShift(Op, DAG); 10875 10876 // Vector-related lowering. 10877 case ISD::BUILD_VECTOR: return LowerBUILD_VECTOR(Op, DAG); 10878 case ISD::VECTOR_SHUFFLE: return LowerVECTOR_SHUFFLE(Op, DAG); 10879 case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG); 10880 case ISD::SCALAR_TO_VECTOR: return LowerSCALAR_TO_VECTOR(Op, DAG); 10881 case ISD::INSERT_VECTOR_ELT: return LowerINSERT_VECTOR_ELT(Op, DAG); 10882 case ISD::MUL: return LowerMUL(Op, DAG); 10883 case ISD::FP_EXTEND: return LowerFP_EXTEND(Op, DAG); 10884 case ISD::STRICT_FP_ROUND: 10885 case ISD::FP_ROUND: 10886 return LowerFP_ROUND(Op, DAG); 10887 case ISD::ROTL: return LowerROTL(Op, DAG); 10888 10889 // For counter-based loop handling. 10890 case ISD::INTRINSIC_W_CHAIN: return SDValue(); 10891 10892 case ISD::BITCAST: return LowerBITCAST(Op, DAG); 10893 10894 // Frame & Return address. 10895 case ISD::RETURNADDR: return LowerRETURNADDR(Op, DAG); 10896 case ISD::FRAMEADDR: return LowerFRAMEADDR(Op, DAG); 10897 10898 case ISD::INTRINSIC_VOID: 10899 return LowerINTRINSIC_VOID(Op, DAG); 10900 case ISD::BSWAP: 10901 return LowerBSWAP(Op, DAG); 10902 case ISD::ATOMIC_CMP_SWAP: 10903 return LowerATOMIC_CMP_SWAP(Op, DAG); 10904 } 10905 } 10906 10907 void PPCTargetLowering::ReplaceNodeResults(SDNode *N, 10908 SmallVectorImpl<SDValue>&Results, 10909 SelectionDAG &DAG) const { 10910 SDLoc dl(N); 10911 switch (N->getOpcode()) { 10912 default: 10913 llvm_unreachable("Do not know how to custom type legalize this operation!"); 10914 case ISD::READCYCLECOUNTER: { 10915 SDVTList VTs = DAG.getVTList(MVT::i32, MVT::i32, MVT::Other); 10916 SDValue RTB = DAG.getNode(PPCISD::READ_TIME_BASE, dl, VTs, N->getOperand(0)); 10917 10918 Results.push_back( 10919 DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, RTB, RTB.getValue(1))); 10920 Results.push_back(RTB.getValue(2)); 10921 break; 10922 } 10923 case ISD::INTRINSIC_W_CHAIN: { 10924 if (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue() != 10925 Intrinsic::loop_decrement) 10926 break; 10927 10928 assert(N->getValueType(0) == MVT::i1 && 10929 "Unexpected result type for CTR decrement intrinsic"); 10930 EVT SVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), 10931 N->getValueType(0)); 10932 SDVTList VTs = DAG.getVTList(SVT, MVT::Other); 10933 SDValue NewInt = DAG.getNode(N->getOpcode(), dl, VTs, N->getOperand(0), 10934 N->getOperand(1)); 10935 10936 Results.push_back(DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, NewInt)); 10937 Results.push_back(NewInt.getValue(1)); 10938 break; 10939 } 10940 case ISD::VAARG: { 10941 if (!Subtarget.isSVR4ABI() || Subtarget.isPPC64()) 10942 return; 10943 10944 EVT VT = N->getValueType(0); 10945 10946 if (VT == MVT::i64) { 10947 SDValue NewNode = LowerVAARG(SDValue(N, 1), DAG); 10948 10949 Results.push_back(NewNode); 10950 Results.push_back(NewNode.getValue(1)); 10951 } 10952 return; 10953 } 10954 case ISD::STRICT_FP_TO_SINT: 10955 case ISD::STRICT_FP_TO_UINT: 10956 case ISD::FP_TO_SINT: 10957 case ISD::FP_TO_UINT: 10958 // LowerFP_TO_INT() can only handle f32 and f64. 10959 if (N->getOperand(N->isStrictFPOpcode() ? 1 : 0).getValueType() == 10960 MVT::ppcf128) 10961 return; 10962 Results.push_back(LowerFP_TO_INT(SDValue(N, 0), DAG, dl)); 10963 return; 10964 case ISD::TRUNCATE: { 10965 if (!N->getValueType(0).isVector()) 10966 return; 10967 SDValue Lowered = LowerTRUNCATEVector(SDValue(N, 0), DAG); 10968 if (Lowered) 10969 Results.push_back(Lowered); 10970 return; 10971 } 10972 case ISD::FSHL: 10973 case ISD::FSHR: 10974 // Don't handle funnel shifts here. 10975 return; 10976 case ISD::BITCAST: 10977 // Don't handle bitcast here. 10978 return; 10979 case ISD::FP_EXTEND: 10980 SDValue Lowered = LowerFP_EXTEND(SDValue(N, 0), DAG); 10981 if (Lowered) 10982 Results.push_back(Lowered); 10983 return; 10984 } 10985 } 10986 10987 //===----------------------------------------------------------------------===// 10988 // Other Lowering Code 10989 //===----------------------------------------------------------------------===// 10990 10991 static Instruction *callIntrinsic(IRBuilderBase &Builder, Intrinsic::ID Id) { 10992 Module *M = Builder.GetInsertBlock()->getParent()->getParent(); 10993 Function *Func = Intrinsic::getDeclaration(M, Id); 10994 return Builder.CreateCall(Func, {}); 10995 } 10996 10997 // The mappings for emitLeading/TrailingFence is taken from 10998 // http://www.cl.cam.ac.uk/~pes20/cpp/cpp0xmappings.html 10999 Instruction *PPCTargetLowering::emitLeadingFence(IRBuilderBase &Builder, 11000 Instruction *Inst, 11001 AtomicOrdering Ord) const { 11002 if (Ord == AtomicOrdering::SequentiallyConsistent) 11003 return callIntrinsic(Builder, Intrinsic::ppc_sync); 11004 if (isReleaseOrStronger(Ord)) 11005 return callIntrinsic(Builder, Intrinsic::ppc_lwsync); 11006 return nullptr; 11007 } 11008 11009 Instruction *PPCTargetLowering::emitTrailingFence(IRBuilderBase &Builder, 11010 Instruction *Inst, 11011 AtomicOrdering Ord) const { 11012 if (Inst->hasAtomicLoad() && isAcquireOrStronger(Ord)) { 11013 // See http://www.cl.cam.ac.uk/~pes20/cpp/cpp0xmappings.html and 11014 // http://www.rdrop.com/users/paulmck/scalability/paper/N2745r.2011.03.04a.html 11015 // and http://www.cl.cam.ac.uk/~pes20/cppppc/ for justification. 11016 if (isa<LoadInst>(Inst) && Subtarget.isPPC64()) 11017 return Builder.CreateCall( 11018 Intrinsic::getDeclaration( 11019 Builder.GetInsertBlock()->getParent()->getParent(), 11020 Intrinsic::ppc_cfence, {Inst->getType()}), 11021 {Inst}); 11022 // FIXME: Can use isync for rmw operation. 11023 return callIntrinsic(Builder, Intrinsic::ppc_lwsync); 11024 } 11025 return nullptr; 11026 } 11027 11028 MachineBasicBlock * 11029 PPCTargetLowering::EmitAtomicBinary(MachineInstr &MI, MachineBasicBlock *BB, 11030 unsigned AtomicSize, 11031 unsigned BinOpcode, 11032 unsigned CmpOpcode, 11033 unsigned CmpPred) const { 11034 // This also handles ATOMIC_SWAP, indicated by BinOpcode==0. 11035 const TargetInstrInfo *TII = Subtarget.getInstrInfo(); 11036 11037 auto LoadMnemonic = PPC::LDARX; 11038 auto StoreMnemonic = PPC::STDCX; 11039 switch (AtomicSize) { 11040 default: 11041 llvm_unreachable("Unexpected size of atomic entity"); 11042 case 1: 11043 LoadMnemonic = PPC::LBARX; 11044 StoreMnemonic = PPC::STBCX; 11045 assert(Subtarget.hasPartwordAtomics() && "Call this only with size >=4"); 11046 break; 11047 case 2: 11048 LoadMnemonic = PPC::LHARX; 11049 StoreMnemonic = PPC::STHCX; 11050 assert(Subtarget.hasPartwordAtomics() && "Call this only with size >=4"); 11051 break; 11052 case 4: 11053 LoadMnemonic = PPC::LWARX; 11054 StoreMnemonic = PPC::STWCX; 11055 break; 11056 case 8: 11057 LoadMnemonic = PPC::LDARX; 11058 StoreMnemonic = PPC::STDCX; 11059 break; 11060 } 11061 11062 const BasicBlock *LLVM_BB = BB->getBasicBlock(); 11063 MachineFunction *F = BB->getParent(); 11064 MachineFunction::iterator It = ++BB->getIterator(); 11065 11066 Register dest = MI.getOperand(0).getReg(); 11067 Register ptrA = MI.getOperand(1).getReg(); 11068 Register ptrB = MI.getOperand(2).getReg(); 11069 Register incr = MI.getOperand(3).getReg(); 11070 DebugLoc dl = MI.getDebugLoc(); 11071 11072 MachineBasicBlock *loopMBB = F->CreateMachineBasicBlock(LLVM_BB); 11073 MachineBasicBlock *loop2MBB = 11074 CmpOpcode ? F->CreateMachineBasicBlock(LLVM_BB) : nullptr; 11075 MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB); 11076 F->insert(It, loopMBB); 11077 if (CmpOpcode) 11078 F->insert(It, loop2MBB); 11079 F->insert(It, exitMBB); 11080 exitMBB->splice(exitMBB->begin(), BB, 11081 std::next(MachineBasicBlock::iterator(MI)), BB->end()); 11082 exitMBB->transferSuccessorsAndUpdatePHIs(BB); 11083 11084 MachineRegisterInfo &RegInfo = F->getRegInfo(); 11085 Register TmpReg = (!BinOpcode) ? incr : 11086 RegInfo.createVirtualRegister( AtomicSize == 8 ? &PPC::G8RCRegClass 11087 : &PPC::GPRCRegClass); 11088 11089 // thisMBB: 11090 // ... 11091 // fallthrough --> loopMBB 11092 BB->addSuccessor(loopMBB); 11093 11094 // loopMBB: 11095 // l[wd]arx dest, ptr 11096 // add r0, dest, incr 11097 // st[wd]cx. r0, ptr 11098 // bne- loopMBB 11099 // fallthrough --> exitMBB 11100 11101 // For max/min... 11102 // loopMBB: 11103 // l[wd]arx dest, ptr 11104 // cmpl?[wd] incr, dest 11105 // bgt exitMBB 11106 // loop2MBB: 11107 // st[wd]cx. dest, ptr 11108 // bne- loopMBB 11109 // fallthrough --> exitMBB 11110 11111 BB = loopMBB; 11112 BuildMI(BB, dl, TII->get(LoadMnemonic), dest) 11113 .addReg(ptrA).addReg(ptrB); 11114 if (BinOpcode) 11115 BuildMI(BB, dl, TII->get(BinOpcode), TmpReg).addReg(incr).addReg(dest); 11116 if (CmpOpcode) { 11117 // Signed comparisons of byte or halfword values must be sign-extended. 11118 if (CmpOpcode == PPC::CMPW && AtomicSize < 4) { 11119 Register ExtReg = RegInfo.createVirtualRegister(&PPC::GPRCRegClass); 11120 BuildMI(BB, dl, TII->get(AtomicSize == 1 ? PPC::EXTSB : PPC::EXTSH), 11121 ExtReg).addReg(dest); 11122 BuildMI(BB, dl, TII->get(CmpOpcode), PPC::CR0) 11123 .addReg(incr).addReg(ExtReg); 11124 } else 11125 BuildMI(BB, dl, TII->get(CmpOpcode), PPC::CR0) 11126 .addReg(incr).addReg(dest); 11127 11128 BuildMI(BB, dl, TII->get(PPC::BCC)) 11129 .addImm(CmpPred).addReg(PPC::CR0).addMBB(exitMBB); 11130 BB->addSuccessor(loop2MBB); 11131 BB->addSuccessor(exitMBB); 11132 BB = loop2MBB; 11133 } 11134 BuildMI(BB, dl, TII->get(StoreMnemonic)) 11135 .addReg(TmpReg).addReg(ptrA).addReg(ptrB); 11136 BuildMI(BB, dl, TII->get(PPC::BCC)) 11137 .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(loopMBB); 11138 BB->addSuccessor(loopMBB); 11139 BB->addSuccessor(exitMBB); 11140 11141 // exitMBB: 11142 // ... 11143 BB = exitMBB; 11144 return BB; 11145 } 11146 11147 static bool isSignExtended(MachineInstr &MI, const PPCInstrInfo *TII) { 11148 switch(MI.getOpcode()) { 11149 default: 11150 return false; 11151 case PPC::COPY: 11152 return TII->isSignExtended(MI); 11153 case PPC::LHA: 11154 case PPC::LHA8: 11155 case PPC::LHAU: 11156 case PPC::LHAU8: 11157 case PPC::LHAUX: 11158 case PPC::LHAUX8: 11159 case PPC::LHAX: 11160 case PPC::LHAX8: 11161 case PPC::LWA: 11162 case PPC::LWAUX: 11163 case PPC::LWAX: 11164 case PPC::LWAX_32: 11165 case PPC::LWA_32: 11166 case PPC::PLHA: 11167 case PPC::PLHA8: 11168 case PPC::PLHA8pc: 11169 case PPC::PLHApc: 11170 case PPC::PLWA: 11171 case PPC::PLWA8: 11172 case PPC::PLWA8pc: 11173 case PPC::PLWApc: 11174 case PPC::EXTSB: 11175 case PPC::EXTSB8: 11176 case PPC::EXTSB8_32_64: 11177 case PPC::EXTSB8_rec: 11178 case PPC::EXTSB_rec: 11179 case PPC::EXTSH: 11180 case PPC::EXTSH8: 11181 case PPC::EXTSH8_32_64: 11182 case PPC::EXTSH8_rec: 11183 case PPC::EXTSH_rec: 11184 case PPC::EXTSW: 11185 case PPC::EXTSWSLI: 11186 case PPC::EXTSWSLI_32_64: 11187 case PPC::EXTSWSLI_32_64_rec: 11188 case PPC::EXTSWSLI_rec: 11189 case PPC::EXTSW_32: 11190 case PPC::EXTSW_32_64: 11191 case PPC::EXTSW_32_64_rec: 11192 case PPC::EXTSW_rec: 11193 case PPC::SRAW: 11194 case PPC::SRAWI: 11195 case PPC::SRAWI_rec: 11196 case PPC::SRAW_rec: 11197 return true; 11198 } 11199 return false; 11200 } 11201 11202 MachineBasicBlock *PPCTargetLowering::EmitPartwordAtomicBinary( 11203 MachineInstr &MI, MachineBasicBlock *BB, 11204 bool is8bit, // operation 11205 unsigned BinOpcode, unsigned CmpOpcode, unsigned CmpPred) const { 11206 // This also handles ATOMIC_SWAP, indicated by BinOpcode==0. 11207 const PPCInstrInfo *TII = Subtarget.getInstrInfo(); 11208 11209 // If this is a signed comparison and the value being compared is not known 11210 // to be sign extended, sign extend it here. 11211 DebugLoc dl = MI.getDebugLoc(); 11212 MachineFunction *F = BB->getParent(); 11213 MachineRegisterInfo &RegInfo = F->getRegInfo(); 11214 Register incr = MI.getOperand(3).getReg(); 11215 bool IsSignExtended = Register::isVirtualRegister(incr) && 11216 isSignExtended(*RegInfo.getVRegDef(incr), TII); 11217 11218 if (CmpOpcode == PPC::CMPW && !IsSignExtended) { 11219 Register ValueReg = RegInfo.createVirtualRegister(&PPC::GPRCRegClass); 11220 BuildMI(*BB, MI, dl, TII->get(is8bit ? PPC::EXTSB : PPC::EXTSH), ValueReg) 11221 .addReg(MI.getOperand(3).getReg()); 11222 MI.getOperand(3).setReg(ValueReg); 11223 } 11224 // If we support part-word atomic mnemonics, just use them 11225 if (Subtarget.hasPartwordAtomics()) 11226 return EmitAtomicBinary(MI, BB, is8bit ? 1 : 2, BinOpcode, CmpOpcode, 11227 CmpPred); 11228 11229 // In 64 bit mode we have to use 64 bits for addresses, even though the 11230 // lwarx/stwcx are 32 bits. With the 32-bit atomics we can use address 11231 // registers without caring whether they're 32 or 64, but here we're 11232 // doing actual arithmetic on the addresses. 11233 bool is64bit = Subtarget.isPPC64(); 11234 bool isLittleEndian = Subtarget.isLittleEndian(); 11235 unsigned ZeroReg = is64bit ? PPC::ZERO8 : PPC::ZERO; 11236 11237 const BasicBlock *LLVM_BB = BB->getBasicBlock(); 11238 MachineFunction::iterator It = ++BB->getIterator(); 11239 11240 Register dest = MI.getOperand(0).getReg(); 11241 Register ptrA = MI.getOperand(1).getReg(); 11242 Register ptrB = MI.getOperand(2).getReg(); 11243 11244 MachineBasicBlock *loopMBB = F->CreateMachineBasicBlock(LLVM_BB); 11245 MachineBasicBlock *loop2MBB = 11246 CmpOpcode ? F->CreateMachineBasicBlock(LLVM_BB) : nullptr; 11247 MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB); 11248 F->insert(It, loopMBB); 11249 if (CmpOpcode) 11250 F->insert(It, loop2MBB); 11251 F->insert(It, exitMBB); 11252 exitMBB->splice(exitMBB->begin(), BB, 11253 std::next(MachineBasicBlock::iterator(MI)), BB->end()); 11254 exitMBB->transferSuccessorsAndUpdatePHIs(BB); 11255 11256 const TargetRegisterClass *RC = 11257 is64bit ? &PPC::G8RCRegClass : &PPC::GPRCRegClass; 11258 const TargetRegisterClass *GPRC = &PPC::GPRCRegClass; 11259 11260 Register PtrReg = RegInfo.createVirtualRegister(RC); 11261 Register Shift1Reg = RegInfo.createVirtualRegister(GPRC); 11262 Register ShiftReg = 11263 isLittleEndian ? Shift1Reg : RegInfo.createVirtualRegister(GPRC); 11264 Register Incr2Reg = RegInfo.createVirtualRegister(GPRC); 11265 Register MaskReg = RegInfo.createVirtualRegister(GPRC); 11266 Register Mask2Reg = RegInfo.createVirtualRegister(GPRC); 11267 Register Mask3Reg = RegInfo.createVirtualRegister(GPRC); 11268 Register Tmp2Reg = RegInfo.createVirtualRegister(GPRC); 11269 Register Tmp3Reg = RegInfo.createVirtualRegister(GPRC); 11270 Register Tmp4Reg = RegInfo.createVirtualRegister(GPRC); 11271 Register TmpDestReg = RegInfo.createVirtualRegister(GPRC); 11272 Register SrwDestReg = RegInfo.createVirtualRegister(GPRC); 11273 Register Ptr1Reg; 11274 Register TmpReg = 11275 (!BinOpcode) ? Incr2Reg : RegInfo.createVirtualRegister(GPRC); 11276 11277 // thisMBB: 11278 // ... 11279 // fallthrough --> loopMBB 11280 BB->addSuccessor(loopMBB); 11281 11282 // The 4-byte load must be aligned, while a char or short may be 11283 // anywhere in the word. Hence all this nasty bookkeeping code. 11284 // add ptr1, ptrA, ptrB [copy if ptrA==0] 11285 // rlwinm shift1, ptr1, 3, 27, 28 [3, 27, 27] 11286 // xori shift, shift1, 24 [16] 11287 // rlwinm ptr, ptr1, 0, 0, 29 11288 // slw incr2, incr, shift 11289 // li mask2, 255 [li mask3, 0; ori mask2, mask3, 65535] 11290 // slw mask, mask2, shift 11291 // loopMBB: 11292 // lwarx tmpDest, ptr 11293 // add tmp, tmpDest, incr2 11294 // andc tmp2, tmpDest, mask 11295 // and tmp3, tmp, mask 11296 // or tmp4, tmp3, tmp2 11297 // stwcx. tmp4, ptr 11298 // bne- loopMBB 11299 // fallthrough --> exitMBB 11300 // srw SrwDest, tmpDest, shift 11301 // rlwinm SrwDest, SrwDest, 0, 24 [16], 31 11302 if (ptrA != ZeroReg) { 11303 Ptr1Reg = RegInfo.createVirtualRegister(RC); 11304 BuildMI(BB, dl, TII->get(is64bit ? PPC::ADD8 : PPC::ADD4), Ptr1Reg) 11305 .addReg(ptrA) 11306 .addReg(ptrB); 11307 } else { 11308 Ptr1Reg = ptrB; 11309 } 11310 // We need use 32-bit subregister to avoid mismatch register class in 64-bit 11311 // mode. 11312 BuildMI(BB, dl, TII->get(PPC::RLWINM), Shift1Reg) 11313 .addReg(Ptr1Reg, 0, is64bit ? PPC::sub_32 : 0) 11314 .addImm(3) 11315 .addImm(27) 11316 .addImm(is8bit ? 28 : 27); 11317 if (!isLittleEndian) 11318 BuildMI(BB, dl, TII->get(PPC::XORI), ShiftReg) 11319 .addReg(Shift1Reg) 11320 .addImm(is8bit ? 24 : 16); 11321 if (is64bit) 11322 BuildMI(BB, dl, TII->get(PPC::RLDICR), PtrReg) 11323 .addReg(Ptr1Reg) 11324 .addImm(0) 11325 .addImm(61); 11326 else 11327 BuildMI(BB, dl, TII->get(PPC::RLWINM), PtrReg) 11328 .addReg(Ptr1Reg) 11329 .addImm(0) 11330 .addImm(0) 11331 .addImm(29); 11332 BuildMI(BB, dl, TII->get(PPC::SLW), Incr2Reg).addReg(incr).addReg(ShiftReg); 11333 if (is8bit) 11334 BuildMI(BB, dl, TII->get(PPC::LI), Mask2Reg).addImm(255); 11335 else { 11336 BuildMI(BB, dl, TII->get(PPC::LI), Mask3Reg).addImm(0); 11337 BuildMI(BB, dl, TII->get(PPC::ORI), Mask2Reg) 11338 .addReg(Mask3Reg) 11339 .addImm(65535); 11340 } 11341 BuildMI(BB, dl, TII->get(PPC::SLW), MaskReg) 11342 .addReg(Mask2Reg) 11343 .addReg(ShiftReg); 11344 11345 BB = loopMBB; 11346 BuildMI(BB, dl, TII->get(PPC::LWARX), TmpDestReg) 11347 .addReg(ZeroReg) 11348 .addReg(PtrReg); 11349 if (BinOpcode) 11350 BuildMI(BB, dl, TII->get(BinOpcode), TmpReg) 11351 .addReg(Incr2Reg) 11352 .addReg(TmpDestReg); 11353 BuildMI(BB, dl, TII->get(PPC::ANDC), Tmp2Reg) 11354 .addReg(TmpDestReg) 11355 .addReg(MaskReg); 11356 BuildMI(BB, dl, TII->get(PPC::AND), Tmp3Reg).addReg(TmpReg).addReg(MaskReg); 11357 if (CmpOpcode) { 11358 // For unsigned comparisons, we can directly compare the shifted values. 11359 // For signed comparisons we shift and sign extend. 11360 Register SReg = RegInfo.createVirtualRegister(GPRC); 11361 BuildMI(BB, dl, TII->get(PPC::AND), SReg) 11362 .addReg(TmpDestReg) 11363 .addReg(MaskReg); 11364 unsigned ValueReg = SReg; 11365 unsigned CmpReg = Incr2Reg; 11366 if (CmpOpcode == PPC::CMPW) { 11367 ValueReg = RegInfo.createVirtualRegister(GPRC); 11368 BuildMI(BB, dl, TII->get(PPC::SRW), ValueReg) 11369 .addReg(SReg) 11370 .addReg(ShiftReg); 11371 Register ValueSReg = RegInfo.createVirtualRegister(GPRC); 11372 BuildMI(BB, dl, TII->get(is8bit ? PPC::EXTSB : PPC::EXTSH), ValueSReg) 11373 .addReg(ValueReg); 11374 ValueReg = ValueSReg; 11375 CmpReg = incr; 11376 } 11377 BuildMI(BB, dl, TII->get(CmpOpcode), PPC::CR0) 11378 .addReg(CmpReg) 11379 .addReg(ValueReg); 11380 BuildMI(BB, dl, TII->get(PPC::BCC)) 11381 .addImm(CmpPred) 11382 .addReg(PPC::CR0) 11383 .addMBB(exitMBB); 11384 BB->addSuccessor(loop2MBB); 11385 BB->addSuccessor(exitMBB); 11386 BB = loop2MBB; 11387 } 11388 BuildMI(BB, dl, TII->get(PPC::OR), Tmp4Reg).addReg(Tmp3Reg).addReg(Tmp2Reg); 11389 BuildMI(BB, dl, TII->get(PPC::STWCX)) 11390 .addReg(Tmp4Reg) 11391 .addReg(ZeroReg) 11392 .addReg(PtrReg); 11393 BuildMI(BB, dl, TII->get(PPC::BCC)) 11394 .addImm(PPC::PRED_NE) 11395 .addReg(PPC::CR0) 11396 .addMBB(loopMBB); 11397 BB->addSuccessor(loopMBB); 11398 BB->addSuccessor(exitMBB); 11399 11400 // exitMBB: 11401 // ... 11402 BB = exitMBB; 11403 // Since the shift amount is not a constant, we need to clear 11404 // the upper bits with a separate RLWINM. 11405 BuildMI(*BB, BB->begin(), dl, TII->get(PPC::RLWINM), dest) 11406 .addReg(SrwDestReg) 11407 .addImm(0) 11408 .addImm(is8bit ? 24 : 16) 11409 .addImm(31); 11410 BuildMI(*BB, BB->begin(), dl, TII->get(PPC::SRW), SrwDestReg) 11411 .addReg(TmpDestReg) 11412 .addReg(ShiftReg); 11413 return BB; 11414 } 11415 11416 llvm::MachineBasicBlock * 11417 PPCTargetLowering::emitEHSjLjSetJmp(MachineInstr &MI, 11418 MachineBasicBlock *MBB) const { 11419 DebugLoc DL = MI.getDebugLoc(); 11420 const TargetInstrInfo *TII = Subtarget.getInstrInfo(); 11421 const PPCRegisterInfo *TRI = Subtarget.getRegisterInfo(); 11422 11423 MachineFunction *MF = MBB->getParent(); 11424 MachineRegisterInfo &MRI = MF->getRegInfo(); 11425 11426 const BasicBlock *BB = MBB->getBasicBlock(); 11427 MachineFunction::iterator I = ++MBB->getIterator(); 11428 11429 Register DstReg = MI.getOperand(0).getReg(); 11430 const TargetRegisterClass *RC = MRI.getRegClass(DstReg); 11431 assert(TRI->isTypeLegalForClass(*RC, MVT::i32) && "Invalid destination!"); 11432 Register mainDstReg = MRI.createVirtualRegister(RC); 11433 Register restoreDstReg = MRI.createVirtualRegister(RC); 11434 11435 MVT PVT = getPointerTy(MF->getDataLayout()); 11436 assert((PVT == MVT::i64 || PVT == MVT::i32) && 11437 "Invalid Pointer Size!"); 11438 // For v = setjmp(buf), we generate 11439 // 11440 // thisMBB: 11441 // SjLjSetup mainMBB 11442 // bl mainMBB 11443 // v_restore = 1 11444 // b sinkMBB 11445 // 11446 // mainMBB: 11447 // buf[LabelOffset] = LR 11448 // v_main = 0 11449 // 11450 // sinkMBB: 11451 // v = phi(main, restore) 11452 // 11453 11454 MachineBasicBlock *thisMBB = MBB; 11455 MachineBasicBlock *mainMBB = MF->CreateMachineBasicBlock(BB); 11456 MachineBasicBlock *sinkMBB = MF->CreateMachineBasicBlock(BB); 11457 MF->insert(I, mainMBB); 11458 MF->insert(I, sinkMBB); 11459 11460 MachineInstrBuilder MIB; 11461 11462 // Transfer the remainder of BB and its successor edges to sinkMBB. 11463 sinkMBB->splice(sinkMBB->begin(), MBB, 11464 std::next(MachineBasicBlock::iterator(MI)), MBB->end()); 11465 sinkMBB->transferSuccessorsAndUpdatePHIs(MBB); 11466 11467 // Note that the structure of the jmp_buf used here is not compatible 11468 // with that used by libc, and is not designed to be. Specifically, it 11469 // stores only those 'reserved' registers that LLVM does not otherwise 11470 // understand how to spill. Also, by convention, by the time this 11471 // intrinsic is called, Clang has already stored the frame address in the 11472 // first slot of the buffer and stack address in the third. Following the 11473 // X86 target code, we'll store the jump address in the second slot. We also 11474 // need to save the TOC pointer (R2) to handle jumps between shared 11475 // libraries, and that will be stored in the fourth slot. The thread 11476 // identifier (R13) is not affected. 11477 11478 // thisMBB: 11479 const int64_t LabelOffset = 1 * PVT.getStoreSize(); 11480 const int64_t TOCOffset = 3 * PVT.getStoreSize(); 11481 const int64_t BPOffset = 4 * PVT.getStoreSize(); 11482 11483 // Prepare IP either in reg. 11484 const TargetRegisterClass *PtrRC = getRegClassFor(PVT); 11485 Register LabelReg = MRI.createVirtualRegister(PtrRC); 11486 Register BufReg = MI.getOperand(1).getReg(); 11487 11488 if (Subtarget.is64BitELFABI()) { 11489 setUsesTOCBasePtr(*MBB->getParent()); 11490 MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::STD)) 11491 .addReg(PPC::X2) 11492 .addImm(TOCOffset) 11493 .addReg(BufReg) 11494 .cloneMemRefs(MI); 11495 } 11496 11497 // Naked functions never have a base pointer, and so we use r1. For all 11498 // other functions, this decision must be delayed until during PEI. 11499 unsigned BaseReg; 11500 if (MF->getFunction().hasFnAttribute(Attribute::Naked)) 11501 BaseReg = Subtarget.isPPC64() ? PPC::X1 : PPC::R1; 11502 else 11503 BaseReg = Subtarget.isPPC64() ? PPC::BP8 : PPC::BP; 11504 11505 MIB = BuildMI(*thisMBB, MI, DL, 11506 TII->get(Subtarget.isPPC64() ? PPC::STD : PPC::STW)) 11507 .addReg(BaseReg) 11508 .addImm(BPOffset) 11509 .addReg(BufReg) 11510 .cloneMemRefs(MI); 11511 11512 // Setup 11513 MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::BCLalways)).addMBB(mainMBB); 11514 MIB.addRegMask(TRI->getNoPreservedMask()); 11515 11516 BuildMI(*thisMBB, MI, DL, TII->get(PPC::LI), restoreDstReg).addImm(1); 11517 11518 MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::EH_SjLj_Setup)) 11519 .addMBB(mainMBB); 11520 MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::B)).addMBB(sinkMBB); 11521 11522 thisMBB->addSuccessor(mainMBB, BranchProbability::getZero()); 11523 thisMBB->addSuccessor(sinkMBB, BranchProbability::getOne()); 11524 11525 // mainMBB: 11526 // mainDstReg = 0 11527 MIB = 11528 BuildMI(mainMBB, DL, 11529 TII->get(Subtarget.isPPC64() ? PPC::MFLR8 : PPC::MFLR), LabelReg); 11530 11531 // Store IP 11532 if (Subtarget.isPPC64()) { 11533 MIB = BuildMI(mainMBB, DL, TII->get(PPC::STD)) 11534 .addReg(LabelReg) 11535 .addImm(LabelOffset) 11536 .addReg(BufReg); 11537 } else { 11538 MIB = BuildMI(mainMBB, DL, TII->get(PPC::STW)) 11539 .addReg(LabelReg) 11540 .addImm(LabelOffset) 11541 .addReg(BufReg); 11542 } 11543 MIB.cloneMemRefs(MI); 11544 11545 BuildMI(mainMBB, DL, TII->get(PPC::LI), mainDstReg).addImm(0); 11546 mainMBB->addSuccessor(sinkMBB); 11547 11548 // sinkMBB: 11549 BuildMI(*sinkMBB, sinkMBB->begin(), DL, 11550 TII->get(PPC::PHI), DstReg) 11551 .addReg(mainDstReg).addMBB(mainMBB) 11552 .addReg(restoreDstReg).addMBB(thisMBB); 11553 11554 MI.eraseFromParent(); 11555 return sinkMBB; 11556 } 11557 11558 MachineBasicBlock * 11559 PPCTargetLowering::emitEHSjLjLongJmp(MachineInstr &MI, 11560 MachineBasicBlock *MBB) const { 11561 DebugLoc DL = MI.getDebugLoc(); 11562 const TargetInstrInfo *TII = Subtarget.getInstrInfo(); 11563 11564 MachineFunction *MF = MBB->getParent(); 11565 MachineRegisterInfo &MRI = MF->getRegInfo(); 11566 11567 MVT PVT = getPointerTy(MF->getDataLayout()); 11568 assert((PVT == MVT::i64 || PVT == MVT::i32) && 11569 "Invalid Pointer Size!"); 11570 11571 const TargetRegisterClass *RC = 11572 (PVT == MVT::i64) ? &PPC::G8RCRegClass : &PPC::GPRCRegClass; 11573 Register Tmp = MRI.createVirtualRegister(RC); 11574 // Since FP is only updated here but NOT referenced, it's treated as GPR. 11575 unsigned FP = (PVT == MVT::i64) ? PPC::X31 : PPC::R31; 11576 unsigned SP = (PVT == MVT::i64) ? PPC::X1 : PPC::R1; 11577 unsigned BP = 11578 (PVT == MVT::i64) 11579 ? PPC::X30 11580 : (Subtarget.isSVR4ABI() && isPositionIndependent() ? PPC::R29 11581 : PPC::R30); 11582 11583 MachineInstrBuilder MIB; 11584 11585 const int64_t LabelOffset = 1 * PVT.getStoreSize(); 11586 const int64_t SPOffset = 2 * PVT.getStoreSize(); 11587 const int64_t TOCOffset = 3 * PVT.getStoreSize(); 11588 const int64_t BPOffset = 4 * PVT.getStoreSize(); 11589 11590 Register BufReg = MI.getOperand(0).getReg(); 11591 11592 // Reload FP (the jumped-to function may not have had a 11593 // frame pointer, and if so, then its r31 will be restored 11594 // as necessary). 11595 if (PVT == MVT::i64) { 11596 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), FP) 11597 .addImm(0) 11598 .addReg(BufReg); 11599 } else { 11600 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), FP) 11601 .addImm(0) 11602 .addReg(BufReg); 11603 } 11604 MIB.cloneMemRefs(MI); 11605 11606 // Reload IP 11607 if (PVT == MVT::i64) { 11608 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), Tmp) 11609 .addImm(LabelOffset) 11610 .addReg(BufReg); 11611 } else { 11612 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), Tmp) 11613 .addImm(LabelOffset) 11614 .addReg(BufReg); 11615 } 11616 MIB.cloneMemRefs(MI); 11617 11618 // Reload SP 11619 if (PVT == MVT::i64) { 11620 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), SP) 11621 .addImm(SPOffset) 11622 .addReg(BufReg); 11623 } else { 11624 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), SP) 11625 .addImm(SPOffset) 11626 .addReg(BufReg); 11627 } 11628 MIB.cloneMemRefs(MI); 11629 11630 // Reload BP 11631 if (PVT == MVT::i64) { 11632 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), BP) 11633 .addImm(BPOffset) 11634 .addReg(BufReg); 11635 } else { 11636 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), BP) 11637 .addImm(BPOffset) 11638 .addReg(BufReg); 11639 } 11640 MIB.cloneMemRefs(MI); 11641 11642 // Reload TOC 11643 if (PVT == MVT::i64 && Subtarget.isSVR4ABI()) { 11644 setUsesTOCBasePtr(*MBB->getParent()); 11645 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), PPC::X2) 11646 .addImm(TOCOffset) 11647 .addReg(BufReg) 11648 .cloneMemRefs(MI); 11649 } 11650 11651 // Jump 11652 BuildMI(*MBB, MI, DL, 11653 TII->get(PVT == MVT::i64 ? PPC::MTCTR8 : PPC::MTCTR)).addReg(Tmp); 11654 BuildMI(*MBB, MI, DL, TII->get(PVT == MVT::i64 ? PPC::BCTR8 : PPC::BCTR)); 11655 11656 MI.eraseFromParent(); 11657 return MBB; 11658 } 11659 11660 bool PPCTargetLowering::hasInlineStackProbe(MachineFunction &MF) const { 11661 // If the function specifically requests inline stack probes, emit them. 11662 if (MF.getFunction().hasFnAttribute("probe-stack")) 11663 return MF.getFunction().getFnAttribute("probe-stack").getValueAsString() == 11664 "inline-asm"; 11665 return false; 11666 } 11667 11668 unsigned PPCTargetLowering::getStackProbeSize(MachineFunction &MF) const { 11669 const TargetFrameLowering *TFI = Subtarget.getFrameLowering(); 11670 unsigned StackAlign = TFI->getStackAlignment(); 11671 assert(StackAlign >= 1 && isPowerOf2_32(StackAlign) && 11672 "Unexpected stack alignment"); 11673 // The default stack probe size is 4096 if the function has no 11674 // stack-probe-size attribute. 11675 unsigned StackProbeSize = 4096; 11676 const Function &Fn = MF.getFunction(); 11677 if (Fn.hasFnAttribute("stack-probe-size")) 11678 Fn.getFnAttribute("stack-probe-size") 11679 .getValueAsString() 11680 .getAsInteger(0, StackProbeSize); 11681 // Round down to the stack alignment. 11682 StackProbeSize &= ~(StackAlign - 1); 11683 return StackProbeSize ? StackProbeSize : StackAlign; 11684 } 11685 11686 // Lower dynamic stack allocation with probing. `emitProbedAlloca` is splitted 11687 // into three phases. In the first phase, it uses pseudo instruction 11688 // PREPARE_PROBED_ALLOCA to get the future result of actual FramePointer and 11689 // FinalStackPtr. In the second phase, it generates a loop for probing blocks. 11690 // At last, it uses pseudo instruction DYNAREAOFFSET to get the future result of 11691 // MaxCallFrameSize so that it can calculate correct data area pointer. 11692 MachineBasicBlock * 11693 PPCTargetLowering::emitProbedAlloca(MachineInstr &MI, 11694 MachineBasicBlock *MBB) const { 11695 const bool isPPC64 = Subtarget.isPPC64(); 11696 MachineFunction *MF = MBB->getParent(); 11697 const TargetInstrInfo *TII = Subtarget.getInstrInfo(); 11698 DebugLoc DL = MI.getDebugLoc(); 11699 const unsigned ProbeSize = getStackProbeSize(*MF); 11700 const BasicBlock *ProbedBB = MBB->getBasicBlock(); 11701 MachineRegisterInfo &MRI = MF->getRegInfo(); 11702 // The CFG of probing stack looks as 11703 // +-----+ 11704 // | MBB | 11705 // +--+--+ 11706 // | 11707 // +----v----+ 11708 // +--->+ TestMBB +---+ 11709 // | +----+----+ | 11710 // | | | 11711 // | +-----v----+ | 11712 // +---+ BlockMBB | | 11713 // +----------+ | 11714 // | 11715 // +---------+ | 11716 // | TailMBB +<--+ 11717 // +---------+ 11718 // In MBB, calculate previous frame pointer and final stack pointer. 11719 // In TestMBB, test if sp is equal to final stack pointer, if so, jump to 11720 // TailMBB. In BlockMBB, update the sp atomically and jump back to TestMBB. 11721 // TailMBB is spliced via \p MI. 11722 MachineBasicBlock *TestMBB = MF->CreateMachineBasicBlock(ProbedBB); 11723 MachineBasicBlock *TailMBB = MF->CreateMachineBasicBlock(ProbedBB); 11724 MachineBasicBlock *BlockMBB = MF->CreateMachineBasicBlock(ProbedBB); 11725 11726 MachineFunction::iterator MBBIter = ++MBB->getIterator(); 11727 MF->insert(MBBIter, TestMBB); 11728 MF->insert(MBBIter, BlockMBB); 11729 MF->insert(MBBIter, TailMBB); 11730 11731 const TargetRegisterClass *G8RC = &PPC::G8RCRegClass; 11732 const TargetRegisterClass *GPRC = &PPC::GPRCRegClass; 11733 11734 Register DstReg = MI.getOperand(0).getReg(); 11735 Register NegSizeReg = MI.getOperand(1).getReg(); 11736 Register SPReg = isPPC64 ? PPC::X1 : PPC::R1; 11737 Register FinalStackPtr = MRI.createVirtualRegister(isPPC64 ? G8RC : GPRC); 11738 Register FramePointer = MRI.createVirtualRegister(isPPC64 ? G8RC : GPRC); 11739 Register ActualNegSizeReg = MRI.createVirtualRegister(isPPC64 ? G8RC : GPRC); 11740 11741 // Since value of NegSizeReg might be realigned in prologepilog, insert a 11742 // PREPARE_PROBED_ALLOCA pseudo instruction to get actual FramePointer and 11743 // NegSize. 11744 unsigned ProbeOpc; 11745 if (!MRI.hasOneNonDBGUse(NegSizeReg)) 11746 ProbeOpc = 11747 isPPC64 ? PPC::PREPARE_PROBED_ALLOCA_64 : PPC::PREPARE_PROBED_ALLOCA_32; 11748 else 11749 // By introducing PREPARE_PROBED_ALLOCA_NEGSIZE_OPT, ActualNegSizeReg 11750 // and NegSizeReg will be allocated in the same phyreg to avoid 11751 // redundant copy when NegSizeReg has only one use which is current MI and 11752 // will be replaced by PREPARE_PROBED_ALLOCA then. 11753 ProbeOpc = isPPC64 ? PPC::PREPARE_PROBED_ALLOCA_NEGSIZE_SAME_REG_64 11754 : PPC::PREPARE_PROBED_ALLOCA_NEGSIZE_SAME_REG_32; 11755 BuildMI(*MBB, {MI}, DL, TII->get(ProbeOpc), FramePointer) 11756 .addDef(ActualNegSizeReg) 11757 .addReg(NegSizeReg) 11758 .add(MI.getOperand(2)) 11759 .add(MI.getOperand(3)); 11760 11761 // Calculate final stack pointer, which equals to SP + ActualNegSize. 11762 BuildMI(*MBB, {MI}, DL, TII->get(isPPC64 ? PPC::ADD8 : PPC::ADD4), 11763 FinalStackPtr) 11764 .addReg(SPReg) 11765 .addReg(ActualNegSizeReg); 11766 11767 // Materialize a scratch register for update. 11768 int64_t NegProbeSize = -(int64_t)ProbeSize; 11769 assert(isInt<32>(NegProbeSize) && "Unhandled probe size!"); 11770 Register ScratchReg = MRI.createVirtualRegister(isPPC64 ? G8RC : GPRC); 11771 if (!isInt<16>(NegProbeSize)) { 11772 Register TempReg = MRI.createVirtualRegister(isPPC64 ? G8RC : GPRC); 11773 BuildMI(*MBB, {MI}, DL, TII->get(isPPC64 ? PPC::LIS8 : PPC::LIS), TempReg) 11774 .addImm(NegProbeSize >> 16); 11775 BuildMI(*MBB, {MI}, DL, TII->get(isPPC64 ? PPC::ORI8 : PPC::ORI), 11776 ScratchReg) 11777 .addReg(TempReg) 11778 .addImm(NegProbeSize & 0xFFFF); 11779 } else 11780 BuildMI(*MBB, {MI}, DL, TII->get(isPPC64 ? PPC::LI8 : PPC::LI), ScratchReg) 11781 .addImm(NegProbeSize); 11782 11783 { 11784 // Probing leading residual part. 11785 Register Div = MRI.createVirtualRegister(isPPC64 ? G8RC : GPRC); 11786 BuildMI(*MBB, {MI}, DL, TII->get(isPPC64 ? PPC::DIVD : PPC::DIVW), Div) 11787 .addReg(ActualNegSizeReg) 11788 .addReg(ScratchReg); 11789 Register Mul = MRI.createVirtualRegister(isPPC64 ? G8RC : GPRC); 11790 BuildMI(*MBB, {MI}, DL, TII->get(isPPC64 ? PPC::MULLD : PPC::MULLW), Mul) 11791 .addReg(Div) 11792 .addReg(ScratchReg); 11793 Register NegMod = MRI.createVirtualRegister(isPPC64 ? G8RC : GPRC); 11794 BuildMI(*MBB, {MI}, DL, TII->get(isPPC64 ? PPC::SUBF8 : PPC::SUBF), NegMod) 11795 .addReg(Mul) 11796 .addReg(ActualNegSizeReg); 11797 BuildMI(*MBB, {MI}, DL, TII->get(isPPC64 ? PPC::STDUX : PPC::STWUX), SPReg) 11798 .addReg(FramePointer) 11799 .addReg(SPReg) 11800 .addReg(NegMod); 11801 } 11802 11803 { 11804 // Remaining part should be multiple of ProbeSize. 11805 Register CmpResult = MRI.createVirtualRegister(&PPC::CRRCRegClass); 11806 BuildMI(TestMBB, DL, TII->get(isPPC64 ? PPC::CMPD : PPC::CMPW), CmpResult) 11807 .addReg(SPReg) 11808 .addReg(FinalStackPtr); 11809 BuildMI(TestMBB, DL, TII->get(PPC::BCC)) 11810 .addImm(PPC::PRED_EQ) 11811 .addReg(CmpResult) 11812 .addMBB(TailMBB); 11813 TestMBB->addSuccessor(BlockMBB); 11814 TestMBB->addSuccessor(TailMBB); 11815 } 11816 11817 { 11818 // Touch the block. 11819 // |P...|P...|P... 11820 BuildMI(BlockMBB, DL, TII->get(isPPC64 ? PPC::STDUX : PPC::STWUX), SPReg) 11821 .addReg(FramePointer) 11822 .addReg(SPReg) 11823 .addReg(ScratchReg); 11824 BuildMI(BlockMBB, DL, TII->get(PPC::B)).addMBB(TestMBB); 11825 BlockMBB->addSuccessor(TestMBB); 11826 } 11827 11828 // Calculation of MaxCallFrameSize is deferred to prologepilog, use 11829 // DYNAREAOFFSET pseudo instruction to get the future result. 11830 Register MaxCallFrameSizeReg = 11831 MRI.createVirtualRegister(isPPC64 ? G8RC : GPRC); 11832 BuildMI(TailMBB, DL, 11833 TII->get(isPPC64 ? PPC::DYNAREAOFFSET8 : PPC::DYNAREAOFFSET), 11834 MaxCallFrameSizeReg) 11835 .add(MI.getOperand(2)) 11836 .add(MI.getOperand(3)); 11837 BuildMI(TailMBB, DL, TII->get(isPPC64 ? PPC::ADD8 : PPC::ADD4), DstReg) 11838 .addReg(SPReg) 11839 .addReg(MaxCallFrameSizeReg); 11840 11841 // Splice instructions after MI to TailMBB. 11842 TailMBB->splice(TailMBB->end(), MBB, 11843 std::next(MachineBasicBlock::iterator(MI)), MBB->end()); 11844 TailMBB->transferSuccessorsAndUpdatePHIs(MBB); 11845 MBB->addSuccessor(TestMBB); 11846 11847 // Delete the pseudo instruction. 11848 MI.eraseFromParent(); 11849 11850 ++NumDynamicAllocaProbed; 11851 return TailMBB; 11852 } 11853 11854 MachineBasicBlock * 11855 PPCTargetLowering::EmitInstrWithCustomInserter(MachineInstr &MI, 11856 MachineBasicBlock *BB) const { 11857 if (MI.getOpcode() == TargetOpcode::STACKMAP || 11858 MI.getOpcode() == TargetOpcode::PATCHPOINT) { 11859 if (Subtarget.is64BitELFABI() && 11860 MI.getOpcode() == TargetOpcode::PATCHPOINT && 11861 !Subtarget.isUsingPCRelativeCalls()) { 11862 // Call lowering should have added an r2 operand to indicate a dependence 11863 // on the TOC base pointer value. It can't however, because there is no 11864 // way to mark the dependence as implicit there, and so the stackmap code 11865 // will confuse it with a regular operand. Instead, add the dependence 11866 // here. 11867 MI.addOperand(MachineOperand::CreateReg(PPC::X2, false, true)); 11868 } 11869 11870 return emitPatchPoint(MI, BB); 11871 } 11872 11873 if (MI.getOpcode() == PPC::EH_SjLj_SetJmp32 || 11874 MI.getOpcode() == PPC::EH_SjLj_SetJmp64) { 11875 return emitEHSjLjSetJmp(MI, BB); 11876 } else if (MI.getOpcode() == PPC::EH_SjLj_LongJmp32 || 11877 MI.getOpcode() == PPC::EH_SjLj_LongJmp64) { 11878 return emitEHSjLjLongJmp(MI, BB); 11879 } 11880 11881 const TargetInstrInfo *TII = Subtarget.getInstrInfo(); 11882 11883 // To "insert" these instructions we actually have to insert their 11884 // control-flow patterns. 11885 const BasicBlock *LLVM_BB = BB->getBasicBlock(); 11886 MachineFunction::iterator It = ++BB->getIterator(); 11887 11888 MachineFunction *F = BB->getParent(); 11889 11890 if (MI.getOpcode() == PPC::SELECT_CC_I4 || 11891 MI.getOpcode() == PPC::SELECT_CC_I8 || MI.getOpcode() == PPC::SELECT_I4 || 11892 MI.getOpcode() == PPC::SELECT_I8) { 11893 SmallVector<MachineOperand, 2> Cond; 11894 if (MI.getOpcode() == PPC::SELECT_CC_I4 || 11895 MI.getOpcode() == PPC::SELECT_CC_I8) 11896 Cond.push_back(MI.getOperand(4)); 11897 else 11898 Cond.push_back(MachineOperand::CreateImm(PPC::PRED_BIT_SET)); 11899 Cond.push_back(MI.getOperand(1)); 11900 11901 DebugLoc dl = MI.getDebugLoc(); 11902 TII->insertSelect(*BB, MI, dl, MI.getOperand(0).getReg(), Cond, 11903 MI.getOperand(2).getReg(), MI.getOperand(3).getReg()); 11904 } else if (MI.getOpcode() == PPC::SELECT_CC_F4 || 11905 MI.getOpcode() == PPC::SELECT_CC_F8 || 11906 MI.getOpcode() == PPC::SELECT_CC_F16 || 11907 MI.getOpcode() == PPC::SELECT_CC_VRRC || 11908 MI.getOpcode() == PPC::SELECT_CC_VSFRC || 11909 MI.getOpcode() == PPC::SELECT_CC_VSSRC || 11910 MI.getOpcode() == PPC::SELECT_CC_VSRC || 11911 MI.getOpcode() == PPC::SELECT_CC_SPE4 || 11912 MI.getOpcode() == PPC::SELECT_CC_SPE || 11913 MI.getOpcode() == PPC::SELECT_F4 || 11914 MI.getOpcode() == PPC::SELECT_F8 || 11915 MI.getOpcode() == PPC::SELECT_F16 || 11916 MI.getOpcode() == PPC::SELECT_SPE || 11917 MI.getOpcode() == PPC::SELECT_SPE4 || 11918 MI.getOpcode() == PPC::SELECT_VRRC || 11919 MI.getOpcode() == PPC::SELECT_VSFRC || 11920 MI.getOpcode() == PPC::SELECT_VSSRC || 11921 MI.getOpcode() == PPC::SELECT_VSRC) { 11922 // The incoming instruction knows the destination vreg to set, the 11923 // condition code register to branch on, the true/false values to 11924 // select between, and a branch opcode to use. 11925 11926 // thisMBB: 11927 // ... 11928 // TrueVal = ... 11929 // cmpTY ccX, r1, r2 11930 // bCC copy1MBB 11931 // fallthrough --> copy0MBB 11932 MachineBasicBlock *thisMBB = BB; 11933 MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB); 11934 MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB); 11935 DebugLoc dl = MI.getDebugLoc(); 11936 F->insert(It, copy0MBB); 11937 F->insert(It, sinkMBB); 11938 11939 // Transfer the remainder of BB and its successor edges to sinkMBB. 11940 sinkMBB->splice(sinkMBB->begin(), BB, 11941 std::next(MachineBasicBlock::iterator(MI)), BB->end()); 11942 sinkMBB->transferSuccessorsAndUpdatePHIs(BB); 11943 11944 // Next, add the true and fallthrough blocks as its successors. 11945 BB->addSuccessor(copy0MBB); 11946 BB->addSuccessor(sinkMBB); 11947 11948 if (MI.getOpcode() == PPC::SELECT_I4 || MI.getOpcode() == PPC::SELECT_I8 || 11949 MI.getOpcode() == PPC::SELECT_F4 || MI.getOpcode() == PPC::SELECT_F8 || 11950 MI.getOpcode() == PPC::SELECT_F16 || 11951 MI.getOpcode() == PPC::SELECT_SPE4 || 11952 MI.getOpcode() == PPC::SELECT_SPE || 11953 MI.getOpcode() == PPC::SELECT_VRRC || 11954 MI.getOpcode() == PPC::SELECT_VSFRC || 11955 MI.getOpcode() == PPC::SELECT_VSSRC || 11956 MI.getOpcode() == PPC::SELECT_VSRC) { 11957 BuildMI(BB, dl, TII->get(PPC::BC)) 11958 .addReg(MI.getOperand(1).getReg()) 11959 .addMBB(sinkMBB); 11960 } else { 11961 unsigned SelectPred = MI.getOperand(4).getImm(); 11962 BuildMI(BB, dl, TII->get(PPC::BCC)) 11963 .addImm(SelectPred) 11964 .addReg(MI.getOperand(1).getReg()) 11965 .addMBB(sinkMBB); 11966 } 11967 11968 // copy0MBB: 11969 // %FalseValue = ... 11970 // # fallthrough to sinkMBB 11971 BB = copy0MBB; 11972 11973 // Update machine-CFG edges 11974 BB->addSuccessor(sinkMBB); 11975 11976 // sinkMBB: 11977 // %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ] 11978 // ... 11979 BB = sinkMBB; 11980 BuildMI(*BB, BB->begin(), dl, TII->get(PPC::PHI), MI.getOperand(0).getReg()) 11981 .addReg(MI.getOperand(3).getReg()) 11982 .addMBB(copy0MBB) 11983 .addReg(MI.getOperand(2).getReg()) 11984 .addMBB(thisMBB); 11985 } else if (MI.getOpcode() == PPC::ReadTB) { 11986 // To read the 64-bit time-base register on a 32-bit target, we read the 11987 // two halves. Should the counter have wrapped while it was being read, we 11988 // need to try again. 11989 // ... 11990 // readLoop: 11991 // mfspr Rx,TBU # load from TBU 11992 // mfspr Ry,TB # load from TB 11993 // mfspr Rz,TBU # load from TBU 11994 // cmpw crX,Rx,Rz # check if 'old'='new' 11995 // bne readLoop # branch if they're not equal 11996 // ... 11997 11998 MachineBasicBlock *readMBB = F->CreateMachineBasicBlock(LLVM_BB); 11999 MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB); 12000 DebugLoc dl = MI.getDebugLoc(); 12001 F->insert(It, readMBB); 12002 F->insert(It, sinkMBB); 12003 12004 // Transfer the remainder of BB and its successor edges to sinkMBB. 12005 sinkMBB->splice(sinkMBB->begin(), BB, 12006 std::next(MachineBasicBlock::iterator(MI)), BB->end()); 12007 sinkMBB->transferSuccessorsAndUpdatePHIs(BB); 12008 12009 BB->addSuccessor(readMBB); 12010 BB = readMBB; 12011 12012 MachineRegisterInfo &RegInfo = F->getRegInfo(); 12013 Register ReadAgainReg = RegInfo.createVirtualRegister(&PPC::GPRCRegClass); 12014 Register LoReg = MI.getOperand(0).getReg(); 12015 Register HiReg = MI.getOperand(1).getReg(); 12016 12017 BuildMI(BB, dl, TII->get(PPC::MFSPR), HiReg).addImm(269); 12018 BuildMI(BB, dl, TII->get(PPC::MFSPR), LoReg).addImm(268); 12019 BuildMI(BB, dl, TII->get(PPC::MFSPR), ReadAgainReg).addImm(269); 12020 12021 Register CmpReg = RegInfo.createVirtualRegister(&PPC::CRRCRegClass); 12022 12023 BuildMI(BB, dl, TII->get(PPC::CMPW), CmpReg) 12024 .addReg(HiReg) 12025 .addReg(ReadAgainReg); 12026 BuildMI(BB, dl, TII->get(PPC::BCC)) 12027 .addImm(PPC::PRED_NE) 12028 .addReg(CmpReg) 12029 .addMBB(readMBB); 12030 12031 BB->addSuccessor(readMBB); 12032 BB->addSuccessor(sinkMBB); 12033 } else if (MI.getOpcode() == PPC::ATOMIC_LOAD_ADD_I8) 12034 BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::ADD4); 12035 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_ADD_I16) 12036 BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::ADD4); 12037 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_ADD_I32) 12038 BB = EmitAtomicBinary(MI, BB, 4, PPC::ADD4); 12039 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_ADD_I64) 12040 BB = EmitAtomicBinary(MI, BB, 8, PPC::ADD8); 12041 12042 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_AND_I8) 12043 BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::AND); 12044 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_AND_I16) 12045 BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::AND); 12046 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_AND_I32) 12047 BB = EmitAtomicBinary(MI, BB, 4, PPC::AND); 12048 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_AND_I64) 12049 BB = EmitAtomicBinary(MI, BB, 8, PPC::AND8); 12050 12051 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_OR_I8) 12052 BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::OR); 12053 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_OR_I16) 12054 BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::OR); 12055 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_OR_I32) 12056 BB = EmitAtomicBinary(MI, BB, 4, PPC::OR); 12057 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_OR_I64) 12058 BB = EmitAtomicBinary(MI, BB, 8, PPC::OR8); 12059 12060 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_XOR_I8) 12061 BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::XOR); 12062 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_XOR_I16) 12063 BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::XOR); 12064 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_XOR_I32) 12065 BB = EmitAtomicBinary(MI, BB, 4, PPC::XOR); 12066 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_XOR_I64) 12067 BB = EmitAtomicBinary(MI, BB, 8, PPC::XOR8); 12068 12069 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_NAND_I8) 12070 BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::NAND); 12071 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_NAND_I16) 12072 BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::NAND); 12073 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_NAND_I32) 12074 BB = EmitAtomicBinary(MI, BB, 4, PPC::NAND); 12075 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_NAND_I64) 12076 BB = EmitAtomicBinary(MI, BB, 8, PPC::NAND8); 12077 12078 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_SUB_I8) 12079 BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::SUBF); 12080 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_SUB_I16) 12081 BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::SUBF); 12082 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_SUB_I32) 12083 BB = EmitAtomicBinary(MI, BB, 4, PPC::SUBF); 12084 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_SUB_I64) 12085 BB = EmitAtomicBinary(MI, BB, 8, PPC::SUBF8); 12086 12087 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MIN_I8) 12088 BB = EmitPartwordAtomicBinary(MI, BB, true, 0, PPC::CMPW, PPC::PRED_GE); 12089 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MIN_I16) 12090 BB = EmitPartwordAtomicBinary(MI, BB, false, 0, PPC::CMPW, PPC::PRED_GE); 12091 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MIN_I32) 12092 BB = EmitAtomicBinary(MI, BB, 4, 0, PPC::CMPW, PPC::PRED_GE); 12093 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MIN_I64) 12094 BB = EmitAtomicBinary(MI, BB, 8, 0, PPC::CMPD, PPC::PRED_GE); 12095 12096 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MAX_I8) 12097 BB = EmitPartwordAtomicBinary(MI, BB, true, 0, PPC::CMPW, PPC::PRED_LE); 12098 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MAX_I16) 12099 BB = EmitPartwordAtomicBinary(MI, BB, false, 0, PPC::CMPW, PPC::PRED_LE); 12100 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MAX_I32) 12101 BB = EmitAtomicBinary(MI, BB, 4, 0, PPC::CMPW, PPC::PRED_LE); 12102 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MAX_I64) 12103 BB = EmitAtomicBinary(MI, BB, 8, 0, PPC::CMPD, PPC::PRED_LE); 12104 12105 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMIN_I8) 12106 BB = EmitPartwordAtomicBinary(MI, BB, true, 0, PPC::CMPLW, PPC::PRED_GE); 12107 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMIN_I16) 12108 BB = EmitPartwordAtomicBinary(MI, BB, false, 0, PPC::CMPLW, PPC::PRED_GE); 12109 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMIN_I32) 12110 BB = EmitAtomicBinary(MI, BB, 4, 0, PPC::CMPLW, PPC::PRED_GE); 12111 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMIN_I64) 12112 BB = EmitAtomicBinary(MI, BB, 8, 0, PPC::CMPLD, PPC::PRED_GE); 12113 12114 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMAX_I8) 12115 BB = EmitPartwordAtomicBinary(MI, BB, true, 0, PPC::CMPLW, PPC::PRED_LE); 12116 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMAX_I16) 12117 BB = EmitPartwordAtomicBinary(MI, BB, false, 0, PPC::CMPLW, PPC::PRED_LE); 12118 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMAX_I32) 12119 BB = EmitAtomicBinary(MI, BB, 4, 0, PPC::CMPLW, PPC::PRED_LE); 12120 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMAX_I64) 12121 BB = EmitAtomicBinary(MI, BB, 8, 0, PPC::CMPLD, PPC::PRED_LE); 12122 12123 else if (MI.getOpcode() == PPC::ATOMIC_SWAP_I8) 12124 BB = EmitPartwordAtomicBinary(MI, BB, true, 0); 12125 else if (MI.getOpcode() == PPC::ATOMIC_SWAP_I16) 12126 BB = EmitPartwordAtomicBinary(MI, BB, false, 0); 12127 else if (MI.getOpcode() == PPC::ATOMIC_SWAP_I32) 12128 BB = EmitAtomicBinary(MI, BB, 4, 0); 12129 else if (MI.getOpcode() == PPC::ATOMIC_SWAP_I64) 12130 BB = EmitAtomicBinary(MI, BB, 8, 0); 12131 else if (MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I32 || 12132 MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I64 || 12133 (Subtarget.hasPartwordAtomics() && 12134 MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I8) || 12135 (Subtarget.hasPartwordAtomics() && 12136 MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I16)) { 12137 bool is64bit = MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I64; 12138 12139 auto LoadMnemonic = PPC::LDARX; 12140 auto StoreMnemonic = PPC::STDCX; 12141 switch (MI.getOpcode()) { 12142 default: 12143 llvm_unreachable("Compare and swap of unknown size"); 12144 case PPC::ATOMIC_CMP_SWAP_I8: 12145 LoadMnemonic = PPC::LBARX; 12146 StoreMnemonic = PPC::STBCX; 12147 assert(Subtarget.hasPartwordAtomics() && "No support partword atomics."); 12148 break; 12149 case PPC::ATOMIC_CMP_SWAP_I16: 12150 LoadMnemonic = PPC::LHARX; 12151 StoreMnemonic = PPC::STHCX; 12152 assert(Subtarget.hasPartwordAtomics() && "No support partword atomics."); 12153 break; 12154 case PPC::ATOMIC_CMP_SWAP_I32: 12155 LoadMnemonic = PPC::LWARX; 12156 StoreMnemonic = PPC::STWCX; 12157 break; 12158 case PPC::ATOMIC_CMP_SWAP_I64: 12159 LoadMnemonic = PPC::LDARX; 12160 StoreMnemonic = PPC::STDCX; 12161 break; 12162 } 12163 Register dest = MI.getOperand(0).getReg(); 12164 Register ptrA = MI.getOperand(1).getReg(); 12165 Register ptrB = MI.getOperand(2).getReg(); 12166 Register oldval = MI.getOperand(3).getReg(); 12167 Register newval = MI.getOperand(4).getReg(); 12168 DebugLoc dl = MI.getDebugLoc(); 12169 12170 MachineBasicBlock *loop1MBB = F->CreateMachineBasicBlock(LLVM_BB); 12171 MachineBasicBlock *loop2MBB = F->CreateMachineBasicBlock(LLVM_BB); 12172 MachineBasicBlock *midMBB = F->CreateMachineBasicBlock(LLVM_BB); 12173 MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB); 12174 F->insert(It, loop1MBB); 12175 F->insert(It, loop2MBB); 12176 F->insert(It, midMBB); 12177 F->insert(It, exitMBB); 12178 exitMBB->splice(exitMBB->begin(), BB, 12179 std::next(MachineBasicBlock::iterator(MI)), BB->end()); 12180 exitMBB->transferSuccessorsAndUpdatePHIs(BB); 12181 12182 // thisMBB: 12183 // ... 12184 // fallthrough --> loopMBB 12185 BB->addSuccessor(loop1MBB); 12186 12187 // loop1MBB: 12188 // l[bhwd]arx dest, ptr 12189 // cmp[wd] dest, oldval 12190 // bne- midMBB 12191 // loop2MBB: 12192 // st[bhwd]cx. newval, ptr 12193 // bne- loopMBB 12194 // b exitBB 12195 // midMBB: 12196 // st[bhwd]cx. dest, ptr 12197 // exitBB: 12198 BB = loop1MBB; 12199 BuildMI(BB, dl, TII->get(LoadMnemonic), dest).addReg(ptrA).addReg(ptrB); 12200 BuildMI(BB, dl, TII->get(is64bit ? PPC::CMPD : PPC::CMPW), PPC::CR0) 12201 .addReg(oldval) 12202 .addReg(dest); 12203 BuildMI(BB, dl, TII->get(PPC::BCC)) 12204 .addImm(PPC::PRED_NE) 12205 .addReg(PPC::CR0) 12206 .addMBB(midMBB); 12207 BB->addSuccessor(loop2MBB); 12208 BB->addSuccessor(midMBB); 12209 12210 BB = loop2MBB; 12211 BuildMI(BB, dl, TII->get(StoreMnemonic)) 12212 .addReg(newval) 12213 .addReg(ptrA) 12214 .addReg(ptrB); 12215 BuildMI(BB, dl, TII->get(PPC::BCC)) 12216 .addImm(PPC::PRED_NE) 12217 .addReg(PPC::CR0) 12218 .addMBB(loop1MBB); 12219 BuildMI(BB, dl, TII->get(PPC::B)).addMBB(exitMBB); 12220 BB->addSuccessor(loop1MBB); 12221 BB->addSuccessor(exitMBB); 12222 12223 BB = midMBB; 12224 BuildMI(BB, dl, TII->get(StoreMnemonic)) 12225 .addReg(dest) 12226 .addReg(ptrA) 12227 .addReg(ptrB); 12228 BB->addSuccessor(exitMBB); 12229 12230 // exitMBB: 12231 // ... 12232 BB = exitMBB; 12233 } else if (MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I8 || 12234 MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I16) { 12235 // We must use 64-bit registers for addresses when targeting 64-bit, 12236 // since we're actually doing arithmetic on them. Other registers 12237 // can be 32-bit. 12238 bool is64bit = Subtarget.isPPC64(); 12239 bool isLittleEndian = Subtarget.isLittleEndian(); 12240 bool is8bit = MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I8; 12241 12242 Register dest = MI.getOperand(0).getReg(); 12243 Register ptrA = MI.getOperand(1).getReg(); 12244 Register ptrB = MI.getOperand(2).getReg(); 12245 Register oldval = MI.getOperand(3).getReg(); 12246 Register newval = MI.getOperand(4).getReg(); 12247 DebugLoc dl = MI.getDebugLoc(); 12248 12249 MachineBasicBlock *loop1MBB = F->CreateMachineBasicBlock(LLVM_BB); 12250 MachineBasicBlock *loop2MBB = F->CreateMachineBasicBlock(LLVM_BB); 12251 MachineBasicBlock *midMBB = F->CreateMachineBasicBlock(LLVM_BB); 12252 MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB); 12253 F->insert(It, loop1MBB); 12254 F->insert(It, loop2MBB); 12255 F->insert(It, midMBB); 12256 F->insert(It, exitMBB); 12257 exitMBB->splice(exitMBB->begin(), BB, 12258 std::next(MachineBasicBlock::iterator(MI)), BB->end()); 12259 exitMBB->transferSuccessorsAndUpdatePHIs(BB); 12260 12261 MachineRegisterInfo &RegInfo = F->getRegInfo(); 12262 const TargetRegisterClass *RC = 12263 is64bit ? &PPC::G8RCRegClass : &PPC::GPRCRegClass; 12264 const TargetRegisterClass *GPRC = &PPC::GPRCRegClass; 12265 12266 Register PtrReg = RegInfo.createVirtualRegister(RC); 12267 Register Shift1Reg = RegInfo.createVirtualRegister(GPRC); 12268 Register ShiftReg = 12269 isLittleEndian ? Shift1Reg : RegInfo.createVirtualRegister(GPRC); 12270 Register NewVal2Reg = RegInfo.createVirtualRegister(GPRC); 12271 Register NewVal3Reg = RegInfo.createVirtualRegister(GPRC); 12272 Register OldVal2Reg = RegInfo.createVirtualRegister(GPRC); 12273 Register OldVal3Reg = RegInfo.createVirtualRegister(GPRC); 12274 Register MaskReg = RegInfo.createVirtualRegister(GPRC); 12275 Register Mask2Reg = RegInfo.createVirtualRegister(GPRC); 12276 Register Mask3Reg = RegInfo.createVirtualRegister(GPRC); 12277 Register Tmp2Reg = RegInfo.createVirtualRegister(GPRC); 12278 Register Tmp4Reg = RegInfo.createVirtualRegister(GPRC); 12279 Register TmpDestReg = RegInfo.createVirtualRegister(GPRC); 12280 Register Ptr1Reg; 12281 Register TmpReg = RegInfo.createVirtualRegister(GPRC); 12282 Register ZeroReg = is64bit ? PPC::ZERO8 : PPC::ZERO; 12283 // thisMBB: 12284 // ... 12285 // fallthrough --> loopMBB 12286 BB->addSuccessor(loop1MBB); 12287 12288 // The 4-byte load must be aligned, while a char or short may be 12289 // anywhere in the word. Hence all this nasty bookkeeping code. 12290 // add ptr1, ptrA, ptrB [copy if ptrA==0] 12291 // rlwinm shift1, ptr1, 3, 27, 28 [3, 27, 27] 12292 // xori shift, shift1, 24 [16] 12293 // rlwinm ptr, ptr1, 0, 0, 29 12294 // slw newval2, newval, shift 12295 // slw oldval2, oldval,shift 12296 // li mask2, 255 [li mask3, 0; ori mask2, mask3, 65535] 12297 // slw mask, mask2, shift 12298 // and newval3, newval2, mask 12299 // and oldval3, oldval2, mask 12300 // loop1MBB: 12301 // lwarx tmpDest, ptr 12302 // and tmp, tmpDest, mask 12303 // cmpw tmp, oldval3 12304 // bne- midMBB 12305 // loop2MBB: 12306 // andc tmp2, tmpDest, mask 12307 // or tmp4, tmp2, newval3 12308 // stwcx. tmp4, ptr 12309 // bne- loop1MBB 12310 // b exitBB 12311 // midMBB: 12312 // stwcx. tmpDest, ptr 12313 // exitBB: 12314 // srw dest, tmpDest, shift 12315 if (ptrA != ZeroReg) { 12316 Ptr1Reg = RegInfo.createVirtualRegister(RC); 12317 BuildMI(BB, dl, TII->get(is64bit ? PPC::ADD8 : PPC::ADD4), Ptr1Reg) 12318 .addReg(ptrA) 12319 .addReg(ptrB); 12320 } else { 12321 Ptr1Reg = ptrB; 12322 } 12323 12324 // We need use 32-bit subregister to avoid mismatch register class in 64-bit 12325 // mode. 12326 BuildMI(BB, dl, TII->get(PPC::RLWINM), Shift1Reg) 12327 .addReg(Ptr1Reg, 0, is64bit ? PPC::sub_32 : 0) 12328 .addImm(3) 12329 .addImm(27) 12330 .addImm(is8bit ? 28 : 27); 12331 if (!isLittleEndian) 12332 BuildMI(BB, dl, TII->get(PPC::XORI), ShiftReg) 12333 .addReg(Shift1Reg) 12334 .addImm(is8bit ? 24 : 16); 12335 if (is64bit) 12336 BuildMI(BB, dl, TII->get(PPC::RLDICR), PtrReg) 12337 .addReg(Ptr1Reg) 12338 .addImm(0) 12339 .addImm(61); 12340 else 12341 BuildMI(BB, dl, TII->get(PPC::RLWINM), PtrReg) 12342 .addReg(Ptr1Reg) 12343 .addImm(0) 12344 .addImm(0) 12345 .addImm(29); 12346 BuildMI(BB, dl, TII->get(PPC::SLW), NewVal2Reg) 12347 .addReg(newval) 12348 .addReg(ShiftReg); 12349 BuildMI(BB, dl, TII->get(PPC::SLW), OldVal2Reg) 12350 .addReg(oldval) 12351 .addReg(ShiftReg); 12352 if (is8bit) 12353 BuildMI(BB, dl, TII->get(PPC::LI), Mask2Reg).addImm(255); 12354 else { 12355 BuildMI(BB, dl, TII->get(PPC::LI), Mask3Reg).addImm(0); 12356 BuildMI(BB, dl, TII->get(PPC::ORI), Mask2Reg) 12357 .addReg(Mask3Reg) 12358 .addImm(65535); 12359 } 12360 BuildMI(BB, dl, TII->get(PPC::SLW), MaskReg) 12361 .addReg(Mask2Reg) 12362 .addReg(ShiftReg); 12363 BuildMI(BB, dl, TII->get(PPC::AND), NewVal3Reg) 12364 .addReg(NewVal2Reg) 12365 .addReg(MaskReg); 12366 BuildMI(BB, dl, TII->get(PPC::AND), OldVal3Reg) 12367 .addReg(OldVal2Reg) 12368 .addReg(MaskReg); 12369 12370 BB = loop1MBB; 12371 BuildMI(BB, dl, TII->get(PPC::LWARX), TmpDestReg) 12372 .addReg(ZeroReg) 12373 .addReg(PtrReg); 12374 BuildMI(BB, dl, TII->get(PPC::AND), TmpReg) 12375 .addReg(TmpDestReg) 12376 .addReg(MaskReg); 12377 BuildMI(BB, dl, TII->get(PPC::CMPW), PPC::CR0) 12378 .addReg(TmpReg) 12379 .addReg(OldVal3Reg); 12380 BuildMI(BB, dl, TII->get(PPC::BCC)) 12381 .addImm(PPC::PRED_NE) 12382 .addReg(PPC::CR0) 12383 .addMBB(midMBB); 12384 BB->addSuccessor(loop2MBB); 12385 BB->addSuccessor(midMBB); 12386 12387 BB = loop2MBB; 12388 BuildMI(BB, dl, TII->get(PPC::ANDC), Tmp2Reg) 12389 .addReg(TmpDestReg) 12390 .addReg(MaskReg); 12391 BuildMI(BB, dl, TII->get(PPC::OR), Tmp4Reg) 12392 .addReg(Tmp2Reg) 12393 .addReg(NewVal3Reg); 12394 BuildMI(BB, dl, TII->get(PPC::STWCX)) 12395 .addReg(Tmp4Reg) 12396 .addReg(ZeroReg) 12397 .addReg(PtrReg); 12398 BuildMI(BB, dl, TII->get(PPC::BCC)) 12399 .addImm(PPC::PRED_NE) 12400 .addReg(PPC::CR0) 12401 .addMBB(loop1MBB); 12402 BuildMI(BB, dl, TII->get(PPC::B)).addMBB(exitMBB); 12403 BB->addSuccessor(loop1MBB); 12404 BB->addSuccessor(exitMBB); 12405 12406 BB = midMBB; 12407 BuildMI(BB, dl, TII->get(PPC::STWCX)) 12408 .addReg(TmpDestReg) 12409 .addReg(ZeroReg) 12410 .addReg(PtrReg); 12411 BB->addSuccessor(exitMBB); 12412 12413 // exitMBB: 12414 // ... 12415 BB = exitMBB; 12416 BuildMI(*BB, BB->begin(), dl, TII->get(PPC::SRW), dest) 12417 .addReg(TmpReg) 12418 .addReg(ShiftReg); 12419 } else if (MI.getOpcode() == PPC::FADDrtz) { 12420 // This pseudo performs an FADD with rounding mode temporarily forced 12421 // to round-to-zero. We emit this via custom inserter since the FPSCR 12422 // is not modeled at the SelectionDAG level. 12423 Register Dest = MI.getOperand(0).getReg(); 12424 Register Src1 = MI.getOperand(1).getReg(); 12425 Register Src2 = MI.getOperand(2).getReg(); 12426 DebugLoc dl = MI.getDebugLoc(); 12427 12428 MachineRegisterInfo &RegInfo = F->getRegInfo(); 12429 Register MFFSReg = RegInfo.createVirtualRegister(&PPC::F8RCRegClass); 12430 12431 // Save FPSCR value. 12432 BuildMI(*BB, MI, dl, TII->get(PPC::MFFS), MFFSReg); 12433 12434 // Set rounding mode to round-to-zero. 12435 BuildMI(*BB, MI, dl, TII->get(PPC::MTFSB1)) 12436 .addImm(31) 12437 .addReg(PPC::RM, RegState::ImplicitDefine); 12438 12439 BuildMI(*BB, MI, dl, TII->get(PPC::MTFSB0)) 12440 .addImm(30) 12441 .addReg(PPC::RM, RegState::ImplicitDefine); 12442 12443 // Perform addition. 12444 auto MIB = BuildMI(*BB, MI, dl, TII->get(PPC::FADD), Dest) 12445 .addReg(Src1) 12446 .addReg(Src2); 12447 if (MI.getFlag(MachineInstr::NoFPExcept)) 12448 MIB.setMIFlag(MachineInstr::NoFPExcept); 12449 12450 // Restore FPSCR value. 12451 BuildMI(*BB, MI, dl, TII->get(PPC::MTFSFb)).addImm(1).addReg(MFFSReg); 12452 } else if (MI.getOpcode() == PPC::ANDI_rec_1_EQ_BIT || 12453 MI.getOpcode() == PPC::ANDI_rec_1_GT_BIT || 12454 MI.getOpcode() == PPC::ANDI_rec_1_EQ_BIT8 || 12455 MI.getOpcode() == PPC::ANDI_rec_1_GT_BIT8) { 12456 unsigned Opcode = (MI.getOpcode() == PPC::ANDI_rec_1_EQ_BIT8 || 12457 MI.getOpcode() == PPC::ANDI_rec_1_GT_BIT8) 12458 ? PPC::ANDI8_rec 12459 : PPC::ANDI_rec; 12460 bool IsEQ = (MI.getOpcode() == PPC::ANDI_rec_1_EQ_BIT || 12461 MI.getOpcode() == PPC::ANDI_rec_1_EQ_BIT8); 12462 12463 MachineRegisterInfo &RegInfo = F->getRegInfo(); 12464 Register Dest = RegInfo.createVirtualRegister( 12465 Opcode == PPC::ANDI_rec ? &PPC::GPRCRegClass : &PPC::G8RCRegClass); 12466 12467 DebugLoc Dl = MI.getDebugLoc(); 12468 BuildMI(*BB, MI, Dl, TII->get(Opcode), Dest) 12469 .addReg(MI.getOperand(1).getReg()) 12470 .addImm(1); 12471 BuildMI(*BB, MI, Dl, TII->get(TargetOpcode::COPY), 12472 MI.getOperand(0).getReg()) 12473 .addReg(IsEQ ? PPC::CR0EQ : PPC::CR0GT); 12474 } else if (MI.getOpcode() == PPC::TCHECK_RET) { 12475 DebugLoc Dl = MI.getDebugLoc(); 12476 MachineRegisterInfo &RegInfo = F->getRegInfo(); 12477 Register CRReg = RegInfo.createVirtualRegister(&PPC::CRRCRegClass); 12478 BuildMI(*BB, MI, Dl, TII->get(PPC::TCHECK), CRReg); 12479 BuildMI(*BB, MI, Dl, TII->get(TargetOpcode::COPY), 12480 MI.getOperand(0).getReg()) 12481 .addReg(CRReg); 12482 } else if (MI.getOpcode() == PPC::TBEGIN_RET) { 12483 DebugLoc Dl = MI.getDebugLoc(); 12484 unsigned Imm = MI.getOperand(1).getImm(); 12485 BuildMI(*BB, MI, Dl, TII->get(PPC::TBEGIN)).addImm(Imm); 12486 BuildMI(*BB, MI, Dl, TII->get(TargetOpcode::COPY), 12487 MI.getOperand(0).getReg()) 12488 .addReg(PPC::CR0EQ); 12489 } else if (MI.getOpcode() == PPC::SETRNDi) { 12490 DebugLoc dl = MI.getDebugLoc(); 12491 Register OldFPSCRReg = MI.getOperand(0).getReg(); 12492 12493 // Save FPSCR value. 12494 BuildMI(*BB, MI, dl, TII->get(PPC::MFFS), OldFPSCRReg); 12495 12496 // The floating point rounding mode is in the bits 62:63 of FPCSR, and has 12497 // the following settings: 12498 // 00 Round to nearest 12499 // 01 Round to 0 12500 // 10 Round to +inf 12501 // 11 Round to -inf 12502 12503 // When the operand is immediate, using the two least significant bits of 12504 // the immediate to set the bits 62:63 of FPSCR. 12505 unsigned Mode = MI.getOperand(1).getImm(); 12506 BuildMI(*BB, MI, dl, TII->get((Mode & 1) ? PPC::MTFSB1 : PPC::MTFSB0)) 12507 .addImm(31) 12508 .addReg(PPC::RM, RegState::ImplicitDefine); 12509 12510 BuildMI(*BB, MI, dl, TII->get((Mode & 2) ? PPC::MTFSB1 : PPC::MTFSB0)) 12511 .addImm(30) 12512 .addReg(PPC::RM, RegState::ImplicitDefine); 12513 } else if (MI.getOpcode() == PPC::SETRND) { 12514 DebugLoc dl = MI.getDebugLoc(); 12515 12516 // Copy register from F8RCRegClass::SrcReg to G8RCRegClass::DestReg 12517 // or copy register from G8RCRegClass::SrcReg to F8RCRegClass::DestReg. 12518 // If the target doesn't have DirectMove, we should use stack to do the 12519 // conversion, because the target doesn't have the instructions like mtvsrd 12520 // or mfvsrd to do this conversion directly. 12521 auto copyRegFromG8RCOrF8RC = [&] (unsigned DestReg, unsigned SrcReg) { 12522 if (Subtarget.hasDirectMove()) { 12523 BuildMI(*BB, MI, dl, TII->get(TargetOpcode::COPY), DestReg) 12524 .addReg(SrcReg); 12525 } else { 12526 // Use stack to do the register copy. 12527 unsigned StoreOp = PPC::STD, LoadOp = PPC::LFD; 12528 MachineRegisterInfo &RegInfo = F->getRegInfo(); 12529 const TargetRegisterClass *RC = RegInfo.getRegClass(SrcReg); 12530 if (RC == &PPC::F8RCRegClass) { 12531 // Copy register from F8RCRegClass to G8RCRegclass. 12532 assert((RegInfo.getRegClass(DestReg) == &PPC::G8RCRegClass) && 12533 "Unsupported RegClass."); 12534 12535 StoreOp = PPC::STFD; 12536 LoadOp = PPC::LD; 12537 } else { 12538 // Copy register from G8RCRegClass to F8RCRegclass. 12539 assert((RegInfo.getRegClass(SrcReg) == &PPC::G8RCRegClass) && 12540 (RegInfo.getRegClass(DestReg) == &PPC::F8RCRegClass) && 12541 "Unsupported RegClass."); 12542 } 12543 12544 MachineFrameInfo &MFI = F->getFrameInfo(); 12545 int FrameIdx = MFI.CreateStackObject(8, Align(8), false); 12546 12547 MachineMemOperand *MMOStore = F->getMachineMemOperand( 12548 MachinePointerInfo::getFixedStack(*F, FrameIdx, 0), 12549 MachineMemOperand::MOStore, MFI.getObjectSize(FrameIdx), 12550 MFI.getObjectAlign(FrameIdx)); 12551 12552 // Store the SrcReg into the stack. 12553 BuildMI(*BB, MI, dl, TII->get(StoreOp)) 12554 .addReg(SrcReg) 12555 .addImm(0) 12556 .addFrameIndex(FrameIdx) 12557 .addMemOperand(MMOStore); 12558 12559 MachineMemOperand *MMOLoad = F->getMachineMemOperand( 12560 MachinePointerInfo::getFixedStack(*F, FrameIdx, 0), 12561 MachineMemOperand::MOLoad, MFI.getObjectSize(FrameIdx), 12562 MFI.getObjectAlign(FrameIdx)); 12563 12564 // Load from the stack where SrcReg is stored, and save to DestReg, 12565 // so we have done the RegClass conversion from RegClass::SrcReg to 12566 // RegClass::DestReg. 12567 BuildMI(*BB, MI, dl, TII->get(LoadOp), DestReg) 12568 .addImm(0) 12569 .addFrameIndex(FrameIdx) 12570 .addMemOperand(MMOLoad); 12571 } 12572 }; 12573 12574 Register OldFPSCRReg = MI.getOperand(0).getReg(); 12575 12576 // Save FPSCR value. 12577 BuildMI(*BB, MI, dl, TII->get(PPC::MFFS), OldFPSCRReg); 12578 12579 // When the operand is gprc register, use two least significant bits of the 12580 // register and mtfsf instruction to set the bits 62:63 of FPSCR. 12581 // 12582 // copy OldFPSCRTmpReg, OldFPSCRReg 12583 // (INSERT_SUBREG ExtSrcReg, (IMPLICIT_DEF ImDefReg), SrcOp, 1) 12584 // rldimi NewFPSCRTmpReg, ExtSrcReg, OldFPSCRReg, 0, 62 12585 // copy NewFPSCRReg, NewFPSCRTmpReg 12586 // mtfsf 255, NewFPSCRReg 12587 MachineOperand SrcOp = MI.getOperand(1); 12588 MachineRegisterInfo &RegInfo = F->getRegInfo(); 12589 Register OldFPSCRTmpReg = RegInfo.createVirtualRegister(&PPC::G8RCRegClass); 12590 12591 copyRegFromG8RCOrF8RC(OldFPSCRTmpReg, OldFPSCRReg); 12592 12593 Register ImDefReg = RegInfo.createVirtualRegister(&PPC::G8RCRegClass); 12594 Register ExtSrcReg = RegInfo.createVirtualRegister(&PPC::G8RCRegClass); 12595 12596 // The first operand of INSERT_SUBREG should be a register which has 12597 // subregisters, we only care about its RegClass, so we should use an 12598 // IMPLICIT_DEF register. 12599 BuildMI(*BB, MI, dl, TII->get(TargetOpcode::IMPLICIT_DEF), ImDefReg); 12600 BuildMI(*BB, MI, dl, TII->get(PPC::INSERT_SUBREG), ExtSrcReg) 12601 .addReg(ImDefReg) 12602 .add(SrcOp) 12603 .addImm(1); 12604 12605 Register NewFPSCRTmpReg = RegInfo.createVirtualRegister(&PPC::G8RCRegClass); 12606 BuildMI(*BB, MI, dl, TII->get(PPC::RLDIMI), NewFPSCRTmpReg) 12607 .addReg(OldFPSCRTmpReg) 12608 .addReg(ExtSrcReg) 12609 .addImm(0) 12610 .addImm(62); 12611 12612 Register NewFPSCRReg = RegInfo.createVirtualRegister(&PPC::F8RCRegClass); 12613 copyRegFromG8RCOrF8RC(NewFPSCRReg, NewFPSCRTmpReg); 12614 12615 // The mask 255 means that put the 32:63 bits of NewFPSCRReg to the 32:63 12616 // bits of FPSCR. 12617 BuildMI(*BB, MI, dl, TII->get(PPC::MTFSF)) 12618 .addImm(255) 12619 .addReg(NewFPSCRReg) 12620 .addImm(0) 12621 .addImm(0); 12622 } else if (MI.getOpcode() == PPC::SETFLM) { 12623 DebugLoc Dl = MI.getDebugLoc(); 12624 12625 // Result of setflm is previous FPSCR content, so we need to save it first. 12626 Register OldFPSCRReg = MI.getOperand(0).getReg(); 12627 BuildMI(*BB, MI, Dl, TII->get(PPC::MFFS), OldFPSCRReg); 12628 12629 // Put bits in 32:63 to FPSCR. 12630 Register NewFPSCRReg = MI.getOperand(1).getReg(); 12631 BuildMI(*BB, MI, Dl, TII->get(PPC::MTFSF)) 12632 .addImm(255) 12633 .addReg(NewFPSCRReg) 12634 .addImm(0) 12635 .addImm(0); 12636 } else if (MI.getOpcode() == PPC::PROBED_ALLOCA_32 || 12637 MI.getOpcode() == PPC::PROBED_ALLOCA_64) { 12638 return emitProbedAlloca(MI, BB); 12639 } else if (MI.getOpcode() == PPC::SPLIT_QUADWORD) { 12640 DebugLoc DL = MI.getDebugLoc(); 12641 Register Src = MI.getOperand(2).getReg(); 12642 Register Lo = MI.getOperand(0).getReg(); 12643 Register Hi = MI.getOperand(1).getReg(); 12644 BuildMI(*BB, MI, DL, TII->get(TargetOpcode::COPY)) 12645 .addDef(Lo) 12646 .addUse(Src, 0, PPC::sub_gp8_x1); 12647 BuildMI(*BB, MI, DL, TII->get(TargetOpcode::COPY)) 12648 .addDef(Hi) 12649 .addUse(Src, 0, PPC::sub_gp8_x0); 12650 } else { 12651 llvm_unreachable("Unexpected instr type to insert"); 12652 } 12653 12654 MI.eraseFromParent(); // The pseudo instruction is gone now. 12655 return BB; 12656 } 12657 12658 //===----------------------------------------------------------------------===// 12659 // Target Optimization Hooks 12660 //===----------------------------------------------------------------------===// 12661 12662 static int getEstimateRefinementSteps(EVT VT, const PPCSubtarget &Subtarget) { 12663 // For the estimates, convergence is quadratic, so we essentially double the 12664 // number of digits correct after every iteration. For both FRE and FRSQRTE, 12665 // the minimum architected relative accuracy is 2^-5. When hasRecipPrec(), 12666 // this is 2^-14. IEEE float has 23 digits and double has 52 digits. 12667 int RefinementSteps = Subtarget.hasRecipPrec() ? 1 : 3; 12668 if (VT.getScalarType() == MVT::f64) 12669 RefinementSteps++; 12670 return RefinementSteps; 12671 } 12672 12673 SDValue PPCTargetLowering::getSqrtInputTest(SDValue Op, SelectionDAG &DAG, 12674 const DenormalMode &Mode) const { 12675 // We only have VSX Vector Test for software Square Root. 12676 EVT VT = Op.getValueType(); 12677 if (!isTypeLegal(MVT::i1) || 12678 (VT != MVT::f64 && 12679 ((VT != MVT::v2f64 && VT != MVT::v4f32) || !Subtarget.hasVSX()))) 12680 return TargetLowering::getSqrtInputTest(Op, DAG, Mode); 12681 12682 SDLoc DL(Op); 12683 // The output register of FTSQRT is CR field. 12684 SDValue FTSQRT = DAG.getNode(PPCISD::FTSQRT, DL, MVT::i32, Op); 12685 // ftsqrt BF,FRB 12686 // Let e_b be the unbiased exponent of the double-precision 12687 // floating-point operand in register FRB. 12688 // fe_flag is set to 1 if either of the following conditions occurs. 12689 // - The double-precision floating-point operand in register FRB is a zero, 12690 // a NaN, or an infinity, or a negative value. 12691 // - e_b is less than or equal to -970. 12692 // Otherwise fe_flag is set to 0. 12693 // Both VSX and non-VSX versions would set EQ bit in the CR if the number is 12694 // not eligible for iteration. (zero/negative/infinity/nan or unbiased 12695 // exponent is less than -970) 12696 SDValue SRIdxVal = DAG.getTargetConstant(PPC::sub_eq, DL, MVT::i32); 12697 return SDValue(DAG.getMachineNode(TargetOpcode::EXTRACT_SUBREG, DL, MVT::i1, 12698 FTSQRT, SRIdxVal), 12699 0); 12700 } 12701 12702 SDValue 12703 PPCTargetLowering::getSqrtResultForDenormInput(SDValue Op, 12704 SelectionDAG &DAG) const { 12705 // We only have VSX Vector Square Root. 12706 EVT VT = Op.getValueType(); 12707 if (VT != MVT::f64 && 12708 ((VT != MVT::v2f64 && VT != MVT::v4f32) || !Subtarget.hasVSX())) 12709 return TargetLowering::getSqrtResultForDenormInput(Op, DAG); 12710 12711 return DAG.getNode(PPCISD::FSQRT, SDLoc(Op), VT, Op); 12712 } 12713 12714 SDValue PPCTargetLowering::getSqrtEstimate(SDValue Operand, SelectionDAG &DAG, 12715 int Enabled, int &RefinementSteps, 12716 bool &UseOneConstNR, 12717 bool Reciprocal) const { 12718 EVT VT = Operand.getValueType(); 12719 if ((VT == MVT::f32 && Subtarget.hasFRSQRTES()) || 12720 (VT == MVT::f64 && Subtarget.hasFRSQRTE()) || 12721 (VT == MVT::v4f32 && Subtarget.hasAltivec()) || 12722 (VT == MVT::v2f64 && Subtarget.hasVSX())) { 12723 if (RefinementSteps == ReciprocalEstimate::Unspecified) 12724 RefinementSteps = getEstimateRefinementSteps(VT, Subtarget); 12725 12726 // The Newton-Raphson computation with a single constant does not provide 12727 // enough accuracy on some CPUs. 12728 UseOneConstNR = !Subtarget.needsTwoConstNR(); 12729 return DAG.getNode(PPCISD::FRSQRTE, SDLoc(Operand), VT, Operand); 12730 } 12731 return SDValue(); 12732 } 12733 12734 SDValue PPCTargetLowering::getRecipEstimate(SDValue Operand, SelectionDAG &DAG, 12735 int Enabled, 12736 int &RefinementSteps) const { 12737 EVT VT = Operand.getValueType(); 12738 if ((VT == MVT::f32 && Subtarget.hasFRES()) || 12739 (VT == MVT::f64 && Subtarget.hasFRE()) || 12740 (VT == MVT::v4f32 && Subtarget.hasAltivec()) || 12741 (VT == MVT::v2f64 && Subtarget.hasVSX())) { 12742 if (RefinementSteps == ReciprocalEstimate::Unspecified) 12743 RefinementSteps = getEstimateRefinementSteps(VT, Subtarget); 12744 return DAG.getNode(PPCISD::FRE, SDLoc(Operand), VT, Operand); 12745 } 12746 return SDValue(); 12747 } 12748 12749 unsigned PPCTargetLowering::combineRepeatedFPDivisors() const { 12750 // Note: This functionality is used only when unsafe-fp-math is enabled, and 12751 // on cores with reciprocal estimates (which are used when unsafe-fp-math is 12752 // enabled for division), this functionality is redundant with the default 12753 // combiner logic (once the division -> reciprocal/multiply transformation 12754 // has taken place). As a result, this matters more for older cores than for 12755 // newer ones. 12756 12757 // Combine multiple FDIVs with the same divisor into multiple FMULs by the 12758 // reciprocal if there are two or more FDIVs (for embedded cores with only 12759 // one FP pipeline) for three or more FDIVs (for generic OOO cores). 12760 switch (Subtarget.getCPUDirective()) { 12761 default: 12762 return 3; 12763 case PPC::DIR_440: 12764 case PPC::DIR_A2: 12765 case PPC::DIR_E500: 12766 case PPC::DIR_E500mc: 12767 case PPC::DIR_E5500: 12768 return 2; 12769 } 12770 } 12771 12772 // isConsecutiveLSLoc needs to work even if all adds have not yet been 12773 // collapsed, and so we need to look through chains of them. 12774 static void getBaseWithConstantOffset(SDValue Loc, SDValue &Base, 12775 int64_t& Offset, SelectionDAG &DAG) { 12776 if (DAG.isBaseWithConstantOffset(Loc)) { 12777 Base = Loc.getOperand(0); 12778 Offset += cast<ConstantSDNode>(Loc.getOperand(1))->getSExtValue(); 12779 12780 // The base might itself be a base plus an offset, and if so, accumulate 12781 // that as well. 12782 getBaseWithConstantOffset(Loc.getOperand(0), Base, Offset, DAG); 12783 } 12784 } 12785 12786 static bool isConsecutiveLSLoc(SDValue Loc, EVT VT, LSBaseSDNode *Base, 12787 unsigned Bytes, int Dist, 12788 SelectionDAG &DAG) { 12789 if (VT.getSizeInBits() / 8 != Bytes) 12790 return false; 12791 12792 SDValue BaseLoc = Base->getBasePtr(); 12793 if (Loc.getOpcode() == ISD::FrameIndex) { 12794 if (BaseLoc.getOpcode() != ISD::FrameIndex) 12795 return false; 12796 const MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); 12797 int FI = cast<FrameIndexSDNode>(Loc)->getIndex(); 12798 int BFI = cast<FrameIndexSDNode>(BaseLoc)->getIndex(); 12799 int FS = MFI.getObjectSize(FI); 12800 int BFS = MFI.getObjectSize(BFI); 12801 if (FS != BFS || FS != (int)Bytes) return false; 12802 return MFI.getObjectOffset(FI) == (MFI.getObjectOffset(BFI) + Dist*Bytes); 12803 } 12804 12805 SDValue Base1 = Loc, Base2 = BaseLoc; 12806 int64_t Offset1 = 0, Offset2 = 0; 12807 getBaseWithConstantOffset(Loc, Base1, Offset1, DAG); 12808 getBaseWithConstantOffset(BaseLoc, Base2, Offset2, DAG); 12809 if (Base1 == Base2 && Offset1 == (Offset2 + Dist * Bytes)) 12810 return true; 12811 12812 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 12813 const GlobalValue *GV1 = nullptr; 12814 const GlobalValue *GV2 = nullptr; 12815 Offset1 = 0; 12816 Offset2 = 0; 12817 bool isGA1 = TLI.isGAPlusOffset(Loc.getNode(), GV1, Offset1); 12818 bool isGA2 = TLI.isGAPlusOffset(BaseLoc.getNode(), GV2, Offset2); 12819 if (isGA1 && isGA2 && GV1 == GV2) 12820 return Offset1 == (Offset2 + Dist*Bytes); 12821 return false; 12822 } 12823 12824 // Like SelectionDAG::isConsecutiveLoad, but also works for stores, and does 12825 // not enforce equality of the chain operands. 12826 static bool isConsecutiveLS(SDNode *N, LSBaseSDNode *Base, 12827 unsigned Bytes, int Dist, 12828 SelectionDAG &DAG) { 12829 if (LSBaseSDNode *LS = dyn_cast<LSBaseSDNode>(N)) { 12830 EVT VT = LS->getMemoryVT(); 12831 SDValue Loc = LS->getBasePtr(); 12832 return isConsecutiveLSLoc(Loc, VT, Base, Bytes, Dist, DAG); 12833 } 12834 12835 if (N->getOpcode() == ISD::INTRINSIC_W_CHAIN) { 12836 EVT VT; 12837 switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) { 12838 default: return false; 12839 case Intrinsic::ppc_altivec_lvx: 12840 case Intrinsic::ppc_altivec_lvxl: 12841 case Intrinsic::ppc_vsx_lxvw4x: 12842 case Intrinsic::ppc_vsx_lxvw4x_be: 12843 VT = MVT::v4i32; 12844 break; 12845 case Intrinsic::ppc_vsx_lxvd2x: 12846 case Intrinsic::ppc_vsx_lxvd2x_be: 12847 VT = MVT::v2f64; 12848 break; 12849 case Intrinsic::ppc_altivec_lvebx: 12850 VT = MVT::i8; 12851 break; 12852 case Intrinsic::ppc_altivec_lvehx: 12853 VT = MVT::i16; 12854 break; 12855 case Intrinsic::ppc_altivec_lvewx: 12856 VT = MVT::i32; 12857 break; 12858 } 12859 12860 return isConsecutiveLSLoc(N->getOperand(2), VT, Base, Bytes, Dist, DAG); 12861 } 12862 12863 if (N->getOpcode() == ISD::INTRINSIC_VOID) { 12864 EVT VT; 12865 switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) { 12866 default: return false; 12867 case Intrinsic::ppc_altivec_stvx: 12868 case Intrinsic::ppc_altivec_stvxl: 12869 case Intrinsic::ppc_vsx_stxvw4x: 12870 VT = MVT::v4i32; 12871 break; 12872 case Intrinsic::ppc_vsx_stxvd2x: 12873 VT = MVT::v2f64; 12874 break; 12875 case Intrinsic::ppc_vsx_stxvw4x_be: 12876 VT = MVT::v4i32; 12877 break; 12878 case Intrinsic::ppc_vsx_stxvd2x_be: 12879 VT = MVT::v2f64; 12880 break; 12881 case Intrinsic::ppc_altivec_stvebx: 12882 VT = MVT::i8; 12883 break; 12884 case Intrinsic::ppc_altivec_stvehx: 12885 VT = MVT::i16; 12886 break; 12887 case Intrinsic::ppc_altivec_stvewx: 12888 VT = MVT::i32; 12889 break; 12890 } 12891 12892 return isConsecutiveLSLoc(N->getOperand(3), VT, Base, Bytes, Dist, DAG); 12893 } 12894 12895 return false; 12896 } 12897 12898 // Return true is there is a nearyby consecutive load to the one provided 12899 // (regardless of alignment). We search up and down the chain, looking though 12900 // token factors and other loads (but nothing else). As a result, a true result 12901 // indicates that it is safe to create a new consecutive load adjacent to the 12902 // load provided. 12903 static bool findConsecutiveLoad(LoadSDNode *LD, SelectionDAG &DAG) { 12904 SDValue Chain = LD->getChain(); 12905 EVT VT = LD->getMemoryVT(); 12906 12907 SmallSet<SDNode *, 16> LoadRoots; 12908 SmallVector<SDNode *, 8> Queue(1, Chain.getNode()); 12909 SmallSet<SDNode *, 16> Visited; 12910 12911 // First, search up the chain, branching to follow all token-factor operands. 12912 // If we find a consecutive load, then we're done, otherwise, record all 12913 // nodes just above the top-level loads and token factors. 12914 while (!Queue.empty()) { 12915 SDNode *ChainNext = Queue.pop_back_val(); 12916 if (!Visited.insert(ChainNext).second) 12917 continue; 12918 12919 if (MemSDNode *ChainLD = dyn_cast<MemSDNode>(ChainNext)) { 12920 if (isConsecutiveLS(ChainLD, LD, VT.getStoreSize(), 1, DAG)) 12921 return true; 12922 12923 if (!Visited.count(ChainLD->getChain().getNode())) 12924 Queue.push_back(ChainLD->getChain().getNode()); 12925 } else if (ChainNext->getOpcode() == ISD::TokenFactor) { 12926 for (const SDUse &O : ChainNext->ops()) 12927 if (!Visited.count(O.getNode())) 12928 Queue.push_back(O.getNode()); 12929 } else 12930 LoadRoots.insert(ChainNext); 12931 } 12932 12933 // Second, search down the chain, starting from the top-level nodes recorded 12934 // in the first phase. These top-level nodes are the nodes just above all 12935 // loads and token factors. Starting with their uses, recursively look though 12936 // all loads (just the chain uses) and token factors to find a consecutive 12937 // load. 12938 Visited.clear(); 12939 Queue.clear(); 12940 12941 for (SmallSet<SDNode *, 16>::iterator I = LoadRoots.begin(), 12942 IE = LoadRoots.end(); I != IE; ++I) { 12943 Queue.push_back(*I); 12944 12945 while (!Queue.empty()) { 12946 SDNode *LoadRoot = Queue.pop_back_val(); 12947 if (!Visited.insert(LoadRoot).second) 12948 continue; 12949 12950 if (MemSDNode *ChainLD = dyn_cast<MemSDNode>(LoadRoot)) 12951 if (isConsecutiveLS(ChainLD, LD, VT.getStoreSize(), 1, DAG)) 12952 return true; 12953 12954 for (SDNode::use_iterator UI = LoadRoot->use_begin(), 12955 UE = LoadRoot->use_end(); UI != UE; ++UI) 12956 if (((isa<MemSDNode>(*UI) && 12957 cast<MemSDNode>(*UI)->getChain().getNode() == LoadRoot) || 12958 UI->getOpcode() == ISD::TokenFactor) && !Visited.count(*UI)) 12959 Queue.push_back(*UI); 12960 } 12961 } 12962 12963 return false; 12964 } 12965 12966 /// This function is called when we have proved that a SETCC node can be replaced 12967 /// by subtraction (and other supporting instructions) so that the result of 12968 /// comparison is kept in a GPR instead of CR. This function is purely for 12969 /// codegen purposes and has some flags to guide the codegen process. 12970 static SDValue generateEquivalentSub(SDNode *N, int Size, bool Complement, 12971 bool Swap, SDLoc &DL, SelectionDAG &DAG) { 12972 assert(N->getOpcode() == ISD::SETCC && "ISD::SETCC Expected."); 12973 12974 // Zero extend the operands to the largest legal integer. Originally, they 12975 // must be of a strictly smaller size. 12976 auto Op0 = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i64, N->getOperand(0), 12977 DAG.getConstant(Size, DL, MVT::i32)); 12978 auto Op1 = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i64, N->getOperand(1), 12979 DAG.getConstant(Size, DL, MVT::i32)); 12980 12981 // Swap if needed. Depends on the condition code. 12982 if (Swap) 12983 std::swap(Op0, Op1); 12984 12985 // Subtract extended integers. 12986 auto SubNode = DAG.getNode(ISD::SUB, DL, MVT::i64, Op0, Op1); 12987 12988 // Move the sign bit to the least significant position and zero out the rest. 12989 // Now the least significant bit carries the result of original comparison. 12990 auto Shifted = DAG.getNode(ISD::SRL, DL, MVT::i64, SubNode, 12991 DAG.getConstant(Size - 1, DL, MVT::i32)); 12992 auto Final = Shifted; 12993 12994 // Complement the result if needed. Based on the condition code. 12995 if (Complement) 12996 Final = DAG.getNode(ISD::XOR, DL, MVT::i64, Shifted, 12997 DAG.getConstant(1, DL, MVT::i64)); 12998 12999 return DAG.getNode(ISD::TRUNCATE, DL, MVT::i1, Final); 13000 } 13001 13002 SDValue PPCTargetLowering::ConvertSETCCToSubtract(SDNode *N, 13003 DAGCombinerInfo &DCI) const { 13004 assert(N->getOpcode() == ISD::SETCC && "ISD::SETCC Expected."); 13005 13006 SelectionDAG &DAG = DCI.DAG; 13007 SDLoc DL(N); 13008 13009 // Size of integers being compared has a critical role in the following 13010 // analysis, so we prefer to do this when all types are legal. 13011 if (!DCI.isAfterLegalizeDAG()) 13012 return SDValue(); 13013 13014 // If all users of SETCC extend its value to a legal integer type 13015 // then we replace SETCC with a subtraction 13016 for (SDNode::use_iterator UI = N->use_begin(), 13017 UE = N->use_end(); UI != UE; ++UI) { 13018 if (UI->getOpcode() != ISD::ZERO_EXTEND) 13019 return SDValue(); 13020 } 13021 13022 ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(2))->get(); 13023 auto OpSize = N->getOperand(0).getValueSizeInBits(); 13024 13025 unsigned Size = DAG.getDataLayout().getLargestLegalIntTypeSizeInBits(); 13026 13027 if (OpSize < Size) { 13028 switch (CC) { 13029 default: break; 13030 case ISD::SETULT: 13031 return generateEquivalentSub(N, Size, false, false, DL, DAG); 13032 case ISD::SETULE: 13033 return generateEquivalentSub(N, Size, true, true, DL, DAG); 13034 case ISD::SETUGT: 13035 return generateEquivalentSub(N, Size, false, true, DL, DAG); 13036 case ISD::SETUGE: 13037 return generateEquivalentSub(N, Size, true, false, DL, DAG); 13038 } 13039 } 13040 13041 return SDValue(); 13042 } 13043 13044 SDValue PPCTargetLowering::DAGCombineTruncBoolExt(SDNode *N, 13045 DAGCombinerInfo &DCI) const { 13046 SelectionDAG &DAG = DCI.DAG; 13047 SDLoc dl(N); 13048 13049 assert(Subtarget.useCRBits() && "Expecting to be tracking CR bits"); 13050 // If we're tracking CR bits, we need to be careful that we don't have: 13051 // trunc(binary-ops(zext(x), zext(y))) 13052 // or 13053 // trunc(binary-ops(binary-ops(zext(x), zext(y)), ...) 13054 // such that we're unnecessarily moving things into GPRs when it would be 13055 // better to keep them in CR bits. 13056 13057 // Note that trunc here can be an actual i1 trunc, or can be the effective 13058 // truncation that comes from a setcc or select_cc. 13059 if (N->getOpcode() == ISD::TRUNCATE && 13060 N->getValueType(0) != MVT::i1) 13061 return SDValue(); 13062 13063 if (N->getOperand(0).getValueType() != MVT::i32 && 13064 N->getOperand(0).getValueType() != MVT::i64) 13065 return SDValue(); 13066 13067 if (N->getOpcode() == ISD::SETCC || 13068 N->getOpcode() == ISD::SELECT_CC) { 13069 // If we're looking at a comparison, then we need to make sure that the 13070 // high bits (all except for the first) don't matter the result. 13071 ISD::CondCode CC = 13072 cast<CondCodeSDNode>(N->getOperand( 13073 N->getOpcode() == ISD::SETCC ? 2 : 4))->get(); 13074 unsigned OpBits = N->getOperand(0).getValueSizeInBits(); 13075 13076 if (ISD::isSignedIntSetCC(CC)) { 13077 if (DAG.ComputeNumSignBits(N->getOperand(0)) != OpBits || 13078 DAG.ComputeNumSignBits(N->getOperand(1)) != OpBits) 13079 return SDValue(); 13080 } else if (ISD::isUnsignedIntSetCC(CC)) { 13081 if (!DAG.MaskedValueIsZero(N->getOperand(0), 13082 APInt::getHighBitsSet(OpBits, OpBits-1)) || 13083 !DAG.MaskedValueIsZero(N->getOperand(1), 13084 APInt::getHighBitsSet(OpBits, OpBits-1))) 13085 return (N->getOpcode() == ISD::SETCC ? ConvertSETCCToSubtract(N, DCI) 13086 : SDValue()); 13087 } else { 13088 // This is neither a signed nor an unsigned comparison, just make sure 13089 // that the high bits are equal. 13090 KnownBits Op1Known = DAG.computeKnownBits(N->getOperand(0)); 13091 KnownBits Op2Known = DAG.computeKnownBits(N->getOperand(1)); 13092 13093 // We don't really care about what is known about the first bit (if 13094 // anything), so pretend that it is known zero for both to ensure they can 13095 // be compared as constants. 13096 Op1Known.Zero.setBit(0); Op1Known.One.clearBit(0); 13097 Op2Known.Zero.setBit(0); Op2Known.One.clearBit(0); 13098 13099 if (!Op1Known.isConstant() || !Op2Known.isConstant() || 13100 Op1Known.getConstant() != Op2Known.getConstant()) 13101 return SDValue(); 13102 } 13103 } 13104 13105 // We now know that the higher-order bits are irrelevant, we just need to 13106 // make sure that all of the intermediate operations are bit operations, and 13107 // all inputs are extensions. 13108 if (N->getOperand(0).getOpcode() != ISD::AND && 13109 N->getOperand(0).getOpcode() != ISD::OR && 13110 N->getOperand(0).getOpcode() != ISD::XOR && 13111 N->getOperand(0).getOpcode() != ISD::SELECT && 13112 N->getOperand(0).getOpcode() != ISD::SELECT_CC && 13113 N->getOperand(0).getOpcode() != ISD::TRUNCATE && 13114 N->getOperand(0).getOpcode() != ISD::SIGN_EXTEND && 13115 N->getOperand(0).getOpcode() != ISD::ZERO_EXTEND && 13116 N->getOperand(0).getOpcode() != ISD::ANY_EXTEND) 13117 return SDValue(); 13118 13119 if ((N->getOpcode() == ISD::SETCC || N->getOpcode() == ISD::SELECT_CC) && 13120 N->getOperand(1).getOpcode() != ISD::AND && 13121 N->getOperand(1).getOpcode() != ISD::OR && 13122 N->getOperand(1).getOpcode() != ISD::XOR && 13123 N->getOperand(1).getOpcode() != ISD::SELECT && 13124 N->getOperand(1).getOpcode() != ISD::SELECT_CC && 13125 N->getOperand(1).getOpcode() != ISD::TRUNCATE && 13126 N->getOperand(1).getOpcode() != ISD::SIGN_EXTEND && 13127 N->getOperand(1).getOpcode() != ISD::ZERO_EXTEND && 13128 N->getOperand(1).getOpcode() != ISD::ANY_EXTEND) 13129 return SDValue(); 13130 13131 SmallVector<SDValue, 4> Inputs; 13132 SmallVector<SDValue, 8> BinOps, PromOps; 13133 SmallPtrSet<SDNode *, 16> Visited; 13134 13135 for (unsigned i = 0; i < 2; ++i) { 13136 if (((N->getOperand(i).getOpcode() == ISD::SIGN_EXTEND || 13137 N->getOperand(i).getOpcode() == ISD::ZERO_EXTEND || 13138 N->getOperand(i).getOpcode() == ISD::ANY_EXTEND) && 13139 N->getOperand(i).getOperand(0).getValueType() == MVT::i1) || 13140 isa<ConstantSDNode>(N->getOperand(i))) 13141 Inputs.push_back(N->getOperand(i)); 13142 else 13143 BinOps.push_back(N->getOperand(i)); 13144 13145 if (N->getOpcode() == ISD::TRUNCATE) 13146 break; 13147 } 13148 13149 // Visit all inputs, collect all binary operations (and, or, xor and 13150 // select) that are all fed by extensions. 13151 while (!BinOps.empty()) { 13152 SDValue BinOp = BinOps.pop_back_val(); 13153 13154 if (!Visited.insert(BinOp.getNode()).second) 13155 continue; 13156 13157 PromOps.push_back(BinOp); 13158 13159 for (unsigned i = 0, ie = BinOp.getNumOperands(); i != ie; ++i) { 13160 // The condition of the select is not promoted. 13161 if (BinOp.getOpcode() == ISD::SELECT && i == 0) 13162 continue; 13163 if (BinOp.getOpcode() == ISD::SELECT_CC && i != 2 && i != 3) 13164 continue; 13165 13166 if (((BinOp.getOperand(i).getOpcode() == ISD::SIGN_EXTEND || 13167 BinOp.getOperand(i).getOpcode() == ISD::ZERO_EXTEND || 13168 BinOp.getOperand(i).getOpcode() == ISD::ANY_EXTEND) && 13169 BinOp.getOperand(i).getOperand(0).getValueType() == MVT::i1) || 13170 isa<ConstantSDNode>(BinOp.getOperand(i))) { 13171 Inputs.push_back(BinOp.getOperand(i)); 13172 } else if (BinOp.getOperand(i).getOpcode() == ISD::AND || 13173 BinOp.getOperand(i).getOpcode() == ISD::OR || 13174 BinOp.getOperand(i).getOpcode() == ISD::XOR || 13175 BinOp.getOperand(i).getOpcode() == ISD::SELECT || 13176 BinOp.getOperand(i).getOpcode() == ISD::SELECT_CC || 13177 BinOp.getOperand(i).getOpcode() == ISD::TRUNCATE || 13178 BinOp.getOperand(i).getOpcode() == ISD::SIGN_EXTEND || 13179 BinOp.getOperand(i).getOpcode() == ISD::ZERO_EXTEND || 13180 BinOp.getOperand(i).getOpcode() == ISD::ANY_EXTEND) { 13181 BinOps.push_back(BinOp.getOperand(i)); 13182 } else { 13183 // We have an input that is not an extension or another binary 13184 // operation; we'll abort this transformation. 13185 return SDValue(); 13186 } 13187 } 13188 } 13189 13190 // Make sure that this is a self-contained cluster of operations (which 13191 // is not quite the same thing as saying that everything has only one 13192 // use). 13193 for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) { 13194 if (isa<ConstantSDNode>(Inputs[i])) 13195 continue; 13196 13197 for (SDNode::use_iterator UI = Inputs[i].getNode()->use_begin(), 13198 UE = Inputs[i].getNode()->use_end(); 13199 UI != UE; ++UI) { 13200 SDNode *User = *UI; 13201 if (User != N && !Visited.count(User)) 13202 return SDValue(); 13203 13204 // Make sure that we're not going to promote the non-output-value 13205 // operand(s) or SELECT or SELECT_CC. 13206 // FIXME: Although we could sometimes handle this, and it does occur in 13207 // practice that one of the condition inputs to the select is also one of 13208 // the outputs, we currently can't deal with this. 13209 if (User->getOpcode() == ISD::SELECT) { 13210 if (User->getOperand(0) == Inputs[i]) 13211 return SDValue(); 13212 } else if (User->getOpcode() == ISD::SELECT_CC) { 13213 if (User->getOperand(0) == Inputs[i] || 13214 User->getOperand(1) == Inputs[i]) 13215 return SDValue(); 13216 } 13217 } 13218 } 13219 13220 for (unsigned i = 0, ie = PromOps.size(); i != ie; ++i) { 13221 for (SDNode::use_iterator UI = PromOps[i].getNode()->use_begin(), 13222 UE = PromOps[i].getNode()->use_end(); 13223 UI != UE; ++UI) { 13224 SDNode *User = *UI; 13225 if (User != N && !Visited.count(User)) 13226 return SDValue(); 13227 13228 // Make sure that we're not going to promote the non-output-value 13229 // operand(s) or SELECT or SELECT_CC. 13230 // FIXME: Although we could sometimes handle this, and it does occur in 13231 // practice that one of the condition inputs to the select is also one of 13232 // the outputs, we currently can't deal with this. 13233 if (User->getOpcode() == ISD::SELECT) { 13234 if (User->getOperand(0) == PromOps[i]) 13235 return SDValue(); 13236 } else if (User->getOpcode() == ISD::SELECT_CC) { 13237 if (User->getOperand(0) == PromOps[i] || 13238 User->getOperand(1) == PromOps[i]) 13239 return SDValue(); 13240 } 13241 } 13242 } 13243 13244 // Replace all inputs with the extension operand. 13245 for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) { 13246 // Constants may have users outside the cluster of to-be-promoted nodes, 13247 // and so we need to replace those as we do the promotions. 13248 if (isa<ConstantSDNode>(Inputs[i])) 13249 continue; 13250 else 13251 DAG.ReplaceAllUsesOfValueWith(Inputs[i], Inputs[i].getOperand(0)); 13252 } 13253 13254 std::list<HandleSDNode> PromOpHandles; 13255 for (auto &PromOp : PromOps) 13256 PromOpHandles.emplace_back(PromOp); 13257 13258 // Replace all operations (these are all the same, but have a different 13259 // (i1) return type). DAG.getNode will validate that the types of 13260 // a binary operator match, so go through the list in reverse so that 13261 // we've likely promoted both operands first. Any intermediate truncations or 13262 // extensions disappear. 13263 while (!PromOpHandles.empty()) { 13264 SDValue PromOp = PromOpHandles.back().getValue(); 13265 PromOpHandles.pop_back(); 13266 13267 if (PromOp.getOpcode() == ISD::TRUNCATE || 13268 PromOp.getOpcode() == ISD::SIGN_EXTEND || 13269 PromOp.getOpcode() == ISD::ZERO_EXTEND || 13270 PromOp.getOpcode() == ISD::ANY_EXTEND) { 13271 if (!isa<ConstantSDNode>(PromOp.getOperand(0)) && 13272 PromOp.getOperand(0).getValueType() != MVT::i1) { 13273 // The operand is not yet ready (see comment below). 13274 PromOpHandles.emplace_front(PromOp); 13275 continue; 13276 } 13277 13278 SDValue RepValue = PromOp.getOperand(0); 13279 if (isa<ConstantSDNode>(RepValue)) 13280 RepValue = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, RepValue); 13281 13282 DAG.ReplaceAllUsesOfValueWith(PromOp, RepValue); 13283 continue; 13284 } 13285 13286 unsigned C; 13287 switch (PromOp.getOpcode()) { 13288 default: C = 0; break; 13289 case ISD::SELECT: C = 1; break; 13290 case ISD::SELECT_CC: C = 2; break; 13291 } 13292 13293 if ((!isa<ConstantSDNode>(PromOp.getOperand(C)) && 13294 PromOp.getOperand(C).getValueType() != MVT::i1) || 13295 (!isa<ConstantSDNode>(PromOp.getOperand(C+1)) && 13296 PromOp.getOperand(C+1).getValueType() != MVT::i1)) { 13297 // The to-be-promoted operands of this node have not yet been 13298 // promoted (this should be rare because we're going through the 13299 // list backward, but if one of the operands has several users in 13300 // this cluster of to-be-promoted nodes, it is possible). 13301 PromOpHandles.emplace_front(PromOp); 13302 continue; 13303 } 13304 13305 SmallVector<SDValue, 3> Ops(PromOp.getNode()->op_begin(), 13306 PromOp.getNode()->op_end()); 13307 13308 // If there are any constant inputs, make sure they're replaced now. 13309 for (unsigned i = 0; i < 2; ++i) 13310 if (isa<ConstantSDNode>(Ops[C+i])) 13311 Ops[C+i] = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, Ops[C+i]); 13312 13313 DAG.ReplaceAllUsesOfValueWith(PromOp, 13314 DAG.getNode(PromOp.getOpcode(), dl, MVT::i1, Ops)); 13315 } 13316 13317 // Now we're left with the initial truncation itself. 13318 if (N->getOpcode() == ISD::TRUNCATE) 13319 return N->getOperand(0); 13320 13321 // Otherwise, this is a comparison. The operands to be compared have just 13322 // changed type (to i1), but everything else is the same. 13323 return SDValue(N, 0); 13324 } 13325 13326 SDValue PPCTargetLowering::DAGCombineExtBoolTrunc(SDNode *N, 13327 DAGCombinerInfo &DCI) const { 13328 SelectionDAG &DAG = DCI.DAG; 13329 SDLoc dl(N); 13330 13331 // If we're tracking CR bits, we need to be careful that we don't have: 13332 // zext(binary-ops(trunc(x), trunc(y))) 13333 // or 13334 // zext(binary-ops(binary-ops(trunc(x), trunc(y)), ...) 13335 // such that we're unnecessarily moving things into CR bits that can more 13336 // efficiently stay in GPRs. Note that if we're not certain that the high 13337 // bits are set as required by the final extension, we still may need to do 13338 // some masking to get the proper behavior. 13339 13340 // This same functionality is important on PPC64 when dealing with 13341 // 32-to-64-bit extensions; these occur often when 32-bit values are used as 13342 // the return values of functions. Because it is so similar, it is handled 13343 // here as well. 13344 13345 if (N->getValueType(0) != MVT::i32 && 13346 N->getValueType(0) != MVT::i64) 13347 return SDValue(); 13348 13349 if (!((N->getOperand(0).getValueType() == MVT::i1 && Subtarget.useCRBits()) || 13350 (N->getOperand(0).getValueType() == MVT::i32 && Subtarget.isPPC64()))) 13351 return SDValue(); 13352 13353 if (N->getOperand(0).getOpcode() != ISD::AND && 13354 N->getOperand(0).getOpcode() != ISD::OR && 13355 N->getOperand(0).getOpcode() != ISD::XOR && 13356 N->getOperand(0).getOpcode() != ISD::SELECT && 13357 N->getOperand(0).getOpcode() != ISD::SELECT_CC) 13358 return SDValue(); 13359 13360 SmallVector<SDValue, 4> Inputs; 13361 SmallVector<SDValue, 8> BinOps(1, N->getOperand(0)), PromOps; 13362 SmallPtrSet<SDNode *, 16> Visited; 13363 13364 // Visit all inputs, collect all binary operations (and, or, xor and 13365 // select) that are all fed by truncations. 13366 while (!BinOps.empty()) { 13367 SDValue BinOp = BinOps.pop_back_val(); 13368 13369 if (!Visited.insert(BinOp.getNode()).second) 13370 continue; 13371 13372 PromOps.push_back(BinOp); 13373 13374 for (unsigned i = 0, ie = BinOp.getNumOperands(); i != ie; ++i) { 13375 // The condition of the select is not promoted. 13376 if (BinOp.getOpcode() == ISD::SELECT && i == 0) 13377 continue; 13378 if (BinOp.getOpcode() == ISD::SELECT_CC && i != 2 && i != 3) 13379 continue; 13380 13381 if (BinOp.getOperand(i).getOpcode() == ISD::TRUNCATE || 13382 isa<ConstantSDNode>(BinOp.getOperand(i))) { 13383 Inputs.push_back(BinOp.getOperand(i)); 13384 } else if (BinOp.getOperand(i).getOpcode() == ISD::AND || 13385 BinOp.getOperand(i).getOpcode() == ISD::OR || 13386 BinOp.getOperand(i).getOpcode() == ISD::XOR || 13387 BinOp.getOperand(i).getOpcode() == ISD::SELECT || 13388 BinOp.getOperand(i).getOpcode() == ISD::SELECT_CC) { 13389 BinOps.push_back(BinOp.getOperand(i)); 13390 } else { 13391 // We have an input that is not a truncation or another binary 13392 // operation; we'll abort this transformation. 13393 return SDValue(); 13394 } 13395 } 13396 } 13397 13398 // The operands of a select that must be truncated when the select is 13399 // promoted because the operand is actually part of the to-be-promoted set. 13400 DenseMap<SDNode *, EVT> SelectTruncOp[2]; 13401 13402 // Make sure that this is a self-contained cluster of operations (which 13403 // is not quite the same thing as saying that everything has only one 13404 // use). 13405 for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) { 13406 if (isa<ConstantSDNode>(Inputs[i])) 13407 continue; 13408 13409 for (SDNode::use_iterator UI = Inputs[i].getNode()->use_begin(), 13410 UE = Inputs[i].getNode()->use_end(); 13411 UI != UE; ++UI) { 13412 SDNode *User = *UI; 13413 if (User != N && !Visited.count(User)) 13414 return SDValue(); 13415 13416 // If we're going to promote the non-output-value operand(s) or SELECT or 13417 // SELECT_CC, record them for truncation. 13418 if (User->getOpcode() == ISD::SELECT) { 13419 if (User->getOperand(0) == Inputs[i]) 13420 SelectTruncOp[0].insert(std::make_pair(User, 13421 User->getOperand(0).getValueType())); 13422 } else if (User->getOpcode() == ISD::SELECT_CC) { 13423 if (User->getOperand(0) == Inputs[i]) 13424 SelectTruncOp[0].insert(std::make_pair(User, 13425 User->getOperand(0).getValueType())); 13426 if (User->getOperand(1) == Inputs[i]) 13427 SelectTruncOp[1].insert(std::make_pair(User, 13428 User->getOperand(1).getValueType())); 13429 } 13430 } 13431 } 13432 13433 for (unsigned i = 0, ie = PromOps.size(); i != ie; ++i) { 13434 for (SDNode::use_iterator UI = PromOps[i].getNode()->use_begin(), 13435 UE = PromOps[i].getNode()->use_end(); 13436 UI != UE; ++UI) { 13437 SDNode *User = *UI; 13438 if (User != N && !Visited.count(User)) 13439 return SDValue(); 13440 13441 // If we're going to promote the non-output-value operand(s) or SELECT or 13442 // SELECT_CC, record them for truncation. 13443 if (User->getOpcode() == ISD::SELECT) { 13444 if (User->getOperand(0) == PromOps[i]) 13445 SelectTruncOp[0].insert(std::make_pair(User, 13446 User->getOperand(0).getValueType())); 13447 } else if (User->getOpcode() == ISD::SELECT_CC) { 13448 if (User->getOperand(0) == PromOps[i]) 13449 SelectTruncOp[0].insert(std::make_pair(User, 13450 User->getOperand(0).getValueType())); 13451 if (User->getOperand(1) == PromOps[i]) 13452 SelectTruncOp[1].insert(std::make_pair(User, 13453 User->getOperand(1).getValueType())); 13454 } 13455 } 13456 } 13457 13458 unsigned PromBits = N->getOperand(0).getValueSizeInBits(); 13459 bool ReallyNeedsExt = false; 13460 if (N->getOpcode() != ISD::ANY_EXTEND) { 13461 // If all of the inputs are not already sign/zero extended, then 13462 // we'll still need to do that at the end. 13463 for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) { 13464 if (isa<ConstantSDNode>(Inputs[i])) 13465 continue; 13466 13467 unsigned OpBits = 13468 Inputs[i].getOperand(0).getValueSizeInBits(); 13469 assert(PromBits < OpBits && "Truncation not to a smaller bit count?"); 13470 13471 if ((N->getOpcode() == ISD::ZERO_EXTEND && 13472 !DAG.MaskedValueIsZero(Inputs[i].getOperand(0), 13473 APInt::getHighBitsSet(OpBits, 13474 OpBits-PromBits))) || 13475 (N->getOpcode() == ISD::SIGN_EXTEND && 13476 DAG.ComputeNumSignBits(Inputs[i].getOperand(0)) < 13477 (OpBits-(PromBits-1)))) { 13478 ReallyNeedsExt = true; 13479 break; 13480 } 13481 } 13482 } 13483 13484 // Replace all inputs, either with the truncation operand, or a 13485 // truncation or extension to the final output type. 13486 for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) { 13487 // Constant inputs need to be replaced with the to-be-promoted nodes that 13488 // use them because they might have users outside of the cluster of 13489 // promoted nodes. 13490 if (isa<ConstantSDNode>(Inputs[i])) 13491 continue; 13492 13493 SDValue InSrc = Inputs[i].getOperand(0); 13494 if (Inputs[i].getValueType() == N->getValueType(0)) 13495 DAG.ReplaceAllUsesOfValueWith(Inputs[i], InSrc); 13496 else if (N->getOpcode() == ISD::SIGN_EXTEND) 13497 DAG.ReplaceAllUsesOfValueWith(Inputs[i], 13498 DAG.getSExtOrTrunc(InSrc, dl, N->getValueType(0))); 13499 else if (N->getOpcode() == ISD::ZERO_EXTEND) 13500 DAG.ReplaceAllUsesOfValueWith(Inputs[i], 13501 DAG.getZExtOrTrunc(InSrc, dl, N->getValueType(0))); 13502 else 13503 DAG.ReplaceAllUsesOfValueWith(Inputs[i], 13504 DAG.getAnyExtOrTrunc(InSrc, dl, N->getValueType(0))); 13505 } 13506 13507 std::list<HandleSDNode> PromOpHandles; 13508 for (auto &PromOp : PromOps) 13509 PromOpHandles.emplace_back(PromOp); 13510 13511 // Replace all operations (these are all the same, but have a different 13512 // (promoted) return type). DAG.getNode will validate that the types of 13513 // a binary operator match, so go through the list in reverse so that 13514 // we've likely promoted both operands first. 13515 while (!PromOpHandles.empty()) { 13516 SDValue PromOp = PromOpHandles.back().getValue(); 13517 PromOpHandles.pop_back(); 13518 13519 unsigned C; 13520 switch (PromOp.getOpcode()) { 13521 default: C = 0; break; 13522 case ISD::SELECT: C = 1; break; 13523 case ISD::SELECT_CC: C = 2; break; 13524 } 13525 13526 if ((!isa<ConstantSDNode>(PromOp.getOperand(C)) && 13527 PromOp.getOperand(C).getValueType() != N->getValueType(0)) || 13528 (!isa<ConstantSDNode>(PromOp.getOperand(C+1)) && 13529 PromOp.getOperand(C+1).getValueType() != N->getValueType(0))) { 13530 // The to-be-promoted operands of this node have not yet been 13531 // promoted (this should be rare because we're going through the 13532 // list backward, but if one of the operands has several users in 13533 // this cluster of to-be-promoted nodes, it is possible). 13534 PromOpHandles.emplace_front(PromOp); 13535 continue; 13536 } 13537 13538 // For SELECT and SELECT_CC nodes, we do a similar check for any 13539 // to-be-promoted comparison inputs. 13540 if (PromOp.getOpcode() == ISD::SELECT || 13541 PromOp.getOpcode() == ISD::SELECT_CC) { 13542 if ((SelectTruncOp[0].count(PromOp.getNode()) && 13543 PromOp.getOperand(0).getValueType() != N->getValueType(0)) || 13544 (SelectTruncOp[1].count(PromOp.getNode()) && 13545 PromOp.getOperand(1).getValueType() != N->getValueType(0))) { 13546 PromOpHandles.emplace_front(PromOp); 13547 continue; 13548 } 13549 } 13550 13551 SmallVector<SDValue, 3> Ops(PromOp.getNode()->op_begin(), 13552 PromOp.getNode()->op_end()); 13553 13554 // If this node has constant inputs, then they'll need to be promoted here. 13555 for (unsigned i = 0; i < 2; ++i) { 13556 if (!isa<ConstantSDNode>(Ops[C+i])) 13557 continue; 13558 if (Ops[C+i].getValueType() == N->getValueType(0)) 13559 continue; 13560 13561 if (N->getOpcode() == ISD::SIGN_EXTEND) 13562 Ops[C+i] = DAG.getSExtOrTrunc(Ops[C+i], dl, N->getValueType(0)); 13563 else if (N->getOpcode() == ISD::ZERO_EXTEND) 13564 Ops[C+i] = DAG.getZExtOrTrunc(Ops[C+i], dl, N->getValueType(0)); 13565 else 13566 Ops[C+i] = DAG.getAnyExtOrTrunc(Ops[C+i], dl, N->getValueType(0)); 13567 } 13568 13569 // If we've promoted the comparison inputs of a SELECT or SELECT_CC, 13570 // truncate them again to the original value type. 13571 if (PromOp.getOpcode() == ISD::SELECT || 13572 PromOp.getOpcode() == ISD::SELECT_CC) { 13573 auto SI0 = SelectTruncOp[0].find(PromOp.getNode()); 13574 if (SI0 != SelectTruncOp[0].end()) 13575 Ops[0] = DAG.getNode(ISD::TRUNCATE, dl, SI0->second, Ops[0]); 13576 auto SI1 = SelectTruncOp[1].find(PromOp.getNode()); 13577 if (SI1 != SelectTruncOp[1].end()) 13578 Ops[1] = DAG.getNode(ISD::TRUNCATE, dl, SI1->second, Ops[1]); 13579 } 13580 13581 DAG.ReplaceAllUsesOfValueWith(PromOp, 13582 DAG.getNode(PromOp.getOpcode(), dl, N->getValueType(0), Ops)); 13583 } 13584 13585 // Now we're left with the initial extension itself. 13586 if (!ReallyNeedsExt) 13587 return N->getOperand(0); 13588 13589 // To zero extend, just mask off everything except for the first bit (in the 13590 // i1 case). 13591 if (N->getOpcode() == ISD::ZERO_EXTEND) 13592 return DAG.getNode(ISD::AND, dl, N->getValueType(0), N->getOperand(0), 13593 DAG.getConstant(APInt::getLowBitsSet( 13594 N->getValueSizeInBits(0), PromBits), 13595 dl, N->getValueType(0))); 13596 13597 assert(N->getOpcode() == ISD::SIGN_EXTEND && 13598 "Invalid extension type"); 13599 EVT ShiftAmountTy = getShiftAmountTy(N->getValueType(0), DAG.getDataLayout()); 13600 SDValue ShiftCst = 13601 DAG.getConstant(N->getValueSizeInBits(0) - PromBits, dl, ShiftAmountTy); 13602 return DAG.getNode( 13603 ISD::SRA, dl, N->getValueType(0), 13604 DAG.getNode(ISD::SHL, dl, N->getValueType(0), N->getOperand(0), ShiftCst), 13605 ShiftCst); 13606 } 13607 13608 SDValue PPCTargetLowering::combineSetCC(SDNode *N, 13609 DAGCombinerInfo &DCI) const { 13610 assert(N->getOpcode() == ISD::SETCC && 13611 "Should be called with a SETCC node"); 13612 13613 ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(2))->get(); 13614 if (CC == ISD::SETNE || CC == ISD::SETEQ) { 13615 SDValue LHS = N->getOperand(0); 13616 SDValue RHS = N->getOperand(1); 13617 13618 // If there is a '0 - y' pattern, canonicalize the pattern to the RHS. 13619 if (LHS.getOpcode() == ISD::SUB && isNullConstant(LHS.getOperand(0)) && 13620 LHS.hasOneUse()) 13621 std::swap(LHS, RHS); 13622 13623 // x == 0-y --> x+y == 0 13624 // x != 0-y --> x+y != 0 13625 if (RHS.getOpcode() == ISD::SUB && isNullConstant(RHS.getOperand(0)) && 13626 RHS.hasOneUse()) { 13627 SDLoc DL(N); 13628 SelectionDAG &DAG = DCI.DAG; 13629 EVT VT = N->getValueType(0); 13630 EVT OpVT = LHS.getValueType(); 13631 SDValue Add = DAG.getNode(ISD::ADD, DL, OpVT, LHS, RHS.getOperand(1)); 13632 return DAG.getSetCC(DL, VT, Add, DAG.getConstant(0, DL, OpVT), CC); 13633 } 13634 } 13635 13636 return DAGCombineTruncBoolExt(N, DCI); 13637 } 13638 13639 // Is this an extending load from an f32 to an f64? 13640 static bool isFPExtLoad(SDValue Op) { 13641 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(Op.getNode())) 13642 return LD->getExtensionType() == ISD::EXTLOAD && 13643 Op.getValueType() == MVT::f64; 13644 return false; 13645 } 13646 13647 /// Reduces the number of fp-to-int conversion when building a vector. 13648 /// 13649 /// If this vector is built out of floating to integer conversions, 13650 /// transform it to a vector built out of floating point values followed by a 13651 /// single floating to integer conversion of the vector. 13652 /// Namely (build_vector (fptosi $A), (fptosi $B), ...) 13653 /// becomes (fptosi (build_vector ($A, $B, ...))) 13654 SDValue PPCTargetLowering:: 13655 combineElementTruncationToVectorTruncation(SDNode *N, 13656 DAGCombinerInfo &DCI) const { 13657 assert(N->getOpcode() == ISD::BUILD_VECTOR && 13658 "Should be called with a BUILD_VECTOR node"); 13659 13660 SelectionDAG &DAG = DCI.DAG; 13661 SDLoc dl(N); 13662 13663 SDValue FirstInput = N->getOperand(0); 13664 assert(FirstInput.getOpcode() == PPCISD::MFVSR && 13665 "The input operand must be an fp-to-int conversion."); 13666 13667 // This combine happens after legalization so the fp_to_[su]i nodes are 13668 // already converted to PPCSISD nodes. 13669 unsigned FirstConversion = FirstInput.getOperand(0).getOpcode(); 13670 if (FirstConversion == PPCISD::FCTIDZ || 13671 FirstConversion == PPCISD::FCTIDUZ || 13672 FirstConversion == PPCISD::FCTIWZ || 13673 FirstConversion == PPCISD::FCTIWUZ) { 13674 bool IsSplat = true; 13675 bool Is32Bit = FirstConversion == PPCISD::FCTIWZ || 13676 FirstConversion == PPCISD::FCTIWUZ; 13677 EVT SrcVT = FirstInput.getOperand(0).getValueType(); 13678 SmallVector<SDValue, 4> Ops; 13679 EVT TargetVT = N->getValueType(0); 13680 for (int i = 0, e = N->getNumOperands(); i < e; ++i) { 13681 SDValue NextOp = N->getOperand(i); 13682 if (NextOp.getOpcode() != PPCISD::MFVSR) 13683 return SDValue(); 13684 unsigned NextConversion = NextOp.getOperand(0).getOpcode(); 13685 if (NextConversion != FirstConversion) 13686 return SDValue(); 13687 // If we are converting to 32-bit integers, we need to add an FP_ROUND. 13688 // This is not valid if the input was originally double precision. It is 13689 // also not profitable to do unless this is an extending load in which 13690 // case doing this combine will allow us to combine consecutive loads. 13691 if (Is32Bit && !isFPExtLoad(NextOp.getOperand(0).getOperand(0))) 13692 return SDValue(); 13693 if (N->getOperand(i) != FirstInput) 13694 IsSplat = false; 13695 } 13696 13697 // If this is a splat, we leave it as-is since there will be only a single 13698 // fp-to-int conversion followed by a splat of the integer. This is better 13699 // for 32-bit and smaller ints and neutral for 64-bit ints. 13700 if (IsSplat) 13701 return SDValue(); 13702 13703 // Now that we know we have the right type of node, get its operands 13704 for (int i = 0, e = N->getNumOperands(); i < e; ++i) { 13705 SDValue In = N->getOperand(i).getOperand(0); 13706 if (Is32Bit) { 13707 // For 32-bit values, we need to add an FP_ROUND node (if we made it 13708 // here, we know that all inputs are extending loads so this is safe). 13709 if (In.isUndef()) 13710 Ops.push_back(DAG.getUNDEF(SrcVT)); 13711 else { 13712 SDValue Trunc = DAG.getNode(ISD::FP_ROUND, dl, 13713 MVT::f32, In.getOperand(0), 13714 DAG.getIntPtrConstant(1, dl)); 13715 Ops.push_back(Trunc); 13716 } 13717 } else 13718 Ops.push_back(In.isUndef() ? DAG.getUNDEF(SrcVT) : In.getOperand(0)); 13719 } 13720 13721 unsigned Opcode; 13722 if (FirstConversion == PPCISD::FCTIDZ || 13723 FirstConversion == PPCISD::FCTIWZ) 13724 Opcode = ISD::FP_TO_SINT; 13725 else 13726 Opcode = ISD::FP_TO_UINT; 13727 13728 EVT NewVT = TargetVT == MVT::v2i64 ? MVT::v2f64 : MVT::v4f32; 13729 SDValue BV = DAG.getBuildVector(NewVT, dl, Ops); 13730 return DAG.getNode(Opcode, dl, TargetVT, BV); 13731 } 13732 return SDValue(); 13733 } 13734 13735 /// Reduce the number of loads when building a vector. 13736 /// 13737 /// Building a vector out of multiple loads can be converted to a load 13738 /// of the vector type if the loads are consecutive. If the loads are 13739 /// consecutive but in descending order, a shuffle is added at the end 13740 /// to reorder the vector. 13741 static SDValue combineBVOfConsecutiveLoads(SDNode *N, SelectionDAG &DAG) { 13742 assert(N->getOpcode() == ISD::BUILD_VECTOR && 13743 "Should be called with a BUILD_VECTOR node"); 13744 13745 SDLoc dl(N); 13746 13747 // Return early for non byte-sized type, as they can't be consecutive. 13748 if (!N->getValueType(0).getVectorElementType().isByteSized()) 13749 return SDValue(); 13750 13751 bool InputsAreConsecutiveLoads = true; 13752 bool InputsAreReverseConsecutive = true; 13753 unsigned ElemSize = N->getValueType(0).getScalarType().getStoreSize(); 13754 SDValue FirstInput = N->getOperand(0); 13755 bool IsRoundOfExtLoad = false; 13756 13757 if (FirstInput.getOpcode() == ISD::FP_ROUND && 13758 FirstInput.getOperand(0).getOpcode() == ISD::LOAD) { 13759 LoadSDNode *LD = dyn_cast<LoadSDNode>(FirstInput.getOperand(0)); 13760 IsRoundOfExtLoad = LD->getExtensionType() == ISD::EXTLOAD; 13761 } 13762 // Not a build vector of (possibly fp_rounded) loads. 13763 if ((!IsRoundOfExtLoad && FirstInput.getOpcode() != ISD::LOAD) || 13764 N->getNumOperands() == 1) 13765 return SDValue(); 13766 13767 for (int i = 1, e = N->getNumOperands(); i < e; ++i) { 13768 // If any inputs are fp_round(extload), they all must be. 13769 if (IsRoundOfExtLoad && N->getOperand(i).getOpcode() != ISD::FP_ROUND) 13770 return SDValue(); 13771 13772 SDValue NextInput = IsRoundOfExtLoad ? N->getOperand(i).getOperand(0) : 13773 N->getOperand(i); 13774 if (NextInput.getOpcode() != ISD::LOAD) 13775 return SDValue(); 13776 13777 SDValue PreviousInput = 13778 IsRoundOfExtLoad ? N->getOperand(i-1).getOperand(0) : N->getOperand(i-1); 13779 LoadSDNode *LD1 = dyn_cast<LoadSDNode>(PreviousInput); 13780 LoadSDNode *LD2 = dyn_cast<LoadSDNode>(NextInput); 13781 13782 // If any inputs are fp_round(extload), they all must be. 13783 if (IsRoundOfExtLoad && LD2->getExtensionType() != ISD::EXTLOAD) 13784 return SDValue(); 13785 13786 if (!isConsecutiveLS(LD2, LD1, ElemSize, 1, DAG)) 13787 InputsAreConsecutiveLoads = false; 13788 if (!isConsecutiveLS(LD1, LD2, ElemSize, 1, DAG)) 13789 InputsAreReverseConsecutive = false; 13790 13791 // Exit early if the loads are neither consecutive nor reverse consecutive. 13792 if (!InputsAreConsecutiveLoads && !InputsAreReverseConsecutive) 13793 return SDValue(); 13794 } 13795 13796 assert(!(InputsAreConsecutiveLoads && InputsAreReverseConsecutive) && 13797 "The loads cannot be both consecutive and reverse consecutive."); 13798 13799 SDValue FirstLoadOp = 13800 IsRoundOfExtLoad ? FirstInput.getOperand(0) : FirstInput; 13801 SDValue LastLoadOp = 13802 IsRoundOfExtLoad ? N->getOperand(N->getNumOperands()-1).getOperand(0) : 13803 N->getOperand(N->getNumOperands()-1); 13804 13805 LoadSDNode *LD1 = dyn_cast<LoadSDNode>(FirstLoadOp); 13806 LoadSDNode *LDL = dyn_cast<LoadSDNode>(LastLoadOp); 13807 if (InputsAreConsecutiveLoads) { 13808 assert(LD1 && "Input needs to be a LoadSDNode."); 13809 return DAG.getLoad(N->getValueType(0), dl, LD1->getChain(), 13810 LD1->getBasePtr(), LD1->getPointerInfo(), 13811 LD1->getAlignment()); 13812 } 13813 if (InputsAreReverseConsecutive) { 13814 assert(LDL && "Input needs to be a LoadSDNode."); 13815 SDValue Load = DAG.getLoad(N->getValueType(0), dl, LDL->getChain(), 13816 LDL->getBasePtr(), LDL->getPointerInfo(), 13817 LDL->getAlignment()); 13818 SmallVector<int, 16> Ops; 13819 for (int i = N->getNumOperands() - 1; i >= 0; i--) 13820 Ops.push_back(i); 13821 13822 return DAG.getVectorShuffle(N->getValueType(0), dl, Load, 13823 DAG.getUNDEF(N->getValueType(0)), Ops); 13824 } 13825 return SDValue(); 13826 } 13827 13828 // This function adds the required vector_shuffle needed to get 13829 // the elements of the vector extract in the correct position 13830 // as specified by the CorrectElems encoding. 13831 static SDValue addShuffleForVecExtend(SDNode *N, SelectionDAG &DAG, 13832 SDValue Input, uint64_t Elems, 13833 uint64_t CorrectElems) { 13834 SDLoc dl(N); 13835 13836 unsigned NumElems = Input.getValueType().getVectorNumElements(); 13837 SmallVector<int, 16> ShuffleMask(NumElems, -1); 13838 13839 // Knowing the element indices being extracted from the original 13840 // vector and the order in which they're being inserted, just put 13841 // them at element indices required for the instruction. 13842 for (unsigned i = 0; i < N->getNumOperands(); i++) { 13843 if (DAG.getDataLayout().isLittleEndian()) 13844 ShuffleMask[CorrectElems & 0xF] = Elems & 0xF; 13845 else 13846 ShuffleMask[(CorrectElems & 0xF0) >> 4] = (Elems & 0xF0) >> 4; 13847 CorrectElems = CorrectElems >> 8; 13848 Elems = Elems >> 8; 13849 } 13850 13851 SDValue Shuffle = 13852 DAG.getVectorShuffle(Input.getValueType(), dl, Input, 13853 DAG.getUNDEF(Input.getValueType()), ShuffleMask); 13854 13855 EVT VT = N->getValueType(0); 13856 SDValue Conv = DAG.getBitcast(VT, Shuffle); 13857 13858 EVT ExtVT = EVT::getVectorVT(*DAG.getContext(), 13859 Input.getValueType().getVectorElementType(), 13860 VT.getVectorNumElements()); 13861 return DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, VT, Conv, 13862 DAG.getValueType(ExtVT)); 13863 } 13864 13865 // Look for build vector patterns where input operands come from sign 13866 // extended vector_extract elements of specific indices. If the correct indices 13867 // aren't used, add a vector shuffle to fix up the indices and create 13868 // SIGN_EXTEND_INREG node which selects the vector sign extend instructions 13869 // during instruction selection. 13870 static SDValue combineBVOfVecSExt(SDNode *N, SelectionDAG &DAG) { 13871 // This array encodes the indices that the vector sign extend instructions 13872 // extract from when extending from one type to another for both BE and LE. 13873 // The right nibble of each byte corresponds to the LE incides. 13874 // and the left nibble of each byte corresponds to the BE incides. 13875 // For example: 0x3074B8FC byte->word 13876 // For LE: the allowed indices are: 0x0,0x4,0x8,0xC 13877 // For BE: the allowed indices are: 0x3,0x7,0xB,0xF 13878 // For example: 0x000070F8 byte->double word 13879 // For LE: the allowed indices are: 0x0,0x8 13880 // For BE: the allowed indices are: 0x7,0xF 13881 uint64_t TargetElems[] = { 13882 0x3074B8FC, // b->w 13883 0x000070F8, // b->d 13884 0x10325476, // h->w 13885 0x00003074, // h->d 13886 0x00001032, // w->d 13887 }; 13888 13889 uint64_t Elems = 0; 13890 int Index; 13891 SDValue Input; 13892 13893 auto isSExtOfVecExtract = [&](SDValue Op) -> bool { 13894 if (!Op) 13895 return false; 13896 if (Op.getOpcode() != ISD::SIGN_EXTEND && 13897 Op.getOpcode() != ISD::SIGN_EXTEND_INREG) 13898 return false; 13899 13900 // A SIGN_EXTEND_INREG might be fed by an ANY_EXTEND to produce a value 13901 // of the right width. 13902 SDValue Extract = Op.getOperand(0); 13903 if (Extract.getOpcode() == ISD::ANY_EXTEND) 13904 Extract = Extract.getOperand(0); 13905 if (Extract.getOpcode() != ISD::EXTRACT_VECTOR_ELT) 13906 return false; 13907 13908 ConstantSDNode *ExtOp = dyn_cast<ConstantSDNode>(Extract.getOperand(1)); 13909 if (!ExtOp) 13910 return false; 13911 13912 Index = ExtOp->getZExtValue(); 13913 if (Input && Input != Extract.getOperand(0)) 13914 return false; 13915 13916 if (!Input) 13917 Input = Extract.getOperand(0); 13918 13919 Elems = Elems << 8; 13920 Index = DAG.getDataLayout().isLittleEndian() ? Index : Index << 4; 13921 Elems |= Index; 13922 13923 return true; 13924 }; 13925 13926 // If the build vector operands aren't sign extended vector extracts, 13927 // of the same input vector, then return. 13928 for (unsigned i = 0; i < N->getNumOperands(); i++) { 13929 if (!isSExtOfVecExtract(N->getOperand(i))) { 13930 return SDValue(); 13931 } 13932 } 13933 13934 // If the vector extract indicies are not correct, add the appropriate 13935 // vector_shuffle. 13936 int TgtElemArrayIdx; 13937 int InputSize = Input.getValueType().getScalarSizeInBits(); 13938 int OutputSize = N->getValueType(0).getScalarSizeInBits(); 13939 if (InputSize + OutputSize == 40) 13940 TgtElemArrayIdx = 0; 13941 else if (InputSize + OutputSize == 72) 13942 TgtElemArrayIdx = 1; 13943 else if (InputSize + OutputSize == 48) 13944 TgtElemArrayIdx = 2; 13945 else if (InputSize + OutputSize == 80) 13946 TgtElemArrayIdx = 3; 13947 else if (InputSize + OutputSize == 96) 13948 TgtElemArrayIdx = 4; 13949 else 13950 return SDValue(); 13951 13952 uint64_t CorrectElems = TargetElems[TgtElemArrayIdx]; 13953 CorrectElems = DAG.getDataLayout().isLittleEndian() 13954 ? CorrectElems & 0x0F0F0F0F0F0F0F0F 13955 : CorrectElems & 0xF0F0F0F0F0F0F0F0; 13956 if (Elems != CorrectElems) { 13957 return addShuffleForVecExtend(N, DAG, Input, Elems, CorrectElems); 13958 } 13959 13960 // Regular lowering will catch cases where a shuffle is not needed. 13961 return SDValue(); 13962 } 13963 13964 // Look for the pattern of a load from a narrow width to i128, feeding 13965 // into a BUILD_VECTOR of v1i128. Replace this sequence with a PPCISD node 13966 // (LXVRZX). This node represents a zero extending load that will be matched 13967 // to the Load VSX Vector Rightmost instructions. 13968 static SDValue combineBVZEXTLOAD(SDNode *N, SelectionDAG &DAG) { 13969 SDLoc DL(N); 13970 13971 // This combine is only eligible for a BUILD_VECTOR of v1i128. 13972 if (N->getValueType(0) != MVT::v1i128) 13973 return SDValue(); 13974 13975 SDValue Operand = N->getOperand(0); 13976 // Proceed with the transformation if the operand to the BUILD_VECTOR 13977 // is a load instruction. 13978 if (Operand.getOpcode() != ISD::LOAD) 13979 return SDValue(); 13980 13981 auto *LD = cast<LoadSDNode>(Operand); 13982 EVT MemoryType = LD->getMemoryVT(); 13983 13984 // This transformation is only valid if the we are loading either a byte, 13985 // halfword, word, or doubleword. 13986 bool ValidLDType = MemoryType == MVT::i8 || MemoryType == MVT::i16 || 13987 MemoryType == MVT::i32 || MemoryType == MVT::i64; 13988 13989 // Ensure that the load from the narrow width is being zero extended to i128. 13990 if (!ValidLDType || 13991 (LD->getExtensionType() != ISD::ZEXTLOAD && 13992 LD->getExtensionType() != ISD::EXTLOAD)) 13993 return SDValue(); 13994 13995 SDValue LoadOps[] = { 13996 LD->getChain(), LD->getBasePtr(), 13997 DAG.getIntPtrConstant(MemoryType.getScalarSizeInBits(), DL)}; 13998 13999 return DAG.getMemIntrinsicNode(PPCISD::LXVRZX, DL, 14000 DAG.getVTList(MVT::v1i128, MVT::Other), 14001 LoadOps, MemoryType, LD->getMemOperand()); 14002 } 14003 14004 SDValue PPCTargetLowering::DAGCombineBuildVector(SDNode *N, 14005 DAGCombinerInfo &DCI) const { 14006 assert(N->getOpcode() == ISD::BUILD_VECTOR && 14007 "Should be called with a BUILD_VECTOR node"); 14008 14009 SelectionDAG &DAG = DCI.DAG; 14010 SDLoc dl(N); 14011 14012 if (!Subtarget.hasVSX()) 14013 return SDValue(); 14014 14015 // The target independent DAG combiner will leave a build_vector of 14016 // float-to-int conversions intact. We can generate MUCH better code for 14017 // a float-to-int conversion of a vector of floats. 14018 SDValue FirstInput = N->getOperand(0); 14019 if (FirstInput.getOpcode() == PPCISD::MFVSR) { 14020 SDValue Reduced = combineElementTruncationToVectorTruncation(N, DCI); 14021 if (Reduced) 14022 return Reduced; 14023 } 14024 14025 // If we're building a vector out of consecutive loads, just load that 14026 // vector type. 14027 SDValue Reduced = combineBVOfConsecutiveLoads(N, DAG); 14028 if (Reduced) 14029 return Reduced; 14030 14031 // If we're building a vector out of extended elements from another vector 14032 // we have P9 vector integer extend instructions. The code assumes legal 14033 // input types (i.e. it can't handle things like v4i16) so do not run before 14034 // legalization. 14035 if (Subtarget.hasP9Altivec() && !DCI.isBeforeLegalize()) { 14036 Reduced = combineBVOfVecSExt(N, DAG); 14037 if (Reduced) 14038 return Reduced; 14039 } 14040 14041 // On Power10, the Load VSX Vector Rightmost instructions can be utilized 14042 // if this is a BUILD_VECTOR of v1i128, and if the operand to the BUILD_VECTOR 14043 // is a load from <valid narrow width> to i128. 14044 if (Subtarget.isISA3_1()) { 14045 SDValue BVOfZLoad = combineBVZEXTLOAD(N, DAG); 14046 if (BVOfZLoad) 14047 return BVOfZLoad; 14048 } 14049 14050 if (N->getValueType(0) != MVT::v2f64) 14051 return SDValue(); 14052 14053 // Looking for: 14054 // (build_vector ([su]int_to_fp (extractelt 0)), [su]int_to_fp (extractelt 1)) 14055 if (FirstInput.getOpcode() != ISD::SINT_TO_FP && 14056 FirstInput.getOpcode() != ISD::UINT_TO_FP) 14057 return SDValue(); 14058 if (N->getOperand(1).getOpcode() != ISD::SINT_TO_FP && 14059 N->getOperand(1).getOpcode() != ISD::UINT_TO_FP) 14060 return SDValue(); 14061 if (FirstInput.getOpcode() != N->getOperand(1).getOpcode()) 14062 return SDValue(); 14063 14064 SDValue Ext1 = FirstInput.getOperand(0); 14065 SDValue Ext2 = N->getOperand(1).getOperand(0); 14066 if(Ext1.getOpcode() != ISD::EXTRACT_VECTOR_ELT || 14067 Ext2.getOpcode() != ISD::EXTRACT_VECTOR_ELT) 14068 return SDValue(); 14069 14070 ConstantSDNode *Ext1Op = dyn_cast<ConstantSDNode>(Ext1.getOperand(1)); 14071 ConstantSDNode *Ext2Op = dyn_cast<ConstantSDNode>(Ext2.getOperand(1)); 14072 if (!Ext1Op || !Ext2Op) 14073 return SDValue(); 14074 if (Ext1.getOperand(0).getValueType() != MVT::v4i32 || 14075 Ext1.getOperand(0) != Ext2.getOperand(0)) 14076 return SDValue(); 14077 14078 int FirstElem = Ext1Op->getZExtValue(); 14079 int SecondElem = Ext2Op->getZExtValue(); 14080 int SubvecIdx; 14081 if (FirstElem == 0 && SecondElem == 1) 14082 SubvecIdx = Subtarget.isLittleEndian() ? 1 : 0; 14083 else if (FirstElem == 2 && SecondElem == 3) 14084 SubvecIdx = Subtarget.isLittleEndian() ? 0 : 1; 14085 else 14086 return SDValue(); 14087 14088 SDValue SrcVec = Ext1.getOperand(0); 14089 auto NodeType = (N->getOperand(1).getOpcode() == ISD::SINT_TO_FP) ? 14090 PPCISD::SINT_VEC_TO_FP : PPCISD::UINT_VEC_TO_FP; 14091 return DAG.getNode(NodeType, dl, MVT::v2f64, 14092 SrcVec, DAG.getIntPtrConstant(SubvecIdx, dl)); 14093 } 14094 14095 SDValue PPCTargetLowering::combineFPToIntToFP(SDNode *N, 14096 DAGCombinerInfo &DCI) const { 14097 assert((N->getOpcode() == ISD::SINT_TO_FP || 14098 N->getOpcode() == ISD::UINT_TO_FP) && 14099 "Need an int -> FP conversion node here"); 14100 14101 if (useSoftFloat() || !Subtarget.has64BitSupport()) 14102 return SDValue(); 14103 14104 SelectionDAG &DAG = DCI.DAG; 14105 SDLoc dl(N); 14106 SDValue Op(N, 0); 14107 14108 // Don't handle ppc_fp128 here or conversions that are out-of-range capable 14109 // from the hardware. 14110 if (Op.getValueType() != MVT::f32 && Op.getValueType() != MVT::f64) 14111 return SDValue(); 14112 if (!Op.getOperand(0).getValueType().isSimple()) 14113 return SDValue(); 14114 if (Op.getOperand(0).getValueType().getSimpleVT() <= MVT(MVT::i1) || 14115 Op.getOperand(0).getValueType().getSimpleVT() > MVT(MVT::i64)) 14116 return SDValue(); 14117 14118 SDValue FirstOperand(Op.getOperand(0)); 14119 bool SubWordLoad = FirstOperand.getOpcode() == ISD::LOAD && 14120 (FirstOperand.getValueType() == MVT::i8 || 14121 FirstOperand.getValueType() == MVT::i16); 14122 if (Subtarget.hasP9Vector() && Subtarget.hasP9Altivec() && SubWordLoad) { 14123 bool Signed = N->getOpcode() == ISD::SINT_TO_FP; 14124 bool DstDouble = Op.getValueType() == MVT::f64; 14125 unsigned ConvOp = Signed ? 14126 (DstDouble ? PPCISD::FCFID : PPCISD::FCFIDS) : 14127 (DstDouble ? PPCISD::FCFIDU : PPCISD::FCFIDUS); 14128 SDValue WidthConst = 14129 DAG.getIntPtrConstant(FirstOperand.getValueType() == MVT::i8 ? 1 : 2, 14130 dl, false); 14131 LoadSDNode *LDN = cast<LoadSDNode>(FirstOperand.getNode()); 14132 SDValue Ops[] = { LDN->getChain(), LDN->getBasePtr(), WidthConst }; 14133 SDValue Ld = DAG.getMemIntrinsicNode(PPCISD::LXSIZX, dl, 14134 DAG.getVTList(MVT::f64, MVT::Other), 14135 Ops, MVT::i8, LDN->getMemOperand()); 14136 14137 // For signed conversion, we need to sign-extend the value in the VSR 14138 if (Signed) { 14139 SDValue ExtOps[] = { Ld, WidthConst }; 14140 SDValue Ext = DAG.getNode(PPCISD::VEXTS, dl, MVT::f64, ExtOps); 14141 return DAG.getNode(ConvOp, dl, DstDouble ? MVT::f64 : MVT::f32, Ext); 14142 } else 14143 return DAG.getNode(ConvOp, dl, DstDouble ? MVT::f64 : MVT::f32, Ld); 14144 } 14145 14146 14147 // For i32 intermediate values, unfortunately, the conversion functions 14148 // leave the upper 32 bits of the value are undefined. Within the set of 14149 // scalar instructions, we have no method for zero- or sign-extending the 14150 // value. Thus, we cannot handle i32 intermediate values here. 14151 if (Op.getOperand(0).getValueType() == MVT::i32) 14152 return SDValue(); 14153 14154 assert((Op.getOpcode() == ISD::SINT_TO_FP || Subtarget.hasFPCVT()) && 14155 "UINT_TO_FP is supported only with FPCVT"); 14156 14157 // If we have FCFIDS, then use it when converting to single-precision. 14158 // Otherwise, convert to double-precision and then round. 14159 unsigned FCFOp = (Subtarget.hasFPCVT() && Op.getValueType() == MVT::f32) 14160 ? (Op.getOpcode() == ISD::UINT_TO_FP ? PPCISD::FCFIDUS 14161 : PPCISD::FCFIDS) 14162 : (Op.getOpcode() == ISD::UINT_TO_FP ? PPCISD::FCFIDU 14163 : PPCISD::FCFID); 14164 MVT FCFTy = (Subtarget.hasFPCVT() && Op.getValueType() == MVT::f32) 14165 ? MVT::f32 14166 : MVT::f64; 14167 14168 // If we're converting from a float, to an int, and back to a float again, 14169 // then we don't need the store/load pair at all. 14170 if ((Op.getOperand(0).getOpcode() == ISD::FP_TO_UINT && 14171 Subtarget.hasFPCVT()) || 14172 (Op.getOperand(0).getOpcode() == ISD::FP_TO_SINT)) { 14173 SDValue Src = Op.getOperand(0).getOperand(0); 14174 if (Src.getValueType() == MVT::f32) { 14175 Src = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Src); 14176 DCI.AddToWorklist(Src.getNode()); 14177 } else if (Src.getValueType() != MVT::f64) { 14178 // Make sure that we don't pick up a ppc_fp128 source value. 14179 return SDValue(); 14180 } 14181 14182 unsigned FCTOp = 14183 Op.getOperand(0).getOpcode() == ISD::FP_TO_SINT ? PPCISD::FCTIDZ : 14184 PPCISD::FCTIDUZ; 14185 14186 SDValue Tmp = DAG.getNode(FCTOp, dl, MVT::f64, Src); 14187 SDValue FP = DAG.getNode(FCFOp, dl, FCFTy, Tmp); 14188 14189 if (Op.getValueType() == MVT::f32 && !Subtarget.hasFPCVT()) { 14190 FP = DAG.getNode(ISD::FP_ROUND, dl, 14191 MVT::f32, FP, DAG.getIntPtrConstant(0, dl)); 14192 DCI.AddToWorklist(FP.getNode()); 14193 } 14194 14195 return FP; 14196 } 14197 14198 return SDValue(); 14199 } 14200 14201 // expandVSXLoadForLE - Convert VSX loads (which may be intrinsics for 14202 // builtins) into loads with swaps. 14203 SDValue PPCTargetLowering::expandVSXLoadForLE(SDNode *N, 14204 DAGCombinerInfo &DCI) const { 14205 SelectionDAG &DAG = DCI.DAG; 14206 SDLoc dl(N); 14207 SDValue Chain; 14208 SDValue Base; 14209 MachineMemOperand *MMO; 14210 14211 switch (N->getOpcode()) { 14212 default: 14213 llvm_unreachable("Unexpected opcode for little endian VSX load"); 14214 case ISD::LOAD: { 14215 LoadSDNode *LD = cast<LoadSDNode>(N); 14216 Chain = LD->getChain(); 14217 Base = LD->getBasePtr(); 14218 MMO = LD->getMemOperand(); 14219 // If the MMO suggests this isn't a load of a full vector, leave 14220 // things alone. For a built-in, we have to make the change for 14221 // correctness, so if there is a size problem that will be a bug. 14222 if (MMO->getSize() < 16) 14223 return SDValue(); 14224 break; 14225 } 14226 case ISD::INTRINSIC_W_CHAIN: { 14227 MemIntrinsicSDNode *Intrin = cast<MemIntrinsicSDNode>(N); 14228 Chain = Intrin->getChain(); 14229 // Similarly to the store case below, Intrin->getBasePtr() doesn't get 14230 // us what we want. Get operand 2 instead. 14231 Base = Intrin->getOperand(2); 14232 MMO = Intrin->getMemOperand(); 14233 break; 14234 } 14235 } 14236 14237 MVT VecTy = N->getValueType(0).getSimpleVT(); 14238 14239 // Do not expand to PPCISD::LXVD2X + PPCISD::XXSWAPD when the load is 14240 // aligned and the type is a vector with elements up to 4 bytes 14241 if (Subtarget.needsSwapsForVSXMemOps() && MMO->getAlign() >= Align(16) && 14242 VecTy.getScalarSizeInBits() <= 32) { 14243 return SDValue(); 14244 } 14245 14246 SDValue LoadOps[] = { Chain, Base }; 14247 SDValue Load = DAG.getMemIntrinsicNode(PPCISD::LXVD2X, dl, 14248 DAG.getVTList(MVT::v2f64, MVT::Other), 14249 LoadOps, MVT::v2f64, MMO); 14250 14251 DCI.AddToWorklist(Load.getNode()); 14252 Chain = Load.getValue(1); 14253 SDValue Swap = DAG.getNode( 14254 PPCISD::XXSWAPD, dl, DAG.getVTList(MVT::v2f64, MVT::Other), Chain, Load); 14255 DCI.AddToWorklist(Swap.getNode()); 14256 14257 // Add a bitcast if the resulting load type doesn't match v2f64. 14258 if (VecTy != MVT::v2f64) { 14259 SDValue N = DAG.getNode(ISD::BITCAST, dl, VecTy, Swap); 14260 DCI.AddToWorklist(N.getNode()); 14261 // Package {bitcast value, swap's chain} to match Load's shape. 14262 return DAG.getNode(ISD::MERGE_VALUES, dl, DAG.getVTList(VecTy, MVT::Other), 14263 N, Swap.getValue(1)); 14264 } 14265 14266 return Swap; 14267 } 14268 14269 // expandVSXStoreForLE - Convert VSX stores (which may be intrinsics for 14270 // builtins) into stores with swaps. 14271 SDValue PPCTargetLowering::expandVSXStoreForLE(SDNode *N, 14272 DAGCombinerInfo &DCI) const { 14273 SelectionDAG &DAG = DCI.DAG; 14274 SDLoc dl(N); 14275 SDValue Chain; 14276 SDValue Base; 14277 unsigned SrcOpnd; 14278 MachineMemOperand *MMO; 14279 14280 switch (N->getOpcode()) { 14281 default: 14282 llvm_unreachable("Unexpected opcode for little endian VSX store"); 14283 case ISD::STORE: { 14284 StoreSDNode *ST = cast<StoreSDNode>(N); 14285 Chain = ST->getChain(); 14286 Base = ST->getBasePtr(); 14287 MMO = ST->getMemOperand(); 14288 SrcOpnd = 1; 14289 // If the MMO suggests this isn't a store of a full vector, leave 14290 // things alone. For a built-in, we have to make the change for 14291 // correctness, so if there is a size problem that will be a bug. 14292 if (MMO->getSize() < 16) 14293 return SDValue(); 14294 break; 14295 } 14296 case ISD::INTRINSIC_VOID: { 14297 MemIntrinsicSDNode *Intrin = cast<MemIntrinsicSDNode>(N); 14298 Chain = Intrin->getChain(); 14299 // Intrin->getBasePtr() oddly does not get what we want. 14300 Base = Intrin->getOperand(3); 14301 MMO = Intrin->getMemOperand(); 14302 SrcOpnd = 2; 14303 break; 14304 } 14305 } 14306 14307 SDValue Src = N->getOperand(SrcOpnd); 14308 MVT VecTy = Src.getValueType().getSimpleVT(); 14309 14310 // Do not expand to PPCISD::XXSWAPD and PPCISD::STXVD2X when the load is 14311 // aligned and the type is a vector with elements up to 4 bytes 14312 if (Subtarget.needsSwapsForVSXMemOps() && MMO->getAlign() >= Align(16) && 14313 VecTy.getScalarSizeInBits() <= 32) { 14314 return SDValue(); 14315 } 14316 14317 // All stores are done as v2f64 and possible bit cast. 14318 if (VecTy != MVT::v2f64) { 14319 Src = DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, Src); 14320 DCI.AddToWorklist(Src.getNode()); 14321 } 14322 14323 SDValue Swap = DAG.getNode(PPCISD::XXSWAPD, dl, 14324 DAG.getVTList(MVT::v2f64, MVT::Other), Chain, Src); 14325 DCI.AddToWorklist(Swap.getNode()); 14326 Chain = Swap.getValue(1); 14327 SDValue StoreOps[] = { Chain, Swap, Base }; 14328 SDValue Store = DAG.getMemIntrinsicNode(PPCISD::STXVD2X, dl, 14329 DAG.getVTList(MVT::Other), 14330 StoreOps, VecTy, MMO); 14331 DCI.AddToWorklist(Store.getNode()); 14332 return Store; 14333 } 14334 14335 // Handle DAG combine for STORE (FP_TO_INT F). 14336 SDValue PPCTargetLowering::combineStoreFPToInt(SDNode *N, 14337 DAGCombinerInfo &DCI) const { 14338 14339 SelectionDAG &DAG = DCI.DAG; 14340 SDLoc dl(N); 14341 unsigned Opcode = N->getOperand(1).getOpcode(); 14342 14343 assert((Opcode == ISD::FP_TO_SINT || Opcode == ISD::FP_TO_UINT) 14344 && "Not a FP_TO_INT Instruction!"); 14345 14346 SDValue Val = N->getOperand(1).getOperand(0); 14347 EVT Op1VT = N->getOperand(1).getValueType(); 14348 EVT ResVT = Val.getValueType(); 14349 14350 if (!isTypeLegal(ResVT)) 14351 return SDValue(); 14352 14353 // Only perform combine for conversion to i64/i32 or power9 i16/i8. 14354 bool ValidTypeForStoreFltAsInt = 14355 (Op1VT == MVT::i32 || Op1VT == MVT::i64 || 14356 (Subtarget.hasP9Vector() && (Op1VT == MVT::i16 || Op1VT == MVT::i8))); 14357 14358 if (ResVT == MVT::f128 && !Subtarget.hasP9Vector()) 14359 return SDValue(); 14360 14361 if (ResVT == MVT::ppcf128 || !Subtarget.hasP8Vector() || 14362 cast<StoreSDNode>(N)->isTruncatingStore() || !ValidTypeForStoreFltAsInt) 14363 return SDValue(); 14364 14365 // Extend f32 values to f64 14366 if (ResVT.getScalarSizeInBits() == 32) { 14367 Val = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Val); 14368 DCI.AddToWorklist(Val.getNode()); 14369 } 14370 14371 // Set signed or unsigned conversion opcode. 14372 unsigned ConvOpcode = (Opcode == ISD::FP_TO_SINT) ? 14373 PPCISD::FP_TO_SINT_IN_VSR : 14374 PPCISD::FP_TO_UINT_IN_VSR; 14375 14376 Val = DAG.getNode(ConvOpcode, 14377 dl, ResVT == MVT::f128 ? MVT::f128 : MVT::f64, Val); 14378 DCI.AddToWorklist(Val.getNode()); 14379 14380 // Set number of bytes being converted. 14381 unsigned ByteSize = Op1VT.getScalarSizeInBits() / 8; 14382 SDValue Ops[] = { N->getOperand(0), Val, N->getOperand(2), 14383 DAG.getIntPtrConstant(ByteSize, dl, false), 14384 DAG.getValueType(Op1VT) }; 14385 14386 Val = DAG.getMemIntrinsicNode(PPCISD::ST_VSR_SCAL_INT, dl, 14387 DAG.getVTList(MVT::Other), Ops, 14388 cast<StoreSDNode>(N)->getMemoryVT(), 14389 cast<StoreSDNode>(N)->getMemOperand()); 14390 14391 DCI.AddToWorklist(Val.getNode()); 14392 return Val; 14393 } 14394 14395 static bool isAlternatingShuffMask(const ArrayRef<int> &Mask, int NumElts) { 14396 // Check that the source of the element keeps flipping 14397 // (i.e. Mask[i] < NumElts -> Mask[i+i] >= NumElts). 14398 bool PrevElemFromFirstVec = Mask[0] < NumElts; 14399 for (int i = 1, e = Mask.size(); i < e; i++) { 14400 if (PrevElemFromFirstVec && Mask[i] < NumElts) 14401 return false; 14402 if (!PrevElemFromFirstVec && Mask[i] >= NumElts) 14403 return false; 14404 PrevElemFromFirstVec = !PrevElemFromFirstVec; 14405 } 14406 return true; 14407 } 14408 14409 static bool isSplatBV(SDValue Op) { 14410 if (Op.getOpcode() != ISD::BUILD_VECTOR) 14411 return false; 14412 SDValue FirstOp; 14413 14414 // Find first non-undef input. 14415 for (int i = 0, e = Op.getNumOperands(); i < e; i++) { 14416 FirstOp = Op.getOperand(i); 14417 if (!FirstOp.isUndef()) 14418 break; 14419 } 14420 14421 // All inputs are undef or the same as the first non-undef input. 14422 for (int i = 1, e = Op.getNumOperands(); i < e; i++) 14423 if (Op.getOperand(i) != FirstOp && !Op.getOperand(i).isUndef()) 14424 return false; 14425 return true; 14426 } 14427 14428 static SDValue isScalarToVec(SDValue Op) { 14429 if (Op.getOpcode() == ISD::SCALAR_TO_VECTOR) 14430 return Op; 14431 if (Op.getOpcode() != ISD::BITCAST) 14432 return SDValue(); 14433 Op = Op.getOperand(0); 14434 if (Op.getOpcode() == ISD::SCALAR_TO_VECTOR) 14435 return Op; 14436 return SDValue(); 14437 } 14438 14439 // Fix up the shuffle mask to account for the fact that the result of 14440 // scalar_to_vector is not in lane zero. This just takes all values in 14441 // the ranges specified by the min/max indices and adds the number of 14442 // elements required to ensure each element comes from the respective 14443 // position in the valid lane. 14444 // On little endian, that's just the corresponding element in the other 14445 // half of the vector. On big endian, it is in the same half but right 14446 // justified rather than left justified in that half. 14447 static void fixupShuffleMaskForPermutedSToV(SmallVectorImpl<int> &ShuffV, 14448 int LHSMaxIdx, int RHSMinIdx, 14449 int RHSMaxIdx, int HalfVec, 14450 unsigned ValidLaneWidth, 14451 const PPCSubtarget &Subtarget) { 14452 for (int i = 0, e = ShuffV.size(); i < e; i++) { 14453 int Idx = ShuffV[i]; 14454 if ((Idx >= 0 && Idx < LHSMaxIdx) || (Idx >= RHSMinIdx && Idx < RHSMaxIdx)) 14455 ShuffV[i] += 14456 Subtarget.isLittleEndian() ? HalfVec : HalfVec - ValidLaneWidth; 14457 } 14458 } 14459 14460 // Replace a SCALAR_TO_VECTOR with a SCALAR_TO_VECTOR_PERMUTED except if 14461 // the original is: 14462 // (<n x Ty> (scalar_to_vector (Ty (extract_elt <n x Ty> %a, C)))) 14463 // In such a case, just change the shuffle mask to extract the element 14464 // from the permuted index. 14465 static SDValue getSToVPermuted(SDValue OrigSToV, SelectionDAG &DAG, 14466 const PPCSubtarget &Subtarget) { 14467 SDLoc dl(OrigSToV); 14468 EVT VT = OrigSToV.getValueType(); 14469 assert(OrigSToV.getOpcode() == ISD::SCALAR_TO_VECTOR && 14470 "Expecting a SCALAR_TO_VECTOR here"); 14471 SDValue Input = OrigSToV.getOperand(0); 14472 14473 if (Input.getOpcode() == ISD::EXTRACT_VECTOR_ELT) { 14474 ConstantSDNode *Idx = dyn_cast<ConstantSDNode>(Input.getOperand(1)); 14475 SDValue OrigVector = Input.getOperand(0); 14476 14477 // Can't handle non-const element indices or different vector types 14478 // for the input to the extract and the output of the scalar_to_vector. 14479 if (Idx && VT == OrigVector.getValueType()) { 14480 unsigned NumElts = VT.getVectorNumElements(); 14481 assert( 14482 NumElts > 1 && 14483 "Cannot produce a permuted scalar_to_vector for one element vector"); 14484 SmallVector<int, 16> NewMask(NumElts, -1); 14485 unsigned ResultInElt = NumElts / 2; 14486 ResultInElt -= Subtarget.isLittleEndian() ? 0 : 1; 14487 NewMask[ResultInElt] = Idx->getZExtValue(); 14488 return DAG.getVectorShuffle(VT, dl, OrigVector, OrigVector, NewMask); 14489 } 14490 } 14491 return DAG.getNode(PPCISD::SCALAR_TO_VECTOR_PERMUTED, dl, VT, 14492 OrigSToV.getOperand(0)); 14493 } 14494 14495 // On little endian subtargets, combine shuffles such as: 14496 // vector_shuffle<16,1,17,3,18,5,19,7,20,9,21,11,22,13,23,15>, <zero>, %b 14497 // into: 14498 // vector_shuffle<16,0,17,1,18,2,19,3,20,4,21,5,22,6,23,7>, <zero>, %b 14499 // because the latter can be matched to a single instruction merge. 14500 // Furthermore, SCALAR_TO_VECTOR on little endian always involves a permute 14501 // to put the value into element zero. Adjust the shuffle mask so that the 14502 // vector can remain in permuted form (to prevent a swap prior to a shuffle). 14503 // On big endian targets, this is still useful for SCALAR_TO_VECTOR 14504 // nodes with elements smaller than doubleword because all the ways 14505 // of getting scalar data into a vector register put the value in the 14506 // rightmost element of the left half of the vector. 14507 SDValue PPCTargetLowering::combineVectorShuffle(ShuffleVectorSDNode *SVN, 14508 SelectionDAG &DAG) const { 14509 SDValue LHS = SVN->getOperand(0); 14510 SDValue RHS = SVN->getOperand(1); 14511 auto Mask = SVN->getMask(); 14512 int NumElts = LHS.getValueType().getVectorNumElements(); 14513 SDValue Res(SVN, 0); 14514 SDLoc dl(SVN); 14515 bool IsLittleEndian = Subtarget.isLittleEndian(); 14516 14517 // On big endian targets this is only useful for subtargets with direct moves. 14518 // On little endian targets it would be useful for all subtargets with VSX. 14519 // However adding special handling for LE subtargets without direct moves 14520 // would be wasted effort since the minimum arch for LE is ISA 2.07 (Power8) 14521 // which includes direct moves. 14522 if (!Subtarget.hasDirectMove()) 14523 return Res; 14524 14525 // If this is not a shuffle of a shuffle and the first element comes from 14526 // the second vector, canonicalize to the commuted form. This will make it 14527 // more likely to match one of the single instruction patterns. 14528 if (Mask[0] >= NumElts && LHS.getOpcode() != ISD::VECTOR_SHUFFLE && 14529 RHS.getOpcode() != ISD::VECTOR_SHUFFLE) { 14530 std::swap(LHS, RHS); 14531 Res = DAG.getCommutedVectorShuffle(*SVN); 14532 Mask = cast<ShuffleVectorSDNode>(Res)->getMask(); 14533 } 14534 14535 // Adjust the shuffle mask if either input vector comes from a 14536 // SCALAR_TO_VECTOR and keep the respective input vector in permuted 14537 // form (to prevent the need for a swap). 14538 SmallVector<int, 16> ShuffV(Mask.begin(), Mask.end()); 14539 SDValue SToVLHS = isScalarToVec(LHS); 14540 SDValue SToVRHS = isScalarToVec(RHS); 14541 if (SToVLHS || SToVRHS) { 14542 int NumEltsIn = SToVLHS ? SToVLHS.getValueType().getVectorNumElements() 14543 : SToVRHS.getValueType().getVectorNumElements(); 14544 int NumEltsOut = ShuffV.size(); 14545 // The width of the "valid lane" (i.e. the lane that contains the value that 14546 // is vectorized) needs to be expressed in terms of the number of elements 14547 // of the shuffle. It is thereby the ratio of the values before and after 14548 // any bitcast. 14549 unsigned ValidLaneWidth = 14550 SToVLHS ? SToVLHS.getValueType().getScalarSizeInBits() / 14551 LHS.getValueType().getScalarSizeInBits() 14552 : SToVRHS.getValueType().getScalarSizeInBits() / 14553 RHS.getValueType().getScalarSizeInBits(); 14554 14555 // Initially assume that neither input is permuted. These will be adjusted 14556 // accordingly if either input is. 14557 int LHSMaxIdx = -1; 14558 int RHSMinIdx = -1; 14559 int RHSMaxIdx = -1; 14560 int HalfVec = LHS.getValueType().getVectorNumElements() / 2; 14561 14562 // Get the permuted scalar to vector nodes for the source(s) that come from 14563 // ISD::SCALAR_TO_VECTOR. 14564 // On big endian systems, this only makes sense for element sizes smaller 14565 // than 64 bits since for 64-bit elements, all instructions already put 14566 // the value into element zero. Since scalar size of LHS and RHS may differ 14567 // after isScalarToVec, this should be checked using their own sizes. 14568 if (SToVLHS) { 14569 if (!IsLittleEndian && SToVLHS.getValueType().getScalarSizeInBits() >= 64) 14570 return Res; 14571 // Set up the values for the shuffle vector fixup. 14572 LHSMaxIdx = NumEltsOut / NumEltsIn; 14573 SToVLHS = getSToVPermuted(SToVLHS, DAG, Subtarget); 14574 if (SToVLHS.getValueType() != LHS.getValueType()) 14575 SToVLHS = DAG.getBitcast(LHS.getValueType(), SToVLHS); 14576 LHS = SToVLHS; 14577 } 14578 if (SToVRHS) { 14579 if (!IsLittleEndian && SToVRHS.getValueType().getScalarSizeInBits() >= 64) 14580 return Res; 14581 RHSMinIdx = NumEltsOut; 14582 RHSMaxIdx = NumEltsOut / NumEltsIn + RHSMinIdx; 14583 SToVRHS = getSToVPermuted(SToVRHS, DAG, Subtarget); 14584 if (SToVRHS.getValueType() != RHS.getValueType()) 14585 SToVRHS = DAG.getBitcast(RHS.getValueType(), SToVRHS); 14586 RHS = SToVRHS; 14587 } 14588 14589 // Fix up the shuffle mask to reflect where the desired element actually is. 14590 // The minimum and maximum indices that correspond to element zero for both 14591 // the LHS and RHS are computed and will control which shuffle mask entries 14592 // are to be changed. For example, if the RHS is permuted, any shuffle mask 14593 // entries in the range [RHSMinIdx,RHSMaxIdx) will be adjusted. 14594 fixupShuffleMaskForPermutedSToV(ShuffV, LHSMaxIdx, RHSMinIdx, RHSMaxIdx, 14595 HalfVec, ValidLaneWidth, Subtarget); 14596 Res = DAG.getVectorShuffle(SVN->getValueType(0), dl, LHS, RHS, ShuffV); 14597 14598 // We may have simplified away the shuffle. We won't be able to do anything 14599 // further with it here. 14600 if (!isa<ShuffleVectorSDNode>(Res)) 14601 return Res; 14602 Mask = cast<ShuffleVectorSDNode>(Res)->getMask(); 14603 } 14604 14605 SDValue TheSplat = IsLittleEndian ? RHS : LHS; 14606 // The common case after we commuted the shuffle is that the RHS is a splat 14607 // and we have elements coming in from the splat at indices that are not 14608 // conducive to using a merge. 14609 // Example: 14610 // vector_shuffle<0,17,1,19,2,21,3,23,4,25,5,27,6,29,7,31> t1, <zero> 14611 if (!isSplatBV(TheSplat)) 14612 return Res; 14613 14614 // We are looking for a mask such that all even elements are from 14615 // one vector and all odd elements from the other. 14616 if (!isAlternatingShuffMask(Mask, NumElts)) 14617 return Res; 14618 14619 // Adjust the mask so we are pulling in the same index from the splat 14620 // as the index from the interesting vector in consecutive elements. 14621 if (IsLittleEndian) { 14622 // Example (even elements from first vector): 14623 // vector_shuffle<0,16,1,17,2,18,3,19,4,20,5,21,6,22,7,23> t1, <zero> 14624 if (Mask[0] < NumElts) 14625 for (int i = 1, e = Mask.size(); i < e; i += 2) 14626 ShuffV[i] = (ShuffV[i - 1] + NumElts); 14627 // Example (odd elements from first vector): 14628 // vector_shuffle<16,0,17,1,18,2,19,3,20,4,21,5,22,6,23,7> t1, <zero> 14629 else 14630 for (int i = 0, e = Mask.size(); i < e; i += 2) 14631 ShuffV[i] = (ShuffV[i + 1] + NumElts); 14632 } else { 14633 // Example (even elements from first vector): 14634 // vector_shuffle<0,16,1,17,2,18,3,19,4,20,5,21,6,22,7,23> <zero>, t1 14635 if (Mask[0] < NumElts) 14636 for (int i = 0, e = Mask.size(); i < e; i += 2) 14637 ShuffV[i] = ShuffV[i + 1] - NumElts; 14638 // Example (odd elements from first vector): 14639 // vector_shuffle<16,0,17,1,18,2,19,3,20,4,21,5,22,6,23,7> <zero>, t1 14640 else 14641 for (int i = 1, e = Mask.size(); i < e; i += 2) 14642 ShuffV[i] = ShuffV[i - 1] - NumElts; 14643 } 14644 14645 // If the RHS has undefs, we need to remove them since we may have created 14646 // a shuffle that adds those instead of the splat value. 14647 SDValue SplatVal = 14648 cast<BuildVectorSDNode>(TheSplat.getNode())->getSplatValue(); 14649 TheSplat = DAG.getSplatBuildVector(TheSplat.getValueType(), dl, SplatVal); 14650 14651 if (IsLittleEndian) 14652 RHS = TheSplat; 14653 else 14654 LHS = TheSplat; 14655 return DAG.getVectorShuffle(SVN->getValueType(0), dl, LHS, RHS, ShuffV); 14656 } 14657 14658 SDValue PPCTargetLowering::combineVReverseMemOP(ShuffleVectorSDNode *SVN, 14659 LSBaseSDNode *LSBase, 14660 DAGCombinerInfo &DCI) const { 14661 assert((ISD::isNormalLoad(LSBase) || ISD::isNormalStore(LSBase)) && 14662 "Not a reverse memop pattern!"); 14663 14664 auto IsElementReverse = [](const ShuffleVectorSDNode *SVN) -> bool { 14665 auto Mask = SVN->getMask(); 14666 int i = 0; 14667 auto I = Mask.rbegin(); 14668 auto E = Mask.rend(); 14669 14670 for (; I != E; ++I) { 14671 if (*I != i) 14672 return false; 14673 i++; 14674 } 14675 return true; 14676 }; 14677 14678 SelectionDAG &DAG = DCI.DAG; 14679 EVT VT = SVN->getValueType(0); 14680 14681 if (!isTypeLegal(VT) || !Subtarget.isLittleEndian() || !Subtarget.hasVSX()) 14682 return SDValue(); 14683 14684 // Before P9, we have PPCVSXSwapRemoval pass to hack the element order. 14685 // See comment in PPCVSXSwapRemoval.cpp. 14686 // It is conflict with PPCVSXSwapRemoval opt. So we don't do it. 14687 if (!Subtarget.hasP9Vector()) 14688 return SDValue(); 14689 14690 if(!IsElementReverse(SVN)) 14691 return SDValue(); 14692 14693 if (LSBase->getOpcode() == ISD::LOAD) { 14694 // If the load return value 0 has more than one user except the 14695 // shufflevector instruction, it is not profitable to replace the 14696 // shufflevector with a reverse load. 14697 for (SDNode::use_iterator UI = LSBase->use_begin(), UE = LSBase->use_end(); 14698 UI != UE; ++UI) 14699 if (UI.getUse().getResNo() == 0 && UI->getOpcode() != ISD::VECTOR_SHUFFLE) 14700 return SDValue(); 14701 14702 SDLoc dl(LSBase); 14703 SDValue LoadOps[] = {LSBase->getChain(), LSBase->getBasePtr()}; 14704 return DAG.getMemIntrinsicNode( 14705 PPCISD::LOAD_VEC_BE, dl, DAG.getVTList(VT, MVT::Other), LoadOps, 14706 LSBase->getMemoryVT(), LSBase->getMemOperand()); 14707 } 14708 14709 if (LSBase->getOpcode() == ISD::STORE) { 14710 // If there are other uses of the shuffle, the swap cannot be avoided. 14711 // Forcing the use of an X-Form (since swapped stores only have 14712 // X-Forms) without removing the swap is unprofitable. 14713 if (!SVN->hasOneUse()) 14714 return SDValue(); 14715 14716 SDLoc dl(LSBase); 14717 SDValue StoreOps[] = {LSBase->getChain(), SVN->getOperand(0), 14718 LSBase->getBasePtr()}; 14719 return DAG.getMemIntrinsicNode( 14720 PPCISD::STORE_VEC_BE, dl, DAG.getVTList(MVT::Other), StoreOps, 14721 LSBase->getMemoryVT(), LSBase->getMemOperand()); 14722 } 14723 14724 llvm_unreachable("Expected a load or store node here"); 14725 } 14726 14727 SDValue PPCTargetLowering::PerformDAGCombine(SDNode *N, 14728 DAGCombinerInfo &DCI) const { 14729 SelectionDAG &DAG = DCI.DAG; 14730 SDLoc dl(N); 14731 switch (N->getOpcode()) { 14732 default: break; 14733 case ISD::ADD: 14734 return combineADD(N, DCI); 14735 case ISD::SHL: 14736 return combineSHL(N, DCI); 14737 case ISD::SRA: 14738 return combineSRA(N, DCI); 14739 case ISD::SRL: 14740 return combineSRL(N, DCI); 14741 case ISD::MUL: 14742 return combineMUL(N, DCI); 14743 case ISD::FMA: 14744 case PPCISD::FNMSUB: 14745 return combineFMALike(N, DCI); 14746 case PPCISD::SHL: 14747 if (isNullConstant(N->getOperand(0))) // 0 << V -> 0. 14748 return N->getOperand(0); 14749 break; 14750 case PPCISD::SRL: 14751 if (isNullConstant(N->getOperand(0))) // 0 >>u V -> 0. 14752 return N->getOperand(0); 14753 break; 14754 case PPCISD::SRA: 14755 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(0))) { 14756 if (C->isNullValue() || // 0 >>s V -> 0. 14757 C->isAllOnesValue()) // -1 >>s V -> -1. 14758 return N->getOperand(0); 14759 } 14760 break; 14761 case ISD::SIGN_EXTEND: 14762 case ISD::ZERO_EXTEND: 14763 case ISD::ANY_EXTEND: 14764 return DAGCombineExtBoolTrunc(N, DCI); 14765 case ISD::TRUNCATE: 14766 return combineTRUNCATE(N, DCI); 14767 case ISD::SETCC: 14768 if (SDValue CSCC = combineSetCC(N, DCI)) 14769 return CSCC; 14770 LLVM_FALLTHROUGH; 14771 case ISD::SELECT_CC: 14772 return DAGCombineTruncBoolExt(N, DCI); 14773 case ISD::SINT_TO_FP: 14774 case ISD::UINT_TO_FP: 14775 return combineFPToIntToFP(N, DCI); 14776 case ISD::VECTOR_SHUFFLE: 14777 if (ISD::isNormalLoad(N->getOperand(0).getNode())) { 14778 LSBaseSDNode* LSBase = cast<LSBaseSDNode>(N->getOperand(0)); 14779 return combineVReverseMemOP(cast<ShuffleVectorSDNode>(N), LSBase, DCI); 14780 } 14781 return combineVectorShuffle(cast<ShuffleVectorSDNode>(N), DCI.DAG); 14782 case ISD::STORE: { 14783 14784 EVT Op1VT = N->getOperand(1).getValueType(); 14785 unsigned Opcode = N->getOperand(1).getOpcode(); 14786 14787 if (Opcode == ISD::FP_TO_SINT || Opcode == ISD::FP_TO_UINT) { 14788 SDValue Val= combineStoreFPToInt(N, DCI); 14789 if (Val) 14790 return Val; 14791 } 14792 14793 if (Opcode == ISD::VECTOR_SHUFFLE && ISD::isNormalStore(N)) { 14794 ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N->getOperand(1)); 14795 SDValue Val= combineVReverseMemOP(SVN, cast<LSBaseSDNode>(N), DCI); 14796 if (Val) 14797 return Val; 14798 } 14799 14800 // Turn STORE (BSWAP) -> sthbrx/stwbrx. 14801 if (cast<StoreSDNode>(N)->isUnindexed() && Opcode == ISD::BSWAP && 14802 N->getOperand(1).getNode()->hasOneUse() && 14803 (Op1VT == MVT::i32 || Op1VT == MVT::i16 || 14804 (Subtarget.hasLDBRX() && Subtarget.isPPC64() && Op1VT == MVT::i64))) { 14805 14806 // STBRX can only handle simple types and it makes no sense to store less 14807 // two bytes in byte-reversed order. 14808 EVT mVT = cast<StoreSDNode>(N)->getMemoryVT(); 14809 if (mVT.isExtended() || mVT.getSizeInBits() < 16) 14810 break; 14811 14812 SDValue BSwapOp = N->getOperand(1).getOperand(0); 14813 // Do an any-extend to 32-bits if this is a half-word input. 14814 if (BSwapOp.getValueType() == MVT::i16) 14815 BSwapOp = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, BSwapOp); 14816 14817 // If the type of BSWAP operand is wider than stored memory width 14818 // it need to be shifted to the right side before STBRX. 14819 if (Op1VT.bitsGT(mVT)) { 14820 int Shift = Op1VT.getSizeInBits() - mVT.getSizeInBits(); 14821 BSwapOp = DAG.getNode(ISD::SRL, dl, Op1VT, BSwapOp, 14822 DAG.getConstant(Shift, dl, MVT::i32)); 14823 // Need to truncate if this is a bswap of i64 stored as i32/i16. 14824 if (Op1VT == MVT::i64) 14825 BSwapOp = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, BSwapOp); 14826 } 14827 14828 SDValue Ops[] = { 14829 N->getOperand(0), BSwapOp, N->getOperand(2), DAG.getValueType(mVT) 14830 }; 14831 return 14832 DAG.getMemIntrinsicNode(PPCISD::STBRX, dl, DAG.getVTList(MVT::Other), 14833 Ops, cast<StoreSDNode>(N)->getMemoryVT(), 14834 cast<StoreSDNode>(N)->getMemOperand()); 14835 } 14836 14837 // STORE Constant:i32<0> -> STORE<trunc to i32> Constant:i64<0> 14838 // So it can increase the chance of CSE constant construction. 14839 if (Subtarget.isPPC64() && !DCI.isBeforeLegalize() && 14840 isa<ConstantSDNode>(N->getOperand(1)) && Op1VT == MVT::i32) { 14841 // Need to sign-extended to 64-bits to handle negative values. 14842 EVT MemVT = cast<StoreSDNode>(N)->getMemoryVT(); 14843 uint64_t Val64 = SignExtend64(N->getConstantOperandVal(1), 14844 MemVT.getSizeInBits()); 14845 SDValue Const64 = DAG.getConstant(Val64, dl, MVT::i64); 14846 14847 // DAG.getTruncStore() can't be used here because it doesn't accept 14848 // the general (base + offset) addressing mode. 14849 // So we use UpdateNodeOperands and setTruncatingStore instead. 14850 DAG.UpdateNodeOperands(N, N->getOperand(0), Const64, N->getOperand(2), 14851 N->getOperand(3)); 14852 cast<StoreSDNode>(N)->setTruncatingStore(true); 14853 return SDValue(N, 0); 14854 } 14855 14856 // For little endian, VSX stores require generating xxswapd/lxvd2x. 14857 // Not needed on ISA 3.0 based CPUs since we have a non-permuting store. 14858 if (Op1VT.isSimple()) { 14859 MVT StoreVT = Op1VT.getSimpleVT(); 14860 if (Subtarget.needsSwapsForVSXMemOps() && 14861 (StoreVT == MVT::v2f64 || StoreVT == MVT::v2i64 || 14862 StoreVT == MVT::v4f32 || StoreVT == MVT::v4i32)) 14863 return expandVSXStoreForLE(N, DCI); 14864 } 14865 break; 14866 } 14867 case ISD::LOAD: { 14868 LoadSDNode *LD = cast<LoadSDNode>(N); 14869 EVT VT = LD->getValueType(0); 14870 14871 // For little endian, VSX loads require generating lxvd2x/xxswapd. 14872 // Not needed on ISA 3.0 based CPUs since we have a non-permuting load. 14873 if (VT.isSimple()) { 14874 MVT LoadVT = VT.getSimpleVT(); 14875 if (Subtarget.needsSwapsForVSXMemOps() && 14876 (LoadVT == MVT::v2f64 || LoadVT == MVT::v2i64 || 14877 LoadVT == MVT::v4f32 || LoadVT == MVT::v4i32)) 14878 return expandVSXLoadForLE(N, DCI); 14879 } 14880 14881 // We sometimes end up with a 64-bit integer load, from which we extract 14882 // two single-precision floating-point numbers. This happens with 14883 // std::complex<float>, and other similar structures, because of the way we 14884 // canonicalize structure copies. However, if we lack direct moves, 14885 // then the final bitcasts from the extracted integer values to the 14886 // floating-point numbers turn into store/load pairs. Even with direct moves, 14887 // just loading the two floating-point numbers is likely better. 14888 auto ReplaceTwoFloatLoad = [&]() { 14889 if (VT != MVT::i64) 14890 return false; 14891 14892 if (LD->getExtensionType() != ISD::NON_EXTLOAD || 14893 LD->isVolatile()) 14894 return false; 14895 14896 // We're looking for a sequence like this: 14897 // t13: i64,ch = load<LD8[%ref.tmp]> t0, t6, undef:i64 14898 // t16: i64 = srl t13, Constant:i32<32> 14899 // t17: i32 = truncate t16 14900 // t18: f32 = bitcast t17 14901 // t19: i32 = truncate t13 14902 // t20: f32 = bitcast t19 14903 14904 if (!LD->hasNUsesOfValue(2, 0)) 14905 return false; 14906 14907 auto UI = LD->use_begin(); 14908 while (UI.getUse().getResNo() != 0) ++UI; 14909 SDNode *Trunc = *UI++; 14910 while (UI.getUse().getResNo() != 0) ++UI; 14911 SDNode *RightShift = *UI; 14912 if (Trunc->getOpcode() != ISD::TRUNCATE) 14913 std::swap(Trunc, RightShift); 14914 14915 if (Trunc->getOpcode() != ISD::TRUNCATE || 14916 Trunc->getValueType(0) != MVT::i32 || 14917 !Trunc->hasOneUse()) 14918 return false; 14919 if (RightShift->getOpcode() != ISD::SRL || 14920 !isa<ConstantSDNode>(RightShift->getOperand(1)) || 14921 RightShift->getConstantOperandVal(1) != 32 || 14922 !RightShift->hasOneUse()) 14923 return false; 14924 14925 SDNode *Trunc2 = *RightShift->use_begin(); 14926 if (Trunc2->getOpcode() != ISD::TRUNCATE || 14927 Trunc2->getValueType(0) != MVT::i32 || 14928 !Trunc2->hasOneUse()) 14929 return false; 14930 14931 SDNode *Bitcast = *Trunc->use_begin(); 14932 SDNode *Bitcast2 = *Trunc2->use_begin(); 14933 14934 if (Bitcast->getOpcode() != ISD::BITCAST || 14935 Bitcast->getValueType(0) != MVT::f32) 14936 return false; 14937 if (Bitcast2->getOpcode() != ISD::BITCAST || 14938 Bitcast2->getValueType(0) != MVT::f32) 14939 return false; 14940 14941 if (Subtarget.isLittleEndian()) 14942 std::swap(Bitcast, Bitcast2); 14943 14944 // Bitcast has the second float (in memory-layout order) and Bitcast2 14945 // has the first one. 14946 14947 SDValue BasePtr = LD->getBasePtr(); 14948 if (LD->isIndexed()) { 14949 assert(LD->getAddressingMode() == ISD::PRE_INC && 14950 "Non-pre-inc AM on PPC?"); 14951 BasePtr = 14952 DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr, 14953 LD->getOffset()); 14954 } 14955 14956 auto MMOFlags = 14957 LD->getMemOperand()->getFlags() & ~MachineMemOperand::MOVolatile; 14958 SDValue FloatLoad = DAG.getLoad(MVT::f32, dl, LD->getChain(), BasePtr, 14959 LD->getPointerInfo(), LD->getAlignment(), 14960 MMOFlags, LD->getAAInfo()); 14961 SDValue AddPtr = 14962 DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), 14963 BasePtr, DAG.getIntPtrConstant(4, dl)); 14964 SDValue FloatLoad2 = DAG.getLoad( 14965 MVT::f32, dl, SDValue(FloatLoad.getNode(), 1), AddPtr, 14966 LD->getPointerInfo().getWithOffset(4), 14967 MinAlign(LD->getAlignment(), 4), MMOFlags, LD->getAAInfo()); 14968 14969 if (LD->isIndexed()) { 14970 // Note that DAGCombine should re-form any pre-increment load(s) from 14971 // what is produced here if that makes sense. 14972 DAG.ReplaceAllUsesOfValueWith(SDValue(LD, 1), BasePtr); 14973 } 14974 14975 DCI.CombineTo(Bitcast2, FloatLoad); 14976 DCI.CombineTo(Bitcast, FloatLoad2); 14977 14978 DAG.ReplaceAllUsesOfValueWith(SDValue(LD, LD->isIndexed() ? 2 : 1), 14979 SDValue(FloatLoad2.getNode(), 1)); 14980 return true; 14981 }; 14982 14983 if (ReplaceTwoFloatLoad()) 14984 return SDValue(N, 0); 14985 14986 EVT MemVT = LD->getMemoryVT(); 14987 Type *Ty = MemVT.getTypeForEVT(*DAG.getContext()); 14988 Align ABIAlignment = DAG.getDataLayout().getABITypeAlign(Ty); 14989 if (LD->isUnindexed() && VT.isVector() && 14990 ((Subtarget.hasAltivec() && ISD::isNON_EXTLoad(N) && 14991 // P8 and later hardware should just use LOAD. 14992 !Subtarget.hasP8Vector() && 14993 (VT == MVT::v16i8 || VT == MVT::v8i16 || VT == MVT::v4i32 || 14994 VT == MVT::v4f32))) && 14995 LD->getAlign() < ABIAlignment) { 14996 // This is a type-legal unaligned Altivec load. 14997 SDValue Chain = LD->getChain(); 14998 SDValue Ptr = LD->getBasePtr(); 14999 bool isLittleEndian = Subtarget.isLittleEndian(); 15000 15001 // This implements the loading of unaligned vectors as described in 15002 // the venerable Apple Velocity Engine overview. Specifically: 15003 // https://developer.apple.com/hardwaredrivers/ve/alignment.html 15004 // https://developer.apple.com/hardwaredrivers/ve/code_optimization.html 15005 // 15006 // The general idea is to expand a sequence of one or more unaligned 15007 // loads into an alignment-based permutation-control instruction (lvsl 15008 // or lvsr), a series of regular vector loads (which always truncate 15009 // their input address to an aligned address), and a series of 15010 // permutations. The results of these permutations are the requested 15011 // loaded values. The trick is that the last "extra" load is not taken 15012 // from the address you might suspect (sizeof(vector) bytes after the 15013 // last requested load), but rather sizeof(vector) - 1 bytes after the 15014 // last requested vector. The point of this is to avoid a page fault if 15015 // the base address happened to be aligned. This works because if the 15016 // base address is aligned, then adding less than a full vector length 15017 // will cause the last vector in the sequence to be (re)loaded. 15018 // Otherwise, the next vector will be fetched as you might suspect was 15019 // necessary. 15020 15021 // We might be able to reuse the permutation generation from 15022 // a different base address offset from this one by an aligned amount. 15023 // The INTRINSIC_WO_CHAIN DAG combine will attempt to perform this 15024 // optimization later. 15025 Intrinsic::ID Intr, IntrLD, IntrPerm; 15026 MVT PermCntlTy, PermTy, LDTy; 15027 Intr = isLittleEndian ? Intrinsic::ppc_altivec_lvsr 15028 : Intrinsic::ppc_altivec_lvsl; 15029 IntrLD = Intrinsic::ppc_altivec_lvx; 15030 IntrPerm = Intrinsic::ppc_altivec_vperm; 15031 PermCntlTy = MVT::v16i8; 15032 PermTy = MVT::v4i32; 15033 LDTy = MVT::v4i32; 15034 15035 SDValue PermCntl = BuildIntrinsicOp(Intr, Ptr, DAG, dl, PermCntlTy); 15036 15037 // Create the new MMO for the new base load. It is like the original MMO, 15038 // but represents an area in memory almost twice the vector size centered 15039 // on the original address. If the address is unaligned, we might start 15040 // reading up to (sizeof(vector)-1) bytes below the address of the 15041 // original unaligned load. 15042 MachineFunction &MF = DAG.getMachineFunction(); 15043 MachineMemOperand *BaseMMO = 15044 MF.getMachineMemOperand(LD->getMemOperand(), 15045 -(long)MemVT.getStoreSize()+1, 15046 2*MemVT.getStoreSize()-1); 15047 15048 // Create the new base load. 15049 SDValue LDXIntID = 15050 DAG.getTargetConstant(IntrLD, dl, getPointerTy(MF.getDataLayout())); 15051 SDValue BaseLoadOps[] = { Chain, LDXIntID, Ptr }; 15052 SDValue BaseLoad = 15053 DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, dl, 15054 DAG.getVTList(PermTy, MVT::Other), 15055 BaseLoadOps, LDTy, BaseMMO); 15056 15057 // Note that the value of IncOffset (which is provided to the next 15058 // load's pointer info offset value, and thus used to calculate the 15059 // alignment), and the value of IncValue (which is actually used to 15060 // increment the pointer value) are different! This is because we 15061 // require the next load to appear to be aligned, even though it 15062 // is actually offset from the base pointer by a lesser amount. 15063 int IncOffset = VT.getSizeInBits() / 8; 15064 int IncValue = IncOffset; 15065 15066 // Walk (both up and down) the chain looking for another load at the real 15067 // (aligned) offset (the alignment of the other load does not matter in 15068 // this case). If found, then do not use the offset reduction trick, as 15069 // that will prevent the loads from being later combined (as they would 15070 // otherwise be duplicates). 15071 if (!findConsecutiveLoad(LD, DAG)) 15072 --IncValue; 15073 15074 SDValue Increment = 15075 DAG.getConstant(IncValue, dl, getPointerTy(MF.getDataLayout())); 15076 Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, Increment); 15077 15078 MachineMemOperand *ExtraMMO = 15079 MF.getMachineMemOperand(LD->getMemOperand(), 15080 1, 2*MemVT.getStoreSize()-1); 15081 SDValue ExtraLoadOps[] = { Chain, LDXIntID, Ptr }; 15082 SDValue ExtraLoad = 15083 DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, dl, 15084 DAG.getVTList(PermTy, MVT::Other), 15085 ExtraLoadOps, LDTy, ExtraMMO); 15086 15087 SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 15088 BaseLoad.getValue(1), ExtraLoad.getValue(1)); 15089 15090 // Because vperm has a big-endian bias, we must reverse the order 15091 // of the input vectors and complement the permute control vector 15092 // when generating little endian code. We have already handled the 15093 // latter by using lvsr instead of lvsl, so just reverse BaseLoad 15094 // and ExtraLoad here. 15095 SDValue Perm; 15096 if (isLittleEndian) 15097 Perm = BuildIntrinsicOp(IntrPerm, 15098 ExtraLoad, BaseLoad, PermCntl, DAG, dl); 15099 else 15100 Perm = BuildIntrinsicOp(IntrPerm, 15101 BaseLoad, ExtraLoad, PermCntl, DAG, dl); 15102 15103 if (VT != PermTy) 15104 Perm = Subtarget.hasAltivec() 15105 ? DAG.getNode(ISD::BITCAST, dl, VT, Perm) 15106 : DAG.getNode(ISD::FP_ROUND, dl, VT, Perm, 15107 DAG.getTargetConstant(1, dl, MVT::i64)); 15108 // second argument is 1 because this rounding 15109 // is always exact. 15110 15111 // The output of the permutation is our loaded result, the TokenFactor is 15112 // our new chain. 15113 DCI.CombineTo(N, Perm, TF); 15114 return SDValue(N, 0); 15115 } 15116 } 15117 break; 15118 case ISD::INTRINSIC_WO_CHAIN: { 15119 bool isLittleEndian = Subtarget.isLittleEndian(); 15120 unsigned IID = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue(); 15121 Intrinsic::ID Intr = (isLittleEndian ? Intrinsic::ppc_altivec_lvsr 15122 : Intrinsic::ppc_altivec_lvsl); 15123 if (IID == Intr && N->getOperand(1)->getOpcode() == ISD::ADD) { 15124 SDValue Add = N->getOperand(1); 15125 15126 int Bits = 4 /* 16 byte alignment */; 15127 15128 if (DAG.MaskedValueIsZero(Add->getOperand(1), 15129 APInt::getAllOnesValue(Bits /* alignment */) 15130 .zext(Add.getScalarValueSizeInBits()))) { 15131 SDNode *BasePtr = Add->getOperand(0).getNode(); 15132 for (SDNode::use_iterator UI = BasePtr->use_begin(), 15133 UE = BasePtr->use_end(); 15134 UI != UE; ++UI) { 15135 if (UI->getOpcode() == ISD::INTRINSIC_WO_CHAIN && 15136 cast<ConstantSDNode>(UI->getOperand(0))->getZExtValue() == 15137 IID) { 15138 // We've found another LVSL/LVSR, and this address is an aligned 15139 // multiple of that one. The results will be the same, so use the 15140 // one we've just found instead. 15141 15142 return SDValue(*UI, 0); 15143 } 15144 } 15145 } 15146 15147 if (isa<ConstantSDNode>(Add->getOperand(1))) { 15148 SDNode *BasePtr = Add->getOperand(0).getNode(); 15149 for (SDNode::use_iterator UI = BasePtr->use_begin(), 15150 UE = BasePtr->use_end(); UI != UE; ++UI) { 15151 if (UI->getOpcode() == ISD::ADD && 15152 isa<ConstantSDNode>(UI->getOperand(1)) && 15153 (cast<ConstantSDNode>(Add->getOperand(1))->getZExtValue() - 15154 cast<ConstantSDNode>(UI->getOperand(1))->getZExtValue()) % 15155 (1ULL << Bits) == 0) { 15156 SDNode *OtherAdd = *UI; 15157 for (SDNode::use_iterator VI = OtherAdd->use_begin(), 15158 VE = OtherAdd->use_end(); VI != VE; ++VI) { 15159 if (VI->getOpcode() == ISD::INTRINSIC_WO_CHAIN && 15160 cast<ConstantSDNode>(VI->getOperand(0))->getZExtValue() == IID) { 15161 return SDValue(*VI, 0); 15162 } 15163 } 15164 } 15165 } 15166 } 15167 } 15168 15169 // Combine vmaxsw/h/b(a, a's negation) to abs(a) 15170 // Expose the vabsduw/h/b opportunity for down stream 15171 if (!DCI.isAfterLegalizeDAG() && Subtarget.hasP9Altivec() && 15172 (IID == Intrinsic::ppc_altivec_vmaxsw || 15173 IID == Intrinsic::ppc_altivec_vmaxsh || 15174 IID == Intrinsic::ppc_altivec_vmaxsb)) { 15175 SDValue V1 = N->getOperand(1); 15176 SDValue V2 = N->getOperand(2); 15177 if ((V1.getSimpleValueType() == MVT::v4i32 || 15178 V1.getSimpleValueType() == MVT::v8i16 || 15179 V1.getSimpleValueType() == MVT::v16i8) && 15180 V1.getSimpleValueType() == V2.getSimpleValueType()) { 15181 // (0-a, a) 15182 if (V1.getOpcode() == ISD::SUB && 15183 ISD::isBuildVectorAllZeros(V1.getOperand(0).getNode()) && 15184 V1.getOperand(1) == V2) { 15185 return DAG.getNode(ISD::ABS, dl, V2.getValueType(), V2); 15186 } 15187 // (a, 0-a) 15188 if (V2.getOpcode() == ISD::SUB && 15189 ISD::isBuildVectorAllZeros(V2.getOperand(0).getNode()) && 15190 V2.getOperand(1) == V1) { 15191 return DAG.getNode(ISD::ABS, dl, V1.getValueType(), V1); 15192 } 15193 // (x-y, y-x) 15194 if (V1.getOpcode() == ISD::SUB && V2.getOpcode() == ISD::SUB && 15195 V1.getOperand(0) == V2.getOperand(1) && 15196 V1.getOperand(1) == V2.getOperand(0)) { 15197 return DAG.getNode(ISD::ABS, dl, V1.getValueType(), V1); 15198 } 15199 } 15200 } 15201 } 15202 15203 break; 15204 case ISD::INTRINSIC_W_CHAIN: 15205 // For little endian, VSX loads require generating lxvd2x/xxswapd. 15206 // Not needed on ISA 3.0 based CPUs since we have a non-permuting load. 15207 if (Subtarget.needsSwapsForVSXMemOps()) { 15208 switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) { 15209 default: 15210 break; 15211 case Intrinsic::ppc_vsx_lxvw4x: 15212 case Intrinsic::ppc_vsx_lxvd2x: 15213 return expandVSXLoadForLE(N, DCI); 15214 } 15215 } 15216 break; 15217 case ISD::INTRINSIC_VOID: 15218 // For little endian, VSX stores require generating xxswapd/stxvd2x. 15219 // Not needed on ISA 3.0 based CPUs since we have a non-permuting store. 15220 if (Subtarget.needsSwapsForVSXMemOps()) { 15221 switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) { 15222 default: 15223 break; 15224 case Intrinsic::ppc_vsx_stxvw4x: 15225 case Intrinsic::ppc_vsx_stxvd2x: 15226 return expandVSXStoreForLE(N, DCI); 15227 } 15228 } 15229 break; 15230 case ISD::BSWAP: { 15231 // Turn BSWAP (LOAD) -> lhbrx/lwbrx. 15232 // For subtargets without LDBRX, we can still do better than the default 15233 // expansion even for 64-bit BSWAP (LOAD). 15234 bool Is64BitBswapOn64BitTgt = 15235 Subtarget.isPPC64() && N->getValueType(0) == MVT::i64; 15236 bool IsSingleUseNormalLd = ISD::isNormalLoad(N->getOperand(0).getNode()) && 15237 N->getOperand(0).hasOneUse(); 15238 if (IsSingleUseNormalLd && 15239 (N->getValueType(0) == MVT::i32 || N->getValueType(0) == MVT::i16 || 15240 (Subtarget.hasLDBRX() && Is64BitBswapOn64BitTgt))) { 15241 SDValue Load = N->getOperand(0); 15242 LoadSDNode *LD = cast<LoadSDNode>(Load); 15243 // Create the byte-swapping load. 15244 SDValue Ops[] = { 15245 LD->getChain(), // Chain 15246 LD->getBasePtr(), // Ptr 15247 DAG.getValueType(N->getValueType(0)) // VT 15248 }; 15249 SDValue BSLoad = 15250 DAG.getMemIntrinsicNode(PPCISD::LBRX, dl, 15251 DAG.getVTList(N->getValueType(0) == MVT::i64 ? 15252 MVT::i64 : MVT::i32, MVT::Other), 15253 Ops, LD->getMemoryVT(), LD->getMemOperand()); 15254 15255 // If this is an i16 load, insert the truncate. 15256 SDValue ResVal = BSLoad; 15257 if (N->getValueType(0) == MVT::i16) 15258 ResVal = DAG.getNode(ISD::TRUNCATE, dl, MVT::i16, BSLoad); 15259 15260 // First, combine the bswap away. This makes the value produced by the 15261 // load dead. 15262 DCI.CombineTo(N, ResVal); 15263 15264 // Next, combine the load away, we give it a bogus result value but a real 15265 // chain result. The result value is dead because the bswap is dead. 15266 DCI.CombineTo(Load.getNode(), ResVal, BSLoad.getValue(1)); 15267 15268 // Return N so it doesn't get rechecked! 15269 return SDValue(N, 0); 15270 } 15271 // Convert this to two 32-bit bswap loads and a BUILD_PAIR. Do this only 15272 // before legalization so that the BUILD_PAIR is handled correctly. 15273 if (!DCI.isBeforeLegalize() || !Is64BitBswapOn64BitTgt || 15274 !IsSingleUseNormalLd) 15275 return SDValue(); 15276 LoadSDNode *LD = cast<LoadSDNode>(N->getOperand(0)); 15277 15278 // Can't split volatile or atomic loads. 15279 if (!LD->isSimple()) 15280 return SDValue(); 15281 SDValue BasePtr = LD->getBasePtr(); 15282 SDValue Lo = DAG.getLoad(MVT::i32, dl, LD->getChain(), BasePtr, 15283 LD->getPointerInfo(), LD->getAlignment()); 15284 Lo = DAG.getNode(ISD::BSWAP, dl, MVT::i32, Lo); 15285 BasePtr = DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr, 15286 DAG.getIntPtrConstant(4, dl)); 15287 MachineMemOperand *NewMMO = DAG.getMachineFunction().getMachineMemOperand( 15288 LD->getMemOperand(), 4, 4); 15289 SDValue Hi = DAG.getLoad(MVT::i32, dl, LD->getChain(), BasePtr, NewMMO); 15290 Hi = DAG.getNode(ISD::BSWAP, dl, MVT::i32, Hi); 15291 SDValue Res; 15292 if (Subtarget.isLittleEndian()) 15293 Res = DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Hi, Lo); 15294 else 15295 Res = DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Lo, Hi); 15296 SDValue TF = 15297 DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 15298 Hi.getOperand(0).getValue(1), Lo.getOperand(0).getValue(1)); 15299 DAG.ReplaceAllUsesOfValueWith(SDValue(LD, 1), TF); 15300 return Res; 15301 } 15302 case PPCISD::VCMP: 15303 // If a VCMP_rec node already exists with exactly the same operands as this 15304 // node, use its result instead of this node (VCMP_rec computes both a CR6 15305 // and a normal output). 15306 // 15307 if (!N->getOperand(0).hasOneUse() && 15308 !N->getOperand(1).hasOneUse() && 15309 !N->getOperand(2).hasOneUse()) { 15310 15311 // Scan all of the users of the LHS, looking for VCMP_rec's that match. 15312 SDNode *VCMPrecNode = nullptr; 15313 15314 SDNode *LHSN = N->getOperand(0).getNode(); 15315 for (SDNode::use_iterator UI = LHSN->use_begin(), E = LHSN->use_end(); 15316 UI != E; ++UI) 15317 if (UI->getOpcode() == PPCISD::VCMP_rec && 15318 UI->getOperand(1) == N->getOperand(1) && 15319 UI->getOperand(2) == N->getOperand(2) && 15320 UI->getOperand(0) == N->getOperand(0)) { 15321 VCMPrecNode = *UI; 15322 break; 15323 } 15324 15325 // If there is no VCMP_rec node, or if the flag value has a single use, 15326 // don't transform this. 15327 if (!VCMPrecNode || VCMPrecNode->hasNUsesOfValue(0, 1)) 15328 break; 15329 15330 // Look at the (necessarily single) use of the flag value. If it has a 15331 // chain, this transformation is more complex. Note that multiple things 15332 // could use the value result, which we should ignore. 15333 SDNode *FlagUser = nullptr; 15334 for (SDNode::use_iterator UI = VCMPrecNode->use_begin(); 15335 FlagUser == nullptr; ++UI) { 15336 assert(UI != VCMPrecNode->use_end() && "Didn't find user!"); 15337 SDNode *User = *UI; 15338 for (unsigned i = 0, e = User->getNumOperands(); i != e; ++i) { 15339 if (User->getOperand(i) == SDValue(VCMPrecNode, 1)) { 15340 FlagUser = User; 15341 break; 15342 } 15343 } 15344 } 15345 15346 // If the user is a MFOCRF instruction, we know this is safe. 15347 // Otherwise we give up for right now. 15348 if (FlagUser->getOpcode() == PPCISD::MFOCRF) 15349 return SDValue(VCMPrecNode, 0); 15350 } 15351 break; 15352 case ISD::BRCOND: { 15353 SDValue Cond = N->getOperand(1); 15354 SDValue Target = N->getOperand(2); 15355 15356 if (Cond.getOpcode() == ISD::INTRINSIC_W_CHAIN && 15357 cast<ConstantSDNode>(Cond.getOperand(1))->getZExtValue() == 15358 Intrinsic::loop_decrement) { 15359 15360 // We now need to make the intrinsic dead (it cannot be instruction 15361 // selected). 15362 DAG.ReplaceAllUsesOfValueWith(Cond.getValue(1), Cond.getOperand(0)); 15363 assert(Cond.getNode()->hasOneUse() && 15364 "Counter decrement has more than one use"); 15365 15366 return DAG.getNode(PPCISD::BDNZ, dl, MVT::Other, 15367 N->getOperand(0), Target); 15368 } 15369 } 15370 break; 15371 case ISD::BR_CC: { 15372 // If this is a branch on an altivec predicate comparison, lower this so 15373 // that we don't have to do a MFOCRF: instead, branch directly on CR6. This 15374 // lowering is done pre-legalize, because the legalizer lowers the predicate 15375 // compare down to code that is difficult to reassemble. 15376 ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(1))->get(); 15377 SDValue LHS = N->getOperand(2), RHS = N->getOperand(3); 15378 15379 // Sometimes the promoted value of the intrinsic is ANDed by some non-zero 15380 // value. If so, pass-through the AND to get to the intrinsic. 15381 if (LHS.getOpcode() == ISD::AND && 15382 LHS.getOperand(0).getOpcode() == ISD::INTRINSIC_W_CHAIN && 15383 cast<ConstantSDNode>(LHS.getOperand(0).getOperand(1))->getZExtValue() == 15384 Intrinsic::loop_decrement && 15385 isa<ConstantSDNode>(LHS.getOperand(1)) && 15386 !isNullConstant(LHS.getOperand(1))) 15387 LHS = LHS.getOperand(0); 15388 15389 if (LHS.getOpcode() == ISD::INTRINSIC_W_CHAIN && 15390 cast<ConstantSDNode>(LHS.getOperand(1))->getZExtValue() == 15391 Intrinsic::loop_decrement && 15392 isa<ConstantSDNode>(RHS)) { 15393 assert((CC == ISD::SETEQ || CC == ISD::SETNE) && 15394 "Counter decrement comparison is not EQ or NE"); 15395 15396 unsigned Val = cast<ConstantSDNode>(RHS)->getZExtValue(); 15397 bool isBDNZ = (CC == ISD::SETEQ && Val) || 15398 (CC == ISD::SETNE && !Val); 15399 15400 // We now need to make the intrinsic dead (it cannot be instruction 15401 // selected). 15402 DAG.ReplaceAllUsesOfValueWith(LHS.getValue(1), LHS.getOperand(0)); 15403 assert(LHS.getNode()->hasOneUse() && 15404 "Counter decrement has more than one use"); 15405 15406 return DAG.getNode(isBDNZ ? PPCISD::BDNZ : PPCISD::BDZ, dl, MVT::Other, 15407 N->getOperand(0), N->getOperand(4)); 15408 } 15409 15410 int CompareOpc; 15411 bool isDot; 15412 15413 if (LHS.getOpcode() == ISD::INTRINSIC_WO_CHAIN && 15414 isa<ConstantSDNode>(RHS) && (CC == ISD::SETEQ || CC == ISD::SETNE) && 15415 getVectorCompareInfo(LHS, CompareOpc, isDot, Subtarget)) { 15416 assert(isDot && "Can't compare against a vector result!"); 15417 15418 // If this is a comparison against something other than 0/1, then we know 15419 // that the condition is never/always true. 15420 unsigned Val = cast<ConstantSDNode>(RHS)->getZExtValue(); 15421 if (Val != 0 && Val != 1) { 15422 if (CC == ISD::SETEQ) // Cond never true, remove branch. 15423 return N->getOperand(0); 15424 // Always !=, turn it into an unconditional branch. 15425 return DAG.getNode(ISD::BR, dl, MVT::Other, 15426 N->getOperand(0), N->getOperand(4)); 15427 } 15428 15429 bool BranchOnWhenPredTrue = (CC == ISD::SETEQ) ^ (Val == 0); 15430 15431 // Create the PPCISD altivec 'dot' comparison node. 15432 SDValue Ops[] = { 15433 LHS.getOperand(2), // LHS of compare 15434 LHS.getOperand(3), // RHS of compare 15435 DAG.getConstant(CompareOpc, dl, MVT::i32) 15436 }; 15437 EVT VTs[] = { LHS.getOperand(2).getValueType(), MVT::Glue }; 15438 SDValue CompNode = DAG.getNode(PPCISD::VCMP_rec, dl, VTs, Ops); 15439 15440 // Unpack the result based on how the target uses it. 15441 PPC::Predicate CompOpc; 15442 switch (cast<ConstantSDNode>(LHS.getOperand(1))->getZExtValue()) { 15443 default: // Can't happen, don't crash on invalid number though. 15444 case 0: // Branch on the value of the EQ bit of CR6. 15445 CompOpc = BranchOnWhenPredTrue ? PPC::PRED_EQ : PPC::PRED_NE; 15446 break; 15447 case 1: // Branch on the inverted value of the EQ bit of CR6. 15448 CompOpc = BranchOnWhenPredTrue ? PPC::PRED_NE : PPC::PRED_EQ; 15449 break; 15450 case 2: // Branch on the value of the LT bit of CR6. 15451 CompOpc = BranchOnWhenPredTrue ? PPC::PRED_LT : PPC::PRED_GE; 15452 break; 15453 case 3: // Branch on the inverted value of the LT bit of CR6. 15454 CompOpc = BranchOnWhenPredTrue ? PPC::PRED_GE : PPC::PRED_LT; 15455 break; 15456 } 15457 15458 return DAG.getNode(PPCISD::COND_BRANCH, dl, MVT::Other, N->getOperand(0), 15459 DAG.getConstant(CompOpc, dl, MVT::i32), 15460 DAG.getRegister(PPC::CR6, MVT::i32), 15461 N->getOperand(4), CompNode.getValue(1)); 15462 } 15463 break; 15464 } 15465 case ISD::BUILD_VECTOR: 15466 return DAGCombineBuildVector(N, DCI); 15467 case ISD::ABS: 15468 return combineABS(N, DCI); 15469 case ISD::VSELECT: 15470 return combineVSelect(N, DCI); 15471 } 15472 15473 return SDValue(); 15474 } 15475 15476 SDValue 15477 PPCTargetLowering::BuildSDIVPow2(SDNode *N, const APInt &Divisor, 15478 SelectionDAG &DAG, 15479 SmallVectorImpl<SDNode *> &Created) const { 15480 // fold (sdiv X, pow2) 15481 EVT VT = N->getValueType(0); 15482 if (VT == MVT::i64 && !Subtarget.isPPC64()) 15483 return SDValue(); 15484 if ((VT != MVT::i32 && VT != MVT::i64) || 15485 !(Divisor.isPowerOf2() || (-Divisor).isPowerOf2())) 15486 return SDValue(); 15487 15488 SDLoc DL(N); 15489 SDValue N0 = N->getOperand(0); 15490 15491 bool IsNegPow2 = (-Divisor).isPowerOf2(); 15492 unsigned Lg2 = (IsNegPow2 ? -Divisor : Divisor).countTrailingZeros(); 15493 SDValue ShiftAmt = DAG.getConstant(Lg2, DL, VT); 15494 15495 SDValue Op = DAG.getNode(PPCISD::SRA_ADDZE, DL, VT, N0, ShiftAmt); 15496 Created.push_back(Op.getNode()); 15497 15498 if (IsNegPow2) { 15499 Op = DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), Op); 15500 Created.push_back(Op.getNode()); 15501 } 15502 15503 return Op; 15504 } 15505 15506 //===----------------------------------------------------------------------===// 15507 // Inline Assembly Support 15508 //===----------------------------------------------------------------------===// 15509 15510 void PPCTargetLowering::computeKnownBitsForTargetNode(const SDValue Op, 15511 KnownBits &Known, 15512 const APInt &DemandedElts, 15513 const SelectionDAG &DAG, 15514 unsigned Depth) const { 15515 Known.resetAll(); 15516 switch (Op.getOpcode()) { 15517 default: break; 15518 case PPCISD::LBRX: { 15519 // lhbrx is known to have the top bits cleared out. 15520 if (cast<VTSDNode>(Op.getOperand(2))->getVT() == MVT::i16) 15521 Known.Zero = 0xFFFF0000; 15522 break; 15523 } 15524 case ISD::INTRINSIC_WO_CHAIN: { 15525 switch (cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue()) { 15526 default: break; 15527 case Intrinsic::ppc_altivec_vcmpbfp_p: 15528 case Intrinsic::ppc_altivec_vcmpeqfp_p: 15529 case Intrinsic::ppc_altivec_vcmpequb_p: 15530 case Intrinsic::ppc_altivec_vcmpequh_p: 15531 case Intrinsic::ppc_altivec_vcmpequw_p: 15532 case Intrinsic::ppc_altivec_vcmpequd_p: 15533 case Intrinsic::ppc_altivec_vcmpequq_p: 15534 case Intrinsic::ppc_altivec_vcmpgefp_p: 15535 case Intrinsic::ppc_altivec_vcmpgtfp_p: 15536 case Intrinsic::ppc_altivec_vcmpgtsb_p: 15537 case Intrinsic::ppc_altivec_vcmpgtsh_p: 15538 case Intrinsic::ppc_altivec_vcmpgtsw_p: 15539 case Intrinsic::ppc_altivec_vcmpgtsd_p: 15540 case Intrinsic::ppc_altivec_vcmpgtsq_p: 15541 case Intrinsic::ppc_altivec_vcmpgtub_p: 15542 case Intrinsic::ppc_altivec_vcmpgtuh_p: 15543 case Intrinsic::ppc_altivec_vcmpgtuw_p: 15544 case Intrinsic::ppc_altivec_vcmpgtud_p: 15545 case Intrinsic::ppc_altivec_vcmpgtuq_p: 15546 Known.Zero = ~1U; // All bits but the low one are known to be zero. 15547 break; 15548 } 15549 } 15550 } 15551 } 15552 15553 Align PPCTargetLowering::getPrefLoopAlignment(MachineLoop *ML) const { 15554 switch (Subtarget.getCPUDirective()) { 15555 default: break; 15556 case PPC::DIR_970: 15557 case PPC::DIR_PWR4: 15558 case PPC::DIR_PWR5: 15559 case PPC::DIR_PWR5X: 15560 case PPC::DIR_PWR6: 15561 case PPC::DIR_PWR6X: 15562 case PPC::DIR_PWR7: 15563 case PPC::DIR_PWR8: 15564 case PPC::DIR_PWR9: 15565 case PPC::DIR_PWR10: 15566 case PPC::DIR_PWR_FUTURE: { 15567 if (!ML) 15568 break; 15569 15570 if (!DisableInnermostLoopAlign32) { 15571 // If the nested loop is an innermost loop, prefer to a 32-byte alignment, 15572 // so that we can decrease cache misses and branch-prediction misses. 15573 // Actual alignment of the loop will depend on the hotness check and other 15574 // logic in alignBlocks. 15575 if (ML->getLoopDepth() > 1 && ML->getSubLoops().empty()) 15576 return Align(32); 15577 } 15578 15579 const PPCInstrInfo *TII = Subtarget.getInstrInfo(); 15580 15581 // For small loops (between 5 and 8 instructions), align to a 32-byte 15582 // boundary so that the entire loop fits in one instruction-cache line. 15583 uint64_t LoopSize = 0; 15584 for (auto I = ML->block_begin(), IE = ML->block_end(); I != IE; ++I) 15585 for (auto J = (*I)->begin(), JE = (*I)->end(); J != JE; ++J) { 15586 LoopSize += TII->getInstSizeInBytes(*J); 15587 if (LoopSize > 32) 15588 break; 15589 } 15590 15591 if (LoopSize > 16 && LoopSize <= 32) 15592 return Align(32); 15593 15594 break; 15595 } 15596 } 15597 15598 return TargetLowering::getPrefLoopAlignment(ML); 15599 } 15600 15601 /// getConstraintType - Given a constraint, return the type of 15602 /// constraint it is for this target. 15603 PPCTargetLowering::ConstraintType 15604 PPCTargetLowering::getConstraintType(StringRef Constraint) const { 15605 if (Constraint.size() == 1) { 15606 switch (Constraint[0]) { 15607 default: break; 15608 case 'b': 15609 case 'r': 15610 case 'f': 15611 case 'd': 15612 case 'v': 15613 case 'y': 15614 return C_RegisterClass; 15615 case 'Z': 15616 // FIXME: While Z does indicate a memory constraint, it specifically 15617 // indicates an r+r address (used in conjunction with the 'y' modifier 15618 // in the replacement string). Currently, we're forcing the base 15619 // register to be r0 in the asm printer (which is interpreted as zero) 15620 // and forming the complete address in the second register. This is 15621 // suboptimal. 15622 return C_Memory; 15623 } 15624 } else if (Constraint == "wc") { // individual CR bits. 15625 return C_RegisterClass; 15626 } else if (Constraint == "wa" || Constraint == "wd" || 15627 Constraint == "wf" || Constraint == "ws" || 15628 Constraint == "wi" || Constraint == "ww") { 15629 return C_RegisterClass; // VSX registers. 15630 } 15631 return TargetLowering::getConstraintType(Constraint); 15632 } 15633 15634 /// Examine constraint type and operand type and determine a weight value. 15635 /// This object must already have been set up with the operand type 15636 /// and the current alternative constraint selected. 15637 TargetLowering::ConstraintWeight 15638 PPCTargetLowering::getSingleConstraintMatchWeight( 15639 AsmOperandInfo &info, const char *constraint) const { 15640 ConstraintWeight weight = CW_Invalid; 15641 Value *CallOperandVal = info.CallOperandVal; 15642 // If we don't have a value, we can't do a match, 15643 // but allow it at the lowest weight. 15644 if (!CallOperandVal) 15645 return CW_Default; 15646 Type *type = CallOperandVal->getType(); 15647 15648 // Look at the constraint type. 15649 if (StringRef(constraint) == "wc" && type->isIntegerTy(1)) 15650 return CW_Register; // an individual CR bit. 15651 else if ((StringRef(constraint) == "wa" || 15652 StringRef(constraint) == "wd" || 15653 StringRef(constraint) == "wf") && 15654 type->isVectorTy()) 15655 return CW_Register; 15656 else if (StringRef(constraint) == "wi" && type->isIntegerTy(64)) 15657 return CW_Register; // just hold 64-bit integers data. 15658 else if (StringRef(constraint) == "ws" && type->isDoubleTy()) 15659 return CW_Register; 15660 else if (StringRef(constraint) == "ww" && type->isFloatTy()) 15661 return CW_Register; 15662 15663 switch (*constraint) { 15664 default: 15665 weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint); 15666 break; 15667 case 'b': 15668 if (type->isIntegerTy()) 15669 weight = CW_Register; 15670 break; 15671 case 'f': 15672 if (type->isFloatTy()) 15673 weight = CW_Register; 15674 break; 15675 case 'd': 15676 if (type->isDoubleTy()) 15677 weight = CW_Register; 15678 break; 15679 case 'v': 15680 if (type->isVectorTy()) 15681 weight = CW_Register; 15682 break; 15683 case 'y': 15684 weight = CW_Register; 15685 break; 15686 case 'Z': 15687 weight = CW_Memory; 15688 break; 15689 } 15690 return weight; 15691 } 15692 15693 std::pair<unsigned, const TargetRegisterClass *> 15694 PPCTargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI, 15695 StringRef Constraint, 15696 MVT VT) const { 15697 if (Constraint.size() == 1) { 15698 // GCC RS6000 Constraint Letters 15699 switch (Constraint[0]) { 15700 case 'b': // R1-R31 15701 if (VT == MVT::i64 && Subtarget.isPPC64()) 15702 return std::make_pair(0U, &PPC::G8RC_NOX0RegClass); 15703 return std::make_pair(0U, &PPC::GPRC_NOR0RegClass); 15704 case 'r': // R0-R31 15705 if (VT == MVT::i64 && Subtarget.isPPC64()) 15706 return std::make_pair(0U, &PPC::G8RCRegClass); 15707 return std::make_pair(0U, &PPC::GPRCRegClass); 15708 // 'd' and 'f' constraints are both defined to be "the floating point 15709 // registers", where one is for 32-bit and the other for 64-bit. We don't 15710 // really care overly much here so just give them all the same reg classes. 15711 case 'd': 15712 case 'f': 15713 if (Subtarget.hasSPE()) { 15714 if (VT == MVT::f32 || VT == MVT::i32) 15715 return std::make_pair(0U, &PPC::GPRCRegClass); 15716 if (VT == MVT::f64 || VT == MVT::i64) 15717 return std::make_pair(0U, &PPC::SPERCRegClass); 15718 } else { 15719 if (VT == MVT::f32 || VT == MVT::i32) 15720 return std::make_pair(0U, &PPC::F4RCRegClass); 15721 if (VT == MVT::f64 || VT == MVT::i64) 15722 return std::make_pair(0U, &PPC::F8RCRegClass); 15723 } 15724 break; 15725 case 'v': 15726 if (Subtarget.hasAltivec()) 15727 return std::make_pair(0U, &PPC::VRRCRegClass); 15728 break; 15729 case 'y': // crrc 15730 return std::make_pair(0U, &PPC::CRRCRegClass); 15731 } 15732 } else if (Constraint == "wc" && Subtarget.useCRBits()) { 15733 // An individual CR bit. 15734 return std::make_pair(0U, &PPC::CRBITRCRegClass); 15735 } else if ((Constraint == "wa" || Constraint == "wd" || 15736 Constraint == "wf" || Constraint == "wi") && 15737 Subtarget.hasVSX()) { 15738 // A VSX register for either a scalar (FP) or vector. There is no 15739 // support for single precision scalars on subtargets prior to Power8. 15740 if (VT.isVector()) 15741 return std::make_pair(0U, &PPC::VSRCRegClass); 15742 if (VT == MVT::f32 && Subtarget.hasP8Vector()) 15743 return std::make_pair(0U, &PPC::VSSRCRegClass); 15744 return std::make_pair(0U, &PPC::VSFRCRegClass); 15745 } else if ((Constraint == "ws" || Constraint == "ww") && Subtarget.hasVSX()) { 15746 if (VT == MVT::f32 && Subtarget.hasP8Vector()) 15747 return std::make_pair(0U, &PPC::VSSRCRegClass); 15748 else 15749 return std::make_pair(0U, &PPC::VSFRCRegClass); 15750 } else if (Constraint == "lr") { 15751 if (VT == MVT::i64) 15752 return std::make_pair(0U, &PPC::LR8RCRegClass); 15753 else 15754 return std::make_pair(0U, &PPC::LRRCRegClass); 15755 } 15756 15757 // Handle special cases of physical registers that are not properly handled 15758 // by the base class. 15759 if (Constraint[0] == '{' && Constraint[Constraint.size() - 1] == '}') { 15760 // If we name a VSX register, we can't defer to the base class because it 15761 // will not recognize the correct register (their names will be VSL{0-31} 15762 // and V{0-31} so they won't match). So we match them here. 15763 if (Constraint.size() > 3 && Constraint[1] == 'v' && Constraint[2] == 's') { 15764 int VSNum = atoi(Constraint.data() + 3); 15765 assert(VSNum >= 0 && VSNum <= 63 && 15766 "Attempted to access a vsr out of range"); 15767 if (VSNum < 32) 15768 return std::make_pair(PPC::VSL0 + VSNum, &PPC::VSRCRegClass); 15769 return std::make_pair(PPC::V0 + VSNum - 32, &PPC::VSRCRegClass); 15770 } 15771 15772 // For float registers, we can't defer to the base class as it will match 15773 // the SPILLTOVSRRC class. 15774 if (Constraint.size() > 3 && Constraint[1] == 'f') { 15775 int RegNum = atoi(Constraint.data() + 2); 15776 if (RegNum > 31 || RegNum < 0) 15777 report_fatal_error("Invalid floating point register number"); 15778 if (VT == MVT::f32 || VT == MVT::i32) 15779 return Subtarget.hasSPE() 15780 ? std::make_pair(PPC::R0 + RegNum, &PPC::GPRCRegClass) 15781 : std::make_pair(PPC::F0 + RegNum, &PPC::F4RCRegClass); 15782 if (VT == MVT::f64 || VT == MVT::i64) 15783 return Subtarget.hasSPE() 15784 ? std::make_pair(PPC::S0 + RegNum, &PPC::SPERCRegClass) 15785 : std::make_pair(PPC::F0 + RegNum, &PPC::F8RCRegClass); 15786 } 15787 } 15788 15789 std::pair<unsigned, const TargetRegisterClass *> R = 15790 TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT); 15791 15792 // r[0-9]+ are used, on PPC64, to refer to the corresponding 64-bit registers 15793 // (which we call X[0-9]+). If a 64-bit value has been requested, and a 15794 // 32-bit GPR has been selected, then 'upgrade' it to the 64-bit parent 15795 // register. 15796 // FIXME: If TargetLowering::getRegForInlineAsmConstraint could somehow use 15797 // the AsmName field from *RegisterInfo.td, then this would not be necessary. 15798 if (R.first && VT == MVT::i64 && Subtarget.isPPC64() && 15799 PPC::GPRCRegClass.contains(R.first)) 15800 return std::make_pair(TRI->getMatchingSuperReg(R.first, 15801 PPC::sub_32, &PPC::G8RCRegClass), 15802 &PPC::G8RCRegClass); 15803 15804 // GCC accepts 'cc' as an alias for 'cr0', and we need to do the same. 15805 if (!R.second && StringRef("{cc}").equals_insensitive(Constraint)) { 15806 R.first = PPC::CR0; 15807 R.second = &PPC::CRRCRegClass; 15808 } 15809 // FIXME: This warning should ideally be emitted in the front end. 15810 const auto &TM = getTargetMachine(); 15811 if (Subtarget.isAIXABI() && !TM.getAIXExtendedAltivecABI()) { 15812 if (((R.first >= PPC::V20 && R.first <= PPC::V31) || 15813 (R.first >= PPC::VF20 && R.first <= PPC::VF31)) && 15814 (R.second == &PPC::VSRCRegClass || R.second == &PPC::VSFRCRegClass)) 15815 errs() << "warning: vector registers 20 to 32 are reserved in the " 15816 "default AIX AltiVec ABI and cannot be used\n"; 15817 } 15818 15819 return R; 15820 } 15821 15822 /// LowerAsmOperandForConstraint - Lower the specified operand into the Ops 15823 /// vector. If it is invalid, don't add anything to Ops. 15824 void PPCTargetLowering::LowerAsmOperandForConstraint(SDValue Op, 15825 std::string &Constraint, 15826 std::vector<SDValue>&Ops, 15827 SelectionDAG &DAG) const { 15828 SDValue Result; 15829 15830 // Only support length 1 constraints. 15831 if (Constraint.length() > 1) return; 15832 15833 char Letter = Constraint[0]; 15834 switch (Letter) { 15835 default: break; 15836 case 'I': 15837 case 'J': 15838 case 'K': 15839 case 'L': 15840 case 'M': 15841 case 'N': 15842 case 'O': 15843 case 'P': { 15844 ConstantSDNode *CST = dyn_cast<ConstantSDNode>(Op); 15845 if (!CST) return; // Must be an immediate to match. 15846 SDLoc dl(Op); 15847 int64_t Value = CST->getSExtValue(); 15848 EVT TCVT = MVT::i64; // All constants taken to be 64 bits so that negative 15849 // numbers are printed as such. 15850 switch (Letter) { 15851 default: llvm_unreachable("Unknown constraint letter!"); 15852 case 'I': // "I" is a signed 16-bit constant. 15853 if (isInt<16>(Value)) 15854 Result = DAG.getTargetConstant(Value, dl, TCVT); 15855 break; 15856 case 'J': // "J" is a constant with only the high-order 16 bits nonzero. 15857 if (isShiftedUInt<16, 16>(Value)) 15858 Result = DAG.getTargetConstant(Value, dl, TCVT); 15859 break; 15860 case 'L': // "L" is a signed 16-bit constant shifted left 16 bits. 15861 if (isShiftedInt<16, 16>(Value)) 15862 Result = DAG.getTargetConstant(Value, dl, TCVT); 15863 break; 15864 case 'K': // "K" is a constant with only the low-order 16 bits nonzero. 15865 if (isUInt<16>(Value)) 15866 Result = DAG.getTargetConstant(Value, dl, TCVT); 15867 break; 15868 case 'M': // "M" is a constant that is greater than 31. 15869 if (Value > 31) 15870 Result = DAG.getTargetConstant(Value, dl, TCVT); 15871 break; 15872 case 'N': // "N" is a positive constant that is an exact power of two. 15873 if (Value > 0 && isPowerOf2_64(Value)) 15874 Result = DAG.getTargetConstant(Value, dl, TCVT); 15875 break; 15876 case 'O': // "O" is the constant zero. 15877 if (Value == 0) 15878 Result = DAG.getTargetConstant(Value, dl, TCVT); 15879 break; 15880 case 'P': // "P" is a constant whose negation is a signed 16-bit constant. 15881 if (isInt<16>(-Value)) 15882 Result = DAG.getTargetConstant(Value, dl, TCVT); 15883 break; 15884 } 15885 break; 15886 } 15887 } 15888 15889 if (Result.getNode()) { 15890 Ops.push_back(Result); 15891 return; 15892 } 15893 15894 // Handle standard constraint letters. 15895 TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG); 15896 } 15897 15898 // isLegalAddressingMode - Return true if the addressing mode represented 15899 // by AM is legal for this target, for a load/store of the specified type. 15900 bool PPCTargetLowering::isLegalAddressingMode(const DataLayout &DL, 15901 const AddrMode &AM, Type *Ty, 15902 unsigned AS, 15903 Instruction *I) const { 15904 // Vector type r+i form is supported since power9 as DQ form. We don't check 15905 // the offset matching DQ form requirement(off % 16 == 0), because on PowerPC, 15906 // imm form is preferred and the offset can be adjusted to use imm form later 15907 // in pass PPCLoopInstrFormPrep. Also in LSR, for one LSRUse, it uses min and 15908 // max offset to check legal addressing mode, we should be a little aggressive 15909 // to contain other offsets for that LSRUse. 15910 if (Ty->isVectorTy() && AM.BaseOffs != 0 && !Subtarget.hasP9Vector()) 15911 return false; 15912 15913 // PPC allows a sign-extended 16-bit immediate field. 15914 if (AM.BaseOffs <= -(1LL << 16) || AM.BaseOffs >= (1LL << 16)-1) 15915 return false; 15916 15917 // No global is ever allowed as a base. 15918 if (AM.BaseGV) 15919 return false; 15920 15921 // PPC only support r+r, 15922 switch (AM.Scale) { 15923 case 0: // "r+i" or just "i", depending on HasBaseReg. 15924 break; 15925 case 1: 15926 if (AM.HasBaseReg && AM.BaseOffs) // "r+r+i" is not allowed. 15927 return false; 15928 // Otherwise we have r+r or r+i. 15929 break; 15930 case 2: 15931 if (AM.HasBaseReg || AM.BaseOffs) // 2*r+r or 2*r+i is not allowed. 15932 return false; 15933 // Allow 2*r as r+r. 15934 break; 15935 default: 15936 // No other scales are supported. 15937 return false; 15938 } 15939 15940 return true; 15941 } 15942 15943 SDValue PPCTargetLowering::LowerRETURNADDR(SDValue Op, 15944 SelectionDAG &DAG) const { 15945 MachineFunction &MF = DAG.getMachineFunction(); 15946 MachineFrameInfo &MFI = MF.getFrameInfo(); 15947 MFI.setReturnAddressIsTaken(true); 15948 15949 if (verifyReturnAddressArgumentIsConstant(Op, DAG)) 15950 return SDValue(); 15951 15952 SDLoc dl(Op); 15953 unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 15954 15955 // Make sure the function does not optimize away the store of the RA to 15956 // the stack. 15957 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 15958 FuncInfo->setLRStoreRequired(); 15959 bool isPPC64 = Subtarget.isPPC64(); 15960 auto PtrVT = getPointerTy(MF.getDataLayout()); 15961 15962 if (Depth > 0) { 15963 SDValue FrameAddr = LowerFRAMEADDR(Op, DAG); 15964 SDValue Offset = 15965 DAG.getConstant(Subtarget.getFrameLowering()->getReturnSaveOffset(), dl, 15966 isPPC64 ? MVT::i64 : MVT::i32); 15967 return DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), 15968 DAG.getNode(ISD::ADD, dl, PtrVT, FrameAddr, Offset), 15969 MachinePointerInfo()); 15970 } 15971 15972 // Just load the return address off the stack. 15973 SDValue RetAddrFI = getReturnAddrFrameIndex(DAG); 15974 return DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), RetAddrFI, 15975 MachinePointerInfo()); 15976 } 15977 15978 SDValue PPCTargetLowering::LowerFRAMEADDR(SDValue Op, 15979 SelectionDAG &DAG) const { 15980 SDLoc dl(Op); 15981 unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 15982 15983 MachineFunction &MF = DAG.getMachineFunction(); 15984 MachineFrameInfo &MFI = MF.getFrameInfo(); 15985 MFI.setFrameAddressIsTaken(true); 15986 15987 EVT PtrVT = getPointerTy(MF.getDataLayout()); 15988 bool isPPC64 = PtrVT == MVT::i64; 15989 15990 // Naked functions never have a frame pointer, and so we use r1. For all 15991 // other functions, this decision must be delayed until during PEI. 15992 unsigned FrameReg; 15993 if (MF.getFunction().hasFnAttribute(Attribute::Naked)) 15994 FrameReg = isPPC64 ? PPC::X1 : PPC::R1; 15995 else 15996 FrameReg = isPPC64 ? PPC::FP8 : PPC::FP; 15997 15998 SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), dl, FrameReg, 15999 PtrVT); 16000 while (Depth--) 16001 FrameAddr = DAG.getLoad(Op.getValueType(), dl, DAG.getEntryNode(), 16002 FrameAddr, MachinePointerInfo()); 16003 return FrameAddr; 16004 } 16005 16006 // FIXME? Maybe this could be a TableGen attribute on some registers and 16007 // this table could be generated automatically from RegInfo. 16008 Register PPCTargetLowering::getRegisterByName(const char* RegName, LLT VT, 16009 const MachineFunction &MF) const { 16010 bool isPPC64 = Subtarget.isPPC64(); 16011 16012 bool is64Bit = isPPC64 && VT == LLT::scalar(64); 16013 if (!is64Bit && VT != LLT::scalar(32)) 16014 report_fatal_error("Invalid register global variable type"); 16015 16016 Register Reg = StringSwitch<Register>(RegName) 16017 .Case("r1", is64Bit ? PPC::X1 : PPC::R1) 16018 .Case("r2", isPPC64 ? Register() : PPC::R2) 16019 .Case("r13", (is64Bit ? PPC::X13 : PPC::R13)) 16020 .Default(Register()); 16021 16022 if (Reg) 16023 return Reg; 16024 report_fatal_error("Invalid register name global variable"); 16025 } 16026 16027 bool PPCTargetLowering::isAccessedAsGotIndirect(SDValue GA) const { 16028 // 32-bit SVR4 ABI access everything as got-indirect. 16029 if (Subtarget.is32BitELFABI()) 16030 return true; 16031 16032 // AIX accesses everything indirectly through the TOC, which is similar to 16033 // the GOT. 16034 if (Subtarget.isAIXABI()) 16035 return true; 16036 16037 CodeModel::Model CModel = getTargetMachine().getCodeModel(); 16038 // If it is small or large code model, module locals are accessed 16039 // indirectly by loading their address from .toc/.got. 16040 if (CModel == CodeModel::Small || CModel == CodeModel::Large) 16041 return true; 16042 16043 // JumpTable and BlockAddress are accessed as got-indirect. 16044 if (isa<JumpTableSDNode>(GA) || isa<BlockAddressSDNode>(GA)) 16045 return true; 16046 16047 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(GA)) 16048 return Subtarget.isGVIndirectSymbol(G->getGlobal()); 16049 16050 return false; 16051 } 16052 16053 bool 16054 PPCTargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const { 16055 // The PowerPC target isn't yet aware of offsets. 16056 return false; 16057 } 16058 16059 bool PPCTargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info, 16060 const CallInst &I, 16061 MachineFunction &MF, 16062 unsigned Intrinsic) const { 16063 switch (Intrinsic) { 16064 case Intrinsic::ppc_atomicrmw_xchg_i128: 16065 case Intrinsic::ppc_atomicrmw_add_i128: 16066 case Intrinsic::ppc_atomicrmw_sub_i128: 16067 case Intrinsic::ppc_atomicrmw_nand_i128: 16068 case Intrinsic::ppc_atomicrmw_and_i128: 16069 case Intrinsic::ppc_atomicrmw_or_i128: 16070 case Intrinsic::ppc_atomicrmw_xor_i128: 16071 case Intrinsic::ppc_cmpxchg_i128: 16072 Info.opc = ISD::INTRINSIC_W_CHAIN; 16073 Info.memVT = MVT::i128; 16074 Info.ptrVal = I.getArgOperand(0); 16075 Info.offset = 0; 16076 Info.align = Align(16); 16077 Info.flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore | 16078 MachineMemOperand::MOVolatile; 16079 return true; 16080 case Intrinsic::ppc_altivec_lvx: 16081 case Intrinsic::ppc_altivec_lvxl: 16082 case Intrinsic::ppc_altivec_lvebx: 16083 case Intrinsic::ppc_altivec_lvehx: 16084 case Intrinsic::ppc_altivec_lvewx: 16085 case Intrinsic::ppc_vsx_lxvd2x: 16086 case Intrinsic::ppc_vsx_lxvw4x: 16087 case Intrinsic::ppc_vsx_lxvd2x_be: 16088 case Intrinsic::ppc_vsx_lxvw4x_be: 16089 case Intrinsic::ppc_vsx_lxvl: 16090 case Intrinsic::ppc_vsx_lxvll: { 16091 EVT VT; 16092 switch (Intrinsic) { 16093 case Intrinsic::ppc_altivec_lvebx: 16094 VT = MVT::i8; 16095 break; 16096 case Intrinsic::ppc_altivec_lvehx: 16097 VT = MVT::i16; 16098 break; 16099 case Intrinsic::ppc_altivec_lvewx: 16100 VT = MVT::i32; 16101 break; 16102 case Intrinsic::ppc_vsx_lxvd2x: 16103 case Intrinsic::ppc_vsx_lxvd2x_be: 16104 VT = MVT::v2f64; 16105 break; 16106 default: 16107 VT = MVT::v4i32; 16108 break; 16109 } 16110 16111 Info.opc = ISD::INTRINSIC_W_CHAIN; 16112 Info.memVT = VT; 16113 Info.ptrVal = I.getArgOperand(0); 16114 Info.offset = -VT.getStoreSize()+1; 16115 Info.size = 2*VT.getStoreSize()-1; 16116 Info.align = Align(1); 16117 Info.flags = MachineMemOperand::MOLoad; 16118 return true; 16119 } 16120 case Intrinsic::ppc_altivec_stvx: 16121 case Intrinsic::ppc_altivec_stvxl: 16122 case Intrinsic::ppc_altivec_stvebx: 16123 case Intrinsic::ppc_altivec_stvehx: 16124 case Intrinsic::ppc_altivec_stvewx: 16125 case Intrinsic::ppc_vsx_stxvd2x: 16126 case Intrinsic::ppc_vsx_stxvw4x: 16127 case Intrinsic::ppc_vsx_stxvd2x_be: 16128 case Intrinsic::ppc_vsx_stxvw4x_be: 16129 case Intrinsic::ppc_vsx_stxvl: 16130 case Intrinsic::ppc_vsx_stxvll: { 16131 EVT VT; 16132 switch (Intrinsic) { 16133 case Intrinsic::ppc_altivec_stvebx: 16134 VT = MVT::i8; 16135 break; 16136 case Intrinsic::ppc_altivec_stvehx: 16137 VT = MVT::i16; 16138 break; 16139 case Intrinsic::ppc_altivec_stvewx: 16140 VT = MVT::i32; 16141 break; 16142 case Intrinsic::ppc_vsx_stxvd2x: 16143 case Intrinsic::ppc_vsx_stxvd2x_be: 16144 VT = MVT::v2f64; 16145 break; 16146 default: 16147 VT = MVT::v4i32; 16148 break; 16149 } 16150 16151 Info.opc = ISD::INTRINSIC_VOID; 16152 Info.memVT = VT; 16153 Info.ptrVal = I.getArgOperand(1); 16154 Info.offset = -VT.getStoreSize()+1; 16155 Info.size = 2*VT.getStoreSize()-1; 16156 Info.align = Align(1); 16157 Info.flags = MachineMemOperand::MOStore; 16158 return true; 16159 } 16160 default: 16161 break; 16162 } 16163 16164 return false; 16165 } 16166 16167 /// It returns EVT::Other if the type should be determined using generic 16168 /// target-independent logic. 16169 EVT PPCTargetLowering::getOptimalMemOpType( 16170 const MemOp &Op, const AttributeList &FuncAttributes) const { 16171 if (getTargetMachine().getOptLevel() != CodeGenOpt::None) { 16172 // We should use Altivec/VSX loads and stores when available. For unaligned 16173 // addresses, unaligned VSX loads are only fast starting with the P8. 16174 if (Subtarget.hasAltivec() && Op.size() >= 16 && 16175 (Op.isAligned(Align(16)) || 16176 ((Op.isMemset() && Subtarget.hasVSX()) || Subtarget.hasP8Vector()))) 16177 return MVT::v4i32; 16178 } 16179 16180 if (Subtarget.isPPC64()) { 16181 return MVT::i64; 16182 } 16183 16184 return MVT::i32; 16185 } 16186 16187 /// Returns true if it is beneficial to convert a load of a constant 16188 /// to just the constant itself. 16189 bool PPCTargetLowering::shouldConvertConstantLoadToIntImm(const APInt &Imm, 16190 Type *Ty) const { 16191 assert(Ty->isIntegerTy()); 16192 16193 unsigned BitSize = Ty->getPrimitiveSizeInBits(); 16194 return !(BitSize == 0 || BitSize > 64); 16195 } 16196 16197 bool PPCTargetLowering::isTruncateFree(Type *Ty1, Type *Ty2) const { 16198 if (!Ty1->isIntegerTy() || !Ty2->isIntegerTy()) 16199 return false; 16200 unsigned NumBits1 = Ty1->getPrimitiveSizeInBits(); 16201 unsigned NumBits2 = Ty2->getPrimitiveSizeInBits(); 16202 return NumBits1 == 64 && NumBits2 == 32; 16203 } 16204 16205 bool PPCTargetLowering::isTruncateFree(EVT VT1, EVT VT2) const { 16206 if (!VT1.isInteger() || !VT2.isInteger()) 16207 return false; 16208 unsigned NumBits1 = VT1.getSizeInBits(); 16209 unsigned NumBits2 = VT2.getSizeInBits(); 16210 return NumBits1 == 64 && NumBits2 == 32; 16211 } 16212 16213 bool PPCTargetLowering::isZExtFree(SDValue Val, EVT VT2) const { 16214 // Generally speaking, zexts are not free, but they are free when they can be 16215 // folded with other operations. 16216 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(Val)) { 16217 EVT MemVT = LD->getMemoryVT(); 16218 if ((MemVT == MVT::i1 || MemVT == MVT::i8 || MemVT == MVT::i16 || 16219 (Subtarget.isPPC64() && MemVT == MVT::i32)) && 16220 (LD->getExtensionType() == ISD::NON_EXTLOAD || 16221 LD->getExtensionType() == ISD::ZEXTLOAD)) 16222 return true; 16223 } 16224 16225 // FIXME: Add other cases... 16226 // - 32-bit shifts with a zext to i64 16227 // - zext after ctlz, bswap, etc. 16228 // - zext after and by a constant mask 16229 16230 return TargetLowering::isZExtFree(Val, VT2); 16231 } 16232 16233 bool PPCTargetLowering::isFPExtFree(EVT DestVT, EVT SrcVT) const { 16234 assert(DestVT.isFloatingPoint() && SrcVT.isFloatingPoint() && 16235 "invalid fpext types"); 16236 // Extending to float128 is not free. 16237 if (DestVT == MVT::f128) 16238 return false; 16239 return true; 16240 } 16241 16242 bool PPCTargetLowering::isLegalICmpImmediate(int64_t Imm) const { 16243 return isInt<16>(Imm) || isUInt<16>(Imm); 16244 } 16245 16246 bool PPCTargetLowering::isLegalAddImmediate(int64_t Imm) const { 16247 return isInt<16>(Imm) || isUInt<16>(Imm); 16248 } 16249 16250 bool PPCTargetLowering::allowsMisalignedMemoryAccesses(EVT VT, unsigned, Align, 16251 MachineMemOperand::Flags, 16252 bool *Fast) const { 16253 if (DisablePPCUnaligned) 16254 return false; 16255 16256 // PowerPC supports unaligned memory access for simple non-vector types. 16257 // Although accessing unaligned addresses is not as efficient as accessing 16258 // aligned addresses, it is generally more efficient than manual expansion, 16259 // and generally only traps for software emulation when crossing page 16260 // boundaries. 16261 16262 if (!VT.isSimple()) 16263 return false; 16264 16265 if (VT.isFloatingPoint() && !VT.isVector() && 16266 !Subtarget.allowsUnalignedFPAccess()) 16267 return false; 16268 16269 if (VT.getSimpleVT().isVector()) { 16270 if (Subtarget.hasVSX()) { 16271 if (VT != MVT::v2f64 && VT != MVT::v2i64 && 16272 VT != MVT::v4f32 && VT != MVT::v4i32) 16273 return false; 16274 } else { 16275 return false; 16276 } 16277 } 16278 16279 if (VT == MVT::ppcf128) 16280 return false; 16281 16282 if (Fast) 16283 *Fast = true; 16284 16285 return true; 16286 } 16287 16288 bool PPCTargetLowering::decomposeMulByConstant(LLVMContext &Context, EVT VT, 16289 SDValue C) const { 16290 // Check integral scalar types. 16291 if (!VT.isScalarInteger()) 16292 return false; 16293 if (auto *ConstNode = dyn_cast<ConstantSDNode>(C.getNode())) { 16294 if (!ConstNode->getAPIntValue().isSignedIntN(64)) 16295 return false; 16296 // This transformation will generate >= 2 operations. But the following 16297 // cases will generate <= 2 instructions during ISEL. So exclude them. 16298 // 1. If the constant multiplier fits 16 bits, it can be handled by one 16299 // HW instruction, ie. MULLI 16300 // 2. If the multiplier after shifted fits 16 bits, an extra shift 16301 // instruction is needed than case 1, ie. MULLI and RLDICR 16302 int64_t Imm = ConstNode->getSExtValue(); 16303 unsigned Shift = countTrailingZeros<uint64_t>(Imm); 16304 Imm >>= Shift; 16305 if (isInt<16>(Imm)) 16306 return false; 16307 uint64_t UImm = static_cast<uint64_t>(Imm); 16308 if (isPowerOf2_64(UImm + 1) || isPowerOf2_64(UImm - 1) || 16309 isPowerOf2_64(1 - UImm) || isPowerOf2_64(-1 - UImm)) 16310 return true; 16311 } 16312 return false; 16313 } 16314 16315 bool PPCTargetLowering::isFMAFasterThanFMulAndFAdd(const MachineFunction &MF, 16316 EVT VT) const { 16317 return isFMAFasterThanFMulAndFAdd( 16318 MF.getFunction(), VT.getTypeForEVT(MF.getFunction().getContext())); 16319 } 16320 16321 bool PPCTargetLowering::isFMAFasterThanFMulAndFAdd(const Function &F, 16322 Type *Ty) const { 16323 switch (Ty->getScalarType()->getTypeID()) { 16324 case Type::FloatTyID: 16325 case Type::DoubleTyID: 16326 return true; 16327 case Type::FP128TyID: 16328 return Subtarget.hasP9Vector(); 16329 default: 16330 return false; 16331 } 16332 } 16333 16334 // FIXME: add more patterns which are not profitable to hoist. 16335 bool PPCTargetLowering::isProfitableToHoist(Instruction *I) const { 16336 if (!I->hasOneUse()) 16337 return true; 16338 16339 Instruction *User = I->user_back(); 16340 assert(User && "A single use instruction with no uses."); 16341 16342 switch (I->getOpcode()) { 16343 case Instruction::FMul: { 16344 // Don't break FMA, PowerPC prefers FMA. 16345 if (User->getOpcode() != Instruction::FSub && 16346 User->getOpcode() != Instruction::FAdd) 16347 return true; 16348 16349 const TargetOptions &Options = getTargetMachine().Options; 16350 const Function *F = I->getFunction(); 16351 const DataLayout &DL = F->getParent()->getDataLayout(); 16352 Type *Ty = User->getOperand(0)->getType(); 16353 16354 return !( 16355 isFMAFasterThanFMulAndFAdd(*F, Ty) && 16356 isOperationLegalOrCustom(ISD::FMA, getValueType(DL, Ty)) && 16357 (Options.AllowFPOpFusion == FPOpFusion::Fast || Options.UnsafeFPMath)); 16358 } 16359 case Instruction::Load: { 16360 // Don't break "store (load float*)" pattern, this pattern will be combined 16361 // to "store (load int32)" in later InstCombine pass. See function 16362 // combineLoadToOperationType. On PowerPC, loading a float point takes more 16363 // cycles than loading a 32 bit integer. 16364 LoadInst *LI = cast<LoadInst>(I); 16365 // For the loads that combineLoadToOperationType does nothing, like 16366 // ordered load, it should be profitable to hoist them. 16367 // For swifterror load, it can only be used for pointer to pointer type, so 16368 // later type check should get rid of this case. 16369 if (!LI->isUnordered()) 16370 return true; 16371 16372 if (User->getOpcode() != Instruction::Store) 16373 return true; 16374 16375 if (I->getType()->getTypeID() != Type::FloatTyID) 16376 return true; 16377 16378 return false; 16379 } 16380 default: 16381 return true; 16382 } 16383 return true; 16384 } 16385 16386 const MCPhysReg * 16387 PPCTargetLowering::getScratchRegisters(CallingConv::ID) const { 16388 // LR is a callee-save register, but we must treat it as clobbered by any call 16389 // site. Hence we include LR in the scratch registers, which are in turn added 16390 // as implicit-defs for stackmaps and patchpoints. The same reasoning applies 16391 // to CTR, which is used by any indirect call. 16392 static const MCPhysReg ScratchRegs[] = { 16393 PPC::X12, PPC::LR8, PPC::CTR8, 0 16394 }; 16395 16396 return ScratchRegs; 16397 } 16398 16399 Register PPCTargetLowering::getExceptionPointerRegister( 16400 const Constant *PersonalityFn) const { 16401 return Subtarget.isPPC64() ? PPC::X3 : PPC::R3; 16402 } 16403 16404 Register PPCTargetLowering::getExceptionSelectorRegister( 16405 const Constant *PersonalityFn) const { 16406 return Subtarget.isPPC64() ? PPC::X4 : PPC::R4; 16407 } 16408 16409 bool 16410 PPCTargetLowering::shouldExpandBuildVectorWithShuffles( 16411 EVT VT , unsigned DefinedValues) const { 16412 if (VT == MVT::v2i64) 16413 return Subtarget.hasDirectMove(); // Don't need stack ops with direct moves 16414 16415 if (Subtarget.hasVSX()) 16416 return true; 16417 16418 return TargetLowering::shouldExpandBuildVectorWithShuffles(VT, DefinedValues); 16419 } 16420 16421 Sched::Preference PPCTargetLowering::getSchedulingPreference(SDNode *N) const { 16422 if (DisableILPPref || Subtarget.enableMachineScheduler()) 16423 return TargetLowering::getSchedulingPreference(N); 16424 16425 return Sched::ILP; 16426 } 16427 16428 // Create a fast isel object. 16429 FastISel * 16430 PPCTargetLowering::createFastISel(FunctionLoweringInfo &FuncInfo, 16431 const TargetLibraryInfo *LibInfo) const { 16432 return PPC::createFastISel(FuncInfo, LibInfo); 16433 } 16434 16435 // 'Inverted' means the FMA opcode after negating one multiplicand. 16436 // For example, (fma -a b c) = (fnmsub a b c) 16437 static unsigned invertFMAOpcode(unsigned Opc) { 16438 switch (Opc) { 16439 default: 16440 llvm_unreachable("Invalid FMA opcode for PowerPC!"); 16441 case ISD::FMA: 16442 return PPCISD::FNMSUB; 16443 case PPCISD::FNMSUB: 16444 return ISD::FMA; 16445 } 16446 } 16447 16448 SDValue PPCTargetLowering::getNegatedExpression(SDValue Op, SelectionDAG &DAG, 16449 bool LegalOps, bool OptForSize, 16450 NegatibleCost &Cost, 16451 unsigned Depth) const { 16452 if (Depth > SelectionDAG::MaxRecursionDepth) 16453 return SDValue(); 16454 16455 unsigned Opc = Op.getOpcode(); 16456 EVT VT = Op.getValueType(); 16457 SDNodeFlags Flags = Op.getNode()->getFlags(); 16458 16459 switch (Opc) { 16460 case PPCISD::FNMSUB: 16461 if (!Op.hasOneUse() || !isTypeLegal(VT)) 16462 break; 16463 16464 const TargetOptions &Options = getTargetMachine().Options; 16465 SDValue N0 = Op.getOperand(0); 16466 SDValue N1 = Op.getOperand(1); 16467 SDValue N2 = Op.getOperand(2); 16468 SDLoc Loc(Op); 16469 16470 NegatibleCost N2Cost = NegatibleCost::Expensive; 16471 SDValue NegN2 = 16472 getNegatedExpression(N2, DAG, LegalOps, OptForSize, N2Cost, Depth + 1); 16473 16474 if (!NegN2) 16475 return SDValue(); 16476 16477 // (fneg (fnmsub a b c)) => (fnmsub (fneg a) b (fneg c)) 16478 // (fneg (fnmsub a b c)) => (fnmsub a (fneg b) (fneg c)) 16479 // These transformations may change sign of zeroes. For example, 16480 // -(-ab-(-c))=-0 while -(-(ab-c))=+0 when a=b=c=1. 16481 if (Flags.hasNoSignedZeros() || Options.NoSignedZerosFPMath) { 16482 // Try and choose the cheaper one to negate. 16483 NegatibleCost N0Cost = NegatibleCost::Expensive; 16484 SDValue NegN0 = getNegatedExpression(N0, DAG, LegalOps, OptForSize, 16485 N0Cost, Depth + 1); 16486 16487 NegatibleCost N1Cost = NegatibleCost::Expensive; 16488 SDValue NegN1 = getNegatedExpression(N1, DAG, LegalOps, OptForSize, 16489 N1Cost, Depth + 1); 16490 16491 if (NegN0 && N0Cost <= N1Cost) { 16492 Cost = std::min(N0Cost, N2Cost); 16493 return DAG.getNode(Opc, Loc, VT, NegN0, N1, NegN2, Flags); 16494 } else if (NegN1) { 16495 Cost = std::min(N1Cost, N2Cost); 16496 return DAG.getNode(Opc, Loc, VT, N0, NegN1, NegN2, Flags); 16497 } 16498 } 16499 16500 // (fneg (fnmsub a b c)) => (fma a b (fneg c)) 16501 if (isOperationLegal(ISD::FMA, VT)) { 16502 Cost = N2Cost; 16503 return DAG.getNode(ISD::FMA, Loc, VT, N0, N1, NegN2, Flags); 16504 } 16505 16506 break; 16507 } 16508 16509 return TargetLowering::getNegatedExpression(Op, DAG, LegalOps, OptForSize, 16510 Cost, Depth); 16511 } 16512 16513 // Override to enable LOAD_STACK_GUARD lowering on Linux. 16514 bool PPCTargetLowering::useLoadStackGuardNode() const { 16515 if (!Subtarget.isTargetLinux()) 16516 return TargetLowering::useLoadStackGuardNode(); 16517 return true; 16518 } 16519 16520 // Override to disable global variable loading on Linux and insert AIX canary 16521 // word declaration. 16522 void PPCTargetLowering::insertSSPDeclarations(Module &M) const { 16523 if (Subtarget.isAIXABI()) { 16524 M.getOrInsertGlobal(AIXSSPCanaryWordName, 16525 Type::getInt8PtrTy(M.getContext())); 16526 return; 16527 } 16528 if (!Subtarget.isTargetLinux()) 16529 return TargetLowering::insertSSPDeclarations(M); 16530 } 16531 16532 Value *PPCTargetLowering::getSDagStackGuard(const Module &M) const { 16533 if (Subtarget.isAIXABI()) 16534 return M.getGlobalVariable(AIXSSPCanaryWordName); 16535 return TargetLowering::getSDagStackGuard(M); 16536 } 16537 16538 bool PPCTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT, 16539 bool ForCodeSize) const { 16540 if (!VT.isSimple() || !Subtarget.hasVSX()) 16541 return false; 16542 16543 switch(VT.getSimpleVT().SimpleTy) { 16544 default: 16545 // For FP types that are currently not supported by PPC backend, return 16546 // false. Examples: f16, f80. 16547 return false; 16548 case MVT::f32: 16549 case MVT::f64: 16550 if (Subtarget.hasPrefixInstrs()) { 16551 // we can materialize all immediatess via XXSPLTI32DX and XXSPLTIDP. 16552 return true; 16553 } 16554 LLVM_FALLTHROUGH; 16555 case MVT::ppcf128: 16556 return Imm.isPosZero(); 16557 } 16558 } 16559 16560 // For vector shift operation op, fold 16561 // (op x, (and y, ((1 << numbits(x)) - 1))) -> (target op x, y) 16562 static SDValue stripModuloOnShift(const TargetLowering &TLI, SDNode *N, 16563 SelectionDAG &DAG) { 16564 SDValue N0 = N->getOperand(0); 16565 SDValue N1 = N->getOperand(1); 16566 EVT VT = N0.getValueType(); 16567 unsigned OpSizeInBits = VT.getScalarSizeInBits(); 16568 unsigned Opcode = N->getOpcode(); 16569 unsigned TargetOpcode; 16570 16571 switch (Opcode) { 16572 default: 16573 llvm_unreachable("Unexpected shift operation"); 16574 case ISD::SHL: 16575 TargetOpcode = PPCISD::SHL; 16576 break; 16577 case ISD::SRL: 16578 TargetOpcode = PPCISD::SRL; 16579 break; 16580 case ISD::SRA: 16581 TargetOpcode = PPCISD::SRA; 16582 break; 16583 } 16584 16585 if (VT.isVector() && TLI.isOperationLegal(Opcode, VT) && 16586 N1->getOpcode() == ISD::AND) 16587 if (ConstantSDNode *Mask = isConstOrConstSplat(N1->getOperand(1))) 16588 if (Mask->getZExtValue() == OpSizeInBits - 1) 16589 return DAG.getNode(TargetOpcode, SDLoc(N), VT, N0, N1->getOperand(0)); 16590 16591 return SDValue(); 16592 } 16593 16594 SDValue PPCTargetLowering::combineSHL(SDNode *N, DAGCombinerInfo &DCI) const { 16595 if (auto Value = stripModuloOnShift(*this, N, DCI.DAG)) 16596 return Value; 16597 16598 SDValue N0 = N->getOperand(0); 16599 ConstantSDNode *CN1 = dyn_cast<ConstantSDNode>(N->getOperand(1)); 16600 if (!Subtarget.isISA3_0() || !Subtarget.isPPC64() || 16601 N0.getOpcode() != ISD::SIGN_EXTEND || 16602 N0.getOperand(0).getValueType() != MVT::i32 || CN1 == nullptr || 16603 N->getValueType(0) != MVT::i64) 16604 return SDValue(); 16605 16606 // We can't save an operation here if the value is already extended, and 16607 // the existing shift is easier to combine. 16608 SDValue ExtsSrc = N0.getOperand(0); 16609 if (ExtsSrc.getOpcode() == ISD::TRUNCATE && 16610 ExtsSrc.getOperand(0).getOpcode() == ISD::AssertSext) 16611 return SDValue(); 16612 16613 SDLoc DL(N0); 16614 SDValue ShiftBy = SDValue(CN1, 0); 16615 // We want the shift amount to be i32 on the extswli, but the shift could 16616 // have an i64. 16617 if (ShiftBy.getValueType() == MVT::i64) 16618 ShiftBy = DCI.DAG.getConstant(CN1->getZExtValue(), DL, MVT::i32); 16619 16620 return DCI.DAG.getNode(PPCISD::EXTSWSLI, DL, MVT::i64, N0->getOperand(0), 16621 ShiftBy); 16622 } 16623 16624 SDValue PPCTargetLowering::combineSRA(SDNode *N, DAGCombinerInfo &DCI) const { 16625 if (auto Value = stripModuloOnShift(*this, N, DCI.DAG)) 16626 return Value; 16627 16628 return SDValue(); 16629 } 16630 16631 SDValue PPCTargetLowering::combineSRL(SDNode *N, DAGCombinerInfo &DCI) const { 16632 if (auto Value = stripModuloOnShift(*this, N, DCI.DAG)) 16633 return Value; 16634 16635 return SDValue(); 16636 } 16637 16638 // Transform (add X, (zext(setne Z, C))) -> (addze X, (addic (addi Z, -C), -1)) 16639 // Transform (add X, (zext(sete Z, C))) -> (addze X, (subfic (addi Z, -C), 0)) 16640 // When C is zero, the equation (addi Z, -C) can be simplified to Z 16641 // Requirement: -C in [-32768, 32767], X and Z are MVT::i64 types 16642 static SDValue combineADDToADDZE(SDNode *N, SelectionDAG &DAG, 16643 const PPCSubtarget &Subtarget) { 16644 if (!Subtarget.isPPC64()) 16645 return SDValue(); 16646 16647 SDValue LHS = N->getOperand(0); 16648 SDValue RHS = N->getOperand(1); 16649 16650 auto isZextOfCompareWithConstant = [](SDValue Op) { 16651 if (Op.getOpcode() != ISD::ZERO_EXTEND || !Op.hasOneUse() || 16652 Op.getValueType() != MVT::i64) 16653 return false; 16654 16655 SDValue Cmp = Op.getOperand(0); 16656 if (Cmp.getOpcode() != ISD::SETCC || !Cmp.hasOneUse() || 16657 Cmp.getOperand(0).getValueType() != MVT::i64) 16658 return false; 16659 16660 if (auto *Constant = dyn_cast<ConstantSDNode>(Cmp.getOperand(1))) { 16661 int64_t NegConstant = 0 - Constant->getSExtValue(); 16662 // Due to the limitations of the addi instruction, 16663 // -C is required to be [-32768, 32767]. 16664 return isInt<16>(NegConstant); 16665 } 16666 16667 return false; 16668 }; 16669 16670 bool LHSHasPattern = isZextOfCompareWithConstant(LHS); 16671 bool RHSHasPattern = isZextOfCompareWithConstant(RHS); 16672 16673 // If there is a pattern, canonicalize a zext operand to the RHS. 16674 if (LHSHasPattern && !RHSHasPattern) 16675 std::swap(LHS, RHS); 16676 else if (!LHSHasPattern && !RHSHasPattern) 16677 return SDValue(); 16678 16679 SDLoc DL(N); 16680 SDVTList VTs = DAG.getVTList(MVT::i64, MVT::Glue); 16681 SDValue Cmp = RHS.getOperand(0); 16682 SDValue Z = Cmp.getOperand(0); 16683 auto *Constant = cast<ConstantSDNode>(Cmp.getOperand(1)); 16684 int64_t NegConstant = 0 - Constant->getSExtValue(); 16685 16686 switch(cast<CondCodeSDNode>(Cmp.getOperand(2))->get()) { 16687 default: break; 16688 case ISD::SETNE: { 16689 // when C == 0 16690 // --> addze X, (addic Z, -1).carry 16691 // / 16692 // add X, (zext(setne Z, C))-- 16693 // \ when -32768 <= -C <= 32767 && C != 0 16694 // --> addze X, (addic (addi Z, -C), -1).carry 16695 SDValue Add = DAG.getNode(ISD::ADD, DL, MVT::i64, Z, 16696 DAG.getConstant(NegConstant, DL, MVT::i64)); 16697 SDValue AddOrZ = NegConstant != 0 ? Add : Z; 16698 SDValue Addc = DAG.getNode(ISD::ADDC, DL, DAG.getVTList(MVT::i64, MVT::Glue), 16699 AddOrZ, DAG.getConstant(-1ULL, DL, MVT::i64)); 16700 return DAG.getNode(ISD::ADDE, DL, VTs, LHS, DAG.getConstant(0, DL, MVT::i64), 16701 SDValue(Addc.getNode(), 1)); 16702 } 16703 case ISD::SETEQ: { 16704 // when C == 0 16705 // --> addze X, (subfic Z, 0).carry 16706 // / 16707 // add X, (zext(sete Z, C))-- 16708 // \ when -32768 <= -C <= 32767 && C != 0 16709 // --> addze X, (subfic (addi Z, -C), 0).carry 16710 SDValue Add = DAG.getNode(ISD::ADD, DL, MVT::i64, Z, 16711 DAG.getConstant(NegConstant, DL, MVT::i64)); 16712 SDValue AddOrZ = NegConstant != 0 ? Add : Z; 16713 SDValue Subc = DAG.getNode(ISD::SUBC, DL, DAG.getVTList(MVT::i64, MVT::Glue), 16714 DAG.getConstant(0, DL, MVT::i64), AddOrZ); 16715 return DAG.getNode(ISD::ADDE, DL, VTs, LHS, DAG.getConstant(0, DL, MVT::i64), 16716 SDValue(Subc.getNode(), 1)); 16717 } 16718 } 16719 16720 return SDValue(); 16721 } 16722 16723 // Transform 16724 // (add C1, (MAT_PCREL_ADDR GlobalAddr+C2)) to 16725 // (MAT_PCREL_ADDR GlobalAddr+(C1+C2)) 16726 // In this case both C1 and C2 must be known constants. 16727 // C1+C2 must fit into a 34 bit signed integer. 16728 static SDValue combineADDToMAT_PCREL_ADDR(SDNode *N, SelectionDAG &DAG, 16729 const PPCSubtarget &Subtarget) { 16730 if (!Subtarget.isUsingPCRelativeCalls()) 16731 return SDValue(); 16732 16733 // Check both Operand 0 and Operand 1 of the ADD node for the PCRel node. 16734 // If we find that node try to cast the Global Address and the Constant. 16735 SDValue LHS = N->getOperand(0); 16736 SDValue RHS = N->getOperand(1); 16737 16738 if (LHS.getOpcode() != PPCISD::MAT_PCREL_ADDR) 16739 std::swap(LHS, RHS); 16740 16741 if (LHS.getOpcode() != PPCISD::MAT_PCREL_ADDR) 16742 return SDValue(); 16743 16744 // Operand zero of PPCISD::MAT_PCREL_ADDR is the GA node. 16745 GlobalAddressSDNode *GSDN = dyn_cast<GlobalAddressSDNode>(LHS.getOperand(0)); 16746 ConstantSDNode* ConstNode = dyn_cast<ConstantSDNode>(RHS); 16747 16748 // Check that both casts succeeded. 16749 if (!GSDN || !ConstNode) 16750 return SDValue(); 16751 16752 int64_t NewOffset = GSDN->getOffset() + ConstNode->getSExtValue(); 16753 SDLoc DL(GSDN); 16754 16755 // The signed int offset needs to fit in 34 bits. 16756 if (!isInt<34>(NewOffset)) 16757 return SDValue(); 16758 16759 // The new global address is a copy of the old global address except 16760 // that it has the updated Offset. 16761 SDValue GA = 16762 DAG.getTargetGlobalAddress(GSDN->getGlobal(), DL, GSDN->getValueType(0), 16763 NewOffset, GSDN->getTargetFlags()); 16764 SDValue MatPCRel = 16765 DAG.getNode(PPCISD::MAT_PCREL_ADDR, DL, GSDN->getValueType(0), GA); 16766 return MatPCRel; 16767 } 16768 16769 SDValue PPCTargetLowering::combineADD(SDNode *N, DAGCombinerInfo &DCI) const { 16770 if (auto Value = combineADDToADDZE(N, DCI.DAG, Subtarget)) 16771 return Value; 16772 16773 if (auto Value = combineADDToMAT_PCREL_ADDR(N, DCI.DAG, Subtarget)) 16774 return Value; 16775 16776 return SDValue(); 16777 } 16778 16779 // Detect TRUNCATE operations on bitcasts of float128 values. 16780 // What we are looking for here is the situtation where we extract a subset 16781 // of bits from a 128 bit float. 16782 // This can be of two forms: 16783 // 1) BITCAST of f128 feeding TRUNCATE 16784 // 2) BITCAST of f128 feeding SRL (a shift) feeding TRUNCATE 16785 // The reason this is required is because we do not have a legal i128 type 16786 // and so we want to prevent having to store the f128 and then reload part 16787 // of it. 16788 SDValue PPCTargetLowering::combineTRUNCATE(SDNode *N, 16789 DAGCombinerInfo &DCI) const { 16790 // If we are using CRBits then try that first. 16791 if (Subtarget.useCRBits()) { 16792 // Check if CRBits did anything and return that if it did. 16793 if (SDValue CRTruncValue = DAGCombineTruncBoolExt(N, DCI)) 16794 return CRTruncValue; 16795 } 16796 16797 SDLoc dl(N); 16798 SDValue Op0 = N->getOperand(0); 16799 16800 // fold (truncate (abs (sub (zext a), (zext b)))) -> (vabsd a, b) 16801 if (Subtarget.hasP9Altivec() && Op0.getOpcode() == ISD::ABS) { 16802 EVT VT = N->getValueType(0); 16803 if (VT != MVT::v4i32 && VT != MVT::v8i16 && VT != MVT::v16i8) 16804 return SDValue(); 16805 SDValue Sub = Op0.getOperand(0); 16806 if (Sub.getOpcode() == ISD::SUB) { 16807 SDValue SubOp0 = Sub.getOperand(0); 16808 SDValue SubOp1 = Sub.getOperand(1); 16809 if ((SubOp0.getOpcode() == ISD::ZERO_EXTEND) && 16810 (SubOp1.getOpcode() == ISD::ZERO_EXTEND)) { 16811 return DCI.DAG.getNode(PPCISD::VABSD, dl, VT, SubOp0.getOperand(0), 16812 SubOp1.getOperand(0), 16813 DCI.DAG.getTargetConstant(0, dl, MVT::i32)); 16814 } 16815 } 16816 } 16817 16818 // Looking for a truncate of i128 to i64. 16819 if (Op0.getValueType() != MVT::i128 || N->getValueType(0) != MVT::i64) 16820 return SDValue(); 16821 16822 int EltToExtract = DCI.DAG.getDataLayout().isBigEndian() ? 1 : 0; 16823 16824 // SRL feeding TRUNCATE. 16825 if (Op0.getOpcode() == ISD::SRL) { 16826 ConstantSDNode *ConstNode = dyn_cast<ConstantSDNode>(Op0.getOperand(1)); 16827 // The right shift has to be by 64 bits. 16828 if (!ConstNode || ConstNode->getZExtValue() != 64) 16829 return SDValue(); 16830 16831 // Switch the element number to extract. 16832 EltToExtract = EltToExtract ? 0 : 1; 16833 // Update Op0 past the SRL. 16834 Op0 = Op0.getOperand(0); 16835 } 16836 16837 // BITCAST feeding a TRUNCATE possibly via SRL. 16838 if (Op0.getOpcode() == ISD::BITCAST && 16839 Op0.getValueType() == MVT::i128 && 16840 Op0.getOperand(0).getValueType() == MVT::f128) { 16841 SDValue Bitcast = DCI.DAG.getBitcast(MVT::v2i64, Op0.getOperand(0)); 16842 return DCI.DAG.getNode( 16843 ISD::EXTRACT_VECTOR_ELT, dl, MVT::i64, Bitcast, 16844 DCI.DAG.getTargetConstant(EltToExtract, dl, MVT::i32)); 16845 } 16846 return SDValue(); 16847 } 16848 16849 SDValue PPCTargetLowering::combineMUL(SDNode *N, DAGCombinerInfo &DCI) const { 16850 SelectionDAG &DAG = DCI.DAG; 16851 16852 ConstantSDNode *ConstOpOrElement = isConstOrConstSplat(N->getOperand(1)); 16853 if (!ConstOpOrElement) 16854 return SDValue(); 16855 16856 // An imul is usually smaller than the alternative sequence for legal type. 16857 if (DAG.getMachineFunction().getFunction().hasMinSize() && 16858 isOperationLegal(ISD::MUL, N->getValueType(0))) 16859 return SDValue(); 16860 16861 auto IsProfitable = [this](bool IsNeg, bool IsAddOne, EVT VT) -> bool { 16862 switch (this->Subtarget.getCPUDirective()) { 16863 default: 16864 // TODO: enhance the condition for subtarget before pwr8 16865 return false; 16866 case PPC::DIR_PWR8: 16867 // type mul add shl 16868 // scalar 4 1 1 16869 // vector 7 2 2 16870 return true; 16871 case PPC::DIR_PWR9: 16872 case PPC::DIR_PWR10: 16873 case PPC::DIR_PWR_FUTURE: 16874 // type mul add shl 16875 // scalar 5 2 2 16876 // vector 7 2 2 16877 16878 // The cycle RATIO of related operations are showed as a table above. 16879 // Because mul is 5(scalar)/7(vector), add/sub/shl are all 2 for both 16880 // scalar and vector type. For 2 instrs patterns, add/sub + shl 16881 // are 4, it is always profitable; but for 3 instrs patterns 16882 // (mul x, -(2^N + 1)) => -(add (shl x, N), x), sub + add + shl are 6. 16883 // So we should only do it for vector type. 16884 return IsAddOne && IsNeg ? VT.isVector() : true; 16885 } 16886 }; 16887 16888 EVT VT = N->getValueType(0); 16889 SDLoc DL(N); 16890 16891 const APInt &MulAmt = ConstOpOrElement->getAPIntValue(); 16892 bool IsNeg = MulAmt.isNegative(); 16893 APInt MulAmtAbs = MulAmt.abs(); 16894 16895 if ((MulAmtAbs - 1).isPowerOf2()) { 16896 // (mul x, 2^N + 1) => (add (shl x, N), x) 16897 // (mul x, -(2^N + 1)) => -(add (shl x, N), x) 16898 16899 if (!IsProfitable(IsNeg, true, VT)) 16900 return SDValue(); 16901 16902 SDValue Op0 = N->getOperand(0); 16903 SDValue Op1 = 16904 DAG.getNode(ISD::SHL, DL, VT, N->getOperand(0), 16905 DAG.getConstant((MulAmtAbs - 1).logBase2(), DL, VT)); 16906 SDValue Res = DAG.getNode(ISD::ADD, DL, VT, Op0, Op1); 16907 16908 if (!IsNeg) 16909 return Res; 16910 16911 return DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), Res); 16912 } else if ((MulAmtAbs + 1).isPowerOf2()) { 16913 // (mul x, 2^N - 1) => (sub (shl x, N), x) 16914 // (mul x, -(2^N - 1)) => (sub x, (shl x, N)) 16915 16916 if (!IsProfitable(IsNeg, false, VT)) 16917 return SDValue(); 16918 16919 SDValue Op0 = N->getOperand(0); 16920 SDValue Op1 = 16921 DAG.getNode(ISD::SHL, DL, VT, N->getOperand(0), 16922 DAG.getConstant((MulAmtAbs + 1).logBase2(), DL, VT)); 16923 16924 if (!IsNeg) 16925 return DAG.getNode(ISD::SUB, DL, VT, Op1, Op0); 16926 else 16927 return DAG.getNode(ISD::SUB, DL, VT, Op0, Op1); 16928 16929 } else { 16930 return SDValue(); 16931 } 16932 } 16933 16934 // Combine fma-like op (like fnmsub) with fnegs to appropriate op. Do this 16935 // in combiner since we need to check SD flags and other subtarget features. 16936 SDValue PPCTargetLowering::combineFMALike(SDNode *N, 16937 DAGCombinerInfo &DCI) const { 16938 SDValue N0 = N->getOperand(0); 16939 SDValue N1 = N->getOperand(1); 16940 SDValue N2 = N->getOperand(2); 16941 SDNodeFlags Flags = N->getFlags(); 16942 EVT VT = N->getValueType(0); 16943 SelectionDAG &DAG = DCI.DAG; 16944 const TargetOptions &Options = getTargetMachine().Options; 16945 unsigned Opc = N->getOpcode(); 16946 bool CodeSize = DAG.getMachineFunction().getFunction().hasOptSize(); 16947 bool LegalOps = !DCI.isBeforeLegalizeOps(); 16948 SDLoc Loc(N); 16949 16950 if (!isOperationLegal(ISD::FMA, VT)) 16951 return SDValue(); 16952 16953 // Allowing transformation to FNMSUB may change sign of zeroes when ab-c=0 16954 // since (fnmsub a b c)=-0 while c-ab=+0. 16955 if (!Flags.hasNoSignedZeros() && !Options.NoSignedZerosFPMath) 16956 return SDValue(); 16957 16958 // (fma (fneg a) b c) => (fnmsub a b c) 16959 // (fnmsub (fneg a) b c) => (fma a b c) 16960 if (SDValue NegN0 = getCheaperNegatedExpression(N0, DAG, LegalOps, CodeSize)) 16961 return DAG.getNode(invertFMAOpcode(Opc), Loc, VT, NegN0, N1, N2, Flags); 16962 16963 // (fma a (fneg b) c) => (fnmsub a b c) 16964 // (fnmsub a (fneg b) c) => (fma a b c) 16965 if (SDValue NegN1 = getCheaperNegatedExpression(N1, DAG, LegalOps, CodeSize)) 16966 return DAG.getNode(invertFMAOpcode(Opc), Loc, VT, N0, NegN1, N2, Flags); 16967 16968 return SDValue(); 16969 } 16970 16971 bool PPCTargetLowering::mayBeEmittedAsTailCall(const CallInst *CI) const { 16972 // Only duplicate to increase tail-calls for the 64bit SysV ABIs. 16973 if (!Subtarget.is64BitELFABI()) 16974 return false; 16975 16976 // If not a tail call then no need to proceed. 16977 if (!CI->isTailCall()) 16978 return false; 16979 16980 // If sibling calls have been disabled and tail-calls aren't guaranteed 16981 // there is no reason to duplicate. 16982 auto &TM = getTargetMachine(); 16983 if (!TM.Options.GuaranteedTailCallOpt && DisableSCO) 16984 return false; 16985 16986 // Can't tail call a function called indirectly, or if it has variadic args. 16987 const Function *Callee = CI->getCalledFunction(); 16988 if (!Callee || Callee->isVarArg()) 16989 return false; 16990 16991 // Make sure the callee and caller calling conventions are eligible for tco. 16992 const Function *Caller = CI->getParent()->getParent(); 16993 if (!areCallingConvEligibleForTCO_64SVR4(Caller->getCallingConv(), 16994 CI->getCallingConv())) 16995 return false; 16996 16997 // If the function is local then we have a good chance at tail-calling it 16998 return getTargetMachine().shouldAssumeDSOLocal(*Caller->getParent(), Callee); 16999 } 17000 17001 bool PPCTargetLowering::hasBitPreservingFPLogic(EVT VT) const { 17002 if (!Subtarget.hasVSX()) 17003 return false; 17004 if (Subtarget.hasP9Vector() && VT == MVT::f128) 17005 return true; 17006 return VT == MVT::f32 || VT == MVT::f64 || 17007 VT == MVT::v4f32 || VT == MVT::v2f64; 17008 } 17009 17010 bool PPCTargetLowering:: 17011 isMaskAndCmp0FoldingBeneficial(const Instruction &AndI) const { 17012 const Value *Mask = AndI.getOperand(1); 17013 // If the mask is suitable for andi. or andis. we should sink the and. 17014 if (const ConstantInt *CI = dyn_cast<ConstantInt>(Mask)) { 17015 // Can't handle constants wider than 64-bits. 17016 if (CI->getBitWidth() > 64) 17017 return false; 17018 int64_t ConstVal = CI->getZExtValue(); 17019 return isUInt<16>(ConstVal) || 17020 (isUInt<16>(ConstVal >> 16) && !(ConstVal & 0xFFFF)); 17021 } 17022 17023 // For non-constant masks, we can always use the record-form and. 17024 return true; 17025 } 17026 17027 // Transform (abs (sub (zext a), (zext b))) to (vabsd a b 0) 17028 // Transform (abs (sub (zext a), (zext_invec b))) to (vabsd a b 0) 17029 // Transform (abs (sub (zext_invec a), (zext_invec b))) to (vabsd a b 0) 17030 // Transform (abs (sub (zext_invec a), (zext b))) to (vabsd a b 0) 17031 // Transform (abs (sub a, b) to (vabsd a b 1)) if a & b of type v4i32 17032 SDValue PPCTargetLowering::combineABS(SDNode *N, DAGCombinerInfo &DCI) const { 17033 assert((N->getOpcode() == ISD::ABS) && "Need ABS node here"); 17034 assert(Subtarget.hasP9Altivec() && 17035 "Only combine this when P9 altivec supported!"); 17036 EVT VT = N->getValueType(0); 17037 if (VT != MVT::v4i32 && VT != MVT::v8i16 && VT != MVT::v16i8) 17038 return SDValue(); 17039 17040 SelectionDAG &DAG = DCI.DAG; 17041 SDLoc dl(N); 17042 if (N->getOperand(0).getOpcode() == ISD::SUB) { 17043 // Even for signed integers, if it's known to be positive (as signed 17044 // integer) due to zero-extended inputs. 17045 unsigned SubOpcd0 = N->getOperand(0)->getOperand(0).getOpcode(); 17046 unsigned SubOpcd1 = N->getOperand(0)->getOperand(1).getOpcode(); 17047 if ((SubOpcd0 == ISD::ZERO_EXTEND || 17048 SubOpcd0 == ISD::ZERO_EXTEND_VECTOR_INREG) && 17049 (SubOpcd1 == ISD::ZERO_EXTEND || 17050 SubOpcd1 == ISD::ZERO_EXTEND_VECTOR_INREG)) { 17051 return DAG.getNode(PPCISD::VABSD, dl, N->getOperand(0).getValueType(), 17052 N->getOperand(0)->getOperand(0), 17053 N->getOperand(0)->getOperand(1), 17054 DAG.getTargetConstant(0, dl, MVT::i32)); 17055 } 17056 17057 // For type v4i32, it can be optimized with xvnegsp + vabsduw 17058 if (N->getOperand(0).getValueType() == MVT::v4i32 && 17059 N->getOperand(0).hasOneUse()) { 17060 return DAG.getNode(PPCISD::VABSD, dl, N->getOperand(0).getValueType(), 17061 N->getOperand(0)->getOperand(0), 17062 N->getOperand(0)->getOperand(1), 17063 DAG.getTargetConstant(1, dl, MVT::i32)); 17064 } 17065 } 17066 17067 return SDValue(); 17068 } 17069 17070 // For type v4i32/v8ii16/v16i8, transform 17071 // from (vselect (setcc a, b, setugt), (sub a, b), (sub b, a)) to (vabsd a, b) 17072 // from (vselect (setcc a, b, setuge), (sub a, b), (sub b, a)) to (vabsd a, b) 17073 // from (vselect (setcc a, b, setult), (sub b, a), (sub a, b)) to (vabsd a, b) 17074 // from (vselect (setcc a, b, setule), (sub b, a), (sub a, b)) to (vabsd a, b) 17075 SDValue PPCTargetLowering::combineVSelect(SDNode *N, 17076 DAGCombinerInfo &DCI) const { 17077 assert((N->getOpcode() == ISD::VSELECT) && "Need VSELECT node here"); 17078 assert(Subtarget.hasP9Altivec() && 17079 "Only combine this when P9 altivec supported!"); 17080 17081 SelectionDAG &DAG = DCI.DAG; 17082 SDLoc dl(N); 17083 SDValue Cond = N->getOperand(0); 17084 SDValue TrueOpnd = N->getOperand(1); 17085 SDValue FalseOpnd = N->getOperand(2); 17086 EVT VT = N->getOperand(1).getValueType(); 17087 17088 if (Cond.getOpcode() != ISD::SETCC || TrueOpnd.getOpcode() != ISD::SUB || 17089 FalseOpnd.getOpcode() != ISD::SUB) 17090 return SDValue(); 17091 17092 // ABSD only available for type v4i32/v8i16/v16i8 17093 if (VT != MVT::v4i32 && VT != MVT::v8i16 && VT != MVT::v16i8) 17094 return SDValue(); 17095 17096 // At least to save one more dependent computation 17097 if (!(Cond.hasOneUse() || TrueOpnd.hasOneUse() || FalseOpnd.hasOneUse())) 17098 return SDValue(); 17099 17100 ISD::CondCode CC = cast<CondCodeSDNode>(Cond.getOperand(2))->get(); 17101 17102 // Can only handle unsigned comparison here 17103 switch (CC) { 17104 default: 17105 return SDValue(); 17106 case ISD::SETUGT: 17107 case ISD::SETUGE: 17108 break; 17109 case ISD::SETULT: 17110 case ISD::SETULE: 17111 std::swap(TrueOpnd, FalseOpnd); 17112 break; 17113 } 17114 17115 SDValue CmpOpnd1 = Cond.getOperand(0); 17116 SDValue CmpOpnd2 = Cond.getOperand(1); 17117 17118 // SETCC CmpOpnd1 CmpOpnd2 cond 17119 // TrueOpnd = CmpOpnd1 - CmpOpnd2 17120 // FalseOpnd = CmpOpnd2 - CmpOpnd1 17121 if (TrueOpnd.getOperand(0) == CmpOpnd1 && 17122 TrueOpnd.getOperand(1) == CmpOpnd2 && 17123 FalseOpnd.getOperand(0) == CmpOpnd2 && 17124 FalseOpnd.getOperand(1) == CmpOpnd1) { 17125 return DAG.getNode(PPCISD::VABSD, dl, N->getOperand(1).getValueType(), 17126 CmpOpnd1, CmpOpnd2, 17127 DAG.getTargetConstant(0, dl, MVT::i32)); 17128 } 17129 17130 return SDValue(); 17131 } 17132 17133 /// getAddrModeForFlags - Based on the set of address flags, select the most 17134 /// optimal instruction format to match by. 17135 PPC::AddrMode PPCTargetLowering::getAddrModeForFlags(unsigned Flags) const { 17136 // This is not a node we should be handling here. 17137 if (Flags == PPC::MOF_None) 17138 return PPC::AM_None; 17139 // Unaligned D-Forms are tried first, followed by the aligned D-Forms. 17140 for (auto FlagSet : AddrModesMap.at(PPC::AM_DForm)) 17141 if ((Flags & FlagSet) == FlagSet) 17142 return PPC::AM_DForm; 17143 for (auto FlagSet : AddrModesMap.at(PPC::AM_DSForm)) 17144 if ((Flags & FlagSet) == FlagSet) 17145 return PPC::AM_DSForm; 17146 for (auto FlagSet : AddrModesMap.at(PPC::AM_DQForm)) 17147 if ((Flags & FlagSet) == FlagSet) 17148 return PPC::AM_DQForm; 17149 // If no other forms are selected, return an X-Form as it is the most 17150 // general addressing mode. 17151 return PPC::AM_XForm; 17152 } 17153 17154 /// Set alignment flags based on whether or not the Frame Index is aligned. 17155 /// Utilized when computing flags for address computation when selecting 17156 /// load and store instructions. 17157 static void setAlignFlagsForFI(SDValue N, unsigned &FlagSet, 17158 SelectionDAG &DAG) { 17159 bool IsAdd = ((N.getOpcode() == ISD::ADD) || (N.getOpcode() == ISD::OR)); 17160 FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(IsAdd ? N.getOperand(0) : N); 17161 if (!FI) 17162 return; 17163 const MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); 17164 unsigned FrameIndexAlign = MFI.getObjectAlign(FI->getIndex()).value(); 17165 // If this is (add $FI, $S16Imm), the alignment flags are already set 17166 // based on the immediate. We just need to clear the alignment flags 17167 // if the FI alignment is weaker. 17168 if ((FrameIndexAlign % 4) != 0) 17169 FlagSet &= ~PPC::MOF_RPlusSImm16Mult4; 17170 if ((FrameIndexAlign % 16) != 0) 17171 FlagSet &= ~PPC::MOF_RPlusSImm16Mult16; 17172 // If the address is a plain FrameIndex, set alignment flags based on 17173 // FI alignment. 17174 if (!IsAdd) { 17175 if ((FrameIndexAlign % 4) == 0) 17176 FlagSet |= PPC::MOF_RPlusSImm16Mult4; 17177 if ((FrameIndexAlign % 16) == 0) 17178 FlagSet |= PPC::MOF_RPlusSImm16Mult16; 17179 } 17180 } 17181 17182 /// Given a node, compute flags that are used for address computation when 17183 /// selecting load and store instructions. The flags computed are stored in 17184 /// FlagSet. This function takes into account whether the node is a constant, 17185 /// an ADD, OR, or a constant, and computes the address flags accordingly. 17186 static void computeFlagsForAddressComputation(SDValue N, unsigned &FlagSet, 17187 SelectionDAG &DAG) { 17188 // Set the alignment flags for the node depending on if the node is 17189 // 4-byte or 16-byte aligned. 17190 auto SetAlignFlagsForImm = [&](uint64_t Imm) { 17191 if ((Imm & 0x3) == 0) 17192 FlagSet |= PPC::MOF_RPlusSImm16Mult4; 17193 if ((Imm & 0xf) == 0) 17194 FlagSet |= PPC::MOF_RPlusSImm16Mult16; 17195 }; 17196 17197 if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N)) { 17198 // All 32-bit constants can be computed as LIS + Disp. 17199 const APInt &ConstImm = CN->getAPIntValue(); 17200 if (ConstImm.isSignedIntN(32)) { // Flag to handle 32-bit constants. 17201 FlagSet |= PPC::MOF_AddrIsSImm32; 17202 SetAlignFlagsForImm(ConstImm.getZExtValue()); 17203 setAlignFlagsForFI(N, FlagSet, DAG); 17204 } 17205 if (ConstImm.isSignedIntN(34)) // Flag to handle 34-bit constants. 17206 FlagSet |= PPC::MOF_RPlusSImm34; 17207 else // Let constant materialization handle large constants. 17208 FlagSet |= PPC::MOF_NotAddNorCst; 17209 } else if (N.getOpcode() == ISD::ADD || provablyDisjointOr(DAG, N)) { 17210 // This address can be represented as an addition of: 17211 // - Register + Imm16 (possibly a multiple of 4/16) 17212 // - Register + Imm34 17213 // - Register + PPCISD::Lo 17214 // - Register + Register 17215 // In any case, we won't have to match this as Base + Zero. 17216 SDValue RHS = N.getOperand(1); 17217 if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(RHS)) { 17218 const APInt &ConstImm = CN->getAPIntValue(); 17219 if (ConstImm.isSignedIntN(16)) { 17220 FlagSet |= PPC::MOF_RPlusSImm16; // Signed 16-bit immediates. 17221 SetAlignFlagsForImm(ConstImm.getZExtValue()); 17222 setAlignFlagsForFI(N, FlagSet, DAG); 17223 } 17224 if (ConstImm.isSignedIntN(34)) 17225 FlagSet |= PPC::MOF_RPlusSImm34; // Signed 34-bit immediates. 17226 else 17227 FlagSet |= PPC::MOF_RPlusR; // Register. 17228 } else if (RHS.getOpcode() == PPCISD::Lo && 17229 !cast<ConstantSDNode>(RHS.getOperand(1))->getZExtValue()) 17230 FlagSet |= PPC::MOF_RPlusLo; // PPCISD::Lo. 17231 else 17232 FlagSet |= PPC::MOF_RPlusR; 17233 } else { // The address computation is not a constant or an addition. 17234 setAlignFlagsForFI(N, FlagSet, DAG); 17235 FlagSet |= PPC::MOF_NotAddNorCst; 17236 } 17237 } 17238 17239 /// computeMOFlags - Given a node N and it's Parent (a MemSDNode), compute 17240 /// the address flags of the load/store instruction that is to be matched. 17241 unsigned PPCTargetLowering::computeMOFlags(const SDNode *Parent, SDValue N, 17242 SelectionDAG &DAG) const { 17243 unsigned FlagSet = PPC::MOF_None; 17244 17245 // Compute subtarget flags. 17246 if (!Subtarget.hasP9Vector()) 17247 FlagSet |= PPC::MOF_SubtargetBeforeP9; 17248 else { 17249 FlagSet |= PPC::MOF_SubtargetP9; 17250 if (Subtarget.hasPrefixInstrs()) 17251 FlagSet |= PPC::MOF_SubtargetP10; 17252 } 17253 if (Subtarget.hasSPE()) 17254 FlagSet |= PPC::MOF_SubtargetSPE; 17255 17256 // Mark this as something we don't want to handle here if it is atomic 17257 // or pre-increment instruction. 17258 if (const LSBaseSDNode *LSB = dyn_cast<LSBaseSDNode>(Parent)) 17259 if (LSB->isIndexed()) 17260 return PPC::MOF_None; 17261 17262 // Compute in-memory type flags. This is based on if there are scalars, 17263 // floats or vectors. 17264 const MemSDNode *MN = dyn_cast<MemSDNode>(Parent); 17265 assert(MN && "Parent should be a MemSDNode!"); 17266 EVT MemVT = MN->getMemoryVT(); 17267 unsigned Size = MemVT.getSizeInBits(); 17268 if (MemVT.isScalarInteger()) { 17269 assert(Size <= 64 && "Not expecting scalar integers larger than 8 bytes!"); 17270 if (Size < 32) 17271 FlagSet |= PPC::MOF_SubWordInt; 17272 else if (Size == 32) 17273 FlagSet |= PPC::MOF_WordInt; 17274 else 17275 FlagSet |= PPC::MOF_DoubleWordInt; 17276 } else if (MemVT.isVector() && !MemVT.isFloatingPoint()) { // Integer vectors. 17277 if (Size == 128) 17278 FlagSet |= PPC::MOF_Vector; 17279 else if (Size == 256) 17280 FlagSet |= PPC::MOF_Vector256; 17281 else 17282 llvm_unreachable("Not expecting illegal vectors!"); 17283 } else { // Floating point type: can be scalar, f128 or vector types. 17284 if (Size == 32 || Size == 64) 17285 FlagSet |= PPC::MOF_ScalarFloat; 17286 else if (MemVT == MVT::f128 || MemVT.isVector()) 17287 FlagSet |= PPC::MOF_Vector; 17288 else 17289 llvm_unreachable("Not expecting illegal scalar floats!"); 17290 } 17291 17292 // Compute flags for address computation. 17293 computeFlagsForAddressComputation(N, FlagSet, DAG); 17294 17295 // Compute type extension flags. 17296 if (const LoadSDNode *LN = dyn_cast<LoadSDNode>(Parent)) { 17297 switch (LN->getExtensionType()) { 17298 case ISD::SEXTLOAD: 17299 FlagSet |= PPC::MOF_SExt; 17300 break; 17301 case ISD::EXTLOAD: 17302 case ISD::ZEXTLOAD: 17303 FlagSet |= PPC::MOF_ZExt; 17304 break; 17305 case ISD::NON_EXTLOAD: 17306 FlagSet |= PPC::MOF_NoExt; 17307 break; 17308 } 17309 } else 17310 FlagSet |= PPC::MOF_NoExt; 17311 17312 // For integers, no extension is the same as zero extension. 17313 // We set the extension mode to zero extension so we don't have 17314 // to add separate entries in AddrModesMap for loads and stores. 17315 if (MemVT.isScalarInteger() && (FlagSet & PPC::MOF_NoExt)) { 17316 FlagSet |= PPC::MOF_ZExt; 17317 FlagSet &= ~PPC::MOF_NoExt; 17318 } 17319 17320 // If we don't have prefixed instructions, 34-bit constants should be 17321 // treated as PPC::MOF_NotAddNorCst so they can match D-Forms. 17322 bool IsNonP1034BitConst = 17323 ((PPC::MOF_RPlusSImm34 | PPC::MOF_AddrIsSImm32 | PPC::MOF_SubtargetP10) & 17324 FlagSet) == PPC::MOF_RPlusSImm34; 17325 if (N.getOpcode() != ISD::ADD && N.getOpcode() != ISD::OR && 17326 IsNonP1034BitConst) 17327 FlagSet |= PPC::MOF_NotAddNorCst; 17328 17329 return FlagSet; 17330 } 17331 17332 /// SelectForceXFormMode - Given the specified address, force it to be 17333 /// represented as an indexed [r+r] operation (an XForm instruction). 17334 PPC::AddrMode PPCTargetLowering::SelectForceXFormMode(SDValue N, SDValue &Disp, 17335 SDValue &Base, 17336 SelectionDAG &DAG) const { 17337 17338 PPC::AddrMode Mode = PPC::AM_XForm; 17339 int16_t ForceXFormImm = 0; 17340 if (provablyDisjointOr(DAG, N) && 17341 !isIntS16Immediate(N.getOperand(1), ForceXFormImm)) { 17342 Disp = N.getOperand(0); 17343 Base = N.getOperand(1); 17344 return Mode; 17345 } 17346 17347 // If the address is the result of an add, we will utilize the fact that the 17348 // address calculation includes an implicit add. However, we can reduce 17349 // register pressure if we do not materialize a constant just for use as the 17350 // index register. We only get rid of the add if it is not an add of a 17351 // value and a 16-bit signed constant and both have a single use. 17352 if (N.getOpcode() == ISD::ADD && 17353 (!isIntS16Immediate(N.getOperand(1), ForceXFormImm) || 17354 !N.getOperand(1).hasOneUse() || !N.getOperand(0).hasOneUse())) { 17355 Disp = N.getOperand(0); 17356 Base = N.getOperand(1); 17357 return Mode; 17358 } 17359 17360 // Otherwise, use R0 as the base register. 17361 Disp = DAG.getRegister(Subtarget.isPPC64() ? PPC::ZERO8 : PPC::ZERO, 17362 N.getValueType()); 17363 Base = N; 17364 17365 return Mode; 17366 } 17367 17368 // If we happen to match to an aligned D-Form, check if the Frame Index is 17369 // adequately aligned. If it is not, reset the mode to match to X-Form. 17370 static void setXFormForUnalignedFI(SDValue N, unsigned Flags, 17371 PPC::AddrMode &Mode) { 17372 if (!isa<FrameIndexSDNode>(N)) 17373 return; 17374 if ((Mode == PPC::AM_DSForm && !(Flags & PPC::MOF_RPlusSImm16Mult4)) || 17375 (Mode == PPC::AM_DQForm && !(Flags & PPC::MOF_RPlusSImm16Mult16))) 17376 Mode = PPC::AM_XForm; 17377 } 17378 17379 /// SelectOptimalAddrMode - Based on a node N and it's Parent (a MemSDNode), 17380 /// compute the address flags of the node, get the optimal address mode based 17381 /// on the flags, and set the Base and Disp based on the address mode. 17382 PPC::AddrMode PPCTargetLowering::SelectOptimalAddrMode(const SDNode *Parent, 17383 SDValue N, SDValue &Disp, 17384 SDValue &Base, 17385 SelectionDAG &DAG, 17386 MaybeAlign Align) const { 17387 SDLoc DL(Parent); 17388 17389 // Compute the address flags. 17390 unsigned Flags = computeMOFlags(Parent, N, DAG); 17391 17392 // Get the optimal address mode based on the Flags. 17393 PPC::AddrMode Mode = getAddrModeForFlags(Flags); 17394 17395 // If the address mode is DS-Form or DQ-Form, check if the FI is aligned. 17396 // Select an X-Form load if it is not. 17397 setXFormForUnalignedFI(N, Flags, Mode); 17398 17399 // Set Base and Disp accordingly depending on the address mode. 17400 switch (Mode) { 17401 case PPC::AM_DForm: 17402 case PPC::AM_DSForm: 17403 case PPC::AM_DQForm: { 17404 // This is a register plus a 16-bit immediate. The base will be the 17405 // register and the displacement will be the immediate unless it 17406 // isn't sufficiently aligned. 17407 if (Flags & PPC::MOF_RPlusSImm16) { 17408 SDValue Op0 = N.getOperand(0); 17409 SDValue Op1 = N.getOperand(1); 17410 int16_t Imm = cast<ConstantSDNode>(Op1)->getAPIntValue().getZExtValue(); 17411 if (!Align || isAligned(*Align, Imm)) { 17412 Disp = DAG.getTargetConstant(Imm, DL, N.getValueType()); 17413 Base = Op0; 17414 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Op0)) { 17415 Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType()); 17416 fixupFuncForFI(DAG, FI->getIndex(), N.getValueType()); 17417 } 17418 break; 17419 } 17420 } 17421 // This is a register plus the @lo relocation. The base is the register 17422 // and the displacement is the global address. 17423 else if (Flags & PPC::MOF_RPlusLo) { 17424 Disp = N.getOperand(1).getOperand(0); // The global address. 17425 assert(Disp.getOpcode() == ISD::TargetGlobalAddress || 17426 Disp.getOpcode() == ISD::TargetGlobalTLSAddress || 17427 Disp.getOpcode() == ISD::TargetConstantPool || 17428 Disp.getOpcode() == ISD::TargetJumpTable); 17429 Base = N.getOperand(0); 17430 break; 17431 } 17432 // This is a constant address at most 32 bits. The base will be 17433 // zero or load-immediate-shifted and the displacement will be 17434 // the low 16 bits of the address. 17435 else if (Flags & PPC::MOF_AddrIsSImm32) { 17436 auto *CN = cast<ConstantSDNode>(N); 17437 EVT CNType = CN->getValueType(0); 17438 uint64_t CNImm = CN->getZExtValue(); 17439 // If this address fits entirely in a 16-bit sext immediate field, codegen 17440 // this as "d, 0". 17441 int16_t Imm; 17442 if (isIntS16Immediate(CN, Imm) && (!Align || isAligned(*Align, Imm))) { 17443 Disp = DAG.getTargetConstant(Imm, DL, CNType); 17444 Base = DAG.getRegister(Subtarget.isPPC64() ? PPC::ZERO8 : PPC::ZERO, 17445 CNType); 17446 break; 17447 } 17448 // Handle 32-bit sext immediate with LIS + Addr mode. 17449 if ((CNType == MVT::i32 || isInt<32>(CNImm)) && 17450 (!Align || isAligned(*Align, CNImm))) { 17451 int32_t Addr = (int32_t)CNImm; 17452 // Otherwise, break this down into LIS + Disp. 17453 Disp = DAG.getTargetConstant((int16_t)Addr, DL, MVT::i32); 17454 Base = 17455 DAG.getTargetConstant((Addr - (int16_t)Addr) >> 16, DL, MVT::i32); 17456 uint32_t LIS = CNType == MVT::i32 ? PPC::LIS : PPC::LIS8; 17457 Base = SDValue(DAG.getMachineNode(LIS, DL, CNType, Base), 0); 17458 break; 17459 } 17460 } 17461 // Otherwise, the PPC:MOF_NotAdd flag is set. Load/Store is Non-foldable. 17462 Disp = DAG.getTargetConstant(0, DL, getPointerTy(DAG.getDataLayout())); 17463 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N)) { 17464 Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType()); 17465 fixupFuncForFI(DAG, FI->getIndex(), N.getValueType()); 17466 } else 17467 Base = N; 17468 break; 17469 } 17470 case PPC::AM_None: 17471 break; 17472 default: { // By default, X-Form is always available to be selected. 17473 // When a frame index is not aligned, we also match by XForm. 17474 FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N); 17475 Base = FI ? N : N.getOperand(1); 17476 Disp = FI ? DAG.getRegister(Subtarget.isPPC64() ? PPC::ZERO8 : PPC::ZERO, 17477 N.getValueType()) 17478 : N.getOperand(0); 17479 break; 17480 } 17481 } 17482 return Mode; 17483 } 17484 17485 CCAssignFn *PPCTargetLowering::ccAssignFnForCall(CallingConv::ID CC, 17486 bool Return, 17487 bool IsVarArg) const { 17488 switch (CC) { 17489 case CallingConv::Cold: 17490 return (Return ? RetCC_PPC_Cold : CC_PPC64_ELF_FIS); 17491 default: 17492 return CC_PPC64_ELF_FIS; 17493 } 17494 } 17495 17496 TargetLowering::AtomicExpansionKind 17497 PPCTargetLowering::shouldExpandAtomicRMWInIR(AtomicRMWInst *AI) const { 17498 unsigned Size = AI->getType()->getPrimitiveSizeInBits(); 17499 if (EnableQuadwordAtomics && Subtarget.hasQuadwordAtomics() && Size == 128) 17500 return AtomicExpansionKind::MaskedIntrinsic; 17501 return TargetLowering::shouldExpandAtomicRMWInIR(AI); 17502 } 17503 17504 TargetLowering::AtomicExpansionKind 17505 PPCTargetLowering::shouldExpandAtomicCmpXchgInIR(AtomicCmpXchgInst *AI) const { 17506 unsigned Size = AI->getPointerOperand() 17507 ->getType() 17508 ->getPointerElementType() 17509 ->getPrimitiveSizeInBits(); 17510 if (EnableQuadwordAtomics && Subtarget.hasQuadwordAtomics() && Size == 128) 17511 return AtomicExpansionKind::MaskedIntrinsic; 17512 return TargetLowering::shouldExpandAtomicCmpXchgInIR(AI); 17513 } 17514 17515 static Intrinsic::ID 17516 getIntrinsicForAtomicRMWBinOp128(AtomicRMWInst::BinOp BinOp) { 17517 switch (BinOp) { 17518 default: 17519 llvm_unreachable("Unexpected AtomicRMW BinOp"); 17520 case AtomicRMWInst::Xchg: 17521 return Intrinsic::ppc_atomicrmw_xchg_i128; 17522 case AtomicRMWInst::Add: 17523 return Intrinsic::ppc_atomicrmw_add_i128; 17524 case AtomicRMWInst::Sub: 17525 return Intrinsic::ppc_atomicrmw_sub_i128; 17526 case AtomicRMWInst::And: 17527 return Intrinsic::ppc_atomicrmw_and_i128; 17528 case AtomicRMWInst::Or: 17529 return Intrinsic::ppc_atomicrmw_or_i128; 17530 case AtomicRMWInst::Xor: 17531 return Intrinsic::ppc_atomicrmw_xor_i128; 17532 case AtomicRMWInst::Nand: 17533 return Intrinsic::ppc_atomicrmw_nand_i128; 17534 } 17535 } 17536 17537 Value *PPCTargetLowering::emitMaskedAtomicRMWIntrinsic( 17538 IRBuilderBase &Builder, AtomicRMWInst *AI, Value *AlignedAddr, Value *Incr, 17539 Value *Mask, Value *ShiftAmt, AtomicOrdering Ord) const { 17540 assert(EnableQuadwordAtomics && Subtarget.hasQuadwordAtomics() && 17541 "Only support quadword now"); 17542 Module *M = Builder.GetInsertBlock()->getParent()->getParent(); 17543 Type *ValTy = cast<PointerType>(AlignedAddr->getType())->getElementType(); 17544 assert(ValTy->getPrimitiveSizeInBits() == 128); 17545 Function *RMW = Intrinsic::getDeclaration( 17546 M, getIntrinsicForAtomicRMWBinOp128(AI->getOperation())); 17547 Type *Int64Ty = Type::getInt64Ty(M->getContext()); 17548 Value *IncrLo = Builder.CreateTrunc(Incr, Int64Ty, "incr_lo"); 17549 Value *IncrHi = 17550 Builder.CreateTrunc(Builder.CreateLShr(Incr, 64), Int64Ty, "incr_hi"); 17551 Value *Addr = 17552 Builder.CreateBitCast(AlignedAddr, Type::getInt8PtrTy(M->getContext())); 17553 Value *LoHi = Builder.CreateCall(RMW, {Addr, IncrLo, IncrHi}); 17554 Value *Lo = Builder.CreateExtractValue(LoHi, 0, "lo"); 17555 Value *Hi = Builder.CreateExtractValue(LoHi, 1, "hi"); 17556 Lo = Builder.CreateZExt(Lo, ValTy, "lo64"); 17557 Hi = Builder.CreateZExt(Hi, ValTy, "hi64"); 17558 return Builder.CreateOr( 17559 Lo, Builder.CreateShl(Hi, ConstantInt::get(ValTy, 64)), "val64"); 17560 } 17561 17562 Value *PPCTargetLowering::emitMaskedAtomicCmpXchgIntrinsic( 17563 IRBuilderBase &Builder, AtomicCmpXchgInst *CI, Value *AlignedAddr, 17564 Value *CmpVal, Value *NewVal, Value *Mask, AtomicOrdering Ord) const { 17565 assert(EnableQuadwordAtomics && Subtarget.hasQuadwordAtomics() && 17566 "Only support quadword now"); 17567 Module *M = Builder.GetInsertBlock()->getParent()->getParent(); 17568 Type *ValTy = cast<PointerType>(AlignedAddr->getType())->getElementType(); 17569 assert(ValTy->getPrimitiveSizeInBits() == 128); 17570 Function *IntCmpXchg = 17571 Intrinsic::getDeclaration(M, Intrinsic::ppc_cmpxchg_i128); 17572 Type *Int64Ty = Type::getInt64Ty(M->getContext()); 17573 Value *CmpLo = Builder.CreateTrunc(CmpVal, Int64Ty, "cmp_lo"); 17574 Value *CmpHi = 17575 Builder.CreateTrunc(Builder.CreateLShr(CmpVal, 64), Int64Ty, "cmp_hi"); 17576 Value *NewLo = Builder.CreateTrunc(NewVal, Int64Ty, "new_lo"); 17577 Value *NewHi = 17578 Builder.CreateTrunc(Builder.CreateLShr(NewVal, 64), Int64Ty, "new_hi"); 17579 Value *Addr = 17580 Builder.CreateBitCast(AlignedAddr, Type::getInt8PtrTy(M->getContext())); 17581 emitLeadingFence(Builder, CI, Ord); 17582 Value *LoHi = 17583 Builder.CreateCall(IntCmpXchg, {Addr, CmpLo, CmpHi, NewLo, NewHi}); 17584 emitTrailingFence(Builder, CI, Ord); 17585 Value *Lo = Builder.CreateExtractValue(LoHi, 0, "lo"); 17586 Value *Hi = Builder.CreateExtractValue(LoHi, 1, "hi"); 17587 Lo = Builder.CreateZExt(Lo, ValTy, "lo64"); 17588 Hi = Builder.CreateZExt(Hi, ValTy, "hi64"); 17589 return Builder.CreateOr( 17590 Lo, Builder.CreateShl(Hi, ConstantInt::get(ValTy, 64)), "val64"); 17591 } 17592