1 //===-- PPCISelLowering.cpp - PPC DAG Lowering Implementation -------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the PPCISelLowering class.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "PPCISelLowering.h"
14 #include "MCTargetDesc/PPCPredicates.h"
15 #include "PPC.h"
16 #include "PPCCCState.h"
17 #include "PPCCallingConv.h"
18 #include "PPCFrameLowering.h"
19 #include "PPCInstrInfo.h"
20 #include "PPCMachineFunctionInfo.h"
21 #include "PPCPerfectShuffle.h"
22 #include "PPCRegisterInfo.h"
23 #include "PPCSubtarget.h"
24 #include "PPCTargetMachine.h"
25 #include "llvm/ADT/APFloat.h"
26 #include "llvm/ADT/APInt.h"
27 #include "llvm/ADT/ArrayRef.h"
28 #include "llvm/ADT/DenseMap.h"
29 #include "llvm/ADT/None.h"
30 #include "llvm/ADT/STLExtras.h"
31 #include "llvm/ADT/SmallPtrSet.h"
32 #include "llvm/ADT/SmallSet.h"
33 #include "llvm/ADT/SmallVector.h"
34 #include "llvm/ADT/Statistic.h"
35 #include "llvm/ADT/StringRef.h"
36 #include "llvm/ADT/StringSwitch.h"
37 #include "llvm/CodeGen/CallingConvLower.h"
38 #include "llvm/CodeGen/ISDOpcodes.h"
39 #include "llvm/CodeGen/MachineBasicBlock.h"
40 #include "llvm/CodeGen/MachineFrameInfo.h"
41 #include "llvm/CodeGen/MachineFunction.h"
42 #include "llvm/CodeGen/MachineInstr.h"
43 #include "llvm/CodeGen/MachineInstrBuilder.h"
44 #include "llvm/CodeGen/MachineJumpTableInfo.h"
45 #include "llvm/CodeGen/MachineLoopInfo.h"
46 #include "llvm/CodeGen/MachineMemOperand.h"
47 #include "llvm/CodeGen/MachineModuleInfo.h"
48 #include "llvm/CodeGen/MachineOperand.h"
49 #include "llvm/CodeGen/MachineRegisterInfo.h"
50 #include "llvm/CodeGen/RuntimeLibcalls.h"
51 #include "llvm/CodeGen/SelectionDAG.h"
52 #include "llvm/CodeGen/SelectionDAGNodes.h"
53 #include "llvm/CodeGen/TargetInstrInfo.h"
54 #include "llvm/CodeGen/TargetLowering.h"
55 #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h"
56 #include "llvm/CodeGen/TargetRegisterInfo.h"
57 #include "llvm/CodeGen/ValueTypes.h"
58 #include "llvm/IR/CallingConv.h"
59 #include "llvm/IR/Constant.h"
60 #include "llvm/IR/Constants.h"
61 #include "llvm/IR/DataLayout.h"
62 #include "llvm/IR/DebugLoc.h"
63 #include "llvm/IR/DerivedTypes.h"
64 #include "llvm/IR/Function.h"
65 #include "llvm/IR/GlobalValue.h"
66 #include "llvm/IR/IRBuilder.h"
67 #include "llvm/IR/Instructions.h"
68 #include "llvm/IR/Intrinsics.h"
69 #include "llvm/IR/IntrinsicsPowerPC.h"
70 #include "llvm/IR/Module.h"
71 #include "llvm/IR/Type.h"
72 #include "llvm/IR/Use.h"
73 #include "llvm/IR/Value.h"
74 #include "llvm/MC/MCContext.h"
75 #include "llvm/MC/MCExpr.h"
76 #include "llvm/MC/MCRegisterInfo.h"
77 #include "llvm/MC/MCSectionXCOFF.h"
78 #include "llvm/MC/MCSymbolXCOFF.h"
79 #include "llvm/Support/AtomicOrdering.h"
80 #include "llvm/Support/BranchProbability.h"
81 #include "llvm/Support/Casting.h"
82 #include "llvm/Support/CodeGen.h"
83 #include "llvm/Support/CommandLine.h"
84 #include "llvm/Support/Compiler.h"
85 #include "llvm/Support/Debug.h"
86 #include "llvm/Support/ErrorHandling.h"
87 #include "llvm/Support/Format.h"
88 #include "llvm/Support/KnownBits.h"
89 #include "llvm/Support/MachineValueType.h"
90 #include "llvm/Support/MathExtras.h"
91 #include "llvm/Support/raw_ostream.h"
92 #include "llvm/Target/TargetMachine.h"
93 #include "llvm/Target/TargetOptions.h"
94 #include <algorithm>
95 #include <cassert>
96 #include <cstdint>
97 #include <iterator>
98 #include <list>
99 #include <utility>
100 #include <vector>
101 
102 using namespace llvm;
103 
104 #define DEBUG_TYPE "ppc-lowering"
105 
106 static cl::opt<bool> DisablePPCPreinc("disable-ppc-preinc",
107 cl::desc("disable preincrement load/store generation on PPC"), cl::Hidden);
108 
109 static cl::opt<bool> DisableILPPref("disable-ppc-ilp-pref",
110 cl::desc("disable setting the node scheduling preference to ILP on PPC"), cl::Hidden);
111 
112 static cl::opt<bool> DisablePPCUnaligned("disable-ppc-unaligned",
113 cl::desc("disable unaligned load/store generation on PPC"), cl::Hidden);
114 
115 static cl::opt<bool> DisableSCO("disable-ppc-sco",
116 cl::desc("disable sibling call optimization on ppc"), cl::Hidden);
117 
118 static cl::opt<bool> DisableInnermostLoopAlign32("disable-ppc-innermost-loop-align32",
119 cl::desc("don't always align innermost loop to 32 bytes on ppc"), cl::Hidden);
120 
121 static cl::opt<bool> UseAbsoluteJumpTables("ppc-use-absolute-jumptables",
122 cl::desc("use absolute jump tables on ppc"), cl::Hidden);
123 
124 static cl::opt<bool> EnableQuadwordAtomics(
125     "ppc-quadword-atomics",
126     cl::desc("enable quadword lock-free atomic operations"), cl::init(false),
127     cl::Hidden);
128 
129 static cl::opt<bool>
130     DisablePerfectShuffle("ppc-disable-perfect-shuffle",
131                           cl::desc("disable vector permute decomposition"),
132                           cl::init(true), cl::Hidden);
133 
134 cl::opt<bool> DisableAutoPairedVecSt(
135     "disable-auto-paired-vec-st",
136     cl::desc("disable automatically generated 32byte paired vector stores"),
137     cl::init(true), cl::Hidden);
138 
139 STATISTIC(NumTailCalls, "Number of tail calls");
140 STATISTIC(NumSiblingCalls, "Number of sibling calls");
141 STATISTIC(ShufflesHandledWithVPERM, "Number of shuffles lowered to a VPERM");
142 STATISTIC(NumDynamicAllocaProbed, "Number of dynamic stack allocation probed");
143 
144 static bool isNByteElemShuffleMask(ShuffleVectorSDNode *, unsigned, int);
145 
146 static SDValue widenVec(SelectionDAG &DAG, SDValue Vec, const SDLoc &dl);
147 
148 static const char AIXSSPCanaryWordName[] = "__ssp_canary_word";
149 
150 // FIXME: Remove this once the bug has been fixed!
151 extern cl::opt<bool> ANDIGlueBug;
152 
153 PPCTargetLowering::PPCTargetLowering(const PPCTargetMachine &TM,
154                                      const PPCSubtarget &STI)
155     : TargetLowering(TM), Subtarget(STI) {
156   // Initialize map that relates the PPC addressing modes to the computed flags
157   // of a load/store instruction. The map is used to determine the optimal
158   // addressing mode when selecting load and stores.
159   initializeAddrModeMap();
160   // On PPC32/64, arguments smaller than 4/8 bytes are extended, so all
161   // arguments are at least 4/8 bytes aligned.
162   bool isPPC64 = Subtarget.isPPC64();
163   setMinStackArgumentAlignment(isPPC64 ? Align(8) : Align(4));
164 
165   // Set up the register classes.
166   addRegisterClass(MVT::i32, &PPC::GPRCRegClass);
167   if (!useSoftFloat()) {
168     if (hasSPE()) {
169       addRegisterClass(MVT::f32, &PPC::GPRCRegClass);
170       // EFPU2 APU only supports f32
171       if (!Subtarget.hasEFPU2())
172         addRegisterClass(MVT::f64, &PPC::SPERCRegClass);
173     } else {
174       addRegisterClass(MVT::f32, &PPC::F4RCRegClass);
175       addRegisterClass(MVT::f64, &PPC::F8RCRegClass);
176     }
177   }
178 
179   // Match BITREVERSE to customized fast code sequence in the td file.
180   setOperationAction(ISD::BITREVERSE, MVT::i32, Legal);
181   setOperationAction(ISD::BITREVERSE, MVT::i64, Legal);
182 
183   // Sub-word ATOMIC_CMP_SWAP need to ensure that the input is zero-extended.
184   setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i32, Custom);
185 
186   // Custom lower inline assembly to check for special registers.
187   setOperationAction(ISD::INLINEASM, MVT::Other, Custom);
188   setOperationAction(ISD::INLINEASM_BR, MVT::Other, Custom);
189 
190   // PowerPC has an i16 but no i8 (or i1) SEXTLOAD.
191   for (MVT VT : MVT::integer_valuetypes()) {
192     setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote);
193     setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i8, Expand);
194   }
195 
196   if (Subtarget.isISA3_0()) {
197     setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f16, Legal);
198     setLoadExtAction(ISD::EXTLOAD, MVT::f32, MVT::f16, Legal);
199     setTruncStoreAction(MVT::f64, MVT::f16, Legal);
200     setTruncStoreAction(MVT::f32, MVT::f16, Legal);
201   } else {
202     // No extending loads from f16 or HW conversions back and forth.
203     setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f16, Expand);
204     setOperationAction(ISD::FP16_TO_FP, MVT::f64, Expand);
205     setOperationAction(ISD::FP_TO_FP16, MVT::f64, Expand);
206     setLoadExtAction(ISD::EXTLOAD, MVT::f32, MVT::f16, Expand);
207     setOperationAction(ISD::FP16_TO_FP, MVT::f32, Expand);
208     setOperationAction(ISD::FP_TO_FP16, MVT::f32, Expand);
209     setTruncStoreAction(MVT::f64, MVT::f16, Expand);
210     setTruncStoreAction(MVT::f32, MVT::f16, Expand);
211   }
212 
213   setTruncStoreAction(MVT::f64, MVT::f32, Expand);
214 
215   // PowerPC has pre-inc load and store's.
216   setIndexedLoadAction(ISD::PRE_INC, MVT::i1, Legal);
217   setIndexedLoadAction(ISD::PRE_INC, MVT::i8, Legal);
218   setIndexedLoadAction(ISD::PRE_INC, MVT::i16, Legal);
219   setIndexedLoadAction(ISD::PRE_INC, MVT::i32, Legal);
220   setIndexedLoadAction(ISD::PRE_INC, MVT::i64, Legal);
221   setIndexedStoreAction(ISD::PRE_INC, MVT::i1, Legal);
222   setIndexedStoreAction(ISD::PRE_INC, MVT::i8, Legal);
223   setIndexedStoreAction(ISD::PRE_INC, MVT::i16, Legal);
224   setIndexedStoreAction(ISD::PRE_INC, MVT::i32, Legal);
225   setIndexedStoreAction(ISD::PRE_INC, MVT::i64, Legal);
226   if (!Subtarget.hasSPE()) {
227     setIndexedLoadAction(ISD::PRE_INC, MVT::f32, Legal);
228     setIndexedLoadAction(ISD::PRE_INC, MVT::f64, Legal);
229     setIndexedStoreAction(ISD::PRE_INC, MVT::f32, Legal);
230     setIndexedStoreAction(ISD::PRE_INC, MVT::f64, Legal);
231   }
232 
233   // PowerPC uses ADDC/ADDE/SUBC/SUBE to propagate carry.
234   const MVT ScalarIntVTs[] = { MVT::i32, MVT::i64 };
235   for (MVT VT : ScalarIntVTs) {
236     setOperationAction(ISD::ADDC, VT, Legal);
237     setOperationAction(ISD::ADDE, VT, Legal);
238     setOperationAction(ISD::SUBC, VT, Legal);
239     setOperationAction(ISD::SUBE, VT, Legal);
240   }
241 
242   if (Subtarget.useCRBits()) {
243     setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
244 
245     if (isPPC64 || Subtarget.hasFPCVT()) {
246       setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::i1, Promote);
247       AddPromotedToType(ISD::STRICT_SINT_TO_FP, MVT::i1,
248                         isPPC64 ? MVT::i64 : MVT::i32);
249       setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::i1, Promote);
250       AddPromotedToType(ISD::STRICT_UINT_TO_FP, MVT::i1,
251                         isPPC64 ? MVT::i64 : MVT::i32);
252 
253       setOperationAction(ISD::SINT_TO_FP, MVT::i1, Promote);
254       AddPromotedToType (ISD::SINT_TO_FP, MVT::i1,
255                          isPPC64 ? MVT::i64 : MVT::i32);
256       setOperationAction(ISD::UINT_TO_FP, MVT::i1, Promote);
257       AddPromotedToType(ISD::UINT_TO_FP, MVT::i1,
258                         isPPC64 ? MVT::i64 : MVT::i32);
259 
260       setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::i1, Promote);
261       AddPromotedToType(ISD::STRICT_FP_TO_SINT, MVT::i1,
262                         isPPC64 ? MVT::i64 : MVT::i32);
263       setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::i1, Promote);
264       AddPromotedToType(ISD::STRICT_FP_TO_UINT, MVT::i1,
265                         isPPC64 ? MVT::i64 : MVT::i32);
266 
267       setOperationAction(ISD::FP_TO_SINT, MVT::i1, Promote);
268       AddPromotedToType(ISD::FP_TO_SINT, MVT::i1,
269                         isPPC64 ? MVT::i64 : MVT::i32);
270       setOperationAction(ISD::FP_TO_UINT, MVT::i1, Promote);
271       AddPromotedToType(ISD::FP_TO_UINT, MVT::i1,
272                         isPPC64 ? MVT::i64 : MVT::i32);
273     } else {
274       setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::i1, Custom);
275       setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::i1, Custom);
276       setOperationAction(ISD::SINT_TO_FP, MVT::i1, Custom);
277       setOperationAction(ISD::UINT_TO_FP, MVT::i1, Custom);
278     }
279 
280     // PowerPC does not support direct load/store of condition registers.
281     setOperationAction(ISD::LOAD, MVT::i1, Custom);
282     setOperationAction(ISD::STORE, MVT::i1, Custom);
283 
284     // FIXME: Remove this once the ANDI glue bug is fixed:
285     if (ANDIGlueBug)
286       setOperationAction(ISD::TRUNCATE, MVT::i1, Custom);
287 
288     for (MVT VT : MVT::integer_valuetypes()) {
289       setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote);
290       setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i1, Promote);
291       setTruncStoreAction(VT, MVT::i1, Expand);
292     }
293 
294     addRegisterClass(MVT::i1, &PPC::CRBITRCRegClass);
295   }
296 
297   // Expand ppcf128 to i32 by hand for the benefit of llvm-gcc bootstrap on
298   // PPC (the libcall is not available).
299   setOperationAction(ISD::FP_TO_SINT, MVT::ppcf128, Custom);
300   setOperationAction(ISD::FP_TO_UINT, MVT::ppcf128, Custom);
301   setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::ppcf128, Custom);
302   setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::ppcf128, Custom);
303 
304   // We do not currently implement these libm ops for PowerPC.
305   setOperationAction(ISD::FFLOOR, MVT::ppcf128, Expand);
306   setOperationAction(ISD::FCEIL,  MVT::ppcf128, Expand);
307   setOperationAction(ISD::FTRUNC, MVT::ppcf128, Expand);
308   setOperationAction(ISD::FRINT,  MVT::ppcf128, Expand);
309   setOperationAction(ISD::FNEARBYINT, MVT::ppcf128, Expand);
310   setOperationAction(ISD::FREM, MVT::ppcf128, Expand);
311 
312   // PowerPC has no SREM/UREM instructions unless we are on P9
313   // On P9 we may use a hardware instruction to compute the remainder.
314   // When the result of both the remainder and the division is required it is
315   // more efficient to compute the remainder from the result of the division
316   // rather than use the remainder instruction. The instructions are legalized
317   // directly because the DivRemPairsPass performs the transformation at the IR
318   // level.
319   if (Subtarget.isISA3_0()) {
320     setOperationAction(ISD::SREM, MVT::i32, Legal);
321     setOperationAction(ISD::UREM, MVT::i32, Legal);
322     setOperationAction(ISD::SREM, MVT::i64, Legal);
323     setOperationAction(ISD::UREM, MVT::i64, Legal);
324   } else {
325     setOperationAction(ISD::SREM, MVT::i32, Expand);
326     setOperationAction(ISD::UREM, MVT::i32, Expand);
327     setOperationAction(ISD::SREM, MVT::i64, Expand);
328     setOperationAction(ISD::UREM, MVT::i64, Expand);
329   }
330 
331   // Don't use SMUL_LOHI/UMUL_LOHI or SDIVREM/UDIVREM to lower SREM/UREM.
332   setOperationAction(ISD::UMUL_LOHI, MVT::i32, Expand);
333   setOperationAction(ISD::SMUL_LOHI, MVT::i32, Expand);
334   setOperationAction(ISD::UMUL_LOHI, MVT::i64, Expand);
335   setOperationAction(ISD::SMUL_LOHI, MVT::i64, Expand);
336   setOperationAction(ISD::UDIVREM, MVT::i32, Expand);
337   setOperationAction(ISD::SDIVREM, MVT::i32, Expand);
338   setOperationAction(ISD::UDIVREM, MVT::i64, Expand);
339   setOperationAction(ISD::SDIVREM, MVT::i64, Expand);
340 
341   // Handle constrained floating-point operations of scalar.
342   // TODO: Handle SPE specific operation.
343   setOperationAction(ISD::STRICT_FADD, MVT::f32, Legal);
344   setOperationAction(ISD::STRICT_FSUB, MVT::f32, Legal);
345   setOperationAction(ISD::STRICT_FMUL, MVT::f32, Legal);
346   setOperationAction(ISD::STRICT_FDIV, MVT::f32, Legal);
347   setOperationAction(ISD::STRICT_FP_ROUND, MVT::f32, Legal);
348 
349   setOperationAction(ISD::STRICT_FADD, MVT::f64, Legal);
350   setOperationAction(ISD::STRICT_FSUB, MVT::f64, Legal);
351   setOperationAction(ISD::STRICT_FMUL, MVT::f64, Legal);
352   setOperationAction(ISD::STRICT_FDIV, MVT::f64, Legal);
353 
354   if (!Subtarget.hasSPE()) {
355     setOperationAction(ISD::STRICT_FMA, MVT::f32, Legal);
356     setOperationAction(ISD::STRICT_FMA, MVT::f64, Legal);
357   }
358 
359   if (Subtarget.hasVSX()) {
360     setOperationAction(ISD::STRICT_FRINT, MVT::f32, Legal);
361     setOperationAction(ISD::STRICT_FRINT, MVT::f64, Legal);
362   }
363 
364   if (Subtarget.hasFSQRT()) {
365     setOperationAction(ISD::STRICT_FSQRT, MVT::f32, Legal);
366     setOperationAction(ISD::STRICT_FSQRT, MVT::f64, Legal);
367   }
368 
369   if (Subtarget.hasFPRND()) {
370     setOperationAction(ISD::STRICT_FFLOOR, MVT::f32, Legal);
371     setOperationAction(ISD::STRICT_FCEIL,  MVT::f32, Legal);
372     setOperationAction(ISD::STRICT_FTRUNC, MVT::f32, Legal);
373     setOperationAction(ISD::STRICT_FROUND, MVT::f32, Legal);
374 
375     setOperationAction(ISD::STRICT_FFLOOR, MVT::f64, Legal);
376     setOperationAction(ISD::STRICT_FCEIL,  MVT::f64, Legal);
377     setOperationAction(ISD::STRICT_FTRUNC, MVT::f64, Legal);
378     setOperationAction(ISD::STRICT_FROUND, MVT::f64, Legal);
379   }
380 
381   // We don't support sin/cos/sqrt/fmod/pow
382   setOperationAction(ISD::FSIN , MVT::f64, Expand);
383   setOperationAction(ISD::FCOS , MVT::f64, Expand);
384   setOperationAction(ISD::FSINCOS, MVT::f64, Expand);
385   setOperationAction(ISD::FREM , MVT::f64, Expand);
386   setOperationAction(ISD::FPOW , MVT::f64, Expand);
387   setOperationAction(ISD::FSIN , MVT::f32, Expand);
388   setOperationAction(ISD::FCOS , MVT::f32, Expand);
389   setOperationAction(ISD::FSINCOS, MVT::f32, Expand);
390   setOperationAction(ISD::FREM , MVT::f32, Expand);
391   setOperationAction(ISD::FPOW , MVT::f32, Expand);
392 
393   // MASS transformation for LLVM intrinsics with replicating fast-math flag
394   // to be consistent to PPCGenScalarMASSEntries pass
395   if (TM.getOptLevel() == CodeGenOpt::Aggressive) {
396     setOperationAction(ISD::FSIN , MVT::f64, Custom);
397     setOperationAction(ISD::FCOS , MVT::f64, Custom);
398     setOperationAction(ISD::FPOW , MVT::f64, Custom);
399     setOperationAction(ISD::FLOG, MVT::f64, Custom);
400     setOperationAction(ISD::FLOG10, MVT::f64, Custom);
401     setOperationAction(ISD::FEXP, MVT::f64, Custom);
402     setOperationAction(ISD::FSIN , MVT::f32, Custom);
403     setOperationAction(ISD::FCOS , MVT::f32, Custom);
404     setOperationAction(ISD::FPOW , MVT::f32, Custom);
405     setOperationAction(ISD::FLOG, MVT::f32, Custom);
406     setOperationAction(ISD::FLOG10, MVT::f32, Custom);
407     setOperationAction(ISD::FEXP, MVT::f32, Custom);
408   }
409 
410   if (Subtarget.hasSPE()) {
411     setOperationAction(ISD::FMA  , MVT::f64, Expand);
412     setOperationAction(ISD::FMA  , MVT::f32, Expand);
413   } else {
414     setOperationAction(ISD::FMA  , MVT::f64, Legal);
415     setOperationAction(ISD::FMA  , MVT::f32, Legal);
416   }
417 
418   if (Subtarget.hasSPE())
419     setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f32, Expand);
420 
421   setOperationAction(ISD::FLT_ROUNDS_, MVT::i32, Custom);
422 
423   // If we're enabling GP optimizations, use hardware square root
424   if (!Subtarget.hasFSQRT() &&
425       !(TM.Options.UnsafeFPMath && Subtarget.hasFRSQRTE() &&
426         Subtarget.hasFRE()))
427     setOperationAction(ISD::FSQRT, MVT::f64, Expand);
428 
429   if (!Subtarget.hasFSQRT() &&
430       !(TM.Options.UnsafeFPMath && Subtarget.hasFRSQRTES() &&
431         Subtarget.hasFRES()))
432     setOperationAction(ISD::FSQRT, MVT::f32, Expand);
433 
434   if (Subtarget.hasFCPSGN()) {
435     setOperationAction(ISD::FCOPYSIGN, MVT::f64, Legal);
436     setOperationAction(ISD::FCOPYSIGN, MVT::f32, Legal);
437   } else {
438     setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
439     setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand);
440   }
441 
442   if (Subtarget.hasFPRND()) {
443     setOperationAction(ISD::FFLOOR, MVT::f64, Legal);
444     setOperationAction(ISD::FCEIL,  MVT::f64, Legal);
445     setOperationAction(ISD::FTRUNC, MVT::f64, Legal);
446     setOperationAction(ISD::FROUND, MVT::f64, Legal);
447 
448     setOperationAction(ISD::FFLOOR, MVT::f32, Legal);
449     setOperationAction(ISD::FCEIL,  MVT::f32, Legal);
450     setOperationAction(ISD::FTRUNC, MVT::f32, Legal);
451     setOperationAction(ISD::FROUND, MVT::f32, Legal);
452   }
453 
454   // PowerPC does not have BSWAP, but we can use vector BSWAP instruction xxbrd
455   // to speed up scalar BSWAP64.
456   // CTPOP or CTTZ were introduced in P8/P9 respectively
457   setOperationAction(ISD::BSWAP, MVT::i32  , Expand);
458   if (Subtarget.hasP9Vector() && Subtarget.isPPC64())
459     setOperationAction(ISD::BSWAP, MVT::i64  , Custom);
460   else
461     setOperationAction(ISD::BSWAP, MVT::i64  , Expand);
462   if (Subtarget.isISA3_0()) {
463     setOperationAction(ISD::CTTZ , MVT::i32  , Legal);
464     setOperationAction(ISD::CTTZ , MVT::i64  , Legal);
465   } else {
466     setOperationAction(ISD::CTTZ , MVT::i32  , Expand);
467     setOperationAction(ISD::CTTZ , MVT::i64  , Expand);
468   }
469 
470   if (Subtarget.hasPOPCNTD() == PPCSubtarget::POPCNTD_Fast) {
471     setOperationAction(ISD::CTPOP, MVT::i32  , Legal);
472     setOperationAction(ISD::CTPOP, MVT::i64  , Legal);
473   } else {
474     setOperationAction(ISD::CTPOP, MVT::i32  , Expand);
475     setOperationAction(ISD::CTPOP, MVT::i64  , Expand);
476   }
477 
478   // PowerPC does not have ROTR
479   setOperationAction(ISD::ROTR, MVT::i32   , Expand);
480   setOperationAction(ISD::ROTR, MVT::i64   , Expand);
481 
482   if (!Subtarget.useCRBits()) {
483     // PowerPC does not have Select
484     setOperationAction(ISD::SELECT, MVT::i32, Expand);
485     setOperationAction(ISD::SELECT, MVT::i64, Expand);
486     setOperationAction(ISD::SELECT, MVT::f32, Expand);
487     setOperationAction(ISD::SELECT, MVT::f64, Expand);
488   }
489 
490   // PowerPC wants to turn select_cc of FP into fsel when possible.
491   setOperationAction(ISD::SELECT_CC, MVT::f32, Custom);
492   setOperationAction(ISD::SELECT_CC, MVT::f64, Custom);
493 
494   // PowerPC wants to optimize integer setcc a bit
495   if (!Subtarget.useCRBits())
496     setOperationAction(ISD::SETCC, MVT::i32, Custom);
497 
498   if (Subtarget.hasFPU()) {
499     setOperationAction(ISD::STRICT_FSETCC, MVT::f32, Legal);
500     setOperationAction(ISD::STRICT_FSETCC, MVT::f64, Legal);
501     setOperationAction(ISD::STRICT_FSETCC, MVT::f128, Legal);
502 
503     setOperationAction(ISD::STRICT_FSETCCS, MVT::f32, Legal);
504     setOperationAction(ISD::STRICT_FSETCCS, MVT::f64, Legal);
505     setOperationAction(ISD::STRICT_FSETCCS, MVT::f128, Legal);
506   }
507 
508   // PowerPC does not have BRCOND which requires SetCC
509   if (!Subtarget.useCRBits())
510     setOperationAction(ISD::BRCOND, MVT::Other, Expand);
511 
512   setOperationAction(ISD::BR_JT,  MVT::Other, Expand);
513 
514   if (Subtarget.hasSPE()) {
515     // SPE has built-in conversions
516     setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::i32, Legal);
517     setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::i32, Legal);
518     setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::i32, Legal);
519     setOperationAction(ISD::FP_TO_SINT, MVT::i32, Legal);
520     setOperationAction(ISD::SINT_TO_FP, MVT::i32, Legal);
521     setOperationAction(ISD::UINT_TO_FP, MVT::i32, Legal);
522 
523     // SPE supports signaling compare of f32/f64.
524     setOperationAction(ISD::STRICT_FSETCCS, MVT::f32, Legal);
525     setOperationAction(ISD::STRICT_FSETCCS, MVT::f64, Legal);
526   } else {
527     // PowerPC turns FP_TO_SINT into FCTIWZ and some load/stores.
528     setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::i32, Custom);
529     setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom);
530 
531     // PowerPC does not have [U|S]INT_TO_FP
532     setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::i32, Expand);
533     setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::i32, Expand);
534     setOperationAction(ISD::SINT_TO_FP, MVT::i32, Expand);
535     setOperationAction(ISD::UINT_TO_FP, MVT::i32, Expand);
536   }
537 
538   if (Subtarget.hasDirectMove() && isPPC64) {
539     setOperationAction(ISD::BITCAST, MVT::f32, Legal);
540     setOperationAction(ISD::BITCAST, MVT::i32, Legal);
541     setOperationAction(ISD::BITCAST, MVT::i64, Legal);
542     setOperationAction(ISD::BITCAST, MVT::f64, Legal);
543     if (TM.Options.UnsafeFPMath) {
544       setOperationAction(ISD::LRINT, MVT::f64, Legal);
545       setOperationAction(ISD::LRINT, MVT::f32, Legal);
546       setOperationAction(ISD::LLRINT, MVT::f64, Legal);
547       setOperationAction(ISD::LLRINT, MVT::f32, Legal);
548       setOperationAction(ISD::LROUND, MVT::f64, Legal);
549       setOperationAction(ISD::LROUND, MVT::f32, Legal);
550       setOperationAction(ISD::LLROUND, MVT::f64, Legal);
551       setOperationAction(ISD::LLROUND, MVT::f32, Legal);
552     }
553   } else {
554     setOperationAction(ISD::BITCAST, MVT::f32, Expand);
555     setOperationAction(ISD::BITCAST, MVT::i32, Expand);
556     setOperationAction(ISD::BITCAST, MVT::i64, Expand);
557     setOperationAction(ISD::BITCAST, MVT::f64, Expand);
558   }
559 
560   // We cannot sextinreg(i1).  Expand to shifts.
561   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
562 
563   // NOTE: EH_SJLJ_SETJMP/_LONGJMP supported here is NOT intended to support
564   // SjLj exception handling but a light-weight setjmp/longjmp replacement to
565   // support continuation, user-level threading, and etc.. As a result, no
566   // other SjLj exception interfaces are implemented and please don't build
567   // your own exception handling based on them.
568   // LLVM/Clang supports zero-cost DWARF exception handling.
569   setOperationAction(ISD::EH_SJLJ_SETJMP, MVT::i32, Custom);
570   setOperationAction(ISD::EH_SJLJ_LONGJMP, MVT::Other, Custom);
571 
572   // We want to legalize GlobalAddress and ConstantPool nodes into the
573   // appropriate instructions to materialize the address.
574   setOperationAction(ISD::GlobalAddress, MVT::i32, Custom);
575   setOperationAction(ISD::GlobalTLSAddress, MVT::i32, Custom);
576   setOperationAction(ISD::BlockAddress,  MVT::i32, Custom);
577   setOperationAction(ISD::ConstantPool,  MVT::i32, Custom);
578   setOperationAction(ISD::JumpTable,     MVT::i32, Custom);
579   setOperationAction(ISD::GlobalAddress, MVT::i64, Custom);
580   setOperationAction(ISD::GlobalTLSAddress, MVT::i64, Custom);
581   setOperationAction(ISD::BlockAddress,  MVT::i64, Custom);
582   setOperationAction(ISD::ConstantPool,  MVT::i64, Custom);
583   setOperationAction(ISD::JumpTable,     MVT::i64, Custom);
584 
585   // TRAP is legal.
586   setOperationAction(ISD::TRAP, MVT::Other, Legal);
587 
588   // TRAMPOLINE is custom lowered.
589   setOperationAction(ISD::INIT_TRAMPOLINE, MVT::Other, Custom);
590   setOperationAction(ISD::ADJUST_TRAMPOLINE, MVT::Other, Custom);
591 
592   // VASTART needs to be custom lowered to use the VarArgsFrameIndex
593   setOperationAction(ISD::VASTART           , MVT::Other, Custom);
594 
595   if (Subtarget.is64BitELFABI()) {
596     // VAARG always uses double-word chunks, so promote anything smaller.
597     setOperationAction(ISD::VAARG, MVT::i1, Promote);
598     AddPromotedToType(ISD::VAARG, MVT::i1, MVT::i64);
599     setOperationAction(ISD::VAARG, MVT::i8, Promote);
600     AddPromotedToType(ISD::VAARG, MVT::i8, MVT::i64);
601     setOperationAction(ISD::VAARG, MVT::i16, Promote);
602     AddPromotedToType(ISD::VAARG, MVT::i16, MVT::i64);
603     setOperationAction(ISD::VAARG, MVT::i32, Promote);
604     AddPromotedToType(ISD::VAARG, MVT::i32, MVT::i64);
605     setOperationAction(ISD::VAARG, MVT::Other, Expand);
606   } else if (Subtarget.is32BitELFABI()) {
607     // VAARG is custom lowered with the 32-bit SVR4 ABI.
608     setOperationAction(ISD::VAARG, MVT::Other, Custom);
609     setOperationAction(ISD::VAARG, MVT::i64, Custom);
610   } else
611     setOperationAction(ISD::VAARG, MVT::Other, Expand);
612 
613   // VACOPY is custom lowered with the 32-bit SVR4 ABI.
614   if (Subtarget.is32BitELFABI())
615     setOperationAction(ISD::VACOPY            , MVT::Other, Custom);
616   else
617     setOperationAction(ISD::VACOPY            , MVT::Other, Expand);
618 
619   // Use the default implementation.
620   setOperationAction(ISD::VAEND             , MVT::Other, Expand);
621   setOperationAction(ISD::STACKSAVE         , MVT::Other, Expand);
622   setOperationAction(ISD::STACKRESTORE      , MVT::Other, Custom);
623   setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32  , Custom);
624   setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i64  , Custom);
625   setOperationAction(ISD::GET_DYNAMIC_AREA_OFFSET, MVT::i32, Custom);
626   setOperationAction(ISD::GET_DYNAMIC_AREA_OFFSET, MVT::i64, Custom);
627   setOperationAction(ISD::EH_DWARF_CFA, MVT::i32, Custom);
628   setOperationAction(ISD::EH_DWARF_CFA, MVT::i64, Custom);
629 
630   // We want to custom lower some of our intrinsics.
631   setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
632   setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::f64, Custom);
633   setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::ppcf128, Custom);
634   setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::v4f32, Custom);
635   setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::v2f64, Custom);
636 
637   // To handle counter-based loop conditions.
638   setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i1, Custom);
639 
640   setOperationAction(ISD::INTRINSIC_VOID, MVT::i8, Custom);
641   setOperationAction(ISD::INTRINSIC_VOID, MVT::i16, Custom);
642   setOperationAction(ISD::INTRINSIC_VOID, MVT::i32, Custom);
643   setOperationAction(ISD::INTRINSIC_VOID, MVT::Other, Custom);
644 
645   // Comparisons that require checking two conditions.
646   if (Subtarget.hasSPE()) {
647     setCondCodeAction(ISD::SETO, MVT::f32, Expand);
648     setCondCodeAction(ISD::SETO, MVT::f64, Expand);
649     setCondCodeAction(ISD::SETUO, MVT::f32, Expand);
650     setCondCodeAction(ISD::SETUO, MVT::f64, Expand);
651   }
652   setCondCodeAction(ISD::SETULT, MVT::f32, Expand);
653   setCondCodeAction(ISD::SETULT, MVT::f64, Expand);
654   setCondCodeAction(ISD::SETUGT, MVT::f32, Expand);
655   setCondCodeAction(ISD::SETUGT, MVT::f64, Expand);
656   setCondCodeAction(ISD::SETUEQ, MVT::f32, Expand);
657   setCondCodeAction(ISD::SETUEQ, MVT::f64, Expand);
658   setCondCodeAction(ISD::SETOGE, MVT::f32, Expand);
659   setCondCodeAction(ISD::SETOGE, MVT::f64, Expand);
660   setCondCodeAction(ISD::SETOLE, MVT::f32, Expand);
661   setCondCodeAction(ISD::SETOLE, MVT::f64, Expand);
662   setCondCodeAction(ISD::SETONE, MVT::f32, Expand);
663   setCondCodeAction(ISD::SETONE, MVT::f64, Expand);
664 
665   setOperationAction(ISD::STRICT_FP_EXTEND, MVT::f32, Legal);
666   setOperationAction(ISD::STRICT_FP_EXTEND, MVT::f64, Legal);
667 
668   if (Subtarget.has64BitSupport()) {
669     // They also have instructions for converting between i64 and fp.
670     setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::i64, Custom);
671     setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::i64, Expand);
672     setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::i64, Custom);
673     setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::i64, Expand);
674     setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom);
675     setOperationAction(ISD::FP_TO_UINT, MVT::i64, Expand);
676     setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom);
677     setOperationAction(ISD::UINT_TO_FP, MVT::i64, Expand);
678     // This is just the low 32 bits of a (signed) fp->i64 conversion.
679     // We cannot do this with Promote because i64 is not a legal type.
680     setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::i32, Custom);
681     setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom);
682 
683     if (Subtarget.hasLFIWAX() || Subtarget.isPPC64()) {
684       setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom);
685       setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::i32, Custom);
686     }
687   } else {
688     // PowerPC does not have FP_TO_UINT on 32-bit implementations.
689     if (Subtarget.hasSPE()) {
690       setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::i32, Legal);
691       setOperationAction(ISD::FP_TO_UINT, MVT::i32, Legal);
692     } else {
693       setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::i32, Expand);
694       setOperationAction(ISD::FP_TO_UINT, MVT::i32, Expand);
695     }
696   }
697 
698   // With the instructions enabled under FPCVT, we can do everything.
699   if (Subtarget.hasFPCVT()) {
700     if (Subtarget.has64BitSupport()) {
701       setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::i64, Custom);
702       setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::i64, Custom);
703       setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::i64, Custom);
704       setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::i64, Custom);
705       setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom);
706       setOperationAction(ISD::FP_TO_UINT, MVT::i64, Custom);
707       setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom);
708       setOperationAction(ISD::UINT_TO_FP, MVT::i64, Custom);
709     }
710 
711     setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::i32, Custom);
712     setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::i32, Custom);
713     setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::i32, Custom);
714     setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::i32, Custom);
715     setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom);
716     setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom);
717     setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom);
718     setOperationAction(ISD::UINT_TO_FP, MVT::i32, Custom);
719   }
720 
721   if (Subtarget.use64BitRegs()) {
722     // 64-bit PowerPC implementations can support i64 types directly
723     addRegisterClass(MVT::i64, &PPC::G8RCRegClass);
724     // BUILD_PAIR can't be handled natively, and should be expanded to shl/or
725     setOperationAction(ISD::BUILD_PAIR, MVT::i64, Expand);
726     // 64-bit PowerPC wants to expand i128 shifts itself.
727     setOperationAction(ISD::SHL_PARTS, MVT::i64, Custom);
728     setOperationAction(ISD::SRA_PARTS, MVT::i64, Custom);
729     setOperationAction(ISD::SRL_PARTS, MVT::i64, Custom);
730   } else {
731     // 32-bit PowerPC wants to expand i64 shifts itself.
732     setOperationAction(ISD::SHL_PARTS, MVT::i32, Custom);
733     setOperationAction(ISD::SRA_PARTS, MVT::i32, Custom);
734     setOperationAction(ISD::SRL_PARTS, MVT::i32, Custom);
735   }
736 
737   // PowerPC has better expansions for funnel shifts than the generic
738   // TargetLowering::expandFunnelShift.
739   if (Subtarget.has64BitSupport()) {
740     setOperationAction(ISD::FSHL, MVT::i64, Custom);
741     setOperationAction(ISD::FSHR, MVT::i64, Custom);
742   }
743   setOperationAction(ISD::FSHL, MVT::i32, Custom);
744   setOperationAction(ISD::FSHR, MVT::i32, Custom);
745 
746   if (Subtarget.hasVSX()) {
747     setOperationAction(ISD::FMAXNUM_IEEE, MVT::f64, Legal);
748     setOperationAction(ISD::FMAXNUM_IEEE, MVT::f32, Legal);
749     setOperationAction(ISD::FMINNUM_IEEE, MVT::f64, Legal);
750     setOperationAction(ISD::FMINNUM_IEEE, MVT::f32, Legal);
751   }
752 
753   if (Subtarget.hasAltivec()) {
754     for (MVT VT : { MVT::v16i8, MVT::v8i16, MVT::v4i32 }) {
755       setOperationAction(ISD::SADDSAT, VT, Legal);
756       setOperationAction(ISD::SSUBSAT, VT, Legal);
757       setOperationAction(ISD::UADDSAT, VT, Legal);
758       setOperationAction(ISD::USUBSAT, VT, Legal);
759     }
760     // First set operation action for all vector types to expand. Then we
761     // will selectively turn on ones that can be effectively codegen'd.
762     for (MVT VT : MVT::fixedlen_vector_valuetypes()) {
763       // add/sub are legal for all supported vector VT's.
764       setOperationAction(ISD::ADD, VT, Legal);
765       setOperationAction(ISD::SUB, VT, Legal);
766 
767       // For v2i64, these are only valid with P8Vector. This is corrected after
768       // the loop.
769       if (VT.getSizeInBits() <= 128 && VT.getScalarSizeInBits() <= 64) {
770         setOperationAction(ISD::SMAX, VT, Legal);
771         setOperationAction(ISD::SMIN, VT, Legal);
772         setOperationAction(ISD::UMAX, VT, Legal);
773         setOperationAction(ISD::UMIN, VT, Legal);
774       }
775       else {
776         setOperationAction(ISD::SMAX, VT, Expand);
777         setOperationAction(ISD::SMIN, VT, Expand);
778         setOperationAction(ISD::UMAX, VT, Expand);
779         setOperationAction(ISD::UMIN, VT, Expand);
780       }
781 
782       if (Subtarget.hasVSX()) {
783         setOperationAction(ISD::FMAXNUM, VT, Legal);
784         setOperationAction(ISD::FMINNUM, VT, Legal);
785       }
786 
787       // Vector instructions introduced in P8
788       if (Subtarget.hasP8Altivec() && (VT.SimpleTy != MVT::v1i128)) {
789         setOperationAction(ISD::CTPOP, VT, Legal);
790         setOperationAction(ISD::CTLZ, VT, Legal);
791       }
792       else {
793         setOperationAction(ISD::CTPOP, VT, Expand);
794         setOperationAction(ISD::CTLZ, VT, Expand);
795       }
796 
797       // Vector instructions introduced in P9
798       if (Subtarget.hasP9Altivec() && (VT.SimpleTy != MVT::v1i128))
799         setOperationAction(ISD::CTTZ, VT, Legal);
800       else
801         setOperationAction(ISD::CTTZ, VT, Expand);
802 
803       // We promote all shuffles to v16i8.
804       setOperationAction(ISD::VECTOR_SHUFFLE, VT, Promote);
805       AddPromotedToType (ISD::VECTOR_SHUFFLE, VT, MVT::v16i8);
806 
807       // We promote all non-typed operations to v4i32.
808       setOperationAction(ISD::AND   , VT, Promote);
809       AddPromotedToType (ISD::AND   , VT, MVT::v4i32);
810       setOperationAction(ISD::OR    , VT, Promote);
811       AddPromotedToType (ISD::OR    , VT, MVT::v4i32);
812       setOperationAction(ISD::XOR   , VT, Promote);
813       AddPromotedToType (ISD::XOR   , VT, MVT::v4i32);
814       setOperationAction(ISD::LOAD  , VT, Promote);
815       AddPromotedToType (ISD::LOAD  , VT, MVT::v4i32);
816       setOperationAction(ISD::SELECT, VT, Promote);
817       AddPromotedToType (ISD::SELECT, VT, MVT::v4i32);
818       setOperationAction(ISD::VSELECT, VT, Legal);
819       setOperationAction(ISD::SELECT_CC, VT, Promote);
820       AddPromotedToType (ISD::SELECT_CC, VT, MVT::v4i32);
821       setOperationAction(ISD::STORE, VT, Promote);
822       AddPromotedToType (ISD::STORE, VT, MVT::v4i32);
823 
824       // No other operations are legal.
825       setOperationAction(ISD::MUL , VT, Expand);
826       setOperationAction(ISD::SDIV, VT, Expand);
827       setOperationAction(ISD::SREM, VT, Expand);
828       setOperationAction(ISD::UDIV, VT, Expand);
829       setOperationAction(ISD::UREM, VT, Expand);
830       setOperationAction(ISD::FDIV, VT, Expand);
831       setOperationAction(ISD::FREM, VT, Expand);
832       setOperationAction(ISD::FNEG, VT, Expand);
833       setOperationAction(ISD::FSQRT, VT, Expand);
834       setOperationAction(ISD::FLOG, VT, Expand);
835       setOperationAction(ISD::FLOG10, VT, Expand);
836       setOperationAction(ISD::FLOG2, VT, Expand);
837       setOperationAction(ISD::FEXP, VT, Expand);
838       setOperationAction(ISD::FEXP2, VT, Expand);
839       setOperationAction(ISD::FSIN, VT, Expand);
840       setOperationAction(ISD::FCOS, VT, Expand);
841       setOperationAction(ISD::FABS, VT, Expand);
842       setOperationAction(ISD::FFLOOR, VT, Expand);
843       setOperationAction(ISD::FCEIL,  VT, Expand);
844       setOperationAction(ISD::FTRUNC, VT, Expand);
845       setOperationAction(ISD::FRINT,  VT, Expand);
846       setOperationAction(ISD::FNEARBYINT, VT, Expand);
847       setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Expand);
848       setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Expand);
849       setOperationAction(ISD::BUILD_VECTOR, VT, Expand);
850       setOperationAction(ISD::MULHU, VT, Expand);
851       setOperationAction(ISD::MULHS, VT, Expand);
852       setOperationAction(ISD::UMUL_LOHI, VT, Expand);
853       setOperationAction(ISD::SMUL_LOHI, VT, Expand);
854       setOperationAction(ISD::UDIVREM, VT, Expand);
855       setOperationAction(ISD::SDIVREM, VT, Expand);
856       setOperationAction(ISD::SCALAR_TO_VECTOR, VT, Expand);
857       setOperationAction(ISD::FPOW, VT, Expand);
858       setOperationAction(ISD::BSWAP, VT, Expand);
859       setOperationAction(ISD::SIGN_EXTEND_INREG, VT, Expand);
860       setOperationAction(ISD::ROTL, VT, Expand);
861       setOperationAction(ISD::ROTR, VT, Expand);
862 
863       for (MVT InnerVT : MVT::fixedlen_vector_valuetypes()) {
864         setTruncStoreAction(VT, InnerVT, Expand);
865         setLoadExtAction(ISD::SEXTLOAD, VT, InnerVT, Expand);
866         setLoadExtAction(ISD::ZEXTLOAD, VT, InnerVT, Expand);
867         setLoadExtAction(ISD::EXTLOAD, VT, InnerVT, Expand);
868       }
869     }
870     setOperationAction(ISD::SELECT_CC, MVT::v4i32, Expand);
871     if (!Subtarget.hasP8Vector()) {
872       setOperationAction(ISD::SMAX, MVT::v2i64, Expand);
873       setOperationAction(ISD::SMIN, MVT::v2i64, Expand);
874       setOperationAction(ISD::UMAX, MVT::v2i64, Expand);
875       setOperationAction(ISD::UMIN, MVT::v2i64, Expand);
876     }
877 
878     // We can custom expand all VECTOR_SHUFFLEs to VPERM, others we can handle
879     // with merges, splats, etc.
880     setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v16i8, Custom);
881 
882     // Vector truncates to sub-word integer that fit in an Altivec/VSX register
883     // are cheap, so handle them before they get expanded to scalar.
884     setOperationAction(ISD::TRUNCATE, MVT::v8i8, Custom);
885     setOperationAction(ISD::TRUNCATE, MVT::v4i8, Custom);
886     setOperationAction(ISD::TRUNCATE, MVT::v2i8, Custom);
887     setOperationAction(ISD::TRUNCATE, MVT::v4i16, Custom);
888     setOperationAction(ISD::TRUNCATE, MVT::v2i16, Custom);
889 
890     setOperationAction(ISD::AND   , MVT::v4i32, Legal);
891     setOperationAction(ISD::OR    , MVT::v4i32, Legal);
892     setOperationAction(ISD::XOR   , MVT::v4i32, Legal);
893     setOperationAction(ISD::LOAD  , MVT::v4i32, Legal);
894     setOperationAction(ISD::SELECT, MVT::v4i32,
895                        Subtarget.useCRBits() ? Legal : Expand);
896     setOperationAction(ISD::STORE , MVT::v4i32, Legal);
897     setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::v4i32, Legal);
898     setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::v4i32, Legal);
899     setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::v4i32, Legal);
900     setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::v4i32, Legal);
901     setOperationAction(ISD::FP_TO_SINT, MVT::v4i32, Legal);
902     setOperationAction(ISD::FP_TO_UINT, MVT::v4i32, Legal);
903     setOperationAction(ISD::SINT_TO_FP, MVT::v4i32, Legal);
904     setOperationAction(ISD::UINT_TO_FP, MVT::v4i32, Legal);
905     setOperationAction(ISD::FFLOOR, MVT::v4f32, Legal);
906     setOperationAction(ISD::FCEIL, MVT::v4f32, Legal);
907     setOperationAction(ISD::FTRUNC, MVT::v4f32, Legal);
908     setOperationAction(ISD::FNEARBYINT, MVT::v4f32, Legal);
909 
910     // Custom lowering ROTL v1i128 to VECTOR_SHUFFLE v16i8.
911     setOperationAction(ISD::ROTL, MVT::v1i128, Custom);
912     // With hasAltivec set, we can lower ISD::ROTL to vrl(b|h|w).
913     if (Subtarget.hasAltivec())
914       for (auto VT : {MVT::v4i32, MVT::v8i16, MVT::v16i8})
915         setOperationAction(ISD::ROTL, VT, Legal);
916     // With hasP8Altivec set, we can lower ISD::ROTL to vrld.
917     if (Subtarget.hasP8Altivec())
918       setOperationAction(ISD::ROTL, MVT::v2i64, Legal);
919 
920     addRegisterClass(MVT::v4f32, &PPC::VRRCRegClass);
921     addRegisterClass(MVT::v4i32, &PPC::VRRCRegClass);
922     addRegisterClass(MVT::v8i16, &PPC::VRRCRegClass);
923     addRegisterClass(MVT::v16i8, &PPC::VRRCRegClass);
924 
925     setOperationAction(ISD::MUL, MVT::v4f32, Legal);
926     setOperationAction(ISD::FMA, MVT::v4f32, Legal);
927 
928     if (Subtarget.hasVSX()) {
929       setOperationAction(ISD::FDIV, MVT::v4f32, Legal);
930       setOperationAction(ISD::FSQRT, MVT::v4f32, Legal);
931       setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v2f64, Custom);
932     }
933 
934     if (Subtarget.hasP8Altivec())
935       setOperationAction(ISD::MUL, MVT::v4i32, Legal);
936     else
937       setOperationAction(ISD::MUL, MVT::v4i32, Custom);
938 
939     if (Subtarget.isISA3_1()) {
940       setOperationAction(ISD::MUL, MVT::v2i64, Legal);
941       setOperationAction(ISD::MULHS, MVT::v2i64, Legal);
942       setOperationAction(ISD::MULHU, MVT::v2i64, Legal);
943       setOperationAction(ISD::MULHS, MVT::v4i32, Legal);
944       setOperationAction(ISD::MULHU, MVT::v4i32, Legal);
945       setOperationAction(ISD::UDIV, MVT::v2i64, Legal);
946       setOperationAction(ISD::SDIV, MVT::v2i64, Legal);
947       setOperationAction(ISD::UDIV, MVT::v4i32, Legal);
948       setOperationAction(ISD::SDIV, MVT::v4i32, Legal);
949       setOperationAction(ISD::UREM, MVT::v2i64, Legal);
950       setOperationAction(ISD::SREM, MVT::v2i64, Legal);
951       setOperationAction(ISD::UREM, MVT::v4i32, Legal);
952       setOperationAction(ISD::SREM, MVT::v4i32, Legal);
953       setOperationAction(ISD::UREM, MVT::v1i128, Legal);
954       setOperationAction(ISD::SREM, MVT::v1i128, Legal);
955       setOperationAction(ISD::UDIV, MVT::v1i128, Legal);
956       setOperationAction(ISD::SDIV, MVT::v1i128, Legal);
957       setOperationAction(ISD::ROTL, MVT::v1i128, Legal);
958     }
959 
960     setOperationAction(ISD::MUL, MVT::v8i16, Legal);
961     setOperationAction(ISD::MUL, MVT::v16i8, Custom);
962 
963     setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f32, Custom);
964     setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4i32, Custom);
965 
966     setOperationAction(ISD::BUILD_VECTOR, MVT::v16i8, Custom);
967     setOperationAction(ISD::BUILD_VECTOR, MVT::v8i16, Custom);
968     setOperationAction(ISD::BUILD_VECTOR, MVT::v4i32, Custom);
969     setOperationAction(ISD::BUILD_VECTOR, MVT::v4f32, Custom);
970 
971     // Altivec does not contain unordered floating-point compare instructions
972     setCondCodeAction(ISD::SETUO, MVT::v4f32, Expand);
973     setCondCodeAction(ISD::SETUEQ, MVT::v4f32, Expand);
974     setCondCodeAction(ISD::SETO,   MVT::v4f32, Expand);
975     setCondCodeAction(ISD::SETONE, MVT::v4f32, Expand);
976 
977     if (Subtarget.hasVSX()) {
978       setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v2f64, Legal);
979       setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Legal);
980       if (Subtarget.hasP8Vector()) {
981         setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f32, Legal);
982         setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Legal);
983       }
984       if (Subtarget.hasDirectMove() && isPPC64) {
985         setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v16i8, Legal);
986         setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v8i16, Legal);
987         setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4i32, Legal);
988         setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v2i64, Legal);
989         setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v16i8, Legal);
990         setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v8i16, Legal);
991         setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4i32, Legal);
992         setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i64, Legal);
993       }
994       setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Legal);
995 
996       // The nearbyint variants are not allowed to raise the inexact exception
997       // so we can only code-gen them with unsafe math.
998       if (TM.Options.UnsafeFPMath) {
999         setOperationAction(ISD::FNEARBYINT, MVT::f64, Legal);
1000         setOperationAction(ISD::FNEARBYINT, MVT::f32, Legal);
1001       }
1002 
1003       setOperationAction(ISD::FFLOOR, MVT::v2f64, Legal);
1004       setOperationAction(ISD::FCEIL, MVT::v2f64, Legal);
1005       setOperationAction(ISD::FTRUNC, MVT::v2f64, Legal);
1006       setOperationAction(ISD::FNEARBYINT, MVT::v2f64, Legal);
1007       setOperationAction(ISD::FRINT, MVT::v2f64, Legal);
1008       setOperationAction(ISD::FROUND, MVT::v2f64, Legal);
1009       setOperationAction(ISD::FROUND, MVT::f64, Legal);
1010       setOperationAction(ISD::FRINT, MVT::f64, Legal);
1011 
1012       setOperationAction(ISD::FNEARBYINT, MVT::v4f32, Legal);
1013       setOperationAction(ISD::FRINT, MVT::v4f32, Legal);
1014       setOperationAction(ISD::FROUND, MVT::v4f32, Legal);
1015       setOperationAction(ISD::FROUND, MVT::f32, Legal);
1016       setOperationAction(ISD::FRINT, MVT::f32, Legal);
1017 
1018       setOperationAction(ISD::MUL, MVT::v2f64, Legal);
1019       setOperationAction(ISD::FMA, MVT::v2f64, Legal);
1020 
1021       setOperationAction(ISD::FDIV, MVT::v2f64, Legal);
1022       setOperationAction(ISD::FSQRT, MVT::v2f64, Legal);
1023 
1024       // Share the Altivec comparison restrictions.
1025       setCondCodeAction(ISD::SETUO, MVT::v2f64, Expand);
1026       setCondCodeAction(ISD::SETUEQ, MVT::v2f64, Expand);
1027       setCondCodeAction(ISD::SETO,   MVT::v2f64, Expand);
1028       setCondCodeAction(ISD::SETONE, MVT::v2f64, Expand);
1029 
1030       setOperationAction(ISD::LOAD, MVT::v2f64, Legal);
1031       setOperationAction(ISD::STORE, MVT::v2f64, Legal);
1032 
1033       setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v2f64, Custom);
1034 
1035       if (Subtarget.hasP8Vector())
1036         addRegisterClass(MVT::f32, &PPC::VSSRCRegClass);
1037 
1038       addRegisterClass(MVT::f64, &PPC::VSFRCRegClass);
1039 
1040       addRegisterClass(MVT::v4i32, &PPC::VSRCRegClass);
1041       addRegisterClass(MVT::v4f32, &PPC::VSRCRegClass);
1042       addRegisterClass(MVT::v2f64, &PPC::VSRCRegClass);
1043 
1044       if (Subtarget.hasP8Altivec()) {
1045         setOperationAction(ISD::SHL, MVT::v2i64, Legal);
1046         setOperationAction(ISD::SRA, MVT::v2i64, Legal);
1047         setOperationAction(ISD::SRL, MVT::v2i64, Legal);
1048 
1049         // 128 bit shifts can be accomplished via 3 instructions for SHL and
1050         // SRL, but not for SRA because of the instructions available:
1051         // VS{RL} and VS{RL}O. However due to direct move costs, it's not worth
1052         // doing
1053         setOperationAction(ISD::SHL, MVT::v1i128, Expand);
1054         setOperationAction(ISD::SRL, MVT::v1i128, Expand);
1055         setOperationAction(ISD::SRA, MVT::v1i128, Expand);
1056 
1057         setOperationAction(ISD::SETCC, MVT::v2i64, Legal);
1058       }
1059       else {
1060         setOperationAction(ISD::SHL, MVT::v2i64, Expand);
1061         setOperationAction(ISD::SRA, MVT::v2i64, Expand);
1062         setOperationAction(ISD::SRL, MVT::v2i64, Expand);
1063 
1064         setOperationAction(ISD::SETCC, MVT::v2i64, Custom);
1065 
1066         // VSX v2i64 only supports non-arithmetic operations.
1067         setOperationAction(ISD::ADD, MVT::v2i64, Expand);
1068         setOperationAction(ISD::SUB, MVT::v2i64, Expand);
1069       }
1070 
1071       if (Subtarget.isISA3_1())
1072         setOperationAction(ISD::SETCC, MVT::v1i128, Legal);
1073       else
1074         setOperationAction(ISD::SETCC, MVT::v1i128, Expand);
1075 
1076       setOperationAction(ISD::LOAD, MVT::v2i64, Promote);
1077       AddPromotedToType (ISD::LOAD, MVT::v2i64, MVT::v2f64);
1078       setOperationAction(ISD::STORE, MVT::v2i64, Promote);
1079       AddPromotedToType (ISD::STORE, MVT::v2i64, MVT::v2f64);
1080 
1081       setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v2i64, Custom);
1082 
1083       setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::v2i64, Legal);
1084       setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::v2i64, Legal);
1085       setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::v2i64, Legal);
1086       setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::v2i64, Legal);
1087       setOperationAction(ISD::SINT_TO_FP, MVT::v2i64, Legal);
1088       setOperationAction(ISD::UINT_TO_FP, MVT::v2i64, Legal);
1089       setOperationAction(ISD::FP_TO_SINT, MVT::v2i64, Legal);
1090       setOperationAction(ISD::FP_TO_UINT, MVT::v2i64, Legal);
1091 
1092       // Custom handling for partial vectors of integers converted to
1093       // floating point. We already have optimal handling for v2i32 through
1094       // the DAG combine, so those aren't necessary.
1095       setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::v2i8, Custom);
1096       setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::v4i8, Custom);
1097       setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::v2i16, Custom);
1098       setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::v4i16, Custom);
1099       setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::v2i8, Custom);
1100       setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::v4i8, Custom);
1101       setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::v2i16, Custom);
1102       setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::v4i16, Custom);
1103       setOperationAction(ISD::UINT_TO_FP, MVT::v2i8, Custom);
1104       setOperationAction(ISD::UINT_TO_FP, MVT::v4i8, Custom);
1105       setOperationAction(ISD::UINT_TO_FP, MVT::v2i16, Custom);
1106       setOperationAction(ISD::UINT_TO_FP, MVT::v4i16, Custom);
1107       setOperationAction(ISD::SINT_TO_FP, MVT::v2i8, Custom);
1108       setOperationAction(ISD::SINT_TO_FP, MVT::v4i8, Custom);
1109       setOperationAction(ISD::SINT_TO_FP, MVT::v2i16, Custom);
1110       setOperationAction(ISD::SINT_TO_FP, MVT::v4i16, Custom);
1111 
1112       setOperationAction(ISD::FNEG, MVT::v4f32, Legal);
1113       setOperationAction(ISD::FNEG, MVT::v2f64, Legal);
1114       setOperationAction(ISD::FABS, MVT::v4f32, Legal);
1115       setOperationAction(ISD::FABS, MVT::v2f64, Legal);
1116       setOperationAction(ISD::FCOPYSIGN, MVT::v4f32, Legal);
1117       setOperationAction(ISD::FCOPYSIGN, MVT::v2f64, Legal);
1118 
1119       setOperationAction(ISD::BUILD_VECTOR, MVT::v2i64, Custom);
1120       setOperationAction(ISD::BUILD_VECTOR, MVT::v2f64, Custom);
1121 
1122       // Handle constrained floating-point operations of vector.
1123       // The predictor is `hasVSX` because altivec instruction has
1124       // no exception but VSX vector instruction has.
1125       setOperationAction(ISD::STRICT_FADD, MVT::v4f32, Legal);
1126       setOperationAction(ISD::STRICT_FSUB, MVT::v4f32, Legal);
1127       setOperationAction(ISD::STRICT_FMUL, MVT::v4f32, Legal);
1128       setOperationAction(ISD::STRICT_FDIV, MVT::v4f32, Legal);
1129       setOperationAction(ISD::STRICT_FMA, MVT::v4f32, Legal);
1130       setOperationAction(ISD::STRICT_FSQRT, MVT::v4f32, Legal);
1131       setOperationAction(ISD::STRICT_FMAXNUM, MVT::v4f32, Legal);
1132       setOperationAction(ISD::STRICT_FMINNUM, MVT::v4f32, Legal);
1133       setOperationAction(ISD::STRICT_FRINT, MVT::v4f32, Legal);
1134       setOperationAction(ISD::STRICT_FFLOOR, MVT::v4f32, Legal);
1135       setOperationAction(ISD::STRICT_FCEIL,  MVT::v4f32, Legal);
1136       setOperationAction(ISD::STRICT_FTRUNC, MVT::v4f32, Legal);
1137       setOperationAction(ISD::STRICT_FROUND, MVT::v4f32, Legal);
1138 
1139       setOperationAction(ISD::STRICT_FADD, MVT::v2f64, Legal);
1140       setOperationAction(ISD::STRICT_FSUB, MVT::v2f64, Legal);
1141       setOperationAction(ISD::STRICT_FMUL, MVT::v2f64, Legal);
1142       setOperationAction(ISD::STRICT_FDIV, MVT::v2f64, Legal);
1143       setOperationAction(ISD::STRICT_FMA, MVT::v2f64, Legal);
1144       setOperationAction(ISD::STRICT_FSQRT, MVT::v2f64, Legal);
1145       setOperationAction(ISD::STRICT_FMAXNUM, MVT::v2f64, Legal);
1146       setOperationAction(ISD::STRICT_FMINNUM, MVT::v2f64, Legal);
1147       setOperationAction(ISD::STRICT_FRINT, MVT::v2f64, Legal);
1148       setOperationAction(ISD::STRICT_FFLOOR, MVT::v2f64, Legal);
1149       setOperationAction(ISD::STRICT_FCEIL,  MVT::v2f64, Legal);
1150       setOperationAction(ISD::STRICT_FTRUNC, MVT::v2f64, Legal);
1151       setOperationAction(ISD::STRICT_FROUND, MVT::v2f64, Legal);
1152 
1153       addRegisterClass(MVT::v2i64, &PPC::VSRCRegClass);
1154       addRegisterClass(MVT::f128, &PPC::VRRCRegClass);
1155 
1156       for (MVT FPT : MVT::fp_valuetypes())
1157         setLoadExtAction(ISD::EXTLOAD, MVT::f128, FPT, Expand);
1158 
1159       // Expand the SELECT to SELECT_CC
1160       setOperationAction(ISD::SELECT, MVT::f128, Expand);
1161 
1162       setTruncStoreAction(MVT::f128, MVT::f64, Expand);
1163       setTruncStoreAction(MVT::f128, MVT::f32, Expand);
1164 
1165       // No implementation for these ops for PowerPC.
1166       setOperationAction(ISD::FSIN, MVT::f128, Expand);
1167       setOperationAction(ISD::FCOS, MVT::f128, Expand);
1168       setOperationAction(ISD::FPOW, MVT::f128, Expand);
1169       setOperationAction(ISD::FPOWI, MVT::f128, Expand);
1170       setOperationAction(ISD::FREM, MVT::f128, Expand);
1171     }
1172 
1173     if (Subtarget.hasP8Altivec()) {
1174       addRegisterClass(MVT::v2i64, &PPC::VRRCRegClass);
1175       addRegisterClass(MVT::v1i128, &PPC::VRRCRegClass);
1176     }
1177 
1178     if (Subtarget.hasP9Vector()) {
1179       setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4i32, Custom);
1180       setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4f32, Custom);
1181 
1182       // 128 bit shifts can be accomplished via 3 instructions for SHL and
1183       // SRL, but not for SRA because of the instructions available:
1184       // VS{RL} and VS{RL}O.
1185       setOperationAction(ISD::SHL, MVT::v1i128, Legal);
1186       setOperationAction(ISD::SRL, MVT::v1i128, Legal);
1187       setOperationAction(ISD::SRA, MVT::v1i128, Expand);
1188 
1189       setOperationAction(ISD::FADD, MVT::f128, Legal);
1190       setOperationAction(ISD::FSUB, MVT::f128, Legal);
1191       setOperationAction(ISD::FDIV, MVT::f128, Legal);
1192       setOperationAction(ISD::FMUL, MVT::f128, Legal);
1193       setOperationAction(ISD::FP_EXTEND, MVT::f128, Legal);
1194 
1195       setOperationAction(ISD::FMA, MVT::f128, Legal);
1196       setCondCodeAction(ISD::SETULT, MVT::f128, Expand);
1197       setCondCodeAction(ISD::SETUGT, MVT::f128, Expand);
1198       setCondCodeAction(ISD::SETUEQ, MVT::f128, Expand);
1199       setCondCodeAction(ISD::SETOGE, MVT::f128, Expand);
1200       setCondCodeAction(ISD::SETOLE, MVT::f128, Expand);
1201       setCondCodeAction(ISD::SETONE, MVT::f128, Expand);
1202 
1203       setOperationAction(ISD::FTRUNC, MVT::f128, Legal);
1204       setOperationAction(ISD::FRINT, MVT::f128, Legal);
1205       setOperationAction(ISD::FFLOOR, MVT::f128, Legal);
1206       setOperationAction(ISD::FCEIL, MVT::f128, Legal);
1207       setOperationAction(ISD::FNEARBYINT, MVT::f128, Legal);
1208       setOperationAction(ISD::FROUND, MVT::f128, Legal);
1209 
1210       setOperationAction(ISD::FP_ROUND, MVT::f64, Legal);
1211       setOperationAction(ISD::FP_ROUND, MVT::f32, Legal);
1212       setOperationAction(ISD::BITCAST, MVT::i128, Custom);
1213 
1214       // Handle constrained floating-point operations of fp128
1215       setOperationAction(ISD::STRICT_FADD, MVT::f128, Legal);
1216       setOperationAction(ISD::STRICT_FSUB, MVT::f128, Legal);
1217       setOperationAction(ISD::STRICT_FMUL, MVT::f128, Legal);
1218       setOperationAction(ISD::STRICT_FDIV, MVT::f128, Legal);
1219       setOperationAction(ISD::STRICT_FMA, MVT::f128, Legal);
1220       setOperationAction(ISD::STRICT_FSQRT, MVT::f128, Legal);
1221       setOperationAction(ISD::STRICT_FP_EXTEND, MVT::f128, Legal);
1222       setOperationAction(ISD::STRICT_FP_ROUND, MVT::f64, Legal);
1223       setOperationAction(ISD::STRICT_FP_ROUND, MVT::f32, Legal);
1224       setOperationAction(ISD::STRICT_FRINT, MVT::f128, Legal);
1225       setOperationAction(ISD::STRICT_FNEARBYINT, MVT::f128, Legal);
1226       setOperationAction(ISD::STRICT_FFLOOR, MVT::f128, Legal);
1227       setOperationAction(ISD::STRICT_FCEIL, MVT::f128, Legal);
1228       setOperationAction(ISD::STRICT_FTRUNC, MVT::f128, Legal);
1229       setOperationAction(ISD::STRICT_FROUND, MVT::f128, Legal);
1230       setOperationAction(ISD::FP_EXTEND, MVT::v2f32, Custom);
1231       setOperationAction(ISD::BSWAP, MVT::v8i16, Legal);
1232       setOperationAction(ISD::BSWAP, MVT::v4i32, Legal);
1233       setOperationAction(ISD::BSWAP, MVT::v2i64, Legal);
1234       setOperationAction(ISD::BSWAP, MVT::v1i128, Legal);
1235     } else if (Subtarget.hasVSX()) {
1236       setOperationAction(ISD::LOAD, MVT::f128, Promote);
1237       setOperationAction(ISD::STORE, MVT::f128, Promote);
1238 
1239       AddPromotedToType(ISD::LOAD, MVT::f128, MVT::v4i32);
1240       AddPromotedToType(ISD::STORE, MVT::f128, MVT::v4i32);
1241 
1242       // Set FADD/FSUB as libcall to avoid the legalizer to expand the
1243       // fp_to_uint and int_to_fp.
1244       setOperationAction(ISD::FADD, MVT::f128, LibCall);
1245       setOperationAction(ISD::FSUB, MVT::f128, LibCall);
1246 
1247       setOperationAction(ISD::FMUL, MVT::f128, Expand);
1248       setOperationAction(ISD::FDIV, MVT::f128, Expand);
1249       setOperationAction(ISD::FNEG, MVT::f128, Expand);
1250       setOperationAction(ISD::FABS, MVT::f128, Expand);
1251       setOperationAction(ISD::FSQRT, MVT::f128, Expand);
1252       setOperationAction(ISD::FMA, MVT::f128, Expand);
1253       setOperationAction(ISD::FCOPYSIGN, MVT::f128, Expand);
1254 
1255       // Expand the fp_extend if the target type is fp128.
1256       setOperationAction(ISD::FP_EXTEND, MVT::f128, Expand);
1257       setOperationAction(ISD::STRICT_FP_EXTEND, MVT::f128, Expand);
1258 
1259       // Expand the fp_round if the source type is fp128.
1260       for (MVT VT : {MVT::f32, MVT::f64}) {
1261         setOperationAction(ISD::FP_ROUND, VT, Custom);
1262         setOperationAction(ISD::STRICT_FP_ROUND, VT, Custom);
1263       }
1264 
1265       setOperationAction(ISD::SETCC, MVT::f128, Custom);
1266       setOperationAction(ISD::STRICT_FSETCC, MVT::f128, Custom);
1267       setOperationAction(ISD::STRICT_FSETCCS, MVT::f128, Custom);
1268       setOperationAction(ISD::BR_CC, MVT::f128, Expand);
1269 
1270       // Lower following f128 select_cc pattern:
1271       // select_cc x, y, tv, fv, cc -> select_cc (setcc x, y, cc), 0, tv, fv, NE
1272       setOperationAction(ISD::SELECT_CC, MVT::f128, Custom);
1273 
1274       // We need to handle f128 SELECT_CC with integer result type.
1275       setOperationAction(ISD::SELECT_CC, MVT::i32, Custom);
1276       setOperationAction(ISD::SELECT_CC, MVT::i64, isPPC64 ? Custom : Expand);
1277     }
1278 
1279     if (Subtarget.hasP9Altivec()) {
1280       if (Subtarget.isISA3_1()) {
1281         setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v2i64, Legal);
1282         setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v8i16, Legal);
1283         setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v16i8, Legal);
1284         setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4i32, Legal);
1285       } else {
1286         setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v8i16, Custom);
1287         setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v16i8, Custom);
1288       }
1289       setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v4i8,  Legal);
1290       setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v4i16, Legal);
1291       setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v4i32, Legal);
1292       setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i8,  Legal);
1293       setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i16, Legal);
1294       setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i32, Legal);
1295       setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i64, Legal);
1296     }
1297 
1298     if (Subtarget.hasP10Vector()) {
1299       setOperationAction(ISD::SELECT_CC, MVT::f128, Custom);
1300     }
1301   }
1302 
1303   if (Subtarget.pairedVectorMemops()) {
1304     addRegisterClass(MVT::v256i1, &PPC::VSRpRCRegClass);
1305     setOperationAction(ISD::LOAD, MVT::v256i1, Custom);
1306     setOperationAction(ISD::STORE, MVT::v256i1, Custom);
1307   }
1308   if (Subtarget.hasMMA()) {
1309     addRegisterClass(MVT::v512i1, &PPC::UACCRCRegClass);
1310     setOperationAction(ISD::LOAD, MVT::v512i1, Custom);
1311     setOperationAction(ISD::STORE, MVT::v512i1, Custom);
1312     setOperationAction(ISD::BUILD_VECTOR, MVT::v512i1, Custom);
1313   }
1314 
1315   if (Subtarget.has64BitSupport())
1316     setOperationAction(ISD::PREFETCH, MVT::Other, Legal);
1317 
1318   if (Subtarget.isISA3_1())
1319     setOperationAction(ISD::SRA, MVT::v1i128, Legal);
1320 
1321   setOperationAction(ISD::READCYCLECOUNTER, MVT::i64, isPPC64 ? Legal : Custom);
1322 
1323   if (!isPPC64) {
1324     setOperationAction(ISD::ATOMIC_LOAD,  MVT::i64, Expand);
1325     setOperationAction(ISD::ATOMIC_STORE, MVT::i64, Expand);
1326   }
1327 
1328   if (shouldInlineQuadwordAtomics()) {
1329     setOperationAction(ISD::ATOMIC_LOAD, MVT::i128, Custom);
1330     setOperationAction(ISD::ATOMIC_STORE, MVT::i128, Custom);
1331     setOperationAction(ISD::INTRINSIC_VOID, MVT::i128, Custom);
1332   }
1333 
1334   setBooleanContents(ZeroOrOneBooleanContent);
1335 
1336   if (Subtarget.hasAltivec()) {
1337     // Altivec instructions set fields to all zeros or all ones.
1338     setBooleanVectorContents(ZeroOrNegativeOneBooleanContent);
1339   }
1340 
1341   setLibcallName(RTLIB::MULO_I128, nullptr);
1342   if (!isPPC64) {
1343     // These libcalls are not available in 32-bit.
1344     setLibcallName(RTLIB::SHL_I128, nullptr);
1345     setLibcallName(RTLIB::SRL_I128, nullptr);
1346     setLibcallName(RTLIB::SRA_I128, nullptr);
1347     setLibcallName(RTLIB::MUL_I128, nullptr);
1348     setLibcallName(RTLIB::MULO_I64, nullptr);
1349   }
1350 
1351   if (!isPPC64)
1352     setMaxAtomicSizeInBitsSupported(32);
1353   else if (shouldInlineQuadwordAtomics())
1354     setMaxAtomicSizeInBitsSupported(128);
1355   else
1356     setMaxAtomicSizeInBitsSupported(64);
1357 
1358   setStackPointerRegisterToSaveRestore(isPPC64 ? PPC::X1 : PPC::R1);
1359 
1360   // We have target-specific dag combine patterns for the following nodes:
1361   setTargetDAGCombine({ISD::ADD, ISD::SHL, ISD::SRA, ISD::SRL, ISD::MUL,
1362                        ISD::FMA, ISD::SINT_TO_FP, ISD::BUILD_VECTOR});
1363   if (Subtarget.hasFPCVT())
1364     setTargetDAGCombine(ISD::UINT_TO_FP);
1365   setTargetDAGCombine({ISD::LOAD, ISD::STORE, ISD::BR_CC});
1366   if (Subtarget.useCRBits())
1367     setTargetDAGCombine(ISD::BRCOND);
1368   setTargetDAGCombine({ISD::BSWAP, ISD::INTRINSIC_WO_CHAIN,
1369                        ISD::INTRINSIC_W_CHAIN, ISD::INTRINSIC_VOID});
1370 
1371   setTargetDAGCombine({ISD::SIGN_EXTEND, ISD::ZERO_EXTEND, ISD::ANY_EXTEND});
1372 
1373   setTargetDAGCombine({ISD::TRUNCATE, ISD::VECTOR_SHUFFLE});
1374 
1375   if (Subtarget.useCRBits()) {
1376     setTargetDAGCombine({ISD::TRUNCATE, ISD::SETCC, ISD::SELECT_CC});
1377   }
1378 
1379   if (Subtarget.hasP9Altivec()) {
1380     setTargetDAGCombine({ISD::ABS, ISD::VSELECT});
1381   }
1382 
1383   setLibcallName(RTLIB::LOG_F128, "logf128");
1384   setLibcallName(RTLIB::LOG2_F128, "log2f128");
1385   setLibcallName(RTLIB::LOG10_F128, "log10f128");
1386   setLibcallName(RTLIB::EXP_F128, "expf128");
1387   setLibcallName(RTLIB::EXP2_F128, "exp2f128");
1388   setLibcallName(RTLIB::SIN_F128, "sinf128");
1389   setLibcallName(RTLIB::COS_F128, "cosf128");
1390   setLibcallName(RTLIB::POW_F128, "powf128");
1391   setLibcallName(RTLIB::FMIN_F128, "fminf128");
1392   setLibcallName(RTLIB::FMAX_F128, "fmaxf128");
1393   setLibcallName(RTLIB::REM_F128, "fmodf128");
1394   setLibcallName(RTLIB::SQRT_F128, "sqrtf128");
1395   setLibcallName(RTLIB::CEIL_F128, "ceilf128");
1396   setLibcallName(RTLIB::FLOOR_F128, "floorf128");
1397   setLibcallName(RTLIB::TRUNC_F128, "truncf128");
1398   setLibcallName(RTLIB::ROUND_F128, "roundf128");
1399   setLibcallName(RTLIB::LROUND_F128, "lroundf128");
1400   setLibcallName(RTLIB::LLROUND_F128, "llroundf128");
1401   setLibcallName(RTLIB::RINT_F128, "rintf128");
1402   setLibcallName(RTLIB::LRINT_F128, "lrintf128");
1403   setLibcallName(RTLIB::LLRINT_F128, "llrintf128");
1404   setLibcallName(RTLIB::NEARBYINT_F128, "nearbyintf128");
1405   setLibcallName(RTLIB::FMA_F128, "fmaf128");
1406 
1407   // With 32 condition bits, we don't need to sink (and duplicate) compares
1408   // aggressively in CodeGenPrep.
1409   if (Subtarget.useCRBits()) {
1410     setHasMultipleConditionRegisters();
1411     setJumpIsExpensive();
1412   }
1413 
1414   setMinFunctionAlignment(Align(4));
1415 
1416   switch (Subtarget.getCPUDirective()) {
1417   default: break;
1418   case PPC::DIR_970:
1419   case PPC::DIR_A2:
1420   case PPC::DIR_E500:
1421   case PPC::DIR_E500mc:
1422   case PPC::DIR_E5500:
1423   case PPC::DIR_PWR4:
1424   case PPC::DIR_PWR5:
1425   case PPC::DIR_PWR5X:
1426   case PPC::DIR_PWR6:
1427   case PPC::DIR_PWR6X:
1428   case PPC::DIR_PWR7:
1429   case PPC::DIR_PWR8:
1430   case PPC::DIR_PWR9:
1431   case PPC::DIR_PWR10:
1432   case PPC::DIR_PWR_FUTURE:
1433     setPrefLoopAlignment(Align(16));
1434     setPrefFunctionAlignment(Align(16));
1435     break;
1436   }
1437 
1438   if (Subtarget.enableMachineScheduler())
1439     setSchedulingPreference(Sched::Source);
1440   else
1441     setSchedulingPreference(Sched::Hybrid);
1442 
1443   computeRegisterProperties(STI.getRegisterInfo());
1444 
1445   // The Freescale cores do better with aggressive inlining of memcpy and
1446   // friends. GCC uses same threshold of 128 bytes (= 32 word stores).
1447   if (Subtarget.getCPUDirective() == PPC::DIR_E500mc ||
1448       Subtarget.getCPUDirective() == PPC::DIR_E5500) {
1449     MaxStoresPerMemset = 32;
1450     MaxStoresPerMemsetOptSize = 16;
1451     MaxStoresPerMemcpy = 32;
1452     MaxStoresPerMemcpyOptSize = 8;
1453     MaxStoresPerMemmove = 32;
1454     MaxStoresPerMemmoveOptSize = 8;
1455   } else if (Subtarget.getCPUDirective() == PPC::DIR_A2) {
1456     // The A2 also benefits from (very) aggressive inlining of memcpy and
1457     // friends. The overhead of a the function call, even when warm, can be
1458     // over one hundred cycles.
1459     MaxStoresPerMemset = 128;
1460     MaxStoresPerMemcpy = 128;
1461     MaxStoresPerMemmove = 128;
1462     MaxLoadsPerMemcmp = 128;
1463   } else {
1464     MaxLoadsPerMemcmp = 8;
1465     MaxLoadsPerMemcmpOptSize = 4;
1466   }
1467 
1468   IsStrictFPEnabled = true;
1469 
1470   // Let the subtarget (CPU) decide if a predictable select is more expensive
1471   // than the corresponding branch. This information is used in CGP to decide
1472   // when to convert selects into branches.
1473   PredictableSelectIsExpensive = Subtarget.isPredictableSelectIsExpensive();
1474 }
1475 
1476 // *********************************** NOTE ************************************
1477 // For selecting load and store instructions, the addressing modes are defined
1478 // as ComplexPatterns in PPCInstrInfo.td, which are then utilized in the TD
1479 // patterns to match the load the store instructions.
1480 //
1481 // The TD definitions for the addressing modes correspond to their respective
1482 // Select<AddrMode>Form() function in PPCISelDAGToDAG.cpp. These functions rely
1483 // on SelectOptimalAddrMode(), which calls computeMOFlags() to compute the
1484 // address mode flags of a particular node. Afterwards, the computed address
1485 // flags are passed into getAddrModeForFlags() in order to retrieve the optimal
1486 // addressing mode. SelectOptimalAddrMode() then sets the Base and Displacement
1487 // accordingly, based on the preferred addressing mode.
1488 //
1489 // Within PPCISelLowering.h, there are two enums: MemOpFlags and AddrMode.
1490 // MemOpFlags contains all the possible flags that can be used to compute the
1491 // optimal addressing mode for load and store instructions.
1492 // AddrMode contains all the possible load and store addressing modes available
1493 // on Power (such as DForm, DSForm, DQForm, XForm, etc.)
1494 //
1495 // When adding new load and store instructions, it is possible that new address
1496 // flags may need to be added into MemOpFlags, and a new addressing mode will
1497 // need to be added to AddrMode. An entry of the new addressing mode (consisting
1498 // of the minimal and main distinguishing address flags for the new load/store
1499 // instructions) will need to be added into initializeAddrModeMap() below.
1500 // Finally, when adding new addressing modes, the getAddrModeForFlags() will
1501 // need to be updated to account for selecting the optimal addressing mode.
1502 // *****************************************************************************
1503 /// Initialize the map that relates the different addressing modes of the load
1504 /// and store instructions to a set of flags. This ensures the load/store
1505 /// instruction is correctly matched during instruction selection.
1506 void PPCTargetLowering::initializeAddrModeMap() {
1507   AddrModesMap[PPC::AM_DForm] = {
1508       // LWZ, STW
1509       PPC::MOF_ZExt | PPC::MOF_RPlusSImm16 | PPC::MOF_WordInt,
1510       PPC::MOF_ZExt | PPC::MOF_RPlusLo | PPC::MOF_WordInt,
1511       PPC::MOF_ZExt | PPC::MOF_NotAddNorCst | PPC::MOF_WordInt,
1512       PPC::MOF_ZExt | PPC::MOF_AddrIsSImm32 | PPC::MOF_WordInt,
1513       // LBZ, LHZ, STB, STH
1514       PPC::MOF_ZExt | PPC::MOF_RPlusSImm16 | PPC::MOF_SubWordInt,
1515       PPC::MOF_ZExt | PPC::MOF_RPlusLo | PPC::MOF_SubWordInt,
1516       PPC::MOF_ZExt | PPC::MOF_NotAddNorCst | PPC::MOF_SubWordInt,
1517       PPC::MOF_ZExt | PPC::MOF_AddrIsSImm32 | PPC::MOF_SubWordInt,
1518       // LHA
1519       PPC::MOF_SExt | PPC::MOF_RPlusSImm16 | PPC::MOF_SubWordInt,
1520       PPC::MOF_SExt | PPC::MOF_RPlusLo | PPC::MOF_SubWordInt,
1521       PPC::MOF_SExt | PPC::MOF_NotAddNorCst | PPC::MOF_SubWordInt,
1522       PPC::MOF_SExt | PPC::MOF_AddrIsSImm32 | PPC::MOF_SubWordInt,
1523       // LFS, LFD, STFS, STFD
1524       PPC::MOF_RPlusSImm16 | PPC::MOF_ScalarFloat | PPC::MOF_SubtargetBeforeP9,
1525       PPC::MOF_RPlusLo | PPC::MOF_ScalarFloat | PPC::MOF_SubtargetBeforeP9,
1526       PPC::MOF_NotAddNorCst | PPC::MOF_ScalarFloat | PPC::MOF_SubtargetBeforeP9,
1527       PPC::MOF_AddrIsSImm32 | PPC::MOF_ScalarFloat | PPC::MOF_SubtargetBeforeP9,
1528   };
1529   AddrModesMap[PPC::AM_DSForm] = {
1530       // LWA
1531       PPC::MOF_SExt | PPC::MOF_RPlusSImm16Mult4 | PPC::MOF_WordInt,
1532       PPC::MOF_SExt | PPC::MOF_NotAddNorCst | PPC::MOF_WordInt,
1533       PPC::MOF_SExt | PPC::MOF_AddrIsSImm32 | PPC::MOF_WordInt,
1534       // LD, STD
1535       PPC::MOF_RPlusSImm16Mult4 | PPC::MOF_DoubleWordInt,
1536       PPC::MOF_NotAddNorCst | PPC::MOF_DoubleWordInt,
1537       PPC::MOF_AddrIsSImm32 | PPC::MOF_DoubleWordInt,
1538       // DFLOADf32, DFLOADf64, DSTOREf32, DSTOREf64
1539       PPC::MOF_RPlusSImm16Mult4 | PPC::MOF_ScalarFloat | PPC::MOF_SubtargetP9,
1540       PPC::MOF_NotAddNorCst | PPC::MOF_ScalarFloat | PPC::MOF_SubtargetP9,
1541       PPC::MOF_AddrIsSImm32 | PPC::MOF_ScalarFloat | PPC::MOF_SubtargetP9,
1542   };
1543   AddrModesMap[PPC::AM_DQForm] = {
1544       // LXV, STXV
1545       PPC::MOF_RPlusSImm16Mult16 | PPC::MOF_Vector | PPC::MOF_SubtargetP9,
1546       PPC::MOF_NotAddNorCst | PPC::MOF_Vector | PPC::MOF_SubtargetP9,
1547       PPC::MOF_AddrIsSImm32 | PPC::MOF_Vector | PPC::MOF_SubtargetP9,
1548   };
1549   AddrModesMap[PPC::AM_PrefixDForm] = {PPC::MOF_RPlusSImm34 |
1550                                        PPC::MOF_SubtargetP10};
1551   // TODO: Add mapping for quadword load/store.
1552 }
1553 
1554 /// getMaxByValAlign - Helper for getByValTypeAlignment to determine
1555 /// the desired ByVal argument alignment.
1556 static void getMaxByValAlign(Type *Ty, Align &MaxAlign, Align MaxMaxAlign) {
1557   if (MaxAlign == MaxMaxAlign)
1558     return;
1559   if (VectorType *VTy = dyn_cast<VectorType>(Ty)) {
1560     if (MaxMaxAlign >= 32 &&
1561         VTy->getPrimitiveSizeInBits().getFixedSize() >= 256)
1562       MaxAlign = Align(32);
1563     else if (VTy->getPrimitiveSizeInBits().getFixedSize() >= 128 &&
1564              MaxAlign < 16)
1565       MaxAlign = Align(16);
1566   } else if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
1567     Align EltAlign;
1568     getMaxByValAlign(ATy->getElementType(), EltAlign, MaxMaxAlign);
1569     if (EltAlign > MaxAlign)
1570       MaxAlign = EltAlign;
1571   } else if (StructType *STy = dyn_cast<StructType>(Ty)) {
1572     for (auto *EltTy : STy->elements()) {
1573       Align EltAlign;
1574       getMaxByValAlign(EltTy, EltAlign, MaxMaxAlign);
1575       if (EltAlign > MaxAlign)
1576         MaxAlign = EltAlign;
1577       if (MaxAlign == MaxMaxAlign)
1578         break;
1579     }
1580   }
1581 }
1582 
1583 /// getByValTypeAlignment - Return the desired alignment for ByVal aggregate
1584 /// function arguments in the caller parameter area.
1585 uint64_t PPCTargetLowering::getByValTypeAlignment(Type *Ty,
1586                                                   const DataLayout &DL) const {
1587   // 16byte and wider vectors are passed on 16byte boundary.
1588   // The rest is 8 on PPC64 and 4 on PPC32 boundary.
1589   Align Alignment = Subtarget.isPPC64() ? Align(8) : Align(4);
1590   if (Subtarget.hasAltivec())
1591     getMaxByValAlign(Ty, Alignment, Align(16));
1592   return Alignment.value();
1593 }
1594 
1595 bool PPCTargetLowering::useSoftFloat() const {
1596   return Subtarget.useSoftFloat();
1597 }
1598 
1599 bool PPCTargetLowering::hasSPE() const {
1600   return Subtarget.hasSPE();
1601 }
1602 
1603 bool PPCTargetLowering::preferIncOfAddToSubOfNot(EVT VT) const {
1604   return VT.isScalarInteger();
1605 }
1606 
1607 const char *PPCTargetLowering::getTargetNodeName(unsigned Opcode) const {
1608   switch ((PPCISD::NodeType)Opcode) {
1609   case PPCISD::FIRST_NUMBER:    break;
1610   case PPCISD::FSEL:            return "PPCISD::FSEL";
1611   case PPCISD::XSMAXC:          return "PPCISD::XSMAXC";
1612   case PPCISD::XSMINC:          return "PPCISD::XSMINC";
1613   case PPCISD::FCFID:           return "PPCISD::FCFID";
1614   case PPCISD::FCFIDU:          return "PPCISD::FCFIDU";
1615   case PPCISD::FCFIDS:          return "PPCISD::FCFIDS";
1616   case PPCISD::FCFIDUS:         return "PPCISD::FCFIDUS";
1617   case PPCISD::FCTIDZ:          return "PPCISD::FCTIDZ";
1618   case PPCISD::FCTIWZ:          return "PPCISD::FCTIWZ";
1619   case PPCISD::FCTIDUZ:         return "PPCISD::FCTIDUZ";
1620   case PPCISD::FCTIWUZ:         return "PPCISD::FCTIWUZ";
1621   case PPCISD::FP_TO_UINT_IN_VSR:
1622                                 return "PPCISD::FP_TO_UINT_IN_VSR,";
1623   case PPCISD::FP_TO_SINT_IN_VSR:
1624                                 return "PPCISD::FP_TO_SINT_IN_VSR";
1625   case PPCISD::FRE:             return "PPCISD::FRE";
1626   case PPCISD::FRSQRTE:         return "PPCISD::FRSQRTE";
1627   case PPCISD::FTSQRT:
1628     return "PPCISD::FTSQRT";
1629   case PPCISD::FSQRT:
1630     return "PPCISD::FSQRT";
1631   case PPCISD::STFIWX:          return "PPCISD::STFIWX";
1632   case PPCISD::VPERM:           return "PPCISD::VPERM";
1633   case PPCISD::XXSPLT:          return "PPCISD::XXSPLT";
1634   case PPCISD::XXSPLTI_SP_TO_DP:
1635     return "PPCISD::XXSPLTI_SP_TO_DP";
1636   case PPCISD::XXSPLTI32DX:
1637     return "PPCISD::XXSPLTI32DX";
1638   case PPCISD::VECINSERT:       return "PPCISD::VECINSERT";
1639   case PPCISD::XXPERMDI:        return "PPCISD::XXPERMDI";
1640   case PPCISD::VECSHL:          return "PPCISD::VECSHL";
1641   case PPCISD::CMPB:            return "PPCISD::CMPB";
1642   case PPCISD::Hi:              return "PPCISD::Hi";
1643   case PPCISD::Lo:              return "PPCISD::Lo";
1644   case PPCISD::TOC_ENTRY:       return "PPCISD::TOC_ENTRY";
1645   case PPCISD::ATOMIC_CMP_SWAP_8: return "PPCISD::ATOMIC_CMP_SWAP_8";
1646   case PPCISD::ATOMIC_CMP_SWAP_16: return "PPCISD::ATOMIC_CMP_SWAP_16";
1647   case PPCISD::DYNALLOC:        return "PPCISD::DYNALLOC";
1648   case PPCISD::DYNAREAOFFSET:   return "PPCISD::DYNAREAOFFSET";
1649   case PPCISD::PROBED_ALLOCA:   return "PPCISD::PROBED_ALLOCA";
1650   case PPCISD::GlobalBaseReg:   return "PPCISD::GlobalBaseReg";
1651   case PPCISD::SRL:             return "PPCISD::SRL";
1652   case PPCISD::SRA:             return "PPCISD::SRA";
1653   case PPCISD::SHL:             return "PPCISD::SHL";
1654   case PPCISD::SRA_ADDZE:       return "PPCISD::SRA_ADDZE";
1655   case PPCISD::CALL:            return "PPCISD::CALL";
1656   case PPCISD::CALL_NOP:        return "PPCISD::CALL_NOP";
1657   case PPCISD::CALL_NOTOC:      return "PPCISD::CALL_NOTOC";
1658   case PPCISD::CALL_RM:
1659     return "PPCISD::CALL_RM";
1660   case PPCISD::CALL_NOP_RM:
1661     return "PPCISD::CALL_NOP_RM";
1662   case PPCISD::CALL_NOTOC_RM:
1663     return "PPCISD::CALL_NOTOC_RM";
1664   case PPCISD::MTCTR:           return "PPCISD::MTCTR";
1665   case PPCISD::BCTRL:           return "PPCISD::BCTRL";
1666   case PPCISD::BCTRL_LOAD_TOC:  return "PPCISD::BCTRL_LOAD_TOC";
1667   case PPCISD::BCTRL_RM:
1668     return "PPCISD::BCTRL_RM";
1669   case PPCISD::BCTRL_LOAD_TOC_RM:
1670     return "PPCISD::BCTRL_LOAD_TOC_RM";
1671   case PPCISD::RET_FLAG:        return "PPCISD::RET_FLAG";
1672   case PPCISD::READ_TIME_BASE:  return "PPCISD::READ_TIME_BASE";
1673   case PPCISD::EH_SJLJ_SETJMP:  return "PPCISD::EH_SJLJ_SETJMP";
1674   case PPCISD::EH_SJLJ_LONGJMP: return "PPCISD::EH_SJLJ_LONGJMP";
1675   case PPCISD::MFOCRF:          return "PPCISD::MFOCRF";
1676   case PPCISD::MFVSR:           return "PPCISD::MFVSR";
1677   case PPCISD::MTVSRA:          return "PPCISD::MTVSRA";
1678   case PPCISD::MTVSRZ:          return "PPCISD::MTVSRZ";
1679   case PPCISD::SINT_VEC_TO_FP:  return "PPCISD::SINT_VEC_TO_FP";
1680   case PPCISD::UINT_VEC_TO_FP:  return "PPCISD::UINT_VEC_TO_FP";
1681   case PPCISD::SCALAR_TO_VECTOR_PERMUTED:
1682     return "PPCISD::SCALAR_TO_VECTOR_PERMUTED";
1683   case PPCISD::ANDI_rec_1_EQ_BIT:
1684     return "PPCISD::ANDI_rec_1_EQ_BIT";
1685   case PPCISD::ANDI_rec_1_GT_BIT:
1686     return "PPCISD::ANDI_rec_1_GT_BIT";
1687   case PPCISD::VCMP:            return "PPCISD::VCMP";
1688   case PPCISD::VCMP_rec:        return "PPCISD::VCMP_rec";
1689   case PPCISD::LBRX:            return "PPCISD::LBRX";
1690   case PPCISD::STBRX:           return "PPCISD::STBRX";
1691   case PPCISD::LFIWAX:          return "PPCISD::LFIWAX";
1692   case PPCISD::LFIWZX:          return "PPCISD::LFIWZX";
1693   case PPCISD::LXSIZX:          return "PPCISD::LXSIZX";
1694   case PPCISD::STXSIX:          return "PPCISD::STXSIX";
1695   case PPCISD::VEXTS:           return "PPCISD::VEXTS";
1696   case PPCISD::LXVD2X:          return "PPCISD::LXVD2X";
1697   case PPCISD::STXVD2X:         return "PPCISD::STXVD2X";
1698   case PPCISD::LOAD_VEC_BE:     return "PPCISD::LOAD_VEC_BE";
1699   case PPCISD::STORE_VEC_BE:    return "PPCISD::STORE_VEC_BE";
1700   case PPCISD::ST_VSR_SCAL_INT:
1701                                 return "PPCISD::ST_VSR_SCAL_INT";
1702   case PPCISD::COND_BRANCH:     return "PPCISD::COND_BRANCH";
1703   case PPCISD::BDNZ:            return "PPCISD::BDNZ";
1704   case PPCISD::BDZ:             return "PPCISD::BDZ";
1705   case PPCISD::MFFS:            return "PPCISD::MFFS";
1706   case PPCISD::FADDRTZ:         return "PPCISD::FADDRTZ";
1707   case PPCISD::TC_RETURN:       return "PPCISD::TC_RETURN";
1708   case PPCISD::CR6SET:          return "PPCISD::CR6SET";
1709   case PPCISD::CR6UNSET:        return "PPCISD::CR6UNSET";
1710   case PPCISD::PPC32_GOT:       return "PPCISD::PPC32_GOT";
1711   case PPCISD::PPC32_PICGOT:    return "PPCISD::PPC32_PICGOT";
1712   case PPCISD::ADDIS_GOT_TPREL_HA: return "PPCISD::ADDIS_GOT_TPREL_HA";
1713   case PPCISD::LD_GOT_TPREL_L:  return "PPCISD::LD_GOT_TPREL_L";
1714   case PPCISD::ADD_TLS:         return "PPCISD::ADD_TLS";
1715   case PPCISD::ADDIS_TLSGD_HA:  return "PPCISD::ADDIS_TLSGD_HA";
1716   case PPCISD::ADDI_TLSGD_L:    return "PPCISD::ADDI_TLSGD_L";
1717   case PPCISD::GET_TLS_ADDR:    return "PPCISD::GET_TLS_ADDR";
1718   case PPCISD::ADDI_TLSGD_L_ADDR: return "PPCISD::ADDI_TLSGD_L_ADDR";
1719   case PPCISD::TLSGD_AIX:       return "PPCISD::TLSGD_AIX";
1720   case PPCISD::ADDIS_TLSLD_HA:  return "PPCISD::ADDIS_TLSLD_HA";
1721   case PPCISD::ADDI_TLSLD_L:    return "PPCISD::ADDI_TLSLD_L";
1722   case PPCISD::GET_TLSLD_ADDR:  return "PPCISD::GET_TLSLD_ADDR";
1723   case PPCISD::ADDI_TLSLD_L_ADDR: return "PPCISD::ADDI_TLSLD_L_ADDR";
1724   case PPCISD::ADDIS_DTPREL_HA: return "PPCISD::ADDIS_DTPREL_HA";
1725   case PPCISD::ADDI_DTPREL_L:   return "PPCISD::ADDI_DTPREL_L";
1726   case PPCISD::PADDI_DTPREL:
1727     return "PPCISD::PADDI_DTPREL";
1728   case PPCISD::VADD_SPLAT:      return "PPCISD::VADD_SPLAT";
1729   case PPCISD::SC:              return "PPCISD::SC";
1730   case PPCISD::CLRBHRB:         return "PPCISD::CLRBHRB";
1731   case PPCISD::MFBHRBE:         return "PPCISD::MFBHRBE";
1732   case PPCISD::RFEBB:           return "PPCISD::RFEBB";
1733   case PPCISD::XXSWAPD:         return "PPCISD::XXSWAPD";
1734   case PPCISD::SWAP_NO_CHAIN:   return "PPCISD::SWAP_NO_CHAIN";
1735   case PPCISD::VABSD:           return "PPCISD::VABSD";
1736   case PPCISD::BUILD_FP128:     return "PPCISD::BUILD_FP128";
1737   case PPCISD::BUILD_SPE64:     return "PPCISD::BUILD_SPE64";
1738   case PPCISD::EXTRACT_SPE:     return "PPCISD::EXTRACT_SPE";
1739   case PPCISD::EXTSWSLI:        return "PPCISD::EXTSWSLI";
1740   case PPCISD::LD_VSX_LH:       return "PPCISD::LD_VSX_LH";
1741   case PPCISD::FP_EXTEND_HALF:  return "PPCISD::FP_EXTEND_HALF";
1742   case PPCISD::MAT_PCREL_ADDR:  return "PPCISD::MAT_PCREL_ADDR";
1743   case PPCISD::TLS_DYNAMIC_MAT_PCREL_ADDR:
1744     return "PPCISD::TLS_DYNAMIC_MAT_PCREL_ADDR";
1745   case PPCISD::TLS_LOCAL_EXEC_MAT_ADDR:
1746     return "PPCISD::TLS_LOCAL_EXEC_MAT_ADDR";
1747   case PPCISD::ACC_BUILD:       return "PPCISD::ACC_BUILD";
1748   case PPCISD::PAIR_BUILD:      return "PPCISD::PAIR_BUILD";
1749   case PPCISD::EXTRACT_VSX_REG: return "PPCISD::EXTRACT_VSX_REG";
1750   case PPCISD::XXMFACC:         return "PPCISD::XXMFACC";
1751   case PPCISD::LD_SPLAT:        return "PPCISD::LD_SPLAT";
1752   case PPCISD::ZEXT_LD_SPLAT:   return "PPCISD::ZEXT_LD_SPLAT";
1753   case PPCISD::SEXT_LD_SPLAT:   return "PPCISD::SEXT_LD_SPLAT";
1754   case PPCISD::FNMSUB:          return "PPCISD::FNMSUB";
1755   case PPCISD::STRICT_FADDRTZ:
1756     return "PPCISD::STRICT_FADDRTZ";
1757   case PPCISD::STRICT_FCTIDZ:
1758     return "PPCISD::STRICT_FCTIDZ";
1759   case PPCISD::STRICT_FCTIWZ:
1760     return "PPCISD::STRICT_FCTIWZ";
1761   case PPCISD::STRICT_FCTIDUZ:
1762     return "PPCISD::STRICT_FCTIDUZ";
1763   case PPCISD::STRICT_FCTIWUZ:
1764     return "PPCISD::STRICT_FCTIWUZ";
1765   case PPCISD::STRICT_FCFID:
1766     return "PPCISD::STRICT_FCFID";
1767   case PPCISD::STRICT_FCFIDU:
1768     return "PPCISD::STRICT_FCFIDU";
1769   case PPCISD::STRICT_FCFIDS:
1770     return "PPCISD::STRICT_FCFIDS";
1771   case PPCISD::STRICT_FCFIDUS:
1772     return "PPCISD::STRICT_FCFIDUS";
1773   case PPCISD::LXVRZX:          return "PPCISD::LXVRZX";
1774   }
1775   return nullptr;
1776 }
1777 
1778 EVT PPCTargetLowering::getSetCCResultType(const DataLayout &DL, LLVMContext &C,
1779                                           EVT VT) const {
1780   if (!VT.isVector())
1781     return Subtarget.useCRBits() ? MVT::i1 : MVT::i32;
1782 
1783   return VT.changeVectorElementTypeToInteger();
1784 }
1785 
1786 bool PPCTargetLowering::enableAggressiveFMAFusion(EVT VT) const {
1787   assert(VT.isFloatingPoint() && "Non-floating-point FMA?");
1788   return true;
1789 }
1790 
1791 //===----------------------------------------------------------------------===//
1792 // Node matching predicates, for use by the tblgen matching code.
1793 //===----------------------------------------------------------------------===//
1794 
1795 /// isFloatingPointZero - Return true if this is 0.0 or -0.0.
1796 static bool isFloatingPointZero(SDValue Op) {
1797   if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(Op))
1798     return CFP->getValueAPF().isZero();
1799   else if (ISD::isEXTLoad(Op.getNode()) || ISD::isNON_EXTLoad(Op.getNode())) {
1800     // Maybe this has already been legalized into the constant pool?
1801     if (ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(Op.getOperand(1)))
1802       if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CP->getConstVal()))
1803         return CFP->getValueAPF().isZero();
1804   }
1805   return false;
1806 }
1807 
1808 /// isConstantOrUndef - Op is either an undef node or a ConstantSDNode.  Return
1809 /// true if Op is undef or if it matches the specified value.
1810 static bool isConstantOrUndef(int Op, int Val) {
1811   return Op < 0 || Op == Val;
1812 }
1813 
1814 /// isVPKUHUMShuffleMask - Return true if this is the shuffle mask for a
1815 /// VPKUHUM instruction.
1816 /// The ShuffleKind distinguishes between big-endian operations with
1817 /// two different inputs (0), either-endian operations with two identical
1818 /// inputs (1), and little-endian operations with two different inputs (2).
1819 /// For the latter, the input operands are swapped (see PPCInstrAltivec.td).
1820 bool PPC::isVPKUHUMShuffleMask(ShuffleVectorSDNode *N, unsigned ShuffleKind,
1821                                SelectionDAG &DAG) {
1822   bool IsLE = DAG.getDataLayout().isLittleEndian();
1823   if (ShuffleKind == 0) {
1824     if (IsLE)
1825       return false;
1826     for (unsigned i = 0; i != 16; ++i)
1827       if (!isConstantOrUndef(N->getMaskElt(i), i*2+1))
1828         return false;
1829   } else if (ShuffleKind == 2) {
1830     if (!IsLE)
1831       return false;
1832     for (unsigned i = 0; i != 16; ++i)
1833       if (!isConstantOrUndef(N->getMaskElt(i), i*2))
1834         return false;
1835   } else if (ShuffleKind == 1) {
1836     unsigned j = IsLE ? 0 : 1;
1837     for (unsigned i = 0; i != 8; ++i)
1838       if (!isConstantOrUndef(N->getMaskElt(i),    i*2+j) ||
1839           !isConstantOrUndef(N->getMaskElt(i+8),  i*2+j))
1840         return false;
1841   }
1842   return true;
1843 }
1844 
1845 /// isVPKUWUMShuffleMask - Return true if this is the shuffle mask for a
1846 /// VPKUWUM instruction.
1847 /// The ShuffleKind distinguishes between big-endian operations with
1848 /// two different inputs (0), either-endian operations with two identical
1849 /// inputs (1), and little-endian operations with two different inputs (2).
1850 /// For the latter, the input operands are swapped (see PPCInstrAltivec.td).
1851 bool PPC::isVPKUWUMShuffleMask(ShuffleVectorSDNode *N, unsigned ShuffleKind,
1852                                SelectionDAG &DAG) {
1853   bool IsLE = DAG.getDataLayout().isLittleEndian();
1854   if (ShuffleKind == 0) {
1855     if (IsLE)
1856       return false;
1857     for (unsigned i = 0; i != 16; i += 2)
1858       if (!isConstantOrUndef(N->getMaskElt(i  ),  i*2+2) ||
1859           !isConstantOrUndef(N->getMaskElt(i+1),  i*2+3))
1860         return false;
1861   } else if (ShuffleKind == 2) {
1862     if (!IsLE)
1863       return false;
1864     for (unsigned i = 0; i != 16; i += 2)
1865       if (!isConstantOrUndef(N->getMaskElt(i  ),  i*2) ||
1866           !isConstantOrUndef(N->getMaskElt(i+1),  i*2+1))
1867         return false;
1868   } else if (ShuffleKind == 1) {
1869     unsigned j = IsLE ? 0 : 2;
1870     for (unsigned i = 0; i != 8; i += 2)
1871       if (!isConstantOrUndef(N->getMaskElt(i  ),  i*2+j)   ||
1872           !isConstantOrUndef(N->getMaskElt(i+1),  i*2+j+1) ||
1873           !isConstantOrUndef(N->getMaskElt(i+8),  i*2+j)   ||
1874           !isConstantOrUndef(N->getMaskElt(i+9),  i*2+j+1))
1875         return false;
1876   }
1877   return true;
1878 }
1879 
1880 /// isVPKUDUMShuffleMask - Return true if this is the shuffle mask for a
1881 /// VPKUDUM instruction, AND the VPKUDUM instruction exists for the
1882 /// current subtarget.
1883 ///
1884 /// The ShuffleKind distinguishes between big-endian operations with
1885 /// two different inputs (0), either-endian operations with two identical
1886 /// inputs (1), and little-endian operations with two different inputs (2).
1887 /// For the latter, the input operands are swapped (see PPCInstrAltivec.td).
1888 bool PPC::isVPKUDUMShuffleMask(ShuffleVectorSDNode *N, unsigned ShuffleKind,
1889                                SelectionDAG &DAG) {
1890   const PPCSubtarget &Subtarget = DAG.getSubtarget<PPCSubtarget>();
1891   if (!Subtarget.hasP8Vector())
1892     return false;
1893 
1894   bool IsLE = DAG.getDataLayout().isLittleEndian();
1895   if (ShuffleKind == 0) {
1896     if (IsLE)
1897       return false;
1898     for (unsigned i = 0; i != 16; i += 4)
1899       if (!isConstantOrUndef(N->getMaskElt(i  ),  i*2+4) ||
1900           !isConstantOrUndef(N->getMaskElt(i+1),  i*2+5) ||
1901           !isConstantOrUndef(N->getMaskElt(i+2),  i*2+6) ||
1902           !isConstantOrUndef(N->getMaskElt(i+3),  i*2+7))
1903         return false;
1904   } else if (ShuffleKind == 2) {
1905     if (!IsLE)
1906       return false;
1907     for (unsigned i = 0; i != 16; i += 4)
1908       if (!isConstantOrUndef(N->getMaskElt(i  ),  i*2) ||
1909           !isConstantOrUndef(N->getMaskElt(i+1),  i*2+1) ||
1910           !isConstantOrUndef(N->getMaskElt(i+2),  i*2+2) ||
1911           !isConstantOrUndef(N->getMaskElt(i+3),  i*2+3))
1912         return false;
1913   } else if (ShuffleKind == 1) {
1914     unsigned j = IsLE ? 0 : 4;
1915     for (unsigned i = 0; i != 8; i += 4)
1916       if (!isConstantOrUndef(N->getMaskElt(i  ),  i*2+j)   ||
1917           !isConstantOrUndef(N->getMaskElt(i+1),  i*2+j+1) ||
1918           !isConstantOrUndef(N->getMaskElt(i+2),  i*2+j+2) ||
1919           !isConstantOrUndef(N->getMaskElt(i+3),  i*2+j+3) ||
1920           !isConstantOrUndef(N->getMaskElt(i+8),  i*2+j)   ||
1921           !isConstantOrUndef(N->getMaskElt(i+9),  i*2+j+1) ||
1922           !isConstantOrUndef(N->getMaskElt(i+10), i*2+j+2) ||
1923           !isConstantOrUndef(N->getMaskElt(i+11), i*2+j+3))
1924         return false;
1925   }
1926   return true;
1927 }
1928 
1929 /// isVMerge - Common function, used to match vmrg* shuffles.
1930 ///
1931 static bool isVMerge(ShuffleVectorSDNode *N, unsigned UnitSize,
1932                      unsigned LHSStart, unsigned RHSStart) {
1933   if (N->getValueType(0) != MVT::v16i8)
1934     return false;
1935   assert((UnitSize == 1 || UnitSize == 2 || UnitSize == 4) &&
1936          "Unsupported merge size!");
1937 
1938   for (unsigned i = 0; i != 8/UnitSize; ++i)     // Step over units
1939     for (unsigned j = 0; j != UnitSize; ++j) {   // Step over bytes within unit
1940       if (!isConstantOrUndef(N->getMaskElt(i*UnitSize*2+j),
1941                              LHSStart+j+i*UnitSize) ||
1942           !isConstantOrUndef(N->getMaskElt(i*UnitSize*2+UnitSize+j),
1943                              RHSStart+j+i*UnitSize))
1944         return false;
1945     }
1946   return true;
1947 }
1948 
1949 /// isVMRGLShuffleMask - Return true if this is a shuffle mask suitable for
1950 /// a VMRGL* instruction with the specified unit size (1,2 or 4 bytes).
1951 /// The ShuffleKind distinguishes between big-endian merges with two
1952 /// different inputs (0), either-endian merges with two identical inputs (1),
1953 /// and little-endian merges with two different inputs (2).  For the latter,
1954 /// the input operands are swapped (see PPCInstrAltivec.td).
1955 bool PPC::isVMRGLShuffleMask(ShuffleVectorSDNode *N, unsigned UnitSize,
1956                              unsigned ShuffleKind, SelectionDAG &DAG) {
1957   if (DAG.getDataLayout().isLittleEndian()) {
1958     if (ShuffleKind == 1) // unary
1959       return isVMerge(N, UnitSize, 0, 0);
1960     else if (ShuffleKind == 2) // swapped
1961       return isVMerge(N, UnitSize, 0, 16);
1962     else
1963       return false;
1964   } else {
1965     if (ShuffleKind == 1) // unary
1966       return isVMerge(N, UnitSize, 8, 8);
1967     else if (ShuffleKind == 0) // normal
1968       return isVMerge(N, UnitSize, 8, 24);
1969     else
1970       return false;
1971   }
1972 }
1973 
1974 /// isVMRGHShuffleMask - Return true if this is a shuffle mask suitable for
1975 /// a VMRGH* instruction with the specified unit size (1,2 or 4 bytes).
1976 /// The ShuffleKind distinguishes between big-endian merges with two
1977 /// different inputs (0), either-endian merges with two identical inputs (1),
1978 /// and little-endian merges with two different inputs (2).  For the latter,
1979 /// the input operands are swapped (see PPCInstrAltivec.td).
1980 bool PPC::isVMRGHShuffleMask(ShuffleVectorSDNode *N, unsigned UnitSize,
1981                              unsigned ShuffleKind, SelectionDAG &DAG) {
1982   if (DAG.getDataLayout().isLittleEndian()) {
1983     if (ShuffleKind == 1) // unary
1984       return isVMerge(N, UnitSize, 8, 8);
1985     else if (ShuffleKind == 2) // swapped
1986       return isVMerge(N, UnitSize, 8, 24);
1987     else
1988       return false;
1989   } else {
1990     if (ShuffleKind == 1) // unary
1991       return isVMerge(N, UnitSize, 0, 0);
1992     else if (ShuffleKind == 0) // normal
1993       return isVMerge(N, UnitSize, 0, 16);
1994     else
1995       return false;
1996   }
1997 }
1998 
1999 /**
2000  * Common function used to match vmrgew and vmrgow shuffles
2001  *
2002  * The indexOffset determines whether to look for even or odd words in
2003  * the shuffle mask. This is based on the of the endianness of the target
2004  * machine.
2005  *   - Little Endian:
2006  *     - Use offset of 0 to check for odd elements
2007  *     - Use offset of 4 to check for even elements
2008  *   - Big Endian:
2009  *     - Use offset of 0 to check for even elements
2010  *     - Use offset of 4 to check for odd elements
2011  * A detailed description of the vector element ordering for little endian and
2012  * big endian can be found at
2013  * http://www.ibm.com/developerworks/library/l-ibm-xl-c-cpp-compiler/index.html
2014  * Targeting your applications - what little endian and big endian IBM XL C/C++
2015  * compiler differences mean to you
2016  *
2017  * The mask to the shuffle vector instruction specifies the indices of the
2018  * elements from the two input vectors to place in the result. The elements are
2019  * numbered in array-access order, starting with the first vector. These vectors
2020  * are always of type v16i8, thus each vector will contain 16 elements of size
2021  * 8. More info on the shuffle vector can be found in the
2022  * http://llvm.org/docs/LangRef.html#shufflevector-instruction
2023  * Language Reference.
2024  *
2025  * The RHSStartValue indicates whether the same input vectors are used (unary)
2026  * or two different input vectors are used, based on the following:
2027  *   - If the instruction uses the same vector for both inputs, the range of the
2028  *     indices will be 0 to 15. In this case, the RHSStart value passed should
2029  *     be 0.
2030  *   - If the instruction has two different vectors then the range of the
2031  *     indices will be 0 to 31. In this case, the RHSStart value passed should
2032  *     be 16 (indices 0-15 specify elements in the first vector while indices 16
2033  *     to 31 specify elements in the second vector).
2034  *
2035  * \param[in] N The shuffle vector SD Node to analyze
2036  * \param[in] IndexOffset Specifies whether to look for even or odd elements
2037  * \param[in] RHSStartValue Specifies the starting index for the righthand input
2038  * vector to the shuffle_vector instruction
2039  * \return true iff this shuffle vector represents an even or odd word merge
2040  */
2041 static bool isVMerge(ShuffleVectorSDNode *N, unsigned IndexOffset,
2042                      unsigned RHSStartValue) {
2043   if (N->getValueType(0) != MVT::v16i8)
2044     return false;
2045 
2046   for (unsigned i = 0; i < 2; ++i)
2047     for (unsigned j = 0; j < 4; ++j)
2048       if (!isConstantOrUndef(N->getMaskElt(i*4+j),
2049                              i*RHSStartValue+j+IndexOffset) ||
2050           !isConstantOrUndef(N->getMaskElt(i*4+j+8),
2051                              i*RHSStartValue+j+IndexOffset+8))
2052         return false;
2053   return true;
2054 }
2055 
2056 /**
2057  * Determine if the specified shuffle mask is suitable for the vmrgew or
2058  * vmrgow instructions.
2059  *
2060  * \param[in] N The shuffle vector SD Node to analyze
2061  * \param[in] CheckEven Check for an even merge (true) or an odd merge (false)
2062  * \param[in] ShuffleKind Identify the type of merge:
2063  *   - 0 = big-endian merge with two different inputs;
2064  *   - 1 = either-endian merge with two identical inputs;
2065  *   - 2 = little-endian merge with two different inputs (inputs are swapped for
2066  *     little-endian merges).
2067  * \param[in] DAG The current SelectionDAG
2068  * \return true iff this shuffle mask
2069  */
2070 bool PPC::isVMRGEOShuffleMask(ShuffleVectorSDNode *N, bool CheckEven,
2071                               unsigned ShuffleKind, SelectionDAG &DAG) {
2072   if (DAG.getDataLayout().isLittleEndian()) {
2073     unsigned indexOffset = CheckEven ? 4 : 0;
2074     if (ShuffleKind == 1) // Unary
2075       return isVMerge(N, indexOffset, 0);
2076     else if (ShuffleKind == 2) // swapped
2077       return isVMerge(N, indexOffset, 16);
2078     else
2079       return false;
2080   }
2081   else {
2082     unsigned indexOffset = CheckEven ? 0 : 4;
2083     if (ShuffleKind == 1) // Unary
2084       return isVMerge(N, indexOffset, 0);
2085     else if (ShuffleKind == 0) // Normal
2086       return isVMerge(N, indexOffset, 16);
2087     else
2088       return false;
2089   }
2090   return false;
2091 }
2092 
2093 /// isVSLDOIShuffleMask - If this is a vsldoi shuffle mask, return the shift
2094 /// amount, otherwise return -1.
2095 /// The ShuffleKind distinguishes between big-endian operations with two
2096 /// different inputs (0), either-endian operations with two identical inputs
2097 /// (1), and little-endian operations with two different inputs (2).  For the
2098 /// latter, the input operands are swapped (see PPCInstrAltivec.td).
2099 int PPC::isVSLDOIShuffleMask(SDNode *N, unsigned ShuffleKind,
2100                              SelectionDAG &DAG) {
2101   if (N->getValueType(0) != MVT::v16i8)
2102     return -1;
2103 
2104   ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
2105 
2106   // Find the first non-undef value in the shuffle mask.
2107   unsigned i;
2108   for (i = 0; i != 16 && SVOp->getMaskElt(i) < 0; ++i)
2109     /*search*/;
2110 
2111   if (i == 16) return -1;  // all undef.
2112 
2113   // Otherwise, check to see if the rest of the elements are consecutively
2114   // numbered from this value.
2115   unsigned ShiftAmt = SVOp->getMaskElt(i);
2116   if (ShiftAmt < i) return -1;
2117 
2118   ShiftAmt -= i;
2119   bool isLE = DAG.getDataLayout().isLittleEndian();
2120 
2121   if ((ShuffleKind == 0 && !isLE) || (ShuffleKind == 2 && isLE)) {
2122     // Check the rest of the elements to see if they are consecutive.
2123     for (++i; i != 16; ++i)
2124       if (!isConstantOrUndef(SVOp->getMaskElt(i), ShiftAmt+i))
2125         return -1;
2126   } else if (ShuffleKind == 1) {
2127     // Check the rest of the elements to see if they are consecutive.
2128     for (++i; i != 16; ++i)
2129       if (!isConstantOrUndef(SVOp->getMaskElt(i), (ShiftAmt+i) & 15))
2130         return -1;
2131   } else
2132     return -1;
2133 
2134   if (isLE)
2135     ShiftAmt = 16 - ShiftAmt;
2136 
2137   return ShiftAmt;
2138 }
2139 
2140 /// isSplatShuffleMask - Return true if the specified VECTOR_SHUFFLE operand
2141 /// specifies a splat of a single element that is suitable for input to
2142 /// one of the splat operations (VSPLTB/VSPLTH/VSPLTW/XXSPLTW/LXVDSX/etc.).
2143 bool PPC::isSplatShuffleMask(ShuffleVectorSDNode *N, unsigned EltSize) {
2144   EVT VT = N->getValueType(0);
2145   if (VT == MVT::v2i64 || VT == MVT::v2f64)
2146     return EltSize == 8 && N->getMaskElt(0) == N->getMaskElt(1);
2147 
2148   assert(VT == MVT::v16i8 && isPowerOf2_32(EltSize) &&
2149          EltSize <= 8 && "Can only handle 1,2,4,8 byte element sizes");
2150 
2151   // The consecutive indices need to specify an element, not part of two
2152   // different elements.  So abandon ship early if this isn't the case.
2153   if (N->getMaskElt(0) % EltSize != 0)
2154     return false;
2155 
2156   // This is a splat operation if each element of the permute is the same, and
2157   // if the value doesn't reference the second vector.
2158   unsigned ElementBase = N->getMaskElt(0);
2159 
2160   // FIXME: Handle UNDEF elements too!
2161   if (ElementBase >= 16)
2162     return false;
2163 
2164   // Check that the indices are consecutive, in the case of a multi-byte element
2165   // splatted with a v16i8 mask.
2166   for (unsigned i = 1; i != EltSize; ++i)
2167     if (N->getMaskElt(i) < 0 || N->getMaskElt(i) != (int)(i+ElementBase))
2168       return false;
2169 
2170   for (unsigned i = EltSize, e = 16; i != e; i += EltSize) {
2171     if (N->getMaskElt(i) < 0) continue;
2172     for (unsigned j = 0; j != EltSize; ++j)
2173       if (N->getMaskElt(i+j) != N->getMaskElt(j))
2174         return false;
2175   }
2176   return true;
2177 }
2178 
2179 /// Check that the mask is shuffling N byte elements. Within each N byte
2180 /// element of the mask, the indices could be either in increasing or
2181 /// decreasing order as long as they are consecutive.
2182 /// \param[in] N the shuffle vector SD Node to analyze
2183 /// \param[in] Width the element width in bytes, could be 2/4/8/16 (HalfWord/
2184 /// Word/DoubleWord/QuadWord).
2185 /// \param[in] StepLen the delta indices number among the N byte element, if
2186 /// the mask is in increasing/decreasing order then it is 1/-1.
2187 /// \return true iff the mask is shuffling N byte elements.
2188 static bool isNByteElemShuffleMask(ShuffleVectorSDNode *N, unsigned Width,
2189                                    int StepLen) {
2190   assert((Width == 2 || Width == 4 || Width == 8 || Width == 16) &&
2191          "Unexpected element width.");
2192   assert((StepLen == 1 || StepLen == -1) && "Unexpected element width.");
2193 
2194   unsigned NumOfElem = 16 / Width;
2195   unsigned MaskVal[16]; //  Width is never greater than 16
2196   for (unsigned i = 0; i < NumOfElem; ++i) {
2197     MaskVal[0] = N->getMaskElt(i * Width);
2198     if ((StepLen == 1) && (MaskVal[0] % Width)) {
2199       return false;
2200     } else if ((StepLen == -1) && ((MaskVal[0] + 1) % Width)) {
2201       return false;
2202     }
2203 
2204     for (unsigned int j = 1; j < Width; ++j) {
2205       MaskVal[j] = N->getMaskElt(i * Width + j);
2206       if (MaskVal[j] != MaskVal[j-1] + StepLen) {
2207         return false;
2208       }
2209     }
2210   }
2211 
2212   return true;
2213 }
2214 
2215 bool PPC::isXXINSERTWMask(ShuffleVectorSDNode *N, unsigned &ShiftElts,
2216                           unsigned &InsertAtByte, bool &Swap, bool IsLE) {
2217   if (!isNByteElemShuffleMask(N, 4, 1))
2218     return false;
2219 
2220   // Now we look at mask elements 0,4,8,12
2221   unsigned M0 = N->getMaskElt(0) / 4;
2222   unsigned M1 = N->getMaskElt(4) / 4;
2223   unsigned M2 = N->getMaskElt(8) / 4;
2224   unsigned M3 = N->getMaskElt(12) / 4;
2225   unsigned LittleEndianShifts[] = { 2, 1, 0, 3 };
2226   unsigned BigEndianShifts[] = { 3, 0, 1, 2 };
2227 
2228   // Below, let H and L be arbitrary elements of the shuffle mask
2229   // where H is in the range [4,7] and L is in the range [0,3].
2230   // H, 1, 2, 3 or L, 5, 6, 7
2231   if ((M0 > 3 && M1 == 1 && M2 == 2 && M3 == 3) ||
2232       (M0 < 4 && M1 == 5 && M2 == 6 && M3 == 7)) {
2233     ShiftElts = IsLE ? LittleEndianShifts[M0 & 0x3] : BigEndianShifts[M0 & 0x3];
2234     InsertAtByte = IsLE ? 12 : 0;
2235     Swap = M0 < 4;
2236     return true;
2237   }
2238   // 0, H, 2, 3 or 4, L, 6, 7
2239   if ((M1 > 3 && M0 == 0 && M2 == 2 && M3 == 3) ||
2240       (M1 < 4 && M0 == 4 && M2 == 6 && M3 == 7)) {
2241     ShiftElts = IsLE ? LittleEndianShifts[M1 & 0x3] : BigEndianShifts[M1 & 0x3];
2242     InsertAtByte = IsLE ? 8 : 4;
2243     Swap = M1 < 4;
2244     return true;
2245   }
2246   // 0, 1, H, 3 or 4, 5, L, 7
2247   if ((M2 > 3 && M0 == 0 && M1 == 1 && M3 == 3) ||
2248       (M2 < 4 && M0 == 4 && M1 == 5 && M3 == 7)) {
2249     ShiftElts = IsLE ? LittleEndianShifts[M2 & 0x3] : BigEndianShifts[M2 & 0x3];
2250     InsertAtByte = IsLE ? 4 : 8;
2251     Swap = M2 < 4;
2252     return true;
2253   }
2254   // 0, 1, 2, H or 4, 5, 6, L
2255   if ((M3 > 3 && M0 == 0 && M1 == 1 && M2 == 2) ||
2256       (M3 < 4 && M0 == 4 && M1 == 5 && M2 == 6)) {
2257     ShiftElts = IsLE ? LittleEndianShifts[M3 & 0x3] : BigEndianShifts[M3 & 0x3];
2258     InsertAtByte = IsLE ? 0 : 12;
2259     Swap = M3 < 4;
2260     return true;
2261   }
2262 
2263   // If both vector operands for the shuffle are the same vector, the mask will
2264   // contain only elements from the first one and the second one will be undef.
2265   if (N->getOperand(1).isUndef()) {
2266     ShiftElts = 0;
2267     Swap = true;
2268     unsigned XXINSERTWSrcElem = IsLE ? 2 : 1;
2269     if (M0 == XXINSERTWSrcElem && M1 == 1 && M2 == 2 && M3 == 3) {
2270       InsertAtByte = IsLE ? 12 : 0;
2271       return true;
2272     }
2273     if (M0 == 0 && M1 == XXINSERTWSrcElem && M2 == 2 && M3 == 3) {
2274       InsertAtByte = IsLE ? 8 : 4;
2275       return true;
2276     }
2277     if (M0 == 0 && M1 == 1 && M2 == XXINSERTWSrcElem && M3 == 3) {
2278       InsertAtByte = IsLE ? 4 : 8;
2279       return true;
2280     }
2281     if (M0 == 0 && M1 == 1 && M2 == 2 && M3 == XXINSERTWSrcElem) {
2282       InsertAtByte = IsLE ? 0 : 12;
2283       return true;
2284     }
2285   }
2286 
2287   return false;
2288 }
2289 
2290 bool PPC::isXXSLDWIShuffleMask(ShuffleVectorSDNode *N, unsigned &ShiftElts,
2291                                bool &Swap, bool IsLE) {
2292   assert(N->getValueType(0) == MVT::v16i8 && "Shuffle vector expects v16i8");
2293   // Ensure each byte index of the word is consecutive.
2294   if (!isNByteElemShuffleMask(N, 4, 1))
2295     return false;
2296 
2297   // Now we look at mask elements 0,4,8,12, which are the beginning of words.
2298   unsigned M0 = N->getMaskElt(0) / 4;
2299   unsigned M1 = N->getMaskElt(4) / 4;
2300   unsigned M2 = N->getMaskElt(8) / 4;
2301   unsigned M3 = N->getMaskElt(12) / 4;
2302 
2303   // If both vector operands for the shuffle are the same vector, the mask will
2304   // contain only elements from the first one and the second one will be undef.
2305   if (N->getOperand(1).isUndef()) {
2306     assert(M0 < 4 && "Indexing into an undef vector?");
2307     if (M1 != (M0 + 1) % 4 || M2 != (M1 + 1) % 4 || M3 != (M2 + 1) % 4)
2308       return false;
2309 
2310     ShiftElts = IsLE ? (4 - M0) % 4 : M0;
2311     Swap = false;
2312     return true;
2313   }
2314 
2315   // Ensure each word index of the ShuffleVector Mask is consecutive.
2316   if (M1 != (M0 + 1) % 8 || M2 != (M1 + 1) % 8 || M3 != (M2 + 1) % 8)
2317     return false;
2318 
2319   if (IsLE) {
2320     if (M0 == 0 || M0 == 7 || M0 == 6 || M0 == 5) {
2321       // Input vectors don't need to be swapped if the leading element
2322       // of the result is one of the 3 left elements of the second vector
2323       // (or if there is no shift to be done at all).
2324       Swap = false;
2325       ShiftElts = (8 - M0) % 8;
2326     } else if (M0 == 4 || M0 == 3 || M0 == 2 || M0 == 1) {
2327       // Input vectors need to be swapped if the leading element
2328       // of the result is one of the 3 left elements of the first vector
2329       // (or if we're shifting by 4 - thereby simply swapping the vectors).
2330       Swap = true;
2331       ShiftElts = (4 - M0) % 4;
2332     }
2333 
2334     return true;
2335   } else {                                          // BE
2336     if (M0 == 0 || M0 == 1 || M0 == 2 || M0 == 3) {
2337       // Input vectors don't need to be swapped if the leading element
2338       // of the result is one of the 4 elements of the first vector.
2339       Swap = false;
2340       ShiftElts = M0;
2341     } else if (M0 == 4 || M0 == 5 || M0 == 6 || M0 == 7) {
2342       // Input vectors need to be swapped if the leading element
2343       // of the result is one of the 4 elements of the right vector.
2344       Swap = true;
2345       ShiftElts = M0 - 4;
2346     }
2347 
2348     return true;
2349   }
2350 }
2351 
2352 bool static isXXBRShuffleMaskHelper(ShuffleVectorSDNode *N, int Width) {
2353   assert(N->getValueType(0) == MVT::v16i8 && "Shuffle vector expects v16i8");
2354 
2355   if (!isNByteElemShuffleMask(N, Width, -1))
2356     return false;
2357 
2358   for (int i = 0; i < 16; i += Width)
2359     if (N->getMaskElt(i) != i + Width - 1)
2360       return false;
2361 
2362   return true;
2363 }
2364 
2365 bool PPC::isXXBRHShuffleMask(ShuffleVectorSDNode *N) {
2366   return isXXBRShuffleMaskHelper(N, 2);
2367 }
2368 
2369 bool PPC::isXXBRWShuffleMask(ShuffleVectorSDNode *N) {
2370   return isXXBRShuffleMaskHelper(N, 4);
2371 }
2372 
2373 bool PPC::isXXBRDShuffleMask(ShuffleVectorSDNode *N) {
2374   return isXXBRShuffleMaskHelper(N, 8);
2375 }
2376 
2377 bool PPC::isXXBRQShuffleMask(ShuffleVectorSDNode *N) {
2378   return isXXBRShuffleMaskHelper(N, 16);
2379 }
2380 
2381 /// Can node \p N be lowered to an XXPERMDI instruction? If so, set \p Swap
2382 /// if the inputs to the instruction should be swapped and set \p DM to the
2383 /// value for the immediate.
2384 /// Specifically, set \p Swap to true only if \p N can be lowered to XXPERMDI
2385 /// AND element 0 of the result comes from the first input (LE) or second input
2386 /// (BE). Set \p DM to the calculated result (0-3) only if \p N can be lowered.
2387 /// \return true iff the given mask of shuffle node \p N is a XXPERMDI shuffle
2388 /// mask.
2389 bool PPC::isXXPERMDIShuffleMask(ShuffleVectorSDNode *N, unsigned &DM,
2390                                bool &Swap, bool IsLE) {
2391   assert(N->getValueType(0) == MVT::v16i8 && "Shuffle vector expects v16i8");
2392 
2393   // Ensure each byte index of the double word is consecutive.
2394   if (!isNByteElemShuffleMask(N, 8, 1))
2395     return false;
2396 
2397   unsigned M0 = N->getMaskElt(0) / 8;
2398   unsigned M1 = N->getMaskElt(8) / 8;
2399   assert(((M0 | M1) < 4) && "A mask element out of bounds?");
2400 
2401   // If both vector operands for the shuffle are the same vector, the mask will
2402   // contain only elements from the first one and the second one will be undef.
2403   if (N->getOperand(1).isUndef()) {
2404     if ((M0 | M1) < 2) {
2405       DM = IsLE ? (((~M1) & 1) << 1) + ((~M0) & 1) : (M0 << 1) + (M1 & 1);
2406       Swap = false;
2407       return true;
2408     } else
2409       return false;
2410   }
2411 
2412   if (IsLE) {
2413     if (M0 > 1 && M1 < 2) {
2414       Swap = false;
2415     } else if (M0 < 2 && M1 > 1) {
2416       M0 = (M0 + 2) % 4;
2417       M1 = (M1 + 2) % 4;
2418       Swap = true;
2419     } else
2420       return false;
2421 
2422     // Note: if control flow comes here that means Swap is already set above
2423     DM = (((~M1) & 1) << 1) + ((~M0) & 1);
2424     return true;
2425   } else { // BE
2426     if (M0 < 2 && M1 > 1) {
2427       Swap = false;
2428     } else if (M0 > 1 && M1 < 2) {
2429       M0 = (M0 + 2) % 4;
2430       M1 = (M1 + 2) % 4;
2431       Swap = true;
2432     } else
2433       return false;
2434 
2435     // Note: if control flow comes here that means Swap is already set above
2436     DM = (M0 << 1) + (M1 & 1);
2437     return true;
2438   }
2439 }
2440 
2441 
2442 /// getSplatIdxForPPCMnemonics - Return the splat index as a value that is
2443 /// appropriate for PPC mnemonics (which have a big endian bias - namely
2444 /// elements are counted from the left of the vector register).
2445 unsigned PPC::getSplatIdxForPPCMnemonics(SDNode *N, unsigned EltSize,
2446                                          SelectionDAG &DAG) {
2447   ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
2448   assert(isSplatShuffleMask(SVOp, EltSize));
2449   EVT VT = SVOp->getValueType(0);
2450 
2451   if (VT == MVT::v2i64 || VT == MVT::v2f64)
2452     return DAG.getDataLayout().isLittleEndian() ? 1 - SVOp->getMaskElt(0)
2453                                                 : SVOp->getMaskElt(0);
2454 
2455   if (DAG.getDataLayout().isLittleEndian())
2456     return (16 / EltSize) - 1 - (SVOp->getMaskElt(0) / EltSize);
2457   else
2458     return SVOp->getMaskElt(0) / EltSize;
2459 }
2460 
2461 /// get_VSPLTI_elt - If this is a build_vector of constants which can be formed
2462 /// by using a vspltis[bhw] instruction of the specified element size, return
2463 /// the constant being splatted.  The ByteSize field indicates the number of
2464 /// bytes of each element [124] -> [bhw].
2465 SDValue PPC::get_VSPLTI_elt(SDNode *N, unsigned ByteSize, SelectionDAG &DAG) {
2466   SDValue OpVal;
2467 
2468   // If ByteSize of the splat is bigger than the element size of the
2469   // build_vector, then we have a case where we are checking for a splat where
2470   // multiple elements of the buildvector are folded together into a single
2471   // logical element of the splat (e.g. "vsplish 1" to splat {0,1}*8).
2472   unsigned EltSize = 16/N->getNumOperands();
2473   if (EltSize < ByteSize) {
2474     unsigned Multiple = ByteSize/EltSize;   // Number of BV entries per spltval.
2475     SDValue UniquedVals[4];
2476     assert(Multiple > 1 && Multiple <= 4 && "How can this happen?");
2477 
2478     // See if all of the elements in the buildvector agree across.
2479     for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
2480       if (N->getOperand(i).isUndef()) continue;
2481       // If the element isn't a constant, bail fully out.
2482       if (!isa<ConstantSDNode>(N->getOperand(i))) return SDValue();
2483 
2484       if (!UniquedVals[i&(Multiple-1)].getNode())
2485         UniquedVals[i&(Multiple-1)] = N->getOperand(i);
2486       else if (UniquedVals[i&(Multiple-1)] != N->getOperand(i))
2487         return SDValue();  // no match.
2488     }
2489 
2490     // Okay, if we reached this point, UniquedVals[0..Multiple-1] contains
2491     // either constant or undef values that are identical for each chunk.  See
2492     // if these chunks can form into a larger vspltis*.
2493 
2494     // Check to see if all of the leading entries are either 0 or -1.  If
2495     // neither, then this won't fit into the immediate field.
2496     bool LeadingZero = true;
2497     bool LeadingOnes = true;
2498     for (unsigned i = 0; i != Multiple-1; ++i) {
2499       if (!UniquedVals[i].getNode()) continue;  // Must have been undefs.
2500 
2501       LeadingZero &= isNullConstant(UniquedVals[i]);
2502       LeadingOnes &= isAllOnesConstant(UniquedVals[i]);
2503     }
2504     // Finally, check the least significant entry.
2505     if (LeadingZero) {
2506       if (!UniquedVals[Multiple-1].getNode())
2507         return DAG.getTargetConstant(0, SDLoc(N), MVT::i32);  // 0,0,0,undef
2508       int Val = cast<ConstantSDNode>(UniquedVals[Multiple-1])->getZExtValue();
2509       if (Val < 16)                                   // 0,0,0,4 -> vspltisw(4)
2510         return DAG.getTargetConstant(Val, SDLoc(N), MVT::i32);
2511     }
2512     if (LeadingOnes) {
2513       if (!UniquedVals[Multiple-1].getNode())
2514         return DAG.getTargetConstant(~0U, SDLoc(N), MVT::i32); // -1,-1,-1,undef
2515       int Val =cast<ConstantSDNode>(UniquedVals[Multiple-1])->getSExtValue();
2516       if (Val >= -16)                            // -1,-1,-1,-2 -> vspltisw(-2)
2517         return DAG.getTargetConstant(Val, SDLoc(N), MVT::i32);
2518     }
2519 
2520     return SDValue();
2521   }
2522 
2523   // Check to see if this buildvec has a single non-undef value in its elements.
2524   for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
2525     if (N->getOperand(i).isUndef()) continue;
2526     if (!OpVal.getNode())
2527       OpVal = N->getOperand(i);
2528     else if (OpVal != N->getOperand(i))
2529       return SDValue();
2530   }
2531 
2532   if (!OpVal.getNode()) return SDValue();  // All UNDEF: use implicit def.
2533 
2534   unsigned ValSizeInBytes = EltSize;
2535   uint64_t Value = 0;
2536   if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(OpVal)) {
2537     Value = CN->getZExtValue();
2538   } else if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(OpVal)) {
2539     assert(CN->getValueType(0) == MVT::f32 && "Only one legal FP vector type!");
2540     Value = FloatToBits(CN->getValueAPF().convertToFloat());
2541   }
2542 
2543   // If the splat value is larger than the element value, then we can never do
2544   // this splat.  The only case that we could fit the replicated bits into our
2545   // immediate field for would be zero, and we prefer to use vxor for it.
2546   if (ValSizeInBytes < ByteSize) return SDValue();
2547 
2548   // If the element value is larger than the splat value, check if it consists
2549   // of a repeated bit pattern of size ByteSize.
2550   if (!APInt(ValSizeInBytes * 8, Value).isSplat(ByteSize * 8))
2551     return SDValue();
2552 
2553   // Properly sign extend the value.
2554   int MaskVal = SignExtend32(Value, ByteSize * 8);
2555 
2556   // If this is zero, don't match, zero matches ISD::isBuildVectorAllZeros.
2557   if (MaskVal == 0) return SDValue();
2558 
2559   // Finally, if this value fits in a 5 bit sext field, return it
2560   if (SignExtend32<5>(MaskVal) == MaskVal)
2561     return DAG.getTargetConstant(MaskVal, SDLoc(N), MVT::i32);
2562   return SDValue();
2563 }
2564 
2565 //===----------------------------------------------------------------------===//
2566 //  Addressing Mode Selection
2567 //===----------------------------------------------------------------------===//
2568 
2569 /// isIntS16Immediate - This method tests to see if the node is either a 32-bit
2570 /// or 64-bit immediate, and if the value can be accurately represented as a
2571 /// sign extension from a 16-bit value.  If so, this returns true and the
2572 /// immediate.
2573 bool llvm::isIntS16Immediate(SDNode *N, int16_t &Imm) {
2574   if (!isa<ConstantSDNode>(N))
2575     return false;
2576 
2577   Imm = (int16_t)cast<ConstantSDNode>(N)->getZExtValue();
2578   if (N->getValueType(0) == MVT::i32)
2579     return Imm == (int32_t)cast<ConstantSDNode>(N)->getZExtValue();
2580   else
2581     return Imm == (int64_t)cast<ConstantSDNode>(N)->getZExtValue();
2582 }
2583 bool llvm::isIntS16Immediate(SDValue Op, int16_t &Imm) {
2584   return isIntS16Immediate(Op.getNode(), Imm);
2585 }
2586 
2587 /// Used when computing address flags for selecting loads and stores.
2588 /// If we have an OR, check if the LHS and RHS are provably disjoint.
2589 /// An OR of two provably disjoint values is equivalent to an ADD.
2590 /// Most PPC load/store instructions compute the effective address as a sum,
2591 /// so doing this conversion is useful.
2592 static bool provablyDisjointOr(SelectionDAG &DAG, const SDValue &N) {
2593   if (N.getOpcode() != ISD::OR)
2594     return false;
2595   KnownBits LHSKnown = DAG.computeKnownBits(N.getOperand(0));
2596   if (!LHSKnown.Zero.getBoolValue())
2597     return false;
2598   KnownBits RHSKnown = DAG.computeKnownBits(N.getOperand(1));
2599   return (~(LHSKnown.Zero | RHSKnown.Zero) == 0);
2600 }
2601 
2602 /// SelectAddressEVXRegReg - Given the specified address, check to see if it can
2603 /// be represented as an indexed [r+r] operation.
2604 bool PPCTargetLowering::SelectAddressEVXRegReg(SDValue N, SDValue &Base,
2605                                                SDValue &Index,
2606                                                SelectionDAG &DAG) const {
2607   for (SDNode *U : N->uses()) {
2608     if (MemSDNode *Memop = dyn_cast<MemSDNode>(U)) {
2609       if (Memop->getMemoryVT() == MVT::f64) {
2610           Base = N.getOperand(0);
2611           Index = N.getOperand(1);
2612           return true;
2613       }
2614     }
2615   }
2616   return false;
2617 }
2618 
2619 /// isIntS34Immediate - This method tests if value of node given can be
2620 /// accurately represented as a sign extension from a 34-bit value.  If so,
2621 /// this returns true and the immediate.
2622 bool llvm::isIntS34Immediate(SDNode *N, int64_t &Imm) {
2623   if (!isa<ConstantSDNode>(N))
2624     return false;
2625 
2626   Imm = (int64_t)cast<ConstantSDNode>(N)->getZExtValue();
2627   return isInt<34>(Imm);
2628 }
2629 bool llvm::isIntS34Immediate(SDValue Op, int64_t &Imm) {
2630   return isIntS34Immediate(Op.getNode(), Imm);
2631 }
2632 
2633 /// SelectAddressRegReg - Given the specified addressed, check to see if it
2634 /// can be represented as an indexed [r+r] operation.  Returns false if it
2635 /// can be more efficiently represented as [r+imm]. If \p EncodingAlignment is
2636 /// non-zero and N can be represented by a base register plus a signed 16-bit
2637 /// displacement, make a more precise judgement by checking (displacement % \p
2638 /// EncodingAlignment).
2639 bool PPCTargetLowering::SelectAddressRegReg(
2640     SDValue N, SDValue &Base, SDValue &Index, SelectionDAG &DAG,
2641     MaybeAlign EncodingAlignment) const {
2642   // If we have a PC Relative target flag don't select as [reg+reg]. It will be
2643   // a [pc+imm].
2644   if (SelectAddressPCRel(N, Base))
2645     return false;
2646 
2647   int16_t Imm = 0;
2648   if (N.getOpcode() == ISD::ADD) {
2649     // Is there any SPE load/store (f64), which can't handle 16bit offset?
2650     // SPE load/store can only handle 8-bit offsets.
2651     if (hasSPE() && SelectAddressEVXRegReg(N, Base, Index, DAG))
2652         return true;
2653     if (isIntS16Immediate(N.getOperand(1), Imm) &&
2654         (!EncodingAlignment || isAligned(*EncodingAlignment, Imm)))
2655       return false; // r+i
2656     if (N.getOperand(1).getOpcode() == PPCISD::Lo)
2657       return false;    // r+i
2658 
2659     Base = N.getOperand(0);
2660     Index = N.getOperand(1);
2661     return true;
2662   } else if (N.getOpcode() == ISD::OR) {
2663     if (isIntS16Immediate(N.getOperand(1), Imm) &&
2664         (!EncodingAlignment || isAligned(*EncodingAlignment, Imm)))
2665       return false; // r+i can fold it if we can.
2666 
2667     // If this is an or of disjoint bitfields, we can codegen this as an add
2668     // (for better address arithmetic) if the LHS and RHS of the OR are provably
2669     // disjoint.
2670     KnownBits LHSKnown = DAG.computeKnownBits(N.getOperand(0));
2671 
2672     if (LHSKnown.Zero.getBoolValue()) {
2673       KnownBits RHSKnown = DAG.computeKnownBits(N.getOperand(1));
2674       // If all of the bits are known zero on the LHS or RHS, the add won't
2675       // carry.
2676       if (~(LHSKnown.Zero | RHSKnown.Zero) == 0) {
2677         Base = N.getOperand(0);
2678         Index = N.getOperand(1);
2679         return true;
2680       }
2681     }
2682   }
2683 
2684   return false;
2685 }
2686 
2687 // If we happen to be doing an i64 load or store into a stack slot that has
2688 // less than a 4-byte alignment, then the frame-index elimination may need to
2689 // use an indexed load or store instruction (because the offset may not be a
2690 // multiple of 4). The extra register needed to hold the offset comes from the
2691 // register scavenger, and it is possible that the scavenger will need to use
2692 // an emergency spill slot. As a result, we need to make sure that a spill slot
2693 // is allocated when doing an i64 load/store into a less-than-4-byte-aligned
2694 // stack slot.
2695 static void fixupFuncForFI(SelectionDAG &DAG, int FrameIdx, EVT VT) {
2696   // FIXME: This does not handle the LWA case.
2697   if (VT != MVT::i64)
2698     return;
2699 
2700   // NOTE: We'll exclude negative FIs here, which come from argument
2701   // lowering, because there are no known test cases triggering this problem
2702   // using packed structures (or similar). We can remove this exclusion if
2703   // we find such a test case. The reason why this is so test-case driven is
2704   // because this entire 'fixup' is only to prevent crashes (from the
2705   // register scavenger) on not-really-valid inputs. For example, if we have:
2706   //   %a = alloca i1
2707   //   %b = bitcast i1* %a to i64*
2708   //   store i64* a, i64 b
2709   // then the store should really be marked as 'align 1', but is not. If it
2710   // were marked as 'align 1' then the indexed form would have been
2711   // instruction-selected initially, and the problem this 'fixup' is preventing
2712   // won't happen regardless.
2713   if (FrameIdx < 0)
2714     return;
2715 
2716   MachineFunction &MF = DAG.getMachineFunction();
2717   MachineFrameInfo &MFI = MF.getFrameInfo();
2718 
2719   if (MFI.getObjectAlign(FrameIdx) >= Align(4))
2720     return;
2721 
2722   PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
2723   FuncInfo->setHasNonRISpills();
2724 }
2725 
2726 /// Returns true if the address N can be represented by a base register plus
2727 /// a signed 16-bit displacement [r+imm], and if it is not better
2728 /// represented as reg+reg.  If \p EncodingAlignment is non-zero, only accept
2729 /// displacements that are multiples of that value.
2730 bool PPCTargetLowering::SelectAddressRegImm(
2731     SDValue N, SDValue &Disp, SDValue &Base, SelectionDAG &DAG,
2732     MaybeAlign EncodingAlignment) const {
2733   // FIXME dl should come from parent load or store, not from address
2734   SDLoc dl(N);
2735 
2736   // If we have a PC Relative target flag don't select as [reg+imm]. It will be
2737   // a [pc+imm].
2738   if (SelectAddressPCRel(N, Base))
2739     return false;
2740 
2741   // If this can be more profitably realized as r+r, fail.
2742   if (SelectAddressRegReg(N, Disp, Base, DAG, EncodingAlignment))
2743     return false;
2744 
2745   if (N.getOpcode() == ISD::ADD) {
2746     int16_t imm = 0;
2747     if (isIntS16Immediate(N.getOperand(1), imm) &&
2748         (!EncodingAlignment || isAligned(*EncodingAlignment, imm))) {
2749       Disp = DAG.getTargetConstant(imm, dl, N.getValueType());
2750       if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N.getOperand(0))) {
2751         Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
2752         fixupFuncForFI(DAG, FI->getIndex(), N.getValueType());
2753       } else {
2754         Base = N.getOperand(0);
2755       }
2756       return true; // [r+i]
2757     } else if (N.getOperand(1).getOpcode() == PPCISD::Lo) {
2758       // Match LOAD (ADD (X, Lo(G))).
2759       assert(!cast<ConstantSDNode>(N.getOperand(1).getOperand(1))->getZExtValue()
2760              && "Cannot handle constant offsets yet!");
2761       Disp = N.getOperand(1).getOperand(0);  // The global address.
2762       assert(Disp.getOpcode() == ISD::TargetGlobalAddress ||
2763              Disp.getOpcode() == ISD::TargetGlobalTLSAddress ||
2764              Disp.getOpcode() == ISD::TargetConstantPool ||
2765              Disp.getOpcode() == ISD::TargetJumpTable);
2766       Base = N.getOperand(0);
2767       return true;  // [&g+r]
2768     }
2769   } else if (N.getOpcode() == ISD::OR) {
2770     int16_t imm = 0;
2771     if (isIntS16Immediate(N.getOperand(1), imm) &&
2772         (!EncodingAlignment || isAligned(*EncodingAlignment, imm))) {
2773       // If this is an or of disjoint bitfields, we can codegen this as an add
2774       // (for better address arithmetic) if the LHS and RHS of the OR are
2775       // provably disjoint.
2776       KnownBits LHSKnown = DAG.computeKnownBits(N.getOperand(0));
2777 
2778       if ((LHSKnown.Zero.getZExtValue()|~(uint64_t)imm) == ~0ULL) {
2779         // If all of the bits are known zero on the LHS or RHS, the add won't
2780         // carry.
2781         if (FrameIndexSDNode *FI =
2782               dyn_cast<FrameIndexSDNode>(N.getOperand(0))) {
2783           Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
2784           fixupFuncForFI(DAG, FI->getIndex(), N.getValueType());
2785         } else {
2786           Base = N.getOperand(0);
2787         }
2788         Disp = DAG.getTargetConstant(imm, dl, N.getValueType());
2789         return true;
2790       }
2791     }
2792   } else if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N)) {
2793     // Loading from a constant address.
2794 
2795     // If this address fits entirely in a 16-bit sext immediate field, codegen
2796     // this as "d, 0"
2797     int16_t Imm;
2798     if (isIntS16Immediate(CN, Imm) &&
2799         (!EncodingAlignment || isAligned(*EncodingAlignment, Imm))) {
2800       Disp = DAG.getTargetConstant(Imm, dl, CN->getValueType(0));
2801       Base = DAG.getRegister(Subtarget.isPPC64() ? PPC::ZERO8 : PPC::ZERO,
2802                              CN->getValueType(0));
2803       return true;
2804     }
2805 
2806     // Handle 32-bit sext immediates with LIS + addr mode.
2807     if ((CN->getValueType(0) == MVT::i32 ||
2808          (int64_t)CN->getZExtValue() == (int)CN->getZExtValue()) &&
2809         (!EncodingAlignment ||
2810          isAligned(*EncodingAlignment, CN->getZExtValue()))) {
2811       int Addr = (int)CN->getZExtValue();
2812 
2813       // Otherwise, break this down into an LIS + disp.
2814       Disp = DAG.getTargetConstant((short)Addr, dl, MVT::i32);
2815 
2816       Base = DAG.getTargetConstant((Addr - (signed short)Addr) >> 16, dl,
2817                                    MVT::i32);
2818       unsigned Opc = CN->getValueType(0) == MVT::i32 ? PPC::LIS : PPC::LIS8;
2819       Base = SDValue(DAG.getMachineNode(Opc, dl, CN->getValueType(0), Base), 0);
2820       return true;
2821     }
2822   }
2823 
2824   Disp = DAG.getTargetConstant(0, dl, getPointerTy(DAG.getDataLayout()));
2825   if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N)) {
2826     Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
2827     fixupFuncForFI(DAG, FI->getIndex(), N.getValueType());
2828   } else
2829     Base = N;
2830   return true;      // [r+0]
2831 }
2832 
2833 /// Similar to the 16-bit case but for instructions that take a 34-bit
2834 /// displacement field (prefixed loads/stores).
2835 bool PPCTargetLowering::SelectAddressRegImm34(SDValue N, SDValue &Disp,
2836                                               SDValue &Base,
2837                                               SelectionDAG &DAG) const {
2838   // Only on 64-bit targets.
2839   if (N.getValueType() != MVT::i64)
2840     return false;
2841 
2842   SDLoc dl(N);
2843   int64_t Imm = 0;
2844 
2845   if (N.getOpcode() == ISD::ADD) {
2846     if (!isIntS34Immediate(N.getOperand(1), Imm))
2847       return false;
2848     Disp = DAG.getTargetConstant(Imm, dl, N.getValueType());
2849     if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N.getOperand(0)))
2850       Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
2851     else
2852       Base = N.getOperand(0);
2853     return true;
2854   }
2855 
2856   if (N.getOpcode() == ISD::OR) {
2857     if (!isIntS34Immediate(N.getOperand(1), Imm))
2858       return false;
2859     // If this is an or of disjoint bitfields, we can codegen this as an add
2860     // (for better address arithmetic) if the LHS and RHS of the OR are
2861     // provably disjoint.
2862     KnownBits LHSKnown = DAG.computeKnownBits(N.getOperand(0));
2863     if ((LHSKnown.Zero.getZExtValue() | ~(uint64_t)Imm) != ~0ULL)
2864       return false;
2865     if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N.getOperand(0)))
2866       Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
2867     else
2868       Base = N.getOperand(0);
2869     Disp = DAG.getTargetConstant(Imm, dl, N.getValueType());
2870     return true;
2871   }
2872 
2873   if (isIntS34Immediate(N, Imm)) { // If the address is a 34-bit const.
2874     Disp = DAG.getTargetConstant(Imm, dl, N.getValueType());
2875     Base = DAG.getRegister(PPC::ZERO8, N.getValueType());
2876     return true;
2877   }
2878 
2879   return false;
2880 }
2881 
2882 /// SelectAddressRegRegOnly - Given the specified addressed, force it to be
2883 /// represented as an indexed [r+r] operation.
2884 bool PPCTargetLowering::SelectAddressRegRegOnly(SDValue N, SDValue &Base,
2885                                                 SDValue &Index,
2886                                                 SelectionDAG &DAG) const {
2887   // Check to see if we can easily represent this as an [r+r] address.  This
2888   // will fail if it thinks that the address is more profitably represented as
2889   // reg+imm, e.g. where imm = 0.
2890   if (SelectAddressRegReg(N, Base, Index, DAG))
2891     return true;
2892 
2893   // If the address is the result of an add, we will utilize the fact that the
2894   // address calculation includes an implicit add.  However, we can reduce
2895   // register pressure if we do not materialize a constant just for use as the
2896   // index register.  We only get rid of the add if it is not an add of a
2897   // value and a 16-bit signed constant and both have a single use.
2898   int16_t imm = 0;
2899   if (N.getOpcode() == ISD::ADD &&
2900       (!isIntS16Immediate(N.getOperand(1), imm) ||
2901        !N.getOperand(1).hasOneUse() || !N.getOperand(0).hasOneUse())) {
2902     Base = N.getOperand(0);
2903     Index = N.getOperand(1);
2904     return true;
2905   }
2906 
2907   // Otherwise, do it the hard way, using R0 as the base register.
2908   Base = DAG.getRegister(Subtarget.isPPC64() ? PPC::ZERO8 : PPC::ZERO,
2909                          N.getValueType());
2910   Index = N;
2911   return true;
2912 }
2913 
2914 template <typename Ty> static bool isValidPCRelNode(SDValue N) {
2915   Ty *PCRelCand = dyn_cast<Ty>(N);
2916   return PCRelCand && (PCRelCand->getTargetFlags() & PPCII::MO_PCREL_FLAG);
2917 }
2918 
2919 /// Returns true if this address is a PC Relative address.
2920 /// PC Relative addresses are marked with the flag PPCII::MO_PCREL_FLAG
2921 /// or if the node opcode is PPCISD::MAT_PCREL_ADDR.
2922 bool PPCTargetLowering::SelectAddressPCRel(SDValue N, SDValue &Base) const {
2923   // This is a materialize PC Relative node. Always select this as PC Relative.
2924   Base = N;
2925   if (N.getOpcode() == PPCISD::MAT_PCREL_ADDR)
2926     return true;
2927   if (isValidPCRelNode<ConstantPoolSDNode>(N) ||
2928       isValidPCRelNode<GlobalAddressSDNode>(N) ||
2929       isValidPCRelNode<JumpTableSDNode>(N) ||
2930       isValidPCRelNode<BlockAddressSDNode>(N))
2931     return true;
2932   return false;
2933 }
2934 
2935 /// Returns true if we should use a direct load into vector instruction
2936 /// (such as lxsd or lfd), instead of a load into gpr + direct move sequence.
2937 static bool usePartialVectorLoads(SDNode *N, const PPCSubtarget& ST) {
2938 
2939   // If there are any other uses other than scalar to vector, then we should
2940   // keep it as a scalar load -> direct move pattern to prevent multiple
2941   // loads.
2942   LoadSDNode *LD = dyn_cast<LoadSDNode>(N);
2943   if (!LD)
2944     return false;
2945 
2946   EVT MemVT = LD->getMemoryVT();
2947   if (!MemVT.isSimple())
2948     return false;
2949   switch(MemVT.getSimpleVT().SimpleTy) {
2950   case MVT::i64:
2951     break;
2952   case MVT::i32:
2953     if (!ST.hasP8Vector())
2954       return false;
2955     break;
2956   case MVT::i16:
2957   case MVT::i8:
2958     if (!ST.hasP9Vector())
2959       return false;
2960     break;
2961   default:
2962     return false;
2963   }
2964 
2965   SDValue LoadedVal(N, 0);
2966   if (!LoadedVal.hasOneUse())
2967     return false;
2968 
2969   for (SDNode::use_iterator UI = LD->use_begin(), UE = LD->use_end();
2970        UI != UE; ++UI)
2971     if (UI.getUse().get().getResNo() == 0 &&
2972         UI->getOpcode() != ISD::SCALAR_TO_VECTOR &&
2973         UI->getOpcode() != PPCISD::SCALAR_TO_VECTOR_PERMUTED)
2974       return false;
2975 
2976   return true;
2977 }
2978 
2979 /// getPreIndexedAddressParts - returns true by value, base pointer and
2980 /// offset pointer and addressing mode by reference if the node's address
2981 /// can be legally represented as pre-indexed load / store address.
2982 bool PPCTargetLowering::getPreIndexedAddressParts(SDNode *N, SDValue &Base,
2983                                                   SDValue &Offset,
2984                                                   ISD::MemIndexedMode &AM,
2985                                                   SelectionDAG &DAG) const {
2986   if (DisablePPCPreinc) return false;
2987 
2988   bool isLoad = true;
2989   SDValue Ptr;
2990   EVT VT;
2991   Align Alignment;
2992   if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
2993     Ptr = LD->getBasePtr();
2994     VT = LD->getMemoryVT();
2995     Alignment = LD->getAlign();
2996   } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
2997     Ptr = ST->getBasePtr();
2998     VT  = ST->getMemoryVT();
2999     Alignment = ST->getAlign();
3000     isLoad = false;
3001   } else
3002     return false;
3003 
3004   // Do not generate pre-inc forms for specific loads that feed scalar_to_vector
3005   // instructions because we can fold these into a more efficient instruction
3006   // instead, (such as LXSD).
3007   if (isLoad && usePartialVectorLoads(N, Subtarget)) {
3008     return false;
3009   }
3010 
3011   // PowerPC doesn't have preinc load/store instructions for vectors
3012   if (VT.isVector())
3013     return false;
3014 
3015   if (SelectAddressRegReg(Ptr, Base, Offset, DAG)) {
3016     // Common code will reject creating a pre-inc form if the base pointer
3017     // is a frame index, or if N is a store and the base pointer is either
3018     // the same as or a predecessor of the value being stored.  Check for
3019     // those situations here, and try with swapped Base/Offset instead.
3020     bool Swap = false;
3021 
3022     if (isa<FrameIndexSDNode>(Base) || isa<RegisterSDNode>(Base))
3023       Swap = true;
3024     else if (!isLoad) {
3025       SDValue Val = cast<StoreSDNode>(N)->getValue();
3026       if (Val == Base || Base.getNode()->isPredecessorOf(Val.getNode()))
3027         Swap = true;
3028     }
3029 
3030     if (Swap)
3031       std::swap(Base, Offset);
3032 
3033     AM = ISD::PRE_INC;
3034     return true;
3035   }
3036 
3037   // LDU/STU can only handle immediates that are a multiple of 4.
3038   if (VT != MVT::i64) {
3039     if (!SelectAddressRegImm(Ptr, Offset, Base, DAG, None))
3040       return false;
3041   } else {
3042     // LDU/STU need an address with at least 4-byte alignment.
3043     if (Alignment < Align(4))
3044       return false;
3045 
3046     if (!SelectAddressRegImm(Ptr, Offset, Base, DAG, Align(4)))
3047       return false;
3048   }
3049 
3050   if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
3051     // PPC64 doesn't have lwau, but it does have lwaux.  Reject preinc load of
3052     // sext i32 to i64 when addr mode is r+i.
3053     if (LD->getValueType(0) == MVT::i64 && LD->getMemoryVT() == MVT::i32 &&
3054         LD->getExtensionType() == ISD::SEXTLOAD &&
3055         isa<ConstantSDNode>(Offset))
3056       return false;
3057   }
3058 
3059   AM = ISD::PRE_INC;
3060   return true;
3061 }
3062 
3063 //===----------------------------------------------------------------------===//
3064 //  LowerOperation implementation
3065 //===----------------------------------------------------------------------===//
3066 
3067 /// Return true if we should reference labels using a PICBase, set the HiOpFlags
3068 /// and LoOpFlags to the target MO flags.
3069 static void getLabelAccessInfo(bool IsPIC, const PPCSubtarget &Subtarget,
3070                                unsigned &HiOpFlags, unsigned &LoOpFlags,
3071                                const GlobalValue *GV = nullptr) {
3072   HiOpFlags = PPCII::MO_HA;
3073   LoOpFlags = PPCII::MO_LO;
3074 
3075   // Don't use the pic base if not in PIC relocation model.
3076   if (IsPIC) {
3077     HiOpFlags |= PPCII::MO_PIC_FLAG;
3078     LoOpFlags |= PPCII::MO_PIC_FLAG;
3079   }
3080 }
3081 
3082 static SDValue LowerLabelRef(SDValue HiPart, SDValue LoPart, bool isPIC,
3083                              SelectionDAG &DAG) {
3084   SDLoc DL(HiPart);
3085   EVT PtrVT = HiPart.getValueType();
3086   SDValue Zero = DAG.getConstant(0, DL, PtrVT);
3087 
3088   SDValue Hi = DAG.getNode(PPCISD::Hi, DL, PtrVT, HiPart, Zero);
3089   SDValue Lo = DAG.getNode(PPCISD::Lo, DL, PtrVT, LoPart, Zero);
3090 
3091   // With PIC, the first instruction is actually "GR+hi(&G)".
3092   if (isPIC)
3093     Hi = DAG.getNode(ISD::ADD, DL, PtrVT,
3094                      DAG.getNode(PPCISD::GlobalBaseReg, DL, PtrVT), Hi);
3095 
3096   // Generate non-pic code that has direct accesses to the constant pool.
3097   // The address of the global is just (hi(&g)+lo(&g)).
3098   return DAG.getNode(ISD::ADD, DL, PtrVT, Hi, Lo);
3099 }
3100 
3101 static void setUsesTOCBasePtr(MachineFunction &MF) {
3102   PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
3103   FuncInfo->setUsesTOCBasePtr();
3104 }
3105 
3106 static void setUsesTOCBasePtr(SelectionDAG &DAG) {
3107   setUsesTOCBasePtr(DAG.getMachineFunction());
3108 }
3109 
3110 SDValue PPCTargetLowering::getTOCEntry(SelectionDAG &DAG, const SDLoc &dl,
3111                                        SDValue GA) const {
3112   const bool Is64Bit = Subtarget.isPPC64();
3113   EVT VT = Is64Bit ? MVT::i64 : MVT::i32;
3114   SDValue Reg = Is64Bit ? DAG.getRegister(PPC::X2, VT)
3115                         : Subtarget.isAIXABI()
3116                               ? DAG.getRegister(PPC::R2, VT)
3117                               : DAG.getNode(PPCISD::GlobalBaseReg, dl, VT);
3118   SDValue Ops[] = { GA, Reg };
3119   return DAG.getMemIntrinsicNode(
3120       PPCISD::TOC_ENTRY, dl, DAG.getVTList(VT, MVT::Other), Ops, VT,
3121       MachinePointerInfo::getGOT(DAG.getMachineFunction()), None,
3122       MachineMemOperand::MOLoad);
3123 }
3124 
3125 SDValue PPCTargetLowering::LowerConstantPool(SDValue Op,
3126                                              SelectionDAG &DAG) const {
3127   EVT PtrVT = Op.getValueType();
3128   ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op);
3129   const Constant *C = CP->getConstVal();
3130 
3131   // 64-bit SVR4 ABI and AIX ABI code are always position-independent.
3132   // The actual address of the GlobalValue is stored in the TOC.
3133   if (Subtarget.is64BitELFABI() || Subtarget.isAIXABI()) {
3134     if (Subtarget.isUsingPCRelativeCalls()) {
3135       SDLoc DL(CP);
3136       EVT Ty = getPointerTy(DAG.getDataLayout());
3137       SDValue ConstPool = DAG.getTargetConstantPool(
3138           C, Ty, CP->getAlign(), CP->getOffset(), PPCII::MO_PCREL_FLAG);
3139       return DAG.getNode(PPCISD::MAT_PCREL_ADDR, DL, Ty, ConstPool);
3140     }
3141     setUsesTOCBasePtr(DAG);
3142     SDValue GA = DAG.getTargetConstantPool(C, PtrVT, CP->getAlign(), 0);
3143     return getTOCEntry(DAG, SDLoc(CP), GA);
3144   }
3145 
3146   unsigned MOHiFlag, MOLoFlag;
3147   bool IsPIC = isPositionIndependent();
3148   getLabelAccessInfo(IsPIC, Subtarget, MOHiFlag, MOLoFlag);
3149 
3150   if (IsPIC && Subtarget.isSVR4ABI()) {
3151     SDValue GA =
3152         DAG.getTargetConstantPool(C, PtrVT, CP->getAlign(), PPCII::MO_PIC_FLAG);
3153     return getTOCEntry(DAG, SDLoc(CP), GA);
3154   }
3155 
3156   SDValue CPIHi =
3157       DAG.getTargetConstantPool(C, PtrVT, CP->getAlign(), 0, MOHiFlag);
3158   SDValue CPILo =
3159       DAG.getTargetConstantPool(C, PtrVT, CP->getAlign(), 0, MOLoFlag);
3160   return LowerLabelRef(CPIHi, CPILo, IsPIC, DAG);
3161 }
3162 
3163 // For 64-bit PowerPC, prefer the more compact relative encodings.
3164 // This trades 32 bits per jump table entry for one or two instructions
3165 // on the jump site.
3166 unsigned PPCTargetLowering::getJumpTableEncoding() const {
3167   if (isJumpTableRelative())
3168     return MachineJumpTableInfo::EK_LabelDifference32;
3169 
3170   return TargetLowering::getJumpTableEncoding();
3171 }
3172 
3173 bool PPCTargetLowering::isJumpTableRelative() const {
3174   if (UseAbsoluteJumpTables)
3175     return false;
3176   if (Subtarget.isPPC64() || Subtarget.isAIXABI())
3177     return true;
3178   return TargetLowering::isJumpTableRelative();
3179 }
3180 
3181 SDValue PPCTargetLowering::getPICJumpTableRelocBase(SDValue Table,
3182                                                     SelectionDAG &DAG) const {
3183   if (!Subtarget.isPPC64() || Subtarget.isAIXABI())
3184     return TargetLowering::getPICJumpTableRelocBase(Table, DAG);
3185 
3186   switch (getTargetMachine().getCodeModel()) {
3187   case CodeModel::Small:
3188   case CodeModel::Medium:
3189     return TargetLowering::getPICJumpTableRelocBase(Table, DAG);
3190   default:
3191     return DAG.getNode(PPCISD::GlobalBaseReg, SDLoc(),
3192                        getPointerTy(DAG.getDataLayout()));
3193   }
3194 }
3195 
3196 const MCExpr *
3197 PPCTargetLowering::getPICJumpTableRelocBaseExpr(const MachineFunction *MF,
3198                                                 unsigned JTI,
3199                                                 MCContext &Ctx) const {
3200   if (!Subtarget.isPPC64() || Subtarget.isAIXABI())
3201     return TargetLowering::getPICJumpTableRelocBaseExpr(MF, JTI, Ctx);
3202 
3203   switch (getTargetMachine().getCodeModel()) {
3204   case CodeModel::Small:
3205   case CodeModel::Medium:
3206     return TargetLowering::getPICJumpTableRelocBaseExpr(MF, JTI, Ctx);
3207   default:
3208     return MCSymbolRefExpr::create(MF->getPICBaseSymbol(), Ctx);
3209   }
3210 }
3211 
3212 SDValue PPCTargetLowering::LowerJumpTable(SDValue Op, SelectionDAG &DAG) const {
3213   EVT PtrVT = Op.getValueType();
3214   JumpTableSDNode *JT = cast<JumpTableSDNode>(Op);
3215 
3216   // isUsingPCRelativeCalls() returns true when PCRelative is enabled
3217   if (Subtarget.isUsingPCRelativeCalls()) {
3218     SDLoc DL(JT);
3219     EVT Ty = getPointerTy(DAG.getDataLayout());
3220     SDValue GA =
3221         DAG.getTargetJumpTable(JT->getIndex(), Ty, PPCII::MO_PCREL_FLAG);
3222     SDValue MatAddr = DAG.getNode(PPCISD::MAT_PCREL_ADDR, DL, Ty, GA);
3223     return MatAddr;
3224   }
3225 
3226   // 64-bit SVR4 ABI and AIX ABI code are always position-independent.
3227   // The actual address of the GlobalValue is stored in the TOC.
3228   if (Subtarget.is64BitELFABI() || Subtarget.isAIXABI()) {
3229     setUsesTOCBasePtr(DAG);
3230     SDValue GA = DAG.getTargetJumpTable(JT->getIndex(), PtrVT);
3231     return getTOCEntry(DAG, SDLoc(JT), GA);
3232   }
3233 
3234   unsigned MOHiFlag, MOLoFlag;
3235   bool IsPIC = isPositionIndependent();
3236   getLabelAccessInfo(IsPIC, Subtarget, MOHiFlag, MOLoFlag);
3237 
3238   if (IsPIC && Subtarget.isSVR4ABI()) {
3239     SDValue GA = DAG.getTargetJumpTable(JT->getIndex(), PtrVT,
3240                                         PPCII::MO_PIC_FLAG);
3241     return getTOCEntry(DAG, SDLoc(GA), GA);
3242   }
3243 
3244   SDValue JTIHi = DAG.getTargetJumpTable(JT->getIndex(), PtrVT, MOHiFlag);
3245   SDValue JTILo = DAG.getTargetJumpTable(JT->getIndex(), PtrVT, MOLoFlag);
3246   return LowerLabelRef(JTIHi, JTILo, IsPIC, DAG);
3247 }
3248 
3249 SDValue PPCTargetLowering::LowerBlockAddress(SDValue Op,
3250                                              SelectionDAG &DAG) const {
3251   EVT PtrVT = Op.getValueType();
3252   BlockAddressSDNode *BASDN = cast<BlockAddressSDNode>(Op);
3253   const BlockAddress *BA = BASDN->getBlockAddress();
3254 
3255   // isUsingPCRelativeCalls() returns true when PCRelative is enabled
3256   if (Subtarget.isUsingPCRelativeCalls()) {
3257     SDLoc DL(BASDN);
3258     EVT Ty = getPointerTy(DAG.getDataLayout());
3259     SDValue GA = DAG.getTargetBlockAddress(BA, Ty, BASDN->getOffset(),
3260                                            PPCII::MO_PCREL_FLAG);
3261     SDValue MatAddr = DAG.getNode(PPCISD::MAT_PCREL_ADDR, DL, Ty, GA);
3262     return MatAddr;
3263   }
3264 
3265   // 64-bit SVR4 ABI and AIX ABI code are always position-independent.
3266   // The actual BlockAddress is stored in the TOC.
3267   if (Subtarget.is64BitELFABI() || Subtarget.isAIXABI()) {
3268     setUsesTOCBasePtr(DAG);
3269     SDValue GA = DAG.getTargetBlockAddress(BA, PtrVT, BASDN->getOffset());
3270     return getTOCEntry(DAG, SDLoc(BASDN), GA);
3271   }
3272 
3273   // 32-bit position-independent ELF stores the BlockAddress in the .got.
3274   if (Subtarget.is32BitELFABI() && isPositionIndependent())
3275     return getTOCEntry(
3276         DAG, SDLoc(BASDN),
3277         DAG.getTargetBlockAddress(BA, PtrVT, BASDN->getOffset()));
3278 
3279   unsigned MOHiFlag, MOLoFlag;
3280   bool IsPIC = isPositionIndependent();
3281   getLabelAccessInfo(IsPIC, Subtarget, MOHiFlag, MOLoFlag);
3282   SDValue TgtBAHi = DAG.getTargetBlockAddress(BA, PtrVT, 0, MOHiFlag);
3283   SDValue TgtBALo = DAG.getTargetBlockAddress(BA, PtrVT, 0, MOLoFlag);
3284   return LowerLabelRef(TgtBAHi, TgtBALo, IsPIC, DAG);
3285 }
3286 
3287 SDValue PPCTargetLowering::LowerGlobalTLSAddress(SDValue Op,
3288                                               SelectionDAG &DAG) const {
3289   if (Subtarget.isAIXABI())
3290     return LowerGlobalTLSAddressAIX(Op, DAG);
3291 
3292   return LowerGlobalTLSAddressLinux(Op, DAG);
3293 }
3294 
3295 SDValue PPCTargetLowering::LowerGlobalTLSAddressAIX(SDValue Op,
3296                                                     SelectionDAG &DAG) const {
3297   GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op);
3298 
3299   if (DAG.getTarget().useEmulatedTLS())
3300     report_fatal_error("Emulated TLS is not yet supported on AIX");
3301 
3302   SDLoc dl(GA);
3303   const GlobalValue *GV = GA->getGlobal();
3304   EVT PtrVT = getPointerTy(DAG.getDataLayout());
3305 
3306   // The general-dynamic model is the only access model supported for now, so
3307   // all the GlobalTLSAddress nodes are lowered with this model.
3308   // We need to generate two TOC entries, one for the variable offset, one for
3309   // the region handle. The global address for the TOC entry of the region
3310   // handle is created with the MO_TLSGDM_FLAG flag and the global address
3311   // for the TOC entry of the variable offset is created with MO_TLSGD_FLAG.
3312   SDValue VariableOffsetTGA =
3313       DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, PPCII::MO_TLSGD_FLAG);
3314   SDValue RegionHandleTGA =
3315       DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, PPCII::MO_TLSGDM_FLAG);
3316   SDValue VariableOffset = getTOCEntry(DAG, dl, VariableOffsetTGA);
3317   SDValue RegionHandle = getTOCEntry(DAG, dl, RegionHandleTGA);
3318   return DAG.getNode(PPCISD::TLSGD_AIX, dl, PtrVT, VariableOffset,
3319                      RegionHandle);
3320 }
3321 
3322 SDValue PPCTargetLowering::LowerGlobalTLSAddressLinux(SDValue Op,
3323                                                       SelectionDAG &DAG) const {
3324   // FIXME: TLS addresses currently use medium model code sequences,
3325   // which is the most useful form.  Eventually support for small and
3326   // large models could be added if users need it, at the cost of
3327   // additional complexity.
3328   GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op);
3329   if (DAG.getTarget().useEmulatedTLS())
3330     return LowerToTLSEmulatedModel(GA, DAG);
3331 
3332   SDLoc dl(GA);
3333   const GlobalValue *GV = GA->getGlobal();
3334   EVT PtrVT = getPointerTy(DAG.getDataLayout());
3335   bool is64bit = Subtarget.isPPC64();
3336   const Module *M = DAG.getMachineFunction().getFunction().getParent();
3337   PICLevel::Level picLevel = M->getPICLevel();
3338 
3339   const TargetMachine &TM = getTargetMachine();
3340   TLSModel::Model Model = TM.getTLSModel(GV);
3341 
3342   if (Model == TLSModel::LocalExec) {
3343     if (Subtarget.isUsingPCRelativeCalls()) {
3344       SDValue TLSReg = DAG.getRegister(PPC::X13, MVT::i64);
3345       SDValue TGA = DAG.getTargetGlobalAddress(
3346           GV, dl, PtrVT, 0, (PPCII::MO_PCREL_FLAG | PPCII::MO_TPREL_FLAG));
3347       SDValue MatAddr =
3348           DAG.getNode(PPCISD::TLS_LOCAL_EXEC_MAT_ADDR, dl, PtrVT, TGA);
3349       return DAG.getNode(PPCISD::ADD_TLS, dl, PtrVT, TLSReg, MatAddr);
3350     }
3351 
3352     SDValue TGAHi = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0,
3353                                                PPCII::MO_TPREL_HA);
3354     SDValue TGALo = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0,
3355                                                PPCII::MO_TPREL_LO);
3356     SDValue TLSReg = is64bit ? DAG.getRegister(PPC::X13, MVT::i64)
3357                              : DAG.getRegister(PPC::R2, MVT::i32);
3358 
3359     SDValue Hi = DAG.getNode(PPCISD::Hi, dl, PtrVT, TGAHi, TLSReg);
3360     return DAG.getNode(PPCISD::Lo, dl, PtrVT, TGALo, Hi);
3361   }
3362 
3363   if (Model == TLSModel::InitialExec) {
3364     bool IsPCRel = Subtarget.isUsingPCRelativeCalls();
3365     SDValue TGA = DAG.getTargetGlobalAddress(
3366         GV, dl, PtrVT, 0, IsPCRel ? PPCII::MO_GOT_TPREL_PCREL_FLAG : 0);
3367     SDValue TGATLS = DAG.getTargetGlobalAddress(
3368         GV, dl, PtrVT, 0,
3369         IsPCRel ? (PPCII::MO_TLS | PPCII::MO_PCREL_FLAG) : PPCII::MO_TLS);
3370     SDValue TPOffset;
3371     if (IsPCRel) {
3372       SDValue MatPCRel = DAG.getNode(PPCISD::MAT_PCREL_ADDR, dl, PtrVT, TGA);
3373       TPOffset = DAG.getLoad(MVT::i64, dl, DAG.getEntryNode(), MatPCRel,
3374                              MachinePointerInfo());
3375     } else {
3376       SDValue GOTPtr;
3377       if (is64bit) {
3378         setUsesTOCBasePtr(DAG);
3379         SDValue GOTReg = DAG.getRegister(PPC::X2, MVT::i64);
3380         GOTPtr =
3381             DAG.getNode(PPCISD::ADDIS_GOT_TPREL_HA, dl, PtrVT, GOTReg, TGA);
3382       } else {
3383         if (!TM.isPositionIndependent())
3384           GOTPtr = DAG.getNode(PPCISD::PPC32_GOT, dl, PtrVT);
3385         else if (picLevel == PICLevel::SmallPIC)
3386           GOTPtr = DAG.getNode(PPCISD::GlobalBaseReg, dl, PtrVT);
3387         else
3388           GOTPtr = DAG.getNode(PPCISD::PPC32_PICGOT, dl, PtrVT);
3389       }
3390       TPOffset = DAG.getNode(PPCISD::LD_GOT_TPREL_L, dl, PtrVT, TGA, GOTPtr);
3391     }
3392     return DAG.getNode(PPCISD::ADD_TLS, dl, PtrVT, TPOffset, TGATLS);
3393   }
3394 
3395   if (Model == TLSModel::GeneralDynamic) {
3396     if (Subtarget.isUsingPCRelativeCalls()) {
3397       SDValue TGA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0,
3398                                                PPCII::MO_GOT_TLSGD_PCREL_FLAG);
3399       return DAG.getNode(PPCISD::TLS_DYNAMIC_MAT_PCREL_ADDR, dl, PtrVT, TGA);
3400     }
3401 
3402     SDValue TGA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 0);
3403     SDValue GOTPtr;
3404     if (is64bit) {
3405       setUsesTOCBasePtr(DAG);
3406       SDValue GOTReg = DAG.getRegister(PPC::X2, MVT::i64);
3407       GOTPtr = DAG.getNode(PPCISD::ADDIS_TLSGD_HA, dl, PtrVT,
3408                                    GOTReg, TGA);
3409     } else {
3410       if (picLevel == PICLevel::SmallPIC)
3411         GOTPtr = DAG.getNode(PPCISD::GlobalBaseReg, dl, PtrVT);
3412       else
3413         GOTPtr = DAG.getNode(PPCISD::PPC32_PICGOT, dl, PtrVT);
3414     }
3415     return DAG.getNode(PPCISD::ADDI_TLSGD_L_ADDR, dl, PtrVT,
3416                        GOTPtr, TGA, TGA);
3417   }
3418 
3419   if (Model == TLSModel::LocalDynamic) {
3420     if (Subtarget.isUsingPCRelativeCalls()) {
3421       SDValue TGA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0,
3422                                                PPCII::MO_GOT_TLSLD_PCREL_FLAG);
3423       SDValue MatPCRel =
3424           DAG.getNode(PPCISD::TLS_DYNAMIC_MAT_PCREL_ADDR, dl, PtrVT, TGA);
3425       return DAG.getNode(PPCISD::PADDI_DTPREL, dl, PtrVT, MatPCRel, TGA);
3426     }
3427 
3428     SDValue TGA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 0);
3429     SDValue GOTPtr;
3430     if (is64bit) {
3431       setUsesTOCBasePtr(DAG);
3432       SDValue GOTReg = DAG.getRegister(PPC::X2, MVT::i64);
3433       GOTPtr = DAG.getNode(PPCISD::ADDIS_TLSLD_HA, dl, PtrVT,
3434                            GOTReg, TGA);
3435     } else {
3436       if (picLevel == PICLevel::SmallPIC)
3437         GOTPtr = DAG.getNode(PPCISD::GlobalBaseReg, dl, PtrVT);
3438       else
3439         GOTPtr = DAG.getNode(PPCISD::PPC32_PICGOT, dl, PtrVT);
3440     }
3441     SDValue TLSAddr = DAG.getNode(PPCISD::ADDI_TLSLD_L_ADDR, dl,
3442                                   PtrVT, GOTPtr, TGA, TGA);
3443     SDValue DtvOffsetHi = DAG.getNode(PPCISD::ADDIS_DTPREL_HA, dl,
3444                                       PtrVT, TLSAddr, TGA);
3445     return DAG.getNode(PPCISD::ADDI_DTPREL_L, dl, PtrVT, DtvOffsetHi, TGA);
3446   }
3447 
3448   llvm_unreachable("Unknown TLS model!");
3449 }
3450 
3451 SDValue PPCTargetLowering::LowerGlobalAddress(SDValue Op,
3452                                               SelectionDAG &DAG) const {
3453   EVT PtrVT = Op.getValueType();
3454   GlobalAddressSDNode *GSDN = cast<GlobalAddressSDNode>(Op);
3455   SDLoc DL(GSDN);
3456   const GlobalValue *GV = GSDN->getGlobal();
3457 
3458   // 64-bit SVR4 ABI & AIX ABI code is always position-independent.
3459   // The actual address of the GlobalValue is stored in the TOC.
3460   if (Subtarget.is64BitELFABI() || Subtarget.isAIXABI()) {
3461     if (Subtarget.isUsingPCRelativeCalls()) {
3462       EVT Ty = getPointerTy(DAG.getDataLayout());
3463       if (isAccessedAsGotIndirect(Op)) {
3464         SDValue GA = DAG.getTargetGlobalAddress(GV, DL, Ty, GSDN->getOffset(),
3465                                                 PPCII::MO_PCREL_FLAG |
3466                                                     PPCII::MO_GOT_FLAG);
3467         SDValue MatPCRel = DAG.getNode(PPCISD::MAT_PCREL_ADDR, DL, Ty, GA);
3468         SDValue Load = DAG.getLoad(MVT::i64, DL, DAG.getEntryNode(), MatPCRel,
3469                                    MachinePointerInfo());
3470         return Load;
3471       } else {
3472         SDValue GA = DAG.getTargetGlobalAddress(GV, DL, Ty, GSDN->getOffset(),
3473                                                 PPCII::MO_PCREL_FLAG);
3474         return DAG.getNode(PPCISD::MAT_PCREL_ADDR, DL, Ty, GA);
3475       }
3476     }
3477     setUsesTOCBasePtr(DAG);
3478     SDValue GA = DAG.getTargetGlobalAddress(GV, DL, PtrVT, GSDN->getOffset());
3479     return getTOCEntry(DAG, DL, GA);
3480   }
3481 
3482   unsigned MOHiFlag, MOLoFlag;
3483   bool IsPIC = isPositionIndependent();
3484   getLabelAccessInfo(IsPIC, Subtarget, MOHiFlag, MOLoFlag, GV);
3485 
3486   if (IsPIC && Subtarget.isSVR4ABI()) {
3487     SDValue GA = DAG.getTargetGlobalAddress(GV, DL, PtrVT,
3488                                             GSDN->getOffset(),
3489                                             PPCII::MO_PIC_FLAG);
3490     return getTOCEntry(DAG, DL, GA);
3491   }
3492 
3493   SDValue GAHi =
3494     DAG.getTargetGlobalAddress(GV, DL, PtrVT, GSDN->getOffset(), MOHiFlag);
3495   SDValue GALo =
3496     DAG.getTargetGlobalAddress(GV, DL, PtrVT, GSDN->getOffset(), MOLoFlag);
3497 
3498   return LowerLabelRef(GAHi, GALo, IsPIC, DAG);
3499 }
3500 
3501 SDValue PPCTargetLowering::LowerSETCC(SDValue Op, SelectionDAG &DAG) const {
3502   bool IsStrict = Op->isStrictFPOpcode();
3503   ISD::CondCode CC =
3504       cast<CondCodeSDNode>(Op.getOperand(IsStrict ? 3 : 2))->get();
3505   SDValue LHS = Op.getOperand(IsStrict ? 1 : 0);
3506   SDValue RHS = Op.getOperand(IsStrict ? 2 : 1);
3507   SDValue Chain = IsStrict ? Op.getOperand(0) : SDValue();
3508   EVT LHSVT = LHS.getValueType();
3509   SDLoc dl(Op);
3510 
3511   // Soften the setcc with libcall if it is fp128.
3512   if (LHSVT == MVT::f128) {
3513     assert(!Subtarget.hasP9Vector() &&
3514            "SETCC for f128 is already legal under Power9!");
3515     softenSetCCOperands(DAG, LHSVT, LHS, RHS, CC, dl, LHS, RHS, Chain,
3516                         Op->getOpcode() == ISD::STRICT_FSETCCS);
3517     if (RHS.getNode())
3518       LHS = DAG.getNode(ISD::SETCC, dl, Op.getValueType(), LHS, RHS,
3519                         DAG.getCondCode(CC));
3520     if (IsStrict)
3521       return DAG.getMergeValues({LHS, Chain}, dl);
3522     return LHS;
3523   }
3524 
3525   assert(!IsStrict && "Don't know how to handle STRICT_FSETCC!");
3526 
3527   if (Op.getValueType() == MVT::v2i64) {
3528     // When the operands themselves are v2i64 values, we need to do something
3529     // special because VSX has no underlying comparison operations for these.
3530     if (LHS.getValueType() == MVT::v2i64) {
3531       // Equality can be handled by casting to the legal type for Altivec
3532       // comparisons, everything else needs to be expanded.
3533       if (CC != ISD::SETEQ && CC != ISD::SETNE)
3534         return SDValue();
3535       SDValue SetCC32 = DAG.getSetCC(
3536           dl, MVT::v4i32, DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, LHS),
3537           DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, RHS), CC);
3538       int ShuffV[] = {1, 0, 3, 2};
3539       SDValue Shuff =
3540           DAG.getVectorShuffle(MVT::v4i32, dl, SetCC32, SetCC32, ShuffV);
3541       return DAG.getBitcast(MVT::v2i64,
3542                             DAG.getNode(CC == ISD::SETEQ ? ISD::AND : ISD::OR,
3543                                         dl, MVT::v4i32, Shuff, SetCC32));
3544     }
3545 
3546     // We handle most of these in the usual way.
3547     return Op;
3548   }
3549 
3550   // If we're comparing for equality to zero, expose the fact that this is
3551   // implemented as a ctlz/srl pair on ppc, so that the dag combiner can
3552   // fold the new nodes.
3553   if (SDValue V = lowerCmpEqZeroToCtlzSrl(Op, DAG))
3554     return V;
3555 
3556   if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(RHS)) {
3557     // Leave comparisons against 0 and -1 alone for now, since they're usually
3558     // optimized.  FIXME: revisit this when we can custom lower all setcc
3559     // optimizations.
3560     if (C->isAllOnes() || C->isZero())
3561       return SDValue();
3562   }
3563 
3564   // If we have an integer seteq/setne, turn it into a compare against zero
3565   // by xor'ing the rhs with the lhs, which is faster than setting a
3566   // condition register, reading it back out, and masking the correct bit.  The
3567   // normal approach here uses sub to do this instead of xor.  Using xor exposes
3568   // the result to other bit-twiddling opportunities.
3569   if (LHSVT.isInteger() && (CC == ISD::SETEQ || CC == ISD::SETNE)) {
3570     EVT VT = Op.getValueType();
3571     SDValue Sub = DAG.getNode(ISD::XOR, dl, LHSVT, LHS, RHS);
3572     return DAG.getSetCC(dl, VT, Sub, DAG.getConstant(0, dl, LHSVT), CC);
3573   }
3574   return SDValue();
3575 }
3576 
3577 SDValue PPCTargetLowering::LowerVAARG(SDValue Op, SelectionDAG &DAG) const {
3578   SDNode *Node = Op.getNode();
3579   EVT VT = Node->getValueType(0);
3580   EVT PtrVT = getPointerTy(DAG.getDataLayout());
3581   SDValue InChain = Node->getOperand(0);
3582   SDValue VAListPtr = Node->getOperand(1);
3583   const Value *SV = cast<SrcValueSDNode>(Node->getOperand(2))->getValue();
3584   SDLoc dl(Node);
3585 
3586   assert(!Subtarget.isPPC64() && "LowerVAARG is PPC32 only");
3587 
3588   // gpr_index
3589   SDValue GprIndex = DAG.getExtLoad(ISD::ZEXTLOAD, dl, MVT::i32, InChain,
3590                                     VAListPtr, MachinePointerInfo(SV), MVT::i8);
3591   InChain = GprIndex.getValue(1);
3592 
3593   if (VT == MVT::i64) {
3594     // Check if GprIndex is even
3595     SDValue GprAnd = DAG.getNode(ISD::AND, dl, MVT::i32, GprIndex,
3596                                  DAG.getConstant(1, dl, MVT::i32));
3597     SDValue CC64 = DAG.getSetCC(dl, MVT::i32, GprAnd,
3598                                 DAG.getConstant(0, dl, MVT::i32), ISD::SETNE);
3599     SDValue GprIndexPlusOne = DAG.getNode(ISD::ADD, dl, MVT::i32, GprIndex,
3600                                           DAG.getConstant(1, dl, MVT::i32));
3601     // Align GprIndex to be even if it isn't
3602     GprIndex = DAG.getNode(ISD::SELECT, dl, MVT::i32, CC64, GprIndexPlusOne,
3603                            GprIndex);
3604   }
3605 
3606   // fpr index is 1 byte after gpr
3607   SDValue FprPtr = DAG.getNode(ISD::ADD, dl, PtrVT, VAListPtr,
3608                                DAG.getConstant(1, dl, MVT::i32));
3609 
3610   // fpr
3611   SDValue FprIndex = DAG.getExtLoad(ISD::ZEXTLOAD, dl, MVT::i32, InChain,
3612                                     FprPtr, MachinePointerInfo(SV), MVT::i8);
3613   InChain = FprIndex.getValue(1);
3614 
3615   SDValue RegSaveAreaPtr = DAG.getNode(ISD::ADD, dl, PtrVT, VAListPtr,
3616                                        DAG.getConstant(8, dl, MVT::i32));
3617 
3618   SDValue OverflowAreaPtr = DAG.getNode(ISD::ADD, dl, PtrVT, VAListPtr,
3619                                         DAG.getConstant(4, dl, MVT::i32));
3620 
3621   // areas
3622   SDValue OverflowArea =
3623       DAG.getLoad(MVT::i32, dl, InChain, OverflowAreaPtr, MachinePointerInfo());
3624   InChain = OverflowArea.getValue(1);
3625 
3626   SDValue RegSaveArea =
3627       DAG.getLoad(MVT::i32, dl, InChain, RegSaveAreaPtr, MachinePointerInfo());
3628   InChain = RegSaveArea.getValue(1);
3629 
3630   // select overflow_area if index > 8
3631   SDValue CC = DAG.getSetCC(dl, MVT::i32, VT.isInteger() ? GprIndex : FprIndex,
3632                             DAG.getConstant(8, dl, MVT::i32), ISD::SETLT);
3633 
3634   // adjustment constant gpr_index * 4/8
3635   SDValue RegConstant = DAG.getNode(ISD::MUL, dl, MVT::i32,
3636                                     VT.isInteger() ? GprIndex : FprIndex,
3637                                     DAG.getConstant(VT.isInteger() ? 4 : 8, dl,
3638                                                     MVT::i32));
3639 
3640   // OurReg = RegSaveArea + RegConstant
3641   SDValue OurReg = DAG.getNode(ISD::ADD, dl, PtrVT, RegSaveArea,
3642                                RegConstant);
3643 
3644   // Floating types are 32 bytes into RegSaveArea
3645   if (VT.isFloatingPoint())
3646     OurReg = DAG.getNode(ISD::ADD, dl, PtrVT, OurReg,
3647                          DAG.getConstant(32, dl, MVT::i32));
3648 
3649   // increase {f,g}pr_index by 1 (or 2 if VT is i64)
3650   SDValue IndexPlus1 = DAG.getNode(ISD::ADD, dl, MVT::i32,
3651                                    VT.isInteger() ? GprIndex : FprIndex,
3652                                    DAG.getConstant(VT == MVT::i64 ? 2 : 1, dl,
3653                                                    MVT::i32));
3654 
3655   InChain = DAG.getTruncStore(InChain, dl, IndexPlus1,
3656                               VT.isInteger() ? VAListPtr : FprPtr,
3657                               MachinePointerInfo(SV), MVT::i8);
3658 
3659   // determine if we should load from reg_save_area or overflow_area
3660   SDValue Result = DAG.getNode(ISD::SELECT, dl, PtrVT, CC, OurReg, OverflowArea);
3661 
3662   // increase overflow_area by 4/8 if gpr/fpr > 8
3663   SDValue OverflowAreaPlusN = DAG.getNode(ISD::ADD, dl, PtrVT, OverflowArea,
3664                                           DAG.getConstant(VT.isInteger() ? 4 : 8,
3665                                           dl, MVT::i32));
3666 
3667   OverflowArea = DAG.getNode(ISD::SELECT, dl, MVT::i32, CC, OverflowArea,
3668                              OverflowAreaPlusN);
3669 
3670   InChain = DAG.getTruncStore(InChain, dl, OverflowArea, OverflowAreaPtr,
3671                               MachinePointerInfo(), MVT::i32);
3672 
3673   return DAG.getLoad(VT, dl, InChain, Result, MachinePointerInfo());
3674 }
3675 
3676 SDValue PPCTargetLowering::LowerVACOPY(SDValue Op, SelectionDAG &DAG) const {
3677   assert(!Subtarget.isPPC64() && "LowerVACOPY is PPC32 only");
3678 
3679   // We have to copy the entire va_list struct:
3680   // 2*sizeof(char) + 2 Byte alignment + 2*sizeof(char*) = 12 Byte
3681   return DAG.getMemcpy(Op.getOperand(0), Op, Op.getOperand(1), Op.getOperand(2),
3682                        DAG.getConstant(12, SDLoc(Op), MVT::i32), Align(8),
3683                        false, true, false, MachinePointerInfo(),
3684                        MachinePointerInfo());
3685 }
3686 
3687 SDValue PPCTargetLowering::LowerADJUST_TRAMPOLINE(SDValue Op,
3688                                                   SelectionDAG &DAG) const {
3689   if (Subtarget.isAIXABI())
3690     report_fatal_error("ADJUST_TRAMPOLINE operation is not supported on AIX.");
3691 
3692   return Op.getOperand(0);
3693 }
3694 
3695 SDValue PPCTargetLowering::LowerINLINEASM(SDValue Op, SelectionDAG &DAG) const {
3696   MachineFunction &MF = DAG.getMachineFunction();
3697   PPCFunctionInfo &MFI = *MF.getInfo<PPCFunctionInfo>();
3698 
3699   assert((Op.getOpcode() == ISD::INLINEASM ||
3700           Op.getOpcode() == ISD::INLINEASM_BR) &&
3701          "Expecting Inline ASM node.");
3702 
3703   // If an LR store is already known to be required then there is not point in
3704   // checking this ASM as well.
3705   if (MFI.isLRStoreRequired())
3706     return Op;
3707 
3708   // Inline ASM nodes have an optional last operand that is an incoming Flag of
3709   // type MVT::Glue. We want to ignore this last operand if that is the case.
3710   unsigned NumOps = Op.getNumOperands();
3711   if (Op.getOperand(NumOps - 1).getValueType() == MVT::Glue)
3712     --NumOps;
3713 
3714   // Check all operands that may contain the LR.
3715   for (unsigned i = InlineAsm::Op_FirstOperand; i != NumOps;) {
3716     unsigned Flags = cast<ConstantSDNode>(Op.getOperand(i))->getZExtValue();
3717     unsigned NumVals = InlineAsm::getNumOperandRegisters(Flags);
3718     ++i; // Skip the ID value.
3719 
3720     switch (InlineAsm::getKind(Flags)) {
3721     default:
3722       llvm_unreachable("Bad flags!");
3723     case InlineAsm::Kind_RegUse:
3724     case InlineAsm::Kind_Imm:
3725     case InlineAsm::Kind_Mem:
3726       i += NumVals;
3727       break;
3728     case InlineAsm::Kind_Clobber:
3729     case InlineAsm::Kind_RegDef:
3730     case InlineAsm::Kind_RegDefEarlyClobber: {
3731       for (; NumVals; --NumVals, ++i) {
3732         Register Reg = cast<RegisterSDNode>(Op.getOperand(i))->getReg();
3733         if (Reg != PPC::LR && Reg != PPC::LR8)
3734           continue;
3735         MFI.setLRStoreRequired();
3736         return Op;
3737       }
3738       break;
3739     }
3740     }
3741   }
3742 
3743   return Op;
3744 }
3745 
3746 SDValue PPCTargetLowering::LowerINIT_TRAMPOLINE(SDValue Op,
3747                                                 SelectionDAG &DAG) const {
3748   if (Subtarget.isAIXABI())
3749     report_fatal_error("INIT_TRAMPOLINE operation is not supported on AIX.");
3750 
3751   SDValue Chain = Op.getOperand(0);
3752   SDValue Trmp = Op.getOperand(1); // trampoline
3753   SDValue FPtr = Op.getOperand(2); // nested function
3754   SDValue Nest = Op.getOperand(3); // 'nest' parameter value
3755   SDLoc dl(Op);
3756 
3757   EVT PtrVT = getPointerTy(DAG.getDataLayout());
3758   bool isPPC64 = (PtrVT == MVT::i64);
3759   Type *IntPtrTy = DAG.getDataLayout().getIntPtrType(*DAG.getContext());
3760 
3761   TargetLowering::ArgListTy Args;
3762   TargetLowering::ArgListEntry Entry;
3763 
3764   Entry.Ty = IntPtrTy;
3765   Entry.Node = Trmp; Args.push_back(Entry);
3766 
3767   // TrampSize == (isPPC64 ? 48 : 40);
3768   Entry.Node = DAG.getConstant(isPPC64 ? 48 : 40, dl,
3769                                isPPC64 ? MVT::i64 : MVT::i32);
3770   Args.push_back(Entry);
3771 
3772   Entry.Node = FPtr; Args.push_back(Entry);
3773   Entry.Node = Nest; Args.push_back(Entry);
3774 
3775   // Lower to a call to __trampoline_setup(Trmp, TrampSize, FPtr, ctx_reg)
3776   TargetLowering::CallLoweringInfo CLI(DAG);
3777   CLI.setDebugLoc(dl).setChain(Chain).setLibCallee(
3778       CallingConv::C, Type::getVoidTy(*DAG.getContext()),
3779       DAG.getExternalSymbol("__trampoline_setup", PtrVT), std::move(Args));
3780 
3781   std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI);
3782   return CallResult.second;
3783 }
3784 
3785 SDValue PPCTargetLowering::LowerVASTART(SDValue Op, SelectionDAG &DAG) const {
3786   MachineFunction &MF = DAG.getMachineFunction();
3787   PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
3788   EVT PtrVT = getPointerTy(MF.getDataLayout());
3789 
3790   SDLoc dl(Op);
3791 
3792   if (Subtarget.isPPC64() || Subtarget.isAIXABI()) {
3793     // vastart just stores the address of the VarArgsFrameIndex slot into the
3794     // memory location argument.
3795     SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT);
3796     const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
3797     return DAG.getStore(Op.getOperand(0), dl, FR, Op.getOperand(1),
3798                         MachinePointerInfo(SV));
3799   }
3800 
3801   // For the 32-bit SVR4 ABI we follow the layout of the va_list struct.
3802   // We suppose the given va_list is already allocated.
3803   //
3804   // typedef struct {
3805   //  char gpr;     /* index into the array of 8 GPRs
3806   //                 * stored in the register save area
3807   //                 * gpr=0 corresponds to r3,
3808   //                 * gpr=1 to r4, etc.
3809   //                 */
3810   //  char fpr;     /* index into the array of 8 FPRs
3811   //                 * stored in the register save area
3812   //                 * fpr=0 corresponds to f1,
3813   //                 * fpr=1 to f2, etc.
3814   //                 */
3815   //  char *overflow_arg_area;
3816   //                /* location on stack that holds
3817   //                 * the next overflow argument
3818   //                 */
3819   //  char *reg_save_area;
3820   //               /* where r3:r10 and f1:f8 (if saved)
3821   //                * are stored
3822   //                */
3823   // } va_list[1];
3824 
3825   SDValue ArgGPR = DAG.getConstant(FuncInfo->getVarArgsNumGPR(), dl, MVT::i32);
3826   SDValue ArgFPR = DAG.getConstant(FuncInfo->getVarArgsNumFPR(), dl, MVT::i32);
3827   SDValue StackOffsetFI = DAG.getFrameIndex(FuncInfo->getVarArgsStackOffset(),
3828                                             PtrVT);
3829   SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(),
3830                                  PtrVT);
3831 
3832   uint64_t FrameOffset = PtrVT.getSizeInBits()/8;
3833   SDValue ConstFrameOffset = DAG.getConstant(FrameOffset, dl, PtrVT);
3834 
3835   uint64_t StackOffset = PtrVT.getSizeInBits()/8 - 1;
3836   SDValue ConstStackOffset = DAG.getConstant(StackOffset, dl, PtrVT);
3837 
3838   uint64_t FPROffset = 1;
3839   SDValue ConstFPROffset = DAG.getConstant(FPROffset, dl, PtrVT);
3840 
3841   const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
3842 
3843   // Store first byte : number of int regs
3844   SDValue firstStore =
3845       DAG.getTruncStore(Op.getOperand(0), dl, ArgGPR, Op.getOperand(1),
3846                         MachinePointerInfo(SV), MVT::i8);
3847   uint64_t nextOffset = FPROffset;
3848   SDValue nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, Op.getOperand(1),
3849                                   ConstFPROffset);
3850 
3851   // Store second byte : number of float regs
3852   SDValue secondStore =
3853       DAG.getTruncStore(firstStore, dl, ArgFPR, nextPtr,
3854                         MachinePointerInfo(SV, nextOffset), MVT::i8);
3855   nextOffset += StackOffset;
3856   nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, nextPtr, ConstStackOffset);
3857 
3858   // Store second word : arguments given on stack
3859   SDValue thirdStore = DAG.getStore(secondStore, dl, StackOffsetFI, nextPtr,
3860                                     MachinePointerInfo(SV, nextOffset));
3861   nextOffset += FrameOffset;
3862   nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, nextPtr, ConstFrameOffset);
3863 
3864   // Store third word : arguments given in registers
3865   return DAG.getStore(thirdStore, dl, FR, nextPtr,
3866                       MachinePointerInfo(SV, nextOffset));
3867 }
3868 
3869 /// FPR - The set of FP registers that should be allocated for arguments
3870 /// on Darwin and AIX.
3871 static const MCPhysReg FPR[] = {PPC::F1,  PPC::F2,  PPC::F3, PPC::F4, PPC::F5,
3872                                 PPC::F6,  PPC::F7,  PPC::F8, PPC::F9, PPC::F10,
3873                                 PPC::F11, PPC::F12, PPC::F13};
3874 
3875 /// CalculateStackSlotSize - Calculates the size reserved for this argument on
3876 /// the stack.
3877 static unsigned CalculateStackSlotSize(EVT ArgVT, ISD::ArgFlagsTy Flags,
3878                                        unsigned PtrByteSize) {
3879   unsigned ArgSize = ArgVT.getStoreSize();
3880   if (Flags.isByVal())
3881     ArgSize = Flags.getByValSize();
3882 
3883   // Round up to multiples of the pointer size, except for array members,
3884   // which are always packed.
3885   if (!Flags.isInConsecutiveRegs())
3886     ArgSize = ((ArgSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
3887 
3888   return ArgSize;
3889 }
3890 
3891 /// CalculateStackSlotAlignment - Calculates the alignment of this argument
3892 /// on the stack.
3893 static Align CalculateStackSlotAlignment(EVT ArgVT, EVT OrigVT,
3894                                          ISD::ArgFlagsTy Flags,
3895                                          unsigned PtrByteSize) {
3896   Align Alignment(PtrByteSize);
3897 
3898   // Altivec parameters are padded to a 16 byte boundary.
3899   if (ArgVT == MVT::v4f32 || ArgVT == MVT::v4i32 ||
3900       ArgVT == MVT::v8i16 || ArgVT == MVT::v16i8 ||
3901       ArgVT == MVT::v2f64 || ArgVT == MVT::v2i64 ||
3902       ArgVT == MVT::v1i128 || ArgVT == MVT::f128)
3903     Alignment = Align(16);
3904 
3905   // ByVal parameters are aligned as requested.
3906   if (Flags.isByVal()) {
3907     auto BVAlign = Flags.getNonZeroByValAlign();
3908     if (BVAlign > PtrByteSize) {
3909       if (BVAlign.value() % PtrByteSize != 0)
3910         llvm_unreachable(
3911             "ByVal alignment is not a multiple of the pointer size");
3912 
3913       Alignment = BVAlign;
3914     }
3915   }
3916 
3917   // Array members are always packed to their original alignment.
3918   if (Flags.isInConsecutiveRegs()) {
3919     // If the array member was split into multiple registers, the first
3920     // needs to be aligned to the size of the full type.  (Except for
3921     // ppcf128, which is only aligned as its f64 components.)
3922     if (Flags.isSplit() && OrigVT != MVT::ppcf128)
3923       Alignment = Align(OrigVT.getStoreSize());
3924     else
3925       Alignment = Align(ArgVT.getStoreSize());
3926   }
3927 
3928   return Alignment;
3929 }
3930 
3931 /// CalculateStackSlotUsed - Return whether this argument will use its
3932 /// stack slot (instead of being passed in registers).  ArgOffset,
3933 /// AvailableFPRs, and AvailableVRs must hold the current argument
3934 /// position, and will be updated to account for this argument.
3935 static bool CalculateStackSlotUsed(EVT ArgVT, EVT OrigVT, ISD::ArgFlagsTy Flags,
3936                                    unsigned PtrByteSize, unsigned LinkageSize,
3937                                    unsigned ParamAreaSize, unsigned &ArgOffset,
3938                                    unsigned &AvailableFPRs,
3939                                    unsigned &AvailableVRs) {
3940   bool UseMemory = false;
3941 
3942   // Respect alignment of argument on the stack.
3943   Align Alignment =
3944       CalculateStackSlotAlignment(ArgVT, OrigVT, Flags, PtrByteSize);
3945   ArgOffset = alignTo(ArgOffset, Alignment);
3946   // If there's no space left in the argument save area, we must
3947   // use memory (this check also catches zero-sized arguments).
3948   if (ArgOffset >= LinkageSize + ParamAreaSize)
3949     UseMemory = true;
3950 
3951   // Allocate argument on the stack.
3952   ArgOffset += CalculateStackSlotSize(ArgVT, Flags, PtrByteSize);
3953   if (Flags.isInConsecutiveRegsLast())
3954     ArgOffset = ((ArgOffset + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
3955   // If we overran the argument save area, we must use memory
3956   // (this check catches arguments passed partially in memory)
3957   if (ArgOffset > LinkageSize + ParamAreaSize)
3958     UseMemory = true;
3959 
3960   // However, if the argument is actually passed in an FPR or a VR,
3961   // we don't use memory after all.
3962   if (!Flags.isByVal()) {
3963     if (ArgVT == MVT::f32 || ArgVT == MVT::f64)
3964       if (AvailableFPRs > 0) {
3965         --AvailableFPRs;
3966         return false;
3967       }
3968     if (ArgVT == MVT::v4f32 || ArgVT == MVT::v4i32 ||
3969         ArgVT == MVT::v8i16 || ArgVT == MVT::v16i8 ||
3970         ArgVT == MVT::v2f64 || ArgVT == MVT::v2i64 ||
3971         ArgVT == MVT::v1i128 || ArgVT == MVT::f128)
3972       if (AvailableVRs > 0) {
3973         --AvailableVRs;
3974         return false;
3975       }
3976   }
3977 
3978   return UseMemory;
3979 }
3980 
3981 /// EnsureStackAlignment - Round stack frame size up from NumBytes to
3982 /// ensure minimum alignment required for target.
3983 static unsigned EnsureStackAlignment(const PPCFrameLowering *Lowering,
3984                                      unsigned NumBytes) {
3985   return alignTo(NumBytes, Lowering->getStackAlign());
3986 }
3987 
3988 SDValue PPCTargetLowering::LowerFormalArguments(
3989     SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
3990     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
3991     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
3992   if (Subtarget.isAIXABI())
3993     return LowerFormalArguments_AIX(Chain, CallConv, isVarArg, Ins, dl, DAG,
3994                                     InVals);
3995   if (Subtarget.is64BitELFABI())
3996     return LowerFormalArguments_64SVR4(Chain, CallConv, isVarArg, Ins, dl, DAG,
3997                                        InVals);
3998   assert(Subtarget.is32BitELFABI());
3999   return LowerFormalArguments_32SVR4(Chain, CallConv, isVarArg, Ins, dl, DAG,
4000                                      InVals);
4001 }
4002 
4003 SDValue PPCTargetLowering::LowerFormalArguments_32SVR4(
4004     SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
4005     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
4006     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
4007 
4008   // 32-bit SVR4 ABI Stack Frame Layout:
4009   //              +-----------------------------------+
4010   //        +-->  |            Back chain             |
4011   //        |     +-----------------------------------+
4012   //        |     | Floating-point register save area |
4013   //        |     +-----------------------------------+
4014   //        |     |    General register save area     |
4015   //        |     +-----------------------------------+
4016   //        |     |          CR save word             |
4017   //        |     +-----------------------------------+
4018   //        |     |         VRSAVE save word          |
4019   //        |     +-----------------------------------+
4020   //        |     |         Alignment padding         |
4021   //        |     +-----------------------------------+
4022   //        |     |     Vector register save area     |
4023   //        |     +-----------------------------------+
4024   //        |     |       Local variable space        |
4025   //        |     +-----------------------------------+
4026   //        |     |        Parameter list area        |
4027   //        |     +-----------------------------------+
4028   //        |     |           LR save word            |
4029   //        |     +-----------------------------------+
4030   // SP-->  +---  |            Back chain             |
4031   //              +-----------------------------------+
4032   //
4033   // Specifications:
4034   //   System V Application Binary Interface PowerPC Processor Supplement
4035   //   AltiVec Technology Programming Interface Manual
4036 
4037   MachineFunction &MF = DAG.getMachineFunction();
4038   MachineFrameInfo &MFI = MF.getFrameInfo();
4039   PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
4040 
4041   EVT PtrVT = getPointerTy(MF.getDataLayout());
4042   // Potential tail calls could cause overwriting of argument stack slots.
4043   bool isImmutable = !(getTargetMachine().Options.GuaranteedTailCallOpt &&
4044                        (CallConv == CallingConv::Fast));
4045   const Align PtrAlign(4);
4046 
4047   // Assign locations to all of the incoming arguments.
4048   SmallVector<CCValAssign, 16> ArgLocs;
4049   PPCCCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), ArgLocs,
4050                  *DAG.getContext());
4051 
4052   // Reserve space for the linkage area on the stack.
4053   unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize();
4054   CCInfo.AllocateStack(LinkageSize, PtrAlign);
4055   if (useSoftFloat())
4056     CCInfo.PreAnalyzeFormalArguments(Ins);
4057 
4058   CCInfo.AnalyzeFormalArguments(Ins, CC_PPC32_SVR4);
4059   CCInfo.clearWasPPCF128();
4060 
4061   for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
4062     CCValAssign &VA = ArgLocs[i];
4063 
4064     // Arguments stored in registers.
4065     if (VA.isRegLoc()) {
4066       const TargetRegisterClass *RC;
4067       EVT ValVT = VA.getValVT();
4068 
4069       switch (ValVT.getSimpleVT().SimpleTy) {
4070         default:
4071           llvm_unreachable("ValVT not supported by formal arguments Lowering");
4072         case MVT::i1:
4073         case MVT::i32:
4074           RC = &PPC::GPRCRegClass;
4075           break;
4076         case MVT::f32:
4077           if (Subtarget.hasP8Vector())
4078             RC = &PPC::VSSRCRegClass;
4079           else if (Subtarget.hasSPE())
4080             RC = &PPC::GPRCRegClass;
4081           else
4082             RC = &PPC::F4RCRegClass;
4083           break;
4084         case MVT::f64:
4085           if (Subtarget.hasVSX())
4086             RC = &PPC::VSFRCRegClass;
4087           else if (Subtarget.hasSPE())
4088             // SPE passes doubles in GPR pairs.
4089             RC = &PPC::GPRCRegClass;
4090           else
4091             RC = &PPC::F8RCRegClass;
4092           break;
4093         case MVT::v16i8:
4094         case MVT::v8i16:
4095         case MVT::v4i32:
4096           RC = &PPC::VRRCRegClass;
4097           break;
4098         case MVT::v4f32:
4099           RC = &PPC::VRRCRegClass;
4100           break;
4101         case MVT::v2f64:
4102         case MVT::v2i64:
4103           RC = &PPC::VRRCRegClass;
4104           break;
4105       }
4106 
4107       SDValue ArgValue;
4108       // Transform the arguments stored in physical registers into
4109       // virtual ones.
4110       if (VA.getLocVT() == MVT::f64 && Subtarget.hasSPE()) {
4111         assert(i + 1 < e && "No second half of double precision argument");
4112         Register RegLo = MF.addLiveIn(VA.getLocReg(), RC);
4113         Register RegHi = MF.addLiveIn(ArgLocs[++i].getLocReg(), RC);
4114         SDValue ArgValueLo = DAG.getCopyFromReg(Chain, dl, RegLo, MVT::i32);
4115         SDValue ArgValueHi = DAG.getCopyFromReg(Chain, dl, RegHi, MVT::i32);
4116         if (!Subtarget.isLittleEndian())
4117           std::swap (ArgValueLo, ArgValueHi);
4118         ArgValue = DAG.getNode(PPCISD::BUILD_SPE64, dl, MVT::f64, ArgValueLo,
4119                                ArgValueHi);
4120       } else {
4121         Register Reg = MF.addLiveIn(VA.getLocReg(), RC);
4122         ArgValue = DAG.getCopyFromReg(Chain, dl, Reg,
4123                                       ValVT == MVT::i1 ? MVT::i32 : ValVT);
4124         if (ValVT == MVT::i1)
4125           ArgValue = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, ArgValue);
4126       }
4127 
4128       InVals.push_back(ArgValue);
4129     } else {
4130       // Argument stored in memory.
4131       assert(VA.isMemLoc());
4132 
4133       // Get the extended size of the argument type in stack
4134       unsigned ArgSize = VA.getLocVT().getStoreSize();
4135       // Get the actual size of the argument type
4136       unsigned ObjSize = VA.getValVT().getStoreSize();
4137       unsigned ArgOffset = VA.getLocMemOffset();
4138       // Stack objects in PPC32 are right justified.
4139       ArgOffset += ArgSize - ObjSize;
4140       int FI = MFI.CreateFixedObject(ArgSize, ArgOffset, isImmutable);
4141 
4142       // Create load nodes to retrieve arguments from the stack.
4143       SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
4144       InVals.push_back(
4145           DAG.getLoad(VA.getValVT(), dl, Chain, FIN, MachinePointerInfo()));
4146     }
4147   }
4148 
4149   // Assign locations to all of the incoming aggregate by value arguments.
4150   // Aggregates passed by value are stored in the local variable space of the
4151   // caller's stack frame, right above the parameter list area.
4152   SmallVector<CCValAssign, 16> ByValArgLocs;
4153   CCState CCByValInfo(CallConv, isVarArg, DAG.getMachineFunction(),
4154                       ByValArgLocs, *DAG.getContext());
4155 
4156   // Reserve stack space for the allocations in CCInfo.
4157   CCByValInfo.AllocateStack(CCInfo.getNextStackOffset(), PtrAlign);
4158 
4159   CCByValInfo.AnalyzeFormalArguments(Ins, CC_PPC32_SVR4_ByVal);
4160 
4161   // Area that is at least reserved in the caller of this function.
4162   unsigned MinReservedArea = CCByValInfo.getNextStackOffset();
4163   MinReservedArea = std::max(MinReservedArea, LinkageSize);
4164 
4165   // Set the size that is at least reserved in caller of this function.  Tail
4166   // call optimized function's reserved stack space needs to be aligned so that
4167   // taking the difference between two stack areas will result in an aligned
4168   // stack.
4169   MinReservedArea =
4170       EnsureStackAlignment(Subtarget.getFrameLowering(), MinReservedArea);
4171   FuncInfo->setMinReservedArea(MinReservedArea);
4172 
4173   SmallVector<SDValue, 8> MemOps;
4174 
4175   // If the function takes variable number of arguments, make a frame index for
4176   // the start of the first vararg value... for expansion of llvm.va_start.
4177   if (isVarArg) {
4178     static const MCPhysReg GPArgRegs[] = {
4179       PPC::R3, PPC::R4, PPC::R5, PPC::R6,
4180       PPC::R7, PPC::R8, PPC::R9, PPC::R10,
4181     };
4182     const unsigned NumGPArgRegs = array_lengthof(GPArgRegs);
4183 
4184     static const MCPhysReg FPArgRegs[] = {
4185       PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, PPC::F6, PPC::F7,
4186       PPC::F8
4187     };
4188     unsigned NumFPArgRegs = array_lengthof(FPArgRegs);
4189 
4190     if (useSoftFloat() || hasSPE())
4191        NumFPArgRegs = 0;
4192 
4193     FuncInfo->setVarArgsNumGPR(CCInfo.getFirstUnallocated(GPArgRegs));
4194     FuncInfo->setVarArgsNumFPR(CCInfo.getFirstUnallocated(FPArgRegs));
4195 
4196     // Make room for NumGPArgRegs and NumFPArgRegs.
4197     int Depth = NumGPArgRegs * PtrVT.getSizeInBits()/8 +
4198                 NumFPArgRegs * MVT(MVT::f64).getSizeInBits()/8;
4199 
4200     FuncInfo->setVarArgsStackOffset(
4201       MFI.CreateFixedObject(PtrVT.getSizeInBits()/8,
4202                             CCInfo.getNextStackOffset(), true));
4203 
4204     FuncInfo->setVarArgsFrameIndex(
4205         MFI.CreateStackObject(Depth, Align(8), false));
4206     SDValue FIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT);
4207 
4208     // The fixed integer arguments of a variadic function are stored to the
4209     // VarArgsFrameIndex on the stack so that they may be loaded by
4210     // dereferencing the result of va_next.
4211     for (unsigned GPRIndex = 0; GPRIndex != NumGPArgRegs; ++GPRIndex) {
4212       // Get an existing live-in vreg, or add a new one.
4213       Register VReg = MF.getRegInfo().getLiveInVirtReg(GPArgRegs[GPRIndex]);
4214       if (!VReg)
4215         VReg = MF.addLiveIn(GPArgRegs[GPRIndex], &PPC::GPRCRegClass);
4216 
4217       SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
4218       SDValue Store =
4219           DAG.getStore(Val.getValue(1), dl, Val, FIN, MachinePointerInfo());
4220       MemOps.push_back(Store);
4221       // Increment the address by four for the next argument to store
4222       SDValue PtrOff = DAG.getConstant(PtrVT.getSizeInBits()/8, dl, PtrVT);
4223       FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff);
4224     }
4225 
4226     // FIXME 32-bit SVR4: We only need to save FP argument registers if CR bit 6
4227     // is set.
4228     // The double arguments are stored to the VarArgsFrameIndex
4229     // on the stack.
4230     for (unsigned FPRIndex = 0; FPRIndex != NumFPArgRegs; ++FPRIndex) {
4231       // Get an existing live-in vreg, or add a new one.
4232       Register VReg = MF.getRegInfo().getLiveInVirtReg(FPArgRegs[FPRIndex]);
4233       if (!VReg)
4234         VReg = MF.addLiveIn(FPArgRegs[FPRIndex], &PPC::F8RCRegClass);
4235 
4236       SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::f64);
4237       SDValue Store =
4238           DAG.getStore(Val.getValue(1), dl, Val, FIN, MachinePointerInfo());
4239       MemOps.push_back(Store);
4240       // Increment the address by eight for the next argument to store
4241       SDValue PtrOff = DAG.getConstant(MVT(MVT::f64).getSizeInBits()/8, dl,
4242                                          PtrVT);
4243       FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff);
4244     }
4245   }
4246 
4247   if (!MemOps.empty())
4248     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOps);
4249 
4250   return Chain;
4251 }
4252 
4253 // PPC64 passes i8, i16, and i32 values in i64 registers. Promote
4254 // value to MVT::i64 and then truncate to the correct register size.
4255 SDValue PPCTargetLowering::extendArgForPPC64(ISD::ArgFlagsTy Flags,
4256                                              EVT ObjectVT, SelectionDAG &DAG,
4257                                              SDValue ArgVal,
4258                                              const SDLoc &dl) const {
4259   if (Flags.isSExt())
4260     ArgVal = DAG.getNode(ISD::AssertSext, dl, MVT::i64, ArgVal,
4261                          DAG.getValueType(ObjectVT));
4262   else if (Flags.isZExt())
4263     ArgVal = DAG.getNode(ISD::AssertZext, dl, MVT::i64, ArgVal,
4264                          DAG.getValueType(ObjectVT));
4265 
4266   return DAG.getNode(ISD::TRUNCATE, dl, ObjectVT, ArgVal);
4267 }
4268 
4269 SDValue PPCTargetLowering::LowerFormalArguments_64SVR4(
4270     SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
4271     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
4272     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
4273   // TODO: add description of PPC stack frame format, or at least some docs.
4274   //
4275   bool isELFv2ABI = Subtarget.isELFv2ABI();
4276   bool isLittleEndian = Subtarget.isLittleEndian();
4277   MachineFunction &MF = DAG.getMachineFunction();
4278   MachineFrameInfo &MFI = MF.getFrameInfo();
4279   PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
4280 
4281   assert(!(CallConv == CallingConv::Fast && isVarArg) &&
4282          "fastcc not supported on varargs functions");
4283 
4284   EVT PtrVT = getPointerTy(MF.getDataLayout());
4285   // Potential tail calls could cause overwriting of argument stack slots.
4286   bool isImmutable = !(getTargetMachine().Options.GuaranteedTailCallOpt &&
4287                        (CallConv == CallingConv::Fast));
4288   unsigned PtrByteSize = 8;
4289   unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize();
4290 
4291   static const MCPhysReg GPR[] = {
4292     PPC::X3, PPC::X4, PPC::X5, PPC::X6,
4293     PPC::X7, PPC::X8, PPC::X9, PPC::X10,
4294   };
4295   static const MCPhysReg VR[] = {
4296     PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8,
4297     PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13
4298   };
4299 
4300   const unsigned Num_GPR_Regs = array_lengthof(GPR);
4301   const unsigned Num_FPR_Regs = useSoftFloat() ? 0 : 13;
4302   const unsigned Num_VR_Regs  = array_lengthof(VR);
4303 
4304   // Do a first pass over the arguments to determine whether the ABI
4305   // guarantees that our caller has allocated the parameter save area
4306   // on its stack frame.  In the ELFv1 ABI, this is always the case;
4307   // in the ELFv2 ABI, it is true if this is a vararg function or if
4308   // any parameter is located in a stack slot.
4309 
4310   bool HasParameterArea = !isELFv2ABI || isVarArg;
4311   unsigned ParamAreaSize = Num_GPR_Regs * PtrByteSize;
4312   unsigned NumBytes = LinkageSize;
4313   unsigned AvailableFPRs = Num_FPR_Regs;
4314   unsigned AvailableVRs = Num_VR_Regs;
4315   for (unsigned i = 0, e = Ins.size(); i != e; ++i) {
4316     if (Ins[i].Flags.isNest())
4317       continue;
4318 
4319     if (CalculateStackSlotUsed(Ins[i].VT, Ins[i].ArgVT, Ins[i].Flags,
4320                                PtrByteSize, LinkageSize, ParamAreaSize,
4321                                NumBytes, AvailableFPRs, AvailableVRs))
4322       HasParameterArea = true;
4323   }
4324 
4325   // Add DAG nodes to load the arguments or copy them out of registers.  On
4326   // entry to a function on PPC, the arguments start after the linkage area,
4327   // although the first ones are often in registers.
4328 
4329   unsigned ArgOffset = LinkageSize;
4330   unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0;
4331   SmallVector<SDValue, 8> MemOps;
4332   Function::const_arg_iterator FuncArg = MF.getFunction().arg_begin();
4333   unsigned CurArgIdx = 0;
4334   for (unsigned ArgNo = 0, e = Ins.size(); ArgNo != e; ++ArgNo) {
4335     SDValue ArgVal;
4336     bool needsLoad = false;
4337     EVT ObjectVT = Ins[ArgNo].VT;
4338     EVT OrigVT = Ins[ArgNo].ArgVT;
4339     unsigned ObjSize = ObjectVT.getStoreSize();
4340     unsigned ArgSize = ObjSize;
4341     ISD::ArgFlagsTy Flags = Ins[ArgNo].Flags;
4342     if (Ins[ArgNo].isOrigArg()) {
4343       std::advance(FuncArg, Ins[ArgNo].getOrigArgIndex() - CurArgIdx);
4344       CurArgIdx = Ins[ArgNo].getOrigArgIndex();
4345     }
4346     // We re-align the argument offset for each argument, except when using the
4347     // fast calling convention, when we need to make sure we do that only when
4348     // we'll actually use a stack slot.
4349     unsigned CurArgOffset;
4350     Align Alignment;
4351     auto ComputeArgOffset = [&]() {
4352       /* Respect alignment of argument on the stack.  */
4353       Alignment =
4354           CalculateStackSlotAlignment(ObjectVT, OrigVT, Flags, PtrByteSize);
4355       ArgOffset = alignTo(ArgOffset, Alignment);
4356       CurArgOffset = ArgOffset;
4357     };
4358 
4359     if (CallConv != CallingConv::Fast) {
4360       ComputeArgOffset();
4361 
4362       /* Compute GPR index associated with argument offset.  */
4363       GPR_idx = (ArgOffset - LinkageSize) / PtrByteSize;
4364       GPR_idx = std::min(GPR_idx, Num_GPR_Regs);
4365     }
4366 
4367     // FIXME the codegen can be much improved in some cases.
4368     // We do not have to keep everything in memory.
4369     if (Flags.isByVal()) {
4370       assert(Ins[ArgNo].isOrigArg() && "Byval arguments cannot be implicit");
4371 
4372       if (CallConv == CallingConv::Fast)
4373         ComputeArgOffset();
4374 
4375       // ObjSize is the true size, ArgSize rounded up to multiple of registers.
4376       ObjSize = Flags.getByValSize();
4377       ArgSize = ((ObjSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
4378       // Empty aggregate parameters do not take up registers.  Examples:
4379       //   struct { } a;
4380       //   union  { } b;
4381       //   int c[0];
4382       // etc.  However, we have to provide a place-holder in InVals, so
4383       // pretend we have an 8-byte item at the current address for that
4384       // purpose.
4385       if (!ObjSize) {
4386         int FI = MFI.CreateFixedObject(PtrByteSize, ArgOffset, true);
4387         SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
4388         InVals.push_back(FIN);
4389         continue;
4390       }
4391 
4392       // Create a stack object covering all stack doublewords occupied
4393       // by the argument.  If the argument is (fully or partially) on
4394       // the stack, or if the argument is fully in registers but the
4395       // caller has allocated the parameter save anyway, we can refer
4396       // directly to the caller's stack frame.  Otherwise, create a
4397       // local copy in our own frame.
4398       int FI;
4399       if (HasParameterArea ||
4400           ArgSize + ArgOffset > LinkageSize + Num_GPR_Regs * PtrByteSize)
4401         FI = MFI.CreateFixedObject(ArgSize, ArgOffset, false, true);
4402       else
4403         FI = MFI.CreateStackObject(ArgSize, Alignment, false);
4404       SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
4405 
4406       // Handle aggregates smaller than 8 bytes.
4407       if (ObjSize < PtrByteSize) {
4408         // The value of the object is its address, which differs from the
4409         // address of the enclosing doubleword on big-endian systems.
4410         SDValue Arg = FIN;
4411         if (!isLittleEndian) {
4412           SDValue ArgOff = DAG.getConstant(PtrByteSize - ObjSize, dl, PtrVT);
4413           Arg = DAG.getNode(ISD::ADD, dl, ArgOff.getValueType(), Arg, ArgOff);
4414         }
4415         InVals.push_back(Arg);
4416 
4417         if (GPR_idx != Num_GPR_Regs) {
4418           Register VReg = MF.addLiveIn(GPR[GPR_idx++], &PPC::G8RCRegClass);
4419           FuncInfo->addLiveInAttr(VReg, Flags);
4420           SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
4421           EVT ObjType = EVT::getIntegerVT(*DAG.getContext(), ObjSize * 8);
4422           SDValue Store =
4423               DAG.getTruncStore(Val.getValue(1), dl, Val, Arg,
4424                                 MachinePointerInfo(&*FuncArg), ObjType);
4425           MemOps.push_back(Store);
4426         }
4427         // Whether we copied from a register or not, advance the offset
4428         // into the parameter save area by a full doubleword.
4429         ArgOffset += PtrByteSize;
4430         continue;
4431       }
4432 
4433       // The value of the object is its address, which is the address of
4434       // its first stack doubleword.
4435       InVals.push_back(FIN);
4436 
4437       // Store whatever pieces of the object are in registers to memory.
4438       for (unsigned j = 0; j < ArgSize; j += PtrByteSize) {
4439         if (GPR_idx == Num_GPR_Regs)
4440           break;
4441 
4442         Register VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
4443         FuncInfo->addLiveInAttr(VReg, Flags);
4444         SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
4445         SDValue Addr = FIN;
4446         if (j) {
4447           SDValue Off = DAG.getConstant(j, dl, PtrVT);
4448           Addr = DAG.getNode(ISD::ADD, dl, Off.getValueType(), Addr, Off);
4449         }
4450         unsigned StoreSizeInBits = std::min(PtrByteSize, (ObjSize - j)) * 8;
4451         EVT ObjType = EVT::getIntegerVT(*DAG.getContext(), StoreSizeInBits);
4452         SDValue Store =
4453             DAG.getTruncStore(Val.getValue(1), dl, Val, Addr,
4454                               MachinePointerInfo(&*FuncArg, j), ObjType);
4455         MemOps.push_back(Store);
4456         ++GPR_idx;
4457       }
4458       ArgOffset += ArgSize;
4459       continue;
4460     }
4461 
4462     switch (ObjectVT.getSimpleVT().SimpleTy) {
4463     default: llvm_unreachable("Unhandled argument type!");
4464     case MVT::i1:
4465     case MVT::i32:
4466     case MVT::i64:
4467       if (Flags.isNest()) {
4468         // The 'nest' parameter, if any, is passed in R11.
4469         Register VReg = MF.addLiveIn(PPC::X11, &PPC::G8RCRegClass);
4470         ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64);
4471 
4472         if (ObjectVT == MVT::i32 || ObjectVT == MVT::i1)
4473           ArgVal = extendArgForPPC64(Flags, ObjectVT, DAG, ArgVal, dl);
4474 
4475         break;
4476       }
4477 
4478       // These can be scalar arguments or elements of an integer array type
4479       // passed directly.  Clang may use those instead of "byval" aggregate
4480       // types to avoid forcing arguments to memory unnecessarily.
4481       if (GPR_idx != Num_GPR_Regs) {
4482         Register VReg = MF.addLiveIn(GPR[GPR_idx++], &PPC::G8RCRegClass);
4483         FuncInfo->addLiveInAttr(VReg, Flags);
4484         ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64);
4485 
4486         if (ObjectVT == MVT::i32 || ObjectVT == MVT::i1)
4487           // PPC64 passes i8, i16, and i32 values in i64 registers. Promote
4488           // value to MVT::i64 and then truncate to the correct register size.
4489           ArgVal = extendArgForPPC64(Flags, ObjectVT, DAG, ArgVal, dl);
4490       } else {
4491         if (CallConv == CallingConv::Fast)
4492           ComputeArgOffset();
4493 
4494         needsLoad = true;
4495         ArgSize = PtrByteSize;
4496       }
4497       if (CallConv != CallingConv::Fast || needsLoad)
4498         ArgOffset += 8;
4499       break;
4500 
4501     case MVT::f32:
4502     case MVT::f64:
4503       // These can be scalar arguments or elements of a float array type
4504       // passed directly.  The latter are used to implement ELFv2 homogenous
4505       // float aggregates.
4506       if (FPR_idx != Num_FPR_Regs) {
4507         unsigned VReg;
4508 
4509         if (ObjectVT == MVT::f32)
4510           VReg = MF.addLiveIn(FPR[FPR_idx],
4511                               Subtarget.hasP8Vector()
4512                                   ? &PPC::VSSRCRegClass
4513                                   : &PPC::F4RCRegClass);
4514         else
4515           VReg = MF.addLiveIn(FPR[FPR_idx], Subtarget.hasVSX()
4516                                                 ? &PPC::VSFRCRegClass
4517                                                 : &PPC::F8RCRegClass);
4518 
4519         ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT);
4520         ++FPR_idx;
4521       } else if (GPR_idx != Num_GPR_Regs && CallConv != CallingConv::Fast) {
4522         // FIXME: We may want to re-enable this for CallingConv::Fast on the P8
4523         // once we support fp <-> gpr moves.
4524 
4525         // This can only ever happen in the presence of f32 array types,
4526         // since otherwise we never run out of FPRs before running out
4527         // of GPRs.
4528         Register VReg = MF.addLiveIn(GPR[GPR_idx++], &PPC::G8RCRegClass);
4529         FuncInfo->addLiveInAttr(VReg, Flags);
4530         ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64);
4531 
4532         if (ObjectVT == MVT::f32) {
4533           if ((ArgOffset % PtrByteSize) == (isLittleEndian ? 4 : 0))
4534             ArgVal = DAG.getNode(ISD::SRL, dl, MVT::i64, ArgVal,
4535                                  DAG.getConstant(32, dl, MVT::i32));
4536           ArgVal = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, ArgVal);
4537         }
4538 
4539         ArgVal = DAG.getNode(ISD::BITCAST, dl, ObjectVT, ArgVal);
4540       } else {
4541         if (CallConv == CallingConv::Fast)
4542           ComputeArgOffset();
4543 
4544         needsLoad = true;
4545       }
4546 
4547       // When passing an array of floats, the array occupies consecutive
4548       // space in the argument area; only round up to the next doubleword
4549       // at the end of the array.  Otherwise, each float takes 8 bytes.
4550       if (CallConv != CallingConv::Fast || needsLoad) {
4551         ArgSize = Flags.isInConsecutiveRegs() ? ObjSize : PtrByteSize;
4552         ArgOffset += ArgSize;
4553         if (Flags.isInConsecutiveRegsLast())
4554           ArgOffset = ((ArgOffset + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
4555       }
4556       break;
4557     case MVT::v4f32:
4558     case MVT::v4i32:
4559     case MVT::v8i16:
4560     case MVT::v16i8:
4561     case MVT::v2f64:
4562     case MVT::v2i64:
4563     case MVT::v1i128:
4564     case MVT::f128:
4565       // These can be scalar arguments or elements of a vector array type
4566       // passed directly.  The latter are used to implement ELFv2 homogenous
4567       // vector aggregates.
4568       if (VR_idx != Num_VR_Regs) {
4569         Register VReg = MF.addLiveIn(VR[VR_idx], &PPC::VRRCRegClass);
4570         ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT);
4571         ++VR_idx;
4572       } else {
4573         if (CallConv == CallingConv::Fast)
4574           ComputeArgOffset();
4575         needsLoad = true;
4576       }
4577       if (CallConv != CallingConv::Fast || needsLoad)
4578         ArgOffset += 16;
4579       break;
4580     }
4581 
4582     // We need to load the argument to a virtual register if we determined
4583     // above that we ran out of physical registers of the appropriate type.
4584     if (needsLoad) {
4585       if (ObjSize < ArgSize && !isLittleEndian)
4586         CurArgOffset += ArgSize - ObjSize;
4587       int FI = MFI.CreateFixedObject(ObjSize, CurArgOffset, isImmutable);
4588       SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
4589       ArgVal = DAG.getLoad(ObjectVT, dl, Chain, FIN, MachinePointerInfo());
4590     }
4591 
4592     InVals.push_back(ArgVal);
4593   }
4594 
4595   // Area that is at least reserved in the caller of this function.
4596   unsigned MinReservedArea;
4597   if (HasParameterArea)
4598     MinReservedArea = std::max(ArgOffset, LinkageSize + 8 * PtrByteSize);
4599   else
4600     MinReservedArea = LinkageSize;
4601 
4602   // Set the size that is at least reserved in caller of this function.  Tail
4603   // call optimized functions' reserved stack space needs to be aligned so that
4604   // taking the difference between two stack areas will result in an aligned
4605   // stack.
4606   MinReservedArea =
4607       EnsureStackAlignment(Subtarget.getFrameLowering(), MinReservedArea);
4608   FuncInfo->setMinReservedArea(MinReservedArea);
4609 
4610   // If the function takes variable number of arguments, make a frame index for
4611   // the start of the first vararg value... for expansion of llvm.va_start.
4612   // On ELFv2ABI spec, it writes:
4613   // C programs that are intended to be *portable* across different compilers
4614   // and architectures must use the header file <stdarg.h> to deal with variable
4615   // argument lists.
4616   if (isVarArg && MFI.hasVAStart()) {
4617     int Depth = ArgOffset;
4618 
4619     FuncInfo->setVarArgsFrameIndex(
4620       MFI.CreateFixedObject(PtrByteSize, Depth, true));
4621     SDValue FIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT);
4622 
4623     // If this function is vararg, store any remaining integer argument regs
4624     // to their spots on the stack so that they may be loaded by dereferencing
4625     // the result of va_next.
4626     for (GPR_idx = (ArgOffset - LinkageSize) / PtrByteSize;
4627          GPR_idx < Num_GPR_Regs; ++GPR_idx) {
4628       Register VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
4629       SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
4630       SDValue Store =
4631           DAG.getStore(Val.getValue(1), dl, Val, FIN, MachinePointerInfo());
4632       MemOps.push_back(Store);
4633       // Increment the address by four for the next argument to store
4634       SDValue PtrOff = DAG.getConstant(PtrByteSize, dl, PtrVT);
4635       FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff);
4636     }
4637   }
4638 
4639   if (!MemOps.empty())
4640     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOps);
4641 
4642   return Chain;
4643 }
4644 
4645 /// CalculateTailCallSPDiff - Get the amount the stack pointer has to be
4646 /// adjusted to accommodate the arguments for the tailcall.
4647 static int CalculateTailCallSPDiff(SelectionDAG& DAG, bool isTailCall,
4648                                    unsigned ParamSize) {
4649 
4650   if (!isTailCall) return 0;
4651 
4652   PPCFunctionInfo *FI = DAG.getMachineFunction().getInfo<PPCFunctionInfo>();
4653   unsigned CallerMinReservedArea = FI->getMinReservedArea();
4654   int SPDiff = (int)CallerMinReservedArea - (int)ParamSize;
4655   // Remember only if the new adjustment is bigger.
4656   if (SPDiff < FI->getTailCallSPDelta())
4657     FI->setTailCallSPDelta(SPDiff);
4658 
4659   return SPDiff;
4660 }
4661 
4662 static bool isFunctionGlobalAddress(SDValue Callee);
4663 
4664 static bool callsShareTOCBase(const Function *Caller, SDValue Callee,
4665                               const TargetMachine &TM) {
4666   // It does not make sense to call callsShareTOCBase() with a caller that
4667   // is PC Relative since PC Relative callers do not have a TOC.
4668 #ifndef NDEBUG
4669   const PPCSubtarget *STICaller = &TM.getSubtarget<PPCSubtarget>(*Caller);
4670   assert(!STICaller->isUsingPCRelativeCalls() &&
4671          "PC Relative callers do not have a TOC and cannot share a TOC Base");
4672 #endif
4673 
4674   // Callee is either a GlobalAddress or an ExternalSymbol. ExternalSymbols
4675   // don't have enough information to determine if the caller and callee share
4676   // the same  TOC base, so we have to pessimistically assume they don't for
4677   // correctness.
4678   GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee);
4679   if (!G)
4680     return false;
4681 
4682   const GlobalValue *GV = G->getGlobal();
4683 
4684   // If the callee is preemptable, then the static linker will use a plt-stub
4685   // which saves the toc to the stack, and needs a nop after the call
4686   // instruction to convert to a toc-restore.
4687   if (!TM.shouldAssumeDSOLocal(*Caller->getParent(), GV))
4688     return false;
4689 
4690   // Functions with PC Relative enabled may clobber the TOC in the same DSO.
4691   // We may need a TOC restore in the situation where the caller requires a
4692   // valid TOC but the callee is PC Relative and does not.
4693   const Function *F = dyn_cast<Function>(GV);
4694   const GlobalAlias *Alias = dyn_cast<GlobalAlias>(GV);
4695 
4696   // If we have an Alias we can try to get the function from there.
4697   if (Alias) {
4698     const GlobalObject *GlobalObj = Alias->getAliaseeObject();
4699     F = dyn_cast<Function>(GlobalObj);
4700   }
4701 
4702   // If we still have no valid function pointer we do not have enough
4703   // information to determine if the callee uses PC Relative calls so we must
4704   // assume that it does.
4705   if (!F)
4706     return false;
4707 
4708   // If the callee uses PC Relative we cannot guarantee that the callee won't
4709   // clobber the TOC of the caller and so we must assume that the two
4710   // functions do not share a TOC base.
4711   const PPCSubtarget *STICallee = &TM.getSubtarget<PPCSubtarget>(*F);
4712   if (STICallee->isUsingPCRelativeCalls())
4713     return false;
4714 
4715   // If the GV is not a strong definition then we need to assume it can be
4716   // replaced by another function at link time. The function that replaces
4717   // it may not share the same TOC as the caller since the callee may be
4718   // replaced by a PC Relative version of the same function.
4719   if (!GV->isStrongDefinitionForLinker())
4720     return false;
4721 
4722   // The medium and large code models are expected to provide a sufficiently
4723   // large TOC to provide all data addressing needs of a module with a
4724   // single TOC.
4725   if (CodeModel::Medium == TM.getCodeModel() ||
4726       CodeModel::Large == TM.getCodeModel())
4727     return true;
4728 
4729   // Any explicitly-specified sections and section prefixes must also match.
4730   // Also, if we're using -ffunction-sections, then each function is always in
4731   // a different section (the same is true for COMDAT functions).
4732   if (TM.getFunctionSections() || GV->hasComdat() || Caller->hasComdat() ||
4733       GV->getSection() != Caller->getSection())
4734     return false;
4735   if (const auto *F = dyn_cast<Function>(GV)) {
4736     if (F->getSectionPrefix() != Caller->getSectionPrefix())
4737       return false;
4738   }
4739 
4740   return true;
4741 }
4742 
4743 static bool
4744 needStackSlotPassParameters(const PPCSubtarget &Subtarget,
4745                             const SmallVectorImpl<ISD::OutputArg> &Outs) {
4746   assert(Subtarget.is64BitELFABI());
4747 
4748   const unsigned PtrByteSize = 8;
4749   const unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize();
4750 
4751   static const MCPhysReg GPR[] = {
4752     PPC::X3, PPC::X4, PPC::X5, PPC::X6,
4753     PPC::X7, PPC::X8, PPC::X9, PPC::X10,
4754   };
4755   static const MCPhysReg VR[] = {
4756     PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8,
4757     PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13
4758   };
4759 
4760   const unsigned NumGPRs = array_lengthof(GPR);
4761   const unsigned NumFPRs = 13;
4762   const unsigned NumVRs = array_lengthof(VR);
4763   const unsigned ParamAreaSize = NumGPRs * PtrByteSize;
4764 
4765   unsigned NumBytes = LinkageSize;
4766   unsigned AvailableFPRs = NumFPRs;
4767   unsigned AvailableVRs = NumVRs;
4768 
4769   for (const ISD::OutputArg& Param : Outs) {
4770     if (Param.Flags.isNest()) continue;
4771 
4772     if (CalculateStackSlotUsed(Param.VT, Param.ArgVT, Param.Flags, PtrByteSize,
4773                                LinkageSize, ParamAreaSize, NumBytes,
4774                                AvailableFPRs, AvailableVRs))
4775       return true;
4776   }
4777   return false;
4778 }
4779 
4780 static bool hasSameArgumentList(const Function *CallerFn, const CallBase &CB) {
4781   if (CB.arg_size() != CallerFn->arg_size())
4782     return false;
4783 
4784   auto CalleeArgIter = CB.arg_begin();
4785   auto CalleeArgEnd = CB.arg_end();
4786   Function::const_arg_iterator CallerArgIter = CallerFn->arg_begin();
4787 
4788   for (; CalleeArgIter != CalleeArgEnd; ++CalleeArgIter, ++CallerArgIter) {
4789     const Value* CalleeArg = *CalleeArgIter;
4790     const Value* CallerArg = &(*CallerArgIter);
4791     if (CalleeArg == CallerArg)
4792       continue;
4793 
4794     // e.g. @caller([4 x i64] %a, [4 x i64] %b) {
4795     //        tail call @callee([4 x i64] undef, [4 x i64] %b)
4796     //      }
4797     // 1st argument of callee is undef and has the same type as caller.
4798     if (CalleeArg->getType() == CallerArg->getType() &&
4799         isa<UndefValue>(CalleeArg))
4800       continue;
4801 
4802     return false;
4803   }
4804 
4805   return true;
4806 }
4807 
4808 // Returns true if TCO is possible between the callers and callees
4809 // calling conventions.
4810 static bool
4811 areCallingConvEligibleForTCO_64SVR4(CallingConv::ID CallerCC,
4812                                     CallingConv::ID CalleeCC) {
4813   // Tail calls are possible with fastcc and ccc.
4814   auto isTailCallableCC  = [] (CallingConv::ID CC){
4815       return  CC == CallingConv::C || CC == CallingConv::Fast;
4816   };
4817   if (!isTailCallableCC(CallerCC) || !isTailCallableCC(CalleeCC))
4818     return false;
4819 
4820   // We can safely tail call both fastcc and ccc callees from a c calling
4821   // convention caller. If the caller is fastcc, we may have less stack space
4822   // than a non-fastcc caller with the same signature so disable tail-calls in
4823   // that case.
4824   return CallerCC == CallingConv::C || CallerCC == CalleeCC;
4825 }
4826 
4827 bool PPCTargetLowering::IsEligibleForTailCallOptimization_64SVR4(
4828     SDValue Callee, CallingConv::ID CalleeCC, const CallBase *CB, bool isVarArg,
4829     const SmallVectorImpl<ISD::OutputArg> &Outs,
4830     const SmallVectorImpl<ISD::InputArg> &Ins, SelectionDAG &DAG) const {
4831   bool TailCallOpt = getTargetMachine().Options.GuaranteedTailCallOpt;
4832 
4833   if (DisableSCO && !TailCallOpt) return false;
4834 
4835   // Variadic argument functions are not supported.
4836   if (isVarArg) return false;
4837 
4838   auto &Caller = DAG.getMachineFunction().getFunction();
4839   // Check that the calling conventions are compatible for tco.
4840   if (!areCallingConvEligibleForTCO_64SVR4(Caller.getCallingConv(), CalleeCC))
4841     return false;
4842 
4843   // Caller contains any byval parameter is not supported.
4844   if (any_of(Ins, [](const ISD::InputArg &IA) { return IA.Flags.isByVal(); }))
4845     return false;
4846 
4847   // Callee contains any byval parameter is not supported, too.
4848   // Note: This is a quick work around, because in some cases, e.g.
4849   // caller's stack size > callee's stack size, we are still able to apply
4850   // sibling call optimization. For example, gcc is able to do SCO for caller1
4851   // in the following example, but not for caller2.
4852   //   struct test {
4853   //     long int a;
4854   //     char ary[56];
4855   //   } gTest;
4856   //   __attribute__((noinline)) int callee(struct test v, struct test *b) {
4857   //     b->a = v.a;
4858   //     return 0;
4859   //   }
4860   //   void caller1(struct test a, struct test c, struct test *b) {
4861   //     callee(gTest, b); }
4862   //   void caller2(struct test *b) { callee(gTest, b); }
4863   if (any_of(Outs, [](const ISD::OutputArg& OA) { return OA.Flags.isByVal(); }))
4864     return false;
4865 
4866   // If callee and caller use different calling conventions, we cannot pass
4867   // parameters on stack since offsets for the parameter area may be different.
4868   if (Caller.getCallingConv() != CalleeCC &&
4869       needStackSlotPassParameters(Subtarget, Outs))
4870     return false;
4871 
4872   // All variants of 64-bit ELF ABIs without PC-Relative addressing require that
4873   // the caller and callee share the same TOC for TCO/SCO. If the caller and
4874   // callee potentially have different TOC bases then we cannot tail call since
4875   // we need to restore the TOC pointer after the call.
4876   // ref: https://bugzilla.mozilla.org/show_bug.cgi?id=973977
4877   // We cannot guarantee this for indirect calls or calls to external functions.
4878   // When PC-Relative addressing is used, the concept of the TOC is no longer
4879   // applicable so this check is not required.
4880   // Check first for indirect calls.
4881   if (!Subtarget.isUsingPCRelativeCalls() &&
4882       !isFunctionGlobalAddress(Callee) && !isa<ExternalSymbolSDNode>(Callee))
4883     return false;
4884 
4885   // Check if we share the TOC base.
4886   if (!Subtarget.isUsingPCRelativeCalls() &&
4887       !callsShareTOCBase(&Caller, Callee, getTargetMachine()))
4888     return false;
4889 
4890   // TCO allows altering callee ABI, so we don't have to check further.
4891   if (CalleeCC == CallingConv::Fast && TailCallOpt)
4892     return true;
4893 
4894   if (DisableSCO) return false;
4895 
4896   // If callee use the same argument list that caller is using, then we can
4897   // apply SCO on this case. If it is not, then we need to check if callee needs
4898   // stack for passing arguments.
4899   // PC Relative tail calls may not have a CallBase.
4900   // If there is no CallBase we cannot verify if we have the same argument
4901   // list so assume that we don't have the same argument list.
4902   if (CB && !hasSameArgumentList(&Caller, *CB) &&
4903       needStackSlotPassParameters(Subtarget, Outs))
4904     return false;
4905   else if (!CB && needStackSlotPassParameters(Subtarget, Outs))
4906     return false;
4907 
4908   return true;
4909 }
4910 
4911 /// IsEligibleForTailCallOptimization - Check whether the call is eligible
4912 /// for tail call optimization. Targets which want to do tail call
4913 /// optimization should implement this function.
4914 bool
4915 PPCTargetLowering::IsEligibleForTailCallOptimization(SDValue Callee,
4916                                                      CallingConv::ID CalleeCC,
4917                                                      bool isVarArg,
4918                                       const SmallVectorImpl<ISD::InputArg> &Ins,
4919                                                      SelectionDAG& DAG) const {
4920   if (!getTargetMachine().Options.GuaranteedTailCallOpt)
4921     return false;
4922 
4923   // Variable argument functions are not supported.
4924   if (isVarArg)
4925     return false;
4926 
4927   MachineFunction &MF = DAG.getMachineFunction();
4928   CallingConv::ID CallerCC = MF.getFunction().getCallingConv();
4929   if (CalleeCC == CallingConv::Fast && CallerCC == CalleeCC) {
4930     // Functions containing by val parameters are not supported.
4931     for (unsigned i = 0; i != Ins.size(); i++) {
4932        ISD::ArgFlagsTy Flags = Ins[i].Flags;
4933        if (Flags.isByVal()) return false;
4934     }
4935 
4936     // Non-PIC/GOT tail calls are supported.
4937     if (getTargetMachine().getRelocationModel() != Reloc::PIC_)
4938       return true;
4939 
4940     // At the moment we can only do local tail calls (in same module, hidden
4941     // or protected) if we are generating PIC.
4942     if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee))
4943       return G->getGlobal()->hasHiddenVisibility()
4944           || G->getGlobal()->hasProtectedVisibility();
4945   }
4946 
4947   return false;
4948 }
4949 
4950 /// isCallCompatibleAddress - Return the immediate to use if the specified
4951 /// 32-bit value is representable in the immediate field of a BxA instruction.
4952 static SDNode *isBLACompatibleAddress(SDValue Op, SelectionDAG &DAG) {
4953   ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op);
4954   if (!C) return nullptr;
4955 
4956   int Addr = C->getZExtValue();
4957   if ((Addr & 3) != 0 ||  // Low 2 bits are implicitly zero.
4958       SignExtend32<26>(Addr) != Addr)
4959     return nullptr;  // Top 6 bits have to be sext of immediate.
4960 
4961   return DAG
4962       .getConstant(
4963           (int)C->getZExtValue() >> 2, SDLoc(Op),
4964           DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()))
4965       .getNode();
4966 }
4967 
4968 namespace {
4969 
4970 struct TailCallArgumentInfo {
4971   SDValue Arg;
4972   SDValue FrameIdxOp;
4973   int FrameIdx = 0;
4974 
4975   TailCallArgumentInfo() = default;
4976 };
4977 
4978 } // end anonymous namespace
4979 
4980 /// StoreTailCallArgumentsToStackSlot - Stores arguments to their stack slot.
4981 static void StoreTailCallArgumentsToStackSlot(
4982     SelectionDAG &DAG, SDValue Chain,
4983     const SmallVectorImpl<TailCallArgumentInfo> &TailCallArgs,
4984     SmallVectorImpl<SDValue> &MemOpChains, const SDLoc &dl) {
4985   for (unsigned i = 0, e = TailCallArgs.size(); i != e; ++i) {
4986     SDValue Arg = TailCallArgs[i].Arg;
4987     SDValue FIN = TailCallArgs[i].FrameIdxOp;
4988     int FI = TailCallArgs[i].FrameIdx;
4989     // Store relative to framepointer.
4990     MemOpChains.push_back(DAG.getStore(
4991         Chain, dl, Arg, FIN,
4992         MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI)));
4993   }
4994 }
4995 
4996 /// EmitTailCallStoreFPAndRetAddr - Move the frame pointer and return address to
4997 /// the appropriate stack slot for the tail call optimized function call.
4998 static SDValue EmitTailCallStoreFPAndRetAddr(SelectionDAG &DAG, SDValue Chain,
4999                                              SDValue OldRetAddr, SDValue OldFP,
5000                                              int SPDiff, const SDLoc &dl) {
5001   if (SPDiff) {
5002     // Calculate the new stack slot for the return address.
5003     MachineFunction &MF = DAG.getMachineFunction();
5004     const PPCSubtarget &Subtarget = MF.getSubtarget<PPCSubtarget>();
5005     const PPCFrameLowering *FL = Subtarget.getFrameLowering();
5006     bool isPPC64 = Subtarget.isPPC64();
5007     int SlotSize = isPPC64 ? 8 : 4;
5008     int NewRetAddrLoc = SPDiff + FL->getReturnSaveOffset();
5009     int NewRetAddr = MF.getFrameInfo().CreateFixedObject(SlotSize,
5010                                                          NewRetAddrLoc, true);
5011     EVT VT = isPPC64 ? MVT::i64 : MVT::i32;
5012     SDValue NewRetAddrFrIdx = DAG.getFrameIndex(NewRetAddr, VT);
5013     Chain = DAG.getStore(Chain, dl, OldRetAddr, NewRetAddrFrIdx,
5014                          MachinePointerInfo::getFixedStack(MF, NewRetAddr));
5015   }
5016   return Chain;
5017 }
5018 
5019 /// CalculateTailCallArgDest - Remember Argument for later processing. Calculate
5020 /// the position of the argument.
5021 static void
5022 CalculateTailCallArgDest(SelectionDAG &DAG, MachineFunction &MF, bool isPPC64,
5023                          SDValue Arg, int SPDiff, unsigned ArgOffset,
5024                      SmallVectorImpl<TailCallArgumentInfo>& TailCallArguments) {
5025   int Offset = ArgOffset + SPDiff;
5026   uint32_t OpSize = (Arg.getValueSizeInBits() + 7) / 8;
5027   int FI = MF.getFrameInfo().CreateFixedObject(OpSize, Offset, true);
5028   EVT VT = isPPC64 ? MVT::i64 : MVT::i32;
5029   SDValue FIN = DAG.getFrameIndex(FI, VT);
5030   TailCallArgumentInfo Info;
5031   Info.Arg = Arg;
5032   Info.FrameIdxOp = FIN;
5033   Info.FrameIdx = FI;
5034   TailCallArguments.push_back(Info);
5035 }
5036 
5037 /// EmitTCFPAndRetAddrLoad - Emit load from frame pointer and return address
5038 /// stack slot. Returns the chain as result and the loaded frame pointers in
5039 /// LROpOut/FPOpout. Used when tail calling.
5040 SDValue PPCTargetLowering::EmitTailCallLoadFPAndRetAddr(
5041     SelectionDAG &DAG, int SPDiff, SDValue Chain, SDValue &LROpOut,
5042     SDValue &FPOpOut, const SDLoc &dl) const {
5043   if (SPDiff) {
5044     // Load the LR and FP stack slot for later adjusting.
5045     EVT VT = Subtarget.isPPC64() ? MVT::i64 : MVT::i32;
5046     LROpOut = getReturnAddrFrameIndex(DAG);
5047     LROpOut = DAG.getLoad(VT, dl, Chain, LROpOut, MachinePointerInfo());
5048     Chain = SDValue(LROpOut.getNode(), 1);
5049   }
5050   return Chain;
5051 }
5052 
5053 /// CreateCopyOfByValArgument - Make a copy of an aggregate at address specified
5054 /// by "Src" to address "Dst" of size "Size".  Alignment information is
5055 /// specified by the specific parameter attribute. The copy will be passed as
5056 /// a byval function parameter.
5057 /// Sometimes what we are copying is the end of a larger object, the part that
5058 /// does not fit in registers.
5059 static SDValue CreateCopyOfByValArgument(SDValue Src, SDValue Dst,
5060                                          SDValue Chain, ISD::ArgFlagsTy Flags,
5061                                          SelectionDAG &DAG, const SDLoc &dl) {
5062   SDValue SizeNode = DAG.getConstant(Flags.getByValSize(), dl, MVT::i32);
5063   return DAG.getMemcpy(Chain, dl, Dst, Src, SizeNode,
5064                        Flags.getNonZeroByValAlign(), false, false, false,
5065                        MachinePointerInfo(), MachinePointerInfo());
5066 }
5067 
5068 /// LowerMemOpCallTo - Store the argument to the stack or remember it in case of
5069 /// tail calls.
5070 static void LowerMemOpCallTo(
5071     SelectionDAG &DAG, MachineFunction &MF, SDValue Chain, SDValue Arg,
5072     SDValue PtrOff, int SPDiff, unsigned ArgOffset, bool isPPC64,
5073     bool isTailCall, bool isVector, SmallVectorImpl<SDValue> &MemOpChains,
5074     SmallVectorImpl<TailCallArgumentInfo> &TailCallArguments, const SDLoc &dl) {
5075   EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout());
5076   if (!isTailCall) {
5077     if (isVector) {
5078       SDValue StackPtr;
5079       if (isPPC64)
5080         StackPtr = DAG.getRegister(PPC::X1, MVT::i64);
5081       else
5082         StackPtr = DAG.getRegister(PPC::R1, MVT::i32);
5083       PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr,
5084                            DAG.getConstant(ArgOffset, dl, PtrVT));
5085     }
5086     MemOpChains.push_back(
5087         DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo()));
5088     // Calculate and remember argument location.
5089   } else CalculateTailCallArgDest(DAG, MF, isPPC64, Arg, SPDiff, ArgOffset,
5090                                   TailCallArguments);
5091 }
5092 
5093 static void
5094 PrepareTailCall(SelectionDAG &DAG, SDValue &InFlag, SDValue &Chain,
5095                 const SDLoc &dl, int SPDiff, unsigned NumBytes, SDValue LROp,
5096                 SDValue FPOp,
5097                 SmallVectorImpl<TailCallArgumentInfo> &TailCallArguments) {
5098   // Emit a sequence of copyto/copyfrom virtual registers for arguments that
5099   // might overwrite each other in case of tail call optimization.
5100   SmallVector<SDValue, 8> MemOpChains2;
5101   // Do not flag preceding copytoreg stuff together with the following stuff.
5102   InFlag = SDValue();
5103   StoreTailCallArgumentsToStackSlot(DAG, Chain, TailCallArguments,
5104                                     MemOpChains2, dl);
5105   if (!MemOpChains2.empty())
5106     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains2);
5107 
5108   // Store the return address to the appropriate stack slot.
5109   Chain = EmitTailCallStoreFPAndRetAddr(DAG, Chain, LROp, FPOp, SPDiff, dl);
5110 
5111   // Emit callseq_end just before tailcall node.
5112   Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, dl, true),
5113                              DAG.getIntPtrConstant(0, dl, true), InFlag, dl);
5114   InFlag = Chain.getValue(1);
5115 }
5116 
5117 // Is this global address that of a function that can be called by name? (as
5118 // opposed to something that must hold a descriptor for an indirect call).
5119 static bool isFunctionGlobalAddress(SDValue Callee) {
5120   if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
5121     if (Callee.getOpcode() == ISD::GlobalTLSAddress ||
5122         Callee.getOpcode() == ISD::TargetGlobalTLSAddress)
5123       return false;
5124 
5125     return G->getGlobal()->getValueType()->isFunctionTy();
5126   }
5127 
5128   return false;
5129 }
5130 
5131 SDValue PPCTargetLowering::LowerCallResult(
5132     SDValue Chain, SDValue InFlag, CallingConv::ID CallConv, bool isVarArg,
5133     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
5134     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
5135   SmallVector<CCValAssign, 16> RVLocs;
5136   CCState CCRetInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs,
5137                     *DAG.getContext());
5138 
5139   CCRetInfo.AnalyzeCallResult(
5140       Ins, (Subtarget.isSVR4ABI() && CallConv == CallingConv::Cold)
5141                ? RetCC_PPC_Cold
5142                : RetCC_PPC);
5143 
5144   // Copy all of the result registers out of their specified physreg.
5145   for (unsigned i = 0, e = RVLocs.size(); i != e; ++i) {
5146     CCValAssign &VA = RVLocs[i];
5147     assert(VA.isRegLoc() && "Can only return in registers!");
5148 
5149     SDValue Val;
5150 
5151     if (Subtarget.hasSPE() && VA.getLocVT() == MVT::f64) {
5152       SDValue Lo = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), MVT::i32,
5153                                       InFlag);
5154       Chain = Lo.getValue(1);
5155       InFlag = Lo.getValue(2);
5156       VA = RVLocs[++i]; // skip ahead to next loc
5157       SDValue Hi = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), MVT::i32,
5158                                       InFlag);
5159       Chain = Hi.getValue(1);
5160       InFlag = Hi.getValue(2);
5161       if (!Subtarget.isLittleEndian())
5162         std::swap (Lo, Hi);
5163       Val = DAG.getNode(PPCISD::BUILD_SPE64, dl, MVT::f64, Lo, Hi);
5164     } else {
5165       Val = DAG.getCopyFromReg(Chain, dl,
5166                                VA.getLocReg(), VA.getLocVT(), InFlag);
5167       Chain = Val.getValue(1);
5168       InFlag = Val.getValue(2);
5169     }
5170 
5171     switch (VA.getLocInfo()) {
5172     default: llvm_unreachable("Unknown loc info!");
5173     case CCValAssign::Full: break;
5174     case CCValAssign::AExt:
5175       Val = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), Val);
5176       break;
5177     case CCValAssign::ZExt:
5178       Val = DAG.getNode(ISD::AssertZext, dl, VA.getLocVT(), Val,
5179                         DAG.getValueType(VA.getValVT()));
5180       Val = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), Val);
5181       break;
5182     case CCValAssign::SExt:
5183       Val = DAG.getNode(ISD::AssertSext, dl, VA.getLocVT(), Val,
5184                         DAG.getValueType(VA.getValVT()));
5185       Val = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), Val);
5186       break;
5187     }
5188 
5189     InVals.push_back(Val);
5190   }
5191 
5192   return Chain;
5193 }
5194 
5195 static bool isIndirectCall(const SDValue &Callee, SelectionDAG &DAG,
5196                            const PPCSubtarget &Subtarget, bool isPatchPoint) {
5197   // PatchPoint calls are not indirect.
5198   if (isPatchPoint)
5199     return false;
5200 
5201   if (isFunctionGlobalAddress(Callee) || isa<ExternalSymbolSDNode>(Callee))
5202     return false;
5203 
5204   // Darwin, and 32-bit ELF can use a BLA. The descriptor based ABIs can not
5205   // becuase the immediate function pointer points to a descriptor instead of
5206   // a function entry point. The ELFv2 ABI cannot use a BLA because the function
5207   // pointer immediate points to the global entry point, while the BLA would
5208   // need to jump to the local entry point (see rL211174).
5209   if (!Subtarget.usesFunctionDescriptors() && !Subtarget.isELFv2ABI() &&
5210       isBLACompatibleAddress(Callee, DAG))
5211     return false;
5212 
5213   return true;
5214 }
5215 
5216 // AIX and 64-bit ELF ABIs w/o PCRel require a TOC save/restore around calls.
5217 static inline bool isTOCSaveRestoreRequired(const PPCSubtarget &Subtarget) {
5218   return Subtarget.isAIXABI() ||
5219          (Subtarget.is64BitELFABI() && !Subtarget.isUsingPCRelativeCalls());
5220 }
5221 
5222 static unsigned getCallOpcode(PPCTargetLowering::CallFlags CFlags,
5223                               const Function &Caller, const SDValue &Callee,
5224                               const PPCSubtarget &Subtarget,
5225                               const TargetMachine &TM,
5226                               bool IsStrictFPCall = false) {
5227   if (CFlags.IsTailCall)
5228     return PPCISD::TC_RETURN;
5229 
5230   unsigned RetOpc = 0;
5231   // This is a call through a function pointer.
5232   if (CFlags.IsIndirect) {
5233     // AIX and the 64-bit ELF ABIs need to maintain the TOC pointer accross
5234     // indirect calls. The save of the caller's TOC pointer to the stack will be
5235     // inserted into the DAG as part of call lowering. The restore of the TOC
5236     // pointer is modeled by using a pseudo instruction for the call opcode that
5237     // represents the 2 instruction sequence of an indirect branch and link,
5238     // immediately followed by a load of the TOC pointer from the the stack save
5239     // slot into gpr2. For 64-bit ELFv2 ABI with PCRel, do not restore the TOC
5240     // as it is not saved or used.
5241     RetOpc = isTOCSaveRestoreRequired(Subtarget) ? PPCISD::BCTRL_LOAD_TOC
5242                                                  : PPCISD::BCTRL;
5243   } else if (Subtarget.isUsingPCRelativeCalls()) {
5244     assert(Subtarget.is64BitELFABI() && "PC Relative is only on ELF ABI.");
5245     RetOpc = PPCISD::CALL_NOTOC;
5246   } else if (Subtarget.isAIXABI() || Subtarget.is64BitELFABI())
5247     // The ABIs that maintain a TOC pointer accross calls need to have a nop
5248     // immediately following the call instruction if the caller and callee may
5249     // have different TOC bases. At link time if the linker determines the calls
5250     // may not share a TOC base, the call is redirected to a trampoline inserted
5251     // by the linker. The trampoline will (among other things) save the callers
5252     // TOC pointer at an ABI designated offset in the linkage area and the
5253     // linker will rewrite the nop to be a load of the TOC pointer from the
5254     // linkage area into gpr2.
5255     RetOpc = callsShareTOCBase(&Caller, Callee, TM) ? PPCISD::CALL
5256                                                     : PPCISD::CALL_NOP;
5257   else
5258     RetOpc = PPCISD::CALL;
5259   if (IsStrictFPCall) {
5260     switch (RetOpc) {
5261     default:
5262       llvm_unreachable("Unknown call opcode");
5263     case PPCISD::BCTRL_LOAD_TOC:
5264       RetOpc = PPCISD::BCTRL_LOAD_TOC_RM;
5265       break;
5266     case PPCISD::BCTRL:
5267       RetOpc = PPCISD::BCTRL_RM;
5268       break;
5269     case PPCISD::CALL_NOTOC:
5270       RetOpc = PPCISD::CALL_NOTOC_RM;
5271       break;
5272     case PPCISD::CALL:
5273       RetOpc = PPCISD::CALL_RM;
5274       break;
5275     case PPCISD::CALL_NOP:
5276       RetOpc = PPCISD::CALL_NOP_RM;
5277       break;
5278     }
5279   }
5280   return RetOpc;
5281 }
5282 
5283 static SDValue transformCallee(const SDValue &Callee, SelectionDAG &DAG,
5284                                const SDLoc &dl, const PPCSubtarget &Subtarget) {
5285   if (!Subtarget.usesFunctionDescriptors() && !Subtarget.isELFv2ABI())
5286     if (SDNode *Dest = isBLACompatibleAddress(Callee, DAG))
5287       return SDValue(Dest, 0);
5288 
5289   // Returns true if the callee is local, and false otherwise.
5290   auto isLocalCallee = [&]() {
5291     const GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee);
5292     const Module *Mod = DAG.getMachineFunction().getFunction().getParent();
5293     const GlobalValue *GV = G ? G->getGlobal() : nullptr;
5294 
5295     return DAG.getTarget().shouldAssumeDSOLocal(*Mod, GV) &&
5296            !isa_and_nonnull<GlobalIFunc>(GV);
5297   };
5298 
5299   // The PLT is only used in 32-bit ELF PIC mode.  Attempting to use the PLT in
5300   // a static relocation model causes some versions of GNU LD (2.17.50, at
5301   // least) to force BSS-PLT, instead of secure-PLT, even if all objects are
5302   // built with secure-PLT.
5303   bool UsePlt =
5304       Subtarget.is32BitELFABI() && !isLocalCallee() &&
5305       Subtarget.getTargetMachine().getRelocationModel() == Reloc::PIC_;
5306 
5307   const auto getAIXFuncEntryPointSymbolSDNode = [&](const GlobalValue *GV) {
5308     const TargetMachine &TM = Subtarget.getTargetMachine();
5309     const TargetLoweringObjectFile *TLOF = TM.getObjFileLowering();
5310     MCSymbolXCOFF *S =
5311         cast<MCSymbolXCOFF>(TLOF->getFunctionEntryPointSymbol(GV, TM));
5312 
5313     MVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout());
5314     return DAG.getMCSymbol(S, PtrVT);
5315   };
5316 
5317   if (isFunctionGlobalAddress(Callee)) {
5318     const GlobalValue *GV = cast<GlobalAddressSDNode>(Callee)->getGlobal();
5319 
5320     if (Subtarget.isAIXABI()) {
5321       assert(!isa<GlobalIFunc>(GV) && "IFunc is not supported on AIX.");
5322       return getAIXFuncEntryPointSymbolSDNode(GV);
5323     }
5324     return DAG.getTargetGlobalAddress(GV, dl, Callee.getValueType(), 0,
5325                                       UsePlt ? PPCII::MO_PLT : 0);
5326   }
5327 
5328   if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) {
5329     const char *SymName = S->getSymbol();
5330     if (Subtarget.isAIXABI()) {
5331       // If there exists a user-declared function whose name is the same as the
5332       // ExternalSymbol's, then we pick up the user-declared version.
5333       const Module *Mod = DAG.getMachineFunction().getFunction().getParent();
5334       if (const Function *F =
5335               dyn_cast_or_null<Function>(Mod->getNamedValue(SymName)))
5336         return getAIXFuncEntryPointSymbolSDNode(F);
5337 
5338       // On AIX, direct function calls reference the symbol for the function's
5339       // entry point, which is named by prepending a "." before the function's
5340       // C-linkage name. A Qualname is returned here because an external
5341       // function entry point is a csect with XTY_ER property.
5342       const auto getExternalFunctionEntryPointSymbol = [&](StringRef SymName) {
5343         auto &Context = DAG.getMachineFunction().getMMI().getContext();
5344         MCSectionXCOFF *Sec = Context.getXCOFFSection(
5345             (Twine(".") + Twine(SymName)).str(), SectionKind::getMetadata(),
5346             XCOFF::CsectProperties(XCOFF::XMC_PR, XCOFF::XTY_ER));
5347         return Sec->getQualNameSymbol();
5348       };
5349 
5350       SymName = getExternalFunctionEntryPointSymbol(SymName)->getName().data();
5351     }
5352     return DAG.getTargetExternalSymbol(SymName, Callee.getValueType(),
5353                                        UsePlt ? PPCII::MO_PLT : 0);
5354   }
5355 
5356   // No transformation needed.
5357   assert(Callee.getNode() && "What no callee?");
5358   return Callee;
5359 }
5360 
5361 static SDValue getOutputChainFromCallSeq(SDValue CallSeqStart) {
5362   assert(CallSeqStart.getOpcode() == ISD::CALLSEQ_START &&
5363          "Expected a CALLSEQ_STARTSDNode.");
5364 
5365   // The last operand is the chain, except when the node has glue. If the node
5366   // has glue, then the last operand is the glue, and the chain is the second
5367   // last operand.
5368   SDValue LastValue = CallSeqStart.getValue(CallSeqStart->getNumValues() - 1);
5369   if (LastValue.getValueType() != MVT::Glue)
5370     return LastValue;
5371 
5372   return CallSeqStart.getValue(CallSeqStart->getNumValues() - 2);
5373 }
5374 
5375 // Creates the node that moves a functions address into the count register
5376 // to prepare for an indirect call instruction.
5377 static void prepareIndirectCall(SelectionDAG &DAG, SDValue &Callee,
5378                                 SDValue &Glue, SDValue &Chain,
5379                                 const SDLoc &dl) {
5380   SDValue MTCTROps[] = {Chain, Callee, Glue};
5381   EVT ReturnTypes[] = {MVT::Other, MVT::Glue};
5382   Chain = DAG.getNode(PPCISD::MTCTR, dl, makeArrayRef(ReturnTypes, 2),
5383                       makeArrayRef(MTCTROps, Glue.getNode() ? 3 : 2));
5384   // The glue is the second value produced.
5385   Glue = Chain.getValue(1);
5386 }
5387 
5388 static void prepareDescriptorIndirectCall(SelectionDAG &DAG, SDValue &Callee,
5389                                           SDValue &Glue, SDValue &Chain,
5390                                           SDValue CallSeqStart,
5391                                           const CallBase *CB, const SDLoc &dl,
5392                                           bool hasNest,
5393                                           const PPCSubtarget &Subtarget) {
5394   // Function pointers in the 64-bit SVR4 ABI do not point to the function
5395   // entry point, but to the function descriptor (the function entry point
5396   // address is part of the function descriptor though).
5397   // The function descriptor is a three doubleword structure with the
5398   // following fields: function entry point, TOC base address and
5399   // environment pointer.
5400   // Thus for a call through a function pointer, the following actions need
5401   // to be performed:
5402   //   1. Save the TOC of the caller in the TOC save area of its stack
5403   //      frame (this is done in LowerCall_Darwin() or LowerCall_64SVR4()).
5404   //   2. Load the address of the function entry point from the function
5405   //      descriptor.
5406   //   3. Load the TOC of the callee from the function descriptor into r2.
5407   //   4. Load the environment pointer from the function descriptor into
5408   //      r11.
5409   //   5. Branch to the function entry point address.
5410   //   6. On return of the callee, the TOC of the caller needs to be
5411   //      restored (this is done in FinishCall()).
5412   //
5413   // The loads are scheduled at the beginning of the call sequence, and the
5414   // register copies are flagged together to ensure that no other
5415   // operations can be scheduled in between. E.g. without flagging the
5416   // copies together, a TOC access in the caller could be scheduled between
5417   // the assignment of the callee TOC and the branch to the callee, which leads
5418   // to incorrect code.
5419 
5420   // Start by loading the function address from the descriptor.
5421   SDValue LDChain = getOutputChainFromCallSeq(CallSeqStart);
5422   auto MMOFlags = Subtarget.hasInvariantFunctionDescriptors()
5423                       ? (MachineMemOperand::MODereferenceable |
5424                          MachineMemOperand::MOInvariant)
5425                       : MachineMemOperand::MONone;
5426 
5427   MachinePointerInfo MPI(CB ? CB->getCalledOperand() : nullptr);
5428 
5429   // Registers used in building the DAG.
5430   const MCRegister EnvPtrReg = Subtarget.getEnvironmentPointerRegister();
5431   const MCRegister TOCReg = Subtarget.getTOCPointerRegister();
5432 
5433   // Offsets of descriptor members.
5434   const unsigned TOCAnchorOffset = Subtarget.descriptorTOCAnchorOffset();
5435   const unsigned EnvPtrOffset = Subtarget.descriptorEnvironmentPointerOffset();
5436 
5437   const MVT RegVT = Subtarget.isPPC64() ? MVT::i64 : MVT::i32;
5438   const unsigned Alignment = Subtarget.isPPC64() ? 8 : 4;
5439 
5440   // One load for the functions entry point address.
5441   SDValue LoadFuncPtr = DAG.getLoad(RegVT, dl, LDChain, Callee, MPI,
5442                                     Alignment, MMOFlags);
5443 
5444   // One for loading the TOC anchor for the module that contains the called
5445   // function.
5446   SDValue TOCOff = DAG.getIntPtrConstant(TOCAnchorOffset, dl);
5447   SDValue AddTOC = DAG.getNode(ISD::ADD, dl, RegVT, Callee, TOCOff);
5448   SDValue TOCPtr =
5449       DAG.getLoad(RegVT, dl, LDChain, AddTOC,
5450                   MPI.getWithOffset(TOCAnchorOffset), Alignment, MMOFlags);
5451 
5452   // One for loading the environment pointer.
5453   SDValue PtrOff = DAG.getIntPtrConstant(EnvPtrOffset, dl);
5454   SDValue AddPtr = DAG.getNode(ISD::ADD, dl, RegVT, Callee, PtrOff);
5455   SDValue LoadEnvPtr =
5456       DAG.getLoad(RegVT, dl, LDChain, AddPtr,
5457                   MPI.getWithOffset(EnvPtrOffset), Alignment, MMOFlags);
5458 
5459 
5460   // Then copy the newly loaded TOC anchor to the TOC pointer.
5461   SDValue TOCVal = DAG.getCopyToReg(Chain, dl, TOCReg, TOCPtr, Glue);
5462   Chain = TOCVal.getValue(0);
5463   Glue = TOCVal.getValue(1);
5464 
5465   // If the function call has an explicit 'nest' parameter, it takes the
5466   // place of the environment pointer.
5467   assert((!hasNest || !Subtarget.isAIXABI()) &&
5468          "Nest parameter is not supported on AIX.");
5469   if (!hasNest) {
5470     SDValue EnvVal = DAG.getCopyToReg(Chain, dl, EnvPtrReg, LoadEnvPtr, Glue);
5471     Chain = EnvVal.getValue(0);
5472     Glue = EnvVal.getValue(1);
5473   }
5474 
5475   // The rest of the indirect call sequence is the same as the non-descriptor
5476   // DAG.
5477   prepareIndirectCall(DAG, LoadFuncPtr, Glue, Chain, dl);
5478 }
5479 
5480 static void
5481 buildCallOperands(SmallVectorImpl<SDValue> &Ops,
5482                   PPCTargetLowering::CallFlags CFlags, const SDLoc &dl,
5483                   SelectionDAG &DAG,
5484                   SmallVector<std::pair<unsigned, SDValue>, 8> &RegsToPass,
5485                   SDValue Glue, SDValue Chain, SDValue &Callee, int SPDiff,
5486                   const PPCSubtarget &Subtarget) {
5487   const bool IsPPC64 = Subtarget.isPPC64();
5488   // MVT for a general purpose register.
5489   const MVT RegVT = IsPPC64 ? MVT::i64 : MVT::i32;
5490 
5491   // First operand is always the chain.
5492   Ops.push_back(Chain);
5493 
5494   // If it's a direct call pass the callee as the second operand.
5495   if (!CFlags.IsIndirect)
5496     Ops.push_back(Callee);
5497   else {
5498     assert(!CFlags.IsPatchPoint && "Patch point calls are not indirect.");
5499 
5500     // For the TOC based ABIs, we have saved the TOC pointer to the linkage area
5501     // on the stack (this would have been done in `LowerCall_64SVR4` or
5502     // `LowerCall_AIX`). The call instruction is a pseudo instruction that
5503     // represents both the indirect branch and a load that restores the TOC
5504     // pointer from the linkage area. The operand for the TOC restore is an add
5505     // of the TOC save offset to the stack pointer. This must be the second
5506     // operand: after the chain input but before any other variadic arguments.
5507     // For 64-bit ELFv2 ABI with PCRel, do not restore the TOC as it is not
5508     // saved or used.
5509     if (isTOCSaveRestoreRequired(Subtarget)) {
5510       const MCRegister StackPtrReg = Subtarget.getStackPointerRegister();
5511 
5512       SDValue StackPtr = DAG.getRegister(StackPtrReg, RegVT);
5513       unsigned TOCSaveOffset = Subtarget.getFrameLowering()->getTOCSaveOffset();
5514       SDValue TOCOff = DAG.getIntPtrConstant(TOCSaveOffset, dl);
5515       SDValue AddTOC = DAG.getNode(ISD::ADD, dl, RegVT, StackPtr, TOCOff);
5516       Ops.push_back(AddTOC);
5517     }
5518 
5519     // Add the register used for the environment pointer.
5520     if (Subtarget.usesFunctionDescriptors() && !CFlags.HasNest)
5521       Ops.push_back(DAG.getRegister(Subtarget.getEnvironmentPointerRegister(),
5522                                     RegVT));
5523 
5524 
5525     // Add CTR register as callee so a bctr can be emitted later.
5526     if (CFlags.IsTailCall)
5527       Ops.push_back(DAG.getRegister(IsPPC64 ? PPC::CTR8 : PPC::CTR, RegVT));
5528   }
5529 
5530   // If this is a tail call add stack pointer delta.
5531   if (CFlags.IsTailCall)
5532     Ops.push_back(DAG.getConstant(SPDiff, dl, MVT::i32));
5533 
5534   // Add argument registers to the end of the list so that they are known live
5535   // into the call.
5536   for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
5537     Ops.push_back(DAG.getRegister(RegsToPass[i].first,
5538                                   RegsToPass[i].second.getValueType()));
5539 
5540   // We cannot add R2/X2 as an operand here for PATCHPOINT, because there is
5541   // no way to mark dependencies as implicit here.
5542   // We will add the R2/X2 dependency in EmitInstrWithCustomInserter.
5543   if ((Subtarget.is64BitELFABI() || Subtarget.isAIXABI()) &&
5544        !CFlags.IsPatchPoint && !Subtarget.isUsingPCRelativeCalls())
5545     Ops.push_back(DAG.getRegister(Subtarget.getTOCPointerRegister(), RegVT));
5546 
5547   // Add implicit use of CR bit 6 for 32-bit SVR4 vararg calls
5548   if (CFlags.IsVarArg && Subtarget.is32BitELFABI())
5549     Ops.push_back(DAG.getRegister(PPC::CR1EQ, MVT::i32));
5550 
5551   // Add a register mask operand representing the call-preserved registers.
5552   const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo();
5553   const uint32_t *Mask =
5554       TRI->getCallPreservedMask(DAG.getMachineFunction(), CFlags.CallConv);
5555   assert(Mask && "Missing call preserved mask for calling convention");
5556   Ops.push_back(DAG.getRegisterMask(Mask));
5557 
5558   // If the glue is valid, it is the last operand.
5559   if (Glue.getNode())
5560     Ops.push_back(Glue);
5561 }
5562 
5563 SDValue PPCTargetLowering::FinishCall(
5564     CallFlags CFlags, const SDLoc &dl, SelectionDAG &DAG,
5565     SmallVector<std::pair<unsigned, SDValue>, 8> &RegsToPass, SDValue Glue,
5566     SDValue Chain, SDValue CallSeqStart, SDValue &Callee, int SPDiff,
5567     unsigned NumBytes, const SmallVectorImpl<ISD::InputArg> &Ins,
5568     SmallVectorImpl<SDValue> &InVals, const CallBase *CB) const {
5569 
5570   if ((Subtarget.is64BitELFABI() && !Subtarget.isUsingPCRelativeCalls()) ||
5571       Subtarget.isAIXABI())
5572     setUsesTOCBasePtr(DAG);
5573 
5574   unsigned CallOpc =
5575       getCallOpcode(CFlags, DAG.getMachineFunction().getFunction(), Callee,
5576                     Subtarget, DAG.getTarget(), CB ? CB->isStrictFP() : false);
5577 
5578   if (!CFlags.IsIndirect)
5579     Callee = transformCallee(Callee, DAG, dl, Subtarget);
5580   else if (Subtarget.usesFunctionDescriptors())
5581     prepareDescriptorIndirectCall(DAG, Callee, Glue, Chain, CallSeqStart, CB,
5582                                   dl, CFlags.HasNest, Subtarget);
5583   else
5584     prepareIndirectCall(DAG, Callee, Glue, Chain, dl);
5585 
5586   // Build the operand list for the call instruction.
5587   SmallVector<SDValue, 8> Ops;
5588   buildCallOperands(Ops, CFlags, dl, DAG, RegsToPass, Glue, Chain, Callee,
5589                     SPDiff, Subtarget);
5590 
5591   // Emit tail call.
5592   if (CFlags.IsTailCall) {
5593     // Indirect tail call when using PC Relative calls do not have the same
5594     // constraints.
5595     assert(((Callee.getOpcode() == ISD::Register &&
5596              cast<RegisterSDNode>(Callee)->getReg() == PPC::CTR) ||
5597             Callee.getOpcode() == ISD::TargetExternalSymbol ||
5598             Callee.getOpcode() == ISD::TargetGlobalAddress ||
5599             isa<ConstantSDNode>(Callee) ||
5600             (CFlags.IsIndirect && Subtarget.isUsingPCRelativeCalls())) &&
5601            "Expecting a global address, external symbol, absolute value, "
5602            "register or an indirect tail call when PC Relative calls are "
5603            "used.");
5604     // PC Relative calls also use TC_RETURN as the way to mark tail calls.
5605     assert(CallOpc == PPCISD::TC_RETURN &&
5606            "Unexpected call opcode for a tail call.");
5607     DAG.getMachineFunction().getFrameInfo().setHasTailCall();
5608     return DAG.getNode(CallOpc, dl, MVT::Other, Ops);
5609   }
5610 
5611   std::array<EVT, 2> ReturnTypes = {{MVT::Other, MVT::Glue}};
5612   Chain = DAG.getNode(CallOpc, dl, ReturnTypes, Ops);
5613   DAG.addNoMergeSiteInfo(Chain.getNode(), CFlags.NoMerge);
5614   Glue = Chain.getValue(1);
5615 
5616   // When performing tail call optimization the callee pops its arguments off
5617   // the stack. Account for this here so these bytes can be pushed back on in
5618   // PPCFrameLowering::eliminateCallFramePseudoInstr.
5619   int BytesCalleePops = (CFlags.CallConv == CallingConv::Fast &&
5620                          getTargetMachine().Options.GuaranteedTailCallOpt)
5621                             ? NumBytes
5622                             : 0;
5623 
5624   Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, dl, true),
5625                              DAG.getIntPtrConstant(BytesCalleePops, dl, true),
5626                              Glue, dl);
5627   Glue = Chain.getValue(1);
5628 
5629   return LowerCallResult(Chain, Glue, CFlags.CallConv, CFlags.IsVarArg, Ins, dl,
5630                          DAG, InVals);
5631 }
5632 
5633 SDValue
5634 PPCTargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI,
5635                              SmallVectorImpl<SDValue> &InVals) const {
5636   SelectionDAG &DAG                     = CLI.DAG;
5637   SDLoc &dl                             = CLI.DL;
5638   SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs;
5639   SmallVectorImpl<SDValue> &OutVals     = CLI.OutVals;
5640   SmallVectorImpl<ISD::InputArg> &Ins   = CLI.Ins;
5641   SDValue Chain                         = CLI.Chain;
5642   SDValue Callee                        = CLI.Callee;
5643   bool &isTailCall                      = CLI.IsTailCall;
5644   CallingConv::ID CallConv              = CLI.CallConv;
5645   bool isVarArg                         = CLI.IsVarArg;
5646   bool isPatchPoint                     = CLI.IsPatchPoint;
5647   const CallBase *CB                    = CLI.CB;
5648 
5649   if (isTailCall) {
5650     if (Subtarget.useLongCalls() && !(CB && CB->isMustTailCall()))
5651       isTailCall = false;
5652     else if (Subtarget.isSVR4ABI() && Subtarget.isPPC64())
5653       isTailCall = IsEligibleForTailCallOptimization_64SVR4(
5654           Callee, CallConv, CB, isVarArg, Outs, Ins, DAG);
5655     else
5656       isTailCall = IsEligibleForTailCallOptimization(Callee, CallConv, isVarArg,
5657                                                      Ins, DAG);
5658     if (isTailCall) {
5659       ++NumTailCalls;
5660       if (!getTargetMachine().Options.GuaranteedTailCallOpt)
5661         ++NumSiblingCalls;
5662 
5663       // PC Relative calls no longer guarantee that the callee is a Global
5664       // Address Node. The callee could be an indirect tail call in which
5665       // case the SDValue for the callee could be a load (to load the address
5666       // of a function pointer) or it may be a register copy (to move the
5667       // address of the callee from a function parameter into a virtual
5668       // register). It may also be an ExternalSymbolSDNode (ex memcopy).
5669       assert((Subtarget.isUsingPCRelativeCalls() ||
5670               isa<GlobalAddressSDNode>(Callee)) &&
5671              "Callee should be an llvm::Function object.");
5672 
5673       LLVM_DEBUG(dbgs() << "TCO caller: " << DAG.getMachineFunction().getName()
5674                         << "\nTCO callee: ");
5675       LLVM_DEBUG(Callee.dump());
5676     }
5677   }
5678 
5679   if (!isTailCall && CB && CB->isMustTailCall())
5680     report_fatal_error("failed to perform tail call elimination on a call "
5681                        "site marked musttail");
5682 
5683   // When long calls (i.e. indirect calls) are always used, calls are always
5684   // made via function pointer. If we have a function name, first translate it
5685   // into a pointer.
5686   if (Subtarget.useLongCalls() && isa<GlobalAddressSDNode>(Callee) &&
5687       !isTailCall)
5688     Callee = LowerGlobalAddress(Callee, DAG);
5689 
5690   CallFlags CFlags(
5691       CallConv, isTailCall, isVarArg, isPatchPoint,
5692       isIndirectCall(Callee, DAG, Subtarget, isPatchPoint),
5693       // hasNest
5694       Subtarget.is64BitELFABI() &&
5695           any_of(Outs, [](ISD::OutputArg Arg) { return Arg.Flags.isNest(); }),
5696       CLI.NoMerge);
5697 
5698   if (Subtarget.isAIXABI())
5699     return LowerCall_AIX(Chain, Callee, CFlags, Outs, OutVals, Ins, dl, DAG,
5700                          InVals, CB);
5701 
5702   assert(Subtarget.isSVR4ABI());
5703   if (Subtarget.isPPC64())
5704     return LowerCall_64SVR4(Chain, Callee, CFlags, Outs, OutVals, Ins, dl, DAG,
5705                             InVals, CB);
5706   return LowerCall_32SVR4(Chain, Callee, CFlags, Outs, OutVals, Ins, dl, DAG,
5707                           InVals, CB);
5708 }
5709 
5710 SDValue PPCTargetLowering::LowerCall_32SVR4(
5711     SDValue Chain, SDValue Callee, CallFlags CFlags,
5712     const SmallVectorImpl<ISD::OutputArg> &Outs,
5713     const SmallVectorImpl<SDValue> &OutVals,
5714     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
5715     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals,
5716     const CallBase *CB) const {
5717   // See PPCTargetLowering::LowerFormalArguments_32SVR4() for a description
5718   // of the 32-bit SVR4 ABI stack frame layout.
5719 
5720   const CallingConv::ID CallConv = CFlags.CallConv;
5721   const bool IsVarArg = CFlags.IsVarArg;
5722   const bool IsTailCall = CFlags.IsTailCall;
5723 
5724   assert((CallConv == CallingConv::C ||
5725           CallConv == CallingConv::Cold ||
5726           CallConv == CallingConv::Fast) && "Unknown calling convention!");
5727 
5728   const Align PtrAlign(4);
5729 
5730   MachineFunction &MF = DAG.getMachineFunction();
5731 
5732   // Mark this function as potentially containing a function that contains a
5733   // tail call. As a consequence the frame pointer will be used for dynamicalloc
5734   // and restoring the callers stack pointer in this functions epilog. This is
5735   // done because by tail calling the called function might overwrite the value
5736   // in this function's (MF) stack pointer stack slot 0(SP).
5737   if (getTargetMachine().Options.GuaranteedTailCallOpt &&
5738       CallConv == CallingConv::Fast)
5739     MF.getInfo<PPCFunctionInfo>()->setHasFastCall();
5740 
5741   // Count how many bytes are to be pushed on the stack, including the linkage
5742   // area, parameter list area and the part of the local variable space which
5743   // contains copies of aggregates which are passed by value.
5744 
5745   // Assign locations to all of the outgoing arguments.
5746   SmallVector<CCValAssign, 16> ArgLocs;
5747   PPCCCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext());
5748 
5749   // Reserve space for the linkage area on the stack.
5750   CCInfo.AllocateStack(Subtarget.getFrameLowering()->getLinkageSize(),
5751                        PtrAlign);
5752   if (useSoftFloat())
5753     CCInfo.PreAnalyzeCallOperands(Outs);
5754 
5755   if (IsVarArg) {
5756     // Handle fixed and variable vector arguments differently.
5757     // Fixed vector arguments go into registers as long as registers are
5758     // available. Variable vector arguments always go into memory.
5759     unsigned NumArgs = Outs.size();
5760 
5761     for (unsigned i = 0; i != NumArgs; ++i) {
5762       MVT ArgVT = Outs[i].VT;
5763       ISD::ArgFlagsTy ArgFlags = Outs[i].Flags;
5764       bool Result;
5765 
5766       if (Outs[i].IsFixed) {
5767         Result = CC_PPC32_SVR4(i, ArgVT, ArgVT, CCValAssign::Full, ArgFlags,
5768                                CCInfo);
5769       } else {
5770         Result = CC_PPC32_SVR4_VarArg(i, ArgVT, ArgVT, CCValAssign::Full,
5771                                       ArgFlags, CCInfo);
5772       }
5773 
5774       if (Result) {
5775 #ifndef NDEBUG
5776         errs() << "Call operand #" << i << " has unhandled type "
5777              << EVT(ArgVT).getEVTString() << "\n";
5778 #endif
5779         llvm_unreachable(nullptr);
5780       }
5781     }
5782   } else {
5783     // All arguments are treated the same.
5784     CCInfo.AnalyzeCallOperands(Outs, CC_PPC32_SVR4);
5785   }
5786   CCInfo.clearWasPPCF128();
5787 
5788   // Assign locations to all of the outgoing aggregate by value arguments.
5789   SmallVector<CCValAssign, 16> ByValArgLocs;
5790   CCState CCByValInfo(CallConv, IsVarArg, MF, ByValArgLocs, *DAG.getContext());
5791 
5792   // Reserve stack space for the allocations in CCInfo.
5793   CCByValInfo.AllocateStack(CCInfo.getNextStackOffset(), PtrAlign);
5794 
5795   CCByValInfo.AnalyzeCallOperands(Outs, CC_PPC32_SVR4_ByVal);
5796 
5797   // Size of the linkage area, parameter list area and the part of the local
5798   // space variable where copies of aggregates which are passed by value are
5799   // stored.
5800   unsigned NumBytes = CCByValInfo.getNextStackOffset();
5801 
5802   // Calculate by how many bytes the stack has to be adjusted in case of tail
5803   // call optimization.
5804   int SPDiff = CalculateTailCallSPDiff(DAG, IsTailCall, NumBytes);
5805 
5806   // Adjust the stack pointer for the new arguments...
5807   // These operations are automatically eliminated by the prolog/epilog pass
5808   Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, dl);
5809   SDValue CallSeqStart = Chain;
5810 
5811   // Load the return address and frame pointer so it can be moved somewhere else
5812   // later.
5813   SDValue LROp, FPOp;
5814   Chain = EmitTailCallLoadFPAndRetAddr(DAG, SPDiff, Chain, LROp, FPOp, dl);
5815 
5816   // Set up a copy of the stack pointer for use loading and storing any
5817   // arguments that may not fit in the registers available for argument
5818   // passing.
5819   SDValue StackPtr = DAG.getRegister(PPC::R1, MVT::i32);
5820 
5821   SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
5822   SmallVector<TailCallArgumentInfo, 8> TailCallArguments;
5823   SmallVector<SDValue, 8> MemOpChains;
5824 
5825   bool seenFloatArg = false;
5826   // Walk the register/memloc assignments, inserting copies/loads.
5827   // i - Tracks the index into the list of registers allocated for the call
5828   // RealArgIdx - Tracks the index into the list of actual function arguments
5829   // j - Tracks the index into the list of byval arguments
5830   for (unsigned i = 0, RealArgIdx = 0, j = 0, e = ArgLocs.size();
5831        i != e;
5832        ++i, ++RealArgIdx) {
5833     CCValAssign &VA = ArgLocs[i];
5834     SDValue Arg = OutVals[RealArgIdx];
5835     ISD::ArgFlagsTy Flags = Outs[RealArgIdx].Flags;
5836 
5837     if (Flags.isByVal()) {
5838       // Argument is an aggregate which is passed by value, thus we need to
5839       // create a copy of it in the local variable space of the current stack
5840       // frame (which is the stack frame of the caller) and pass the address of
5841       // this copy to the callee.
5842       assert((j < ByValArgLocs.size()) && "Index out of bounds!");
5843       CCValAssign &ByValVA = ByValArgLocs[j++];
5844       assert((VA.getValNo() == ByValVA.getValNo()) && "ValNo mismatch!");
5845 
5846       // Memory reserved in the local variable space of the callers stack frame.
5847       unsigned LocMemOffset = ByValVA.getLocMemOffset();
5848 
5849       SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset, dl);
5850       PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(MF.getDataLayout()),
5851                            StackPtr, PtrOff);
5852 
5853       // Create a copy of the argument in the local area of the current
5854       // stack frame.
5855       SDValue MemcpyCall =
5856         CreateCopyOfByValArgument(Arg, PtrOff,
5857                                   CallSeqStart.getNode()->getOperand(0),
5858                                   Flags, DAG, dl);
5859 
5860       // This must go outside the CALLSEQ_START..END.
5861       SDValue NewCallSeqStart = DAG.getCALLSEQ_START(MemcpyCall, NumBytes, 0,
5862                                                      SDLoc(MemcpyCall));
5863       DAG.ReplaceAllUsesWith(CallSeqStart.getNode(),
5864                              NewCallSeqStart.getNode());
5865       Chain = CallSeqStart = NewCallSeqStart;
5866 
5867       // Pass the address of the aggregate copy on the stack either in a
5868       // physical register or in the parameter list area of the current stack
5869       // frame to the callee.
5870       Arg = PtrOff;
5871     }
5872 
5873     // When useCRBits() is true, there can be i1 arguments.
5874     // It is because getRegisterType(MVT::i1) => MVT::i1,
5875     // and for other integer types getRegisterType() => MVT::i32.
5876     // Extend i1 and ensure callee will get i32.
5877     if (Arg.getValueType() == MVT::i1)
5878       Arg = DAG.getNode(Flags.isSExt() ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND,
5879                         dl, MVT::i32, Arg);
5880 
5881     if (VA.isRegLoc()) {
5882       seenFloatArg |= VA.getLocVT().isFloatingPoint();
5883       // Put argument in a physical register.
5884       if (Subtarget.hasSPE() && Arg.getValueType() == MVT::f64) {
5885         bool IsLE = Subtarget.isLittleEndian();
5886         SDValue SVal = DAG.getNode(PPCISD::EXTRACT_SPE, dl, MVT::i32, Arg,
5887                         DAG.getIntPtrConstant(IsLE ? 0 : 1, dl));
5888         RegsToPass.push_back(std::make_pair(VA.getLocReg(), SVal.getValue(0)));
5889         SVal = DAG.getNode(PPCISD::EXTRACT_SPE, dl, MVT::i32, Arg,
5890                            DAG.getIntPtrConstant(IsLE ? 1 : 0, dl));
5891         RegsToPass.push_back(std::make_pair(ArgLocs[++i].getLocReg(),
5892                              SVal.getValue(0)));
5893       } else
5894         RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
5895     } else {
5896       // Put argument in the parameter list area of the current stack frame.
5897       assert(VA.isMemLoc());
5898       unsigned LocMemOffset = VA.getLocMemOffset();
5899 
5900       if (!IsTailCall) {
5901         SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset, dl);
5902         PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(MF.getDataLayout()),
5903                              StackPtr, PtrOff);
5904 
5905         MemOpChains.push_back(
5906             DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo()));
5907       } else {
5908         // Calculate and remember argument location.
5909         CalculateTailCallArgDest(DAG, MF, false, Arg, SPDiff, LocMemOffset,
5910                                  TailCallArguments);
5911       }
5912     }
5913   }
5914 
5915   if (!MemOpChains.empty())
5916     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains);
5917 
5918   // Build a sequence of copy-to-reg nodes chained together with token chain
5919   // and flag operands which copy the outgoing args into the appropriate regs.
5920   SDValue InFlag;
5921   for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
5922     Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
5923                              RegsToPass[i].second, InFlag);
5924     InFlag = Chain.getValue(1);
5925   }
5926 
5927   // Set CR bit 6 to true if this is a vararg call with floating args passed in
5928   // registers.
5929   if (IsVarArg) {
5930     SDVTList VTs = DAG.getVTList(MVT::Other, MVT::Glue);
5931     SDValue Ops[] = { Chain, InFlag };
5932 
5933     Chain = DAG.getNode(seenFloatArg ? PPCISD::CR6SET : PPCISD::CR6UNSET,
5934                         dl, VTs, makeArrayRef(Ops, InFlag.getNode() ? 2 : 1));
5935 
5936     InFlag = Chain.getValue(1);
5937   }
5938 
5939   if (IsTailCall)
5940     PrepareTailCall(DAG, InFlag, Chain, dl, SPDiff, NumBytes, LROp, FPOp,
5941                     TailCallArguments);
5942 
5943   return FinishCall(CFlags, dl, DAG, RegsToPass, InFlag, Chain, CallSeqStart,
5944                     Callee, SPDiff, NumBytes, Ins, InVals, CB);
5945 }
5946 
5947 // Copy an argument into memory, being careful to do this outside the
5948 // call sequence for the call to which the argument belongs.
5949 SDValue PPCTargetLowering::createMemcpyOutsideCallSeq(
5950     SDValue Arg, SDValue PtrOff, SDValue CallSeqStart, ISD::ArgFlagsTy Flags,
5951     SelectionDAG &DAG, const SDLoc &dl) const {
5952   SDValue MemcpyCall = CreateCopyOfByValArgument(Arg, PtrOff,
5953                         CallSeqStart.getNode()->getOperand(0),
5954                         Flags, DAG, dl);
5955   // The MEMCPY must go outside the CALLSEQ_START..END.
5956   int64_t FrameSize = CallSeqStart.getConstantOperandVal(1);
5957   SDValue NewCallSeqStart = DAG.getCALLSEQ_START(MemcpyCall, FrameSize, 0,
5958                                                  SDLoc(MemcpyCall));
5959   DAG.ReplaceAllUsesWith(CallSeqStart.getNode(),
5960                          NewCallSeqStart.getNode());
5961   return NewCallSeqStart;
5962 }
5963 
5964 SDValue PPCTargetLowering::LowerCall_64SVR4(
5965     SDValue Chain, SDValue Callee, CallFlags CFlags,
5966     const SmallVectorImpl<ISD::OutputArg> &Outs,
5967     const SmallVectorImpl<SDValue> &OutVals,
5968     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
5969     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals,
5970     const CallBase *CB) const {
5971   bool isELFv2ABI = Subtarget.isELFv2ABI();
5972   bool isLittleEndian = Subtarget.isLittleEndian();
5973   unsigned NumOps = Outs.size();
5974   bool IsSibCall = false;
5975   bool IsFastCall = CFlags.CallConv == CallingConv::Fast;
5976 
5977   EVT PtrVT = getPointerTy(DAG.getDataLayout());
5978   unsigned PtrByteSize = 8;
5979 
5980   MachineFunction &MF = DAG.getMachineFunction();
5981 
5982   if (CFlags.IsTailCall && !getTargetMachine().Options.GuaranteedTailCallOpt)
5983     IsSibCall = true;
5984 
5985   // Mark this function as potentially containing a function that contains a
5986   // tail call. As a consequence the frame pointer will be used for dynamicalloc
5987   // and restoring the callers stack pointer in this functions epilog. This is
5988   // done because by tail calling the called function might overwrite the value
5989   // in this function's (MF) stack pointer stack slot 0(SP).
5990   if (getTargetMachine().Options.GuaranteedTailCallOpt && IsFastCall)
5991     MF.getInfo<PPCFunctionInfo>()->setHasFastCall();
5992 
5993   assert(!(IsFastCall && CFlags.IsVarArg) &&
5994          "fastcc not supported on varargs functions");
5995 
5996   // Count how many bytes are to be pushed on the stack, including the linkage
5997   // area, and parameter passing area.  On ELFv1, the linkage area is 48 bytes
5998   // reserved space for [SP][CR][LR][2 x unused][TOC]; on ELFv2, the linkage
5999   // area is 32 bytes reserved space for [SP][CR][LR][TOC].
6000   unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize();
6001   unsigned NumBytes = LinkageSize;
6002   unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0;
6003 
6004   static const MCPhysReg GPR[] = {
6005     PPC::X3, PPC::X4, PPC::X5, PPC::X6,
6006     PPC::X7, PPC::X8, PPC::X9, PPC::X10,
6007   };
6008   static const MCPhysReg VR[] = {
6009     PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8,
6010     PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13
6011   };
6012 
6013   const unsigned NumGPRs = array_lengthof(GPR);
6014   const unsigned NumFPRs = useSoftFloat() ? 0 : 13;
6015   const unsigned NumVRs  = array_lengthof(VR);
6016 
6017   // On ELFv2, we can avoid allocating the parameter area if all the arguments
6018   // can be passed to the callee in registers.
6019   // For the fast calling convention, there is another check below.
6020   // Note: We should keep consistent with LowerFormalArguments_64SVR4()
6021   bool HasParameterArea = !isELFv2ABI || CFlags.IsVarArg || IsFastCall;
6022   if (!HasParameterArea) {
6023     unsigned ParamAreaSize = NumGPRs * PtrByteSize;
6024     unsigned AvailableFPRs = NumFPRs;
6025     unsigned AvailableVRs = NumVRs;
6026     unsigned NumBytesTmp = NumBytes;
6027     for (unsigned i = 0; i != NumOps; ++i) {
6028       if (Outs[i].Flags.isNest()) continue;
6029       if (CalculateStackSlotUsed(Outs[i].VT, Outs[i].ArgVT, Outs[i].Flags,
6030                                  PtrByteSize, LinkageSize, ParamAreaSize,
6031                                  NumBytesTmp, AvailableFPRs, AvailableVRs))
6032         HasParameterArea = true;
6033     }
6034   }
6035 
6036   // When using the fast calling convention, we don't provide backing for
6037   // arguments that will be in registers.
6038   unsigned NumGPRsUsed = 0, NumFPRsUsed = 0, NumVRsUsed = 0;
6039 
6040   // Avoid allocating parameter area for fastcc functions if all the arguments
6041   // can be passed in the registers.
6042   if (IsFastCall)
6043     HasParameterArea = false;
6044 
6045   // Add up all the space actually used.
6046   for (unsigned i = 0; i != NumOps; ++i) {
6047     ISD::ArgFlagsTy Flags = Outs[i].Flags;
6048     EVT ArgVT = Outs[i].VT;
6049     EVT OrigVT = Outs[i].ArgVT;
6050 
6051     if (Flags.isNest())
6052       continue;
6053 
6054     if (IsFastCall) {
6055       if (Flags.isByVal()) {
6056         NumGPRsUsed += (Flags.getByValSize()+7)/8;
6057         if (NumGPRsUsed > NumGPRs)
6058           HasParameterArea = true;
6059       } else {
6060         switch (ArgVT.getSimpleVT().SimpleTy) {
6061         default: llvm_unreachable("Unexpected ValueType for argument!");
6062         case MVT::i1:
6063         case MVT::i32:
6064         case MVT::i64:
6065           if (++NumGPRsUsed <= NumGPRs)
6066             continue;
6067           break;
6068         case MVT::v4i32:
6069         case MVT::v8i16:
6070         case MVT::v16i8:
6071         case MVT::v2f64:
6072         case MVT::v2i64:
6073         case MVT::v1i128:
6074         case MVT::f128:
6075           if (++NumVRsUsed <= NumVRs)
6076             continue;
6077           break;
6078         case MVT::v4f32:
6079           if (++NumVRsUsed <= NumVRs)
6080             continue;
6081           break;
6082         case MVT::f32:
6083         case MVT::f64:
6084           if (++NumFPRsUsed <= NumFPRs)
6085             continue;
6086           break;
6087         }
6088         HasParameterArea = true;
6089       }
6090     }
6091 
6092     /* Respect alignment of argument on the stack.  */
6093     auto Alignement =
6094         CalculateStackSlotAlignment(ArgVT, OrigVT, Flags, PtrByteSize);
6095     NumBytes = alignTo(NumBytes, Alignement);
6096 
6097     NumBytes += CalculateStackSlotSize(ArgVT, Flags, PtrByteSize);
6098     if (Flags.isInConsecutiveRegsLast())
6099       NumBytes = ((NumBytes + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
6100   }
6101 
6102   unsigned NumBytesActuallyUsed = NumBytes;
6103 
6104   // In the old ELFv1 ABI,
6105   // the prolog code of the callee may store up to 8 GPR argument registers to
6106   // the stack, allowing va_start to index over them in memory if its varargs.
6107   // Because we cannot tell if this is needed on the caller side, we have to
6108   // conservatively assume that it is needed.  As such, make sure we have at
6109   // least enough stack space for the caller to store the 8 GPRs.
6110   // In the ELFv2 ABI, we allocate the parameter area iff a callee
6111   // really requires memory operands, e.g. a vararg function.
6112   if (HasParameterArea)
6113     NumBytes = std::max(NumBytes, LinkageSize + 8 * PtrByteSize);
6114   else
6115     NumBytes = LinkageSize;
6116 
6117   // Tail call needs the stack to be aligned.
6118   if (getTargetMachine().Options.GuaranteedTailCallOpt && IsFastCall)
6119     NumBytes = EnsureStackAlignment(Subtarget.getFrameLowering(), NumBytes);
6120 
6121   int SPDiff = 0;
6122 
6123   // Calculate by how many bytes the stack has to be adjusted in case of tail
6124   // call optimization.
6125   if (!IsSibCall)
6126     SPDiff = CalculateTailCallSPDiff(DAG, CFlags.IsTailCall, NumBytes);
6127 
6128   // To protect arguments on the stack from being clobbered in a tail call,
6129   // force all the loads to happen before doing any other lowering.
6130   if (CFlags.IsTailCall)
6131     Chain = DAG.getStackArgumentTokenFactor(Chain);
6132 
6133   // Adjust the stack pointer for the new arguments...
6134   // These operations are automatically eliminated by the prolog/epilog pass
6135   if (!IsSibCall)
6136     Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, dl);
6137   SDValue CallSeqStart = Chain;
6138 
6139   // Load the return address and frame pointer so it can be move somewhere else
6140   // later.
6141   SDValue LROp, FPOp;
6142   Chain = EmitTailCallLoadFPAndRetAddr(DAG, SPDiff, Chain, LROp, FPOp, dl);
6143 
6144   // Set up a copy of the stack pointer for use loading and storing any
6145   // arguments that may not fit in the registers available for argument
6146   // passing.
6147   SDValue StackPtr = DAG.getRegister(PPC::X1, MVT::i64);
6148 
6149   // Figure out which arguments are going to go in registers, and which in
6150   // memory.  Also, if this is a vararg function, floating point operations
6151   // must be stored to our stack, and loaded into integer regs as well, if
6152   // any integer regs are available for argument passing.
6153   unsigned ArgOffset = LinkageSize;
6154 
6155   SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
6156   SmallVector<TailCallArgumentInfo, 8> TailCallArguments;
6157 
6158   SmallVector<SDValue, 8> MemOpChains;
6159   for (unsigned i = 0; i != NumOps; ++i) {
6160     SDValue Arg = OutVals[i];
6161     ISD::ArgFlagsTy Flags = Outs[i].Flags;
6162     EVT ArgVT = Outs[i].VT;
6163     EVT OrigVT = Outs[i].ArgVT;
6164 
6165     // PtrOff will be used to store the current argument to the stack if a
6166     // register cannot be found for it.
6167     SDValue PtrOff;
6168 
6169     // We re-align the argument offset for each argument, except when using the
6170     // fast calling convention, when we need to make sure we do that only when
6171     // we'll actually use a stack slot.
6172     auto ComputePtrOff = [&]() {
6173       /* Respect alignment of argument on the stack.  */
6174       auto Alignment =
6175           CalculateStackSlotAlignment(ArgVT, OrigVT, Flags, PtrByteSize);
6176       ArgOffset = alignTo(ArgOffset, Alignment);
6177 
6178       PtrOff = DAG.getConstant(ArgOffset, dl, StackPtr.getValueType());
6179 
6180       PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff);
6181     };
6182 
6183     if (!IsFastCall) {
6184       ComputePtrOff();
6185 
6186       /* Compute GPR index associated with argument offset.  */
6187       GPR_idx = (ArgOffset - LinkageSize) / PtrByteSize;
6188       GPR_idx = std::min(GPR_idx, NumGPRs);
6189     }
6190 
6191     // Promote integers to 64-bit values.
6192     if (Arg.getValueType() == MVT::i32 || Arg.getValueType() == MVT::i1) {
6193       // FIXME: Should this use ANY_EXTEND if neither sext nor zext?
6194       unsigned ExtOp = Flags.isSExt() ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
6195       Arg = DAG.getNode(ExtOp, dl, MVT::i64, Arg);
6196     }
6197 
6198     // FIXME memcpy is used way more than necessary.  Correctness first.
6199     // Note: "by value" is code for passing a structure by value, not
6200     // basic types.
6201     if (Flags.isByVal()) {
6202       // Note: Size includes alignment padding, so
6203       //   struct x { short a; char b; }
6204       // will have Size = 4.  With #pragma pack(1), it will have Size = 3.
6205       // These are the proper values we need for right-justifying the
6206       // aggregate in a parameter register.
6207       unsigned Size = Flags.getByValSize();
6208 
6209       // An empty aggregate parameter takes up no storage and no
6210       // registers.
6211       if (Size == 0)
6212         continue;
6213 
6214       if (IsFastCall)
6215         ComputePtrOff();
6216 
6217       // All aggregates smaller than 8 bytes must be passed right-justified.
6218       if (Size==1 || Size==2 || Size==4) {
6219         EVT VT = (Size==1) ? MVT::i8 : ((Size==2) ? MVT::i16 : MVT::i32);
6220         if (GPR_idx != NumGPRs) {
6221           SDValue Load = DAG.getExtLoad(ISD::EXTLOAD, dl, PtrVT, Chain, Arg,
6222                                         MachinePointerInfo(), VT);
6223           MemOpChains.push_back(Load.getValue(1));
6224           RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
6225 
6226           ArgOffset += PtrByteSize;
6227           continue;
6228         }
6229       }
6230 
6231       if (GPR_idx == NumGPRs && Size < 8) {
6232         SDValue AddPtr = PtrOff;
6233         if (!isLittleEndian) {
6234           SDValue Const = DAG.getConstant(PtrByteSize - Size, dl,
6235                                           PtrOff.getValueType());
6236           AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, Const);
6237         }
6238         Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, AddPtr,
6239                                                           CallSeqStart,
6240                                                           Flags, DAG, dl);
6241         ArgOffset += PtrByteSize;
6242         continue;
6243       }
6244       // Copy the object to parameter save area if it can not be entirely passed
6245       // by registers.
6246       // FIXME: we only need to copy the parts which need to be passed in
6247       // parameter save area. For the parts passed by registers, we don't need
6248       // to copy them to the stack although we need to allocate space for them
6249       // in parameter save area.
6250       if ((NumGPRs - GPR_idx) * PtrByteSize < Size)
6251         Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, PtrOff,
6252                                                           CallSeqStart,
6253                                                           Flags, DAG, dl);
6254 
6255       // When a register is available, pass a small aggregate right-justified.
6256       if (Size < 8 && GPR_idx != NumGPRs) {
6257         // The easiest way to get this right-justified in a register
6258         // is to copy the structure into the rightmost portion of a
6259         // local variable slot, then load the whole slot into the
6260         // register.
6261         // FIXME: The memcpy seems to produce pretty awful code for
6262         // small aggregates, particularly for packed ones.
6263         // FIXME: It would be preferable to use the slot in the
6264         // parameter save area instead of a new local variable.
6265         SDValue AddPtr = PtrOff;
6266         if (!isLittleEndian) {
6267           SDValue Const = DAG.getConstant(8 - Size, dl, PtrOff.getValueType());
6268           AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, Const);
6269         }
6270         Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, AddPtr,
6271                                                           CallSeqStart,
6272                                                           Flags, DAG, dl);
6273 
6274         // Load the slot into the register.
6275         SDValue Load =
6276             DAG.getLoad(PtrVT, dl, Chain, PtrOff, MachinePointerInfo());
6277         MemOpChains.push_back(Load.getValue(1));
6278         RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
6279 
6280         // Done with this argument.
6281         ArgOffset += PtrByteSize;
6282         continue;
6283       }
6284 
6285       // For aggregates larger than PtrByteSize, copy the pieces of the
6286       // object that fit into registers from the parameter save area.
6287       for (unsigned j=0; j<Size; j+=PtrByteSize) {
6288         SDValue Const = DAG.getConstant(j, dl, PtrOff.getValueType());
6289         SDValue AddArg = DAG.getNode(ISD::ADD, dl, PtrVT, Arg, Const);
6290         if (GPR_idx != NumGPRs) {
6291           unsigned LoadSizeInBits = std::min(PtrByteSize, (Size - j)) * 8;
6292           EVT ObjType = EVT::getIntegerVT(*DAG.getContext(), LoadSizeInBits);
6293           SDValue Load = DAG.getExtLoad(ISD::EXTLOAD, dl, PtrVT, Chain, AddArg,
6294                                         MachinePointerInfo(), ObjType);
6295 
6296           MemOpChains.push_back(Load.getValue(1));
6297           RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
6298           ArgOffset += PtrByteSize;
6299         } else {
6300           ArgOffset += ((Size - j + PtrByteSize-1)/PtrByteSize)*PtrByteSize;
6301           break;
6302         }
6303       }
6304       continue;
6305     }
6306 
6307     switch (Arg.getSimpleValueType().SimpleTy) {
6308     default: llvm_unreachable("Unexpected ValueType for argument!");
6309     case MVT::i1:
6310     case MVT::i32:
6311     case MVT::i64:
6312       if (Flags.isNest()) {
6313         // The 'nest' parameter, if any, is passed in R11.
6314         RegsToPass.push_back(std::make_pair(PPC::X11, Arg));
6315         break;
6316       }
6317 
6318       // These can be scalar arguments or elements of an integer array type
6319       // passed directly.  Clang may use those instead of "byval" aggregate
6320       // types to avoid forcing arguments to memory unnecessarily.
6321       if (GPR_idx != NumGPRs) {
6322         RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Arg));
6323       } else {
6324         if (IsFastCall)
6325           ComputePtrOff();
6326 
6327         assert(HasParameterArea &&
6328                "Parameter area must exist to pass an argument in memory.");
6329         LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
6330                          true, CFlags.IsTailCall, false, MemOpChains,
6331                          TailCallArguments, dl);
6332         if (IsFastCall)
6333           ArgOffset += PtrByteSize;
6334       }
6335       if (!IsFastCall)
6336         ArgOffset += PtrByteSize;
6337       break;
6338     case MVT::f32:
6339     case MVT::f64: {
6340       // These can be scalar arguments or elements of a float array type
6341       // passed directly.  The latter are used to implement ELFv2 homogenous
6342       // float aggregates.
6343 
6344       // Named arguments go into FPRs first, and once they overflow, the
6345       // remaining arguments go into GPRs and then the parameter save area.
6346       // Unnamed arguments for vararg functions always go to GPRs and
6347       // then the parameter save area.  For now, put all arguments to vararg
6348       // routines always in both locations (FPR *and* GPR or stack slot).
6349       bool NeedGPROrStack = CFlags.IsVarArg || FPR_idx == NumFPRs;
6350       bool NeededLoad = false;
6351 
6352       // First load the argument into the next available FPR.
6353       if (FPR_idx != NumFPRs)
6354         RegsToPass.push_back(std::make_pair(FPR[FPR_idx++], Arg));
6355 
6356       // Next, load the argument into GPR or stack slot if needed.
6357       if (!NeedGPROrStack)
6358         ;
6359       else if (GPR_idx != NumGPRs && !IsFastCall) {
6360         // FIXME: We may want to re-enable this for CallingConv::Fast on the P8
6361         // once we support fp <-> gpr moves.
6362 
6363         // In the non-vararg case, this can only ever happen in the
6364         // presence of f32 array types, since otherwise we never run
6365         // out of FPRs before running out of GPRs.
6366         SDValue ArgVal;
6367 
6368         // Double values are always passed in a single GPR.
6369         if (Arg.getValueType() != MVT::f32) {
6370           ArgVal = DAG.getNode(ISD::BITCAST, dl, MVT::i64, Arg);
6371 
6372         // Non-array float values are extended and passed in a GPR.
6373         } else if (!Flags.isInConsecutiveRegs()) {
6374           ArgVal = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Arg);
6375           ArgVal = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i64, ArgVal);
6376 
6377         // If we have an array of floats, we collect every odd element
6378         // together with its predecessor into one GPR.
6379         } else if (ArgOffset % PtrByteSize != 0) {
6380           SDValue Lo, Hi;
6381           Lo = DAG.getNode(ISD::BITCAST, dl, MVT::i32, OutVals[i - 1]);
6382           Hi = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Arg);
6383           if (!isLittleEndian)
6384             std::swap(Lo, Hi);
6385           ArgVal = DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Lo, Hi);
6386 
6387         // The final element, if even, goes into the first half of a GPR.
6388         } else if (Flags.isInConsecutiveRegsLast()) {
6389           ArgVal = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Arg);
6390           ArgVal = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i64, ArgVal);
6391           if (!isLittleEndian)
6392             ArgVal = DAG.getNode(ISD::SHL, dl, MVT::i64, ArgVal,
6393                                  DAG.getConstant(32, dl, MVT::i32));
6394 
6395         // Non-final even elements are skipped; they will be handled
6396         // together the with subsequent argument on the next go-around.
6397         } else
6398           ArgVal = SDValue();
6399 
6400         if (ArgVal.getNode())
6401           RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], ArgVal));
6402       } else {
6403         if (IsFastCall)
6404           ComputePtrOff();
6405 
6406         // Single-precision floating-point values are mapped to the
6407         // second (rightmost) word of the stack doubleword.
6408         if (Arg.getValueType() == MVT::f32 &&
6409             !isLittleEndian && !Flags.isInConsecutiveRegs()) {
6410           SDValue ConstFour = DAG.getConstant(4, dl, PtrOff.getValueType());
6411           PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, ConstFour);
6412         }
6413 
6414         assert(HasParameterArea &&
6415                "Parameter area must exist to pass an argument in memory.");
6416         LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
6417                          true, CFlags.IsTailCall, false, MemOpChains,
6418                          TailCallArguments, dl);
6419 
6420         NeededLoad = true;
6421       }
6422       // When passing an array of floats, the array occupies consecutive
6423       // space in the argument area; only round up to the next doubleword
6424       // at the end of the array.  Otherwise, each float takes 8 bytes.
6425       if (!IsFastCall || NeededLoad) {
6426         ArgOffset += (Arg.getValueType() == MVT::f32 &&
6427                       Flags.isInConsecutiveRegs()) ? 4 : 8;
6428         if (Flags.isInConsecutiveRegsLast())
6429           ArgOffset = ((ArgOffset + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
6430       }
6431       break;
6432     }
6433     case MVT::v4f32:
6434     case MVT::v4i32:
6435     case MVT::v8i16:
6436     case MVT::v16i8:
6437     case MVT::v2f64:
6438     case MVT::v2i64:
6439     case MVT::v1i128:
6440     case MVT::f128:
6441       // These can be scalar arguments or elements of a vector array type
6442       // passed directly.  The latter are used to implement ELFv2 homogenous
6443       // vector aggregates.
6444 
6445       // For a varargs call, named arguments go into VRs or on the stack as
6446       // usual; unnamed arguments always go to the stack or the corresponding
6447       // GPRs when within range.  For now, we always put the value in both
6448       // locations (or even all three).
6449       if (CFlags.IsVarArg) {
6450         assert(HasParameterArea &&
6451                "Parameter area must exist if we have a varargs call.");
6452         // We could elide this store in the case where the object fits
6453         // entirely in R registers.  Maybe later.
6454         SDValue Store =
6455             DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo());
6456         MemOpChains.push_back(Store);
6457         if (VR_idx != NumVRs) {
6458           SDValue Load =
6459               DAG.getLoad(MVT::v4f32, dl, Store, PtrOff, MachinePointerInfo());
6460           MemOpChains.push_back(Load.getValue(1));
6461           RegsToPass.push_back(std::make_pair(VR[VR_idx++], Load));
6462         }
6463         ArgOffset += 16;
6464         for (unsigned i=0; i<16; i+=PtrByteSize) {
6465           if (GPR_idx == NumGPRs)
6466             break;
6467           SDValue Ix = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff,
6468                                    DAG.getConstant(i, dl, PtrVT));
6469           SDValue Load =
6470               DAG.getLoad(PtrVT, dl, Store, Ix, MachinePointerInfo());
6471           MemOpChains.push_back(Load.getValue(1));
6472           RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
6473         }
6474         break;
6475       }
6476 
6477       // Non-varargs Altivec params go into VRs or on the stack.
6478       if (VR_idx != NumVRs) {
6479         RegsToPass.push_back(std::make_pair(VR[VR_idx++], Arg));
6480       } else {
6481         if (IsFastCall)
6482           ComputePtrOff();
6483 
6484         assert(HasParameterArea &&
6485                "Parameter area must exist to pass an argument in memory.");
6486         LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
6487                          true, CFlags.IsTailCall, true, MemOpChains,
6488                          TailCallArguments, dl);
6489         if (IsFastCall)
6490           ArgOffset += 16;
6491       }
6492 
6493       if (!IsFastCall)
6494         ArgOffset += 16;
6495       break;
6496     }
6497   }
6498 
6499   assert((!HasParameterArea || NumBytesActuallyUsed == ArgOffset) &&
6500          "mismatch in size of parameter area");
6501   (void)NumBytesActuallyUsed;
6502 
6503   if (!MemOpChains.empty())
6504     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains);
6505 
6506   // Check if this is an indirect call (MTCTR/BCTRL).
6507   // See prepareDescriptorIndirectCall and buildCallOperands for more
6508   // information about calls through function pointers in the 64-bit SVR4 ABI.
6509   if (CFlags.IsIndirect) {
6510     // For 64-bit ELFv2 ABI with PCRel, do not save the TOC of the
6511     // caller in the TOC save area.
6512     if (isTOCSaveRestoreRequired(Subtarget)) {
6513       assert(!CFlags.IsTailCall && "Indirect tails calls not supported");
6514       // Load r2 into a virtual register and store it to the TOC save area.
6515       setUsesTOCBasePtr(DAG);
6516       SDValue Val = DAG.getCopyFromReg(Chain, dl, PPC::X2, MVT::i64);
6517       // TOC save area offset.
6518       unsigned TOCSaveOffset = Subtarget.getFrameLowering()->getTOCSaveOffset();
6519       SDValue PtrOff = DAG.getIntPtrConstant(TOCSaveOffset, dl);
6520       SDValue AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff);
6521       Chain = DAG.getStore(Val.getValue(1), dl, Val, AddPtr,
6522                            MachinePointerInfo::getStack(
6523                                DAG.getMachineFunction(), TOCSaveOffset));
6524     }
6525     // In the ELFv2 ABI, R12 must contain the address of an indirect callee.
6526     // This does not mean the MTCTR instruction must use R12; it's easier
6527     // to model this as an extra parameter, so do that.
6528     if (isELFv2ABI && !CFlags.IsPatchPoint)
6529       RegsToPass.push_back(std::make_pair((unsigned)PPC::X12, Callee));
6530   }
6531 
6532   // Build a sequence of copy-to-reg nodes chained together with token chain
6533   // and flag operands which copy the outgoing args into the appropriate regs.
6534   SDValue InFlag;
6535   for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
6536     Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
6537                              RegsToPass[i].second, InFlag);
6538     InFlag = Chain.getValue(1);
6539   }
6540 
6541   if (CFlags.IsTailCall && !IsSibCall)
6542     PrepareTailCall(DAG, InFlag, Chain, dl, SPDiff, NumBytes, LROp, FPOp,
6543                     TailCallArguments);
6544 
6545   return FinishCall(CFlags, dl, DAG, RegsToPass, InFlag, Chain, CallSeqStart,
6546                     Callee, SPDiff, NumBytes, Ins, InVals, CB);
6547 }
6548 
6549 // Returns true when the shadow of a general purpose argument register
6550 // in the parameter save area is aligned to at least 'RequiredAlign'.
6551 static bool isGPRShadowAligned(MCPhysReg Reg, Align RequiredAlign) {
6552   assert(RequiredAlign.value() <= 16 &&
6553          "Required alignment greater than stack alignment.");
6554   switch (Reg) {
6555   default:
6556     report_fatal_error("called on invalid register.");
6557   case PPC::R5:
6558   case PPC::R9:
6559   case PPC::X3:
6560   case PPC::X5:
6561   case PPC::X7:
6562   case PPC::X9:
6563     // These registers are 16 byte aligned which is the most strict aligment
6564     // we can support.
6565     return true;
6566   case PPC::R3:
6567   case PPC::R7:
6568   case PPC::X4:
6569   case PPC::X6:
6570   case PPC::X8:
6571   case PPC::X10:
6572     // The shadow of these registers in the PSA is 8 byte aligned.
6573     return RequiredAlign <= 8;
6574   case PPC::R4:
6575   case PPC::R6:
6576   case PPC::R8:
6577   case PPC::R10:
6578     return RequiredAlign <= 4;
6579   }
6580 }
6581 
6582 static bool CC_AIX(unsigned ValNo, MVT ValVT, MVT LocVT,
6583                    CCValAssign::LocInfo LocInfo, ISD::ArgFlagsTy ArgFlags,
6584                    CCState &S) {
6585   AIXCCState &State = static_cast<AIXCCState &>(S);
6586   const PPCSubtarget &Subtarget = static_cast<const PPCSubtarget &>(
6587       State.getMachineFunction().getSubtarget());
6588   const bool IsPPC64 = Subtarget.isPPC64();
6589   const Align PtrAlign = IsPPC64 ? Align(8) : Align(4);
6590   const MVT RegVT = IsPPC64 ? MVT::i64 : MVT::i32;
6591 
6592   if (ValVT == MVT::f128)
6593     report_fatal_error("f128 is unimplemented on AIX.");
6594 
6595   if (ArgFlags.isNest())
6596     report_fatal_error("Nest arguments are unimplemented.");
6597 
6598   static const MCPhysReg GPR_32[] = {// 32-bit registers.
6599                                      PPC::R3, PPC::R4, PPC::R5, PPC::R6,
6600                                      PPC::R7, PPC::R8, PPC::R9, PPC::R10};
6601   static const MCPhysReg GPR_64[] = {// 64-bit registers.
6602                                      PPC::X3, PPC::X4, PPC::X5, PPC::X6,
6603                                      PPC::X7, PPC::X8, PPC::X9, PPC::X10};
6604 
6605   static const MCPhysReg VR[] = {// Vector registers.
6606                                  PPC::V2,  PPC::V3,  PPC::V4,  PPC::V5,
6607                                  PPC::V6,  PPC::V7,  PPC::V8,  PPC::V9,
6608                                  PPC::V10, PPC::V11, PPC::V12, PPC::V13};
6609 
6610   if (ArgFlags.isByVal()) {
6611     if (ArgFlags.getNonZeroByValAlign() > PtrAlign)
6612       report_fatal_error("Pass-by-value arguments with alignment greater than "
6613                          "register width are not supported.");
6614 
6615     const unsigned ByValSize = ArgFlags.getByValSize();
6616 
6617     // An empty aggregate parameter takes up no storage and no registers,
6618     // but needs a MemLoc for a stack slot for the formal arguments side.
6619     if (ByValSize == 0) {
6620       State.addLoc(CCValAssign::getMem(ValNo, MVT::INVALID_SIMPLE_VALUE_TYPE,
6621                                        State.getNextStackOffset(), RegVT,
6622                                        LocInfo));
6623       return false;
6624     }
6625 
6626     const unsigned StackSize = alignTo(ByValSize, PtrAlign);
6627     unsigned Offset = State.AllocateStack(StackSize, PtrAlign);
6628     for (const unsigned E = Offset + StackSize; Offset < E;
6629          Offset += PtrAlign.value()) {
6630       if (unsigned Reg = State.AllocateReg(IsPPC64 ? GPR_64 : GPR_32))
6631         State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, RegVT, LocInfo));
6632       else {
6633         State.addLoc(CCValAssign::getMem(ValNo, MVT::INVALID_SIMPLE_VALUE_TYPE,
6634                                          Offset, MVT::INVALID_SIMPLE_VALUE_TYPE,
6635                                          LocInfo));
6636         break;
6637       }
6638     }
6639     return false;
6640   }
6641 
6642   // Arguments always reserve parameter save area.
6643   switch (ValVT.SimpleTy) {
6644   default:
6645     report_fatal_error("Unhandled value type for argument.");
6646   case MVT::i64:
6647     // i64 arguments should have been split to i32 for PPC32.
6648     assert(IsPPC64 && "PPC32 should have split i64 values.");
6649     LLVM_FALLTHROUGH;
6650   case MVT::i1:
6651   case MVT::i32: {
6652     const unsigned Offset = State.AllocateStack(PtrAlign.value(), PtrAlign);
6653     // AIX integer arguments are always passed in register width.
6654     if (ValVT.getFixedSizeInBits() < RegVT.getFixedSizeInBits())
6655       LocInfo = ArgFlags.isSExt() ? CCValAssign::LocInfo::SExt
6656                                   : CCValAssign::LocInfo::ZExt;
6657     if (unsigned Reg = State.AllocateReg(IsPPC64 ? GPR_64 : GPR_32))
6658       State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, RegVT, LocInfo));
6659     else
6660       State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset, RegVT, LocInfo));
6661 
6662     return false;
6663   }
6664   case MVT::f32:
6665   case MVT::f64: {
6666     // Parameter save area (PSA) is reserved even if the float passes in fpr.
6667     const unsigned StoreSize = LocVT.getStoreSize();
6668     // Floats are always 4-byte aligned in the PSA on AIX.
6669     // This includes f64 in 64-bit mode for ABI compatibility.
6670     const unsigned Offset =
6671         State.AllocateStack(IsPPC64 ? 8 : StoreSize, Align(4));
6672     unsigned FReg = State.AllocateReg(FPR);
6673     if (FReg)
6674       State.addLoc(CCValAssign::getReg(ValNo, ValVT, FReg, LocVT, LocInfo));
6675 
6676     // Reserve and initialize GPRs or initialize the PSA as required.
6677     for (unsigned I = 0; I < StoreSize; I += PtrAlign.value()) {
6678       if (unsigned Reg = State.AllocateReg(IsPPC64 ? GPR_64 : GPR_32)) {
6679         assert(FReg && "An FPR should be available when a GPR is reserved.");
6680         if (State.isVarArg()) {
6681           // Successfully reserved GPRs are only initialized for vararg calls.
6682           // Custom handling is required for:
6683           //   f64 in PPC32 needs to be split into 2 GPRs.
6684           //   f32 in PPC64 needs to occupy only lower 32 bits of 64-bit GPR.
6685           State.addLoc(
6686               CCValAssign::getCustomReg(ValNo, ValVT, Reg, RegVT, LocInfo));
6687         }
6688       } else {
6689         // If there are insufficient GPRs, the PSA needs to be initialized.
6690         // Initialization occurs even if an FPR was initialized for
6691         // compatibility with the AIX XL compiler. The full memory for the
6692         // argument will be initialized even if a prior word is saved in GPR.
6693         // A custom memLoc is used when the argument also passes in FPR so
6694         // that the callee handling can skip over it easily.
6695         State.addLoc(
6696             FReg ? CCValAssign::getCustomMem(ValNo, ValVT, Offset, LocVT,
6697                                              LocInfo)
6698                  : CCValAssign::getMem(ValNo, ValVT, Offset, LocVT, LocInfo));
6699         break;
6700       }
6701     }
6702 
6703     return false;
6704   }
6705   case MVT::v4f32:
6706   case MVT::v4i32:
6707   case MVT::v8i16:
6708   case MVT::v16i8:
6709   case MVT::v2i64:
6710   case MVT::v2f64:
6711   case MVT::v1i128: {
6712     const unsigned VecSize = 16;
6713     const Align VecAlign(VecSize);
6714 
6715     if (!State.isVarArg()) {
6716       // If there are vector registers remaining we don't consume any stack
6717       // space.
6718       if (unsigned VReg = State.AllocateReg(VR)) {
6719         State.addLoc(CCValAssign::getReg(ValNo, ValVT, VReg, LocVT, LocInfo));
6720         return false;
6721       }
6722       // Vectors passed on the stack do not shadow GPRs or FPRs even though they
6723       // might be allocated in the portion of the PSA that is shadowed by the
6724       // GPRs.
6725       const unsigned Offset = State.AllocateStack(VecSize, VecAlign);
6726       State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset, LocVT, LocInfo));
6727       return false;
6728     }
6729 
6730     const unsigned PtrSize = IsPPC64 ? 8 : 4;
6731     ArrayRef<MCPhysReg> GPRs = IsPPC64 ? GPR_64 : GPR_32;
6732 
6733     unsigned NextRegIndex = State.getFirstUnallocated(GPRs);
6734     // Burn any underaligned registers and their shadowed stack space until
6735     // we reach the required alignment.
6736     while (NextRegIndex != GPRs.size() &&
6737            !isGPRShadowAligned(GPRs[NextRegIndex], VecAlign)) {
6738       // Shadow allocate register and its stack shadow.
6739       unsigned Reg = State.AllocateReg(GPRs);
6740       State.AllocateStack(PtrSize, PtrAlign);
6741       assert(Reg && "Allocating register unexpectedly failed.");
6742       (void)Reg;
6743       NextRegIndex = State.getFirstUnallocated(GPRs);
6744     }
6745 
6746     // Vectors that are passed as fixed arguments are handled differently.
6747     // They are passed in VRs if any are available (unlike arguments passed
6748     // through ellipses) and shadow GPRs (unlike arguments to non-vaarg
6749     // functions)
6750     if (State.isFixed(ValNo)) {
6751       if (unsigned VReg = State.AllocateReg(VR)) {
6752         State.addLoc(CCValAssign::getReg(ValNo, ValVT, VReg, LocVT, LocInfo));
6753         // Shadow allocate GPRs and stack space even though we pass in a VR.
6754         for (unsigned I = 0; I != VecSize; I += PtrSize)
6755           State.AllocateReg(GPRs);
6756         State.AllocateStack(VecSize, VecAlign);
6757         return false;
6758       }
6759       // No vector registers remain so pass on the stack.
6760       const unsigned Offset = State.AllocateStack(VecSize, VecAlign);
6761       State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset, LocVT, LocInfo));
6762       return false;
6763     }
6764 
6765     // If all GPRS are consumed then we pass the argument fully on the stack.
6766     if (NextRegIndex == GPRs.size()) {
6767       const unsigned Offset = State.AllocateStack(VecSize, VecAlign);
6768       State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset, LocVT, LocInfo));
6769       return false;
6770     }
6771 
6772     // Corner case for 32-bit codegen. We have 2 registers to pass the first
6773     // half of the argument, and then need to pass the remaining half on the
6774     // stack.
6775     if (GPRs[NextRegIndex] == PPC::R9) {
6776       const unsigned Offset = State.AllocateStack(VecSize, VecAlign);
6777       State.addLoc(
6778           CCValAssign::getCustomMem(ValNo, ValVT, Offset, LocVT, LocInfo));
6779 
6780       const unsigned FirstReg = State.AllocateReg(PPC::R9);
6781       const unsigned SecondReg = State.AllocateReg(PPC::R10);
6782       assert(FirstReg && SecondReg &&
6783              "Allocating R9 or R10 unexpectedly failed.");
6784       State.addLoc(
6785           CCValAssign::getCustomReg(ValNo, ValVT, FirstReg, RegVT, LocInfo));
6786       State.addLoc(
6787           CCValAssign::getCustomReg(ValNo, ValVT, SecondReg, RegVT, LocInfo));
6788       return false;
6789     }
6790 
6791     // We have enough GPRs to fully pass the vector argument, and we have
6792     // already consumed any underaligned registers. Start with the custom
6793     // MemLoc and then the custom RegLocs.
6794     const unsigned Offset = State.AllocateStack(VecSize, VecAlign);
6795     State.addLoc(
6796         CCValAssign::getCustomMem(ValNo, ValVT, Offset, LocVT, LocInfo));
6797     for (unsigned I = 0; I != VecSize; I += PtrSize) {
6798       const unsigned Reg = State.AllocateReg(GPRs);
6799       assert(Reg && "Failed to allocated register for vararg vector argument");
6800       State.addLoc(
6801           CCValAssign::getCustomReg(ValNo, ValVT, Reg, RegVT, LocInfo));
6802     }
6803     return false;
6804   }
6805   }
6806   return true;
6807 }
6808 
6809 // So far, this function is only used by LowerFormalArguments_AIX()
6810 static const TargetRegisterClass *getRegClassForSVT(MVT::SimpleValueType SVT,
6811                                                     bool IsPPC64,
6812                                                     bool HasP8Vector,
6813                                                     bool HasVSX) {
6814   assert((IsPPC64 || SVT != MVT::i64) &&
6815          "i64 should have been split for 32-bit codegen.");
6816 
6817   switch (SVT) {
6818   default:
6819     report_fatal_error("Unexpected value type for formal argument");
6820   case MVT::i1:
6821   case MVT::i32:
6822   case MVT::i64:
6823     return IsPPC64 ? &PPC::G8RCRegClass : &PPC::GPRCRegClass;
6824   case MVT::f32:
6825     return HasP8Vector ? &PPC::VSSRCRegClass : &PPC::F4RCRegClass;
6826   case MVT::f64:
6827     return HasVSX ? &PPC::VSFRCRegClass : &PPC::F8RCRegClass;
6828   case MVT::v4f32:
6829   case MVT::v4i32:
6830   case MVT::v8i16:
6831   case MVT::v16i8:
6832   case MVT::v2i64:
6833   case MVT::v2f64:
6834   case MVT::v1i128:
6835     return &PPC::VRRCRegClass;
6836   }
6837 }
6838 
6839 static SDValue truncateScalarIntegerArg(ISD::ArgFlagsTy Flags, EVT ValVT,
6840                                         SelectionDAG &DAG, SDValue ArgValue,
6841                                         MVT LocVT, const SDLoc &dl) {
6842   assert(ValVT.isScalarInteger() && LocVT.isScalarInteger());
6843   assert(ValVT.getFixedSizeInBits() < LocVT.getFixedSizeInBits());
6844 
6845   if (Flags.isSExt())
6846     ArgValue = DAG.getNode(ISD::AssertSext, dl, LocVT, ArgValue,
6847                            DAG.getValueType(ValVT));
6848   else if (Flags.isZExt())
6849     ArgValue = DAG.getNode(ISD::AssertZext, dl, LocVT, ArgValue,
6850                            DAG.getValueType(ValVT));
6851 
6852   return DAG.getNode(ISD::TRUNCATE, dl, ValVT, ArgValue);
6853 }
6854 
6855 static unsigned mapArgRegToOffsetAIX(unsigned Reg, const PPCFrameLowering *FL) {
6856   const unsigned LASize = FL->getLinkageSize();
6857 
6858   if (PPC::GPRCRegClass.contains(Reg)) {
6859     assert(Reg >= PPC::R3 && Reg <= PPC::R10 &&
6860            "Reg must be a valid argument register!");
6861     return LASize + 4 * (Reg - PPC::R3);
6862   }
6863 
6864   if (PPC::G8RCRegClass.contains(Reg)) {
6865     assert(Reg >= PPC::X3 && Reg <= PPC::X10 &&
6866            "Reg must be a valid argument register!");
6867     return LASize + 8 * (Reg - PPC::X3);
6868   }
6869 
6870   llvm_unreachable("Only general purpose registers expected.");
6871 }
6872 
6873 //   AIX ABI Stack Frame Layout:
6874 //
6875 //   Low Memory +--------------------------------------------+
6876 //   SP   +---> | Back chain                                 | ---+
6877 //        |     +--------------------------------------------+    |
6878 //        |     | Saved Condition Register                   |    |
6879 //        |     +--------------------------------------------+    |
6880 //        |     | Saved Linkage Register                     |    |
6881 //        |     +--------------------------------------------+    | Linkage Area
6882 //        |     | Reserved for compilers                     |    |
6883 //        |     +--------------------------------------------+    |
6884 //        |     | Reserved for binders                       |    |
6885 //        |     +--------------------------------------------+    |
6886 //        |     | Saved TOC pointer                          | ---+
6887 //        |     +--------------------------------------------+
6888 //        |     | Parameter save area                        |
6889 //        |     +--------------------------------------------+
6890 //        |     | Alloca space                               |
6891 //        |     +--------------------------------------------+
6892 //        |     | Local variable space                       |
6893 //        |     +--------------------------------------------+
6894 //        |     | Float/int conversion temporary             |
6895 //        |     +--------------------------------------------+
6896 //        |     | Save area for AltiVec registers            |
6897 //        |     +--------------------------------------------+
6898 //        |     | AltiVec alignment padding                  |
6899 //        |     +--------------------------------------------+
6900 //        |     | Save area for VRSAVE register              |
6901 //        |     +--------------------------------------------+
6902 //        |     | Save area for General Purpose registers    |
6903 //        |     +--------------------------------------------+
6904 //        |     | Save area for Floating Point registers     |
6905 //        |     +--------------------------------------------+
6906 //        +---- | Back chain                                 |
6907 // High Memory  +--------------------------------------------+
6908 //
6909 //  Specifications:
6910 //  AIX 7.2 Assembler Language Reference
6911 //  Subroutine linkage convention
6912 
6913 SDValue PPCTargetLowering::LowerFormalArguments_AIX(
6914     SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
6915     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
6916     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
6917 
6918   assert((CallConv == CallingConv::C || CallConv == CallingConv::Cold ||
6919           CallConv == CallingConv::Fast) &&
6920          "Unexpected calling convention!");
6921 
6922   if (getTargetMachine().Options.GuaranteedTailCallOpt)
6923     report_fatal_error("Tail call support is unimplemented on AIX.");
6924 
6925   if (useSoftFloat())
6926     report_fatal_error("Soft float support is unimplemented on AIX.");
6927 
6928   const PPCSubtarget &Subtarget = DAG.getSubtarget<PPCSubtarget>();
6929 
6930   const bool IsPPC64 = Subtarget.isPPC64();
6931   const unsigned PtrByteSize = IsPPC64 ? 8 : 4;
6932 
6933   // Assign locations to all of the incoming arguments.
6934   SmallVector<CCValAssign, 16> ArgLocs;
6935   MachineFunction &MF = DAG.getMachineFunction();
6936   MachineFrameInfo &MFI = MF.getFrameInfo();
6937   PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
6938   AIXCCState CCInfo(CallConv, isVarArg, MF, ArgLocs, *DAG.getContext());
6939 
6940   const EVT PtrVT = getPointerTy(MF.getDataLayout());
6941   // Reserve space for the linkage area on the stack.
6942   const unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize();
6943   CCInfo.AllocateStack(LinkageSize, Align(PtrByteSize));
6944   CCInfo.AnalyzeFormalArguments(Ins, CC_AIX);
6945 
6946   SmallVector<SDValue, 8> MemOps;
6947 
6948   for (size_t I = 0, End = ArgLocs.size(); I != End; /* No increment here */) {
6949     CCValAssign &VA = ArgLocs[I++];
6950     MVT LocVT = VA.getLocVT();
6951     MVT ValVT = VA.getValVT();
6952     ISD::ArgFlagsTy Flags = Ins[VA.getValNo()].Flags;
6953     // For compatibility with the AIX XL compiler, the float args in the
6954     // parameter save area are initialized even if the argument is available
6955     // in register.  The caller is required to initialize both the register
6956     // and memory, however, the callee can choose to expect it in either.
6957     // The memloc is dismissed here because the argument is retrieved from
6958     // the register.
6959     if (VA.isMemLoc() && VA.needsCustom() && ValVT.isFloatingPoint())
6960       continue;
6961 
6962     auto HandleMemLoc = [&]() {
6963       const unsigned LocSize = LocVT.getStoreSize();
6964       const unsigned ValSize = ValVT.getStoreSize();
6965       assert((ValSize <= LocSize) &&
6966              "Object size is larger than size of MemLoc");
6967       int CurArgOffset = VA.getLocMemOffset();
6968       // Objects are right-justified because AIX is big-endian.
6969       if (LocSize > ValSize)
6970         CurArgOffset += LocSize - ValSize;
6971       // Potential tail calls could cause overwriting of argument stack slots.
6972       const bool IsImmutable =
6973           !(getTargetMachine().Options.GuaranteedTailCallOpt &&
6974             (CallConv == CallingConv::Fast));
6975       int FI = MFI.CreateFixedObject(ValSize, CurArgOffset, IsImmutable);
6976       SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
6977       SDValue ArgValue =
6978           DAG.getLoad(ValVT, dl, Chain, FIN, MachinePointerInfo());
6979       InVals.push_back(ArgValue);
6980     };
6981 
6982     // Vector arguments to VaArg functions are passed both on the stack, and
6983     // in any available GPRs. Load the value from the stack and add the GPRs
6984     // as live ins.
6985     if (VA.isMemLoc() && VA.needsCustom()) {
6986       assert(ValVT.isVector() && "Unexpected Custom MemLoc type.");
6987       assert(isVarArg && "Only use custom memloc for vararg.");
6988       // ValNo of the custom MemLoc, so we can compare it to the ValNo of the
6989       // matching custom RegLocs.
6990       const unsigned OriginalValNo = VA.getValNo();
6991       (void)OriginalValNo;
6992 
6993       auto HandleCustomVecRegLoc = [&]() {
6994         assert(I != End && ArgLocs[I].isRegLoc() && ArgLocs[I].needsCustom() &&
6995                "Missing custom RegLoc.");
6996         VA = ArgLocs[I++];
6997         assert(VA.getValVT().isVector() &&
6998                "Unexpected Val type for custom RegLoc.");
6999         assert(VA.getValNo() == OriginalValNo &&
7000                "ValNo mismatch between custom MemLoc and RegLoc.");
7001         MVT::SimpleValueType SVT = VA.getLocVT().SimpleTy;
7002         MF.addLiveIn(VA.getLocReg(),
7003                      getRegClassForSVT(SVT, IsPPC64, Subtarget.hasP8Vector(),
7004                                        Subtarget.hasVSX()));
7005       };
7006 
7007       HandleMemLoc();
7008       // In 64-bit there will be exactly 2 custom RegLocs that follow, and in
7009       // in 32-bit there will be 2 custom RegLocs if we are passing in R9 and
7010       // R10.
7011       HandleCustomVecRegLoc();
7012       HandleCustomVecRegLoc();
7013 
7014       // If we are targeting 32-bit, there might be 2 extra custom RegLocs if
7015       // we passed the vector in R5, R6, R7 and R8.
7016       if (I != End && ArgLocs[I].isRegLoc() && ArgLocs[I].needsCustom()) {
7017         assert(!IsPPC64 &&
7018                "Only 2 custom RegLocs expected for 64-bit codegen.");
7019         HandleCustomVecRegLoc();
7020         HandleCustomVecRegLoc();
7021       }
7022 
7023       continue;
7024     }
7025 
7026     if (VA.isRegLoc()) {
7027       if (VA.getValVT().isScalarInteger())
7028         FuncInfo->appendParameterType(PPCFunctionInfo::FixedType);
7029       else if (VA.getValVT().isFloatingPoint() && !VA.getValVT().isVector()) {
7030         switch (VA.getValVT().SimpleTy) {
7031         default:
7032           report_fatal_error("Unhandled value type for argument.");
7033         case MVT::f32:
7034           FuncInfo->appendParameterType(PPCFunctionInfo::ShortFloatingPoint);
7035           break;
7036         case MVT::f64:
7037           FuncInfo->appendParameterType(PPCFunctionInfo::LongFloatingPoint);
7038           break;
7039         }
7040       } else if (VA.getValVT().isVector()) {
7041         switch (VA.getValVT().SimpleTy) {
7042         default:
7043           report_fatal_error("Unhandled value type for argument.");
7044         case MVT::v16i8:
7045           FuncInfo->appendParameterType(PPCFunctionInfo::VectorChar);
7046           break;
7047         case MVT::v8i16:
7048           FuncInfo->appendParameterType(PPCFunctionInfo::VectorShort);
7049           break;
7050         case MVT::v4i32:
7051         case MVT::v2i64:
7052         case MVT::v1i128:
7053           FuncInfo->appendParameterType(PPCFunctionInfo::VectorInt);
7054           break;
7055         case MVT::v4f32:
7056         case MVT::v2f64:
7057           FuncInfo->appendParameterType(PPCFunctionInfo::VectorFloat);
7058           break;
7059         }
7060       }
7061     }
7062 
7063     if (Flags.isByVal() && VA.isMemLoc()) {
7064       const unsigned Size =
7065           alignTo(Flags.getByValSize() ? Flags.getByValSize() : PtrByteSize,
7066                   PtrByteSize);
7067       const int FI = MF.getFrameInfo().CreateFixedObject(
7068           Size, VA.getLocMemOffset(), /* IsImmutable */ false,
7069           /* IsAliased */ true);
7070       SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
7071       InVals.push_back(FIN);
7072 
7073       continue;
7074     }
7075 
7076     if (Flags.isByVal()) {
7077       assert(VA.isRegLoc() && "MemLocs should already be handled.");
7078 
7079       const MCPhysReg ArgReg = VA.getLocReg();
7080       const PPCFrameLowering *FL = Subtarget.getFrameLowering();
7081 
7082       if (Flags.getNonZeroByValAlign() > PtrByteSize)
7083         report_fatal_error("Over aligned byvals not supported yet.");
7084 
7085       const unsigned StackSize = alignTo(Flags.getByValSize(), PtrByteSize);
7086       const int FI = MF.getFrameInfo().CreateFixedObject(
7087           StackSize, mapArgRegToOffsetAIX(ArgReg, FL), /* IsImmutable */ false,
7088           /* IsAliased */ true);
7089       SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
7090       InVals.push_back(FIN);
7091 
7092       // Add live ins for all the RegLocs for the same ByVal.
7093       const TargetRegisterClass *RegClass =
7094           IsPPC64 ? &PPC::G8RCRegClass : &PPC::GPRCRegClass;
7095 
7096       auto HandleRegLoc = [&, RegClass, LocVT](const MCPhysReg PhysReg,
7097                                                unsigned Offset) {
7098         const Register VReg = MF.addLiveIn(PhysReg, RegClass);
7099         // Since the callers side has left justified the aggregate in the
7100         // register, we can simply store the entire register into the stack
7101         // slot.
7102         SDValue CopyFrom = DAG.getCopyFromReg(Chain, dl, VReg, LocVT);
7103         // The store to the fixedstack object is needed becuase accessing a
7104         // field of the ByVal will use a gep and load. Ideally we will optimize
7105         // to extracting the value from the register directly, and elide the
7106         // stores when the arguments address is not taken, but that will need to
7107         // be future work.
7108         SDValue Store = DAG.getStore(
7109             CopyFrom.getValue(1), dl, CopyFrom,
7110             DAG.getObjectPtrOffset(dl, FIN, TypeSize::Fixed(Offset)),
7111             MachinePointerInfo::getFixedStack(MF, FI, Offset));
7112 
7113         MemOps.push_back(Store);
7114       };
7115 
7116       unsigned Offset = 0;
7117       HandleRegLoc(VA.getLocReg(), Offset);
7118       Offset += PtrByteSize;
7119       for (; Offset != StackSize && ArgLocs[I].isRegLoc();
7120            Offset += PtrByteSize) {
7121         assert(ArgLocs[I].getValNo() == VA.getValNo() &&
7122                "RegLocs should be for ByVal argument.");
7123 
7124         const CCValAssign RL = ArgLocs[I++];
7125         HandleRegLoc(RL.getLocReg(), Offset);
7126         FuncInfo->appendParameterType(PPCFunctionInfo::FixedType);
7127       }
7128 
7129       if (Offset != StackSize) {
7130         assert(ArgLocs[I].getValNo() == VA.getValNo() &&
7131                "Expected MemLoc for remaining bytes.");
7132         assert(ArgLocs[I].isMemLoc() && "Expected MemLoc for remaining bytes.");
7133         // Consume the MemLoc.The InVal has already been emitted, so nothing
7134         // more needs to be done.
7135         ++I;
7136       }
7137 
7138       continue;
7139     }
7140 
7141     if (VA.isRegLoc() && !VA.needsCustom()) {
7142       MVT::SimpleValueType SVT = ValVT.SimpleTy;
7143       Register VReg =
7144           MF.addLiveIn(VA.getLocReg(),
7145                        getRegClassForSVT(SVT, IsPPC64, Subtarget.hasP8Vector(),
7146                                          Subtarget.hasVSX()));
7147       SDValue ArgValue = DAG.getCopyFromReg(Chain, dl, VReg, LocVT);
7148       if (ValVT.isScalarInteger() &&
7149           (ValVT.getFixedSizeInBits() < LocVT.getFixedSizeInBits())) {
7150         ArgValue =
7151             truncateScalarIntegerArg(Flags, ValVT, DAG, ArgValue, LocVT, dl);
7152       }
7153       InVals.push_back(ArgValue);
7154       continue;
7155     }
7156     if (VA.isMemLoc()) {
7157       HandleMemLoc();
7158       continue;
7159     }
7160   }
7161 
7162   // On AIX a minimum of 8 words is saved to the parameter save area.
7163   const unsigned MinParameterSaveArea = 8 * PtrByteSize;
7164   // Area that is at least reserved in the caller of this function.
7165   unsigned CallerReservedArea =
7166       std::max(CCInfo.getNextStackOffset(), LinkageSize + MinParameterSaveArea);
7167 
7168   // Set the size that is at least reserved in caller of this function. Tail
7169   // call optimized function's reserved stack space needs to be aligned so
7170   // that taking the difference between two stack areas will result in an
7171   // aligned stack.
7172   CallerReservedArea =
7173       EnsureStackAlignment(Subtarget.getFrameLowering(), CallerReservedArea);
7174   FuncInfo->setMinReservedArea(CallerReservedArea);
7175 
7176   if (isVarArg) {
7177     FuncInfo->setVarArgsFrameIndex(
7178         MFI.CreateFixedObject(PtrByteSize, CCInfo.getNextStackOffset(), true));
7179     SDValue FIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT);
7180 
7181     static const MCPhysReg GPR_32[] = {PPC::R3, PPC::R4, PPC::R5, PPC::R6,
7182                                        PPC::R7, PPC::R8, PPC::R9, PPC::R10};
7183 
7184     static const MCPhysReg GPR_64[] = {PPC::X3, PPC::X4, PPC::X5, PPC::X6,
7185                                        PPC::X7, PPC::X8, PPC::X9, PPC::X10};
7186     const unsigned NumGPArgRegs = array_lengthof(IsPPC64 ? GPR_64 : GPR_32);
7187 
7188     // The fixed integer arguments of a variadic function are stored to the
7189     // VarArgsFrameIndex on the stack so that they may be loaded by
7190     // dereferencing the result of va_next.
7191     for (unsigned GPRIndex =
7192              (CCInfo.getNextStackOffset() - LinkageSize) / PtrByteSize;
7193          GPRIndex < NumGPArgRegs; ++GPRIndex) {
7194 
7195       const Register VReg =
7196           IsPPC64 ? MF.addLiveIn(GPR_64[GPRIndex], &PPC::G8RCRegClass)
7197                   : MF.addLiveIn(GPR_32[GPRIndex], &PPC::GPRCRegClass);
7198 
7199       SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
7200       SDValue Store =
7201           DAG.getStore(Val.getValue(1), dl, Val, FIN, MachinePointerInfo());
7202       MemOps.push_back(Store);
7203       // Increment the address for the next argument to store.
7204       SDValue PtrOff = DAG.getConstant(PtrByteSize, dl, PtrVT);
7205       FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff);
7206     }
7207   }
7208 
7209   if (!MemOps.empty())
7210     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOps);
7211 
7212   return Chain;
7213 }
7214 
7215 SDValue PPCTargetLowering::LowerCall_AIX(
7216     SDValue Chain, SDValue Callee, CallFlags CFlags,
7217     const SmallVectorImpl<ISD::OutputArg> &Outs,
7218     const SmallVectorImpl<SDValue> &OutVals,
7219     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
7220     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals,
7221     const CallBase *CB) const {
7222   // See PPCTargetLowering::LowerFormalArguments_AIX() for a description of the
7223   // AIX ABI stack frame layout.
7224 
7225   assert((CFlags.CallConv == CallingConv::C ||
7226           CFlags.CallConv == CallingConv::Cold ||
7227           CFlags.CallConv == CallingConv::Fast) &&
7228          "Unexpected calling convention!");
7229 
7230   if (CFlags.IsPatchPoint)
7231     report_fatal_error("This call type is unimplemented on AIX.");
7232 
7233   const PPCSubtarget &Subtarget = DAG.getSubtarget<PPCSubtarget>();
7234 
7235   MachineFunction &MF = DAG.getMachineFunction();
7236   SmallVector<CCValAssign, 16> ArgLocs;
7237   AIXCCState CCInfo(CFlags.CallConv, CFlags.IsVarArg, MF, ArgLocs,
7238                     *DAG.getContext());
7239 
7240   // Reserve space for the linkage save area (LSA) on the stack.
7241   // In both PPC32 and PPC64 there are 6 reserved slots in the LSA:
7242   //   [SP][CR][LR][2 x reserved][TOC].
7243   // The LSA is 24 bytes (6x4) in PPC32 and 48 bytes (6x8) in PPC64.
7244   const unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize();
7245   const bool IsPPC64 = Subtarget.isPPC64();
7246   const EVT PtrVT = getPointerTy(DAG.getDataLayout());
7247   const unsigned PtrByteSize = IsPPC64 ? 8 : 4;
7248   CCInfo.AllocateStack(LinkageSize, Align(PtrByteSize));
7249   CCInfo.AnalyzeCallOperands(Outs, CC_AIX);
7250 
7251   // The prolog code of the callee may store up to 8 GPR argument registers to
7252   // the stack, allowing va_start to index over them in memory if the callee
7253   // is variadic.
7254   // Because we cannot tell if this is needed on the caller side, we have to
7255   // conservatively assume that it is needed.  As such, make sure we have at
7256   // least enough stack space for the caller to store the 8 GPRs.
7257   const unsigned MinParameterSaveAreaSize = 8 * PtrByteSize;
7258   const unsigned NumBytes = std::max(LinkageSize + MinParameterSaveAreaSize,
7259                                      CCInfo.getNextStackOffset());
7260 
7261   // Adjust the stack pointer for the new arguments...
7262   // These operations are automatically eliminated by the prolog/epilog pass.
7263   Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, dl);
7264   SDValue CallSeqStart = Chain;
7265 
7266   SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
7267   SmallVector<SDValue, 8> MemOpChains;
7268 
7269   // Set up a copy of the stack pointer for loading and storing any
7270   // arguments that may not fit in the registers available for argument
7271   // passing.
7272   const SDValue StackPtr = IsPPC64 ? DAG.getRegister(PPC::X1, MVT::i64)
7273                                    : DAG.getRegister(PPC::R1, MVT::i32);
7274 
7275   for (unsigned I = 0, E = ArgLocs.size(); I != E;) {
7276     const unsigned ValNo = ArgLocs[I].getValNo();
7277     SDValue Arg = OutVals[ValNo];
7278     ISD::ArgFlagsTy Flags = Outs[ValNo].Flags;
7279 
7280     if (Flags.isByVal()) {
7281       const unsigned ByValSize = Flags.getByValSize();
7282 
7283       // Nothing to do for zero-sized ByVals on the caller side.
7284       if (!ByValSize) {
7285         ++I;
7286         continue;
7287       }
7288 
7289       auto GetLoad = [&](EVT VT, unsigned LoadOffset) {
7290         return DAG.getExtLoad(
7291             ISD::ZEXTLOAD, dl, PtrVT, Chain,
7292             (LoadOffset != 0)
7293                 ? DAG.getObjectPtrOffset(dl, Arg, TypeSize::Fixed(LoadOffset))
7294                 : Arg,
7295             MachinePointerInfo(), VT);
7296       };
7297 
7298       unsigned LoadOffset = 0;
7299 
7300       // Initialize registers, which are fully occupied by the by-val argument.
7301       while (LoadOffset + PtrByteSize <= ByValSize && ArgLocs[I].isRegLoc()) {
7302         SDValue Load = GetLoad(PtrVT, LoadOffset);
7303         MemOpChains.push_back(Load.getValue(1));
7304         LoadOffset += PtrByteSize;
7305         const CCValAssign &ByValVA = ArgLocs[I++];
7306         assert(ByValVA.getValNo() == ValNo &&
7307                "Unexpected location for pass-by-value argument.");
7308         RegsToPass.push_back(std::make_pair(ByValVA.getLocReg(), Load));
7309       }
7310 
7311       if (LoadOffset == ByValSize)
7312         continue;
7313 
7314       // There must be one more loc to handle the remainder.
7315       assert(ArgLocs[I].getValNo() == ValNo &&
7316              "Expected additional location for by-value argument.");
7317 
7318       if (ArgLocs[I].isMemLoc()) {
7319         assert(LoadOffset < ByValSize && "Unexpected memloc for by-val arg.");
7320         const CCValAssign &ByValVA = ArgLocs[I++];
7321         ISD::ArgFlagsTy MemcpyFlags = Flags;
7322         // Only memcpy the bytes that don't pass in register.
7323         MemcpyFlags.setByValSize(ByValSize - LoadOffset);
7324         Chain = CallSeqStart = createMemcpyOutsideCallSeq(
7325             (LoadOffset != 0)
7326                 ? DAG.getObjectPtrOffset(dl, Arg, TypeSize::Fixed(LoadOffset))
7327                 : Arg,
7328             DAG.getObjectPtrOffset(dl, StackPtr,
7329                                    TypeSize::Fixed(ByValVA.getLocMemOffset())),
7330             CallSeqStart, MemcpyFlags, DAG, dl);
7331         continue;
7332       }
7333 
7334       // Initialize the final register residue.
7335       // Any residue that occupies the final by-val arg register must be
7336       // left-justified on AIX. Loads must be a power-of-2 size and cannot be
7337       // larger than the ByValSize. For example: a 7 byte by-val arg requires 4,
7338       // 2 and 1 byte loads.
7339       const unsigned ResidueBytes = ByValSize % PtrByteSize;
7340       assert(ResidueBytes != 0 && LoadOffset + PtrByteSize > ByValSize &&
7341              "Unexpected register residue for by-value argument.");
7342       SDValue ResidueVal;
7343       for (unsigned Bytes = 0; Bytes != ResidueBytes;) {
7344         const unsigned N = PowerOf2Floor(ResidueBytes - Bytes);
7345         const MVT VT =
7346             N == 1 ? MVT::i8
7347                    : ((N == 2) ? MVT::i16 : (N == 4 ? MVT::i32 : MVT::i64));
7348         SDValue Load = GetLoad(VT, LoadOffset);
7349         MemOpChains.push_back(Load.getValue(1));
7350         LoadOffset += N;
7351         Bytes += N;
7352 
7353         // By-val arguments are passed left-justfied in register.
7354         // Every load here needs to be shifted, otherwise a full register load
7355         // should have been used.
7356         assert(PtrVT.getSimpleVT().getSizeInBits() > (Bytes * 8) &&
7357                "Unexpected load emitted during handling of pass-by-value "
7358                "argument.");
7359         unsigned NumSHLBits = PtrVT.getSimpleVT().getSizeInBits() - (Bytes * 8);
7360         EVT ShiftAmountTy =
7361             getShiftAmountTy(Load->getValueType(0), DAG.getDataLayout());
7362         SDValue SHLAmt = DAG.getConstant(NumSHLBits, dl, ShiftAmountTy);
7363         SDValue ShiftedLoad =
7364             DAG.getNode(ISD::SHL, dl, Load.getValueType(), Load, SHLAmt);
7365         ResidueVal = ResidueVal ? DAG.getNode(ISD::OR, dl, PtrVT, ResidueVal,
7366                                               ShiftedLoad)
7367                                 : ShiftedLoad;
7368       }
7369 
7370       const CCValAssign &ByValVA = ArgLocs[I++];
7371       RegsToPass.push_back(std::make_pair(ByValVA.getLocReg(), ResidueVal));
7372       continue;
7373     }
7374 
7375     CCValAssign &VA = ArgLocs[I++];
7376     const MVT LocVT = VA.getLocVT();
7377     const MVT ValVT = VA.getValVT();
7378 
7379     switch (VA.getLocInfo()) {
7380     default:
7381       report_fatal_error("Unexpected argument extension type.");
7382     case CCValAssign::Full:
7383       break;
7384     case CCValAssign::ZExt:
7385       Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, VA.getLocVT(), Arg);
7386       break;
7387     case CCValAssign::SExt:
7388       Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, VA.getLocVT(), Arg);
7389       break;
7390     }
7391 
7392     if (VA.isRegLoc() && !VA.needsCustom()) {
7393       RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
7394       continue;
7395     }
7396 
7397     // Vector arguments passed to VarArg functions need custom handling when
7398     // they are passed (at least partially) in GPRs.
7399     if (VA.isMemLoc() && VA.needsCustom() && ValVT.isVector()) {
7400       assert(CFlags.IsVarArg && "Custom MemLocs only used for Vector args.");
7401       // Store value to its stack slot.
7402       SDValue PtrOff =
7403           DAG.getConstant(VA.getLocMemOffset(), dl, StackPtr.getValueType());
7404       PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff);
7405       SDValue Store =
7406           DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo());
7407       MemOpChains.push_back(Store);
7408       const unsigned OriginalValNo = VA.getValNo();
7409       // Then load the GPRs from the stack
7410       unsigned LoadOffset = 0;
7411       auto HandleCustomVecRegLoc = [&]() {
7412         assert(I != E && "Unexpected end of CCvalAssigns.");
7413         assert(ArgLocs[I].isRegLoc() && ArgLocs[I].needsCustom() &&
7414                "Expected custom RegLoc.");
7415         CCValAssign RegVA = ArgLocs[I++];
7416         assert(RegVA.getValNo() == OriginalValNo &&
7417                "Custom MemLoc ValNo and custom RegLoc ValNo must match.");
7418         SDValue Add = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff,
7419                                   DAG.getConstant(LoadOffset, dl, PtrVT));
7420         SDValue Load = DAG.getLoad(PtrVT, dl, Store, Add, MachinePointerInfo());
7421         MemOpChains.push_back(Load.getValue(1));
7422         RegsToPass.push_back(std::make_pair(RegVA.getLocReg(), Load));
7423         LoadOffset += PtrByteSize;
7424       };
7425 
7426       // In 64-bit there will be exactly 2 custom RegLocs that follow, and in
7427       // in 32-bit there will be 2 custom RegLocs if we are passing in R9 and
7428       // R10.
7429       HandleCustomVecRegLoc();
7430       HandleCustomVecRegLoc();
7431 
7432       if (I != E && ArgLocs[I].isRegLoc() && ArgLocs[I].needsCustom() &&
7433           ArgLocs[I].getValNo() == OriginalValNo) {
7434         assert(!IsPPC64 &&
7435                "Only 2 custom RegLocs expected for 64-bit codegen.");
7436         HandleCustomVecRegLoc();
7437         HandleCustomVecRegLoc();
7438       }
7439 
7440       continue;
7441     }
7442 
7443     if (VA.isMemLoc()) {
7444       SDValue PtrOff =
7445           DAG.getConstant(VA.getLocMemOffset(), dl, StackPtr.getValueType());
7446       PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff);
7447       MemOpChains.push_back(
7448           DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo()));
7449 
7450       continue;
7451     }
7452 
7453     if (!ValVT.isFloatingPoint())
7454       report_fatal_error(
7455           "Unexpected register handling for calling convention.");
7456 
7457     // Custom handling is used for GPR initializations for vararg float
7458     // arguments.
7459     assert(VA.isRegLoc() && VA.needsCustom() && CFlags.IsVarArg &&
7460            LocVT.isInteger() &&
7461            "Custom register handling only expected for VarArg.");
7462 
7463     SDValue ArgAsInt =
7464         DAG.getBitcast(MVT::getIntegerVT(ValVT.getSizeInBits()), Arg);
7465 
7466     if (Arg.getValueType().getStoreSize() == LocVT.getStoreSize())
7467       // f32 in 32-bit GPR
7468       // f64 in 64-bit GPR
7469       RegsToPass.push_back(std::make_pair(VA.getLocReg(), ArgAsInt));
7470     else if (Arg.getValueType().getFixedSizeInBits() <
7471              LocVT.getFixedSizeInBits())
7472       // f32 in 64-bit GPR.
7473       RegsToPass.push_back(std::make_pair(
7474           VA.getLocReg(), DAG.getZExtOrTrunc(ArgAsInt, dl, LocVT)));
7475     else {
7476       // f64 in two 32-bit GPRs
7477       // The 2 GPRs are marked custom and expected to be adjacent in ArgLocs.
7478       assert(Arg.getValueType() == MVT::f64 && CFlags.IsVarArg && !IsPPC64 &&
7479              "Unexpected custom register for argument!");
7480       CCValAssign &GPR1 = VA;
7481       SDValue MSWAsI64 = DAG.getNode(ISD::SRL, dl, MVT::i64, ArgAsInt,
7482                                      DAG.getConstant(32, dl, MVT::i8));
7483       RegsToPass.push_back(std::make_pair(
7484           GPR1.getLocReg(), DAG.getZExtOrTrunc(MSWAsI64, dl, MVT::i32)));
7485 
7486       if (I != E) {
7487         // If only 1 GPR was available, there will only be one custom GPR and
7488         // the argument will also pass in memory.
7489         CCValAssign &PeekArg = ArgLocs[I];
7490         if (PeekArg.isRegLoc() && PeekArg.getValNo() == PeekArg.getValNo()) {
7491           assert(PeekArg.needsCustom() && "A second custom GPR is expected.");
7492           CCValAssign &GPR2 = ArgLocs[I++];
7493           RegsToPass.push_back(std::make_pair(
7494               GPR2.getLocReg(), DAG.getZExtOrTrunc(ArgAsInt, dl, MVT::i32)));
7495         }
7496       }
7497     }
7498   }
7499 
7500   if (!MemOpChains.empty())
7501     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains);
7502 
7503   // For indirect calls, we need to save the TOC base to the stack for
7504   // restoration after the call.
7505   if (CFlags.IsIndirect) {
7506     assert(!CFlags.IsTailCall && "Indirect tail-calls not supported.");
7507     const MCRegister TOCBaseReg = Subtarget.getTOCPointerRegister();
7508     const MCRegister StackPtrReg = Subtarget.getStackPointerRegister();
7509     const MVT PtrVT = Subtarget.isPPC64() ? MVT::i64 : MVT::i32;
7510     const unsigned TOCSaveOffset =
7511         Subtarget.getFrameLowering()->getTOCSaveOffset();
7512 
7513     setUsesTOCBasePtr(DAG);
7514     SDValue Val = DAG.getCopyFromReg(Chain, dl, TOCBaseReg, PtrVT);
7515     SDValue PtrOff = DAG.getIntPtrConstant(TOCSaveOffset, dl);
7516     SDValue StackPtr = DAG.getRegister(StackPtrReg, PtrVT);
7517     SDValue AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff);
7518     Chain = DAG.getStore(
7519         Val.getValue(1), dl, Val, AddPtr,
7520         MachinePointerInfo::getStack(DAG.getMachineFunction(), TOCSaveOffset));
7521   }
7522 
7523   // Build a sequence of copy-to-reg nodes chained together with token chain
7524   // and flag operands which copy the outgoing args into the appropriate regs.
7525   SDValue InFlag;
7526   for (auto Reg : RegsToPass) {
7527     Chain = DAG.getCopyToReg(Chain, dl, Reg.first, Reg.second, InFlag);
7528     InFlag = Chain.getValue(1);
7529   }
7530 
7531   const int SPDiff = 0;
7532   return FinishCall(CFlags, dl, DAG, RegsToPass, InFlag, Chain, CallSeqStart,
7533                     Callee, SPDiff, NumBytes, Ins, InVals, CB);
7534 }
7535 
7536 bool
7537 PPCTargetLowering::CanLowerReturn(CallingConv::ID CallConv,
7538                                   MachineFunction &MF, bool isVarArg,
7539                                   const SmallVectorImpl<ISD::OutputArg> &Outs,
7540                                   LLVMContext &Context) const {
7541   SmallVector<CCValAssign, 16> RVLocs;
7542   CCState CCInfo(CallConv, isVarArg, MF, RVLocs, Context);
7543   return CCInfo.CheckReturn(
7544       Outs, (Subtarget.isSVR4ABI() && CallConv == CallingConv::Cold)
7545                 ? RetCC_PPC_Cold
7546                 : RetCC_PPC);
7547 }
7548 
7549 SDValue
7550 PPCTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv,
7551                                bool isVarArg,
7552                                const SmallVectorImpl<ISD::OutputArg> &Outs,
7553                                const SmallVectorImpl<SDValue> &OutVals,
7554                                const SDLoc &dl, SelectionDAG &DAG) const {
7555   SmallVector<CCValAssign, 16> RVLocs;
7556   CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs,
7557                  *DAG.getContext());
7558   CCInfo.AnalyzeReturn(Outs,
7559                        (Subtarget.isSVR4ABI() && CallConv == CallingConv::Cold)
7560                            ? RetCC_PPC_Cold
7561                            : RetCC_PPC);
7562 
7563   SDValue Flag;
7564   SmallVector<SDValue, 4> RetOps(1, Chain);
7565 
7566   // Copy the result values into the output registers.
7567   for (unsigned i = 0, RealResIdx = 0; i != RVLocs.size(); ++i, ++RealResIdx) {
7568     CCValAssign &VA = RVLocs[i];
7569     assert(VA.isRegLoc() && "Can only return in registers!");
7570 
7571     SDValue Arg = OutVals[RealResIdx];
7572 
7573     switch (VA.getLocInfo()) {
7574     default: llvm_unreachable("Unknown loc info!");
7575     case CCValAssign::Full: break;
7576     case CCValAssign::AExt:
7577       Arg = DAG.getNode(ISD::ANY_EXTEND, dl, VA.getLocVT(), Arg);
7578       break;
7579     case CCValAssign::ZExt:
7580       Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, VA.getLocVT(), Arg);
7581       break;
7582     case CCValAssign::SExt:
7583       Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, VA.getLocVT(), Arg);
7584       break;
7585     }
7586     if (Subtarget.hasSPE() && VA.getLocVT() == MVT::f64) {
7587       bool isLittleEndian = Subtarget.isLittleEndian();
7588       // Legalize ret f64 -> ret 2 x i32.
7589       SDValue SVal =
7590           DAG.getNode(PPCISD::EXTRACT_SPE, dl, MVT::i32, Arg,
7591                       DAG.getIntPtrConstant(isLittleEndian ? 0 : 1, dl));
7592       Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), SVal, Flag);
7593       RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
7594       SVal = DAG.getNode(PPCISD::EXTRACT_SPE, dl, MVT::i32, Arg,
7595                          DAG.getIntPtrConstant(isLittleEndian ? 1 : 0, dl));
7596       Flag = Chain.getValue(1);
7597       VA = RVLocs[++i]; // skip ahead to next loc
7598       Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), SVal, Flag);
7599     } else
7600       Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), Arg, Flag);
7601     Flag = Chain.getValue(1);
7602     RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
7603   }
7604 
7605   RetOps[0] = Chain;  // Update chain.
7606 
7607   // Add the flag if we have it.
7608   if (Flag.getNode())
7609     RetOps.push_back(Flag);
7610 
7611   return DAG.getNode(PPCISD::RET_FLAG, dl, MVT::Other, RetOps);
7612 }
7613 
7614 SDValue
7615 PPCTargetLowering::LowerGET_DYNAMIC_AREA_OFFSET(SDValue Op,
7616                                                 SelectionDAG &DAG) const {
7617   SDLoc dl(Op);
7618 
7619   // Get the correct type for integers.
7620   EVT IntVT = Op.getValueType();
7621 
7622   // Get the inputs.
7623   SDValue Chain = Op.getOperand(0);
7624   SDValue FPSIdx = getFramePointerFrameIndex(DAG);
7625   // Build a DYNAREAOFFSET node.
7626   SDValue Ops[2] = {Chain, FPSIdx};
7627   SDVTList VTs = DAG.getVTList(IntVT);
7628   return DAG.getNode(PPCISD::DYNAREAOFFSET, dl, VTs, Ops);
7629 }
7630 
7631 SDValue PPCTargetLowering::LowerSTACKRESTORE(SDValue Op,
7632                                              SelectionDAG &DAG) const {
7633   // When we pop the dynamic allocation we need to restore the SP link.
7634   SDLoc dl(Op);
7635 
7636   // Get the correct type for pointers.
7637   EVT PtrVT = getPointerTy(DAG.getDataLayout());
7638 
7639   // Construct the stack pointer operand.
7640   bool isPPC64 = Subtarget.isPPC64();
7641   unsigned SP = isPPC64 ? PPC::X1 : PPC::R1;
7642   SDValue StackPtr = DAG.getRegister(SP, PtrVT);
7643 
7644   // Get the operands for the STACKRESTORE.
7645   SDValue Chain = Op.getOperand(0);
7646   SDValue SaveSP = Op.getOperand(1);
7647 
7648   // Load the old link SP.
7649   SDValue LoadLinkSP =
7650       DAG.getLoad(PtrVT, dl, Chain, StackPtr, MachinePointerInfo());
7651 
7652   // Restore the stack pointer.
7653   Chain = DAG.getCopyToReg(LoadLinkSP.getValue(1), dl, SP, SaveSP);
7654 
7655   // Store the old link SP.
7656   return DAG.getStore(Chain, dl, LoadLinkSP, StackPtr, MachinePointerInfo());
7657 }
7658 
7659 SDValue PPCTargetLowering::getReturnAddrFrameIndex(SelectionDAG &DAG) const {
7660   MachineFunction &MF = DAG.getMachineFunction();
7661   bool isPPC64 = Subtarget.isPPC64();
7662   EVT PtrVT = getPointerTy(MF.getDataLayout());
7663 
7664   // Get current frame pointer save index.  The users of this index will be
7665   // primarily DYNALLOC instructions.
7666   PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>();
7667   int RASI = FI->getReturnAddrSaveIndex();
7668 
7669   // If the frame pointer save index hasn't been defined yet.
7670   if (!RASI) {
7671     // Find out what the fix offset of the frame pointer save area.
7672     int LROffset = Subtarget.getFrameLowering()->getReturnSaveOffset();
7673     // Allocate the frame index for frame pointer save area.
7674     RASI = MF.getFrameInfo().CreateFixedObject(isPPC64? 8 : 4, LROffset, false);
7675     // Save the result.
7676     FI->setReturnAddrSaveIndex(RASI);
7677   }
7678   return DAG.getFrameIndex(RASI, PtrVT);
7679 }
7680 
7681 SDValue
7682 PPCTargetLowering::getFramePointerFrameIndex(SelectionDAG & DAG) const {
7683   MachineFunction &MF = DAG.getMachineFunction();
7684   bool isPPC64 = Subtarget.isPPC64();
7685   EVT PtrVT = getPointerTy(MF.getDataLayout());
7686 
7687   // Get current frame pointer save index.  The users of this index will be
7688   // primarily DYNALLOC instructions.
7689   PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>();
7690   int FPSI = FI->getFramePointerSaveIndex();
7691 
7692   // If the frame pointer save index hasn't been defined yet.
7693   if (!FPSI) {
7694     // Find out what the fix offset of the frame pointer save area.
7695     int FPOffset = Subtarget.getFrameLowering()->getFramePointerSaveOffset();
7696     // Allocate the frame index for frame pointer save area.
7697     FPSI = MF.getFrameInfo().CreateFixedObject(isPPC64? 8 : 4, FPOffset, true);
7698     // Save the result.
7699     FI->setFramePointerSaveIndex(FPSI);
7700   }
7701   return DAG.getFrameIndex(FPSI, PtrVT);
7702 }
7703 
7704 SDValue PPCTargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op,
7705                                                    SelectionDAG &DAG) const {
7706   MachineFunction &MF = DAG.getMachineFunction();
7707   // Get the inputs.
7708   SDValue Chain = Op.getOperand(0);
7709   SDValue Size  = Op.getOperand(1);
7710   SDLoc dl(Op);
7711 
7712   // Get the correct type for pointers.
7713   EVT PtrVT = getPointerTy(DAG.getDataLayout());
7714   // Negate the size.
7715   SDValue NegSize = DAG.getNode(ISD::SUB, dl, PtrVT,
7716                                 DAG.getConstant(0, dl, PtrVT), Size);
7717   // Construct a node for the frame pointer save index.
7718   SDValue FPSIdx = getFramePointerFrameIndex(DAG);
7719   SDValue Ops[3] = { Chain, NegSize, FPSIdx };
7720   SDVTList VTs = DAG.getVTList(PtrVT, MVT::Other);
7721   if (hasInlineStackProbe(MF))
7722     return DAG.getNode(PPCISD::PROBED_ALLOCA, dl, VTs, Ops);
7723   return DAG.getNode(PPCISD::DYNALLOC, dl, VTs, Ops);
7724 }
7725 
7726 SDValue PPCTargetLowering::LowerEH_DWARF_CFA(SDValue Op,
7727                                                      SelectionDAG &DAG) const {
7728   MachineFunction &MF = DAG.getMachineFunction();
7729 
7730   bool isPPC64 = Subtarget.isPPC64();
7731   EVT PtrVT = getPointerTy(DAG.getDataLayout());
7732 
7733   int FI = MF.getFrameInfo().CreateFixedObject(isPPC64 ? 8 : 4, 0, false);
7734   return DAG.getFrameIndex(FI, PtrVT);
7735 }
7736 
7737 SDValue PPCTargetLowering::lowerEH_SJLJ_SETJMP(SDValue Op,
7738                                                SelectionDAG &DAG) const {
7739   SDLoc DL(Op);
7740   return DAG.getNode(PPCISD::EH_SJLJ_SETJMP, DL,
7741                      DAG.getVTList(MVT::i32, MVT::Other),
7742                      Op.getOperand(0), Op.getOperand(1));
7743 }
7744 
7745 SDValue PPCTargetLowering::lowerEH_SJLJ_LONGJMP(SDValue Op,
7746                                                 SelectionDAG &DAG) const {
7747   SDLoc DL(Op);
7748   return DAG.getNode(PPCISD::EH_SJLJ_LONGJMP, DL, MVT::Other,
7749                      Op.getOperand(0), Op.getOperand(1));
7750 }
7751 
7752 SDValue PPCTargetLowering::LowerLOAD(SDValue Op, SelectionDAG &DAG) const {
7753   if (Op.getValueType().isVector())
7754     return LowerVectorLoad(Op, DAG);
7755 
7756   assert(Op.getValueType() == MVT::i1 &&
7757          "Custom lowering only for i1 loads");
7758 
7759   // First, load 8 bits into 32 bits, then truncate to 1 bit.
7760 
7761   SDLoc dl(Op);
7762   LoadSDNode *LD = cast<LoadSDNode>(Op);
7763 
7764   SDValue Chain = LD->getChain();
7765   SDValue BasePtr = LD->getBasePtr();
7766   MachineMemOperand *MMO = LD->getMemOperand();
7767 
7768   SDValue NewLD =
7769       DAG.getExtLoad(ISD::EXTLOAD, dl, getPointerTy(DAG.getDataLayout()), Chain,
7770                      BasePtr, MVT::i8, MMO);
7771   SDValue Result = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, NewLD);
7772 
7773   SDValue Ops[] = { Result, SDValue(NewLD.getNode(), 1) };
7774   return DAG.getMergeValues(Ops, dl);
7775 }
7776 
7777 SDValue PPCTargetLowering::LowerSTORE(SDValue Op, SelectionDAG &DAG) const {
7778   if (Op.getOperand(1).getValueType().isVector())
7779     return LowerVectorStore(Op, DAG);
7780 
7781   assert(Op.getOperand(1).getValueType() == MVT::i1 &&
7782          "Custom lowering only for i1 stores");
7783 
7784   // First, zero extend to 32 bits, then use a truncating store to 8 bits.
7785 
7786   SDLoc dl(Op);
7787   StoreSDNode *ST = cast<StoreSDNode>(Op);
7788 
7789   SDValue Chain = ST->getChain();
7790   SDValue BasePtr = ST->getBasePtr();
7791   SDValue Value = ST->getValue();
7792   MachineMemOperand *MMO = ST->getMemOperand();
7793 
7794   Value = DAG.getNode(ISD::ZERO_EXTEND, dl, getPointerTy(DAG.getDataLayout()),
7795                       Value);
7796   return DAG.getTruncStore(Chain, dl, Value, BasePtr, MVT::i8, MMO);
7797 }
7798 
7799 // FIXME: Remove this once the ANDI glue bug is fixed:
7800 SDValue PPCTargetLowering::LowerTRUNCATE(SDValue Op, SelectionDAG &DAG) const {
7801   assert(Op.getValueType() == MVT::i1 &&
7802          "Custom lowering only for i1 results");
7803 
7804   SDLoc DL(Op);
7805   return DAG.getNode(PPCISD::ANDI_rec_1_GT_BIT, DL, MVT::i1, Op.getOperand(0));
7806 }
7807 
7808 SDValue PPCTargetLowering::LowerTRUNCATEVector(SDValue Op,
7809                                                SelectionDAG &DAG) const {
7810 
7811   // Implements a vector truncate that fits in a vector register as a shuffle.
7812   // We want to legalize vector truncates down to where the source fits in
7813   // a vector register (and target is therefore smaller than vector register
7814   // size).  At that point legalization will try to custom lower the sub-legal
7815   // result and get here - where we can contain the truncate as a single target
7816   // operation.
7817 
7818   // For example a trunc <2 x i16> to <2 x i8> could be visualized as follows:
7819   //   <MSB1|LSB1, MSB2|LSB2> to <LSB1, LSB2>
7820   //
7821   // We will implement it for big-endian ordering as this (where x denotes
7822   // undefined):
7823   //   < MSB1|LSB1, MSB2|LSB2, uu, uu, uu, uu, uu, uu> to
7824   //   < LSB1, LSB2, u, u, u, u, u, u, u, u, u, u, u, u, u, u>
7825   //
7826   // The same operation in little-endian ordering will be:
7827   //   <uu, uu, uu, uu, uu, uu, LSB2|MSB2, LSB1|MSB1> to
7828   //   <u, u, u, u, u, u, u, u, u, u, u, u, u, u, LSB2, LSB1>
7829 
7830   EVT TrgVT = Op.getValueType();
7831   assert(TrgVT.isVector() && "Vector type expected.");
7832   unsigned TrgNumElts = TrgVT.getVectorNumElements();
7833   EVT EltVT = TrgVT.getVectorElementType();
7834   if (!isOperationCustom(Op.getOpcode(), TrgVT) ||
7835       TrgVT.getSizeInBits() > 128 || !isPowerOf2_32(TrgNumElts) ||
7836       !isPowerOf2_32(EltVT.getSizeInBits()))
7837     return SDValue();
7838 
7839   SDValue N1 = Op.getOperand(0);
7840   EVT SrcVT = N1.getValueType();
7841   unsigned SrcSize = SrcVT.getSizeInBits();
7842   if (SrcSize > 256 ||
7843       !isPowerOf2_32(SrcVT.getVectorNumElements()) ||
7844       !isPowerOf2_32(SrcVT.getVectorElementType().getSizeInBits()))
7845     return SDValue();
7846   if (SrcSize == 256 && SrcVT.getVectorNumElements() < 2)
7847     return SDValue();
7848 
7849   unsigned WideNumElts = 128 / EltVT.getSizeInBits();
7850   EVT WideVT = EVT::getVectorVT(*DAG.getContext(), EltVT, WideNumElts);
7851 
7852   SDLoc DL(Op);
7853   SDValue Op1, Op2;
7854   if (SrcSize == 256) {
7855     EVT VecIdxTy = getVectorIdxTy(DAG.getDataLayout());
7856     EVT SplitVT =
7857         N1.getValueType().getHalfNumVectorElementsVT(*DAG.getContext());
7858     unsigned SplitNumElts = SplitVT.getVectorNumElements();
7859     Op1 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, SplitVT, N1,
7860                       DAG.getConstant(0, DL, VecIdxTy));
7861     Op2 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, SplitVT, N1,
7862                       DAG.getConstant(SplitNumElts, DL, VecIdxTy));
7863   }
7864   else {
7865     Op1 = SrcSize == 128 ? N1 : widenVec(DAG, N1, DL);
7866     Op2 = DAG.getUNDEF(WideVT);
7867   }
7868 
7869   // First list the elements we want to keep.
7870   unsigned SizeMult = SrcSize / TrgVT.getSizeInBits();
7871   SmallVector<int, 16> ShuffV;
7872   if (Subtarget.isLittleEndian())
7873     for (unsigned i = 0; i < TrgNumElts; ++i)
7874       ShuffV.push_back(i * SizeMult);
7875   else
7876     for (unsigned i = 1; i <= TrgNumElts; ++i)
7877       ShuffV.push_back(i * SizeMult - 1);
7878 
7879   // Populate the remaining elements with undefs.
7880   for (unsigned i = TrgNumElts; i < WideNumElts; ++i)
7881     // ShuffV.push_back(i + WideNumElts);
7882     ShuffV.push_back(WideNumElts + 1);
7883 
7884   Op1 = DAG.getNode(ISD::BITCAST, DL, WideVT, Op1);
7885   Op2 = DAG.getNode(ISD::BITCAST, DL, WideVT, Op2);
7886   return DAG.getVectorShuffle(WideVT, DL, Op1, Op2, ShuffV);
7887 }
7888 
7889 /// LowerSELECT_CC - Lower floating point select_cc's into fsel instruction when
7890 /// possible.
7891 SDValue PPCTargetLowering::LowerSELECT_CC(SDValue Op, SelectionDAG &DAG) const {
7892   ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get();
7893   EVT ResVT = Op.getValueType();
7894   EVT CmpVT = Op.getOperand(0).getValueType();
7895   SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1);
7896   SDValue TV  = Op.getOperand(2), FV  = Op.getOperand(3);
7897   SDLoc dl(Op);
7898 
7899   // Without power9-vector, we don't have native instruction for f128 comparison.
7900   // Following transformation to libcall is needed for setcc:
7901   // select_cc lhs, rhs, tv, fv, cc -> select_cc (setcc cc, x, y), 0, tv, fv, NE
7902   if (!Subtarget.hasP9Vector() && CmpVT == MVT::f128) {
7903     SDValue Z = DAG.getSetCC(
7904         dl, getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), CmpVT),
7905         LHS, RHS, CC);
7906     SDValue Zero = DAG.getConstant(0, dl, Z.getValueType());
7907     return DAG.getSelectCC(dl, Z, Zero, TV, FV, ISD::SETNE);
7908   }
7909 
7910   // Not FP, or using SPE? Not a fsel.
7911   if (!CmpVT.isFloatingPoint() || !TV.getValueType().isFloatingPoint() ||
7912       Subtarget.hasSPE())
7913     return Op;
7914 
7915   SDNodeFlags Flags = Op.getNode()->getFlags();
7916 
7917   // We have xsmaxc[dq]p/xsminc[dq]p which are OK to emit even in the
7918   // presence of infinities.
7919   if (Subtarget.hasP9Vector() && LHS == TV && RHS == FV) {
7920     switch (CC) {
7921     default:
7922       break;
7923     case ISD::SETOGT:
7924     case ISD::SETGT:
7925       return DAG.getNode(PPCISD::XSMAXC, dl, Op.getValueType(), LHS, RHS);
7926     case ISD::SETOLT:
7927     case ISD::SETLT:
7928       return DAG.getNode(PPCISD::XSMINC, dl, Op.getValueType(), LHS, RHS);
7929     }
7930   }
7931 
7932   // We might be able to do better than this under some circumstances, but in
7933   // general, fsel-based lowering of select is a finite-math-only optimization.
7934   // For more information, see section F.3 of the 2.06 ISA specification.
7935   // With ISA 3.0
7936   if ((!DAG.getTarget().Options.NoInfsFPMath && !Flags.hasNoInfs()) ||
7937       (!DAG.getTarget().Options.NoNaNsFPMath && !Flags.hasNoNaNs()))
7938     return Op;
7939 
7940   // If the RHS of the comparison is a 0.0, we don't need to do the
7941   // subtraction at all.
7942   SDValue Sel1;
7943   if (isFloatingPointZero(RHS))
7944     switch (CC) {
7945     default: break;       // SETUO etc aren't handled by fsel.
7946     case ISD::SETNE:
7947       std::swap(TV, FV);
7948       LLVM_FALLTHROUGH;
7949     case ISD::SETEQ:
7950       if (LHS.getValueType() == MVT::f32)   // Comparison is always 64-bits
7951         LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, LHS);
7952       Sel1 = DAG.getNode(PPCISD::FSEL, dl, ResVT, LHS, TV, FV);
7953       if (Sel1.getValueType() == MVT::f32)   // Comparison is always 64-bits
7954         Sel1 = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Sel1);
7955       return DAG.getNode(PPCISD::FSEL, dl, ResVT,
7956                          DAG.getNode(ISD::FNEG, dl, MVT::f64, LHS), Sel1, FV);
7957     case ISD::SETULT:
7958     case ISD::SETLT:
7959       std::swap(TV, FV);  // fsel is natively setge, swap operands for setlt
7960       LLVM_FALLTHROUGH;
7961     case ISD::SETOGE:
7962     case ISD::SETGE:
7963       if (LHS.getValueType() == MVT::f32)   // Comparison is always 64-bits
7964         LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, LHS);
7965       return DAG.getNode(PPCISD::FSEL, dl, ResVT, LHS, TV, FV);
7966     case ISD::SETUGT:
7967     case ISD::SETGT:
7968       std::swap(TV, FV);  // fsel is natively setge, swap operands for setlt
7969       LLVM_FALLTHROUGH;
7970     case ISD::SETOLE:
7971     case ISD::SETLE:
7972       if (LHS.getValueType() == MVT::f32)   // Comparison is always 64-bits
7973         LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, LHS);
7974       return DAG.getNode(PPCISD::FSEL, dl, ResVT,
7975                          DAG.getNode(ISD::FNEG, dl, MVT::f64, LHS), TV, FV);
7976     }
7977 
7978   SDValue Cmp;
7979   switch (CC) {
7980   default: break;       // SETUO etc aren't handled by fsel.
7981   case ISD::SETNE:
7982     std::swap(TV, FV);
7983     LLVM_FALLTHROUGH;
7984   case ISD::SETEQ:
7985     Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, LHS, RHS, Flags);
7986     if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
7987       Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp);
7988     Sel1 = DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, TV, FV);
7989     if (Sel1.getValueType() == MVT::f32)   // Comparison is always 64-bits
7990       Sel1 = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Sel1);
7991     return DAG.getNode(PPCISD::FSEL, dl, ResVT,
7992                        DAG.getNode(ISD::FNEG, dl, MVT::f64, Cmp), Sel1, FV);
7993   case ISD::SETULT:
7994   case ISD::SETLT:
7995     Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, LHS, RHS, Flags);
7996     if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
7997       Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp);
7998     return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, FV, TV);
7999   case ISD::SETOGE:
8000   case ISD::SETGE:
8001     Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, LHS, RHS, Flags);
8002     if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
8003       Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp);
8004     return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, TV, FV);
8005   case ISD::SETUGT:
8006   case ISD::SETGT:
8007     Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, RHS, LHS, Flags);
8008     if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
8009       Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp);
8010     return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, FV, TV);
8011   case ISD::SETOLE:
8012   case ISD::SETLE:
8013     Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, RHS, LHS, Flags);
8014     if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
8015       Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp);
8016     return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, TV, FV);
8017   }
8018   return Op;
8019 }
8020 
8021 static unsigned getPPCStrictOpcode(unsigned Opc) {
8022   switch (Opc) {
8023   default:
8024     llvm_unreachable("No strict version of this opcode!");
8025   case PPCISD::FCTIDZ:
8026     return PPCISD::STRICT_FCTIDZ;
8027   case PPCISD::FCTIWZ:
8028     return PPCISD::STRICT_FCTIWZ;
8029   case PPCISD::FCTIDUZ:
8030     return PPCISD::STRICT_FCTIDUZ;
8031   case PPCISD::FCTIWUZ:
8032     return PPCISD::STRICT_FCTIWUZ;
8033   case PPCISD::FCFID:
8034     return PPCISD::STRICT_FCFID;
8035   case PPCISD::FCFIDU:
8036     return PPCISD::STRICT_FCFIDU;
8037   case PPCISD::FCFIDS:
8038     return PPCISD::STRICT_FCFIDS;
8039   case PPCISD::FCFIDUS:
8040     return PPCISD::STRICT_FCFIDUS;
8041   }
8042 }
8043 
8044 static SDValue convertFPToInt(SDValue Op, SelectionDAG &DAG,
8045                               const PPCSubtarget &Subtarget) {
8046   SDLoc dl(Op);
8047   bool IsStrict = Op->isStrictFPOpcode();
8048   bool IsSigned = Op.getOpcode() == ISD::FP_TO_SINT ||
8049                   Op.getOpcode() == ISD::STRICT_FP_TO_SINT;
8050 
8051   // TODO: Any other flags to propagate?
8052   SDNodeFlags Flags;
8053   Flags.setNoFPExcept(Op->getFlags().hasNoFPExcept());
8054 
8055   // For strict nodes, source is the second operand.
8056   SDValue Src = Op.getOperand(IsStrict ? 1 : 0);
8057   SDValue Chain = IsStrict ? Op.getOperand(0) : SDValue();
8058   assert(Src.getValueType().isFloatingPoint());
8059   if (Src.getValueType() == MVT::f32) {
8060     if (IsStrict) {
8061       Src =
8062           DAG.getNode(ISD::STRICT_FP_EXTEND, dl,
8063                       DAG.getVTList(MVT::f64, MVT::Other), {Chain, Src}, Flags);
8064       Chain = Src.getValue(1);
8065     } else
8066       Src = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Src);
8067   }
8068   SDValue Conv;
8069   unsigned Opc = ISD::DELETED_NODE;
8070   switch (Op.getSimpleValueType().SimpleTy) {
8071   default: llvm_unreachable("Unhandled FP_TO_INT type in custom expander!");
8072   case MVT::i32:
8073     Opc = IsSigned ? PPCISD::FCTIWZ
8074                    : (Subtarget.hasFPCVT() ? PPCISD::FCTIWUZ : PPCISD::FCTIDZ);
8075     break;
8076   case MVT::i64:
8077     assert((IsSigned || Subtarget.hasFPCVT()) &&
8078            "i64 FP_TO_UINT is supported only with FPCVT");
8079     Opc = IsSigned ? PPCISD::FCTIDZ : PPCISD::FCTIDUZ;
8080   }
8081   if (IsStrict) {
8082     Opc = getPPCStrictOpcode(Opc);
8083     Conv = DAG.getNode(Opc, dl, DAG.getVTList(MVT::f64, MVT::Other),
8084                        {Chain, Src}, Flags);
8085   } else {
8086     Conv = DAG.getNode(Opc, dl, MVT::f64, Src);
8087   }
8088   return Conv;
8089 }
8090 
8091 void PPCTargetLowering::LowerFP_TO_INTForReuse(SDValue Op, ReuseLoadInfo &RLI,
8092                                                SelectionDAG &DAG,
8093                                                const SDLoc &dl) const {
8094   SDValue Tmp = convertFPToInt(Op, DAG, Subtarget);
8095   bool IsSigned = Op.getOpcode() == ISD::FP_TO_SINT ||
8096                   Op.getOpcode() == ISD::STRICT_FP_TO_SINT;
8097   bool IsStrict = Op->isStrictFPOpcode();
8098 
8099   // Convert the FP value to an int value through memory.
8100   bool i32Stack = Op.getValueType() == MVT::i32 && Subtarget.hasSTFIWX() &&
8101                   (IsSigned || Subtarget.hasFPCVT());
8102   SDValue FIPtr = DAG.CreateStackTemporary(i32Stack ? MVT::i32 : MVT::f64);
8103   int FI = cast<FrameIndexSDNode>(FIPtr)->getIndex();
8104   MachinePointerInfo MPI =
8105       MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI);
8106 
8107   // Emit a store to the stack slot.
8108   SDValue Chain = IsStrict ? Tmp.getValue(1) : DAG.getEntryNode();
8109   Align Alignment(DAG.getEVTAlign(Tmp.getValueType()));
8110   if (i32Stack) {
8111     MachineFunction &MF = DAG.getMachineFunction();
8112     Alignment = Align(4);
8113     MachineMemOperand *MMO =
8114         MF.getMachineMemOperand(MPI, MachineMemOperand::MOStore, 4, Alignment);
8115     SDValue Ops[] = { Chain, Tmp, FIPtr };
8116     Chain = DAG.getMemIntrinsicNode(PPCISD::STFIWX, dl,
8117               DAG.getVTList(MVT::Other), Ops, MVT::i32, MMO);
8118   } else
8119     Chain = DAG.getStore(Chain, dl, Tmp, FIPtr, MPI, Alignment);
8120 
8121   // Result is a load from the stack slot.  If loading 4 bytes, make sure to
8122   // add in a bias on big endian.
8123   if (Op.getValueType() == MVT::i32 && !i32Stack) {
8124     FIPtr = DAG.getNode(ISD::ADD, dl, FIPtr.getValueType(), FIPtr,
8125                         DAG.getConstant(4, dl, FIPtr.getValueType()));
8126     MPI = MPI.getWithOffset(Subtarget.isLittleEndian() ? 0 : 4);
8127   }
8128 
8129   RLI.Chain = Chain;
8130   RLI.Ptr = FIPtr;
8131   RLI.MPI = MPI;
8132   RLI.Alignment = Alignment;
8133 }
8134 
8135 /// Custom lowers floating point to integer conversions to use
8136 /// the direct move instructions available in ISA 2.07 to avoid the
8137 /// need for load/store combinations.
8138 SDValue PPCTargetLowering::LowerFP_TO_INTDirectMove(SDValue Op,
8139                                                     SelectionDAG &DAG,
8140                                                     const SDLoc &dl) const {
8141   SDValue Conv = convertFPToInt(Op, DAG, Subtarget);
8142   SDValue Mov = DAG.getNode(PPCISD::MFVSR, dl, Op.getValueType(), Conv);
8143   if (Op->isStrictFPOpcode())
8144     return DAG.getMergeValues({Mov, Conv.getValue(1)}, dl);
8145   else
8146     return Mov;
8147 }
8148 
8149 SDValue PPCTargetLowering::LowerFP_TO_INT(SDValue Op, SelectionDAG &DAG,
8150                                           const SDLoc &dl) const {
8151   bool IsStrict = Op->isStrictFPOpcode();
8152   bool IsSigned = Op.getOpcode() == ISD::FP_TO_SINT ||
8153                   Op.getOpcode() == ISD::STRICT_FP_TO_SINT;
8154   SDValue Src = Op.getOperand(IsStrict ? 1 : 0);
8155   EVT SrcVT = Src.getValueType();
8156   EVT DstVT = Op.getValueType();
8157 
8158   // FP to INT conversions are legal for f128.
8159   if (SrcVT == MVT::f128)
8160     return Subtarget.hasP9Vector() ? Op : SDValue();
8161 
8162   // Expand ppcf128 to i32 by hand for the benefit of llvm-gcc bootstrap on
8163   // PPC (the libcall is not available).
8164   if (SrcVT == MVT::ppcf128) {
8165     if (DstVT == MVT::i32) {
8166       // TODO: Conservatively pass only nofpexcept flag here. Need to check and
8167       // set other fast-math flags to FP operations in both strict and
8168       // non-strict cases. (FP_TO_SINT, FSUB)
8169       SDNodeFlags Flags;
8170       Flags.setNoFPExcept(Op->getFlags().hasNoFPExcept());
8171 
8172       if (IsSigned) {
8173         SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::f64, Src,
8174                                  DAG.getIntPtrConstant(0, dl));
8175         SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::f64, Src,
8176                                  DAG.getIntPtrConstant(1, dl));
8177 
8178         // Add the two halves of the long double in round-to-zero mode, and use
8179         // a smaller FP_TO_SINT.
8180         if (IsStrict) {
8181           SDValue Res = DAG.getNode(PPCISD::STRICT_FADDRTZ, dl,
8182                                     DAG.getVTList(MVT::f64, MVT::Other),
8183                                     {Op.getOperand(0), Lo, Hi}, Flags);
8184           return DAG.getNode(ISD::STRICT_FP_TO_SINT, dl,
8185                              DAG.getVTList(MVT::i32, MVT::Other),
8186                              {Res.getValue(1), Res}, Flags);
8187         } else {
8188           SDValue Res = DAG.getNode(PPCISD::FADDRTZ, dl, MVT::f64, Lo, Hi);
8189           return DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, Res);
8190         }
8191       } else {
8192         const uint64_t TwoE31[] = {0x41e0000000000000LL, 0};
8193         APFloat APF = APFloat(APFloat::PPCDoubleDouble(), APInt(128, TwoE31));
8194         SDValue Cst = DAG.getConstantFP(APF, dl, SrcVT);
8195         SDValue SignMask = DAG.getConstant(0x80000000, dl, DstVT);
8196         if (IsStrict) {
8197           // Sel = Src < 0x80000000
8198           // FltOfs = select Sel, 0.0, 0x80000000
8199           // IntOfs = select Sel, 0, 0x80000000
8200           // Result = fp_to_sint(Src - FltOfs) ^ IntOfs
8201           SDValue Chain = Op.getOperand(0);
8202           EVT SetCCVT =
8203               getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), SrcVT);
8204           EVT DstSetCCVT =
8205               getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), DstVT);
8206           SDValue Sel = DAG.getSetCC(dl, SetCCVT, Src, Cst, ISD::SETLT,
8207                                      Chain, true);
8208           Chain = Sel.getValue(1);
8209 
8210           SDValue FltOfs = DAG.getSelect(
8211               dl, SrcVT, Sel, DAG.getConstantFP(0.0, dl, SrcVT), Cst);
8212           Sel = DAG.getBoolExtOrTrunc(Sel, dl, DstSetCCVT, DstVT);
8213 
8214           SDValue Val = DAG.getNode(ISD::STRICT_FSUB, dl,
8215                                     DAG.getVTList(SrcVT, MVT::Other),
8216                                     {Chain, Src, FltOfs}, Flags);
8217           Chain = Val.getValue(1);
8218           SDValue SInt = DAG.getNode(ISD::STRICT_FP_TO_SINT, dl,
8219                                      DAG.getVTList(DstVT, MVT::Other),
8220                                      {Chain, Val}, Flags);
8221           Chain = SInt.getValue(1);
8222           SDValue IntOfs = DAG.getSelect(
8223               dl, DstVT, Sel, DAG.getConstant(0, dl, DstVT), SignMask);
8224           SDValue Result = DAG.getNode(ISD::XOR, dl, DstVT, SInt, IntOfs);
8225           return DAG.getMergeValues({Result, Chain}, dl);
8226         } else {
8227           // X>=2^31 ? (int)(X-2^31)+0x80000000 : (int)X
8228           // FIXME: generated code sucks.
8229           SDValue True = DAG.getNode(ISD::FSUB, dl, MVT::ppcf128, Src, Cst);
8230           True = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, True);
8231           True = DAG.getNode(ISD::ADD, dl, MVT::i32, True, SignMask);
8232           SDValue False = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, Src);
8233           return DAG.getSelectCC(dl, Src, Cst, True, False, ISD::SETGE);
8234         }
8235       }
8236     }
8237 
8238     return SDValue();
8239   }
8240 
8241   if (Subtarget.hasDirectMove() && Subtarget.isPPC64())
8242     return LowerFP_TO_INTDirectMove(Op, DAG, dl);
8243 
8244   ReuseLoadInfo RLI;
8245   LowerFP_TO_INTForReuse(Op, RLI, DAG, dl);
8246 
8247   return DAG.getLoad(Op.getValueType(), dl, RLI.Chain, RLI.Ptr, RLI.MPI,
8248                      RLI.Alignment, RLI.MMOFlags(), RLI.AAInfo, RLI.Ranges);
8249 }
8250 
8251 // We're trying to insert a regular store, S, and then a load, L. If the
8252 // incoming value, O, is a load, we might just be able to have our load use the
8253 // address used by O. However, we don't know if anything else will store to
8254 // that address before we can load from it. To prevent this situation, we need
8255 // to insert our load, L, into the chain as a peer of O. To do this, we give L
8256 // the same chain operand as O, we create a token factor from the chain results
8257 // of O and L, and we replace all uses of O's chain result with that token
8258 // factor (see spliceIntoChain below for this last part).
8259 bool PPCTargetLowering::canReuseLoadAddress(SDValue Op, EVT MemVT,
8260                                             ReuseLoadInfo &RLI,
8261                                             SelectionDAG &DAG,
8262                                             ISD::LoadExtType ET) const {
8263   // Conservatively skip reusing for constrained FP nodes.
8264   if (Op->isStrictFPOpcode())
8265     return false;
8266 
8267   SDLoc dl(Op);
8268   bool ValidFPToUint = Op.getOpcode() == ISD::FP_TO_UINT &&
8269                        (Subtarget.hasFPCVT() || Op.getValueType() == MVT::i32);
8270   if (ET == ISD::NON_EXTLOAD &&
8271       (ValidFPToUint || Op.getOpcode() == ISD::FP_TO_SINT) &&
8272       isOperationLegalOrCustom(Op.getOpcode(),
8273                                Op.getOperand(0).getValueType())) {
8274 
8275     LowerFP_TO_INTForReuse(Op, RLI, DAG, dl);
8276     return true;
8277   }
8278 
8279   LoadSDNode *LD = dyn_cast<LoadSDNode>(Op);
8280   if (!LD || LD->getExtensionType() != ET || LD->isVolatile() ||
8281       LD->isNonTemporal())
8282     return false;
8283   if (LD->getMemoryVT() != MemVT)
8284     return false;
8285 
8286   // If the result of the load is an illegal type, then we can't build a
8287   // valid chain for reuse since the legalised loads and token factor node that
8288   // ties the legalised loads together uses a different output chain then the
8289   // illegal load.
8290   if (!isTypeLegal(LD->getValueType(0)))
8291     return false;
8292 
8293   RLI.Ptr = LD->getBasePtr();
8294   if (LD->isIndexed() && !LD->getOffset().isUndef()) {
8295     assert(LD->getAddressingMode() == ISD::PRE_INC &&
8296            "Non-pre-inc AM on PPC?");
8297     RLI.Ptr = DAG.getNode(ISD::ADD, dl, RLI.Ptr.getValueType(), RLI.Ptr,
8298                           LD->getOffset());
8299   }
8300 
8301   RLI.Chain = LD->getChain();
8302   RLI.MPI = LD->getPointerInfo();
8303   RLI.IsDereferenceable = LD->isDereferenceable();
8304   RLI.IsInvariant = LD->isInvariant();
8305   RLI.Alignment = LD->getAlign();
8306   RLI.AAInfo = LD->getAAInfo();
8307   RLI.Ranges = LD->getRanges();
8308 
8309   RLI.ResChain = SDValue(LD, LD->isIndexed() ? 2 : 1);
8310   return true;
8311 }
8312 
8313 // Given the head of the old chain, ResChain, insert a token factor containing
8314 // it and NewResChain, and make users of ResChain now be users of that token
8315 // factor.
8316 // TODO: Remove and use DAG::makeEquivalentMemoryOrdering() instead.
8317 void PPCTargetLowering::spliceIntoChain(SDValue ResChain,
8318                                         SDValue NewResChain,
8319                                         SelectionDAG &DAG) const {
8320   if (!ResChain)
8321     return;
8322 
8323   SDLoc dl(NewResChain);
8324 
8325   SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
8326                            NewResChain, DAG.getUNDEF(MVT::Other));
8327   assert(TF.getNode() != NewResChain.getNode() &&
8328          "A new TF really is required here");
8329 
8330   DAG.ReplaceAllUsesOfValueWith(ResChain, TF);
8331   DAG.UpdateNodeOperands(TF.getNode(), ResChain, NewResChain);
8332 }
8333 
8334 /// Analyze profitability of direct move
8335 /// prefer float load to int load plus direct move
8336 /// when there is no integer use of int load
8337 bool PPCTargetLowering::directMoveIsProfitable(const SDValue &Op) const {
8338   SDNode *Origin = Op.getOperand(0).getNode();
8339   if (Origin->getOpcode() != ISD::LOAD)
8340     return true;
8341 
8342   // If there is no LXSIBZX/LXSIHZX, like Power8,
8343   // prefer direct move if the memory size is 1 or 2 bytes.
8344   MachineMemOperand *MMO = cast<LoadSDNode>(Origin)->getMemOperand();
8345   if (!Subtarget.hasP9Vector() && MMO->getSize() <= 2)
8346     return true;
8347 
8348   for (SDNode::use_iterator UI = Origin->use_begin(),
8349                             UE = Origin->use_end();
8350        UI != UE; ++UI) {
8351 
8352     // Only look at the users of the loaded value.
8353     if (UI.getUse().get().getResNo() != 0)
8354       continue;
8355 
8356     if (UI->getOpcode() != ISD::SINT_TO_FP &&
8357         UI->getOpcode() != ISD::UINT_TO_FP &&
8358         UI->getOpcode() != ISD::STRICT_SINT_TO_FP &&
8359         UI->getOpcode() != ISD::STRICT_UINT_TO_FP)
8360       return true;
8361   }
8362 
8363   return false;
8364 }
8365 
8366 static SDValue convertIntToFP(SDValue Op, SDValue Src, SelectionDAG &DAG,
8367                               const PPCSubtarget &Subtarget,
8368                               SDValue Chain = SDValue()) {
8369   bool IsSigned = Op.getOpcode() == ISD::SINT_TO_FP ||
8370                   Op.getOpcode() == ISD::STRICT_SINT_TO_FP;
8371   SDLoc dl(Op);
8372 
8373   // TODO: Any other flags to propagate?
8374   SDNodeFlags Flags;
8375   Flags.setNoFPExcept(Op->getFlags().hasNoFPExcept());
8376 
8377   // If we have FCFIDS, then use it when converting to single-precision.
8378   // Otherwise, convert to double-precision and then round.
8379   bool IsSingle = Op.getValueType() == MVT::f32 && Subtarget.hasFPCVT();
8380   unsigned ConvOpc = IsSingle ? (IsSigned ? PPCISD::FCFIDS : PPCISD::FCFIDUS)
8381                               : (IsSigned ? PPCISD::FCFID : PPCISD::FCFIDU);
8382   EVT ConvTy = IsSingle ? MVT::f32 : MVT::f64;
8383   if (Op->isStrictFPOpcode()) {
8384     if (!Chain)
8385       Chain = Op.getOperand(0);
8386     return DAG.getNode(getPPCStrictOpcode(ConvOpc), dl,
8387                        DAG.getVTList(ConvTy, MVT::Other), {Chain, Src}, Flags);
8388   } else
8389     return DAG.getNode(ConvOpc, dl, ConvTy, Src);
8390 }
8391 
8392 /// Custom lowers integer to floating point conversions to use
8393 /// the direct move instructions available in ISA 2.07 to avoid the
8394 /// need for load/store combinations.
8395 SDValue PPCTargetLowering::LowerINT_TO_FPDirectMove(SDValue Op,
8396                                                     SelectionDAG &DAG,
8397                                                     const SDLoc &dl) const {
8398   assert((Op.getValueType() == MVT::f32 ||
8399           Op.getValueType() == MVT::f64) &&
8400          "Invalid floating point type as target of conversion");
8401   assert(Subtarget.hasFPCVT() &&
8402          "Int to FP conversions with direct moves require FPCVT");
8403   SDValue Src = Op.getOperand(Op->isStrictFPOpcode() ? 1 : 0);
8404   bool WordInt = Src.getSimpleValueType().SimpleTy == MVT::i32;
8405   bool Signed = Op.getOpcode() == ISD::SINT_TO_FP ||
8406                 Op.getOpcode() == ISD::STRICT_SINT_TO_FP;
8407   unsigned MovOpc = (WordInt && !Signed) ? PPCISD::MTVSRZ : PPCISD::MTVSRA;
8408   SDValue Mov = DAG.getNode(MovOpc, dl, MVT::f64, Src);
8409   return convertIntToFP(Op, Mov, DAG, Subtarget);
8410 }
8411 
8412 static SDValue widenVec(SelectionDAG &DAG, SDValue Vec, const SDLoc &dl) {
8413 
8414   EVT VecVT = Vec.getValueType();
8415   assert(VecVT.isVector() && "Expected a vector type.");
8416   assert(VecVT.getSizeInBits() < 128 && "Vector is already full width.");
8417 
8418   EVT EltVT = VecVT.getVectorElementType();
8419   unsigned WideNumElts = 128 / EltVT.getSizeInBits();
8420   EVT WideVT = EVT::getVectorVT(*DAG.getContext(), EltVT, WideNumElts);
8421 
8422   unsigned NumConcat = WideNumElts / VecVT.getVectorNumElements();
8423   SmallVector<SDValue, 16> Ops(NumConcat);
8424   Ops[0] = Vec;
8425   SDValue UndefVec = DAG.getUNDEF(VecVT);
8426   for (unsigned i = 1; i < NumConcat; ++i)
8427     Ops[i] = UndefVec;
8428 
8429   return DAG.getNode(ISD::CONCAT_VECTORS, dl, WideVT, Ops);
8430 }
8431 
8432 SDValue PPCTargetLowering::LowerINT_TO_FPVector(SDValue Op, SelectionDAG &DAG,
8433                                                 const SDLoc &dl) const {
8434   bool IsStrict = Op->isStrictFPOpcode();
8435   unsigned Opc = Op.getOpcode();
8436   SDValue Src = Op.getOperand(IsStrict ? 1 : 0);
8437   assert((Opc == ISD::UINT_TO_FP || Opc == ISD::SINT_TO_FP ||
8438           Opc == ISD::STRICT_UINT_TO_FP || Opc == ISD::STRICT_SINT_TO_FP) &&
8439          "Unexpected conversion type");
8440   assert((Op.getValueType() == MVT::v2f64 || Op.getValueType() == MVT::v4f32) &&
8441          "Supports conversions to v2f64/v4f32 only.");
8442 
8443   // TODO: Any other flags to propagate?
8444   SDNodeFlags Flags;
8445   Flags.setNoFPExcept(Op->getFlags().hasNoFPExcept());
8446 
8447   bool SignedConv = Opc == ISD::SINT_TO_FP || Opc == ISD::STRICT_SINT_TO_FP;
8448   bool FourEltRes = Op.getValueType() == MVT::v4f32;
8449 
8450   SDValue Wide = widenVec(DAG, Src, dl);
8451   EVT WideVT = Wide.getValueType();
8452   unsigned WideNumElts = WideVT.getVectorNumElements();
8453   MVT IntermediateVT = FourEltRes ? MVT::v4i32 : MVT::v2i64;
8454 
8455   SmallVector<int, 16> ShuffV;
8456   for (unsigned i = 0; i < WideNumElts; ++i)
8457     ShuffV.push_back(i + WideNumElts);
8458 
8459   int Stride = FourEltRes ? WideNumElts / 4 : WideNumElts / 2;
8460   int SaveElts = FourEltRes ? 4 : 2;
8461   if (Subtarget.isLittleEndian())
8462     for (int i = 0; i < SaveElts; i++)
8463       ShuffV[i * Stride] = i;
8464   else
8465     for (int i = 1; i <= SaveElts; i++)
8466       ShuffV[i * Stride - 1] = i - 1;
8467 
8468   SDValue ShuffleSrc2 =
8469       SignedConv ? DAG.getUNDEF(WideVT) : DAG.getConstant(0, dl, WideVT);
8470   SDValue Arrange = DAG.getVectorShuffle(WideVT, dl, Wide, ShuffleSrc2, ShuffV);
8471 
8472   SDValue Extend;
8473   if (SignedConv) {
8474     Arrange = DAG.getBitcast(IntermediateVT, Arrange);
8475     EVT ExtVT = Src.getValueType();
8476     if (Subtarget.hasP9Altivec())
8477       ExtVT = EVT::getVectorVT(*DAG.getContext(), WideVT.getVectorElementType(),
8478                                IntermediateVT.getVectorNumElements());
8479 
8480     Extend = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, IntermediateVT, Arrange,
8481                          DAG.getValueType(ExtVT));
8482   } else
8483     Extend = DAG.getNode(ISD::BITCAST, dl, IntermediateVT, Arrange);
8484 
8485   if (IsStrict)
8486     return DAG.getNode(Opc, dl, DAG.getVTList(Op.getValueType(), MVT::Other),
8487                        {Op.getOperand(0), Extend}, Flags);
8488 
8489   return DAG.getNode(Opc, dl, Op.getValueType(), Extend);
8490 }
8491 
8492 SDValue PPCTargetLowering::LowerINT_TO_FP(SDValue Op,
8493                                           SelectionDAG &DAG) const {
8494   SDLoc dl(Op);
8495   bool IsSigned = Op.getOpcode() == ISD::SINT_TO_FP ||
8496                   Op.getOpcode() == ISD::STRICT_SINT_TO_FP;
8497   bool IsStrict = Op->isStrictFPOpcode();
8498   SDValue Src = Op.getOperand(IsStrict ? 1 : 0);
8499   SDValue Chain = IsStrict ? Op.getOperand(0) : DAG.getEntryNode();
8500 
8501   // TODO: Any other flags to propagate?
8502   SDNodeFlags Flags;
8503   Flags.setNoFPExcept(Op->getFlags().hasNoFPExcept());
8504 
8505   EVT InVT = Src.getValueType();
8506   EVT OutVT = Op.getValueType();
8507   if (OutVT.isVector() && OutVT.isFloatingPoint() &&
8508       isOperationCustom(Op.getOpcode(), InVT))
8509     return LowerINT_TO_FPVector(Op, DAG, dl);
8510 
8511   // Conversions to f128 are legal.
8512   if (Op.getValueType() == MVT::f128)
8513     return Subtarget.hasP9Vector() ? Op : SDValue();
8514 
8515   // Don't handle ppc_fp128 here; let it be lowered to a libcall.
8516   if (Op.getValueType() != MVT::f32 && Op.getValueType() != MVT::f64)
8517     return SDValue();
8518 
8519   if (Src.getValueType() == MVT::i1) {
8520     SDValue Sel = DAG.getNode(ISD::SELECT, dl, Op.getValueType(), Src,
8521                               DAG.getConstantFP(1.0, dl, Op.getValueType()),
8522                               DAG.getConstantFP(0.0, dl, Op.getValueType()));
8523     if (IsStrict)
8524       return DAG.getMergeValues({Sel, Chain}, dl);
8525     else
8526       return Sel;
8527   }
8528 
8529   // If we have direct moves, we can do all the conversion, skip the store/load
8530   // however, without FPCVT we can't do most conversions.
8531   if (Subtarget.hasDirectMove() && directMoveIsProfitable(Op) &&
8532       Subtarget.isPPC64() && Subtarget.hasFPCVT())
8533     return LowerINT_TO_FPDirectMove(Op, DAG, dl);
8534 
8535   assert((IsSigned || Subtarget.hasFPCVT()) &&
8536          "UINT_TO_FP is supported only with FPCVT");
8537 
8538   if (Src.getValueType() == MVT::i64) {
8539     SDValue SINT = Src;
8540     // When converting to single-precision, we actually need to convert
8541     // to double-precision first and then round to single-precision.
8542     // To avoid double-rounding effects during that operation, we have
8543     // to prepare the input operand.  Bits that might be truncated when
8544     // converting to double-precision are replaced by a bit that won't
8545     // be lost at this stage, but is below the single-precision rounding
8546     // position.
8547     //
8548     // However, if -enable-unsafe-fp-math is in effect, accept double
8549     // rounding to avoid the extra overhead.
8550     if (Op.getValueType() == MVT::f32 &&
8551         !Subtarget.hasFPCVT() &&
8552         !DAG.getTarget().Options.UnsafeFPMath) {
8553 
8554       // Twiddle input to make sure the low 11 bits are zero.  (If this
8555       // is the case, we are guaranteed the value will fit into the 53 bit
8556       // mantissa of an IEEE double-precision value without rounding.)
8557       // If any of those low 11 bits were not zero originally, make sure
8558       // bit 12 (value 2048) is set instead, so that the final rounding
8559       // to single-precision gets the correct result.
8560       SDValue Round = DAG.getNode(ISD::AND, dl, MVT::i64,
8561                                   SINT, DAG.getConstant(2047, dl, MVT::i64));
8562       Round = DAG.getNode(ISD::ADD, dl, MVT::i64,
8563                           Round, DAG.getConstant(2047, dl, MVT::i64));
8564       Round = DAG.getNode(ISD::OR, dl, MVT::i64, Round, SINT);
8565       Round = DAG.getNode(ISD::AND, dl, MVT::i64,
8566                           Round, DAG.getConstant(-2048, dl, MVT::i64));
8567 
8568       // However, we cannot use that value unconditionally: if the magnitude
8569       // of the input value is small, the bit-twiddling we did above might
8570       // end up visibly changing the output.  Fortunately, in that case, we
8571       // don't need to twiddle bits since the original input will convert
8572       // exactly to double-precision floating-point already.  Therefore,
8573       // construct a conditional to use the original value if the top 11
8574       // bits are all sign-bit copies, and use the rounded value computed
8575       // above otherwise.
8576       SDValue Cond = DAG.getNode(ISD::SRA, dl, MVT::i64,
8577                                  SINT, DAG.getConstant(53, dl, MVT::i32));
8578       Cond = DAG.getNode(ISD::ADD, dl, MVT::i64,
8579                          Cond, DAG.getConstant(1, dl, MVT::i64));
8580       Cond = DAG.getSetCC(
8581           dl,
8582           getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::i64),
8583           Cond, DAG.getConstant(1, dl, MVT::i64), ISD::SETUGT);
8584 
8585       SINT = DAG.getNode(ISD::SELECT, dl, MVT::i64, Cond, Round, SINT);
8586     }
8587 
8588     ReuseLoadInfo RLI;
8589     SDValue Bits;
8590 
8591     MachineFunction &MF = DAG.getMachineFunction();
8592     if (canReuseLoadAddress(SINT, MVT::i64, RLI, DAG)) {
8593       Bits = DAG.getLoad(MVT::f64, dl, RLI.Chain, RLI.Ptr, RLI.MPI,
8594                          RLI.Alignment, RLI.MMOFlags(), RLI.AAInfo, RLI.Ranges);
8595       spliceIntoChain(RLI.ResChain, Bits.getValue(1), DAG);
8596     } else if (Subtarget.hasLFIWAX() &&
8597                canReuseLoadAddress(SINT, MVT::i32, RLI, DAG, ISD::SEXTLOAD)) {
8598       MachineMemOperand *MMO =
8599         MF.getMachineMemOperand(RLI.MPI, MachineMemOperand::MOLoad, 4,
8600                                 RLI.Alignment, RLI.AAInfo, RLI.Ranges);
8601       SDValue Ops[] = { RLI.Chain, RLI.Ptr };
8602       Bits = DAG.getMemIntrinsicNode(PPCISD::LFIWAX, dl,
8603                                      DAG.getVTList(MVT::f64, MVT::Other),
8604                                      Ops, MVT::i32, MMO);
8605       spliceIntoChain(RLI.ResChain, Bits.getValue(1), DAG);
8606     } else if (Subtarget.hasFPCVT() &&
8607                canReuseLoadAddress(SINT, MVT::i32, RLI, DAG, ISD::ZEXTLOAD)) {
8608       MachineMemOperand *MMO =
8609         MF.getMachineMemOperand(RLI.MPI, MachineMemOperand::MOLoad, 4,
8610                                 RLI.Alignment, RLI.AAInfo, RLI.Ranges);
8611       SDValue Ops[] = { RLI.Chain, RLI.Ptr };
8612       Bits = DAG.getMemIntrinsicNode(PPCISD::LFIWZX, dl,
8613                                      DAG.getVTList(MVT::f64, MVT::Other),
8614                                      Ops, MVT::i32, MMO);
8615       spliceIntoChain(RLI.ResChain, Bits.getValue(1), DAG);
8616     } else if (((Subtarget.hasLFIWAX() &&
8617                  SINT.getOpcode() == ISD::SIGN_EXTEND) ||
8618                 (Subtarget.hasFPCVT() &&
8619                  SINT.getOpcode() == ISD::ZERO_EXTEND)) &&
8620                SINT.getOperand(0).getValueType() == MVT::i32) {
8621       MachineFrameInfo &MFI = MF.getFrameInfo();
8622       EVT PtrVT = getPointerTy(DAG.getDataLayout());
8623 
8624       int FrameIdx = MFI.CreateStackObject(4, Align(4), false);
8625       SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
8626 
8627       SDValue Store = DAG.getStore(Chain, dl, SINT.getOperand(0), FIdx,
8628                                    MachinePointerInfo::getFixedStack(
8629                                        DAG.getMachineFunction(), FrameIdx));
8630       Chain = Store;
8631 
8632       assert(cast<StoreSDNode>(Store)->getMemoryVT() == MVT::i32 &&
8633              "Expected an i32 store");
8634 
8635       RLI.Ptr = FIdx;
8636       RLI.Chain = Chain;
8637       RLI.MPI =
8638           MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx);
8639       RLI.Alignment = Align(4);
8640 
8641       MachineMemOperand *MMO =
8642         MF.getMachineMemOperand(RLI.MPI, MachineMemOperand::MOLoad, 4,
8643                                 RLI.Alignment, RLI.AAInfo, RLI.Ranges);
8644       SDValue Ops[] = { RLI.Chain, RLI.Ptr };
8645       Bits = DAG.getMemIntrinsicNode(SINT.getOpcode() == ISD::ZERO_EXTEND ?
8646                                      PPCISD::LFIWZX : PPCISD::LFIWAX,
8647                                      dl, DAG.getVTList(MVT::f64, MVT::Other),
8648                                      Ops, MVT::i32, MMO);
8649       Chain = Bits.getValue(1);
8650     } else
8651       Bits = DAG.getNode(ISD::BITCAST, dl, MVT::f64, SINT);
8652 
8653     SDValue FP = convertIntToFP(Op, Bits, DAG, Subtarget, Chain);
8654     if (IsStrict)
8655       Chain = FP.getValue(1);
8656 
8657     if (Op.getValueType() == MVT::f32 && !Subtarget.hasFPCVT()) {
8658       if (IsStrict)
8659         FP = DAG.getNode(ISD::STRICT_FP_ROUND, dl,
8660                          DAG.getVTList(MVT::f32, MVT::Other),
8661                          {Chain, FP, DAG.getIntPtrConstant(0, dl)}, Flags);
8662       else
8663         FP = DAG.getNode(ISD::FP_ROUND, dl, MVT::f32, FP,
8664                          DAG.getIntPtrConstant(0, dl));
8665     }
8666     return FP;
8667   }
8668 
8669   assert(Src.getValueType() == MVT::i32 &&
8670          "Unhandled INT_TO_FP type in custom expander!");
8671   // Since we only generate this in 64-bit mode, we can take advantage of
8672   // 64-bit registers.  In particular, sign extend the input value into the
8673   // 64-bit register with extsw, store the WHOLE 64-bit value into the stack
8674   // then lfd it and fcfid it.
8675   MachineFunction &MF = DAG.getMachineFunction();
8676   MachineFrameInfo &MFI = MF.getFrameInfo();
8677   EVT PtrVT = getPointerTy(MF.getDataLayout());
8678 
8679   SDValue Ld;
8680   if (Subtarget.hasLFIWAX() || Subtarget.hasFPCVT()) {
8681     ReuseLoadInfo RLI;
8682     bool ReusingLoad;
8683     if (!(ReusingLoad = canReuseLoadAddress(Src, MVT::i32, RLI, DAG))) {
8684       int FrameIdx = MFI.CreateStackObject(4, Align(4), false);
8685       SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
8686 
8687       SDValue Store = DAG.getStore(Chain, dl, Src, FIdx,
8688                                    MachinePointerInfo::getFixedStack(
8689                                        DAG.getMachineFunction(), FrameIdx));
8690       Chain = Store;
8691 
8692       assert(cast<StoreSDNode>(Store)->getMemoryVT() == MVT::i32 &&
8693              "Expected an i32 store");
8694 
8695       RLI.Ptr = FIdx;
8696       RLI.Chain = Chain;
8697       RLI.MPI =
8698           MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx);
8699       RLI.Alignment = Align(4);
8700     }
8701 
8702     MachineMemOperand *MMO =
8703       MF.getMachineMemOperand(RLI.MPI, MachineMemOperand::MOLoad, 4,
8704                               RLI.Alignment, RLI.AAInfo, RLI.Ranges);
8705     SDValue Ops[] = { RLI.Chain, RLI.Ptr };
8706     Ld = DAG.getMemIntrinsicNode(IsSigned ? PPCISD::LFIWAX : PPCISD::LFIWZX, dl,
8707                                  DAG.getVTList(MVT::f64, MVT::Other), Ops,
8708                                  MVT::i32, MMO);
8709     Chain = Ld.getValue(1);
8710     if (ReusingLoad)
8711       spliceIntoChain(RLI.ResChain, Ld.getValue(1), DAG);
8712   } else {
8713     assert(Subtarget.isPPC64() &&
8714            "i32->FP without LFIWAX supported only on PPC64");
8715 
8716     int FrameIdx = MFI.CreateStackObject(8, Align(8), false);
8717     SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
8718 
8719     SDValue Ext64 = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::i64, Src);
8720 
8721     // STD the extended value into the stack slot.
8722     SDValue Store = DAG.getStore(
8723         Chain, dl, Ext64, FIdx,
8724         MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx));
8725     Chain = Store;
8726 
8727     // Load the value as a double.
8728     Ld = DAG.getLoad(
8729         MVT::f64, dl, Chain, FIdx,
8730         MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx));
8731     Chain = Ld.getValue(1);
8732   }
8733 
8734   // FCFID it and return it.
8735   SDValue FP = convertIntToFP(Op, Ld, DAG, Subtarget, Chain);
8736   if (IsStrict)
8737     Chain = FP.getValue(1);
8738   if (Op.getValueType() == MVT::f32 && !Subtarget.hasFPCVT()) {
8739     if (IsStrict)
8740       FP = DAG.getNode(ISD::STRICT_FP_ROUND, dl,
8741                        DAG.getVTList(MVT::f32, MVT::Other),
8742                        {Chain, FP, DAG.getIntPtrConstant(0, dl)}, Flags);
8743     else
8744       FP = DAG.getNode(ISD::FP_ROUND, dl, MVT::f32, FP,
8745                        DAG.getIntPtrConstant(0, dl));
8746   }
8747   return FP;
8748 }
8749 
8750 SDValue PPCTargetLowering::LowerFLT_ROUNDS_(SDValue Op,
8751                                             SelectionDAG &DAG) const {
8752   SDLoc dl(Op);
8753   /*
8754    The rounding mode is in bits 30:31 of FPSR, and has the following
8755    settings:
8756      00 Round to nearest
8757      01 Round to 0
8758      10 Round to +inf
8759      11 Round to -inf
8760 
8761   FLT_ROUNDS, on the other hand, expects the following:
8762     -1 Undefined
8763      0 Round to 0
8764      1 Round to nearest
8765      2 Round to +inf
8766      3 Round to -inf
8767 
8768   To perform the conversion, we do:
8769     ((FPSCR & 0x3) ^ ((~FPSCR & 0x3) >> 1))
8770   */
8771 
8772   MachineFunction &MF = DAG.getMachineFunction();
8773   EVT VT = Op.getValueType();
8774   EVT PtrVT = getPointerTy(MF.getDataLayout());
8775 
8776   // Save FP Control Word to register
8777   SDValue Chain = Op.getOperand(0);
8778   SDValue MFFS = DAG.getNode(PPCISD::MFFS, dl, {MVT::f64, MVT::Other}, Chain);
8779   Chain = MFFS.getValue(1);
8780 
8781   SDValue CWD;
8782   if (isTypeLegal(MVT::i64)) {
8783     CWD = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32,
8784                       DAG.getNode(ISD::BITCAST, dl, MVT::i64, MFFS));
8785   } else {
8786     // Save FP register to stack slot
8787     int SSFI = MF.getFrameInfo().CreateStackObject(8, Align(8), false);
8788     SDValue StackSlot = DAG.getFrameIndex(SSFI, PtrVT);
8789     Chain = DAG.getStore(Chain, dl, MFFS, StackSlot, MachinePointerInfo());
8790 
8791     // Load FP Control Word from low 32 bits of stack slot.
8792     assert(hasBigEndianPartOrdering(MVT::i64, MF.getDataLayout()) &&
8793            "Stack slot adjustment is valid only on big endian subtargets!");
8794     SDValue Four = DAG.getConstant(4, dl, PtrVT);
8795     SDValue Addr = DAG.getNode(ISD::ADD, dl, PtrVT, StackSlot, Four);
8796     CWD = DAG.getLoad(MVT::i32, dl, Chain, Addr, MachinePointerInfo());
8797     Chain = CWD.getValue(1);
8798   }
8799 
8800   // Transform as necessary
8801   SDValue CWD1 =
8802     DAG.getNode(ISD::AND, dl, MVT::i32,
8803                 CWD, DAG.getConstant(3, dl, MVT::i32));
8804   SDValue CWD2 =
8805     DAG.getNode(ISD::SRL, dl, MVT::i32,
8806                 DAG.getNode(ISD::AND, dl, MVT::i32,
8807                             DAG.getNode(ISD::XOR, dl, MVT::i32,
8808                                         CWD, DAG.getConstant(3, dl, MVT::i32)),
8809                             DAG.getConstant(3, dl, MVT::i32)),
8810                 DAG.getConstant(1, dl, MVT::i32));
8811 
8812   SDValue RetVal =
8813     DAG.getNode(ISD::XOR, dl, MVT::i32, CWD1, CWD2);
8814 
8815   RetVal =
8816       DAG.getNode((VT.getSizeInBits() < 16 ? ISD::TRUNCATE : ISD::ZERO_EXTEND),
8817                   dl, VT, RetVal);
8818 
8819   return DAG.getMergeValues({RetVal, Chain}, dl);
8820 }
8821 
8822 SDValue PPCTargetLowering::LowerSHL_PARTS(SDValue Op, SelectionDAG &DAG) const {
8823   EVT VT = Op.getValueType();
8824   unsigned BitWidth = VT.getSizeInBits();
8825   SDLoc dl(Op);
8826   assert(Op.getNumOperands() == 3 &&
8827          VT == Op.getOperand(1).getValueType() &&
8828          "Unexpected SHL!");
8829 
8830   // Expand into a bunch of logical ops.  Note that these ops
8831   // depend on the PPC behavior for oversized shift amounts.
8832   SDValue Lo = Op.getOperand(0);
8833   SDValue Hi = Op.getOperand(1);
8834   SDValue Amt = Op.getOperand(2);
8835   EVT AmtVT = Amt.getValueType();
8836 
8837   SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT,
8838                              DAG.getConstant(BitWidth, dl, AmtVT), Amt);
8839   SDValue Tmp2 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Amt);
8840   SDValue Tmp3 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Tmp1);
8841   SDValue Tmp4 = DAG.getNode(ISD::OR , dl, VT, Tmp2, Tmp3);
8842   SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt,
8843                              DAG.getConstant(-BitWidth, dl, AmtVT));
8844   SDValue Tmp6 = DAG.getNode(PPCISD::SHL, dl, VT, Lo, Tmp5);
8845   SDValue OutHi = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp6);
8846   SDValue OutLo = DAG.getNode(PPCISD::SHL, dl, VT, Lo, Amt);
8847   SDValue OutOps[] = { OutLo, OutHi };
8848   return DAG.getMergeValues(OutOps, dl);
8849 }
8850 
8851 SDValue PPCTargetLowering::LowerSRL_PARTS(SDValue Op, SelectionDAG &DAG) const {
8852   EVT VT = Op.getValueType();
8853   SDLoc dl(Op);
8854   unsigned BitWidth = VT.getSizeInBits();
8855   assert(Op.getNumOperands() == 3 &&
8856          VT == Op.getOperand(1).getValueType() &&
8857          "Unexpected SRL!");
8858 
8859   // Expand into a bunch of logical ops.  Note that these ops
8860   // depend on the PPC behavior for oversized shift amounts.
8861   SDValue Lo = Op.getOperand(0);
8862   SDValue Hi = Op.getOperand(1);
8863   SDValue Amt = Op.getOperand(2);
8864   EVT AmtVT = Amt.getValueType();
8865 
8866   SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT,
8867                              DAG.getConstant(BitWidth, dl, AmtVT), Amt);
8868   SDValue Tmp2 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Amt);
8869   SDValue Tmp3 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Tmp1);
8870   SDValue Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3);
8871   SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt,
8872                              DAG.getConstant(-BitWidth, dl, AmtVT));
8873   SDValue Tmp6 = DAG.getNode(PPCISD::SRL, dl, VT, Hi, Tmp5);
8874   SDValue OutLo = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp6);
8875   SDValue OutHi = DAG.getNode(PPCISD::SRL, dl, VT, Hi, Amt);
8876   SDValue OutOps[] = { OutLo, OutHi };
8877   return DAG.getMergeValues(OutOps, dl);
8878 }
8879 
8880 SDValue PPCTargetLowering::LowerSRA_PARTS(SDValue Op, SelectionDAG &DAG) const {
8881   SDLoc dl(Op);
8882   EVT VT = Op.getValueType();
8883   unsigned BitWidth = VT.getSizeInBits();
8884   assert(Op.getNumOperands() == 3 &&
8885          VT == Op.getOperand(1).getValueType() &&
8886          "Unexpected SRA!");
8887 
8888   // Expand into a bunch of logical ops, followed by a select_cc.
8889   SDValue Lo = Op.getOperand(0);
8890   SDValue Hi = Op.getOperand(1);
8891   SDValue Amt = Op.getOperand(2);
8892   EVT AmtVT = Amt.getValueType();
8893 
8894   SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT,
8895                              DAG.getConstant(BitWidth, dl, AmtVT), Amt);
8896   SDValue Tmp2 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Amt);
8897   SDValue Tmp3 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Tmp1);
8898   SDValue Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3);
8899   SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt,
8900                              DAG.getConstant(-BitWidth, dl, AmtVT));
8901   SDValue Tmp6 = DAG.getNode(PPCISD::SRA, dl, VT, Hi, Tmp5);
8902   SDValue OutHi = DAG.getNode(PPCISD::SRA, dl, VT, Hi, Amt);
8903   SDValue OutLo = DAG.getSelectCC(dl, Tmp5, DAG.getConstant(0, dl, AmtVT),
8904                                   Tmp4, Tmp6, ISD::SETLE);
8905   SDValue OutOps[] = { OutLo, OutHi };
8906   return DAG.getMergeValues(OutOps, dl);
8907 }
8908 
8909 SDValue PPCTargetLowering::LowerFunnelShift(SDValue Op,
8910                                             SelectionDAG &DAG) const {
8911   SDLoc dl(Op);
8912   EVT VT = Op.getValueType();
8913   unsigned BitWidth = VT.getSizeInBits();
8914 
8915   bool IsFSHL = Op.getOpcode() == ISD::FSHL;
8916   SDValue X = Op.getOperand(0);
8917   SDValue Y = Op.getOperand(1);
8918   SDValue Z = Op.getOperand(2);
8919   EVT AmtVT = Z.getValueType();
8920 
8921   // fshl: (X << (Z % BW)) | (Y >> (BW - (Z % BW)))
8922   // fshr: (X << (BW - (Z % BW))) | (Y >> (Z % BW))
8923   // This is simpler than TargetLowering::expandFunnelShift because we can rely
8924   // on PowerPC shift by BW being well defined.
8925   Z = DAG.getNode(ISD::AND, dl, AmtVT, Z,
8926                   DAG.getConstant(BitWidth - 1, dl, AmtVT));
8927   SDValue SubZ =
8928       DAG.getNode(ISD::SUB, dl, AmtVT, DAG.getConstant(BitWidth, dl, AmtVT), Z);
8929   X = DAG.getNode(PPCISD::SHL, dl, VT, X, IsFSHL ? Z : SubZ);
8930   Y = DAG.getNode(PPCISD::SRL, dl, VT, Y, IsFSHL ? SubZ : Z);
8931   return DAG.getNode(ISD::OR, dl, VT, X, Y);
8932 }
8933 
8934 //===----------------------------------------------------------------------===//
8935 // Vector related lowering.
8936 //
8937 
8938 /// getCanonicalConstSplat - Build a canonical splat immediate of Val with an
8939 /// element size of SplatSize. Cast the result to VT.
8940 static SDValue getCanonicalConstSplat(uint64_t Val, unsigned SplatSize, EVT VT,
8941                                       SelectionDAG &DAG, const SDLoc &dl) {
8942   static const MVT VTys[] = { // canonical VT to use for each size.
8943     MVT::v16i8, MVT::v8i16, MVT::Other, MVT::v4i32
8944   };
8945 
8946   EVT ReqVT = VT != MVT::Other ? VT : VTys[SplatSize-1];
8947 
8948   // For a splat with all ones, turn it to vspltisb 0xFF to canonicalize.
8949   if (Val == ((1LLU << (SplatSize * 8)) - 1)) {
8950     SplatSize = 1;
8951     Val = 0xFF;
8952   }
8953 
8954   EVT CanonicalVT = VTys[SplatSize-1];
8955 
8956   // Build a canonical splat for this value.
8957   return DAG.getBitcast(ReqVT, DAG.getConstant(Val, dl, CanonicalVT));
8958 }
8959 
8960 /// BuildIntrinsicOp - Return a unary operator intrinsic node with the
8961 /// specified intrinsic ID.
8962 static SDValue BuildIntrinsicOp(unsigned IID, SDValue Op, SelectionDAG &DAG,
8963                                 const SDLoc &dl, EVT DestVT = MVT::Other) {
8964   if (DestVT == MVT::Other) DestVT = Op.getValueType();
8965   return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT,
8966                      DAG.getConstant(IID, dl, MVT::i32), Op);
8967 }
8968 
8969 /// BuildIntrinsicOp - Return a binary operator intrinsic node with the
8970 /// specified intrinsic ID.
8971 static SDValue BuildIntrinsicOp(unsigned IID, SDValue LHS, SDValue RHS,
8972                                 SelectionDAG &DAG, const SDLoc &dl,
8973                                 EVT DestVT = MVT::Other) {
8974   if (DestVT == MVT::Other) DestVT = LHS.getValueType();
8975   return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT,
8976                      DAG.getConstant(IID, dl, MVT::i32), LHS, RHS);
8977 }
8978 
8979 /// BuildIntrinsicOp - Return a ternary operator intrinsic node with the
8980 /// specified intrinsic ID.
8981 static SDValue BuildIntrinsicOp(unsigned IID, SDValue Op0, SDValue Op1,
8982                                 SDValue Op2, SelectionDAG &DAG, const SDLoc &dl,
8983                                 EVT DestVT = MVT::Other) {
8984   if (DestVT == MVT::Other) DestVT = Op0.getValueType();
8985   return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT,
8986                      DAG.getConstant(IID, dl, MVT::i32), Op0, Op1, Op2);
8987 }
8988 
8989 /// BuildVSLDOI - Return a VECTOR_SHUFFLE that is a vsldoi of the specified
8990 /// amount.  The result has the specified value type.
8991 static SDValue BuildVSLDOI(SDValue LHS, SDValue RHS, unsigned Amt, EVT VT,
8992                            SelectionDAG &DAG, const SDLoc &dl) {
8993   // Force LHS/RHS to be the right type.
8994   LHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, LHS);
8995   RHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, RHS);
8996 
8997   int Ops[16];
8998   for (unsigned i = 0; i != 16; ++i)
8999     Ops[i] = i + Amt;
9000   SDValue T = DAG.getVectorShuffle(MVT::v16i8, dl, LHS, RHS, Ops);
9001   return DAG.getNode(ISD::BITCAST, dl, VT, T);
9002 }
9003 
9004 /// Do we have an efficient pattern in a .td file for this node?
9005 ///
9006 /// \param V - pointer to the BuildVectorSDNode being matched
9007 /// \param HasDirectMove - does this subtarget have VSR <-> GPR direct moves?
9008 ///
9009 /// There are some patterns where it is beneficial to keep a BUILD_VECTOR
9010 /// node as a BUILD_VECTOR node rather than expanding it. The patterns where
9011 /// the opposite is true (expansion is beneficial) are:
9012 /// - The node builds a vector out of integers that are not 32 or 64-bits
9013 /// - The node builds a vector out of constants
9014 /// - The node is a "load-and-splat"
9015 /// In all other cases, we will choose to keep the BUILD_VECTOR.
9016 static bool haveEfficientBuildVectorPattern(BuildVectorSDNode *V,
9017                                             bool HasDirectMove,
9018                                             bool HasP8Vector) {
9019   EVT VecVT = V->getValueType(0);
9020   bool RightType = VecVT == MVT::v2f64 ||
9021     (HasP8Vector && VecVT == MVT::v4f32) ||
9022     (HasDirectMove && (VecVT == MVT::v2i64 || VecVT == MVT::v4i32));
9023   if (!RightType)
9024     return false;
9025 
9026   bool IsSplat = true;
9027   bool IsLoad = false;
9028   SDValue Op0 = V->getOperand(0);
9029 
9030   // This function is called in a block that confirms the node is not a constant
9031   // splat. So a constant BUILD_VECTOR here means the vector is built out of
9032   // different constants.
9033   if (V->isConstant())
9034     return false;
9035   for (int i = 0, e = V->getNumOperands(); i < e; ++i) {
9036     if (V->getOperand(i).isUndef())
9037       return false;
9038     // We want to expand nodes that represent load-and-splat even if the
9039     // loaded value is a floating point truncation or conversion to int.
9040     if (V->getOperand(i).getOpcode() == ISD::LOAD ||
9041         (V->getOperand(i).getOpcode() == ISD::FP_ROUND &&
9042          V->getOperand(i).getOperand(0).getOpcode() == ISD::LOAD) ||
9043         (V->getOperand(i).getOpcode() == ISD::FP_TO_SINT &&
9044          V->getOperand(i).getOperand(0).getOpcode() == ISD::LOAD) ||
9045         (V->getOperand(i).getOpcode() == ISD::FP_TO_UINT &&
9046          V->getOperand(i).getOperand(0).getOpcode() == ISD::LOAD))
9047       IsLoad = true;
9048     // If the operands are different or the input is not a load and has more
9049     // uses than just this BV node, then it isn't a splat.
9050     if (V->getOperand(i) != Op0 ||
9051         (!IsLoad && !V->isOnlyUserOf(V->getOperand(i).getNode())))
9052       IsSplat = false;
9053   }
9054   return !(IsSplat && IsLoad);
9055 }
9056 
9057 // Lower BITCAST(f128, (build_pair i64, i64)) to BUILD_FP128.
9058 SDValue PPCTargetLowering::LowerBITCAST(SDValue Op, SelectionDAG &DAG) const {
9059 
9060   SDLoc dl(Op);
9061   SDValue Op0 = Op->getOperand(0);
9062 
9063   if ((Op.getValueType() != MVT::f128) ||
9064       (Op0.getOpcode() != ISD::BUILD_PAIR) ||
9065       (Op0.getOperand(0).getValueType() != MVT::i64) ||
9066       (Op0.getOperand(1).getValueType() != MVT::i64))
9067     return SDValue();
9068 
9069   return DAG.getNode(PPCISD::BUILD_FP128, dl, MVT::f128, Op0.getOperand(0),
9070                      Op0.getOperand(1));
9071 }
9072 
9073 static const SDValue *getNormalLoadInput(const SDValue &Op, bool &IsPermuted) {
9074   const SDValue *InputLoad = &Op;
9075   while (InputLoad->getOpcode() == ISD::BITCAST)
9076     InputLoad = &InputLoad->getOperand(0);
9077   if (InputLoad->getOpcode() == ISD::SCALAR_TO_VECTOR ||
9078       InputLoad->getOpcode() == PPCISD::SCALAR_TO_VECTOR_PERMUTED) {
9079     IsPermuted = InputLoad->getOpcode() == PPCISD::SCALAR_TO_VECTOR_PERMUTED;
9080     InputLoad = &InputLoad->getOperand(0);
9081   }
9082   if (InputLoad->getOpcode() != ISD::LOAD)
9083     return nullptr;
9084   LoadSDNode *LD = cast<LoadSDNode>(*InputLoad);
9085   return ISD::isNormalLoad(LD) ? InputLoad : nullptr;
9086 }
9087 
9088 // Convert the argument APFloat to a single precision APFloat if there is no
9089 // loss in information during the conversion to single precision APFloat and the
9090 // resulting number is not a denormal number. Return true if successful.
9091 bool llvm::convertToNonDenormSingle(APFloat &ArgAPFloat) {
9092   APFloat APFloatToConvert = ArgAPFloat;
9093   bool LosesInfo = true;
9094   APFloatToConvert.convert(APFloat::IEEEsingle(), APFloat::rmNearestTiesToEven,
9095                            &LosesInfo);
9096   bool Success = (!LosesInfo && !APFloatToConvert.isDenormal());
9097   if (Success)
9098     ArgAPFloat = APFloatToConvert;
9099   return Success;
9100 }
9101 
9102 // Bitcast the argument APInt to a double and convert it to a single precision
9103 // APFloat, bitcast the APFloat to an APInt and assign it to the original
9104 // argument if there is no loss in information during the conversion from
9105 // double to single precision APFloat and the resulting number is not a denormal
9106 // number. Return true if successful.
9107 bool llvm::convertToNonDenormSingle(APInt &ArgAPInt) {
9108   double DpValue = ArgAPInt.bitsToDouble();
9109   APFloat APFloatDp(DpValue);
9110   bool Success = convertToNonDenormSingle(APFloatDp);
9111   if (Success)
9112     ArgAPInt = APFloatDp.bitcastToAPInt();
9113   return Success;
9114 }
9115 
9116 // Nondestructive check for convertTonNonDenormSingle.
9117 bool llvm::checkConvertToNonDenormSingle(APFloat &ArgAPFloat) {
9118   // Only convert if it loses info, since XXSPLTIDP should
9119   // handle the other case.
9120   APFloat APFloatToConvert = ArgAPFloat;
9121   bool LosesInfo = true;
9122   APFloatToConvert.convert(APFloat::IEEEsingle(), APFloat::rmNearestTiesToEven,
9123                            &LosesInfo);
9124 
9125   return (!LosesInfo && !APFloatToConvert.isDenormal());
9126 }
9127 
9128 static bool isValidSplatLoad(const PPCSubtarget &Subtarget, const SDValue &Op,
9129                              unsigned &Opcode) {
9130   LoadSDNode *InputNode = dyn_cast<LoadSDNode>(Op.getOperand(0));
9131   if (!InputNode || !Subtarget.hasVSX() || !ISD::isUNINDEXEDLoad(InputNode))
9132     return false;
9133 
9134   EVT Ty = Op->getValueType(0);
9135   // For v2f64, v4f32 and v4i32 types, we require the load to be non-extending
9136   // as we cannot handle extending loads for these types.
9137   if ((Ty == MVT::v2f64 || Ty == MVT::v4f32 || Ty == MVT::v4i32) &&
9138       ISD::isNON_EXTLoad(InputNode))
9139     return true;
9140 
9141   EVT MemVT = InputNode->getMemoryVT();
9142   // For v8i16 and v16i8 types, extending loads can be handled as long as the
9143   // memory VT is the same vector element VT type.
9144   // The loads feeding into the v8i16 and v16i8 types will be extending because
9145   // scalar i8/i16 are not legal types.
9146   if ((Ty == MVT::v8i16 || Ty == MVT::v16i8) && ISD::isEXTLoad(InputNode) &&
9147       (MemVT == Ty.getVectorElementType()))
9148     return true;
9149 
9150   if (Ty == MVT::v2i64) {
9151     // Check the extend type, when the input type is i32, and the output vector
9152     // type is v2i64.
9153     if (MemVT == MVT::i32) {
9154       if (ISD::isZEXTLoad(InputNode))
9155         Opcode = PPCISD::ZEXT_LD_SPLAT;
9156       if (ISD::isSEXTLoad(InputNode))
9157         Opcode = PPCISD::SEXT_LD_SPLAT;
9158     }
9159     return true;
9160   }
9161   return false;
9162 }
9163 
9164 // If this is a case we can't handle, return null and let the default
9165 // expansion code take care of it.  If we CAN select this case, and if it
9166 // selects to a single instruction, return Op.  Otherwise, if we can codegen
9167 // this case more efficiently than a constant pool load, lower it to the
9168 // sequence of ops that should be used.
9169 SDValue PPCTargetLowering::LowerBUILD_VECTOR(SDValue Op,
9170                                              SelectionDAG &DAG) const {
9171   SDLoc dl(Op);
9172   BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(Op.getNode());
9173   assert(BVN && "Expected a BuildVectorSDNode in LowerBUILD_VECTOR");
9174 
9175   // Check if this is a splat of a constant value.
9176   APInt APSplatBits, APSplatUndef;
9177   unsigned SplatBitSize;
9178   bool HasAnyUndefs;
9179   bool BVNIsConstantSplat =
9180       BVN->isConstantSplat(APSplatBits, APSplatUndef, SplatBitSize,
9181                            HasAnyUndefs, 0, !Subtarget.isLittleEndian());
9182 
9183   // If it is a splat of a double, check if we can shrink it to a 32 bit
9184   // non-denormal float which when converted back to double gives us the same
9185   // double. This is to exploit the XXSPLTIDP instruction.
9186   // If we lose precision, we use XXSPLTI32DX.
9187   if (BVNIsConstantSplat && (SplatBitSize == 64) &&
9188       Subtarget.hasPrefixInstrs()) {
9189     // Check the type first to short-circuit so we don't modify APSplatBits if
9190     // this block isn't executed.
9191     if ((Op->getValueType(0) == MVT::v2f64) &&
9192         convertToNonDenormSingle(APSplatBits)) {
9193       SDValue SplatNode = DAG.getNode(
9194           PPCISD::XXSPLTI_SP_TO_DP, dl, MVT::v2f64,
9195           DAG.getTargetConstant(APSplatBits.getZExtValue(), dl, MVT::i32));
9196       return DAG.getBitcast(Op.getValueType(), SplatNode);
9197     } else {
9198       // We may lose precision, so we have to use XXSPLTI32DX.
9199 
9200       uint32_t Hi =
9201           (uint32_t)((APSplatBits.getZExtValue() & 0xFFFFFFFF00000000LL) >> 32);
9202       uint32_t Lo =
9203           (uint32_t)(APSplatBits.getZExtValue() & 0xFFFFFFFF);
9204       SDValue SplatNode = DAG.getUNDEF(MVT::v2i64);
9205 
9206       if (!Hi || !Lo)
9207         // If either load is 0, then we should generate XXLXOR to set to 0.
9208         SplatNode = DAG.getTargetConstant(0, dl, MVT::v2i64);
9209 
9210       if (Hi)
9211         SplatNode = DAG.getNode(
9212             PPCISD::XXSPLTI32DX, dl, MVT::v2i64, SplatNode,
9213             DAG.getTargetConstant(0, dl, MVT::i32),
9214             DAG.getTargetConstant(Hi, dl, MVT::i32));
9215 
9216       if (Lo)
9217         SplatNode =
9218             DAG.getNode(PPCISD::XXSPLTI32DX, dl, MVT::v2i64, SplatNode,
9219                         DAG.getTargetConstant(1, dl, MVT::i32),
9220                         DAG.getTargetConstant(Lo, dl, MVT::i32));
9221 
9222       return DAG.getBitcast(Op.getValueType(), SplatNode);
9223     }
9224   }
9225 
9226   if (!BVNIsConstantSplat || SplatBitSize > 32) {
9227     unsigned NewOpcode = PPCISD::LD_SPLAT;
9228 
9229     // Handle load-and-splat patterns as we have instructions that will do this
9230     // in one go.
9231     if (DAG.isSplatValue(Op, true) &&
9232         isValidSplatLoad(Subtarget, Op, NewOpcode)) {
9233       const SDValue *InputLoad = &Op.getOperand(0);
9234       LoadSDNode *LD = cast<LoadSDNode>(*InputLoad);
9235 
9236       // If the input load is an extending load, it will be an i32 -> i64
9237       // extending load and isValidSplatLoad() will update NewOpcode.
9238       unsigned MemorySize = LD->getMemoryVT().getScalarSizeInBits();
9239       unsigned ElementSize =
9240           MemorySize * ((NewOpcode == PPCISD::LD_SPLAT) ? 1 : 2);
9241 
9242       assert(((ElementSize == 2 * MemorySize)
9243                   ? (NewOpcode == PPCISD::ZEXT_LD_SPLAT ||
9244                      NewOpcode == PPCISD::SEXT_LD_SPLAT)
9245                   : (NewOpcode == PPCISD::LD_SPLAT)) &&
9246              "Unmatched element size and opcode!\n");
9247 
9248       // Checking for a single use of this load, we have to check for vector
9249       // width (128 bits) / ElementSize uses (since each operand of the
9250       // BUILD_VECTOR is a separate use of the value.
9251       unsigned NumUsesOfInputLD = 128 / ElementSize;
9252       for (SDValue BVInOp : Op->ops())
9253         if (BVInOp.isUndef())
9254           NumUsesOfInputLD--;
9255 
9256       // Exclude somes case where LD_SPLAT is worse than scalar_to_vector:
9257       // Below cases should also happen for "lfiwzx/lfiwax + LE target + index
9258       // 1" and "lxvrhx + BE target + index 7" and "lxvrbx + BE target + index
9259       // 15", but funciton IsValidSplatLoad() now will only return true when
9260       // the data at index 0 is not nullptr. So we will not get into trouble for
9261       // these cases.
9262       //
9263       // case 1 - lfiwzx/lfiwax
9264       // 1.1: load result is i32 and is sign/zero extend to i64;
9265       // 1.2: build a v2i64 vector type with above loaded value;
9266       // 1.3: the vector has only one value at index 0, others are all undef;
9267       // 1.4: on BE target, so that lfiwzx/lfiwax does not need any permute.
9268       if (NumUsesOfInputLD == 1 &&
9269           (Op->getValueType(0) == MVT::v2i64 && NewOpcode != PPCISD::LD_SPLAT &&
9270            !Subtarget.isLittleEndian() && Subtarget.hasVSX() &&
9271            Subtarget.hasLFIWAX()))
9272         return SDValue();
9273 
9274       // case 2 - lxvr[hb]x
9275       // 2.1: load result is at most i16;
9276       // 2.2: build a vector with above loaded value;
9277       // 2.3: the vector has only one value at index 0, others are all undef;
9278       // 2.4: on LE target, so that lxvr[hb]x does not need any permute.
9279       if (NumUsesOfInputLD == 1 && Subtarget.isLittleEndian() &&
9280           Subtarget.isISA3_1() && ElementSize <= 16)
9281         return SDValue();
9282 
9283       assert(NumUsesOfInputLD > 0 && "No uses of input LD of a build_vector?");
9284       if (InputLoad->getNode()->hasNUsesOfValue(NumUsesOfInputLD, 0) &&
9285           Subtarget.hasVSX()) {
9286         SDValue Ops[] = {
9287           LD->getChain(),    // Chain
9288           LD->getBasePtr(),  // Ptr
9289           DAG.getValueType(Op.getValueType()) // VT
9290         };
9291         SDValue LdSplt = DAG.getMemIntrinsicNode(
9292             NewOpcode, dl, DAG.getVTList(Op.getValueType(), MVT::Other), Ops,
9293             LD->getMemoryVT(), LD->getMemOperand());
9294         // Replace all uses of the output chain of the original load with the
9295         // output chain of the new load.
9296         DAG.ReplaceAllUsesOfValueWith(InputLoad->getValue(1),
9297                                       LdSplt.getValue(1));
9298         return LdSplt;
9299       }
9300     }
9301 
9302     // In 64BIT mode BUILD_VECTOR nodes that are not constant splats of up to
9303     // 32-bits can be lowered to VSX instructions under certain conditions.
9304     // Without VSX, there is no pattern more efficient than expanding the node.
9305     if (Subtarget.hasVSX() && Subtarget.isPPC64() &&
9306         haveEfficientBuildVectorPattern(BVN, Subtarget.hasDirectMove(),
9307                                         Subtarget.hasP8Vector()))
9308       return Op;
9309     return SDValue();
9310   }
9311 
9312   uint64_t SplatBits = APSplatBits.getZExtValue();
9313   uint64_t SplatUndef = APSplatUndef.getZExtValue();
9314   unsigned SplatSize = SplatBitSize / 8;
9315 
9316   // First, handle single instruction cases.
9317 
9318   // All zeros?
9319   if (SplatBits == 0) {
9320     // Canonicalize all zero vectors to be v4i32.
9321     if (Op.getValueType() != MVT::v4i32 || HasAnyUndefs) {
9322       SDValue Z = DAG.getConstant(0, dl, MVT::v4i32);
9323       Op = DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Z);
9324     }
9325     return Op;
9326   }
9327 
9328   // We have XXSPLTIW for constant splats four bytes wide.
9329   // Given vector length is a multiple of 4, 2-byte splats can be replaced
9330   // with 4-byte splats. We replicate the SplatBits in case of 2-byte splat to
9331   // make a 4-byte splat element. For example: 2-byte splat of 0xABAB can be
9332   // turned into a 4-byte splat of 0xABABABAB.
9333   if (Subtarget.hasPrefixInstrs() && SplatSize == 2)
9334     return getCanonicalConstSplat(SplatBits | (SplatBits << 16), SplatSize * 2,
9335                                   Op.getValueType(), DAG, dl);
9336 
9337   if (Subtarget.hasPrefixInstrs() && SplatSize == 4)
9338     return getCanonicalConstSplat(SplatBits, SplatSize, Op.getValueType(), DAG,
9339                                   dl);
9340 
9341   // We have XXSPLTIB for constant splats one byte wide.
9342   if (Subtarget.hasP9Vector() && SplatSize == 1)
9343     return getCanonicalConstSplat(SplatBits, SplatSize, Op.getValueType(), DAG,
9344                                   dl);
9345 
9346   // If the sign extended value is in the range [-16,15], use VSPLTI[bhw].
9347   int32_t SextVal= (int32_t(SplatBits << (32-SplatBitSize)) >>
9348                     (32-SplatBitSize));
9349   if (SextVal >= -16 && SextVal <= 15)
9350     return getCanonicalConstSplat(SextVal, SplatSize, Op.getValueType(), DAG,
9351                                   dl);
9352 
9353   // Two instruction sequences.
9354 
9355   // If this value is in the range [-32,30] and is even, use:
9356   //     VSPLTI[bhw](val/2) + VSPLTI[bhw](val/2)
9357   // If this value is in the range [17,31] and is odd, use:
9358   //     VSPLTI[bhw](val-16) - VSPLTI[bhw](-16)
9359   // If this value is in the range [-31,-17] and is odd, use:
9360   //     VSPLTI[bhw](val+16) + VSPLTI[bhw](-16)
9361   // Note the last two are three-instruction sequences.
9362   if (SextVal >= -32 && SextVal <= 31) {
9363     // To avoid having these optimizations undone by constant folding,
9364     // we convert to a pseudo that will be expanded later into one of
9365     // the above forms.
9366     SDValue Elt = DAG.getConstant(SextVal, dl, MVT::i32);
9367     EVT VT = (SplatSize == 1 ? MVT::v16i8 :
9368               (SplatSize == 2 ? MVT::v8i16 : MVT::v4i32));
9369     SDValue EltSize = DAG.getConstant(SplatSize, dl, MVT::i32);
9370     SDValue RetVal = DAG.getNode(PPCISD::VADD_SPLAT, dl, VT, Elt, EltSize);
9371     if (VT == Op.getValueType())
9372       return RetVal;
9373     else
9374       return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), RetVal);
9375   }
9376 
9377   // If this is 0x8000_0000 x 4, turn into vspltisw + vslw.  If it is
9378   // 0x7FFF_FFFF x 4, turn it into not(0x8000_0000).  This is important
9379   // for fneg/fabs.
9380   if (SplatSize == 4 && SplatBits == (0x7FFFFFFF&~SplatUndef)) {
9381     // Make -1 and vspltisw -1:
9382     SDValue OnesV = getCanonicalConstSplat(-1, 4, MVT::v4i32, DAG, dl);
9383 
9384     // Make the VSLW intrinsic, computing 0x8000_0000.
9385     SDValue Res = BuildIntrinsicOp(Intrinsic::ppc_altivec_vslw, OnesV,
9386                                    OnesV, DAG, dl);
9387 
9388     // xor by OnesV to invert it.
9389     Res = DAG.getNode(ISD::XOR, dl, MVT::v4i32, Res, OnesV);
9390     return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res);
9391   }
9392 
9393   // Check to see if this is a wide variety of vsplti*, binop self cases.
9394   static const signed char SplatCsts[] = {
9395     -1, 1, -2, 2, -3, 3, -4, 4, -5, 5, -6, 6, -7, 7,
9396     -8, 8, -9, 9, -10, 10, -11, 11, -12, 12, -13, 13, 14, -14, 15, -15, -16
9397   };
9398 
9399   for (unsigned idx = 0; idx < array_lengthof(SplatCsts); ++idx) {
9400     // Indirect through the SplatCsts array so that we favor 'vsplti -1' for
9401     // cases which are ambiguous (e.g. formation of 0x8000_0000).  'vsplti -1'
9402     int i = SplatCsts[idx];
9403 
9404     // Figure out what shift amount will be used by altivec if shifted by i in
9405     // this splat size.
9406     unsigned TypeShiftAmt = i & (SplatBitSize-1);
9407 
9408     // vsplti + shl self.
9409     if (SextVal == (int)((unsigned)i << TypeShiftAmt)) {
9410       SDValue Res = getCanonicalConstSplat(i, SplatSize, MVT::Other, DAG, dl);
9411       static const unsigned IIDs[] = { // Intrinsic to use for each size.
9412         Intrinsic::ppc_altivec_vslb, Intrinsic::ppc_altivec_vslh, 0,
9413         Intrinsic::ppc_altivec_vslw
9414       };
9415       Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl);
9416       return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res);
9417     }
9418 
9419     // vsplti + srl self.
9420     if (SextVal == (int)((unsigned)i >> TypeShiftAmt)) {
9421       SDValue Res = getCanonicalConstSplat(i, SplatSize, MVT::Other, DAG, dl);
9422       static const unsigned IIDs[] = { // Intrinsic to use for each size.
9423         Intrinsic::ppc_altivec_vsrb, Intrinsic::ppc_altivec_vsrh, 0,
9424         Intrinsic::ppc_altivec_vsrw
9425       };
9426       Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl);
9427       return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res);
9428     }
9429 
9430     // vsplti + rol self.
9431     if (SextVal == (int)(((unsigned)i << TypeShiftAmt) |
9432                          ((unsigned)i >> (SplatBitSize-TypeShiftAmt)))) {
9433       SDValue Res = getCanonicalConstSplat(i, SplatSize, MVT::Other, DAG, dl);
9434       static const unsigned IIDs[] = { // Intrinsic to use for each size.
9435         Intrinsic::ppc_altivec_vrlb, Intrinsic::ppc_altivec_vrlh, 0,
9436         Intrinsic::ppc_altivec_vrlw
9437       };
9438       Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl);
9439       return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res);
9440     }
9441 
9442     // t = vsplti c, result = vsldoi t, t, 1
9443     if (SextVal == (int)(((unsigned)i << 8) | (i < 0 ? 0xFF : 0))) {
9444       SDValue T = getCanonicalConstSplat(i, SplatSize, MVT::v16i8, DAG, dl);
9445       unsigned Amt = Subtarget.isLittleEndian() ? 15 : 1;
9446       return BuildVSLDOI(T, T, Amt, Op.getValueType(), DAG, dl);
9447     }
9448     // t = vsplti c, result = vsldoi t, t, 2
9449     if (SextVal == (int)(((unsigned)i << 16) | (i < 0 ? 0xFFFF : 0))) {
9450       SDValue T = getCanonicalConstSplat(i, SplatSize, MVT::v16i8, DAG, dl);
9451       unsigned Amt = Subtarget.isLittleEndian() ? 14 : 2;
9452       return BuildVSLDOI(T, T, Amt, Op.getValueType(), DAG, dl);
9453     }
9454     // t = vsplti c, result = vsldoi t, t, 3
9455     if (SextVal == (int)(((unsigned)i << 24) | (i < 0 ? 0xFFFFFF : 0))) {
9456       SDValue T = getCanonicalConstSplat(i, SplatSize, MVT::v16i8, DAG, dl);
9457       unsigned Amt = Subtarget.isLittleEndian() ? 13 : 3;
9458       return BuildVSLDOI(T, T, Amt, Op.getValueType(), DAG, dl);
9459     }
9460   }
9461 
9462   return SDValue();
9463 }
9464 
9465 /// GeneratePerfectShuffle - Given an entry in the perfect-shuffle table, emit
9466 /// the specified operations to build the shuffle.
9467 static SDValue GeneratePerfectShuffle(unsigned PFEntry, SDValue LHS,
9468                                       SDValue RHS, SelectionDAG &DAG,
9469                                       const SDLoc &dl) {
9470   unsigned OpNum = (PFEntry >> 26) & 0x0F;
9471   unsigned LHSID = (PFEntry >> 13) & ((1 << 13)-1);
9472   unsigned RHSID = (PFEntry >>  0) & ((1 << 13)-1);
9473 
9474   enum {
9475     OP_COPY = 0,  // Copy, used for things like <u,u,u,3> to say it is <0,1,2,3>
9476     OP_VMRGHW,
9477     OP_VMRGLW,
9478     OP_VSPLTISW0,
9479     OP_VSPLTISW1,
9480     OP_VSPLTISW2,
9481     OP_VSPLTISW3,
9482     OP_VSLDOI4,
9483     OP_VSLDOI8,
9484     OP_VSLDOI12
9485   };
9486 
9487   if (OpNum == OP_COPY) {
9488     if (LHSID == (1*9+2)*9+3) return LHS;
9489     assert(LHSID == ((4*9+5)*9+6)*9+7 && "Illegal OP_COPY!");
9490     return RHS;
9491   }
9492 
9493   SDValue OpLHS, OpRHS;
9494   OpLHS = GeneratePerfectShuffle(PerfectShuffleTable[LHSID], LHS, RHS, DAG, dl);
9495   OpRHS = GeneratePerfectShuffle(PerfectShuffleTable[RHSID], LHS, RHS, DAG, dl);
9496 
9497   int ShufIdxs[16];
9498   switch (OpNum) {
9499   default: llvm_unreachable("Unknown i32 permute!");
9500   case OP_VMRGHW:
9501     ShufIdxs[ 0] =  0; ShufIdxs[ 1] =  1; ShufIdxs[ 2] =  2; ShufIdxs[ 3] =  3;
9502     ShufIdxs[ 4] = 16; ShufIdxs[ 5] = 17; ShufIdxs[ 6] = 18; ShufIdxs[ 7] = 19;
9503     ShufIdxs[ 8] =  4; ShufIdxs[ 9] =  5; ShufIdxs[10] =  6; ShufIdxs[11] =  7;
9504     ShufIdxs[12] = 20; ShufIdxs[13] = 21; ShufIdxs[14] = 22; ShufIdxs[15] = 23;
9505     break;
9506   case OP_VMRGLW:
9507     ShufIdxs[ 0] =  8; ShufIdxs[ 1] =  9; ShufIdxs[ 2] = 10; ShufIdxs[ 3] = 11;
9508     ShufIdxs[ 4] = 24; ShufIdxs[ 5] = 25; ShufIdxs[ 6] = 26; ShufIdxs[ 7] = 27;
9509     ShufIdxs[ 8] = 12; ShufIdxs[ 9] = 13; ShufIdxs[10] = 14; ShufIdxs[11] = 15;
9510     ShufIdxs[12] = 28; ShufIdxs[13] = 29; ShufIdxs[14] = 30; ShufIdxs[15] = 31;
9511     break;
9512   case OP_VSPLTISW0:
9513     for (unsigned i = 0; i != 16; ++i)
9514       ShufIdxs[i] = (i&3)+0;
9515     break;
9516   case OP_VSPLTISW1:
9517     for (unsigned i = 0; i != 16; ++i)
9518       ShufIdxs[i] = (i&3)+4;
9519     break;
9520   case OP_VSPLTISW2:
9521     for (unsigned i = 0; i != 16; ++i)
9522       ShufIdxs[i] = (i&3)+8;
9523     break;
9524   case OP_VSPLTISW3:
9525     for (unsigned i = 0; i != 16; ++i)
9526       ShufIdxs[i] = (i&3)+12;
9527     break;
9528   case OP_VSLDOI4:
9529     return BuildVSLDOI(OpLHS, OpRHS, 4, OpLHS.getValueType(), DAG, dl);
9530   case OP_VSLDOI8:
9531     return BuildVSLDOI(OpLHS, OpRHS, 8, OpLHS.getValueType(), DAG, dl);
9532   case OP_VSLDOI12:
9533     return BuildVSLDOI(OpLHS, OpRHS, 12, OpLHS.getValueType(), DAG, dl);
9534   }
9535   EVT VT = OpLHS.getValueType();
9536   OpLHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OpLHS);
9537   OpRHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OpRHS);
9538   SDValue T = DAG.getVectorShuffle(MVT::v16i8, dl, OpLHS, OpRHS, ShufIdxs);
9539   return DAG.getNode(ISD::BITCAST, dl, VT, T);
9540 }
9541 
9542 /// lowerToVINSERTB - Return the SDValue if this VECTOR_SHUFFLE can be handled
9543 /// by the VINSERTB instruction introduced in ISA 3.0, else just return default
9544 /// SDValue.
9545 SDValue PPCTargetLowering::lowerToVINSERTB(ShuffleVectorSDNode *N,
9546                                            SelectionDAG &DAG) const {
9547   const unsigned BytesInVector = 16;
9548   bool IsLE = Subtarget.isLittleEndian();
9549   SDLoc dl(N);
9550   SDValue V1 = N->getOperand(0);
9551   SDValue V2 = N->getOperand(1);
9552   unsigned ShiftElts = 0, InsertAtByte = 0;
9553   bool Swap = false;
9554 
9555   // Shifts required to get the byte we want at element 7.
9556   unsigned LittleEndianShifts[] = {8, 7,  6,  5,  4,  3,  2,  1,
9557                                    0, 15, 14, 13, 12, 11, 10, 9};
9558   unsigned BigEndianShifts[] = {9, 10, 11, 12, 13, 14, 15, 0,
9559                                 1, 2,  3,  4,  5,  6,  7,  8};
9560 
9561   ArrayRef<int> Mask = N->getMask();
9562   int OriginalOrder[] = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15};
9563 
9564   // For each mask element, find out if we're just inserting something
9565   // from V2 into V1 or vice versa.
9566   // Possible permutations inserting an element from V2 into V1:
9567   //   X, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15
9568   //   0, X, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15
9569   //   ...
9570   //   0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, X
9571   // Inserting from V1 into V2 will be similar, except mask range will be
9572   // [16,31].
9573 
9574   bool FoundCandidate = false;
9575   // If both vector operands for the shuffle are the same vector, the mask
9576   // will contain only elements from the first one and the second one will be
9577   // undef.
9578   unsigned VINSERTBSrcElem = IsLE ? 8 : 7;
9579   // Go through the mask of half-words to find an element that's being moved
9580   // from one vector to the other.
9581   for (unsigned i = 0; i < BytesInVector; ++i) {
9582     unsigned CurrentElement = Mask[i];
9583     // If 2nd operand is undefined, we should only look for element 7 in the
9584     // Mask.
9585     if (V2.isUndef() && CurrentElement != VINSERTBSrcElem)
9586       continue;
9587 
9588     bool OtherElementsInOrder = true;
9589     // Examine the other elements in the Mask to see if they're in original
9590     // order.
9591     for (unsigned j = 0; j < BytesInVector; ++j) {
9592       if (j == i)
9593         continue;
9594       // If CurrentElement is from V1 [0,15], then we the rest of the Mask to be
9595       // from V2 [16,31] and vice versa.  Unless the 2nd operand is undefined,
9596       // in which we always assume we're always picking from the 1st operand.
9597       int MaskOffset =
9598           (!V2.isUndef() && CurrentElement < BytesInVector) ? BytesInVector : 0;
9599       if (Mask[j] != OriginalOrder[j] + MaskOffset) {
9600         OtherElementsInOrder = false;
9601         break;
9602       }
9603     }
9604     // If other elements are in original order, we record the number of shifts
9605     // we need to get the element we want into element 7. Also record which byte
9606     // in the vector we should insert into.
9607     if (OtherElementsInOrder) {
9608       // If 2nd operand is undefined, we assume no shifts and no swapping.
9609       if (V2.isUndef()) {
9610         ShiftElts = 0;
9611         Swap = false;
9612       } else {
9613         // Only need the last 4-bits for shifts because operands will be swapped if CurrentElement is >= 2^4.
9614         ShiftElts = IsLE ? LittleEndianShifts[CurrentElement & 0xF]
9615                          : BigEndianShifts[CurrentElement & 0xF];
9616         Swap = CurrentElement < BytesInVector;
9617       }
9618       InsertAtByte = IsLE ? BytesInVector - (i + 1) : i;
9619       FoundCandidate = true;
9620       break;
9621     }
9622   }
9623 
9624   if (!FoundCandidate)
9625     return SDValue();
9626 
9627   // Candidate found, construct the proper SDAG sequence with VINSERTB,
9628   // optionally with VECSHL if shift is required.
9629   if (Swap)
9630     std::swap(V1, V2);
9631   if (V2.isUndef())
9632     V2 = V1;
9633   if (ShiftElts) {
9634     SDValue Shl = DAG.getNode(PPCISD::VECSHL, dl, MVT::v16i8, V2, V2,
9635                               DAG.getConstant(ShiftElts, dl, MVT::i32));
9636     return DAG.getNode(PPCISD::VECINSERT, dl, MVT::v16i8, V1, Shl,
9637                        DAG.getConstant(InsertAtByte, dl, MVT::i32));
9638   }
9639   return DAG.getNode(PPCISD::VECINSERT, dl, MVT::v16i8, V1, V2,
9640                      DAG.getConstant(InsertAtByte, dl, MVT::i32));
9641 }
9642 
9643 /// lowerToVINSERTH - Return the SDValue if this VECTOR_SHUFFLE can be handled
9644 /// by the VINSERTH instruction introduced in ISA 3.0, else just return default
9645 /// SDValue.
9646 SDValue PPCTargetLowering::lowerToVINSERTH(ShuffleVectorSDNode *N,
9647                                            SelectionDAG &DAG) const {
9648   const unsigned NumHalfWords = 8;
9649   const unsigned BytesInVector = NumHalfWords * 2;
9650   // Check that the shuffle is on half-words.
9651   if (!isNByteElemShuffleMask(N, 2, 1))
9652     return SDValue();
9653 
9654   bool IsLE = Subtarget.isLittleEndian();
9655   SDLoc dl(N);
9656   SDValue V1 = N->getOperand(0);
9657   SDValue V2 = N->getOperand(1);
9658   unsigned ShiftElts = 0, InsertAtByte = 0;
9659   bool Swap = false;
9660 
9661   // Shifts required to get the half-word we want at element 3.
9662   unsigned LittleEndianShifts[] = {4, 3, 2, 1, 0, 7, 6, 5};
9663   unsigned BigEndianShifts[] = {5, 6, 7, 0, 1, 2, 3, 4};
9664 
9665   uint32_t Mask = 0;
9666   uint32_t OriginalOrderLow = 0x1234567;
9667   uint32_t OriginalOrderHigh = 0x89ABCDEF;
9668   // Now we look at mask elements 0,2,4,6,8,10,12,14.  Pack the mask into a
9669   // 32-bit space, only need 4-bit nibbles per element.
9670   for (unsigned i = 0; i < NumHalfWords; ++i) {
9671     unsigned MaskShift = (NumHalfWords - 1 - i) * 4;
9672     Mask |= ((uint32_t)(N->getMaskElt(i * 2) / 2) << MaskShift);
9673   }
9674 
9675   // For each mask element, find out if we're just inserting something
9676   // from V2 into V1 or vice versa.  Possible permutations inserting an element
9677   // from V2 into V1:
9678   //   X, 1, 2, 3, 4, 5, 6, 7
9679   //   0, X, 2, 3, 4, 5, 6, 7
9680   //   0, 1, X, 3, 4, 5, 6, 7
9681   //   0, 1, 2, X, 4, 5, 6, 7
9682   //   0, 1, 2, 3, X, 5, 6, 7
9683   //   0, 1, 2, 3, 4, X, 6, 7
9684   //   0, 1, 2, 3, 4, 5, X, 7
9685   //   0, 1, 2, 3, 4, 5, 6, X
9686   // Inserting from V1 into V2 will be similar, except mask range will be [8,15].
9687 
9688   bool FoundCandidate = false;
9689   // Go through the mask of half-words to find an element that's being moved
9690   // from one vector to the other.
9691   for (unsigned i = 0; i < NumHalfWords; ++i) {
9692     unsigned MaskShift = (NumHalfWords - 1 - i) * 4;
9693     uint32_t MaskOneElt = (Mask >> MaskShift) & 0xF;
9694     uint32_t MaskOtherElts = ~(0xF << MaskShift);
9695     uint32_t TargetOrder = 0x0;
9696 
9697     // If both vector operands for the shuffle are the same vector, the mask
9698     // will contain only elements from the first one and the second one will be
9699     // undef.
9700     if (V2.isUndef()) {
9701       ShiftElts = 0;
9702       unsigned VINSERTHSrcElem = IsLE ? 4 : 3;
9703       TargetOrder = OriginalOrderLow;
9704       Swap = false;
9705       // Skip if not the correct element or mask of other elements don't equal
9706       // to our expected order.
9707       if (MaskOneElt == VINSERTHSrcElem &&
9708           (Mask & MaskOtherElts) == (TargetOrder & MaskOtherElts)) {
9709         InsertAtByte = IsLE ? BytesInVector - (i + 1) * 2 : i * 2;
9710         FoundCandidate = true;
9711         break;
9712       }
9713     } else { // If both operands are defined.
9714       // Target order is [8,15] if the current mask is between [0,7].
9715       TargetOrder =
9716           (MaskOneElt < NumHalfWords) ? OriginalOrderHigh : OriginalOrderLow;
9717       // Skip if mask of other elements don't equal our expected order.
9718       if ((Mask & MaskOtherElts) == (TargetOrder & MaskOtherElts)) {
9719         // We only need the last 3 bits for the number of shifts.
9720         ShiftElts = IsLE ? LittleEndianShifts[MaskOneElt & 0x7]
9721                          : BigEndianShifts[MaskOneElt & 0x7];
9722         InsertAtByte = IsLE ? BytesInVector - (i + 1) * 2 : i * 2;
9723         Swap = MaskOneElt < NumHalfWords;
9724         FoundCandidate = true;
9725         break;
9726       }
9727     }
9728   }
9729 
9730   if (!FoundCandidate)
9731     return SDValue();
9732 
9733   // Candidate found, construct the proper SDAG sequence with VINSERTH,
9734   // optionally with VECSHL if shift is required.
9735   if (Swap)
9736     std::swap(V1, V2);
9737   if (V2.isUndef())
9738     V2 = V1;
9739   SDValue Conv1 = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V1);
9740   if (ShiftElts) {
9741     // Double ShiftElts because we're left shifting on v16i8 type.
9742     SDValue Shl = DAG.getNode(PPCISD::VECSHL, dl, MVT::v16i8, V2, V2,
9743                               DAG.getConstant(2 * ShiftElts, dl, MVT::i32));
9744     SDValue Conv2 = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, Shl);
9745     SDValue Ins = DAG.getNode(PPCISD::VECINSERT, dl, MVT::v8i16, Conv1, Conv2,
9746                               DAG.getConstant(InsertAtByte, dl, MVT::i32));
9747     return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Ins);
9748   }
9749   SDValue Conv2 = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V2);
9750   SDValue Ins = DAG.getNode(PPCISD::VECINSERT, dl, MVT::v8i16, Conv1, Conv2,
9751                             DAG.getConstant(InsertAtByte, dl, MVT::i32));
9752   return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Ins);
9753 }
9754 
9755 /// lowerToXXSPLTI32DX - Return the SDValue if this VECTOR_SHUFFLE can be
9756 /// handled by the XXSPLTI32DX instruction introduced in ISA 3.1, otherwise
9757 /// return the default SDValue.
9758 SDValue PPCTargetLowering::lowerToXXSPLTI32DX(ShuffleVectorSDNode *SVN,
9759                                               SelectionDAG &DAG) const {
9760   // The LHS and RHS may be bitcasts to v16i8 as we canonicalize shuffles
9761   // to v16i8. Peek through the bitcasts to get the actual operands.
9762   SDValue LHS = peekThroughBitcasts(SVN->getOperand(0));
9763   SDValue RHS = peekThroughBitcasts(SVN->getOperand(1));
9764 
9765   auto ShuffleMask = SVN->getMask();
9766   SDValue VecShuffle(SVN, 0);
9767   SDLoc DL(SVN);
9768 
9769   // Check that we have a four byte shuffle.
9770   if (!isNByteElemShuffleMask(SVN, 4, 1))
9771     return SDValue();
9772 
9773   // Canonicalize the RHS being a BUILD_VECTOR when lowering to xxsplti32dx.
9774   if (RHS->getOpcode() != ISD::BUILD_VECTOR) {
9775     std::swap(LHS, RHS);
9776     VecShuffle = DAG.getCommutedVectorShuffle(*SVN);
9777     ShuffleMask = cast<ShuffleVectorSDNode>(VecShuffle)->getMask();
9778   }
9779 
9780   // Ensure that the RHS is a vector of constants.
9781   BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(RHS.getNode());
9782   if (!BVN)
9783     return SDValue();
9784 
9785   // Check if RHS is a splat of 4-bytes (or smaller).
9786   APInt APSplatValue, APSplatUndef;
9787   unsigned SplatBitSize;
9788   bool HasAnyUndefs;
9789   if (!BVN->isConstantSplat(APSplatValue, APSplatUndef, SplatBitSize,
9790                             HasAnyUndefs, 0, !Subtarget.isLittleEndian()) ||
9791       SplatBitSize > 32)
9792     return SDValue();
9793 
9794   // Check that the shuffle mask matches the semantics of XXSPLTI32DX.
9795   // The instruction splats a constant C into two words of the source vector
9796   // producing { C, Unchanged, C, Unchanged } or { Unchanged, C, Unchanged, C }.
9797   // Thus we check that the shuffle mask is the equivalent  of
9798   // <0, [4-7], 2, [4-7]> or <[4-7], 1, [4-7], 3> respectively.
9799   // Note: the check above of isNByteElemShuffleMask() ensures that the bytes
9800   // within each word are consecutive, so we only need to check the first byte.
9801   SDValue Index;
9802   bool IsLE = Subtarget.isLittleEndian();
9803   if ((ShuffleMask[0] == 0 && ShuffleMask[8] == 8) &&
9804       (ShuffleMask[4] % 4 == 0 && ShuffleMask[12] % 4 == 0 &&
9805        ShuffleMask[4] > 15 && ShuffleMask[12] > 15))
9806     Index = DAG.getTargetConstant(IsLE ? 0 : 1, DL, MVT::i32);
9807   else if ((ShuffleMask[4] == 4 && ShuffleMask[12] == 12) &&
9808            (ShuffleMask[0] % 4 == 0 && ShuffleMask[8] % 4 == 0 &&
9809             ShuffleMask[0] > 15 && ShuffleMask[8] > 15))
9810     Index = DAG.getTargetConstant(IsLE ? 1 : 0, DL, MVT::i32);
9811   else
9812     return SDValue();
9813 
9814   // If the splat is narrower than 32-bits, we need to get the 32-bit value
9815   // for XXSPLTI32DX.
9816   unsigned SplatVal = APSplatValue.getZExtValue();
9817   for (; SplatBitSize < 32; SplatBitSize <<= 1)
9818     SplatVal |= (SplatVal << SplatBitSize);
9819 
9820   SDValue SplatNode = DAG.getNode(
9821       PPCISD::XXSPLTI32DX, DL, MVT::v2i64, DAG.getBitcast(MVT::v2i64, LHS),
9822       Index, DAG.getTargetConstant(SplatVal, DL, MVT::i32));
9823   return DAG.getNode(ISD::BITCAST, DL, MVT::v16i8, SplatNode);
9824 }
9825 
9826 /// LowerROTL - Custom lowering for ROTL(v1i128) to vector_shuffle(v16i8).
9827 /// We lower ROTL(v1i128) to vector_shuffle(v16i8) only if shift amount is
9828 /// a multiple of 8. Otherwise convert it to a scalar rotation(i128)
9829 /// i.e (or (shl x, C1), (srl x, 128-C1)).
9830 SDValue PPCTargetLowering::LowerROTL(SDValue Op, SelectionDAG &DAG) const {
9831   assert(Op.getOpcode() == ISD::ROTL && "Should only be called for ISD::ROTL");
9832   assert(Op.getValueType() == MVT::v1i128 &&
9833          "Only set v1i128 as custom, other type shouldn't reach here!");
9834   SDLoc dl(Op);
9835   SDValue N0 = peekThroughBitcasts(Op.getOperand(0));
9836   SDValue N1 = peekThroughBitcasts(Op.getOperand(1));
9837   unsigned SHLAmt = N1.getConstantOperandVal(0);
9838   if (SHLAmt % 8 == 0) {
9839     std::array<int, 16> Mask;
9840     std::iota(Mask.begin(), Mask.end(), 0);
9841     std::rotate(Mask.begin(), Mask.begin() + SHLAmt / 8, Mask.end());
9842     if (SDValue Shuffle =
9843             DAG.getVectorShuffle(MVT::v16i8, dl, DAG.getBitcast(MVT::v16i8, N0),
9844                                  DAG.getUNDEF(MVT::v16i8), Mask))
9845       return DAG.getNode(ISD::BITCAST, dl, MVT::v1i128, Shuffle);
9846   }
9847   SDValue ArgVal = DAG.getBitcast(MVT::i128, N0);
9848   SDValue SHLOp = DAG.getNode(ISD::SHL, dl, MVT::i128, ArgVal,
9849                               DAG.getConstant(SHLAmt, dl, MVT::i32));
9850   SDValue SRLOp = DAG.getNode(ISD::SRL, dl, MVT::i128, ArgVal,
9851                               DAG.getConstant(128 - SHLAmt, dl, MVT::i32));
9852   SDValue OROp = DAG.getNode(ISD::OR, dl, MVT::i128, SHLOp, SRLOp);
9853   return DAG.getNode(ISD::BITCAST, dl, MVT::v1i128, OROp);
9854 }
9855 
9856 /// LowerVECTOR_SHUFFLE - Return the code we lower for VECTOR_SHUFFLE.  If this
9857 /// is a shuffle we can handle in a single instruction, return it.  Otherwise,
9858 /// return the code it can be lowered into.  Worst case, it can always be
9859 /// lowered into a vperm.
9860 SDValue PPCTargetLowering::LowerVECTOR_SHUFFLE(SDValue Op,
9861                                                SelectionDAG &DAG) const {
9862   SDLoc dl(Op);
9863   SDValue V1 = Op.getOperand(0);
9864   SDValue V2 = Op.getOperand(1);
9865   ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
9866 
9867   // Any nodes that were combined in the target-independent combiner prior
9868   // to vector legalization will not be sent to the target combine. Try to
9869   // combine it here.
9870   if (SDValue NewShuffle = combineVectorShuffle(SVOp, DAG)) {
9871     if (!isa<ShuffleVectorSDNode>(NewShuffle))
9872       return NewShuffle;
9873     Op = NewShuffle;
9874     SVOp = cast<ShuffleVectorSDNode>(Op);
9875     V1 = Op.getOperand(0);
9876     V2 = Op.getOperand(1);
9877   }
9878   EVT VT = Op.getValueType();
9879   bool isLittleEndian = Subtarget.isLittleEndian();
9880 
9881   unsigned ShiftElts, InsertAtByte;
9882   bool Swap = false;
9883 
9884   // If this is a load-and-splat, we can do that with a single instruction
9885   // in some cases. However if the load has multiple uses, we don't want to
9886   // combine it because that will just produce multiple loads.
9887   bool IsPermutedLoad = false;
9888   const SDValue *InputLoad = getNormalLoadInput(V1, IsPermutedLoad);
9889   if (InputLoad && Subtarget.hasVSX() && V2.isUndef() &&
9890       (PPC::isSplatShuffleMask(SVOp, 4) || PPC::isSplatShuffleMask(SVOp, 8)) &&
9891       InputLoad->hasOneUse()) {
9892     bool IsFourByte = PPC::isSplatShuffleMask(SVOp, 4);
9893     int SplatIdx =
9894       PPC::getSplatIdxForPPCMnemonics(SVOp, IsFourByte ? 4 : 8, DAG);
9895 
9896     // The splat index for permuted loads will be in the left half of the vector
9897     // which is strictly wider than the loaded value by 8 bytes. So we need to
9898     // adjust the splat index to point to the correct address in memory.
9899     if (IsPermutedLoad) {
9900       assert((isLittleEndian || IsFourByte) &&
9901              "Unexpected size for permuted load on big endian target");
9902       SplatIdx += IsFourByte ? 2 : 1;
9903       assert((SplatIdx < (IsFourByte ? 4 : 2)) &&
9904              "Splat of a value outside of the loaded memory");
9905     }
9906 
9907     LoadSDNode *LD = cast<LoadSDNode>(*InputLoad);
9908     // For 4-byte load-and-splat, we need Power9.
9909     if ((IsFourByte && Subtarget.hasP9Vector()) || !IsFourByte) {
9910       uint64_t Offset = 0;
9911       if (IsFourByte)
9912         Offset = isLittleEndian ? (3 - SplatIdx) * 4 : SplatIdx * 4;
9913       else
9914         Offset = isLittleEndian ? (1 - SplatIdx) * 8 : SplatIdx * 8;
9915 
9916       // If the width of the load is the same as the width of the splat,
9917       // loading with an offset would load the wrong memory.
9918       if (LD->getValueType(0).getSizeInBits() == (IsFourByte ? 32 : 64))
9919         Offset = 0;
9920 
9921       SDValue BasePtr = LD->getBasePtr();
9922       if (Offset != 0)
9923         BasePtr = DAG.getNode(ISD::ADD, dl, getPointerTy(DAG.getDataLayout()),
9924                               BasePtr, DAG.getIntPtrConstant(Offset, dl));
9925       SDValue Ops[] = {
9926         LD->getChain(),    // Chain
9927         BasePtr,           // BasePtr
9928         DAG.getValueType(Op.getValueType()) // VT
9929       };
9930       SDVTList VTL =
9931         DAG.getVTList(IsFourByte ? MVT::v4i32 : MVT::v2i64, MVT::Other);
9932       SDValue LdSplt =
9933         DAG.getMemIntrinsicNode(PPCISD::LD_SPLAT, dl, VTL,
9934                                 Ops, LD->getMemoryVT(), LD->getMemOperand());
9935       DAG.ReplaceAllUsesOfValueWith(InputLoad->getValue(1), LdSplt.getValue(1));
9936       if (LdSplt.getValueType() != SVOp->getValueType(0))
9937         LdSplt = DAG.getBitcast(SVOp->getValueType(0), LdSplt);
9938       return LdSplt;
9939     }
9940   }
9941 
9942   // All v2i64 and v2f64 shuffles are legal
9943   if (VT == MVT::v2i64 || VT == MVT::v2f64)
9944     return Op;
9945 
9946   if (Subtarget.hasP9Vector() &&
9947       PPC::isXXINSERTWMask(SVOp, ShiftElts, InsertAtByte, Swap,
9948                            isLittleEndian)) {
9949     if (Swap)
9950       std::swap(V1, V2);
9951     SDValue Conv1 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V1);
9952     SDValue Conv2 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V2);
9953     if (ShiftElts) {
9954       SDValue Shl = DAG.getNode(PPCISD::VECSHL, dl, MVT::v4i32, Conv2, Conv2,
9955                                 DAG.getConstant(ShiftElts, dl, MVT::i32));
9956       SDValue Ins = DAG.getNode(PPCISD::VECINSERT, dl, MVT::v4i32, Conv1, Shl,
9957                                 DAG.getConstant(InsertAtByte, dl, MVT::i32));
9958       return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Ins);
9959     }
9960     SDValue Ins = DAG.getNode(PPCISD::VECINSERT, dl, MVT::v4i32, Conv1, Conv2,
9961                               DAG.getConstant(InsertAtByte, dl, MVT::i32));
9962     return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Ins);
9963   }
9964 
9965   if (Subtarget.hasPrefixInstrs()) {
9966     SDValue SplatInsertNode;
9967     if ((SplatInsertNode = lowerToXXSPLTI32DX(SVOp, DAG)))
9968       return SplatInsertNode;
9969   }
9970 
9971   if (Subtarget.hasP9Altivec()) {
9972     SDValue NewISDNode;
9973     if ((NewISDNode = lowerToVINSERTH(SVOp, DAG)))
9974       return NewISDNode;
9975 
9976     if ((NewISDNode = lowerToVINSERTB(SVOp, DAG)))
9977       return NewISDNode;
9978   }
9979 
9980   if (Subtarget.hasVSX() &&
9981       PPC::isXXSLDWIShuffleMask(SVOp, ShiftElts, Swap, isLittleEndian)) {
9982     if (Swap)
9983       std::swap(V1, V2);
9984     SDValue Conv1 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V1);
9985     SDValue Conv2 =
9986         DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V2.isUndef() ? V1 : V2);
9987 
9988     SDValue Shl = DAG.getNode(PPCISD::VECSHL, dl, MVT::v4i32, Conv1, Conv2,
9989                               DAG.getConstant(ShiftElts, dl, MVT::i32));
9990     return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Shl);
9991   }
9992 
9993   if (Subtarget.hasVSX() &&
9994     PPC::isXXPERMDIShuffleMask(SVOp, ShiftElts, Swap, isLittleEndian)) {
9995     if (Swap)
9996       std::swap(V1, V2);
9997     SDValue Conv1 = DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, V1);
9998     SDValue Conv2 =
9999         DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, V2.isUndef() ? V1 : V2);
10000 
10001     SDValue PermDI = DAG.getNode(PPCISD::XXPERMDI, dl, MVT::v2i64, Conv1, Conv2,
10002                               DAG.getConstant(ShiftElts, dl, MVT::i32));
10003     return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, PermDI);
10004   }
10005 
10006   if (Subtarget.hasP9Vector()) {
10007      if (PPC::isXXBRHShuffleMask(SVOp)) {
10008       SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V1);
10009       SDValue ReveHWord = DAG.getNode(ISD::BSWAP, dl, MVT::v8i16, Conv);
10010       return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, ReveHWord);
10011     } else if (PPC::isXXBRWShuffleMask(SVOp)) {
10012       SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V1);
10013       SDValue ReveWord = DAG.getNode(ISD::BSWAP, dl, MVT::v4i32, Conv);
10014       return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, ReveWord);
10015     } else if (PPC::isXXBRDShuffleMask(SVOp)) {
10016       SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, V1);
10017       SDValue ReveDWord = DAG.getNode(ISD::BSWAP, dl, MVT::v2i64, Conv);
10018       return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, ReveDWord);
10019     } else if (PPC::isXXBRQShuffleMask(SVOp)) {
10020       SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v1i128, V1);
10021       SDValue ReveQWord = DAG.getNode(ISD::BSWAP, dl, MVT::v1i128, Conv);
10022       return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, ReveQWord);
10023     }
10024   }
10025 
10026   if (Subtarget.hasVSX()) {
10027     if (V2.isUndef() && PPC::isSplatShuffleMask(SVOp, 4)) {
10028       int SplatIdx = PPC::getSplatIdxForPPCMnemonics(SVOp, 4, DAG);
10029 
10030       SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V1);
10031       SDValue Splat = DAG.getNode(PPCISD::XXSPLT, dl, MVT::v4i32, Conv,
10032                                   DAG.getConstant(SplatIdx, dl, MVT::i32));
10033       return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Splat);
10034     }
10035 
10036     // Left shifts of 8 bytes are actually swaps. Convert accordingly.
10037     if (V2.isUndef() && PPC::isVSLDOIShuffleMask(SVOp, 1, DAG) == 8) {
10038       SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, V1);
10039       SDValue Swap = DAG.getNode(PPCISD::SWAP_NO_CHAIN, dl, MVT::v2f64, Conv);
10040       return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Swap);
10041     }
10042   }
10043 
10044   // Cases that are handled by instructions that take permute immediates
10045   // (such as vsplt*) should be left as VECTOR_SHUFFLE nodes so they can be
10046   // selected by the instruction selector.
10047   if (V2.isUndef()) {
10048     if (PPC::isSplatShuffleMask(SVOp, 1) ||
10049         PPC::isSplatShuffleMask(SVOp, 2) ||
10050         PPC::isSplatShuffleMask(SVOp, 4) ||
10051         PPC::isVPKUWUMShuffleMask(SVOp, 1, DAG) ||
10052         PPC::isVPKUHUMShuffleMask(SVOp, 1, DAG) ||
10053         PPC::isVSLDOIShuffleMask(SVOp, 1, DAG) != -1 ||
10054         PPC::isVMRGLShuffleMask(SVOp, 1, 1, DAG) ||
10055         PPC::isVMRGLShuffleMask(SVOp, 2, 1, DAG) ||
10056         PPC::isVMRGLShuffleMask(SVOp, 4, 1, DAG) ||
10057         PPC::isVMRGHShuffleMask(SVOp, 1, 1, DAG) ||
10058         PPC::isVMRGHShuffleMask(SVOp, 2, 1, DAG) ||
10059         PPC::isVMRGHShuffleMask(SVOp, 4, 1, DAG) ||
10060         (Subtarget.hasP8Altivec() && (
10061          PPC::isVPKUDUMShuffleMask(SVOp, 1, DAG) ||
10062          PPC::isVMRGEOShuffleMask(SVOp, true, 1, DAG) ||
10063          PPC::isVMRGEOShuffleMask(SVOp, false, 1, DAG)))) {
10064       return Op;
10065     }
10066   }
10067 
10068   // Altivec has a variety of "shuffle immediates" that take two vector inputs
10069   // and produce a fixed permutation.  If any of these match, do not lower to
10070   // VPERM.
10071   unsigned int ShuffleKind = isLittleEndian ? 2 : 0;
10072   if (PPC::isVPKUWUMShuffleMask(SVOp, ShuffleKind, DAG) ||
10073       PPC::isVPKUHUMShuffleMask(SVOp, ShuffleKind, DAG) ||
10074       PPC::isVSLDOIShuffleMask(SVOp, ShuffleKind, DAG) != -1 ||
10075       PPC::isVMRGLShuffleMask(SVOp, 1, ShuffleKind, DAG) ||
10076       PPC::isVMRGLShuffleMask(SVOp, 2, ShuffleKind, DAG) ||
10077       PPC::isVMRGLShuffleMask(SVOp, 4, ShuffleKind, DAG) ||
10078       PPC::isVMRGHShuffleMask(SVOp, 1, ShuffleKind, DAG) ||
10079       PPC::isVMRGHShuffleMask(SVOp, 2, ShuffleKind, DAG) ||
10080       PPC::isVMRGHShuffleMask(SVOp, 4, ShuffleKind, DAG) ||
10081       (Subtarget.hasP8Altivec() && (
10082        PPC::isVPKUDUMShuffleMask(SVOp, ShuffleKind, DAG) ||
10083        PPC::isVMRGEOShuffleMask(SVOp, true, ShuffleKind, DAG) ||
10084        PPC::isVMRGEOShuffleMask(SVOp, false, ShuffleKind, DAG))))
10085     return Op;
10086 
10087   // Check to see if this is a shuffle of 4-byte values.  If so, we can use our
10088   // perfect shuffle table to emit an optimal matching sequence.
10089   ArrayRef<int> PermMask = SVOp->getMask();
10090 
10091   if (!DisablePerfectShuffle && !isLittleEndian) {
10092     unsigned PFIndexes[4];
10093     bool isFourElementShuffle = true;
10094     for (unsigned i = 0; i != 4 && isFourElementShuffle;
10095          ++i) {                           // Element number
10096       unsigned EltNo = 8;                 // Start out undef.
10097       for (unsigned j = 0; j != 4; ++j) { // Intra-element byte.
10098         if (PermMask[i * 4 + j] < 0)
10099           continue; // Undef, ignore it.
10100 
10101         unsigned ByteSource = PermMask[i * 4 + j];
10102         if ((ByteSource & 3) != j) {
10103           isFourElementShuffle = false;
10104           break;
10105         }
10106 
10107         if (EltNo == 8) {
10108           EltNo = ByteSource / 4;
10109         } else if (EltNo != ByteSource / 4) {
10110           isFourElementShuffle = false;
10111           break;
10112         }
10113       }
10114       PFIndexes[i] = EltNo;
10115     }
10116 
10117     // If this shuffle can be expressed as a shuffle of 4-byte elements, use the
10118     // perfect shuffle vector to determine if it is cost effective to do this as
10119     // discrete instructions, or whether we should use a vperm.
10120     // For now, we skip this for little endian until such time as we have a
10121     // little-endian perfect shuffle table.
10122     if (isFourElementShuffle) {
10123       // Compute the index in the perfect shuffle table.
10124       unsigned PFTableIndex = PFIndexes[0] * 9 * 9 * 9 + PFIndexes[1] * 9 * 9 +
10125                               PFIndexes[2] * 9 + PFIndexes[3];
10126 
10127       unsigned PFEntry = PerfectShuffleTable[PFTableIndex];
10128       unsigned Cost = (PFEntry >> 30);
10129 
10130       // Determining when to avoid vperm is tricky.  Many things affect the cost
10131       // of vperm, particularly how many times the perm mask needs to be
10132       // computed. For example, if the perm mask can be hoisted out of a loop or
10133       // is already used (perhaps because there are multiple permutes with the
10134       // same shuffle mask?) the vperm has a cost of 1.  OTOH, hoisting the
10135       // permute mask out of the loop requires an extra register.
10136       //
10137       // As a compromise, we only emit discrete instructions if the shuffle can
10138       // be generated in 3 or fewer operations.  When we have loop information
10139       // available, if this block is within a loop, we should avoid using vperm
10140       // for 3-operation perms and use a constant pool load instead.
10141       if (Cost < 3)
10142         return GeneratePerfectShuffle(PFEntry, V1, V2, DAG, dl);
10143     }
10144   }
10145 
10146   // Lower this to a VPERM(V1, V2, V3) expression, where V3 is a constant
10147   // vector that will get spilled to the constant pool.
10148   if (V2.isUndef()) V2 = V1;
10149 
10150   // The SHUFFLE_VECTOR mask is almost exactly what we want for vperm, except
10151   // that it is in input element units, not in bytes.  Convert now.
10152 
10153   // For little endian, the order of the input vectors is reversed, and
10154   // the permutation mask is complemented with respect to 31.  This is
10155   // necessary to produce proper semantics with the big-endian-biased vperm
10156   // instruction.
10157   EVT EltVT = V1.getValueType().getVectorElementType();
10158   unsigned BytesPerElement = EltVT.getSizeInBits()/8;
10159 
10160   SmallVector<SDValue, 16> ResultMask;
10161   for (unsigned i = 0, e = VT.getVectorNumElements(); i != e; ++i) {
10162     unsigned SrcElt = PermMask[i] < 0 ? 0 : PermMask[i];
10163 
10164     for (unsigned j = 0; j != BytesPerElement; ++j)
10165       if (isLittleEndian)
10166         ResultMask.push_back(DAG.getConstant(31 - (SrcElt*BytesPerElement + j),
10167                                              dl, MVT::i32));
10168       else
10169         ResultMask.push_back(DAG.getConstant(SrcElt*BytesPerElement + j, dl,
10170                                              MVT::i32));
10171   }
10172 
10173   ShufflesHandledWithVPERM++;
10174   SDValue VPermMask = DAG.getBuildVector(MVT::v16i8, dl, ResultMask);
10175   LLVM_DEBUG(dbgs() << "Emitting a VPERM for the following shuffle:\n");
10176   LLVM_DEBUG(SVOp->dump());
10177   LLVM_DEBUG(dbgs() << "With the following permute control vector:\n");
10178   LLVM_DEBUG(VPermMask.dump());
10179 
10180   if (isLittleEndian)
10181     return DAG.getNode(PPCISD::VPERM, dl, V1.getValueType(),
10182                        V2, V1, VPermMask);
10183   else
10184     return DAG.getNode(PPCISD::VPERM, dl, V1.getValueType(),
10185                        V1, V2, VPermMask);
10186 }
10187 
10188 /// getVectorCompareInfo - Given an intrinsic, return false if it is not a
10189 /// vector comparison.  If it is, return true and fill in Opc/isDot with
10190 /// information about the intrinsic.
10191 static bool getVectorCompareInfo(SDValue Intrin, int &CompareOpc,
10192                                  bool &isDot, const PPCSubtarget &Subtarget) {
10193   unsigned IntrinsicID =
10194       cast<ConstantSDNode>(Intrin.getOperand(0))->getZExtValue();
10195   CompareOpc = -1;
10196   isDot = false;
10197   switch (IntrinsicID) {
10198   default:
10199     return false;
10200   // Comparison predicates.
10201   case Intrinsic::ppc_altivec_vcmpbfp_p:
10202     CompareOpc = 966;
10203     isDot = true;
10204     break;
10205   case Intrinsic::ppc_altivec_vcmpeqfp_p:
10206     CompareOpc = 198;
10207     isDot = true;
10208     break;
10209   case Intrinsic::ppc_altivec_vcmpequb_p:
10210     CompareOpc = 6;
10211     isDot = true;
10212     break;
10213   case Intrinsic::ppc_altivec_vcmpequh_p:
10214     CompareOpc = 70;
10215     isDot = true;
10216     break;
10217   case Intrinsic::ppc_altivec_vcmpequw_p:
10218     CompareOpc = 134;
10219     isDot = true;
10220     break;
10221   case Intrinsic::ppc_altivec_vcmpequd_p:
10222     if (Subtarget.hasVSX() || Subtarget.hasP8Altivec()) {
10223       CompareOpc = 199;
10224       isDot = true;
10225     } else
10226       return false;
10227     break;
10228   case Intrinsic::ppc_altivec_vcmpneb_p:
10229   case Intrinsic::ppc_altivec_vcmpneh_p:
10230   case Intrinsic::ppc_altivec_vcmpnew_p:
10231   case Intrinsic::ppc_altivec_vcmpnezb_p:
10232   case Intrinsic::ppc_altivec_vcmpnezh_p:
10233   case Intrinsic::ppc_altivec_vcmpnezw_p:
10234     if (Subtarget.hasP9Altivec()) {
10235       switch (IntrinsicID) {
10236       default:
10237         llvm_unreachable("Unknown comparison intrinsic.");
10238       case Intrinsic::ppc_altivec_vcmpneb_p:
10239         CompareOpc = 7;
10240         break;
10241       case Intrinsic::ppc_altivec_vcmpneh_p:
10242         CompareOpc = 71;
10243         break;
10244       case Intrinsic::ppc_altivec_vcmpnew_p:
10245         CompareOpc = 135;
10246         break;
10247       case Intrinsic::ppc_altivec_vcmpnezb_p:
10248         CompareOpc = 263;
10249         break;
10250       case Intrinsic::ppc_altivec_vcmpnezh_p:
10251         CompareOpc = 327;
10252         break;
10253       case Intrinsic::ppc_altivec_vcmpnezw_p:
10254         CompareOpc = 391;
10255         break;
10256       }
10257       isDot = true;
10258     } else
10259       return false;
10260     break;
10261   case Intrinsic::ppc_altivec_vcmpgefp_p:
10262     CompareOpc = 454;
10263     isDot = true;
10264     break;
10265   case Intrinsic::ppc_altivec_vcmpgtfp_p:
10266     CompareOpc = 710;
10267     isDot = true;
10268     break;
10269   case Intrinsic::ppc_altivec_vcmpgtsb_p:
10270     CompareOpc = 774;
10271     isDot = true;
10272     break;
10273   case Intrinsic::ppc_altivec_vcmpgtsh_p:
10274     CompareOpc = 838;
10275     isDot = true;
10276     break;
10277   case Intrinsic::ppc_altivec_vcmpgtsw_p:
10278     CompareOpc = 902;
10279     isDot = true;
10280     break;
10281   case Intrinsic::ppc_altivec_vcmpgtsd_p:
10282     if (Subtarget.hasVSX() || Subtarget.hasP8Altivec()) {
10283       CompareOpc = 967;
10284       isDot = true;
10285     } else
10286       return false;
10287     break;
10288   case Intrinsic::ppc_altivec_vcmpgtub_p:
10289     CompareOpc = 518;
10290     isDot = true;
10291     break;
10292   case Intrinsic::ppc_altivec_vcmpgtuh_p:
10293     CompareOpc = 582;
10294     isDot = true;
10295     break;
10296   case Intrinsic::ppc_altivec_vcmpgtuw_p:
10297     CompareOpc = 646;
10298     isDot = true;
10299     break;
10300   case Intrinsic::ppc_altivec_vcmpgtud_p:
10301     if (Subtarget.hasVSX() || Subtarget.hasP8Altivec()) {
10302       CompareOpc = 711;
10303       isDot = true;
10304     } else
10305       return false;
10306     break;
10307 
10308   case Intrinsic::ppc_altivec_vcmpequq:
10309   case Intrinsic::ppc_altivec_vcmpgtsq:
10310   case Intrinsic::ppc_altivec_vcmpgtuq:
10311     if (!Subtarget.isISA3_1())
10312       return false;
10313     switch (IntrinsicID) {
10314     default:
10315       llvm_unreachable("Unknown comparison intrinsic.");
10316     case Intrinsic::ppc_altivec_vcmpequq:
10317       CompareOpc = 455;
10318       break;
10319     case Intrinsic::ppc_altivec_vcmpgtsq:
10320       CompareOpc = 903;
10321       break;
10322     case Intrinsic::ppc_altivec_vcmpgtuq:
10323       CompareOpc = 647;
10324       break;
10325     }
10326     break;
10327 
10328   // VSX predicate comparisons use the same infrastructure
10329   case Intrinsic::ppc_vsx_xvcmpeqdp_p:
10330   case Intrinsic::ppc_vsx_xvcmpgedp_p:
10331   case Intrinsic::ppc_vsx_xvcmpgtdp_p:
10332   case Intrinsic::ppc_vsx_xvcmpeqsp_p:
10333   case Intrinsic::ppc_vsx_xvcmpgesp_p:
10334   case Intrinsic::ppc_vsx_xvcmpgtsp_p:
10335     if (Subtarget.hasVSX()) {
10336       switch (IntrinsicID) {
10337       case Intrinsic::ppc_vsx_xvcmpeqdp_p:
10338         CompareOpc = 99;
10339         break;
10340       case Intrinsic::ppc_vsx_xvcmpgedp_p:
10341         CompareOpc = 115;
10342         break;
10343       case Intrinsic::ppc_vsx_xvcmpgtdp_p:
10344         CompareOpc = 107;
10345         break;
10346       case Intrinsic::ppc_vsx_xvcmpeqsp_p:
10347         CompareOpc = 67;
10348         break;
10349       case Intrinsic::ppc_vsx_xvcmpgesp_p:
10350         CompareOpc = 83;
10351         break;
10352       case Intrinsic::ppc_vsx_xvcmpgtsp_p:
10353         CompareOpc = 75;
10354         break;
10355       }
10356       isDot = true;
10357     } else
10358       return false;
10359     break;
10360 
10361   // Normal Comparisons.
10362   case Intrinsic::ppc_altivec_vcmpbfp:
10363     CompareOpc = 966;
10364     break;
10365   case Intrinsic::ppc_altivec_vcmpeqfp:
10366     CompareOpc = 198;
10367     break;
10368   case Intrinsic::ppc_altivec_vcmpequb:
10369     CompareOpc = 6;
10370     break;
10371   case Intrinsic::ppc_altivec_vcmpequh:
10372     CompareOpc = 70;
10373     break;
10374   case Intrinsic::ppc_altivec_vcmpequw:
10375     CompareOpc = 134;
10376     break;
10377   case Intrinsic::ppc_altivec_vcmpequd:
10378     if (Subtarget.hasP8Altivec())
10379       CompareOpc = 199;
10380     else
10381       return false;
10382     break;
10383   case Intrinsic::ppc_altivec_vcmpneb:
10384   case Intrinsic::ppc_altivec_vcmpneh:
10385   case Intrinsic::ppc_altivec_vcmpnew:
10386   case Intrinsic::ppc_altivec_vcmpnezb:
10387   case Intrinsic::ppc_altivec_vcmpnezh:
10388   case Intrinsic::ppc_altivec_vcmpnezw:
10389     if (Subtarget.hasP9Altivec())
10390       switch (IntrinsicID) {
10391       default:
10392         llvm_unreachable("Unknown comparison intrinsic.");
10393       case Intrinsic::ppc_altivec_vcmpneb:
10394         CompareOpc = 7;
10395         break;
10396       case Intrinsic::ppc_altivec_vcmpneh:
10397         CompareOpc = 71;
10398         break;
10399       case Intrinsic::ppc_altivec_vcmpnew:
10400         CompareOpc = 135;
10401         break;
10402       case Intrinsic::ppc_altivec_vcmpnezb:
10403         CompareOpc = 263;
10404         break;
10405       case Intrinsic::ppc_altivec_vcmpnezh:
10406         CompareOpc = 327;
10407         break;
10408       case Intrinsic::ppc_altivec_vcmpnezw:
10409         CompareOpc = 391;
10410         break;
10411       }
10412     else
10413       return false;
10414     break;
10415   case Intrinsic::ppc_altivec_vcmpgefp:
10416     CompareOpc = 454;
10417     break;
10418   case Intrinsic::ppc_altivec_vcmpgtfp:
10419     CompareOpc = 710;
10420     break;
10421   case Intrinsic::ppc_altivec_vcmpgtsb:
10422     CompareOpc = 774;
10423     break;
10424   case Intrinsic::ppc_altivec_vcmpgtsh:
10425     CompareOpc = 838;
10426     break;
10427   case Intrinsic::ppc_altivec_vcmpgtsw:
10428     CompareOpc = 902;
10429     break;
10430   case Intrinsic::ppc_altivec_vcmpgtsd:
10431     if (Subtarget.hasP8Altivec())
10432       CompareOpc = 967;
10433     else
10434       return false;
10435     break;
10436   case Intrinsic::ppc_altivec_vcmpgtub:
10437     CompareOpc = 518;
10438     break;
10439   case Intrinsic::ppc_altivec_vcmpgtuh:
10440     CompareOpc = 582;
10441     break;
10442   case Intrinsic::ppc_altivec_vcmpgtuw:
10443     CompareOpc = 646;
10444     break;
10445   case Intrinsic::ppc_altivec_vcmpgtud:
10446     if (Subtarget.hasP8Altivec())
10447       CompareOpc = 711;
10448     else
10449       return false;
10450     break;
10451   case Intrinsic::ppc_altivec_vcmpequq_p:
10452   case Intrinsic::ppc_altivec_vcmpgtsq_p:
10453   case Intrinsic::ppc_altivec_vcmpgtuq_p:
10454     if (!Subtarget.isISA3_1())
10455       return false;
10456     switch (IntrinsicID) {
10457     default:
10458       llvm_unreachable("Unknown comparison intrinsic.");
10459     case Intrinsic::ppc_altivec_vcmpequq_p:
10460       CompareOpc = 455;
10461       break;
10462     case Intrinsic::ppc_altivec_vcmpgtsq_p:
10463       CompareOpc = 903;
10464       break;
10465     case Intrinsic::ppc_altivec_vcmpgtuq_p:
10466       CompareOpc = 647;
10467       break;
10468     }
10469     isDot = true;
10470     break;
10471   }
10472   return true;
10473 }
10474 
10475 /// LowerINTRINSIC_WO_CHAIN - If this is an intrinsic that we want to custom
10476 /// lower, do it, otherwise return null.
10477 SDValue PPCTargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op,
10478                                                    SelectionDAG &DAG) const {
10479   unsigned IntrinsicID =
10480     cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
10481 
10482   SDLoc dl(Op);
10483 
10484   switch (IntrinsicID) {
10485   case Intrinsic::thread_pointer:
10486     // Reads the thread pointer register, used for __builtin_thread_pointer.
10487     if (Subtarget.isPPC64())
10488       return DAG.getRegister(PPC::X13, MVT::i64);
10489     return DAG.getRegister(PPC::R2, MVT::i32);
10490 
10491   case Intrinsic::ppc_mma_disassemble_acc:
10492   case Intrinsic::ppc_vsx_disassemble_pair: {
10493     int NumVecs = 2;
10494     SDValue WideVec = Op.getOperand(1);
10495     if (IntrinsicID == Intrinsic::ppc_mma_disassemble_acc) {
10496       NumVecs = 4;
10497       WideVec = DAG.getNode(PPCISD::XXMFACC, dl, MVT::v512i1, WideVec);
10498     }
10499     SmallVector<SDValue, 4> RetOps;
10500     for (int VecNo = 0; VecNo < NumVecs; VecNo++) {
10501       SDValue Extract = DAG.getNode(
10502           PPCISD::EXTRACT_VSX_REG, dl, MVT::v16i8, WideVec,
10503           DAG.getConstant(Subtarget.isLittleEndian() ? NumVecs - 1 - VecNo
10504                                                      : VecNo,
10505                           dl, getPointerTy(DAG.getDataLayout())));
10506       RetOps.push_back(Extract);
10507     }
10508     return DAG.getMergeValues(RetOps, dl);
10509   }
10510 
10511   case Intrinsic::ppc_unpack_longdouble: {
10512     auto *Idx = dyn_cast<ConstantSDNode>(Op.getOperand(2));
10513     assert(Idx && (Idx->getSExtValue() == 0 || Idx->getSExtValue() == 1) &&
10514            "Argument of long double unpack must be 0 or 1!");
10515     return DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::f64, Op.getOperand(1),
10516                        DAG.getConstant(!!(Idx->getSExtValue()), dl,
10517                                        Idx->getValueType(0)));
10518   }
10519 
10520   case Intrinsic::ppc_compare_exp_lt:
10521   case Intrinsic::ppc_compare_exp_gt:
10522   case Intrinsic::ppc_compare_exp_eq:
10523   case Intrinsic::ppc_compare_exp_uo: {
10524     unsigned Pred;
10525     switch (IntrinsicID) {
10526     case Intrinsic::ppc_compare_exp_lt:
10527       Pred = PPC::PRED_LT;
10528       break;
10529     case Intrinsic::ppc_compare_exp_gt:
10530       Pred = PPC::PRED_GT;
10531       break;
10532     case Intrinsic::ppc_compare_exp_eq:
10533       Pred = PPC::PRED_EQ;
10534       break;
10535     case Intrinsic::ppc_compare_exp_uo:
10536       Pred = PPC::PRED_UN;
10537       break;
10538     }
10539     return SDValue(
10540         DAG.getMachineNode(
10541             PPC::SELECT_CC_I4, dl, MVT::i32,
10542             {SDValue(DAG.getMachineNode(PPC::XSCMPEXPDP, dl, MVT::i32,
10543                                         Op.getOperand(1), Op.getOperand(2)),
10544                      0),
10545              DAG.getConstant(1, dl, MVT::i32), DAG.getConstant(0, dl, MVT::i32),
10546              DAG.getTargetConstant(Pred, dl, MVT::i32)}),
10547         0);
10548   }
10549   case Intrinsic::ppc_test_data_class_d:
10550   case Intrinsic::ppc_test_data_class_f: {
10551     unsigned CmprOpc = PPC::XSTSTDCDP;
10552     if (IntrinsicID == Intrinsic::ppc_test_data_class_f)
10553       CmprOpc = PPC::XSTSTDCSP;
10554     return SDValue(
10555         DAG.getMachineNode(
10556             PPC::SELECT_CC_I4, dl, MVT::i32,
10557             {SDValue(DAG.getMachineNode(CmprOpc, dl, MVT::i32, Op.getOperand(2),
10558                                         Op.getOperand(1)),
10559                      0),
10560              DAG.getConstant(1, dl, MVT::i32), DAG.getConstant(0, dl, MVT::i32),
10561              DAG.getTargetConstant(PPC::PRED_EQ, dl, MVT::i32)}),
10562         0);
10563   }
10564   case Intrinsic::ppc_fnmsub: {
10565     EVT VT = Op.getOperand(1).getValueType();
10566     if (!Subtarget.hasVSX() || (!Subtarget.hasFloat128() && VT == MVT::f128))
10567       return DAG.getNode(
10568           ISD::FNEG, dl, VT,
10569           DAG.getNode(ISD::FMA, dl, VT, Op.getOperand(1), Op.getOperand(2),
10570                       DAG.getNode(ISD::FNEG, dl, VT, Op.getOperand(3))));
10571     return DAG.getNode(PPCISD::FNMSUB, dl, VT, Op.getOperand(1),
10572                        Op.getOperand(2), Op.getOperand(3));
10573   }
10574   case Intrinsic::ppc_convert_f128_to_ppcf128:
10575   case Intrinsic::ppc_convert_ppcf128_to_f128: {
10576     RTLIB::Libcall LC = IntrinsicID == Intrinsic::ppc_convert_ppcf128_to_f128
10577                             ? RTLIB::CONVERT_PPCF128_F128
10578                             : RTLIB::CONVERT_F128_PPCF128;
10579     MakeLibCallOptions CallOptions;
10580     std::pair<SDValue, SDValue> Result =
10581         makeLibCall(DAG, LC, Op.getValueType(), Op.getOperand(1), CallOptions,
10582                     dl, SDValue());
10583     return Result.first;
10584   }
10585   case Intrinsic::ppc_maxfe:
10586   case Intrinsic::ppc_maxfl:
10587   case Intrinsic::ppc_maxfs:
10588   case Intrinsic::ppc_minfe:
10589   case Intrinsic::ppc_minfl:
10590   case Intrinsic::ppc_minfs: {
10591     EVT VT = Op.getValueType();
10592     assert(
10593         all_of(Op->ops().drop_front(4),
10594                [VT](const SDUse &Use) { return Use.getValueType() == VT; }) &&
10595         "ppc_[max|min]f[e|l|s] must have uniform type arguments");
10596     (void)VT;
10597     ISD::CondCode CC = ISD::SETGT;
10598     if (IntrinsicID == Intrinsic::ppc_minfe ||
10599         IntrinsicID == Intrinsic::ppc_minfl ||
10600         IntrinsicID == Intrinsic::ppc_minfs)
10601       CC = ISD::SETLT;
10602     unsigned I = Op.getNumOperands() - 2, Cnt = I;
10603     SDValue Res = Op.getOperand(I);
10604     for (--I; Cnt != 0; --Cnt, I = (--I == 0 ? (Op.getNumOperands() - 1) : I)) {
10605       Res =
10606           DAG.getSelectCC(dl, Res, Op.getOperand(I), Res, Op.getOperand(I), CC);
10607     }
10608     return Res;
10609   }
10610   }
10611 
10612   // If this is a lowered altivec predicate compare, CompareOpc is set to the
10613   // opcode number of the comparison.
10614   int CompareOpc;
10615   bool isDot;
10616   if (!getVectorCompareInfo(Op, CompareOpc, isDot, Subtarget))
10617     return SDValue();    // Don't custom lower most intrinsics.
10618 
10619   // If this is a non-dot comparison, make the VCMP node and we are done.
10620   if (!isDot) {
10621     SDValue Tmp = DAG.getNode(PPCISD::VCMP, dl, Op.getOperand(2).getValueType(),
10622                               Op.getOperand(1), Op.getOperand(2),
10623                               DAG.getConstant(CompareOpc, dl, MVT::i32));
10624     return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Tmp);
10625   }
10626 
10627   // Create the PPCISD altivec 'dot' comparison node.
10628   SDValue Ops[] = {
10629     Op.getOperand(2),  // LHS
10630     Op.getOperand(3),  // RHS
10631     DAG.getConstant(CompareOpc, dl, MVT::i32)
10632   };
10633   EVT VTs[] = { Op.getOperand(2).getValueType(), MVT::Glue };
10634   SDValue CompNode = DAG.getNode(PPCISD::VCMP_rec, dl, VTs, Ops);
10635 
10636   // Now that we have the comparison, emit a copy from the CR to a GPR.
10637   // This is flagged to the above dot comparison.
10638   SDValue Flags = DAG.getNode(PPCISD::MFOCRF, dl, MVT::i32,
10639                                 DAG.getRegister(PPC::CR6, MVT::i32),
10640                                 CompNode.getValue(1));
10641 
10642   // Unpack the result based on how the target uses it.
10643   unsigned BitNo;   // Bit # of CR6.
10644   bool InvertBit;   // Invert result?
10645   switch (cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue()) {
10646   default:  // Can't happen, don't crash on invalid number though.
10647   case 0:   // Return the value of the EQ bit of CR6.
10648     BitNo = 0; InvertBit = false;
10649     break;
10650   case 1:   // Return the inverted value of the EQ bit of CR6.
10651     BitNo = 0; InvertBit = true;
10652     break;
10653   case 2:   // Return the value of the LT bit of CR6.
10654     BitNo = 2; InvertBit = false;
10655     break;
10656   case 3:   // Return the inverted value of the LT bit of CR6.
10657     BitNo = 2; InvertBit = true;
10658     break;
10659   }
10660 
10661   // Shift the bit into the low position.
10662   Flags = DAG.getNode(ISD::SRL, dl, MVT::i32, Flags,
10663                       DAG.getConstant(8 - (3 - BitNo), dl, MVT::i32));
10664   // Isolate the bit.
10665   Flags = DAG.getNode(ISD::AND, dl, MVT::i32, Flags,
10666                       DAG.getConstant(1, dl, MVT::i32));
10667 
10668   // If we are supposed to, toggle the bit.
10669   if (InvertBit)
10670     Flags = DAG.getNode(ISD::XOR, dl, MVT::i32, Flags,
10671                         DAG.getConstant(1, dl, MVT::i32));
10672   return Flags;
10673 }
10674 
10675 SDValue PPCTargetLowering::LowerINTRINSIC_VOID(SDValue Op,
10676                                                SelectionDAG &DAG) const {
10677   // SelectionDAGBuilder::visitTargetIntrinsic may insert one extra chain to
10678   // the beginning of the argument list.
10679   int ArgStart = isa<ConstantSDNode>(Op.getOperand(0)) ? 0 : 1;
10680   SDLoc DL(Op);
10681   switch (cast<ConstantSDNode>(Op.getOperand(ArgStart))->getZExtValue()) {
10682   case Intrinsic::ppc_cfence: {
10683     assert(ArgStart == 1 && "llvm.ppc.cfence must carry a chain argument.");
10684     assert(Subtarget.isPPC64() && "Only 64-bit is supported for now.");
10685     SDValue Val = Op.getOperand(ArgStart + 1);
10686     EVT Ty = Val.getValueType();
10687     if (Ty == MVT::i128) {
10688       // FIXME: Testing one of two paired registers is sufficient to guarantee
10689       // ordering?
10690       Val = DAG.getNode(ISD::TRUNCATE, DL, MVT::i64, Val);
10691     }
10692     return SDValue(
10693         DAG.getMachineNode(PPC::CFENCE8, DL, MVT::Other,
10694                            DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Val),
10695                            Op.getOperand(0)),
10696         0);
10697   }
10698   default:
10699     break;
10700   }
10701   return SDValue();
10702 }
10703 
10704 // Lower scalar BSWAP64 to xxbrd.
10705 SDValue PPCTargetLowering::LowerBSWAP(SDValue Op, SelectionDAG &DAG) const {
10706   SDLoc dl(Op);
10707   if (!Subtarget.isPPC64())
10708     return Op;
10709   // MTVSRDD
10710   Op = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v2i64, Op.getOperand(0),
10711                    Op.getOperand(0));
10712   // XXBRD
10713   Op = DAG.getNode(ISD::BSWAP, dl, MVT::v2i64, Op);
10714   // MFVSRD
10715   int VectorIndex = 0;
10716   if (Subtarget.isLittleEndian())
10717     VectorIndex = 1;
10718   Op = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i64, Op,
10719                    DAG.getTargetConstant(VectorIndex, dl, MVT::i32));
10720   return Op;
10721 }
10722 
10723 // ATOMIC_CMP_SWAP for i8/i16 needs to zero-extend its input since it will be
10724 // compared to a value that is atomically loaded (atomic loads zero-extend).
10725 SDValue PPCTargetLowering::LowerATOMIC_CMP_SWAP(SDValue Op,
10726                                                 SelectionDAG &DAG) const {
10727   assert(Op.getOpcode() == ISD::ATOMIC_CMP_SWAP &&
10728          "Expecting an atomic compare-and-swap here.");
10729   SDLoc dl(Op);
10730   auto *AtomicNode = cast<AtomicSDNode>(Op.getNode());
10731   EVT MemVT = AtomicNode->getMemoryVT();
10732   if (MemVT.getSizeInBits() >= 32)
10733     return Op;
10734 
10735   SDValue CmpOp = Op.getOperand(2);
10736   // If this is already correctly zero-extended, leave it alone.
10737   auto HighBits = APInt::getHighBitsSet(32, 32 - MemVT.getSizeInBits());
10738   if (DAG.MaskedValueIsZero(CmpOp, HighBits))
10739     return Op;
10740 
10741   // Clear the high bits of the compare operand.
10742   unsigned MaskVal = (1 << MemVT.getSizeInBits()) - 1;
10743   SDValue NewCmpOp =
10744     DAG.getNode(ISD::AND, dl, MVT::i32, CmpOp,
10745                 DAG.getConstant(MaskVal, dl, MVT::i32));
10746 
10747   // Replace the existing compare operand with the properly zero-extended one.
10748   SmallVector<SDValue, 4> Ops;
10749   for (int i = 0, e = AtomicNode->getNumOperands(); i < e; i++)
10750     Ops.push_back(AtomicNode->getOperand(i));
10751   Ops[2] = NewCmpOp;
10752   MachineMemOperand *MMO = AtomicNode->getMemOperand();
10753   SDVTList Tys = DAG.getVTList(MVT::i32, MVT::Other);
10754   auto NodeTy =
10755     (MemVT == MVT::i8) ? PPCISD::ATOMIC_CMP_SWAP_8 : PPCISD::ATOMIC_CMP_SWAP_16;
10756   return DAG.getMemIntrinsicNode(NodeTy, dl, Tys, Ops, MemVT, MMO);
10757 }
10758 
10759 SDValue PPCTargetLowering::LowerATOMIC_LOAD_STORE(SDValue Op,
10760                                                   SelectionDAG &DAG) const {
10761   AtomicSDNode *N = cast<AtomicSDNode>(Op.getNode());
10762   EVT MemVT = N->getMemoryVT();
10763   assert(MemVT.getSimpleVT() == MVT::i128 &&
10764          "Expect quadword atomic operations");
10765   SDLoc dl(N);
10766   unsigned Opc = N->getOpcode();
10767   switch (Opc) {
10768   case ISD::ATOMIC_LOAD: {
10769     // Lower quadword atomic load to int_ppc_atomic_load_i128 which will be
10770     // lowered to ppc instructions by pattern matching instruction selector.
10771     SDVTList Tys = DAG.getVTList(MVT::i64, MVT::i64, MVT::Other);
10772     SmallVector<SDValue, 4> Ops{
10773         N->getOperand(0),
10774         DAG.getConstant(Intrinsic::ppc_atomic_load_i128, dl, MVT::i32)};
10775     for (int I = 1, E = N->getNumOperands(); I < E; ++I)
10776       Ops.push_back(N->getOperand(I));
10777     SDValue LoadedVal = DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, dl, Tys,
10778                                                 Ops, MemVT, N->getMemOperand());
10779     SDValue ValLo = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i128, LoadedVal);
10780     SDValue ValHi =
10781         DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i128, LoadedVal.getValue(1));
10782     ValHi = DAG.getNode(ISD::SHL, dl, MVT::i128, ValHi,
10783                         DAG.getConstant(64, dl, MVT::i32));
10784     SDValue Val =
10785         DAG.getNode(ISD::OR, dl, {MVT::i128, MVT::Other}, {ValLo, ValHi});
10786     return DAG.getNode(ISD::MERGE_VALUES, dl, {MVT::i128, MVT::Other},
10787                        {Val, LoadedVal.getValue(2)});
10788   }
10789   case ISD::ATOMIC_STORE: {
10790     // Lower quadword atomic store to int_ppc_atomic_store_i128 which will be
10791     // lowered to ppc instructions by pattern matching instruction selector.
10792     SDVTList Tys = DAG.getVTList(MVT::Other);
10793     SmallVector<SDValue, 4> Ops{
10794         N->getOperand(0),
10795         DAG.getConstant(Intrinsic::ppc_atomic_store_i128, dl, MVT::i32)};
10796     SDValue Val = N->getOperand(2);
10797     SDValue ValLo = DAG.getNode(ISD::TRUNCATE, dl, MVT::i64, Val);
10798     SDValue ValHi = DAG.getNode(ISD::SRL, dl, MVT::i128, Val,
10799                                 DAG.getConstant(64, dl, MVT::i32));
10800     ValHi = DAG.getNode(ISD::TRUNCATE, dl, MVT::i64, ValHi);
10801     Ops.push_back(ValLo);
10802     Ops.push_back(ValHi);
10803     Ops.push_back(N->getOperand(1));
10804     return DAG.getMemIntrinsicNode(ISD::INTRINSIC_VOID, dl, Tys, Ops, MemVT,
10805                                    N->getMemOperand());
10806   }
10807   default:
10808     llvm_unreachable("Unexpected atomic opcode");
10809   }
10810 }
10811 
10812 SDValue PPCTargetLowering::LowerSCALAR_TO_VECTOR(SDValue Op,
10813                                                  SelectionDAG &DAG) const {
10814   SDLoc dl(Op);
10815   // Create a stack slot that is 16-byte aligned.
10816   MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
10817   int FrameIdx = MFI.CreateStackObject(16, Align(16), false);
10818   EVT PtrVT = getPointerTy(DAG.getDataLayout());
10819   SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
10820 
10821   // Store the input value into Value#0 of the stack slot.
10822   SDValue Store = DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0), FIdx,
10823                                MachinePointerInfo());
10824   // Load it out.
10825   return DAG.getLoad(Op.getValueType(), dl, Store, FIdx, MachinePointerInfo());
10826 }
10827 
10828 SDValue PPCTargetLowering::LowerINSERT_VECTOR_ELT(SDValue Op,
10829                                                   SelectionDAG &DAG) const {
10830   assert(Op.getOpcode() == ISD::INSERT_VECTOR_ELT &&
10831          "Should only be called for ISD::INSERT_VECTOR_ELT");
10832 
10833   ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(2));
10834 
10835   EVT VT = Op.getValueType();
10836   SDLoc dl(Op);
10837   SDValue V1 = Op.getOperand(0);
10838   SDValue V2 = Op.getOperand(1);
10839 
10840   if (VT == MVT::v2f64 && C)
10841     return Op;
10842 
10843   if (Subtarget.hasP9Vector()) {
10844     // A f32 load feeding into a v4f32 insert_vector_elt is handled in this way
10845     // because on P10, it allows this specific insert_vector_elt load pattern to
10846     // utilize the refactored load and store infrastructure in order to exploit
10847     // prefixed loads.
10848     // On targets with inexpensive direct moves (Power9 and up), a
10849     // (insert_vector_elt v4f32:$vec, (f32 load)) is always better as an integer
10850     // load since a single precision load will involve conversion to double
10851     // precision on the load followed by another conversion to single precision.
10852     if ((VT == MVT::v4f32) && (V2.getValueType() == MVT::f32) &&
10853         (isa<LoadSDNode>(V2))) {
10854       SDValue BitcastVector = DAG.getBitcast(MVT::v4i32, V1);
10855       SDValue BitcastLoad = DAG.getBitcast(MVT::i32, V2);
10856       SDValue InsVecElt =
10857           DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v4i32, BitcastVector,
10858                       BitcastLoad, Op.getOperand(2));
10859       return DAG.getBitcast(MVT::v4f32, InsVecElt);
10860     }
10861   }
10862 
10863   if (Subtarget.isISA3_1()) {
10864     if ((VT == MVT::v2i64 || VT == MVT::v2f64) && !Subtarget.isPPC64())
10865       return SDValue();
10866     // On P10, we have legal lowering for constant and variable indices for
10867     // all vectors.
10868     if (VT == MVT::v16i8 || VT == MVT::v8i16 || VT == MVT::v4i32 ||
10869         VT == MVT::v2i64 || VT == MVT::v4f32 || VT == MVT::v2f64)
10870       return Op;
10871   }
10872 
10873   // Before P10, we have legal lowering for constant indices but not for
10874   // variable ones.
10875   if (!C)
10876     return SDValue();
10877 
10878   // We can use MTVSRZ + VECINSERT for v8i16 and v16i8 types.
10879   if (VT == MVT::v8i16 || VT == MVT::v16i8) {
10880     SDValue Mtvsrz = DAG.getNode(PPCISD::MTVSRZ, dl, VT, V2);
10881     unsigned BytesInEachElement = VT.getVectorElementType().getSizeInBits() / 8;
10882     unsigned InsertAtElement = C->getZExtValue();
10883     unsigned InsertAtByte = InsertAtElement * BytesInEachElement;
10884     if (Subtarget.isLittleEndian()) {
10885       InsertAtByte = (16 - BytesInEachElement) - InsertAtByte;
10886     }
10887     return DAG.getNode(PPCISD::VECINSERT, dl, VT, V1, Mtvsrz,
10888                        DAG.getConstant(InsertAtByte, dl, MVT::i32));
10889   }
10890   return Op;
10891 }
10892 
10893 SDValue PPCTargetLowering::LowerVectorLoad(SDValue Op,
10894                                            SelectionDAG &DAG) const {
10895   SDLoc dl(Op);
10896   LoadSDNode *LN = cast<LoadSDNode>(Op.getNode());
10897   SDValue LoadChain = LN->getChain();
10898   SDValue BasePtr = LN->getBasePtr();
10899   EVT VT = Op.getValueType();
10900 
10901   if (VT != MVT::v256i1 && VT != MVT::v512i1)
10902     return Op;
10903 
10904   // Type v256i1 is used for pairs and v512i1 is used for accumulators.
10905   // Here we create 2 or 4 v16i8 loads to load the pair or accumulator value in
10906   // 2 or 4 vsx registers.
10907   assert((VT != MVT::v512i1 || Subtarget.hasMMA()) &&
10908          "Type unsupported without MMA");
10909   assert((VT != MVT::v256i1 || Subtarget.pairedVectorMemops()) &&
10910          "Type unsupported without paired vector support");
10911   Align Alignment = LN->getAlign();
10912   SmallVector<SDValue, 4> Loads;
10913   SmallVector<SDValue, 4> LoadChains;
10914   unsigned NumVecs = VT.getSizeInBits() / 128;
10915   for (unsigned Idx = 0; Idx < NumVecs; ++Idx) {
10916     SDValue Load =
10917         DAG.getLoad(MVT::v16i8, dl, LoadChain, BasePtr,
10918                     LN->getPointerInfo().getWithOffset(Idx * 16),
10919                     commonAlignment(Alignment, Idx * 16),
10920                     LN->getMemOperand()->getFlags(), LN->getAAInfo());
10921     BasePtr = DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr,
10922                           DAG.getConstant(16, dl, BasePtr.getValueType()));
10923     Loads.push_back(Load);
10924     LoadChains.push_back(Load.getValue(1));
10925   }
10926   if (Subtarget.isLittleEndian()) {
10927     std::reverse(Loads.begin(), Loads.end());
10928     std::reverse(LoadChains.begin(), LoadChains.end());
10929   }
10930   SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, LoadChains);
10931   SDValue Value =
10932       DAG.getNode(VT == MVT::v512i1 ? PPCISD::ACC_BUILD : PPCISD::PAIR_BUILD,
10933                   dl, VT, Loads);
10934   SDValue RetOps[] = {Value, TF};
10935   return DAG.getMergeValues(RetOps, dl);
10936 }
10937 
10938 SDValue PPCTargetLowering::LowerVectorStore(SDValue Op,
10939                                             SelectionDAG &DAG) const {
10940   SDLoc dl(Op);
10941   StoreSDNode *SN = cast<StoreSDNode>(Op.getNode());
10942   SDValue StoreChain = SN->getChain();
10943   SDValue BasePtr = SN->getBasePtr();
10944   SDValue Value = SN->getValue();
10945   EVT StoreVT = Value.getValueType();
10946 
10947   if (StoreVT != MVT::v256i1 && StoreVT != MVT::v512i1)
10948     return Op;
10949 
10950   // Type v256i1 is used for pairs and v512i1 is used for accumulators.
10951   // Here we create 2 or 4 v16i8 stores to store the pair or accumulator
10952   // underlying registers individually.
10953   assert((StoreVT != MVT::v512i1 || Subtarget.hasMMA()) &&
10954          "Type unsupported without MMA");
10955   assert((StoreVT != MVT::v256i1 || Subtarget.pairedVectorMemops()) &&
10956          "Type unsupported without paired vector support");
10957   Align Alignment = SN->getAlign();
10958   SmallVector<SDValue, 4> Stores;
10959   unsigned NumVecs = 2;
10960   if (StoreVT == MVT::v512i1) {
10961     Value = DAG.getNode(PPCISD::XXMFACC, dl, MVT::v512i1, Value);
10962     NumVecs = 4;
10963   }
10964   for (unsigned Idx = 0; Idx < NumVecs; ++Idx) {
10965     unsigned VecNum = Subtarget.isLittleEndian() ? NumVecs - 1 - Idx : Idx;
10966     SDValue Elt = DAG.getNode(PPCISD::EXTRACT_VSX_REG, dl, MVT::v16i8, Value,
10967                               DAG.getConstant(VecNum, dl, getPointerTy(DAG.getDataLayout())));
10968     SDValue Store =
10969         DAG.getStore(StoreChain, dl, Elt, BasePtr,
10970                      SN->getPointerInfo().getWithOffset(Idx * 16),
10971                      commonAlignment(Alignment, Idx * 16),
10972                      SN->getMemOperand()->getFlags(), SN->getAAInfo());
10973     BasePtr = DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr,
10974                           DAG.getConstant(16, dl, BasePtr.getValueType()));
10975     Stores.push_back(Store);
10976   }
10977   SDValue TF = DAG.getTokenFactor(dl, Stores);
10978   return TF;
10979 }
10980 
10981 SDValue PPCTargetLowering::LowerMUL(SDValue Op, SelectionDAG &DAG) const {
10982   SDLoc dl(Op);
10983   if (Op.getValueType() == MVT::v4i32) {
10984     SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1);
10985 
10986     SDValue Zero = getCanonicalConstSplat(0, 1, MVT::v4i32, DAG, dl);
10987     // +16 as shift amt.
10988     SDValue Neg16 = getCanonicalConstSplat(-16, 4, MVT::v4i32, DAG, dl);
10989     SDValue RHSSwap =   // = vrlw RHS, 16
10990       BuildIntrinsicOp(Intrinsic::ppc_altivec_vrlw, RHS, Neg16, DAG, dl);
10991 
10992     // Shrinkify inputs to v8i16.
10993     LHS = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, LHS);
10994     RHS = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, RHS);
10995     RHSSwap = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, RHSSwap);
10996 
10997     // Low parts multiplied together, generating 32-bit results (we ignore the
10998     // top parts).
10999     SDValue LoProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmulouh,
11000                                         LHS, RHS, DAG, dl, MVT::v4i32);
11001 
11002     SDValue HiProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmsumuhm,
11003                                       LHS, RHSSwap, Zero, DAG, dl, MVT::v4i32);
11004     // Shift the high parts up 16 bits.
11005     HiProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vslw, HiProd,
11006                               Neg16, DAG, dl);
11007     return DAG.getNode(ISD::ADD, dl, MVT::v4i32, LoProd, HiProd);
11008   } else if (Op.getValueType() == MVT::v16i8) {
11009     SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1);
11010     bool isLittleEndian = Subtarget.isLittleEndian();
11011 
11012     // Multiply the even 8-bit parts, producing 16-bit sums.
11013     SDValue EvenParts = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmuleub,
11014                                            LHS, RHS, DAG, dl, MVT::v8i16);
11015     EvenParts = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, EvenParts);
11016 
11017     // Multiply the odd 8-bit parts, producing 16-bit sums.
11018     SDValue OddParts = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmuloub,
11019                                           LHS, RHS, DAG, dl, MVT::v8i16);
11020     OddParts = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OddParts);
11021 
11022     // Merge the results together.  Because vmuleub and vmuloub are
11023     // instructions with a big-endian bias, we must reverse the
11024     // element numbering and reverse the meaning of "odd" and "even"
11025     // when generating little endian code.
11026     int Ops[16];
11027     for (unsigned i = 0; i != 8; ++i) {
11028       if (isLittleEndian) {
11029         Ops[i*2  ] = 2*i;
11030         Ops[i*2+1] = 2*i+16;
11031       } else {
11032         Ops[i*2  ] = 2*i+1;
11033         Ops[i*2+1] = 2*i+1+16;
11034       }
11035     }
11036     if (isLittleEndian)
11037       return DAG.getVectorShuffle(MVT::v16i8, dl, OddParts, EvenParts, Ops);
11038     else
11039       return DAG.getVectorShuffle(MVT::v16i8, dl, EvenParts, OddParts, Ops);
11040   } else {
11041     llvm_unreachable("Unknown mul to lower!");
11042   }
11043 }
11044 
11045 SDValue PPCTargetLowering::LowerFP_ROUND(SDValue Op, SelectionDAG &DAG) const {
11046   bool IsStrict = Op->isStrictFPOpcode();
11047   if (Op.getOperand(IsStrict ? 1 : 0).getValueType() == MVT::f128 &&
11048       !Subtarget.hasP9Vector())
11049     return SDValue();
11050 
11051   return Op;
11052 }
11053 
11054 // Custom lowering for fpext vf32 to v2f64
11055 SDValue PPCTargetLowering::LowerFP_EXTEND(SDValue Op, SelectionDAG &DAG) const {
11056 
11057   assert(Op.getOpcode() == ISD::FP_EXTEND &&
11058          "Should only be called for ISD::FP_EXTEND");
11059 
11060   // FIXME: handle extends from half precision float vectors on P9.
11061   // We only want to custom lower an extend from v2f32 to v2f64.
11062   if (Op.getValueType() != MVT::v2f64 ||
11063       Op.getOperand(0).getValueType() != MVT::v2f32)
11064     return SDValue();
11065 
11066   SDLoc dl(Op);
11067   SDValue Op0 = Op.getOperand(0);
11068 
11069   switch (Op0.getOpcode()) {
11070   default:
11071     return SDValue();
11072   case ISD::EXTRACT_SUBVECTOR: {
11073     assert(Op0.getNumOperands() == 2 &&
11074            isa<ConstantSDNode>(Op0->getOperand(1)) &&
11075            "Node should have 2 operands with second one being a constant!");
11076 
11077     if (Op0.getOperand(0).getValueType() != MVT::v4f32)
11078       return SDValue();
11079 
11080     // Custom lower is only done for high or low doubleword.
11081     int Idx = cast<ConstantSDNode>(Op0.getOperand(1))->getZExtValue();
11082     if (Idx % 2 != 0)
11083       return SDValue();
11084 
11085     // Since input is v4f32, at this point Idx is either 0 or 2.
11086     // Shift to get the doubleword position we want.
11087     int DWord = Idx >> 1;
11088 
11089     // High and low word positions are different on little endian.
11090     if (Subtarget.isLittleEndian())
11091       DWord ^= 0x1;
11092 
11093     return DAG.getNode(PPCISD::FP_EXTEND_HALF, dl, MVT::v2f64,
11094                        Op0.getOperand(0), DAG.getConstant(DWord, dl, MVT::i32));
11095   }
11096   case ISD::FADD:
11097   case ISD::FMUL:
11098   case ISD::FSUB: {
11099     SDValue NewLoad[2];
11100     for (unsigned i = 0, ie = Op0.getNumOperands(); i != ie; ++i) {
11101       // Ensure both input are loads.
11102       SDValue LdOp = Op0.getOperand(i);
11103       if (LdOp.getOpcode() != ISD::LOAD)
11104         return SDValue();
11105       // Generate new load node.
11106       LoadSDNode *LD = cast<LoadSDNode>(LdOp);
11107       SDValue LoadOps[] = {LD->getChain(), LD->getBasePtr()};
11108       NewLoad[i] = DAG.getMemIntrinsicNode(
11109           PPCISD::LD_VSX_LH, dl, DAG.getVTList(MVT::v4f32, MVT::Other), LoadOps,
11110           LD->getMemoryVT(), LD->getMemOperand());
11111     }
11112     SDValue NewOp =
11113         DAG.getNode(Op0.getOpcode(), SDLoc(Op0), MVT::v4f32, NewLoad[0],
11114                     NewLoad[1], Op0.getNode()->getFlags());
11115     return DAG.getNode(PPCISD::FP_EXTEND_HALF, dl, MVT::v2f64, NewOp,
11116                        DAG.getConstant(0, dl, MVT::i32));
11117   }
11118   case ISD::LOAD: {
11119     LoadSDNode *LD = cast<LoadSDNode>(Op0);
11120     SDValue LoadOps[] = {LD->getChain(), LD->getBasePtr()};
11121     SDValue NewLd = DAG.getMemIntrinsicNode(
11122         PPCISD::LD_VSX_LH, dl, DAG.getVTList(MVT::v4f32, MVT::Other), LoadOps,
11123         LD->getMemoryVT(), LD->getMemOperand());
11124     return DAG.getNode(PPCISD::FP_EXTEND_HALF, dl, MVT::v2f64, NewLd,
11125                        DAG.getConstant(0, dl, MVT::i32));
11126   }
11127   }
11128   llvm_unreachable("ERROR:Should return for all cases within swtich.");
11129 }
11130 
11131 /// LowerOperation - Provide custom lowering hooks for some operations.
11132 ///
11133 SDValue PPCTargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
11134   switch (Op.getOpcode()) {
11135   default: llvm_unreachable("Wasn't expecting to be able to lower this!");
11136   case ISD::FPOW:               return lowerPow(Op, DAG);
11137   case ISD::FSIN:               return lowerSin(Op, DAG);
11138   case ISD::FCOS:               return lowerCos(Op, DAG);
11139   case ISD::FLOG:               return lowerLog(Op, DAG);
11140   case ISD::FLOG10:             return lowerLog10(Op, DAG);
11141   case ISD::FEXP:               return lowerExp(Op, DAG);
11142   case ISD::ConstantPool:       return LowerConstantPool(Op, DAG);
11143   case ISD::BlockAddress:       return LowerBlockAddress(Op, DAG);
11144   case ISD::GlobalAddress:      return LowerGlobalAddress(Op, DAG);
11145   case ISD::GlobalTLSAddress:   return LowerGlobalTLSAddress(Op, DAG);
11146   case ISD::JumpTable:          return LowerJumpTable(Op, DAG);
11147   case ISD::STRICT_FSETCC:
11148   case ISD::STRICT_FSETCCS:
11149   case ISD::SETCC:              return LowerSETCC(Op, DAG);
11150   case ISD::INIT_TRAMPOLINE:    return LowerINIT_TRAMPOLINE(Op, DAG);
11151   case ISD::ADJUST_TRAMPOLINE:  return LowerADJUST_TRAMPOLINE(Op, DAG);
11152 
11153   case ISD::INLINEASM:
11154   case ISD::INLINEASM_BR:       return LowerINLINEASM(Op, DAG);
11155   // Variable argument lowering.
11156   case ISD::VASTART:            return LowerVASTART(Op, DAG);
11157   case ISD::VAARG:              return LowerVAARG(Op, DAG);
11158   case ISD::VACOPY:             return LowerVACOPY(Op, DAG);
11159 
11160   case ISD::STACKRESTORE:       return LowerSTACKRESTORE(Op, DAG);
11161   case ISD::DYNAMIC_STACKALLOC: return LowerDYNAMIC_STACKALLOC(Op, DAG);
11162   case ISD::GET_DYNAMIC_AREA_OFFSET:
11163     return LowerGET_DYNAMIC_AREA_OFFSET(Op, DAG);
11164 
11165   // Exception handling lowering.
11166   case ISD::EH_DWARF_CFA:       return LowerEH_DWARF_CFA(Op, DAG);
11167   case ISD::EH_SJLJ_SETJMP:     return lowerEH_SJLJ_SETJMP(Op, DAG);
11168   case ISD::EH_SJLJ_LONGJMP:    return lowerEH_SJLJ_LONGJMP(Op, DAG);
11169 
11170   case ISD::LOAD:               return LowerLOAD(Op, DAG);
11171   case ISD::STORE:              return LowerSTORE(Op, DAG);
11172   case ISD::TRUNCATE:           return LowerTRUNCATE(Op, DAG);
11173   case ISD::SELECT_CC:          return LowerSELECT_CC(Op, DAG);
11174   case ISD::STRICT_FP_TO_UINT:
11175   case ISD::STRICT_FP_TO_SINT:
11176   case ISD::FP_TO_UINT:
11177   case ISD::FP_TO_SINT:         return LowerFP_TO_INT(Op, DAG, SDLoc(Op));
11178   case ISD::STRICT_UINT_TO_FP:
11179   case ISD::STRICT_SINT_TO_FP:
11180   case ISD::UINT_TO_FP:
11181   case ISD::SINT_TO_FP:         return LowerINT_TO_FP(Op, DAG);
11182   case ISD::FLT_ROUNDS_:        return LowerFLT_ROUNDS_(Op, DAG);
11183 
11184   // Lower 64-bit shifts.
11185   case ISD::SHL_PARTS:          return LowerSHL_PARTS(Op, DAG);
11186   case ISD::SRL_PARTS:          return LowerSRL_PARTS(Op, DAG);
11187   case ISD::SRA_PARTS:          return LowerSRA_PARTS(Op, DAG);
11188 
11189   case ISD::FSHL:               return LowerFunnelShift(Op, DAG);
11190   case ISD::FSHR:               return LowerFunnelShift(Op, DAG);
11191 
11192   // Vector-related lowering.
11193   case ISD::BUILD_VECTOR:       return LowerBUILD_VECTOR(Op, DAG);
11194   case ISD::VECTOR_SHUFFLE:     return LowerVECTOR_SHUFFLE(Op, DAG);
11195   case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG);
11196   case ISD::SCALAR_TO_VECTOR:   return LowerSCALAR_TO_VECTOR(Op, DAG);
11197   case ISD::INSERT_VECTOR_ELT:  return LowerINSERT_VECTOR_ELT(Op, DAG);
11198   case ISD::MUL:                return LowerMUL(Op, DAG);
11199   case ISD::FP_EXTEND:          return LowerFP_EXTEND(Op, DAG);
11200   case ISD::STRICT_FP_ROUND:
11201   case ISD::FP_ROUND:
11202     return LowerFP_ROUND(Op, DAG);
11203   case ISD::ROTL:               return LowerROTL(Op, DAG);
11204 
11205   // For counter-based loop handling.
11206   case ISD::INTRINSIC_W_CHAIN:  return SDValue();
11207 
11208   case ISD::BITCAST:            return LowerBITCAST(Op, DAG);
11209 
11210   // Frame & Return address.
11211   case ISD::RETURNADDR:         return LowerRETURNADDR(Op, DAG);
11212   case ISD::FRAMEADDR:          return LowerFRAMEADDR(Op, DAG);
11213 
11214   case ISD::INTRINSIC_VOID:
11215     return LowerINTRINSIC_VOID(Op, DAG);
11216   case ISD::BSWAP:
11217     return LowerBSWAP(Op, DAG);
11218   case ISD::ATOMIC_CMP_SWAP:
11219     return LowerATOMIC_CMP_SWAP(Op, DAG);
11220   case ISD::ATOMIC_STORE:
11221     return LowerATOMIC_LOAD_STORE(Op, DAG);
11222   }
11223 }
11224 
11225 void PPCTargetLowering::ReplaceNodeResults(SDNode *N,
11226                                            SmallVectorImpl<SDValue>&Results,
11227                                            SelectionDAG &DAG) const {
11228   SDLoc dl(N);
11229   switch (N->getOpcode()) {
11230   default:
11231     llvm_unreachable("Do not know how to custom type legalize this operation!");
11232   case ISD::ATOMIC_LOAD: {
11233     SDValue Res = LowerATOMIC_LOAD_STORE(SDValue(N, 0), DAG);
11234     Results.push_back(Res);
11235     Results.push_back(Res.getValue(1));
11236     break;
11237   }
11238   case ISD::READCYCLECOUNTER: {
11239     SDVTList VTs = DAG.getVTList(MVT::i32, MVT::i32, MVT::Other);
11240     SDValue RTB = DAG.getNode(PPCISD::READ_TIME_BASE, dl, VTs, N->getOperand(0));
11241 
11242     Results.push_back(
11243         DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, RTB, RTB.getValue(1)));
11244     Results.push_back(RTB.getValue(2));
11245     break;
11246   }
11247   case ISD::INTRINSIC_W_CHAIN: {
11248     if (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue() !=
11249         Intrinsic::loop_decrement)
11250       break;
11251 
11252     assert(N->getValueType(0) == MVT::i1 &&
11253            "Unexpected result type for CTR decrement intrinsic");
11254     EVT SVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(),
11255                                  N->getValueType(0));
11256     SDVTList VTs = DAG.getVTList(SVT, MVT::Other);
11257     SDValue NewInt = DAG.getNode(N->getOpcode(), dl, VTs, N->getOperand(0),
11258                                  N->getOperand(1));
11259 
11260     Results.push_back(DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, NewInt));
11261     Results.push_back(NewInt.getValue(1));
11262     break;
11263   }
11264   case ISD::INTRINSIC_WO_CHAIN: {
11265     switch (cast<ConstantSDNode>(N->getOperand(0))->getZExtValue()) {
11266     case Intrinsic::ppc_pack_longdouble:
11267       Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, MVT::ppcf128,
11268                                     N->getOperand(2), N->getOperand(1)));
11269       break;
11270     case Intrinsic::ppc_maxfe:
11271     case Intrinsic::ppc_minfe:
11272     case Intrinsic::ppc_fnmsub:
11273     case Intrinsic::ppc_convert_f128_to_ppcf128:
11274       Results.push_back(LowerINTRINSIC_WO_CHAIN(SDValue(N, 0), DAG));
11275       break;
11276     }
11277     break;
11278   }
11279   case ISD::VAARG: {
11280     if (!Subtarget.isSVR4ABI() || Subtarget.isPPC64())
11281       return;
11282 
11283     EVT VT = N->getValueType(0);
11284 
11285     if (VT == MVT::i64) {
11286       SDValue NewNode = LowerVAARG(SDValue(N, 1), DAG);
11287 
11288       Results.push_back(NewNode);
11289       Results.push_back(NewNode.getValue(1));
11290     }
11291     return;
11292   }
11293   case ISD::STRICT_FP_TO_SINT:
11294   case ISD::STRICT_FP_TO_UINT:
11295   case ISD::FP_TO_SINT:
11296   case ISD::FP_TO_UINT: {
11297     // LowerFP_TO_INT() can only handle f32 and f64.
11298     if (N->getOperand(N->isStrictFPOpcode() ? 1 : 0).getValueType() ==
11299         MVT::ppcf128)
11300       return;
11301     SDValue LoweredValue = LowerFP_TO_INT(SDValue(N, 0), DAG, dl);
11302     Results.push_back(LoweredValue);
11303     if (N->isStrictFPOpcode())
11304       Results.push_back(LoweredValue.getValue(1));
11305     return;
11306   }
11307   case ISD::TRUNCATE: {
11308     if (!N->getValueType(0).isVector())
11309       return;
11310     SDValue Lowered = LowerTRUNCATEVector(SDValue(N, 0), DAG);
11311     if (Lowered)
11312       Results.push_back(Lowered);
11313     return;
11314   }
11315   case ISD::FSHL:
11316   case ISD::FSHR:
11317     // Don't handle funnel shifts here.
11318     return;
11319   case ISD::BITCAST:
11320     // Don't handle bitcast here.
11321     return;
11322   case ISD::FP_EXTEND:
11323     SDValue Lowered = LowerFP_EXTEND(SDValue(N, 0), DAG);
11324     if (Lowered)
11325       Results.push_back(Lowered);
11326     return;
11327   }
11328 }
11329 
11330 //===----------------------------------------------------------------------===//
11331 //  Other Lowering Code
11332 //===----------------------------------------------------------------------===//
11333 
11334 static Instruction *callIntrinsic(IRBuilderBase &Builder, Intrinsic::ID Id) {
11335   Module *M = Builder.GetInsertBlock()->getParent()->getParent();
11336   Function *Func = Intrinsic::getDeclaration(M, Id);
11337   return Builder.CreateCall(Func, {});
11338 }
11339 
11340 // The mappings for emitLeading/TrailingFence is taken from
11341 // http://www.cl.cam.ac.uk/~pes20/cpp/cpp0xmappings.html
11342 Instruction *PPCTargetLowering::emitLeadingFence(IRBuilderBase &Builder,
11343                                                  Instruction *Inst,
11344                                                  AtomicOrdering Ord) const {
11345   if (Ord == AtomicOrdering::SequentiallyConsistent)
11346     return callIntrinsic(Builder, Intrinsic::ppc_sync);
11347   if (isReleaseOrStronger(Ord))
11348     return callIntrinsic(Builder, Intrinsic::ppc_lwsync);
11349   return nullptr;
11350 }
11351 
11352 Instruction *PPCTargetLowering::emitTrailingFence(IRBuilderBase &Builder,
11353                                                   Instruction *Inst,
11354                                                   AtomicOrdering Ord) const {
11355   if (Inst->hasAtomicLoad() && isAcquireOrStronger(Ord)) {
11356     // See http://www.cl.cam.ac.uk/~pes20/cpp/cpp0xmappings.html and
11357     // http://www.rdrop.com/users/paulmck/scalability/paper/N2745r.2011.03.04a.html
11358     // and http://www.cl.cam.ac.uk/~pes20/cppppc/ for justification.
11359     if (isa<LoadInst>(Inst) && Subtarget.isPPC64())
11360       return Builder.CreateCall(
11361           Intrinsic::getDeclaration(
11362               Builder.GetInsertBlock()->getParent()->getParent(),
11363               Intrinsic::ppc_cfence, {Inst->getType()}),
11364           {Inst});
11365     // FIXME: Can use isync for rmw operation.
11366     return callIntrinsic(Builder, Intrinsic::ppc_lwsync);
11367   }
11368   return nullptr;
11369 }
11370 
11371 MachineBasicBlock *
11372 PPCTargetLowering::EmitAtomicBinary(MachineInstr &MI, MachineBasicBlock *BB,
11373                                     unsigned AtomicSize,
11374                                     unsigned BinOpcode,
11375                                     unsigned CmpOpcode,
11376                                     unsigned CmpPred) const {
11377   // This also handles ATOMIC_SWAP, indicated by BinOpcode==0.
11378   const TargetInstrInfo *TII = Subtarget.getInstrInfo();
11379 
11380   auto LoadMnemonic = PPC::LDARX;
11381   auto StoreMnemonic = PPC::STDCX;
11382   switch (AtomicSize) {
11383   default:
11384     llvm_unreachable("Unexpected size of atomic entity");
11385   case 1:
11386     LoadMnemonic = PPC::LBARX;
11387     StoreMnemonic = PPC::STBCX;
11388     assert(Subtarget.hasPartwordAtomics() && "Call this only with size >=4");
11389     break;
11390   case 2:
11391     LoadMnemonic = PPC::LHARX;
11392     StoreMnemonic = PPC::STHCX;
11393     assert(Subtarget.hasPartwordAtomics() && "Call this only with size >=4");
11394     break;
11395   case 4:
11396     LoadMnemonic = PPC::LWARX;
11397     StoreMnemonic = PPC::STWCX;
11398     break;
11399   case 8:
11400     LoadMnemonic = PPC::LDARX;
11401     StoreMnemonic = PPC::STDCX;
11402     break;
11403   }
11404 
11405   const BasicBlock *LLVM_BB = BB->getBasicBlock();
11406   MachineFunction *F = BB->getParent();
11407   MachineFunction::iterator It = ++BB->getIterator();
11408 
11409   Register dest = MI.getOperand(0).getReg();
11410   Register ptrA = MI.getOperand(1).getReg();
11411   Register ptrB = MI.getOperand(2).getReg();
11412   Register incr = MI.getOperand(3).getReg();
11413   DebugLoc dl = MI.getDebugLoc();
11414 
11415   MachineBasicBlock *loopMBB = F->CreateMachineBasicBlock(LLVM_BB);
11416   MachineBasicBlock *loop2MBB =
11417     CmpOpcode ? F->CreateMachineBasicBlock(LLVM_BB) : nullptr;
11418   MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB);
11419   F->insert(It, loopMBB);
11420   if (CmpOpcode)
11421     F->insert(It, loop2MBB);
11422   F->insert(It, exitMBB);
11423   exitMBB->splice(exitMBB->begin(), BB,
11424                   std::next(MachineBasicBlock::iterator(MI)), BB->end());
11425   exitMBB->transferSuccessorsAndUpdatePHIs(BB);
11426 
11427   MachineRegisterInfo &RegInfo = F->getRegInfo();
11428   Register TmpReg = (!BinOpcode) ? incr :
11429     RegInfo.createVirtualRegister( AtomicSize == 8 ? &PPC::G8RCRegClass
11430                                            : &PPC::GPRCRegClass);
11431 
11432   //  thisMBB:
11433   //   ...
11434   //   fallthrough --> loopMBB
11435   BB->addSuccessor(loopMBB);
11436 
11437   //  loopMBB:
11438   //   l[wd]arx dest, ptr
11439   //   add r0, dest, incr
11440   //   st[wd]cx. r0, ptr
11441   //   bne- loopMBB
11442   //   fallthrough --> exitMBB
11443 
11444   // For max/min...
11445   //  loopMBB:
11446   //   l[wd]arx dest, ptr
11447   //   cmpl?[wd] incr, dest
11448   //   bgt exitMBB
11449   //  loop2MBB:
11450   //   st[wd]cx. dest, ptr
11451   //   bne- loopMBB
11452   //   fallthrough --> exitMBB
11453 
11454   BB = loopMBB;
11455   BuildMI(BB, dl, TII->get(LoadMnemonic), dest)
11456     .addReg(ptrA).addReg(ptrB);
11457   if (BinOpcode)
11458     BuildMI(BB, dl, TII->get(BinOpcode), TmpReg).addReg(incr).addReg(dest);
11459   if (CmpOpcode) {
11460     // Signed comparisons of byte or halfword values must be sign-extended.
11461     if (CmpOpcode == PPC::CMPW && AtomicSize < 4) {
11462       Register ExtReg = RegInfo.createVirtualRegister(&PPC::GPRCRegClass);
11463       BuildMI(BB, dl, TII->get(AtomicSize == 1 ? PPC::EXTSB : PPC::EXTSH),
11464               ExtReg).addReg(dest);
11465       BuildMI(BB, dl, TII->get(CmpOpcode), PPC::CR0)
11466         .addReg(incr).addReg(ExtReg);
11467     } else
11468       BuildMI(BB, dl, TII->get(CmpOpcode), PPC::CR0)
11469         .addReg(incr).addReg(dest);
11470 
11471     BuildMI(BB, dl, TII->get(PPC::BCC))
11472       .addImm(CmpPred).addReg(PPC::CR0).addMBB(exitMBB);
11473     BB->addSuccessor(loop2MBB);
11474     BB->addSuccessor(exitMBB);
11475     BB = loop2MBB;
11476   }
11477   BuildMI(BB, dl, TII->get(StoreMnemonic))
11478     .addReg(TmpReg).addReg(ptrA).addReg(ptrB);
11479   BuildMI(BB, dl, TII->get(PPC::BCC))
11480     .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(loopMBB);
11481   BB->addSuccessor(loopMBB);
11482   BB->addSuccessor(exitMBB);
11483 
11484   //  exitMBB:
11485   //   ...
11486   BB = exitMBB;
11487   return BB;
11488 }
11489 
11490 static bool isSignExtended(MachineInstr &MI, const PPCInstrInfo *TII) {
11491   switch(MI.getOpcode()) {
11492   default:
11493     return false;
11494   case PPC::COPY:
11495     return TII->isSignExtended(MI);
11496   case PPC::LHA:
11497   case PPC::LHA8:
11498   case PPC::LHAU:
11499   case PPC::LHAU8:
11500   case PPC::LHAUX:
11501   case PPC::LHAUX8:
11502   case PPC::LHAX:
11503   case PPC::LHAX8:
11504   case PPC::LWA:
11505   case PPC::LWAUX:
11506   case PPC::LWAX:
11507   case PPC::LWAX_32:
11508   case PPC::LWA_32:
11509   case PPC::PLHA:
11510   case PPC::PLHA8:
11511   case PPC::PLHA8pc:
11512   case PPC::PLHApc:
11513   case PPC::PLWA:
11514   case PPC::PLWA8:
11515   case PPC::PLWA8pc:
11516   case PPC::PLWApc:
11517   case PPC::EXTSB:
11518   case PPC::EXTSB8:
11519   case PPC::EXTSB8_32_64:
11520   case PPC::EXTSB8_rec:
11521   case PPC::EXTSB_rec:
11522   case PPC::EXTSH:
11523   case PPC::EXTSH8:
11524   case PPC::EXTSH8_32_64:
11525   case PPC::EXTSH8_rec:
11526   case PPC::EXTSH_rec:
11527   case PPC::EXTSW:
11528   case PPC::EXTSWSLI:
11529   case PPC::EXTSWSLI_32_64:
11530   case PPC::EXTSWSLI_32_64_rec:
11531   case PPC::EXTSWSLI_rec:
11532   case PPC::EXTSW_32:
11533   case PPC::EXTSW_32_64:
11534   case PPC::EXTSW_32_64_rec:
11535   case PPC::EXTSW_rec:
11536   case PPC::SRAW:
11537   case PPC::SRAWI:
11538   case PPC::SRAWI_rec:
11539   case PPC::SRAW_rec:
11540     return true;
11541   }
11542   return false;
11543 }
11544 
11545 MachineBasicBlock *PPCTargetLowering::EmitPartwordAtomicBinary(
11546     MachineInstr &MI, MachineBasicBlock *BB,
11547     bool is8bit, // operation
11548     unsigned BinOpcode, unsigned CmpOpcode, unsigned CmpPred) const {
11549   // This also handles ATOMIC_SWAP, indicated by BinOpcode==0.
11550   const PPCInstrInfo *TII = Subtarget.getInstrInfo();
11551 
11552   // If this is a signed comparison and the value being compared is not known
11553   // to be sign extended, sign extend it here.
11554   DebugLoc dl = MI.getDebugLoc();
11555   MachineFunction *F = BB->getParent();
11556   MachineRegisterInfo &RegInfo = F->getRegInfo();
11557   Register incr = MI.getOperand(3).getReg();
11558   bool IsSignExtended = Register::isVirtualRegister(incr) &&
11559     isSignExtended(*RegInfo.getVRegDef(incr), TII);
11560 
11561   if (CmpOpcode == PPC::CMPW && !IsSignExtended) {
11562     Register ValueReg = RegInfo.createVirtualRegister(&PPC::GPRCRegClass);
11563     BuildMI(*BB, MI, dl, TII->get(is8bit ? PPC::EXTSB : PPC::EXTSH), ValueReg)
11564         .addReg(MI.getOperand(3).getReg());
11565     MI.getOperand(3).setReg(ValueReg);
11566   }
11567   // If we support part-word atomic mnemonics, just use them
11568   if (Subtarget.hasPartwordAtomics())
11569     return EmitAtomicBinary(MI, BB, is8bit ? 1 : 2, BinOpcode, CmpOpcode,
11570                             CmpPred);
11571 
11572   // In 64 bit mode we have to use 64 bits for addresses, even though the
11573   // lwarx/stwcx are 32 bits.  With the 32-bit atomics we can use address
11574   // registers without caring whether they're 32 or 64, but here we're
11575   // doing actual arithmetic on the addresses.
11576   bool is64bit = Subtarget.isPPC64();
11577   bool isLittleEndian = Subtarget.isLittleEndian();
11578   unsigned ZeroReg = is64bit ? PPC::ZERO8 : PPC::ZERO;
11579 
11580   const BasicBlock *LLVM_BB = BB->getBasicBlock();
11581   MachineFunction::iterator It = ++BB->getIterator();
11582 
11583   Register dest = MI.getOperand(0).getReg();
11584   Register ptrA = MI.getOperand(1).getReg();
11585   Register ptrB = MI.getOperand(2).getReg();
11586 
11587   MachineBasicBlock *loopMBB = F->CreateMachineBasicBlock(LLVM_BB);
11588   MachineBasicBlock *loop2MBB =
11589       CmpOpcode ? F->CreateMachineBasicBlock(LLVM_BB) : nullptr;
11590   MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB);
11591   F->insert(It, loopMBB);
11592   if (CmpOpcode)
11593     F->insert(It, loop2MBB);
11594   F->insert(It, exitMBB);
11595   exitMBB->splice(exitMBB->begin(), BB,
11596                   std::next(MachineBasicBlock::iterator(MI)), BB->end());
11597   exitMBB->transferSuccessorsAndUpdatePHIs(BB);
11598 
11599   const TargetRegisterClass *RC =
11600       is64bit ? &PPC::G8RCRegClass : &PPC::GPRCRegClass;
11601   const TargetRegisterClass *GPRC = &PPC::GPRCRegClass;
11602 
11603   Register PtrReg = RegInfo.createVirtualRegister(RC);
11604   Register Shift1Reg = RegInfo.createVirtualRegister(GPRC);
11605   Register ShiftReg =
11606       isLittleEndian ? Shift1Reg : RegInfo.createVirtualRegister(GPRC);
11607   Register Incr2Reg = RegInfo.createVirtualRegister(GPRC);
11608   Register MaskReg = RegInfo.createVirtualRegister(GPRC);
11609   Register Mask2Reg = RegInfo.createVirtualRegister(GPRC);
11610   Register Mask3Reg = RegInfo.createVirtualRegister(GPRC);
11611   Register Tmp2Reg = RegInfo.createVirtualRegister(GPRC);
11612   Register Tmp3Reg = RegInfo.createVirtualRegister(GPRC);
11613   Register Tmp4Reg = RegInfo.createVirtualRegister(GPRC);
11614   Register TmpDestReg = RegInfo.createVirtualRegister(GPRC);
11615   Register SrwDestReg = RegInfo.createVirtualRegister(GPRC);
11616   Register Ptr1Reg;
11617   Register TmpReg =
11618       (!BinOpcode) ? Incr2Reg : RegInfo.createVirtualRegister(GPRC);
11619 
11620   //  thisMBB:
11621   //   ...
11622   //   fallthrough --> loopMBB
11623   BB->addSuccessor(loopMBB);
11624 
11625   // The 4-byte load must be aligned, while a char or short may be
11626   // anywhere in the word.  Hence all this nasty bookkeeping code.
11627   //   add ptr1, ptrA, ptrB [copy if ptrA==0]
11628   //   rlwinm shift1, ptr1, 3, 27, 28 [3, 27, 27]
11629   //   xori shift, shift1, 24 [16]
11630   //   rlwinm ptr, ptr1, 0, 0, 29
11631   //   slw incr2, incr, shift
11632   //   li mask2, 255 [li mask3, 0; ori mask2, mask3, 65535]
11633   //   slw mask, mask2, shift
11634   //  loopMBB:
11635   //   lwarx tmpDest, ptr
11636   //   add tmp, tmpDest, incr2
11637   //   andc tmp2, tmpDest, mask
11638   //   and tmp3, tmp, mask
11639   //   or tmp4, tmp3, tmp2
11640   //   stwcx. tmp4, ptr
11641   //   bne- loopMBB
11642   //   fallthrough --> exitMBB
11643   //   srw SrwDest, tmpDest, shift
11644   //   rlwinm SrwDest, SrwDest, 0, 24 [16], 31
11645   if (ptrA != ZeroReg) {
11646     Ptr1Reg = RegInfo.createVirtualRegister(RC);
11647     BuildMI(BB, dl, TII->get(is64bit ? PPC::ADD8 : PPC::ADD4), Ptr1Reg)
11648         .addReg(ptrA)
11649         .addReg(ptrB);
11650   } else {
11651     Ptr1Reg = ptrB;
11652   }
11653   // We need use 32-bit subregister to avoid mismatch register class in 64-bit
11654   // mode.
11655   BuildMI(BB, dl, TII->get(PPC::RLWINM), Shift1Reg)
11656       .addReg(Ptr1Reg, 0, is64bit ? PPC::sub_32 : 0)
11657       .addImm(3)
11658       .addImm(27)
11659       .addImm(is8bit ? 28 : 27);
11660   if (!isLittleEndian)
11661     BuildMI(BB, dl, TII->get(PPC::XORI), ShiftReg)
11662         .addReg(Shift1Reg)
11663         .addImm(is8bit ? 24 : 16);
11664   if (is64bit)
11665     BuildMI(BB, dl, TII->get(PPC::RLDICR), PtrReg)
11666         .addReg(Ptr1Reg)
11667         .addImm(0)
11668         .addImm(61);
11669   else
11670     BuildMI(BB, dl, TII->get(PPC::RLWINM), PtrReg)
11671         .addReg(Ptr1Reg)
11672         .addImm(0)
11673         .addImm(0)
11674         .addImm(29);
11675   BuildMI(BB, dl, TII->get(PPC::SLW), Incr2Reg).addReg(incr).addReg(ShiftReg);
11676   if (is8bit)
11677     BuildMI(BB, dl, TII->get(PPC::LI), Mask2Reg).addImm(255);
11678   else {
11679     BuildMI(BB, dl, TII->get(PPC::LI), Mask3Reg).addImm(0);
11680     BuildMI(BB, dl, TII->get(PPC::ORI), Mask2Reg)
11681         .addReg(Mask3Reg)
11682         .addImm(65535);
11683   }
11684   BuildMI(BB, dl, TII->get(PPC::SLW), MaskReg)
11685       .addReg(Mask2Reg)
11686       .addReg(ShiftReg);
11687 
11688   BB = loopMBB;
11689   BuildMI(BB, dl, TII->get(PPC::LWARX), TmpDestReg)
11690       .addReg(ZeroReg)
11691       .addReg(PtrReg);
11692   if (BinOpcode)
11693     BuildMI(BB, dl, TII->get(BinOpcode), TmpReg)
11694         .addReg(Incr2Reg)
11695         .addReg(TmpDestReg);
11696   BuildMI(BB, dl, TII->get(PPC::ANDC), Tmp2Reg)
11697       .addReg(TmpDestReg)
11698       .addReg(MaskReg);
11699   BuildMI(BB, dl, TII->get(PPC::AND), Tmp3Reg).addReg(TmpReg).addReg(MaskReg);
11700   if (CmpOpcode) {
11701     // For unsigned comparisons, we can directly compare the shifted values.
11702     // For signed comparisons we shift and sign extend.
11703     Register SReg = RegInfo.createVirtualRegister(GPRC);
11704     BuildMI(BB, dl, TII->get(PPC::AND), SReg)
11705         .addReg(TmpDestReg)
11706         .addReg(MaskReg);
11707     unsigned ValueReg = SReg;
11708     unsigned CmpReg = Incr2Reg;
11709     if (CmpOpcode == PPC::CMPW) {
11710       ValueReg = RegInfo.createVirtualRegister(GPRC);
11711       BuildMI(BB, dl, TII->get(PPC::SRW), ValueReg)
11712           .addReg(SReg)
11713           .addReg(ShiftReg);
11714       Register ValueSReg = RegInfo.createVirtualRegister(GPRC);
11715       BuildMI(BB, dl, TII->get(is8bit ? PPC::EXTSB : PPC::EXTSH), ValueSReg)
11716           .addReg(ValueReg);
11717       ValueReg = ValueSReg;
11718       CmpReg = incr;
11719     }
11720     BuildMI(BB, dl, TII->get(CmpOpcode), PPC::CR0)
11721         .addReg(CmpReg)
11722         .addReg(ValueReg);
11723     BuildMI(BB, dl, TII->get(PPC::BCC))
11724         .addImm(CmpPred)
11725         .addReg(PPC::CR0)
11726         .addMBB(exitMBB);
11727     BB->addSuccessor(loop2MBB);
11728     BB->addSuccessor(exitMBB);
11729     BB = loop2MBB;
11730   }
11731   BuildMI(BB, dl, TII->get(PPC::OR), Tmp4Reg).addReg(Tmp3Reg).addReg(Tmp2Reg);
11732   BuildMI(BB, dl, TII->get(PPC::STWCX))
11733       .addReg(Tmp4Reg)
11734       .addReg(ZeroReg)
11735       .addReg(PtrReg);
11736   BuildMI(BB, dl, TII->get(PPC::BCC))
11737       .addImm(PPC::PRED_NE)
11738       .addReg(PPC::CR0)
11739       .addMBB(loopMBB);
11740   BB->addSuccessor(loopMBB);
11741   BB->addSuccessor(exitMBB);
11742 
11743   //  exitMBB:
11744   //   ...
11745   BB = exitMBB;
11746   // Since the shift amount is not a constant, we need to clear
11747   // the upper bits with a separate RLWINM.
11748   BuildMI(*BB, BB->begin(), dl, TII->get(PPC::RLWINM), dest)
11749       .addReg(SrwDestReg)
11750       .addImm(0)
11751       .addImm(is8bit ? 24 : 16)
11752       .addImm(31);
11753   BuildMI(*BB, BB->begin(), dl, TII->get(PPC::SRW), SrwDestReg)
11754       .addReg(TmpDestReg)
11755       .addReg(ShiftReg);
11756   return BB;
11757 }
11758 
11759 llvm::MachineBasicBlock *
11760 PPCTargetLowering::emitEHSjLjSetJmp(MachineInstr &MI,
11761                                     MachineBasicBlock *MBB) const {
11762   DebugLoc DL = MI.getDebugLoc();
11763   const TargetInstrInfo *TII = Subtarget.getInstrInfo();
11764   const PPCRegisterInfo *TRI = Subtarget.getRegisterInfo();
11765 
11766   MachineFunction *MF = MBB->getParent();
11767   MachineRegisterInfo &MRI = MF->getRegInfo();
11768 
11769   const BasicBlock *BB = MBB->getBasicBlock();
11770   MachineFunction::iterator I = ++MBB->getIterator();
11771 
11772   Register DstReg = MI.getOperand(0).getReg();
11773   const TargetRegisterClass *RC = MRI.getRegClass(DstReg);
11774   assert(TRI->isTypeLegalForClass(*RC, MVT::i32) && "Invalid destination!");
11775   Register mainDstReg = MRI.createVirtualRegister(RC);
11776   Register restoreDstReg = MRI.createVirtualRegister(RC);
11777 
11778   MVT PVT = getPointerTy(MF->getDataLayout());
11779   assert((PVT == MVT::i64 || PVT == MVT::i32) &&
11780          "Invalid Pointer Size!");
11781   // For v = setjmp(buf), we generate
11782   //
11783   // thisMBB:
11784   //  SjLjSetup mainMBB
11785   //  bl mainMBB
11786   //  v_restore = 1
11787   //  b sinkMBB
11788   //
11789   // mainMBB:
11790   //  buf[LabelOffset] = LR
11791   //  v_main = 0
11792   //
11793   // sinkMBB:
11794   //  v = phi(main, restore)
11795   //
11796 
11797   MachineBasicBlock *thisMBB = MBB;
11798   MachineBasicBlock *mainMBB = MF->CreateMachineBasicBlock(BB);
11799   MachineBasicBlock *sinkMBB = MF->CreateMachineBasicBlock(BB);
11800   MF->insert(I, mainMBB);
11801   MF->insert(I, sinkMBB);
11802 
11803   MachineInstrBuilder MIB;
11804 
11805   // Transfer the remainder of BB and its successor edges to sinkMBB.
11806   sinkMBB->splice(sinkMBB->begin(), MBB,
11807                   std::next(MachineBasicBlock::iterator(MI)), MBB->end());
11808   sinkMBB->transferSuccessorsAndUpdatePHIs(MBB);
11809 
11810   // Note that the structure of the jmp_buf used here is not compatible
11811   // with that used by libc, and is not designed to be. Specifically, it
11812   // stores only those 'reserved' registers that LLVM does not otherwise
11813   // understand how to spill. Also, by convention, by the time this
11814   // intrinsic is called, Clang has already stored the frame address in the
11815   // first slot of the buffer and stack address in the third. Following the
11816   // X86 target code, we'll store the jump address in the second slot. We also
11817   // need to save the TOC pointer (R2) to handle jumps between shared
11818   // libraries, and that will be stored in the fourth slot. The thread
11819   // identifier (R13) is not affected.
11820 
11821   // thisMBB:
11822   const int64_t LabelOffset = 1 * PVT.getStoreSize();
11823   const int64_t TOCOffset   = 3 * PVT.getStoreSize();
11824   const int64_t BPOffset    = 4 * PVT.getStoreSize();
11825 
11826   // Prepare IP either in reg.
11827   const TargetRegisterClass *PtrRC = getRegClassFor(PVT);
11828   Register LabelReg = MRI.createVirtualRegister(PtrRC);
11829   Register BufReg = MI.getOperand(1).getReg();
11830 
11831   if (Subtarget.is64BitELFABI()) {
11832     setUsesTOCBasePtr(*MBB->getParent());
11833     MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::STD))
11834               .addReg(PPC::X2)
11835               .addImm(TOCOffset)
11836               .addReg(BufReg)
11837               .cloneMemRefs(MI);
11838   }
11839 
11840   // Naked functions never have a base pointer, and so we use r1. For all
11841   // other functions, this decision must be delayed until during PEI.
11842   unsigned BaseReg;
11843   if (MF->getFunction().hasFnAttribute(Attribute::Naked))
11844     BaseReg = Subtarget.isPPC64() ? PPC::X1 : PPC::R1;
11845   else
11846     BaseReg = Subtarget.isPPC64() ? PPC::BP8 : PPC::BP;
11847 
11848   MIB = BuildMI(*thisMBB, MI, DL,
11849                 TII->get(Subtarget.isPPC64() ? PPC::STD : PPC::STW))
11850             .addReg(BaseReg)
11851             .addImm(BPOffset)
11852             .addReg(BufReg)
11853             .cloneMemRefs(MI);
11854 
11855   // Setup
11856   MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::BCLalways)).addMBB(mainMBB);
11857   MIB.addRegMask(TRI->getNoPreservedMask());
11858 
11859   BuildMI(*thisMBB, MI, DL, TII->get(PPC::LI), restoreDstReg).addImm(1);
11860 
11861   MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::EH_SjLj_Setup))
11862           .addMBB(mainMBB);
11863   MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::B)).addMBB(sinkMBB);
11864 
11865   thisMBB->addSuccessor(mainMBB, BranchProbability::getZero());
11866   thisMBB->addSuccessor(sinkMBB, BranchProbability::getOne());
11867 
11868   // mainMBB:
11869   //  mainDstReg = 0
11870   MIB =
11871       BuildMI(mainMBB, DL,
11872               TII->get(Subtarget.isPPC64() ? PPC::MFLR8 : PPC::MFLR), LabelReg);
11873 
11874   // Store IP
11875   if (Subtarget.isPPC64()) {
11876     MIB = BuildMI(mainMBB, DL, TII->get(PPC::STD))
11877             .addReg(LabelReg)
11878             .addImm(LabelOffset)
11879             .addReg(BufReg);
11880   } else {
11881     MIB = BuildMI(mainMBB, DL, TII->get(PPC::STW))
11882             .addReg(LabelReg)
11883             .addImm(LabelOffset)
11884             .addReg(BufReg);
11885   }
11886   MIB.cloneMemRefs(MI);
11887 
11888   BuildMI(mainMBB, DL, TII->get(PPC::LI), mainDstReg).addImm(0);
11889   mainMBB->addSuccessor(sinkMBB);
11890 
11891   // sinkMBB:
11892   BuildMI(*sinkMBB, sinkMBB->begin(), DL,
11893           TII->get(PPC::PHI), DstReg)
11894     .addReg(mainDstReg).addMBB(mainMBB)
11895     .addReg(restoreDstReg).addMBB(thisMBB);
11896 
11897   MI.eraseFromParent();
11898   return sinkMBB;
11899 }
11900 
11901 MachineBasicBlock *
11902 PPCTargetLowering::emitEHSjLjLongJmp(MachineInstr &MI,
11903                                      MachineBasicBlock *MBB) const {
11904   DebugLoc DL = MI.getDebugLoc();
11905   const TargetInstrInfo *TII = Subtarget.getInstrInfo();
11906 
11907   MachineFunction *MF = MBB->getParent();
11908   MachineRegisterInfo &MRI = MF->getRegInfo();
11909 
11910   MVT PVT = getPointerTy(MF->getDataLayout());
11911   assert((PVT == MVT::i64 || PVT == MVT::i32) &&
11912          "Invalid Pointer Size!");
11913 
11914   const TargetRegisterClass *RC =
11915     (PVT == MVT::i64) ? &PPC::G8RCRegClass : &PPC::GPRCRegClass;
11916   Register Tmp = MRI.createVirtualRegister(RC);
11917   // Since FP is only updated here but NOT referenced, it's treated as GPR.
11918   unsigned FP  = (PVT == MVT::i64) ? PPC::X31 : PPC::R31;
11919   unsigned SP  = (PVT == MVT::i64) ? PPC::X1 : PPC::R1;
11920   unsigned BP =
11921       (PVT == MVT::i64)
11922           ? PPC::X30
11923           : (Subtarget.isSVR4ABI() && isPositionIndependent() ? PPC::R29
11924                                                               : PPC::R30);
11925 
11926   MachineInstrBuilder MIB;
11927 
11928   const int64_t LabelOffset = 1 * PVT.getStoreSize();
11929   const int64_t SPOffset    = 2 * PVT.getStoreSize();
11930   const int64_t TOCOffset   = 3 * PVT.getStoreSize();
11931   const int64_t BPOffset    = 4 * PVT.getStoreSize();
11932 
11933   Register BufReg = MI.getOperand(0).getReg();
11934 
11935   // Reload FP (the jumped-to function may not have had a
11936   // frame pointer, and if so, then its r31 will be restored
11937   // as necessary).
11938   if (PVT == MVT::i64) {
11939     MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), FP)
11940             .addImm(0)
11941             .addReg(BufReg);
11942   } else {
11943     MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), FP)
11944             .addImm(0)
11945             .addReg(BufReg);
11946   }
11947   MIB.cloneMemRefs(MI);
11948 
11949   // Reload IP
11950   if (PVT == MVT::i64) {
11951     MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), Tmp)
11952             .addImm(LabelOffset)
11953             .addReg(BufReg);
11954   } else {
11955     MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), Tmp)
11956             .addImm(LabelOffset)
11957             .addReg(BufReg);
11958   }
11959   MIB.cloneMemRefs(MI);
11960 
11961   // Reload SP
11962   if (PVT == MVT::i64) {
11963     MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), SP)
11964             .addImm(SPOffset)
11965             .addReg(BufReg);
11966   } else {
11967     MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), SP)
11968             .addImm(SPOffset)
11969             .addReg(BufReg);
11970   }
11971   MIB.cloneMemRefs(MI);
11972 
11973   // Reload BP
11974   if (PVT == MVT::i64) {
11975     MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), BP)
11976             .addImm(BPOffset)
11977             .addReg(BufReg);
11978   } else {
11979     MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), BP)
11980             .addImm(BPOffset)
11981             .addReg(BufReg);
11982   }
11983   MIB.cloneMemRefs(MI);
11984 
11985   // Reload TOC
11986   if (PVT == MVT::i64 && Subtarget.isSVR4ABI()) {
11987     setUsesTOCBasePtr(*MBB->getParent());
11988     MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), PPC::X2)
11989               .addImm(TOCOffset)
11990               .addReg(BufReg)
11991               .cloneMemRefs(MI);
11992   }
11993 
11994   // Jump
11995   BuildMI(*MBB, MI, DL,
11996           TII->get(PVT == MVT::i64 ? PPC::MTCTR8 : PPC::MTCTR)).addReg(Tmp);
11997   BuildMI(*MBB, MI, DL, TII->get(PVT == MVT::i64 ? PPC::BCTR8 : PPC::BCTR));
11998 
11999   MI.eraseFromParent();
12000   return MBB;
12001 }
12002 
12003 bool PPCTargetLowering::hasInlineStackProbe(MachineFunction &MF) const {
12004   // If the function specifically requests inline stack probes, emit them.
12005   if (MF.getFunction().hasFnAttribute("probe-stack"))
12006     return MF.getFunction().getFnAttribute("probe-stack").getValueAsString() ==
12007            "inline-asm";
12008   return false;
12009 }
12010 
12011 unsigned PPCTargetLowering::getStackProbeSize(MachineFunction &MF) const {
12012   const TargetFrameLowering *TFI = Subtarget.getFrameLowering();
12013   unsigned StackAlign = TFI->getStackAlignment();
12014   assert(StackAlign >= 1 && isPowerOf2_32(StackAlign) &&
12015          "Unexpected stack alignment");
12016   // The default stack probe size is 4096 if the function has no
12017   // stack-probe-size attribute.
12018   unsigned StackProbeSize = 4096;
12019   const Function &Fn = MF.getFunction();
12020   if (Fn.hasFnAttribute("stack-probe-size"))
12021     Fn.getFnAttribute("stack-probe-size")
12022         .getValueAsString()
12023         .getAsInteger(0, StackProbeSize);
12024   // Round down to the stack alignment.
12025   StackProbeSize &= ~(StackAlign - 1);
12026   return StackProbeSize ? StackProbeSize : StackAlign;
12027 }
12028 
12029 // Lower dynamic stack allocation with probing. `emitProbedAlloca` is splitted
12030 // into three phases. In the first phase, it uses pseudo instruction
12031 // PREPARE_PROBED_ALLOCA to get the future result of actual FramePointer and
12032 // FinalStackPtr. In the second phase, it generates a loop for probing blocks.
12033 // At last, it uses pseudo instruction DYNAREAOFFSET to get the future result of
12034 // MaxCallFrameSize so that it can calculate correct data area pointer.
12035 MachineBasicBlock *
12036 PPCTargetLowering::emitProbedAlloca(MachineInstr &MI,
12037                                     MachineBasicBlock *MBB) const {
12038   const bool isPPC64 = Subtarget.isPPC64();
12039   MachineFunction *MF = MBB->getParent();
12040   const TargetInstrInfo *TII = Subtarget.getInstrInfo();
12041   DebugLoc DL = MI.getDebugLoc();
12042   const unsigned ProbeSize = getStackProbeSize(*MF);
12043   const BasicBlock *ProbedBB = MBB->getBasicBlock();
12044   MachineRegisterInfo &MRI = MF->getRegInfo();
12045   // The CFG of probing stack looks as
12046   //         +-----+
12047   //         | MBB |
12048   //         +--+--+
12049   //            |
12050   //       +----v----+
12051   //  +--->+ TestMBB +---+
12052   //  |    +----+----+   |
12053   //  |         |        |
12054   //  |   +-----v----+   |
12055   //  +---+ BlockMBB |   |
12056   //      +----------+   |
12057   //                     |
12058   //       +---------+   |
12059   //       | TailMBB +<--+
12060   //       +---------+
12061   // In MBB, calculate previous frame pointer and final stack pointer.
12062   // In TestMBB, test if sp is equal to final stack pointer, if so, jump to
12063   // TailMBB. In BlockMBB, update the sp atomically and jump back to TestMBB.
12064   // TailMBB is spliced via \p MI.
12065   MachineBasicBlock *TestMBB = MF->CreateMachineBasicBlock(ProbedBB);
12066   MachineBasicBlock *TailMBB = MF->CreateMachineBasicBlock(ProbedBB);
12067   MachineBasicBlock *BlockMBB = MF->CreateMachineBasicBlock(ProbedBB);
12068 
12069   MachineFunction::iterator MBBIter = ++MBB->getIterator();
12070   MF->insert(MBBIter, TestMBB);
12071   MF->insert(MBBIter, BlockMBB);
12072   MF->insert(MBBIter, TailMBB);
12073 
12074   const TargetRegisterClass *G8RC = &PPC::G8RCRegClass;
12075   const TargetRegisterClass *GPRC = &PPC::GPRCRegClass;
12076 
12077   Register DstReg = MI.getOperand(0).getReg();
12078   Register NegSizeReg = MI.getOperand(1).getReg();
12079   Register SPReg = isPPC64 ? PPC::X1 : PPC::R1;
12080   Register FinalStackPtr = MRI.createVirtualRegister(isPPC64 ? G8RC : GPRC);
12081   Register FramePointer = MRI.createVirtualRegister(isPPC64 ? G8RC : GPRC);
12082   Register ActualNegSizeReg = MRI.createVirtualRegister(isPPC64 ? G8RC : GPRC);
12083 
12084   // Since value of NegSizeReg might be realigned in prologepilog, insert a
12085   // PREPARE_PROBED_ALLOCA pseudo instruction to get actual FramePointer and
12086   // NegSize.
12087   unsigned ProbeOpc;
12088   if (!MRI.hasOneNonDBGUse(NegSizeReg))
12089     ProbeOpc =
12090         isPPC64 ? PPC::PREPARE_PROBED_ALLOCA_64 : PPC::PREPARE_PROBED_ALLOCA_32;
12091   else
12092     // By introducing PREPARE_PROBED_ALLOCA_NEGSIZE_OPT, ActualNegSizeReg
12093     // and NegSizeReg will be allocated in the same phyreg to avoid
12094     // redundant copy when NegSizeReg has only one use which is current MI and
12095     // will be replaced by PREPARE_PROBED_ALLOCA then.
12096     ProbeOpc = isPPC64 ? PPC::PREPARE_PROBED_ALLOCA_NEGSIZE_SAME_REG_64
12097                        : PPC::PREPARE_PROBED_ALLOCA_NEGSIZE_SAME_REG_32;
12098   BuildMI(*MBB, {MI}, DL, TII->get(ProbeOpc), FramePointer)
12099       .addDef(ActualNegSizeReg)
12100       .addReg(NegSizeReg)
12101       .add(MI.getOperand(2))
12102       .add(MI.getOperand(3));
12103 
12104   // Calculate final stack pointer, which equals to SP + ActualNegSize.
12105   BuildMI(*MBB, {MI}, DL, TII->get(isPPC64 ? PPC::ADD8 : PPC::ADD4),
12106           FinalStackPtr)
12107       .addReg(SPReg)
12108       .addReg(ActualNegSizeReg);
12109 
12110   // Materialize a scratch register for update.
12111   int64_t NegProbeSize = -(int64_t)ProbeSize;
12112   assert(isInt<32>(NegProbeSize) && "Unhandled probe size!");
12113   Register ScratchReg = MRI.createVirtualRegister(isPPC64 ? G8RC : GPRC);
12114   if (!isInt<16>(NegProbeSize)) {
12115     Register TempReg = MRI.createVirtualRegister(isPPC64 ? G8RC : GPRC);
12116     BuildMI(*MBB, {MI}, DL, TII->get(isPPC64 ? PPC::LIS8 : PPC::LIS), TempReg)
12117         .addImm(NegProbeSize >> 16);
12118     BuildMI(*MBB, {MI}, DL, TII->get(isPPC64 ? PPC::ORI8 : PPC::ORI),
12119             ScratchReg)
12120         .addReg(TempReg)
12121         .addImm(NegProbeSize & 0xFFFF);
12122   } else
12123     BuildMI(*MBB, {MI}, DL, TII->get(isPPC64 ? PPC::LI8 : PPC::LI), ScratchReg)
12124         .addImm(NegProbeSize);
12125 
12126   {
12127     // Probing leading residual part.
12128     Register Div = MRI.createVirtualRegister(isPPC64 ? G8RC : GPRC);
12129     BuildMI(*MBB, {MI}, DL, TII->get(isPPC64 ? PPC::DIVD : PPC::DIVW), Div)
12130         .addReg(ActualNegSizeReg)
12131         .addReg(ScratchReg);
12132     Register Mul = MRI.createVirtualRegister(isPPC64 ? G8RC : GPRC);
12133     BuildMI(*MBB, {MI}, DL, TII->get(isPPC64 ? PPC::MULLD : PPC::MULLW), Mul)
12134         .addReg(Div)
12135         .addReg(ScratchReg);
12136     Register NegMod = MRI.createVirtualRegister(isPPC64 ? G8RC : GPRC);
12137     BuildMI(*MBB, {MI}, DL, TII->get(isPPC64 ? PPC::SUBF8 : PPC::SUBF), NegMod)
12138         .addReg(Mul)
12139         .addReg(ActualNegSizeReg);
12140     BuildMI(*MBB, {MI}, DL, TII->get(isPPC64 ? PPC::STDUX : PPC::STWUX), SPReg)
12141         .addReg(FramePointer)
12142         .addReg(SPReg)
12143         .addReg(NegMod);
12144   }
12145 
12146   {
12147     // Remaining part should be multiple of ProbeSize.
12148     Register CmpResult = MRI.createVirtualRegister(&PPC::CRRCRegClass);
12149     BuildMI(TestMBB, DL, TII->get(isPPC64 ? PPC::CMPD : PPC::CMPW), CmpResult)
12150         .addReg(SPReg)
12151         .addReg(FinalStackPtr);
12152     BuildMI(TestMBB, DL, TII->get(PPC::BCC))
12153         .addImm(PPC::PRED_EQ)
12154         .addReg(CmpResult)
12155         .addMBB(TailMBB);
12156     TestMBB->addSuccessor(BlockMBB);
12157     TestMBB->addSuccessor(TailMBB);
12158   }
12159 
12160   {
12161     // Touch the block.
12162     // |P...|P...|P...
12163     BuildMI(BlockMBB, DL, TII->get(isPPC64 ? PPC::STDUX : PPC::STWUX), SPReg)
12164         .addReg(FramePointer)
12165         .addReg(SPReg)
12166         .addReg(ScratchReg);
12167     BuildMI(BlockMBB, DL, TII->get(PPC::B)).addMBB(TestMBB);
12168     BlockMBB->addSuccessor(TestMBB);
12169   }
12170 
12171   // Calculation of MaxCallFrameSize is deferred to prologepilog, use
12172   // DYNAREAOFFSET pseudo instruction to get the future result.
12173   Register MaxCallFrameSizeReg =
12174       MRI.createVirtualRegister(isPPC64 ? G8RC : GPRC);
12175   BuildMI(TailMBB, DL,
12176           TII->get(isPPC64 ? PPC::DYNAREAOFFSET8 : PPC::DYNAREAOFFSET),
12177           MaxCallFrameSizeReg)
12178       .add(MI.getOperand(2))
12179       .add(MI.getOperand(3));
12180   BuildMI(TailMBB, DL, TII->get(isPPC64 ? PPC::ADD8 : PPC::ADD4), DstReg)
12181       .addReg(SPReg)
12182       .addReg(MaxCallFrameSizeReg);
12183 
12184   // Splice instructions after MI to TailMBB.
12185   TailMBB->splice(TailMBB->end(), MBB,
12186                   std::next(MachineBasicBlock::iterator(MI)), MBB->end());
12187   TailMBB->transferSuccessorsAndUpdatePHIs(MBB);
12188   MBB->addSuccessor(TestMBB);
12189 
12190   // Delete the pseudo instruction.
12191   MI.eraseFromParent();
12192 
12193   ++NumDynamicAllocaProbed;
12194   return TailMBB;
12195 }
12196 
12197 MachineBasicBlock *
12198 PPCTargetLowering::EmitInstrWithCustomInserter(MachineInstr &MI,
12199                                                MachineBasicBlock *BB) const {
12200   if (MI.getOpcode() == TargetOpcode::STACKMAP ||
12201       MI.getOpcode() == TargetOpcode::PATCHPOINT) {
12202     if (Subtarget.is64BitELFABI() &&
12203         MI.getOpcode() == TargetOpcode::PATCHPOINT &&
12204         !Subtarget.isUsingPCRelativeCalls()) {
12205       // Call lowering should have added an r2 operand to indicate a dependence
12206       // on the TOC base pointer value. It can't however, because there is no
12207       // way to mark the dependence as implicit there, and so the stackmap code
12208       // will confuse it with a regular operand. Instead, add the dependence
12209       // here.
12210       MI.addOperand(MachineOperand::CreateReg(PPC::X2, false, true));
12211     }
12212 
12213     return emitPatchPoint(MI, BB);
12214   }
12215 
12216   if (MI.getOpcode() == PPC::EH_SjLj_SetJmp32 ||
12217       MI.getOpcode() == PPC::EH_SjLj_SetJmp64) {
12218     return emitEHSjLjSetJmp(MI, BB);
12219   } else if (MI.getOpcode() == PPC::EH_SjLj_LongJmp32 ||
12220              MI.getOpcode() == PPC::EH_SjLj_LongJmp64) {
12221     return emitEHSjLjLongJmp(MI, BB);
12222   }
12223 
12224   const TargetInstrInfo *TII = Subtarget.getInstrInfo();
12225 
12226   // To "insert" these instructions we actually have to insert their
12227   // control-flow patterns.
12228   const BasicBlock *LLVM_BB = BB->getBasicBlock();
12229   MachineFunction::iterator It = ++BB->getIterator();
12230 
12231   MachineFunction *F = BB->getParent();
12232   MachineRegisterInfo &MRI = F->getRegInfo();
12233 
12234   if (MI.getOpcode() == PPC::SELECT_CC_I4 ||
12235       MI.getOpcode() == PPC::SELECT_CC_I8 || MI.getOpcode() == PPC::SELECT_I4 ||
12236       MI.getOpcode() == PPC::SELECT_I8) {
12237     SmallVector<MachineOperand, 2> Cond;
12238     if (MI.getOpcode() == PPC::SELECT_CC_I4 ||
12239         MI.getOpcode() == PPC::SELECT_CC_I8)
12240       Cond.push_back(MI.getOperand(4));
12241     else
12242       Cond.push_back(MachineOperand::CreateImm(PPC::PRED_BIT_SET));
12243     Cond.push_back(MI.getOperand(1));
12244 
12245     DebugLoc dl = MI.getDebugLoc();
12246     TII->insertSelect(*BB, MI, dl, MI.getOperand(0).getReg(), Cond,
12247                       MI.getOperand(2).getReg(), MI.getOperand(3).getReg());
12248   } else if (MI.getOpcode() == PPC::SELECT_CC_F4 ||
12249              MI.getOpcode() == PPC::SELECT_CC_F8 ||
12250              MI.getOpcode() == PPC::SELECT_CC_F16 ||
12251              MI.getOpcode() == PPC::SELECT_CC_VRRC ||
12252              MI.getOpcode() == PPC::SELECT_CC_VSFRC ||
12253              MI.getOpcode() == PPC::SELECT_CC_VSSRC ||
12254              MI.getOpcode() == PPC::SELECT_CC_VSRC ||
12255              MI.getOpcode() == PPC::SELECT_CC_SPE4 ||
12256              MI.getOpcode() == PPC::SELECT_CC_SPE ||
12257              MI.getOpcode() == PPC::SELECT_F4 ||
12258              MI.getOpcode() == PPC::SELECT_F8 ||
12259              MI.getOpcode() == PPC::SELECT_F16 ||
12260              MI.getOpcode() == PPC::SELECT_SPE ||
12261              MI.getOpcode() == PPC::SELECT_SPE4 ||
12262              MI.getOpcode() == PPC::SELECT_VRRC ||
12263              MI.getOpcode() == PPC::SELECT_VSFRC ||
12264              MI.getOpcode() == PPC::SELECT_VSSRC ||
12265              MI.getOpcode() == PPC::SELECT_VSRC) {
12266     // The incoming instruction knows the destination vreg to set, the
12267     // condition code register to branch on, the true/false values to
12268     // select between, and a branch opcode to use.
12269 
12270     //  thisMBB:
12271     //  ...
12272     //   TrueVal = ...
12273     //   cmpTY ccX, r1, r2
12274     //   bCC copy1MBB
12275     //   fallthrough --> copy0MBB
12276     MachineBasicBlock *thisMBB = BB;
12277     MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB);
12278     MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB);
12279     DebugLoc dl = MI.getDebugLoc();
12280     F->insert(It, copy0MBB);
12281     F->insert(It, sinkMBB);
12282 
12283     // Transfer the remainder of BB and its successor edges to sinkMBB.
12284     sinkMBB->splice(sinkMBB->begin(), BB,
12285                     std::next(MachineBasicBlock::iterator(MI)), BB->end());
12286     sinkMBB->transferSuccessorsAndUpdatePHIs(BB);
12287 
12288     // Next, add the true and fallthrough blocks as its successors.
12289     BB->addSuccessor(copy0MBB);
12290     BB->addSuccessor(sinkMBB);
12291 
12292     if (MI.getOpcode() == PPC::SELECT_I4 || MI.getOpcode() == PPC::SELECT_I8 ||
12293         MI.getOpcode() == PPC::SELECT_F4 || MI.getOpcode() == PPC::SELECT_F8 ||
12294         MI.getOpcode() == PPC::SELECT_F16 ||
12295         MI.getOpcode() == PPC::SELECT_SPE4 ||
12296         MI.getOpcode() == PPC::SELECT_SPE ||
12297         MI.getOpcode() == PPC::SELECT_VRRC ||
12298         MI.getOpcode() == PPC::SELECT_VSFRC ||
12299         MI.getOpcode() == PPC::SELECT_VSSRC ||
12300         MI.getOpcode() == PPC::SELECT_VSRC) {
12301       BuildMI(BB, dl, TII->get(PPC::BC))
12302           .addReg(MI.getOperand(1).getReg())
12303           .addMBB(sinkMBB);
12304     } else {
12305       unsigned SelectPred = MI.getOperand(4).getImm();
12306       BuildMI(BB, dl, TII->get(PPC::BCC))
12307           .addImm(SelectPred)
12308           .addReg(MI.getOperand(1).getReg())
12309           .addMBB(sinkMBB);
12310     }
12311 
12312     //  copy0MBB:
12313     //   %FalseValue = ...
12314     //   # fallthrough to sinkMBB
12315     BB = copy0MBB;
12316 
12317     // Update machine-CFG edges
12318     BB->addSuccessor(sinkMBB);
12319 
12320     //  sinkMBB:
12321     //   %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ]
12322     //  ...
12323     BB = sinkMBB;
12324     BuildMI(*BB, BB->begin(), dl, TII->get(PPC::PHI), MI.getOperand(0).getReg())
12325         .addReg(MI.getOperand(3).getReg())
12326         .addMBB(copy0MBB)
12327         .addReg(MI.getOperand(2).getReg())
12328         .addMBB(thisMBB);
12329   } else if (MI.getOpcode() == PPC::ReadTB) {
12330     // To read the 64-bit time-base register on a 32-bit target, we read the
12331     // two halves. Should the counter have wrapped while it was being read, we
12332     // need to try again.
12333     // ...
12334     // readLoop:
12335     // mfspr Rx,TBU # load from TBU
12336     // mfspr Ry,TB  # load from TB
12337     // mfspr Rz,TBU # load from TBU
12338     // cmpw crX,Rx,Rz # check if 'old'='new'
12339     // bne readLoop   # branch if they're not equal
12340     // ...
12341 
12342     MachineBasicBlock *readMBB = F->CreateMachineBasicBlock(LLVM_BB);
12343     MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB);
12344     DebugLoc dl = MI.getDebugLoc();
12345     F->insert(It, readMBB);
12346     F->insert(It, sinkMBB);
12347 
12348     // Transfer the remainder of BB and its successor edges to sinkMBB.
12349     sinkMBB->splice(sinkMBB->begin(), BB,
12350                     std::next(MachineBasicBlock::iterator(MI)), BB->end());
12351     sinkMBB->transferSuccessorsAndUpdatePHIs(BB);
12352 
12353     BB->addSuccessor(readMBB);
12354     BB = readMBB;
12355 
12356     MachineRegisterInfo &RegInfo = F->getRegInfo();
12357     Register ReadAgainReg = RegInfo.createVirtualRegister(&PPC::GPRCRegClass);
12358     Register LoReg = MI.getOperand(0).getReg();
12359     Register HiReg = MI.getOperand(1).getReg();
12360 
12361     BuildMI(BB, dl, TII->get(PPC::MFSPR), HiReg).addImm(269);
12362     BuildMI(BB, dl, TII->get(PPC::MFSPR), LoReg).addImm(268);
12363     BuildMI(BB, dl, TII->get(PPC::MFSPR), ReadAgainReg).addImm(269);
12364 
12365     Register CmpReg = RegInfo.createVirtualRegister(&PPC::CRRCRegClass);
12366 
12367     BuildMI(BB, dl, TII->get(PPC::CMPW), CmpReg)
12368         .addReg(HiReg)
12369         .addReg(ReadAgainReg);
12370     BuildMI(BB, dl, TII->get(PPC::BCC))
12371         .addImm(PPC::PRED_NE)
12372         .addReg(CmpReg)
12373         .addMBB(readMBB);
12374 
12375     BB->addSuccessor(readMBB);
12376     BB->addSuccessor(sinkMBB);
12377   } else if (MI.getOpcode() == PPC::ATOMIC_LOAD_ADD_I8)
12378     BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::ADD4);
12379   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_ADD_I16)
12380     BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::ADD4);
12381   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_ADD_I32)
12382     BB = EmitAtomicBinary(MI, BB, 4, PPC::ADD4);
12383   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_ADD_I64)
12384     BB = EmitAtomicBinary(MI, BB, 8, PPC::ADD8);
12385 
12386   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_AND_I8)
12387     BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::AND);
12388   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_AND_I16)
12389     BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::AND);
12390   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_AND_I32)
12391     BB = EmitAtomicBinary(MI, BB, 4, PPC::AND);
12392   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_AND_I64)
12393     BB = EmitAtomicBinary(MI, BB, 8, PPC::AND8);
12394 
12395   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_OR_I8)
12396     BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::OR);
12397   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_OR_I16)
12398     BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::OR);
12399   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_OR_I32)
12400     BB = EmitAtomicBinary(MI, BB, 4, PPC::OR);
12401   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_OR_I64)
12402     BB = EmitAtomicBinary(MI, BB, 8, PPC::OR8);
12403 
12404   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_XOR_I8)
12405     BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::XOR);
12406   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_XOR_I16)
12407     BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::XOR);
12408   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_XOR_I32)
12409     BB = EmitAtomicBinary(MI, BB, 4, PPC::XOR);
12410   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_XOR_I64)
12411     BB = EmitAtomicBinary(MI, BB, 8, PPC::XOR8);
12412 
12413   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_NAND_I8)
12414     BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::NAND);
12415   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_NAND_I16)
12416     BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::NAND);
12417   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_NAND_I32)
12418     BB = EmitAtomicBinary(MI, BB, 4, PPC::NAND);
12419   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_NAND_I64)
12420     BB = EmitAtomicBinary(MI, BB, 8, PPC::NAND8);
12421 
12422   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_SUB_I8)
12423     BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::SUBF);
12424   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_SUB_I16)
12425     BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::SUBF);
12426   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_SUB_I32)
12427     BB = EmitAtomicBinary(MI, BB, 4, PPC::SUBF);
12428   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_SUB_I64)
12429     BB = EmitAtomicBinary(MI, BB, 8, PPC::SUBF8);
12430 
12431   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MIN_I8)
12432     BB = EmitPartwordAtomicBinary(MI, BB, true, 0, PPC::CMPW, PPC::PRED_GE);
12433   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MIN_I16)
12434     BB = EmitPartwordAtomicBinary(MI, BB, false, 0, PPC::CMPW, PPC::PRED_GE);
12435   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MIN_I32)
12436     BB = EmitAtomicBinary(MI, BB, 4, 0, PPC::CMPW, PPC::PRED_GE);
12437   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MIN_I64)
12438     BB = EmitAtomicBinary(MI, BB, 8, 0, PPC::CMPD, PPC::PRED_GE);
12439 
12440   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MAX_I8)
12441     BB = EmitPartwordAtomicBinary(MI, BB, true, 0, PPC::CMPW, PPC::PRED_LE);
12442   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MAX_I16)
12443     BB = EmitPartwordAtomicBinary(MI, BB, false, 0, PPC::CMPW, PPC::PRED_LE);
12444   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MAX_I32)
12445     BB = EmitAtomicBinary(MI, BB, 4, 0, PPC::CMPW, PPC::PRED_LE);
12446   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MAX_I64)
12447     BB = EmitAtomicBinary(MI, BB, 8, 0, PPC::CMPD, PPC::PRED_LE);
12448 
12449   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMIN_I8)
12450     BB = EmitPartwordAtomicBinary(MI, BB, true, 0, PPC::CMPLW, PPC::PRED_GE);
12451   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMIN_I16)
12452     BB = EmitPartwordAtomicBinary(MI, BB, false, 0, PPC::CMPLW, PPC::PRED_GE);
12453   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMIN_I32)
12454     BB = EmitAtomicBinary(MI, BB, 4, 0, PPC::CMPLW, PPC::PRED_GE);
12455   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMIN_I64)
12456     BB = EmitAtomicBinary(MI, BB, 8, 0, PPC::CMPLD, PPC::PRED_GE);
12457 
12458   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMAX_I8)
12459     BB = EmitPartwordAtomicBinary(MI, BB, true, 0, PPC::CMPLW, PPC::PRED_LE);
12460   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMAX_I16)
12461     BB = EmitPartwordAtomicBinary(MI, BB, false, 0, PPC::CMPLW, PPC::PRED_LE);
12462   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMAX_I32)
12463     BB = EmitAtomicBinary(MI, BB, 4, 0, PPC::CMPLW, PPC::PRED_LE);
12464   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMAX_I64)
12465     BB = EmitAtomicBinary(MI, BB, 8, 0, PPC::CMPLD, PPC::PRED_LE);
12466 
12467   else if (MI.getOpcode() == PPC::ATOMIC_SWAP_I8)
12468     BB = EmitPartwordAtomicBinary(MI, BB, true, 0);
12469   else if (MI.getOpcode() == PPC::ATOMIC_SWAP_I16)
12470     BB = EmitPartwordAtomicBinary(MI, BB, false, 0);
12471   else if (MI.getOpcode() == PPC::ATOMIC_SWAP_I32)
12472     BB = EmitAtomicBinary(MI, BB, 4, 0);
12473   else if (MI.getOpcode() == PPC::ATOMIC_SWAP_I64)
12474     BB = EmitAtomicBinary(MI, BB, 8, 0);
12475   else if (MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I32 ||
12476            MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I64 ||
12477            (Subtarget.hasPartwordAtomics() &&
12478             MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I8) ||
12479            (Subtarget.hasPartwordAtomics() &&
12480             MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I16)) {
12481     bool is64bit = MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I64;
12482 
12483     auto LoadMnemonic = PPC::LDARX;
12484     auto StoreMnemonic = PPC::STDCX;
12485     switch (MI.getOpcode()) {
12486     default:
12487       llvm_unreachable("Compare and swap of unknown size");
12488     case PPC::ATOMIC_CMP_SWAP_I8:
12489       LoadMnemonic = PPC::LBARX;
12490       StoreMnemonic = PPC::STBCX;
12491       assert(Subtarget.hasPartwordAtomics() && "No support partword atomics.");
12492       break;
12493     case PPC::ATOMIC_CMP_SWAP_I16:
12494       LoadMnemonic = PPC::LHARX;
12495       StoreMnemonic = PPC::STHCX;
12496       assert(Subtarget.hasPartwordAtomics() && "No support partword atomics.");
12497       break;
12498     case PPC::ATOMIC_CMP_SWAP_I32:
12499       LoadMnemonic = PPC::LWARX;
12500       StoreMnemonic = PPC::STWCX;
12501       break;
12502     case PPC::ATOMIC_CMP_SWAP_I64:
12503       LoadMnemonic = PPC::LDARX;
12504       StoreMnemonic = PPC::STDCX;
12505       break;
12506     }
12507     Register dest = MI.getOperand(0).getReg();
12508     Register ptrA = MI.getOperand(1).getReg();
12509     Register ptrB = MI.getOperand(2).getReg();
12510     Register oldval = MI.getOperand(3).getReg();
12511     Register newval = MI.getOperand(4).getReg();
12512     DebugLoc dl = MI.getDebugLoc();
12513 
12514     MachineBasicBlock *loop1MBB = F->CreateMachineBasicBlock(LLVM_BB);
12515     MachineBasicBlock *loop2MBB = F->CreateMachineBasicBlock(LLVM_BB);
12516     MachineBasicBlock *midMBB = F->CreateMachineBasicBlock(LLVM_BB);
12517     MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB);
12518     F->insert(It, loop1MBB);
12519     F->insert(It, loop2MBB);
12520     F->insert(It, midMBB);
12521     F->insert(It, exitMBB);
12522     exitMBB->splice(exitMBB->begin(), BB,
12523                     std::next(MachineBasicBlock::iterator(MI)), BB->end());
12524     exitMBB->transferSuccessorsAndUpdatePHIs(BB);
12525 
12526     //  thisMBB:
12527     //   ...
12528     //   fallthrough --> loopMBB
12529     BB->addSuccessor(loop1MBB);
12530 
12531     // loop1MBB:
12532     //   l[bhwd]arx dest, ptr
12533     //   cmp[wd] dest, oldval
12534     //   bne- midMBB
12535     // loop2MBB:
12536     //   st[bhwd]cx. newval, ptr
12537     //   bne- loopMBB
12538     //   b exitBB
12539     // midMBB:
12540     //   st[bhwd]cx. dest, ptr
12541     // exitBB:
12542     BB = loop1MBB;
12543     BuildMI(BB, dl, TII->get(LoadMnemonic), dest).addReg(ptrA).addReg(ptrB);
12544     BuildMI(BB, dl, TII->get(is64bit ? PPC::CMPD : PPC::CMPW), PPC::CR0)
12545         .addReg(oldval)
12546         .addReg(dest);
12547     BuildMI(BB, dl, TII->get(PPC::BCC))
12548         .addImm(PPC::PRED_NE)
12549         .addReg(PPC::CR0)
12550         .addMBB(midMBB);
12551     BB->addSuccessor(loop2MBB);
12552     BB->addSuccessor(midMBB);
12553 
12554     BB = loop2MBB;
12555     BuildMI(BB, dl, TII->get(StoreMnemonic))
12556         .addReg(newval)
12557         .addReg(ptrA)
12558         .addReg(ptrB);
12559     BuildMI(BB, dl, TII->get(PPC::BCC))
12560         .addImm(PPC::PRED_NE)
12561         .addReg(PPC::CR0)
12562         .addMBB(loop1MBB);
12563     BuildMI(BB, dl, TII->get(PPC::B)).addMBB(exitMBB);
12564     BB->addSuccessor(loop1MBB);
12565     BB->addSuccessor(exitMBB);
12566 
12567     BB = midMBB;
12568     BuildMI(BB, dl, TII->get(StoreMnemonic))
12569         .addReg(dest)
12570         .addReg(ptrA)
12571         .addReg(ptrB);
12572     BB->addSuccessor(exitMBB);
12573 
12574     //  exitMBB:
12575     //   ...
12576     BB = exitMBB;
12577   } else if (MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I8 ||
12578              MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I16) {
12579     // We must use 64-bit registers for addresses when targeting 64-bit,
12580     // since we're actually doing arithmetic on them.  Other registers
12581     // can be 32-bit.
12582     bool is64bit = Subtarget.isPPC64();
12583     bool isLittleEndian = Subtarget.isLittleEndian();
12584     bool is8bit = MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I8;
12585 
12586     Register dest = MI.getOperand(0).getReg();
12587     Register ptrA = MI.getOperand(1).getReg();
12588     Register ptrB = MI.getOperand(2).getReg();
12589     Register oldval = MI.getOperand(3).getReg();
12590     Register newval = MI.getOperand(4).getReg();
12591     DebugLoc dl = MI.getDebugLoc();
12592 
12593     MachineBasicBlock *loop1MBB = F->CreateMachineBasicBlock(LLVM_BB);
12594     MachineBasicBlock *loop2MBB = F->CreateMachineBasicBlock(LLVM_BB);
12595     MachineBasicBlock *midMBB = F->CreateMachineBasicBlock(LLVM_BB);
12596     MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB);
12597     F->insert(It, loop1MBB);
12598     F->insert(It, loop2MBB);
12599     F->insert(It, midMBB);
12600     F->insert(It, exitMBB);
12601     exitMBB->splice(exitMBB->begin(), BB,
12602                     std::next(MachineBasicBlock::iterator(MI)), BB->end());
12603     exitMBB->transferSuccessorsAndUpdatePHIs(BB);
12604 
12605     MachineRegisterInfo &RegInfo = F->getRegInfo();
12606     const TargetRegisterClass *RC =
12607         is64bit ? &PPC::G8RCRegClass : &PPC::GPRCRegClass;
12608     const TargetRegisterClass *GPRC = &PPC::GPRCRegClass;
12609 
12610     Register PtrReg = RegInfo.createVirtualRegister(RC);
12611     Register Shift1Reg = RegInfo.createVirtualRegister(GPRC);
12612     Register ShiftReg =
12613         isLittleEndian ? Shift1Reg : RegInfo.createVirtualRegister(GPRC);
12614     Register NewVal2Reg = RegInfo.createVirtualRegister(GPRC);
12615     Register NewVal3Reg = RegInfo.createVirtualRegister(GPRC);
12616     Register OldVal2Reg = RegInfo.createVirtualRegister(GPRC);
12617     Register OldVal3Reg = RegInfo.createVirtualRegister(GPRC);
12618     Register MaskReg = RegInfo.createVirtualRegister(GPRC);
12619     Register Mask2Reg = RegInfo.createVirtualRegister(GPRC);
12620     Register Mask3Reg = RegInfo.createVirtualRegister(GPRC);
12621     Register Tmp2Reg = RegInfo.createVirtualRegister(GPRC);
12622     Register Tmp4Reg = RegInfo.createVirtualRegister(GPRC);
12623     Register TmpDestReg = RegInfo.createVirtualRegister(GPRC);
12624     Register Ptr1Reg;
12625     Register TmpReg = RegInfo.createVirtualRegister(GPRC);
12626     Register ZeroReg = is64bit ? PPC::ZERO8 : PPC::ZERO;
12627     //  thisMBB:
12628     //   ...
12629     //   fallthrough --> loopMBB
12630     BB->addSuccessor(loop1MBB);
12631 
12632     // The 4-byte load must be aligned, while a char or short may be
12633     // anywhere in the word.  Hence all this nasty bookkeeping code.
12634     //   add ptr1, ptrA, ptrB [copy if ptrA==0]
12635     //   rlwinm shift1, ptr1, 3, 27, 28 [3, 27, 27]
12636     //   xori shift, shift1, 24 [16]
12637     //   rlwinm ptr, ptr1, 0, 0, 29
12638     //   slw newval2, newval, shift
12639     //   slw oldval2, oldval,shift
12640     //   li mask2, 255 [li mask3, 0; ori mask2, mask3, 65535]
12641     //   slw mask, mask2, shift
12642     //   and newval3, newval2, mask
12643     //   and oldval3, oldval2, mask
12644     // loop1MBB:
12645     //   lwarx tmpDest, ptr
12646     //   and tmp, tmpDest, mask
12647     //   cmpw tmp, oldval3
12648     //   bne- midMBB
12649     // loop2MBB:
12650     //   andc tmp2, tmpDest, mask
12651     //   or tmp4, tmp2, newval3
12652     //   stwcx. tmp4, ptr
12653     //   bne- loop1MBB
12654     //   b exitBB
12655     // midMBB:
12656     //   stwcx. tmpDest, ptr
12657     // exitBB:
12658     //   srw dest, tmpDest, shift
12659     if (ptrA != ZeroReg) {
12660       Ptr1Reg = RegInfo.createVirtualRegister(RC);
12661       BuildMI(BB, dl, TII->get(is64bit ? PPC::ADD8 : PPC::ADD4), Ptr1Reg)
12662           .addReg(ptrA)
12663           .addReg(ptrB);
12664     } else {
12665       Ptr1Reg = ptrB;
12666     }
12667 
12668     // We need use 32-bit subregister to avoid mismatch register class in 64-bit
12669     // mode.
12670     BuildMI(BB, dl, TII->get(PPC::RLWINM), Shift1Reg)
12671         .addReg(Ptr1Reg, 0, is64bit ? PPC::sub_32 : 0)
12672         .addImm(3)
12673         .addImm(27)
12674         .addImm(is8bit ? 28 : 27);
12675     if (!isLittleEndian)
12676       BuildMI(BB, dl, TII->get(PPC::XORI), ShiftReg)
12677           .addReg(Shift1Reg)
12678           .addImm(is8bit ? 24 : 16);
12679     if (is64bit)
12680       BuildMI(BB, dl, TII->get(PPC::RLDICR), PtrReg)
12681           .addReg(Ptr1Reg)
12682           .addImm(0)
12683           .addImm(61);
12684     else
12685       BuildMI(BB, dl, TII->get(PPC::RLWINM), PtrReg)
12686           .addReg(Ptr1Reg)
12687           .addImm(0)
12688           .addImm(0)
12689           .addImm(29);
12690     BuildMI(BB, dl, TII->get(PPC::SLW), NewVal2Reg)
12691         .addReg(newval)
12692         .addReg(ShiftReg);
12693     BuildMI(BB, dl, TII->get(PPC::SLW), OldVal2Reg)
12694         .addReg(oldval)
12695         .addReg(ShiftReg);
12696     if (is8bit)
12697       BuildMI(BB, dl, TII->get(PPC::LI), Mask2Reg).addImm(255);
12698     else {
12699       BuildMI(BB, dl, TII->get(PPC::LI), Mask3Reg).addImm(0);
12700       BuildMI(BB, dl, TII->get(PPC::ORI), Mask2Reg)
12701           .addReg(Mask3Reg)
12702           .addImm(65535);
12703     }
12704     BuildMI(BB, dl, TII->get(PPC::SLW), MaskReg)
12705         .addReg(Mask2Reg)
12706         .addReg(ShiftReg);
12707     BuildMI(BB, dl, TII->get(PPC::AND), NewVal3Reg)
12708         .addReg(NewVal2Reg)
12709         .addReg(MaskReg);
12710     BuildMI(BB, dl, TII->get(PPC::AND), OldVal3Reg)
12711         .addReg(OldVal2Reg)
12712         .addReg(MaskReg);
12713 
12714     BB = loop1MBB;
12715     BuildMI(BB, dl, TII->get(PPC::LWARX), TmpDestReg)
12716         .addReg(ZeroReg)
12717         .addReg(PtrReg);
12718     BuildMI(BB, dl, TII->get(PPC::AND), TmpReg)
12719         .addReg(TmpDestReg)
12720         .addReg(MaskReg);
12721     BuildMI(BB, dl, TII->get(PPC::CMPW), PPC::CR0)
12722         .addReg(TmpReg)
12723         .addReg(OldVal3Reg);
12724     BuildMI(BB, dl, TII->get(PPC::BCC))
12725         .addImm(PPC::PRED_NE)
12726         .addReg(PPC::CR0)
12727         .addMBB(midMBB);
12728     BB->addSuccessor(loop2MBB);
12729     BB->addSuccessor(midMBB);
12730 
12731     BB = loop2MBB;
12732     BuildMI(BB, dl, TII->get(PPC::ANDC), Tmp2Reg)
12733         .addReg(TmpDestReg)
12734         .addReg(MaskReg);
12735     BuildMI(BB, dl, TII->get(PPC::OR), Tmp4Reg)
12736         .addReg(Tmp2Reg)
12737         .addReg(NewVal3Reg);
12738     BuildMI(BB, dl, TII->get(PPC::STWCX))
12739         .addReg(Tmp4Reg)
12740         .addReg(ZeroReg)
12741         .addReg(PtrReg);
12742     BuildMI(BB, dl, TII->get(PPC::BCC))
12743         .addImm(PPC::PRED_NE)
12744         .addReg(PPC::CR0)
12745         .addMBB(loop1MBB);
12746     BuildMI(BB, dl, TII->get(PPC::B)).addMBB(exitMBB);
12747     BB->addSuccessor(loop1MBB);
12748     BB->addSuccessor(exitMBB);
12749 
12750     BB = midMBB;
12751     BuildMI(BB, dl, TII->get(PPC::STWCX))
12752         .addReg(TmpDestReg)
12753         .addReg(ZeroReg)
12754         .addReg(PtrReg);
12755     BB->addSuccessor(exitMBB);
12756 
12757     //  exitMBB:
12758     //   ...
12759     BB = exitMBB;
12760     BuildMI(*BB, BB->begin(), dl, TII->get(PPC::SRW), dest)
12761         .addReg(TmpReg)
12762         .addReg(ShiftReg);
12763   } else if (MI.getOpcode() == PPC::FADDrtz) {
12764     // This pseudo performs an FADD with rounding mode temporarily forced
12765     // to round-to-zero.  We emit this via custom inserter since the FPSCR
12766     // is not modeled at the SelectionDAG level.
12767     Register Dest = MI.getOperand(0).getReg();
12768     Register Src1 = MI.getOperand(1).getReg();
12769     Register Src2 = MI.getOperand(2).getReg();
12770     DebugLoc dl = MI.getDebugLoc();
12771 
12772     MachineRegisterInfo &RegInfo = F->getRegInfo();
12773     Register MFFSReg = RegInfo.createVirtualRegister(&PPC::F8RCRegClass);
12774 
12775     // Save FPSCR value.
12776     BuildMI(*BB, MI, dl, TII->get(PPC::MFFS), MFFSReg);
12777 
12778     // Set rounding mode to round-to-zero.
12779     BuildMI(*BB, MI, dl, TII->get(PPC::MTFSB1))
12780         .addImm(31)
12781         .addReg(PPC::RM, RegState::ImplicitDefine);
12782 
12783     BuildMI(*BB, MI, dl, TII->get(PPC::MTFSB0))
12784         .addImm(30)
12785         .addReg(PPC::RM, RegState::ImplicitDefine);
12786 
12787     // Perform addition.
12788     auto MIB = BuildMI(*BB, MI, dl, TII->get(PPC::FADD), Dest)
12789                    .addReg(Src1)
12790                    .addReg(Src2);
12791     if (MI.getFlag(MachineInstr::NoFPExcept))
12792       MIB.setMIFlag(MachineInstr::NoFPExcept);
12793 
12794     // Restore FPSCR value.
12795     BuildMI(*BB, MI, dl, TII->get(PPC::MTFSFb)).addImm(1).addReg(MFFSReg);
12796   } else if (MI.getOpcode() == PPC::ANDI_rec_1_EQ_BIT ||
12797              MI.getOpcode() == PPC::ANDI_rec_1_GT_BIT ||
12798              MI.getOpcode() == PPC::ANDI_rec_1_EQ_BIT8 ||
12799              MI.getOpcode() == PPC::ANDI_rec_1_GT_BIT8) {
12800     unsigned Opcode = (MI.getOpcode() == PPC::ANDI_rec_1_EQ_BIT8 ||
12801                        MI.getOpcode() == PPC::ANDI_rec_1_GT_BIT8)
12802                           ? PPC::ANDI8_rec
12803                           : PPC::ANDI_rec;
12804     bool IsEQ = (MI.getOpcode() == PPC::ANDI_rec_1_EQ_BIT ||
12805                  MI.getOpcode() == PPC::ANDI_rec_1_EQ_BIT8);
12806 
12807     MachineRegisterInfo &RegInfo = F->getRegInfo();
12808     Register Dest = RegInfo.createVirtualRegister(
12809         Opcode == PPC::ANDI_rec ? &PPC::GPRCRegClass : &PPC::G8RCRegClass);
12810 
12811     DebugLoc Dl = MI.getDebugLoc();
12812     BuildMI(*BB, MI, Dl, TII->get(Opcode), Dest)
12813         .addReg(MI.getOperand(1).getReg())
12814         .addImm(1);
12815     BuildMI(*BB, MI, Dl, TII->get(TargetOpcode::COPY),
12816             MI.getOperand(0).getReg())
12817         .addReg(IsEQ ? PPC::CR0EQ : PPC::CR0GT);
12818   } else if (MI.getOpcode() == PPC::TCHECK_RET) {
12819     DebugLoc Dl = MI.getDebugLoc();
12820     MachineRegisterInfo &RegInfo = F->getRegInfo();
12821     Register CRReg = RegInfo.createVirtualRegister(&PPC::CRRCRegClass);
12822     BuildMI(*BB, MI, Dl, TII->get(PPC::TCHECK), CRReg);
12823     BuildMI(*BB, MI, Dl, TII->get(TargetOpcode::COPY),
12824             MI.getOperand(0).getReg())
12825         .addReg(CRReg);
12826   } else if (MI.getOpcode() == PPC::TBEGIN_RET) {
12827     DebugLoc Dl = MI.getDebugLoc();
12828     unsigned Imm = MI.getOperand(1).getImm();
12829     BuildMI(*BB, MI, Dl, TII->get(PPC::TBEGIN)).addImm(Imm);
12830     BuildMI(*BB, MI, Dl, TII->get(TargetOpcode::COPY),
12831             MI.getOperand(0).getReg())
12832         .addReg(PPC::CR0EQ);
12833   } else if (MI.getOpcode() == PPC::SETRNDi) {
12834     DebugLoc dl = MI.getDebugLoc();
12835     Register OldFPSCRReg = MI.getOperand(0).getReg();
12836 
12837     // Save FPSCR value.
12838     if (MRI.use_empty(OldFPSCRReg))
12839       BuildMI(*BB, MI, dl, TII->get(TargetOpcode::IMPLICIT_DEF), OldFPSCRReg);
12840     else
12841       BuildMI(*BB, MI, dl, TII->get(PPC::MFFS), OldFPSCRReg);
12842 
12843     // The floating point rounding mode is in the bits 62:63 of FPCSR, and has
12844     // the following settings:
12845     //   00 Round to nearest
12846     //   01 Round to 0
12847     //   10 Round to +inf
12848     //   11 Round to -inf
12849 
12850     // When the operand is immediate, using the two least significant bits of
12851     // the immediate to set the bits 62:63 of FPSCR.
12852     unsigned Mode = MI.getOperand(1).getImm();
12853     BuildMI(*BB, MI, dl, TII->get((Mode & 1) ? PPC::MTFSB1 : PPC::MTFSB0))
12854         .addImm(31)
12855         .addReg(PPC::RM, RegState::ImplicitDefine);
12856 
12857     BuildMI(*BB, MI, dl, TII->get((Mode & 2) ? PPC::MTFSB1 : PPC::MTFSB0))
12858         .addImm(30)
12859         .addReg(PPC::RM, RegState::ImplicitDefine);
12860   } else if (MI.getOpcode() == PPC::SETRND) {
12861     DebugLoc dl = MI.getDebugLoc();
12862 
12863     // Copy register from F8RCRegClass::SrcReg to G8RCRegClass::DestReg
12864     // or copy register from G8RCRegClass::SrcReg to F8RCRegClass::DestReg.
12865     // If the target doesn't have DirectMove, we should use stack to do the
12866     // conversion, because the target doesn't have the instructions like mtvsrd
12867     // or mfvsrd to do this conversion directly.
12868     auto copyRegFromG8RCOrF8RC = [&] (unsigned DestReg, unsigned SrcReg) {
12869       if (Subtarget.hasDirectMove()) {
12870         BuildMI(*BB, MI, dl, TII->get(TargetOpcode::COPY), DestReg)
12871           .addReg(SrcReg);
12872       } else {
12873         // Use stack to do the register copy.
12874         unsigned StoreOp = PPC::STD, LoadOp = PPC::LFD;
12875         MachineRegisterInfo &RegInfo = F->getRegInfo();
12876         const TargetRegisterClass *RC = RegInfo.getRegClass(SrcReg);
12877         if (RC == &PPC::F8RCRegClass) {
12878           // Copy register from F8RCRegClass to G8RCRegclass.
12879           assert((RegInfo.getRegClass(DestReg) == &PPC::G8RCRegClass) &&
12880                  "Unsupported RegClass.");
12881 
12882           StoreOp = PPC::STFD;
12883           LoadOp = PPC::LD;
12884         } else {
12885           // Copy register from G8RCRegClass to F8RCRegclass.
12886           assert((RegInfo.getRegClass(SrcReg) == &PPC::G8RCRegClass) &&
12887                  (RegInfo.getRegClass(DestReg) == &PPC::F8RCRegClass) &&
12888                  "Unsupported RegClass.");
12889         }
12890 
12891         MachineFrameInfo &MFI = F->getFrameInfo();
12892         int FrameIdx = MFI.CreateStackObject(8, Align(8), false);
12893 
12894         MachineMemOperand *MMOStore = F->getMachineMemOperand(
12895             MachinePointerInfo::getFixedStack(*F, FrameIdx, 0),
12896             MachineMemOperand::MOStore, MFI.getObjectSize(FrameIdx),
12897             MFI.getObjectAlign(FrameIdx));
12898 
12899         // Store the SrcReg into the stack.
12900         BuildMI(*BB, MI, dl, TII->get(StoreOp))
12901           .addReg(SrcReg)
12902           .addImm(0)
12903           .addFrameIndex(FrameIdx)
12904           .addMemOperand(MMOStore);
12905 
12906         MachineMemOperand *MMOLoad = F->getMachineMemOperand(
12907             MachinePointerInfo::getFixedStack(*F, FrameIdx, 0),
12908             MachineMemOperand::MOLoad, MFI.getObjectSize(FrameIdx),
12909             MFI.getObjectAlign(FrameIdx));
12910 
12911         // Load from the stack where SrcReg is stored, and save to DestReg,
12912         // so we have done the RegClass conversion from RegClass::SrcReg to
12913         // RegClass::DestReg.
12914         BuildMI(*BB, MI, dl, TII->get(LoadOp), DestReg)
12915           .addImm(0)
12916           .addFrameIndex(FrameIdx)
12917           .addMemOperand(MMOLoad);
12918       }
12919     };
12920 
12921     Register OldFPSCRReg = MI.getOperand(0).getReg();
12922 
12923     // Save FPSCR value.
12924     BuildMI(*BB, MI, dl, TII->get(PPC::MFFS), OldFPSCRReg);
12925 
12926     // When the operand is gprc register, use two least significant bits of the
12927     // register and mtfsf instruction to set the bits 62:63 of FPSCR.
12928     //
12929     // copy OldFPSCRTmpReg, OldFPSCRReg
12930     // (INSERT_SUBREG ExtSrcReg, (IMPLICIT_DEF ImDefReg), SrcOp, 1)
12931     // rldimi NewFPSCRTmpReg, ExtSrcReg, OldFPSCRReg, 0, 62
12932     // copy NewFPSCRReg, NewFPSCRTmpReg
12933     // mtfsf 255, NewFPSCRReg
12934     MachineOperand SrcOp = MI.getOperand(1);
12935     MachineRegisterInfo &RegInfo = F->getRegInfo();
12936     Register OldFPSCRTmpReg = RegInfo.createVirtualRegister(&PPC::G8RCRegClass);
12937 
12938     copyRegFromG8RCOrF8RC(OldFPSCRTmpReg, OldFPSCRReg);
12939 
12940     Register ImDefReg = RegInfo.createVirtualRegister(&PPC::G8RCRegClass);
12941     Register ExtSrcReg = RegInfo.createVirtualRegister(&PPC::G8RCRegClass);
12942 
12943     // The first operand of INSERT_SUBREG should be a register which has
12944     // subregisters, we only care about its RegClass, so we should use an
12945     // IMPLICIT_DEF register.
12946     BuildMI(*BB, MI, dl, TII->get(TargetOpcode::IMPLICIT_DEF), ImDefReg);
12947     BuildMI(*BB, MI, dl, TII->get(PPC::INSERT_SUBREG), ExtSrcReg)
12948       .addReg(ImDefReg)
12949       .add(SrcOp)
12950       .addImm(1);
12951 
12952     Register NewFPSCRTmpReg = RegInfo.createVirtualRegister(&PPC::G8RCRegClass);
12953     BuildMI(*BB, MI, dl, TII->get(PPC::RLDIMI), NewFPSCRTmpReg)
12954       .addReg(OldFPSCRTmpReg)
12955       .addReg(ExtSrcReg)
12956       .addImm(0)
12957       .addImm(62);
12958 
12959     Register NewFPSCRReg = RegInfo.createVirtualRegister(&PPC::F8RCRegClass);
12960     copyRegFromG8RCOrF8RC(NewFPSCRReg, NewFPSCRTmpReg);
12961 
12962     // The mask 255 means that put the 32:63 bits of NewFPSCRReg to the 32:63
12963     // bits of FPSCR.
12964     BuildMI(*BB, MI, dl, TII->get(PPC::MTFSF))
12965       .addImm(255)
12966       .addReg(NewFPSCRReg)
12967       .addImm(0)
12968       .addImm(0);
12969   } else if (MI.getOpcode() == PPC::SETFLM) {
12970     DebugLoc Dl = MI.getDebugLoc();
12971 
12972     // Result of setflm is previous FPSCR content, so we need to save it first.
12973     Register OldFPSCRReg = MI.getOperand(0).getReg();
12974     if (MRI.use_empty(OldFPSCRReg))
12975       BuildMI(*BB, MI, Dl, TII->get(TargetOpcode::IMPLICIT_DEF), OldFPSCRReg);
12976     else
12977       BuildMI(*BB, MI, Dl, TII->get(PPC::MFFS), OldFPSCRReg);
12978 
12979     // Put bits in 32:63 to FPSCR.
12980     Register NewFPSCRReg = MI.getOperand(1).getReg();
12981     BuildMI(*BB, MI, Dl, TII->get(PPC::MTFSF))
12982         .addImm(255)
12983         .addReg(NewFPSCRReg)
12984         .addImm(0)
12985         .addImm(0);
12986   } else if (MI.getOpcode() == PPC::PROBED_ALLOCA_32 ||
12987              MI.getOpcode() == PPC::PROBED_ALLOCA_64) {
12988     return emitProbedAlloca(MI, BB);
12989   } else if (MI.getOpcode() == PPC::SPLIT_QUADWORD) {
12990     DebugLoc DL = MI.getDebugLoc();
12991     Register Src = MI.getOperand(2).getReg();
12992     Register Lo = MI.getOperand(0).getReg();
12993     Register Hi = MI.getOperand(1).getReg();
12994     BuildMI(*BB, MI, DL, TII->get(TargetOpcode::COPY))
12995         .addDef(Lo)
12996         .addUse(Src, 0, PPC::sub_gp8_x1);
12997     BuildMI(*BB, MI, DL, TII->get(TargetOpcode::COPY))
12998         .addDef(Hi)
12999         .addUse(Src, 0, PPC::sub_gp8_x0);
13000   } else if (MI.getOpcode() == PPC::LQX_PSEUDO ||
13001              MI.getOpcode() == PPC::STQX_PSEUDO) {
13002     DebugLoc DL = MI.getDebugLoc();
13003     // Ptr is used as the ptr_rc_no_r0 part
13004     // of LQ/STQ's memory operand and adding result of RA and RB,
13005     // so it has to be g8rc_and_g8rc_nox0.
13006     Register Ptr =
13007         F->getRegInfo().createVirtualRegister(&PPC::G8RC_and_G8RC_NOX0RegClass);
13008     Register Val = MI.getOperand(0).getReg();
13009     Register RA = MI.getOperand(1).getReg();
13010     Register RB = MI.getOperand(2).getReg();
13011     BuildMI(*BB, MI, DL, TII->get(PPC::ADD8), Ptr).addReg(RA).addReg(RB);
13012     BuildMI(*BB, MI, DL,
13013             MI.getOpcode() == PPC::LQX_PSEUDO ? TII->get(PPC::LQ)
13014                                               : TII->get(PPC::STQ))
13015         .addReg(Val, MI.getOpcode() == PPC::LQX_PSEUDO ? RegState::Define : 0)
13016         .addImm(0)
13017         .addReg(Ptr);
13018   } else {
13019     llvm_unreachable("Unexpected instr type to insert");
13020   }
13021 
13022   MI.eraseFromParent(); // The pseudo instruction is gone now.
13023   return BB;
13024 }
13025 
13026 //===----------------------------------------------------------------------===//
13027 // Target Optimization Hooks
13028 //===----------------------------------------------------------------------===//
13029 
13030 static int getEstimateRefinementSteps(EVT VT, const PPCSubtarget &Subtarget) {
13031   // For the estimates, convergence is quadratic, so we essentially double the
13032   // number of digits correct after every iteration. For both FRE and FRSQRTE,
13033   // the minimum architected relative accuracy is 2^-5. When hasRecipPrec(),
13034   // this is 2^-14. IEEE float has 23 digits and double has 52 digits.
13035   int RefinementSteps = Subtarget.hasRecipPrec() ? 1 : 3;
13036   if (VT.getScalarType() == MVT::f64)
13037     RefinementSteps++;
13038   return RefinementSteps;
13039 }
13040 
13041 SDValue PPCTargetLowering::getSqrtInputTest(SDValue Op, SelectionDAG &DAG,
13042                                             const DenormalMode &Mode) const {
13043   // We only have VSX Vector Test for software Square Root.
13044   EVT VT = Op.getValueType();
13045   if (!isTypeLegal(MVT::i1) ||
13046       (VT != MVT::f64 &&
13047        ((VT != MVT::v2f64 && VT != MVT::v4f32) || !Subtarget.hasVSX())))
13048     return TargetLowering::getSqrtInputTest(Op, DAG, Mode);
13049 
13050   SDLoc DL(Op);
13051   // The output register of FTSQRT is CR field.
13052   SDValue FTSQRT = DAG.getNode(PPCISD::FTSQRT, DL, MVT::i32, Op);
13053   // ftsqrt BF,FRB
13054   // Let e_b be the unbiased exponent of the double-precision
13055   // floating-point operand in register FRB.
13056   // fe_flag is set to 1 if either of the following conditions occurs.
13057   //   - The double-precision floating-point operand in register FRB is a zero,
13058   //     a NaN, or an infinity, or a negative value.
13059   //   - e_b is less than or equal to -970.
13060   // Otherwise fe_flag is set to 0.
13061   // Both VSX and non-VSX versions would set EQ bit in the CR if the number is
13062   // not eligible for iteration. (zero/negative/infinity/nan or unbiased
13063   // exponent is less than -970)
13064   SDValue SRIdxVal = DAG.getTargetConstant(PPC::sub_eq, DL, MVT::i32);
13065   return SDValue(DAG.getMachineNode(TargetOpcode::EXTRACT_SUBREG, DL, MVT::i1,
13066                                     FTSQRT, SRIdxVal),
13067                  0);
13068 }
13069 
13070 SDValue
13071 PPCTargetLowering::getSqrtResultForDenormInput(SDValue Op,
13072                                                SelectionDAG &DAG) const {
13073   // We only have VSX Vector Square Root.
13074   EVT VT = Op.getValueType();
13075   if (VT != MVT::f64 &&
13076       ((VT != MVT::v2f64 && VT != MVT::v4f32) || !Subtarget.hasVSX()))
13077     return TargetLowering::getSqrtResultForDenormInput(Op, DAG);
13078 
13079   return DAG.getNode(PPCISD::FSQRT, SDLoc(Op), VT, Op);
13080 }
13081 
13082 SDValue PPCTargetLowering::getSqrtEstimate(SDValue Operand, SelectionDAG &DAG,
13083                                            int Enabled, int &RefinementSteps,
13084                                            bool &UseOneConstNR,
13085                                            bool Reciprocal) const {
13086   EVT VT = Operand.getValueType();
13087   if ((VT == MVT::f32 && Subtarget.hasFRSQRTES()) ||
13088       (VT == MVT::f64 && Subtarget.hasFRSQRTE()) ||
13089       (VT == MVT::v4f32 && Subtarget.hasAltivec()) ||
13090       (VT == MVT::v2f64 && Subtarget.hasVSX())) {
13091     if (RefinementSteps == ReciprocalEstimate::Unspecified)
13092       RefinementSteps = getEstimateRefinementSteps(VT, Subtarget);
13093 
13094     // The Newton-Raphson computation with a single constant does not provide
13095     // enough accuracy on some CPUs.
13096     UseOneConstNR = !Subtarget.needsTwoConstNR();
13097     return DAG.getNode(PPCISD::FRSQRTE, SDLoc(Operand), VT, Operand);
13098   }
13099   return SDValue();
13100 }
13101 
13102 SDValue PPCTargetLowering::getRecipEstimate(SDValue Operand, SelectionDAG &DAG,
13103                                             int Enabled,
13104                                             int &RefinementSteps) const {
13105   EVT VT = Operand.getValueType();
13106   if ((VT == MVT::f32 && Subtarget.hasFRES()) ||
13107       (VT == MVT::f64 && Subtarget.hasFRE()) ||
13108       (VT == MVT::v4f32 && Subtarget.hasAltivec()) ||
13109       (VT == MVT::v2f64 && Subtarget.hasVSX())) {
13110     if (RefinementSteps == ReciprocalEstimate::Unspecified)
13111       RefinementSteps = getEstimateRefinementSteps(VT, Subtarget);
13112     return DAG.getNode(PPCISD::FRE, SDLoc(Operand), VT, Operand);
13113   }
13114   return SDValue();
13115 }
13116 
13117 unsigned PPCTargetLowering::combineRepeatedFPDivisors() const {
13118   // Note: This functionality is used only when unsafe-fp-math is enabled, and
13119   // on cores with reciprocal estimates (which are used when unsafe-fp-math is
13120   // enabled for division), this functionality is redundant with the default
13121   // combiner logic (once the division -> reciprocal/multiply transformation
13122   // has taken place). As a result, this matters more for older cores than for
13123   // newer ones.
13124 
13125   // Combine multiple FDIVs with the same divisor into multiple FMULs by the
13126   // reciprocal if there are two or more FDIVs (for embedded cores with only
13127   // one FP pipeline) for three or more FDIVs (for generic OOO cores).
13128   switch (Subtarget.getCPUDirective()) {
13129   default:
13130     return 3;
13131   case PPC::DIR_440:
13132   case PPC::DIR_A2:
13133   case PPC::DIR_E500:
13134   case PPC::DIR_E500mc:
13135   case PPC::DIR_E5500:
13136     return 2;
13137   }
13138 }
13139 
13140 // isConsecutiveLSLoc needs to work even if all adds have not yet been
13141 // collapsed, and so we need to look through chains of them.
13142 static void getBaseWithConstantOffset(SDValue Loc, SDValue &Base,
13143                                      int64_t& Offset, SelectionDAG &DAG) {
13144   if (DAG.isBaseWithConstantOffset(Loc)) {
13145     Base = Loc.getOperand(0);
13146     Offset += cast<ConstantSDNode>(Loc.getOperand(1))->getSExtValue();
13147 
13148     // The base might itself be a base plus an offset, and if so, accumulate
13149     // that as well.
13150     getBaseWithConstantOffset(Loc.getOperand(0), Base, Offset, DAG);
13151   }
13152 }
13153 
13154 static bool isConsecutiveLSLoc(SDValue Loc, EVT VT, LSBaseSDNode *Base,
13155                             unsigned Bytes, int Dist,
13156                             SelectionDAG &DAG) {
13157   if (VT.getSizeInBits() / 8 != Bytes)
13158     return false;
13159 
13160   SDValue BaseLoc = Base->getBasePtr();
13161   if (Loc.getOpcode() == ISD::FrameIndex) {
13162     if (BaseLoc.getOpcode() != ISD::FrameIndex)
13163       return false;
13164     const MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
13165     int FI  = cast<FrameIndexSDNode>(Loc)->getIndex();
13166     int BFI = cast<FrameIndexSDNode>(BaseLoc)->getIndex();
13167     int FS  = MFI.getObjectSize(FI);
13168     int BFS = MFI.getObjectSize(BFI);
13169     if (FS != BFS || FS != (int)Bytes) return false;
13170     return MFI.getObjectOffset(FI) == (MFI.getObjectOffset(BFI) + Dist*Bytes);
13171   }
13172 
13173   SDValue Base1 = Loc, Base2 = BaseLoc;
13174   int64_t Offset1 = 0, Offset2 = 0;
13175   getBaseWithConstantOffset(Loc, Base1, Offset1, DAG);
13176   getBaseWithConstantOffset(BaseLoc, Base2, Offset2, DAG);
13177   if (Base1 == Base2 && Offset1 == (Offset2 + Dist * Bytes))
13178     return true;
13179 
13180   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
13181   const GlobalValue *GV1 = nullptr;
13182   const GlobalValue *GV2 = nullptr;
13183   Offset1 = 0;
13184   Offset2 = 0;
13185   bool isGA1 = TLI.isGAPlusOffset(Loc.getNode(), GV1, Offset1);
13186   bool isGA2 = TLI.isGAPlusOffset(BaseLoc.getNode(), GV2, Offset2);
13187   if (isGA1 && isGA2 && GV1 == GV2)
13188     return Offset1 == (Offset2 + Dist*Bytes);
13189   return false;
13190 }
13191 
13192 // Like SelectionDAG::isConsecutiveLoad, but also works for stores, and does
13193 // not enforce equality of the chain operands.
13194 static bool isConsecutiveLS(SDNode *N, LSBaseSDNode *Base,
13195                             unsigned Bytes, int Dist,
13196                             SelectionDAG &DAG) {
13197   if (LSBaseSDNode *LS = dyn_cast<LSBaseSDNode>(N)) {
13198     EVT VT = LS->getMemoryVT();
13199     SDValue Loc = LS->getBasePtr();
13200     return isConsecutiveLSLoc(Loc, VT, Base, Bytes, Dist, DAG);
13201   }
13202 
13203   if (N->getOpcode() == ISD::INTRINSIC_W_CHAIN) {
13204     EVT VT;
13205     switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) {
13206     default: return false;
13207     case Intrinsic::ppc_altivec_lvx:
13208     case Intrinsic::ppc_altivec_lvxl:
13209     case Intrinsic::ppc_vsx_lxvw4x:
13210     case Intrinsic::ppc_vsx_lxvw4x_be:
13211       VT = MVT::v4i32;
13212       break;
13213     case Intrinsic::ppc_vsx_lxvd2x:
13214     case Intrinsic::ppc_vsx_lxvd2x_be:
13215       VT = MVT::v2f64;
13216       break;
13217     case Intrinsic::ppc_altivec_lvebx:
13218       VT = MVT::i8;
13219       break;
13220     case Intrinsic::ppc_altivec_lvehx:
13221       VT = MVT::i16;
13222       break;
13223     case Intrinsic::ppc_altivec_lvewx:
13224       VT = MVT::i32;
13225       break;
13226     }
13227 
13228     return isConsecutiveLSLoc(N->getOperand(2), VT, Base, Bytes, Dist, DAG);
13229   }
13230 
13231   if (N->getOpcode() == ISD::INTRINSIC_VOID) {
13232     EVT VT;
13233     switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) {
13234     default: return false;
13235     case Intrinsic::ppc_altivec_stvx:
13236     case Intrinsic::ppc_altivec_stvxl:
13237     case Intrinsic::ppc_vsx_stxvw4x:
13238       VT = MVT::v4i32;
13239       break;
13240     case Intrinsic::ppc_vsx_stxvd2x:
13241       VT = MVT::v2f64;
13242       break;
13243     case Intrinsic::ppc_vsx_stxvw4x_be:
13244       VT = MVT::v4i32;
13245       break;
13246     case Intrinsic::ppc_vsx_stxvd2x_be:
13247       VT = MVT::v2f64;
13248       break;
13249     case Intrinsic::ppc_altivec_stvebx:
13250       VT = MVT::i8;
13251       break;
13252     case Intrinsic::ppc_altivec_stvehx:
13253       VT = MVT::i16;
13254       break;
13255     case Intrinsic::ppc_altivec_stvewx:
13256       VT = MVT::i32;
13257       break;
13258     }
13259 
13260     return isConsecutiveLSLoc(N->getOperand(3), VT, Base, Bytes, Dist, DAG);
13261   }
13262 
13263   return false;
13264 }
13265 
13266 // Return true is there is a nearyby consecutive load to the one provided
13267 // (regardless of alignment). We search up and down the chain, looking though
13268 // token factors and other loads (but nothing else). As a result, a true result
13269 // indicates that it is safe to create a new consecutive load adjacent to the
13270 // load provided.
13271 static bool findConsecutiveLoad(LoadSDNode *LD, SelectionDAG &DAG) {
13272   SDValue Chain = LD->getChain();
13273   EVT VT = LD->getMemoryVT();
13274 
13275   SmallSet<SDNode *, 16> LoadRoots;
13276   SmallVector<SDNode *, 8> Queue(1, Chain.getNode());
13277   SmallSet<SDNode *, 16> Visited;
13278 
13279   // First, search up the chain, branching to follow all token-factor operands.
13280   // If we find a consecutive load, then we're done, otherwise, record all
13281   // nodes just above the top-level loads and token factors.
13282   while (!Queue.empty()) {
13283     SDNode *ChainNext = Queue.pop_back_val();
13284     if (!Visited.insert(ChainNext).second)
13285       continue;
13286 
13287     if (MemSDNode *ChainLD = dyn_cast<MemSDNode>(ChainNext)) {
13288       if (isConsecutiveLS(ChainLD, LD, VT.getStoreSize(), 1, DAG))
13289         return true;
13290 
13291       if (!Visited.count(ChainLD->getChain().getNode()))
13292         Queue.push_back(ChainLD->getChain().getNode());
13293     } else if (ChainNext->getOpcode() == ISD::TokenFactor) {
13294       for (const SDUse &O : ChainNext->ops())
13295         if (!Visited.count(O.getNode()))
13296           Queue.push_back(O.getNode());
13297     } else
13298       LoadRoots.insert(ChainNext);
13299   }
13300 
13301   // Second, search down the chain, starting from the top-level nodes recorded
13302   // in the first phase. These top-level nodes are the nodes just above all
13303   // loads and token factors. Starting with their uses, recursively look though
13304   // all loads (just the chain uses) and token factors to find a consecutive
13305   // load.
13306   Visited.clear();
13307   Queue.clear();
13308 
13309   for (SmallSet<SDNode *, 16>::iterator I = LoadRoots.begin(),
13310        IE = LoadRoots.end(); I != IE; ++I) {
13311     Queue.push_back(*I);
13312 
13313     while (!Queue.empty()) {
13314       SDNode *LoadRoot = Queue.pop_back_val();
13315       if (!Visited.insert(LoadRoot).second)
13316         continue;
13317 
13318       if (MemSDNode *ChainLD = dyn_cast<MemSDNode>(LoadRoot))
13319         if (isConsecutiveLS(ChainLD, LD, VT.getStoreSize(), 1, DAG))
13320           return true;
13321 
13322       for (SDNode *U : LoadRoot->uses())
13323         if (((isa<MemSDNode>(U) &&
13324               cast<MemSDNode>(U)->getChain().getNode() == LoadRoot) ||
13325              U->getOpcode() == ISD::TokenFactor) &&
13326             !Visited.count(U))
13327           Queue.push_back(U);
13328     }
13329   }
13330 
13331   return false;
13332 }
13333 
13334 /// This function is called when we have proved that a SETCC node can be replaced
13335 /// by subtraction (and other supporting instructions) so that the result of
13336 /// comparison is kept in a GPR instead of CR. This function is purely for
13337 /// codegen purposes and has some flags to guide the codegen process.
13338 static SDValue generateEquivalentSub(SDNode *N, int Size, bool Complement,
13339                                      bool Swap, SDLoc &DL, SelectionDAG &DAG) {
13340   assert(N->getOpcode() == ISD::SETCC && "ISD::SETCC Expected.");
13341 
13342   // Zero extend the operands to the largest legal integer. Originally, they
13343   // must be of a strictly smaller size.
13344   auto Op0 = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i64, N->getOperand(0),
13345                          DAG.getConstant(Size, DL, MVT::i32));
13346   auto Op1 = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i64, N->getOperand(1),
13347                          DAG.getConstant(Size, DL, MVT::i32));
13348 
13349   // Swap if needed. Depends on the condition code.
13350   if (Swap)
13351     std::swap(Op0, Op1);
13352 
13353   // Subtract extended integers.
13354   auto SubNode = DAG.getNode(ISD::SUB, DL, MVT::i64, Op0, Op1);
13355 
13356   // Move the sign bit to the least significant position and zero out the rest.
13357   // Now the least significant bit carries the result of original comparison.
13358   auto Shifted = DAG.getNode(ISD::SRL, DL, MVT::i64, SubNode,
13359                              DAG.getConstant(Size - 1, DL, MVT::i32));
13360   auto Final = Shifted;
13361 
13362   // Complement the result if needed. Based on the condition code.
13363   if (Complement)
13364     Final = DAG.getNode(ISD::XOR, DL, MVT::i64, Shifted,
13365                         DAG.getConstant(1, DL, MVT::i64));
13366 
13367   return DAG.getNode(ISD::TRUNCATE, DL, MVT::i1, Final);
13368 }
13369 
13370 SDValue PPCTargetLowering::ConvertSETCCToSubtract(SDNode *N,
13371                                                   DAGCombinerInfo &DCI) const {
13372   assert(N->getOpcode() == ISD::SETCC && "ISD::SETCC Expected.");
13373 
13374   SelectionDAG &DAG = DCI.DAG;
13375   SDLoc DL(N);
13376 
13377   // Size of integers being compared has a critical role in the following
13378   // analysis, so we prefer to do this when all types are legal.
13379   if (!DCI.isAfterLegalizeDAG())
13380     return SDValue();
13381 
13382   // If all users of SETCC extend its value to a legal integer type
13383   // then we replace SETCC with a subtraction
13384   for (const SDNode *U : N->uses())
13385     if (U->getOpcode() != ISD::ZERO_EXTEND)
13386       return SDValue();
13387 
13388   ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(2))->get();
13389   auto OpSize = N->getOperand(0).getValueSizeInBits();
13390 
13391   unsigned Size = DAG.getDataLayout().getLargestLegalIntTypeSizeInBits();
13392 
13393   if (OpSize < Size) {
13394     switch (CC) {
13395     default: break;
13396     case ISD::SETULT:
13397       return generateEquivalentSub(N, Size, false, false, DL, DAG);
13398     case ISD::SETULE:
13399       return generateEquivalentSub(N, Size, true, true, DL, DAG);
13400     case ISD::SETUGT:
13401       return generateEquivalentSub(N, Size, false, true, DL, DAG);
13402     case ISD::SETUGE:
13403       return generateEquivalentSub(N, Size, true, false, DL, DAG);
13404     }
13405   }
13406 
13407   return SDValue();
13408 }
13409 
13410 SDValue PPCTargetLowering::DAGCombineTruncBoolExt(SDNode *N,
13411                                                   DAGCombinerInfo &DCI) const {
13412   SelectionDAG &DAG = DCI.DAG;
13413   SDLoc dl(N);
13414 
13415   assert(Subtarget.useCRBits() && "Expecting to be tracking CR bits");
13416   // If we're tracking CR bits, we need to be careful that we don't have:
13417   //   trunc(binary-ops(zext(x), zext(y)))
13418   // or
13419   //   trunc(binary-ops(binary-ops(zext(x), zext(y)), ...)
13420   // such that we're unnecessarily moving things into GPRs when it would be
13421   // better to keep them in CR bits.
13422 
13423   // Note that trunc here can be an actual i1 trunc, or can be the effective
13424   // truncation that comes from a setcc or select_cc.
13425   if (N->getOpcode() == ISD::TRUNCATE &&
13426       N->getValueType(0) != MVT::i1)
13427     return SDValue();
13428 
13429   if (N->getOperand(0).getValueType() != MVT::i32 &&
13430       N->getOperand(0).getValueType() != MVT::i64)
13431     return SDValue();
13432 
13433   if (N->getOpcode() == ISD::SETCC ||
13434       N->getOpcode() == ISD::SELECT_CC) {
13435     // If we're looking at a comparison, then we need to make sure that the
13436     // high bits (all except for the first) don't matter the result.
13437     ISD::CondCode CC =
13438       cast<CondCodeSDNode>(N->getOperand(
13439         N->getOpcode() == ISD::SETCC ? 2 : 4))->get();
13440     unsigned OpBits = N->getOperand(0).getValueSizeInBits();
13441 
13442     if (ISD::isSignedIntSetCC(CC)) {
13443       if (DAG.ComputeNumSignBits(N->getOperand(0)) != OpBits ||
13444           DAG.ComputeNumSignBits(N->getOperand(1)) != OpBits)
13445         return SDValue();
13446     } else if (ISD::isUnsignedIntSetCC(CC)) {
13447       if (!DAG.MaskedValueIsZero(N->getOperand(0),
13448                                  APInt::getHighBitsSet(OpBits, OpBits-1)) ||
13449           !DAG.MaskedValueIsZero(N->getOperand(1),
13450                                  APInt::getHighBitsSet(OpBits, OpBits-1)))
13451         return (N->getOpcode() == ISD::SETCC ? ConvertSETCCToSubtract(N, DCI)
13452                                              : SDValue());
13453     } else {
13454       // This is neither a signed nor an unsigned comparison, just make sure
13455       // that the high bits are equal.
13456       KnownBits Op1Known = DAG.computeKnownBits(N->getOperand(0));
13457       KnownBits Op2Known = DAG.computeKnownBits(N->getOperand(1));
13458 
13459       // We don't really care about what is known about the first bit (if
13460       // anything), so pretend that it is known zero for both to ensure they can
13461       // be compared as constants.
13462       Op1Known.Zero.setBit(0); Op1Known.One.clearBit(0);
13463       Op2Known.Zero.setBit(0); Op2Known.One.clearBit(0);
13464 
13465       if (!Op1Known.isConstant() || !Op2Known.isConstant() ||
13466           Op1Known.getConstant() != Op2Known.getConstant())
13467         return SDValue();
13468     }
13469   }
13470 
13471   // We now know that the higher-order bits are irrelevant, we just need to
13472   // make sure that all of the intermediate operations are bit operations, and
13473   // all inputs are extensions.
13474   if (N->getOperand(0).getOpcode() != ISD::AND &&
13475       N->getOperand(0).getOpcode() != ISD::OR  &&
13476       N->getOperand(0).getOpcode() != ISD::XOR &&
13477       N->getOperand(0).getOpcode() != ISD::SELECT &&
13478       N->getOperand(0).getOpcode() != ISD::SELECT_CC &&
13479       N->getOperand(0).getOpcode() != ISD::TRUNCATE &&
13480       N->getOperand(0).getOpcode() != ISD::SIGN_EXTEND &&
13481       N->getOperand(0).getOpcode() != ISD::ZERO_EXTEND &&
13482       N->getOperand(0).getOpcode() != ISD::ANY_EXTEND)
13483     return SDValue();
13484 
13485   if ((N->getOpcode() == ISD::SETCC || N->getOpcode() == ISD::SELECT_CC) &&
13486       N->getOperand(1).getOpcode() != ISD::AND &&
13487       N->getOperand(1).getOpcode() != ISD::OR  &&
13488       N->getOperand(1).getOpcode() != ISD::XOR &&
13489       N->getOperand(1).getOpcode() != ISD::SELECT &&
13490       N->getOperand(1).getOpcode() != ISD::SELECT_CC &&
13491       N->getOperand(1).getOpcode() != ISD::TRUNCATE &&
13492       N->getOperand(1).getOpcode() != ISD::SIGN_EXTEND &&
13493       N->getOperand(1).getOpcode() != ISD::ZERO_EXTEND &&
13494       N->getOperand(1).getOpcode() != ISD::ANY_EXTEND)
13495     return SDValue();
13496 
13497   SmallVector<SDValue, 4> Inputs;
13498   SmallVector<SDValue, 8> BinOps, PromOps;
13499   SmallPtrSet<SDNode *, 16> Visited;
13500 
13501   for (unsigned i = 0; i < 2; ++i) {
13502     if (((N->getOperand(i).getOpcode() == ISD::SIGN_EXTEND ||
13503           N->getOperand(i).getOpcode() == ISD::ZERO_EXTEND ||
13504           N->getOperand(i).getOpcode() == ISD::ANY_EXTEND) &&
13505           N->getOperand(i).getOperand(0).getValueType() == MVT::i1) ||
13506         isa<ConstantSDNode>(N->getOperand(i)))
13507       Inputs.push_back(N->getOperand(i));
13508     else
13509       BinOps.push_back(N->getOperand(i));
13510 
13511     if (N->getOpcode() == ISD::TRUNCATE)
13512       break;
13513   }
13514 
13515   // Visit all inputs, collect all binary operations (and, or, xor and
13516   // select) that are all fed by extensions.
13517   while (!BinOps.empty()) {
13518     SDValue BinOp = BinOps.pop_back_val();
13519 
13520     if (!Visited.insert(BinOp.getNode()).second)
13521       continue;
13522 
13523     PromOps.push_back(BinOp);
13524 
13525     for (unsigned i = 0, ie = BinOp.getNumOperands(); i != ie; ++i) {
13526       // The condition of the select is not promoted.
13527       if (BinOp.getOpcode() == ISD::SELECT && i == 0)
13528         continue;
13529       if (BinOp.getOpcode() == ISD::SELECT_CC && i != 2 && i != 3)
13530         continue;
13531 
13532       if (((BinOp.getOperand(i).getOpcode() == ISD::SIGN_EXTEND ||
13533             BinOp.getOperand(i).getOpcode() == ISD::ZERO_EXTEND ||
13534             BinOp.getOperand(i).getOpcode() == ISD::ANY_EXTEND) &&
13535            BinOp.getOperand(i).getOperand(0).getValueType() == MVT::i1) ||
13536           isa<ConstantSDNode>(BinOp.getOperand(i))) {
13537         Inputs.push_back(BinOp.getOperand(i));
13538       } else if (BinOp.getOperand(i).getOpcode() == ISD::AND ||
13539                  BinOp.getOperand(i).getOpcode() == ISD::OR  ||
13540                  BinOp.getOperand(i).getOpcode() == ISD::XOR ||
13541                  BinOp.getOperand(i).getOpcode() == ISD::SELECT ||
13542                  BinOp.getOperand(i).getOpcode() == ISD::SELECT_CC ||
13543                  BinOp.getOperand(i).getOpcode() == ISD::TRUNCATE ||
13544                  BinOp.getOperand(i).getOpcode() == ISD::SIGN_EXTEND ||
13545                  BinOp.getOperand(i).getOpcode() == ISD::ZERO_EXTEND ||
13546                  BinOp.getOperand(i).getOpcode() == ISD::ANY_EXTEND) {
13547         BinOps.push_back(BinOp.getOperand(i));
13548       } else {
13549         // We have an input that is not an extension or another binary
13550         // operation; we'll abort this transformation.
13551         return SDValue();
13552       }
13553     }
13554   }
13555 
13556   // Make sure that this is a self-contained cluster of operations (which
13557   // is not quite the same thing as saying that everything has only one
13558   // use).
13559   for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) {
13560     if (isa<ConstantSDNode>(Inputs[i]))
13561       continue;
13562 
13563     for (const SDNode *User : Inputs[i].getNode()->uses()) {
13564       if (User != N && !Visited.count(User))
13565         return SDValue();
13566 
13567       // Make sure that we're not going to promote the non-output-value
13568       // operand(s) or SELECT or SELECT_CC.
13569       // FIXME: Although we could sometimes handle this, and it does occur in
13570       // practice that one of the condition inputs to the select is also one of
13571       // the outputs, we currently can't deal with this.
13572       if (User->getOpcode() == ISD::SELECT) {
13573         if (User->getOperand(0) == Inputs[i])
13574           return SDValue();
13575       } else if (User->getOpcode() == ISD::SELECT_CC) {
13576         if (User->getOperand(0) == Inputs[i] ||
13577             User->getOperand(1) == Inputs[i])
13578           return SDValue();
13579       }
13580     }
13581   }
13582 
13583   for (unsigned i = 0, ie = PromOps.size(); i != ie; ++i) {
13584     for (const SDNode *User : PromOps[i].getNode()->uses()) {
13585       if (User != N && !Visited.count(User))
13586         return SDValue();
13587 
13588       // Make sure that we're not going to promote the non-output-value
13589       // operand(s) or SELECT or SELECT_CC.
13590       // FIXME: Although we could sometimes handle this, and it does occur in
13591       // practice that one of the condition inputs to the select is also one of
13592       // the outputs, we currently can't deal with this.
13593       if (User->getOpcode() == ISD::SELECT) {
13594         if (User->getOperand(0) == PromOps[i])
13595           return SDValue();
13596       } else if (User->getOpcode() == ISD::SELECT_CC) {
13597         if (User->getOperand(0) == PromOps[i] ||
13598             User->getOperand(1) == PromOps[i])
13599           return SDValue();
13600       }
13601     }
13602   }
13603 
13604   // Replace all inputs with the extension operand.
13605   for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) {
13606     // Constants may have users outside the cluster of to-be-promoted nodes,
13607     // and so we need to replace those as we do the promotions.
13608     if (isa<ConstantSDNode>(Inputs[i]))
13609       continue;
13610     else
13611       DAG.ReplaceAllUsesOfValueWith(Inputs[i], Inputs[i].getOperand(0));
13612   }
13613 
13614   std::list<HandleSDNode> PromOpHandles;
13615   for (auto &PromOp : PromOps)
13616     PromOpHandles.emplace_back(PromOp);
13617 
13618   // Replace all operations (these are all the same, but have a different
13619   // (i1) return type). DAG.getNode will validate that the types of
13620   // a binary operator match, so go through the list in reverse so that
13621   // we've likely promoted both operands first. Any intermediate truncations or
13622   // extensions disappear.
13623   while (!PromOpHandles.empty()) {
13624     SDValue PromOp = PromOpHandles.back().getValue();
13625     PromOpHandles.pop_back();
13626 
13627     if (PromOp.getOpcode() == ISD::TRUNCATE ||
13628         PromOp.getOpcode() == ISD::SIGN_EXTEND ||
13629         PromOp.getOpcode() == ISD::ZERO_EXTEND ||
13630         PromOp.getOpcode() == ISD::ANY_EXTEND) {
13631       if (!isa<ConstantSDNode>(PromOp.getOperand(0)) &&
13632           PromOp.getOperand(0).getValueType() != MVT::i1) {
13633         // The operand is not yet ready (see comment below).
13634         PromOpHandles.emplace_front(PromOp);
13635         continue;
13636       }
13637 
13638       SDValue RepValue = PromOp.getOperand(0);
13639       if (isa<ConstantSDNode>(RepValue))
13640         RepValue = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, RepValue);
13641 
13642       DAG.ReplaceAllUsesOfValueWith(PromOp, RepValue);
13643       continue;
13644     }
13645 
13646     unsigned C;
13647     switch (PromOp.getOpcode()) {
13648     default:             C = 0; break;
13649     case ISD::SELECT:    C = 1; break;
13650     case ISD::SELECT_CC: C = 2; break;
13651     }
13652 
13653     if ((!isa<ConstantSDNode>(PromOp.getOperand(C)) &&
13654          PromOp.getOperand(C).getValueType() != MVT::i1) ||
13655         (!isa<ConstantSDNode>(PromOp.getOperand(C+1)) &&
13656          PromOp.getOperand(C+1).getValueType() != MVT::i1)) {
13657       // The to-be-promoted operands of this node have not yet been
13658       // promoted (this should be rare because we're going through the
13659       // list backward, but if one of the operands has several users in
13660       // this cluster of to-be-promoted nodes, it is possible).
13661       PromOpHandles.emplace_front(PromOp);
13662       continue;
13663     }
13664 
13665     SmallVector<SDValue, 3> Ops(PromOp.getNode()->op_begin(),
13666                                 PromOp.getNode()->op_end());
13667 
13668     // If there are any constant inputs, make sure they're replaced now.
13669     for (unsigned i = 0; i < 2; ++i)
13670       if (isa<ConstantSDNode>(Ops[C+i]))
13671         Ops[C+i] = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, Ops[C+i]);
13672 
13673     DAG.ReplaceAllUsesOfValueWith(PromOp,
13674       DAG.getNode(PromOp.getOpcode(), dl, MVT::i1, Ops));
13675   }
13676 
13677   // Now we're left with the initial truncation itself.
13678   if (N->getOpcode() == ISD::TRUNCATE)
13679     return N->getOperand(0);
13680 
13681   // Otherwise, this is a comparison. The operands to be compared have just
13682   // changed type (to i1), but everything else is the same.
13683   return SDValue(N, 0);
13684 }
13685 
13686 SDValue PPCTargetLowering::DAGCombineExtBoolTrunc(SDNode *N,
13687                                                   DAGCombinerInfo &DCI) const {
13688   SelectionDAG &DAG = DCI.DAG;
13689   SDLoc dl(N);
13690 
13691   // If we're tracking CR bits, we need to be careful that we don't have:
13692   //   zext(binary-ops(trunc(x), trunc(y)))
13693   // or
13694   //   zext(binary-ops(binary-ops(trunc(x), trunc(y)), ...)
13695   // such that we're unnecessarily moving things into CR bits that can more
13696   // efficiently stay in GPRs. Note that if we're not certain that the high
13697   // bits are set as required by the final extension, we still may need to do
13698   // some masking to get the proper behavior.
13699 
13700   // This same functionality is important on PPC64 when dealing with
13701   // 32-to-64-bit extensions; these occur often when 32-bit values are used as
13702   // the return values of functions. Because it is so similar, it is handled
13703   // here as well.
13704 
13705   if (N->getValueType(0) != MVT::i32 &&
13706       N->getValueType(0) != MVT::i64)
13707     return SDValue();
13708 
13709   if (!((N->getOperand(0).getValueType() == MVT::i1 && Subtarget.useCRBits()) ||
13710         (N->getOperand(0).getValueType() == MVT::i32 && Subtarget.isPPC64())))
13711     return SDValue();
13712 
13713   if (N->getOperand(0).getOpcode() != ISD::AND &&
13714       N->getOperand(0).getOpcode() != ISD::OR  &&
13715       N->getOperand(0).getOpcode() != ISD::XOR &&
13716       N->getOperand(0).getOpcode() != ISD::SELECT &&
13717       N->getOperand(0).getOpcode() != ISD::SELECT_CC)
13718     return SDValue();
13719 
13720   SmallVector<SDValue, 4> Inputs;
13721   SmallVector<SDValue, 8> BinOps(1, N->getOperand(0)), PromOps;
13722   SmallPtrSet<SDNode *, 16> Visited;
13723 
13724   // Visit all inputs, collect all binary operations (and, or, xor and
13725   // select) that are all fed by truncations.
13726   while (!BinOps.empty()) {
13727     SDValue BinOp = BinOps.pop_back_val();
13728 
13729     if (!Visited.insert(BinOp.getNode()).second)
13730       continue;
13731 
13732     PromOps.push_back(BinOp);
13733 
13734     for (unsigned i = 0, ie = BinOp.getNumOperands(); i != ie; ++i) {
13735       // The condition of the select is not promoted.
13736       if (BinOp.getOpcode() == ISD::SELECT && i == 0)
13737         continue;
13738       if (BinOp.getOpcode() == ISD::SELECT_CC && i != 2 && i != 3)
13739         continue;
13740 
13741       if (BinOp.getOperand(i).getOpcode() == ISD::TRUNCATE ||
13742           isa<ConstantSDNode>(BinOp.getOperand(i))) {
13743         Inputs.push_back(BinOp.getOperand(i));
13744       } else if (BinOp.getOperand(i).getOpcode() == ISD::AND ||
13745                  BinOp.getOperand(i).getOpcode() == ISD::OR  ||
13746                  BinOp.getOperand(i).getOpcode() == ISD::XOR ||
13747                  BinOp.getOperand(i).getOpcode() == ISD::SELECT ||
13748                  BinOp.getOperand(i).getOpcode() == ISD::SELECT_CC) {
13749         BinOps.push_back(BinOp.getOperand(i));
13750       } else {
13751         // We have an input that is not a truncation or another binary
13752         // operation; we'll abort this transformation.
13753         return SDValue();
13754       }
13755     }
13756   }
13757 
13758   // The operands of a select that must be truncated when the select is
13759   // promoted because the operand is actually part of the to-be-promoted set.
13760   DenseMap<SDNode *, EVT> SelectTruncOp[2];
13761 
13762   // Make sure that this is a self-contained cluster of operations (which
13763   // is not quite the same thing as saying that everything has only one
13764   // use).
13765   for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) {
13766     if (isa<ConstantSDNode>(Inputs[i]))
13767       continue;
13768 
13769     for (SDNode *User : Inputs[i].getNode()->uses()) {
13770       if (User != N && !Visited.count(User))
13771         return SDValue();
13772 
13773       // If we're going to promote the non-output-value operand(s) or SELECT or
13774       // SELECT_CC, record them for truncation.
13775       if (User->getOpcode() == ISD::SELECT) {
13776         if (User->getOperand(0) == Inputs[i])
13777           SelectTruncOp[0].insert(std::make_pair(User,
13778                                     User->getOperand(0).getValueType()));
13779       } else if (User->getOpcode() == ISD::SELECT_CC) {
13780         if (User->getOperand(0) == Inputs[i])
13781           SelectTruncOp[0].insert(std::make_pair(User,
13782                                     User->getOperand(0).getValueType()));
13783         if (User->getOperand(1) == Inputs[i])
13784           SelectTruncOp[1].insert(std::make_pair(User,
13785                                     User->getOperand(1).getValueType()));
13786       }
13787     }
13788   }
13789 
13790   for (unsigned i = 0, ie = PromOps.size(); i != ie; ++i) {
13791     for (SDNode *User : PromOps[i].getNode()->uses()) {
13792       if (User != N && !Visited.count(User))
13793         return SDValue();
13794 
13795       // If we're going to promote the non-output-value operand(s) or SELECT or
13796       // SELECT_CC, record them for truncation.
13797       if (User->getOpcode() == ISD::SELECT) {
13798         if (User->getOperand(0) == PromOps[i])
13799           SelectTruncOp[0].insert(std::make_pair(User,
13800                                     User->getOperand(0).getValueType()));
13801       } else if (User->getOpcode() == ISD::SELECT_CC) {
13802         if (User->getOperand(0) == PromOps[i])
13803           SelectTruncOp[0].insert(std::make_pair(User,
13804                                     User->getOperand(0).getValueType()));
13805         if (User->getOperand(1) == PromOps[i])
13806           SelectTruncOp[1].insert(std::make_pair(User,
13807                                     User->getOperand(1).getValueType()));
13808       }
13809     }
13810   }
13811 
13812   unsigned PromBits = N->getOperand(0).getValueSizeInBits();
13813   bool ReallyNeedsExt = false;
13814   if (N->getOpcode() != ISD::ANY_EXTEND) {
13815     // If all of the inputs are not already sign/zero extended, then
13816     // we'll still need to do that at the end.
13817     for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) {
13818       if (isa<ConstantSDNode>(Inputs[i]))
13819         continue;
13820 
13821       unsigned OpBits =
13822         Inputs[i].getOperand(0).getValueSizeInBits();
13823       assert(PromBits < OpBits && "Truncation not to a smaller bit count?");
13824 
13825       if ((N->getOpcode() == ISD::ZERO_EXTEND &&
13826            !DAG.MaskedValueIsZero(Inputs[i].getOperand(0),
13827                                   APInt::getHighBitsSet(OpBits,
13828                                                         OpBits-PromBits))) ||
13829           (N->getOpcode() == ISD::SIGN_EXTEND &&
13830            DAG.ComputeNumSignBits(Inputs[i].getOperand(0)) <
13831              (OpBits-(PromBits-1)))) {
13832         ReallyNeedsExt = true;
13833         break;
13834       }
13835     }
13836   }
13837 
13838   // Replace all inputs, either with the truncation operand, or a
13839   // truncation or extension to the final output type.
13840   for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) {
13841     // Constant inputs need to be replaced with the to-be-promoted nodes that
13842     // use them because they might have users outside of the cluster of
13843     // promoted nodes.
13844     if (isa<ConstantSDNode>(Inputs[i]))
13845       continue;
13846 
13847     SDValue InSrc = Inputs[i].getOperand(0);
13848     if (Inputs[i].getValueType() == N->getValueType(0))
13849       DAG.ReplaceAllUsesOfValueWith(Inputs[i], InSrc);
13850     else if (N->getOpcode() == ISD::SIGN_EXTEND)
13851       DAG.ReplaceAllUsesOfValueWith(Inputs[i],
13852         DAG.getSExtOrTrunc(InSrc, dl, N->getValueType(0)));
13853     else if (N->getOpcode() == ISD::ZERO_EXTEND)
13854       DAG.ReplaceAllUsesOfValueWith(Inputs[i],
13855         DAG.getZExtOrTrunc(InSrc, dl, N->getValueType(0)));
13856     else
13857       DAG.ReplaceAllUsesOfValueWith(Inputs[i],
13858         DAG.getAnyExtOrTrunc(InSrc, dl, N->getValueType(0)));
13859   }
13860 
13861   std::list<HandleSDNode> PromOpHandles;
13862   for (auto &PromOp : PromOps)
13863     PromOpHandles.emplace_back(PromOp);
13864 
13865   // Replace all operations (these are all the same, but have a different
13866   // (promoted) return type). DAG.getNode will validate that the types of
13867   // a binary operator match, so go through the list in reverse so that
13868   // we've likely promoted both operands first.
13869   while (!PromOpHandles.empty()) {
13870     SDValue PromOp = PromOpHandles.back().getValue();
13871     PromOpHandles.pop_back();
13872 
13873     unsigned C;
13874     switch (PromOp.getOpcode()) {
13875     default:             C = 0; break;
13876     case ISD::SELECT:    C = 1; break;
13877     case ISD::SELECT_CC: C = 2; break;
13878     }
13879 
13880     if ((!isa<ConstantSDNode>(PromOp.getOperand(C)) &&
13881          PromOp.getOperand(C).getValueType() != N->getValueType(0)) ||
13882         (!isa<ConstantSDNode>(PromOp.getOperand(C+1)) &&
13883          PromOp.getOperand(C+1).getValueType() != N->getValueType(0))) {
13884       // The to-be-promoted operands of this node have not yet been
13885       // promoted (this should be rare because we're going through the
13886       // list backward, but if one of the operands has several users in
13887       // this cluster of to-be-promoted nodes, it is possible).
13888       PromOpHandles.emplace_front(PromOp);
13889       continue;
13890     }
13891 
13892     // For SELECT and SELECT_CC nodes, we do a similar check for any
13893     // to-be-promoted comparison inputs.
13894     if (PromOp.getOpcode() == ISD::SELECT ||
13895         PromOp.getOpcode() == ISD::SELECT_CC) {
13896       if ((SelectTruncOp[0].count(PromOp.getNode()) &&
13897            PromOp.getOperand(0).getValueType() != N->getValueType(0)) ||
13898           (SelectTruncOp[1].count(PromOp.getNode()) &&
13899            PromOp.getOperand(1).getValueType() != N->getValueType(0))) {
13900         PromOpHandles.emplace_front(PromOp);
13901         continue;
13902       }
13903     }
13904 
13905     SmallVector<SDValue, 3> Ops(PromOp.getNode()->op_begin(),
13906                                 PromOp.getNode()->op_end());
13907 
13908     // If this node has constant inputs, then they'll need to be promoted here.
13909     for (unsigned i = 0; i < 2; ++i) {
13910       if (!isa<ConstantSDNode>(Ops[C+i]))
13911         continue;
13912       if (Ops[C+i].getValueType() == N->getValueType(0))
13913         continue;
13914 
13915       if (N->getOpcode() == ISD::SIGN_EXTEND)
13916         Ops[C+i] = DAG.getSExtOrTrunc(Ops[C+i], dl, N->getValueType(0));
13917       else if (N->getOpcode() == ISD::ZERO_EXTEND)
13918         Ops[C+i] = DAG.getZExtOrTrunc(Ops[C+i], dl, N->getValueType(0));
13919       else
13920         Ops[C+i] = DAG.getAnyExtOrTrunc(Ops[C+i], dl, N->getValueType(0));
13921     }
13922 
13923     // If we've promoted the comparison inputs of a SELECT or SELECT_CC,
13924     // truncate them again to the original value type.
13925     if (PromOp.getOpcode() == ISD::SELECT ||
13926         PromOp.getOpcode() == ISD::SELECT_CC) {
13927       auto SI0 = SelectTruncOp[0].find(PromOp.getNode());
13928       if (SI0 != SelectTruncOp[0].end())
13929         Ops[0] = DAG.getNode(ISD::TRUNCATE, dl, SI0->second, Ops[0]);
13930       auto SI1 = SelectTruncOp[1].find(PromOp.getNode());
13931       if (SI1 != SelectTruncOp[1].end())
13932         Ops[1] = DAG.getNode(ISD::TRUNCATE, dl, SI1->second, Ops[1]);
13933     }
13934 
13935     DAG.ReplaceAllUsesOfValueWith(PromOp,
13936       DAG.getNode(PromOp.getOpcode(), dl, N->getValueType(0), Ops));
13937   }
13938 
13939   // Now we're left with the initial extension itself.
13940   if (!ReallyNeedsExt)
13941     return N->getOperand(0);
13942 
13943   // To zero extend, just mask off everything except for the first bit (in the
13944   // i1 case).
13945   if (N->getOpcode() == ISD::ZERO_EXTEND)
13946     return DAG.getNode(ISD::AND, dl, N->getValueType(0), N->getOperand(0),
13947                        DAG.getConstant(APInt::getLowBitsSet(
13948                                          N->getValueSizeInBits(0), PromBits),
13949                                        dl, N->getValueType(0)));
13950 
13951   assert(N->getOpcode() == ISD::SIGN_EXTEND &&
13952          "Invalid extension type");
13953   EVT ShiftAmountTy = getShiftAmountTy(N->getValueType(0), DAG.getDataLayout());
13954   SDValue ShiftCst =
13955       DAG.getConstant(N->getValueSizeInBits(0) - PromBits, dl, ShiftAmountTy);
13956   return DAG.getNode(
13957       ISD::SRA, dl, N->getValueType(0),
13958       DAG.getNode(ISD::SHL, dl, N->getValueType(0), N->getOperand(0), ShiftCst),
13959       ShiftCst);
13960 }
13961 
13962 SDValue PPCTargetLowering::combineSetCC(SDNode *N,
13963                                         DAGCombinerInfo &DCI) const {
13964   assert(N->getOpcode() == ISD::SETCC &&
13965          "Should be called with a SETCC node");
13966 
13967   ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(2))->get();
13968   if (CC == ISD::SETNE || CC == ISD::SETEQ) {
13969     SDValue LHS = N->getOperand(0);
13970     SDValue RHS = N->getOperand(1);
13971 
13972     // If there is a '0 - y' pattern, canonicalize the pattern to the RHS.
13973     if (LHS.getOpcode() == ISD::SUB && isNullConstant(LHS.getOperand(0)) &&
13974         LHS.hasOneUse())
13975       std::swap(LHS, RHS);
13976 
13977     // x == 0-y --> x+y == 0
13978     // x != 0-y --> x+y != 0
13979     if (RHS.getOpcode() == ISD::SUB && isNullConstant(RHS.getOperand(0)) &&
13980         RHS.hasOneUse()) {
13981       SDLoc DL(N);
13982       SelectionDAG &DAG = DCI.DAG;
13983       EVT VT = N->getValueType(0);
13984       EVT OpVT = LHS.getValueType();
13985       SDValue Add = DAG.getNode(ISD::ADD, DL, OpVT, LHS, RHS.getOperand(1));
13986       return DAG.getSetCC(DL, VT, Add, DAG.getConstant(0, DL, OpVT), CC);
13987     }
13988   }
13989 
13990   return DAGCombineTruncBoolExt(N, DCI);
13991 }
13992 
13993 // Is this an extending load from an f32 to an f64?
13994 static bool isFPExtLoad(SDValue Op) {
13995   if (LoadSDNode *LD = dyn_cast<LoadSDNode>(Op.getNode()))
13996     return LD->getExtensionType() == ISD::EXTLOAD &&
13997       Op.getValueType() == MVT::f64;
13998   return false;
13999 }
14000 
14001 /// Reduces the number of fp-to-int conversion when building a vector.
14002 ///
14003 /// If this vector is built out of floating to integer conversions,
14004 /// transform it to a vector built out of floating point values followed by a
14005 /// single floating to integer conversion of the vector.
14006 /// Namely  (build_vector (fptosi $A), (fptosi $B), ...)
14007 /// becomes (fptosi (build_vector ($A, $B, ...)))
14008 SDValue PPCTargetLowering::
14009 combineElementTruncationToVectorTruncation(SDNode *N,
14010                                            DAGCombinerInfo &DCI) const {
14011   assert(N->getOpcode() == ISD::BUILD_VECTOR &&
14012          "Should be called with a BUILD_VECTOR node");
14013 
14014   SelectionDAG &DAG = DCI.DAG;
14015   SDLoc dl(N);
14016 
14017   SDValue FirstInput = N->getOperand(0);
14018   assert(FirstInput.getOpcode() == PPCISD::MFVSR &&
14019          "The input operand must be an fp-to-int conversion.");
14020 
14021   // This combine happens after legalization so the fp_to_[su]i nodes are
14022   // already converted to PPCSISD nodes.
14023   unsigned FirstConversion = FirstInput.getOperand(0).getOpcode();
14024   if (FirstConversion == PPCISD::FCTIDZ ||
14025       FirstConversion == PPCISD::FCTIDUZ ||
14026       FirstConversion == PPCISD::FCTIWZ ||
14027       FirstConversion == PPCISD::FCTIWUZ) {
14028     bool IsSplat = true;
14029     bool Is32Bit = FirstConversion == PPCISD::FCTIWZ ||
14030       FirstConversion == PPCISD::FCTIWUZ;
14031     EVT SrcVT = FirstInput.getOperand(0).getValueType();
14032     SmallVector<SDValue, 4> Ops;
14033     EVT TargetVT = N->getValueType(0);
14034     for (int i = 0, e = N->getNumOperands(); i < e; ++i) {
14035       SDValue NextOp = N->getOperand(i);
14036       if (NextOp.getOpcode() != PPCISD::MFVSR)
14037         return SDValue();
14038       unsigned NextConversion = NextOp.getOperand(0).getOpcode();
14039       if (NextConversion != FirstConversion)
14040         return SDValue();
14041       // If we are converting to 32-bit integers, we need to add an FP_ROUND.
14042       // This is not valid if the input was originally double precision. It is
14043       // also not profitable to do unless this is an extending load in which
14044       // case doing this combine will allow us to combine consecutive loads.
14045       if (Is32Bit && !isFPExtLoad(NextOp.getOperand(0).getOperand(0)))
14046         return SDValue();
14047       if (N->getOperand(i) != FirstInput)
14048         IsSplat = false;
14049     }
14050 
14051     // If this is a splat, we leave it as-is since there will be only a single
14052     // fp-to-int conversion followed by a splat of the integer. This is better
14053     // for 32-bit and smaller ints and neutral for 64-bit ints.
14054     if (IsSplat)
14055       return SDValue();
14056 
14057     // Now that we know we have the right type of node, get its operands
14058     for (int i = 0, e = N->getNumOperands(); i < e; ++i) {
14059       SDValue In = N->getOperand(i).getOperand(0);
14060       if (Is32Bit) {
14061         // For 32-bit values, we need to add an FP_ROUND node (if we made it
14062         // here, we know that all inputs are extending loads so this is safe).
14063         if (In.isUndef())
14064           Ops.push_back(DAG.getUNDEF(SrcVT));
14065         else {
14066           SDValue Trunc = DAG.getNode(ISD::FP_ROUND, dl,
14067                                       MVT::f32, In.getOperand(0),
14068                                       DAG.getIntPtrConstant(1, dl));
14069           Ops.push_back(Trunc);
14070         }
14071       } else
14072         Ops.push_back(In.isUndef() ? DAG.getUNDEF(SrcVT) : In.getOperand(0));
14073     }
14074 
14075     unsigned Opcode;
14076     if (FirstConversion == PPCISD::FCTIDZ ||
14077         FirstConversion == PPCISD::FCTIWZ)
14078       Opcode = ISD::FP_TO_SINT;
14079     else
14080       Opcode = ISD::FP_TO_UINT;
14081 
14082     EVT NewVT = TargetVT == MVT::v2i64 ? MVT::v2f64 : MVT::v4f32;
14083     SDValue BV = DAG.getBuildVector(NewVT, dl, Ops);
14084     return DAG.getNode(Opcode, dl, TargetVT, BV);
14085   }
14086   return SDValue();
14087 }
14088 
14089 /// Reduce the number of loads when building a vector.
14090 ///
14091 /// Building a vector out of multiple loads can be converted to a load
14092 /// of the vector type if the loads are consecutive. If the loads are
14093 /// consecutive but in descending order, a shuffle is added at the end
14094 /// to reorder the vector.
14095 static SDValue combineBVOfConsecutiveLoads(SDNode *N, SelectionDAG &DAG) {
14096   assert(N->getOpcode() == ISD::BUILD_VECTOR &&
14097          "Should be called with a BUILD_VECTOR node");
14098 
14099   SDLoc dl(N);
14100 
14101   // Return early for non byte-sized type, as they can't be consecutive.
14102   if (!N->getValueType(0).getVectorElementType().isByteSized())
14103     return SDValue();
14104 
14105   bool InputsAreConsecutiveLoads = true;
14106   bool InputsAreReverseConsecutive = true;
14107   unsigned ElemSize = N->getValueType(0).getScalarType().getStoreSize();
14108   SDValue FirstInput = N->getOperand(0);
14109   bool IsRoundOfExtLoad = false;
14110 
14111   if (FirstInput.getOpcode() == ISD::FP_ROUND &&
14112       FirstInput.getOperand(0).getOpcode() == ISD::LOAD) {
14113     LoadSDNode *LD = dyn_cast<LoadSDNode>(FirstInput.getOperand(0));
14114     IsRoundOfExtLoad = LD->getExtensionType() == ISD::EXTLOAD;
14115   }
14116   // Not a build vector of (possibly fp_rounded) loads.
14117   if ((!IsRoundOfExtLoad && FirstInput.getOpcode() != ISD::LOAD) ||
14118       N->getNumOperands() == 1)
14119     return SDValue();
14120 
14121   for (int i = 1, e = N->getNumOperands(); i < e; ++i) {
14122     // If any inputs are fp_round(extload), they all must be.
14123     if (IsRoundOfExtLoad && N->getOperand(i).getOpcode() != ISD::FP_ROUND)
14124       return SDValue();
14125 
14126     SDValue NextInput = IsRoundOfExtLoad ? N->getOperand(i).getOperand(0) :
14127       N->getOperand(i);
14128     if (NextInput.getOpcode() != ISD::LOAD)
14129       return SDValue();
14130 
14131     SDValue PreviousInput =
14132       IsRoundOfExtLoad ? N->getOperand(i-1).getOperand(0) : N->getOperand(i-1);
14133     LoadSDNode *LD1 = dyn_cast<LoadSDNode>(PreviousInput);
14134     LoadSDNode *LD2 = dyn_cast<LoadSDNode>(NextInput);
14135 
14136     // If any inputs are fp_round(extload), they all must be.
14137     if (IsRoundOfExtLoad && LD2->getExtensionType() != ISD::EXTLOAD)
14138       return SDValue();
14139 
14140     if (!isConsecutiveLS(LD2, LD1, ElemSize, 1, DAG))
14141       InputsAreConsecutiveLoads = false;
14142     if (!isConsecutiveLS(LD1, LD2, ElemSize, 1, DAG))
14143       InputsAreReverseConsecutive = false;
14144 
14145     // Exit early if the loads are neither consecutive nor reverse consecutive.
14146     if (!InputsAreConsecutiveLoads && !InputsAreReverseConsecutive)
14147       return SDValue();
14148   }
14149 
14150   assert(!(InputsAreConsecutiveLoads && InputsAreReverseConsecutive) &&
14151          "The loads cannot be both consecutive and reverse consecutive.");
14152 
14153   SDValue FirstLoadOp =
14154     IsRoundOfExtLoad ? FirstInput.getOperand(0) : FirstInput;
14155   SDValue LastLoadOp =
14156     IsRoundOfExtLoad ? N->getOperand(N->getNumOperands()-1).getOperand(0) :
14157                        N->getOperand(N->getNumOperands()-1);
14158 
14159   LoadSDNode *LD1 = dyn_cast<LoadSDNode>(FirstLoadOp);
14160   LoadSDNode *LDL = dyn_cast<LoadSDNode>(LastLoadOp);
14161   if (InputsAreConsecutiveLoads) {
14162     assert(LD1 && "Input needs to be a LoadSDNode.");
14163     return DAG.getLoad(N->getValueType(0), dl, LD1->getChain(),
14164                        LD1->getBasePtr(), LD1->getPointerInfo(),
14165                        LD1->getAlign());
14166   }
14167   if (InputsAreReverseConsecutive) {
14168     assert(LDL && "Input needs to be a LoadSDNode.");
14169     SDValue Load =
14170         DAG.getLoad(N->getValueType(0), dl, LDL->getChain(), LDL->getBasePtr(),
14171                     LDL->getPointerInfo(), LDL->getAlign());
14172     SmallVector<int, 16> Ops;
14173     for (int i = N->getNumOperands() - 1; i >= 0; i--)
14174       Ops.push_back(i);
14175 
14176     return DAG.getVectorShuffle(N->getValueType(0), dl, Load,
14177                                 DAG.getUNDEF(N->getValueType(0)), Ops);
14178   }
14179   return SDValue();
14180 }
14181 
14182 // This function adds the required vector_shuffle needed to get
14183 // the elements of the vector extract in the correct position
14184 // as specified by the CorrectElems encoding.
14185 static SDValue addShuffleForVecExtend(SDNode *N, SelectionDAG &DAG,
14186                                       SDValue Input, uint64_t Elems,
14187                                       uint64_t CorrectElems) {
14188   SDLoc dl(N);
14189 
14190   unsigned NumElems = Input.getValueType().getVectorNumElements();
14191   SmallVector<int, 16> ShuffleMask(NumElems, -1);
14192 
14193   // Knowing the element indices being extracted from the original
14194   // vector and the order in which they're being inserted, just put
14195   // them at element indices required for the instruction.
14196   for (unsigned i = 0; i < N->getNumOperands(); i++) {
14197     if (DAG.getDataLayout().isLittleEndian())
14198       ShuffleMask[CorrectElems & 0xF] = Elems & 0xF;
14199     else
14200       ShuffleMask[(CorrectElems & 0xF0) >> 4] = (Elems & 0xF0) >> 4;
14201     CorrectElems = CorrectElems >> 8;
14202     Elems = Elems >> 8;
14203   }
14204 
14205   SDValue Shuffle =
14206       DAG.getVectorShuffle(Input.getValueType(), dl, Input,
14207                            DAG.getUNDEF(Input.getValueType()), ShuffleMask);
14208 
14209   EVT VT = N->getValueType(0);
14210   SDValue Conv = DAG.getBitcast(VT, Shuffle);
14211 
14212   EVT ExtVT = EVT::getVectorVT(*DAG.getContext(),
14213                                Input.getValueType().getVectorElementType(),
14214                                VT.getVectorNumElements());
14215   return DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, VT, Conv,
14216                      DAG.getValueType(ExtVT));
14217 }
14218 
14219 // Look for build vector patterns where input operands come from sign
14220 // extended vector_extract elements of specific indices. If the correct indices
14221 // aren't used, add a vector shuffle to fix up the indices and create
14222 // SIGN_EXTEND_INREG node which selects the vector sign extend instructions
14223 // during instruction selection.
14224 static SDValue combineBVOfVecSExt(SDNode *N, SelectionDAG &DAG) {
14225   // This array encodes the indices that the vector sign extend instructions
14226   // extract from when extending from one type to another for both BE and LE.
14227   // The right nibble of each byte corresponds to the LE incides.
14228   // and the left nibble of each byte corresponds to the BE incides.
14229   // For example: 0x3074B8FC  byte->word
14230   // For LE: the allowed indices are: 0x0,0x4,0x8,0xC
14231   // For BE: the allowed indices are: 0x3,0x7,0xB,0xF
14232   // For example: 0x000070F8  byte->double word
14233   // For LE: the allowed indices are: 0x0,0x8
14234   // For BE: the allowed indices are: 0x7,0xF
14235   uint64_t TargetElems[] = {
14236       0x3074B8FC, // b->w
14237       0x000070F8, // b->d
14238       0x10325476, // h->w
14239       0x00003074, // h->d
14240       0x00001032, // w->d
14241   };
14242 
14243   uint64_t Elems = 0;
14244   int Index;
14245   SDValue Input;
14246 
14247   auto isSExtOfVecExtract = [&](SDValue Op) -> bool {
14248     if (!Op)
14249       return false;
14250     if (Op.getOpcode() != ISD::SIGN_EXTEND &&
14251         Op.getOpcode() != ISD::SIGN_EXTEND_INREG)
14252       return false;
14253 
14254     // A SIGN_EXTEND_INREG might be fed by an ANY_EXTEND to produce a value
14255     // of the right width.
14256     SDValue Extract = Op.getOperand(0);
14257     if (Extract.getOpcode() == ISD::ANY_EXTEND)
14258       Extract = Extract.getOperand(0);
14259     if (Extract.getOpcode() != ISD::EXTRACT_VECTOR_ELT)
14260       return false;
14261 
14262     ConstantSDNode *ExtOp = dyn_cast<ConstantSDNode>(Extract.getOperand(1));
14263     if (!ExtOp)
14264       return false;
14265 
14266     Index = ExtOp->getZExtValue();
14267     if (Input && Input != Extract.getOperand(0))
14268       return false;
14269 
14270     if (!Input)
14271       Input = Extract.getOperand(0);
14272 
14273     Elems = Elems << 8;
14274     Index = DAG.getDataLayout().isLittleEndian() ? Index : Index << 4;
14275     Elems |= Index;
14276 
14277     return true;
14278   };
14279 
14280   // If the build vector operands aren't sign extended vector extracts,
14281   // of the same input vector, then return.
14282   for (unsigned i = 0; i < N->getNumOperands(); i++) {
14283     if (!isSExtOfVecExtract(N->getOperand(i))) {
14284       return SDValue();
14285     }
14286   }
14287 
14288   // If the vector extract indicies are not correct, add the appropriate
14289   // vector_shuffle.
14290   int TgtElemArrayIdx;
14291   int InputSize = Input.getValueType().getScalarSizeInBits();
14292   int OutputSize = N->getValueType(0).getScalarSizeInBits();
14293   if (InputSize + OutputSize == 40)
14294     TgtElemArrayIdx = 0;
14295   else if (InputSize + OutputSize == 72)
14296     TgtElemArrayIdx = 1;
14297   else if (InputSize + OutputSize == 48)
14298     TgtElemArrayIdx = 2;
14299   else if (InputSize + OutputSize == 80)
14300     TgtElemArrayIdx = 3;
14301   else if (InputSize + OutputSize == 96)
14302     TgtElemArrayIdx = 4;
14303   else
14304     return SDValue();
14305 
14306   uint64_t CorrectElems = TargetElems[TgtElemArrayIdx];
14307   CorrectElems = DAG.getDataLayout().isLittleEndian()
14308                      ? CorrectElems & 0x0F0F0F0F0F0F0F0F
14309                      : CorrectElems & 0xF0F0F0F0F0F0F0F0;
14310   if (Elems != CorrectElems) {
14311     return addShuffleForVecExtend(N, DAG, Input, Elems, CorrectElems);
14312   }
14313 
14314   // Regular lowering will catch cases where a shuffle is not needed.
14315   return SDValue();
14316 }
14317 
14318 // Look for the pattern of a load from a narrow width to i128, feeding
14319 // into a BUILD_VECTOR of v1i128. Replace this sequence with a PPCISD node
14320 // (LXVRZX). This node represents a zero extending load that will be matched
14321 // to the Load VSX Vector Rightmost instructions.
14322 static SDValue combineBVZEXTLOAD(SDNode *N, SelectionDAG &DAG) {
14323   SDLoc DL(N);
14324 
14325   // This combine is only eligible for a BUILD_VECTOR of v1i128.
14326   if (N->getValueType(0) != MVT::v1i128)
14327     return SDValue();
14328 
14329   SDValue Operand = N->getOperand(0);
14330   // Proceed with the transformation if the operand to the BUILD_VECTOR
14331   // is a load instruction.
14332   if (Operand.getOpcode() != ISD::LOAD)
14333     return SDValue();
14334 
14335   auto *LD = cast<LoadSDNode>(Operand);
14336   EVT MemoryType = LD->getMemoryVT();
14337 
14338   // This transformation is only valid if the we are loading either a byte,
14339   // halfword, word, or doubleword.
14340   bool ValidLDType = MemoryType == MVT::i8 || MemoryType == MVT::i16 ||
14341                      MemoryType == MVT::i32 || MemoryType == MVT::i64;
14342 
14343   // Ensure that the load from the narrow width is being zero extended to i128.
14344   if (!ValidLDType ||
14345       (LD->getExtensionType() != ISD::ZEXTLOAD &&
14346        LD->getExtensionType() != ISD::EXTLOAD))
14347     return SDValue();
14348 
14349   SDValue LoadOps[] = {
14350       LD->getChain(), LD->getBasePtr(),
14351       DAG.getIntPtrConstant(MemoryType.getScalarSizeInBits(), DL)};
14352 
14353   return DAG.getMemIntrinsicNode(PPCISD::LXVRZX, DL,
14354                                  DAG.getVTList(MVT::v1i128, MVT::Other),
14355                                  LoadOps, MemoryType, LD->getMemOperand());
14356 }
14357 
14358 SDValue PPCTargetLowering::DAGCombineBuildVector(SDNode *N,
14359                                                  DAGCombinerInfo &DCI) const {
14360   assert(N->getOpcode() == ISD::BUILD_VECTOR &&
14361          "Should be called with a BUILD_VECTOR node");
14362 
14363   SelectionDAG &DAG = DCI.DAG;
14364   SDLoc dl(N);
14365 
14366   if (!Subtarget.hasVSX())
14367     return SDValue();
14368 
14369   // The target independent DAG combiner will leave a build_vector of
14370   // float-to-int conversions intact. We can generate MUCH better code for
14371   // a float-to-int conversion of a vector of floats.
14372   SDValue FirstInput = N->getOperand(0);
14373   if (FirstInput.getOpcode() == PPCISD::MFVSR) {
14374     SDValue Reduced = combineElementTruncationToVectorTruncation(N, DCI);
14375     if (Reduced)
14376       return Reduced;
14377   }
14378 
14379   // If we're building a vector out of consecutive loads, just load that
14380   // vector type.
14381   SDValue Reduced = combineBVOfConsecutiveLoads(N, DAG);
14382   if (Reduced)
14383     return Reduced;
14384 
14385   // If we're building a vector out of extended elements from another vector
14386   // we have P9 vector integer extend instructions. The code assumes legal
14387   // input types (i.e. it can't handle things like v4i16) so do not run before
14388   // legalization.
14389   if (Subtarget.hasP9Altivec() && !DCI.isBeforeLegalize()) {
14390     Reduced = combineBVOfVecSExt(N, DAG);
14391     if (Reduced)
14392       return Reduced;
14393   }
14394 
14395   // On Power10, the Load VSX Vector Rightmost instructions can be utilized
14396   // if this is a BUILD_VECTOR of v1i128, and if the operand to the BUILD_VECTOR
14397   // is a load from <valid narrow width> to i128.
14398   if (Subtarget.isISA3_1()) {
14399     SDValue BVOfZLoad = combineBVZEXTLOAD(N, DAG);
14400     if (BVOfZLoad)
14401       return BVOfZLoad;
14402   }
14403 
14404   if (N->getValueType(0) != MVT::v2f64)
14405     return SDValue();
14406 
14407   // Looking for:
14408   // (build_vector ([su]int_to_fp (extractelt 0)), [su]int_to_fp (extractelt 1))
14409   if (FirstInput.getOpcode() != ISD::SINT_TO_FP &&
14410       FirstInput.getOpcode() != ISD::UINT_TO_FP)
14411     return SDValue();
14412   if (N->getOperand(1).getOpcode() != ISD::SINT_TO_FP &&
14413       N->getOperand(1).getOpcode() != ISD::UINT_TO_FP)
14414     return SDValue();
14415   if (FirstInput.getOpcode() != N->getOperand(1).getOpcode())
14416     return SDValue();
14417 
14418   SDValue Ext1 = FirstInput.getOperand(0);
14419   SDValue Ext2 = N->getOperand(1).getOperand(0);
14420   if(Ext1.getOpcode() != ISD::EXTRACT_VECTOR_ELT ||
14421      Ext2.getOpcode() != ISD::EXTRACT_VECTOR_ELT)
14422     return SDValue();
14423 
14424   ConstantSDNode *Ext1Op = dyn_cast<ConstantSDNode>(Ext1.getOperand(1));
14425   ConstantSDNode *Ext2Op = dyn_cast<ConstantSDNode>(Ext2.getOperand(1));
14426   if (!Ext1Op || !Ext2Op)
14427     return SDValue();
14428   if (Ext1.getOperand(0).getValueType() != MVT::v4i32 ||
14429       Ext1.getOperand(0) != Ext2.getOperand(0))
14430     return SDValue();
14431 
14432   int FirstElem = Ext1Op->getZExtValue();
14433   int SecondElem = Ext2Op->getZExtValue();
14434   int SubvecIdx;
14435   if (FirstElem == 0 && SecondElem == 1)
14436     SubvecIdx = Subtarget.isLittleEndian() ? 1 : 0;
14437   else if (FirstElem == 2 && SecondElem == 3)
14438     SubvecIdx = Subtarget.isLittleEndian() ? 0 : 1;
14439   else
14440     return SDValue();
14441 
14442   SDValue SrcVec = Ext1.getOperand(0);
14443   auto NodeType = (N->getOperand(1).getOpcode() == ISD::SINT_TO_FP) ?
14444     PPCISD::SINT_VEC_TO_FP : PPCISD::UINT_VEC_TO_FP;
14445   return DAG.getNode(NodeType, dl, MVT::v2f64,
14446                      SrcVec, DAG.getIntPtrConstant(SubvecIdx, dl));
14447 }
14448 
14449 SDValue PPCTargetLowering::combineFPToIntToFP(SDNode *N,
14450                                               DAGCombinerInfo &DCI) const {
14451   assert((N->getOpcode() == ISD::SINT_TO_FP ||
14452           N->getOpcode() == ISD::UINT_TO_FP) &&
14453          "Need an int -> FP conversion node here");
14454 
14455   if (useSoftFloat() || !Subtarget.has64BitSupport())
14456     return SDValue();
14457 
14458   SelectionDAG &DAG = DCI.DAG;
14459   SDLoc dl(N);
14460   SDValue Op(N, 0);
14461 
14462   // Don't handle ppc_fp128 here or conversions that are out-of-range capable
14463   // from the hardware.
14464   if (Op.getValueType() != MVT::f32 && Op.getValueType() != MVT::f64)
14465     return SDValue();
14466   if (!Op.getOperand(0).getValueType().isSimple())
14467     return SDValue();
14468   if (Op.getOperand(0).getValueType().getSimpleVT() <= MVT(MVT::i1) ||
14469       Op.getOperand(0).getValueType().getSimpleVT() > MVT(MVT::i64))
14470     return SDValue();
14471 
14472   SDValue FirstOperand(Op.getOperand(0));
14473   bool SubWordLoad = FirstOperand.getOpcode() == ISD::LOAD &&
14474     (FirstOperand.getValueType() == MVT::i8 ||
14475      FirstOperand.getValueType() == MVT::i16);
14476   if (Subtarget.hasP9Vector() && Subtarget.hasP9Altivec() && SubWordLoad) {
14477     bool Signed = N->getOpcode() == ISD::SINT_TO_FP;
14478     bool DstDouble = Op.getValueType() == MVT::f64;
14479     unsigned ConvOp = Signed ?
14480       (DstDouble ? PPCISD::FCFID  : PPCISD::FCFIDS) :
14481       (DstDouble ? PPCISD::FCFIDU : PPCISD::FCFIDUS);
14482     SDValue WidthConst =
14483       DAG.getIntPtrConstant(FirstOperand.getValueType() == MVT::i8 ? 1 : 2,
14484                             dl, false);
14485     LoadSDNode *LDN = cast<LoadSDNode>(FirstOperand.getNode());
14486     SDValue Ops[] = { LDN->getChain(), LDN->getBasePtr(), WidthConst };
14487     SDValue Ld = DAG.getMemIntrinsicNode(PPCISD::LXSIZX, dl,
14488                                          DAG.getVTList(MVT::f64, MVT::Other),
14489                                          Ops, MVT::i8, LDN->getMemOperand());
14490 
14491     // For signed conversion, we need to sign-extend the value in the VSR
14492     if (Signed) {
14493       SDValue ExtOps[] = { Ld, WidthConst };
14494       SDValue Ext = DAG.getNode(PPCISD::VEXTS, dl, MVT::f64, ExtOps);
14495       return DAG.getNode(ConvOp, dl, DstDouble ? MVT::f64 : MVT::f32, Ext);
14496     } else
14497       return DAG.getNode(ConvOp, dl, DstDouble ? MVT::f64 : MVT::f32, Ld);
14498   }
14499 
14500 
14501   // For i32 intermediate values, unfortunately, the conversion functions
14502   // leave the upper 32 bits of the value are undefined. Within the set of
14503   // scalar instructions, we have no method for zero- or sign-extending the
14504   // value. Thus, we cannot handle i32 intermediate values here.
14505   if (Op.getOperand(0).getValueType() == MVT::i32)
14506     return SDValue();
14507 
14508   assert((Op.getOpcode() == ISD::SINT_TO_FP || Subtarget.hasFPCVT()) &&
14509          "UINT_TO_FP is supported only with FPCVT");
14510 
14511   // If we have FCFIDS, then use it when converting to single-precision.
14512   // Otherwise, convert to double-precision and then round.
14513   unsigned FCFOp = (Subtarget.hasFPCVT() && Op.getValueType() == MVT::f32)
14514                        ? (Op.getOpcode() == ISD::UINT_TO_FP ? PPCISD::FCFIDUS
14515                                                             : PPCISD::FCFIDS)
14516                        : (Op.getOpcode() == ISD::UINT_TO_FP ? PPCISD::FCFIDU
14517                                                             : PPCISD::FCFID);
14518   MVT FCFTy = (Subtarget.hasFPCVT() && Op.getValueType() == MVT::f32)
14519                   ? MVT::f32
14520                   : MVT::f64;
14521 
14522   // If we're converting from a float, to an int, and back to a float again,
14523   // then we don't need the store/load pair at all.
14524   if ((Op.getOperand(0).getOpcode() == ISD::FP_TO_UINT &&
14525        Subtarget.hasFPCVT()) ||
14526       (Op.getOperand(0).getOpcode() == ISD::FP_TO_SINT)) {
14527     SDValue Src = Op.getOperand(0).getOperand(0);
14528     if (Src.getValueType() == MVT::f32) {
14529       Src = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Src);
14530       DCI.AddToWorklist(Src.getNode());
14531     } else if (Src.getValueType() != MVT::f64) {
14532       // Make sure that we don't pick up a ppc_fp128 source value.
14533       return SDValue();
14534     }
14535 
14536     unsigned FCTOp =
14537       Op.getOperand(0).getOpcode() == ISD::FP_TO_SINT ? PPCISD::FCTIDZ :
14538                                                         PPCISD::FCTIDUZ;
14539 
14540     SDValue Tmp = DAG.getNode(FCTOp, dl, MVT::f64, Src);
14541     SDValue FP = DAG.getNode(FCFOp, dl, FCFTy, Tmp);
14542 
14543     if (Op.getValueType() == MVT::f32 && !Subtarget.hasFPCVT()) {
14544       FP = DAG.getNode(ISD::FP_ROUND, dl,
14545                        MVT::f32, FP, DAG.getIntPtrConstant(0, dl));
14546       DCI.AddToWorklist(FP.getNode());
14547     }
14548 
14549     return FP;
14550   }
14551 
14552   return SDValue();
14553 }
14554 
14555 // expandVSXLoadForLE - Convert VSX loads (which may be intrinsics for
14556 // builtins) into loads with swaps.
14557 SDValue PPCTargetLowering::expandVSXLoadForLE(SDNode *N,
14558                                               DAGCombinerInfo &DCI) const {
14559   // Delay VSX load for LE combine until after LegalizeOps to prioritize other
14560   // load combines.
14561   if (DCI.isBeforeLegalizeOps())
14562     return SDValue();
14563 
14564   SelectionDAG &DAG = DCI.DAG;
14565   SDLoc dl(N);
14566   SDValue Chain;
14567   SDValue Base;
14568   MachineMemOperand *MMO;
14569 
14570   switch (N->getOpcode()) {
14571   default:
14572     llvm_unreachable("Unexpected opcode for little endian VSX load");
14573   case ISD::LOAD: {
14574     LoadSDNode *LD = cast<LoadSDNode>(N);
14575     Chain = LD->getChain();
14576     Base = LD->getBasePtr();
14577     MMO = LD->getMemOperand();
14578     // If the MMO suggests this isn't a load of a full vector, leave
14579     // things alone.  For a built-in, we have to make the change for
14580     // correctness, so if there is a size problem that will be a bug.
14581     if (MMO->getSize() < 16)
14582       return SDValue();
14583     break;
14584   }
14585   case ISD::INTRINSIC_W_CHAIN: {
14586     MemIntrinsicSDNode *Intrin = cast<MemIntrinsicSDNode>(N);
14587     Chain = Intrin->getChain();
14588     // Similarly to the store case below, Intrin->getBasePtr() doesn't get
14589     // us what we want. Get operand 2 instead.
14590     Base = Intrin->getOperand(2);
14591     MMO = Intrin->getMemOperand();
14592     break;
14593   }
14594   }
14595 
14596   MVT VecTy = N->getValueType(0).getSimpleVT();
14597 
14598   SDValue LoadOps[] = { Chain, Base };
14599   SDValue Load = DAG.getMemIntrinsicNode(PPCISD::LXVD2X, dl,
14600                                          DAG.getVTList(MVT::v2f64, MVT::Other),
14601                                          LoadOps, MVT::v2f64, MMO);
14602 
14603   DCI.AddToWorklist(Load.getNode());
14604   Chain = Load.getValue(1);
14605   SDValue Swap = DAG.getNode(
14606       PPCISD::XXSWAPD, dl, DAG.getVTList(MVT::v2f64, MVT::Other), Chain, Load);
14607   DCI.AddToWorklist(Swap.getNode());
14608 
14609   // Add a bitcast if the resulting load type doesn't match v2f64.
14610   if (VecTy != MVT::v2f64) {
14611     SDValue N = DAG.getNode(ISD::BITCAST, dl, VecTy, Swap);
14612     DCI.AddToWorklist(N.getNode());
14613     // Package {bitcast value, swap's chain} to match Load's shape.
14614     return DAG.getNode(ISD::MERGE_VALUES, dl, DAG.getVTList(VecTy, MVT::Other),
14615                        N, Swap.getValue(1));
14616   }
14617 
14618   return Swap;
14619 }
14620 
14621 // expandVSXStoreForLE - Convert VSX stores (which may be intrinsics for
14622 // builtins) into stores with swaps.
14623 SDValue PPCTargetLowering::expandVSXStoreForLE(SDNode *N,
14624                                                DAGCombinerInfo &DCI) const {
14625   // Delay VSX store for LE combine until after LegalizeOps to prioritize other
14626   // store combines.
14627   if (DCI.isBeforeLegalizeOps())
14628     return SDValue();
14629 
14630   SelectionDAG &DAG = DCI.DAG;
14631   SDLoc dl(N);
14632   SDValue Chain;
14633   SDValue Base;
14634   unsigned SrcOpnd;
14635   MachineMemOperand *MMO;
14636 
14637   switch (N->getOpcode()) {
14638   default:
14639     llvm_unreachable("Unexpected opcode for little endian VSX store");
14640   case ISD::STORE: {
14641     StoreSDNode *ST = cast<StoreSDNode>(N);
14642     Chain = ST->getChain();
14643     Base = ST->getBasePtr();
14644     MMO = ST->getMemOperand();
14645     SrcOpnd = 1;
14646     // If the MMO suggests this isn't a store of a full vector, leave
14647     // things alone.  For a built-in, we have to make the change for
14648     // correctness, so if there is a size problem that will be a bug.
14649     if (MMO->getSize() < 16)
14650       return SDValue();
14651     break;
14652   }
14653   case ISD::INTRINSIC_VOID: {
14654     MemIntrinsicSDNode *Intrin = cast<MemIntrinsicSDNode>(N);
14655     Chain = Intrin->getChain();
14656     // Intrin->getBasePtr() oddly does not get what we want.
14657     Base = Intrin->getOperand(3);
14658     MMO = Intrin->getMemOperand();
14659     SrcOpnd = 2;
14660     break;
14661   }
14662   }
14663 
14664   SDValue Src = N->getOperand(SrcOpnd);
14665   MVT VecTy = Src.getValueType().getSimpleVT();
14666 
14667   // All stores are done as v2f64 and possible bit cast.
14668   if (VecTy != MVT::v2f64) {
14669     Src = DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, Src);
14670     DCI.AddToWorklist(Src.getNode());
14671   }
14672 
14673   SDValue Swap = DAG.getNode(PPCISD::XXSWAPD, dl,
14674                              DAG.getVTList(MVT::v2f64, MVT::Other), Chain, Src);
14675   DCI.AddToWorklist(Swap.getNode());
14676   Chain = Swap.getValue(1);
14677   SDValue StoreOps[] = { Chain, Swap, Base };
14678   SDValue Store = DAG.getMemIntrinsicNode(PPCISD::STXVD2X, dl,
14679                                           DAG.getVTList(MVT::Other),
14680                                           StoreOps, VecTy, MMO);
14681   DCI.AddToWorklist(Store.getNode());
14682   return Store;
14683 }
14684 
14685 // Handle DAG combine for STORE (FP_TO_INT F).
14686 SDValue PPCTargetLowering::combineStoreFPToInt(SDNode *N,
14687                                                DAGCombinerInfo &DCI) const {
14688 
14689   SelectionDAG &DAG = DCI.DAG;
14690   SDLoc dl(N);
14691   unsigned Opcode = N->getOperand(1).getOpcode();
14692 
14693   assert((Opcode == ISD::FP_TO_SINT || Opcode == ISD::FP_TO_UINT)
14694          && "Not a FP_TO_INT Instruction!");
14695 
14696   SDValue Val = N->getOperand(1).getOperand(0);
14697   EVT Op1VT = N->getOperand(1).getValueType();
14698   EVT ResVT = Val.getValueType();
14699 
14700   if (!isTypeLegal(ResVT))
14701     return SDValue();
14702 
14703   // Only perform combine for conversion to i64/i32 or power9 i16/i8.
14704   bool ValidTypeForStoreFltAsInt =
14705         (Op1VT == MVT::i32 || Op1VT == MVT::i64 ||
14706          (Subtarget.hasP9Vector() && (Op1VT == MVT::i16 || Op1VT == MVT::i8)));
14707 
14708   if (ResVT == MVT::f128 && !Subtarget.hasP9Vector())
14709     return SDValue();
14710 
14711   if (ResVT == MVT::ppcf128 || !Subtarget.hasP8Vector() ||
14712       cast<StoreSDNode>(N)->isTruncatingStore() || !ValidTypeForStoreFltAsInt)
14713     return SDValue();
14714 
14715   // Extend f32 values to f64
14716   if (ResVT.getScalarSizeInBits() == 32) {
14717     Val = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Val);
14718     DCI.AddToWorklist(Val.getNode());
14719   }
14720 
14721   // Set signed or unsigned conversion opcode.
14722   unsigned ConvOpcode = (Opcode == ISD::FP_TO_SINT) ?
14723                           PPCISD::FP_TO_SINT_IN_VSR :
14724                           PPCISD::FP_TO_UINT_IN_VSR;
14725 
14726   Val = DAG.getNode(ConvOpcode,
14727                     dl, ResVT == MVT::f128 ? MVT::f128 : MVT::f64, Val);
14728   DCI.AddToWorklist(Val.getNode());
14729 
14730   // Set number of bytes being converted.
14731   unsigned ByteSize = Op1VT.getScalarSizeInBits() / 8;
14732   SDValue Ops[] = { N->getOperand(0), Val, N->getOperand(2),
14733                     DAG.getIntPtrConstant(ByteSize, dl, false),
14734                     DAG.getValueType(Op1VT) };
14735 
14736   Val = DAG.getMemIntrinsicNode(PPCISD::ST_VSR_SCAL_INT, dl,
14737           DAG.getVTList(MVT::Other), Ops,
14738           cast<StoreSDNode>(N)->getMemoryVT(),
14739           cast<StoreSDNode>(N)->getMemOperand());
14740 
14741   DCI.AddToWorklist(Val.getNode());
14742   return Val;
14743 }
14744 
14745 static bool isAlternatingShuffMask(const ArrayRef<int> &Mask, int NumElts) {
14746   // Check that the source of the element keeps flipping
14747   // (i.e. Mask[i] < NumElts -> Mask[i+i] >= NumElts).
14748   bool PrevElemFromFirstVec = Mask[0] < NumElts;
14749   for (int i = 1, e = Mask.size(); i < e; i++) {
14750     if (PrevElemFromFirstVec && Mask[i] < NumElts)
14751       return false;
14752     if (!PrevElemFromFirstVec && Mask[i] >= NumElts)
14753       return false;
14754     PrevElemFromFirstVec = !PrevElemFromFirstVec;
14755   }
14756   return true;
14757 }
14758 
14759 static bool isSplatBV(SDValue Op) {
14760   if (Op.getOpcode() != ISD::BUILD_VECTOR)
14761     return false;
14762   SDValue FirstOp;
14763 
14764   // Find first non-undef input.
14765   for (int i = 0, e = Op.getNumOperands(); i < e; i++) {
14766     FirstOp = Op.getOperand(i);
14767     if (!FirstOp.isUndef())
14768       break;
14769   }
14770 
14771   // All inputs are undef or the same as the first non-undef input.
14772   for (int i = 1, e = Op.getNumOperands(); i < e; i++)
14773     if (Op.getOperand(i) != FirstOp && !Op.getOperand(i).isUndef())
14774       return false;
14775   return true;
14776 }
14777 
14778 static SDValue isScalarToVec(SDValue Op) {
14779   if (Op.getOpcode() == ISD::SCALAR_TO_VECTOR)
14780     return Op;
14781   if (Op.getOpcode() != ISD::BITCAST)
14782     return SDValue();
14783   Op = Op.getOperand(0);
14784   if (Op.getOpcode() == ISD::SCALAR_TO_VECTOR)
14785     return Op;
14786   return SDValue();
14787 }
14788 
14789 // Fix up the shuffle mask to account for the fact that the result of
14790 // scalar_to_vector is not in lane zero. This just takes all values in
14791 // the ranges specified by the min/max indices and adds the number of
14792 // elements required to ensure each element comes from the respective
14793 // position in the valid lane.
14794 // On little endian, that's just the corresponding element in the other
14795 // half of the vector. On big endian, it is in the same half but right
14796 // justified rather than left justified in that half.
14797 static void fixupShuffleMaskForPermutedSToV(SmallVectorImpl<int> &ShuffV,
14798                                             int LHSMaxIdx, int RHSMinIdx,
14799                                             int RHSMaxIdx, int HalfVec,
14800                                             unsigned ValidLaneWidth,
14801                                             const PPCSubtarget &Subtarget) {
14802   for (int i = 0, e = ShuffV.size(); i < e; i++) {
14803     int Idx = ShuffV[i];
14804     if ((Idx >= 0 && Idx < LHSMaxIdx) || (Idx >= RHSMinIdx && Idx < RHSMaxIdx))
14805       ShuffV[i] +=
14806           Subtarget.isLittleEndian() ? HalfVec : HalfVec - ValidLaneWidth;
14807   }
14808 }
14809 
14810 // Replace a SCALAR_TO_VECTOR with a SCALAR_TO_VECTOR_PERMUTED except if
14811 // the original is:
14812 // (<n x Ty> (scalar_to_vector (Ty (extract_elt <n x Ty> %a, C))))
14813 // In such a case, just change the shuffle mask to extract the element
14814 // from the permuted index.
14815 static SDValue getSToVPermuted(SDValue OrigSToV, SelectionDAG &DAG,
14816                                const PPCSubtarget &Subtarget) {
14817   SDLoc dl(OrigSToV);
14818   EVT VT = OrigSToV.getValueType();
14819   assert(OrigSToV.getOpcode() == ISD::SCALAR_TO_VECTOR &&
14820          "Expecting a SCALAR_TO_VECTOR here");
14821   SDValue Input = OrigSToV.getOperand(0);
14822 
14823   if (Input.getOpcode() == ISD::EXTRACT_VECTOR_ELT) {
14824     ConstantSDNode *Idx = dyn_cast<ConstantSDNode>(Input.getOperand(1));
14825     SDValue OrigVector = Input.getOperand(0);
14826 
14827     // Can't handle non-const element indices or different vector types
14828     // for the input to the extract and the output of the scalar_to_vector.
14829     if (Idx && VT == OrigVector.getValueType()) {
14830       unsigned NumElts = VT.getVectorNumElements();
14831       assert(
14832           NumElts > 1 &&
14833           "Cannot produce a permuted scalar_to_vector for one element vector");
14834       SmallVector<int, 16> NewMask(NumElts, -1);
14835       unsigned ResultInElt = NumElts / 2;
14836       ResultInElt -= Subtarget.isLittleEndian() ? 0 : 1;
14837       NewMask[ResultInElt] = Idx->getZExtValue();
14838       return DAG.getVectorShuffle(VT, dl, OrigVector, OrigVector, NewMask);
14839     }
14840   }
14841   return DAG.getNode(PPCISD::SCALAR_TO_VECTOR_PERMUTED, dl, VT,
14842                      OrigSToV.getOperand(0));
14843 }
14844 
14845 // On little endian subtargets, combine shuffles such as:
14846 // vector_shuffle<16,1,17,3,18,5,19,7,20,9,21,11,22,13,23,15>, <zero>, %b
14847 // into:
14848 // vector_shuffle<16,0,17,1,18,2,19,3,20,4,21,5,22,6,23,7>, <zero>, %b
14849 // because the latter can be matched to a single instruction merge.
14850 // Furthermore, SCALAR_TO_VECTOR on little endian always involves a permute
14851 // to put the value into element zero. Adjust the shuffle mask so that the
14852 // vector can remain in permuted form (to prevent a swap prior to a shuffle).
14853 // On big endian targets, this is still useful for SCALAR_TO_VECTOR
14854 // nodes with elements smaller than doubleword because all the ways
14855 // of getting scalar data into a vector register put the value in the
14856 // rightmost element of the left half of the vector.
14857 SDValue PPCTargetLowering::combineVectorShuffle(ShuffleVectorSDNode *SVN,
14858                                                 SelectionDAG &DAG) const {
14859   SDValue LHS = SVN->getOperand(0);
14860   SDValue RHS = SVN->getOperand(1);
14861   auto Mask = SVN->getMask();
14862   int NumElts = LHS.getValueType().getVectorNumElements();
14863   SDValue Res(SVN, 0);
14864   SDLoc dl(SVN);
14865   bool IsLittleEndian = Subtarget.isLittleEndian();
14866 
14867   // On big endian targets this is only useful for subtargets with direct moves.
14868   // On little endian targets it would be useful for all subtargets with VSX.
14869   // However adding special handling for LE subtargets without direct moves
14870   // would be wasted effort since the minimum arch for LE is ISA 2.07 (Power8)
14871   // which includes direct moves.
14872   if (!Subtarget.hasDirectMove())
14873     return Res;
14874 
14875   // If this is not a shuffle of a shuffle and the first element comes from
14876   // the second vector, canonicalize to the commuted form. This will make it
14877   // more likely to match one of the single instruction patterns.
14878   if (Mask[0] >= NumElts && LHS.getOpcode() != ISD::VECTOR_SHUFFLE &&
14879       RHS.getOpcode() != ISD::VECTOR_SHUFFLE) {
14880     std::swap(LHS, RHS);
14881     Res = DAG.getCommutedVectorShuffle(*SVN);
14882     Mask = cast<ShuffleVectorSDNode>(Res)->getMask();
14883   }
14884 
14885   // Adjust the shuffle mask if either input vector comes from a
14886   // SCALAR_TO_VECTOR and keep the respective input vector in permuted
14887   // form (to prevent the need for a swap).
14888   SmallVector<int, 16> ShuffV(Mask.begin(), Mask.end());
14889   SDValue SToVLHS = isScalarToVec(LHS);
14890   SDValue SToVRHS = isScalarToVec(RHS);
14891   if (SToVLHS || SToVRHS) {
14892     // FIXME: If both LHS and RHS are SCALAR_TO_VECTOR, but are not the
14893     // same type and have differing element sizes, then do not perform
14894     // the following transformation. The current transformation for
14895     // SCALAR_TO_VECTOR assumes that both input vectors have the same
14896     // element size. This will be updated in the future to account for
14897     // differing sizes of the LHS and RHS.
14898     if (SToVLHS && SToVRHS &&
14899         (SToVLHS.getValueType().getScalarSizeInBits() !=
14900          SToVRHS.getValueType().getScalarSizeInBits()))
14901       return Res;
14902 
14903     int NumEltsIn = SToVLHS ? SToVLHS.getValueType().getVectorNumElements()
14904                             : SToVRHS.getValueType().getVectorNumElements();
14905     int NumEltsOut = ShuffV.size();
14906     // The width of the "valid lane" (i.e. the lane that contains the value that
14907     // is vectorized) needs to be expressed in terms of the number of elements
14908     // of the shuffle. It is thereby the ratio of the values before and after
14909     // any bitcast.
14910     unsigned ValidLaneWidth =
14911         SToVLHS ? SToVLHS.getValueType().getScalarSizeInBits() /
14912                       LHS.getValueType().getScalarSizeInBits()
14913                 : SToVRHS.getValueType().getScalarSizeInBits() /
14914                       RHS.getValueType().getScalarSizeInBits();
14915 
14916     // Initially assume that neither input is permuted. These will be adjusted
14917     // accordingly if either input is.
14918     int LHSMaxIdx = -1;
14919     int RHSMinIdx = -1;
14920     int RHSMaxIdx = -1;
14921     int HalfVec = LHS.getValueType().getVectorNumElements() / 2;
14922 
14923     // Get the permuted scalar to vector nodes for the source(s) that come from
14924     // ISD::SCALAR_TO_VECTOR.
14925     // On big endian systems, this only makes sense for element sizes smaller
14926     // than 64 bits since for 64-bit elements, all instructions already put
14927     // the value into element zero. Since scalar size of LHS and RHS may differ
14928     // after isScalarToVec, this should be checked using their own sizes.
14929     if (SToVLHS) {
14930       if (!IsLittleEndian && SToVLHS.getValueType().getScalarSizeInBits() >= 64)
14931         return Res;
14932       // Set up the values for the shuffle vector fixup.
14933       LHSMaxIdx = NumEltsOut / NumEltsIn;
14934       SToVLHS = getSToVPermuted(SToVLHS, DAG, Subtarget);
14935       if (SToVLHS.getValueType() != LHS.getValueType())
14936         SToVLHS = DAG.getBitcast(LHS.getValueType(), SToVLHS);
14937       LHS = SToVLHS;
14938     }
14939     if (SToVRHS) {
14940       if (!IsLittleEndian && SToVRHS.getValueType().getScalarSizeInBits() >= 64)
14941         return Res;
14942       RHSMinIdx = NumEltsOut;
14943       RHSMaxIdx = NumEltsOut / NumEltsIn + RHSMinIdx;
14944       SToVRHS = getSToVPermuted(SToVRHS, DAG, Subtarget);
14945       if (SToVRHS.getValueType() != RHS.getValueType())
14946         SToVRHS = DAG.getBitcast(RHS.getValueType(), SToVRHS);
14947       RHS = SToVRHS;
14948     }
14949 
14950     // Fix up the shuffle mask to reflect where the desired element actually is.
14951     // The minimum and maximum indices that correspond to element zero for both
14952     // the LHS and RHS are computed and will control which shuffle mask entries
14953     // are to be changed. For example, if the RHS is permuted, any shuffle mask
14954     // entries in the range [RHSMinIdx,RHSMaxIdx) will be adjusted.
14955     fixupShuffleMaskForPermutedSToV(ShuffV, LHSMaxIdx, RHSMinIdx, RHSMaxIdx,
14956                                     HalfVec, ValidLaneWidth, Subtarget);
14957     Res = DAG.getVectorShuffle(SVN->getValueType(0), dl, LHS, RHS, ShuffV);
14958 
14959     // We may have simplified away the shuffle. We won't be able to do anything
14960     // further with it here.
14961     if (!isa<ShuffleVectorSDNode>(Res))
14962       return Res;
14963     Mask = cast<ShuffleVectorSDNode>(Res)->getMask();
14964   }
14965 
14966   SDValue TheSplat = IsLittleEndian ? RHS : LHS;
14967   // The common case after we commuted the shuffle is that the RHS is a splat
14968   // and we have elements coming in from the splat at indices that are not
14969   // conducive to using a merge.
14970   // Example:
14971   // vector_shuffle<0,17,1,19,2,21,3,23,4,25,5,27,6,29,7,31> t1, <zero>
14972   if (!isSplatBV(TheSplat))
14973     return Res;
14974 
14975   // We are looking for a mask such that all even elements are from
14976   // one vector and all odd elements from the other.
14977   if (!isAlternatingShuffMask(Mask, NumElts))
14978     return Res;
14979 
14980   // Adjust the mask so we are pulling in the same index from the splat
14981   // as the index from the interesting vector in consecutive elements.
14982   if (IsLittleEndian) {
14983     // Example (even elements from first vector):
14984     // vector_shuffle<0,16,1,17,2,18,3,19,4,20,5,21,6,22,7,23> t1, <zero>
14985     if (Mask[0] < NumElts)
14986       for (int i = 1, e = Mask.size(); i < e; i += 2) {
14987         if (ShuffV[i] < 0)
14988           continue;
14989         ShuffV[i] = (ShuffV[i - 1] + NumElts);
14990       }
14991     // Example (odd elements from first vector):
14992     // vector_shuffle<16,0,17,1,18,2,19,3,20,4,21,5,22,6,23,7> t1, <zero>
14993     else
14994       for (int i = 0, e = Mask.size(); i < e; i += 2) {
14995         if (ShuffV[i] < 0)
14996           continue;
14997         ShuffV[i] = (ShuffV[i + 1] + NumElts);
14998       }
14999   } else {
15000     // Example (even elements from first vector):
15001     // vector_shuffle<0,16,1,17,2,18,3,19,4,20,5,21,6,22,7,23> <zero>, t1
15002     if (Mask[0] < NumElts)
15003       for (int i = 0, e = Mask.size(); i < e; i += 2) {
15004         if (ShuffV[i] < 0)
15005           continue;
15006         ShuffV[i] = ShuffV[i + 1] - NumElts;
15007       }
15008     // Example (odd elements from first vector):
15009     // vector_shuffle<16,0,17,1,18,2,19,3,20,4,21,5,22,6,23,7> <zero>, t1
15010     else
15011       for (int i = 1, e = Mask.size(); i < e; i += 2) {
15012         if (ShuffV[i] < 0)
15013           continue;
15014         ShuffV[i] = ShuffV[i - 1] - NumElts;
15015       }
15016   }
15017 
15018   // If the RHS has undefs, we need to remove them since we may have created
15019   // a shuffle that adds those instead of the splat value.
15020   SDValue SplatVal =
15021       cast<BuildVectorSDNode>(TheSplat.getNode())->getSplatValue();
15022   TheSplat = DAG.getSplatBuildVector(TheSplat.getValueType(), dl, SplatVal);
15023 
15024   if (IsLittleEndian)
15025     RHS = TheSplat;
15026   else
15027     LHS = TheSplat;
15028   return DAG.getVectorShuffle(SVN->getValueType(0), dl, LHS, RHS, ShuffV);
15029 }
15030 
15031 SDValue PPCTargetLowering::combineVReverseMemOP(ShuffleVectorSDNode *SVN,
15032                                                 LSBaseSDNode *LSBase,
15033                                                 DAGCombinerInfo &DCI) const {
15034   assert((ISD::isNormalLoad(LSBase) || ISD::isNormalStore(LSBase)) &&
15035         "Not a reverse memop pattern!");
15036 
15037   auto IsElementReverse = [](const ShuffleVectorSDNode *SVN) -> bool {
15038     auto Mask = SVN->getMask();
15039     int i = 0;
15040     auto I = Mask.rbegin();
15041     auto E = Mask.rend();
15042 
15043     for (; I != E; ++I) {
15044       if (*I != i)
15045         return false;
15046       i++;
15047     }
15048     return true;
15049   };
15050 
15051   SelectionDAG &DAG = DCI.DAG;
15052   EVT VT = SVN->getValueType(0);
15053 
15054   if (!isTypeLegal(VT) || !Subtarget.isLittleEndian() || !Subtarget.hasVSX())
15055     return SDValue();
15056 
15057   // Before P9, we have PPCVSXSwapRemoval pass to hack the element order.
15058   // See comment in PPCVSXSwapRemoval.cpp.
15059   // It is conflict with PPCVSXSwapRemoval opt. So we don't do it.
15060   if (!Subtarget.hasP9Vector())
15061     return SDValue();
15062 
15063   if(!IsElementReverse(SVN))
15064     return SDValue();
15065 
15066   if (LSBase->getOpcode() == ISD::LOAD) {
15067     // If the load return value 0 has more than one user except the
15068     // shufflevector instruction, it is not profitable to replace the
15069     // shufflevector with a reverse load.
15070     for (SDNode::use_iterator UI = LSBase->use_begin(), UE = LSBase->use_end();
15071          UI != UE; ++UI)
15072       if (UI.getUse().getResNo() == 0 && UI->getOpcode() != ISD::VECTOR_SHUFFLE)
15073         return SDValue();
15074 
15075     SDLoc dl(LSBase);
15076     SDValue LoadOps[] = {LSBase->getChain(), LSBase->getBasePtr()};
15077     return DAG.getMemIntrinsicNode(
15078         PPCISD::LOAD_VEC_BE, dl, DAG.getVTList(VT, MVT::Other), LoadOps,
15079         LSBase->getMemoryVT(), LSBase->getMemOperand());
15080   }
15081 
15082   if (LSBase->getOpcode() == ISD::STORE) {
15083     // If there are other uses of the shuffle, the swap cannot be avoided.
15084     // Forcing the use of an X-Form (since swapped stores only have
15085     // X-Forms) without removing the swap is unprofitable.
15086     if (!SVN->hasOneUse())
15087       return SDValue();
15088 
15089     SDLoc dl(LSBase);
15090     SDValue StoreOps[] = {LSBase->getChain(), SVN->getOperand(0),
15091                           LSBase->getBasePtr()};
15092     return DAG.getMemIntrinsicNode(
15093         PPCISD::STORE_VEC_BE, dl, DAG.getVTList(MVT::Other), StoreOps,
15094         LSBase->getMemoryVT(), LSBase->getMemOperand());
15095   }
15096 
15097   llvm_unreachable("Expected a load or store node here");
15098 }
15099 
15100 SDValue PPCTargetLowering::PerformDAGCombine(SDNode *N,
15101                                              DAGCombinerInfo &DCI) const {
15102   SelectionDAG &DAG = DCI.DAG;
15103   SDLoc dl(N);
15104   switch (N->getOpcode()) {
15105   default: break;
15106   case ISD::ADD:
15107     return combineADD(N, DCI);
15108   case ISD::SHL:
15109     return combineSHL(N, DCI);
15110   case ISD::SRA:
15111     return combineSRA(N, DCI);
15112   case ISD::SRL:
15113     return combineSRL(N, DCI);
15114   case ISD::MUL:
15115     return combineMUL(N, DCI);
15116   case ISD::FMA:
15117   case PPCISD::FNMSUB:
15118     return combineFMALike(N, DCI);
15119   case PPCISD::SHL:
15120     if (isNullConstant(N->getOperand(0))) // 0 << V -> 0.
15121         return N->getOperand(0);
15122     break;
15123   case PPCISD::SRL:
15124     if (isNullConstant(N->getOperand(0))) // 0 >>u V -> 0.
15125         return N->getOperand(0);
15126     break;
15127   case PPCISD::SRA:
15128     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(0))) {
15129       if (C->isZero() ||  //  0 >>s V -> 0.
15130           C->isAllOnes()) // -1 >>s V -> -1.
15131         return N->getOperand(0);
15132     }
15133     break;
15134   case ISD::SIGN_EXTEND:
15135   case ISD::ZERO_EXTEND:
15136   case ISD::ANY_EXTEND:
15137     return DAGCombineExtBoolTrunc(N, DCI);
15138   case ISD::TRUNCATE:
15139     return combineTRUNCATE(N, DCI);
15140   case ISD::SETCC:
15141     if (SDValue CSCC = combineSetCC(N, DCI))
15142       return CSCC;
15143     LLVM_FALLTHROUGH;
15144   case ISD::SELECT_CC:
15145     return DAGCombineTruncBoolExt(N, DCI);
15146   case ISD::SINT_TO_FP:
15147   case ISD::UINT_TO_FP:
15148     return combineFPToIntToFP(N, DCI);
15149   case ISD::VECTOR_SHUFFLE:
15150     if (ISD::isNormalLoad(N->getOperand(0).getNode())) {
15151       LSBaseSDNode* LSBase = cast<LSBaseSDNode>(N->getOperand(0));
15152       return combineVReverseMemOP(cast<ShuffleVectorSDNode>(N), LSBase, DCI);
15153     }
15154     return combineVectorShuffle(cast<ShuffleVectorSDNode>(N), DCI.DAG);
15155   case ISD::STORE: {
15156 
15157     EVT Op1VT = N->getOperand(1).getValueType();
15158     unsigned Opcode = N->getOperand(1).getOpcode();
15159 
15160     if (Opcode == ISD::FP_TO_SINT || Opcode == ISD::FP_TO_UINT) {
15161       SDValue Val= combineStoreFPToInt(N, DCI);
15162       if (Val)
15163         return Val;
15164     }
15165 
15166     if (Opcode == ISD::VECTOR_SHUFFLE && ISD::isNormalStore(N)) {
15167       ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N->getOperand(1));
15168       SDValue Val= combineVReverseMemOP(SVN, cast<LSBaseSDNode>(N), DCI);
15169       if (Val)
15170         return Val;
15171     }
15172 
15173     // Turn STORE (BSWAP) -> sthbrx/stwbrx.
15174     if (cast<StoreSDNode>(N)->isUnindexed() && Opcode == ISD::BSWAP &&
15175         N->getOperand(1).getNode()->hasOneUse() &&
15176         (Op1VT == MVT::i32 || Op1VT == MVT::i16 ||
15177          (Subtarget.hasLDBRX() && Subtarget.isPPC64() && Op1VT == MVT::i64))) {
15178 
15179       // STBRX can only handle simple types and it makes no sense to store less
15180       // two bytes in byte-reversed order.
15181       EVT mVT = cast<StoreSDNode>(N)->getMemoryVT();
15182       if (mVT.isExtended() || mVT.getSizeInBits() < 16)
15183         break;
15184 
15185       SDValue BSwapOp = N->getOperand(1).getOperand(0);
15186       // Do an any-extend to 32-bits if this is a half-word input.
15187       if (BSwapOp.getValueType() == MVT::i16)
15188         BSwapOp = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, BSwapOp);
15189 
15190       // If the type of BSWAP operand is wider than stored memory width
15191       // it need to be shifted to the right side before STBRX.
15192       if (Op1VT.bitsGT(mVT)) {
15193         int Shift = Op1VT.getSizeInBits() - mVT.getSizeInBits();
15194         BSwapOp = DAG.getNode(ISD::SRL, dl, Op1VT, BSwapOp,
15195                               DAG.getConstant(Shift, dl, MVT::i32));
15196         // Need to truncate if this is a bswap of i64 stored as i32/i16.
15197         if (Op1VT == MVT::i64)
15198           BSwapOp = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, BSwapOp);
15199       }
15200 
15201       SDValue Ops[] = {
15202         N->getOperand(0), BSwapOp, N->getOperand(2), DAG.getValueType(mVT)
15203       };
15204       return
15205         DAG.getMemIntrinsicNode(PPCISD::STBRX, dl, DAG.getVTList(MVT::Other),
15206                                 Ops, cast<StoreSDNode>(N)->getMemoryVT(),
15207                                 cast<StoreSDNode>(N)->getMemOperand());
15208     }
15209 
15210     // STORE Constant:i32<0>  ->  STORE<trunc to i32> Constant:i64<0>
15211     // So it can increase the chance of CSE constant construction.
15212     if (Subtarget.isPPC64() && !DCI.isBeforeLegalize() &&
15213         isa<ConstantSDNode>(N->getOperand(1)) && Op1VT == MVT::i32) {
15214       // Need to sign-extended to 64-bits to handle negative values.
15215       EVT MemVT = cast<StoreSDNode>(N)->getMemoryVT();
15216       uint64_t Val64 = SignExtend64(N->getConstantOperandVal(1),
15217                                     MemVT.getSizeInBits());
15218       SDValue Const64 = DAG.getConstant(Val64, dl, MVT::i64);
15219 
15220       // DAG.getTruncStore() can't be used here because it doesn't accept
15221       // the general (base + offset) addressing mode.
15222       // So we use UpdateNodeOperands and setTruncatingStore instead.
15223       DAG.UpdateNodeOperands(N, N->getOperand(0), Const64, N->getOperand(2),
15224                              N->getOperand(3));
15225       cast<StoreSDNode>(N)->setTruncatingStore(true);
15226       return SDValue(N, 0);
15227     }
15228 
15229     // For little endian, VSX stores require generating xxswapd/lxvd2x.
15230     // Not needed on ISA 3.0 based CPUs since we have a non-permuting store.
15231     if (Op1VT.isSimple()) {
15232       MVT StoreVT = Op1VT.getSimpleVT();
15233       if (Subtarget.needsSwapsForVSXMemOps() &&
15234           (StoreVT == MVT::v2f64 || StoreVT == MVT::v2i64 ||
15235            StoreVT == MVT::v4f32 || StoreVT == MVT::v4i32))
15236         return expandVSXStoreForLE(N, DCI);
15237     }
15238     break;
15239   }
15240   case ISD::LOAD: {
15241     LoadSDNode *LD = cast<LoadSDNode>(N);
15242     EVT VT = LD->getValueType(0);
15243 
15244     // For little endian, VSX loads require generating lxvd2x/xxswapd.
15245     // Not needed on ISA 3.0 based CPUs since we have a non-permuting load.
15246     if (VT.isSimple()) {
15247       MVT LoadVT = VT.getSimpleVT();
15248       if (Subtarget.needsSwapsForVSXMemOps() &&
15249           (LoadVT == MVT::v2f64 || LoadVT == MVT::v2i64 ||
15250            LoadVT == MVT::v4f32 || LoadVT == MVT::v4i32))
15251         return expandVSXLoadForLE(N, DCI);
15252     }
15253 
15254     // We sometimes end up with a 64-bit integer load, from which we extract
15255     // two single-precision floating-point numbers. This happens with
15256     // std::complex<float>, and other similar structures, because of the way we
15257     // canonicalize structure copies. However, if we lack direct moves,
15258     // then the final bitcasts from the extracted integer values to the
15259     // floating-point numbers turn into store/load pairs. Even with direct moves,
15260     // just loading the two floating-point numbers is likely better.
15261     auto ReplaceTwoFloatLoad = [&]() {
15262       if (VT != MVT::i64)
15263         return false;
15264 
15265       if (LD->getExtensionType() != ISD::NON_EXTLOAD ||
15266           LD->isVolatile())
15267         return false;
15268 
15269       //  We're looking for a sequence like this:
15270       //  t13: i64,ch = load<LD8[%ref.tmp]> t0, t6, undef:i64
15271       //      t16: i64 = srl t13, Constant:i32<32>
15272       //    t17: i32 = truncate t16
15273       //  t18: f32 = bitcast t17
15274       //    t19: i32 = truncate t13
15275       //  t20: f32 = bitcast t19
15276 
15277       if (!LD->hasNUsesOfValue(2, 0))
15278         return false;
15279 
15280       auto UI = LD->use_begin();
15281       while (UI.getUse().getResNo() != 0) ++UI;
15282       SDNode *Trunc = *UI++;
15283       while (UI.getUse().getResNo() != 0) ++UI;
15284       SDNode *RightShift = *UI;
15285       if (Trunc->getOpcode() != ISD::TRUNCATE)
15286         std::swap(Trunc, RightShift);
15287 
15288       if (Trunc->getOpcode() != ISD::TRUNCATE ||
15289           Trunc->getValueType(0) != MVT::i32 ||
15290           !Trunc->hasOneUse())
15291         return false;
15292       if (RightShift->getOpcode() != ISD::SRL ||
15293           !isa<ConstantSDNode>(RightShift->getOperand(1)) ||
15294           RightShift->getConstantOperandVal(1) != 32 ||
15295           !RightShift->hasOneUse())
15296         return false;
15297 
15298       SDNode *Trunc2 = *RightShift->use_begin();
15299       if (Trunc2->getOpcode() != ISD::TRUNCATE ||
15300           Trunc2->getValueType(0) != MVT::i32 ||
15301           !Trunc2->hasOneUse())
15302         return false;
15303 
15304       SDNode *Bitcast = *Trunc->use_begin();
15305       SDNode *Bitcast2 = *Trunc2->use_begin();
15306 
15307       if (Bitcast->getOpcode() != ISD::BITCAST ||
15308           Bitcast->getValueType(0) != MVT::f32)
15309         return false;
15310       if (Bitcast2->getOpcode() != ISD::BITCAST ||
15311           Bitcast2->getValueType(0) != MVT::f32)
15312         return false;
15313 
15314       if (Subtarget.isLittleEndian())
15315         std::swap(Bitcast, Bitcast2);
15316 
15317       // Bitcast has the second float (in memory-layout order) and Bitcast2
15318       // has the first one.
15319 
15320       SDValue BasePtr = LD->getBasePtr();
15321       if (LD->isIndexed()) {
15322         assert(LD->getAddressingMode() == ISD::PRE_INC &&
15323                "Non-pre-inc AM on PPC?");
15324         BasePtr =
15325           DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr,
15326                       LD->getOffset());
15327       }
15328 
15329       auto MMOFlags =
15330           LD->getMemOperand()->getFlags() & ~MachineMemOperand::MOVolatile;
15331       SDValue FloatLoad = DAG.getLoad(MVT::f32, dl, LD->getChain(), BasePtr,
15332                                       LD->getPointerInfo(), LD->getAlign(),
15333                                       MMOFlags, LD->getAAInfo());
15334       SDValue AddPtr =
15335         DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(),
15336                     BasePtr, DAG.getIntPtrConstant(4, dl));
15337       SDValue FloatLoad2 = DAG.getLoad(
15338           MVT::f32, dl, SDValue(FloatLoad.getNode(), 1), AddPtr,
15339           LD->getPointerInfo().getWithOffset(4),
15340           commonAlignment(LD->getAlign(), 4), MMOFlags, LD->getAAInfo());
15341 
15342       if (LD->isIndexed()) {
15343         // Note that DAGCombine should re-form any pre-increment load(s) from
15344         // what is produced here if that makes sense.
15345         DAG.ReplaceAllUsesOfValueWith(SDValue(LD, 1), BasePtr);
15346       }
15347 
15348       DCI.CombineTo(Bitcast2, FloatLoad);
15349       DCI.CombineTo(Bitcast, FloatLoad2);
15350 
15351       DAG.ReplaceAllUsesOfValueWith(SDValue(LD, LD->isIndexed() ? 2 : 1),
15352                                     SDValue(FloatLoad2.getNode(), 1));
15353       return true;
15354     };
15355 
15356     if (ReplaceTwoFloatLoad())
15357       return SDValue(N, 0);
15358 
15359     EVT MemVT = LD->getMemoryVT();
15360     Type *Ty = MemVT.getTypeForEVT(*DAG.getContext());
15361     Align ABIAlignment = DAG.getDataLayout().getABITypeAlign(Ty);
15362     if (LD->isUnindexed() && VT.isVector() &&
15363         ((Subtarget.hasAltivec() && ISD::isNON_EXTLoad(N) &&
15364           // P8 and later hardware should just use LOAD.
15365           !Subtarget.hasP8Vector() &&
15366           (VT == MVT::v16i8 || VT == MVT::v8i16 || VT == MVT::v4i32 ||
15367            VT == MVT::v4f32))) &&
15368         LD->getAlign() < ABIAlignment) {
15369       // This is a type-legal unaligned Altivec load.
15370       SDValue Chain = LD->getChain();
15371       SDValue Ptr = LD->getBasePtr();
15372       bool isLittleEndian = Subtarget.isLittleEndian();
15373 
15374       // This implements the loading of unaligned vectors as described in
15375       // the venerable Apple Velocity Engine overview. Specifically:
15376       // https://developer.apple.com/hardwaredrivers/ve/alignment.html
15377       // https://developer.apple.com/hardwaredrivers/ve/code_optimization.html
15378       //
15379       // The general idea is to expand a sequence of one or more unaligned
15380       // loads into an alignment-based permutation-control instruction (lvsl
15381       // or lvsr), a series of regular vector loads (which always truncate
15382       // their input address to an aligned address), and a series of
15383       // permutations.  The results of these permutations are the requested
15384       // loaded values.  The trick is that the last "extra" load is not taken
15385       // from the address you might suspect (sizeof(vector) bytes after the
15386       // last requested load), but rather sizeof(vector) - 1 bytes after the
15387       // last requested vector. The point of this is to avoid a page fault if
15388       // the base address happened to be aligned. This works because if the
15389       // base address is aligned, then adding less than a full vector length
15390       // will cause the last vector in the sequence to be (re)loaded.
15391       // Otherwise, the next vector will be fetched as you might suspect was
15392       // necessary.
15393 
15394       // We might be able to reuse the permutation generation from
15395       // a different base address offset from this one by an aligned amount.
15396       // The INTRINSIC_WO_CHAIN DAG combine will attempt to perform this
15397       // optimization later.
15398       Intrinsic::ID Intr, IntrLD, IntrPerm;
15399       MVT PermCntlTy, PermTy, LDTy;
15400       Intr = isLittleEndian ? Intrinsic::ppc_altivec_lvsr
15401                             : Intrinsic::ppc_altivec_lvsl;
15402       IntrLD = Intrinsic::ppc_altivec_lvx;
15403       IntrPerm = Intrinsic::ppc_altivec_vperm;
15404       PermCntlTy = MVT::v16i8;
15405       PermTy = MVT::v4i32;
15406       LDTy = MVT::v4i32;
15407 
15408       SDValue PermCntl = BuildIntrinsicOp(Intr, Ptr, DAG, dl, PermCntlTy);
15409 
15410       // Create the new MMO for the new base load. It is like the original MMO,
15411       // but represents an area in memory almost twice the vector size centered
15412       // on the original address. If the address is unaligned, we might start
15413       // reading up to (sizeof(vector)-1) bytes below the address of the
15414       // original unaligned load.
15415       MachineFunction &MF = DAG.getMachineFunction();
15416       MachineMemOperand *BaseMMO =
15417         MF.getMachineMemOperand(LD->getMemOperand(),
15418                                 -(long)MemVT.getStoreSize()+1,
15419                                 2*MemVT.getStoreSize()-1);
15420 
15421       // Create the new base load.
15422       SDValue LDXIntID =
15423           DAG.getTargetConstant(IntrLD, dl, getPointerTy(MF.getDataLayout()));
15424       SDValue BaseLoadOps[] = { Chain, LDXIntID, Ptr };
15425       SDValue BaseLoad =
15426         DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, dl,
15427                                 DAG.getVTList(PermTy, MVT::Other),
15428                                 BaseLoadOps, LDTy, BaseMMO);
15429 
15430       // Note that the value of IncOffset (which is provided to the next
15431       // load's pointer info offset value, and thus used to calculate the
15432       // alignment), and the value of IncValue (which is actually used to
15433       // increment the pointer value) are different! This is because we
15434       // require the next load to appear to be aligned, even though it
15435       // is actually offset from the base pointer by a lesser amount.
15436       int IncOffset = VT.getSizeInBits() / 8;
15437       int IncValue = IncOffset;
15438 
15439       // Walk (both up and down) the chain looking for another load at the real
15440       // (aligned) offset (the alignment of the other load does not matter in
15441       // this case). If found, then do not use the offset reduction trick, as
15442       // that will prevent the loads from being later combined (as they would
15443       // otherwise be duplicates).
15444       if (!findConsecutiveLoad(LD, DAG))
15445         --IncValue;
15446 
15447       SDValue Increment =
15448           DAG.getConstant(IncValue, dl, getPointerTy(MF.getDataLayout()));
15449       Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, Increment);
15450 
15451       MachineMemOperand *ExtraMMO =
15452         MF.getMachineMemOperand(LD->getMemOperand(),
15453                                 1, 2*MemVT.getStoreSize()-1);
15454       SDValue ExtraLoadOps[] = { Chain, LDXIntID, Ptr };
15455       SDValue ExtraLoad =
15456         DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, dl,
15457                                 DAG.getVTList(PermTy, MVT::Other),
15458                                 ExtraLoadOps, LDTy, ExtraMMO);
15459 
15460       SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
15461         BaseLoad.getValue(1), ExtraLoad.getValue(1));
15462 
15463       // Because vperm has a big-endian bias, we must reverse the order
15464       // of the input vectors and complement the permute control vector
15465       // when generating little endian code.  We have already handled the
15466       // latter by using lvsr instead of lvsl, so just reverse BaseLoad
15467       // and ExtraLoad here.
15468       SDValue Perm;
15469       if (isLittleEndian)
15470         Perm = BuildIntrinsicOp(IntrPerm,
15471                                 ExtraLoad, BaseLoad, PermCntl, DAG, dl);
15472       else
15473         Perm = BuildIntrinsicOp(IntrPerm,
15474                                 BaseLoad, ExtraLoad, PermCntl, DAG, dl);
15475 
15476       if (VT != PermTy)
15477         Perm = Subtarget.hasAltivec()
15478                    ? DAG.getNode(ISD::BITCAST, dl, VT, Perm)
15479                    : DAG.getNode(ISD::FP_ROUND, dl, VT, Perm,
15480                                  DAG.getTargetConstant(1, dl, MVT::i64));
15481                                // second argument is 1 because this rounding
15482                                // is always exact.
15483 
15484       // The output of the permutation is our loaded result, the TokenFactor is
15485       // our new chain.
15486       DCI.CombineTo(N, Perm, TF);
15487       return SDValue(N, 0);
15488     }
15489     }
15490     break;
15491     case ISD::INTRINSIC_WO_CHAIN: {
15492       bool isLittleEndian = Subtarget.isLittleEndian();
15493       unsigned IID = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue();
15494       Intrinsic::ID Intr = (isLittleEndian ? Intrinsic::ppc_altivec_lvsr
15495                                            : Intrinsic::ppc_altivec_lvsl);
15496       if (IID == Intr && N->getOperand(1)->getOpcode() == ISD::ADD) {
15497         SDValue Add = N->getOperand(1);
15498 
15499         int Bits = 4 /* 16 byte alignment */;
15500 
15501         if (DAG.MaskedValueIsZero(Add->getOperand(1),
15502                                   APInt::getAllOnes(Bits /* alignment */)
15503                                       .zext(Add.getScalarValueSizeInBits()))) {
15504           SDNode *BasePtr = Add->getOperand(0).getNode();
15505           for (SDNode *U : BasePtr->uses()) {
15506             if (U->getOpcode() == ISD::INTRINSIC_WO_CHAIN &&
15507                 cast<ConstantSDNode>(U->getOperand(0))->getZExtValue() == IID) {
15508               // We've found another LVSL/LVSR, and this address is an aligned
15509               // multiple of that one. The results will be the same, so use the
15510               // one we've just found instead.
15511 
15512               return SDValue(U, 0);
15513             }
15514           }
15515         }
15516 
15517         if (isa<ConstantSDNode>(Add->getOperand(1))) {
15518           SDNode *BasePtr = Add->getOperand(0).getNode();
15519           for (SDNode *U : BasePtr->uses()) {
15520             if (U->getOpcode() == ISD::ADD &&
15521                 isa<ConstantSDNode>(U->getOperand(1)) &&
15522                 (cast<ConstantSDNode>(Add->getOperand(1))->getZExtValue() -
15523                  cast<ConstantSDNode>(U->getOperand(1))->getZExtValue()) %
15524                         (1ULL << Bits) ==
15525                     0) {
15526               SDNode *OtherAdd = U;
15527               for (SDNode *V : OtherAdd->uses()) {
15528                 if (V->getOpcode() == ISD::INTRINSIC_WO_CHAIN &&
15529                     cast<ConstantSDNode>(V->getOperand(0))->getZExtValue() ==
15530                         IID) {
15531                   return SDValue(V, 0);
15532                 }
15533               }
15534             }
15535           }
15536         }
15537       }
15538 
15539       // Combine vmaxsw/h/b(a, a's negation) to abs(a)
15540       // Expose the vabsduw/h/b opportunity for down stream
15541       if (!DCI.isAfterLegalizeDAG() && Subtarget.hasP9Altivec() &&
15542           (IID == Intrinsic::ppc_altivec_vmaxsw ||
15543            IID == Intrinsic::ppc_altivec_vmaxsh ||
15544            IID == Intrinsic::ppc_altivec_vmaxsb)) {
15545         SDValue V1 = N->getOperand(1);
15546         SDValue V2 = N->getOperand(2);
15547         if ((V1.getSimpleValueType() == MVT::v4i32 ||
15548              V1.getSimpleValueType() == MVT::v8i16 ||
15549              V1.getSimpleValueType() == MVT::v16i8) &&
15550             V1.getSimpleValueType() == V2.getSimpleValueType()) {
15551           // (0-a, a)
15552           if (V1.getOpcode() == ISD::SUB &&
15553               ISD::isBuildVectorAllZeros(V1.getOperand(0).getNode()) &&
15554               V1.getOperand(1) == V2) {
15555             return DAG.getNode(ISD::ABS, dl, V2.getValueType(), V2);
15556           }
15557           // (a, 0-a)
15558           if (V2.getOpcode() == ISD::SUB &&
15559               ISD::isBuildVectorAllZeros(V2.getOperand(0).getNode()) &&
15560               V2.getOperand(1) == V1) {
15561             return DAG.getNode(ISD::ABS, dl, V1.getValueType(), V1);
15562           }
15563           // (x-y, y-x)
15564           if (V1.getOpcode() == ISD::SUB && V2.getOpcode() == ISD::SUB &&
15565               V1.getOperand(0) == V2.getOperand(1) &&
15566               V1.getOperand(1) == V2.getOperand(0)) {
15567             return DAG.getNode(ISD::ABS, dl, V1.getValueType(), V1);
15568           }
15569         }
15570       }
15571     }
15572 
15573     break;
15574   case ISD::INTRINSIC_W_CHAIN:
15575     // For little endian, VSX loads require generating lxvd2x/xxswapd.
15576     // Not needed on ISA 3.0 based CPUs since we have a non-permuting load.
15577     if (Subtarget.needsSwapsForVSXMemOps()) {
15578       switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) {
15579       default:
15580         break;
15581       case Intrinsic::ppc_vsx_lxvw4x:
15582       case Intrinsic::ppc_vsx_lxvd2x:
15583         return expandVSXLoadForLE(N, DCI);
15584       }
15585     }
15586     break;
15587   case ISD::INTRINSIC_VOID:
15588     // For little endian, VSX stores require generating xxswapd/stxvd2x.
15589     // Not needed on ISA 3.0 based CPUs since we have a non-permuting store.
15590     if (Subtarget.needsSwapsForVSXMemOps()) {
15591       switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) {
15592       default:
15593         break;
15594       case Intrinsic::ppc_vsx_stxvw4x:
15595       case Intrinsic::ppc_vsx_stxvd2x:
15596         return expandVSXStoreForLE(N, DCI);
15597       }
15598     }
15599     break;
15600   case ISD::BSWAP: {
15601     // Turn BSWAP (LOAD) -> lhbrx/lwbrx.
15602     // For subtargets without LDBRX, we can still do better than the default
15603     // expansion even for 64-bit BSWAP (LOAD).
15604     bool Is64BitBswapOn64BitTgt =
15605         Subtarget.isPPC64() && N->getValueType(0) == MVT::i64;
15606     bool IsSingleUseNormalLd = ISD::isNormalLoad(N->getOperand(0).getNode()) &&
15607                                N->getOperand(0).hasOneUse();
15608     if (IsSingleUseNormalLd &&
15609         (N->getValueType(0) == MVT::i32 || N->getValueType(0) == MVT::i16 ||
15610          (Subtarget.hasLDBRX() && Is64BitBswapOn64BitTgt))) {
15611       SDValue Load = N->getOperand(0);
15612       LoadSDNode *LD = cast<LoadSDNode>(Load);
15613       // Create the byte-swapping load.
15614       SDValue Ops[] = {
15615         LD->getChain(),    // Chain
15616         LD->getBasePtr(),  // Ptr
15617         DAG.getValueType(N->getValueType(0)) // VT
15618       };
15619       SDValue BSLoad =
15620         DAG.getMemIntrinsicNode(PPCISD::LBRX, dl,
15621                                 DAG.getVTList(N->getValueType(0) == MVT::i64 ?
15622                                               MVT::i64 : MVT::i32, MVT::Other),
15623                                 Ops, LD->getMemoryVT(), LD->getMemOperand());
15624 
15625       // If this is an i16 load, insert the truncate.
15626       SDValue ResVal = BSLoad;
15627       if (N->getValueType(0) == MVT::i16)
15628         ResVal = DAG.getNode(ISD::TRUNCATE, dl, MVT::i16, BSLoad);
15629 
15630       // First, combine the bswap away.  This makes the value produced by the
15631       // load dead.
15632       DCI.CombineTo(N, ResVal);
15633 
15634       // Next, combine the load away, we give it a bogus result value but a real
15635       // chain result.  The result value is dead because the bswap is dead.
15636       DCI.CombineTo(Load.getNode(), ResVal, BSLoad.getValue(1));
15637 
15638       // Return N so it doesn't get rechecked!
15639       return SDValue(N, 0);
15640     }
15641     // Convert this to two 32-bit bswap loads and a BUILD_PAIR. Do this only
15642     // before legalization so that the BUILD_PAIR is handled correctly.
15643     if (!DCI.isBeforeLegalize() || !Is64BitBswapOn64BitTgt ||
15644         !IsSingleUseNormalLd)
15645       return SDValue();
15646     LoadSDNode *LD = cast<LoadSDNode>(N->getOperand(0));
15647 
15648     // Can't split volatile or atomic loads.
15649     if (!LD->isSimple())
15650       return SDValue();
15651     SDValue BasePtr = LD->getBasePtr();
15652     SDValue Lo = DAG.getLoad(MVT::i32, dl, LD->getChain(), BasePtr,
15653                              LD->getPointerInfo(), LD->getAlign());
15654     Lo = DAG.getNode(ISD::BSWAP, dl, MVT::i32, Lo);
15655     BasePtr = DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr,
15656                           DAG.getIntPtrConstant(4, dl));
15657     MachineMemOperand *NewMMO = DAG.getMachineFunction().getMachineMemOperand(
15658         LD->getMemOperand(), 4, 4);
15659     SDValue Hi = DAG.getLoad(MVT::i32, dl, LD->getChain(), BasePtr, NewMMO);
15660     Hi = DAG.getNode(ISD::BSWAP, dl, MVT::i32, Hi);
15661     SDValue Res;
15662     if (Subtarget.isLittleEndian())
15663       Res = DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Hi, Lo);
15664     else
15665       Res = DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Lo, Hi);
15666     SDValue TF =
15667         DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
15668                     Hi.getOperand(0).getValue(1), Lo.getOperand(0).getValue(1));
15669     DAG.ReplaceAllUsesOfValueWith(SDValue(LD, 1), TF);
15670     return Res;
15671   }
15672   case PPCISD::VCMP:
15673     // If a VCMP_rec node already exists with exactly the same operands as this
15674     // node, use its result instead of this node (VCMP_rec computes both a CR6
15675     // and a normal output).
15676     //
15677     if (!N->getOperand(0).hasOneUse() &&
15678         !N->getOperand(1).hasOneUse() &&
15679         !N->getOperand(2).hasOneUse()) {
15680 
15681       // Scan all of the users of the LHS, looking for VCMP_rec's that match.
15682       SDNode *VCMPrecNode = nullptr;
15683 
15684       SDNode *LHSN = N->getOperand(0).getNode();
15685       for (SDNode::use_iterator UI = LHSN->use_begin(), E = LHSN->use_end();
15686            UI != E; ++UI)
15687         if (UI->getOpcode() == PPCISD::VCMP_rec &&
15688             UI->getOperand(1) == N->getOperand(1) &&
15689             UI->getOperand(2) == N->getOperand(2) &&
15690             UI->getOperand(0) == N->getOperand(0)) {
15691           VCMPrecNode = *UI;
15692           break;
15693         }
15694 
15695       // If there is no VCMP_rec node, or if the flag value has a single use,
15696       // don't transform this.
15697       if (!VCMPrecNode || VCMPrecNode->hasNUsesOfValue(0, 1))
15698         break;
15699 
15700       // Look at the (necessarily single) use of the flag value.  If it has a
15701       // chain, this transformation is more complex.  Note that multiple things
15702       // could use the value result, which we should ignore.
15703       SDNode *FlagUser = nullptr;
15704       for (SDNode::use_iterator UI = VCMPrecNode->use_begin();
15705            FlagUser == nullptr; ++UI) {
15706         assert(UI != VCMPrecNode->use_end() && "Didn't find user!");
15707         SDNode *User = *UI;
15708         for (unsigned i = 0, e = User->getNumOperands(); i != e; ++i) {
15709           if (User->getOperand(i) == SDValue(VCMPrecNode, 1)) {
15710             FlagUser = User;
15711             break;
15712           }
15713         }
15714       }
15715 
15716       // If the user is a MFOCRF instruction, we know this is safe.
15717       // Otherwise we give up for right now.
15718       if (FlagUser->getOpcode() == PPCISD::MFOCRF)
15719         return SDValue(VCMPrecNode, 0);
15720     }
15721     break;
15722   case ISD::BRCOND: {
15723     SDValue Cond = N->getOperand(1);
15724     SDValue Target = N->getOperand(2);
15725 
15726     if (Cond.getOpcode() == ISD::INTRINSIC_W_CHAIN &&
15727         cast<ConstantSDNode>(Cond.getOperand(1))->getZExtValue() ==
15728           Intrinsic::loop_decrement) {
15729 
15730       // We now need to make the intrinsic dead (it cannot be instruction
15731       // selected).
15732       DAG.ReplaceAllUsesOfValueWith(Cond.getValue(1), Cond.getOperand(0));
15733       assert(Cond.getNode()->hasOneUse() &&
15734              "Counter decrement has more than one use");
15735 
15736       return DAG.getNode(PPCISD::BDNZ, dl, MVT::Other,
15737                          N->getOperand(0), Target);
15738     }
15739   }
15740   break;
15741   case ISD::BR_CC: {
15742     // If this is a branch on an altivec predicate comparison, lower this so
15743     // that we don't have to do a MFOCRF: instead, branch directly on CR6.  This
15744     // lowering is done pre-legalize, because the legalizer lowers the predicate
15745     // compare down to code that is difficult to reassemble.
15746     ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(1))->get();
15747     SDValue LHS = N->getOperand(2), RHS = N->getOperand(3);
15748 
15749     // Sometimes the promoted value of the intrinsic is ANDed by some non-zero
15750     // value. If so, pass-through the AND to get to the intrinsic.
15751     if (LHS.getOpcode() == ISD::AND &&
15752         LHS.getOperand(0).getOpcode() == ISD::INTRINSIC_W_CHAIN &&
15753         cast<ConstantSDNode>(LHS.getOperand(0).getOperand(1))->getZExtValue() ==
15754           Intrinsic::loop_decrement &&
15755         isa<ConstantSDNode>(LHS.getOperand(1)) &&
15756         !isNullConstant(LHS.getOperand(1)))
15757       LHS = LHS.getOperand(0);
15758 
15759     if (LHS.getOpcode() == ISD::INTRINSIC_W_CHAIN &&
15760         cast<ConstantSDNode>(LHS.getOperand(1))->getZExtValue() ==
15761           Intrinsic::loop_decrement &&
15762         isa<ConstantSDNode>(RHS)) {
15763       assert((CC == ISD::SETEQ || CC == ISD::SETNE) &&
15764              "Counter decrement comparison is not EQ or NE");
15765 
15766       unsigned Val = cast<ConstantSDNode>(RHS)->getZExtValue();
15767       bool isBDNZ = (CC == ISD::SETEQ && Val) ||
15768                     (CC == ISD::SETNE && !Val);
15769 
15770       // We now need to make the intrinsic dead (it cannot be instruction
15771       // selected).
15772       DAG.ReplaceAllUsesOfValueWith(LHS.getValue(1), LHS.getOperand(0));
15773       assert(LHS.getNode()->hasOneUse() &&
15774              "Counter decrement has more than one use");
15775 
15776       return DAG.getNode(isBDNZ ? PPCISD::BDNZ : PPCISD::BDZ, dl, MVT::Other,
15777                          N->getOperand(0), N->getOperand(4));
15778     }
15779 
15780     int CompareOpc;
15781     bool isDot;
15782 
15783     if (LHS.getOpcode() == ISD::INTRINSIC_WO_CHAIN &&
15784         isa<ConstantSDNode>(RHS) && (CC == ISD::SETEQ || CC == ISD::SETNE) &&
15785         getVectorCompareInfo(LHS, CompareOpc, isDot, Subtarget)) {
15786       assert(isDot && "Can't compare against a vector result!");
15787 
15788       // If this is a comparison against something other than 0/1, then we know
15789       // that the condition is never/always true.
15790       unsigned Val = cast<ConstantSDNode>(RHS)->getZExtValue();
15791       if (Val != 0 && Val != 1) {
15792         if (CC == ISD::SETEQ)      // Cond never true, remove branch.
15793           return N->getOperand(0);
15794         // Always !=, turn it into an unconditional branch.
15795         return DAG.getNode(ISD::BR, dl, MVT::Other,
15796                            N->getOperand(0), N->getOperand(4));
15797       }
15798 
15799       bool BranchOnWhenPredTrue = (CC == ISD::SETEQ) ^ (Val == 0);
15800 
15801       // Create the PPCISD altivec 'dot' comparison node.
15802       SDValue Ops[] = {
15803         LHS.getOperand(2),  // LHS of compare
15804         LHS.getOperand(3),  // RHS of compare
15805         DAG.getConstant(CompareOpc, dl, MVT::i32)
15806       };
15807       EVT VTs[] = { LHS.getOperand(2).getValueType(), MVT::Glue };
15808       SDValue CompNode = DAG.getNode(PPCISD::VCMP_rec, dl, VTs, Ops);
15809 
15810       // Unpack the result based on how the target uses it.
15811       PPC::Predicate CompOpc;
15812       switch (cast<ConstantSDNode>(LHS.getOperand(1))->getZExtValue()) {
15813       default:  // Can't happen, don't crash on invalid number though.
15814       case 0:   // Branch on the value of the EQ bit of CR6.
15815         CompOpc = BranchOnWhenPredTrue ? PPC::PRED_EQ : PPC::PRED_NE;
15816         break;
15817       case 1:   // Branch on the inverted value of the EQ bit of CR6.
15818         CompOpc = BranchOnWhenPredTrue ? PPC::PRED_NE : PPC::PRED_EQ;
15819         break;
15820       case 2:   // Branch on the value of the LT bit of CR6.
15821         CompOpc = BranchOnWhenPredTrue ? PPC::PRED_LT : PPC::PRED_GE;
15822         break;
15823       case 3:   // Branch on the inverted value of the LT bit of CR6.
15824         CompOpc = BranchOnWhenPredTrue ? PPC::PRED_GE : PPC::PRED_LT;
15825         break;
15826       }
15827 
15828       return DAG.getNode(PPCISD::COND_BRANCH, dl, MVT::Other, N->getOperand(0),
15829                          DAG.getConstant(CompOpc, dl, MVT::i32),
15830                          DAG.getRegister(PPC::CR6, MVT::i32),
15831                          N->getOperand(4), CompNode.getValue(1));
15832     }
15833     break;
15834   }
15835   case ISD::BUILD_VECTOR:
15836     return DAGCombineBuildVector(N, DCI);
15837   case ISD::ABS:
15838     return combineABS(N, DCI);
15839   case ISD::VSELECT:
15840     return combineVSelect(N, DCI);
15841   }
15842 
15843   return SDValue();
15844 }
15845 
15846 SDValue
15847 PPCTargetLowering::BuildSDIVPow2(SDNode *N, const APInt &Divisor,
15848                                  SelectionDAG &DAG,
15849                                  SmallVectorImpl<SDNode *> &Created) const {
15850   // fold (sdiv X, pow2)
15851   EVT VT = N->getValueType(0);
15852   if (VT == MVT::i64 && !Subtarget.isPPC64())
15853     return SDValue();
15854   if ((VT != MVT::i32 && VT != MVT::i64) ||
15855       !(Divisor.isPowerOf2() || Divisor.isNegatedPowerOf2()))
15856     return SDValue();
15857 
15858   SDLoc DL(N);
15859   SDValue N0 = N->getOperand(0);
15860 
15861   bool IsNegPow2 = Divisor.isNegatedPowerOf2();
15862   unsigned Lg2 = (IsNegPow2 ? -Divisor : Divisor).countTrailingZeros();
15863   SDValue ShiftAmt = DAG.getConstant(Lg2, DL, VT);
15864 
15865   SDValue Op = DAG.getNode(PPCISD::SRA_ADDZE, DL, VT, N0, ShiftAmt);
15866   Created.push_back(Op.getNode());
15867 
15868   if (IsNegPow2) {
15869     Op = DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), Op);
15870     Created.push_back(Op.getNode());
15871   }
15872 
15873   return Op;
15874 }
15875 
15876 //===----------------------------------------------------------------------===//
15877 // Inline Assembly Support
15878 //===----------------------------------------------------------------------===//
15879 
15880 void PPCTargetLowering::computeKnownBitsForTargetNode(const SDValue Op,
15881                                                       KnownBits &Known,
15882                                                       const APInt &DemandedElts,
15883                                                       const SelectionDAG &DAG,
15884                                                       unsigned Depth) const {
15885   Known.resetAll();
15886   switch (Op.getOpcode()) {
15887   default: break;
15888   case PPCISD::LBRX: {
15889     // lhbrx is known to have the top bits cleared out.
15890     if (cast<VTSDNode>(Op.getOperand(2))->getVT() == MVT::i16)
15891       Known.Zero = 0xFFFF0000;
15892     break;
15893   }
15894   case ISD::INTRINSIC_WO_CHAIN: {
15895     switch (cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue()) {
15896     default: break;
15897     case Intrinsic::ppc_altivec_vcmpbfp_p:
15898     case Intrinsic::ppc_altivec_vcmpeqfp_p:
15899     case Intrinsic::ppc_altivec_vcmpequb_p:
15900     case Intrinsic::ppc_altivec_vcmpequh_p:
15901     case Intrinsic::ppc_altivec_vcmpequw_p:
15902     case Intrinsic::ppc_altivec_vcmpequd_p:
15903     case Intrinsic::ppc_altivec_vcmpequq_p:
15904     case Intrinsic::ppc_altivec_vcmpgefp_p:
15905     case Intrinsic::ppc_altivec_vcmpgtfp_p:
15906     case Intrinsic::ppc_altivec_vcmpgtsb_p:
15907     case Intrinsic::ppc_altivec_vcmpgtsh_p:
15908     case Intrinsic::ppc_altivec_vcmpgtsw_p:
15909     case Intrinsic::ppc_altivec_vcmpgtsd_p:
15910     case Intrinsic::ppc_altivec_vcmpgtsq_p:
15911     case Intrinsic::ppc_altivec_vcmpgtub_p:
15912     case Intrinsic::ppc_altivec_vcmpgtuh_p:
15913     case Intrinsic::ppc_altivec_vcmpgtuw_p:
15914     case Intrinsic::ppc_altivec_vcmpgtud_p:
15915     case Intrinsic::ppc_altivec_vcmpgtuq_p:
15916       Known.Zero = ~1U;  // All bits but the low one are known to be zero.
15917       break;
15918     }
15919     break;
15920   }
15921   case ISD::INTRINSIC_W_CHAIN: {
15922     switch (cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue()) {
15923     default:
15924       break;
15925     case Intrinsic::ppc_load2r:
15926       // Top bits are cleared for load2r (which is the same as lhbrx).
15927       Known.Zero = 0xFFFF0000;
15928       break;
15929     }
15930     break;
15931   }
15932   }
15933 }
15934 
15935 Align PPCTargetLowering::getPrefLoopAlignment(MachineLoop *ML) const {
15936   switch (Subtarget.getCPUDirective()) {
15937   default: break;
15938   case PPC::DIR_970:
15939   case PPC::DIR_PWR4:
15940   case PPC::DIR_PWR5:
15941   case PPC::DIR_PWR5X:
15942   case PPC::DIR_PWR6:
15943   case PPC::DIR_PWR6X:
15944   case PPC::DIR_PWR7:
15945   case PPC::DIR_PWR8:
15946   case PPC::DIR_PWR9:
15947   case PPC::DIR_PWR10:
15948   case PPC::DIR_PWR_FUTURE: {
15949     if (!ML)
15950       break;
15951 
15952     if (!DisableInnermostLoopAlign32) {
15953       // If the nested loop is an innermost loop, prefer to a 32-byte alignment,
15954       // so that we can decrease cache misses and branch-prediction misses.
15955       // Actual alignment of the loop will depend on the hotness check and other
15956       // logic in alignBlocks.
15957       if (ML->getLoopDepth() > 1 && ML->getSubLoops().empty())
15958         return Align(32);
15959     }
15960 
15961     const PPCInstrInfo *TII = Subtarget.getInstrInfo();
15962 
15963     // For small loops (between 5 and 8 instructions), align to a 32-byte
15964     // boundary so that the entire loop fits in one instruction-cache line.
15965     uint64_t LoopSize = 0;
15966     for (auto I = ML->block_begin(), IE = ML->block_end(); I != IE; ++I)
15967       for (auto J = (*I)->begin(), JE = (*I)->end(); J != JE; ++J) {
15968         LoopSize += TII->getInstSizeInBytes(*J);
15969         if (LoopSize > 32)
15970           break;
15971       }
15972 
15973     if (LoopSize > 16 && LoopSize <= 32)
15974       return Align(32);
15975 
15976     break;
15977   }
15978   }
15979 
15980   return TargetLowering::getPrefLoopAlignment(ML);
15981 }
15982 
15983 /// getConstraintType - Given a constraint, return the type of
15984 /// constraint it is for this target.
15985 PPCTargetLowering::ConstraintType
15986 PPCTargetLowering::getConstraintType(StringRef Constraint) const {
15987   if (Constraint.size() == 1) {
15988     switch (Constraint[0]) {
15989     default: break;
15990     case 'b':
15991     case 'r':
15992     case 'f':
15993     case 'd':
15994     case 'v':
15995     case 'y':
15996       return C_RegisterClass;
15997     case 'Z':
15998       // FIXME: While Z does indicate a memory constraint, it specifically
15999       // indicates an r+r address (used in conjunction with the 'y' modifier
16000       // in the replacement string). Currently, we're forcing the base
16001       // register to be r0 in the asm printer (which is interpreted as zero)
16002       // and forming the complete address in the second register. This is
16003       // suboptimal.
16004       return C_Memory;
16005     }
16006   } else if (Constraint == "wc") { // individual CR bits.
16007     return C_RegisterClass;
16008   } else if (Constraint == "wa" || Constraint == "wd" ||
16009              Constraint == "wf" || Constraint == "ws" ||
16010              Constraint == "wi" || Constraint == "ww") {
16011     return C_RegisterClass; // VSX registers.
16012   }
16013   return TargetLowering::getConstraintType(Constraint);
16014 }
16015 
16016 /// Examine constraint type and operand type and determine a weight value.
16017 /// This object must already have been set up with the operand type
16018 /// and the current alternative constraint selected.
16019 TargetLowering::ConstraintWeight
16020 PPCTargetLowering::getSingleConstraintMatchWeight(
16021     AsmOperandInfo &info, const char *constraint) const {
16022   ConstraintWeight weight = CW_Invalid;
16023   Value *CallOperandVal = info.CallOperandVal;
16024     // If we don't have a value, we can't do a match,
16025     // but allow it at the lowest weight.
16026   if (!CallOperandVal)
16027     return CW_Default;
16028   Type *type = CallOperandVal->getType();
16029 
16030   // Look at the constraint type.
16031   if (StringRef(constraint) == "wc" && type->isIntegerTy(1))
16032     return CW_Register; // an individual CR bit.
16033   else if ((StringRef(constraint) == "wa" ||
16034             StringRef(constraint) == "wd" ||
16035             StringRef(constraint) == "wf") &&
16036            type->isVectorTy())
16037     return CW_Register;
16038   else if (StringRef(constraint) == "wi" && type->isIntegerTy(64))
16039     return CW_Register; // just hold 64-bit integers data.
16040   else if (StringRef(constraint) == "ws" && type->isDoubleTy())
16041     return CW_Register;
16042   else if (StringRef(constraint) == "ww" && type->isFloatTy())
16043     return CW_Register;
16044 
16045   switch (*constraint) {
16046   default:
16047     weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint);
16048     break;
16049   case 'b':
16050     if (type->isIntegerTy())
16051       weight = CW_Register;
16052     break;
16053   case 'f':
16054     if (type->isFloatTy())
16055       weight = CW_Register;
16056     break;
16057   case 'd':
16058     if (type->isDoubleTy())
16059       weight = CW_Register;
16060     break;
16061   case 'v':
16062     if (type->isVectorTy())
16063       weight = CW_Register;
16064     break;
16065   case 'y':
16066     weight = CW_Register;
16067     break;
16068   case 'Z':
16069     weight = CW_Memory;
16070     break;
16071   }
16072   return weight;
16073 }
16074 
16075 std::pair<unsigned, const TargetRegisterClass *>
16076 PPCTargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI,
16077                                                 StringRef Constraint,
16078                                                 MVT VT) const {
16079   if (Constraint.size() == 1) {
16080     // GCC RS6000 Constraint Letters
16081     switch (Constraint[0]) {
16082     case 'b':   // R1-R31
16083       if (VT == MVT::i64 && Subtarget.isPPC64())
16084         return std::make_pair(0U, &PPC::G8RC_NOX0RegClass);
16085       return std::make_pair(0U, &PPC::GPRC_NOR0RegClass);
16086     case 'r':   // R0-R31
16087       if (VT == MVT::i64 && Subtarget.isPPC64())
16088         return std::make_pair(0U, &PPC::G8RCRegClass);
16089       return std::make_pair(0U, &PPC::GPRCRegClass);
16090     // 'd' and 'f' constraints are both defined to be "the floating point
16091     // registers", where one is for 32-bit and the other for 64-bit. We don't
16092     // really care overly much here so just give them all the same reg classes.
16093     case 'd':
16094     case 'f':
16095       if (Subtarget.hasSPE()) {
16096         if (VT == MVT::f32 || VT == MVT::i32)
16097           return std::make_pair(0U, &PPC::GPRCRegClass);
16098         if (VT == MVT::f64 || VT == MVT::i64)
16099           return std::make_pair(0U, &PPC::SPERCRegClass);
16100       } else {
16101         if (VT == MVT::f32 || VT == MVT::i32)
16102           return std::make_pair(0U, &PPC::F4RCRegClass);
16103         if (VT == MVT::f64 || VT == MVT::i64)
16104           return std::make_pair(0U, &PPC::F8RCRegClass);
16105       }
16106       break;
16107     case 'v':
16108       if (Subtarget.hasAltivec() && VT.isVector())
16109         return std::make_pair(0U, &PPC::VRRCRegClass);
16110       else if (Subtarget.hasVSX())
16111         // Scalars in Altivec registers only make sense with VSX.
16112         return std::make_pair(0U, &PPC::VFRCRegClass);
16113       break;
16114     case 'y':   // crrc
16115       return std::make_pair(0U, &PPC::CRRCRegClass);
16116     }
16117   } else if (Constraint == "wc" && Subtarget.useCRBits()) {
16118     // An individual CR bit.
16119     return std::make_pair(0U, &PPC::CRBITRCRegClass);
16120   } else if ((Constraint == "wa" || Constraint == "wd" ||
16121              Constraint == "wf" || Constraint == "wi") &&
16122              Subtarget.hasVSX()) {
16123     // A VSX register for either a scalar (FP) or vector. There is no
16124     // support for single precision scalars on subtargets prior to Power8.
16125     if (VT.isVector())
16126       return std::make_pair(0U, &PPC::VSRCRegClass);
16127     if (VT == MVT::f32 && Subtarget.hasP8Vector())
16128       return std::make_pair(0U, &PPC::VSSRCRegClass);
16129     return std::make_pair(0U, &PPC::VSFRCRegClass);
16130   } else if ((Constraint == "ws" || Constraint == "ww") && Subtarget.hasVSX()) {
16131     if (VT == MVT::f32 && Subtarget.hasP8Vector())
16132       return std::make_pair(0U, &PPC::VSSRCRegClass);
16133     else
16134       return std::make_pair(0U, &PPC::VSFRCRegClass);
16135   } else if (Constraint == "lr") {
16136     if (VT == MVT::i64)
16137       return std::make_pair(0U, &PPC::LR8RCRegClass);
16138     else
16139       return std::make_pair(0U, &PPC::LRRCRegClass);
16140   }
16141 
16142   // Handle special cases of physical registers that are not properly handled
16143   // by the base class.
16144   if (Constraint[0] == '{' && Constraint[Constraint.size() - 1] == '}') {
16145     // If we name a VSX register, we can't defer to the base class because it
16146     // will not recognize the correct register (their names will be VSL{0-31}
16147     // and V{0-31} so they won't match). So we match them here.
16148     if (Constraint.size() > 3 && Constraint[1] == 'v' && Constraint[2] == 's') {
16149       int VSNum = atoi(Constraint.data() + 3);
16150       assert(VSNum >= 0 && VSNum <= 63 &&
16151              "Attempted to access a vsr out of range");
16152       if (VSNum < 32)
16153         return std::make_pair(PPC::VSL0 + VSNum, &PPC::VSRCRegClass);
16154       return std::make_pair(PPC::V0 + VSNum - 32, &PPC::VSRCRegClass);
16155     }
16156 
16157     // For float registers, we can't defer to the base class as it will match
16158     // the SPILLTOVSRRC class.
16159     if (Constraint.size() > 3 && Constraint[1] == 'f') {
16160       int RegNum = atoi(Constraint.data() + 2);
16161       if (RegNum > 31 || RegNum < 0)
16162         report_fatal_error("Invalid floating point register number");
16163       if (VT == MVT::f32 || VT == MVT::i32)
16164         return Subtarget.hasSPE()
16165                    ? std::make_pair(PPC::R0 + RegNum, &PPC::GPRCRegClass)
16166                    : std::make_pair(PPC::F0 + RegNum, &PPC::F4RCRegClass);
16167       if (VT == MVT::f64 || VT == MVT::i64)
16168         return Subtarget.hasSPE()
16169                    ? std::make_pair(PPC::S0 + RegNum, &PPC::SPERCRegClass)
16170                    : std::make_pair(PPC::F0 + RegNum, &PPC::F8RCRegClass);
16171     }
16172   }
16173 
16174   std::pair<unsigned, const TargetRegisterClass *> R =
16175       TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT);
16176 
16177   // r[0-9]+ are used, on PPC64, to refer to the corresponding 64-bit registers
16178   // (which we call X[0-9]+). If a 64-bit value has been requested, and a
16179   // 32-bit GPR has been selected, then 'upgrade' it to the 64-bit parent
16180   // register.
16181   // FIXME: If TargetLowering::getRegForInlineAsmConstraint could somehow use
16182   // the AsmName field from *RegisterInfo.td, then this would not be necessary.
16183   if (R.first && VT == MVT::i64 && Subtarget.isPPC64() &&
16184       PPC::GPRCRegClass.contains(R.first))
16185     return std::make_pair(TRI->getMatchingSuperReg(R.first,
16186                             PPC::sub_32, &PPC::G8RCRegClass),
16187                           &PPC::G8RCRegClass);
16188 
16189   // GCC accepts 'cc' as an alias for 'cr0', and we need to do the same.
16190   if (!R.second && StringRef("{cc}").equals_insensitive(Constraint)) {
16191     R.first = PPC::CR0;
16192     R.second = &PPC::CRRCRegClass;
16193   }
16194   // FIXME: This warning should ideally be emitted in the front end.
16195   const auto &TM = getTargetMachine();
16196   if (Subtarget.isAIXABI() && !TM.getAIXExtendedAltivecABI()) {
16197     if (((R.first >= PPC::V20 && R.first <= PPC::V31) ||
16198          (R.first >= PPC::VF20 && R.first <= PPC::VF31)) &&
16199         (R.second == &PPC::VSRCRegClass || R.second == &PPC::VSFRCRegClass))
16200       errs() << "warning: vector registers 20 to 32 are reserved in the "
16201                 "default AIX AltiVec ABI and cannot be used\n";
16202   }
16203 
16204   return R;
16205 }
16206 
16207 /// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
16208 /// vector.  If it is invalid, don't add anything to Ops.
16209 void PPCTargetLowering::LowerAsmOperandForConstraint(SDValue Op,
16210                                                      std::string &Constraint,
16211                                                      std::vector<SDValue>&Ops,
16212                                                      SelectionDAG &DAG) const {
16213   SDValue Result;
16214 
16215   // Only support length 1 constraints.
16216   if (Constraint.length() > 1) return;
16217 
16218   char Letter = Constraint[0];
16219   switch (Letter) {
16220   default: break;
16221   case 'I':
16222   case 'J':
16223   case 'K':
16224   case 'L':
16225   case 'M':
16226   case 'N':
16227   case 'O':
16228   case 'P': {
16229     ConstantSDNode *CST = dyn_cast<ConstantSDNode>(Op);
16230     if (!CST) return; // Must be an immediate to match.
16231     SDLoc dl(Op);
16232     int64_t Value = CST->getSExtValue();
16233     EVT TCVT = MVT::i64; // All constants taken to be 64 bits so that negative
16234                          // numbers are printed as such.
16235     switch (Letter) {
16236     default: llvm_unreachable("Unknown constraint letter!");
16237     case 'I':  // "I" is a signed 16-bit constant.
16238       if (isInt<16>(Value))
16239         Result = DAG.getTargetConstant(Value, dl, TCVT);
16240       break;
16241     case 'J':  // "J" is a constant with only the high-order 16 bits nonzero.
16242       if (isShiftedUInt<16, 16>(Value))
16243         Result = DAG.getTargetConstant(Value, dl, TCVT);
16244       break;
16245     case 'L':  // "L" is a signed 16-bit constant shifted left 16 bits.
16246       if (isShiftedInt<16, 16>(Value))
16247         Result = DAG.getTargetConstant(Value, dl, TCVT);
16248       break;
16249     case 'K':  // "K" is a constant with only the low-order 16 bits nonzero.
16250       if (isUInt<16>(Value))
16251         Result = DAG.getTargetConstant(Value, dl, TCVT);
16252       break;
16253     case 'M':  // "M" is a constant that is greater than 31.
16254       if (Value > 31)
16255         Result = DAG.getTargetConstant(Value, dl, TCVT);
16256       break;
16257     case 'N':  // "N" is a positive constant that is an exact power of two.
16258       if (Value > 0 && isPowerOf2_64(Value))
16259         Result = DAG.getTargetConstant(Value, dl, TCVT);
16260       break;
16261     case 'O':  // "O" is the constant zero.
16262       if (Value == 0)
16263         Result = DAG.getTargetConstant(Value, dl, TCVT);
16264       break;
16265     case 'P':  // "P" is a constant whose negation is a signed 16-bit constant.
16266       if (isInt<16>(-Value))
16267         Result = DAG.getTargetConstant(Value, dl, TCVT);
16268       break;
16269     }
16270     break;
16271   }
16272   }
16273 
16274   if (Result.getNode()) {
16275     Ops.push_back(Result);
16276     return;
16277   }
16278 
16279   // Handle standard constraint letters.
16280   TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
16281 }
16282 
16283 // isLegalAddressingMode - Return true if the addressing mode represented
16284 // by AM is legal for this target, for a load/store of the specified type.
16285 bool PPCTargetLowering::isLegalAddressingMode(const DataLayout &DL,
16286                                               const AddrMode &AM, Type *Ty,
16287                                               unsigned AS,
16288                                               Instruction *I) const {
16289   // Vector type r+i form is supported since power9 as DQ form. We don't check
16290   // the offset matching DQ form requirement(off % 16 == 0), because on PowerPC,
16291   // imm form is preferred and the offset can be adjusted to use imm form later
16292   // in pass PPCLoopInstrFormPrep. Also in LSR, for one LSRUse, it uses min and
16293   // max offset to check legal addressing mode, we should be a little aggressive
16294   // to contain other offsets for that LSRUse.
16295   if (Ty->isVectorTy() && AM.BaseOffs != 0 && !Subtarget.hasP9Vector())
16296     return false;
16297 
16298   // PPC allows a sign-extended 16-bit immediate field.
16299   if (AM.BaseOffs <= -(1LL << 16) || AM.BaseOffs >= (1LL << 16)-1)
16300     return false;
16301 
16302   // No global is ever allowed as a base.
16303   if (AM.BaseGV)
16304     return false;
16305 
16306   // PPC only support r+r,
16307   switch (AM.Scale) {
16308   case 0:  // "r+i" or just "i", depending on HasBaseReg.
16309     break;
16310   case 1:
16311     if (AM.HasBaseReg && AM.BaseOffs)  // "r+r+i" is not allowed.
16312       return false;
16313     // Otherwise we have r+r or r+i.
16314     break;
16315   case 2:
16316     if (AM.HasBaseReg || AM.BaseOffs)  // 2*r+r  or  2*r+i is not allowed.
16317       return false;
16318     // Allow 2*r as r+r.
16319     break;
16320   default:
16321     // No other scales are supported.
16322     return false;
16323   }
16324 
16325   return true;
16326 }
16327 
16328 SDValue PPCTargetLowering::LowerRETURNADDR(SDValue Op,
16329                                            SelectionDAG &DAG) const {
16330   MachineFunction &MF = DAG.getMachineFunction();
16331   MachineFrameInfo &MFI = MF.getFrameInfo();
16332   MFI.setReturnAddressIsTaken(true);
16333 
16334   if (verifyReturnAddressArgumentIsConstant(Op, DAG))
16335     return SDValue();
16336 
16337   SDLoc dl(Op);
16338   unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
16339 
16340   // Make sure the function does not optimize away the store of the RA to
16341   // the stack.
16342   PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
16343   FuncInfo->setLRStoreRequired();
16344   bool isPPC64 = Subtarget.isPPC64();
16345   auto PtrVT = getPointerTy(MF.getDataLayout());
16346 
16347   if (Depth > 0) {
16348     // The link register (return address) is saved in the caller's frame
16349     // not the callee's stack frame. So we must get the caller's frame
16350     // address and load the return address at the LR offset from there.
16351     SDValue FrameAddr =
16352         DAG.getLoad(Op.getValueType(), dl, DAG.getEntryNode(),
16353                     LowerFRAMEADDR(Op, DAG), MachinePointerInfo());
16354     SDValue Offset =
16355         DAG.getConstant(Subtarget.getFrameLowering()->getReturnSaveOffset(), dl,
16356                         isPPC64 ? MVT::i64 : MVT::i32);
16357     return DAG.getLoad(PtrVT, dl, DAG.getEntryNode(),
16358                        DAG.getNode(ISD::ADD, dl, PtrVT, FrameAddr, Offset),
16359                        MachinePointerInfo());
16360   }
16361 
16362   // Just load the return address off the stack.
16363   SDValue RetAddrFI = getReturnAddrFrameIndex(DAG);
16364   return DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), RetAddrFI,
16365                      MachinePointerInfo());
16366 }
16367 
16368 SDValue PPCTargetLowering::LowerFRAMEADDR(SDValue Op,
16369                                           SelectionDAG &DAG) const {
16370   SDLoc dl(Op);
16371   unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
16372 
16373   MachineFunction &MF = DAG.getMachineFunction();
16374   MachineFrameInfo &MFI = MF.getFrameInfo();
16375   MFI.setFrameAddressIsTaken(true);
16376 
16377   EVT PtrVT = getPointerTy(MF.getDataLayout());
16378   bool isPPC64 = PtrVT == MVT::i64;
16379 
16380   // Naked functions never have a frame pointer, and so we use r1. For all
16381   // other functions, this decision must be delayed until during PEI.
16382   unsigned FrameReg;
16383   if (MF.getFunction().hasFnAttribute(Attribute::Naked))
16384     FrameReg = isPPC64 ? PPC::X1 : PPC::R1;
16385   else
16386     FrameReg = isPPC64 ? PPC::FP8 : PPC::FP;
16387 
16388   SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), dl, FrameReg,
16389                                          PtrVT);
16390   while (Depth--)
16391     FrameAddr = DAG.getLoad(Op.getValueType(), dl, DAG.getEntryNode(),
16392                             FrameAddr, MachinePointerInfo());
16393   return FrameAddr;
16394 }
16395 
16396 // FIXME? Maybe this could be a TableGen attribute on some registers and
16397 // this table could be generated automatically from RegInfo.
16398 Register PPCTargetLowering::getRegisterByName(const char* RegName, LLT VT,
16399                                               const MachineFunction &MF) const {
16400   bool isPPC64 = Subtarget.isPPC64();
16401 
16402   bool is64Bit = isPPC64 && VT == LLT::scalar(64);
16403   if (!is64Bit && VT != LLT::scalar(32))
16404     report_fatal_error("Invalid register global variable type");
16405 
16406   Register Reg = StringSwitch<Register>(RegName)
16407                      .Case("r1", is64Bit ? PPC::X1 : PPC::R1)
16408                      .Case("r2", isPPC64 ? Register() : PPC::R2)
16409                      .Case("r13", (is64Bit ? PPC::X13 : PPC::R13))
16410                      .Default(Register());
16411 
16412   if (Reg)
16413     return Reg;
16414   report_fatal_error("Invalid register name global variable");
16415 }
16416 
16417 bool PPCTargetLowering::isAccessedAsGotIndirect(SDValue GA) const {
16418   // 32-bit SVR4 ABI access everything as got-indirect.
16419   if (Subtarget.is32BitELFABI())
16420     return true;
16421 
16422   // AIX accesses everything indirectly through the TOC, which is similar to
16423   // the GOT.
16424   if (Subtarget.isAIXABI())
16425     return true;
16426 
16427   CodeModel::Model CModel = getTargetMachine().getCodeModel();
16428   // If it is small or large code model, module locals are accessed
16429   // indirectly by loading their address from .toc/.got.
16430   if (CModel == CodeModel::Small || CModel == CodeModel::Large)
16431     return true;
16432 
16433   // JumpTable and BlockAddress are accessed as got-indirect.
16434   if (isa<JumpTableSDNode>(GA) || isa<BlockAddressSDNode>(GA))
16435     return true;
16436 
16437   if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(GA))
16438     return Subtarget.isGVIndirectSymbol(G->getGlobal());
16439 
16440   return false;
16441 }
16442 
16443 bool
16444 PPCTargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const {
16445   // The PowerPC target isn't yet aware of offsets.
16446   return false;
16447 }
16448 
16449 bool PPCTargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info,
16450                                            const CallInst &I,
16451                                            MachineFunction &MF,
16452                                            unsigned Intrinsic) const {
16453   switch (Intrinsic) {
16454   case Intrinsic::ppc_atomicrmw_xchg_i128:
16455   case Intrinsic::ppc_atomicrmw_add_i128:
16456   case Intrinsic::ppc_atomicrmw_sub_i128:
16457   case Intrinsic::ppc_atomicrmw_nand_i128:
16458   case Intrinsic::ppc_atomicrmw_and_i128:
16459   case Intrinsic::ppc_atomicrmw_or_i128:
16460   case Intrinsic::ppc_atomicrmw_xor_i128:
16461   case Intrinsic::ppc_cmpxchg_i128:
16462     Info.opc = ISD::INTRINSIC_W_CHAIN;
16463     Info.memVT = MVT::i128;
16464     Info.ptrVal = I.getArgOperand(0);
16465     Info.offset = 0;
16466     Info.align = Align(16);
16467     Info.flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore |
16468                  MachineMemOperand::MOVolatile;
16469     return true;
16470   case Intrinsic::ppc_atomic_load_i128:
16471     Info.opc = ISD::INTRINSIC_W_CHAIN;
16472     Info.memVT = MVT::i128;
16473     Info.ptrVal = I.getArgOperand(0);
16474     Info.offset = 0;
16475     Info.align = Align(16);
16476     Info.flags = MachineMemOperand::MOLoad | MachineMemOperand::MOVolatile;
16477     return true;
16478   case Intrinsic::ppc_atomic_store_i128:
16479     Info.opc = ISD::INTRINSIC_VOID;
16480     Info.memVT = MVT::i128;
16481     Info.ptrVal = I.getArgOperand(2);
16482     Info.offset = 0;
16483     Info.align = Align(16);
16484     Info.flags = MachineMemOperand::MOStore | MachineMemOperand::MOVolatile;
16485     return true;
16486   case Intrinsic::ppc_altivec_lvx:
16487   case Intrinsic::ppc_altivec_lvxl:
16488   case Intrinsic::ppc_altivec_lvebx:
16489   case Intrinsic::ppc_altivec_lvehx:
16490   case Intrinsic::ppc_altivec_lvewx:
16491   case Intrinsic::ppc_vsx_lxvd2x:
16492   case Intrinsic::ppc_vsx_lxvw4x:
16493   case Intrinsic::ppc_vsx_lxvd2x_be:
16494   case Intrinsic::ppc_vsx_lxvw4x_be:
16495   case Intrinsic::ppc_vsx_lxvl:
16496   case Intrinsic::ppc_vsx_lxvll: {
16497     EVT VT;
16498     switch (Intrinsic) {
16499     case Intrinsic::ppc_altivec_lvebx:
16500       VT = MVT::i8;
16501       break;
16502     case Intrinsic::ppc_altivec_lvehx:
16503       VT = MVT::i16;
16504       break;
16505     case Intrinsic::ppc_altivec_lvewx:
16506       VT = MVT::i32;
16507       break;
16508     case Intrinsic::ppc_vsx_lxvd2x:
16509     case Intrinsic::ppc_vsx_lxvd2x_be:
16510       VT = MVT::v2f64;
16511       break;
16512     default:
16513       VT = MVT::v4i32;
16514       break;
16515     }
16516 
16517     Info.opc = ISD::INTRINSIC_W_CHAIN;
16518     Info.memVT = VT;
16519     Info.ptrVal = I.getArgOperand(0);
16520     Info.offset = -VT.getStoreSize()+1;
16521     Info.size = 2*VT.getStoreSize()-1;
16522     Info.align = Align(1);
16523     Info.flags = MachineMemOperand::MOLoad;
16524     return true;
16525   }
16526   case Intrinsic::ppc_altivec_stvx:
16527   case Intrinsic::ppc_altivec_stvxl:
16528   case Intrinsic::ppc_altivec_stvebx:
16529   case Intrinsic::ppc_altivec_stvehx:
16530   case Intrinsic::ppc_altivec_stvewx:
16531   case Intrinsic::ppc_vsx_stxvd2x:
16532   case Intrinsic::ppc_vsx_stxvw4x:
16533   case Intrinsic::ppc_vsx_stxvd2x_be:
16534   case Intrinsic::ppc_vsx_stxvw4x_be:
16535   case Intrinsic::ppc_vsx_stxvl:
16536   case Intrinsic::ppc_vsx_stxvll: {
16537     EVT VT;
16538     switch (Intrinsic) {
16539     case Intrinsic::ppc_altivec_stvebx:
16540       VT = MVT::i8;
16541       break;
16542     case Intrinsic::ppc_altivec_stvehx:
16543       VT = MVT::i16;
16544       break;
16545     case Intrinsic::ppc_altivec_stvewx:
16546       VT = MVT::i32;
16547       break;
16548     case Intrinsic::ppc_vsx_stxvd2x:
16549     case Intrinsic::ppc_vsx_stxvd2x_be:
16550       VT = MVT::v2f64;
16551       break;
16552     default:
16553       VT = MVT::v4i32;
16554       break;
16555     }
16556 
16557     Info.opc = ISD::INTRINSIC_VOID;
16558     Info.memVT = VT;
16559     Info.ptrVal = I.getArgOperand(1);
16560     Info.offset = -VT.getStoreSize()+1;
16561     Info.size = 2*VT.getStoreSize()-1;
16562     Info.align = Align(1);
16563     Info.flags = MachineMemOperand::MOStore;
16564     return true;
16565   }
16566   default:
16567     break;
16568   }
16569 
16570   return false;
16571 }
16572 
16573 /// It returns EVT::Other if the type should be determined using generic
16574 /// target-independent logic.
16575 EVT PPCTargetLowering::getOptimalMemOpType(
16576     const MemOp &Op, const AttributeList &FuncAttributes) const {
16577   if (getTargetMachine().getOptLevel() != CodeGenOpt::None) {
16578     // We should use Altivec/VSX loads and stores when available. For unaligned
16579     // addresses, unaligned VSX loads are only fast starting with the P8.
16580     if (Subtarget.hasAltivec() && Op.size() >= 16 &&
16581         (Op.isAligned(Align(16)) ||
16582          ((Op.isMemset() && Subtarget.hasVSX()) || Subtarget.hasP8Vector())))
16583       return MVT::v4i32;
16584   }
16585 
16586   if (Subtarget.isPPC64()) {
16587     return MVT::i64;
16588   }
16589 
16590   return MVT::i32;
16591 }
16592 
16593 /// Returns true if it is beneficial to convert a load of a constant
16594 /// to just the constant itself.
16595 bool PPCTargetLowering::shouldConvertConstantLoadToIntImm(const APInt &Imm,
16596                                                           Type *Ty) const {
16597   assert(Ty->isIntegerTy());
16598 
16599   unsigned BitSize = Ty->getPrimitiveSizeInBits();
16600   return !(BitSize == 0 || BitSize > 64);
16601 }
16602 
16603 bool PPCTargetLowering::isTruncateFree(Type *Ty1, Type *Ty2) const {
16604   if (!Ty1->isIntegerTy() || !Ty2->isIntegerTy())
16605     return false;
16606   unsigned NumBits1 = Ty1->getPrimitiveSizeInBits();
16607   unsigned NumBits2 = Ty2->getPrimitiveSizeInBits();
16608   return NumBits1 == 64 && NumBits2 == 32;
16609 }
16610 
16611 bool PPCTargetLowering::isTruncateFree(EVT VT1, EVT VT2) const {
16612   if (!VT1.isInteger() || !VT2.isInteger())
16613     return false;
16614   unsigned NumBits1 = VT1.getSizeInBits();
16615   unsigned NumBits2 = VT2.getSizeInBits();
16616   return NumBits1 == 64 && NumBits2 == 32;
16617 }
16618 
16619 bool PPCTargetLowering::isZExtFree(SDValue Val, EVT VT2) const {
16620   // Generally speaking, zexts are not free, but they are free when they can be
16621   // folded with other operations.
16622   if (LoadSDNode *LD = dyn_cast<LoadSDNode>(Val)) {
16623     EVT MemVT = LD->getMemoryVT();
16624     if ((MemVT == MVT::i1 || MemVT == MVT::i8 || MemVT == MVT::i16 ||
16625          (Subtarget.isPPC64() && MemVT == MVT::i32)) &&
16626         (LD->getExtensionType() == ISD::NON_EXTLOAD ||
16627          LD->getExtensionType() == ISD::ZEXTLOAD))
16628       return true;
16629   }
16630 
16631   // FIXME: Add other cases...
16632   //  - 32-bit shifts with a zext to i64
16633   //  - zext after ctlz, bswap, etc.
16634   //  - zext after and by a constant mask
16635 
16636   return TargetLowering::isZExtFree(Val, VT2);
16637 }
16638 
16639 bool PPCTargetLowering::isFPExtFree(EVT DestVT, EVT SrcVT) const {
16640   assert(DestVT.isFloatingPoint() && SrcVT.isFloatingPoint() &&
16641          "invalid fpext types");
16642   // Extending to float128 is not free.
16643   if (DestVT == MVT::f128)
16644     return false;
16645   return true;
16646 }
16647 
16648 bool PPCTargetLowering::isLegalICmpImmediate(int64_t Imm) const {
16649   return isInt<16>(Imm) || isUInt<16>(Imm);
16650 }
16651 
16652 bool PPCTargetLowering::isLegalAddImmediate(int64_t Imm) const {
16653   return isInt<16>(Imm) || isUInt<16>(Imm);
16654 }
16655 
16656 bool PPCTargetLowering::allowsMisalignedMemoryAccesses(EVT VT, unsigned, Align,
16657                                                        MachineMemOperand::Flags,
16658                                                        bool *Fast) const {
16659   if (DisablePPCUnaligned)
16660     return false;
16661 
16662   // PowerPC supports unaligned memory access for simple non-vector types.
16663   // Although accessing unaligned addresses is not as efficient as accessing
16664   // aligned addresses, it is generally more efficient than manual expansion,
16665   // and generally only traps for software emulation when crossing page
16666   // boundaries.
16667 
16668   if (!VT.isSimple())
16669     return false;
16670 
16671   if (VT.isFloatingPoint() && !VT.isVector() &&
16672       !Subtarget.allowsUnalignedFPAccess())
16673     return false;
16674 
16675   if (VT.getSimpleVT().isVector()) {
16676     if (Subtarget.hasVSX()) {
16677       if (VT != MVT::v2f64 && VT != MVT::v2i64 &&
16678           VT != MVT::v4f32 && VT != MVT::v4i32)
16679         return false;
16680     } else {
16681       return false;
16682     }
16683   }
16684 
16685   if (VT == MVT::ppcf128)
16686     return false;
16687 
16688   if (Fast)
16689     *Fast = true;
16690 
16691   return true;
16692 }
16693 
16694 bool PPCTargetLowering::decomposeMulByConstant(LLVMContext &Context, EVT VT,
16695                                                SDValue C) const {
16696   // Check integral scalar types.
16697   if (!VT.isScalarInteger())
16698     return false;
16699   if (auto *ConstNode = dyn_cast<ConstantSDNode>(C.getNode())) {
16700     if (!ConstNode->getAPIntValue().isSignedIntN(64))
16701       return false;
16702     // This transformation will generate >= 2 operations. But the following
16703     // cases will generate <= 2 instructions during ISEL. So exclude them.
16704     // 1. If the constant multiplier fits 16 bits, it can be handled by one
16705     // HW instruction, ie. MULLI
16706     // 2. If the multiplier after shifted fits 16 bits, an extra shift
16707     // instruction is needed than case 1, ie. MULLI and RLDICR
16708     int64_t Imm = ConstNode->getSExtValue();
16709     unsigned Shift = countTrailingZeros<uint64_t>(Imm);
16710     Imm >>= Shift;
16711     if (isInt<16>(Imm))
16712       return false;
16713     uint64_t UImm = static_cast<uint64_t>(Imm);
16714     if (isPowerOf2_64(UImm + 1) || isPowerOf2_64(UImm - 1) ||
16715         isPowerOf2_64(1 - UImm) || isPowerOf2_64(-1 - UImm))
16716       return true;
16717   }
16718   return false;
16719 }
16720 
16721 bool PPCTargetLowering::isFMAFasterThanFMulAndFAdd(const MachineFunction &MF,
16722                                                    EVT VT) const {
16723   return isFMAFasterThanFMulAndFAdd(
16724       MF.getFunction(), VT.getTypeForEVT(MF.getFunction().getContext()));
16725 }
16726 
16727 bool PPCTargetLowering::isFMAFasterThanFMulAndFAdd(const Function &F,
16728                                                    Type *Ty) const {
16729   if (Subtarget.hasSPE())
16730     return false;
16731   switch (Ty->getScalarType()->getTypeID()) {
16732   case Type::FloatTyID:
16733   case Type::DoubleTyID:
16734     return true;
16735   case Type::FP128TyID:
16736     return Subtarget.hasP9Vector();
16737   default:
16738     return false;
16739   }
16740 }
16741 
16742 // FIXME: add more patterns which are not profitable to hoist.
16743 bool PPCTargetLowering::isProfitableToHoist(Instruction *I) const {
16744   if (!I->hasOneUse())
16745     return true;
16746 
16747   Instruction *User = I->user_back();
16748   assert(User && "A single use instruction with no uses.");
16749 
16750   switch (I->getOpcode()) {
16751   case Instruction::FMul: {
16752     // Don't break FMA, PowerPC prefers FMA.
16753     if (User->getOpcode() != Instruction::FSub &&
16754         User->getOpcode() != Instruction::FAdd)
16755       return true;
16756 
16757     const TargetOptions &Options = getTargetMachine().Options;
16758     const Function *F = I->getFunction();
16759     const DataLayout &DL = F->getParent()->getDataLayout();
16760     Type *Ty = User->getOperand(0)->getType();
16761 
16762     return !(
16763         isFMAFasterThanFMulAndFAdd(*F, Ty) &&
16764         isOperationLegalOrCustom(ISD::FMA, getValueType(DL, Ty)) &&
16765         (Options.AllowFPOpFusion == FPOpFusion::Fast || Options.UnsafeFPMath));
16766   }
16767   case Instruction::Load: {
16768     // Don't break "store (load float*)" pattern, this pattern will be combined
16769     // to "store (load int32)" in later InstCombine pass. See function
16770     // combineLoadToOperationType. On PowerPC, loading a float point takes more
16771     // cycles than loading a 32 bit integer.
16772     LoadInst *LI = cast<LoadInst>(I);
16773     // For the loads that combineLoadToOperationType does nothing, like
16774     // ordered load, it should be profitable to hoist them.
16775     // For swifterror load, it can only be used for pointer to pointer type, so
16776     // later type check should get rid of this case.
16777     if (!LI->isUnordered())
16778       return true;
16779 
16780     if (User->getOpcode() != Instruction::Store)
16781       return true;
16782 
16783     if (I->getType()->getTypeID() != Type::FloatTyID)
16784       return true;
16785 
16786     return false;
16787   }
16788   default:
16789     return true;
16790   }
16791   return true;
16792 }
16793 
16794 const MCPhysReg *
16795 PPCTargetLowering::getScratchRegisters(CallingConv::ID) const {
16796   // LR is a callee-save register, but we must treat it as clobbered by any call
16797   // site. Hence we include LR in the scratch registers, which are in turn added
16798   // as implicit-defs for stackmaps and patchpoints. The same reasoning applies
16799   // to CTR, which is used by any indirect call.
16800   static const MCPhysReg ScratchRegs[] = {
16801     PPC::X12, PPC::LR8, PPC::CTR8, 0
16802   };
16803 
16804   return ScratchRegs;
16805 }
16806 
16807 Register PPCTargetLowering::getExceptionPointerRegister(
16808     const Constant *PersonalityFn) const {
16809   return Subtarget.isPPC64() ? PPC::X3 : PPC::R3;
16810 }
16811 
16812 Register PPCTargetLowering::getExceptionSelectorRegister(
16813     const Constant *PersonalityFn) const {
16814   return Subtarget.isPPC64() ? PPC::X4 : PPC::R4;
16815 }
16816 
16817 bool
16818 PPCTargetLowering::shouldExpandBuildVectorWithShuffles(
16819                      EVT VT , unsigned DefinedValues) const {
16820   if (VT == MVT::v2i64)
16821     return Subtarget.hasDirectMove(); // Don't need stack ops with direct moves
16822 
16823   if (Subtarget.hasVSX())
16824     return true;
16825 
16826   return TargetLowering::shouldExpandBuildVectorWithShuffles(VT, DefinedValues);
16827 }
16828 
16829 Sched::Preference PPCTargetLowering::getSchedulingPreference(SDNode *N) const {
16830   if (DisableILPPref || Subtarget.enableMachineScheduler())
16831     return TargetLowering::getSchedulingPreference(N);
16832 
16833   return Sched::ILP;
16834 }
16835 
16836 // Create a fast isel object.
16837 FastISel *
16838 PPCTargetLowering::createFastISel(FunctionLoweringInfo &FuncInfo,
16839                                   const TargetLibraryInfo *LibInfo) const {
16840   return PPC::createFastISel(FuncInfo, LibInfo);
16841 }
16842 
16843 // 'Inverted' means the FMA opcode after negating one multiplicand.
16844 // For example, (fma -a b c) = (fnmsub a b c)
16845 static unsigned invertFMAOpcode(unsigned Opc) {
16846   switch (Opc) {
16847   default:
16848     llvm_unreachable("Invalid FMA opcode for PowerPC!");
16849   case ISD::FMA:
16850     return PPCISD::FNMSUB;
16851   case PPCISD::FNMSUB:
16852     return ISD::FMA;
16853   }
16854 }
16855 
16856 SDValue PPCTargetLowering::getNegatedExpression(SDValue Op, SelectionDAG &DAG,
16857                                                 bool LegalOps, bool OptForSize,
16858                                                 NegatibleCost &Cost,
16859                                                 unsigned Depth) const {
16860   if (Depth > SelectionDAG::MaxRecursionDepth)
16861     return SDValue();
16862 
16863   unsigned Opc = Op.getOpcode();
16864   EVT VT = Op.getValueType();
16865   SDNodeFlags Flags = Op.getNode()->getFlags();
16866 
16867   switch (Opc) {
16868   case PPCISD::FNMSUB:
16869     if (!Op.hasOneUse() || !isTypeLegal(VT))
16870       break;
16871 
16872     const TargetOptions &Options = getTargetMachine().Options;
16873     SDValue N0 = Op.getOperand(0);
16874     SDValue N1 = Op.getOperand(1);
16875     SDValue N2 = Op.getOperand(2);
16876     SDLoc Loc(Op);
16877 
16878     NegatibleCost N2Cost = NegatibleCost::Expensive;
16879     SDValue NegN2 =
16880         getNegatedExpression(N2, DAG, LegalOps, OptForSize, N2Cost, Depth + 1);
16881 
16882     if (!NegN2)
16883       return SDValue();
16884 
16885     // (fneg (fnmsub a b c)) => (fnmsub (fneg a) b (fneg c))
16886     // (fneg (fnmsub a b c)) => (fnmsub a (fneg b) (fneg c))
16887     // These transformations may change sign of zeroes. For example,
16888     // -(-ab-(-c))=-0 while -(-(ab-c))=+0 when a=b=c=1.
16889     if (Flags.hasNoSignedZeros() || Options.NoSignedZerosFPMath) {
16890       // Try and choose the cheaper one to negate.
16891       NegatibleCost N0Cost = NegatibleCost::Expensive;
16892       SDValue NegN0 = getNegatedExpression(N0, DAG, LegalOps, OptForSize,
16893                                            N0Cost, Depth + 1);
16894 
16895       NegatibleCost N1Cost = NegatibleCost::Expensive;
16896       SDValue NegN1 = getNegatedExpression(N1, DAG, LegalOps, OptForSize,
16897                                            N1Cost, Depth + 1);
16898 
16899       if (NegN0 && N0Cost <= N1Cost) {
16900         Cost = std::min(N0Cost, N2Cost);
16901         return DAG.getNode(Opc, Loc, VT, NegN0, N1, NegN2, Flags);
16902       } else if (NegN1) {
16903         Cost = std::min(N1Cost, N2Cost);
16904         return DAG.getNode(Opc, Loc, VT, N0, NegN1, NegN2, Flags);
16905       }
16906     }
16907 
16908     // (fneg (fnmsub a b c)) => (fma a b (fneg c))
16909     if (isOperationLegal(ISD::FMA, VT)) {
16910       Cost = N2Cost;
16911       return DAG.getNode(ISD::FMA, Loc, VT, N0, N1, NegN2, Flags);
16912     }
16913 
16914     break;
16915   }
16916 
16917   return TargetLowering::getNegatedExpression(Op, DAG, LegalOps, OptForSize,
16918                                               Cost, Depth);
16919 }
16920 
16921 // Override to enable LOAD_STACK_GUARD lowering on Linux.
16922 bool PPCTargetLowering::useLoadStackGuardNode() const {
16923   if (!Subtarget.isTargetLinux())
16924     return TargetLowering::useLoadStackGuardNode();
16925   return true;
16926 }
16927 
16928 // Override to disable global variable loading on Linux and insert AIX canary
16929 // word declaration.
16930 void PPCTargetLowering::insertSSPDeclarations(Module &M) const {
16931   if (Subtarget.isAIXABI()) {
16932     M.getOrInsertGlobal(AIXSSPCanaryWordName,
16933                         Type::getInt8PtrTy(M.getContext()));
16934     return;
16935   }
16936   if (!Subtarget.isTargetLinux())
16937     return TargetLowering::insertSSPDeclarations(M);
16938 }
16939 
16940 Value *PPCTargetLowering::getSDagStackGuard(const Module &M) const {
16941   if (Subtarget.isAIXABI())
16942     return M.getGlobalVariable(AIXSSPCanaryWordName);
16943   return TargetLowering::getSDagStackGuard(M);
16944 }
16945 
16946 bool PPCTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT,
16947                                      bool ForCodeSize) const {
16948   if (!VT.isSimple() || !Subtarget.hasVSX())
16949     return false;
16950 
16951   switch(VT.getSimpleVT().SimpleTy) {
16952   default:
16953     // For FP types that are currently not supported by PPC backend, return
16954     // false. Examples: f16, f80.
16955     return false;
16956   case MVT::f32:
16957   case MVT::f64:
16958     if (Subtarget.hasPrefixInstrs()) {
16959       // we can materialize all immediatess via XXSPLTI32DX and XXSPLTIDP.
16960       return true;
16961     }
16962     LLVM_FALLTHROUGH;
16963   case MVT::ppcf128:
16964     return Imm.isPosZero();
16965   }
16966 }
16967 
16968 // For vector shift operation op, fold
16969 // (op x, (and y, ((1 << numbits(x)) - 1))) -> (target op x, y)
16970 static SDValue stripModuloOnShift(const TargetLowering &TLI, SDNode *N,
16971                                   SelectionDAG &DAG) {
16972   SDValue N0 = N->getOperand(0);
16973   SDValue N1 = N->getOperand(1);
16974   EVT VT = N0.getValueType();
16975   unsigned OpSizeInBits = VT.getScalarSizeInBits();
16976   unsigned Opcode = N->getOpcode();
16977   unsigned TargetOpcode;
16978 
16979   switch (Opcode) {
16980   default:
16981     llvm_unreachable("Unexpected shift operation");
16982   case ISD::SHL:
16983     TargetOpcode = PPCISD::SHL;
16984     break;
16985   case ISD::SRL:
16986     TargetOpcode = PPCISD::SRL;
16987     break;
16988   case ISD::SRA:
16989     TargetOpcode = PPCISD::SRA;
16990     break;
16991   }
16992 
16993   if (VT.isVector() && TLI.isOperationLegal(Opcode, VT) &&
16994       N1->getOpcode() == ISD::AND)
16995     if (ConstantSDNode *Mask = isConstOrConstSplat(N1->getOperand(1)))
16996       if (Mask->getZExtValue() == OpSizeInBits - 1)
16997         return DAG.getNode(TargetOpcode, SDLoc(N), VT, N0, N1->getOperand(0));
16998 
16999   return SDValue();
17000 }
17001 
17002 SDValue PPCTargetLowering::combineSHL(SDNode *N, DAGCombinerInfo &DCI) const {
17003   if (auto Value = stripModuloOnShift(*this, N, DCI.DAG))
17004     return Value;
17005 
17006   SDValue N0 = N->getOperand(0);
17007   ConstantSDNode *CN1 = dyn_cast<ConstantSDNode>(N->getOperand(1));
17008   if (!Subtarget.isISA3_0() || !Subtarget.isPPC64() ||
17009       N0.getOpcode() != ISD::SIGN_EXTEND ||
17010       N0.getOperand(0).getValueType() != MVT::i32 || CN1 == nullptr ||
17011       N->getValueType(0) != MVT::i64)
17012     return SDValue();
17013 
17014   // We can't save an operation here if the value is already extended, and
17015   // the existing shift is easier to combine.
17016   SDValue ExtsSrc = N0.getOperand(0);
17017   if (ExtsSrc.getOpcode() == ISD::TRUNCATE &&
17018       ExtsSrc.getOperand(0).getOpcode() == ISD::AssertSext)
17019     return SDValue();
17020 
17021   SDLoc DL(N0);
17022   SDValue ShiftBy = SDValue(CN1, 0);
17023   // We want the shift amount to be i32 on the extswli, but the shift could
17024   // have an i64.
17025   if (ShiftBy.getValueType() == MVT::i64)
17026     ShiftBy = DCI.DAG.getConstant(CN1->getZExtValue(), DL, MVT::i32);
17027 
17028   return DCI.DAG.getNode(PPCISD::EXTSWSLI, DL, MVT::i64, N0->getOperand(0),
17029                          ShiftBy);
17030 }
17031 
17032 SDValue PPCTargetLowering::combineSRA(SDNode *N, DAGCombinerInfo &DCI) const {
17033   if (auto Value = stripModuloOnShift(*this, N, DCI.DAG))
17034     return Value;
17035 
17036   return SDValue();
17037 }
17038 
17039 SDValue PPCTargetLowering::combineSRL(SDNode *N, DAGCombinerInfo &DCI) const {
17040   if (auto Value = stripModuloOnShift(*this, N, DCI.DAG))
17041     return Value;
17042 
17043   return SDValue();
17044 }
17045 
17046 // Transform (add X, (zext(setne Z, C))) -> (addze X, (addic (addi Z, -C), -1))
17047 // Transform (add X, (zext(sete  Z, C))) -> (addze X, (subfic (addi Z, -C), 0))
17048 // When C is zero, the equation (addi Z, -C) can be simplified to Z
17049 // Requirement: -C in [-32768, 32767], X and Z are MVT::i64 types
17050 static SDValue combineADDToADDZE(SDNode *N, SelectionDAG &DAG,
17051                                  const PPCSubtarget &Subtarget) {
17052   if (!Subtarget.isPPC64())
17053     return SDValue();
17054 
17055   SDValue LHS = N->getOperand(0);
17056   SDValue RHS = N->getOperand(1);
17057 
17058   auto isZextOfCompareWithConstant = [](SDValue Op) {
17059     if (Op.getOpcode() != ISD::ZERO_EXTEND || !Op.hasOneUse() ||
17060         Op.getValueType() != MVT::i64)
17061       return false;
17062 
17063     SDValue Cmp = Op.getOperand(0);
17064     if (Cmp.getOpcode() != ISD::SETCC || !Cmp.hasOneUse() ||
17065         Cmp.getOperand(0).getValueType() != MVT::i64)
17066       return false;
17067 
17068     if (auto *Constant = dyn_cast<ConstantSDNode>(Cmp.getOperand(1))) {
17069       int64_t NegConstant = 0 - Constant->getSExtValue();
17070       // Due to the limitations of the addi instruction,
17071       // -C is required to be [-32768, 32767].
17072       return isInt<16>(NegConstant);
17073     }
17074 
17075     return false;
17076   };
17077 
17078   bool LHSHasPattern = isZextOfCompareWithConstant(LHS);
17079   bool RHSHasPattern = isZextOfCompareWithConstant(RHS);
17080 
17081   // If there is a pattern, canonicalize a zext operand to the RHS.
17082   if (LHSHasPattern && !RHSHasPattern)
17083     std::swap(LHS, RHS);
17084   else if (!LHSHasPattern && !RHSHasPattern)
17085     return SDValue();
17086 
17087   SDLoc DL(N);
17088   SDVTList VTs = DAG.getVTList(MVT::i64, MVT::Glue);
17089   SDValue Cmp = RHS.getOperand(0);
17090   SDValue Z = Cmp.getOperand(0);
17091   auto *Constant = cast<ConstantSDNode>(Cmp.getOperand(1));
17092   int64_t NegConstant = 0 - Constant->getSExtValue();
17093 
17094   switch(cast<CondCodeSDNode>(Cmp.getOperand(2))->get()) {
17095   default: break;
17096   case ISD::SETNE: {
17097     //                                 when C == 0
17098     //                             --> addze X, (addic Z, -1).carry
17099     //                            /
17100     // add X, (zext(setne Z, C))--
17101     //                            \    when -32768 <= -C <= 32767 && C != 0
17102     //                             --> addze X, (addic (addi Z, -C), -1).carry
17103     SDValue Add = DAG.getNode(ISD::ADD, DL, MVT::i64, Z,
17104                               DAG.getConstant(NegConstant, DL, MVT::i64));
17105     SDValue AddOrZ = NegConstant != 0 ? Add : Z;
17106     SDValue Addc = DAG.getNode(ISD::ADDC, DL, DAG.getVTList(MVT::i64, MVT::Glue),
17107                                AddOrZ, DAG.getConstant(-1ULL, DL, MVT::i64));
17108     return DAG.getNode(ISD::ADDE, DL, VTs, LHS, DAG.getConstant(0, DL, MVT::i64),
17109                        SDValue(Addc.getNode(), 1));
17110     }
17111   case ISD::SETEQ: {
17112     //                                 when C == 0
17113     //                             --> addze X, (subfic Z, 0).carry
17114     //                            /
17115     // add X, (zext(sete  Z, C))--
17116     //                            \    when -32768 <= -C <= 32767 && C != 0
17117     //                             --> addze X, (subfic (addi Z, -C), 0).carry
17118     SDValue Add = DAG.getNode(ISD::ADD, DL, MVT::i64, Z,
17119                               DAG.getConstant(NegConstant, DL, MVT::i64));
17120     SDValue AddOrZ = NegConstant != 0 ? Add : Z;
17121     SDValue Subc = DAG.getNode(ISD::SUBC, DL, DAG.getVTList(MVT::i64, MVT::Glue),
17122                                DAG.getConstant(0, DL, MVT::i64), AddOrZ);
17123     return DAG.getNode(ISD::ADDE, DL, VTs, LHS, DAG.getConstant(0, DL, MVT::i64),
17124                        SDValue(Subc.getNode(), 1));
17125     }
17126   }
17127 
17128   return SDValue();
17129 }
17130 
17131 // Transform
17132 // (add C1, (MAT_PCREL_ADDR GlobalAddr+C2)) to
17133 // (MAT_PCREL_ADDR GlobalAddr+(C1+C2))
17134 // In this case both C1 and C2 must be known constants.
17135 // C1+C2 must fit into a 34 bit signed integer.
17136 static SDValue combineADDToMAT_PCREL_ADDR(SDNode *N, SelectionDAG &DAG,
17137                                           const PPCSubtarget &Subtarget) {
17138   if (!Subtarget.isUsingPCRelativeCalls())
17139     return SDValue();
17140 
17141   // Check both Operand 0 and Operand 1 of the ADD node for the PCRel node.
17142   // If we find that node try to cast the Global Address and the Constant.
17143   SDValue LHS = N->getOperand(0);
17144   SDValue RHS = N->getOperand(1);
17145 
17146   if (LHS.getOpcode() != PPCISD::MAT_PCREL_ADDR)
17147     std::swap(LHS, RHS);
17148 
17149   if (LHS.getOpcode() != PPCISD::MAT_PCREL_ADDR)
17150     return SDValue();
17151 
17152   // Operand zero of PPCISD::MAT_PCREL_ADDR is the GA node.
17153   GlobalAddressSDNode *GSDN = dyn_cast<GlobalAddressSDNode>(LHS.getOperand(0));
17154   ConstantSDNode* ConstNode = dyn_cast<ConstantSDNode>(RHS);
17155 
17156   // Check that both casts succeeded.
17157   if (!GSDN || !ConstNode)
17158     return SDValue();
17159 
17160   int64_t NewOffset = GSDN->getOffset() + ConstNode->getSExtValue();
17161   SDLoc DL(GSDN);
17162 
17163   // The signed int offset needs to fit in 34 bits.
17164   if (!isInt<34>(NewOffset))
17165     return SDValue();
17166 
17167   // The new global address is a copy of the old global address except
17168   // that it has the updated Offset.
17169   SDValue GA =
17170       DAG.getTargetGlobalAddress(GSDN->getGlobal(), DL, GSDN->getValueType(0),
17171                                  NewOffset, GSDN->getTargetFlags());
17172   SDValue MatPCRel =
17173       DAG.getNode(PPCISD::MAT_PCREL_ADDR, DL, GSDN->getValueType(0), GA);
17174   return MatPCRel;
17175 }
17176 
17177 SDValue PPCTargetLowering::combineADD(SDNode *N, DAGCombinerInfo &DCI) const {
17178   if (auto Value = combineADDToADDZE(N, DCI.DAG, Subtarget))
17179     return Value;
17180 
17181   if (auto Value = combineADDToMAT_PCREL_ADDR(N, DCI.DAG, Subtarget))
17182     return Value;
17183 
17184   return SDValue();
17185 }
17186 
17187 // Detect TRUNCATE operations on bitcasts of float128 values.
17188 // What we are looking for here is the situtation where we extract a subset
17189 // of bits from a 128 bit float.
17190 // This can be of two forms:
17191 // 1) BITCAST of f128 feeding TRUNCATE
17192 // 2) BITCAST of f128 feeding SRL (a shift) feeding TRUNCATE
17193 // The reason this is required is because we do not have a legal i128 type
17194 // and so we want to prevent having to store the f128 and then reload part
17195 // of it.
17196 SDValue PPCTargetLowering::combineTRUNCATE(SDNode *N,
17197                                            DAGCombinerInfo &DCI) const {
17198   // If we are using CRBits then try that first.
17199   if (Subtarget.useCRBits()) {
17200     // Check if CRBits did anything and return that if it did.
17201     if (SDValue CRTruncValue = DAGCombineTruncBoolExt(N, DCI))
17202       return CRTruncValue;
17203   }
17204 
17205   SDLoc dl(N);
17206   SDValue Op0 = N->getOperand(0);
17207 
17208   // fold (truncate (abs (sub (zext a), (zext b)))) -> (vabsd a, b)
17209   if (Subtarget.hasP9Altivec() && Op0.getOpcode() == ISD::ABS) {
17210     EVT VT = N->getValueType(0);
17211     if (VT != MVT::v4i32 && VT != MVT::v8i16 && VT != MVT::v16i8)
17212       return SDValue();
17213     SDValue Sub = Op0.getOperand(0);
17214     if (Sub.getOpcode() == ISD::SUB) {
17215       SDValue SubOp0 = Sub.getOperand(0);
17216       SDValue SubOp1 = Sub.getOperand(1);
17217       if ((SubOp0.getOpcode() == ISD::ZERO_EXTEND) &&
17218           (SubOp1.getOpcode() == ISD::ZERO_EXTEND)) {
17219         return DCI.DAG.getNode(PPCISD::VABSD, dl, VT, SubOp0.getOperand(0),
17220                                SubOp1.getOperand(0),
17221                                DCI.DAG.getTargetConstant(0, dl, MVT::i32));
17222       }
17223     }
17224   }
17225 
17226   // Looking for a truncate of i128 to i64.
17227   if (Op0.getValueType() != MVT::i128 || N->getValueType(0) != MVT::i64)
17228     return SDValue();
17229 
17230   int EltToExtract = DCI.DAG.getDataLayout().isBigEndian() ? 1 : 0;
17231 
17232   // SRL feeding TRUNCATE.
17233   if (Op0.getOpcode() == ISD::SRL) {
17234     ConstantSDNode *ConstNode = dyn_cast<ConstantSDNode>(Op0.getOperand(1));
17235     // The right shift has to be by 64 bits.
17236     if (!ConstNode || ConstNode->getZExtValue() != 64)
17237       return SDValue();
17238 
17239     // Switch the element number to extract.
17240     EltToExtract = EltToExtract ? 0 : 1;
17241     // Update Op0 past the SRL.
17242     Op0 = Op0.getOperand(0);
17243   }
17244 
17245   // BITCAST feeding a TRUNCATE possibly via SRL.
17246   if (Op0.getOpcode() == ISD::BITCAST &&
17247       Op0.getValueType() == MVT::i128 &&
17248       Op0.getOperand(0).getValueType() == MVT::f128) {
17249     SDValue Bitcast = DCI.DAG.getBitcast(MVT::v2i64, Op0.getOperand(0));
17250     return DCI.DAG.getNode(
17251         ISD::EXTRACT_VECTOR_ELT, dl, MVT::i64, Bitcast,
17252         DCI.DAG.getTargetConstant(EltToExtract, dl, MVT::i32));
17253   }
17254   return SDValue();
17255 }
17256 
17257 SDValue PPCTargetLowering::combineMUL(SDNode *N, DAGCombinerInfo &DCI) const {
17258   SelectionDAG &DAG = DCI.DAG;
17259 
17260   ConstantSDNode *ConstOpOrElement = isConstOrConstSplat(N->getOperand(1));
17261   if (!ConstOpOrElement)
17262     return SDValue();
17263 
17264   // An imul is usually smaller than the alternative sequence for legal type.
17265   if (DAG.getMachineFunction().getFunction().hasMinSize() &&
17266       isOperationLegal(ISD::MUL, N->getValueType(0)))
17267     return SDValue();
17268 
17269   auto IsProfitable = [this](bool IsNeg, bool IsAddOne, EVT VT) -> bool {
17270     switch (this->Subtarget.getCPUDirective()) {
17271     default:
17272       // TODO: enhance the condition for subtarget before pwr8
17273       return false;
17274     case PPC::DIR_PWR8:
17275       //  type        mul     add    shl
17276       // scalar        4       1      1
17277       // vector        7       2      2
17278       return true;
17279     case PPC::DIR_PWR9:
17280     case PPC::DIR_PWR10:
17281     case PPC::DIR_PWR_FUTURE:
17282       //  type        mul     add    shl
17283       // scalar        5       2      2
17284       // vector        7       2      2
17285 
17286       // The cycle RATIO of related operations are showed as a table above.
17287       // Because mul is 5(scalar)/7(vector), add/sub/shl are all 2 for both
17288       // scalar and vector type. For 2 instrs patterns, add/sub + shl
17289       // are 4, it is always profitable; but for 3 instrs patterns
17290       // (mul x, -(2^N + 1)) => -(add (shl x, N), x), sub + add + shl are 6.
17291       // So we should only do it for vector type.
17292       return IsAddOne && IsNeg ? VT.isVector() : true;
17293     }
17294   };
17295 
17296   EVT VT = N->getValueType(0);
17297   SDLoc DL(N);
17298 
17299   const APInt &MulAmt = ConstOpOrElement->getAPIntValue();
17300   bool IsNeg = MulAmt.isNegative();
17301   APInt MulAmtAbs = MulAmt.abs();
17302 
17303   if ((MulAmtAbs - 1).isPowerOf2()) {
17304     // (mul x, 2^N + 1) => (add (shl x, N), x)
17305     // (mul x, -(2^N + 1)) => -(add (shl x, N), x)
17306 
17307     if (!IsProfitable(IsNeg, true, VT))
17308       return SDValue();
17309 
17310     SDValue Op0 = N->getOperand(0);
17311     SDValue Op1 =
17312         DAG.getNode(ISD::SHL, DL, VT, N->getOperand(0),
17313                     DAG.getConstant((MulAmtAbs - 1).logBase2(), DL, VT));
17314     SDValue Res = DAG.getNode(ISD::ADD, DL, VT, Op0, Op1);
17315 
17316     if (!IsNeg)
17317       return Res;
17318 
17319     return DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), Res);
17320   } else if ((MulAmtAbs + 1).isPowerOf2()) {
17321     // (mul x, 2^N - 1) => (sub (shl x, N), x)
17322     // (mul x, -(2^N - 1)) => (sub x, (shl x, N))
17323 
17324     if (!IsProfitable(IsNeg, false, VT))
17325       return SDValue();
17326 
17327     SDValue Op0 = N->getOperand(0);
17328     SDValue Op1 =
17329         DAG.getNode(ISD::SHL, DL, VT, N->getOperand(0),
17330                     DAG.getConstant((MulAmtAbs + 1).logBase2(), DL, VT));
17331 
17332     if (!IsNeg)
17333       return DAG.getNode(ISD::SUB, DL, VT, Op1, Op0);
17334     else
17335       return DAG.getNode(ISD::SUB, DL, VT, Op0, Op1);
17336 
17337   } else {
17338     return SDValue();
17339   }
17340 }
17341 
17342 // Combine fma-like op (like fnmsub) with fnegs to appropriate op. Do this
17343 // in combiner since we need to check SD flags and other subtarget features.
17344 SDValue PPCTargetLowering::combineFMALike(SDNode *N,
17345                                           DAGCombinerInfo &DCI) const {
17346   SDValue N0 = N->getOperand(0);
17347   SDValue N1 = N->getOperand(1);
17348   SDValue N2 = N->getOperand(2);
17349   SDNodeFlags Flags = N->getFlags();
17350   EVT VT = N->getValueType(0);
17351   SelectionDAG &DAG = DCI.DAG;
17352   const TargetOptions &Options = getTargetMachine().Options;
17353   unsigned Opc = N->getOpcode();
17354   bool CodeSize = DAG.getMachineFunction().getFunction().hasOptSize();
17355   bool LegalOps = !DCI.isBeforeLegalizeOps();
17356   SDLoc Loc(N);
17357 
17358   if (!isOperationLegal(ISD::FMA, VT))
17359     return SDValue();
17360 
17361   // Allowing transformation to FNMSUB may change sign of zeroes when ab-c=0
17362   // since (fnmsub a b c)=-0 while c-ab=+0.
17363   if (!Flags.hasNoSignedZeros() && !Options.NoSignedZerosFPMath)
17364     return SDValue();
17365 
17366   // (fma (fneg a) b c) => (fnmsub a b c)
17367   // (fnmsub (fneg a) b c) => (fma a b c)
17368   if (SDValue NegN0 = getCheaperNegatedExpression(N0, DAG, LegalOps, CodeSize))
17369     return DAG.getNode(invertFMAOpcode(Opc), Loc, VT, NegN0, N1, N2, Flags);
17370 
17371   // (fma a (fneg b) c) => (fnmsub a b c)
17372   // (fnmsub a (fneg b) c) => (fma a b c)
17373   if (SDValue NegN1 = getCheaperNegatedExpression(N1, DAG, LegalOps, CodeSize))
17374     return DAG.getNode(invertFMAOpcode(Opc), Loc, VT, N0, NegN1, N2, Flags);
17375 
17376   return SDValue();
17377 }
17378 
17379 bool PPCTargetLowering::mayBeEmittedAsTailCall(const CallInst *CI) const {
17380   // Only duplicate to increase tail-calls for the 64bit SysV ABIs.
17381   if (!Subtarget.is64BitELFABI())
17382     return false;
17383 
17384   // If not a tail call then no need to proceed.
17385   if (!CI->isTailCall())
17386     return false;
17387 
17388   // If sibling calls have been disabled and tail-calls aren't guaranteed
17389   // there is no reason to duplicate.
17390   auto &TM = getTargetMachine();
17391   if (!TM.Options.GuaranteedTailCallOpt && DisableSCO)
17392     return false;
17393 
17394   // Can't tail call a function called indirectly, or if it has variadic args.
17395   const Function *Callee = CI->getCalledFunction();
17396   if (!Callee || Callee->isVarArg())
17397     return false;
17398 
17399   // Make sure the callee and caller calling conventions are eligible for tco.
17400   const Function *Caller = CI->getParent()->getParent();
17401   if (!areCallingConvEligibleForTCO_64SVR4(Caller->getCallingConv(),
17402                                            CI->getCallingConv()))
17403       return false;
17404 
17405   // If the function is local then we have a good chance at tail-calling it
17406   return getTargetMachine().shouldAssumeDSOLocal(*Caller->getParent(), Callee);
17407 }
17408 
17409 bool PPCTargetLowering::hasBitPreservingFPLogic(EVT VT) const {
17410   if (!Subtarget.hasVSX())
17411     return false;
17412   if (Subtarget.hasP9Vector() && VT == MVT::f128)
17413     return true;
17414   return VT == MVT::f32 || VT == MVT::f64 ||
17415     VT == MVT::v4f32 || VT == MVT::v2f64;
17416 }
17417 
17418 bool PPCTargetLowering::
17419 isMaskAndCmp0FoldingBeneficial(const Instruction &AndI) const {
17420   const Value *Mask = AndI.getOperand(1);
17421   // If the mask is suitable for andi. or andis. we should sink the and.
17422   if (const ConstantInt *CI = dyn_cast<ConstantInt>(Mask)) {
17423     // Can't handle constants wider than 64-bits.
17424     if (CI->getBitWidth() > 64)
17425       return false;
17426     int64_t ConstVal = CI->getZExtValue();
17427     return isUInt<16>(ConstVal) ||
17428       (isUInt<16>(ConstVal >> 16) && !(ConstVal & 0xFFFF));
17429   }
17430 
17431   // For non-constant masks, we can always use the record-form and.
17432   return true;
17433 }
17434 
17435 // Transform (abs (sub (zext a), (zext b))) to (vabsd a b 0)
17436 // Transform (abs (sub (zext a), (zext_invec b))) to (vabsd a b 0)
17437 // Transform (abs (sub (zext_invec a), (zext_invec b))) to (vabsd a b 0)
17438 // Transform (abs (sub (zext_invec a), (zext b))) to (vabsd a b 0)
17439 // Transform (abs (sub a, b) to (vabsd a b 1)) if a & b of type v4i32
17440 SDValue PPCTargetLowering::combineABS(SDNode *N, DAGCombinerInfo &DCI) const {
17441   assert((N->getOpcode() == ISD::ABS) && "Need ABS node here");
17442   assert(Subtarget.hasP9Altivec() &&
17443          "Only combine this when P9 altivec supported!");
17444   EVT VT = N->getValueType(0);
17445   if (VT != MVT::v4i32 && VT != MVT::v8i16 && VT != MVT::v16i8)
17446     return SDValue();
17447 
17448   SelectionDAG &DAG = DCI.DAG;
17449   SDLoc dl(N);
17450   if (N->getOperand(0).getOpcode() == ISD::SUB) {
17451     // Even for signed integers, if it's known to be positive (as signed
17452     // integer) due to zero-extended inputs.
17453     unsigned SubOpcd0 = N->getOperand(0)->getOperand(0).getOpcode();
17454     unsigned SubOpcd1 = N->getOperand(0)->getOperand(1).getOpcode();
17455     if ((SubOpcd0 == ISD::ZERO_EXTEND ||
17456          SubOpcd0 == ISD::ZERO_EXTEND_VECTOR_INREG) &&
17457         (SubOpcd1 == ISD::ZERO_EXTEND ||
17458          SubOpcd1 == ISD::ZERO_EXTEND_VECTOR_INREG)) {
17459       return DAG.getNode(PPCISD::VABSD, dl, N->getOperand(0).getValueType(),
17460                          N->getOperand(0)->getOperand(0),
17461                          N->getOperand(0)->getOperand(1),
17462                          DAG.getTargetConstant(0, dl, MVT::i32));
17463     }
17464 
17465     // For type v4i32, it can be optimized with xvnegsp + vabsduw
17466     if (N->getOperand(0).getValueType() == MVT::v4i32 &&
17467         N->getOperand(0).hasOneUse()) {
17468       return DAG.getNode(PPCISD::VABSD, dl, N->getOperand(0).getValueType(),
17469                          N->getOperand(0)->getOperand(0),
17470                          N->getOperand(0)->getOperand(1),
17471                          DAG.getTargetConstant(1, dl, MVT::i32));
17472     }
17473   }
17474 
17475   return SDValue();
17476 }
17477 
17478 // For type v4i32/v8ii16/v16i8, transform
17479 // from (vselect (setcc a, b, setugt), (sub a, b), (sub b, a)) to (vabsd a, b)
17480 // from (vselect (setcc a, b, setuge), (sub a, b), (sub b, a)) to (vabsd a, b)
17481 // from (vselect (setcc a, b, setult), (sub b, a), (sub a, b)) to (vabsd a, b)
17482 // from (vselect (setcc a, b, setule), (sub b, a), (sub a, b)) to (vabsd a, b)
17483 SDValue PPCTargetLowering::combineVSelect(SDNode *N,
17484                                           DAGCombinerInfo &DCI) const {
17485   assert((N->getOpcode() == ISD::VSELECT) && "Need VSELECT node here");
17486   assert(Subtarget.hasP9Altivec() &&
17487          "Only combine this when P9 altivec supported!");
17488 
17489   SelectionDAG &DAG = DCI.DAG;
17490   SDLoc dl(N);
17491   SDValue Cond = N->getOperand(0);
17492   SDValue TrueOpnd = N->getOperand(1);
17493   SDValue FalseOpnd = N->getOperand(2);
17494   EVT VT = N->getOperand(1).getValueType();
17495 
17496   if (Cond.getOpcode() != ISD::SETCC || TrueOpnd.getOpcode() != ISD::SUB ||
17497       FalseOpnd.getOpcode() != ISD::SUB)
17498     return SDValue();
17499 
17500   // ABSD only available for type v4i32/v8i16/v16i8
17501   if (VT != MVT::v4i32 && VT != MVT::v8i16 && VT != MVT::v16i8)
17502     return SDValue();
17503 
17504   // At least to save one more dependent computation
17505   if (!(Cond.hasOneUse() || TrueOpnd.hasOneUse() || FalseOpnd.hasOneUse()))
17506     return SDValue();
17507 
17508   ISD::CondCode CC = cast<CondCodeSDNode>(Cond.getOperand(2))->get();
17509 
17510   // Can only handle unsigned comparison here
17511   switch (CC) {
17512   default:
17513     return SDValue();
17514   case ISD::SETUGT:
17515   case ISD::SETUGE:
17516     break;
17517   case ISD::SETULT:
17518   case ISD::SETULE:
17519     std::swap(TrueOpnd, FalseOpnd);
17520     break;
17521   }
17522 
17523   SDValue CmpOpnd1 = Cond.getOperand(0);
17524   SDValue CmpOpnd2 = Cond.getOperand(1);
17525 
17526   // SETCC CmpOpnd1 CmpOpnd2 cond
17527   // TrueOpnd = CmpOpnd1 - CmpOpnd2
17528   // FalseOpnd = CmpOpnd2 - CmpOpnd1
17529   if (TrueOpnd.getOperand(0) == CmpOpnd1 &&
17530       TrueOpnd.getOperand(1) == CmpOpnd2 &&
17531       FalseOpnd.getOperand(0) == CmpOpnd2 &&
17532       FalseOpnd.getOperand(1) == CmpOpnd1) {
17533     return DAG.getNode(PPCISD::VABSD, dl, N->getOperand(1).getValueType(),
17534                        CmpOpnd1, CmpOpnd2,
17535                        DAG.getTargetConstant(0, dl, MVT::i32));
17536   }
17537 
17538   return SDValue();
17539 }
17540 
17541 /// getAddrModeForFlags - Based on the set of address flags, select the most
17542 /// optimal instruction format to match by.
17543 PPC::AddrMode PPCTargetLowering::getAddrModeForFlags(unsigned Flags) const {
17544   // This is not a node we should be handling here.
17545   if (Flags == PPC::MOF_None)
17546     return PPC::AM_None;
17547   // Unaligned D-Forms are tried first, followed by the aligned D-Forms.
17548   for (auto FlagSet : AddrModesMap.at(PPC::AM_DForm))
17549     if ((Flags & FlagSet) == FlagSet)
17550       return PPC::AM_DForm;
17551   for (auto FlagSet : AddrModesMap.at(PPC::AM_DSForm))
17552     if ((Flags & FlagSet) == FlagSet)
17553       return PPC::AM_DSForm;
17554   for (auto FlagSet : AddrModesMap.at(PPC::AM_DQForm))
17555     if ((Flags & FlagSet) == FlagSet)
17556       return PPC::AM_DQForm;
17557   for (auto FlagSet : AddrModesMap.at(PPC::AM_PrefixDForm))
17558     if ((Flags & FlagSet) == FlagSet)
17559       return PPC::AM_PrefixDForm;
17560   // If no other forms are selected, return an X-Form as it is the most
17561   // general addressing mode.
17562   return PPC::AM_XForm;
17563 }
17564 
17565 /// Set alignment flags based on whether or not the Frame Index is aligned.
17566 /// Utilized when computing flags for address computation when selecting
17567 /// load and store instructions.
17568 static void setAlignFlagsForFI(SDValue N, unsigned &FlagSet,
17569                                SelectionDAG &DAG) {
17570   bool IsAdd = ((N.getOpcode() == ISD::ADD) || (N.getOpcode() == ISD::OR));
17571   FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(IsAdd ? N.getOperand(0) : N);
17572   if (!FI)
17573     return;
17574   const MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
17575   unsigned FrameIndexAlign = MFI.getObjectAlign(FI->getIndex()).value();
17576   // If this is (add $FI, $S16Imm), the alignment flags are already set
17577   // based on the immediate. We just need to clear the alignment flags
17578   // if the FI alignment is weaker.
17579   if ((FrameIndexAlign % 4) != 0)
17580     FlagSet &= ~PPC::MOF_RPlusSImm16Mult4;
17581   if ((FrameIndexAlign % 16) != 0)
17582     FlagSet &= ~PPC::MOF_RPlusSImm16Mult16;
17583   // If the address is a plain FrameIndex, set alignment flags based on
17584   // FI alignment.
17585   if (!IsAdd) {
17586     if ((FrameIndexAlign % 4) == 0)
17587       FlagSet |= PPC::MOF_RPlusSImm16Mult4;
17588     if ((FrameIndexAlign % 16) == 0)
17589       FlagSet |= PPC::MOF_RPlusSImm16Mult16;
17590   }
17591 }
17592 
17593 /// Given a node, compute flags that are used for address computation when
17594 /// selecting load and store instructions. The flags computed are stored in
17595 /// FlagSet. This function takes into account whether the node is a constant,
17596 /// an ADD, OR, or a constant, and computes the address flags accordingly.
17597 static void computeFlagsForAddressComputation(SDValue N, unsigned &FlagSet,
17598                                               SelectionDAG &DAG) {
17599   // Set the alignment flags for the node depending on if the node is
17600   // 4-byte or 16-byte aligned.
17601   auto SetAlignFlagsForImm = [&](uint64_t Imm) {
17602     if ((Imm & 0x3) == 0)
17603       FlagSet |= PPC::MOF_RPlusSImm16Mult4;
17604     if ((Imm & 0xf) == 0)
17605       FlagSet |= PPC::MOF_RPlusSImm16Mult16;
17606   };
17607 
17608   if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N)) {
17609     // All 32-bit constants can be computed as LIS + Disp.
17610     const APInt &ConstImm = CN->getAPIntValue();
17611     if (ConstImm.isSignedIntN(32)) { // Flag to handle 32-bit constants.
17612       FlagSet |= PPC::MOF_AddrIsSImm32;
17613       SetAlignFlagsForImm(ConstImm.getZExtValue());
17614       setAlignFlagsForFI(N, FlagSet, DAG);
17615     }
17616     if (ConstImm.isSignedIntN(34)) // Flag to handle 34-bit constants.
17617       FlagSet |= PPC::MOF_RPlusSImm34;
17618     else // Let constant materialization handle large constants.
17619       FlagSet |= PPC::MOF_NotAddNorCst;
17620   } else if (N.getOpcode() == ISD::ADD || provablyDisjointOr(DAG, N)) {
17621     // This address can be represented as an addition of:
17622     // - Register + Imm16 (possibly a multiple of 4/16)
17623     // - Register + Imm34
17624     // - Register + PPCISD::Lo
17625     // - Register + Register
17626     // In any case, we won't have to match this as Base + Zero.
17627     SDValue RHS = N.getOperand(1);
17628     if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(RHS)) {
17629       const APInt &ConstImm = CN->getAPIntValue();
17630       if (ConstImm.isSignedIntN(16)) {
17631         FlagSet |= PPC::MOF_RPlusSImm16; // Signed 16-bit immediates.
17632         SetAlignFlagsForImm(ConstImm.getZExtValue());
17633         setAlignFlagsForFI(N, FlagSet, DAG);
17634       }
17635       if (ConstImm.isSignedIntN(34))
17636         FlagSet |= PPC::MOF_RPlusSImm34; // Signed 34-bit immediates.
17637       else
17638         FlagSet |= PPC::MOF_RPlusR; // Register.
17639     } else if (RHS.getOpcode() == PPCISD::Lo &&
17640                !cast<ConstantSDNode>(RHS.getOperand(1))->getZExtValue())
17641       FlagSet |= PPC::MOF_RPlusLo; // PPCISD::Lo.
17642     else
17643       FlagSet |= PPC::MOF_RPlusR;
17644   } else { // The address computation is not a constant or an addition.
17645     setAlignFlagsForFI(N, FlagSet, DAG);
17646     FlagSet |= PPC::MOF_NotAddNorCst;
17647   }
17648 }
17649 
17650 static bool isPCRelNode(SDValue N) {
17651   return (N.getOpcode() == PPCISD::MAT_PCREL_ADDR ||
17652       isValidPCRelNode<ConstantPoolSDNode>(N) ||
17653       isValidPCRelNode<GlobalAddressSDNode>(N) ||
17654       isValidPCRelNode<JumpTableSDNode>(N) ||
17655       isValidPCRelNode<BlockAddressSDNode>(N));
17656 }
17657 
17658 /// computeMOFlags - Given a node N and it's Parent (a MemSDNode), compute
17659 /// the address flags of the load/store instruction that is to be matched.
17660 unsigned PPCTargetLowering::computeMOFlags(const SDNode *Parent, SDValue N,
17661                                            SelectionDAG &DAG) const {
17662   unsigned FlagSet = PPC::MOF_None;
17663 
17664   // Compute subtarget flags.
17665   if (!Subtarget.hasP9Vector())
17666     FlagSet |= PPC::MOF_SubtargetBeforeP9;
17667   else {
17668     FlagSet |= PPC::MOF_SubtargetP9;
17669     if (Subtarget.hasPrefixInstrs())
17670       FlagSet |= PPC::MOF_SubtargetP10;
17671   }
17672   if (Subtarget.hasSPE())
17673     FlagSet |= PPC::MOF_SubtargetSPE;
17674 
17675   // Check if we have a PCRel node and return early.
17676   if ((FlagSet & PPC::MOF_SubtargetP10) && isPCRelNode(N))
17677     return FlagSet;
17678 
17679   // If the node is the paired load/store intrinsics, compute flags for
17680   // address computation and return early.
17681   unsigned ParentOp = Parent->getOpcode();
17682   if (Subtarget.isISA3_1() && ((ParentOp == ISD::INTRINSIC_W_CHAIN) ||
17683                                (ParentOp == ISD::INTRINSIC_VOID))) {
17684     unsigned ID = cast<ConstantSDNode>(Parent->getOperand(1))->getZExtValue();
17685     if ((ID == Intrinsic::ppc_vsx_lxvp) || (ID == Intrinsic::ppc_vsx_stxvp)) {
17686       SDValue IntrinOp = (ID == Intrinsic::ppc_vsx_lxvp)
17687                              ? Parent->getOperand(2)
17688                              : Parent->getOperand(3);
17689       computeFlagsForAddressComputation(IntrinOp, FlagSet, DAG);
17690       FlagSet |= PPC::MOF_Vector;
17691       return FlagSet;
17692     }
17693   }
17694 
17695   // Mark this as something we don't want to handle here if it is atomic
17696   // or pre-increment instruction.
17697   if (const LSBaseSDNode *LSB = dyn_cast<LSBaseSDNode>(Parent))
17698     if (LSB->isIndexed())
17699       return PPC::MOF_None;
17700 
17701   // Compute in-memory type flags. This is based on if there are scalars,
17702   // floats or vectors.
17703   const MemSDNode *MN = dyn_cast<MemSDNode>(Parent);
17704   assert(MN && "Parent should be a MemSDNode!");
17705   EVT MemVT = MN->getMemoryVT();
17706   unsigned Size = MemVT.getSizeInBits();
17707   if (MemVT.isScalarInteger()) {
17708     assert(Size <= 128 &&
17709            "Not expecting scalar integers larger than 16 bytes!");
17710     if (Size < 32)
17711       FlagSet |= PPC::MOF_SubWordInt;
17712     else if (Size == 32)
17713       FlagSet |= PPC::MOF_WordInt;
17714     else
17715       FlagSet |= PPC::MOF_DoubleWordInt;
17716   } else if (MemVT.isVector() && !MemVT.isFloatingPoint()) { // Integer vectors.
17717     if (Size == 128)
17718       FlagSet |= PPC::MOF_Vector;
17719     else if (Size == 256) {
17720       assert(Subtarget.pairedVectorMemops() &&
17721              "256-bit vectors are only available when paired vector memops is "
17722              "enabled!");
17723       FlagSet |= PPC::MOF_Vector;
17724     } else
17725       llvm_unreachable("Not expecting illegal vectors!");
17726   } else { // Floating point type: can be scalar, f128 or vector types.
17727     if (Size == 32 || Size == 64)
17728       FlagSet |= PPC::MOF_ScalarFloat;
17729     else if (MemVT == MVT::f128 || MemVT.isVector())
17730       FlagSet |= PPC::MOF_Vector;
17731     else
17732       llvm_unreachable("Not expecting illegal scalar floats!");
17733   }
17734 
17735   // Compute flags for address computation.
17736   computeFlagsForAddressComputation(N, FlagSet, DAG);
17737 
17738   // Compute type extension flags.
17739   if (const LoadSDNode *LN = dyn_cast<LoadSDNode>(Parent)) {
17740     switch (LN->getExtensionType()) {
17741     case ISD::SEXTLOAD:
17742       FlagSet |= PPC::MOF_SExt;
17743       break;
17744     case ISD::EXTLOAD:
17745     case ISD::ZEXTLOAD:
17746       FlagSet |= PPC::MOF_ZExt;
17747       break;
17748     case ISD::NON_EXTLOAD:
17749       FlagSet |= PPC::MOF_NoExt;
17750       break;
17751     }
17752   } else
17753     FlagSet |= PPC::MOF_NoExt;
17754 
17755   // For integers, no extension is the same as zero extension.
17756   // We set the extension mode to zero extension so we don't have
17757   // to add separate entries in AddrModesMap for loads and stores.
17758   if (MemVT.isScalarInteger() && (FlagSet & PPC::MOF_NoExt)) {
17759     FlagSet |= PPC::MOF_ZExt;
17760     FlagSet &= ~PPC::MOF_NoExt;
17761   }
17762 
17763   // If we don't have prefixed instructions, 34-bit constants should be
17764   // treated as PPC::MOF_NotAddNorCst so they can match D-Forms.
17765   bool IsNonP1034BitConst =
17766       ((PPC::MOF_RPlusSImm34 | PPC::MOF_AddrIsSImm32 | PPC::MOF_SubtargetP10) &
17767        FlagSet) == PPC::MOF_RPlusSImm34;
17768   if (N.getOpcode() != ISD::ADD && N.getOpcode() != ISD::OR &&
17769       IsNonP1034BitConst)
17770     FlagSet |= PPC::MOF_NotAddNorCst;
17771 
17772   return FlagSet;
17773 }
17774 
17775 /// SelectForceXFormMode - Given the specified address, force it to be
17776 /// represented as an indexed [r+r] operation (an XForm instruction).
17777 PPC::AddrMode PPCTargetLowering::SelectForceXFormMode(SDValue N, SDValue &Disp,
17778                                                       SDValue &Base,
17779                                                       SelectionDAG &DAG) const {
17780 
17781   PPC::AddrMode Mode = PPC::AM_XForm;
17782   int16_t ForceXFormImm = 0;
17783   if (provablyDisjointOr(DAG, N) &&
17784       !isIntS16Immediate(N.getOperand(1), ForceXFormImm)) {
17785     Disp = N.getOperand(0);
17786     Base = N.getOperand(1);
17787     return Mode;
17788   }
17789 
17790   // If the address is the result of an add, we will utilize the fact that the
17791   // address calculation includes an implicit add.  However, we can reduce
17792   // register pressure if we do not materialize a constant just for use as the
17793   // index register.  We only get rid of the add if it is not an add of a
17794   // value and a 16-bit signed constant and both have a single use.
17795   if (N.getOpcode() == ISD::ADD &&
17796       (!isIntS16Immediate(N.getOperand(1), ForceXFormImm) ||
17797        !N.getOperand(1).hasOneUse() || !N.getOperand(0).hasOneUse())) {
17798     Disp = N.getOperand(0);
17799     Base = N.getOperand(1);
17800     return Mode;
17801   }
17802 
17803   // Otherwise, use R0 as the base register.
17804   Disp = DAG.getRegister(Subtarget.isPPC64() ? PPC::ZERO8 : PPC::ZERO,
17805                          N.getValueType());
17806   Base = N;
17807 
17808   return Mode;
17809 }
17810 
17811 bool PPCTargetLowering::splitValueIntoRegisterParts(
17812     SelectionDAG &DAG, const SDLoc &DL, SDValue Val, SDValue *Parts,
17813     unsigned NumParts, MVT PartVT, Optional<CallingConv::ID> CC) const {
17814   EVT ValVT = Val.getValueType();
17815   // If we are splitting a scalar integer into f64 parts (i.e. so they
17816   // can be placed into VFRC registers), we need to zero extend and
17817   // bitcast the values. This will ensure the value is placed into a
17818   // VSR using direct moves or stack operations as needed.
17819   if (PartVT == MVT::f64 &&
17820       (ValVT == MVT::i32 || ValVT == MVT::i16 || ValVT == MVT::i8)) {
17821     Val = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i64, Val);
17822     Val = DAG.getNode(ISD::BITCAST, DL, MVT::f64, Val);
17823     Parts[0] = Val;
17824     return true;
17825   }
17826   return false;
17827 }
17828 
17829 SDValue PPCTargetLowering::lowerToLibCall(const char *LibCallName, SDValue Op,
17830                                           SelectionDAG &DAG) const {
17831   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
17832   TargetLowering::CallLoweringInfo CLI(DAG);
17833   EVT RetVT = Op.getValueType();
17834   Type *RetTy = RetVT.getTypeForEVT(*DAG.getContext());
17835   SDValue Callee =
17836       DAG.getExternalSymbol(LibCallName, TLI.getPointerTy(DAG.getDataLayout()));
17837   bool SignExtend = TLI.shouldSignExtendTypeInLibCall(RetVT, false);
17838   TargetLowering::ArgListTy Args;
17839   TargetLowering::ArgListEntry Entry;
17840   for (const SDValue &N : Op->op_values()) {
17841     EVT ArgVT = N.getValueType();
17842     Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext());
17843     Entry.Node = N;
17844     Entry.Ty = ArgTy;
17845     Entry.IsSExt = TLI.shouldSignExtendTypeInLibCall(ArgVT, SignExtend);
17846     Entry.IsZExt = !Entry.IsSExt;
17847     Args.push_back(Entry);
17848   }
17849 
17850   SDValue InChain = DAG.getEntryNode();
17851   SDValue TCChain = InChain;
17852   const Function &F = DAG.getMachineFunction().getFunction();
17853   bool isTailCall =
17854       TLI.isInTailCallPosition(DAG, Op.getNode(), TCChain) &&
17855       (RetTy == F.getReturnType() || F.getReturnType()->isVoidTy());
17856   if (isTailCall)
17857     InChain = TCChain;
17858   CLI.setDebugLoc(SDLoc(Op))
17859       .setChain(InChain)
17860       .setLibCallee(CallingConv::C, RetTy, Callee, std::move(Args))
17861       .setTailCall(isTailCall)
17862       .setSExtResult(SignExtend)
17863       .setZExtResult(!SignExtend)
17864       .setIsPostTypeLegalization(true);
17865   return TLI.LowerCallTo(CLI).first;
17866 }
17867 
17868 SDValue PPCTargetLowering::lowerLibCallBasedOnType(
17869     const char *LibCallFloatName, const char *LibCallDoubleName, SDValue Op,
17870     SelectionDAG &DAG) const {
17871   if (Op.getValueType() == MVT::f32)
17872     return lowerToLibCall(LibCallFloatName, Op, DAG);
17873 
17874   if (Op.getValueType() == MVT::f64)
17875     return lowerToLibCall(LibCallDoubleName, Op, DAG);
17876 
17877   return SDValue();
17878 }
17879 
17880 bool PPCTargetLowering::isLowringToMASSFiniteSafe(SDValue Op) const {
17881   SDNodeFlags Flags = Op.getNode()->getFlags();
17882   return isLowringToMASSSafe(Op) && Flags.hasNoSignedZeros() &&
17883          Flags.hasNoNaNs() && Flags.hasNoInfs();
17884 }
17885 
17886 bool PPCTargetLowering::isLowringToMASSSafe(SDValue Op) const {
17887   return Op.getNode()->getFlags().hasApproximateFuncs();
17888 }
17889 
17890 bool PPCTargetLowering::isScalarMASSConversionEnabled() const {
17891   return getTargetMachine().Options.PPCGenScalarMASSEntries;
17892 }
17893 
17894 SDValue PPCTargetLowering::lowerLibCallBase(const char *LibCallDoubleName,
17895                                             const char *LibCallFloatName,
17896                                             const char *LibCallDoubleNameFinite,
17897                                             const char *LibCallFloatNameFinite,
17898                                             SDValue Op,
17899                                             SelectionDAG &DAG) const {
17900   if (!isScalarMASSConversionEnabled() || !isLowringToMASSSafe(Op))
17901     return SDValue();
17902 
17903   if (!isLowringToMASSFiniteSafe(Op))
17904     return lowerLibCallBasedOnType(LibCallFloatName, LibCallDoubleName, Op,
17905                                    DAG);
17906 
17907   return lowerLibCallBasedOnType(LibCallFloatNameFinite,
17908                                  LibCallDoubleNameFinite, Op, DAG);
17909 }
17910 
17911 SDValue PPCTargetLowering::lowerPow(SDValue Op, SelectionDAG &DAG) const {
17912   return lowerLibCallBase("__xl_pow", "__xl_powf", "__xl_pow_finite",
17913                           "__xl_powf_finite", Op, DAG);
17914 }
17915 
17916 SDValue PPCTargetLowering::lowerSin(SDValue Op, SelectionDAG &DAG) const {
17917   return lowerLibCallBase("__xl_sin", "__xl_sinf", "__xl_sin_finite",
17918                           "__xl_sinf_finite", Op, DAG);
17919 }
17920 
17921 SDValue PPCTargetLowering::lowerCos(SDValue Op, SelectionDAG &DAG) const {
17922   return lowerLibCallBase("__xl_cos", "__xl_cosf", "__xl_cos_finite",
17923                           "__xl_cosf_finite", Op, DAG);
17924 }
17925 
17926 SDValue PPCTargetLowering::lowerLog(SDValue Op, SelectionDAG &DAG) const {
17927   return lowerLibCallBase("__xl_log", "__xl_logf", "__xl_log_finite",
17928                           "__xl_logf_finite", Op, DAG);
17929 }
17930 
17931 SDValue PPCTargetLowering::lowerLog10(SDValue Op, SelectionDAG &DAG) const {
17932   return lowerLibCallBase("__xl_log10", "__xl_log10f", "__xl_log10_finite",
17933                           "__xl_log10f_finite", Op, DAG);
17934 }
17935 
17936 SDValue PPCTargetLowering::lowerExp(SDValue Op, SelectionDAG &DAG) const {
17937   return lowerLibCallBase("__xl_exp", "__xl_expf", "__xl_exp_finite",
17938                           "__xl_expf_finite", Op, DAG);
17939 }
17940 
17941 // If we happen to match to an aligned D-Form, check if the Frame Index is
17942 // adequately aligned. If it is not, reset the mode to match to X-Form.
17943 static void setXFormForUnalignedFI(SDValue N, unsigned Flags,
17944                                    PPC::AddrMode &Mode) {
17945   if (!isa<FrameIndexSDNode>(N))
17946     return;
17947   if ((Mode == PPC::AM_DSForm && !(Flags & PPC::MOF_RPlusSImm16Mult4)) ||
17948       (Mode == PPC::AM_DQForm && !(Flags & PPC::MOF_RPlusSImm16Mult16)))
17949     Mode = PPC::AM_XForm;
17950 }
17951 
17952 /// SelectOptimalAddrMode - Based on a node N and it's Parent (a MemSDNode),
17953 /// compute the address flags of the node, get the optimal address mode based
17954 /// on the flags, and set the Base and Disp based on the address mode.
17955 PPC::AddrMode PPCTargetLowering::SelectOptimalAddrMode(const SDNode *Parent,
17956                                                        SDValue N, SDValue &Disp,
17957                                                        SDValue &Base,
17958                                                        SelectionDAG &DAG,
17959                                                        MaybeAlign Align) const {
17960   SDLoc DL(Parent);
17961 
17962   // Compute the address flags.
17963   unsigned Flags = computeMOFlags(Parent, N, DAG);
17964 
17965   // Get the optimal address mode based on the Flags.
17966   PPC::AddrMode Mode = getAddrModeForFlags(Flags);
17967 
17968   // If the address mode is DS-Form or DQ-Form, check if the FI is aligned.
17969   // Select an X-Form load if it is not.
17970   setXFormForUnalignedFI(N, Flags, Mode);
17971 
17972   // Set the mode to PC-Relative addressing mode if we have a valid PC-Rel node.
17973   if ((Mode == PPC::AM_XForm) && isPCRelNode(N)) {
17974     assert(Subtarget.isUsingPCRelativeCalls() &&
17975            "Must be using PC-Relative calls when a valid PC-Relative node is "
17976            "present!");
17977     Mode = PPC::AM_PCRel;
17978   }
17979 
17980   // Set Base and Disp accordingly depending on the address mode.
17981   switch (Mode) {
17982   case PPC::AM_DForm:
17983   case PPC::AM_DSForm:
17984   case PPC::AM_DQForm: {
17985     // This is a register plus a 16-bit immediate. The base will be the
17986     // register and the displacement will be the immediate unless it
17987     // isn't sufficiently aligned.
17988     if (Flags & PPC::MOF_RPlusSImm16) {
17989       SDValue Op0 = N.getOperand(0);
17990       SDValue Op1 = N.getOperand(1);
17991       int16_t Imm = cast<ConstantSDNode>(Op1)->getAPIntValue().getZExtValue();
17992       if (!Align || isAligned(*Align, Imm)) {
17993         Disp = DAG.getTargetConstant(Imm, DL, N.getValueType());
17994         Base = Op0;
17995         if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Op0)) {
17996           Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
17997           fixupFuncForFI(DAG, FI->getIndex(), N.getValueType());
17998         }
17999         break;
18000       }
18001     }
18002     // This is a register plus the @lo relocation. The base is the register
18003     // and the displacement is the global address.
18004     else if (Flags & PPC::MOF_RPlusLo) {
18005       Disp = N.getOperand(1).getOperand(0); // The global address.
18006       assert(Disp.getOpcode() == ISD::TargetGlobalAddress ||
18007              Disp.getOpcode() == ISD::TargetGlobalTLSAddress ||
18008              Disp.getOpcode() == ISD::TargetConstantPool ||
18009              Disp.getOpcode() == ISD::TargetJumpTable);
18010       Base = N.getOperand(0);
18011       break;
18012     }
18013     // This is a constant address at most 32 bits. The base will be
18014     // zero or load-immediate-shifted and the displacement will be
18015     // the low 16 bits of the address.
18016     else if (Flags & PPC::MOF_AddrIsSImm32) {
18017       auto *CN = cast<ConstantSDNode>(N);
18018       EVT CNType = CN->getValueType(0);
18019       uint64_t CNImm = CN->getZExtValue();
18020       // If this address fits entirely in a 16-bit sext immediate field, codegen
18021       // this as "d, 0".
18022       int16_t Imm;
18023       if (isIntS16Immediate(CN, Imm) && (!Align || isAligned(*Align, Imm))) {
18024         Disp = DAG.getTargetConstant(Imm, DL, CNType);
18025         Base = DAG.getRegister(Subtarget.isPPC64() ? PPC::ZERO8 : PPC::ZERO,
18026                                CNType);
18027         break;
18028       }
18029       // Handle 32-bit sext immediate with LIS + Addr mode.
18030       if ((CNType == MVT::i32 || isInt<32>(CNImm)) &&
18031           (!Align || isAligned(*Align, CNImm))) {
18032         int32_t Addr = (int32_t)CNImm;
18033         // Otherwise, break this down into LIS + Disp.
18034         Disp = DAG.getTargetConstant((int16_t)Addr, DL, MVT::i32);
18035         Base =
18036             DAG.getTargetConstant((Addr - (int16_t)Addr) >> 16, DL, MVT::i32);
18037         uint32_t LIS = CNType == MVT::i32 ? PPC::LIS : PPC::LIS8;
18038         Base = SDValue(DAG.getMachineNode(LIS, DL, CNType, Base), 0);
18039         break;
18040       }
18041     }
18042     // Otherwise, the PPC:MOF_NotAdd flag is set. Load/Store is Non-foldable.
18043     Disp = DAG.getTargetConstant(0, DL, getPointerTy(DAG.getDataLayout()));
18044     if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N)) {
18045       Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
18046       fixupFuncForFI(DAG, FI->getIndex(), N.getValueType());
18047     } else
18048       Base = N;
18049     break;
18050   }
18051   case PPC::AM_PrefixDForm: {
18052     int64_t Imm34 = 0;
18053     unsigned Opcode = N.getOpcode();
18054     if (((Opcode == ISD::ADD) || (Opcode == ISD::OR)) &&
18055         (isIntS34Immediate(N.getOperand(1), Imm34))) {
18056       // N is an Add/OR Node, and it's operand is a 34-bit signed immediate.
18057       Disp = DAG.getTargetConstant(Imm34, DL, N.getValueType());
18058       if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N.getOperand(0)))
18059         Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
18060       else
18061         Base = N.getOperand(0);
18062     } else if (isIntS34Immediate(N, Imm34)) {
18063       // The address is a 34-bit signed immediate.
18064       Disp = DAG.getTargetConstant(Imm34, DL, N.getValueType());
18065       Base = DAG.getRegister(PPC::ZERO8, N.getValueType());
18066     }
18067     break;
18068   }
18069   case PPC::AM_PCRel: {
18070     // When selecting PC-Relative instructions, "Base" is not utilized as
18071     // we select the address as [PC+imm].
18072     Disp = N;
18073     break;
18074   }
18075   case PPC::AM_None:
18076     break;
18077   default: { // By default, X-Form is always available to be selected.
18078     // When a frame index is not aligned, we also match by XForm.
18079     FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N);
18080     Base = FI ? N : N.getOperand(1);
18081     Disp = FI ? DAG.getRegister(Subtarget.isPPC64() ? PPC::ZERO8 : PPC::ZERO,
18082                                 N.getValueType())
18083               : N.getOperand(0);
18084     break;
18085   }
18086   }
18087   return Mode;
18088 }
18089 
18090 CCAssignFn *PPCTargetLowering::ccAssignFnForCall(CallingConv::ID CC,
18091                                                  bool Return,
18092                                                  bool IsVarArg) const {
18093   switch (CC) {
18094   case CallingConv::Cold:
18095     return (Return ? RetCC_PPC_Cold : CC_PPC64_ELF_FIS);
18096   default:
18097     return CC_PPC64_ELF_FIS;
18098   }
18099 }
18100 
18101 bool PPCTargetLowering::shouldInlineQuadwordAtomics() const {
18102   // TODO: 16-byte atomic type support for AIX is in progress; we should be able
18103   // to inline 16-byte atomic ops on AIX too in the future.
18104   return Subtarget.isPPC64() &&
18105          (EnableQuadwordAtomics || !Subtarget.getTargetTriple().isOSAIX()) &&
18106          Subtarget.hasQuadwordAtomics();
18107 }
18108 
18109 TargetLowering::AtomicExpansionKind
18110 PPCTargetLowering::shouldExpandAtomicRMWInIR(AtomicRMWInst *AI) const {
18111   unsigned Size = AI->getType()->getPrimitiveSizeInBits();
18112   if (shouldInlineQuadwordAtomics() && Size == 128)
18113     return AtomicExpansionKind::MaskedIntrinsic;
18114   return TargetLowering::shouldExpandAtomicRMWInIR(AI);
18115 }
18116 
18117 TargetLowering::AtomicExpansionKind
18118 PPCTargetLowering::shouldExpandAtomicCmpXchgInIR(AtomicCmpXchgInst *AI) const {
18119   unsigned Size = AI->getNewValOperand()->getType()->getPrimitiveSizeInBits();
18120   if (shouldInlineQuadwordAtomics() && Size == 128)
18121     return AtomicExpansionKind::MaskedIntrinsic;
18122   return TargetLowering::shouldExpandAtomicCmpXchgInIR(AI);
18123 }
18124 
18125 static Intrinsic::ID
18126 getIntrinsicForAtomicRMWBinOp128(AtomicRMWInst::BinOp BinOp) {
18127   switch (BinOp) {
18128   default:
18129     llvm_unreachable("Unexpected AtomicRMW BinOp");
18130   case AtomicRMWInst::Xchg:
18131     return Intrinsic::ppc_atomicrmw_xchg_i128;
18132   case AtomicRMWInst::Add:
18133     return Intrinsic::ppc_atomicrmw_add_i128;
18134   case AtomicRMWInst::Sub:
18135     return Intrinsic::ppc_atomicrmw_sub_i128;
18136   case AtomicRMWInst::And:
18137     return Intrinsic::ppc_atomicrmw_and_i128;
18138   case AtomicRMWInst::Or:
18139     return Intrinsic::ppc_atomicrmw_or_i128;
18140   case AtomicRMWInst::Xor:
18141     return Intrinsic::ppc_atomicrmw_xor_i128;
18142   case AtomicRMWInst::Nand:
18143     return Intrinsic::ppc_atomicrmw_nand_i128;
18144   }
18145 }
18146 
18147 Value *PPCTargetLowering::emitMaskedAtomicRMWIntrinsic(
18148     IRBuilderBase &Builder, AtomicRMWInst *AI, Value *AlignedAddr, Value *Incr,
18149     Value *Mask, Value *ShiftAmt, AtomicOrdering Ord) const {
18150   assert(shouldInlineQuadwordAtomics() && "Only support quadword now");
18151   Module *M = Builder.GetInsertBlock()->getParent()->getParent();
18152   Type *ValTy = Incr->getType();
18153   assert(ValTy->getPrimitiveSizeInBits() == 128);
18154   Function *RMW = Intrinsic::getDeclaration(
18155       M, getIntrinsicForAtomicRMWBinOp128(AI->getOperation()));
18156   Type *Int64Ty = Type::getInt64Ty(M->getContext());
18157   Value *IncrLo = Builder.CreateTrunc(Incr, Int64Ty, "incr_lo");
18158   Value *IncrHi =
18159       Builder.CreateTrunc(Builder.CreateLShr(Incr, 64), Int64Ty, "incr_hi");
18160   Value *Addr =
18161       Builder.CreateBitCast(AlignedAddr, Type::getInt8PtrTy(M->getContext()));
18162   Value *LoHi = Builder.CreateCall(RMW, {Addr, IncrLo, IncrHi});
18163   Value *Lo = Builder.CreateExtractValue(LoHi, 0, "lo");
18164   Value *Hi = Builder.CreateExtractValue(LoHi, 1, "hi");
18165   Lo = Builder.CreateZExt(Lo, ValTy, "lo64");
18166   Hi = Builder.CreateZExt(Hi, ValTy, "hi64");
18167   return Builder.CreateOr(
18168       Lo, Builder.CreateShl(Hi, ConstantInt::get(ValTy, 64)), "val64");
18169 }
18170 
18171 Value *PPCTargetLowering::emitMaskedAtomicCmpXchgIntrinsic(
18172     IRBuilderBase &Builder, AtomicCmpXchgInst *CI, Value *AlignedAddr,
18173     Value *CmpVal, Value *NewVal, Value *Mask, AtomicOrdering Ord) const {
18174   assert(shouldInlineQuadwordAtomics() && "Only support quadword now");
18175   Module *M = Builder.GetInsertBlock()->getParent()->getParent();
18176   Type *ValTy = CmpVal->getType();
18177   assert(ValTy->getPrimitiveSizeInBits() == 128);
18178   Function *IntCmpXchg =
18179       Intrinsic::getDeclaration(M, Intrinsic::ppc_cmpxchg_i128);
18180   Type *Int64Ty = Type::getInt64Ty(M->getContext());
18181   Value *CmpLo = Builder.CreateTrunc(CmpVal, Int64Ty, "cmp_lo");
18182   Value *CmpHi =
18183       Builder.CreateTrunc(Builder.CreateLShr(CmpVal, 64), Int64Ty, "cmp_hi");
18184   Value *NewLo = Builder.CreateTrunc(NewVal, Int64Ty, "new_lo");
18185   Value *NewHi =
18186       Builder.CreateTrunc(Builder.CreateLShr(NewVal, 64), Int64Ty, "new_hi");
18187   Value *Addr =
18188       Builder.CreateBitCast(AlignedAddr, Type::getInt8PtrTy(M->getContext()));
18189   emitLeadingFence(Builder, CI, Ord);
18190   Value *LoHi =
18191       Builder.CreateCall(IntCmpXchg, {Addr, CmpLo, CmpHi, NewLo, NewHi});
18192   emitTrailingFence(Builder, CI, Ord);
18193   Value *Lo = Builder.CreateExtractValue(LoHi, 0, "lo");
18194   Value *Hi = Builder.CreateExtractValue(LoHi, 1, "hi");
18195   Lo = Builder.CreateZExt(Lo, ValTy, "lo64");
18196   Hi = Builder.CreateZExt(Hi, ValTy, "hi64");
18197   return Builder.CreateOr(
18198       Lo, Builder.CreateShl(Hi, ConstantInt::get(ValTy, 64)), "val64");
18199 }
18200