1 //===-- PPCISelLowering.cpp - PPC DAG Lowering Implementation -------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the PPCISelLowering class.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "PPCISelLowering.h"
14 #include "MCTargetDesc/PPCPredicates.h"
15 #include "PPC.h"
16 #include "PPCCCState.h"
17 #include "PPCCallingConv.h"
18 #include "PPCFrameLowering.h"
19 #include "PPCInstrInfo.h"
20 #include "PPCMachineFunctionInfo.h"
21 #include "PPCPerfectShuffle.h"
22 #include "PPCRegisterInfo.h"
23 #include "PPCSubtarget.h"
24 #include "PPCTargetMachine.h"
25 #include "llvm/ADT/APFloat.h"
26 #include "llvm/ADT/APInt.h"
27 #include "llvm/ADT/ArrayRef.h"
28 #include "llvm/ADT/DenseMap.h"
29 #include "llvm/ADT/None.h"
30 #include "llvm/ADT/STLExtras.h"
31 #include "llvm/ADT/SmallPtrSet.h"
32 #include "llvm/ADT/SmallSet.h"
33 #include "llvm/ADT/SmallVector.h"
34 #include "llvm/ADT/Statistic.h"
35 #include "llvm/ADT/StringRef.h"
36 #include "llvm/ADT/StringSwitch.h"
37 #include "llvm/CodeGen/CallingConvLower.h"
38 #include "llvm/CodeGen/ISDOpcodes.h"
39 #include "llvm/CodeGen/MachineBasicBlock.h"
40 #include "llvm/CodeGen/MachineFrameInfo.h"
41 #include "llvm/CodeGen/MachineFunction.h"
42 #include "llvm/CodeGen/MachineInstr.h"
43 #include "llvm/CodeGen/MachineInstrBuilder.h"
44 #include "llvm/CodeGen/MachineJumpTableInfo.h"
45 #include "llvm/CodeGen/MachineLoopInfo.h"
46 #include "llvm/CodeGen/MachineMemOperand.h"
47 #include "llvm/CodeGen/MachineModuleInfo.h"
48 #include "llvm/CodeGen/MachineOperand.h"
49 #include "llvm/CodeGen/MachineRegisterInfo.h"
50 #include "llvm/CodeGen/RuntimeLibcalls.h"
51 #include "llvm/CodeGen/SelectionDAG.h"
52 #include "llvm/CodeGen/SelectionDAGNodes.h"
53 #include "llvm/CodeGen/TargetInstrInfo.h"
54 #include "llvm/CodeGen/TargetLowering.h"
55 #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h"
56 #include "llvm/CodeGen/TargetRegisterInfo.h"
57 #include "llvm/CodeGen/ValueTypes.h"
58 #include "llvm/IR/CallSite.h"
59 #include "llvm/IR/CallingConv.h"
60 #include "llvm/IR/Constant.h"
61 #include "llvm/IR/Constants.h"
62 #include "llvm/IR/DataLayout.h"
63 #include "llvm/IR/DebugLoc.h"
64 #include "llvm/IR/DerivedTypes.h"
65 #include "llvm/IR/Function.h"
66 #include "llvm/IR/GlobalValue.h"
67 #include "llvm/IR/IRBuilder.h"
68 #include "llvm/IR/Instructions.h"
69 #include "llvm/IR/Intrinsics.h"
70 #include "llvm/IR/IntrinsicsPowerPC.h"
71 #include "llvm/IR/Module.h"
72 #include "llvm/IR/Type.h"
73 #include "llvm/IR/Use.h"
74 #include "llvm/IR/Value.h"
75 #include "llvm/MC/MCContext.h"
76 #include "llvm/MC/MCExpr.h"
77 #include "llvm/MC/MCRegisterInfo.h"
78 #include "llvm/MC/MCSymbolXCOFF.h"
79 #include "llvm/Support/AtomicOrdering.h"
80 #include "llvm/Support/BranchProbability.h"
81 #include "llvm/Support/Casting.h"
82 #include "llvm/Support/CodeGen.h"
83 #include "llvm/Support/CommandLine.h"
84 #include "llvm/Support/Compiler.h"
85 #include "llvm/Support/Debug.h"
86 #include "llvm/Support/ErrorHandling.h"
87 #include "llvm/Support/Format.h"
88 #include "llvm/Support/KnownBits.h"
89 #include "llvm/Support/MachineValueType.h"
90 #include "llvm/Support/MathExtras.h"
91 #include "llvm/Support/raw_ostream.h"
92 #include "llvm/Target/TargetMachine.h"
93 #include "llvm/Target/TargetOptions.h"
94 #include <algorithm>
95 #include <cassert>
96 #include <cstdint>
97 #include <iterator>
98 #include <list>
99 #include <utility>
100 #include <vector>
101 
102 using namespace llvm;
103 
104 #define DEBUG_TYPE "ppc-lowering"
105 
106 static cl::opt<bool> DisablePPCPreinc("disable-ppc-preinc",
107 cl::desc("disable preincrement load/store generation on PPC"), cl::Hidden);
108 
109 static cl::opt<bool> DisableILPPref("disable-ppc-ilp-pref",
110 cl::desc("disable setting the node scheduling preference to ILP on PPC"), cl::Hidden);
111 
112 static cl::opt<bool> DisablePPCUnaligned("disable-ppc-unaligned",
113 cl::desc("disable unaligned load/store generation on PPC"), cl::Hidden);
114 
115 static cl::opt<bool> DisableSCO("disable-ppc-sco",
116 cl::desc("disable sibling call optimization on ppc"), cl::Hidden);
117 
118 static cl::opt<bool> DisableInnermostLoopAlign32("disable-ppc-innermost-loop-align32",
119 cl::desc("don't always align innermost loop to 32 bytes on ppc"), cl::Hidden);
120 
121 static cl::opt<bool> EnableQuadPrecision("enable-ppc-quad-precision",
122 cl::desc("enable quad precision float support on ppc"), cl::Hidden);
123 
124 static cl::opt<bool> UseAbsoluteJumpTables("ppc-use-absolute-jumptables",
125 cl::desc("use absolute jump tables on ppc"), cl::Hidden);
126 
127 STATISTIC(NumTailCalls, "Number of tail calls");
128 STATISTIC(NumSiblingCalls, "Number of sibling calls");
129 
130 static bool isNByteElemShuffleMask(ShuffleVectorSDNode *, unsigned, int);
131 
132 static SDValue widenVec(SelectionDAG &DAG, SDValue Vec, const SDLoc &dl);
133 
134 // FIXME: Remove this once the bug has been fixed!
135 extern cl::opt<bool> ANDIGlueBug;
136 
137 PPCTargetLowering::PPCTargetLowering(const PPCTargetMachine &TM,
138                                      const PPCSubtarget &STI)
139     : TargetLowering(TM), Subtarget(STI) {
140   // On PPC32/64, arguments smaller than 4/8 bytes are extended, so all
141   // arguments are at least 4/8 bytes aligned.
142   bool isPPC64 = Subtarget.isPPC64();
143   setMinStackArgumentAlignment(isPPC64 ? Align(8) : Align(4));
144 
145   // Set up the register classes.
146   addRegisterClass(MVT::i32, &PPC::GPRCRegClass);
147   if (!useSoftFloat()) {
148     if (hasSPE()) {
149       addRegisterClass(MVT::f32, &PPC::GPRCRegClass);
150       addRegisterClass(MVT::f64, &PPC::SPERCRegClass);
151     } else {
152       addRegisterClass(MVT::f32, &PPC::F4RCRegClass);
153       addRegisterClass(MVT::f64, &PPC::F8RCRegClass);
154     }
155   }
156 
157   // Match BITREVERSE to customized fast code sequence in the td file.
158   setOperationAction(ISD::BITREVERSE, MVT::i32, Legal);
159   setOperationAction(ISD::BITREVERSE, MVT::i64, Legal);
160 
161   // Sub-word ATOMIC_CMP_SWAP need to ensure that the input is zero-extended.
162   setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i32, Custom);
163 
164   // PowerPC has an i16 but no i8 (or i1) SEXTLOAD.
165   for (MVT VT : MVT::integer_valuetypes()) {
166     setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote);
167     setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i8, Expand);
168   }
169 
170   setTruncStoreAction(MVT::f64, MVT::f32, Expand);
171 
172   // PowerPC has pre-inc load and store's.
173   setIndexedLoadAction(ISD::PRE_INC, MVT::i1, Legal);
174   setIndexedLoadAction(ISD::PRE_INC, MVT::i8, Legal);
175   setIndexedLoadAction(ISD::PRE_INC, MVT::i16, Legal);
176   setIndexedLoadAction(ISD::PRE_INC, MVT::i32, Legal);
177   setIndexedLoadAction(ISD::PRE_INC, MVT::i64, Legal);
178   setIndexedStoreAction(ISD::PRE_INC, MVT::i1, Legal);
179   setIndexedStoreAction(ISD::PRE_INC, MVT::i8, Legal);
180   setIndexedStoreAction(ISD::PRE_INC, MVT::i16, Legal);
181   setIndexedStoreAction(ISD::PRE_INC, MVT::i32, Legal);
182   setIndexedStoreAction(ISD::PRE_INC, MVT::i64, Legal);
183   if (!Subtarget.hasSPE()) {
184     setIndexedLoadAction(ISD::PRE_INC, MVT::f32, Legal);
185     setIndexedLoadAction(ISD::PRE_INC, MVT::f64, Legal);
186     setIndexedStoreAction(ISD::PRE_INC, MVT::f32, Legal);
187     setIndexedStoreAction(ISD::PRE_INC, MVT::f64, Legal);
188   }
189 
190   // PowerPC uses ADDC/ADDE/SUBC/SUBE to propagate carry.
191   const MVT ScalarIntVTs[] = { MVT::i32, MVT::i64 };
192   for (MVT VT : ScalarIntVTs) {
193     setOperationAction(ISD::ADDC, VT, Legal);
194     setOperationAction(ISD::ADDE, VT, Legal);
195     setOperationAction(ISD::SUBC, VT, Legal);
196     setOperationAction(ISD::SUBE, VT, Legal);
197   }
198 
199   if (Subtarget.useCRBits()) {
200     setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
201 
202     if (isPPC64 || Subtarget.hasFPCVT()) {
203       setOperationAction(ISD::SINT_TO_FP, MVT::i1, Promote);
204       AddPromotedToType (ISD::SINT_TO_FP, MVT::i1,
205                          isPPC64 ? MVT::i64 : MVT::i32);
206       setOperationAction(ISD::UINT_TO_FP, MVT::i1, Promote);
207       AddPromotedToType(ISD::UINT_TO_FP, MVT::i1,
208                         isPPC64 ? MVT::i64 : MVT::i32);
209     } else {
210       setOperationAction(ISD::SINT_TO_FP, MVT::i1, Custom);
211       setOperationAction(ISD::UINT_TO_FP, MVT::i1, Custom);
212     }
213 
214     // PowerPC does not support direct load/store of condition registers.
215     setOperationAction(ISD::LOAD, MVT::i1, Custom);
216     setOperationAction(ISD::STORE, MVT::i1, Custom);
217 
218     // FIXME: Remove this once the ANDI glue bug is fixed:
219     if (ANDIGlueBug)
220       setOperationAction(ISD::TRUNCATE, MVT::i1, Custom);
221 
222     for (MVT VT : MVT::integer_valuetypes()) {
223       setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote);
224       setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i1, Promote);
225       setTruncStoreAction(VT, MVT::i1, Expand);
226     }
227 
228     addRegisterClass(MVT::i1, &PPC::CRBITRCRegClass);
229   }
230 
231   // Expand ppcf128 to i32 by hand for the benefit of llvm-gcc bootstrap on
232   // PPC (the libcall is not available).
233   setOperationAction(ISD::FP_TO_SINT, MVT::ppcf128, Custom);
234   setOperationAction(ISD::FP_TO_UINT, MVT::ppcf128, Custom);
235 
236   // We do not currently implement these libm ops for PowerPC.
237   setOperationAction(ISD::FFLOOR, MVT::ppcf128, Expand);
238   setOperationAction(ISD::FCEIL,  MVT::ppcf128, Expand);
239   setOperationAction(ISD::FTRUNC, MVT::ppcf128, Expand);
240   setOperationAction(ISD::FRINT,  MVT::ppcf128, Expand);
241   setOperationAction(ISD::FNEARBYINT, MVT::ppcf128, Expand);
242   setOperationAction(ISD::FREM, MVT::ppcf128, Expand);
243 
244   // PowerPC has no SREM/UREM instructions unless we are on P9
245   // On P9 we may use a hardware instruction to compute the remainder.
246   // The instructions are not legalized directly because in the cases where the
247   // result of both the remainder and the division is required it is more
248   // efficient to compute the remainder from the result of the division rather
249   // than use the remainder instruction.
250   if (Subtarget.isISA3_0()) {
251     setOperationAction(ISD::SREM, MVT::i32, Custom);
252     setOperationAction(ISD::UREM, MVT::i32, Custom);
253     setOperationAction(ISD::SREM, MVT::i64, Custom);
254     setOperationAction(ISD::UREM, MVT::i64, Custom);
255   } else {
256     setOperationAction(ISD::SREM, MVT::i32, Expand);
257     setOperationAction(ISD::UREM, MVT::i32, Expand);
258     setOperationAction(ISD::SREM, MVT::i64, Expand);
259     setOperationAction(ISD::UREM, MVT::i64, Expand);
260   }
261 
262   // Don't use SMUL_LOHI/UMUL_LOHI or SDIVREM/UDIVREM to lower SREM/UREM.
263   setOperationAction(ISD::UMUL_LOHI, MVT::i32, Expand);
264   setOperationAction(ISD::SMUL_LOHI, MVT::i32, Expand);
265   setOperationAction(ISD::UMUL_LOHI, MVT::i64, Expand);
266   setOperationAction(ISD::SMUL_LOHI, MVT::i64, Expand);
267   setOperationAction(ISD::UDIVREM, MVT::i32, Expand);
268   setOperationAction(ISD::SDIVREM, MVT::i32, Expand);
269   setOperationAction(ISD::UDIVREM, MVT::i64, Expand);
270   setOperationAction(ISD::SDIVREM, MVT::i64, Expand);
271 
272   // We don't support sin/cos/sqrt/fmod/pow
273   setOperationAction(ISD::FSIN , MVT::f64, Expand);
274   setOperationAction(ISD::FCOS , MVT::f64, Expand);
275   setOperationAction(ISD::FSINCOS, MVT::f64, Expand);
276   setOperationAction(ISD::FREM , MVT::f64, Expand);
277   setOperationAction(ISD::FPOW , MVT::f64, Expand);
278   setOperationAction(ISD::FSIN , MVT::f32, Expand);
279   setOperationAction(ISD::FCOS , MVT::f32, Expand);
280   setOperationAction(ISD::FSINCOS, MVT::f32, Expand);
281   setOperationAction(ISD::FREM , MVT::f32, Expand);
282   setOperationAction(ISD::FPOW , MVT::f32, Expand);
283   if (Subtarget.hasSPE()) {
284     setOperationAction(ISD::FMA  , MVT::f64, Expand);
285     setOperationAction(ISD::FMA  , MVT::f32, Expand);
286   } else {
287     setOperationAction(ISD::FMA  , MVT::f64, Legal);
288     setOperationAction(ISD::FMA  , MVT::f32, Legal);
289   }
290 
291   setOperationAction(ISD::FLT_ROUNDS_, MVT::i32, Custom);
292 
293   // If we're enabling GP optimizations, use hardware square root
294   if (!Subtarget.hasFSQRT() &&
295       !(TM.Options.UnsafeFPMath && Subtarget.hasFRSQRTE() &&
296         Subtarget.hasFRE()))
297     setOperationAction(ISD::FSQRT, MVT::f64, Expand);
298 
299   if (!Subtarget.hasFSQRT() &&
300       !(TM.Options.UnsafeFPMath && Subtarget.hasFRSQRTES() &&
301         Subtarget.hasFRES()))
302     setOperationAction(ISD::FSQRT, MVT::f32, Expand);
303 
304   if (Subtarget.hasFCPSGN()) {
305     setOperationAction(ISD::FCOPYSIGN, MVT::f64, Legal);
306     setOperationAction(ISD::FCOPYSIGN, MVT::f32, Legal);
307   } else {
308     setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
309     setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand);
310   }
311 
312   if (Subtarget.hasFPRND()) {
313     setOperationAction(ISD::FFLOOR, MVT::f64, Legal);
314     setOperationAction(ISD::FCEIL,  MVT::f64, Legal);
315     setOperationAction(ISD::FTRUNC, MVT::f64, Legal);
316     setOperationAction(ISD::FROUND, MVT::f64, Legal);
317 
318     setOperationAction(ISD::FFLOOR, MVT::f32, Legal);
319     setOperationAction(ISD::FCEIL,  MVT::f32, Legal);
320     setOperationAction(ISD::FTRUNC, MVT::f32, Legal);
321     setOperationAction(ISD::FROUND, MVT::f32, Legal);
322   }
323 
324   // PowerPC does not have BSWAP, but we can use vector BSWAP instruction xxbrd
325   // to speed up scalar BSWAP64.
326   // CTPOP or CTTZ were introduced in P8/P9 respectively
327   setOperationAction(ISD::BSWAP, MVT::i32  , Expand);
328   if (Subtarget.hasP9Vector())
329     setOperationAction(ISD::BSWAP, MVT::i64  , Custom);
330   else
331     setOperationAction(ISD::BSWAP, MVT::i64  , Expand);
332   if (Subtarget.isISA3_0()) {
333     setOperationAction(ISD::CTTZ , MVT::i32  , Legal);
334     setOperationAction(ISD::CTTZ , MVT::i64  , Legal);
335   } else {
336     setOperationAction(ISD::CTTZ , MVT::i32  , Expand);
337     setOperationAction(ISD::CTTZ , MVT::i64  , Expand);
338   }
339 
340   if (Subtarget.hasPOPCNTD() == PPCSubtarget::POPCNTD_Fast) {
341     setOperationAction(ISD::CTPOP, MVT::i32  , Legal);
342     setOperationAction(ISD::CTPOP, MVT::i64  , Legal);
343   } else {
344     setOperationAction(ISD::CTPOP, MVT::i32  , Expand);
345     setOperationAction(ISD::CTPOP, MVT::i64  , Expand);
346   }
347 
348   // PowerPC does not have ROTR
349   setOperationAction(ISD::ROTR, MVT::i32   , Expand);
350   setOperationAction(ISD::ROTR, MVT::i64   , Expand);
351 
352   if (!Subtarget.useCRBits()) {
353     // PowerPC does not have Select
354     setOperationAction(ISD::SELECT, MVT::i32, Expand);
355     setOperationAction(ISD::SELECT, MVT::i64, Expand);
356     setOperationAction(ISD::SELECT, MVT::f32, Expand);
357     setOperationAction(ISD::SELECT, MVT::f64, Expand);
358   }
359 
360   // PowerPC wants to turn select_cc of FP into fsel when possible.
361   setOperationAction(ISD::SELECT_CC, MVT::f32, Custom);
362   setOperationAction(ISD::SELECT_CC, MVT::f64, Custom);
363 
364   // PowerPC wants to optimize integer setcc a bit
365   if (!Subtarget.useCRBits())
366     setOperationAction(ISD::SETCC, MVT::i32, Custom);
367 
368   // PowerPC does not have BRCOND which requires SetCC
369   if (!Subtarget.useCRBits())
370     setOperationAction(ISD::BRCOND, MVT::Other, Expand);
371 
372   setOperationAction(ISD::BR_JT,  MVT::Other, Expand);
373 
374   if (Subtarget.hasSPE()) {
375     // SPE has built-in conversions
376     setOperationAction(ISD::FP_TO_SINT, MVT::i32, Legal);
377     setOperationAction(ISD::SINT_TO_FP, MVT::i32, Legal);
378     setOperationAction(ISD::UINT_TO_FP, MVT::i32, Legal);
379   } else {
380     // PowerPC turns FP_TO_SINT into FCTIWZ and some load/stores.
381     setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom);
382 
383     // PowerPC does not have [U|S]INT_TO_FP
384     setOperationAction(ISD::SINT_TO_FP, MVT::i32, Expand);
385     setOperationAction(ISD::UINT_TO_FP, MVT::i32, Expand);
386   }
387 
388   if (Subtarget.hasDirectMove() && isPPC64) {
389     setOperationAction(ISD::BITCAST, MVT::f32, Legal);
390     setOperationAction(ISD::BITCAST, MVT::i32, Legal);
391     setOperationAction(ISD::BITCAST, MVT::i64, Legal);
392     setOperationAction(ISD::BITCAST, MVT::f64, Legal);
393     if (TM.Options.UnsafeFPMath) {
394       setOperationAction(ISD::LRINT, MVT::f64, Legal);
395       setOperationAction(ISD::LRINT, MVT::f32, Legal);
396       setOperationAction(ISD::LLRINT, MVT::f64, Legal);
397       setOperationAction(ISD::LLRINT, MVT::f32, Legal);
398       setOperationAction(ISD::LROUND, MVT::f64, Legal);
399       setOperationAction(ISD::LROUND, MVT::f32, Legal);
400       setOperationAction(ISD::LLROUND, MVT::f64, Legal);
401       setOperationAction(ISD::LLROUND, MVT::f32, Legal);
402     }
403   } else {
404     setOperationAction(ISD::BITCAST, MVT::f32, Expand);
405     setOperationAction(ISD::BITCAST, MVT::i32, Expand);
406     setOperationAction(ISD::BITCAST, MVT::i64, Expand);
407     setOperationAction(ISD::BITCAST, MVT::f64, Expand);
408   }
409 
410   // We cannot sextinreg(i1).  Expand to shifts.
411   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
412 
413   // NOTE: EH_SJLJ_SETJMP/_LONGJMP supported here is NOT intended to support
414   // SjLj exception handling but a light-weight setjmp/longjmp replacement to
415   // support continuation, user-level threading, and etc.. As a result, no
416   // other SjLj exception interfaces are implemented and please don't build
417   // your own exception handling based on them.
418   // LLVM/Clang supports zero-cost DWARF exception handling.
419   setOperationAction(ISD::EH_SJLJ_SETJMP, MVT::i32, Custom);
420   setOperationAction(ISD::EH_SJLJ_LONGJMP, MVT::Other, Custom);
421 
422   // We want to legalize GlobalAddress and ConstantPool nodes into the
423   // appropriate instructions to materialize the address.
424   setOperationAction(ISD::GlobalAddress, MVT::i32, Custom);
425   setOperationAction(ISD::GlobalTLSAddress, MVT::i32, Custom);
426   setOperationAction(ISD::BlockAddress,  MVT::i32, Custom);
427   setOperationAction(ISD::ConstantPool,  MVT::i32, Custom);
428   setOperationAction(ISD::JumpTable,     MVT::i32, Custom);
429   setOperationAction(ISD::GlobalAddress, MVT::i64, Custom);
430   setOperationAction(ISD::GlobalTLSAddress, MVT::i64, Custom);
431   setOperationAction(ISD::BlockAddress,  MVT::i64, Custom);
432   setOperationAction(ISD::ConstantPool,  MVT::i64, Custom);
433   setOperationAction(ISD::JumpTable,     MVT::i64, Custom);
434 
435   // TRAP is legal.
436   setOperationAction(ISD::TRAP, MVT::Other, Legal);
437 
438   // TRAMPOLINE is custom lowered.
439   setOperationAction(ISD::INIT_TRAMPOLINE, MVT::Other, Custom);
440   setOperationAction(ISD::ADJUST_TRAMPOLINE, MVT::Other, Custom);
441 
442   // VASTART needs to be custom lowered to use the VarArgsFrameIndex
443   setOperationAction(ISD::VASTART           , MVT::Other, Custom);
444 
445   if (Subtarget.is64BitELFABI()) {
446     // VAARG always uses double-word chunks, so promote anything smaller.
447     setOperationAction(ISD::VAARG, MVT::i1, Promote);
448     AddPromotedToType(ISD::VAARG, MVT::i1, MVT::i64);
449     setOperationAction(ISD::VAARG, MVT::i8, Promote);
450     AddPromotedToType(ISD::VAARG, MVT::i8, MVT::i64);
451     setOperationAction(ISD::VAARG, MVT::i16, Promote);
452     AddPromotedToType(ISD::VAARG, MVT::i16, MVT::i64);
453     setOperationAction(ISD::VAARG, MVT::i32, Promote);
454     AddPromotedToType(ISD::VAARG, MVT::i32, MVT::i64);
455     setOperationAction(ISD::VAARG, MVT::Other, Expand);
456   } else if (Subtarget.is32BitELFABI()) {
457     // VAARG is custom lowered with the 32-bit SVR4 ABI.
458     setOperationAction(ISD::VAARG, MVT::Other, Custom);
459     setOperationAction(ISD::VAARG, MVT::i64, Custom);
460   } else
461     setOperationAction(ISD::VAARG, MVT::Other, Expand);
462 
463   // VACOPY is custom lowered with the 32-bit SVR4 ABI.
464   if (Subtarget.is32BitELFABI())
465     setOperationAction(ISD::VACOPY            , MVT::Other, Custom);
466   else
467     setOperationAction(ISD::VACOPY            , MVT::Other, Expand);
468 
469   // Use the default implementation.
470   setOperationAction(ISD::VAEND             , MVT::Other, Expand);
471   setOperationAction(ISD::STACKSAVE         , MVT::Other, Expand);
472   setOperationAction(ISD::STACKRESTORE      , MVT::Other, Custom);
473   setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32  , Custom);
474   setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i64  , Custom);
475   setOperationAction(ISD::GET_DYNAMIC_AREA_OFFSET, MVT::i32, Custom);
476   setOperationAction(ISD::GET_DYNAMIC_AREA_OFFSET, MVT::i64, Custom);
477   setOperationAction(ISD::EH_DWARF_CFA, MVT::i32, Custom);
478   setOperationAction(ISD::EH_DWARF_CFA, MVT::i64, Custom);
479 
480   // We want to custom lower some of our intrinsics.
481   setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
482 
483   // To handle counter-based loop conditions.
484   setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i1, Custom);
485 
486   setOperationAction(ISD::INTRINSIC_VOID, MVT::i8, Custom);
487   setOperationAction(ISD::INTRINSIC_VOID, MVT::i16, Custom);
488   setOperationAction(ISD::INTRINSIC_VOID, MVT::i32, Custom);
489   setOperationAction(ISD::INTRINSIC_VOID, MVT::Other, Custom);
490 
491   // Comparisons that require checking two conditions.
492   if (Subtarget.hasSPE()) {
493     setCondCodeAction(ISD::SETO, MVT::f32, Expand);
494     setCondCodeAction(ISD::SETO, MVT::f64, Expand);
495     setCondCodeAction(ISD::SETUO, MVT::f32, Expand);
496     setCondCodeAction(ISD::SETUO, MVT::f64, Expand);
497   }
498   setCondCodeAction(ISD::SETULT, MVT::f32, Expand);
499   setCondCodeAction(ISD::SETULT, MVT::f64, Expand);
500   setCondCodeAction(ISD::SETUGT, MVT::f32, Expand);
501   setCondCodeAction(ISD::SETUGT, MVT::f64, Expand);
502   setCondCodeAction(ISD::SETUEQ, MVT::f32, Expand);
503   setCondCodeAction(ISD::SETUEQ, MVT::f64, Expand);
504   setCondCodeAction(ISD::SETOGE, MVT::f32, Expand);
505   setCondCodeAction(ISD::SETOGE, MVT::f64, Expand);
506   setCondCodeAction(ISD::SETOLE, MVT::f32, Expand);
507   setCondCodeAction(ISD::SETOLE, MVT::f64, Expand);
508   setCondCodeAction(ISD::SETONE, MVT::f32, Expand);
509   setCondCodeAction(ISD::SETONE, MVT::f64, Expand);
510 
511   if (Subtarget.has64BitSupport()) {
512     // They also have instructions for converting between i64 and fp.
513     setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom);
514     setOperationAction(ISD::FP_TO_UINT, MVT::i64, Expand);
515     setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom);
516     setOperationAction(ISD::UINT_TO_FP, MVT::i64, Expand);
517     // This is just the low 32 bits of a (signed) fp->i64 conversion.
518     // We cannot do this with Promote because i64 is not a legal type.
519     setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom);
520 
521     if (Subtarget.hasLFIWAX() || Subtarget.isPPC64())
522       setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom);
523   } else {
524     // PowerPC does not have FP_TO_UINT on 32-bit implementations.
525     if (Subtarget.hasSPE())
526       setOperationAction(ISD::FP_TO_UINT, MVT::i32, Legal);
527     else
528       setOperationAction(ISD::FP_TO_UINT, MVT::i32, Expand);
529   }
530 
531   // With the instructions enabled under FPCVT, we can do everything.
532   if (Subtarget.hasFPCVT()) {
533     if (Subtarget.has64BitSupport()) {
534       setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom);
535       setOperationAction(ISD::FP_TO_UINT, MVT::i64, Custom);
536       setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom);
537       setOperationAction(ISD::UINT_TO_FP, MVT::i64, Custom);
538     }
539 
540     setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom);
541     setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom);
542     setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom);
543     setOperationAction(ISD::UINT_TO_FP, MVT::i32, Custom);
544   }
545 
546   if (Subtarget.use64BitRegs()) {
547     // 64-bit PowerPC implementations can support i64 types directly
548     addRegisterClass(MVT::i64, &PPC::G8RCRegClass);
549     // BUILD_PAIR can't be handled natively, and should be expanded to shl/or
550     setOperationAction(ISD::BUILD_PAIR, MVT::i64, Expand);
551     // 64-bit PowerPC wants to expand i128 shifts itself.
552     setOperationAction(ISD::SHL_PARTS, MVT::i64, Custom);
553     setOperationAction(ISD::SRA_PARTS, MVT::i64, Custom);
554     setOperationAction(ISD::SRL_PARTS, MVT::i64, Custom);
555   } else {
556     // 32-bit PowerPC wants to expand i64 shifts itself.
557     setOperationAction(ISD::SHL_PARTS, MVT::i32, Custom);
558     setOperationAction(ISD::SRA_PARTS, MVT::i32, Custom);
559     setOperationAction(ISD::SRL_PARTS, MVT::i32, Custom);
560   }
561 
562   if (Subtarget.hasVSX()) {
563     setOperationAction(ISD::FMAXNUM_IEEE, MVT::f64, Legal);
564     setOperationAction(ISD::FMAXNUM_IEEE, MVT::f32, Legal);
565     setOperationAction(ISD::FMINNUM_IEEE, MVT::f64, Legal);
566     setOperationAction(ISD::FMINNUM_IEEE, MVT::f32, Legal);
567   }
568 
569   if (Subtarget.hasAltivec()) {
570     // First set operation action for all vector types to expand. Then we
571     // will selectively turn on ones that can be effectively codegen'd.
572     for (MVT VT : MVT::fixedlen_vector_valuetypes()) {
573       // add/sub are legal for all supported vector VT's.
574       setOperationAction(ISD::ADD, VT, Legal);
575       setOperationAction(ISD::SUB, VT, Legal);
576 
577       // For v2i64, these are only valid with P8Vector. This is corrected after
578       // the loop.
579       if (VT.getSizeInBits() <= 128 && VT.getScalarSizeInBits() <= 64) {
580         setOperationAction(ISD::SMAX, VT, Legal);
581         setOperationAction(ISD::SMIN, VT, Legal);
582         setOperationAction(ISD::UMAX, VT, Legal);
583         setOperationAction(ISD::UMIN, VT, Legal);
584       }
585       else {
586         setOperationAction(ISD::SMAX, VT, Expand);
587         setOperationAction(ISD::SMIN, VT, Expand);
588         setOperationAction(ISD::UMAX, VT, Expand);
589         setOperationAction(ISD::UMIN, VT, Expand);
590       }
591 
592       if (Subtarget.hasVSX()) {
593         setOperationAction(ISD::FMAXNUM, VT, Legal);
594         setOperationAction(ISD::FMINNUM, VT, Legal);
595       }
596 
597       // Vector instructions introduced in P8
598       if (Subtarget.hasP8Altivec() && (VT.SimpleTy != MVT::v1i128)) {
599         setOperationAction(ISD::CTPOP, VT, Legal);
600         setOperationAction(ISD::CTLZ, VT, Legal);
601       }
602       else {
603         setOperationAction(ISD::CTPOP, VT, Expand);
604         setOperationAction(ISD::CTLZ, VT, Expand);
605       }
606 
607       // Vector instructions introduced in P9
608       if (Subtarget.hasP9Altivec() && (VT.SimpleTy != MVT::v1i128))
609         setOperationAction(ISD::CTTZ, VT, Legal);
610       else
611         setOperationAction(ISD::CTTZ, VT, Expand);
612 
613       // We promote all shuffles to v16i8.
614       setOperationAction(ISD::VECTOR_SHUFFLE, VT, Promote);
615       AddPromotedToType (ISD::VECTOR_SHUFFLE, VT, MVT::v16i8);
616 
617       // We promote all non-typed operations to v4i32.
618       setOperationAction(ISD::AND   , VT, Promote);
619       AddPromotedToType (ISD::AND   , VT, MVT::v4i32);
620       setOperationAction(ISD::OR    , VT, Promote);
621       AddPromotedToType (ISD::OR    , VT, MVT::v4i32);
622       setOperationAction(ISD::XOR   , VT, Promote);
623       AddPromotedToType (ISD::XOR   , VT, MVT::v4i32);
624       setOperationAction(ISD::LOAD  , VT, Promote);
625       AddPromotedToType (ISD::LOAD  , VT, MVT::v4i32);
626       setOperationAction(ISD::SELECT, VT, Promote);
627       AddPromotedToType (ISD::SELECT, VT, MVT::v4i32);
628       setOperationAction(ISD::VSELECT, VT, Legal);
629       setOperationAction(ISD::SELECT_CC, VT, Promote);
630       AddPromotedToType (ISD::SELECT_CC, VT, MVT::v4i32);
631       setOperationAction(ISD::STORE, VT, Promote);
632       AddPromotedToType (ISD::STORE, VT, MVT::v4i32);
633 
634       // No other operations are legal.
635       setOperationAction(ISD::MUL , VT, Expand);
636       setOperationAction(ISD::SDIV, VT, Expand);
637       setOperationAction(ISD::SREM, VT, Expand);
638       setOperationAction(ISD::UDIV, VT, Expand);
639       setOperationAction(ISD::UREM, VT, Expand);
640       setOperationAction(ISD::FDIV, VT, Expand);
641       setOperationAction(ISD::FREM, VT, Expand);
642       setOperationAction(ISD::FNEG, VT, Expand);
643       setOperationAction(ISD::FSQRT, VT, Expand);
644       setOperationAction(ISD::FLOG, VT, Expand);
645       setOperationAction(ISD::FLOG10, VT, Expand);
646       setOperationAction(ISD::FLOG2, VT, Expand);
647       setOperationAction(ISD::FEXP, VT, Expand);
648       setOperationAction(ISD::FEXP2, VT, Expand);
649       setOperationAction(ISD::FSIN, VT, Expand);
650       setOperationAction(ISD::FCOS, VT, Expand);
651       setOperationAction(ISD::FABS, VT, Expand);
652       setOperationAction(ISD::FFLOOR, VT, Expand);
653       setOperationAction(ISD::FCEIL,  VT, Expand);
654       setOperationAction(ISD::FTRUNC, VT, Expand);
655       setOperationAction(ISD::FRINT,  VT, Expand);
656       setOperationAction(ISD::FNEARBYINT, VT, Expand);
657       setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Expand);
658       setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Expand);
659       setOperationAction(ISD::BUILD_VECTOR, VT, Expand);
660       setOperationAction(ISD::MULHU, VT, Expand);
661       setOperationAction(ISD::MULHS, VT, Expand);
662       setOperationAction(ISD::UMUL_LOHI, VT, Expand);
663       setOperationAction(ISD::SMUL_LOHI, VT, Expand);
664       setOperationAction(ISD::UDIVREM, VT, Expand);
665       setOperationAction(ISD::SDIVREM, VT, Expand);
666       setOperationAction(ISD::SCALAR_TO_VECTOR, VT, Expand);
667       setOperationAction(ISD::FPOW, VT, Expand);
668       setOperationAction(ISD::BSWAP, VT, Expand);
669       setOperationAction(ISD::SIGN_EXTEND_INREG, VT, Expand);
670       setOperationAction(ISD::ROTL, VT, Expand);
671       setOperationAction(ISD::ROTR, VT, Expand);
672 
673       for (MVT InnerVT : MVT::fixedlen_vector_valuetypes()) {
674         setTruncStoreAction(VT, InnerVT, Expand);
675         setLoadExtAction(ISD::SEXTLOAD, VT, InnerVT, Expand);
676         setLoadExtAction(ISD::ZEXTLOAD, VT, InnerVT, Expand);
677         setLoadExtAction(ISD::EXTLOAD, VT, InnerVT, Expand);
678       }
679     }
680     if (!Subtarget.hasP8Vector()) {
681       setOperationAction(ISD::SMAX, MVT::v2i64, Expand);
682       setOperationAction(ISD::SMIN, MVT::v2i64, Expand);
683       setOperationAction(ISD::UMAX, MVT::v2i64, Expand);
684       setOperationAction(ISD::UMIN, MVT::v2i64, Expand);
685     }
686 
687     for (auto VT : {MVT::v2i64, MVT::v4i32, MVT::v8i16, MVT::v16i8})
688       setOperationAction(ISD::ABS, VT, Custom);
689 
690     // We can custom expand all VECTOR_SHUFFLEs to VPERM, others we can handle
691     // with merges, splats, etc.
692     setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v16i8, Custom);
693 
694     // Vector truncates to sub-word integer that fit in an Altivec/VSX register
695     // are cheap, so handle them before they get expanded to scalar.
696     setOperationAction(ISD::TRUNCATE, MVT::v8i8, Custom);
697     setOperationAction(ISD::TRUNCATE, MVT::v4i8, Custom);
698     setOperationAction(ISD::TRUNCATE, MVT::v2i8, Custom);
699     setOperationAction(ISD::TRUNCATE, MVT::v4i16, Custom);
700     setOperationAction(ISD::TRUNCATE, MVT::v2i16, Custom);
701 
702     setOperationAction(ISD::AND   , MVT::v4i32, Legal);
703     setOperationAction(ISD::OR    , MVT::v4i32, Legal);
704     setOperationAction(ISD::XOR   , MVT::v4i32, Legal);
705     setOperationAction(ISD::LOAD  , MVT::v4i32, Legal);
706     setOperationAction(ISD::SELECT, MVT::v4i32,
707                        Subtarget.useCRBits() ? Legal : Expand);
708     setOperationAction(ISD::STORE , MVT::v4i32, Legal);
709     setOperationAction(ISD::FP_TO_SINT, MVT::v4i32, Legal);
710     setOperationAction(ISD::FP_TO_UINT, MVT::v4i32, Legal);
711     setOperationAction(ISD::SINT_TO_FP, MVT::v4i32, Legal);
712     setOperationAction(ISD::UINT_TO_FP, MVT::v4i32, Legal);
713     setOperationAction(ISD::FFLOOR, MVT::v4f32, Legal);
714     setOperationAction(ISD::FCEIL, MVT::v4f32, Legal);
715     setOperationAction(ISD::FTRUNC, MVT::v4f32, Legal);
716     setOperationAction(ISD::FNEARBYINT, MVT::v4f32, Legal);
717 
718     // Without hasP8Altivec set, v2i64 SMAX isn't available.
719     // But ABS custom lowering requires SMAX support.
720     if (!Subtarget.hasP8Altivec())
721       setOperationAction(ISD::ABS, MVT::v2i64, Expand);
722 
723     // With hasAltivec set, we can lower ISD::ROTL to vrl(b|h|w).
724     if (Subtarget.hasAltivec())
725       for (auto VT : {MVT::v4i32, MVT::v8i16, MVT::v16i8})
726         setOperationAction(ISD::ROTL, VT, Legal);
727     // With hasP8Altivec set, we can lower ISD::ROTL to vrld.
728     if (Subtarget.hasP8Altivec())
729       setOperationAction(ISD::ROTL, MVT::v2i64, Legal);
730 
731     addRegisterClass(MVT::v4f32, &PPC::VRRCRegClass);
732     addRegisterClass(MVT::v4i32, &PPC::VRRCRegClass);
733     addRegisterClass(MVT::v8i16, &PPC::VRRCRegClass);
734     addRegisterClass(MVT::v16i8, &PPC::VRRCRegClass);
735 
736     setOperationAction(ISD::MUL, MVT::v4f32, Legal);
737     setOperationAction(ISD::FMA, MVT::v4f32, Legal);
738 
739     if (TM.Options.UnsafeFPMath || Subtarget.hasVSX()) {
740       setOperationAction(ISD::FDIV, MVT::v4f32, Legal);
741       setOperationAction(ISD::FSQRT, MVT::v4f32, Legal);
742     }
743 
744     if (Subtarget.hasP8Altivec())
745       setOperationAction(ISD::MUL, MVT::v4i32, Legal);
746     else
747       setOperationAction(ISD::MUL, MVT::v4i32, Custom);
748 
749     setOperationAction(ISD::MUL, MVT::v8i16, Custom);
750     setOperationAction(ISD::MUL, MVT::v16i8, Custom);
751 
752     setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f32, Custom);
753     setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4i32, Custom);
754 
755     setOperationAction(ISD::BUILD_VECTOR, MVT::v16i8, Custom);
756     setOperationAction(ISD::BUILD_VECTOR, MVT::v8i16, Custom);
757     setOperationAction(ISD::BUILD_VECTOR, MVT::v4i32, Custom);
758     setOperationAction(ISD::BUILD_VECTOR, MVT::v4f32, Custom);
759 
760     // Altivec does not contain unordered floating-point compare instructions
761     setCondCodeAction(ISD::SETUO, MVT::v4f32, Expand);
762     setCondCodeAction(ISD::SETUEQ, MVT::v4f32, Expand);
763     setCondCodeAction(ISD::SETO,   MVT::v4f32, Expand);
764     setCondCodeAction(ISD::SETONE, MVT::v4f32, Expand);
765 
766     if (Subtarget.hasVSX()) {
767       setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v2f64, Legal);
768       setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Legal);
769       if (Subtarget.hasP8Vector()) {
770         setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f32, Legal);
771         setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Legal);
772       }
773       if (Subtarget.hasDirectMove() && isPPC64) {
774         setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v16i8, Legal);
775         setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v8i16, Legal);
776         setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4i32, Legal);
777         setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v2i64, Legal);
778         setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v16i8, Legal);
779         setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v8i16, Legal);
780         setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4i32, Legal);
781         setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i64, Legal);
782       }
783       setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Legal);
784 
785       // The nearbyint variants are not allowed to raise the inexact exception
786       // so we can only code-gen them with unsafe math.
787       if (TM.Options.UnsafeFPMath) {
788         setOperationAction(ISD::FNEARBYINT, MVT::f64, Legal);
789         setOperationAction(ISD::FNEARBYINT, MVT::f32, Legal);
790       }
791 
792       setOperationAction(ISD::FFLOOR, MVT::v2f64, Legal);
793       setOperationAction(ISD::FCEIL, MVT::v2f64, Legal);
794       setOperationAction(ISD::FTRUNC, MVT::v2f64, Legal);
795       setOperationAction(ISD::FNEARBYINT, MVT::v2f64, Legal);
796       setOperationAction(ISD::FROUND, MVT::v2f64, Legal);
797       setOperationAction(ISD::FROUND, MVT::f64, Legal);
798 
799       setOperationAction(ISD::FNEARBYINT, MVT::v4f32, Legal);
800       setOperationAction(ISD::FROUND, MVT::v4f32, Legal);
801       setOperationAction(ISD::FROUND, MVT::f32, Legal);
802 
803       setOperationAction(ISD::MUL, MVT::v2f64, Legal);
804       setOperationAction(ISD::FMA, MVT::v2f64, Legal);
805 
806       setOperationAction(ISD::FDIV, MVT::v2f64, Legal);
807       setOperationAction(ISD::FSQRT, MVT::v2f64, Legal);
808 
809       // Share the Altivec comparison restrictions.
810       setCondCodeAction(ISD::SETUO, MVT::v2f64, Expand);
811       setCondCodeAction(ISD::SETUEQ, MVT::v2f64, Expand);
812       setCondCodeAction(ISD::SETO,   MVT::v2f64, Expand);
813       setCondCodeAction(ISD::SETONE, MVT::v2f64, Expand);
814 
815       setOperationAction(ISD::LOAD, MVT::v2f64, Legal);
816       setOperationAction(ISD::STORE, MVT::v2f64, Legal);
817 
818       setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v2f64, Legal);
819 
820       if (Subtarget.hasP8Vector())
821         addRegisterClass(MVT::f32, &PPC::VSSRCRegClass);
822 
823       addRegisterClass(MVT::f64, &PPC::VSFRCRegClass);
824 
825       addRegisterClass(MVT::v4i32, &PPC::VSRCRegClass);
826       addRegisterClass(MVT::v4f32, &PPC::VSRCRegClass);
827       addRegisterClass(MVT::v2f64, &PPC::VSRCRegClass);
828 
829       if (Subtarget.hasP8Altivec()) {
830         setOperationAction(ISD::SHL, MVT::v2i64, Legal);
831         setOperationAction(ISD::SRA, MVT::v2i64, Legal);
832         setOperationAction(ISD::SRL, MVT::v2i64, Legal);
833 
834         // 128 bit shifts can be accomplished via 3 instructions for SHL and
835         // SRL, but not for SRA because of the instructions available:
836         // VS{RL} and VS{RL}O. However due to direct move costs, it's not worth
837         // doing
838         setOperationAction(ISD::SHL, MVT::v1i128, Expand);
839         setOperationAction(ISD::SRL, MVT::v1i128, Expand);
840         setOperationAction(ISD::SRA, MVT::v1i128, Expand);
841 
842         setOperationAction(ISD::SETCC, MVT::v2i64, Legal);
843       }
844       else {
845         setOperationAction(ISD::SHL, MVT::v2i64, Expand);
846         setOperationAction(ISD::SRA, MVT::v2i64, Expand);
847         setOperationAction(ISD::SRL, MVT::v2i64, Expand);
848 
849         setOperationAction(ISD::SETCC, MVT::v2i64, Custom);
850 
851         // VSX v2i64 only supports non-arithmetic operations.
852         setOperationAction(ISD::ADD, MVT::v2i64, Expand);
853         setOperationAction(ISD::SUB, MVT::v2i64, Expand);
854       }
855 
856       setOperationAction(ISD::LOAD, MVT::v2i64, Promote);
857       AddPromotedToType (ISD::LOAD, MVT::v2i64, MVT::v2f64);
858       setOperationAction(ISD::STORE, MVT::v2i64, Promote);
859       AddPromotedToType (ISD::STORE, MVT::v2i64, MVT::v2f64);
860 
861       setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v2i64, Legal);
862 
863       setOperationAction(ISD::SINT_TO_FP, MVT::v2i64, Legal);
864       setOperationAction(ISD::UINT_TO_FP, MVT::v2i64, Legal);
865       setOperationAction(ISD::FP_TO_SINT, MVT::v2i64, Legal);
866       setOperationAction(ISD::FP_TO_UINT, MVT::v2i64, Legal);
867 
868       // Custom handling for partial vectors of integers converted to
869       // floating point. We already have optimal handling for v2i32 through
870       // the DAG combine, so those aren't necessary.
871       setOperationAction(ISD::UINT_TO_FP, MVT::v2i8, Custom);
872       setOperationAction(ISD::UINT_TO_FP, MVT::v4i8, Custom);
873       setOperationAction(ISD::UINT_TO_FP, MVT::v2i16, Custom);
874       setOperationAction(ISD::UINT_TO_FP, MVT::v4i16, Custom);
875       setOperationAction(ISD::SINT_TO_FP, MVT::v2i8, Custom);
876       setOperationAction(ISD::SINT_TO_FP, MVT::v4i8, Custom);
877       setOperationAction(ISD::SINT_TO_FP, MVT::v2i16, Custom);
878       setOperationAction(ISD::SINT_TO_FP, MVT::v4i16, Custom);
879 
880       setOperationAction(ISD::FNEG, MVT::v4f32, Legal);
881       setOperationAction(ISD::FNEG, MVT::v2f64, Legal);
882       setOperationAction(ISD::FABS, MVT::v4f32, Legal);
883       setOperationAction(ISD::FABS, MVT::v2f64, Legal);
884       setOperationAction(ISD::FCOPYSIGN, MVT::v4f32, Legal);
885       setOperationAction(ISD::FCOPYSIGN, MVT::v2f64, Legal);
886 
887       if (Subtarget.hasDirectMove())
888         setOperationAction(ISD::BUILD_VECTOR, MVT::v2i64, Custom);
889       setOperationAction(ISD::BUILD_VECTOR, MVT::v2f64, Custom);
890 
891       addRegisterClass(MVT::v2i64, &PPC::VSRCRegClass);
892     }
893 
894     if (Subtarget.hasP8Altivec()) {
895       addRegisterClass(MVT::v2i64, &PPC::VRRCRegClass);
896       addRegisterClass(MVT::v1i128, &PPC::VRRCRegClass);
897     }
898 
899     if (Subtarget.hasP9Vector()) {
900       setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4i32, Custom);
901       setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4f32, Custom);
902 
903       // 128 bit shifts can be accomplished via 3 instructions for SHL and
904       // SRL, but not for SRA because of the instructions available:
905       // VS{RL} and VS{RL}O.
906       setOperationAction(ISD::SHL, MVT::v1i128, Legal);
907       setOperationAction(ISD::SRL, MVT::v1i128, Legal);
908       setOperationAction(ISD::SRA, MVT::v1i128, Expand);
909 
910       if (EnableQuadPrecision) {
911         addRegisterClass(MVT::f128, &PPC::VRRCRegClass);
912         setOperationAction(ISD::FADD, MVT::f128, Legal);
913         setOperationAction(ISD::FSUB, MVT::f128, Legal);
914         setOperationAction(ISD::FDIV, MVT::f128, Legal);
915         setOperationAction(ISD::FMUL, MVT::f128, Legal);
916         setOperationAction(ISD::FP_EXTEND, MVT::f128, Legal);
917         // No extending loads to f128 on PPC.
918         for (MVT FPT : MVT::fp_valuetypes())
919           setLoadExtAction(ISD::EXTLOAD, MVT::f128, FPT, Expand);
920         setOperationAction(ISD::FMA, MVT::f128, Legal);
921         setCondCodeAction(ISD::SETULT, MVT::f128, Expand);
922         setCondCodeAction(ISD::SETUGT, MVT::f128, Expand);
923         setCondCodeAction(ISD::SETUEQ, MVT::f128, Expand);
924         setCondCodeAction(ISD::SETOGE, MVT::f128, Expand);
925         setCondCodeAction(ISD::SETOLE, MVT::f128, Expand);
926         setCondCodeAction(ISD::SETONE, MVT::f128, Expand);
927 
928         setOperationAction(ISD::FTRUNC, MVT::f128, Legal);
929         setOperationAction(ISD::FRINT, MVT::f128, Legal);
930         setOperationAction(ISD::FFLOOR, MVT::f128, Legal);
931         setOperationAction(ISD::FCEIL, MVT::f128, Legal);
932         setOperationAction(ISD::FNEARBYINT, MVT::f128, Legal);
933         setOperationAction(ISD::FROUND, MVT::f128, Legal);
934 
935         setOperationAction(ISD::SELECT, MVT::f128, Expand);
936         setOperationAction(ISD::FP_ROUND, MVT::f64, Legal);
937         setOperationAction(ISD::FP_ROUND, MVT::f32, Legal);
938         setTruncStoreAction(MVT::f128, MVT::f64, Expand);
939         setTruncStoreAction(MVT::f128, MVT::f32, Expand);
940         setOperationAction(ISD::BITCAST, MVT::i128, Custom);
941         // No implementation for these ops for PowerPC.
942         setOperationAction(ISD::FSIN , MVT::f128, Expand);
943         setOperationAction(ISD::FCOS , MVT::f128, Expand);
944         setOperationAction(ISD::FPOW, MVT::f128, Expand);
945         setOperationAction(ISD::FPOWI, MVT::f128, Expand);
946         setOperationAction(ISD::FREM, MVT::f128, Expand);
947       }
948       setOperationAction(ISD::FP_EXTEND, MVT::v2f32, Custom);
949       setOperationAction(ISD::BSWAP, MVT::v8i16, Legal);
950       setOperationAction(ISD::BSWAP, MVT::v4i32, Legal);
951       setOperationAction(ISD::BSWAP, MVT::v2i64, Legal);
952       setOperationAction(ISD::BSWAP, MVT::v1i128, Legal);
953     }
954 
955     if (Subtarget.hasP9Altivec()) {
956       setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v8i16, Custom);
957       setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v16i8, Custom);
958 
959       setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v4i8,  Legal);
960       setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v4i16, Legal);
961       setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v4i32, Legal);
962       setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i8,  Legal);
963       setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i16, Legal);
964       setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i32, Legal);
965       setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i64, Legal);
966     }
967   }
968 
969   if (Subtarget.hasQPX()) {
970     setOperationAction(ISD::FADD, MVT::v4f64, Legal);
971     setOperationAction(ISD::FSUB, MVT::v4f64, Legal);
972     setOperationAction(ISD::FMUL, MVT::v4f64, Legal);
973     setOperationAction(ISD::FREM, MVT::v4f64, Expand);
974 
975     setOperationAction(ISD::FCOPYSIGN, MVT::v4f64, Legal);
976     setOperationAction(ISD::FGETSIGN, MVT::v4f64, Expand);
977 
978     setOperationAction(ISD::LOAD  , MVT::v4f64, Custom);
979     setOperationAction(ISD::STORE , MVT::v4f64, Custom);
980 
981     setTruncStoreAction(MVT::v4f64, MVT::v4f32, Custom);
982     setLoadExtAction(ISD::EXTLOAD, MVT::v4f64, MVT::v4f32, Custom);
983 
984     if (!Subtarget.useCRBits())
985       setOperationAction(ISD::SELECT, MVT::v4f64, Expand);
986     setOperationAction(ISD::VSELECT, MVT::v4f64, Legal);
987 
988     setOperationAction(ISD::EXTRACT_VECTOR_ELT , MVT::v4f64, Legal);
989     setOperationAction(ISD::INSERT_VECTOR_ELT , MVT::v4f64, Expand);
990     setOperationAction(ISD::CONCAT_VECTORS , MVT::v4f64, Expand);
991     setOperationAction(ISD::EXTRACT_SUBVECTOR , MVT::v4f64, Expand);
992     setOperationAction(ISD::VECTOR_SHUFFLE , MVT::v4f64, Custom);
993     setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f64, Legal);
994     setOperationAction(ISD::BUILD_VECTOR, MVT::v4f64, Custom);
995 
996     setOperationAction(ISD::FP_TO_SINT , MVT::v4f64, Legal);
997     setOperationAction(ISD::FP_TO_UINT , MVT::v4f64, Expand);
998 
999     setOperationAction(ISD::FP_ROUND , MVT::v4f32, Legal);
1000     setOperationAction(ISD::FP_EXTEND, MVT::v4f64, Legal);
1001 
1002     setOperationAction(ISD::FNEG , MVT::v4f64, Legal);
1003     setOperationAction(ISD::FABS , MVT::v4f64, Legal);
1004     setOperationAction(ISD::FSIN , MVT::v4f64, Expand);
1005     setOperationAction(ISD::FCOS , MVT::v4f64, Expand);
1006     setOperationAction(ISD::FPOW , MVT::v4f64, Expand);
1007     setOperationAction(ISD::FLOG , MVT::v4f64, Expand);
1008     setOperationAction(ISD::FLOG2 , MVT::v4f64, Expand);
1009     setOperationAction(ISD::FLOG10 , MVT::v4f64, Expand);
1010     setOperationAction(ISD::FEXP , MVT::v4f64, Expand);
1011     setOperationAction(ISD::FEXP2 , MVT::v4f64, Expand);
1012 
1013     setOperationAction(ISD::FMINNUM, MVT::v4f64, Legal);
1014     setOperationAction(ISD::FMAXNUM, MVT::v4f64, Legal);
1015 
1016     setIndexedLoadAction(ISD::PRE_INC, MVT::v4f64, Legal);
1017     setIndexedStoreAction(ISD::PRE_INC, MVT::v4f64, Legal);
1018 
1019     addRegisterClass(MVT::v4f64, &PPC::QFRCRegClass);
1020 
1021     setOperationAction(ISD::FADD, MVT::v4f32, Legal);
1022     setOperationAction(ISD::FSUB, MVT::v4f32, Legal);
1023     setOperationAction(ISD::FMUL, MVT::v4f32, Legal);
1024     setOperationAction(ISD::FREM, MVT::v4f32, Expand);
1025 
1026     setOperationAction(ISD::FCOPYSIGN, MVT::v4f32, Legal);
1027     setOperationAction(ISD::FGETSIGN, MVT::v4f32, Expand);
1028 
1029     setOperationAction(ISD::LOAD  , MVT::v4f32, Custom);
1030     setOperationAction(ISD::STORE , MVT::v4f32, Custom);
1031 
1032     if (!Subtarget.useCRBits())
1033       setOperationAction(ISD::SELECT, MVT::v4f32, Expand);
1034     setOperationAction(ISD::VSELECT, MVT::v4f32, Legal);
1035 
1036     setOperationAction(ISD::EXTRACT_VECTOR_ELT , MVT::v4f32, Legal);
1037     setOperationAction(ISD::INSERT_VECTOR_ELT , MVT::v4f32, Expand);
1038     setOperationAction(ISD::CONCAT_VECTORS , MVT::v4f32, Expand);
1039     setOperationAction(ISD::EXTRACT_SUBVECTOR , MVT::v4f32, Expand);
1040     setOperationAction(ISD::VECTOR_SHUFFLE , MVT::v4f32, Custom);
1041     setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f32, Legal);
1042     setOperationAction(ISD::BUILD_VECTOR, MVT::v4f32, Custom);
1043 
1044     setOperationAction(ISD::FP_TO_SINT , MVT::v4f32, Legal);
1045     setOperationAction(ISD::FP_TO_UINT , MVT::v4f32, Expand);
1046 
1047     setOperationAction(ISD::FNEG , MVT::v4f32, Legal);
1048     setOperationAction(ISD::FABS , MVT::v4f32, Legal);
1049     setOperationAction(ISD::FSIN , MVT::v4f32, Expand);
1050     setOperationAction(ISD::FCOS , MVT::v4f32, Expand);
1051     setOperationAction(ISD::FPOW , MVT::v4f32, Expand);
1052     setOperationAction(ISD::FLOG , MVT::v4f32, Expand);
1053     setOperationAction(ISD::FLOG2 , MVT::v4f32, Expand);
1054     setOperationAction(ISD::FLOG10 , MVT::v4f32, Expand);
1055     setOperationAction(ISD::FEXP , MVT::v4f32, Expand);
1056     setOperationAction(ISD::FEXP2 , MVT::v4f32, Expand);
1057 
1058     setOperationAction(ISD::FMINNUM, MVT::v4f32, Legal);
1059     setOperationAction(ISD::FMAXNUM, MVT::v4f32, Legal);
1060 
1061     setIndexedLoadAction(ISD::PRE_INC, MVT::v4f32, Legal);
1062     setIndexedStoreAction(ISD::PRE_INC, MVT::v4f32, Legal);
1063 
1064     addRegisterClass(MVT::v4f32, &PPC::QSRCRegClass);
1065 
1066     setOperationAction(ISD::AND , MVT::v4i1, Legal);
1067     setOperationAction(ISD::OR , MVT::v4i1, Legal);
1068     setOperationAction(ISD::XOR , MVT::v4i1, Legal);
1069 
1070     if (!Subtarget.useCRBits())
1071       setOperationAction(ISD::SELECT, MVT::v4i1, Expand);
1072     setOperationAction(ISD::VSELECT, MVT::v4i1, Legal);
1073 
1074     setOperationAction(ISD::LOAD  , MVT::v4i1, Custom);
1075     setOperationAction(ISD::STORE , MVT::v4i1, Custom);
1076 
1077     setOperationAction(ISD::EXTRACT_VECTOR_ELT , MVT::v4i1, Custom);
1078     setOperationAction(ISD::INSERT_VECTOR_ELT , MVT::v4i1, Expand);
1079     setOperationAction(ISD::CONCAT_VECTORS , MVT::v4i1, Expand);
1080     setOperationAction(ISD::EXTRACT_SUBVECTOR , MVT::v4i1, Expand);
1081     setOperationAction(ISD::VECTOR_SHUFFLE , MVT::v4i1, Custom);
1082     setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4i1, Expand);
1083     setOperationAction(ISD::BUILD_VECTOR, MVT::v4i1, Custom);
1084 
1085     setOperationAction(ISD::SINT_TO_FP, MVT::v4i1, Custom);
1086     setOperationAction(ISD::UINT_TO_FP, MVT::v4i1, Custom);
1087 
1088     addRegisterClass(MVT::v4i1, &PPC::QBRCRegClass);
1089 
1090     setOperationAction(ISD::FFLOOR, MVT::v4f64, Legal);
1091     setOperationAction(ISD::FCEIL,  MVT::v4f64, Legal);
1092     setOperationAction(ISD::FTRUNC, MVT::v4f64, Legal);
1093     setOperationAction(ISD::FROUND, MVT::v4f64, Legal);
1094 
1095     setOperationAction(ISD::FFLOOR, MVT::v4f32, Legal);
1096     setOperationAction(ISD::FCEIL,  MVT::v4f32, Legal);
1097     setOperationAction(ISD::FTRUNC, MVT::v4f32, Legal);
1098     setOperationAction(ISD::FROUND, MVT::v4f32, Legal);
1099 
1100     setOperationAction(ISD::FNEARBYINT, MVT::v4f64, Expand);
1101     setOperationAction(ISD::FNEARBYINT, MVT::v4f32, Expand);
1102 
1103     // These need to set FE_INEXACT, and so cannot be vectorized here.
1104     setOperationAction(ISD::FRINT, MVT::v4f64, Expand);
1105     setOperationAction(ISD::FRINT, MVT::v4f32, Expand);
1106 
1107     if (TM.Options.UnsafeFPMath) {
1108       setOperationAction(ISD::FDIV, MVT::v4f64, Legal);
1109       setOperationAction(ISD::FSQRT, MVT::v4f64, Legal);
1110 
1111       setOperationAction(ISD::FDIV, MVT::v4f32, Legal);
1112       setOperationAction(ISD::FSQRT, MVT::v4f32, Legal);
1113     } else {
1114       setOperationAction(ISD::FDIV, MVT::v4f64, Expand);
1115       setOperationAction(ISD::FSQRT, MVT::v4f64, Expand);
1116 
1117       setOperationAction(ISD::FDIV, MVT::v4f32, Expand);
1118       setOperationAction(ISD::FSQRT, MVT::v4f32, Expand);
1119     }
1120   }
1121 
1122   if (Subtarget.has64BitSupport())
1123     setOperationAction(ISD::PREFETCH, MVT::Other, Legal);
1124 
1125   setOperationAction(ISD::READCYCLECOUNTER, MVT::i64, isPPC64 ? Legal : Custom);
1126 
1127   if (!isPPC64) {
1128     setOperationAction(ISD::ATOMIC_LOAD,  MVT::i64, Expand);
1129     setOperationAction(ISD::ATOMIC_STORE, MVT::i64, Expand);
1130   }
1131 
1132   setBooleanContents(ZeroOrOneBooleanContent);
1133 
1134   if (Subtarget.hasAltivec()) {
1135     // Altivec instructions set fields to all zeros or all ones.
1136     setBooleanVectorContents(ZeroOrNegativeOneBooleanContent);
1137   }
1138 
1139   if (!isPPC64) {
1140     // These libcalls are not available in 32-bit.
1141     setLibcallName(RTLIB::SHL_I128, nullptr);
1142     setLibcallName(RTLIB::SRL_I128, nullptr);
1143     setLibcallName(RTLIB::SRA_I128, nullptr);
1144   }
1145 
1146   setStackPointerRegisterToSaveRestore(isPPC64 ? PPC::X1 : PPC::R1);
1147 
1148   // We have target-specific dag combine patterns for the following nodes:
1149   setTargetDAGCombine(ISD::ADD);
1150   setTargetDAGCombine(ISD::SHL);
1151   setTargetDAGCombine(ISD::SRA);
1152   setTargetDAGCombine(ISD::SRL);
1153   setTargetDAGCombine(ISD::MUL);
1154   setTargetDAGCombine(ISD::SINT_TO_FP);
1155   setTargetDAGCombine(ISD::BUILD_VECTOR);
1156   if (Subtarget.hasFPCVT())
1157     setTargetDAGCombine(ISD::UINT_TO_FP);
1158   setTargetDAGCombine(ISD::LOAD);
1159   setTargetDAGCombine(ISD::STORE);
1160   setTargetDAGCombine(ISD::BR_CC);
1161   if (Subtarget.useCRBits())
1162     setTargetDAGCombine(ISD::BRCOND);
1163   setTargetDAGCombine(ISD::BSWAP);
1164   setTargetDAGCombine(ISD::INTRINSIC_WO_CHAIN);
1165   setTargetDAGCombine(ISD::INTRINSIC_W_CHAIN);
1166   setTargetDAGCombine(ISD::INTRINSIC_VOID);
1167 
1168   setTargetDAGCombine(ISD::SIGN_EXTEND);
1169   setTargetDAGCombine(ISD::ZERO_EXTEND);
1170   setTargetDAGCombine(ISD::ANY_EXTEND);
1171 
1172   setTargetDAGCombine(ISD::TRUNCATE);
1173   setTargetDAGCombine(ISD::VECTOR_SHUFFLE);
1174 
1175 
1176   if (Subtarget.useCRBits()) {
1177     setTargetDAGCombine(ISD::TRUNCATE);
1178     setTargetDAGCombine(ISD::SETCC);
1179     setTargetDAGCombine(ISD::SELECT_CC);
1180   }
1181 
1182   // Use reciprocal estimates.
1183   if (TM.Options.UnsafeFPMath) {
1184     setTargetDAGCombine(ISD::FDIV);
1185     setTargetDAGCombine(ISD::FSQRT);
1186   }
1187 
1188   if (Subtarget.hasP9Altivec()) {
1189     setTargetDAGCombine(ISD::ABS);
1190     setTargetDAGCombine(ISD::VSELECT);
1191   }
1192 
1193   // Darwin long double math library functions have $LDBL128 appended.
1194   if (Subtarget.isDarwin()) {
1195     setLibcallName(RTLIB::COS_PPCF128, "cosl$LDBL128");
1196     setLibcallName(RTLIB::POW_PPCF128, "powl$LDBL128");
1197     setLibcallName(RTLIB::REM_PPCF128, "fmodl$LDBL128");
1198     setLibcallName(RTLIB::SIN_PPCF128, "sinl$LDBL128");
1199     setLibcallName(RTLIB::SQRT_PPCF128, "sqrtl$LDBL128");
1200     setLibcallName(RTLIB::LOG_PPCF128, "logl$LDBL128");
1201     setLibcallName(RTLIB::LOG2_PPCF128, "log2l$LDBL128");
1202     setLibcallName(RTLIB::LOG10_PPCF128, "log10l$LDBL128");
1203     setLibcallName(RTLIB::EXP_PPCF128, "expl$LDBL128");
1204     setLibcallName(RTLIB::EXP2_PPCF128, "exp2l$LDBL128");
1205   }
1206 
1207   if (EnableQuadPrecision) {
1208     setLibcallName(RTLIB::LOG_F128, "logf128");
1209     setLibcallName(RTLIB::LOG2_F128, "log2f128");
1210     setLibcallName(RTLIB::LOG10_F128, "log10f128");
1211     setLibcallName(RTLIB::EXP_F128, "expf128");
1212     setLibcallName(RTLIB::EXP2_F128, "exp2f128");
1213     setLibcallName(RTLIB::SIN_F128, "sinf128");
1214     setLibcallName(RTLIB::COS_F128, "cosf128");
1215     setLibcallName(RTLIB::POW_F128, "powf128");
1216     setLibcallName(RTLIB::FMIN_F128, "fminf128");
1217     setLibcallName(RTLIB::FMAX_F128, "fmaxf128");
1218     setLibcallName(RTLIB::POWI_F128, "__powikf2");
1219     setLibcallName(RTLIB::REM_F128, "fmodf128");
1220   }
1221 
1222   // With 32 condition bits, we don't need to sink (and duplicate) compares
1223   // aggressively in CodeGenPrep.
1224   if (Subtarget.useCRBits()) {
1225     setHasMultipleConditionRegisters();
1226     setJumpIsExpensive();
1227   }
1228 
1229   setMinFunctionAlignment(Align(4));
1230   if (Subtarget.isDarwin())
1231     setPrefFunctionAlignment(Align(16));
1232 
1233   switch (Subtarget.getCPUDirective()) {
1234   default: break;
1235   case PPC::DIR_970:
1236   case PPC::DIR_A2:
1237   case PPC::DIR_E500:
1238   case PPC::DIR_E500mc:
1239   case PPC::DIR_E5500:
1240   case PPC::DIR_PWR4:
1241   case PPC::DIR_PWR5:
1242   case PPC::DIR_PWR5X:
1243   case PPC::DIR_PWR6:
1244   case PPC::DIR_PWR6X:
1245   case PPC::DIR_PWR7:
1246   case PPC::DIR_PWR8:
1247   case PPC::DIR_PWR9:
1248   case PPC::DIR_PWR_FUTURE:
1249     setPrefLoopAlignment(Align(16));
1250     setPrefFunctionAlignment(Align(16));
1251     break;
1252   }
1253 
1254   if (Subtarget.enableMachineScheduler())
1255     setSchedulingPreference(Sched::Source);
1256   else
1257     setSchedulingPreference(Sched::Hybrid);
1258 
1259   computeRegisterProperties(STI.getRegisterInfo());
1260 
1261   // The Freescale cores do better with aggressive inlining of memcpy and
1262   // friends. GCC uses same threshold of 128 bytes (= 32 word stores).
1263   if (Subtarget.getCPUDirective() == PPC::DIR_E500mc ||
1264       Subtarget.getCPUDirective() == PPC::DIR_E5500) {
1265     MaxStoresPerMemset = 32;
1266     MaxStoresPerMemsetOptSize = 16;
1267     MaxStoresPerMemcpy = 32;
1268     MaxStoresPerMemcpyOptSize = 8;
1269     MaxStoresPerMemmove = 32;
1270     MaxStoresPerMemmoveOptSize = 8;
1271   } else if (Subtarget.getCPUDirective() == PPC::DIR_A2) {
1272     // The A2 also benefits from (very) aggressive inlining of memcpy and
1273     // friends. The overhead of a the function call, even when warm, can be
1274     // over one hundred cycles.
1275     MaxStoresPerMemset = 128;
1276     MaxStoresPerMemcpy = 128;
1277     MaxStoresPerMemmove = 128;
1278     MaxLoadsPerMemcmp = 128;
1279   } else {
1280     MaxLoadsPerMemcmp = 8;
1281     MaxLoadsPerMemcmpOptSize = 4;
1282   }
1283 }
1284 
1285 /// getMaxByValAlign - Helper for getByValTypeAlignment to determine
1286 /// the desired ByVal argument alignment.
1287 static void getMaxByValAlign(Type *Ty, unsigned &MaxAlign,
1288                              unsigned MaxMaxAlign) {
1289   if (MaxAlign == MaxMaxAlign)
1290     return;
1291   if (VectorType *VTy = dyn_cast<VectorType>(Ty)) {
1292     if (MaxMaxAlign >= 32 && VTy->getBitWidth() >= 256)
1293       MaxAlign = 32;
1294     else if (VTy->getBitWidth() >= 128 && MaxAlign < 16)
1295       MaxAlign = 16;
1296   } else if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
1297     unsigned EltAlign = 0;
1298     getMaxByValAlign(ATy->getElementType(), EltAlign, MaxMaxAlign);
1299     if (EltAlign > MaxAlign)
1300       MaxAlign = EltAlign;
1301   } else if (StructType *STy = dyn_cast<StructType>(Ty)) {
1302     for (auto *EltTy : STy->elements()) {
1303       unsigned EltAlign = 0;
1304       getMaxByValAlign(EltTy, EltAlign, MaxMaxAlign);
1305       if (EltAlign > MaxAlign)
1306         MaxAlign = EltAlign;
1307       if (MaxAlign == MaxMaxAlign)
1308         break;
1309     }
1310   }
1311 }
1312 
1313 /// getByValTypeAlignment - Return the desired alignment for ByVal aggregate
1314 /// function arguments in the caller parameter area.
1315 unsigned PPCTargetLowering::getByValTypeAlignment(Type *Ty,
1316                                                   const DataLayout &DL) const {
1317   // Darwin passes everything on 4 byte boundary.
1318   if (Subtarget.isDarwin())
1319     return 4;
1320 
1321   // 16byte and wider vectors are passed on 16byte boundary.
1322   // The rest is 8 on PPC64 and 4 on PPC32 boundary.
1323   unsigned Align = Subtarget.isPPC64() ? 8 : 4;
1324   if (Subtarget.hasAltivec() || Subtarget.hasQPX())
1325     getMaxByValAlign(Ty, Align, Subtarget.hasQPX() ? 32 : 16);
1326   return Align;
1327 }
1328 
1329 bool PPCTargetLowering::useSoftFloat() const {
1330   return Subtarget.useSoftFloat();
1331 }
1332 
1333 bool PPCTargetLowering::hasSPE() const {
1334   return Subtarget.hasSPE();
1335 }
1336 
1337 bool PPCTargetLowering::preferIncOfAddToSubOfNot(EVT VT) const {
1338   return VT.isScalarInteger();
1339 }
1340 
1341 const char *PPCTargetLowering::getTargetNodeName(unsigned Opcode) const {
1342   switch ((PPCISD::NodeType)Opcode) {
1343   case PPCISD::FIRST_NUMBER:    break;
1344   case PPCISD::FSEL:            return "PPCISD::FSEL";
1345   case PPCISD::XSMAXCDP:        return "PPCISD::XSMAXCDP";
1346   case PPCISD::XSMINCDP:        return "PPCISD::XSMINCDP";
1347   case PPCISD::FCFID:           return "PPCISD::FCFID";
1348   case PPCISD::FCFIDU:          return "PPCISD::FCFIDU";
1349   case PPCISD::FCFIDS:          return "PPCISD::FCFIDS";
1350   case PPCISD::FCFIDUS:         return "PPCISD::FCFIDUS";
1351   case PPCISD::FCTIDZ:          return "PPCISD::FCTIDZ";
1352   case PPCISD::FCTIWZ:          return "PPCISD::FCTIWZ";
1353   case PPCISD::FCTIDUZ:         return "PPCISD::FCTIDUZ";
1354   case PPCISD::FCTIWUZ:         return "PPCISD::FCTIWUZ";
1355   case PPCISD::FP_TO_UINT_IN_VSR:
1356                                 return "PPCISD::FP_TO_UINT_IN_VSR,";
1357   case PPCISD::FP_TO_SINT_IN_VSR:
1358                                 return "PPCISD::FP_TO_SINT_IN_VSR";
1359   case PPCISD::FRE:             return "PPCISD::FRE";
1360   case PPCISD::FRSQRTE:         return "PPCISD::FRSQRTE";
1361   case PPCISD::STFIWX:          return "PPCISD::STFIWX";
1362   case PPCISD::VMADDFP:         return "PPCISD::VMADDFP";
1363   case PPCISD::VNMSUBFP:        return "PPCISD::VNMSUBFP";
1364   case PPCISD::VPERM:           return "PPCISD::VPERM";
1365   case PPCISD::XXSPLT:          return "PPCISD::XXSPLT";
1366   case PPCISD::VECINSERT:       return "PPCISD::VECINSERT";
1367   case PPCISD::XXPERMDI:        return "PPCISD::XXPERMDI";
1368   case PPCISD::VECSHL:          return "PPCISD::VECSHL";
1369   case PPCISD::CMPB:            return "PPCISD::CMPB";
1370   case PPCISD::Hi:              return "PPCISD::Hi";
1371   case PPCISD::Lo:              return "PPCISD::Lo";
1372   case PPCISD::TOC_ENTRY:       return "PPCISD::TOC_ENTRY";
1373   case PPCISD::ATOMIC_CMP_SWAP_8: return "PPCISD::ATOMIC_CMP_SWAP_8";
1374   case PPCISD::ATOMIC_CMP_SWAP_16: return "PPCISD::ATOMIC_CMP_SWAP_16";
1375   case PPCISD::DYNALLOC:        return "PPCISD::DYNALLOC";
1376   case PPCISD::DYNAREAOFFSET:   return "PPCISD::DYNAREAOFFSET";
1377   case PPCISD::GlobalBaseReg:   return "PPCISD::GlobalBaseReg";
1378   case PPCISD::SRL:             return "PPCISD::SRL";
1379   case PPCISD::SRA:             return "PPCISD::SRA";
1380   case PPCISD::SHL:             return "PPCISD::SHL";
1381   case PPCISD::SRA_ADDZE:       return "PPCISD::SRA_ADDZE";
1382   case PPCISD::CALL:            return "PPCISD::CALL";
1383   case PPCISD::CALL_NOP:        return "PPCISD::CALL_NOP";
1384   case PPCISD::MTCTR:           return "PPCISD::MTCTR";
1385   case PPCISD::BCTRL:           return "PPCISD::BCTRL";
1386   case PPCISD::BCTRL_LOAD_TOC:  return "PPCISD::BCTRL_LOAD_TOC";
1387   case PPCISD::RET_FLAG:        return "PPCISD::RET_FLAG";
1388   case PPCISD::READ_TIME_BASE:  return "PPCISD::READ_TIME_BASE";
1389   case PPCISD::EH_SJLJ_SETJMP:  return "PPCISD::EH_SJLJ_SETJMP";
1390   case PPCISD::EH_SJLJ_LONGJMP: return "PPCISD::EH_SJLJ_LONGJMP";
1391   case PPCISD::MFOCRF:          return "PPCISD::MFOCRF";
1392   case PPCISD::MFVSR:           return "PPCISD::MFVSR";
1393   case PPCISD::MTVSRA:          return "PPCISD::MTVSRA";
1394   case PPCISD::MTVSRZ:          return "PPCISD::MTVSRZ";
1395   case PPCISD::SINT_VEC_TO_FP:  return "PPCISD::SINT_VEC_TO_FP";
1396   case PPCISD::UINT_VEC_TO_FP:  return "PPCISD::UINT_VEC_TO_FP";
1397   case PPCISD::ANDI_rec_1_EQ_BIT:
1398     return "PPCISD::ANDI_rec_1_EQ_BIT";
1399   case PPCISD::ANDI_rec_1_GT_BIT:
1400     return "PPCISD::ANDI_rec_1_GT_BIT";
1401   case PPCISD::VCMP:            return "PPCISD::VCMP";
1402   case PPCISD::VCMPo:           return "PPCISD::VCMPo";
1403   case PPCISD::LBRX:            return "PPCISD::LBRX";
1404   case PPCISD::STBRX:           return "PPCISD::STBRX";
1405   case PPCISD::LFIWAX:          return "PPCISD::LFIWAX";
1406   case PPCISD::LFIWZX:          return "PPCISD::LFIWZX";
1407   case PPCISD::LXSIZX:          return "PPCISD::LXSIZX";
1408   case PPCISD::STXSIX:          return "PPCISD::STXSIX";
1409   case PPCISD::VEXTS:           return "PPCISD::VEXTS";
1410   case PPCISD::SExtVElems:      return "PPCISD::SExtVElems";
1411   case PPCISD::LXVD2X:          return "PPCISD::LXVD2X";
1412   case PPCISD::STXVD2X:         return "PPCISD::STXVD2X";
1413   case PPCISD::LOAD_VEC_BE:     return "PPCISD::LOAD_VEC_BE";
1414   case PPCISD::STORE_VEC_BE:    return "PPCISD::STORE_VEC_BE";
1415   case PPCISD::ST_VSR_SCAL_INT:
1416                                 return "PPCISD::ST_VSR_SCAL_INT";
1417   case PPCISD::COND_BRANCH:     return "PPCISD::COND_BRANCH";
1418   case PPCISD::BDNZ:            return "PPCISD::BDNZ";
1419   case PPCISD::BDZ:             return "PPCISD::BDZ";
1420   case PPCISD::MFFS:            return "PPCISD::MFFS";
1421   case PPCISD::FADDRTZ:         return "PPCISD::FADDRTZ";
1422   case PPCISD::TC_RETURN:       return "PPCISD::TC_RETURN";
1423   case PPCISD::CR6SET:          return "PPCISD::CR6SET";
1424   case PPCISD::CR6UNSET:        return "PPCISD::CR6UNSET";
1425   case PPCISD::PPC32_GOT:       return "PPCISD::PPC32_GOT";
1426   case PPCISD::PPC32_PICGOT:    return "PPCISD::PPC32_PICGOT";
1427   case PPCISD::ADDIS_GOT_TPREL_HA: return "PPCISD::ADDIS_GOT_TPREL_HA";
1428   case PPCISD::LD_GOT_TPREL_L:  return "PPCISD::LD_GOT_TPREL_L";
1429   case PPCISD::ADD_TLS:         return "PPCISD::ADD_TLS";
1430   case PPCISD::ADDIS_TLSGD_HA:  return "PPCISD::ADDIS_TLSGD_HA";
1431   case PPCISD::ADDI_TLSGD_L:    return "PPCISD::ADDI_TLSGD_L";
1432   case PPCISD::GET_TLS_ADDR:    return "PPCISD::GET_TLS_ADDR";
1433   case PPCISD::ADDI_TLSGD_L_ADDR: return "PPCISD::ADDI_TLSGD_L_ADDR";
1434   case PPCISD::ADDIS_TLSLD_HA:  return "PPCISD::ADDIS_TLSLD_HA";
1435   case PPCISD::ADDI_TLSLD_L:    return "PPCISD::ADDI_TLSLD_L";
1436   case PPCISD::GET_TLSLD_ADDR:  return "PPCISD::GET_TLSLD_ADDR";
1437   case PPCISD::ADDI_TLSLD_L_ADDR: return "PPCISD::ADDI_TLSLD_L_ADDR";
1438   case PPCISD::ADDIS_DTPREL_HA: return "PPCISD::ADDIS_DTPREL_HA";
1439   case PPCISD::ADDI_DTPREL_L:   return "PPCISD::ADDI_DTPREL_L";
1440   case PPCISD::VADD_SPLAT:      return "PPCISD::VADD_SPLAT";
1441   case PPCISD::SC:              return "PPCISD::SC";
1442   case PPCISD::CLRBHRB:         return "PPCISD::CLRBHRB";
1443   case PPCISD::MFBHRBE:         return "PPCISD::MFBHRBE";
1444   case PPCISD::RFEBB:           return "PPCISD::RFEBB";
1445   case PPCISD::XXSWAPD:         return "PPCISD::XXSWAPD";
1446   case PPCISD::SWAP_NO_CHAIN:   return "PPCISD::SWAP_NO_CHAIN";
1447   case PPCISD::VABSD:           return "PPCISD::VABSD";
1448   case PPCISD::QVFPERM:         return "PPCISD::QVFPERM";
1449   case PPCISD::QVGPCI:          return "PPCISD::QVGPCI";
1450   case PPCISD::QVALIGNI:        return "PPCISD::QVALIGNI";
1451   case PPCISD::QVESPLATI:       return "PPCISD::QVESPLATI";
1452   case PPCISD::QBFLT:           return "PPCISD::QBFLT";
1453   case PPCISD::QVLFSb:          return "PPCISD::QVLFSb";
1454   case PPCISD::BUILD_FP128:     return "PPCISD::BUILD_FP128";
1455   case PPCISD::BUILD_SPE64:     return "PPCISD::BUILD_SPE64";
1456   case PPCISD::EXTRACT_SPE:     return "PPCISD::EXTRACT_SPE";
1457   case PPCISD::EXTSWSLI:        return "PPCISD::EXTSWSLI";
1458   case PPCISD::LD_VSX_LH:       return "PPCISD::LD_VSX_LH";
1459   case PPCISD::FP_EXTEND_HALF:  return "PPCISD::FP_EXTEND_HALF";
1460   case PPCISD::LD_SPLAT:        return "PPCISD::LD_SPLAT";
1461   }
1462   return nullptr;
1463 }
1464 
1465 EVT PPCTargetLowering::getSetCCResultType(const DataLayout &DL, LLVMContext &C,
1466                                           EVT VT) const {
1467   if (!VT.isVector())
1468     return Subtarget.useCRBits() ? MVT::i1 : MVT::i32;
1469 
1470   if (Subtarget.hasQPX())
1471     return EVT::getVectorVT(C, MVT::i1, VT.getVectorNumElements());
1472 
1473   return VT.changeVectorElementTypeToInteger();
1474 }
1475 
1476 bool PPCTargetLowering::enableAggressiveFMAFusion(EVT VT) const {
1477   assert(VT.isFloatingPoint() && "Non-floating-point FMA?");
1478   return true;
1479 }
1480 
1481 //===----------------------------------------------------------------------===//
1482 // Node matching predicates, for use by the tblgen matching code.
1483 //===----------------------------------------------------------------------===//
1484 
1485 /// isFloatingPointZero - Return true if this is 0.0 or -0.0.
1486 static bool isFloatingPointZero(SDValue Op) {
1487   if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(Op))
1488     return CFP->getValueAPF().isZero();
1489   else if (ISD::isEXTLoad(Op.getNode()) || ISD::isNON_EXTLoad(Op.getNode())) {
1490     // Maybe this has already been legalized into the constant pool?
1491     if (ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(Op.getOperand(1)))
1492       if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CP->getConstVal()))
1493         return CFP->getValueAPF().isZero();
1494   }
1495   return false;
1496 }
1497 
1498 /// isConstantOrUndef - Op is either an undef node or a ConstantSDNode.  Return
1499 /// true if Op is undef or if it matches the specified value.
1500 static bool isConstantOrUndef(int Op, int Val) {
1501   return Op < 0 || Op == Val;
1502 }
1503 
1504 /// isVPKUHUMShuffleMask - Return true if this is the shuffle mask for a
1505 /// VPKUHUM instruction.
1506 /// The ShuffleKind distinguishes between big-endian operations with
1507 /// two different inputs (0), either-endian operations with two identical
1508 /// inputs (1), and little-endian operations with two different inputs (2).
1509 /// For the latter, the input operands are swapped (see PPCInstrAltivec.td).
1510 bool PPC::isVPKUHUMShuffleMask(ShuffleVectorSDNode *N, unsigned ShuffleKind,
1511                                SelectionDAG &DAG) {
1512   bool IsLE = DAG.getDataLayout().isLittleEndian();
1513   if (ShuffleKind == 0) {
1514     if (IsLE)
1515       return false;
1516     for (unsigned i = 0; i != 16; ++i)
1517       if (!isConstantOrUndef(N->getMaskElt(i), i*2+1))
1518         return false;
1519   } else if (ShuffleKind == 2) {
1520     if (!IsLE)
1521       return false;
1522     for (unsigned i = 0; i != 16; ++i)
1523       if (!isConstantOrUndef(N->getMaskElt(i), i*2))
1524         return false;
1525   } else if (ShuffleKind == 1) {
1526     unsigned j = IsLE ? 0 : 1;
1527     for (unsigned i = 0; i != 8; ++i)
1528       if (!isConstantOrUndef(N->getMaskElt(i),    i*2+j) ||
1529           !isConstantOrUndef(N->getMaskElt(i+8),  i*2+j))
1530         return false;
1531   }
1532   return true;
1533 }
1534 
1535 /// isVPKUWUMShuffleMask - Return true if this is the shuffle mask for a
1536 /// VPKUWUM instruction.
1537 /// The ShuffleKind distinguishes between big-endian operations with
1538 /// two different inputs (0), either-endian operations with two identical
1539 /// inputs (1), and little-endian operations with two different inputs (2).
1540 /// For the latter, the input operands are swapped (see PPCInstrAltivec.td).
1541 bool PPC::isVPKUWUMShuffleMask(ShuffleVectorSDNode *N, unsigned ShuffleKind,
1542                                SelectionDAG &DAG) {
1543   bool IsLE = DAG.getDataLayout().isLittleEndian();
1544   if (ShuffleKind == 0) {
1545     if (IsLE)
1546       return false;
1547     for (unsigned i = 0; i != 16; i += 2)
1548       if (!isConstantOrUndef(N->getMaskElt(i  ),  i*2+2) ||
1549           !isConstantOrUndef(N->getMaskElt(i+1),  i*2+3))
1550         return false;
1551   } else if (ShuffleKind == 2) {
1552     if (!IsLE)
1553       return false;
1554     for (unsigned i = 0; i != 16; i += 2)
1555       if (!isConstantOrUndef(N->getMaskElt(i  ),  i*2) ||
1556           !isConstantOrUndef(N->getMaskElt(i+1),  i*2+1))
1557         return false;
1558   } else if (ShuffleKind == 1) {
1559     unsigned j = IsLE ? 0 : 2;
1560     for (unsigned i = 0; i != 8; i += 2)
1561       if (!isConstantOrUndef(N->getMaskElt(i  ),  i*2+j)   ||
1562           !isConstantOrUndef(N->getMaskElt(i+1),  i*2+j+1) ||
1563           !isConstantOrUndef(N->getMaskElt(i+8),  i*2+j)   ||
1564           !isConstantOrUndef(N->getMaskElt(i+9),  i*2+j+1))
1565         return false;
1566   }
1567   return true;
1568 }
1569 
1570 /// isVPKUDUMShuffleMask - Return true if this is the shuffle mask for a
1571 /// VPKUDUM instruction, AND the VPKUDUM instruction exists for the
1572 /// current subtarget.
1573 ///
1574 /// The ShuffleKind distinguishes between big-endian operations with
1575 /// two different inputs (0), either-endian operations with two identical
1576 /// inputs (1), and little-endian operations with two different inputs (2).
1577 /// For the latter, the input operands are swapped (see PPCInstrAltivec.td).
1578 bool PPC::isVPKUDUMShuffleMask(ShuffleVectorSDNode *N, unsigned ShuffleKind,
1579                                SelectionDAG &DAG) {
1580   const PPCSubtarget& Subtarget =
1581       static_cast<const PPCSubtarget&>(DAG.getSubtarget());
1582   if (!Subtarget.hasP8Vector())
1583     return false;
1584 
1585   bool IsLE = DAG.getDataLayout().isLittleEndian();
1586   if (ShuffleKind == 0) {
1587     if (IsLE)
1588       return false;
1589     for (unsigned i = 0; i != 16; i += 4)
1590       if (!isConstantOrUndef(N->getMaskElt(i  ),  i*2+4) ||
1591           !isConstantOrUndef(N->getMaskElt(i+1),  i*2+5) ||
1592           !isConstantOrUndef(N->getMaskElt(i+2),  i*2+6) ||
1593           !isConstantOrUndef(N->getMaskElt(i+3),  i*2+7))
1594         return false;
1595   } else if (ShuffleKind == 2) {
1596     if (!IsLE)
1597       return false;
1598     for (unsigned i = 0; i != 16; i += 4)
1599       if (!isConstantOrUndef(N->getMaskElt(i  ),  i*2) ||
1600           !isConstantOrUndef(N->getMaskElt(i+1),  i*2+1) ||
1601           !isConstantOrUndef(N->getMaskElt(i+2),  i*2+2) ||
1602           !isConstantOrUndef(N->getMaskElt(i+3),  i*2+3))
1603         return false;
1604   } else if (ShuffleKind == 1) {
1605     unsigned j = IsLE ? 0 : 4;
1606     for (unsigned i = 0; i != 8; i += 4)
1607       if (!isConstantOrUndef(N->getMaskElt(i  ),  i*2+j)   ||
1608           !isConstantOrUndef(N->getMaskElt(i+1),  i*2+j+1) ||
1609           !isConstantOrUndef(N->getMaskElt(i+2),  i*2+j+2) ||
1610           !isConstantOrUndef(N->getMaskElt(i+3),  i*2+j+3) ||
1611           !isConstantOrUndef(N->getMaskElt(i+8),  i*2+j)   ||
1612           !isConstantOrUndef(N->getMaskElt(i+9),  i*2+j+1) ||
1613           !isConstantOrUndef(N->getMaskElt(i+10), i*2+j+2) ||
1614           !isConstantOrUndef(N->getMaskElt(i+11), i*2+j+3))
1615         return false;
1616   }
1617   return true;
1618 }
1619 
1620 /// isVMerge - Common function, used to match vmrg* shuffles.
1621 ///
1622 static bool isVMerge(ShuffleVectorSDNode *N, unsigned UnitSize,
1623                      unsigned LHSStart, unsigned RHSStart) {
1624   if (N->getValueType(0) != MVT::v16i8)
1625     return false;
1626   assert((UnitSize == 1 || UnitSize == 2 || UnitSize == 4) &&
1627          "Unsupported merge size!");
1628 
1629   for (unsigned i = 0; i != 8/UnitSize; ++i)     // Step over units
1630     for (unsigned j = 0; j != UnitSize; ++j) {   // Step over bytes within unit
1631       if (!isConstantOrUndef(N->getMaskElt(i*UnitSize*2+j),
1632                              LHSStart+j+i*UnitSize) ||
1633           !isConstantOrUndef(N->getMaskElt(i*UnitSize*2+UnitSize+j),
1634                              RHSStart+j+i*UnitSize))
1635         return false;
1636     }
1637   return true;
1638 }
1639 
1640 /// isVMRGLShuffleMask - Return true if this is a shuffle mask suitable for
1641 /// a VMRGL* instruction with the specified unit size (1,2 or 4 bytes).
1642 /// The ShuffleKind distinguishes between big-endian merges with two
1643 /// different inputs (0), either-endian merges with two identical inputs (1),
1644 /// and little-endian merges with two different inputs (2).  For the latter,
1645 /// the input operands are swapped (see PPCInstrAltivec.td).
1646 bool PPC::isVMRGLShuffleMask(ShuffleVectorSDNode *N, unsigned UnitSize,
1647                              unsigned ShuffleKind, SelectionDAG &DAG) {
1648   if (DAG.getDataLayout().isLittleEndian()) {
1649     if (ShuffleKind == 1) // unary
1650       return isVMerge(N, UnitSize, 0, 0);
1651     else if (ShuffleKind == 2) // swapped
1652       return isVMerge(N, UnitSize, 0, 16);
1653     else
1654       return false;
1655   } else {
1656     if (ShuffleKind == 1) // unary
1657       return isVMerge(N, UnitSize, 8, 8);
1658     else if (ShuffleKind == 0) // normal
1659       return isVMerge(N, UnitSize, 8, 24);
1660     else
1661       return false;
1662   }
1663 }
1664 
1665 /// isVMRGHShuffleMask - Return true if this is a shuffle mask suitable for
1666 /// a VMRGH* instruction with the specified unit size (1,2 or 4 bytes).
1667 /// The ShuffleKind distinguishes between big-endian merges with two
1668 /// different inputs (0), either-endian merges with two identical inputs (1),
1669 /// and little-endian merges with two different inputs (2).  For the latter,
1670 /// the input operands are swapped (see PPCInstrAltivec.td).
1671 bool PPC::isVMRGHShuffleMask(ShuffleVectorSDNode *N, unsigned UnitSize,
1672                              unsigned ShuffleKind, SelectionDAG &DAG) {
1673   if (DAG.getDataLayout().isLittleEndian()) {
1674     if (ShuffleKind == 1) // unary
1675       return isVMerge(N, UnitSize, 8, 8);
1676     else if (ShuffleKind == 2) // swapped
1677       return isVMerge(N, UnitSize, 8, 24);
1678     else
1679       return false;
1680   } else {
1681     if (ShuffleKind == 1) // unary
1682       return isVMerge(N, UnitSize, 0, 0);
1683     else if (ShuffleKind == 0) // normal
1684       return isVMerge(N, UnitSize, 0, 16);
1685     else
1686       return false;
1687   }
1688 }
1689 
1690 /**
1691  * Common function used to match vmrgew and vmrgow shuffles
1692  *
1693  * The indexOffset determines whether to look for even or odd words in
1694  * the shuffle mask. This is based on the of the endianness of the target
1695  * machine.
1696  *   - Little Endian:
1697  *     - Use offset of 0 to check for odd elements
1698  *     - Use offset of 4 to check for even elements
1699  *   - Big Endian:
1700  *     - Use offset of 0 to check for even elements
1701  *     - Use offset of 4 to check for odd elements
1702  * A detailed description of the vector element ordering for little endian and
1703  * big endian can be found at
1704  * http://www.ibm.com/developerworks/library/l-ibm-xl-c-cpp-compiler/index.html
1705  * Targeting your applications - what little endian and big endian IBM XL C/C++
1706  * compiler differences mean to you
1707  *
1708  * The mask to the shuffle vector instruction specifies the indices of the
1709  * elements from the two input vectors to place in the result. The elements are
1710  * numbered in array-access order, starting with the first vector. These vectors
1711  * are always of type v16i8, thus each vector will contain 16 elements of size
1712  * 8. More info on the shuffle vector can be found in the
1713  * http://llvm.org/docs/LangRef.html#shufflevector-instruction
1714  * Language Reference.
1715  *
1716  * The RHSStartValue indicates whether the same input vectors are used (unary)
1717  * or two different input vectors are used, based on the following:
1718  *   - If the instruction uses the same vector for both inputs, the range of the
1719  *     indices will be 0 to 15. In this case, the RHSStart value passed should
1720  *     be 0.
1721  *   - If the instruction has two different vectors then the range of the
1722  *     indices will be 0 to 31. In this case, the RHSStart value passed should
1723  *     be 16 (indices 0-15 specify elements in the first vector while indices 16
1724  *     to 31 specify elements in the second vector).
1725  *
1726  * \param[in] N The shuffle vector SD Node to analyze
1727  * \param[in] IndexOffset Specifies whether to look for even or odd elements
1728  * \param[in] RHSStartValue Specifies the starting index for the righthand input
1729  * vector to the shuffle_vector instruction
1730  * \return true iff this shuffle vector represents an even or odd word merge
1731  */
1732 static bool isVMerge(ShuffleVectorSDNode *N, unsigned IndexOffset,
1733                      unsigned RHSStartValue) {
1734   if (N->getValueType(0) != MVT::v16i8)
1735     return false;
1736 
1737   for (unsigned i = 0; i < 2; ++i)
1738     for (unsigned j = 0; j < 4; ++j)
1739       if (!isConstantOrUndef(N->getMaskElt(i*4+j),
1740                              i*RHSStartValue+j+IndexOffset) ||
1741           !isConstantOrUndef(N->getMaskElt(i*4+j+8),
1742                              i*RHSStartValue+j+IndexOffset+8))
1743         return false;
1744   return true;
1745 }
1746 
1747 /**
1748  * Determine if the specified shuffle mask is suitable for the vmrgew or
1749  * vmrgow instructions.
1750  *
1751  * \param[in] N The shuffle vector SD Node to analyze
1752  * \param[in] CheckEven Check for an even merge (true) or an odd merge (false)
1753  * \param[in] ShuffleKind Identify the type of merge:
1754  *   - 0 = big-endian merge with two different inputs;
1755  *   - 1 = either-endian merge with two identical inputs;
1756  *   - 2 = little-endian merge with two different inputs (inputs are swapped for
1757  *     little-endian merges).
1758  * \param[in] DAG The current SelectionDAG
1759  * \return true iff this shuffle mask
1760  */
1761 bool PPC::isVMRGEOShuffleMask(ShuffleVectorSDNode *N, bool CheckEven,
1762                               unsigned ShuffleKind, SelectionDAG &DAG) {
1763   if (DAG.getDataLayout().isLittleEndian()) {
1764     unsigned indexOffset = CheckEven ? 4 : 0;
1765     if (ShuffleKind == 1) // Unary
1766       return isVMerge(N, indexOffset, 0);
1767     else if (ShuffleKind == 2) // swapped
1768       return isVMerge(N, indexOffset, 16);
1769     else
1770       return false;
1771   }
1772   else {
1773     unsigned indexOffset = CheckEven ? 0 : 4;
1774     if (ShuffleKind == 1) // Unary
1775       return isVMerge(N, indexOffset, 0);
1776     else if (ShuffleKind == 0) // Normal
1777       return isVMerge(N, indexOffset, 16);
1778     else
1779       return false;
1780   }
1781   return false;
1782 }
1783 
1784 /// isVSLDOIShuffleMask - If this is a vsldoi shuffle mask, return the shift
1785 /// amount, otherwise return -1.
1786 /// The ShuffleKind distinguishes between big-endian operations with two
1787 /// different inputs (0), either-endian operations with two identical inputs
1788 /// (1), and little-endian operations with two different inputs (2).  For the
1789 /// latter, the input operands are swapped (see PPCInstrAltivec.td).
1790 int PPC::isVSLDOIShuffleMask(SDNode *N, unsigned ShuffleKind,
1791                              SelectionDAG &DAG) {
1792   if (N->getValueType(0) != MVT::v16i8)
1793     return -1;
1794 
1795   ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
1796 
1797   // Find the first non-undef value in the shuffle mask.
1798   unsigned i;
1799   for (i = 0; i != 16 && SVOp->getMaskElt(i) < 0; ++i)
1800     /*search*/;
1801 
1802   if (i == 16) return -1;  // all undef.
1803 
1804   // Otherwise, check to see if the rest of the elements are consecutively
1805   // numbered from this value.
1806   unsigned ShiftAmt = SVOp->getMaskElt(i);
1807   if (ShiftAmt < i) return -1;
1808 
1809   ShiftAmt -= i;
1810   bool isLE = DAG.getDataLayout().isLittleEndian();
1811 
1812   if ((ShuffleKind == 0 && !isLE) || (ShuffleKind == 2 && isLE)) {
1813     // Check the rest of the elements to see if they are consecutive.
1814     for (++i; i != 16; ++i)
1815       if (!isConstantOrUndef(SVOp->getMaskElt(i), ShiftAmt+i))
1816         return -1;
1817   } else if (ShuffleKind == 1) {
1818     // Check the rest of the elements to see if they are consecutive.
1819     for (++i; i != 16; ++i)
1820       if (!isConstantOrUndef(SVOp->getMaskElt(i), (ShiftAmt+i) & 15))
1821         return -1;
1822   } else
1823     return -1;
1824 
1825   if (isLE)
1826     ShiftAmt = 16 - ShiftAmt;
1827 
1828   return ShiftAmt;
1829 }
1830 
1831 /// isSplatShuffleMask - Return true if the specified VECTOR_SHUFFLE operand
1832 /// specifies a splat of a single element that is suitable for input to
1833 /// one of the splat operations (VSPLTB/VSPLTH/VSPLTW/XXSPLTW/LXVDSX/etc.).
1834 bool PPC::isSplatShuffleMask(ShuffleVectorSDNode *N, unsigned EltSize) {
1835   assert(N->getValueType(0) == MVT::v16i8 && isPowerOf2_32(EltSize) &&
1836          EltSize <= 8 && "Can only handle 1,2,4,8 byte element sizes");
1837 
1838   // The consecutive indices need to specify an element, not part of two
1839   // different elements.  So abandon ship early if this isn't the case.
1840   if (N->getMaskElt(0) % EltSize != 0)
1841     return false;
1842 
1843   // This is a splat operation if each element of the permute is the same, and
1844   // if the value doesn't reference the second vector.
1845   unsigned ElementBase = N->getMaskElt(0);
1846 
1847   // FIXME: Handle UNDEF elements too!
1848   if (ElementBase >= 16)
1849     return false;
1850 
1851   // Check that the indices are consecutive, in the case of a multi-byte element
1852   // splatted with a v16i8 mask.
1853   for (unsigned i = 1; i != EltSize; ++i)
1854     if (N->getMaskElt(i) < 0 || N->getMaskElt(i) != (int)(i+ElementBase))
1855       return false;
1856 
1857   for (unsigned i = EltSize, e = 16; i != e; i += EltSize) {
1858     if (N->getMaskElt(i) < 0) continue;
1859     for (unsigned j = 0; j != EltSize; ++j)
1860       if (N->getMaskElt(i+j) != N->getMaskElt(j))
1861         return false;
1862   }
1863   return true;
1864 }
1865 
1866 /// Check that the mask is shuffling N byte elements. Within each N byte
1867 /// element of the mask, the indices could be either in increasing or
1868 /// decreasing order as long as they are consecutive.
1869 /// \param[in] N the shuffle vector SD Node to analyze
1870 /// \param[in] Width the element width in bytes, could be 2/4/8/16 (HalfWord/
1871 /// Word/DoubleWord/QuadWord).
1872 /// \param[in] StepLen the delta indices number among the N byte element, if
1873 /// the mask is in increasing/decreasing order then it is 1/-1.
1874 /// \return true iff the mask is shuffling N byte elements.
1875 static bool isNByteElemShuffleMask(ShuffleVectorSDNode *N, unsigned Width,
1876                                    int StepLen) {
1877   assert((Width == 2 || Width == 4 || Width == 8 || Width == 16) &&
1878          "Unexpected element width.");
1879   assert((StepLen == 1 || StepLen == -1) && "Unexpected element width.");
1880 
1881   unsigned NumOfElem = 16 / Width;
1882   unsigned MaskVal[16]; //  Width is never greater than 16
1883   for (unsigned i = 0; i < NumOfElem; ++i) {
1884     MaskVal[0] = N->getMaskElt(i * Width);
1885     if ((StepLen == 1) && (MaskVal[0] % Width)) {
1886       return false;
1887     } else if ((StepLen == -1) && ((MaskVal[0] + 1) % Width)) {
1888       return false;
1889     }
1890 
1891     for (unsigned int j = 1; j < Width; ++j) {
1892       MaskVal[j] = N->getMaskElt(i * Width + j);
1893       if (MaskVal[j] != MaskVal[j-1] + StepLen) {
1894         return false;
1895       }
1896     }
1897   }
1898 
1899   return true;
1900 }
1901 
1902 bool PPC::isXXINSERTWMask(ShuffleVectorSDNode *N, unsigned &ShiftElts,
1903                           unsigned &InsertAtByte, bool &Swap, bool IsLE) {
1904   if (!isNByteElemShuffleMask(N, 4, 1))
1905     return false;
1906 
1907   // Now we look at mask elements 0,4,8,12
1908   unsigned M0 = N->getMaskElt(0) / 4;
1909   unsigned M1 = N->getMaskElt(4) / 4;
1910   unsigned M2 = N->getMaskElt(8) / 4;
1911   unsigned M3 = N->getMaskElt(12) / 4;
1912   unsigned LittleEndianShifts[] = { 2, 1, 0, 3 };
1913   unsigned BigEndianShifts[] = { 3, 0, 1, 2 };
1914 
1915   // Below, let H and L be arbitrary elements of the shuffle mask
1916   // where H is in the range [4,7] and L is in the range [0,3].
1917   // H, 1, 2, 3 or L, 5, 6, 7
1918   if ((M0 > 3 && M1 == 1 && M2 == 2 && M3 == 3) ||
1919       (M0 < 4 && M1 == 5 && M2 == 6 && M3 == 7)) {
1920     ShiftElts = IsLE ? LittleEndianShifts[M0 & 0x3] : BigEndianShifts[M0 & 0x3];
1921     InsertAtByte = IsLE ? 12 : 0;
1922     Swap = M0 < 4;
1923     return true;
1924   }
1925   // 0, H, 2, 3 or 4, L, 6, 7
1926   if ((M1 > 3 && M0 == 0 && M2 == 2 && M3 == 3) ||
1927       (M1 < 4 && M0 == 4 && M2 == 6 && M3 == 7)) {
1928     ShiftElts = IsLE ? LittleEndianShifts[M1 & 0x3] : BigEndianShifts[M1 & 0x3];
1929     InsertAtByte = IsLE ? 8 : 4;
1930     Swap = M1 < 4;
1931     return true;
1932   }
1933   // 0, 1, H, 3 or 4, 5, L, 7
1934   if ((M2 > 3 && M0 == 0 && M1 == 1 && M3 == 3) ||
1935       (M2 < 4 && M0 == 4 && M1 == 5 && M3 == 7)) {
1936     ShiftElts = IsLE ? LittleEndianShifts[M2 & 0x3] : BigEndianShifts[M2 & 0x3];
1937     InsertAtByte = IsLE ? 4 : 8;
1938     Swap = M2 < 4;
1939     return true;
1940   }
1941   // 0, 1, 2, H or 4, 5, 6, L
1942   if ((M3 > 3 && M0 == 0 && M1 == 1 && M2 == 2) ||
1943       (M3 < 4 && M0 == 4 && M1 == 5 && M2 == 6)) {
1944     ShiftElts = IsLE ? LittleEndianShifts[M3 & 0x3] : BigEndianShifts[M3 & 0x3];
1945     InsertAtByte = IsLE ? 0 : 12;
1946     Swap = M3 < 4;
1947     return true;
1948   }
1949 
1950   // If both vector operands for the shuffle are the same vector, the mask will
1951   // contain only elements from the first one and the second one will be undef.
1952   if (N->getOperand(1).isUndef()) {
1953     ShiftElts = 0;
1954     Swap = true;
1955     unsigned XXINSERTWSrcElem = IsLE ? 2 : 1;
1956     if (M0 == XXINSERTWSrcElem && M1 == 1 && M2 == 2 && M3 == 3) {
1957       InsertAtByte = IsLE ? 12 : 0;
1958       return true;
1959     }
1960     if (M0 == 0 && M1 == XXINSERTWSrcElem && M2 == 2 && M3 == 3) {
1961       InsertAtByte = IsLE ? 8 : 4;
1962       return true;
1963     }
1964     if (M0 == 0 && M1 == 1 && M2 == XXINSERTWSrcElem && M3 == 3) {
1965       InsertAtByte = IsLE ? 4 : 8;
1966       return true;
1967     }
1968     if (M0 == 0 && M1 == 1 && M2 == 2 && M3 == XXINSERTWSrcElem) {
1969       InsertAtByte = IsLE ? 0 : 12;
1970       return true;
1971     }
1972   }
1973 
1974   return false;
1975 }
1976 
1977 bool PPC::isXXSLDWIShuffleMask(ShuffleVectorSDNode *N, unsigned &ShiftElts,
1978                                bool &Swap, bool IsLE) {
1979   assert(N->getValueType(0) == MVT::v16i8 && "Shuffle vector expects v16i8");
1980   // Ensure each byte index of the word is consecutive.
1981   if (!isNByteElemShuffleMask(N, 4, 1))
1982     return false;
1983 
1984   // Now we look at mask elements 0,4,8,12, which are the beginning of words.
1985   unsigned M0 = N->getMaskElt(0) / 4;
1986   unsigned M1 = N->getMaskElt(4) / 4;
1987   unsigned M2 = N->getMaskElt(8) / 4;
1988   unsigned M3 = N->getMaskElt(12) / 4;
1989 
1990   // If both vector operands for the shuffle are the same vector, the mask will
1991   // contain only elements from the first one and the second one will be undef.
1992   if (N->getOperand(1).isUndef()) {
1993     assert(M0 < 4 && "Indexing into an undef vector?");
1994     if (M1 != (M0 + 1) % 4 || M2 != (M1 + 1) % 4 || M3 != (M2 + 1) % 4)
1995       return false;
1996 
1997     ShiftElts = IsLE ? (4 - M0) % 4 : M0;
1998     Swap = false;
1999     return true;
2000   }
2001 
2002   // Ensure each word index of the ShuffleVector Mask is consecutive.
2003   if (M1 != (M0 + 1) % 8 || M2 != (M1 + 1) % 8 || M3 != (M2 + 1) % 8)
2004     return false;
2005 
2006   if (IsLE) {
2007     if (M0 == 0 || M0 == 7 || M0 == 6 || M0 == 5) {
2008       // Input vectors don't need to be swapped if the leading element
2009       // of the result is one of the 3 left elements of the second vector
2010       // (or if there is no shift to be done at all).
2011       Swap = false;
2012       ShiftElts = (8 - M0) % 8;
2013     } else if (M0 == 4 || M0 == 3 || M0 == 2 || M0 == 1) {
2014       // Input vectors need to be swapped if the leading element
2015       // of the result is one of the 3 left elements of the first vector
2016       // (or if we're shifting by 4 - thereby simply swapping the vectors).
2017       Swap = true;
2018       ShiftElts = (4 - M0) % 4;
2019     }
2020 
2021     return true;
2022   } else {                                          // BE
2023     if (M0 == 0 || M0 == 1 || M0 == 2 || M0 == 3) {
2024       // Input vectors don't need to be swapped if the leading element
2025       // of the result is one of the 4 elements of the first vector.
2026       Swap = false;
2027       ShiftElts = M0;
2028     } else if (M0 == 4 || M0 == 5 || M0 == 6 || M0 == 7) {
2029       // Input vectors need to be swapped if the leading element
2030       // of the result is one of the 4 elements of the right vector.
2031       Swap = true;
2032       ShiftElts = M0 - 4;
2033     }
2034 
2035     return true;
2036   }
2037 }
2038 
2039 bool static isXXBRShuffleMaskHelper(ShuffleVectorSDNode *N, int Width) {
2040   assert(N->getValueType(0) == MVT::v16i8 && "Shuffle vector expects v16i8");
2041 
2042   if (!isNByteElemShuffleMask(N, Width, -1))
2043     return false;
2044 
2045   for (int i = 0; i < 16; i += Width)
2046     if (N->getMaskElt(i) != i + Width - 1)
2047       return false;
2048 
2049   return true;
2050 }
2051 
2052 bool PPC::isXXBRHShuffleMask(ShuffleVectorSDNode *N) {
2053   return isXXBRShuffleMaskHelper(N, 2);
2054 }
2055 
2056 bool PPC::isXXBRWShuffleMask(ShuffleVectorSDNode *N) {
2057   return isXXBRShuffleMaskHelper(N, 4);
2058 }
2059 
2060 bool PPC::isXXBRDShuffleMask(ShuffleVectorSDNode *N) {
2061   return isXXBRShuffleMaskHelper(N, 8);
2062 }
2063 
2064 bool PPC::isXXBRQShuffleMask(ShuffleVectorSDNode *N) {
2065   return isXXBRShuffleMaskHelper(N, 16);
2066 }
2067 
2068 /// Can node \p N be lowered to an XXPERMDI instruction? If so, set \p Swap
2069 /// if the inputs to the instruction should be swapped and set \p DM to the
2070 /// value for the immediate.
2071 /// Specifically, set \p Swap to true only if \p N can be lowered to XXPERMDI
2072 /// AND element 0 of the result comes from the first input (LE) or second input
2073 /// (BE). Set \p DM to the calculated result (0-3) only if \p N can be lowered.
2074 /// \return true iff the given mask of shuffle node \p N is a XXPERMDI shuffle
2075 /// mask.
2076 bool PPC::isXXPERMDIShuffleMask(ShuffleVectorSDNode *N, unsigned &DM,
2077                                bool &Swap, bool IsLE) {
2078   assert(N->getValueType(0) == MVT::v16i8 && "Shuffle vector expects v16i8");
2079 
2080   // Ensure each byte index of the double word is consecutive.
2081   if (!isNByteElemShuffleMask(N, 8, 1))
2082     return false;
2083 
2084   unsigned M0 = N->getMaskElt(0) / 8;
2085   unsigned M1 = N->getMaskElt(8) / 8;
2086   assert(((M0 | M1) < 4) && "A mask element out of bounds?");
2087 
2088   // If both vector operands for the shuffle are the same vector, the mask will
2089   // contain only elements from the first one and the second one will be undef.
2090   if (N->getOperand(1).isUndef()) {
2091     if ((M0 | M1) < 2) {
2092       DM = IsLE ? (((~M1) & 1) << 1) + ((~M0) & 1) : (M0 << 1) + (M1 & 1);
2093       Swap = false;
2094       return true;
2095     } else
2096       return false;
2097   }
2098 
2099   if (IsLE) {
2100     if (M0 > 1 && M1 < 2) {
2101       Swap = false;
2102     } else if (M0 < 2 && M1 > 1) {
2103       M0 = (M0 + 2) % 4;
2104       M1 = (M1 + 2) % 4;
2105       Swap = true;
2106     } else
2107       return false;
2108 
2109     // Note: if control flow comes here that means Swap is already set above
2110     DM = (((~M1) & 1) << 1) + ((~M0) & 1);
2111     return true;
2112   } else { // BE
2113     if (M0 < 2 && M1 > 1) {
2114       Swap = false;
2115     } else if (M0 > 1 && M1 < 2) {
2116       M0 = (M0 + 2) % 4;
2117       M1 = (M1 + 2) % 4;
2118       Swap = true;
2119     } else
2120       return false;
2121 
2122     // Note: if control flow comes here that means Swap is already set above
2123     DM = (M0 << 1) + (M1 & 1);
2124     return true;
2125   }
2126 }
2127 
2128 
2129 /// getSplatIdxForPPCMnemonics - Return the splat index as a value that is
2130 /// appropriate for PPC mnemonics (which have a big endian bias - namely
2131 /// elements are counted from the left of the vector register).
2132 unsigned PPC::getSplatIdxForPPCMnemonics(SDNode *N, unsigned EltSize,
2133                                          SelectionDAG &DAG) {
2134   ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
2135   assert(isSplatShuffleMask(SVOp, EltSize));
2136   if (DAG.getDataLayout().isLittleEndian())
2137     return (16 / EltSize) - 1 - (SVOp->getMaskElt(0) / EltSize);
2138   else
2139     return SVOp->getMaskElt(0) / EltSize;
2140 }
2141 
2142 /// get_VSPLTI_elt - If this is a build_vector of constants which can be formed
2143 /// by using a vspltis[bhw] instruction of the specified element size, return
2144 /// the constant being splatted.  The ByteSize field indicates the number of
2145 /// bytes of each element [124] -> [bhw].
2146 SDValue PPC::get_VSPLTI_elt(SDNode *N, unsigned ByteSize, SelectionDAG &DAG) {
2147   SDValue OpVal(nullptr, 0);
2148 
2149   // If ByteSize of the splat is bigger than the element size of the
2150   // build_vector, then we have a case where we are checking for a splat where
2151   // multiple elements of the buildvector are folded together into a single
2152   // logical element of the splat (e.g. "vsplish 1" to splat {0,1}*8).
2153   unsigned EltSize = 16/N->getNumOperands();
2154   if (EltSize < ByteSize) {
2155     unsigned Multiple = ByteSize/EltSize;   // Number of BV entries per spltval.
2156     SDValue UniquedVals[4];
2157     assert(Multiple > 1 && Multiple <= 4 && "How can this happen?");
2158 
2159     // See if all of the elements in the buildvector agree across.
2160     for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
2161       if (N->getOperand(i).isUndef()) continue;
2162       // If the element isn't a constant, bail fully out.
2163       if (!isa<ConstantSDNode>(N->getOperand(i))) return SDValue();
2164 
2165       if (!UniquedVals[i&(Multiple-1)].getNode())
2166         UniquedVals[i&(Multiple-1)] = N->getOperand(i);
2167       else if (UniquedVals[i&(Multiple-1)] != N->getOperand(i))
2168         return SDValue();  // no match.
2169     }
2170 
2171     // Okay, if we reached this point, UniquedVals[0..Multiple-1] contains
2172     // either constant or undef values that are identical for each chunk.  See
2173     // if these chunks can form into a larger vspltis*.
2174 
2175     // Check to see if all of the leading entries are either 0 or -1.  If
2176     // neither, then this won't fit into the immediate field.
2177     bool LeadingZero = true;
2178     bool LeadingOnes = true;
2179     for (unsigned i = 0; i != Multiple-1; ++i) {
2180       if (!UniquedVals[i].getNode()) continue;  // Must have been undefs.
2181 
2182       LeadingZero &= isNullConstant(UniquedVals[i]);
2183       LeadingOnes &= isAllOnesConstant(UniquedVals[i]);
2184     }
2185     // Finally, check the least significant entry.
2186     if (LeadingZero) {
2187       if (!UniquedVals[Multiple-1].getNode())
2188         return DAG.getTargetConstant(0, SDLoc(N), MVT::i32);  // 0,0,0,undef
2189       int Val = cast<ConstantSDNode>(UniquedVals[Multiple-1])->getZExtValue();
2190       if (Val < 16)                                   // 0,0,0,4 -> vspltisw(4)
2191         return DAG.getTargetConstant(Val, SDLoc(N), MVT::i32);
2192     }
2193     if (LeadingOnes) {
2194       if (!UniquedVals[Multiple-1].getNode())
2195         return DAG.getTargetConstant(~0U, SDLoc(N), MVT::i32); // -1,-1,-1,undef
2196       int Val =cast<ConstantSDNode>(UniquedVals[Multiple-1])->getSExtValue();
2197       if (Val >= -16)                            // -1,-1,-1,-2 -> vspltisw(-2)
2198         return DAG.getTargetConstant(Val, SDLoc(N), MVT::i32);
2199     }
2200 
2201     return SDValue();
2202   }
2203 
2204   // Check to see if this buildvec has a single non-undef value in its elements.
2205   for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
2206     if (N->getOperand(i).isUndef()) continue;
2207     if (!OpVal.getNode())
2208       OpVal = N->getOperand(i);
2209     else if (OpVal != N->getOperand(i))
2210       return SDValue();
2211   }
2212 
2213   if (!OpVal.getNode()) return SDValue();  // All UNDEF: use implicit def.
2214 
2215   unsigned ValSizeInBytes = EltSize;
2216   uint64_t Value = 0;
2217   if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(OpVal)) {
2218     Value = CN->getZExtValue();
2219   } else if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(OpVal)) {
2220     assert(CN->getValueType(0) == MVT::f32 && "Only one legal FP vector type!");
2221     Value = FloatToBits(CN->getValueAPF().convertToFloat());
2222   }
2223 
2224   // If the splat value is larger than the element value, then we can never do
2225   // this splat.  The only case that we could fit the replicated bits into our
2226   // immediate field for would be zero, and we prefer to use vxor for it.
2227   if (ValSizeInBytes < ByteSize) return SDValue();
2228 
2229   // If the element value is larger than the splat value, check if it consists
2230   // of a repeated bit pattern of size ByteSize.
2231   if (!APInt(ValSizeInBytes * 8, Value).isSplat(ByteSize * 8))
2232     return SDValue();
2233 
2234   // Properly sign extend the value.
2235   int MaskVal = SignExtend32(Value, ByteSize * 8);
2236 
2237   // If this is zero, don't match, zero matches ISD::isBuildVectorAllZeros.
2238   if (MaskVal == 0) return SDValue();
2239 
2240   // Finally, if this value fits in a 5 bit sext field, return it
2241   if (SignExtend32<5>(MaskVal) == MaskVal)
2242     return DAG.getTargetConstant(MaskVal, SDLoc(N), MVT::i32);
2243   return SDValue();
2244 }
2245 
2246 /// isQVALIGNIShuffleMask - If this is a qvaligni shuffle mask, return the shift
2247 /// amount, otherwise return -1.
2248 int PPC::isQVALIGNIShuffleMask(SDNode *N) {
2249   EVT VT = N->getValueType(0);
2250   if (VT != MVT::v4f64 && VT != MVT::v4f32 && VT != MVT::v4i1)
2251     return -1;
2252 
2253   ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
2254 
2255   // Find the first non-undef value in the shuffle mask.
2256   unsigned i;
2257   for (i = 0; i != 4 && SVOp->getMaskElt(i) < 0; ++i)
2258     /*search*/;
2259 
2260   if (i == 4) return -1;  // all undef.
2261 
2262   // Otherwise, check to see if the rest of the elements are consecutively
2263   // numbered from this value.
2264   unsigned ShiftAmt = SVOp->getMaskElt(i);
2265   if (ShiftAmt < i) return -1;
2266   ShiftAmt -= i;
2267 
2268   // Check the rest of the elements to see if they are consecutive.
2269   for (++i; i != 4; ++i)
2270     if (!isConstantOrUndef(SVOp->getMaskElt(i), ShiftAmt+i))
2271       return -1;
2272 
2273   return ShiftAmt;
2274 }
2275 
2276 //===----------------------------------------------------------------------===//
2277 //  Addressing Mode Selection
2278 //===----------------------------------------------------------------------===//
2279 
2280 /// isIntS16Immediate - This method tests to see if the node is either a 32-bit
2281 /// or 64-bit immediate, and if the value can be accurately represented as a
2282 /// sign extension from a 16-bit value.  If so, this returns true and the
2283 /// immediate.
2284 bool llvm::isIntS16Immediate(SDNode *N, int16_t &Imm) {
2285   if (!isa<ConstantSDNode>(N))
2286     return false;
2287 
2288   Imm = (int16_t)cast<ConstantSDNode>(N)->getZExtValue();
2289   if (N->getValueType(0) == MVT::i32)
2290     return Imm == (int32_t)cast<ConstantSDNode>(N)->getZExtValue();
2291   else
2292     return Imm == (int64_t)cast<ConstantSDNode>(N)->getZExtValue();
2293 }
2294 bool llvm::isIntS16Immediate(SDValue Op, int16_t &Imm) {
2295   return isIntS16Immediate(Op.getNode(), Imm);
2296 }
2297 
2298 
2299 /// SelectAddressEVXRegReg - Given the specified address, check to see if it can
2300 /// be represented as an indexed [r+r] operation.
2301 bool PPCTargetLowering::SelectAddressEVXRegReg(SDValue N, SDValue &Base,
2302                                                SDValue &Index,
2303                                                SelectionDAG &DAG) const {
2304   for (SDNode::use_iterator UI = N->use_begin(), E = N->use_end();
2305       UI != E; ++UI) {
2306     if (MemSDNode *Memop = dyn_cast<MemSDNode>(*UI)) {
2307       if (Memop->getMemoryVT() == MVT::f64) {
2308           Base = N.getOperand(0);
2309           Index = N.getOperand(1);
2310           return true;
2311       }
2312     }
2313   }
2314   return false;
2315 }
2316 
2317 /// SelectAddressRegReg - Given the specified addressed, check to see if it
2318 /// can be represented as an indexed [r+r] operation.  Returns false if it
2319 /// can be more efficiently represented as [r+imm]. If \p EncodingAlignment is
2320 /// non-zero and N can be represented by a base register plus a signed 16-bit
2321 /// displacement, make a more precise judgement by checking (displacement % \p
2322 /// EncodingAlignment).
2323 bool PPCTargetLowering::SelectAddressRegReg(SDValue N, SDValue &Base,
2324                                             SDValue &Index, SelectionDAG &DAG,
2325                                             unsigned EncodingAlignment) const {
2326   int16_t imm = 0;
2327   if (N.getOpcode() == ISD::ADD) {
2328     // Is there any SPE load/store (f64), which can't handle 16bit offset?
2329     // SPE load/store can only handle 8-bit offsets.
2330     if (hasSPE() && SelectAddressEVXRegReg(N, Base, Index, DAG))
2331         return true;
2332     if (isIntS16Immediate(N.getOperand(1), imm) &&
2333         (!EncodingAlignment || !(imm % EncodingAlignment)))
2334       return false; // r+i
2335     if (N.getOperand(1).getOpcode() == PPCISD::Lo)
2336       return false;    // r+i
2337 
2338     Base = N.getOperand(0);
2339     Index = N.getOperand(1);
2340     return true;
2341   } else if (N.getOpcode() == ISD::OR) {
2342     if (isIntS16Immediate(N.getOperand(1), imm) &&
2343         (!EncodingAlignment || !(imm % EncodingAlignment)))
2344       return false; // r+i can fold it if we can.
2345 
2346     // If this is an or of disjoint bitfields, we can codegen this as an add
2347     // (for better address arithmetic) if the LHS and RHS of the OR are provably
2348     // disjoint.
2349     KnownBits LHSKnown = DAG.computeKnownBits(N.getOperand(0));
2350 
2351     if (LHSKnown.Zero.getBoolValue()) {
2352       KnownBits RHSKnown = DAG.computeKnownBits(N.getOperand(1));
2353       // If all of the bits are known zero on the LHS or RHS, the add won't
2354       // carry.
2355       if (~(LHSKnown.Zero | RHSKnown.Zero) == 0) {
2356         Base = N.getOperand(0);
2357         Index = N.getOperand(1);
2358         return true;
2359       }
2360     }
2361   }
2362 
2363   return false;
2364 }
2365 
2366 // If we happen to be doing an i64 load or store into a stack slot that has
2367 // less than a 4-byte alignment, then the frame-index elimination may need to
2368 // use an indexed load or store instruction (because the offset may not be a
2369 // multiple of 4). The extra register needed to hold the offset comes from the
2370 // register scavenger, and it is possible that the scavenger will need to use
2371 // an emergency spill slot. As a result, we need to make sure that a spill slot
2372 // is allocated when doing an i64 load/store into a less-than-4-byte-aligned
2373 // stack slot.
2374 static void fixupFuncForFI(SelectionDAG &DAG, int FrameIdx, EVT VT) {
2375   // FIXME: This does not handle the LWA case.
2376   if (VT != MVT::i64)
2377     return;
2378 
2379   // NOTE: We'll exclude negative FIs here, which come from argument
2380   // lowering, because there are no known test cases triggering this problem
2381   // using packed structures (or similar). We can remove this exclusion if
2382   // we find such a test case. The reason why this is so test-case driven is
2383   // because this entire 'fixup' is only to prevent crashes (from the
2384   // register scavenger) on not-really-valid inputs. For example, if we have:
2385   //   %a = alloca i1
2386   //   %b = bitcast i1* %a to i64*
2387   //   store i64* a, i64 b
2388   // then the store should really be marked as 'align 1', but is not. If it
2389   // were marked as 'align 1' then the indexed form would have been
2390   // instruction-selected initially, and the problem this 'fixup' is preventing
2391   // won't happen regardless.
2392   if (FrameIdx < 0)
2393     return;
2394 
2395   MachineFunction &MF = DAG.getMachineFunction();
2396   MachineFrameInfo &MFI = MF.getFrameInfo();
2397 
2398   unsigned Align = MFI.getObjectAlignment(FrameIdx);
2399   if (Align >= 4)
2400     return;
2401 
2402   PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
2403   FuncInfo->setHasNonRISpills();
2404 }
2405 
2406 /// Returns true if the address N can be represented by a base register plus
2407 /// a signed 16-bit displacement [r+imm], and if it is not better
2408 /// represented as reg+reg.  If \p EncodingAlignment is non-zero, only accept
2409 /// displacements that are multiples of that value.
2410 bool PPCTargetLowering::SelectAddressRegImm(SDValue N, SDValue &Disp,
2411                                             SDValue &Base,
2412                                             SelectionDAG &DAG,
2413                                             unsigned EncodingAlignment) const {
2414   // FIXME dl should come from parent load or store, not from address
2415   SDLoc dl(N);
2416   // If this can be more profitably realized as r+r, fail.
2417   if (SelectAddressRegReg(N, Disp, Base, DAG, EncodingAlignment))
2418     return false;
2419 
2420   if (N.getOpcode() == ISD::ADD) {
2421     int16_t imm = 0;
2422     if (isIntS16Immediate(N.getOperand(1), imm) &&
2423         (!EncodingAlignment || (imm % EncodingAlignment) == 0)) {
2424       Disp = DAG.getTargetConstant(imm, dl, N.getValueType());
2425       if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N.getOperand(0))) {
2426         Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
2427         fixupFuncForFI(DAG, FI->getIndex(), N.getValueType());
2428       } else {
2429         Base = N.getOperand(0);
2430       }
2431       return true; // [r+i]
2432     } else if (N.getOperand(1).getOpcode() == PPCISD::Lo) {
2433       // Match LOAD (ADD (X, Lo(G))).
2434       assert(!cast<ConstantSDNode>(N.getOperand(1).getOperand(1))->getZExtValue()
2435              && "Cannot handle constant offsets yet!");
2436       Disp = N.getOperand(1).getOperand(0);  // The global address.
2437       assert(Disp.getOpcode() == ISD::TargetGlobalAddress ||
2438              Disp.getOpcode() == ISD::TargetGlobalTLSAddress ||
2439              Disp.getOpcode() == ISD::TargetConstantPool ||
2440              Disp.getOpcode() == ISD::TargetJumpTable);
2441       Base = N.getOperand(0);
2442       return true;  // [&g+r]
2443     }
2444   } else if (N.getOpcode() == ISD::OR) {
2445     int16_t imm = 0;
2446     if (isIntS16Immediate(N.getOperand(1), imm) &&
2447         (!EncodingAlignment || (imm % EncodingAlignment) == 0)) {
2448       // If this is an or of disjoint bitfields, we can codegen this as an add
2449       // (for better address arithmetic) if the LHS and RHS of the OR are
2450       // provably disjoint.
2451       KnownBits LHSKnown = DAG.computeKnownBits(N.getOperand(0));
2452 
2453       if ((LHSKnown.Zero.getZExtValue()|~(uint64_t)imm) == ~0ULL) {
2454         // If all of the bits are known zero on the LHS or RHS, the add won't
2455         // carry.
2456         if (FrameIndexSDNode *FI =
2457               dyn_cast<FrameIndexSDNode>(N.getOperand(0))) {
2458           Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
2459           fixupFuncForFI(DAG, FI->getIndex(), N.getValueType());
2460         } else {
2461           Base = N.getOperand(0);
2462         }
2463         Disp = DAG.getTargetConstant(imm, dl, N.getValueType());
2464         return true;
2465       }
2466     }
2467   } else if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N)) {
2468     // Loading from a constant address.
2469 
2470     // If this address fits entirely in a 16-bit sext immediate field, codegen
2471     // this as "d, 0"
2472     int16_t Imm;
2473     if (isIntS16Immediate(CN, Imm) &&
2474         (!EncodingAlignment || (Imm % EncodingAlignment) == 0)) {
2475       Disp = DAG.getTargetConstant(Imm, dl, CN->getValueType(0));
2476       Base = DAG.getRegister(Subtarget.isPPC64() ? PPC::ZERO8 : PPC::ZERO,
2477                              CN->getValueType(0));
2478       return true;
2479     }
2480 
2481     // Handle 32-bit sext immediates with LIS + addr mode.
2482     if ((CN->getValueType(0) == MVT::i32 ||
2483          (int64_t)CN->getZExtValue() == (int)CN->getZExtValue()) &&
2484         (!EncodingAlignment || (CN->getZExtValue() % EncodingAlignment) == 0)) {
2485       int Addr = (int)CN->getZExtValue();
2486 
2487       // Otherwise, break this down into an LIS + disp.
2488       Disp = DAG.getTargetConstant((short)Addr, dl, MVT::i32);
2489 
2490       Base = DAG.getTargetConstant((Addr - (signed short)Addr) >> 16, dl,
2491                                    MVT::i32);
2492       unsigned Opc = CN->getValueType(0) == MVT::i32 ? PPC::LIS : PPC::LIS8;
2493       Base = SDValue(DAG.getMachineNode(Opc, dl, CN->getValueType(0), Base), 0);
2494       return true;
2495     }
2496   }
2497 
2498   Disp = DAG.getTargetConstant(0, dl, getPointerTy(DAG.getDataLayout()));
2499   if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N)) {
2500     Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
2501     fixupFuncForFI(DAG, FI->getIndex(), N.getValueType());
2502   } else
2503     Base = N;
2504   return true;      // [r+0]
2505 }
2506 
2507 /// SelectAddressRegRegOnly - Given the specified addressed, force it to be
2508 /// represented as an indexed [r+r] operation.
2509 bool PPCTargetLowering::SelectAddressRegRegOnly(SDValue N, SDValue &Base,
2510                                                 SDValue &Index,
2511                                                 SelectionDAG &DAG) const {
2512   // Check to see if we can easily represent this as an [r+r] address.  This
2513   // will fail if it thinks that the address is more profitably represented as
2514   // reg+imm, e.g. where imm = 0.
2515   if (SelectAddressRegReg(N, Base, Index, DAG))
2516     return true;
2517 
2518   // If the address is the result of an add, we will utilize the fact that the
2519   // address calculation includes an implicit add.  However, we can reduce
2520   // register pressure if we do not materialize a constant just for use as the
2521   // index register.  We only get rid of the add if it is not an add of a
2522   // value and a 16-bit signed constant and both have a single use.
2523   int16_t imm = 0;
2524   if (N.getOpcode() == ISD::ADD &&
2525       (!isIntS16Immediate(N.getOperand(1), imm) ||
2526        !N.getOperand(1).hasOneUse() || !N.getOperand(0).hasOneUse())) {
2527     Base = N.getOperand(0);
2528     Index = N.getOperand(1);
2529     return true;
2530   }
2531 
2532   // Otherwise, do it the hard way, using R0 as the base register.
2533   Base = DAG.getRegister(Subtarget.isPPC64() ? PPC::ZERO8 : PPC::ZERO,
2534                          N.getValueType());
2535   Index = N;
2536   return true;
2537 }
2538 
2539 /// Returns true if we should use a direct load into vector instruction
2540 /// (such as lxsd or lfd), instead of a load into gpr + direct move sequence.
2541 static bool usePartialVectorLoads(SDNode *N, const PPCSubtarget& ST) {
2542 
2543   // If there are any other uses other than scalar to vector, then we should
2544   // keep it as a scalar load -> direct move pattern to prevent multiple
2545   // loads.
2546   LoadSDNode *LD = dyn_cast<LoadSDNode>(N);
2547   if (!LD)
2548     return false;
2549 
2550   EVT MemVT = LD->getMemoryVT();
2551   if (!MemVT.isSimple())
2552     return false;
2553   switch(MemVT.getSimpleVT().SimpleTy) {
2554   case MVT::i64:
2555     break;
2556   case MVT::i32:
2557     if (!ST.hasP8Vector())
2558       return false;
2559     break;
2560   case MVT::i16:
2561   case MVT::i8:
2562     if (!ST.hasP9Vector())
2563       return false;
2564     break;
2565   default:
2566     return false;
2567   }
2568 
2569   SDValue LoadedVal(N, 0);
2570   if (!LoadedVal.hasOneUse())
2571     return false;
2572 
2573   for (SDNode::use_iterator UI = LD->use_begin(), UE = LD->use_end();
2574        UI != UE; ++UI)
2575     if (UI.getUse().get().getResNo() == 0 &&
2576         UI->getOpcode() != ISD::SCALAR_TO_VECTOR)
2577       return false;
2578 
2579   return true;
2580 }
2581 
2582 /// getPreIndexedAddressParts - returns true by value, base pointer and
2583 /// offset pointer and addressing mode by reference if the node's address
2584 /// can be legally represented as pre-indexed load / store address.
2585 bool PPCTargetLowering::getPreIndexedAddressParts(SDNode *N, SDValue &Base,
2586                                                   SDValue &Offset,
2587                                                   ISD::MemIndexedMode &AM,
2588                                                   SelectionDAG &DAG) const {
2589   if (DisablePPCPreinc) return false;
2590 
2591   bool isLoad = true;
2592   SDValue Ptr;
2593   EVT VT;
2594   unsigned Alignment;
2595   if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
2596     Ptr = LD->getBasePtr();
2597     VT = LD->getMemoryVT();
2598     Alignment = LD->getAlignment();
2599   } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
2600     Ptr = ST->getBasePtr();
2601     VT  = ST->getMemoryVT();
2602     Alignment = ST->getAlignment();
2603     isLoad = false;
2604   } else
2605     return false;
2606 
2607   // Do not generate pre-inc forms for specific loads that feed scalar_to_vector
2608   // instructions because we can fold these into a more efficient instruction
2609   // instead, (such as LXSD).
2610   if (isLoad && usePartialVectorLoads(N, Subtarget)) {
2611     return false;
2612   }
2613 
2614   // PowerPC doesn't have preinc load/store instructions for vectors (except
2615   // for QPX, which does have preinc r+r forms).
2616   if (VT.isVector()) {
2617     if (!Subtarget.hasQPX() || (VT != MVT::v4f64 && VT != MVT::v4f32)) {
2618       return false;
2619     } else if (SelectAddressRegRegOnly(Ptr, Offset, Base, DAG)) {
2620       AM = ISD::PRE_INC;
2621       return true;
2622     }
2623   }
2624 
2625   if (SelectAddressRegReg(Ptr, Base, Offset, DAG)) {
2626     // Common code will reject creating a pre-inc form if the base pointer
2627     // is a frame index, or if N is a store and the base pointer is either
2628     // the same as or a predecessor of the value being stored.  Check for
2629     // those situations here, and try with swapped Base/Offset instead.
2630     bool Swap = false;
2631 
2632     if (isa<FrameIndexSDNode>(Base) || isa<RegisterSDNode>(Base))
2633       Swap = true;
2634     else if (!isLoad) {
2635       SDValue Val = cast<StoreSDNode>(N)->getValue();
2636       if (Val == Base || Base.getNode()->isPredecessorOf(Val.getNode()))
2637         Swap = true;
2638     }
2639 
2640     if (Swap)
2641       std::swap(Base, Offset);
2642 
2643     AM = ISD::PRE_INC;
2644     return true;
2645   }
2646 
2647   // LDU/STU can only handle immediates that are a multiple of 4.
2648   if (VT != MVT::i64) {
2649     if (!SelectAddressRegImm(Ptr, Offset, Base, DAG, 0))
2650       return false;
2651   } else {
2652     // LDU/STU need an address with at least 4-byte alignment.
2653     if (Alignment < 4)
2654       return false;
2655 
2656     if (!SelectAddressRegImm(Ptr, Offset, Base, DAG, 4))
2657       return false;
2658   }
2659 
2660   if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
2661     // PPC64 doesn't have lwau, but it does have lwaux.  Reject preinc load of
2662     // sext i32 to i64 when addr mode is r+i.
2663     if (LD->getValueType(0) == MVT::i64 && LD->getMemoryVT() == MVT::i32 &&
2664         LD->getExtensionType() == ISD::SEXTLOAD &&
2665         isa<ConstantSDNode>(Offset))
2666       return false;
2667   }
2668 
2669   AM = ISD::PRE_INC;
2670   return true;
2671 }
2672 
2673 //===----------------------------------------------------------------------===//
2674 //  LowerOperation implementation
2675 //===----------------------------------------------------------------------===//
2676 
2677 /// Return true if we should reference labels using a PICBase, set the HiOpFlags
2678 /// and LoOpFlags to the target MO flags.
2679 static void getLabelAccessInfo(bool IsPIC, const PPCSubtarget &Subtarget,
2680                                unsigned &HiOpFlags, unsigned &LoOpFlags,
2681                                const GlobalValue *GV = nullptr) {
2682   HiOpFlags = PPCII::MO_HA;
2683   LoOpFlags = PPCII::MO_LO;
2684 
2685   // Don't use the pic base if not in PIC relocation model.
2686   if (IsPIC) {
2687     HiOpFlags |= PPCII::MO_PIC_FLAG;
2688     LoOpFlags |= PPCII::MO_PIC_FLAG;
2689   }
2690 
2691   // If this is a reference to a global value that requires a non-lazy-ptr, make
2692   // sure that instruction lowering adds it.
2693   if (GV && Subtarget.hasLazyResolverStub(GV)) {
2694     HiOpFlags |= PPCII::MO_NLP_FLAG;
2695     LoOpFlags |= PPCII::MO_NLP_FLAG;
2696 
2697     if (GV->hasHiddenVisibility()) {
2698       HiOpFlags |= PPCII::MO_NLP_HIDDEN_FLAG;
2699       LoOpFlags |= PPCII::MO_NLP_HIDDEN_FLAG;
2700     }
2701   }
2702 }
2703 
2704 static SDValue LowerLabelRef(SDValue HiPart, SDValue LoPart, bool isPIC,
2705                              SelectionDAG &DAG) {
2706   SDLoc DL(HiPart);
2707   EVT PtrVT = HiPart.getValueType();
2708   SDValue Zero = DAG.getConstant(0, DL, PtrVT);
2709 
2710   SDValue Hi = DAG.getNode(PPCISD::Hi, DL, PtrVT, HiPart, Zero);
2711   SDValue Lo = DAG.getNode(PPCISD::Lo, DL, PtrVT, LoPart, Zero);
2712 
2713   // With PIC, the first instruction is actually "GR+hi(&G)".
2714   if (isPIC)
2715     Hi = DAG.getNode(ISD::ADD, DL, PtrVT,
2716                      DAG.getNode(PPCISD::GlobalBaseReg, DL, PtrVT), Hi);
2717 
2718   // Generate non-pic code that has direct accesses to the constant pool.
2719   // The address of the global is just (hi(&g)+lo(&g)).
2720   return DAG.getNode(ISD::ADD, DL, PtrVT, Hi, Lo);
2721 }
2722 
2723 static void setUsesTOCBasePtr(MachineFunction &MF) {
2724   PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
2725   FuncInfo->setUsesTOCBasePtr();
2726 }
2727 
2728 static void setUsesTOCBasePtr(SelectionDAG &DAG) {
2729   setUsesTOCBasePtr(DAG.getMachineFunction());
2730 }
2731 
2732 SDValue PPCTargetLowering::getTOCEntry(SelectionDAG &DAG, const SDLoc &dl,
2733                                        SDValue GA) const {
2734   const bool Is64Bit = Subtarget.isPPC64();
2735   EVT VT = Is64Bit ? MVT::i64 : MVT::i32;
2736   SDValue Reg = Is64Bit ? DAG.getRegister(PPC::X2, VT)
2737                         : Subtarget.isAIXABI()
2738                               ? DAG.getRegister(PPC::R2, VT)
2739                               : DAG.getNode(PPCISD::GlobalBaseReg, dl, VT);
2740   SDValue Ops[] = { GA, Reg };
2741   return DAG.getMemIntrinsicNode(
2742       PPCISD::TOC_ENTRY, dl, DAG.getVTList(VT, MVT::Other), Ops, VT,
2743       MachinePointerInfo::getGOT(DAG.getMachineFunction()), 0,
2744       MachineMemOperand::MOLoad);
2745 }
2746 
2747 SDValue PPCTargetLowering::LowerConstantPool(SDValue Op,
2748                                              SelectionDAG &DAG) const {
2749   EVT PtrVT = Op.getValueType();
2750   ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op);
2751   const Constant *C = CP->getConstVal();
2752 
2753   // 64-bit SVR4 ABI and AIX ABI code are always position-independent.
2754   // The actual address of the GlobalValue is stored in the TOC.
2755   if (Subtarget.is64BitELFABI() || Subtarget.isAIXABI()) {
2756     setUsesTOCBasePtr(DAG);
2757     SDValue GA = DAG.getTargetConstantPool(C, PtrVT, CP->getAlignment(), 0);
2758     return getTOCEntry(DAG, SDLoc(CP), GA);
2759   }
2760 
2761   unsigned MOHiFlag, MOLoFlag;
2762   bool IsPIC = isPositionIndependent();
2763   getLabelAccessInfo(IsPIC, Subtarget, MOHiFlag, MOLoFlag);
2764 
2765   if (IsPIC && Subtarget.isSVR4ABI()) {
2766     SDValue GA = DAG.getTargetConstantPool(C, PtrVT, CP->getAlignment(),
2767                                            PPCII::MO_PIC_FLAG);
2768     return getTOCEntry(DAG, SDLoc(CP), GA);
2769   }
2770 
2771   SDValue CPIHi =
2772     DAG.getTargetConstantPool(C, PtrVT, CP->getAlignment(), 0, MOHiFlag);
2773   SDValue CPILo =
2774     DAG.getTargetConstantPool(C, PtrVT, CP->getAlignment(), 0, MOLoFlag);
2775   return LowerLabelRef(CPIHi, CPILo, IsPIC, DAG);
2776 }
2777 
2778 // For 64-bit PowerPC, prefer the more compact relative encodings.
2779 // This trades 32 bits per jump table entry for one or two instructions
2780 // on the jump site.
2781 unsigned PPCTargetLowering::getJumpTableEncoding() const {
2782   if (isJumpTableRelative())
2783     return MachineJumpTableInfo::EK_LabelDifference32;
2784 
2785   return TargetLowering::getJumpTableEncoding();
2786 }
2787 
2788 bool PPCTargetLowering::isJumpTableRelative() const {
2789   if (UseAbsoluteJumpTables)
2790     return false;
2791   if (Subtarget.isPPC64() || Subtarget.isAIXABI())
2792     return true;
2793   return TargetLowering::isJumpTableRelative();
2794 }
2795 
2796 SDValue PPCTargetLowering::getPICJumpTableRelocBase(SDValue Table,
2797                                                     SelectionDAG &DAG) const {
2798   if (!Subtarget.isPPC64() || Subtarget.isAIXABI())
2799     return TargetLowering::getPICJumpTableRelocBase(Table, DAG);
2800 
2801   switch (getTargetMachine().getCodeModel()) {
2802   case CodeModel::Small:
2803   case CodeModel::Medium:
2804     return TargetLowering::getPICJumpTableRelocBase(Table, DAG);
2805   default:
2806     return DAG.getNode(PPCISD::GlobalBaseReg, SDLoc(),
2807                        getPointerTy(DAG.getDataLayout()));
2808   }
2809 }
2810 
2811 const MCExpr *
2812 PPCTargetLowering::getPICJumpTableRelocBaseExpr(const MachineFunction *MF,
2813                                                 unsigned JTI,
2814                                                 MCContext &Ctx) const {
2815   if (!Subtarget.isPPC64() || Subtarget.isAIXABI())
2816     return TargetLowering::getPICJumpTableRelocBaseExpr(MF, JTI, Ctx);
2817 
2818   switch (getTargetMachine().getCodeModel()) {
2819   case CodeModel::Small:
2820   case CodeModel::Medium:
2821     return TargetLowering::getPICJumpTableRelocBaseExpr(MF, JTI, Ctx);
2822   default:
2823     return MCSymbolRefExpr::create(MF->getPICBaseSymbol(), Ctx);
2824   }
2825 }
2826 
2827 SDValue PPCTargetLowering::LowerJumpTable(SDValue Op, SelectionDAG &DAG) const {
2828   EVT PtrVT = Op.getValueType();
2829   JumpTableSDNode *JT = cast<JumpTableSDNode>(Op);
2830 
2831   // 64-bit SVR4 ABI and AIX ABI code are always position-independent.
2832   // The actual address of the GlobalValue is stored in the TOC.
2833   if (Subtarget.is64BitELFABI() || Subtarget.isAIXABI()) {
2834     setUsesTOCBasePtr(DAG);
2835     SDValue GA = DAG.getTargetJumpTable(JT->getIndex(), PtrVT);
2836     return getTOCEntry(DAG, SDLoc(JT), GA);
2837   }
2838 
2839   unsigned MOHiFlag, MOLoFlag;
2840   bool IsPIC = isPositionIndependent();
2841   getLabelAccessInfo(IsPIC, Subtarget, MOHiFlag, MOLoFlag);
2842 
2843   if (IsPIC && Subtarget.isSVR4ABI()) {
2844     SDValue GA = DAG.getTargetJumpTable(JT->getIndex(), PtrVT,
2845                                         PPCII::MO_PIC_FLAG);
2846     return getTOCEntry(DAG, SDLoc(GA), GA);
2847   }
2848 
2849   SDValue JTIHi = DAG.getTargetJumpTable(JT->getIndex(), PtrVT, MOHiFlag);
2850   SDValue JTILo = DAG.getTargetJumpTable(JT->getIndex(), PtrVT, MOLoFlag);
2851   return LowerLabelRef(JTIHi, JTILo, IsPIC, DAG);
2852 }
2853 
2854 SDValue PPCTargetLowering::LowerBlockAddress(SDValue Op,
2855                                              SelectionDAG &DAG) const {
2856   EVT PtrVT = Op.getValueType();
2857   BlockAddressSDNode *BASDN = cast<BlockAddressSDNode>(Op);
2858   const BlockAddress *BA = BASDN->getBlockAddress();
2859 
2860   // 64-bit SVR4 ABI and AIX ABI code are always position-independent.
2861   // The actual BlockAddress is stored in the TOC.
2862   if (Subtarget.is64BitELFABI() || Subtarget.isAIXABI()) {
2863     setUsesTOCBasePtr(DAG);
2864     SDValue GA = DAG.getTargetBlockAddress(BA, PtrVT, BASDN->getOffset());
2865     return getTOCEntry(DAG, SDLoc(BASDN), GA);
2866   }
2867 
2868   // 32-bit position-independent ELF stores the BlockAddress in the .got.
2869   if (Subtarget.is32BitELFABI() && isPositionIndependent())
2870     return getTOCEntry(
2871         DAG, SDLoc(BASDN),
2872         DAG.getTargetBlockAddress(BA, PtrVT, BASDN->getOffset()));
2873 
2874   unsigned MOHiFlag, MOLoFlag;
2875   bool IsPIC = isPositionIndependent();
2876   getLabelAccessInfo(IsPIC, Subtarget, MOHiFlag, MOLoFlag);
2877   SDValue TgtBAHi = DAG.getTargetBlockAddress(BA, PtrVT, 0, MOHiFlag);
2878   SDValue TgtBALo = DAG.getTargetBlockAddress(BA, PtrVT, 0, MOLoFlag);
2879   return LowerLabelRef(TgtBAHi, TgtBALo, IsPIC, DAG);
2880 }
2881 
2882 SDValue PPCTargetLowering::LowerGlobalTLSAddress(SDValue Op,
2883                                               SelectionDAG &DAG) const {
2884   // FIXME: TLS addresses currently use medium model code sequences,
2885   // which is the most useful form.  Eventually support for small and
2886   // large models could be added if users need it, at the cost of
2887   // additional complexity.
2888   GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op);
2889   if (DAG.getTarget().useEmulatedTLS())
2890     return LowerToTLSEmulatedModel(GA, DAG);
2891 
2892   SDLoc dl(GA);
2893   const GlobalValue *GV = GA->getGlobal();
2894   EVT PtrVT = getPointerTy(DAG.getDataLayout());
2895   bool is64bit = Subtarget.isPPC64();
2896   const Module *M = DAG.getMachineFunction().getFunction().getParent();
2897   PICLevel::Level picLevel = M->getPICLevel();
2898 
2899   const TargetMachine &TM = getTargetMachine();
2900   TLSModel::Model Model = TM.getTLSModel(GV);
2901 
2902   if (Model == TLSModel::LocalExec) {
2903     SDValue TGAHi = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0,
2904                                                PPCII::MO_TPREL_HA);
2905     SDValue TGALo = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0,
2906                                                PPCII::MO_TPREL_LO);
2907     SDValue TLSReg = is64bit ? DAG.getRegister(PPC::X13, MVT::i64)
2908                              : DAG.getRegister(PPC::R2, MVT::i32);
2909 
2910     SDValue Hi = DAG.getNode(PPCISD::Hi, dl, PtrVT, TGAHi, TLSReg);
2911     return DAG.getNode(PPCISD::Lo, dl, PtrVT, TGALo, Hi);
2912   }
2913 
2914   if (Model == TLSModel::InitialExec) {
2915     SDValue TGA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 0);
2916     SDValue TGATLS = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0,
2917                                                 PPCII::MO_TLS);
2918     SDValue GOTPtr;
2919     if (is64bit) {
2920       setUsesTOCBasePtr(DAG);
2921       SDValue GOTReg = DAG.getRegister(PPC::X2, MVT::i64);
2922       GOTPtr = DAG.getNode(PPCISD::ADDIS_GOT_TPREL_HA, dl,
2923                            PtrVT, GOTReg, TGA);
2924     } else {
2925       if (!TM.isPositionIndependent())
2926         GOTPtr = DAG.getNode(PPCISD::PPC32_GOT, dl, PtrVT);
2927       else if (picLevel == PICLevel::SmallPIC)
2928         GOTPtr = DAG.getNode(PPCISD::GlobalBaseReg, dl, PtrVT);
2929       else
2930         GOTPtr = DAG.getNode(PPCISD::PPC32_PICGOT, dl, PtrVT);
2931     }
2932     SDValue TPOffset = DAG.getNode(PPCISD::LD_GOT_TPREL_L, dl,
2933                                    PtrVT, TGA, GOTPtr);
2934     return DAG.getNode(PPCISD::ADD_TLS, dl, PtrVT, TPOffset, TGATLS);
2935   }
2936 
2937   if (Model == TLSModel::GeneralDynamic) {
2938     SDValue TGA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 0);
2939     SDValue GOTPtr;
2940     if (is64bit) {
2941       setUsesTOCBasePtr(DAG);
2942       SDValue GOTReg = DAG.getRegister(PPC::X2, MVT::i64);
2943       GOTPtr = DAG.getNode(PPCISD::ADDIS_TLSGD_HA, dl, PtrVT,
2944                                    GOTReg, TGA);
2945     } else {
2946       if (picLevel == PICLevel::SmallPIC)
2947         GOTPtr = DAG.getNode(PPCISD::GlobalBaseReg, dl, PtrVT);
2948       else
2949         GOTPtr = DAG.getNode(PPCISD::PPC32_PICGOT, dl, PtrVT);
2950     }
2951     return DAG.getNode(PPCISD::ADDI_TLSGD_L_ADDR, dl, PtrVT,
2952                        GOTPtr, TGA, TGA);
2953   }
2954 
2955   if (Model == TLSModel::LocalDynamic) {
2956     SDValue TGA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 0);
2957     SDValue GOTPtr;
2958     if (is64bit) {
2959       setUsesTOCBasePtr(DAG);
2960       SDValue GOTReg = DAG.getRegister(PPC::X2, MVT::i64);
2961       GOTPtr = DAG.getNode(PPCISD::ADDIS_TLSLD_HA, dl, PtrVT,
2962                            GOTReg, TGA);
2963     } else {
2964       if (picLevel == PICLevel::SmallPIC)
2965         GOTPtr = DAG.getNode(PPCISD::GlobalBaseReg, dl, PtrVT);
2966       else
2967         GOTPtr = DAG.getNode(PPCISD::PPC32_PICGOT, dl, PtrVT);
2968     }
2969     SDValue TLSAddr = DAG.getNode(PPCISD::ADDI_TLSLD_L_ADDR, dl,
2970                                   PtrVT, GOTPtr, TGA, TGA);
2971     SDValue DtvOffsetHi = DAG.getNode(PPCISD::ADDIS_DTPREL_HA, dl,
2972                                       PtrVT, TLSAddr, TGA);
2973     return DAG.getNode(PPCISD::ADDI_DTPREL_L, dl, PtrVT, DtvOffsetHi, TGA);
2974   }
2975 
2976   llvm_unreachable("Unknown TLS model!");
2977 }
2978 
2979 SDValue PPCTargetLowering::LowerGlobalAddress(SDValue Op,
2980                                               SelectionDAG &DAG) const {
2981   EVT PtrVT = Op.getValueType();
2982   GlobalAddressSDNode *GSDN = cast<GlobalAddressSDNode>(Op);
2983   SDLoc DL(GSDN);
2984   const GlobalValue *GV = GSDN->getGlobal();
2985 
2986   // 64-bit SVR4 ABI & AIX ABI code is always position-independent.
2987   // The actual address of the GlobalValue is stored in the TOC.
2988   if (Subtarget.is64BitELFABI() || Subtarget.isAIXABI()) {
2989     setUsesTOCBasePtr(DAG);
2990     SDValue GA = DAG.getTargetGlobalAddress(GV, DL, PtrVT, GSDN->getOffset());
2991     return getTOCEntry(DAG, DL, GA);
2992   }
2993 
2994   unsigned MOHiFlag, MOLoFlag;
2995   bool IsPIC = isPositionIndependent();
2996   getLabelAccessInfo(IsPIC, Subtarget, MOHiFlag, MOLoFlag, GV);
2997 
2998   if (IsPIC && Subtarget.isSVR4ABI()) {
2999     SDValue GA = DAG.getTargetGlobalAddress(GV, DL, PtrVT,
3000                                             GSDN->getOffset(),
3001                                             PPCII::MO_PIC_FLAG);
3002     return getTOCEntry(DAG, DL, GA);
3003   }
3004 
3005   SDValue GAHi =
3006     DAG.getTargetGlobalAddress(GV, DL, PtrVT, GSDN->getOffset(), MOHiFlag);
3007   SDValue GALo =
3008     DAG.getTargetGlobalAddress(GV, DL, PtrVT, GSDN->getOffset(), MOLoFlag);
3009 
3010   SDValue Ptr = LowerLabelRef(GAHi, GALo, IsPIC, DAG);
3011 
3012   // If the global reference is actually to a non-lazy-pointer, we have to do an
3013   // extra load to get the address of the global.
3014   if (MOHiFlag & PPCII::MO_NLP_FLAG)
3015     Ptr = DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), Ptr, MachinePointerInfo());
3016   return Ptr;
3017 }
3018 
3019 SDValue PPCTargetLowering::LowerSETCC(SDValue Op, SelectionDAG &DAG) const {
3020   ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
3021   SDLoc dl(Op);
3022 
3023   if (Op.getValueType() == MVT::v2i64) {
3024     // When the operands themselves are v2i64 values, we need to do something
3025     // special because VSX has no underlying comparison operations for these.
3026     if (Op.getOperand(0).getValueType() == MVT::v2i64) {
3027       // Equality can be handled by casting to the legal type for Altivec
3028       // comparisons, everything else needs to be expanded.
3029       if (CC == ISD::SETEQ || CC == ISD::SETNE) {
3030         return DAG.getNode(ISD::BITCAST, dl, MVT::v2i64,
3031                  DAG.getSetCC(dl, MVT::v4i32,
3032                    DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, Op.getOperand(0)),
3033                    DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, Op.getOperand(1)),
3034                    CC));
3035       }
3036 
3037       return SDValue();
3038     }
3039 
3040     // We handle most of these in the usual way.
3041     return Op;
3042   }
3043 
3044   // If we're comparing for equality to zero, expose the fact that this is
3045   // implemented as a ctlz/srl pair on ppc, so that the dag combiner can
3046   // fold the new nodes.
3047   if (SDValue V = lowerCmpEqZeroToCtlzSrl(Op, DAG))
3048     return V;
3049 
3050   if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
3051     // Leave comparisons against 0 and -1 alone for now, since they're usually
3052     // optimized.  FIXME: revisit this when we can custom lower all setcc
3053     // optimizations.
3054     if (C->isAllOnesValue() || C->isNullValue())
3055       return SDValue();
3056   }
3057 
3058   // If we have an integer seteq/setne, turn it into a compare against zero
3059   // by xor'ing the rhs with the lhs, which is faster than setting a
3060   // condition register, reading it back out, and masking the correct bit.  The
3061   // normal approach here uses sub to do this instead of xor.  Using xor exposes
3062   // the result to other bit-twiddling opportunities.
3063   EVT LHSVT = Op.getOperand(0).getValueType();
3064   if (LHSVT.isInteger() && (CC == ISD::SETEQ || CC == ISD::SETNE)) {
3065     EVT VT = Op.getValueType();
3066     SDValue Sub = DAG.getNode(ISD::XOR, dl, LHSVT, Op.getOperand(0),
3067                                 Op.getOperand(1));
3068     return DAG.getSetCC(dl, VT, Sub, DAG.getConstant(0, dl, LHSVT), CC);
3069   }
3070   return SDValue();
3071 }
3072 
3073 SDValue PPCTargetLowering::LowerVAARG(SDValue Op, SelectionDAG &DAG) const {
3074   SDNode *Node = Op.getNode();
3075   EVT VT = Node->getValueType(0);
3076   EVT PtrVT = getPointerTy(DAG.getDataLayout());
3077   SDValue InChain = Node->getOperand(0);
3078   SDValue VAListPtr = Node->getOperand(1);
3079   const Value *SV = cast<SrcValueSDNode>(Node->getOperand(2))->getValue();
3080   SDLoc dl(Node);
3081 
3082   assert(!Subtarget.isPPC64() && "LowerVAARG is PPC32 only");
3083 
3084   // gpr_index
3085   SDValue GprIndex = DAG.getExtLoad(ISD::ZEXTLOAD, dl, MVT::i32, InChain,
3086                                     VAListPtr, MachinePointerInfo(SV), MVT::i8);
3087   InChain = GprIndex.getValue(1);
3088 
3089   if (VT == MVT::i64) {
3090     // Check if GprIndex is even
3091     SDValue GprAnd = DAG.getNode(ISD::AND, dl, MVT::i32, GprIndex,
3092                                  DAG.getConstant(1, dl, MVT::i32));
3093     SDValue CC64 = DAG.getSetCC(dl, MVT::i32, GprAnd,
3094                                 DAG.getConstant(0, dl, MVT::i32), ISD::SETNE);
3095     SDValue GprIndexPlusOne = DAG.getNode(ISD::ADD, dl, MVT::i32, GprIndex,
3096                                           DAG.getConstant(1, dl, MVT::i32));
3097     // Align GprIndex to be even if it isn't
3098     GprIndex = DAG.getNode(ISD::SELECT, dl, MVT::i32, CC64, GprIndexPlusOne,
3099                            GprIndex);
3100   }
3101 
3102   // fpr index is 1 byte after gpr
3103   SDValue FprPtr = DAG.getNode(ISD::ADD, dl, PtrVT, VAListPtr,
3104                                DAG.getConstant(1, dl, MVT::i32));
3105 
3106   // fpr
3107   SDValue FprIndex = DAG.getExtLoad(ISD::ZEXTLOAD, dl, MVT::i32, InChain,
3108                                     FprPtr, MachinePointerInfo(SV), MVT::i8);
3109   InChain = FprIndex.getValue(1);
3110 
3111   SDValue RegSaveAreaPtr = DAG.getNode(ISD::ADD, dl, PtrVT, VAListPtr,
3112                                        DAG.getConstant(8, dl, MVT::i32));
3113 
3114   SDValue OverflowAreaPtr = DAG.getNode(ISD::ADD, dl, PtrVT, VAListPtr,
3115                                         DAG.getConstant(4, dl, MVT::i32));
3116 
3117   // areas
3118   SDValue OverflowArea =
3119       DAG.getLoad(MVT::i32, dl, InChain, OverflowAreaPtr, MachinePointerInfo());
3120   InChain = OverflowArea.getValue(1);
3121 
3122   SDValue RegSaveArea =
3123       DAG.getLoad(MVT::i32, dl, InChain, RegSaveAreaPtr, MachinePointerInfo());
3124   InChain = RegSaveArea.getValue(1);
3125 
3126   // select overflow_area if index > 8
3127   SDValue CC = DAG.getSetCC(dl, MVT::i32, VT.isInteger() ? GprIndex : FprIndex,
3128                             DAG.getConstant(8, dl, MVT::i32), ISD::SETLT);
3129 
3130   // adjustment constant gpr_index * 4/8
3131   SDValue RegConstant = DAG.getNode(ISD::MUL, dl, MVT::i32,
3132                                     VT.isInteger() ? GprIndex : FprIndex,
3133                                     DAG.getConstant(VT.isInteger() ? 4 : 8, dl,
3134                                                     MVT::i32));
3135 
3136   // OurReg = RegSaveArea + RegConstant
3137   SDValue OurReg = DAG.getNode(ISD::ADD, dl, PtrVT, RegSaveArea,
3138                                RegConstant);
3139 
3140   // Floating types are 32 bytes into RegSaveArea
3141   if (VT.isFloatingPoint())
3142     OurReg = DAG.getNode(ISD::ADD, dl, PtrVT, OurReg,
3143                          DAG.getConstant(32, dl, MVT::i32));
3144 
3145   // increase {f,g}pr_index by 1 (or 2 if VT is i64)
3146   SDValue IndexPlus1 = DAG.getNode(ISD::ADD, dl, MVT::i32,
3147                                    VT.isInteger() ? GprIndex : FprIndex,
3148                                    DAG.getConstant(VT == MVT::i64 ? 2 : 1, dl,
3149                                                    MVT::i32));
3150 
3151   InChain = DAG.getTruncStore(InChain, dl, IndexPlus1,
3152                               VT.isInteger() ? VAListPtr : FprPtr,
3153                               MachinePointerInfo(SV), MVT::i8);
3154 
3155   // determine if we should load from reg_save_area or overflow_area
3156   SDValue Result = DAG.getNode(ISD::SELECT, dl, PtrVT, CC, OurReg, OverflowArea);
3157 
3158   // increase overflow_area by 4/8 if gpr/fpr > 8
3159   SDValue OverflowAreaPlusN = DAG.getNode(ISD::ADD, dl, PtrVT, OverflowArea,
3160                                           DAG.getConstant(VT.isInteger() ? 4 : 8,
3161                                           dl, MVT::i32));
3162 
3163   OverflowArea = DAG.getNode(ISD::SELECT, dl, MVT::i32, CC, OverflowArea,
3164                              OverflowAreaPlusN);
3165 
3166   InChain = DAG.getTruncStore(InChain, dl, OverflowArea, OverflowAreaPtr,
3167                               MachinePointerInfo(), MVT::i32);
3168 
3169   return DAG.getLoad(VT, dl, InChain, Result, MachinePointerInfo());
3170 }
3171 
3172 SDValue PPCTargetLowering::LowerVACOPY(SDValue Op, SelectionDAG &DAG) const {
3173   assert(!Subtarget.isPPC64() && "LowerVACOPY is PPC32 only");
3174 
3175   // We have to copy the entire va_list struct:
3176   // 2*sizeof(char) + 2 Byte alignment + 2*sizeof(char*) = 12 Byte
3177   return DAG.getMemcpy(Op.getOperand(0), Op,
3178                        Op.getOperand(1), Op.getOperand(2),
3179                        DAG.getConstant(12, SDLoc(Op), MVT::i32), 8, false, true,
3180                        false, MachinePointerInfo(), MachinePointerInfo());
3181 }
3182 
3183 SDValue PPCTargetLowering::LowerADJUST_TRAMPOLINE(SDValue Op,
3184                                                   SelectionDAG &DAG) const {
3185   if (Subtarget.isAIXABI())
3186     report_fatal_error("ADJUST_TRAMPOLINE operation is not supported on AIX.");
3187 
3188   return Op.getOperand(0);
3189 }
3190 
3191 SDValue PPCTargetLowering::LowerINIT_TRAMPOLINE(SDValue Op,
3192                                                 SelectionDAG &DAG) const {
3193   if (Subtarget.isAIXABI())
3194     report_fatal_error("INIT_TRAMPOLINE operation is not supported on AIX.");
3195 
3196   SDValue Chain = Op.getOperand(0);
3197   SDValue Trmp = Op.getOperand(1); // trampoline
3198   SDValue FPtr = Op.getOperand(2); // nested function
3199   SDValue Nest = Op.getOperand(3); // 'nest' parameter value
3200   SDLoc dl(Op);
3201 
3202   EVT PtrVT = getPointerTy(DAG.getDataLayout());
3203   bool isPPC64 = (PtrVT == MVT::i64);
3204   Type *IntPtrTy = DAG.getDataLayout().getIntPtrType(*DAG.getContext());
3205 
3206   TargetLowering::ArgListTy Args;
3207   TargetLowering::ArgListEntry Entry;
3208 
3209   Entry.Ty = IntPtrTy;
3210   Entry.Node = Trmp; Args.push_back(Entry);
3211 
3212   // TrampSize == (isPPC64 ? 48 : 40);
3213   Entry.Node = DAG.getConstant(isPPC64 ? 48 : 40, dl,
3214                                isPPC64 ? MVT::i64 : MVT::i32);
3215   Args.push_back(Entry);
3216 
3217   Entry.Node = FPtr; Args.push_back(Entry);
3218   Entry.Node = Nest; Args.push_back(Entry);
3219 
3220   // Lower to a call to __trampoline_setup(Trmp, TrampSize, FPtr, ctx_reg)
3221   TargetLowering::CallLoweringInfo CLI(DAG);
3222   CLI.setDebugLoc(dl).setChain(Chain).setLibCallee(
3223       CallingConv::C, Type::getVoidTy(*DAG.getContext()),
3224       DAG.getExternalSymbol("__trampoline_setup", PtrVT), std::move(Args));
3225 
3226   std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI);
3227   return CallResult.second;
3228 }
3229 
3230 SDValue PPCTargetLowering::LowerVASTART(SDValue Op, SelectionDAG &DAG) const {
3231   MachineFunction &MF = DAG.getMachineFunction();
3232   PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
3233   EVT PtrVT = getPointerTy(MF.getDataLayout());
3234 
3235   SDLoc dl(Op);
3236 
3237   if (Subtarget.isDarwinABI() || Subtarget.isPPC64()) {
3238     // vastart just stores the address of the VarArgsFrameIndex slot into the
3239     // memory location argument.
3240     SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT);
3241     const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
3242     return DAG.getStore(Op.getOperand(0), dl, FR, Op.getOperand(1),
3243                         MachinePointerInfo(SV));
3244   }
3245 
3246   // For the 32-bit SVR4 ABI we follow the layout of the va_list struct.
3247   // We suppose the given va_list is already allocated.
3248   //
3249   // typedef struct {
3250   //  char gpr;     /* index into the array of 8 GPRs
3251   //                 * stored in the register save area
3252   //                 * gpr=0 corresponds to r3,
3253   //                 * gpr=1 to r4, etc.
3254   //                 */
3255   //  char fpr;     /* index into the array of 8 FPRs
3256   //                 * stored in the register save area
3257   //                 * fpr=0 corresponds to f1,
3258   //                 * fpr=1 to f2, etc.
3259   //                 */
3260   //  char *overflow_arg_area;
3261   //                /* location on stack that holds
3262   //                 * the next overflow argument
3263   //                 */
3264   //  char *reg_save_area;
3265   //               /* where r3:r10 and f1:f8 (if saved)
3266   //                * are stored
3267   //                */
3268   // } va_list[1];
3269 
3270   SDValue ArgGPR = DAG.getConstant(FuncInfo->getVarArgsNumGPR(), dl, MVT::i32);
3271   SDValue ArgFPR = DAG.getConstant(FuncInfo->getVarArgsNumFPR(), dl, MVT::i32);
3272   SDValue StackOffsetFI = DAG.getFrameIndex(FuncInfo->getVarArgsStackOffset(),
3273                                             PtrVT);
3274   SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(),
3275                                  PtrVT);
3276 
3277   uint64_t FrameOffset = PtrVT.getSizeInBits()/8;
3278   SDValue ConstFrameOffset = DAG.getConstant(FrameOffset, dl, PtrVT);
3279 
3280   uint64_t StackOffset = PtrVT.getSizeInBits()/8 - 1;
3281   SDValue ConstStackOffset = DAG.getConstant(StackOffset, dl, PtrVT);
3282 
3283   uint64_t FPROffset = 1;
3284   SDValue ConstFPROffset = DAG.getConstant(FPROffset, dl, PtrVT);
3285 
3286   const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
3287 
3288   // Store first byte : number of int regs
3289   SDValue firstStore =
3290       DAG.getTruncStore(Op.getOperand(0), dl, ArgGPR, Op.getOperand(1),
3291                         MachinePointerInfo(SV), MVT::i8);
3292   uint64_t nextOffset = FPROffset;
3293   SDValue nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, Op.getOperand(1),
3294                                   ConstFPROffset);
3295 
3296   // Store second byte : number of float regs
3297   SDValue secondStore =
3298       DAG.getTruncStore(firstStore, dl, ArgFPR, nextPtr,
3299                         MachinePointerInfo(SV, nextOffset), MVT::i8);
3300   nextOffset += StackOffset;
3301   nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, nextPtr, ConstStackOffset);
3302 
3303   // Store second word : arguments given on stack
3304   SDValue thirdStore = DAG.getStore(secondStore, dl, StackOffsetFI, nextPtr,
3305                                     MachinePointerInfo(SV, nextOffset));
3306   nextOffset += FrameOffset;
3307   nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, nextPtr, ConstFrameOffset);
3308 
3309   // Store third word : arguments given in registers
3310   return DAG.getStore(thirdStore, dl, FR, nextPtr,
3311                       MachinePointerInfo(SV, nextOffset));
3312 }
3313 
3314 /// FPR - The set of FP registers that should be allocated for arguments
3315 /// on Darwin and AIX.
3316 static const MCPhysReg FPR[] = {PPC::F1,  PPC::F2,  PPC::F3, PPC::F4, PPC::F5,
3317                                 PPC::F6,  PPC::F7,  PPC::F8, PPC::F9, PPC::F10,
3318                                 PPC::F11, PPC::F12, PPC::F13};
3319 
3320 /// QFPR - The set of QPX registers that should be allocated for arguments.
3321 static const MCPhysReg QFPR[] = {
3322     PPC::QF1, PPC::QF2, PPC::QF3,  PPC::QF4,  PPC::QF5,  PPC::QF6, PPC::QF7,
3323     PPC::QF8, PPC::QF9, PPC::QF10, PPC::QF11, PPC::QF12, PPC::QF13};
3324 
3325 /// CalculateStackSlotSize - Calculates the size reserved for this argument on
3326 /// the stack.
3327 static unsigned CalculateStackSlotSize(EVT ArgVT, ISD::ArgFlagsTy Flags,
3328                                        unsigned PtrByteSize) {
3329   unsigned ArgSize = ArgVT.getStoreSize();
3330   if (Flags.isByVal())
3331     ArgSize = Flags.getByValSize();
3332 
3333   // Round up to multiples of the pointer size, except for array members,
3334   // which are always packed.
3335   if (!Flags.isInConsecutiveRegs())
3336     ArgSize = ((ArgSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
3337 
3338   return ArgSize;
3339 }
3340 
3341 /// CalculateStackSlotAlignment - Calculates the alignment of this argument
3342 /// on the stack.
3343 static unsigned CalculateStackSlotAlignment(EVT ArgVT, EVT OrigVT,
3344                                             ISD::ArgFlagsTy Flags,
3345                                             unsigned PtrByteSize) {
3346   unsigned Align = PtrByteSize;
3347 
3348   // Altivec parameters are padded to a 16 byte boundary.
3349   if (ArgVT == MVT::v4f32 || ArgVT == MVT::v4i32 ||
3350       ArgVT == MVT::v8i16 || ArgVT == MVT::v16i8 ||
3351       ArgVT == MVT::v2f64 || ArgVT == MVT::v2i64 ||
3352       ArgVT == MVT::v1i128 || ArgVT == MVT::f128)
3353     Align = 16;
3354   // QPX vector types stored in double-precision are padded to a 32 byte
3355   // boundary.
3356   else if (ArgVT == MVT::v4f64 || ArgVT == MVT::v4i1)
3357     Align = 32;
3358 
3359   // ByVal parameters are aligned as requested.
3360   if (Flags.isByVal()) {
3361     unsigned BVAlign = Flags.getByValAlign();
3362     if (BVAlign > PtrByteSize) {
3363       if (BVAlign % PtrByteSize != 0)
3364           llvm_unreachable(
3365             "ByVal alignment is not a multiple of the pointer size");
3366 
3367       Align = BVAlign;
3368     }
3369   }
3370 
3371   // Array members are always packed to their original alignment.
3372   if (Flags.isInConsecutiveRegs()) {
3373     // If the array member was split into multiple registers, the first
3374     // needs to be aligned to the size of the full type.  (Except for
3375     // ppcf128, which is only aligned as its f64 components.)
3376     if (Flags.isSplit() && OrigVT != MVT::ppcf128)
3377       Align = OrigVT.getStoreSize();
3378     else
3379       Align = ArgVT.getStoreSize();
3380   }
3381 
3382   return Align;
3383 }
3384 
3385 /// CalculateStackSlotUsed - Return whether this argument will use its
3386 /// stack slot (instead of being passed in registers).  ArgOffset,
3387 /// AvailableFPRs, and AvailableVRs must hold the current argument
3388 /// position, and will be updated to account for this argument.
3389 static bool CalculateStackSlotUsed(EVT ArgVT, EVT OrigVT,
3390                                    ISD::ArgFlagsTy Flags,
3391                                    unsigned PtrByteSize,
3392                                    unsigned LinkageSize,
3393                                    unsigned ParamAreaSize,
3394                                    unsigned &ArgOffset,
3395                                    unsigned &AvailableFPRs,
3396                                    unsigned &AvailableVRs, bool HasQPX) {
3397   bool UseMemory = false;
3398 
3399   // Respect alignment of argument on the stack.
3400   unsigned Align =
3401     CalculateStackSlotAlignment(ArgVT, OrigVT, Flags, PtrByteSize);
3402   ArgOffset = ((ArgOffset + Align - 1) / Align) * Align;
3403   // If there's no space left in the argument save area, we must
3404   // use memory (this check also catches zero-sized arguments).
3405   if (ArgOffset >= LinkageSize + ParamAreaSize)
3406     UseMemory = true;
3407 
3408   // Allocate argument on the stack.
3409   ArgOffset += CalculateStackSlotSize(ArgVT, Flags, PtrByteSize);
3410   if (Flags.isInConsecutiveRegsLast())
3411     ArgOffset = ((ArgOffset + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
3412   // If we overran the argument save area, we must use memory
3413   // (this check catches arguments passed partially in memory)
3414   if (ArgOffset > LinkageSize + ParamAreaSize)
3415     UseMemory = true;
3416 
3417   // However, if the argument is actually passed in an FPR or a VR,
3418   // we don't use memory after all.
3419   if (!Flags.isByVal()) {
3420     if (ArgVT == MVT::f32 || ArgVT == MVT::f64 ||
3421         // QPX registers overlap with the scalar FP registers.
3422         (HasQPX && (ArgVT == MVT::v4f32 ||
3423                     ArgVT == MVT::v4f64 ||
3424                     ArgVT == MVT::v4i1)))
3425       if (AvailableFPRs > 0) {
3426         --AvailableFPRs;
3427         return false;
3428       }
3429     if (ArgVT == MVT::v4f32 || ArgVT == MVT::v4i32 ||
3430         ArgVT == MVT::v8i16 || ArgVT == MVT::v16i8 ||
3431         ArgVT == MVT::v2f64 || ArgVT == MVT::v2i64 ||
3432         ArgVT == MVT::v1i128 || ArgVT == MVT::f128)
3433       if (AvailableVRs > 0) {
3434         --AvailableVRs;
3435         return false;
3436       }
3437   }
3438 
3439   return UseMemory;
3440 }
3441 
3442 /// EnsureStackAlignment - Round stack frame size up from NumBytes to
3443 /// ensure minimum alignment required for target.
3444 static unsigned EnsureStackAlignment(const PPCFrameLowering *Lowering,
3445                                      unsigned NumBytes) {
3446   unsigned TargetAlign = Lowering->getStackAlignment();
3447   unsigned AlignMask = TargetAlign - 1;
3448   NumBytes = (NumBytes + AlignMask) & ~AlignMask;
3449   return NumBytes;
3450 }
3451 
3452 SDValue PPCTargetLowering::LowerFormalArguments(
3453     SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
3454     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
3455     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
3456   if (Subtarget.isAIXABI())
3457     return LowerFormalArguments_AIX(Chain, CallConv, isVarArg, Ins, dl, DAG,
3458                                     InVals);
3459   if (Subtarget.is64BitELFABI())
3460     return LowerFormalArguments_64SVR4(Chain, CallConv, isVarArg, Ins, dl, DAG,
3461                                        InVals);
3462   if (Subtarget.is32BitELFABI())
3463     return LowerFormalArguments_32SVR4(Chain, CallConv, isVarArg, Ins, dl, DAG,
3464                                        InVals);
3465 
3466   return LowerFormalArguments_Darwin(Chain, CallConv, isVarArg, Ins, dl, DAG,
3467                                      InVals);
3468 }
3469 
3470 SDValue PPCTargetLowering::LowerFormalArguments_32SVR4(
3471     SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
3472     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
3473     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
3474 
3475   // 32-bit SVR4 ABI Stack Frame Layout:
3476   //              +-----------------------------------+
3477   //        +-->  |            Back chain             |
3478   //        |     +-----------------------------------+
3479   //        |     | Floating-point register save area |
3480   //        |     +-----------------------------------+
3481   //        |     |    General register save area     |
3482   //        |     +-----------------------------------+
3483   //        |     |          CR save word             |
3484   //        |     +-----------------------------------+
3485   //        |     |         VRSAVE save word          |
3486   //        |     +-----------------------------------+
3487   //        |     |         Alignment padding         |
3488   //        |     +-----------------------------------+
3489   //        |     |     Vector register save area     |
3490   //        |     +-----------------------------------+
3491   //        |     |       Local variable space        |
3492   //        |     +-----------------------------------+
3493   //        |     |        Parameter list area        |
3494   //        |     +-----------------------------------+
3495   //        |     |           LR save word            |
3496   //        |     +-----------------------------------+
3497   // SP-->  +---  |            Back chain             |
3498   //              +-----------------------------------+
3499   //
3500   // Specifications:
3501   //   System V Application Binary Interface PowerPC Processor Supplement
3502   //   AltiVec Technology Programming Interface Manual
3503 
3504   MachineFunction &MF = DAG.getMachineFunction();
3505   MachineFrameInfo &MFI = MF.getFrameInfo();
3506   PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
3507 
3508   EVT PtrVT = getPointerTy(MF.getDataLayout());
3509   // Potential tail calls could cause overwriting of argument stack slots.
3510   bool isImmutable = !(getTargetMachine().Options.GuaranteedTailCallOpt &&
3511                        (CallConv == CallingConv::Fast));
3512   unsigned PtrByteSize = 4;
3513 
3514   // Assign locations to all of the incoming arguments.
3515   SmallVector<CCValAssign, 16> ArgLocs;
3516   PPCCCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), ArgLocs,
3517                  *DAG.getContext());
3518 
3519   // Reserve space for the linkage area on the stack.
3520   unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize();
3521   CCInfo.AllocateStack(LinkageSize, PtrByteSize);
3522   if (useSoftFloat())
3523     CCInfo.PreAnalyzeFormalArguments(Ins);
3524 
3525   CCInfo.AnalyzeFormalArguments(Ins, CC_PPC32_SVR4);
3526   CCInfo.clearWasPPCF128();
3527 
3528   for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
3529     CCValAssign &VA = ArgLocs[i];
3530 
3531     // Arguments stored in registers.
3532     if (VA.isRegLoc()) {
3533       const TargetRegisterClass *RC;
3534       EVT ValVT = VA.getValVT();
3535 
3536       switch (ValVT.getSimpleVT().SimpleTy) {
3537         default:
3538           llvm_unreachable("ValVT not supported by formal arguments Lowering");
3539         case MVT::i1:
3540         case MVT::i32:
3541           RC = &PPC::GPRCRegClass;
3542           break;
3543         case MVT::f32:
3544           if (Subtarget.hasP8Vector())
3545             RC = &PPC::VSSRCRegClass;
3546           else if (Subtarget.hasSPE())
3547             RC = &PPC::GPRCRegClass;
3548           else
3549             RC = &PPC::F4RCRegClass;
3550           break;
3551         case MVT::f64:
3552           if (Subtarget.hasVSX())
3553             RC = &PPC::VSFRCRegClass;
3554           else if (Subtarget.hasSPE())
3555             // SPE passes doubles in GPR pairs.
3556             RC = &PPC::GPRCRegClass;
3557           else
3558             RC = &PPC::F8RCRegClass;
3559           break;
3560         case MVT::v16i8:
3561         case MVT::v8i16:
3562         case MVT::v4i32:
3563           RC = &PPC::VRRCRegClass;
3564           break;
3565         case MVT::v4f32:
3566           RC = Subtarget.hasQPX() ? &PPC::QSRCRegClass : &PPC::VRRCRegClass;
3567           break;
3568         case MVT::v2f64:
3569         case MVT::v2i64:
3570           RC = &PPC::VRRCRegClass;
3571           break;
3572         case MVT::v4f64:
3573           RC = &PPC::QFRCRegClass;
3574           break;
3575         case MVT::v4i1:
3576           RC = &PPC::QBRCRegClass;
3577           break;
3578       }
3579 
3580       SDValue ArgValue;
3581       // Transform the arguments stored in physical registers into
3582       // virtual ones.
3583       if (VA.getLocVT() == MVT::f64 && Subtarget.hasSPE()) {
3584         assert(i + 1 < e && "No second half of double precision argument");
3585         unsigned RegLo = MF.addLiveIn(VA.getLocReg(), RC);
3586         unsigned RegHi = MF.addLiveIn(ArgLocs[++i].getLocReg(), RC);
3587         SDValue ArgValueLo = DAG.getCopyFromReg(Chain, dl, RegLo, MVT::i32);
3588         SDValue ArgValueHi = DAG.getCopyFromReg(Chain, dl, RegHi, MVT::i32);
3589         if (!Subtarget.isLittleEndian())
3590           std::swap (ArgValueLo, ArgValueHi);
3591         ArgValue = DAG.getNode(PPCISD::BUILD_SPE64, dl, MVT::f64, ArgValueLo,
3592                                ArgValueHi);
3593       } else {
3594         unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC);
3595         ArgValue = DAG.getCopyFromReg(Chain, dl, Reg,
3596                                       ValVT == MVT::i1 ? MVT::i32 : ValVT);
3597         if (ValVT == MVT::i1)
3598           ArgValue = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, ArgValue);
3599       }
3600 
3601       InVals.push_back(ArgValue);
3602     } else {
3603       // Argument stored in memory.
3604       assert(VA.isMemLoc());
3605 
3606       // Get the extended size of the argument type in stack
3607       unsigned ArgSize = VA.getLocVT().getStoreSize();
3608       // Get the actual size of the argument type
3609       unsigned ObjSize = VA.getValVT().getStoreSize();
3610       unsigned ArgOffset = VA.getLocMemOffset();
3611       // Stack objects in PPC32 are right justified.
3612       ArgOffset += ArgSize - ObjSize;
3613       int FI = MFI.CreateFixedObject(ArgSize, ArgOffset, isImmutable);
3614 
3615       // Create load nodes to retrieve arguments from the stack.
3616       SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
3617       InVals.push_back(
3618           DAG.getLoad(VA.getValVT(), dl, Chain, FIN, MachinePointerInfo()));
3619     }
3620   }
3621 
3622   // Assign locations to all of the incoming aggregate by value arguments.
3623   // Aggregates passed by value are stored in the local variable space of the
3624   // caller's stack frame, right above the parameter list area.
3625   SmallVector<CCValAssign, 16> ByValArgLocs;
3626   CCState CCByValInfo(CallConv, isVarArg, DAG.getMachineFunction(),
3627                       ByValArgLocs, *DAG.getContext());
3628 
3629   // Reserve stack space for the allocations in CCInfo.
3630   CCByValInfo.AllocateStack(CCInfo.getNextStackOffset(), PtrByteSize);
3631 
3632   CCByValInfo.AnalyzeFormalArguments(Ins, CC_PPC32_SVR4_ByVal);
3633 
3634   // Area that is at least reserved in the caller of this function.
3635   unsigned MinReservedArea = CCByValInfo.getNextStackOffset();
3636   MinReservedArea = std::max(MinReservedArea, LinkageSize);
3637 
3638   // Set the size that is at least reserved in caller of this function.  Tail
3639   // call optimized function's reserved stack space needs to be aligned so that
3640   // taking the difference between two stack areas will result in an aligned
3641   // stack.
3642   MinReservedArea =
3643       EnsureStackAlignment(Subtarget.getFrameLowering(), MinReservedArea);
3644   FuncInfo->setMinReservedArea(MinReservedArea);
3645 
3646   SmallVector<SDValue, 8> MemOps;
3647 
3648   // If the function takes variable number of arguments, make a frame index for
3649   // the start of the first vararg value... for expansion of llvm.va_start.
3650   if (isVarArg) {
3651     static const MCPhysReg GPArgRegs[] = {
3652       PPC::R3, PPC::R4, PPC::R5, PPC::R6,
3653       PPC::R7, PPC::R8, PPC::R9, PPC::R10,
3654     };
3655     const unsigned NumGPArgRegs = array_lengthof(GPArgRegs);
3656 
3657     static const MCPhysReg FPArgRegs[] = {
3658       PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, PPC::F6, PPC::F7,
3659       PPC::F8
3660     };
3661     unsigned NumFPArgRegs = array_lengthof(FPArgRegs);
3662 
3663     if (useSoftFloat() || hasSPE())
3664        NumFPArgRegs = 0;
3665 
3666     FuncInfo->setVarArgsNumGPR(CCInfo.getFirstUnallocated(GPArgRegs));
3667     FuncInfo->setVarArgsNumFPR(CCInfo.getFirstUnallocated(FPArgRegs));
3668 
3669     // Make room for NumGPArgRegs and NumFPArgRegs.
3670     int Depth = NumGPArgRegs * PtrVT.getSizeInBits()/8 +
3671                 NumFPArgRegs * MVT(MVT::f64).getSizeInBits()/8;
3672 
3673     FuncInfo->setVarArgsStackOffset(
3674       MFI.CreateFixedObject(PtrVT.getSizeInBits()/8,
3675                             CCInfo.getNextStackOffset(), true));
3676 
3677     FuncInfo->setVarArgsFrameIndex(MFI.CreateStackObject(Depth, 8, false));
3678     SDValue FIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT);
3679 
3680     // The fixed integer arguments of a variadic function are stored to the
3681     // VarArgsFrameIndex on the stack so that they may be loaded by
3682     // dereferencing the result of va_next.
3683     for (unsigned GPRIndex = 0; GPRIndex != NumGPArgRegs; ++GPRIndex) {
3684       // Get an existing live-in vreg, or add a new one.
3685       unsigned VReg = MF.getRegInfo().getLiveInVirtReg(GPArgRegs[GPRIndex]);
3686       if (!VReg)
3687         VReg = MF.addLiveIn(GPArgRegs[GPRIndex], &PPC::GPRCRegClass);
3688 
3689       SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
3690       SDValue Store =
3691           DAG.getStore(Val.getValue(1), dl, Val, FIN, MachinePointerInfo());
3692       MemOps.push_back(Store);
3693       // Increment the address by four for the next argument to store
3694       SDValue PtrOff = DAG.getConstant(PtrVT.getSizeInBits()/8, dl, PtrVT);
3695       FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff);
3696     }
3697 
3698     // FIXME 32-bit SVR4: We only need to save FP argument registers if CR bit 6
3699     // is set.
3700     // The double arguments are stored to the VarArgsFrameIndex
3701     // on the stack.
3702     for (unsigned FPRIndex = 0; FPRIndex != NumFPArgRegs; ++FPRIndex) {
3703       // Get an existing live-in vreg, or add a new one.
3704       unsigned VReg = MF.getRegInfo().getLiveInVirtReg(FPArgRegs[FPRIndex]);
3705       if (!VReg)
3706         VReg = MF.addLiveIn(FPArgRegs[FPRIndex], &PPC::F8RCRegClass);
3707 
3708       SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::f64);
3709       SDValue Store =
3710           DAG.getStore(Val.getValue(1), dl, Val, FIN, MachinePointerInfo());
3711       MemOps.push_back(Store);
3712       // Increment the address by eight for the next argument to store
3713       SDValue PtrOff = DAG.getConstant(MVT(MVT::f64).getSizeInBits()/8, dl,
3714                                          PtrVT);
3715       FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff);
3716     }
3717   }
3718 
3719   if (!MemOps.empty())
3720     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOps);
3721 
3722   return Chain;
3723 }
3724 
3725 // PPC64 passes i8, i16, and i32 values in i64 registers. Promote
3726 // value to MVT::i64 and then truncate to the correct register size.
3727 SDValue PPCTargetLowering::extendArgForPPC64(ISD::ArgFlagsTy Flags,
3728                                              EVT ObjectVT, SelectionDAG &DAG,
3729                                              SDValue ArgVal,
3730                                              const SDLoc &dl) const {
3731   if (Flags.isSExt())
3732     ArgVal = DAG.getNode(ISD::AssertSext, dl, MVT::i64, ArgVal,
3733                          DAG.getValueType(ObjectVT));
3734   else if (Flags.isZExt())
3735     ArgVal = DAG.getNode(ISD::AssertZext, dl, MVT::i64, ArgVal,
3736                          DAG.getValueType(ObjectVT));
3737 
3738   return DAG.getNode(ISD::TRUNCATE, dl, ObjectVT, ArgVal);
3739 }
3740 
3741 SDValue PPCTargetLowering::LowerFormalArguments_64SVR4(
3742     SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
3743     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
3744     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
3745   // TODO: add description of PPC stack frame format, or at least some docs.
3746   //
3747   bool isELFv2ABI = Subtarget.isELFv2ABI();
3748   bool isLittleEndian = Subtarget.isLittleEndian();
3749   MachineFunction &MF = DAG.getMachineFunction();
3750   MachineFrameInfo &MFI = MF.getFrameInfo();
3751   PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
3752 
3753   assert(!(CallConv == CallingConv::Fast && isVarArg) &&
3754          "fastcc not supported on varargs functions");
3755 
3756   EVT PtrVT = getPointerTy(MF.getDataLayout());
3757   // Potential tail calls could cause overwriting of argument stack slots.
3758   bool isImmutable = !(getTargetMachine().Options.GuaranteedTailCallOpt &&
3759                        (CallConv == CallingConv::Fast));
3760   unsigned PtrByteSize = 8;
3761   unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize();
3762 
3763   static const MCPhysReg GPR[] = {
3764     PPC::X3, PPC::X4, PPC::X5, PPC::X6,
3765     PPC::X7, PPC::X8, PPC::X9, PPC::X10,
3766   };
3767   static const MCPhysReg VR[] = {
3768     PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8,
3769     PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13
3770   };
3771 
3772   const unsigned Num_GPR_Regs = array_lengthof(GPR);
3773   const unsigned Num_FPR_Regs = useSoftFloat() ? 0 : 13;
3774   const unsigned Num_VR_Regs  = array_lengthof(VR);
3775   const unsigned Num_QFPR_Regs = Num_FPR_Regs;
3776 
3777   // Do a first pass over the arguments to determine whether the ABI
3778   // guarantees that our caller has allocated the parameter save area
3779   // on its stack frame.  In the ELFv1 ABI, this is always the case;
3780   // in the ELFv2 ABI, it is true if this is a vararg function or if
3781   // any parameter is located in a stack slot.
3782 
3783   bool HasParameterArea = !isELFv2ABI || isVarArg;
3784   unsigned ParamAreaSize = Num_GPR_Regs * PtrByteSize;
3785   unsigned NumBytes = LinkageSize;
3786   unsigned AvailableFPRs = Num_FPR_Regs;
3787   unsigned AvailableVRs = Num_VR_Regs;
3788   for (unsigned i = 0, e = Ins.size(); i != e; ++i) {
3789     if (Ins[i].Flags.isNest())
3790       continue;
3791 
3792     if (CalculateStackSlotUsed(Ins[i].VT, Ins[i].ArgVT, Ins[i].Flags,
3793                                PtrByteSize, LinkageSize, ParamAreaSize,
3794                                NumBytes, AvailableFPRs, AvailableVRs,
3795                                Subtarget.hasQPX()))
3796       HasParameterArea = true;
3797   }
3798 
3799   // Add DAG nodes to load the arguments or copy them out of registers.  On
3800   // entry to a function on PPC, the arguments start after the linkage area,
3801   // although the first ones are often in registers.
3802 
3803   unsigned ArgOffset = LinkageSize;
3804   unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0;
3805   unsigned &QFPR_idx = FPR_idx;
3806   SmallVector<SDValue, 8> MemOps;
3807   Function::const_arg_iterator FuncArg = MF.getFunction().arg_begin();
3808   unsigned CurArgIdx = 0;
3809   for (unsigned ArgNo = 0, e = Ins.size(); ArgNo != e; ++ArgNo) {
3810     SDValue ArgVal;
3811     bool needsLoad = false;
3812     EVT ObjectVT = Ins[ArgNo].VT;
3813     EVT OrigVT = Ins[ArgNo].ArgVT;
3814     unsigned ObjSize = ObjectVT.getStoreSize();
3815     unsigned ArgSize = ObjSize;
3816     ISD::ArgFlagsTy Flags = Ins[ArgNo].Flags;
3817     if (Ins[ArgNo].isOrigArg()) {
3818       std::advance(FuncArg, Ins[ArgNo].getOrigArgIndex() - CurArgIdx);
3819       CurArgIdx = Ins[ArgNo].getOrigArgIndex();
3820     }
3821     // We re-align the argument offset for each argument, except when using the
3822     // fast calling convention, when we need to make sure we do that only when
3823     // we'll actually use a stack slot.
3824     unsigned CurArgOffset, Align;
3825     auto ComputeArgOffset = [&]() {
3826       /* Respect alignment of argument on the stack.  */
3827       Align = CalculateStackSlotAlignment(ObjectVT, OrigVT, Flags, PtrByteSize);
3828       ArgOffset = ((ArgOffset + Align - 1) / Align) * Align;
3829       CurArgOffset = ArgOffset;
3830     };
3831 
3832     if (CallConv != CallingConv::Fast) {
3833       ComputeArgOffset();
3834 
3835       /* Compute GPR index associated with argument offset.  */
3836       GPR_idx = (ArgOffset - LinkageSize) / PtrByteSize;
3837       GPR_idx = std::min(GPR_idx, Num_GPR_Regs);
3838     }
3839 
3840     // FIXME the codegen can be much improved in some cases.
3841     // We do not have to keep everything in memory.
3842     if (Flags.isByVal()) {
3843       assert(Ins[ArgNo].isOrigArg() && "Byval arguments cannot be implicit");
3844 
3845       if (CallConv == CallingConv::Fast)
3846         ComputeArgOffset();
3847 
3848       // ObjSize is the true size, ArgSize rounded up to multiple of registers.
3849       ObjSize = Flags.getByValSize();
3850       ArgSize = ((ObjSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
3851       // Empty aggregate parameters do not take up registers.  Examples:
3852       //   struct { } a;
3853       //   union  { } b;
3854       //   int c[0];
3855       // etc.  However, we have to provide a place-holder in InVals, so
3856       // pretend we have an 8-byte item at the current address for that
3857       // purpose.
3858       if (!ObjSize) {
3859         int FI = MFI.CreateFixedObject(PtrByteSize, ArgOffset, true);
3860         SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
3861         InVals.push_back(FIN);
3862         continue;
3863       }
3864 
3865       // Create a stack object covering all stack doublewords occupied
3866       // by the argument.  If the argument is (fully or partially) on
3867       // the stack, or if the argument is fully in registers but the
3868       // caller has allocated the parameter save anyway, we can refer
3869       // directly to the caller's stack frame.  Otherwise, create a
3870       // local copy in our own frame.
3871       int FI;
3872       if (HasParameterArea ||
3873           ArgSize + ArgOffset > LinkageSize + Num_GPR_Regs * PtrByteSize)
3874         FI = MFI.CreateFixedObject(ArgSize, ArgOffset, false, true);
3875       else
3876         FI = MFI.CreateStackObject(ArgSize, Align, false);
3877       SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
3878 
3879       // Handle aggregates smaller than 8 bytes.
3880       if (ObjSize < PtrByteSize) {
3881         // The value of the object is its address, which differs from the
3882         // address of the enclosing doubleword on big-endian systems.
3883         SDValue Arg = FIN;
3884         if (!isLittleEndian) {
3885           SDValue ArgOff = DAG.getConstant(PtrByteSize - ObjSize, dl, PtrVT);
3886           Arg = DAG.getNode(ISD::ADD, dl, ArgOff.getValueType(), Arg, ArgOff);
3887         }
3888         InVals.push_back(Arg);
3889 
3890         if (GPR_idx != Num_GPR_Regs) {
3891           unsigned VReg = MF.addLiveIn(GPR[GPR_idx++], &PPC::G8RCRegClass);
3892           FuncInfo->addLiveInAttr(VReg, Flags);
3893           SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
3894           SDValue Store;
3895 
3896           if (ObjSize==1 || ObjSize==2 || ObjSize==4) {
3897             EVT ObjType = (ObjSize == 1 ? MVT::i8 :
3898                            (ObjSize == 2 ? MVT::i16 : MVT::i32));
3899             Store = DAG.getTruncStore(Val.getValue(1), dl, Val, Arg,
3900                                       MachinePointerInfo(&*FuncArg), ObjType);
3901           } else {
3902             // For sizes that don't fit a truncating store (3, 5, 6, 7),
3903             // store the whole register as-is to the parameter save area
3904             // slot.
3905             Store = DAG.getStore(Val.getValue(1), dl, Val, FIN,
3906                                  MachinePointerInfo(&*FuncArg));
3907           }
3908 
3909           MemOps.push_back(Store);
3910         }
3911         // Whether we copied from a register or not, advance the offset
3912         // into the parameter save area by a full doubleword.
3913         ArgOffset += PtrByteSize;
3914         continue;
3915       }
3916 
3917       // The value of the object is its address, which is the address of
3918       // its first stack doubleword.
3919       InVals.push_back(FIN);
3920 
3921       // Store whatever pieces of the object are in registers to memory.
3922       for (unsigned j = 0; j < ArgSize; j += PtrByteSize) {
3923         if (GPR_idx == Num_GPR_Regs)
3924           break;
3925 
3926         unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
3927         FuncInfo->addLiveInAttr(VReg, Flags);
3928         SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
3929         SDValue Addr = FIN;
3930         if (j) {
3931           SDValue Off = DAG.getConstant(j, dl, PtrVT);
3932           Addr = DAG.getNode(ISD::ADD, dl, Off.getValueType(), Addr, Off);
3933         }
3934         SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, Addr,
3935                                      MachinePointerInfo(&*FuncArg, j));
3936         MemOps.push_back(Store);
3937         ++GPR_idx;
3938       }
3939       ArgOffset += ArgSize;
3940       continue;
3941     }
3942 
3943     switch (ObjectVT.getSimpleVT().SimpleTy) {
3944     default: llvm_unreachable("Unhandled argument type!");
3945     case MVT::i1:
3946     case MVT::i32:
3947     case MVT::i64:
3948       if (Flags.isNest()) {
3949         // The 'nest' parameter, if any, is passed in R11.
3950         unsigned VReg = MF.addLiveIn(PPC::X11, &PPC::G8RCRegClass);
3951         ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64);
3952 
3953         if (ObjectVT == MVT::i32 || ObjectVT == MVT::i1)
3954           ArgVal = extendArgForPPC64(Flags, ObjectVT, DAG, ArgVal, dl);
3955 
3956         break;
3957       }
3958 
3959       // These can be scalar arguments or elements of an integer array type
3960       // passed directly.  Clang may use those instead of "byval" aggregate
3961       // types to avoid forcing arguments to memory unnecessarily.
3962       if (GPR_idx != Num_GPR_Regs) {
3963         unsigned VReg = MF.addLiveIn(GPR[GPR_idx++], &PPC::G8RCRegClass);
3964         FuncInfo->addLiveInAttr(VReg, Flags);
3965         ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64);
3966 
3967         if (ObjectVT == MVT::i32 || ObjectVT == MVT::i1)
3968           // PPC64 passes i8, i16, and i32 values in i64 registers. Promote
3969           // value to MVT::i64 and then truncate to the correct register size.
3970           ArgVal = extendArgForPPC64(Flags, ObjectVT, DAG, ArgVal, dl);
3971       } else {
3972         if (CallConv == CallingConv::Fast)
3973           ComputeArgOffset();
3974 
3975         needsLoad = true;
3976         ArgSize = PtrByteSize;
3977       }
3978       if (CallConv != CallingConv::Fast || needsLoad)
3979         ArgOffset += 8;
3980       break;
3981 
3982     case MVT::f32:
3983     case MVT::f64:
3984       // These can be scalar arguments or elements of a float array type
3985       // passed directly.  The latter are used to implement ELFv2 homogenous
3986       // float aggregates.
3987       if (FPR_idx != Num_FPR_Regs) {
3988         unsigned VReg;
3989 
3990         if (ObjectVT == MVT::f32)
3991           VReg = MF.addLiveIn(FPR[FPR_idx],
3992                               Subtarget.hasP8Vector()
3993                                   ? &PPC::VSSRCRegClass
3994                                   : &PPC::F4RCRegClass);
3995         else
3996           VReg = MF.addLiveIn(FPR[FPR_idx], Subtarget.hasVSX()
3997                                                 ? &PPC::VSFRCRegClass
3998                                                 : &PPC::F8RCRegClass);
3999 
4000         ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT);
4001         ++FPR_idx;
4002       } else if (GPR_idx != Num_GPR_Regs && CallConv != CallingConv::Fast) {
4003         // FIXME: We may want to re-enable this for CallingConv::Fast on the P8
4004         // once we support fp <-> gpr moves.
4005 
4006         // This can only ever happen in the presence of f32 array types,
4007         // since otherwise we never run out of FPRs before running out
4008         // of GPRs.
4009         unsigned VReg = MF.addLiveIn(GPR[GPR_idx++], &PPC::G8RCRegClass);
4010         FuncInfo->addLiveInAttr(VReg, Flags);
4011         ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64);
4012 
4013         if (ObjectVT == MVT::f32) {
4014           if ((ArgOffset % PtrByteSize) == (isLittleEndian ? 4 : 0))
4015             ArgVal = DAG.getNode(ISD::SRL, dl, MVT::i64, ArgVal,
4016                                  DAG.getConstant(32, dl, MVT::i32));
4017           ArgVal = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, ArgVal);
4018         }
4019 
4020         ArgVal = DAG.getNode(ISD::BITCAST, dl, ObjectVT, ArgVal);
4021       } else {
4022         if (CallConv == CallingConv::Fast)
4023           ComputeArgOffset();
4024 
4025         needsLoad = true;
4026       }
4027 
4028       // When passing an array of floats, the array occupies consecutive
4029       // space in the argument area; only round up to the next doubleword
4030       // at the end of the array.  Otherwise, each float takes 8 bytes.
4031       if (CallConv != CallingConv::Fast || needsLoad) {
4032         ArgSize = Flags.isInConsecutiveRegs() ? ObjSize : PtrByteSize;
4033         ArgOffset += ArgSize;
4034         if (Flags.isInConsecutiveRegsLast())
4035           ArgOffset = ((ArgOffset + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
4036       }
4037       break;
4038     case MVT::v4f32:
4039     case MVT::v4i32:
4040     case MVT::v8i16:
4041     case MVT::v16i8:
4042     case MVT::v2f64:
4043     case MVT::v2i64:
4044     case MVT::v1i128:
4045     case MVT::f128:
4046       if (!Subtarget.hasQPX()) {
4047         // These can be scalar arguments or elements of a vector array type
4048         // passed directly.  The latter are used to implement ELFv2 homogenous
4049         // vector aggregates.
4050         if (VR_idx != Num_VR_Regs) {
4051           unsigned VReg = MF.addLiveIn(VR[VR_idx], &PPC::VRRCRegClass);
4052           ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT);
4053           ++VR_idx;
4054         } else {
4055           if (CallConv == CallingConv::Fast)
4056             ComputeArgOffset();
4057           needsLoad = true;
4058         }
4059         if (CallConv != CallingConv::Fast || needsLoad)
4060           ArgOffset += 16;
4061         break;
4062       } // not QPX
4063 
4064       assert(ObjectVT.getSimpleVT().SimpleTy == MVT::v4f32 &&
4065              "Invalid QPX parameter type");
4066       LLVM_FALLTHROUGH;
4067 
4068     case MVT::v4f64:
4069     case MVT::v4i1:
4070       // QPX vectors are treated like their scalar floating-point subregisters
4071       // (except that they're larger).
4072       unsigned Sz = ObjectVT.getSimpleVT().SimpleTy == MVT::v4f32 ? 16 : 32;
4073       if (QFPR_idx != Num_QFPR_Regs) {
4074         const TargetRegisterClass *RC;
4075         switch (ObjectVT.getSimpleVT().SimpleTy) {
4076         case MVT::v4f64: RC = &PPC::QFRCRegClass; break;
4077         case MVT::v4f32: RC = &PPC::QSRCRegClass; break;
4078         default:         RC = &PPC::QBRCRegClass; break;
4079         }
4080 
4081         unsigned VReg = MF.addLiveIn(QFPR[QFPR_idx], RC);
4082         ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT);
4083         ++QFPR_idx;
4084       } else {
4085         if (CallConv == CallingConv::Fast)
4086           ComputeArgOffset();
4087         needsLoad = true;
4088       }
4089       if (CallConv != CallingConv::Fast || needsLoad)
4090         ArgOffset += Sz;
4091       break;
4092     }
4093 
4094     // We need to load the argument to a virtual register if we determined
4095     // above that we ran out of physical registers of the appropriate type.
4096     if (needsLoad) {
4097       if (ObjSize < ArgSize && !isLittleEndian)
4098         CurArgOffset += ArgSize - ObjSize;
4099       int FI = MFI.CreateFixedObject(ObjSize, CurArgOffset, isImmutable);
4100       SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
4101       ArgVal = DAG.getLoad(ObjectVT, dl, Chain, FIN, MachinePointerInfo());
4102     }
4103 
4104     InVals.push_back(ArgVal);
4105   }
4106 
4107   // Area that is at least reserved in the caller of this function.
4108   unsigned MinReservedArea;
4109   if (HasParameterArea)
4110     MinReservedArea = std::max(ArgOffset, LinkageSize + 8 * PtrByteSize);
4111   else
4112     MinReservedArea = LinkageSize;
4113 
4114   // Set the size that is at least reserved in caller of this function.  Tail
4115   // call optimized functions' reserved stack space needs to be aligned so that
4116   // taking the difference between two stack areas will result in an aligned
4117   // stack.
4118   MinReservedArea =
4119       EnsureStackAlignment(Subtarget.getFrameLowering(), MinReservedArea);
4120   FuncInfo->setMinReservedArea(MinReservedArea);
4121 
4122   // If the function takes variable number of arguments, make a frame index for
4123   // the start of the first vararg value... for expansion of llvm.va_start.
4124   if (isVarArg) {
4125     int Depth = ArgOffset;
4126 
4127     FuncInfo->setVarArgsFrameIndex(
4128       MFI.CreateFixedObject(PtrByteSize, Depth, true));
4129     SDValue FIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT);
4130 
4131     // If this function is vararg, store any remaining integer argument regs
4132     // to their spots on the stack so that they may be loaded by dereferencing
4133     // the result of va_next.
4134     for (GPR_idx = (ArgOffset - LinkageSize) / PtrByteSize;
4135          GPR_idx < Num_GPR_Regs; ++GPR_idx) {
4136       unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
4137       SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
4138       SDValue Store =
4139           DAG.getStore(Val.getValue(1), dl, Val, FIN, MachinePointerInfo());
4140       MemOps.push_back(Store);
4141       // Increment the address by four for the next argument to store
4142       SDValue PtrOff = DAG.getConstant(PtrByteSize, dl, PtrVT);
4143       FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff);
4144     }
4145   }
4146 
4147   if (!MemOps.empty())
4148     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOps);
4149 
4150   return Chain;
4151 }
4152 
4153 SDValue PPCTargetLowering::LowerFormalArguments_Darwin(
4154     SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
4155     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
4156     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
4157   // TODO: add description of PPC stack frame format, or at least some docs.
4158   //
4159   MachineFunction &MF = DAG.getMachineFunction();
4160   MachineFrameInfo &MFI = MF.getFrameInfo();
4161   PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
4162 
4163   EVT PtrVT = getPointerTy(MF.getDataLayout());
4164   bool isPPC64 = PtrVT == MVT::i64;
4165   // Potential tail calls could cause overwriting of argument stack slots.
4166   bool isImmutable = !(getTargetMachine().Options.GuaranteedTailCallOpt &&
4167                        (CallConv == CallingConv::Fast));
4168   unsigned PtrByteSize = isPPC64 ? 8 : 4;
4169   unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize();
4170   unsigned ArgOffset = LinkageSize;
4171   // Area that is at least reserved in caller of this function.
4172   unsigned MinReservedArea = ArgOffset;
4173 
4174   static const MCPhysReg GPR_32[] = {           // 32-bit registers.
4175     PPC::R3, PPC::R4, PPC::R5, PPC::R6,
4176     PPC::R7, PPC::R8, PPC::R9, PPC::R10,
4177   };
4178   static const MCPhysReg GPR_64[] = {           // 64-bit registers.
4179     PPC::X3, PPC::X4, PPC::X5, PPC::X6,
4180     PPC::X7, PPC::X8, PPC::X9, PPC::X10,
4181   };
4182   static const MCPhysReg VR[] = {
4183     PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8,
4184     PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13
4185   };
4186 
4187   const unsigned Num_GPR_Regs = array_lengthof(GPR_32);
4188   const unsigned Num_FPR_Regs = useSoftFloat() ? 0 : 13;
4189   const unsigned Num_VR_Regs  = array_lengthof( VR);
4190 
4191   unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0;
4192 
4193   const MCPhysReg *GPR = isPPC64 ? GPR_64 : GPR_32;
4194 
4195   // In 32-bit non-varargs functions, the stack space for vectors is after the
4196   // stack space for non-vectors.  We do not use this space unless we have
4197   // too many vectors to fit in registers, something that only occurs in
4198   // constructed examples:), but we have to walk the arglist to figure
4199   // that out...for the pathological case, compute VecArgOffset as the
4200   // start of the vector parameter area.  Computing VecArgOffset is the
4201   // entire point of the following loop.
4202   unsigned VecArgOffset = ArgOffset;
4203   if (!isVarArg && !isPPC64) {
4204     for (unsigned ArgNo = 0, e = Ins.size(); ArgNo != e;
4205          ++ArgNo) {
4206       EVT ObjectVT = Ins[ArgNo].VT;
4207       ISD::ArgFlagsTy Flags = Ins[ArgNo].Flags;
4208 
4209       if (Flags.isByVal()) {
4210         // ObjSize is the true size, ArgSize rounded up to multiple of regs.
4211         unsigned ObjSize = Flags.getByValSize();
4212         unsigned ArgSize =
4213                 ((ObjSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
4214         VecArgOffset += ArgSize;
4215         continue;
4216       }
4217 
4218       switch(ObjectVT.getSimpleVT().SimpleTy) {
4219       default: llvm_unreachable("Unhandled argument type!");
4220       case MVT::i1:
4221       case MVT::i32:
4222       case MVT::f32:
4223         VecArgOffset += 4;
4224         break;
4225       case MVT::i64:  // PPC64
4226       case MVT::f64:
4227         // FIXME: We are guaranteed to be !isPPC64 at this point.
4228         // Does MVT::i64 apply?
4229         VecArgOffset += 8;
4230         break;
4231       case MVT::v4f32:
4232       case MVT::v4i32:
4233       case MVT::v8i16:
4234       case MVT::v16i8:
4235         // Nothing to do, we're only looking at Nonvector args here.
4236         break;
4237       }
4238     }
4239   }
4240   // We've found where the vector parameter area in memory is.  Skip the
4241   // first 12 parameters; these don't use that memory.
4242   VecArgOffset = ((VecArgOffset+15)/16)*16;
4243   VecArgOffset += 12*16;
4244 
4245   // Add DAG nodes to load the arguments or copy them out of registers.  On
4246   // entry to a function on PPC, the arguments start after the linkage area,
4247   // although the first ones are often in registers.
4248 
4249   SmallVector<SDValue, 8> MemOps;
4250   unsigned nAltivecParamsAtEnd = 0;
4251   Function::const_arg_iterator FuncArg = MF.getFunction().arg_begin();
4252   unsigned CurArgIdx = 0;
4253   for (unsigned ArgNo = 0, e = Ins.size(); ArgNo != e; ++ArgNo) {
4254     SDValue ArgVal;
4255     bool needsLoad = false;
4256     EVT ObjectVT = Ins[ArgNo].VT;
4257     unsigned ObjSize = ObjectVT.getSizeInBits()/8;
4258     unsigned ArgSize = ObjSize;
4259     ISD::ArgFlagsTy Flags = Ins[ArgNo].Flags;
4260     if (Ins[ArgNo].isOrigArg()) {
4261       std::advance(FuncArg, Ins[ArgNo].getOrigArgIndex() - CurArgIdx);
4262       CurArgIdx = Ins[ArgNo].getOrigArgIndex();
4263     }
4264     unsigned CurArgOffset = ArgOffset;
4265 
4266     // Varargs or 64 bit Altivec parameters are padded to a 16 byte boundary.
4267     if (ObjectVT==MVT::v4f32 || ObjectVT==MVT::v4i32 ||
4268         ObjectVT==MVT::v8i16 || ObjectVT==MVT::v16i8) {
4269       if (isVarArg || isPPC64) {
4270         MinReservedArea = ((MinReservedArea+15)/16)*16;
4271         MinReservedArea += CalculateStackSlotSize(ObjectVT,
4272                                                   Flags,
4273                                                   PtrByteSize);
4274       } else  nAltivecParamsAtEnd++;
4275     } else
4276       // Calculate min reserved area.
4277       MinReservedArea += CalculateStackSlotSize(Ins[ArgNo].VT,
4278                                                 Flags,
4279                                                 PtrByteSize);
4280 
4281     // FIXME the codegen can be much improved in some cases.
4282     // We do not have to keep everything in memory.
4283     if (Flags.isByVal()) {
4284       assert(Ins[ArgNo].isOrigArg() && "Byval arguments cannot be implicit");
4285 
4286       // ObjSize is the true size, ArgSize rounded up to multiple of registers.
4287       ObjSize = Flags.getByValSize();
4288       ArgSize = ((ObjSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
4289       // Objects of size 1 and 2 are right justified, everything else is
4290       // left justified.  This means the memory address is adjusted forwards.
4291       if (ObjSize==1 || ObjSize==2) {
4292         CurArgOffset = CurArgOffset + (4 - ObjSize);
4293       }
4294       // The value of the object is its address.
4295       int FI = MFI.CreateFixedObject(ObjSize, CurArgOffset, false, true);
4296       SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
4297       InVals.push_back(FIN);
4298       if (ObjSize==1 || ObjSize==2) {
4299         if (GPR_idx != Num_GPR_Regs) {
4300           unsigned VReg;
4301           if (isPPC64)
4302             VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
4303           else
4304             VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass);
4305           SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
4306           EVT ObjType = ObjSize == 1 ? MVT::i8 : MVT::i16;
4307           SDValue Store =
4308               DAG.getTruncStore(Val.getValue(1), dl, Val, FIN,
4309                                 MachinePointerInfo(&*FuncArg), ObjType);
4310           MemOps.push_back(Store);
4311           ++GPR_idx;
4312         }
4313 
4314         ArgOffset += PtrByteSize;
4315 
4316         continue;
4317       }
4318       for (unsigned j = 0; j < ArgSize; j += PtrByteSize) {
4319         // Store whatever pieces of the object are in registers
4320         // to memory.  ArgOffset will be the address of the beginning
4321         // of the object.
4322         if (GPR_idx != Num_GPR_Regs) {
4323           unsigned VReg;
4324           if (isPPC64)
4325             VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
4326           else
4327             VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass);
4328           int FI = MFI.CreateFixedObject(PtrByteSize, ArgOffset, true);
4329           SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
4330           SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
4331           SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, FIN,
4332                                        MachinePointerInfo(&*FuncArg, j));
4333           MemOps.push_back(Store);
4334           ++GPR_idx;
4335           ArgOffset += PtrByteSize;
4336         } else {
4337           ArgOffset += ArgSize - (ArgOffset-CurArgOffset);
4338           break;
4339         }
4340       }
4341       continue;
4342     }
4343 
4344     switch (ObjectVT.getSimpleVT().SimpleTy) {
4345     default: llvm_unreachable("Unhandled argument type!");
4346     case MVT::i1:
4347     case MVT::i32:
4348       if (!isPPC64) {
4349         if (GPR_idx != Num_GPR_Regs) {
4350           unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass);
4351           ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i32);
4352 
4353           if (ObjectVT == MVT::i1)
4354             ArgVal = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, ArgVal);
4355 
4356           ++GPR_idx;
4357         } else {
4358           needsLoad = true;
4359           ArgSize = PtrByteSize;
4360         }
4361         // All int arguments reserve stack space in the Darwin ABI.
4362         ArgOffset += PtrByteSize;
4363         break;
4364       }
4365       LLVM_FALLTHROUGH;
4366     case MVT::i64:  // PPC64
4367       if (GPR_idx != Num_GPR_Regs) {
4368         unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
4369         ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64);
4370 
4371         if (ObjectVT == MVT::i32 || ObjectVT == MVT::i1)
4372           // PPC64 passes i8, i16, and i32 values in i64 registers. Promote
4373           // value to MVT::i64 and then truncate to the correct register size.
4374           ArgVal = extendArgForPPC64(Flags, ObjectVT, DAG, ArgVal, dl);
4375 
4376         ++GPR_idx;
4377       } else {
4378         needsLoad = true;
4379         ArgSize = PtrByteSize;
4380       }
4381       // All int arguments reserve stack space in the Darwin ABI.
4382       ArgOffset += 8;
4383       break;
4384 
4385     case MVT::f32:
4386     case MVT::f64:
4387       // Every 4 bytes of argument space consumes one of the GPRs available for
4388       // argument passing.
4389       if (GPR_idx != Num_GPR_Regs) {
4390         ++GPR_idx;
4391         if (ObjSize == 8 && GPR_idx != Num_GPR_Regs && !isPPC64)
4392           ++GPR_idx;
4393       }
4394       if (FPR_idx != Num_FPR_Regs) {
4395         unsigned VReg;
4396 
4397         if (ObjectVT == MVT::f32)
4398           VReg = MF.addLiveIn(FPR[FPR_idx], &PPC::F4RCRegClass);
4399         else
4400           VReg = MF.addLiveIn(FPR[FPR_idx], &PPC::F8RCRegClass);
4401 
4402         ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT);
4403         ++FPR_idx;
4404       } else {
4405         needsLoad = true;
4406       }
4407 
4408       // All FP arguments reserve stack space in the Darwin ABI.
4409       ArgOffset += isPPC64 ? 8 : ObjSize;
4410       break;
4411     case MVT::v4f32:
4412     case MVT::v4i32:
4413     case MVT::v8i16:
4414     case MVT::v16i8:
4415       // Note that vector arguments in registers don't reserve stack space,
4416       // except in varargs functions.
4417       if (VR_idx != Num_VR_Regs) {
4418         unsigned VReg = MF.addLiveIn(VR[VR_idx], &PPC::VRRCRegClass);
4419         ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT);
4420         if (isVarArg) {
4421           while ((ArgOffset % 16) != 0) {
4422             ArgOffset += PtrByteSize;
4423             if (GPR_idx != Num_GPR_Regs)
4424               GPR_idx++;
4425           }
4426           ArgOffset += 16;
4427           GPR_idx = std::min(GPR_idx+4, Num_GPR_Regs); // FIXME correct for ppc64?
4428         }
4429         ++VR_idx;
4430       } else {
4431         if (!isVarArg && !isPPC64) {
4432           // Vectors go after all the nonvectors.
4433           CurArgOffset = VecArgOffset;
4434           VecArgOffset += 16;
4435         } else {
4436           // Vectors are aligned.
4437           ArgOffset = ((ArgOffset+15)/16)*16;
4438           CurArgOffset = ArgOffset;
4439           ArgOffset += 16;
4440         }
4441         needsLoad = true;
4442       }
4443       break;
4444     }
4445 
4446     // We need to load the argument to a virtual register if we determined above
4447     // that we ran out of physical registers of the appropriate type.
4448     if (needsLoad) {
4449       int FI = MFI.CreateFixedObject(ObjSize,
4450                                      CurArgOffset + (ArgSize - ObjSize),
4451                                      isImmutable);
4452       SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
4453       ArgVal = DAG.getLoad(ObjectVT, dl, Chain, FIN, MachinePointerInfo());
4454     }
4455 
4456     InVals.push_back(ArgVal);
4457   }
4458 
4459   // Allow for Altivec parameters at the end, if needed.
4460   if (nAltivecParamsAtEnd) {
4461     MinReservedArea = ((MinReservedArea+15)/16)*16;
4462     MinReservedArea += 16*nAltivecParamsAtEnd;
4463   }
4464 
4465   // Area that is at least reserved in the caller of this function.
4466   MinReservedArea = std::max(MinReservedArea, LinkageSize + 8 * PtrByteSize);
4467 
4468   // Set the size that is at least reserved in caller of this function.  Tail
4469   // call optimized functions' reserved stack space needs to be aligned so that
4470   // taking the difference between two stack areas will result in an aligned
4471   // stack.
4472   MinReservedArea =
4473       EnsureStackAlignment(Subtarget.getFrameLowering(), MinReservedArea);
4474   FuncInfo->setMinReservedArea(MinReservedArea);
4475 
4476   // If the function takes variable number of arguments, make a frame index for
4477   // the start of the first vararg value... for expansion of llvm.va_start.
4478   if (isVarArg) {
4479     int Depth = ArgOffset;
4480 
4481     FuncInfo->setVarArgsFrameIndex(
4482       MFI.CreateFixedObject(PtrVT.getSizeInBits()/8,
4483                             Depth, true));
4484     SDValue FIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT);
4485 
4486     // If this function is vararg, store any remaining integer argument regs
4487     // to their spots on the stack so that they may be loaded by dereferencing
4488     // the result of va_next.
4489     for (; GPR_idx != Num_GPR_Regs; ++GPR_idx) {
4490       unsigned VReg;
4491 
4492       if (isPPC64)
4493         VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
4494       else
4495         VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass);
4496 
4497       SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
4498       SDValue Store =
4499           DAG.getStore(Val.getValue(1), dl, Val, FIN, MachinePointerInfo());
4500       MemOps.push_back(Store);
4501       // Increment the address by four for the next argument to store
4502       SDValue PtrOff = DAG.getConstant(PtrVT.getSizeInBits()/8, dl, PtrVT);
4503       FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff);
4504     }
4505   }
4506 
4507   if (!MemOps.empty())
4508     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOps);
4509 
4510   return Chain;
4511 }
4512 
4513 /// CalculateTailCallSPDiff - Get the amount the stack pointer has to be
4514 /// adjusted to accommodate the arguments for the tailcall.
4515 static int CalculateTailCallSPDiff(SelectionDAG& DAG, bool isTailCall,
4516                                    unsigned ParamSize) {
4517 
4518   if (!isTailCall) return 0;
4519 
4520   PPCFunctionInfo *FI = DAG.getMachineFunction().getInfo<PPCFunctionInfo>();
4521   unsigned CallerMinReservedArea = FI->getMinReservedArea();
4522   int SPDiff = (int)CallerMinReservedArea - (int)ParamSize;
4523   // Remember only if the new adjustment is bigger.
4524   if (SPDiff < FI->getTailCallSPDelta())
4525     FI->setTailCallSPDelta(SPDiff);
4526 
4527   return SPDiff;
4528 }
4529 
4530 static bool isFunctionGlobalAddress(SDValue Callee);
4531 
4532 static bool
4533 callsShareTOCBase(const Function *Caller, SDValue Callee,
4534                     const TargetMachine &TM) {
4535    // Callee is either a GlobalAddress or an ExternalSymbol. ExternalSymbols
4536    // don't have enough information to determine if the caller and calle share
4537    // the same  TOC base, so we have to pessimistically assume they don't for
4538    // correctness.
4539    GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee);
4540    if (!G)
4541      return false;
4542 
4543    const GlobalValue *GV = G->getGlobal();
4544   // The medium and large code models are expected to provide a sufficiently
4545   // large TOC to provide all data addressing needs of a module with a
4546   // single TOC. Since each module will be addressed with a single TOC then we
4547   // only need to check that caller and callee don't cross dso boundaries.
4548   if (CodeModel::Medium == TM.getCodeModel() ||
4549       CodeModel::Large == TM.getCodeModel())
4550     return TM.shouldAssumeDSOLocal(*Caller->getParent(), GV);
4551 
4552   // Otherwise we need to ensure callee and caller are in the same section,
4553   // since the linker may allocate multiple TOCs, and we don't know which
4554   // sections will belong to the same TOC base.
4555 
4556   if (!GV->isStrongDefinitionForLinker())
4557     return false;
4558 
4559   // Any explicitly-specified sections and section prefixes must also match.
4560   // Also, if we're using -ffunction-sections, then each function is always in
4561   // a different section (the same is true for COMDAT functions).
4562   if (TM.getFunctionSections() || GV->hasComdat() || Caller->hasComdat() ||
4563       GV->getSection() != Caller->getSection())
4564     return false;
4565   if (const auto *F = dyn_cast<Function>(GV)) {
4566     if (F->getSectionPrefix() != Caller->getSectionPrefix())
4567       return false;
4568   }
4569 
4570   // If the callee might be interposed, then we can't assume the ultimate call
4571   // target will be in the same section. Even in cases where we can assume that
4572   // interposition won't happen, in any case where the linker might insert a
4573   // stub to allow for interposition, we must generate code as though
4574   // interposition might occur. To understand why this matters, consider a
4575   // situation where: a -> b -> c where the arrows indicate calls. b and c are
4576   // in the same section, but a is in a different module (i.e. has a different
4577   // TOC base pointer). If the linker allows for interposition between b and c,
4578   // then it will generate a stub for the call edge between b and c which will
4579   // save the TOC pointer into the designated stack slot allocated by b. If we
4580   // return true here, and therefore allow a tail call between b and c, that
4581   // stack slot won't exist and the b -> c stub will end up saving b'c TOC base
4582   // pointer into the stack slot allocated by a (where the a -> b stub saved
4583   // a's TOC base pointer). If we're not considering a tail call, but rather,
4584   // whether a nop is needed after the call instruction in b, because the linker
4585   // will insert a stub, it might complain about a missing nop if we omit it
4586   // (although many don't complain in this case).
4587   if (!TM.shouldAssumeDSOLocal(*Caller->getParent(), GV))
4588     return false;
4589 
4590   return true;
4591 }
4592 
4593 static bool
4594 needStackSlotPassParameters(const PPCSubtarget &Subtarget,
4595                             const SmallVectorImpl<ISD::OutputArg> &Outs) {
4596   assert(Subtarget.is64BitELFABI());
4597 
4598   const unsigned PtrByteSize = 8;
4599   const unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize();
4600 
4601   static const MCPhysReg GPR[] = {
4602     PPC::X3, PPC::X4, PPC::X5, PPC::X6,
4603     PPC::X7, PPC::X8, PPC::X9, PPC::X10,
4604   };
4605   static const MCPhysReg VR[] = {
4606     PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8,
4607     PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13
4608   };
4609 
4610   const unsigned NumGPRs = array_lengthof(GPR);
4611   const unsigned NumFPRs = 13;
4612   const unsigned NumVRs = array_lengthof(VR);
4613   const unsigned ParamAreaSize = NumGPRs * PtrByteSize;
4614 
4615   unsigned NumBytes = LinkageSize;
4616   unsigned AvailableFPRs = NumFPRs;
4617   unsigned AvailableVRs = NumVRs;
4618 
4619   for (const ISD::OutputArg& Param : Outs) {
4620     if (Param.Flags.isNest()) continue;
4621 
4622     if (CalculateStackSlotUsed(Param.VT, Param.ArgVT, Param.Flags,
4623                                PtrByteSize, LinkageSize, ParamAreaSize,
4624                                NumBytes, AvailableFPRs, AvailableVRs,
4625                                Subtarget.hasQPX()))
4626       return true;
4627   }
4628   return false;
4629 }
4630 
4631 static bool
4632 hasSameArgumentList(const Function *CallerFn, ImmutableCallSite CS) {
4633   if (CS.arg_size() != CallerFn->arg_size())
4634     return false;
4635 
4636   ImmutableCallSite::arg_iterator CalleeArgIter = CS.arg_begin();
4637   ImmutableCallSite::arg_iterator CalleeArgEnd = CS.arg_end();
4638   Function::const_arg_iterator CallerArgIter = CallerFn->arg_begin();
4639 
4640   for (; CalleeArgIter != CalleeArgEnd; ++CalleeArgIter, ++CallerArgIter) {
4641     const Value* CalleeArg = *CalleeArgIter;
4642     const Value* CallerArg = &(*CallerArgIter);
4643     if (CalleeArg == CallerArg)
4644       continue;
4645 
4646     // e.g. @caller([4 x i64] %a, [4 x i64] %b) {
4647     //        tail call @callee([4 x i64] undef, [4 x i64] %b)
4648     //      }
4649     // 1st argument of callee is undef and has the same type as caller.
4650     if (CalleeArg->getType() == CallerArg->getType() &&
4651         isa<UndefValue>(CalleeArg))
4652       continue;
4653 
4654     return false;
4655   }
4656 
4657   return true;
4658 }
4659 
4660 // Returns true if TCO is possible between the callers and callees
4661 // calling conventions.
4662 static bool
4663 areCallingConvEligibleForTCO_64SVR4(CallingConv::ID CallerCC,
4664                                     CallingConv::ID CalleeCC) {
4665   // Tail calls are possible with fastcc and ccc.
4666   auto isTailCallableCC  = [] (CallingConv::ID CC){
4667       return  CC == CallingConv::C || CC == CallingConv::Fast;
4668   };
4669   if (!isTailCallableCC(CallerCC) || !isTailCallableCC(CalleeCC))
4670     return false;
4671 
4672   // We can safely tail call both fastcc and ccc callees from a c calling
4673   // convention caller. If the caller is fastcc, we may have less stack space
4674   // than a non-fastcc caller with the same signature so disable tail-calls in
4675   // that case.
4676   return CallerCC == CallingConv::C || CallerCC == CalleeCC;
4677 }
4678 
4679 bool
4680 PPCTargetLowering::IsEligibleForTailCallOptimization_64SVR4(
4681                                     SDValue Callee,
4682                                     CallingConv::ID CalleeCC,
4683                                     ImmutableCallSite CS,
4684                                     bool isVarArg,
4685                                     const SmallVectorImpl<ISD::OutputArg> &Outs,
4686                                     const SmallVectorImpl<ISD::InputArg> &Ins,
4687                                     SelectionDAG& DAG) const {
4688   bool TailCallOpt = getTargetMachine().Options.GuaranteedTailCallOpt;
4689 
4690   if (DisableSCO && !TailCallOpt) return false;
4691 
4692   // Variadic argument functions are not supported.
4693   if (isVarArg) return false;
4694 
4695   auto &Caller = DAG.getMachineFunction().getFunction();
4696   // Check that the calling conventions are compatible for tco.
4697   if (!areCallingConvEligibleForTCO_64SVR4(Caller.getCallingConv(), CalleeCC))
4698     return false;
4699 
4700   // Caller contains any byval parameter is not supported.
4701   if (any_of(Ins, [](const ISD::InputArg &IA) { return IA.Flags.isByVal(); }))
4702     return false;
4703 
4704   // Callee contains any byval parameter is not supported, too.
4705   // Note: This is a quick work around, because in some cases, e.g.
4706   // caller's stack size > callee's stack size, we are still able to apply
4707   // sibling call optimization. For example, gcc is able to do SCO for caller1
4708   // in the following example, but not for caller2.
4709   //   struct test {
4710   //     long int a;
4711   //     char ary[56];
4712   //   } gTest;
4713   //   __attribute__((noinline)) int callee(struct test v, struct test *b) {
4714   //     b->a = v.a;
4715   //     return 0;
4716   //   }
4717   //   void caller1(struct test a, struct test c, struct test *b) {
4718   //     callee(gTest, b); }
4719   //   void caller2(struct test *b) { callee(gTest, b); }
4720   if (any_of(Outs, [](const ISD::OutputArg& OA) { return OA.Flags.isByVal(); }))
4721     return false;
4722 
4723   // If callee and caller use different calling conventions, we cannot pass
4724   // parameters on stack since offsets for the parameter area may be different.
4725   if (Caller.getCallingConv() != CalleeCC &&
4726       needStackSlotPassParameters(Subtarget, Outs))
4727     return false;
4728 
4729   // No TCO/SCO on indirect call because Caller have to restore its TOC
4730   if (!isFunctionGlobalAddress(Callee) &&
4731       !isa<ExternalSymbolSDNode>(Callee))
4732     return false;
4733 
4734   // If the caller and callee potentially have different TOC bases then we
4735   // cannot tail call since we need to restore the TOC pointer after the call.
4736   // ref: https://bugzilla.mozilla.org/show_bug.cgi?id=973977
4737   if (!callsShareTOCBase(&Caller, Callee, getTargetMachine()))
4738     return false;
4739 
4740   // TCO allows altering callee ABI, so we don't have to check further.
4741   if (CalleeCC == CallingConv::Fast && TailCallOpt)
4742     return true;
4743 
4744   if (DisableSCO) return false;
4745 
4746   // If callee use the same argument list that caller is using, then we can
4747   // apply SCO on this case. If it is not, then we need to check if callee needs
4748   // stack for passing arguments.
4749   if (!hasSameArgumentList(&Caller, CS) &&
4750       needStackSlotPassParameters(Subtarget, Outs)) {
4751     return false;
4752   }
4753 
4754   return true;
4755 }
4756 
4757 /// IsEligibleForTailCallOptimization - Check whether the call is eligible
4758 /// for tail call optimization. Targets which want to do tail call
4759 /// optimization should implement this function.
4760 bool
4761 PPCTargetLowering::IsEligibleForTailCallOptimization(SDValue Callee,
4762                                                      CallingConv::ID CalleeCC,
4763                                                      bool isVarArg,
4764                                       const SmallVectorImpl<ISD::InputArg> &Ins,
4765                                                      SelectionDAG& DAG) const {
4766   if (!getTargetMachine().Options.GuaranteedTailCallOpt)
4767     return false;
4768 
4769   // Variable argument functions are not supported.
4770   if (isVarArg)
4771     return false;
4772 
4773   MachineFunction &MF = DAG.getMachineFunction();
4774   CallingConv::ID CallerCC = MF.getFunction().getCallingConv();
4775   if (CalleeCC == CallingConv::Fast && CallerCC == CalleeCC) {
4776     // Functions containing by val parameters are not supported.
4777     for (unsigned i = 0; i != Ins.size(); i++) {
4778        ISD::ArgFlagsTy Flags = Ins[i].Flags;
4779        if (Flags.isByVal()) return false;
4780     }
4781 
4782     // Non-PIC/GOT tail calls are supported.
4783     if (getTargetMachine().getRelocationModel() != Reloc::PIC_)
4784       return true;
4785 
4786     // At the moment we can only do local tail calls (in same module, hidden
4787     // or protected) if we are generating PIC.
4788     if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee))
4789       return G->getGlobal()->hasHiddenVisibility()
4790           || G->getGlobal()->hasProtectedVisibility();
4791   }
4792 
4793   return false;
4794 }
4795 
4796 /// isCallCompatibleAddress - Return the immediate to use if the specified
4797 /// 32-bit value is representable in the immediate field of a BxA instruction.
4798 static SDNode *isBLACompatibleAddress(SDValue Op, SelectionDAG &DAG) {
4799   ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op);
4800   if (!C) return nullptr;
4801 
4802   int Addr = C->getZExtValue();
4803   if ((Addr & 3) != 0 ||  // Low 2 bits are implicitly zero.
4804       SignExtend32<26>(Addr) != Addr)
4805     return nullptr;  // Top 6 bits have to be sext of immediate.
4806 
4807   return DAG
4808       .getConstant(
4809           (int)C->getZExtValue() >> 2, SDLoc(Op),
4810           DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()))
4811       .getNode();
4812 }
4813 
4814 namespace {
4815 
4816 struct TailCallArgumentInfo {
4817   SDValue Arg;
4818   SDValue FrameIdxOp;
4819   int FrameIdx = 0;
4820 
4821   TailCallArgumentInfo() = default;
4822 };
4823 
4824 } // end anonymous namespace
4825 
4826 /// StoreTailCallArgumentsToStackSlot - Stores arguments to their stack slot.
4827 static void StoreTailCallArgumentsToStackSlot(
4828     SelectionDAG &DAG, SDValue Chain,
4829     const SmallVectorImpl<TailCallArgumentInfo> &TailCallArgs,
4830     SmallVectorImpl<SDValue> &MemOpChains, const SDLoc &dl) {
4831   for (unsigned i = 0, e = TailCallArgs.size(); i != e; ++i) {
4832     SDValue Arg = TailCallArgs[i].Arg;
4833     SDValue FIN = TailCallArgs[i].FrameIdxOp;
4834     int FI = TailCallArgs[i].FrameIdx;
4835     // Store relative to framepointer.
4836     MemOpChains.push_back(DAG.getStore(
4837         Chain, dl, Arg, FIN,
4838         MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI)));
4839   }
4840 }
4841 
4842 /// EmitTailCallStoreFPAndRetAddr - Move the frame pointer and return address to
4843 /// the appropriate stack slot for the tail call optimized function call.
4844 static SDValue EmitTailCallStoreFPAndRetAddr(SelectionDAG &DAG, SDValue Chain,
4845                                              SDValue OldRetAddr, SDValue OldFP,
4846                                              int SPDiff, const SDLoc &dl) {
4847   if (SPDiff) {
4848     // Calculate the new stack slot for the return address.
4849     MachineFunction &MF = DAG.getMachineFunction();
4850     const PPCSubtarget &Subtarget = MF.getSubtarget<PPCSubtarget>();
4851     const PPCFrameLowering *FL = Subtarget.getFrameLowering();
4852     bool isPPC64 = Subtarget.isPPC64();
4853     int SlotSize = isPPC64 ? 8 : 4;
4854     int NewRetAddrLoc = SPDiff + FL->getReturnSaveOffset();
4855     int NewRetAddr = MF.getFrameInfo().CreateFixedObject(SlotSize,
4856                                                          NewRetAddrLoc, true);
4857     EVT VT = isPPC64 ? MVT::i64 : MVT::i32;
4858     SDValue NewRetAddrFrIdx = DAG.getFrameIndex(NewRetAddr, VT);
4859     Chain = DAG.getStore(Chain, dl, OldRetAddr, NewRetAddrFrIdx,
4860                          MachinePointerInfo::getFixedStack(MF, NewRetAddr));
4861 
4862     // When using the 32/64-bit SVR4 ABI there is no need to move the FP stack
4863     // slot as the FP is never overwritten.
4864     if (Subtarget.isDarwinABI()) {
4865       int NewFPLoc = SPDiff + FL->getFramePointerSaveOffset();
4866       int NewFPIdx = MF.getFrameInfo().CreateFixedObject(SlotSize, NewFPLoc,
4867                                                          true);
4868       SDValue NewFramePtrIdx = DAG.getFrameIndex(NewFPIdx, VT);
4869       Chain = DAG.getStore(Chain, dl, OldFP, NewFramePtrIdx,
4870                            MachinePointerInfo::getFixedStack(
4871                                DAG.getMachineFunction(), NewFPIdx));
4872     }
4873   }
4874   return Chain;
4875 }
4876 
4877 /// CalculateTailCallArgDest - Remember Argument for later processing. Calculate
4878 /// the position of the argument.
4879 static void
4880 CalculateTailCallArgDest(SelectionDAG &DAG, MachineFunction &MF, bool isPPC64,
4881                          SDValue Arg, int SPDiff, unsigned ArgOffset,
4882                      SmallVectorImpl<TailCallArgumentInfo>& TailCallArguments) {
4883   int Offset = ArgOffset + SPDiff;
4884   uint32_t OpSize = (Arg.getValueSizeInBits() + 7) / 8;
4885   int FI = MF.getFrameInfo().CreateFixedObject(OpSize, Offset, true);
4886   EVT VT = isPPC64 ? MVT::i64 : MVT::i32;
4887   SDValue FIN = DAG.getFrameIndex(FI, VT);
4888   TailCallArgumentInfo Info;
4889   Info.Arg = Arg;
4890   Info.FrameIdxOp = FIN;
4891   Info.FrameIdx = FI;
4892   TailCallArguments.push_back(Info);
4893 }
4894 
4895 /// EmitTCFPAndRetAddrLoad - Emit load from frame pointer and return address
4896 /// stack slot. Returns the chain as result and the loaded frame pointers in
4897 /// LROpOut/FPOpout. Used when tail calling.
4898 SDValue PPCTargetLowering::EmitTailCallLoadFPAndRetAddr(
4899     SelectionDAG &DAG, int SPDiff, SDValue Chain, SDValue &LROpOut,
4900     SDValue &FPOpOut, const SDLoc &dl) const {
4901   if (SPDiff) {
4902     // Load the LR and FP stack slot for later adjusting.
4903     EVT VT = Subtarget.isPPC64() ? MVT::i64 : MVT::i32;
4904     LROpOut = getReturnAddrFrameIndex(DAG);
4905     LROpOut = DAG.getLoad(VT, dl, Chain, LROpOut, MachinePointerInfo());
4906     Chain = SDValue(LROpOut.getNode(), 1);
4907 
4908     // When using the 32/64-bit SVR4 ABI there is no need to load the FP stack
4909     // slot as the FP is never overwritten.
4910     if (Subtarget.isDarwinABI()) {
4911       FPOpOut = getFramePointerFrameIndex(DAG);
4912       FPOpOut = DAG.getLoad(VT, dl, Chain, FPOpOut, MachinePointerInfo());
4913       Chain = SDValue(FPOpOut.getNode(), 1);
4914     }
4915   }
4916   return Chain;
4917 }
4918 
4919 /// CreateCopyOfByValArgument - Make a copy of an aggregate at address specified
4920 /// by "Src" to address "Dst" of size "Size".  Alignment information is
4921 /// specified by the specific parameter attribute. The copy will be passed as
4922 /// a byval function parameter.
4923 /// Sometimes what we are copying is the end of a larger object, the part that
4924 /// does not fit in registers.
4925 static SDValue CreateCopyOfByValArgument(SDValue Src, SDValue Dst,
4926                                          SDValue Chain, ISD::ArgFlagsTy Flags,
4927                                          SelectionDAG &DAG, const SDLoc &dl) {
4928   SDValue SizeNode = DAG.getConstant(Flags.getByValSize(), dl, MVT::i32);
4929   return DAG.getMemcpy(Chain, dl, Dst, Src, SizeNode, Flags.getByValAlign(),
4930                        false, false, false, MachinePointerInfo(),
4931                        MachinePointerInfo());
4932 }
4933 
4934 /// LowerMemOpCallTo - Store the argument to the stack or remember it in case of
4935 /// tail calls.
4936 static void LowerMemOpCallTo(
4937     SelectionDAG &DAG, MachineFunction &MF, SDValue Chain, SDValue Arg,
4938     SDValue PtrOff, int SPDiff, unsigned ArgOffset, bool isPPC64,
4939     bool isTailCall, bool isVector, SmallVectorImpl<SDValue> &MemOpChains,
4940     SmallVectorImpl<TailCallArgumentInfo> &TailCallArguments, const SDLoc &dl) {
4941   EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout());
4942   if (!isTailCall) {
4943     if (isVector) {
4944       SDValue StackPtr;
4945       if (isPPC64)
4946         StackPtr = DAG.getRegister(PPC::X1, MVT::i64);
4947       else
4948         StackPtr = DAG.getRegister(PPC::R1, MVT::i32);
4949       PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr,
4950                            DAG.getConstant(ArgOffset, dl, PtrVT));
4951     }
4952     MemOpChains.push_back(
4953         DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo()));
4954     // Calculate and remember argument location.
4955   } else CalculateTailCallArgDest(DAG, MF, isPPC64, Arg, SPDiff, ArgOffset,
4956                                   TailCallArguments);
4957 }
4958 
4959 static void
4960 PrepareTailCall(SelectionDAG &DAG, SDValue &InFlag, SDValue &Chain,
4961                 const SDLoc &dl, int SPDiff, unsigned NumBytes, SDValue LROp,
4962                 SDValue FPOp,
4963                 SmallVectorImpl<TailCallArgumentInfo> &TailCallArguments) {
4964   // Emit a sequence of copyto/copyfrom virtual registers for arguments that
4965   // might overwrite each other in case of tail call optimization.
4966   SmallVector<SDValue, 8> MemOpChains2;
4967   // Do not flag preceding copytoreg stuff together with the following stuff.
4968   InFlag = SDValue();
4969   StoreTailCallArgumentsToStackSlot(DAG, Chain, TailCallArguments,
4970                                     MemOpChains2, dl);
4971   if (!MemOpChains2.empty())
4972     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains2);
4973 
4974   // Store the return address to the appropriate stack slot.
4975   Chain = EmitTailCallStoreFPAndRetAddr(DAG, Chain, LROp, FPOp, SPDiff, dl);
4976 
4977   // Emit callseq_end just before tailcall node.
4978   Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, dl, true),
4979                              DAG.getIntPtrConstant(0, dl, true), InFlag, dl);
4980   InFlag = Chain.getValue(1);
4981 }
4982 
4983 // Is this global address that of a function that can be called by name? (as
4984 // opposed to something that must hold a descriptor for an indirect call).
4985 static bool isFunctionGlobalAddress(SDValue Callee) {
4986   if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
4987     if (Callee.getOpcode() == ISD::GlobalTLSAddress ||
4988         Callee.getOpcode() == ISD::TargetGlobalTLSAddress)
4989       return false;
4990 
4991     return G->getGlobal()->getValueType()->isFunctionTy();
4992   }
4993 
4994   return false;
4995 }
4996 
4997 SDValue PPCTargetLowering::LowerCallResult(
4998     SDValue Chain, SDValue InFlag, CallingConv::ID CallConv, bool isVarArg,
4999     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
5000     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
5001   SmallVector<CCValAssign, 16> RVLocs;
5002   CCState CCRetInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs,
5003                     *DAG.getContext());
5004 
5005   CCRetInfo.AnalyzeCallResult(
5006       Ins, (Subtarget.isSVR4ABI() && CallConv == CallingConv::Cold)
5007                ? RetCC_PPC_Cold
5008                : RetCC_PPC);
5009 
5010   // Copy all of the result registers out of their specified physreg.
5011   for (unsigned i = 0, e = RVLocs.size(); i != e; ++i) {
5012     CCValAssign &VA = RVLocs[i];
5013     assert(VA.isRegLoc() && "Can only return in registers!");
5014 
5015     SDValue Val;
5016 
5017     if (Subtarget.hasSPE() && VA.getLocVT() == MVT::f64) {
5018       SDValue Lo = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), MVT::i32,
5019                                       InFlag);
5020       Chain = Lo.getValue(1);
5021       InFlag = Lo.getValue(2);
5022       VA = RVLocs[++i]; // skip ahead to next loc
5023       SDValue Hi = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), MVT::i32,
5024                                       InFlag);
5025       Chain = Hi.getValue(1);
5026       InFlag = Hi.getValue(2);
5027       if (!Subtarget.isLittleEndian())
5028         std::swap (Lo, Hi);
5029       Val = DAG.getNode(PPCISD::BUILD_SPE64, dl, MVT::f64, Lo, Hi);
5030     } else {
5031       Val = DAG.getCopyFromReg(Chain, dl,
5032                                VA.getLocReg(), VA.getLocVT(), InFlag);
5033       Chain = Val.getValue(1);
5034       InFlag = Val.getValue(2);
5035     }
5036 
5037     switch (VA.getLocInfo()) {
5038     default: llvm_unreachable("Unknown loc info!");
5039     case CCValAssign::Full: break;
5040     case CCValAssign::AExt:
5041       Val = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), Val);
5042       break;
5043     case CCValAssign::ZExt:
5044       Val = DAG.getNode(ISD::AssertZext, dl, VA.getLocVT(), Val,
5045                         DAG.getValueType(VA.getValVT()));
5046       Val = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), Val);
5047       break;
5048     case CCValAssign::SExt:
5049       Val = DAG.getNode(ISD::AssertSext, dl, VA.getLocVT(), Val,
5050                         DAG.getValueType(VA.getValVT()));
5051       Val = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), Val);
5052       break;
5053     }
5054 
5055     InVals.push_back(Val);
5056   }
5057 
5058   return Chain;
5059 }
5060 
5061 static bool isIndirectCall(const SDValue &Callee, SelectionDAG &DAG,
5062                            const PPCSubtarget &Subtarget, bool isPatchPoint) {
5063   // PatchPoint calls are not indirect.
5064   if (isPatchPoint)
5065     return false;
5066 
5067   if (isFunctionGlobalAddress(Callee) || dyn_cast<ExternalSymbolSDNode>(Callee))
5068     return false;
5069 
5070   // Darwin, and 32-bit ELF can use a BLA. The descriptor based ABIs can not
5071   // becuase the immediate function pointer points to a descriptor instead of
5072   // a function entry point. The ELFv2 ABI cannot use a BLA because the function
5073   // pointer immediate points to the global entry point, while the BLA would
5074   // need to jump to the local entry point (see rL211174).
5075   if (!Subtarget.usesFunctionDescriptors() && !Subtarget.isELFv2ABI() &&
5076       isBLACompatibleAddress(Callee, DAG))
5077     return false;
5078 
5079   return true;
5080 }
5081 
5082 static unsigned getCallOpcode(bool isIndirectCall, bool isPatchPoint,
5083                               bool isTailCall, const Function &Caller,
5084                               const SDValue &Callee,
5085                               const PPCSubtarget &Subtarget,
5086                               const TargetMachine &TM) {
5087   if (isTailCall)
5088     return PPCISD::TC_RETURN;
5089 
5090   // This is a call through a function pointer.
5091   if (isIndirectCall) {
5092     // AIX and the 64-bit ELF ABIs need to maintain the TOC pointer accross
5093     // indirect calls. The save of the caller's TOC pointer to the stack will be
5094     // inserted into the DAG as part of call lowering. The restore of the TOC
5095     // pointer is modeled by using a pseudo instruction for the call opcode that
5096     // represents the 2 instruction sequence of an indirect branch and link,
5097     // immediately followed by a load of the TOC pointer from the the stack save
5098     // slot into gpr2.
5099     if (Subtarget.isAIXABI() || Subtarget.is64BitELFABI())
5100       return PPCISD::BCTRL_LOAD_TOC;
5101 
5102     // An indirect call that does not need a TOC restore.
5103     return PPCISD::BCTRL;
5104   }
5105 
5106   // The ABIs that maintain a TOC pointer accross calls need to have a nop
5107   // immediately following the call instruction if the caller and callee may
5108   // have different TOC bases. At link time if the linker determines the calls
5109   // may not share a TOC base, the call is redirected to a trampoline inserted
5110   // by the linker. The trampoline will (among other things) save the callers
5111   // TOC pointer at an ABI designated offset in the linkage area and the linker
5112   // will rewrite the nop to be a load of the TOC pointer from the linkage area
5113   // into gpr2.
5114   if (Subtarget.isAIXABI() || Subtarget.is64BitELFABI())
5115     return callsShareTOCBase(&Caller, Callee, TM) ? PPCISD::CALL
5116                                                   : PPCISD::CALL_NOP;
5117 
5118   return PPCISD::CALL;
5119 }
5120 
5121 static bool isValidAIXExternalSymSDNode(StringRef SymName) {
5122   return StringSwitch<bool>(SymName)
5123       .Cases("__divdi3", "__fixunsdfdi", "__floatundidf", "__floatundisf",
5124              "__moddi3", "__udivdi3", "__umoddi3", true)
5125       .Cases("ceil", "floor", "memcpy", "memmove", "memset", "round", true)
5126       .Default(false);
5127 }
5128 
5129 static SDValue transformCallee(const SDValue &Callee, SelectionDAG &DAG,
5130                                const SDLoc &dl, const PPCSubtarget &Subtarget) {
5131   if (!Subtarget.usesFunctionDescriptors() && !Subtarget.isELFv2ABI())
5132     if (SDNode *Dest = isBLACompatibleAddress(Callee, DAG))
5133       return SDValue(Dest, 0);
5134 
5135   // Returns true if the callee is local, and false otherwise.
5136   auto isLocalCallee = [&]() {
5137     const GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee);
5138     const Module *Mod = DAG.getMachineFunction().getFunction().getParent();
5139     const GlobalValue *GV = G ? G->getGlobal() : nullptr;
5140 
5141     return DAG.getTarget().shouldAssumeDSOLocal(*Mod, GV) &&
5142            !dyn_cast_or_null<GlobalIFunc>(GV);
5143   };
5144 
5145   // The PLT is only used in 32-bit ELF PIC mode.  Attempting to use the PLT in
5146   // a static relocation model causes some versions of GNU LD (2.17.50, at
5147   // least) to force BSS-PLT, instead of secure-PLT, even if all objects are
5148   // built with secure-PLT.
5149   bool UsePlt =
5150       Subtarget.is32BitELFABI() && !isLocalCallee() &&
5151       Subtarget.getTargetMachine().getRelocationModel() == Reloc::PIC_;
5152 
5153   // On AIX, direct function calls reference the symbol for the function's
5154   // entry point, which is named by prepending a "." before the function's
5155   // C-linkage name.
5156   const auto getAIXFuncEntryPointSymbolSDNode =
5157       [&](StringRef FuncName, bool IsDeclaration,
5158           const XCOFF::StorageClass &SC) {
5159         auto &Context = DAG.getMachineFunction().getMMI().getContext();
5160 
5161         MCSymbolXCOFF *S = cast<MCSymbolXCOFF>(
5162             Context.getOrCreateSymbol(Twine(".") + Twine(FuncName)));
5163 
5164         if (IsDeclaration && !S->hasContainingCsect()) {
5165           // On AIX, an undefined symbol needs to be associated with a
5166           // MCSectionXCOFF to get the correct storage mapping class.
5167           // In this case, XCOFF::XMC_PR.
5168           MCSectionXCOFF *Sec = Context.getXCOFFSection(
5169               S->getName(), XCOFF::XMC_PR, XCOFF::XTY_ER, SC,
5170               SectionKind::getMetadata());
5171           S->setContainingCsect(Sec);
5172         }
5173 
5174         MVT PtrVT =
5175             DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout());
5176         return DAG.getMCSymbol(S, PtrVT);
5177       };
5178 
5179   if (isFunctionGlobalAddress(Callee)) {
5180     const GlobalAddressSDNode *G = cast<GlobalAddressSDNode>(Callee);
5181     const GlobalValue *GV = G->getGlobal();
5182 
5183     if (!Subtarget.isAIXABI())
5184       return DAG.getTargetGlobalAddress(GV, dl, Callee.getValueType(), 0,
5185                                         UsePlt ? PPCII::MO_PLT : 0);
5186 
5187     assert(!isa<GlobalIFunc>(GV) && "IFunc is not supported on AIX.");
5188     const GlobalObject *GO = cast<GlobalObject>(GV);
5189     const XCOFF::StorageClass SC =
5190         TargetLoweringObjectFileXCOFF::getStorageClassForGlobal(GO);
5191     return getAIXFuncEntryPointSymbolSDNode(GO->getName(), GO->isDeclaration(),
5192                                             SC);
5193   }
5194 
5195   if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) {
5196     const char *SymName = S->getSymbol();
5197     if (!Subtarget.isAIXABI())
5198       return DAG.getTargetExternalSymbol(SymName, Callee.getValueType(),
5199                                          UsePlt ? PPCII::MO_PLT : 0);
5200 
5201     // If there exists a user-declared function whose name is the same as the
5202     // ExternalSymbol's, then we pick up the user-declared version.
5203     const Module *Mod = DAG.getMachineFunction().getFunction().getParent();
5204     if (const Function *F =
5205             dyn_cast_or_null<Function>(Mod->getNamedValue(SymName))) {
5206       const XCOFF::StorageClass SC =
5207           TargetLoweringObjectFileXCOFF::getStorageClassForGlobal(F);
5208       return getAIXFuncEntryPointSymbolSDNode(F->getName(), F->isDeclaration(),
5209                                               SC);
5210     }
5211 
5212     // TODO: Remove this when the support for ExternalSymbolSDNode is complete.
5213     if (isValidAIXExternalSymSDNode(SymName)) {
5214       return getAIXFuncEntryPointSymbolSDNode(SymName, true, XCOFF::C_EXT);
5215     }
5216 
5217     report_fatal_error("Unexpected ExternalSymbolSDNode: " + Twine(SymName));
5218   }
5219 
5220   // No transformation needed.
5221   assert(Callee.getNode() && "What no callee?");
5222   return Callee;
5223 }
5224 
5225 static SDValue getOutputChainFromCallSeq(SDValue CallSeqStart) {
5226   assert(CallSeqStart.getOpcode() == ISD::CALLSEQ_START &&
5227          "Expected a CALLSEQ_STARTSDNode.");
5228 
5229   // The last operand is the chain, except when the node has glue. If the node
5230   // has glue, then the last operand is the glue, and the chain is the second
5231   // last operand.
5232   SDValue LastValue = CallSeqStart.getValue(CallSeqStart->getNumValues() - 1);
5233   if (LastValue.getValueType() != MVT::Glue)
5234     return LastValue;
5235 
5236   return CallSeqStart.getValue(CallSeqStart->getNumValues() - 2);
5237 }
5238 
5239 // Creates the node that moves a functions address into the count register
5240 // to prepare for an indirect call instruction.
5241 static void prepareIndirectCall(SelectionDAG &DAG, SDValue &Callee,
5242                                 SDValue &Glue, SDValue &Chain,
5243                                 const SDLoc &dl) {
5244   SDValue MTCTROps[] = {Chain, Callee, Glue};
5245   EVT ReturnTypes[] = {MVT::Other, MVT::Glue};
5246   Chain = DAG.getNode(PPCISD::MTCTR, dl, makeArrayRef(ReturnTypes, 2),
5247                       makeArrayRef(MTCTROps, Glue.getNode() ? 3 : 2));
5248   // The glue is the second value produced.
5249   Glue = Chain.getValue(1);
5250 }
5251 
5252 static void prepareDescriptorIndirectCall(SelectionDAG &DAG, SDValue &Callee,
5253                                           SDValue &Glue, SDValue &Chain,
5254                                           SDValue CallSeqStart,
5255                                           ImmutableCallSite CS, const SDLoc &dl,
5256                                           bool hasNest,
5257                                           const PPCSubtarget &Subtarget) {
5258   // Function pointers in the 64-bit SVR4 ABI do not point to the function
5259   // entry point, but to the function descriptor (the function entry point
5260   // address is part of the function descriptor though).
5261   // The function descriptor is a three doubleword structure with the
5262   // following fields: function entry point, TOC base address and
5263   // environment pointer.
5264   // Thus for a call through a function pointer, the following actions need
5265   // to be performed:
5266   //   1. Save the TOC of the caller in the TOC save area of its stack
5267   //      frame (this is done in LowerCall_Darwin() or LowerCall_64SVR4()).
5268   //   2. Load the address of the function entry point from the function
5269   //      descriptor.
5270   //   3. Load the TOC of the callee from the function descriptor into r2.
5271   //   4. Load the environment pointer from the function descriptor into
5272   //      r11.
5273   //   5. Branch to the function entry point address.
5274   //   6. On return of the callee, the TOC of the caller needs to be
5275   //      restored (this is done in FinishCall()).
5276   //
5277   // The loads are scheduled at the beginning of the call sequence, and the
5278   // register copies are flagged together to ensure that no other
5279   // operations can be scheduled in between. E.g. without flagging the
5280   // copies together, a TOC access in the caller could be scheduled between
5281   // the assignment of the callee TOC and the branch to the callee, which leads
5282   // to incorrect code.
5283 
5284   // Start by loading the function address from the descriptor.
5285   SDValue LDChain = getOutputChainFromCallSeq(CallSeqStart);
5286   auto MMOFlags = Subtarget.hasInvariantFunctionDescriptors()
5287                       ? (MachineMemOperand::MODereferenceable |
5288                          MachineMemOperand::MOInvariant)
5289                       : MachineMemOperand::MONone;
5290 
5291   MachinePointerInfo MPI(CS ? CS.getCalledValue() : nullptr);
5292 
5293   // Registers used in building the DAG.
5294   const MCRegister EnvPtrReg = Subtarget.getEnvironmentPointerRegister();
5295   const MCRegister TOCReg = Subtarget.getTOCPointerRegister();
5296 
5297   // Offsets of descriptor members.
5298   const unsigned TOCAnchorOffset = Subtarget.descriptorTOCAnchorOffset();
5299   const unsigned EnvPtrOffset = Subtarget.descriptorEnvironmentPointerOffset();
5300 
5301   const MVT RegVT = Subtarget.isPPC64() ? MVT::i64 : MVT::i32;
5302   const unsigned Alignment = Subtarget.isPPC64() ? 8 : 4;
5303 
5304   // One load for the functions entry point address.
5305   SDValue LoadFuncPtr = DAG.getLoad(RegVT, dl, LDChain, Callee, MPI,
5306                                     Alignment, MMOFlags);
5307 
5308   // One for loading the TOC anchor for the module that contains the called
5309   // function.
5310   SDValue TOCOff = DAG.getIntPtrConstant(TOCAnchorOffset, dl);
5311   SDValue AddTOC = DAG.getNode(ISD::ADD, dl, RegVT, Callee, TOCOff);
5312   SDValue TOCPtr =
5313       DAG.getLoad(RegVT, dl, LDChain, AddTOC,
5314                   MPI.getWithOffset(TOCAnchorOffset), Alignment, MMOFlags);
5315 
5316   // One for loading the environment pointer.
5317   SDValue PtrOff = DAG.getIntPtrConstant(EnvPtrOffset, dl);
5318   SDValue AddPtr = DAG.getNode(ISD::ADD, dl, RegVT, Callee, PtrOff);
5319   SDValue LoadEnvPtr =
5320       DAG.getLoad(RegVT, dl, LDChain, AddPtr,
5321                   MPI.getWithOffset(EnvPtrOffset), Alignment, MMOFlags);
5322 
5323 
5324   // Then copy the newly loaded TOC anchor to the TOC pointer.
5325   SDValue TOCVal = DAG.getCopyToReg(Chain, dl, TOCReg, TOCPtr, Glue);
5326   Chain = TOCVal.getValue(0);
5327   Glue = TOCVal.getValue(1);
5328 
5329   // If the function call has an explicit 'nest' parameter, it takes the
5330   // place of the environment pointer.
5331   assert((!hasNest || !Subtarget.isAIXABI()) &&
5332          "Nest parameter is not supported on AIX.");
5333   if (!hasNest) {
5334     SDValue EnvVal = DAG.getCopyToReg(Chain, dl, EnvPtrReg, LoadEnvPtr, Glue);
5335     Chain = EnvVal.getValue(0);
5336     Glue = EnvVal.getValue(1);
5337   }
5338 
5339   // The rest of the indirect call sequence is the same as the non-descriptor
5340   // DAG.
5341   prepareIndirectCall(DAG, LoadFuncPtr, Glue, Chain, dl);
5342 }
5343 
5344 static void
5345 buildCallOperands(SmallVectorImpl<SDValue> &Ops, CallingConv::ID CallConv,
5346                   const SDLoc &dl, bool isTailCall, bool isVarArg,
5347                   bool isPatchPoint, bool hasNest, SelectionDAG &DAG,
5348                   SmallVector<std::pair<unsigned, SDValue>, 8> &RegsToPass,
5349                   SDValue Glue, SDValue Chain, SDValue &Callee, int SPDiff,
5350                   const PPCSubtarget &Subtarget, bool isIndirect) {
5351   const bool IsPPC64 = Subtarget.isPPC64();
5352   // MVT for a general purpose register.
5353   const MVT RegVT = IsPPC64 ? MVT::i64 : MVT::i32;
5354 
5355   // First operand is always the chain.
5356   Ops.push_back(Chain);
5357 
5358   // If it's a direct call pass the callee as the second operand.
5359   if (!isIndirect)
5360     Ops.push_back(Callee);
5361   else {
5362     assert(!isPatchPoint && "Patch point call are not indirect.");
5363 
5364     // For the TOC based ABIs, we have saved the TOC pointer to the linkage area
5365     // on the stack (this would have been done in `LowerCall_64SVR4` or
5366     // `LowerCall_AIX`). The call instruction is a pseudo instruction that
5367     // represents both the indirect branch and a load that restores the TOC
5368     // pointer from the linkage area. The operand for the TOC restore is an add
5369     // of the TOC save offset to the stack pointer. This must be the second
5370     // operand: after the chain input but before any other variadic arguments.
5371     if (Subtarget.is64BitELFABI() || Subtarget.isAIXABI()) {
5372       const MCRegister StackPtrReg = Subtarget.getStackPointerRegister();
5373 
5374       SDValue StackPtr = DAG.getRegister(StackPtrReg, RegVT);
5375       unsigned TOCSaveOffset = Subtarget.getFrameLowering()->getTOCSaveOffset();
5376       SDValue TOCOff = DAG.getIntPtrConstant(TOCSaveOffset, dl);
5377       SDValue AddTOC = DAG.getNode(ISD::ADD, dl, RegVT, StackPtr, TOCOff);
5378       Ops.push_back(AddTOC);
5379     }
5380 
5381     // Add the register used for the environment pointer.
5382     if (Subtarget.usesFunctionDescriptors() && !hasNest)
5383       Ops.push_back(DAG.getRegister(Subtarget.getEnvironmentPointerRegister(),
5384                                     RegVT));
5385 
5386 
5387     // Add CTR register as callee so a bctr can be emitted later.
5388     if (isTailCall)
5389       Ops.push_back(DAG.getRegister(IsPPC64 ? PPC::CTR8 : PPC::CTR, RegVT));
5390   }
5391 
5392   // If this is a tail call add stack pointer delta.
5393   if (isTailCall)
5394     Ops.push_back(DAG.getConstant(SPDiff, dl, MVT::i32));
5395 
5396   // Add argument registers to the end of the list so that they are known live
5397   // into the call.
5398   for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
5399     Ops.push_back(DAG.getRegister(RegsToPass[i].first,
5400                                   RegsToPass[i].second.getValueType()));
5401 
5402   // We cannot add R2/X2 as an operand here for PATCHPOINT, because there is
5403   // no way to mark dependencies as implicit here.
5404   // We will add the R2/X2 dependency in EmitInstrWithCustomInserter.
5405   if ((Subtarget.is64BitELFABI() || Subtarget.isAIXABI()) && !isPatchPoint)
5406     Ops.push_back(DAG.getRegister(Subtarget.getTOCPointerRegister(), RegVT));
5407 
5408   // Add implicit use of CR bit 6 for 32-bit SVR4 vararg calls
5409   if (isVarArg && Subtarget.is32BitELFABI())
5410     Ops.push_back(DAG.getRegister(PPC::CR1EQ, MVT::i32));
5411 
5412   // Add a register mask operand representing the call-preserved registers.
5413   const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo();
5414   const uint32_t *Mask =
5415       TRI->getCallPreservedMask(DAG.getMachineFunction(), CallConv);
5416   assert(Mask && "Missing call preserved mask for calling convention");
5417   Ops.push_back(DAG.getRegisterMask(Mask));
5418 
5419   // If the glue is valid, it is the last operand.
5420   if (Glue.getNode())
5421     Ops.push_back(Glue);
5422 }
5423 
5424 SDValue PPCTargetLowering::FinishCall(
5425     CallingConv::ID CallConv, const SDLoc &dl, bool isTailCall, bool isVarArg,
5426     bool isPatchPoint, bool hasNest, SelectionDAG &DAG,
5427     SmallVector<std::pair<unsigned, SDValue>, 8> &RegsToPass, SDValue Glue,
5428     SDValue Chain, SDValue CallSeqStart, SDValue &Callee, int SPDiff,
5429     unsigned NumBytes, const SmallVectorImpl<ISD::InputArg> &Ins,
5430     SmallVectorImpl<SDValue> &InVals, ImmutableCallSite CS) const {
5431 
5432   if (Subtarget.is64BitELFABI() || Subtarget.isAIXABI())
5433     setUsesTOCBasePtr(DAG);
5434 
5435   const bool isIndirect = isIndirectCall(Callee, DAG, Subtarget, isPatchPoint);
5436   unsigned CallOpc = getCallOpcode(isIndirect, isPatchPoint, isTailCall,
5437                                    DAG.getMachineFunction().getFunction(),
5438                                    Callee, Subtarget, DAG.getTarget());
5439 
5440   if (!isIndirect)
5441     Callee = transformCallee(Callee, DAG, dl, Subtarget);
5442   else if (Subtarget.usesFunctionDescriptors())
5443     prepareDescriptorIndirectCall(DAG, Callee, Glue, Chain, CallSeqStart, CS,
5444                                   dl, hasNest, Subtarget);
5445   else
5446     prepareIndirectCall(DAG, Callee, Glue, Chain, dl);
5447 
5448   // Build the operand list for the call instruction.
5449   SmallVector<SDValue, 8> Ops;
5450   buildCallOperands(Ops, CallConv, dl, isTailCall, isVarArg, isPatchPoint,
5451                     hasNest, DAG, RegsToPass, Glue, Chain, Callee, SPDiff,
5452                     Subtarget, isIndirect);
5453 
5454   // Emit tail call.
5455   if (isTailCall) {
5456     assert(((Callee.getOpcode() == ISD::Register &&
5457              cast<RegisterSDNode>(Callee)->getReg() == PPC::CTR) ||
5458             Callee.getOpcode() == ISD::TargetExternalSymbol ||
5459             Callee.getOpcode() == ISD::TargetGlobalAddress ||
5460             isa<ConstantSDNode>(Callee)) &&
5461            "Expecting a global address, external symbol, absolute value or "
5462            "register");
5463     assert(CallOpc == PPCISD::TC_RETURN &&
5464            "Unexpected call opcode for a tail call.");
5465     DAG.getMachineFunction().getFrameInfo().setHasTailCall();
5466     return DAG.getNode(CallOpc, dl, MVT::Other, Ops);
5467   }
5468 
5469   std::array<EVT, 2> ReturnTypes = {{MVT::Other, MVT::Glue}};
5470   Chain = DAG.getNode(CallOpc, dl, ReturnTypes, Ops);
5471   Glue = Chain.getValue(1);
5472 
5473   // When performing tail call optimization the callee pops its arguments off
5474   // the stack. Account for this here so these bytes can be pushed back on in
5475   // PPCFrameLowering::eliminateCallFramePseudoInstr.
5476   int BytesCalleePops = (CallConv == CallingConv::Fast &&
5477                          getTargetMachine().Options.GuaranteedTailCallOpt)
5478                             ? NumBytes
5479                             : 0;
5480 
5481   Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, dl, true),
5482                              DAG.getIntPtrConstant(BytesCalleePops, dl, true),
5483                              Glue, dl);
5484   Glue = Chain.getValue(1);
5485 
5486   return LowerCallResult(Chain, Glue, CallConv, isVarArg, Ins, dl, DAG, InVals);
5487 }
5488 
5489 SDValue
5490 PPCTargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI,
5491                              SmallVectorImpl<SDValue> &InVals) const {
5492   SelectionDAG &DAG                     = CLI.DAG;
5493   SDLoc &dl                             = CLI.DL;
5494   SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs;
5495   SmallVectorImpl<SDValue> &OutVals     = CLI.OutVals;
5496   SmallVectorImpl<ISD::InputArg> &Ins   = CLI.Ins;
5497   SDValue Chain                         = CLI.Chain;
5498   SDValue Callee                        = CLI.Callee;
5499   bool &isTailCall                      = CLI.IsTailCall;
5500   CallingConv::ID CallConv              = CLI.CallConv;
5501   bool isVarArg                         = CLI.IsVarArg;
5502   bool isPatchPoint                     = CLI.IsPatchPoint;
5503   ImmutableCallSite CS                  = CLI.CS;
5504 
5505   if (isTailCall) {
5506     if (Subtarget.useLongCalls() && !(CS && CS.isMustTailCall()))
5507       isTailCall = false;
5508     else if (Subtarget.isSVR4ABI() && Subtarget.isPPC64())
5509       isTailCall =
5510         IsEligibleForTailCallOptimization_64SVR4(Callee, CallConv, CS,
5511                                                  isVarArg, Outs, Ins, DAG);
5512     else
5513       isTailCall = IsEligibleForTailCallOptimization(Callee, CallConv, isVarArg,
5514                                                      Ins, DAG);
5515     if (isTailCall) {
5516       ++NumTailCalls;
5517       if (!getTargetMachine().Options.GuaranteedTailCallOpt)
5518         ++NumSiblingCalls;
5519 
5520       assert(isa<GlobalAddressSDNode>(Callee) &&
5521              "Callee should be an llvm::Function object.");
5522       LLVM_DEBUG(
5523           const GlobalValue *GV =
5524               cast<GlobalAddressSDNode>(Callee)->getGlobal();
5525           const unsigned Width =
5526               80 - strlen("TCO caller: ") - strlen(", callee linkage: 0, 0");
5527           dbgs() << "TCO caller: "
5528                  << left_justify(DAG.getMachineFunction().getName(), Width)
5529                  << ", callee linkage: " << GV->getVisibility() << ", "
5530                  << GV->getLinkage() << "\n");
5531     }
5532   }
5533 
5534   if (!isTailCall && CS && CS.isMustTailCall())
5535     report_fatal_error("failed to perform tail call elimination on a call "
5536                        "site marked musttail");
5537 
5538   // When long calls (i.e. indirect calls) are always used, calls are always
5539   // made via function pointer. If we have a function name, first translate it
5540   // into a pointer.
5541   if (Subtarget.useLongCalls() && isa<GlobalAddressSDNode>(Callee) &&
5542       !isTailCall)
5543     Callee = LowerGlobalAddress(Callee, DAG);
5544 
5545   if (Subtarget.isSVR4ABI() && Subtarget.isPPC64())
5546     return LowerCall_64SVR4(Chain, Callee, CallConv, isVarArg,
5547                             isTailCall, isPatchPoint, Outs, OutVals, Ins,
5548                             dl, DAG, InVals, CS);
5549 
5550   if (Subtarget.isSVR4ABI())
5551     return LowerCall_32SVR4(Chain, Callee, CallConv, isVarArg,
5552                             isTailCall, isPatchPoint, Outs, OutVals, Ins,
5553                             dl, DAG, InVals, CS);
5554 
5555   if (Subtarget.isAIXABI())
5556     return LowerCall_AIX(Chain, Callee, CallConv, isVarArg,
5557                          isTailCall, isPatchPoint, Outs, OutVals, Ins,
5558                          dl, DAG, InVals, CS);
5559 
5560   return LowerCall_Darwin(Chain, Callee, CallConv, isVarArg,
5561                           isTailCall, isPatchPoint, Outs, OutVals, Ins,
5562                           dl, DAG, InVals, CS);
5563 }
5564 
5565 SDValue PPCTargetLowering::LowerCall_32SVR4(
5566     SDValue Chain, SDValue Callee, CallingConv::ID CallConv, bool isVarArg,
5567     bool isTailCall, bool isPatchPoint,
5568     const SmallVectorImpl<ISD::OutputArg> &Outs,
5569     const SmallVectorImpl<SDValue> &OutVals,
5570     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
5571     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals,
5572     ImmutableCallSite CS) const {
5573   // See PPCTargetLowering::LowerFormalArguments_32SVR4() for a description
5574   // of the 32-bit SVR4 ABI stack frame layout.
5575 
5576   assert((CallConv == CallingConv::C ||
5577           CallConv == CallingConv::Cold ||
5578           CallConv == CallingConv::Fast) && "Unknown calling convention!");
5579 
5580   unsigned PtrByteSize = 4;
5581 
5582   MachineFunction &MF = DAG.getMachineFunction();
5583 
5584   // Mark this function as potentially containing a function that contains a
5585   // tail call. As a consequence the frame pointer will be used for dynamicalloc
5586   // and restoring the callers stack pointer in this functions epilog. This is
5587   // done because by tail calling the called function might overwrite the value
5588   // in this function's (MF) stack pointer stack slot 0(SP).
5589   if (getTargetMachine().Options.GuaranteedTailCallOpt &&
5590       CallConv == CallingConv::Fast)
5591     MF.getInfo<PPCFunctionInfo>()->setHasFastCall();
5592 
5593   // Count how many bytes are to be pushed on the stack, including the linkage
5594   // area, parameter list area and the part of the local variable space which
5595   // contains copies of aggregates which are passed by value.
5596 
5597   // Assign locations to all of the outgoing arguments.
5598   SmallVector<CCValAssign, 16> ArgLocs;
5599   PPCCCState CCInfo(CallConv, isVarArg, MF, ArgLocs, *DAG.getContext());
5600 
5601   // Reserve space for the linkage area on the stack.
5602   CCInfo.AllocateStack(Subtarget.getFrameLowering()->getLinkageSize(),
5603                        PtrByteSize);
5604   if (useSoftFloat())
5605     CCInfo.PreAnalyzeCallOperands(Outs);
5606 
5607   if (isVarArg) {
5608     // Handle fixed and variable vector arguments differently.
5609     // Fixed vector arguments go into registers as long as registers are
5610     // available. Variable vector arguments always go into memory.
5611     unsigned NumArgs = Outs.size();
5612 
5613     for (unsigned i = 0; i != NumArgs; ++i) {
5614       MVT ArgVT = Outs[i].VT;
5615       ISD::ArgFlagsTy ArgFlags = Outs[i].Flags;
5616       bool Result;
5617 
5618       if (Outs[i].IsFixed) {
5619         Result = CC_PPC32_SVR4(i, ArgVT, ArgVT, CCValAssign::Full, ArgFlags,
5620                                CCInfo);
5621       } else {
5622         Result = CC_PPC32_SVR4_VarArg(i, ArgVT, ArgVT, CCValAssign::Full,
5623                                       ArgFlags, CCInfo);
5624       }
5625 
5626       if (Result) {
5627 #ifndef NDEBUG
5628         errs() << "Call operand #" << i << " has unhandled type "
5629              << EVT(ArgVT).getEVTString() << "\n";
5630 #endif
5631         llvm_unreachable(nullptr);
5632       }
5633     }
5634   } else {
5635     // All arguments are treated the same.
5636     CCInfo.AnalyzeCallOperands(Outs, CC_PPC32_SVR4);
5637   }
5638   CCInfo.clearWasPPCF128();
5639 
5640   // Assign locations to all of the outgoing aggregate by value arguments.
5641   SmallVector<CCValAssign, 16> ByValArgLocs;
5642   CCState CCByValInfo(CallConv, isVarArg, MF, ByValArgLocs, *DAG.getContext());
5643 
5644   // Reserve stack space for the allocations in CCInfo.
5645   CCByValInfo.AllocateStack(CCInfo.getNextStackOffset(), PtrByteSize);
5646 
5647   CCByValInfo.AnalyzeCallOperands(Outs, CC_PPC32_SVR4_ByVal);
5648 
5649   // Size of the linkage area, parameter list area and the part of the local
5650   // space variable where copies of aggregates which are passed by value are
5651   // stored.
5652   unsigned NumBytes = CCByValInfo.getNextStackOffset();
5653 
5654   // Calculate by how many bytes the stack has to be adjusted in case of tail
5655   // call optimization.
5656   int SPDiff = CalculateTailCallSPDiff(DAG, isTailCall, NumBytes);
5657 
5658   // Adjust the stack pointer for the new arguments...
5659   // These operations are automatically eliminated by the prolog/epilog pass
5660   Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, dl);
5661   SDValue CallSeqStart = Chain;
5662 
5663   // Load the return address and frame pointer so it can be moved somewhere else
5664   // later.
5665   SDValue LROp, FPOp;
5666   Chain = EmitTailCallLoadFPAndRetAddr(DAG, SPDiff, Chain, LROp, FPOp, dl);
5667 
5668   // Set up a copy of the stack pointer for use loading and storing any
5669   // arguments that may not fit in the registers available for argument
5670   // passing.
5671   SDValue StackPtr = DAG.getRegister(PPC::R1, MVT::i32);
5672 
5673   SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
5674   SmallVector<TailCallArgumentInfo, 8> TailCallArguments;
5675   SmallVector<SDValue, 8> MemOpChains;
5676 
5677   bool seenFloatArg = false;
5678   // Walk the register/memloc assignments, inserting copies/loads.
5679   // i - Tracks the index into the list of registers allocated for the call
5680   // RealArgIdx - Tracks the index into the list of actual function arguments
5681   // j - Tracks the index into the list of byval arguments
5682   for (unsigned i = 0, RealArgIdx = 0, j = 0, e = ArgLocs.size();
5683        i != e;
5684        ++i, ++RealArgIdx) {
5685     CCValAssign &VA = ArgLocs[i];
5686     SDValue Arg = OutVals[RealArgIdx];
5687     ISD::ArgFlagsTy Flags = Outs[RealArgIdx].Flags;
5688 
5689     if (Flags.isByVal()) {
5690       // Argument is an aggregate which is passed by value, thus we need to
5691       // create a copy of it in the local variable space of the current stack
5692       // frame (which is the stack frame of the caller) and pass the address of
5693       // this copy to the callee.
5694       assert((j < ByValArgLocs.size()) && "Index out of bounds!");
5695       CCValAssign &ByValVA = ByValArgLocs[j++];
5696       assert((VA.getValNo() == ByValVA.getValNo()) && "ValNo mismatch!");
5697 
5698       // Memory reserved in the local variable space of the callers stack frame.
5699       unsigned LocMemOffset = ByValVA.getLocMemOffset();
5700 
5701       SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset, dl);
5702       PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(MF.getDataLayout()),
5703                            StackPtr, PtrOff);
5704 
5705       // Create a copy of the argument in the local area of the current
5706       // stack frame.
5707       SDValue MemcpyCall =
5708         CreateCopyOfByValArgument(Arg, PtrOff,
5709                                   CallSeqStart.getNode()->getOperand(0),
5710                                   Flags, DAG, dl);
5711 
5712       // This must go outside the CALLSEQ_START..END.
5713       SDValue NewCallSeqStart = DAG.getCALLSEQ_START(MemcpyCall, NumBytes, 0,
5714                                                      SDLoc(MemcpyCall));
5715       DAG.ReplaceAllUsesWith(CallSeqStart.getNode(),
5716                              NewCallSeqStart.getNode());
5717       Chain = CallSeqStart = NewCallSeqStart;
5718 
5719       // Pass the address of the aggregate copy on the stack either in a
5720       // physical register or in the parameter list area of the current stack
5721       // frame to the callee.
5722       Arg = PtrOff;
5723     }
5724 
5725     // When useCRBits() is true, there can be i1 arguments.
5726     // It is because getRegisterType(MVT::i1) => MVT::i1,
5727     // and for other integer types getRegisterType() => MVT::i32.
5728     // Extend i1 and ensure callee will get i32.
5729     if (Arg.getValueType() == MVT::i1)
5730       Arg = DAG.getNode(Flags.isSExt() ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND,
5731                         dl, MVT::i32, Arg);
5732 
5733     if (VA.isRegLoc()) {
5734       seenFloatArg |= VA.getLocVT().isFloatingPoint();
5735       // Put argument in a physical register.
5736       if (Subtarget.hasSPE() && Arg.getValueType() == MVT::f64) {
5737         bool IsLE = Subtarget.isLittleEndian();
5738         SDValue SVal = DAG.getNode(PPCISD::EXTRACT_SPE, dl, MVT::i32, Arg,
5739                         DAG.getIntPtrConstant(IsLE ? 0 : 1, dl));
5740         RegsToPass.push_back(std::make_pair(VA.getLocReg(), SVal.getValue(0)));
5741         SVal = DAG.getNode(PPCISD::EXTRACT_SPE, dl, MVT::i32, Arg,
5742                            DAG.getIntPtrConstant(IsLE ? 1 : 0, dl));
5743         RegsToPass.push_back(std::make_pair(ArgLocs[++i].getLocReg(),
5744                              SVal.getValue(0)));
5745       } else
5746         RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
5747     } else {
5748       // Put argument in the parameter list area of the current stack frame.
5749       assert(VA.isMemLoc());
5750       unsigned LocMemOffset = VA.getLocMemOffset();
5751 
5752       if (!isTailCall) {
5753         SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset, dl);
5754         PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(MF.getDataLayout()),
5755                              StackPtr, PtrOff);
5756 
5757         MemOpChains.push_back(
5758             DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo()));
5759       } else {
5760         // Calculate and remember argument location.
5761         CalculateTailCallArgDest(DAG, MF, false, Arg, SPDiff, LocMemOffset,
5762                                  TailCallArguments);
5763       }
5764     }
5765   }
5766 
5767   if (!MemOpChains.empty())
5768     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains);
5769 
5770   // Build a sequence of copy-to-reg nodes chained together with token chain
5771   // and flag operands which copy the outgoing args into the appropriate regs.
5772   SDValue InFlag;
5773   for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
5774     Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
5775                              RegsToPass[i].second, InFlag);
5776     InFlag = Chain.getValue(1);
5777   }
5778 
5779   // Set CR bit 6 to true if this is a vararg call with floating args passed in
5780   // registers.
5781   if (isVarArg) {
5782     SDVTList VTs = DAG.getVTList(MVT::Other, MVT::Glue);
5783     SDValue Ops[] = { Chain, InFlag };
5784 
5785     Chain = DAG.getNode(seenFloatArg ? PPCISD::CR6SET : PPCISD::CR6UNSET,
5786                         dl, VTs, makeArrayRef(Ops, InFlag.getNode() ? 2 : 1));
5787 
5788     InFlag = Chain.getValue(1);
5789   }
5790 
5791   if (isTailCall)
5792     PrepareTailCall(DAG, InFlag, Chain, dl, SPDiff, NumBytes, LROp, FPOp,
5793                     TailCallArguments);
5794 
5795   return FinishCall(CallConv, dl, isTailCall, isVarArg, isPatchPoint,
5796                     /* unused except on PPC64 ELFv1 */ false, DAG,
5797                     RegsToPass, InFlag, Chain, CallSeqStart, Callee, SPDiff,
5798                     NumBytes, Ins, InVals, CS);
5799 }
5800 
5801 // Copy an argument into memory, being careful to do this outside the
5802 // call sequence for the call to which the argument belongs.
5803 SDValue PPCTargetLowering::createMemcpyOutsideCallSeq(
5804     SDValue Arg, SDValue PtrOff, SDValue CallSeqStart, ISD::ArgFlagsTy Flags,
5805     SelectionDAG &DAG, const SDLoc &dl) const {
5806   SDValue MemcpyCall = CreateCopyOfByValArgument(Arg, PtrOff,
5807                         CallSeqStart.getNode()->getOperand(0),
5808                         Flags, DAG, dl);
5809   // The MEMCPY must go outside the CALLSEQ_START..END.
5810   int64_t FrameSize = CallSeqStart.getConstantOperandVal(1);
5811   SDValue NewCallSeqStart = DAG.getCALLSEQ_START(MemcpyCall, FrameSize, 0,
5812                                                  SDLoc(MemcpyCall));
5813   DAG.ReplaceAllUsesWith(CallSeqStart.getNode(),
5814                          NewCallSeqStart.getNode());
5815   return NewCallSeqStart;
5816 }
5817 
5818 SDValue PPCTargetLowering::LowerCall_64SVR4(
5819     SDValue Chain, SDValue Callee, CallingConv::ID CallConv, bool isVarArg,
5820     bool isTailCall, bool isPatchPoint,
5821     const SmallVectorImpl<ISD::OutputArg> &Outs,
5822     const SmallVectorImpl<SDValue> &OutVals,
5823     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
5824     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals,
5825     ImmutableCallSite CS) const {
5826   bool isELFv2ABI = Subtarget.isELFv2ABI();
5827   bool isLittleEndian = Subtarget.isLittleEndian();
5828   unsigned NumOps = Outs.size();
5829   bool hasNest = false;
5830   bool IsSibCall = false;
5831 
5832   EVT PtrVT = getPointerTy(DAG.getDataLayout());
5833   unsigned PtrByteSize = 8;
5834 
5835   MachineFunction &MF = DAG.getMachineFunction();
5836 
5837   if (isTailCall && !getTargetMachine().Options.GuaranteedTailCallOpt)
5838     IsSibCall = true;
5839 
5840   // Mark this function as potentially containing a function that contains a
5841   // tail call. As a consequence the frame pointer will be used for dynamicalloc
5842   // and restoring the callers stack pointer in this functions epilog. This is
5843   // done because by tail calling the called function might overwrite the value
5844   // in this function's (MF) stack pointer stack slot 0(SP).
5845   if (getTargetMachine().Options.GuaranteedTailCallOpt &&
5846       CallConv == CallingConv::Fast)
5847     MF.getInfo<PPCFunctionInfo>()->setHasFastCall();
5848 
5849   assert(!(CallConv == CallingConv::Fast && isVarArg) &&
5850          "fastcc not supported on varargs functions");
5851 
5852   // Count how many bytes are to be pushed on the stack, including the linkage
5853   // area, and parameter passing area.  On ELFv1, the linkage area is 48 bytes
5854   // reserved space for [SP][CR][LR][2 x unused][TOC]; on ELFv2, the linkage
5855   // area is 32 bytes reserved space for [SP][CR][LR][TOC].
5856   unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize();
5857   unsigned NumBytes = LinkageSize;
5858   unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0;
5859   unsigned &QFPR_idx = FPR_idx;
5860 
5861   static const MCPhysReg GPR[] = {
5862     PPC::X3, PPC::X4, PPC::X5, PPC::X6,
5863     PPC::X7, PPC::X8, PPC::X9, PPC::X10,
5864   };
5865   static const MCPhysReg VR[] = {
5866     PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8,
5867     PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13
5868   };
5869 
5870   const unsigned NumGPRs = array_lengthof(GPR);
5871   const unsigned NumFPRs = useSoftFloat() ? 0 : 13;
5872   const unsigned NumVRs  = array_lengthof(VR);
5873   const unsigned NumQFPRs = NumFPRs;
5874 
5875   // On ELFv2, we can avoid allocating the parameter area if all the arguments
5876   // can be passed to the callee in registers.
5877   // For the fast calling convention, there is another check below.
5878   // Note: We should keep consistent with LowerFormalArguments_64SVR4()
5879   bool HasParameterArea = !isELFv2ABI || isVarArg || CallConv == CallingConv::Fast;
5880   if (!HasParameterArea) {
5881     unsigned ParamAreaSize = NumGPRs * PtrByteSize;
5882     unsigned AvailableFPRs = NumFPRs;
5883     unsigned AvailableVRs = NumVRs;
5884     unsigned NumBytesTmp = NumBytes;
5885     for (unsigned i = 0; i != NumOps; ++i) {
5886       if (Outs[i].Flags.isNest()) continue;
5887       if (CalculateStackSlotUsed(Outs[i].VT, Outs[i].ArgVT, Outs[i].Flags,
5888                                 PtrByteSize, LinkageSize, ParamAreaSize,
5889                                 NumBytesTmp, AvailableFPRs, AvailableVRs,
5890                                 Subtarget.hasQPX()))
5891         HasParameterArea = true;
5892     }
5893   }
5894 
5895   // When using the fast calling convention, we don't provide backing for
5896   // arguments that will be in registers.
5897   unsigned NumGPRsUsed = 0, NumFPRsUsed = 0, NumVRsUsed = 0;
5898 
5899   // Avoid allocating parameter area for fastcc functions if all the arguments
5900   // can be passed in the registers.
5901   if (CallConv == CallingConv::Fast)
5902     HasParameterArea = false;
5903 
5904   // Add up all the space actually used.
5905   for (unsigned i = 0; i != NumOps; ++i) {
5906     ISD::ArgFlagsTy Flags = Outs[i].Flags;
5907     EVT ArgVT = Outs[i].VT;
5908     EVT OrigVT = Outs[i].ArgVT;
5909 
5910     if (Flags.isNest())
5911       continue;
5912 
5913     if (CallConv == CallingConv::Fast) {
5914       if (Flags.isByVal()) {
5915         NumGPRsUsed += (Flags.getByValSize()+7)/8;
5916         if (NumGPRsUsed > NumGPRs)
5917           HasParameterArea = true;
5918       } else {
5919         switch (ArgVT.getSimpleVT().SimpleTy) {
5920         default: llvm_unreachable("Unexpected ValueType for argument!");
5921         case MVT::i1:
5922         case MVT::i32:
5923         case MVT::i64:
5924           if (++NumGPRsUsed <= NumGPRs)
5925             continue;
5926           break;
5927         case MVT::v4i32:
5928         case MVT::v8i16:
5929         case MVT::v16i8:
5930         case MVT::v2f64:
5931         case MVT::v2i64:
5932         case MVT::v1i128:
5933         case MVT::f128:
5934           if (++NumVRsUsed <= NumVRs)
5935             continue;
5936           break;
5937         case MVT::v4f32:
5938           // When using QPX, this is handled like a FP register, otherwise, it
5939           // is an Altivec register.
5940           if (Subtarget.hasQPX()) {
5941             if (++NumFPRsUsed <= NumFPRs)
5942               continue;
5943           } else {
5944             if (++NumVRsUsed <= NumVRs)
5945               continue;
5946           }
5947           break;
5948         case MVT::f32:
5949         case MVT::f64:
5950         case MVT::v4f64: // QPX
5951         case MVT::v4i1:  // QPX
5952           if (++NumFPRsUsed <= NumFPRs)
5953             continue;
5954           break;
5955         }
5956         HasParameterArea = true;
5957       }
5958     }
5959 
5960     /* Respect alignment of argument on the stack.  */
5961     unsigned Align =
5962       CalculateStackSlotAlignment(ArgVT, OrigVT, Flags, PtrByteSize);
5963     NumBytes = ((NumBytes + Align - 1) / Align) * Align;
5964 
5965     NumBytes += CalculateStackSlotSize(ArgVT, Flags, PtrByteSize);
5966     if (Flags.isInConsecutiveRegsLast())
5967       NumBytes = ((NumBytes + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
5968   }
5969 
5970   unsigned NumBytesActuallyUsed = NumBytes;
5971 
5972   // In the old ELFv1 ABI,
5973   // the prolog code of the callee may store up to 8 GPR argument registers to
5974   // the stack, allowing va_start to index over them in memory if its varargs.
5975   // Because we cannot tell if this is needed on the caller side, we have to
5976   // conservatively assume that it is needed.  As such, make sure we have at
5977   // least enough stack space for the caller to store the 8 GPRs.
5978   // In the ELFv2 ABI, we allocate the parameter area iff a callee
5979   // really requires memory operands, e.g. a vararg function.
5980   if (HasParameterArea)
5981     NumBytes = std::max(NumBytes, LinkageSize + 8 * PtrByteSize);
5982   else
5983     NumBytes = LinkageSize;
5984 
5985   // Tail call needs the stack to be aligned.
5986   if (getTargetMachine().Options.GuaranteedTailCallOpt &&
5987       CallConv == CallingConv::Fast)
5988     NumBytes = EnsureStackAlignment(Subtarget.getFrameLowering(), NumBytes);
5989 
5990   int SPDiff = 0;
5991 
5992   // Calculate by how many bytes the stack has to be adjusted in case of tail
5993   // call optimization.
5994   if (!IsSibCall)
5995     SPDiff = CalculateTailCallSPDiff(DAG, isTailCall, NumBytes);
5996 
5997   // To protect arguments on the stack from being clobbered in a tail call,
5998   // force all the loads to happen before doing any other lowering.
5999   if (isTailCall)
6000     Chain = DAG.getStackArgumentTokenFactor(Chain);
6001 
6002   // Adjust the stack pointer for the new arguments...
6003   // These operations are automatically eliminated by the prolog/epilog pass
6004   if (!IsSibCall)
6005     Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, dl);
6006   SDValue CallSeqStart = Chain;
6007 
6008   // Load the return address and frame pointer so it can be move somewhere else
6009   // later.
6010   SDValue LROp, FPOp;
6011   Chain = EmitTailCallLoadFPAndRetAddr(DAG, SPDiff, Chain, LROp, FPOp, dl);
6012 
6013   // Set up a copy of the stack pointer for use loading and storing any
6014   // arguments that may not fit in the registers available for argument
6015   // passing.
6016   SDValue StackPtr = DAG.getRegister(PPC::X1, MVT::i64);
6017 
6018   // Figure out which arguments are going to go in registers, and which in
6019   // memory.  Also, if this is a vararg function, floating point operations
6020   // must be stored to our stack, and loaded into integer regs as well, if
6021   // any integer regs are available for argument passing.
6022   unsigned ArgOffset = LinkageSize;
6023 
6024   SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
6025   SmallVector<TailCallArgumentInfo, 8> TailCallArguments;
6026 
6027   SmallVector<SDValue, 8> MemOpChains;
6028   for (unsigned i = 0; i != NumOps; ++i) {
6029     SDValue Arg = OutVals[i];
6030     ISD::ArgFlagsTy Flags = Outs[i].Flags;
6031     EVT ArgVT = Outs[i].VT;
6032     EVT OrigVT = Outs[i].ArgVT;
6033 
6034     // PtrOff will be used to store the current argument to the stack if a
6035     // register cannot be found for it.
6036     SDValue PtrOff;
6037 
6038     // We re-align the argument offset for each argument, except when using the
6039     // fast calling convention, when we need to make sure we do that only when
6040     // we'll actually use a stack slot.
6041     auto ComputePtrOff = [&]() {
6042       /* Respect alignment of argument on the stack.  */
6043       unsigned Align =
6044         CalculateStackSlotAlignment(ArgVT, OrigVT, Flags, PtrByteSize);
6045       ArgOffset = ((ArgOffset + Align - 1) / Align) * Align;
6046 
6047       PtrOff = DAG.getConstant(ArgOffset, dl, StackPtr.getValueType());
6048 
6049       PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff);
6050     };
6051 
6052     if (CallConv != CallingConv::Fast) {
6053       ComputePtrOff();
6054 
6055       /* Compute GPR index associated with argument offset.  */
6056       GPR_idx = (ArgOffset - LinkageSize) / PtrByteSize;
6057       GPR_idx = std::min(GPR_idx, NumGPRs);
6058     }
6059 
6060     // Promote integers to 64-bit values.
6061     if (Arg.getValueType() == MVT::i32 || Arg.getValueType() == MVT::i1) {
6062       // FIXME: Should this use ANY_EXTEND if neither sext nor zext?
6063       unsigned ExtOp = Flags.isSExt() ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
6064       Arg = DAG.getNode(ExtOp, dl, MVT::i64, Arg);
6065     }
6066 
6067     // FIXME memcpy is used way more than necessary.  Correctness first.
6068     // Note: "by value" is code for passing a structure by value, not
6069     // basic types.
6070     if (Flags.isByVal()) {
6071       // Note: Size includes alignment padding, so
6072       //   struct x { short a; char b; }
6073       // will have Size = 4.  With #pragma pack(1), it will have Size = 3.
6074       // These are the proper values we need for right-justifying the
6075       // aggregate in a parameter register.
6076       unsigned Size = Flags.getByValSize();
6077 
6078       // An empty aggregate parameter takes up no storage and no
6079       // registers.
6080       if (Size == 0)
6081         continue;
6082 
6083       if (CallConv == CallingConv::Fast)
6084         ComputePtrOff();
6085 
6086       // All aggregates smaller than 8 bytes must be passed right-justified.
6087       if (Size==1 || Size==2 || Size==4) {
6088         EVT VT = (Size==1) ? MVT::i8 : ((Size==2) ? MVT::i16 : MVT::i32);
6089         if (GPR_idx != NumGPRs) {
6090           SDValue Load = DAG.getExtLoad(ISD::EXTLOAD, dl, PtrVT, Chain, Arg,
6091                                         MachinePointerInfo(), VT);
6092           MemOpChains.push_back(Load.getValue(1));
6093           RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
6094 
6095           ArgOffset += PtrByteSize;
6096           continue;
6097         }
6098       }
6099 
6100       if (GPR_idx == NumGPRs && Size < 8) {
6101         SDValue AddPtr = PtrOff;
6102         if (!isLittleEndian) {
6103           SDValue Const = DAG.getConstant(PtrByteSize - Size, dl,
6104                                           PtrOff.getValueType());
6105           AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, Const);
6106         }
6107         Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, AddPtr,
6108                                                           CallSeqStart,
6109                                                           Flags, DAG, dl);
6110         ArgOffset += PtrByteSize;
6111         continue;
6112       }
6113       // Copy entire object into memory.  There are cases where gcc-generated
6114       // code assumes it is there, even if it could be put entirely into
6115       // registers.  (This is not what the doc says.)
6116 
6117       // FIXME: The above statement is likely due to a misunderstanding of the
6118       // documents.  All arguments must be copied into the parameter area BY
6119       // THE CALLEE in the event that the callee takes the address of any
6120       // formal argument.  That has not yet been implemented.  However, it is
6121       // reasonable to use the stack area as a staging area for the register
6122       // load.
6123 
6124       // Skip this for small aggregates, as we will use the same slot for a
6125       // right-justified copy, below.
6126       if (Size >= 8)
6127         Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, PtrOff,
6128                                                           CallSeqStart,
6129                                                           Flags, DAG, dl);
6130 
6131       // When a register is available, pass a small aggregate right-justified.
6132       if (Size < 8 && GPR_idx != NumGPRs) {
6133         // The easiest way to get this right-justified in a register
6134         // is to copy the structure into the rightmost portion of a
6135         // local variable slot, then load the whole slot into the
6136         // register.
6137         // FIXME: The memcpy seems to produce pretty awful code for
6138         // small aggregates, particularly for packed ones.
6139         // FIXME: It would be preferable to use the slot in the
6140         // parameter save area instead of a new local variable.
6141         SDValue AddPtr = PtrOff;
6142         if (!isLittleEndian) {
6143           SDValue Const = DAG.getConstant(8 - Size, dl, PtrOff.getValueType());
6144           AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, Const);
6145         }
6146         Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, AddPtr,
6147                                                           CallSeqStart,
6148                                                           Flags, DAG, dl);
6149 
6150         // Load the slot into the register.
6151         SDValue Load =
6152             DAG.getLoad(PtrVT, dl, Chain, PtrOff, MachinePointerInfo());
6153         MemOpChains.push_back(Load.getValue(1));
6154         RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
6155 
6156         // Done with this argument.
6157         ArgOffset += PtrByteSize;
6158         continue;
6159       }
6160 
6161       // For aggregates larger than PtrByteSize, copy the pieces of the
6162       // object that fit into registers from the parameter save area.
6163       for (unsigned j=0; j<Size; j+=PtrByteSize) {
6164         SDValue Const = DAG.getConstant(j, dl, PtrOff.getValueType());
6165         SDValue AddArg = DAG.getNode(ISD::ADD, dl, PtrVT, Arg, Const);
6166         if (GPR_idx != NumGPRs) {
6167           SDValue Load =
6168               DAG.getLoad(PtrVT, dl, Chain, AddArg, MachinePointerInfo());
6169           MemOpChains.push_back(Load.getValue(1));
6170           RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
6171           ArgOffset += PtrByteSize;
6172         } else {
6173           ArgOffset += ((Size - j + PtrByteSize-1)/PtrByteSize)*PtrByteSize;
6174           break;
6175         }
6176       }
6177       continue;
6178     }
6179 
6180     switch (Arg.getSimpleValueType().SimpleTy) {
6181     default: llvm_unreachable("Unexpected ValueType for argument!");
6182     case MVT::i1:
6183     case MVT::i32:
6184     case MVT::i64:
6185       if (Flags.isNest()) {
6186         // The 'nest' parameter, if any, is passed in R11.
6187         RegsToPass.push_back(std::make_pair(PPC::X11, Arg));
6188         hasNest = true;
6189         break;
6190       }
6191 
6192       // These can be scalar arguments or elements of an integer array type
6193       // passed directly.  Clang may use those instead of "byval" aggregate
6194       // types to avoid forcing arguments to memory unnecessarily.
6195       if (GPR_idx != NumGPRs) {
6196         RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Arg));
6197       } else {
6198         if (CallConv == CallingConv::Fast)
6199           ComputePtrOff();
6200 
6201         assert(HasParameterArea &&
6202                "Parameter area must exist to pass an argument in memory.");
6203         LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
6204                          true, isTailCall, false, MemOpChains,
6205                          TailCallArguments, dl);
6206         if (CallConv == CallingConv::Fast)
6207           ArgOffset += PtrByteSize;
6208       }
6209       if (CallConv != CallingConv::Fast)
6210         ArgOffset += PtrByteSize;
6211       break;
6212     case MVT::f32:
6213     case MVT::f64: {
6214       // These can be scalar arguments or elements of a float array type
6215       // passed directly.  The latter are used to implement ELFv2 homogenous
6216       // float aggregates.
6217 
6218       // Named arguments go into FPRs first, and once they overflow, the
6219       // remaining arguments go into GPRs and then the parameter save area.
6220       // Unnamed arguments for vararg functions always go to GPRs and
6221       // then the parameter save area.  For now, put all arguments to vararg
6222       // routines always in both locations (FPR *and* GPR or stack slot).
6223       bool NeedGPROrStack = isVarArg || FPR_idx == NumFPRs;
6224       bool NeededLoad = false;
6225 
6226       // First load the argument into the next available FPR.
6227       if (FPR_idx != NumFPRs)
6228         RegsToPass.push_back(std::make_pair(FPR[FPR_idx++], Arg));
6229 
6230       // Next, load the argument into GPR or stack slot if needed.
6231       if (!NeedGPROrStack)
6232         ;
6233       else if (GPR_idx != NumGPRs && CallConv != CallingConv::Fast) {
6234         // FIXME: We may want to re-enable this for CallingConv::Fast on the P8
6235         // once we support fp <-> gpr moves.
6236 
6237         // In the non-vararg case, this can only ever happen in the
6238         // presence of f32 array types, since otherwise we never run
6239         // out of FPRs before running out of GPRs.
6240         SDValue ArgVal;
6241 
6242         // Double values are always passed in a single GPR.
6243         if (Arg.getValueType() != MVT::f32) {
6244           ArgVal = DAG.getNode(ISD::BITCAST, dl, MVT::i64, Arg);
6245 
6246         // Non-array float values are extended and passed in a GPR.
6247         } else if (!Flags.isInConsecutiveRegs()) {
6248           ArgVal = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Arg);
6249           ArgVal = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i64, ArgVal);
6250 
6251         // If we have an array of floats, we collect every odd element
6252         // together with its predecessor into one GPR.
6253         } else if (ArgOffset % PtrByteSize != 0) {
6254           SDValue Lo, Hi;
6255           Lo = DAG.getNode(ISD::BITCAST, dl, MVT::i32, OutVals[i - 1]);
6256           Hi = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Arg);
6257           if (!isLittleEndian)
6258             std::swap(Lo, Hi);
6259           ArgVal = DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Lo, Hi);
6260 
6261         // The final element, if even, goes into the first half of a GPR.
6262         } else if (Flags.isInConsecutiveRegsLast()) {
6263           ArgVal = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Arg);
6264           ArgVal = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i64, ArgVal);
6265           if (!isLittleEndian)
6266             ArgVal = DAG.getNode(ISD::SHL, dl, MVT::i64, ArgVal,
6267                                  DAG.getConstant(32, dl, MVT::i32));
6268 
6269         // Non-final even elements are skipped; they will be handled
6270         // together the with subsequent argument on the next go-around.
6271         } else
6272           ArgVal = SDValue();
6273 
6274         if (ArgVal.getNode())
6275           RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], ArgVal));
6276       } else {
6277         if (CallConv == CallingConv::Fast)
6278           ComputePtrOff();
6279 
6280         // Single-precision floating-point values are mapped to the
6281         // second (rightmost) word of the stack doubleword.
6282         if (Arg.getValueType() == MVT::f32 &&
6283             !isLittleEndian && !Flags.isInConsecutiveRegs()) {
6284           SDValue ConstFour = DAG.getConstant(4, dl, PtrOff.getValueType());
6285           PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, ConstFour);
6286         }
6287 
6288         assert(HasParameterArea &&
6289                "Parameter area must exist to pass an argument in memory.");
6290         LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
6291                          true, isTailCall, false, MemOpChains,
6292                          TailCallArguments, dl);
6293 
6294         NeededLoad = true;
6295       }
6296       // When passing an array of floats, the array occupies consecutive
6297       // space in the argument area; only round up to the next doubleword
6298       // at the end of the array.  Otherwise, each float takes 8 bytes.
6299       if (CallConv != CallingConv::Fast || NeededLoad) {
6300         ArgOffset += (Arg.getValueType() == MVT::f32 &&
6301                       Flags.isInConsecutiveRegs()) ? 4 : 8;
6302         if (Flags.isInConsecutiveRegsLast())
6303           ArgOffset = ((ArgOffset + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
6304       }
6305       break;
6306     }
6307     case MVT::v4f32:
6308     case MVT::v4i32:
6309     case MVT::v8i16:
6310     case MVT::v16i8:
6311     case MVT::v2f64:
6312     case MVT::v2i64:
6313     case MVT::v1i128:
6314     case MVT::f128:
6315       if (!Subtarget.hasQPX()) {
6316       // These can be scalar arguments or elements of a vector array type
6317       // passed directly.  The latter are used to implement ELFv2 homogenous
6318       // vector aggregates.
6319 
6320       // For a varargs call, named arguments go into VRs or on the stack as
6321       // usual; unnamed arguments always go to the stack or the corresponding
6322       // GPRs when within range.  For now, we always put the value in both
6323       // locations (or even all three).
6324       if (isVarArg) {
6325         assert(HasParameterArea &&
6326                "Parameter area must exist if we have a varargs call.");
6327         // We could elide this store in the case where the object fits
6328         // entirely in R registers.  Maybe later.
6329         SDValue Store =
6330             DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo());
6331         MemOpChains.push_back(Store);
6332         if (VR_idx != NumVRs) {
6333           SDValue Load =
6334               DAG.getLoad(MVT::v4f32, dl, Store, PtrOff, MachinePointerInfo());
6335           MemOpChains.push_back(Load.getValue(1));
6336           RegsToPass.push_back(std::make_pair(VR[VR_idx++], Load));
6337         }
6338         ArgOffset += 16;
6339         for (unsigned i=0; i<16; i+=PtrByteSize) {
6340           if (GPR_idx == NumGPRs)
6341             break;
6342           SDValue Ix = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff,
6343                                    DAG.getConstant(i, dl, PtrVT));
6344           SDValue Load =
6345               DAG.getLoad(PtrVT, dl, Store, Ix, MachinePointerInfo());
6346           MemOpChains.push_back(Load.getValue(1));
6347           RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
6348         }
6349         break;
6350       }
6351 
6352       // Non-varargs Altivec params go into VRs or on the stack.
6353       if (VR_idx != NumVRs) {
6354         RegsToPass.push_back(std::make_pair(VR[VR_idx++], Arg));
6355       } else {
6356         if (CallConv == CallingConv::Fast)
6357           ComputePtrOff();
6358 
6359         assert(HasParameterArea &&
6360                "Parameter area must exist to pass an argument in memory.");
6361         LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
6362                          true, isTailCall, true, MemOpChains,
6363                          TailCallArguments, dl);
6364         if (CallConv == CallingConv::Fast)
6365           ArgOffset += 16;
6366       }
6367 
6368       if (CallConv != CallingConv::Fast)
6369         ArgOffset += 16;
6370       break;
6371       } // not QPX
6372 
6373       assert(Arg.getValueType().getSimpleVT().SimpleTy == MVT::v4f32 &&
6374              "Invalid QPX parameter type");
6375 
6376       LLVM_FALLTHROUGH;
6377     case MVT::v4f64:
6378     case MVT::v4i1: {
6379       bool IsF32 = Arg.getValueType().getSimpleVT().SimpleTy == MVT::v4f32;
6380       if (isVarArg) {
6381         assert(HasParameterArea &&
6382                "Parameter area must exist if we have a varargs call.");
6383         // We could elide this store in the case where the object fits
6384         // entirely in R registers.  Maybe later.
6385         SDValue Store =
6386             DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo());
6387         MemOpChains.push_back(Store);
6388         if (QFPR_idx != NumQFPRs) {
6389           SDValue Load = DAG.getLoad(IsF32 ? MVT::v4f32 : MVT::v4f64, dl, Store,
6390                                      PtrOff, MachinePointerInfo());
6391           MemOpChains.push_back(Load.getValue(1));
6392           RegsToPass.push_back(std::make_pair(QFPR[QFPR_idx++], Load));
6393         }
6394         ArgOffset += (IsF32 ? 16 : 32);
6395         for (unsigned i = 0; i < (IsF32 ? 16U : 32U); i += PtrByteSize) {
6396           if (GPR_idx == NumGPRs)
6397             break;
6398           SDValue Ix = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff,
6399                                    DAG.getConstant(i, dl, PtrVT));
6400           SDValue Load =
6401               DAG.getLoad(PtrVT, dl, Store, Ix, MachinePointerInfo());
6402           MemOpChains.push_back(Load.getValue(1));
6403           RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
6404         }
6405         break;
6406       }
6407 
6408       // Non-varargs QPX params go into registers or on the stack.
6409       if (QFPR_idx != NumQFPRs) {
6410         RegsToPass.push_back(std::make_pair(QFPR[QFPR_idx++], Arg));
6411       } else {
6412         if (CallConv == CallingConv::Fast)
6413           ComputePtrOff();
6414 
6415         assert(HasParameterArea &&
6416                "Parameter area must exist to pass an argument in memory.");
6417         LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
6418                          true, isTailCall, true, MemOpChains,
6419                          TailCallArguments, dl);
6420         if (CallConv == CallingConv::Fast)
6421           ArgOffset += (IsF32 ? 16 : 32);
6422       }
6423 
6424       if (CallConv != CallingConv::Fast)
6425         ArgOffset += (IsF32 ? 16 : 32);
6426       break;
6427       }
6428     }
6429   }
6430 
6431   assert((!HasParameterArea || NumBytesActuallyUsed == ArgOffset) &&
6432          "mismatch in size of parameter area");
6433   (void)NumBytesActuallyUsed;
6434 
6435   if (!MemOpChains.empty())
6436     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains);
6437 
6438   // Check if this is an indirect call (MTCTR/BCTRL).
6439   // See prepareDescriptorIndirectCall and buildCallOperands for more
6440   // information about calls through function pointers in the 64-bit SVR4 ABI.
6441   if (!isTailCall && !isPatchPoint &&
6442       !isFunctionGlobalAddress(Callee) &&
6443       !isa<ExternalSymbolSDNode>(Callee)) {
6444     // Load r2 into a virtual register and store it to the TOC save area.
6445     setUsesTOCBasePtr(DAG);
6446     SDValue Val = DAG.getCopyFromReg(Chain, dl, PPC::X2, MVT::i64);
6447     // TOC save area offset.
6448     unsigned TOCSaveOffset = Subtarget.getFrameLowering()->getTOCSaveOffset();
6449     SDValue PtrOff = DAG.getIntPtrConstant(TOCSaveOffset, dl);
6450     SDValue AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff);
6451     Chain = DAG.getStore(
6452         Val.getValue(1), dl, Val, AddPtr,
6453         MachinePointerInfo::getStack(DAG.getMachineFunction(), TOCSaveOffset));
6454     // In the ELFv2 ABI, R12 must contain the address of an indirect callee.
6455     // This does not mean the MTCTR instruction must use R12; it's easier
6456     // to model this as an extra parameter, so do that.
6457     if (isELFv2ABI && !isPatchPoint)
6458       RegsToPass.push_back(std::make_pair((unsigned)PPC::X12, Callee));
6459   }
6460 
6461   // Build a sequence of copy-to-reg nodes chained together with token chain
6462   // and flag operands which copy the outgoing args into the appropriate regs.
6463   SDValue InFlag;
6464   for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
6465     Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
6466                              RegsToPass[i].second, InFlag);
6467     InFlag = Chain.getValue(1);
6468   }
6469 
6470   if (isTailCall && !IsSibCall)
6471     PrepareTailCall(DAG, InFlag, Chain, dl, SPDiff, NumBytes, LROp, FPOp,
6472                     TailCallArguments);
6473 
6474   return FinishCall(CallConv, dl, isTailCall, isVarArg, isPatchPoint, hasNest,
6475                     DAG, RegsToPass, InFlag, Chain, CallSeqStart, Callee,
6476                     SPDiff, NumBytes, Ins, InVals, CS);
6477 }
6478 
6479 SDValue PPCTargetLowering::LowerCall_Darwin(
6480     SDValue Chain, SDValue Callee, CallingConv::ID CallConv, bool isVarArg,
6481     bool isTailCall, bool isPatchPoint,
6482     const SmallVectorImpl<ISD::OutputArg> &Outs,
6483     const SmallVectorImpl<SDValue> &OutVals,
6484     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
6485     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals,
6486     ImmutableCallSite CS) const {
6487   unsigned NumOps = Outs.size();
6488 
6489   EVT PtrVT = getPointerTy(DAG.getDataLayout());
6490   bool isPPC64 = PtrVT == MVT::i64;
6491   unsigned PtrByteSize = isPPC64 ? 8 : 4;
6492 
6493   MachineFunction &MF = DAG.getMachineFunction();
6494 
6495   // Mark this function as potentially containing a function that contains a
6496   // tail call. As a consequence the frame pointer will be used for dynamicalloc
6497   // and restoring the callers stack pointer in this functions epilog. This is
6498   // done because by tail calling the called function might overwrite the value
6499   // in this function's (MF) stack pointer stack slot 0(SP).
6500   if (getTargetMachine().Options.GuaranteedTailCallOpt &&
6501       CallConv == CallingConv::Fast)
6502     MF.getInfo<PPCFunctionInfo>()->setHasFastCall();
6503 
6504   // Count how many bytes are to be pushed on the stack, including the linkage
6505   // area, and parameter passing area.  We start with 24/48 bytes, which is
6506   // prereserved space for [SP][CR][LR][3 x unused].
6507   unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize();
6508   unsigned NumBytes = LinkageSize;
6509 
6510   // Add up all the space actually used.
6511   // In 32-bit non-varargs calls, Altivec parameters all go at the end; usually
6512   // they all go in registers, but we must reserve stack space for them for
6513   // possible use by the caller.  In varargs or 64-bit calls, parameters are
6514   // assigned stack space in order, with padding so Altivec parameters are
6515   // 16-byte aligned.
6516   unsigned nAltivecParamsAtEnd = 0;
6517   for (unsigned i = 0; i != NumOps; ++i) {
6518     ISD::ArgFlagsTy Flags = Outs[i].Flags;
6519     EVT ArgVT = Outs[i].VT;
6520     // Varargs Altivec parameters are padded to a 16 byte boundary.
6521     if (ArgVT == MVT::v4f32 || ArgVT == MVT::v4i32 ||
6522         ArgVT == MVT::v8i16 || ArgVT == MVT::v16i8 ||
6523         ArgVT == MVT::v2f64 || ArgVT == MVT::v2i64) {
6524       if (!isVarArg && !isPPC64) {
6525         // Non-varargs Altivec parameters go after all the non-Altivec
6526         // parameters; handle those later so we know how much padding we need.
6527         nAltivecParamsAtEnd++;
6528         continue;
6529       }
6530       // Varargs and 64-bit Altivec parameters are padded to 16 byte boundary.
6531       NumBytes = ((NumBytes+15)/16)*16;
6532     }
6533     NumBytes += CalculateStackSlotSize(ArgVT, Flags, PtrByteSize);
6534   }
6535 
6536   // Allow for Altivec parameters at the end, if needed.
6537   if (nAltivecParamsAtEnd) {
6538     NumBytes = ((NumBytes+15)/16)*16;
6539     NumBytes += 16*nAltivecParamsAtEnd;
6540   }
6541 
6542   // The prolog code of the callee may store up to 8 GPR argument registers to
6543   // the stack, allowing va_start to index over them in memory if its varargs.
6544   // Because we cannot tell if this is needed on the caller side, we have to
6545   // conservatively assume that it is needed.  As such, make sure we have at
6546   // least enough stack space for the caller to store the 8 GPRs.
6547   NumBytes = std::max(NumBytes, LinkageSize + 8 * PtrByteSize);
6548 
6549   // Tail call needs the stack to be aligned.
6550   if (getTargetMachine().Options.GuaranteedTailCallOpt &&
6551       CallConv == CallingConv::Fast)
6552     NumBytes = EnsureStackAlignment(Subtarget.getFrameLowering(), NumBytes);
6553 
6554   // Calculate by how many bytes the stack has to be adjusted in case of tail
6555   // call optimization.
6556   int SPDiff = CalculateTailCallSPDiff(DAG, isTailCall, NumBytes);
6557 
6558   // To protect arguments on the stack from being clobbered in a tail call,
6559   // force all the loads to happen before doing any other lowering.
6560   if (isTailCall)
6561     Chain = DAG.getStackArgumentTokenFactor(Chain);
6562 
6563   // Adjust the stack pointer for the new arguments...
6564   // These operations are automatically eliminated by the prolog/epilog pass
6565   Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, dl);
6566   SDValue CallSeqStart = Chain;
6567 
6568   // Load the return address and frame pointer so it can be move somewhere else
6569   // later.
6570   SDValue LROp, FPOp;
6571   Chain = EmitTailCallLoadFPAndRetAddr(DAG, SPDiff, Chain, LROp, FPOp, dl);
6572 
6573   // Set up a copy of the stack pointer for use loading and storing any
6574   // arguments that may not fit in the registers available for argument
6575   // passing.
6576   SDValue StackPtr;
6577   if (isPPC64)
6578     StackPtr = DAG.getRegister(PPC::X1, MVT::i64);
6579   else
6580     StackPtr = DAG.getRegister(PPC::R1, MVT::i32);
6581 
6582   // Figure out which arguments are going to go in registers, and which in
6583   // memory.  Also, if this is a vararg function, floating point operations
6584   // must be stored to our stack, and loaded into integer regs as well, if
6585   // any integer regs are available for argument passing.
6586   unsigned ArgOffset = LinkageSize;
6587   unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0;
6588 
6589   static const MCPhysReg GPR_32[] = {           // 32-bit registers.
6590     PPC::R3, PPC::R4, PPC::R5, PPC::R6,
6591     PPC::R7, PPC::R8, PPC::R9, PPC::R10,
6592   };
6593   static const MCPhysReg GPR_64[] = {           // 64-bit registers.
6594     PPC::X3, PPC::X4, PPC::X5, PPC::X6,
6595     PPC::X7, PPC::X8, PPC::X9, PPC::X10,
6596   };
6597   static const MCPhysReg VR[] = {
6598     PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8,
6599     PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13
6600   };
6601   const unsigned NumGPRs = array_lengthof(GPR_32);
6602   const unsigned NumFPRs = 13;
6603   const unsigned NumVRs  = array_lengthof(VR);
6604 
6605   const MCPhysReg *GPR = isPPC64 ? GPR_64 : GPR_32;
6606 
6607   SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
6608   SmallVector<TailCallArgumentInfo, 8> TailCallArguments;
6609 
6610   SmallVector<SDValue, 8> MemOpChains;
6611   for (unsigned i = 0; i != NumOps; ++i) {
6612     SDValue Arg = OutVals[i];
6613     ISD::ArgFlagsTy Flags = Outs[i].Flags;
6614 
6615     // PtrOff will be used to store the current argument to the stack if a
6616     // register cannot be found for it.
6617     SDValue PtrOff;
6618 
6619     PtrOff = DAG.getConstant(ArgOffset, dl, StackPtr.getValueType());
6620 
6621     PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff);
6622 
6623     // On PPC64, promote integers to 64-bit values.
6624     if (isPPC64 && Arg.getValueType() == MVT::i32) {
6625       // FIXME: Should this use ANY_EXTEND if neither sext nor zext?
6626       unsigned ExtOp = Flags.isSExt() ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
6627       Arg = DAG.getNode(ExtOp, dl, MVT::i64, Arg);
6628     }
6629 
6630     // FIXME memcpy is used way more than necessary.  Correctness first.
6631     // Note: "by value" is code for passing a structure by value, not
6632     // basic types.
6633     if (Flags.isByVal()) {
6634       unsigned Size = Flags.getByValSize();
6635       // Very small objects are passed right-justified.  Everything else is
6636       // passed left-justified.
6637       if (Size==1 || Size==2) {
6638         EVT VT = (Size==1) ? MVT::i8 : MVT::i16;
6639         if (GPR_idx != NumGPRs) {
6640           SDValue Load = DAG.getExtLoad(ISD::EXTLOAD, dl, PtrVT, Chain, Arg,
6641                                         MachinePointerInfo(), VT);
6642           MemOpChains.push_back(Load.getValue(1));
6643           RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
6644 
6645           ArgOffset += PtrByteSize;
6646         } else {
6647           SDValue Const = DAG.getConstant(PtrByteSize - Size, dl,
6648                                           PtrOff.getValueType());
6649           SDValue AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, Const);
6650           Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, AddPtr,
6651                                                             CallSeqStart,
6652                                                             Flags, DAG, dl);
6653           ArgOffset += PtrByteSize;
6654         }
6655         continue;
6656       }
6657       // Copy entire object into memory.  There are cases where gcc-generated
6658       // code assumes it is there, even if it could be put entirely into
6659       // registers.  (This is not what the doc says.)
6660       Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, PtrOff,
6661                                                         CallSeqStart,
6662                                                         Flags, DAG, dl);
6663 
6664       // For small aggregates (Darwin only) and aggregates >= PtrByteSize,
6665       // copy the pieces of the object that fit into registers from the
6666       // parameter save area.
6667       for (unsigned j=0; j<Size; j+=PtrByteSize) {
6668         SDValue Const = DAG.getConstant(j, dl, PtrOff.getValueType());
6669         SDValue AddArg = DAG.getNode(ISD::ADD, dl, PtrVT, Arg, Const);
6670         if (GPR_idx != NumGPRs) {
6671           SDValue Load =
6672               DAG.getLoad(PtrVT, dl, Chain, AddArg, MachinePointerInfo());
6673           MemOpChains.push_back(Load.getValue(1));
6674           RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
6675           ArgOffset += PtrByteSize;
6676         } else {
6677           ArgOffset += ((Size - j + PtrByteSize-1)/PtrByteSize)*PtrByteSize;
6678           break;
6679         }
6680       }
6681       continue;
6682     }
6683 
6684     switch (Arg.getSimpleValueType().SimpleTy) {
6685     default: llvm_unreachable("Unexpected ValueType for argument!");
6686     case MVT::i1:
6687     case MVT::i32:
6688     case MVT::i64:
6689       if (GPR_idx != NumGPRs) {
6690         if (Arg.getValueType() == MVT::i1)
6691           Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, PtrVT, Arg);
6692 
6693         RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Arg));
6694       } else {
6695         LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
6696                          isPPC64, isTailCall, false, MemOpChains,
6697                          TailCallArguments, dl);
6698       }
6699       ArgOffset += PtrByteSize;
6700       break;
6701     case MVT::f32:
6702     case MVT::f64:
6703       if (FPR_idx != NumFPRs) {
6704         RegsToPass.push_back(std::make_pair(FPR[FPR_idx++], Arg));
6705 
6706         if (isVarArg) {
6707           SDValue Store =
6708               DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo());
6709           MemOpChains.push_back(Store);
6710 
6711           // Float varargs are always shadowed in available integer registers
6712           if (GPR_idx != NumGPRs) {
6713             SDValue Load =
6714                 DAG.getLoad(PtrVT, dl, Store, PtrOff, MachinePointerInfo());
6715             MemOpChains.push_back(Load.getValue(1));
6716             RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
6717           }
6718           if (GPR_idx != NumGPRs && Arg.getValueType() == MVT::f64 && !isPPC64){
6719             SDValue ConstFour = DAG.getConstant(4, dl, PtrOff.getValueType());
6720             PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, ConstFour);
6721             SDValue Load =
6722                 DAG.getLoad(PtrVT, dl, Store, PtrOff, MachinePointerInfo());
6723             MemOpChains.push_back(Load.getValue(1));
6724             RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
6725           }
6726         } else {
6727           // If we have any FPRs remaining, we may also have GPRs remaining.
6728           // Args passed in FPRs consume either 1 (f32) or 2 (f64) available
6729           // GPRs.
6730           if (GPR_idx != NumGPRs)
6731             ++GPR_idx;
6732           if (GPR_idx != NumGPRs && Arg.getValueType() == MVT::f64 &&
6733               !isPPC64)  // PPC64 has 64-bit GPR's obviously :)
6734             ++GPR_idx;
6735         }
6736       } else
6737         LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
6738                          isPPC64, isTailCall, false, MemOpChains,
6739                          TailCallArguments, dl);
6740       if (isPPC64)
6741         ArgOffset += 8;
6742       else
6743         ArgOffset += Arg.getValueType() == MVT::f32 ? 4 : 8;
6744       break;
6745     case MVT::v4f32:
6746     case MVT::v4i32:
6747     case MVT::v8i16:
6748     case MVT::v16i8:
6749       if (isVarArg) {
6750         // These go aligned on the stack, or in the corresponding R registers
6751         // when within range.  The Darwin PPC ABI doc claims they also go in
6752         // V registers; in fact gcc does this only for arguments that are
6753         // prototyped, not for those that match the ...  We do it for all
6754         // arguments, seems to work.
6755         while (ArgOffset % 16 !=0) {
6756           ArgOffset += PtrByteSize;
6757           if (GPR_idx != NumGPRs)
6758             GPR_idx++;
6759         }
6760         // We could elide this store in the case where the object fits
6761         // entirely in R registers.  Maybe later.
6762         PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr,
6763                              DAG.getConstant(ArgOffset, dl, PtrVT));
6764         SDValue Store =
6765             DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo());
6766         MemOpChains.push_back(Store);
6767         if (VR_idx != NumVRs) {
6768           SDValue Load =
6769               DAG.getLoad(MVT::v4f32, dl, Store, PtrOff, MachinePointerInfo());
6770           MemOpChains.push_back(Load.getValue(1));
6771           RegsToPass.push_back(std::make_pair(VR[VR_idx++], Load));
6772         }
6773         ArgOffset += 16;
6774         for (unsigned i=0; i<16; i+=PtrByteSize) {
6775           if (GPR_idx == NumGPRs)
6776             break;
6777           SDValue Ix = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff,
6778                                    DAG.getConstant(i, dl, PtrVT));
6779           SDValue Load =
6780               DAG.getLoad(PtrVT, dl, Store, Ix, MachinePointerInfo());
6781           MemOpChains.push_back(Load.getValue(1));
6782           RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
6783         }
6784         break;
6785       }
6786 
6787       // Non-varargs Altivec params generally go in registers, but have
6788       // stack space allocated at the end.
6789       if (VR_idx != NumVRs) {
6790         // Doesn't have GPR space allocated.
6791         RegsToPass.push_back(std::make_pair(VR[VR_idx++], Arg));
6792       } else if (nAltivecParamsAtEnd==0) {
6793         // We are emitting Altivec params in order.
6794         LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
6795                          isPPC64, isTailCall, true, MemOpChains,
6796                          TailCallArguments, dl);
6797         ArgOffset += 16;
6798       }
6799       break;
6800     }
6801   }
6802   // If all Altivec parameters fit in registers, as they usually do,
6803   // they get stack space following the non-Altivec parameters.  We
6804   // don't track this here because nobody below needs it.
6805   // If there are more Altivec parameters than fit in registers emit
6806   // the stores here.
6807   if (!isVarArg && nAltivecParamsAtEnd > NumVRs) {
6808     unsigned j = 0;
6809     // Offset is aligned; skip 1st 12 params which go in V registers.
6810     ArgOffset = ((ArgOffset+15)/16)*16;
6811     ArgOffset += 12*16;
6812     for (unsigned i = 0; i != NumOps; ++i) {
6813       SDValue Arg = OutVals[i];
6814       EVT ArgType = Outs[i].VT;
6815       if (ArgType==MVT::v4f32 || ArgType==MVT::v4i32 ||
6816           ArgType==MVT::v8i16 || ArgType==MVT::v16i8) {
6817         if (++j > NumVRs) {
6818           SDValue PtrOff;
6819           // We are emitting Altivec params in order.
6820           LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
6821                            isPPC64, isTailCall, true, MemOpChains,
6822                            TailCallArguments, dl);
6823           ArgOffset += 16;
6824         }
6825       }
6826     }
6827   }
6828 
6829   if (!MemOpChains.empty())
6830     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains);
6831 
6832   // On Darwin, R12 must contain the address of an indirect callee.  This does
6833   // not mean the MTCTR instruction must use R12; it's easier to model this as
6834   // an extra parameter, so do that.
6835   if (!isTailCall &&
6836       !isFunctionGlobalAddress(Callee) &&
6837       !isa<ExternalSymbolSDNode>(Callee) &&
6838       !isBLACompatibleAddress(Callee, DAG))
6839     RegsToPass.push_back(std::make_pair((unsigned)(isPPC64 ? PPC::X12 :
6840                                                    PPC::R12), Callee));
6841 
6842   // Build a sequence of copy-to-reg nodes chained together with token chain
6843   // and flag operands which copy the outgoing args into the appropriate regs.
6844   SDValue InFlag;
6845   for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
6846     Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
6847                              RegsToPass[i].second, InFlag);
6848     InFlag = Chain.getValue(1);
6849   }
6850 
6851   if (isTailCall)
6852     PrepareTailCall(DAG, InFlag, Chain, dl, SPDiff, NumBytes, LROp, FPOp,
6853                     TailCallArguments);
6854 
6855   return FinishCall(CallConv, dl, isTailCall, isVarArg, isPatchPoint,
6856                     /* unused except on PPC64 ELFv1 */ false, DAG,
6857                     RegsToPass, InFlag, Chain, CallSeqStart, Callee, SPDiff,
6858                     NumBytes, Ins, InVals, CS);
6859 }
6860 
6861 static bool CC_AIX(unsigned ValNo, MVT ValVT, MVT LocVT,
6862                    CCValAssign::LocInfo LocInfo, ISD::ArgFlagsTy ArgFlags,
6863                    CCState &State) {
6864 
6865   if (ValVT == MVT::f128)
6866     report_fatal_error("f128 is unimplemented on AIX.");
6867 
6868   if (ArgFlags.isByVal())
6869     report_fatal_error("Passing structure by value is unimplemented.");
6870 
6871   if (ArgFlags.isNest())
6872     report_fatal_error("Nest arguments are unimplemented.");
6873 
6874   if (ValVT.isVector() || LocVT.isVector())
6875     report_fatal_error("Vector arguments are unimplemented on AIX.");
6876 
6877   const PPCSubtarget &Subtarget = static_cast<const PPCSubtarget &>(
6878       State.getMachineFunction().getSubtarget());
6879   const bool IsPPC64 = Subtarget.isPPC64();
6880   const unsigned PtrByteSize = IsPPC64 ? 8 : 4;
6881 
6882   static const MCPhysReg GPR_32[] = {// 32-bit registers.
6883                                      PPC::R3, PPC::R4, PPC::R5, PPC::R6,
6884                                      PPC::R7, PPC::R8, PPC::R9, PPC::R10};
6885   static const MCPhysReg GPR_64[] = {// 64-bit registers.
6886                                      PPC::X3, PPC::X4, PPC::X5, PPC::X6,
6887                                      PPC::X7, PPC::X8, PPC::X9, PPC::X10};
6888 
6889   // Arguments always reserve parameter save area.
6890   switch (ValVT.SimpleTy) {
6891   default:
6892     report_fatal_error("Unhandled value type for argument.");
6893   case MVT::i64:
6894     // i64 arguments should have been split to i32 for PPC32.
6895     assert(IsPPC64 && "PPC32 should have split i64 values.");
6896     LLVM_FALLTHROUGH;
6897   case MVT::i1:
6898   case MVT::i32:
6899     State.AllocateStack(PtrByteSize, PtrByteSize);
6900     if (unsigned Reg = State.AllocateReg(IsPPC64 ? GPR_64 : GPR_32)) {
6901       MVT RegVT = IsPPC64 ? MVT::i64 : MVT::i32;
6902       // Promote integers if needed.
6903       if (ValVT.getSizeInBits() < RegVT.getSizeInBits())
6904         LocInfo = ArgFlags.isSExt() ? CCValAssign::LocInfo::SExt
6905                                     : CCValAssign::LocInfo::ZExt;
6906       State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, RegVT, LocInfo));
6907     }
6908     else
6909       report_fatal_error("Handling of placing parameters on the stack is "
6910                          "unimplemented!");
6911     return false;
6912 
6913   case MVT::f32:
6914   case MVT::f64: {
6915     // Parameter save area (PSA) is reserved even if the float passes in fpr.
6916     const unsigned StoreSize = LocVT.getStoreSize();
6917     // Floats are always 4-byte aligned in the PSA on AIX.
6918     // This includes f64 in 64-bit mode for ABI compatibility.
6919     State.AllocateStack(IsPPC64 ? 8 : StoreSize, 4);
6920     if (unsigned Reg = State.AllocateReg(FPR))
6921       State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
6922     else
6923       report_fatal_error("Handling of placing parameters on the stack is "
6924                          "unimplemented!");
6925 
6926     // AIX requires that GPRs are reserved for float arguments.
6927     // Successfully reserved GPRs are only initialized for vararg calls.
6928     MVT RegVT = IsPPC64 ? MVT::i64 : MVT::i32;
6929     for (unsigned I = 0; I < StoreSize; I += PtrByteSize) {
6930       if (unsigned Reg = State.AllocateReg(IsPPC64 ? GPR_64 : GPR_32)) {
6931         if (State.isVarArg()) {
6932           // Custom handling is required for:
6933           //   f64 in PPC32 needs to be split into 2 GPRs.
6934           //   f32 in PPC64 needs to occupy only lower 32 bits of 64-bit GPR.
6935           State.addLoc(
6936               CCValAssign::getCustomReg(ValNo, ValVT, Reg, RegVT, LocInfo));
6937         }
6938       } else if (State.isVarArg()) {
6939         report_fatal_error("Handling of placing parameters on the stack is "
6940                            "unimplemented!");
6941       }
6942     }
6943 
6944     return false;
6945   }
6946   }
6947   return true;
6948 }
6949 
6950 static const TargetRegisterClass *getRegClassForSVT(MVT::SimpleValueType SVT,
6951                                                     bool IsPPC64) {
6952   assert((IsPPC64 || SVT != MVT::i64) &&
6953          "i64 should have been split for 32-bit codegen.");
6954 
6955   switch (SVT) {
6956   default:
6957     report_fatal_error("Unexpected value type for formal argument");
6958   case MVT::i1:
6959   case MVT::i32:
6960   case MVT::i64:
6961     return IsPPC64 ? &PPC::G8RCRegClass : &PPC::GPRCRegClass;
6962   case MVT::f32:
6963     return &PPC::F4RCRegClass;
6964   case MVT::f64:
6965     return &PPC::F8RCRegClass;
6966   }
6967 }
6968 
6969 static SDValue truncateScalarIntegerArg(ISD::ArgFlagsTy Flags, EVT ValVT,
6970                                         SelectionDAG &DAG, SDValue ArgValue,
6971                                         MVT LocVT, const SDLoc &dl) {
6972   assert(ValVT.isScalarInteger() && LocVT.isScalarInteger());
6973   assert(ValVT.getSizeInBits() < LocVT.getSizeInBits());
6974 
6975   if (Flags.isSExt())
6976     ArgValue = DAG.getNode(ISD::AssertSext, dl, LocVT, ArgValue,
6977                            DAG.getValueType(ValVT));
6978   else if (Flags.isZExt())
6979     ArgValue = DAG.getNode(ISD::AssertZext, dl, LocVT, ArgValue,
6980                            DAG.getValueType(ValVT));
6981 
6982   return DAG.getNode(ISD::TRUNCATE, dl, ValVT, ArgValue);
6983 }
6984 
6985 SDValue PPCTargetLowering::LowerFormalArguments_AIX(
6986     SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
6987     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
6988     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
6989 
6990   assert((CallConv == CallingConv::C || CallConv == CallingConv::Cold ||
6991           CallConv == CallingConv::Fast) &&
6992          "Unexpected calling convention!");
6993 
6994   if (isVarArg)
6995     report_fatal_error("This call type is unimplemented on AIX.");
6996 
6997   if (getTargetMachine().Options.GuaranteedTailCallOpt)
6998     report_fatal_error("Tail call support is unimplemented on AIX.");
6999 
7000   if (useSoftFloat())
7001     report_fatal_error("Soft float support is unimplemented on AIX.");
7002 
7003   const PPCSubtarget &Subtarget =
7004       static_cast<const PPCSubtarget &>(DAG.getSubtarget());
7005   if (Subtarget.hasQPX())
7006     report_fatal_error("QPX support is not supported on AIX.");
7007 
7008   const bool IsPPC64 = Subtarget.isPPC64();
7009   const unsigned PtrByteSize = IsPPC64 ? 8 : 4;
7010 
7011   // Assign locations to all of the incoming arguments.
7012   SmallVector<CCValAssign, 16> ArgLocs;
7013   MachineFunction &MF = DAG.getMachineFunction();
7014   CCState CCInfo(CallConv, isVarArg, MF, ArgLocs, *DAG.getContext());
7015 
7016   // Reserve space for the linkage area on the stack.
7017   const unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize();
7018   // On AIX a minimum of 8 words is saved to the parameter save area.
7019   const unsigned MinParameterSaveArea = 8 * PtrByteSize;
7020   CCInfo.AllocateStack(LinkageSize + MinParameterSaveArea, PtrByteSize);
7021   CCInfo.AnalyzeFormalArguments(Ins, CC_AIX);
7022 
7023   for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
7024     CCValAssign &VA = ArgLocs[i];
7025     SDValue ArgValue;
7026     ISD::ArgFlagsTy Flags = Ins[i].Flags;
7027     if (VA.isRegLoc()) {
7028       EVT ValVT = VA.getValVT();
7029       MVT LocVT = VA.getLocVT();
7030       MVT::SimpleValueType SVT = ValVT.getSimpleVT().SimpleTy;
7031       unsigned VReg =
7032           MF.addLiveIn(VA.getLocReg(), getRegClassForSVT(SVT, IsPPC64));
7033       ArgValue = DAG.getCopyFromReg(Chain, dl, VReg, LocVT);
7034       if (ValVT.isScalarInteger() &&
7035           (ValVT.getSizeInBits() < LocVT.getSizeInBits())) {
7036         ArgValue =
7037             truncateScalarIntegerArg(Flags, ValVT, DAG, ArgValue, LocVT, dl);
7038       }
7039       InVals.push_back(ArgValue);
7040     } else {
7041       report_fatal_error("Handling of formal arguments on the stack is "
7042                          "unimplemented!");
7043     }
7044   }
7045 
7046   // Area that is at least reserved in the caller of this function.
7047   unsigned MinReservedArea = CCInfo.getNextStackOffset();
7048 
7049   // Set the size that is at least reserved in caller of this function. Tail
7050   // call optimized function's reserved stack space needs to be aligned so
7051   // that taking the difference between two stack areas will result in an
7052   // aligned stack.
7053   MinReservedArea =
7054       EnsureStackAlignment(Subtarget.getFrameLowering(), MinReservedArea);
7055   PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
7056   FuncInfo->setMinReservedArea(MinReservedArea);
7057 
7058   return Chain;
7059 }
7060 
7061 SDValue PPCTargetLowering::LowerCall_AIX(
7062     SDValue Chain, SDValue Callee, CallingConv::ID CallConv, bool isVarArg,
7063     bool isTailCall, bool isPatchPoint,
7064     const SmallVectorImpl<ISD::OutputArg> &Outs,
7065     const SmallVectorImpl<SDValue> &OutVals,
7066     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
7067     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals,
7068     ImmutableCallSite CS) const {
7069 
7070   assert((CallConv == CallingConv::C ||
7071           CallConv == CallingConv::Cold ||
7072           CallConv == CallingConv::Fast) && "Unexpected calling convention!");
7073 
7074   if (isPatchPoint)
7075     report_fatal_error("This call type is unimplemented on AIX.");
7076 
7077   const PPCSubtarget& Subtarget =
7078       static_cast<const PPCSubtarget&>(DAG.getSubtarget());
7079   if (Subtarget.hasQPX())
7080     report_fatal_error("QPX is not supported on AIX.");
7081   if (Subtarget.hasAltivec())
7082     report_fatal_error("Altivec support is unimplemented on AIX.");
7083 
7084   MachineFunction &MF = DAG.getMachineFunction();
7085   SmallVector<CCValAssign, 16> ArgLocs;
7086   CCState CCInfo(CallConv, isVarArg, MF, ArgLocs, *DAG.getContext());
7087 
7088   // Reserve space for the linkage save area (LSA) on the stack.
7089   // In both PPC32 and PPC64 there are 6 reserved slots in the LSA:
7090   //   [SP][CR][LR][2 x reserved][TOC].
7091   // The LSA is 24 bytes (6x4) in PPC32 and 48 bytes (6x8) in PPC64.
7092   const unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize();
7093   const bool IsPPC64 = Subtarget.isPPC64();
7094   const unsigned PtrByteSize = IsPPC64 ? 8 : 4;
7095   CCInfo.AllocateStack(LinkageSize, PtrByteSize);
7096   CCInfo.AnalyzeCallOperands(Outs, CC_AIX);
7097 
7098   // The prolog code of the callee may store up to 8 GPR argument registers to
7099   // the stack, allowing va_start to index over them in memory if the callee
7100   // is variadic.
7101   // Because we cannot tell if this is needed on the caller side, we have to
7102   // conservatively assume that it is needed.  As such, make sure we have at
7103   // least enough stack space for the caller to store the 8 GPRs.
7104   const unsigned MinParameterSaveAreaSize = 8 * PtrByteSize;
7105   const unsigned NumBytes = LinkageSize + MinParameterSaveAreaSize;
7106 
7107   // Adjust the stack pointer for the new arguments...
7108   // These operations are automatically eliminated by the prolog/epilog pass.
7109   Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, dl);
7110   SDValue CallSeqStart = Chain;
7111 
7112   SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
7113 
7114   for (unsigned I = 0, E = ArgLocs.size(); I != E;) {
7115     CCValAssign &VA = ArgLocs[I++];
7116 
7117     if (VA.isMemLoc())
7118       report_fatal_error("Handling of placing parameters on the stack is "
7119                          "unimplemented!");
7120     if (!VA.isRegLoc())
7121       report_fatal_error(
7122           "Unexpected non-register location for function call argument.");
7123 
7124     SDValue Arg = OutVals[VA.getValNo()];
7125 
7126     if (!VA.needsCustom()) {
7127       switch (VA.getLocInfo()) {
7128       default:
7129         report_fatal_error("Unexpected argument extension type.");
7130       case CCValAssign::Full:
7131         break;
7132       case CCValAssign::ZExt:
7133         Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, VA.getLocVT(), Arg);
7134         break;
7135       case CCValAssign::SExt:
7136         Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, VA.getLocVT(), Arg);
7137         break;
7138       }
7139       RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
7140 
7141       continue;
7142     }
7143 
7144     // Custom handling is used for GPR initializations for vararg float
7145     // arguments.
7146     assert(isVarArg && VA.getValVT().isFloatingPoint() &&
7147            VA.getLocVT().isInteger() &&
7148            "Unexpected custom register handling for calling convention.");
7149 
7150     SDValue ArgAsInt =
7151         DAG.getBitcast(MVT::getIntegerVT(VA.getValVT().getSizeInBits()), Arg);
7152 
7153     if (Arg.getValueType().getStoreSize() == VA.getLocVT().getStoreSize())
7154       // f32 in 32-bit GPR
7155       // f64 in 64-bit GPR
7156       RegsToPass.push_back(std::make_pair(VA.getLocReg(), ArgAsInt));
7157     else if (Arg.getValueType().getSizeInBits() < VA.getLocVT().getSizeInBits())
7158       // f32 in 64-bit GPR.
7159       RegsToPass.push_back(std::make_pair(
7160           VA.getLocReg(), DAG.getZExtOrTrunc(ArgAsInt, dl, VA.getLocVT())));
7161     else {
7162       // f64 in two 32-bit GPRs
7163       // The 2 GPRs are marked custom and expected to be adjacent in ArgLocs.
7164       assert(Arg.getValueType() == MVT::f64 && isVarArg && !IsPPC64 &&
7165              "Unexpected custom register for argument!");
7166       CCValAssign &GPR1 = VA;
7167       SDValue MSWAsI64 = DAG.getNode(ISD::SRL, dl, MVT::i64, ArgAsInt,
7168                                      DAG.getConstant(32, dl, MVT::i8));
7169       RegsToPass.push_back(std::make_pair(
7170           GPR1.getLocReg(), DAG.getZExtOrTrunc(MSWAsI64, dl, MVT::i32)));
7171       assert(I != E && "A second custom GPR is expected!");
7172       CCValAssign &GPR2 = ArgLocs[I++];
7173       assert(GPR2.isRegLoc() && GPR2.getValNo() == GPR1.getValNo() &&
7174              GPR2.needsCustom() && "A second custom GPR is expected!");
7175       RegsToPass.push_back(std::make_pair(
7176           GPR2.getLocReg(), DAG.getZExtOrTrunc(ArgAsInt, dl, MVT::i32)));
7177     }
7178   }
7179 
7180   // For indirect calls, we need to save the TOC base to the stack for
7181   // restoration after the call.
7182   if (!isTailCall && !isPatchPoint &&
7183       !isFunctionGlobalAddress(Callee) && !isa<ExternalSymbolSDNode>(Callee)) {
7184     const MCRegister TOCBaseReg = Subtarget.getTOCPointerRegister();
7185     const MCRegister StackPtrReg = Subtarget.getStackPointerRegister();
7186     const MVT PtrVT = Subtarget.isPPC64() ? MVT::i64 : MVT::i32;
7187     const unsigned TOCSaveOffset =
7188         Subtarget.getFrameLowering()->getTOCSaveOffset();
7189 
7190     setUsesTOCBasePtr(DAG);
7191     SDValue Val = DAG.getCopyFromReg(Chain, dl, TOCBaseReg, PtrVT);
7192     SDValue PtrOff = DAG.getIntPtrConstant(TOCSaveOffset, dl);
7193     SDValue StackPtr = DAG.getRegister(StackPtrReg, PtrVT);
7194     SDValue AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff);
7195     Chain = DAG.getStore(
7196         Val.getValue(1), dl, Val, AddPtr,
7197         MachinePointerInfo::getStack(DAG.getMachineFunction(), TOCSaveOffset));
7198   }
7199 
7200   // Build a sequence of copy-to-reg nodes chained together with token chain
7201   // and flag operands which copy the outgoing args into the appropriate regs.
7202   SDValue InFlag;
7203   for (auto Reg : RegsToPass) {
7204     Chain = DAG.getCopyToReg(Chain, dl, Reg.first, Reg.second, InFlag);
7205     InFlag = Chain.getValue(1);
7206   }
7207 
7208   const int SPDiff = 0;
7209   return FinishCall(CallConv, dl, isTailCall, isVarArg, isPatchPoint,
7210                     /* unused except on PPC64 ELFv1 */ false, DAG, RegsToPass,
7211                     InFlag, Chain, CallSeqStart, Callee, SPDiff, NumBytes, Ins,
7212                     InVals, CS);
7213 }
7214 
7215 bool
7216 PPCTargetLowering::CanLowerReturn(CallingConv::ID CallConv,
7217                                   MachineFunction &MF, bool isVarArg,
7218                                   const SmallVectorImpl<ISD::OutputArg> &Outs,
7219                                   LLVMContext &Context) const {
7220   SmallVector<CCValAssign, 16> RVLocs;
7221   CCState CCInfo(CallConv, isVarArg, MF, RVLocs, Context);
7222   return CCInfo.CheckReturn(
7223       Outs, (Subtarget.isSVR4ABI() && CallConv == CallingConv::Cold)
7224                 ? RetCC_PPC_Cold
7225                 : RetCC_PPC);
7226 }
7227 
7228 SDValue
7229 PPCTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv,
7230                                bool isVarArg,
7231                                const SmallVectorImpl<ISD::OutputArg> &Outs,
7232                                const SmallVectorImpl<SDValue> &OutVals,
7233                                const SDLoc &dl, SelectionDAG &DAG) const {
7234   SmallVector<CCValAssign, 16> RVLocs;
7235   CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs,
7236                  *DAG.getContext());
7237   CCInfo.AnalyzeReturn(Outs,
7238                        (Subtarget.isSVR4ABI() && CallConv == CallingConv::Cold)
7239                            ? RetCC_PPC_Cold
7240                            : RetCC_PPC);
7241 
7242   SDValue Flag;
7243   SmallVector<SDValue, 4> RetOps(1, Chain);
7244 
7245   // Copy the result values into the output registers.
7246   for (unsigned i = 0, RealResIdx = 0; i != RVLocs.size(); ++i, ++RealResIdx) {
7247     CCValAssign &VA = RVLocs[i];
7248     assert(VA.isRegLoc() && "Can only return in registers!");
7249 
7250     SDValue Arg = OutVals[RealResIdx];
7251 
7252     switch (VA.getLocInfo()) {
7253     default: llvm_unreachable("Unknown loc info!");
7254     case CCValAssign::Full: break;
7255     case CCValAssign::AExt:
7256       Arg = DAG.getNode(ISD::ANY_EXTEND, dl, VA.getLocVT(), Arg);
7257       break;
7258     case CCValAssign::ZExt:
7259       Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, VA.getLocVT(), Arg);
7260       break;
7261     case CCValAssign::SExt:
7262       Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, VA.getLocVT(), Arg);
7263       break;
7264     }
7265     if (Subtarget.hasSPE() && VA.getLocVT() == MVT::f64) {
7266       bool isLittleEndian = Subtarget.isLittleEndian();
7267       // Legalize ret f64 -> ret 2 x i32.
7268       SDValue SVal =
7269           DAG.getNode(PPCISD::EXTRACT_SPE, dl, MVT::i32, Arg,
7270                       DAG.getIntPtrConstant(isLittleEndian ? 0 : 1, dl));
7271       Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), SVal, Flag);
7272       RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
7273       SVal = DAG.getNode(PPCISD::EXTRACT_SPE, dl, MVT::i32, Arg,
7274                          DAG.getIntPtrConstant(isLittleEndian ? 1 : 0, dl));
7275       Flag = Chain.getValue(1);
7276       VA = RVLocs[++i]; // skip ahead to next loc
7277       Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), SVal, Flag);
7278     } else
7279       Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), Arg, Flag);
7280     Flag = Chain.getValue(1);
7281     RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
7282   }
7283 
7284   const PPCRegisterInfo *TRI = Subtarget.getRegisterInfo();
7285   const MCPhysReg *I =
7286     TRI->getCalleeSavedRegsViaCopy(&DAG.getMachineFunction());
7287   if (I) {
7288     for (; *I; ++I) {
7289 
7290       if (PPC::G8RCRegClass.contains(*I))
7291         RetOps.push_back(DAG.getRegister(*I, MVT::i64));
7292       else if (PPC::F8RCRegClass.contains(*I))
7293         RetOps.push_back(DAG.getRegister(*I, MVT::getFloatingPointVT(64)));
7294       else if (PPC::CRRCRegClass.contains(*I))
7295         RetOps.push_back(DAG.getRegister(*I, MVT::i1));
7296       else if (PPC::VRRCRegClass.contains(*I))
7297         RetOps.push_back(DAG.getRegister(*I, MVT::Other));
7298       else
7299         llvm_unreachable("Unexpected register class in CSRsViaCopy!");
7300     }
7301   }
7302 
7303   RetOps[0] = Chain;  // Update chain.
7304 
7305   // Add the flag if we have it.
7306   if (Flag.getNode())
7307     RetOps.push_back(Flag);
7308 
7309   return DAG.getNode(PPCISD::RET_FLAG, dl, MVT::Other, RetOps);
7310 }
7311 
7312 SDValue
7313 PPCTargetLowering::LowerGET_DYNAMIC_AREA_OFFSET(SDValue Op,
7314                                                 SelectionDAG &DAG) const {
7315   SDLoc dl(Op);
7316 
7317   // Get the correct type for integers.
7318   EVT IntVT = Op.getValueType();
7319 
7320   // Get the inputs.
7321   SDValue Chain = Op.getOperand(0);
7322   SDValue FPSIdx = getFramePointerFrameIndex(DAG);
7323   // Build a DYNAREAOFFSET node.
7324   SDValue Ops[2] = {Chain, FPSIdx};
7325   SDVTList VTs = DAG.getVTList(IntVT);
7326   return DAG.getNode(PPCISD::DYNAREAOFFSET, dl, VTs, Ops);
7327 }
7328 
7329 SDValue PPCTargetLowering::LowerSTACKRESTORE(SDValue Op,
7330                                              SelectionDAG &DAG) const {
7331   // When we pop the dynamic allocation we need to restore the SP link.
7332   SDLoc dl(Op);
7333 
7334   // Get the correct type for pointers.
7335   EVT PtrVT = getPointerTy(DAG.getDataLayout());
7336 
7337   // Construct the stack pointer operand.
7338   bool isPPC64 = Subtarget.isPPC64();
7339   unsigned SP = isPPC64 ? PPC::X1 : PPC::R1;
7340   SDValue StackPtr = DAG.getRegister(SP, PtrVT);
7341 
7342   // Get the operands for the STACKRESTORE.
7343   SDValue Chain = Op.getOperand(0);
7344   SDValue SaveSP = Op.getOperand(1);
7345 
7346   // Load the old link SP.
7347   SDValue LoadLinkSP =
7348       DAG.getLoad(PtrVT, dl, Chain, StackPtr, MachinePointerInfo());
7349 
7350   // Restore the stack pointer.
7351   Chain = DAG.getCopyToReg(LoadLinkSP.getValue(1), dl, SP, SaveSP);
7352 
7353   // Store the old link SP.
7354   return DAG.getStore(Chain, dl, LoadLinkSP, StackPtr, MachinePointerInfo());
7355 }
7356 
7357 SDValue PPCTargetLowering::getReturnAddrFrameIndex(SelectionDAG &DAG) const {
7358   MachineFunction &MF = DAG.getMachineFunction();
7359   bool isPPC64 = Subtarget.isPPC64();
7360   EVT PtrVT = getPointerTy(MF.getDataLayout());
7361 
7362   // Get current frame pointer save index.  The users of this index will be
7363   // primarily DYNALLOC instructions.
7364   PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>();
7365   int RASI = FI->getReturnAddrSaveIndex();
7366 
7367   // If the frame pointer save index hasn't been defined yet.
7368   if (!RASI) {
7369     // Find out what the fix offset of the frame pointer save area.
7370     int LROffset = Subtarget.getFrameLowering()->getReturnSaveOffset();
7371     // Allocate the frame index for frame pointer save area.
7372     RASI = MF.getFrameInfo().CreateFixedObject(isPPC64? 8 : 4, LROffset, false);
7373     // Save the result.
7374     FI->setReturnAddrSaveIndex(RASI);
7375   }
7376   return DAG.getFrameIndex(RASI, PtrVT);
7377 }
7378 
7379 SDValue
7380 PPCTargetLowering::getFramePointerFrameIndex(SelectionDAG & DAG) const {
7381   MachineFunction &MF = DAG.getMachineFunction();
7382   bool isPPC64 = Subtarget.isPPC64();
7383   EVT PtrVT = getPointerTy(MF.getDataLayout());
7384 
7385   // Get current frame pointer save index.  The users of this index will be
7386   // primarily DYNALLOC instructions.
7387   PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>();
7388   int FPSI = FI->getFramePointerSaveIndex();
7389 
7390   // If the frame pointer save index hasn't been defined yet.
7391   if (!FPSI) {
7392     // Find out what the fix offset of the frame pointer save area.
7393     int FPOffset = Subtarget.getFrameLowering()->getFramePointerSaveOffset();
7394     // Allocate the frame index for frame pointer save area.
7395     FPSI = MF.getFrameInfo().CreateFixedObject(isPPC64? 8 : 4, FPOffset, true);
7396     // Save the result.
7397     FI->setFramePointerSaveIndex(FPSI);
7398   }
7399   return DAG.getFrameIndex(FPSI, PtrVT);
7400 }
7401 
7402 SDValue PPCTargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op,
7403                                                    SelectionDAG &DAG) const {
7404   // Get the inputs.
7405   SDValue Chain = Op.getOperand(0);
7406   SDValue Size  = Op.getOperand(1);
7407   SDLoc dl(Op);
7408 
7409   // Get the correct type for pointers.
7410   EVT PtrVT = getPointerTy(DAG.getDataLayout());
7411   // Negate the size.
7412   SDValue NegSize = DAG.getNode(ISD::SUB, dl, PtrVT,
7413                                 DAG.getConstant(0, dl, PtrVT), Size);
7414   // Construct a node for the frame pointer save index.
7415   SDValue FPSIdx = getFramePointerFrameIndex(DAG);
7416   // Build a DYNALLOC node.
7417   SDValue Ops[3] = { Chain, NegSize, FPSIdx };
7418   SDVTList VTs = DAG.getVTList(PtrVT, MVT::Other);
7419   return DAG.getNode(PPCISD::DYNALLOC, dl, VTs, Ops);
7420 }
7421 
7422 SDValue PPCTargetLowering::LowerEH_DWARF_CFA(SDValue Op,
7423                                                      SelectionDAG &DAG) const {
7424   MachineFunction &MF = DAG.getMachineFunction();
7425 
7426   bool isPPC64 = Subtarget.isPPC64();
7427   EVT PtrVT = getPointerTy(DAG.getDataLayout());
7428 
7429   int FI = MF.getFrameInfo().CreateFixedObject(isPPC64 ? 8 : 4, 0, false);
7430   return DAG.getFrameIndex(FI, PtrVT);
7431 }
7432 
7433 SDValue PPCTargetLowering::lowerEH_SJLJ_SETJMP(SDValue Op,
7434                                                SelectionDAG &DAG) const {
7435   SDLoc DL(Op);
7436   return DAG.getNode(PPCISD::EH_SJLJ_SETJMP, DL,
7437                      DAG.getVTList(MVT::i32, MVT::Other),
7438                      Op.getOperand(0), Op.getOperand(1));
7439 }
7440 
7441 SDValue PPCTargetLowering::lowerEH_SJLJ_LONGJMP(SDValue Op,
7442                                                 SelectionDAG &DAG) const {
7443   SDLoc DL(Op);
7444   return DAG.getNode(PPCISD::EH_SJLJ_LONGJMP, DL, MVT::Other,
7445                      Op.getOperand(0), Op.getOperand(1));
7446 }
7447 
7448 SDValue PPCTargetLowering::LowerLOAD(SDValue Op, SelectionDAG &DAG) const {
7449   if (Op.getValueType().isVector())
7450     return LowerVectorLoad(Op, DAG);
7451 
7452   assert(Op.getValueType() == MVT::i1 &&
7453          "Custom lowering only for i1 loads");
7454 
7455   // First, load 8 bits into 32 bits, then truncate to 1 bit.
7456 
7457   SDLoc dl(Op);
7458   LoadSDNode *LD = cast<LoadSDNode>(Op);
7459 
7460   SDValue Chain = LD->getChain();
7461   SDValue BasePtr = LD->getBasePtr();
7462   MachineMemOperand *MMO = LD->getMemOperand();
7463 
7464   SDValue NewLD =
7465       DAG.getExtLoad(ISD::EXTLOAD, dl, getPointerTy(DAG.getDataLayout()), Chain,
7466                      BasePtr, MVT::i8, MMO);
7467   SDValue Result = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, NewLD);
7468 
7469   SDValue Ops[] = { Result, SDValue(NewLD.getNode(), 1) };
7470   return DAG.getMergeValues(Ops, dl);
7471 }
7472 
7473 SDValue PPCTargetLowering::LowerSTORE(SDValue Op, SelectionDAG &DAG) const {
7474   if (Op.getOperand(1).getValueType().isVector())
7475     return LowerVectorStore(Op, DAG);
7476 
7477   assert(Op.getOperand(1).getValueType() == MVT::i1 &&
7478          "Custom lowering only for i1 stores");
7479 
7480   // First, zero extend to 32 bits, then use a truncating store to 8 bits.
7481 
7482   SDLoc dl(Op);
7483   StoreSDNode *ST = cast<StoreSDNode>(Op);
7484 
7485   SDValue Chain = ST->getChain();
7486   SDValue BasePtr = ST->getBasePtr();
7487   SDValue Value = ST->getValue();
7488   MachineMemOperand *MMO = ST->getMemOperand();
7489 
7490   Value = DAG.getNode(ISD::ZERO_EXTEND, dl, getPointerTy(DAG.getDataLayout()),
7491                       Value);
7492   return DAG.getTruncStore(Chain, dl, Value, BasePtr, MVT::i8, MMO);
7493 }
7494 
7495 // FIXME: Remove this once the ANDI glue bug is fixed:
7496 SDValue PPCTargetLowering::LowerTRUNCATE(SDValue Op, SelectionDAG &DAG) const {
7497   assert(Op.getValueType() == MVT::i1 &&
7498          "Custom lowering only for i1 results");
7499 
7500   SDLoc DL(Op);
7501   return DAG.getNode(PPCISD::ANDI_rec_1_GT_BIT, DL, MVT::i1, Op.getOperand(0));
7502 }
7503 
7504 SDValue PPCTargetLowering::LowerTRUNCATEVector(SDValue Op,
7505                                                SelectionDAG &DAG) const {
7506 
7507   // Implements a vector truncate that fits in a vector register as a shuffle.
7508   // We want to legalize vector truncates down to where the source fits in
7509   // a vector register (and target is therefore smaller than vector register
7510   // size).  At that point legalization will try to custom lower the sub-legal
7511   // result and get here - where we can contain the truncate as a single target
7512   // operation.
7513 
7514   // For example a trunc <2 x i16> to <2 x i8> could be visualized as follows:
7515   //   <MSB1|LSB1, MSB2|LSB2> to <LSB1, LSB2>
7516   //
7517   // We will implement it for big-endian ordering as this (where x denotes
7518   // undefined):
7519   //   < MSB1|LSB1, MSB2|LSB2, uu, uu, uu, uu, uu, uu> to
7520   //   < LSB1, LSB2, u, u, u, u, u, u, u, u, u, u, u, u, u, u>
7521   //
7522   // The same operation in little-endian ordering will be:
7523   //   <uu, uu, uu, uu, uu, uu, LSB2|MSB2, LSB1|MSB1> to
7524   //   <u, u, u, u, u, u, u, u, u, u, u, u, u, u, LSB2, LSB1>
7525 
7526   assert(Op.getValueType().isVector() && "Vector type expected.");
7527 
7528   SDLoc DL(Op);
7529   SDValue N1 = Op.getOperand(0);
7530   unsigned SrcSize = N1.getValueType().getSizeInBits();
7531   assert(SrcSize <= 128 && "Source must fit in an Altivec/VSX vector");
7532   SDValue WideSrc = SrcSize == 128 ? N1 : widenVec(DAG, N1, DL);
7533 
7534   EVT TrgVT = Op.getValueType();
7535   unsigned TrgNumElts = TrgVT.getVectorNumElements();
7536   EVT EltVT = TrgVT.getVectorElementType();
7537   unsigned WideNumElts = 128 / EltVT.getSizeInBits();
7538   EVT WideVT = EVT::getVectorVT(*DAG.getContext(), EltVT, WideNumElts);
7539 
7540   // First list the elements we want to keep.
7541   unsigned SizeMult = SrcSize / TrgVT.getSizeInBits();
7542   SmallVector<int, 16> ShuffV;
7543   if (Subtarget.isLittleEndian())
7544     for (unsigned i = 0; i < TrgNumElts; ++i)
7545       ShuffV.push_back(i * SizeMult);
7546   else
7547     for (unsigned i = 1; i <= TrgNumElts; ++i)
7548       ShuffV.push_back(i * SizeMult - 1);
7549 
7550   // Populate the remaining elements with undefs.
7551   for (unsigned i = TrgNumElts; i < WideNumElts; ++i)
7552     // ShuffV.push_back(i + WideNumElts);
7553     ShuffV.push_back(WideNumElts + 1);
7554 
7555   SDValue Conv = DAG.getNode(ISD::BITCAST, DL, WideVT, WideSrc);
7556   return DAG.getVectorShuffle(WideVT, DL, Conv, DAG.getUNDEF(WideVT), ShuffV);
7557 }
7558 
7559 /// LowerSELECT_CC - Lower floating point select_cc's into fsel instruction when
7560 /// possible.
7561 SDValue PPCTargetLowering::LowerSELECT_CC(SDValue Op, SelectionDAG &DAG) const {
7562   // Not FP? Not a fsel.
7563   if (!Op.getOperand(0).getValueType().isFloatingPoint() ||
7564       !Op.getOperand(2).getValueType().isFloatingPoint())
7565     return Op;
7566 
7567   bool HasNoInfs = DAG.getTarget().Options.NoInfsFPMath;
7568   bool HasNoNaNs = DAG.getTarget().Options.NoNaNsFPMath;
7569   // We might be able to do better than this under some circumstances, but in
7570   // general, fsel-based lowering of select is a finite-math-only optimization.
7571   // For more information, see section F.3 of the 2.06 ISA specification.
7572   // With ISA 3.0, we have xsmaxcdp/xsmincdp which are OK to emit even in the
7573   // presence of infinities.
7574   if (!Subtarget.hasP9Vector() && (!HasNoInfs || !HasNoNaNs))
7575     return Op;
7576   ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get();
7577 
7578   EVT ResVT = Op.getValueType();
7579   EVT CmpVT = Op.getOperand(0).getValueType();
7580   SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1);
7581   SDValue TV  = Op.getOperand(2), FV  = Op.getOperand(3);
7582   SDLoc dl(Op);
7583 
7584   if (Subtarget.hasP9Vector() && LHS == TV && RHS == FV) {
7585     switch (CC) {
7586     default:
7587       // Not a min/max but with finite math, we may still be able to use fsel.
7588       if (HasNoInfs && HasNoNaNs)
7589         break;
7590       return Op;
7591     case ISD::SETOGT:
7592     case ISD::SETGT:
7593       return DAG.getNode(PPCISD::XSMAXCDP, dl, Op.getValueType(), LHS, RHS);
7594     case ISD::SETOLT:
7595     case ISD::SETLT:
7596       return DAG.getNode(PPCISD::XSMINCDP, dl, Op.getValueType(), LHS, RHS);
7597     }
7598   }
7599 
7600   // TODO: Propagate flags from the select rather than global settings.
7601   SDNodeFlags Flags;
7602   Flags.setNoInfs(true);
7603   Flags.setNoNaNs(true);
7604 
7605   // If the RHS of the comparison is a 0.0, we don't need to do the
7606   // subtraction at all.
7607   SDValue Sel1;
7608   if (isFloatingPointZero(RHS))
7609     switch (CC) {
7610     default: break;       // SETUO etc aren't handled by fsel.
7611     case ISD::SETNE:
7612       std::swap(TV, FV);
7613       LLVM_FALLTHROUGH;
7614     case ISD::SETEQ:
7615       if (LHS.getValueType() == MVT::f32)   // Comparison is always 64-bits
7616         LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, LHS);
7617       Sel1 = DAG.getNode(PPCISD::FSEL, dl, ResVT, LHS, TV, FV);
7618       if (Sel1.getValueType() == MVT::f32)   // Comparison is always 64-bits
7619         Sel1 = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Sel1);
7620       return DAG.getNode(PPCISD::FSEL, dl, ResVT,
7621                          DAG.getNode(ISD::FNEG, dl, MVT::f64, LHS), Sel1, FV);
7622     case ISD::SETULT:
7623     case ISD::SETLT:
7624       std::swap(TV, FV);  // fsel is natively setge, swap operands for setlt
7625       LLVM_FALLTHROUGH;
7626     case ISD::SETOGE:
7627     case ISD::SETGE:
7628       if (LHS.getValueType() == MVT::f32)   // Comparison is always 64-bits
7629         LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, LHS);
7630       return DAG.getNode(PPCISD::FSEL, dl, ResVT, LHS, TV, FV);
7631     case ISD::SETUGT:
7632     case ISD::SETGT:
7633       std::swap(TV, FV);  // fsel is natively setge, swap operands for setlt
7634       LLVM_FALLTHROUGH;
7635     case ISD::SETOLE:
7636     case ISD::SETLE:
7637       if (LHS.getValueType() == MVT::f32)   // Comparison is always 64-bits
7638         LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, LHS);
7639       return DAG.getNode(PPCISD::FSEL, dl, ResVT,
7640                          DAG.getNode(ISD::FNEG, dl, MVT::f64, LHS), TV, FV);
7641     }
7642 
7643   SDValue Cmp;
7644   switch (CC) {
7645   default: break;       // SETUO etc aren't handled by fsel.
7646   case ISD::SETNE:
7647     std::swap(TV, FV);
7648     LLVM_FALLTHROUGH;
7649   case ISD::SETEQ:
7650     Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, LHS, RHS, Flags);
7651     if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
7652       Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp);
7653     Sel1 = DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, TV, FV);
7654     if (Sel1.getValueType() == MVT::f32)   // Comparison is always 64-bits
7655       Sel1 = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Sel1);
7656     return DAG.getNode(PPCISD::FSEL, dl, ResVT,
7657                        DAG.getNode(ISD::FNEG, dl, MVT::f64, Cmp), Sel1, FV);
7658   case ISD::SETULT:
7659   case ISD::SETLT:
7660     Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, LHS, RHS, Flags);
7661     if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
7662       Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp);
7663     return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, FV, TV);
7664   case ISD::SETOGE:
7665   case ISD::SETGE:
7666     Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, LHS, RHS, Flags);
7667     if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
7668       Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp);
7669     return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, TV, FV);
7670   case ISD::SETUGT:
7671   case ISD::SETGT:
7672     Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, RHS, LHS, Flags);
7673     if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
7674       Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp);
7675     return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, FV, TV);
7676   case ISD::SETOLE:
7677   case ISD::SETLE:
7678     Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, RHS, LHS, Flags);
7679     if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
7680       Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp);
7681     return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, TV, FV);
7682   }
7683   return Op;
7684 }
7685 
7686 void PPCTargetLowering::LowerFP_TO_INTForReuse(SDValue Op, ReuseLoadInfo &RLI,
7687                                                SelectionDAG &DAG,
7688                                                const SDLoc &dl) const {
7689   assert(Op.getOperand(0).getValueType().isFloatingPoint());
7690   SDValue Src = Op.getOperand(0);
7691   if (Src.getValueType() == MVT::f32)
7692     Src = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Src);
7693 
7694   SDValue Tmp;
7695   switch (Op.getSimpleValueType().SimpleTy) {
7696   default: llvm_unreachable("Unhandled FP_TO_INT type in custom expander!");
7697   case MVT::i32:
7698     Tmp = DAG.getNode(
7699         Op.getOpcode() == ISD::FP_TO_SINT
7700             ? PPCISD::FCTIWZ
7701             : (Subtarget.hasFPCVT() ? PPCISD::FCTIWUZ : PPCISD::FCTIDZ),
7702         dl, MVT::f64, Src);
7703     break;
7704   case MVT::i64:
7705     assert((Op.getOpcode() == ISD::FP_TO_SINT || Subtarget.hasFPCVT()) &&
7706            "i64 FP_TO_UINT is supported only with FPCVT");
7707     Tmp = DAG.getNode(Op.getOpcode()==ISD::FP_TO_SINT ? PPCISD::FCTIDZ :
7708                                                         PPCISD::FCTIDUZ,
7709                       dl, MVT::f64, Src);
7710     break;
7711   }
7712 
7713   // Convert the FP value to an int value through memory.
7714   bool i32Stack = Op.getValueType() == MVT::i32 && Subtarget.hasSTFIWX() &&
7715     (Op.getOpcode() == ISD::FP_TO_SINT || Subtarget.hasFPCVT());
7716   SDValue FIPtr = DAG.CreateStackTemporary(i32Stack ? MVT::i32 : MVT::f64);
7717   int FI = cast<FrameIndexSDNode>(FIPtr)->getIndex();
7718   MachinePointerInfo MPI =
7719       MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI);
7720 
7721   // Emit a store to the stack slot.
7722   SDValue Chain;
7723   unsigned Alignment = DAG.getEVTAlignment(Tmp.getValueType());
7724   if (i32Stack) {
7725     MachineFunction &MF = DAG.getMachineFunction();
7726     Alignment = 4;
7727     MachineMemOperand *MMO =
7728       MF.getMachineMemOperand(MPI, MachineMemOperand::MOStore, 4, Alignment);
7729     SDValue Ops[] = { DAG.getEntryNode(), Tmp, FIPtr };
7730     Chain = DAG.getMemIntrinsicNode(PPCISD::STFIWX, dl,
7731               DAG.getVTList(MVT::Other), Ops, MVT::i32, MMO);
7732   } else
7733     Chain = DAG.getStore(DAG.getEntryNode(), dl, Tmp, FIPtr, MPI, Alignment);
7734 
7735   // Result is a load from the stack slot.  If loading 4 bytes, make sure to
7736   // add in a bias on big endian.
7737   if (Op.getValueType() == MVT::i32 && !i32Stack) {
7738     FIPtr = DAG.getNode(ISD::ADD, dl, FIPtr.getValueType(), FIPtr,
7739                         DAG.getConstant(4, dl, FIPtr.getValueType()));
7740     MPI = MPI.getWithOffset(Subtarget.isLittleEndian() ? 0 : 4);
7741   }
7742 
7743   RLI.Chain = Chain;
7744   RLI.Ptr = FIPtr;
7745   RLI.MPI = MPI;
7746   RLI.Alignment = Alignment;
7747 }
7748 
7749 /// Custom lowers floating point to integer conversions to use
7750 /// the direct move instructions available in ISA 2.07 to avoid the
7751 /// need for load/store combinations.
7752 SDValue PPCTargetLowering::LowerFP_TO_INTDirectMove(SDValue Op,
7753                                                     SelectionDAG &DAG,
7754                                                     const SDLoc &dl) const {
7755   assert(Op.getOperand(0).getValueType().isFloatingPoint());
7756   SDValue Src = Op.getOperand(0);
7757 
7758   if (Src.getValueType() == MVT::f32)
7759     Src = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Src);
7760 
7761   SDValue Tmp;
7762   switch (Op.getSimpleValueType().SimpleTy) {
7763   default: llvm_unreachable("Unhandled FP_TO_INT type in custom expander!");
7764   case MVT::i32:
7765     Tmp = DAG.getNode(
7766         Op.getOpcode() == ISD::FP_TO_SINT
7767             ? PPCISD::FCTIWZ
7768             : (Subtarget.hasFPCVT() ? PPCISD::FCTIWUZ : PPCISD::FCTIDZ),
7769         dl, MVT::f64, Src);
7770     Tmp = DAG.getNode(PPCISD::MFVSR, dl, MVT::i32, Tmp);
7771     break;
7772   case MVT::i64:
7773     assert((Op.getOpcode() == ISD::FP_TO_SINT || Subtarget.hasFPCVT()) &&
7774            "i64 FP_TO_UINT is supported only with FPCVT");
7775     Tmp = DAG.getNode(Op.getOpcode()==ISD::FP_TO_SINT ? PPCISD::FCTIDZ :
7776                                                         PPCISD::FCTIDUZ,
7777                       dl, MVT::f64, Src);
7778     Tmp = DAG.getNode(PPCISD::MFVSR, dl, MVT::i64, Tmp);
7779     break;
7780   }
7781   return Tmp;
7782 }
7783 
7784 SDValue PPCTargetLowering::LowerFP_TO_INT(SDValue Op, SelectionDAG &DAG,
7785                                           const SDLoc &dl) const {
7786 
7787   // FP to INT conversions are legal for f128.
7788   if (EnableQuadPrecision && (Op->getOperand(0).getValueType() == MVT::f128))
7789     return Op;
7790 
7791   // Expand ppcf128 to i32 by hand for the benefit of llvm-gcc bootstrap on
7792   // PPC (the libcall is not available).
7793   if (Op.getOperand(0).getValueType() == MVT::ppcf128) {
7794     if (Op.getValueType() == MVT::i32) {
7795       if (Op.getOpcode() == ISD::FP_TO_SINT) {
7796         SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, dl,
7797                                  MVT::f64, Op.getOperand(0),
7798                                  DAG.getIntPtrConstant(0, dl));
7799         SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, dl,
7800                                  MVT::f64, Op.getOperand(0),
7801                                  DAG.getIntPtrConstant(1, dl));
7802 
7803         // Add the two halves of the long double in round-to-zero mode.
7804         SDValue Res = DAG.getNode(PPCISD::FADDRTZ, dl, MVT::f64, Lo, Hi);
7805 
7806         // Now use a smaller FP_TO_SINT.
7807         return DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, Res);
7808       }
7809       if (Op.getOpcode() == ISD::FP_TO_UINT) {
7810         const uint64_t TwoE31[] = {0x41e0000000000000LL, 0};
7811         APFloat APF = APFloat(APFloat::PPCDoubleDouble(), APInt(128, TwoE31));
7812         SDValue Tmp = DAG.getConstantFP(APF, dl, MVT::ppcf128);
7813         //  X>=2^31 ? (int)(X-2^31)+0x80000000 : (int)X
7814         // FIXME: generated code sucks.
7815         // TODO: Are there fast-math-flags to propagate to this FSUB?
7816         SDValue True = DAG.getNode(ISD::FSUB, dl, MVT::ppcf128,
7817                                    Op.getOperand(0), Tmp);
7818         True = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, True);
7819         True = DAG.getNode(ISD::ADD, dl, MVT::i32, True,
7820                            DAG.getConstant(0x80000000, dl, MVT::i32));
7821         SDValue False = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32,
7822                                     Op.getOperand(0));
7823         return DAG.getSelectCC(dl, Op.getOperand(0), Tmp, True, False,
7824                                ISD::SETGE);
7825       }
7826     }
7827 
7828     return SDValue();
7829   }
7830 
7831   if (Subtarget.hasDirectMove() && Subtarget.isPPC64())
7832     return LowerFP_TO_INTDirectMove(Op, DAG, dl);
7833 
7834   ReuseLoadInfo RLI;
7835   LowerFP_TO_INTForReuse(Op, RLI, DAG, dl);
7836 
7837   return DAG.getLoad(Op.getValueType(), dl, RLI.Chain, RLI.Ptr, RLI.MPI,
7838                      RLI.Alignment, RLI.MMOFlags(), RLI.AAInfo, RLI.Ranges);
7839 }
7840 
7841 // We're trying to insert a regular store, S, and then a load, L. If the
7842 // incoming value, O, is a load, we might just be able to have our load use the
7843 // address used by O. However, we don't know if anything else will store to
7844 // that address before we can load from it. To prevent this situation, we need
7845 // to insert our load, L, into the chain as a peer of O. To do this, we give L
7846 // the same chain operand as O, we create a token factor from the chain results
7847 // of O and L, and we replace all uses of O's chain result with that token
7848 // factor (see spliceIntoChain below for this last part).
7849 bool PPCTargetLowering::canReuseLoadAddress(SDValue Op, EVT MemVT,
7850                                             ReuseLoadInfo &RLI,
7851                                             SelectionDAG &DAG,
7852                                             ISD::LoadExtType ET) const {
7853   SDLoc dl(Op);
7854   bool ValidFPToUint = Op.getOpcode() == ISD::FP_TO_UINT &&
7855                        (Subtarget.hasFPCVT() || Op.getValueType() == MVT::i32);
7856   if (ET == ISD::NON_EXTLOAD &&
7857       (ValidFPToUint || Op.getOpcode() == ISD::FP_TO_SINT) &&
7858       isOperationLegalOrCustom(Op.getOpcode(),
7859                                Op.getOperand(0).getValueType())) {
7860 
7861     LowerFP_TO_INTForReuse(Op, RLI, DAG, dl);
7862     return true;
7863   }
7864 
7865   LoadSDNode *LD = dyn_cast<LoadSDNode>(Op);
7866   if (!LD || LD->getExtensionType() != ET || LD->isVolatile() ||
7867       LD->isNonTemporal())
7868     return false;
7869   if (LD->getMemoryVT() != MemVT)
7870     return false;
7871 
7872   RLI.Ptr = LD->getBasePtr();
7873   if (LD->isIndexed() && !LD->getOffset().isUndef()) {
7874     assert(LD->getAddressingMode() == ISD::PRE_INC &&
7875            "Non-pre-inc AM on PPC?");
7876     RLI.Ptr = DAG.getNode(ISD::ADD, dl, RLI.Ptr.getValueType(), RLI.Ptr,
7877                           LD->getOffset());
7878   }
7879 
7880   RLI.Chain = LD->getChain();
7881   RLI.MPI = LD->getPointerInfo();
7882   RLI.IsDereferenceable = LD->isDereferenceable();
7883   RLI.IsInvariant = LD->isInvariant();
7884   RLI.Alignment = LD->getAlignment();
7885   RLI.AAInfo = LD->getAAInfo();
7886   RLI.Ranges = LD->getRanges();
7887 
7888   RLI.ResChain = SDValue(LD, LD->isIndexed() ? 2 : 1);
7889   return true;
7890 }
7891 
7892 // Given the head of the old chain, ResChain, insert a token factor containing
7893 // it and NewResChain, and make users of ResChain now be users of that token
7894 // factor.
7895 // TODO: Remove and use DAG::makeEquivalentMemoryOrdering() instead.
7896 void PPCTargetLowering::spliceIntoChain(SDValue ResChain,
7897                                         SDValue NewResChain,
7898                                         SelectionDAG &DAG) const {
7899   if (!ResChain)
7900     return;
7901 
7902   SDLoc dl(NewResChain);
7903 
7904   SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
7905                            NewResChain, DAG.getUNDEF(MVT::Other));
7906   assert(TF.getNode() != NewResChain.getNode() &&
7907          "A new TF really is required here");
7908 
7909   DAG.ReplaceAllUsesOfValueWith(ResChain, TF);
7910   DAG.UpdateNodeOperands(TF.getNode(), ResChain, NewResChain);
7911 }
7912 
7913 /// Analyze profitability of direct move
7914 /// prefer float load to int load plus direct move
7915 /// when there is no integer use of int load
7916 bool PPCTargetLowering::directMoveIsProfitable(const SDValue &Op) const {
7917   SDNode *Origin = Op.getOperand(0).getNode();
7918   if (Origin->getOpcode() != ISD::LOAD)
7919     return true;
7920 
7921   // If there is no LXSIBZX/LXSIHZX, like Power8,
7922   // prefer direct move if the memory size is 1 or 2 bytes.
7923   MachineMemOperand *MMO = cast<LoadSDNode>(Origin)->getMemOperand();
7924   if (!Subtarget.hasP9Vector() && MMO->getSize() <= 2)
7925     return true;
7926 
7927   for (SDNode::use_iterator UI = Origin->use_begin(),
7928                             UE = Origin->use_end();
7929        UI != UE; ++UI) {
7930 
7931     // Only look at the users of the loaded value.
7932     if (UI.getUse().get().getResNo() != 0)
7933       continue;
7934 
7935     if (UI->getOpcode() != ISD::SINT_TO_FP &&
7936         UI->getOpcode() != ISD::UINT_TO_FP)
7937       return true;
7938   }
7939 
7940   return false;
7941 }
7942 
7943 /// Custom lowers integer to floating point conversions to use
7944 /// the direct move instructions available in ISA 2.07 to avoid the
7945 /// need for load/store combinations.
7946 SDValue PPCTargetLowering::LowerINT_TO_FPDirectMove(SDValue Op,
7947                                                     SelectionDAG &DAG,
7948                                                     const SDLoc &dl) const {
7949   assert((Op.getValueType() == MVT::f32 ||
7950           Op.getValueType() == MVT::f64) &&
7951          "Invalid floating point type as target of conversion");
7952   assert(Subtarget.hasFPCVT() &&
7953          "Int to FP conversions with direct moves require FPCVT");
7954   SDValue FP;
7955   SDValue Src = Op.getOperand(0);
7956   bool SinglePrec = Op.getValueType() == MVT::f32;
7957   bool WordInt = Src.getSimpleValueType().SimpleTy == MVT::i32;
7958   bool Signed = Op.getOpcode() == ISD::SINT_TO_FP;
7959   unsigned ConvOp = Signed ? (SinglePrec ? PPCISD::FCFIDS : PPCISD::FCFID) :
7960                              (SinglePrec ? PPCISD::FCFIDUS : PPCISD::FCFIDU);
7961 
7962   if (WordInt) {
7963     FP = DAG.getNode(Signed ? PPCISD::MTVSRA : PPCISD::MTVSRZ,
7964                      dl, MVT::f64, Src);
7965     FP = DAG.getNode(ConvOp, dl, SinglePrec ? MVT::f32 : MVT::f64, FP);
7966   }
7967   else {
7968     FP = DAG.getNode(PPCISD::MTVSRA, dl, MVT::f64, Src);
7969     FP = DAG.getNode(ConvOp, dl, SinglePrec ? MVT::f32 : MVT::f64, FP);
7970   }
7971 
7972   return FP;
7973 }
7974 
7975 static SDValue widenVec(SelectionDAG &DAG, SDValue Vec, const SDLoc &dl) {
7976 
7977   EVT VecVT = Vec.getValueType();
7978   assert(VecVT.isVector() && "Expected a vector type.");
7979   assert(VecVT.getSizeInBits() < 128 && "Vector is already full width.");
7980 
7981   EVT EltVT = VecVT.getVectorElementType();
7982   unsigned WideNumElts = 128 / EltVT.getSizeInBits();
7983   EVT WideVT = EVT::getVectorVT(*DAG.getContext(), EltVT, WideNumElts);
7984 
7985   unsigned NumConcat = WideNumElts / VecVT.getVectorNumElements();
7986   SmallVector<SDValue, 16> Ops(NumConcat);
7987   Ops[0] = Vec;
7988   SDValue UndefVec = DAG.getUNDEF(VecVT);
7989   for (unsigned i = 1; i < NumConcat; ++i)
7990     Ops[i] = UndefVec;
7991 
7992   return DAG.getNode(ISD::CONCAT_VECTORS, dl, WideVT, Ops);
7993 }
7994 
7995 SDValue PPCTargetLowering::LowerINT_TO_FPVector(SDValue Op, SelectionDAG &DAG,
7996                                                 const SDLoc &dl) const {
7997 
7998   unsigned Opc = Op.getOpcode();
7999   assert((Opc == ISD::UINT_TO_FP || Opc == ISD::SINT_TO_FP) &&
8000          "Unexpected conversion type");
8001   assert((Op.getValueType() == MVT::v2f64 || Op.getValueType() == MVT::v4f32) &&
8002          "Supports conversions to v2f64/v4f32 only.");
8003 
8004   bool SignedConv = Opc == ISD::SINT_TO_FP;
8005   bool FourEltRes = Op.getValueType() == MVT::v4f32;
8006 
8007   SDValue Wide = widenVec(DAG, Op.getOperand(0), dl);
8008   EVT WideVT = Wide.getValueType();
8009   unsigned WideNumElts = WideVT.getVectorNumElements();
8010   MVT IntermediateVT = FourEltRes ? MVT::v4i32 : MVT::v2i64;
8011 
8012   SmallVector<int, 16> ShuffV;
8013   for (unsigned i = 0; i < WideNumElts; ++i)
8014     ShuffV.push_back(i + WideNumElts);
8015 
8016   int Stride = FourEltRes ? WideNumElts / 4 : WideNumElts / 2;
8017   int SaveElts = FourEltRes ? 4 : 2;
8018   if (Subtarget.isLittleEndian())
8019     for (int i = 0; i < SaveElts; i++)
8020       ShuffV[i * Stride] = i;
8021   else
8022     for (int i = 1; i <= SaveElts; i++)
8023       ShuffV[i * Stride - 1] = i - 1;
8024 
8025   SDValue ShuffleSrc2 =
8026       SignedConv ? DAG.getUNDEF(WideVT) : DAG.getConstant(0, dl, WideVT);
8027   SDValue Arrange = DAG.getVectorShuffle(WideVT, dl, Wide, ShuffleSrc2, ShuffV);
8028   unsigned ExtendOp =
8029       SignedConv ? (unsigned)PPCISD::SExtVElems : (unsigned)ISD::BITCAST;
8030 
8031   SDValue Extend;
8032   if (!Subtarget.hasP9Altivec() && SignedConv) {
8033     Arrange = DAG.getBitcast(IntermediateVT, Arrange);
8034     Extend = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, IntermediateVT, Arrange,
8035                          DAG.getValueType(Op.getOperand(0).getValueType()));
8036   } else
8037     Extend = DAG.getNode(ExtendOp, dl, IntermediateVT, Arrange);
8038 
8039   return DAG.getNode(Opc, dl, Op.getValueType(), Extend);
8040 }
8041 
8042 SDValue PPCTargetLowering::LowerINT_TO_FP(SDValue Op,
8043                                           SelectionDAG &DAG) const {
8044   SDLoc dl(Op);
8045 
8046   EVT InVT = Op.getOperand(0).getValueType();
8047   EVT OutVT = Op.getValueType();
8048   if (OutVT.isVector() && OutVT.isFloatingPoint() &&
8049       isOperationCustom(Op.getOpcode(), InVT))
8050     return LowerINT_TO_FPVector(Op, DAG, dl);
8051 
8052   // Conversions to f128 are legal.
8053   if (EnableQuadPrecision && (Op.getValueType() == MVT::f128))
8054     return Op;
8055 
8056   if (Subtarget.hasQPX() && Op.getOperand(0).getValueType() == MVT::v4i1) {
8057     if (Op.getValueType() != MVT::v4f32 && Op.getValueType() != MVT::v4f64)
8058       return SDValue();
8059 
8060     SDValue Value = Op.getOperand(0);
8061     // The values are now known to be -1 (false) or 1 (true). To convert this
8062     // into 0 (false) and 1 (true), add 1 and then divide by 2 (multiply by 0.5).
8063     // This can be done with an fma and the 0.5 constant: (V+1.0)*0.5 = 0.5*V+0.5
8064     Value = DAG.getNode(PPCISD::QBFLT, dl, MVT::v4f64, Value);
8065 
8066     SDValue FPHalfs = DAG.getConstantFP(0.5, dl, MVT::v4f64);
8067 
8068     Value = DAG.getNode(ISD::FMA, dl, MVT::v4f64, Value, FPHalfs, FPHalfs);
8069 
8070     if (Op.getValueType() != MVT::v4f64)
8071       Value = DAG.getNode(ISD::FP_ROUND, dl,
8072                           Op.getValueType(), Value,
8073                           DAG.getIntPtrConstant(1, dl));
8074     return Value;
8075   }
8076 
8077   // Don't handle ppc_fp128 here; let it be lowered to a libcall.
8078   if (Op.getValueType() != MVT::f32 && Op.getValueType() != MVT::f64)
8079     return SDValue();
8080 
8081   if (Op.getOperand(0).getValueType() == MVT::i1)
8082     return DAG.getNode(ISD::SELECT, dl, Op.getValueType(), Op.getOperand(0),
8083                        DAG.getConstantFP(1.0, dl, Op.getValueType()),
8084                        DAG.getConstantFP(0.0, dl, Op.getValueType()));
8085 
8086   // If we have direct moves, we can do all the conversion, skip the store/load
8087   // however, without FPCVT we can't do most conversions.
8088   if (Subtarget.hasDirectMove() && directMoveIsProfitable(Op) &&
8089       Subtarget.isPPC64() && Subtarget.hasFPCVT())
8090     return LowerINT_TO_FPDirectMove(Op, DAG, dl);
8091 
8092   assert((Op.getOpcode() == ISD::SINT_TO_FP || Subtarget.hasFPCVT()) &&
8093          "UINT_TO_FP is supported only with FPCVT");
8094 
8095   // If we have FCFIDS, then use it when converting to single-precision.
8096   // Otherwise, convert to double-precision and then round.
8097   unsigned FCFOp = (Subtarget.hasFPCVT() && Op.getValueType() == MVT::f32)
8098                        ? (Op.getOpcode() == ISD::UINT_TO_FP ? PPCISD::FCFIDUS
8099                                                             : PPCISD::FCFIDS)
8100                        : (Op.getOpcode() == ISD::UINT_TO_FP ? PPCISD::FCFIDU
8101                                                             : PPCISD::FCFID);
8102   MVT FCFTy = (Subtarget.hasFPCVT() && Op.getValueType() == MVT::f32)
8103                   ? MVT::f32
8104                   : MVT::f64;
8105 
8106   if (Op.getOperand(0).getValueType() == MVT::i64) {
8107     SDValue SINT = Op.getOperand(0);
8108     // When converting to single-precision, we actually need to convert
8109     // to double-precision first and then round to single-precision.
8110     // To avoid double-rounding effects during that operation, we have
8111     // to prepare the input operand.  Bits that might be truncated when
8112     // converting to double-precision are replaced by a bit that won't
8113     // be lost at this stage, but is below the single-precision rounding
8114     // position.
8115     //
8116     // However, if -enable-unsafe-fp-math is in effect, accept double
8117     // rounding to avoid the extra overhead.
8118     if (Op.getValueType() == MVT::f32 &&
8119         !Subtarget.hasFPCVT() &&
8120         !DAG.getTarget().Options.UnsafeFPMath) {
8121 
8122       // Twiddle input to make sure the low 11 bits are zero.  (If this
8123       // is the case, we are guaranteed the value will fit into the 53 bit
8124       // mantissa of an IEEE double-precision value without rounding.)
8125       // If any of those low 11 bits were not zero originally, make sure
8126       // bit 12 (value 2048) is set instead, so that the final rounding
8127       // to single-precision gets the correct result.
8128       SDValue Round = DAG.getNode(ISD::AND, dl, MVT::i64,
8129                                   SINT, DAG.getConstant(2047, dl, MVT::i64));
8130       Round = DAG.getNode(ISD::ADD, dl, MVT::i64,
8131                           Round, DAG.getConstant(2047, dl, MVT::i64));
8132       Round = DAG.getNode(ISD::OR, dl, MVT::i64, Round, SINT);
8133       Round = DAG.getNode(ISD::AND, dl, MVT::i64,
8134                           Round, DAG.getConstant(-2048, dl, MVT::i64));
8135 
8136       // However, we cannot use that value unconditionally: if the magnitude
8137       // of the input value is small, the bit-twiddling we did above might
8138       // end up visibly changing the output.  Fortunately, in that case, we
8139       // don't need to twiddle bits since the original input will convert
8140       // exactly to double-precision floating-point already.  Therefore,
8141       // construct a conditional to use the original value if the top 11
8142       // bits are all sign-bit copies, and use the rounded value computed
8143       // above otherwise.
8144       SDValue Cond = DAG.getNode(ISD::SRA, dl, MVT::i64,
8145                                  SINT, DAG.getConstant(53, dl, MVT::i32));
8146       Cond = DAG.getNode(ISD::ADD, dl, MVT::i64,
8147                          Cond, DAG.getConstant(1, dl, MVT::i64));
8148       Cond = DAG.getSetCC(dl, MVT::i32,
8149                           Cond, DAG.getConstant(1, dl, MVT::i64), ISD::SETUGT);
8150 
8151       SINT = DAG.getNode(ISD::SELECT, dl, MVT::i64, Cond, Round, SINT);
8152     }
8153 
8154     ReuseLoadInfo RLI;
8155     SDValue Bits;
8156 
8157     MachineFunction &MF = DAG.getMachineFunction();
8158     if (canReuseLoadAddress(SINT, MVT::i64, RLI, DAG)) {
8159       Bits = DAG.getLoad(MVT::f64, dl, RLI.Chain, RLI.Ptr, RLI.MPI,
8160                          RLI.Alignment, RLI.MMOFlags(), RLI.AAInfo, RLI.Ranges);
8161       spliceIntoChain(RLI.ResChain, Bits.getValue(1), DAG);
8162     } else if (Subtarget.hasLFIWAX() &&
8163                canReuseLoadAddress(SINT, MVT::i32, RLI, DAG, ISD::SEXTLOAD)) {
8164       MachineMemOperand *MMO =
8165         MF.getMachineMemOperand(RLI.MPI, MachineMemOperand::MOLoad, 4,
8166                                 RLI.Alignment, RLI.AAInfo, RLI.Ranges);
8167       SDValue Ops[] = { RLI.Chain, RLI.Ptr };
8168       Bits = DAG.getMemIntrinsicNode(PPCISD::LFIWAX, dl,
8169                                      DAG.getVTList(MVT::f64, MVT::Other),
8170                                      Ops, MVT::i32, MMO);
8171       spliceIntoChain(RLI.ResChain, Bits.getValue(1), DAG);
8172     } else if (Subtarget.hasFPCVT() &&
8173                canReuseLoadAddress(SINT, MVT::i32, RLI, DAG, ISD::ZEXTLOAD)) {
8174       MachineMemOperand *MMO =
8175         MF.getMachineMemOperand(RLI.MPI, MachineMemOperand::MOLoad, 4,
8176                                 RLI.Alignment, RLI.AAInfo, RLI.Ranges);
8177       SDValue Ops[] = { RLI.Chain, RLI.Ptr };
8178       Bits = DAG.getMemIntrinsicNode(PPCISD::LFIWZX, dl,
8179                                      DAG.getVTList(MVT::f64, MVT::Other),
8180                                      Ops, MVT::i32, MMO);
8181       spliceIntoChain(RLI.ResChain, Bits.getValue(1), DAG);
8182     } else if (((Subtarget.hasLFIWAX() &&
8183                  SINT.getOpcode() == ISD::SIGN_EXTEND) ||
8184                 (Subtarget.hasFPCVT() &&
8185                  SINT.getOpcode() == ISD::ZERO_EXTEND)) &&
8186                SINT.getOperand(0).getValueType() == MVT::i32) {
8187       MachineFrameInfo &MFI = MF.getFrameInfo();
8188       EVT PtrVT = getPointerTy(DAG.getDataLayout());
8189 
8190       int FrameIdx = MFI.CreateStackObject(4, 4, false);
8191       SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
8192 
8193       SDValue Store =
8194           DAG.getStore(DAG.getEntryNode(), dl, SINT.getOperand(0), FIdx,
8195                        MachinePointerInfo::getFixedStack(
8196                            DAG.getMachineFunction(), FrameIdx));
8197 
8198       assert(cast<StoreSDNode>(Store)->getMemoryVT() == MVT::i32 &&
8199              "Expected an i32 store");
8200 
8201       RLI.Ptr = FIdx;
8202       RLI.Chain = Store;
8203       RLI.MPI =
8204           MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx);
8205       RLI.Alignment = 4;
8206 
8207       MachineMemOperand *MMO =
8208         MF.getMachineMemOperand(RLI.MPI, MachineMemOperand::MOLoad, 4,
8209                                 RLI.Alignment, RLI.AAInfo, RLI.Ranges);
8210       SDValue Ops[] = { RLI.Chain, RLI.Ptr };
8211       Bits = DAG.getMemIntrinsicNode(SINT.getOpcode() == ISD::ZERO_EXTEND ?
8212                                      PPCISD::LFIWZX : PPCISD::LFIWAX,
8213                                      dl, DAG.getVTList(MVT::f64, MVT::Other),
8214                                      Ops, MVT::i32, MMO);
8215     } else
8216       Bits = DAG.getNode(ISD::BITCAST, dl, MVT::f64, SINT);
8217 
8218     SDValue FP = DAG.getNode(FCFOp, dl, FCFTy, Bits);
8219 
8220     if (Op.getValueType() == MVT::f32 && !Subtarget.hasFPCVT())
8221       FP = DAG.getNode(ISD::FP_ROUND, dl,
8222                        MVT::f32, FP, DAG.getIntPtrConstant(0, dl));
8223     return FP;
8224   }
8225 
8226   assert(Op.getOperand(0).getValueType() == MVT::i32 &&
8227          "Unhandled INT_TO_FP type in custom expander!");
8228   // Since we only generate this in 64-bit mode, we can take advantage of
8229   // 64-bit registers.  In particular, sign extend the input value into the
8230   // 64-bit register with extsw, store the WHOLE 64-bit value into the stack
8231   // then lfd it and fcfid it.
8232   MachineFunction &MF = DAG.getMachineFunction();
8233   MachineFrameInfo &MFI = MF.getFrameInfo();
8234   EVT PtrVT = getPointerTy(MF.getDataLayout());
8235 
8236   SDValue Ld;
8237   if (Subtarget.hasLFIWAX() || Subtarget.hasFPCVT()) {
8238     ReuseLoadInfo RLI;
8239     bool ReusingLoad;
8240     if (!(ReusingLoad = canReuseLoadAddress(Op.getOperand(0), MVT::i32, RLI,
8241                                             DAG))) {
8242       int FrameIdx = MFI.CreateStackObject(4, 4, false);
8243       SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
8244 
8245       SDValue Store =
8246           DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0), FIdx,
8247                        MachinePointerInfo::getFixedStack(
8248                            DAG.getMachineFunction(), FrameIdx));
8249 
8250       assert(cast<StoreSDNode>(Store)->getMemoryVT() == MVT::i32 &&
8251              "Expected an i32 store");
8252 
8253       RLI.Ptr = FIdx;
8254       RLI.Chain = Store;
8255       RLI.MPI =
8256           MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx);
8257       RLI.Alignment = 4;
8258     }
8259 
8260     MachineMemOperand *MMO =
8261       MF.getMachineMemOperand(RLI.MPI, MachineMemOperand::MOLoad, 4,
8262                               RLI.Alignment, RLI.AAInfo, RLI.Ranges);
8263     SDValue Ops[] = { RLI.Chain, RLI.Ptr };
8264     Ld = DAG.getMemIntrinsicNode(Op.getOpcode() == ISD::UINT_TO_FP ?
8265                                    PPCISD::LFIWZX : PPCISD::LFIWAX,
8266                                  dl, DAG.getVTList(MVT::f64, MVT::Other),
8267                                  Ops, MVT::i32, MMO);
8268     if (ReusingLoad)
8269       spliceIntoChain(RLI.ResChain, Ld.getValue(1), DAG);
8270   } else {
8271     assert(Subtarget.isPPC64() &&
8272            "i32->FP without LFIWAX supported only on PPC64");
8273 
8274     int FrameIdx = MFI.CreateStackObject(8, 8, false);
8275     SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
8276 
8277     SDValue Ext64 = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::i64,
8278                                 Op.getOperand(0));
8279 
8280     // STD the extended value into the stack slot.
8281     SDValue Store = DAG.getStore(
8282         DAG.getEntryNode(), dl, Ext64, FIdx,
8283         MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx));
8284 
8285     // Load the value as a double.
8286     Ld = DAG.getLoad(
8287         MVT::f64, dl, Store, FIdx,
8288         MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx));
8289   }
8290 
8291   // FCFID it and return it.
8292   SDValue FP = DAG.getNode(FCFOp, dl, FCFTy, Ld);
8293   if (Op.getValueType() == MVT::f32 && !Subtarget.hasFPCVT())
8294     FP = DAG.getNode(ISD::FP_ROUND, dl, MVT::f32, FP,
8295                      DAG.getIntPtrConstant(0, dl));
8296   return FP;
8297 }
8298 
8299 SDValue PPCTargetLowering::LowerFLT_ROUNDS_(SDValue Op,
8300                                             SelectionDAG &DAG) const {
8301   SDLoc dl(Op);
8302   /*
8303    The rounding mode is in bits 30:31 of FPSR, and has the following
8304    settings:
8305      00 Round to nearest
8306      01 Round to 0
8307      10 Round to +inf
8308      11 Round to -inf
8309 
8310   FLT_ROUNDS, on the other hand, expects the following:
8311     -1 Undefined
8312      0 Round to 0
8313      1 Round to nearest
8314      2 Round to +inf
8315      3 Round to -inf
8316 
8317   To perform the conversion, we do:
8318     ((FPSCR & 0x3) ^ ((~FPSCR & 0x3) >> 1))
8319   */
8320 
8321   MachineFunction &MF = DAG.getMachineFunction();
8322   EVT VT = Op.getValueType();
8323   EVT PtrVT = getPointerTy(MF.getDataLayout());
8324 
8325   // Save FP Control Word to register
8326   EVT NodeTys[] = {
8327     MVT::f64,    // return register
8328     MVT::Glue    // unused in this context
8329   };
8330   SDValue Chain = DAG.getNode(PPCISD::MFFS, dl, NodeTys, None);
8331 
8332   // Save FP register to stack slot
8333   int SSFI = MF.getFrameInfo().CreateStackObject(8, 8, false);
8334   SDValue StackSlot = DAG.getFrameIndex(SSFI, PtrVT);
8335   SDValue Store = DAG.getStore(DAG.getEntryNode(), dl, Chain, StackSlot,
8336                                MachinePointerInfo());
8337 
8338   // Load FP Control Word from low 32 bits of stack slot.
8339   SDValue Four = DAG.getConstant(4, dl, PtrVT);
8340   SDValue Addr = DAG.getNode(ISD::ADD, dl, PtrVT, StackSlot, Four);
8341   SDValue CWD = DAG.getLoad(MVT::i32, dl, Store, Addr, MachinePointerInfo());
8342 
8343   // Transform as necessary
8344   SDValue CWD1 =
8345     DAG.getNode(ISD::AND, dl, MVT::i32,
8346                 CWD, DAG.getConstant(3, dl, MVT::i32));
8347   SDValue CWD2 =
8348     DAG.getNode(ISD::SRL, dl, MVT::i32,
8349                 DAG.getNode(ISD::AND, dl, MVT::i32,
8350                             DAG.getNode(ISD::XOR, dl, MVT::i32,
8351                                         CWD, DAG.getConstant(3, dl, MVT::i32)),
8352                             DAG.getConstant(3, dl, MVT::i32)),
8353                 DAG.getConstant(1, dl, MVT::i32));
8354 
8355   SDValue RetVal =
8356     DAG.getNode(ISD::XOR, dl, MVT::i32, CWD1, CWD2);
8357 
8358   return DAG.getNode((VT.getSizeInBits() < 16 ?
8359                       ISD::TRUNCATE : ISD::ZERO_EXTEND), dl, VT, RetVal);
8360 }
8361 
8362 SDValue PPCTargetLowering::LowerSHL_PARTS(SDValue Op, SelectionDAG &DAG) const {
8363   EVT VT = Op.getValueType();
8364   unsigned BitWidth = VT.getSizeInBits();
8365   SDLoc dl(Op);
8366   assert(Op.getNumOperands() == 3 &&
8367          VT == Op.getOperand(1).getValueType() &&
8368          "Unexpected SHL!");
8369 
8370   // Expand into a bunch of logical ops.  Note that these ops
8371   // depend on the PPC behavior for oversized shift amounts.
8372   SDValue Lo = Op.getOperand(0);
8373   SDValue Hi = Op.getOperand(1);
8374   SDValue Amt = Op.getOperand(2);
8375   EVT AmtVT = Amt.getValueType();
8376 
8377   SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT,
8378                              DAG.getConstant(BitWidth, dl, AmtVT), Amt);
8379   SDValue Tmp2 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Amt);
8380   SDValue Tmp3 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Tmp1);
8381   SDValue Tmp4 = DAG.getNode(ISD::OR , dl, VT, Tmp2, Tmp3);
8382   SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt,
8383                              DAG.getConstant(-BitWidth, dl, AmtVT));
8384   SDValue Tmp6 = DAG.getNode(PPCISD::SHL, dl, VT, Lo, Tmp5);
8385   SDValue OutHi = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp6);
8386   SDValue OutLo = DAG.getNode(PPCISD::SHL, dl, VT, Lo, Amt);
8387   SDValue OutOps[] = { OutLo, OutHi };
8388   return DAG.getMergeValues(OutOps, dl);
8389 }
8390 
8391 SDValue PPCTargetLowering::LowerSRL_PARTS(SDValue Op, SelectionDAG &DAG) const {
8392   EVT VT = Op.getValueType();
8393   SDLoc dl(Op);
8394   unsigned BitWidth = VT.getSizeInBits();
8395   assert(Op.getNumOperands() == 3 &&
8396          VT == Op.getOperand(1).getValueType() &&
8397          "Unexpected SRL!");
8398 
8399   // Expand into a bunch of logical ops.  Note that these ops
8400   // depend on the PPC behavior for oversized shift amounts.
8401   SDValue Lo = Op.getOperand(0);
8402   SDValue Hi = Op.getOperand(1);
8403   SDValue Amt = Op.getOperand(2);
8404   EVT AmtVT = Amt.getValueType();
8405 
8406   SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT,
8407                              DAG.getConstant(BitWidth, dl, AmtVT), Amt);
8408   SDValue Tmp2 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Amt);
8409   SDValue Tmp3 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Tmp1);
8410   SDValue Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3);
8411   SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt,
8412                              DAG.getConstant(-BitWidth, dl, AmtVT));
8413   SDValue Tmp6 = DAG.getNode(PPCISD::SRL, dl, VT, Hi, Tmp5);
8414   SDValue OutLo = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp6);
8415   SDValue OutHi = DAG.getNode(PPCISD::SRL, dl, VT, Hi, Amt);
8416   SDValue OutOps[] = { OutLo, OutHi };
8417   return DAG.getMergeValues(OutOps, dl);
8418 }
8419 
8420 SDValue PPCTargetLowering::LowerSRA_PARTS(SDValue Op, SelectionDAG &DAG) const {
8421   SDLoc dl(Op);
8422   EVT VT = Op.getValueType();
8423   unsigned BitWidth = VT.getSizeInBits();
8424   assert(Op.getNumOperands() == 3 &&
8425          VT == Op.getOperand(1).getValueType() &&
8426          "Unexpected SRA!");
8427 
8428   // Expand into a bunch of logical ops, followed by a select_cc.
8429   SDValue Lo = Op.getOperand(0);
8430   SDValue Hi = Op.getOperand(1);
8431   SDValue Amt = Op.getOperand(2);
8432   EVT AmtVT = Amt.getValueType();
8433 
8434   SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT,
8435                              DAG.getConstant(BitWidth, dl, AmtVT), Amt);
8436   SDValue Tmp2 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Amt);
8437   SDValue Tmp3 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Tmp1);
8438   SDValue Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3);
8439   SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt,
8440                              DAG.getConstant(-BitWidth, dl, AmtVT));
8441   SDValue Tmp6 = DAG.getNode(PPCISD::SRA, dl, VT, Hi, Tmp5);
8442   SDValue OutHi = DAG.getNode(PPCISD::SRA, dl, VT, Hi, Amt);
8443   SDValue OutLo = DAG.getSelectCC(dl, Tmp5, DAG.getConstant(0, dl, AmtVT),
8444                                   Tmp4, Tmp6, ISD::SETLE);
8445   SDValue OutOps[] = { OutLo, OutHi };
8446   return DAG.getMergeValues(OutOps, dl);
8447 }
8448 
8449 //===----------------------------------------------------------------------===//
8450 // Vector related lowering.
8451 //
8452 
8453 /// BuildSplatI - Build a canonical splati of Val with an element size of
8454 /// SplatSize.  Cast the result to VT.
8455 static SDValue BuildSplatI(int Val, unsigned SplatSize, EVT VT,
8456                            SelectionDAG &DAG, const SDLoc &dl) {
8457   static const MVT VTys[] = { // canonical VT to use for each size.
8458     MVT::v16i8, MVT::v8i16, MVT::Other, MVT::v4i32
8459   };
8460 
8461   EVT ReqVT = VT != MVT::Other ? VT : VTys[SplatSize-1];
8462 
8463   // Force vspltis[hw] -1 to vspltisb -1 to canonicalize.
8464   if (Val == -1)
8465     SplatSize = 1;
8466 
8467   EVT CanonicalVT = VTys[SplatSize-1];
8468 
8469   // Build a canonical splat for this value.
8470   return DAG.getBitcast(ReqVT, DAG.getConstant(Val, dl, CanonicalVT));
8471 }
8472 
8473 /// BuildIntrinsicOp - Return a unary operator intrinsic node with the
8474 /// specified intrinsic ID.
8475 static SDValue BuildIntrinsicOp(unsigned IID, SDValue Op, SelectionDAG &DAG,
8476                                 const SDLoc &dl, EVT DestVT = MVT::Other) {
8477   if (DestVT == MVT::Other) DestVT = Op.getValueType();
8478   return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT,
8479                      DAG.getConstant(IID, dl, MVT::i32), Op);
8480 }
8481 
8482 /// BuildIntrinsicOp - Return a binary operator intrinsic node with the
8483 /// specified intrinsic ID.
8484 static SDValue BuildIntrinsicOp(unsigned IID, SDValue LHS, SDValue RHS,
8485                                 SelectionDAG &DAG, const SDLoc &dl,
8486                                 EVT DestVT = MVT::Other) {
8487   if (DestVT == MVT::Other) DestVT = LHS.getValueType();
8488   return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT,
8489                      DAG.getConstant(IID, dl, MVT::i32), LHS, RHS);
8490 }
8491 
8492 /// BuildIntrinsicOp - Return a ternary operator intrinsic node with the
8493 /// specified intrinsic ID.
8494 static SDValue BuildIntrinsicOp(unsigned IID, SDValue Op0, SDValue Op1,
8495                                 SDValue Op2, SelectionDAG &DAG, const SDLoc &dl,
8496                                 EVT DestVT = MVT::Other) {
8497   if (DestVT == MVT::Other) DestVT = Op0.getValueType();
8498   return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT,
8499                      DAG.getConstant(IID, dl, MVT::i32), Op0, Op1, Op2);
8500 }
8501 
8502 /// BuildVSLDOI - Return a VECTOR_SHUFFLE that is a vsldoi of the specified
8503 /// amount.  The result has the specified value type.
8504 static SDValue BuildVSLDOI(SDValue LHS, SDValue RHS, unsigned Amt, EVT VT,
8505                            SelectionDAG &DAG, const SDLoc &dl) {
8506   // Force LHS/RHS to be the right type.
8507   LHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, LHS);
8508   RHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, RHS);
8509 
8510   int Ops[16];
8511   for (unsigned i = 0; i != 16; ++i)
8512     Ops[i] = i + Amt;
8513   SDValue T = DAG.getVectorShuffle(MVT::v16i8, dl, LHS, RHS, Ops);
8514   return DAG.getNode(ISD::BITCAST, dl, VT, T);
8515 }
8516 
8517 /// Do we have an efficient pattern in a .td file for this node?
8518 ///
8519 /// \param V - pointer to the BuildVectorSDNode being matched
8520 /// \param HasDirectMove - does this subtarget have VSR <-> GPR direct moves?
8521 ///
8522 /// There are some patterns where it is beneficial to keep a BUILD_VECTOR
8523 /// node as a BUILD_VECTOR node rather than expanding it. The patterns where
8524 /// the opposite is true (expansion is beneficial) are:
8525 /// - The node builds a vector out of integers that are not 32 or 64-bits
8526 /// - The node builds a vector out of constants
8527 /// - The node is a "load-and-splat"
8528 /// In all other cases, we will choose to keep the BUILD_VECTOR.
8529 static bool haveEfficientBuildVectorPattern(BuildVectorSDNode *V,
8530                                             bool HasDirectMove,
8531                                             bool HasP8Vector) {
8532   EVT VecVT = V->getValueType(0);
8533   bool RightType = VecVT == MVT::v2f64 ||
8534     (HasP8Vector && VecVT == MVT::v4f32) ||
8535     (HasDirectMove && (VecVT == MVT::v2i64 || VecVT == MVT::v4i32));
8536   if (!RightType)
8537     return false;
8538 
8539   bool IsSplat = true;
8540   bool IsLoad = false;
8541   SDValue Op0 = V->getOperand(0);
8542 
8543   // This function is called in a block that confirms the node is not a constant
8544   // splat. So a constant BUILD_VECTOR here means the vector is built out of
8545   // different constants.
8546   if (V->isConstant())
8547     return false;
8548   for (int i = 0, e = V->getNumOperands(); i < e; ++i) {
8549     if (V->getOperand(i).isUndef())
8550       return false;
8551     // We want to expand nodes that represent load-and-splat even if the
8552     // loaded value is a floating point truncation or conversion to int.
8553     if (V->getOperand(i).getOpcode() == ISD::LOAD ||
8554         (V->getOperand(i).getOpcode() == ISD::FP_ROUND &&
8555          V->getOperand(i).getOperand(0).getOpcode() == ISD::LOAD) ||
8556         (V->getOperand(i).getOpcode() == ISD::FP_TO_SINT &&
8557          V->getOperand(i).getOperand(0).getOpcode() == ISD::LOAD) ||
8558         (V->getOperand(i).getOpcode() == ISD::FP_TO_UINT &&
8559          V->getOperand(i).getOperand(0).getOpcode() == ISD::LOAD))
8560       IsLoad = true;
8561     // If the operands are different or the input is not a load and has more
8562     // uses than just this BV node, then it isn't a splat.
8563     if (V->getOperand(i) != Op0 ||
8564         (!IsLoad && !V->isOnlyUserOf(V->getOperand(i).getNode())))
8565       IsSplat = false;
8566   }
8567   return !(IsSplat && IsLoad);
8568 }
8569 
8570 // Lower BITCAST(f128, (build_pair i64, i64)) to BUILD_FP128.
8571 SDValue PPCTargetLowering::LowerBITCAST(SDValue Op, SelectionDAG &DAG) const {
8572 
8573   SDLoc dl(Op);
8574   SDValue Op0 = Op->getOperand(0);
8575 
8576   if (!EnableQuadPrecision ||
8577       (Op.getValueType() != MVT::f128 ) ||
8578       (Op0.getOpcode() != ISD::BUILD_PAIR) ||
8579       (Op0.getOperand(0).getValueType() !=  MVT::i64) ||
8580       (Op0.getOperand(1).getValueType() != MVT::i64))
8581     return SDValue();
8582 
8583   return DAG.getNode(PPCISD::BUILD_FP128, dl, MVT::f128, Op0.getOperand(0),
8584                      Op0.getOperand(1));
8585 }
8586 
8587 static const SDValue *getNormalLoadInput(const SDValue &Op) {
8588   const SDValue *InputLoad = &Op;
8589   if (InputLoad->getOpcode() == ISD::BITCAST)
8590     InputLoad = &InputLoad->getOperand(0);
8591   if (InputLoad->getOpcode() == ISD::SCALAR_TO_VECTOR)
8592     InputLoad = &InputLoad->getOperand(0);
8593   if (InputLoad->getOpcode() != ISD::LOAD)
8594     return nullptr;
8595   LoadSDNode *LD = cast<LoadSDNode>(*InputLoad);
8596   return ISD::isNormalLoad(LD) ? InputLoad : nullptr;
8597 }
8598 
8599 // If this is a case we can't handle, return null and let the default
8600 // expansion code take care of it.  If we CAN select this case, and if it
8601 // selects to a single instruction, return Op.  Otherwise, if we can codegen
8602 // this case more efficiently than a constant pool load, lower it to the
8603 // sequence of ops that should be used.
8604 SDValue PPCTargetLowering::LowerBUILD_VECTOR(SDValue Op,
8605                                              SelectionDAG &DAG) const {
8606   SDLoc dl(Op);
8607   BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(Op.getNode());
8608   assert(BVN && "Expected a BuildVectorSDNode in LowerBUILD_VECTOR");
8609 
8610   if (Subtarget.hasQPX() && Op.getValueType() == MVT::v4i1) {
8611     // We first build an i32 vector, load it into a QPX register,
8612     // then convert it to a floating-point vector and compare it
8613     // to a zero vector to get the boolean result.
8614     MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
8615     int FrameIdx = MFI.CreateStackObject(16, 16, false);
8616     MachinePointerInfo PtrInfo =
8617         MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx);
8618     EVT PtrVT = getPointerTy(DAG.getDataLayout());
8619     SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
8620 
8621     assert(BVN->getNumOperands() == 4 &&
8622       "BUILD_VECTOR for v4i1 does not have 4 operands");
8623 
8624     bool IsConst = true;
8625     for (unsigned i = 0; i < 4; ++i) {
8626       if (BVN->getOperand(i).isUndef()) continue;
8627       if (!isa<ConstantSDNode>(BVN->getOperand(i))) {
8628         IsConst = false;
8629         break;
8630       }
8631     }
8632 
8633     if (IsConst) {
8634       Constant *One =
8635         ConstantFP::get(Type::getFloatTy(*DAG.getContext()), 1.0);
8636       Constant *NegOne =
8637         ConstantFP::get(Type::getFloatTy(*DAG.getContext()), -1.0);
8638 
8639       Constant *CV[4];
8640       for (unsigned i = 0; i < 4; ++i) {
8641         if (BVN->getOperand(i).isUndef())
8642           CV[i] = UndefValue::get(Type::getFloatTy(*DAG.getContext()));
8643         else if (isNullConstant(BVN->getOperand(i)))
8644           CV[i] = NegOne;
8645         else
8646           CV[i] = One;
8647       }
8648 
8649       Constant *CP = ConstantVector::get(CV);
8650       SDValue CPIdx = DAG.getConstantPool(CP, getPointerTy(DAG.getDataLayout()),
8651                                           16 /* alignment */);
8652 
8653       SDValue Ops[] = {DAG.getEntryNode(), CPIdx};
8654       SDVTList VTs = DAG.getVTList({MVT::v4i1, /*chain*/ MVT::Other});
8655       return DAG.getMemIntrinsicNode(
8656           PPCISD::QVLFSb, dl, VTs, Ops, MVT::v4f32,
8657           MachinePointerInfo::getConstantPool(DAG.getMachineFunction()));
8658     }
8659 
8660     SmallVector<SDValue, 4> Stores;
8661     for (unsigned i = 0; i < 4; ++i) {
8662       if (BVN->getOperand(i).isUndef()) continue;
8663 
8664       unsigned Offset = 4*i;
8665       SDValue Idx = DAG.getConstant(Offset, dl, FIdx.getValueType());
8666       Idx = DAG.getNode(ISD::ADD, dl, FIdx.getValueType(), FIdx, Idx);
8667 
8668       unsigned StoreSize = BVN->getOperand(i).getValueType().getStoreSize();
8669       if (StoreSize > 4) {
8670         Stores.push_back(
8671             DAG.getTruncStore(DAG.getEntryNode(), dl, BVN->getOperand(i), Idx,
8672                               PtrInfo.getWithOffset(Offset), MVT::i32));
8673       } else {
8674         SDValue StoreValue = BVN->getOperand(i);
8675         if (StoreSize < 4)
8676           StoreValue = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, StoreValue);
8677 
8678         Stores.push_back(DAG.getStore(DAG.getEntryNode(), dl, StoreValue, Idx,
8679                                       PtrInfo.getWithOffset(Offset)));
8680       }
8681     }
8682 
8683     SDValue StoreChain;
8684     if (!Stores.empty())
8685       StoreChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores);
8686     else
8687       StoreChain = DAG.getEntryNode();
8688 
8689     // Now load from v4i32 into the QPX register; this will extend it to
8690     // v4i64 but not yet convert it to a floating point. Nevertheless, this
8691     // is typed as v4f64 because the QPX register integer states are not
8692     // explicitly represented.
8693 
8694     SDValue Ops[] = {StoreChain,
8695                      DAG.getConstant(Intrinsic::ppc_qpx_qvlfiwz, dl, MVT::i32),
8696                      FIdx};
8697     SDVTList VTs = DAG.getVTList({MVT::v4f64, /*chain*/ MVT::Other});
8698 
8699     SDValue LoadedVect = DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN,
8700       dl, VTs, Ops, MVT::v4i32, PtrInfo);
8701     LoadedVect = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f64,
8702       DAG.getConstant(Intrinsic::ppc_qpx_qvfcfidu, dl, MVT::i32),
8703       LoadedVect);
8704 
8705     SDValue FPZeros = DAG.getConstantFP(0.0, dl, MVT::v4f64);
8706 
8707     return DAG.getSetCC(dl, MVT::v4i1, LoadedVect, FPZeros, ISD::SETEQ);
8708   }
8709 
8710   // All other QPX vectors are handled by generic code.
8711   if (Subtarget.hasQPX())
8712     return SDValue();
8713 
8714   // Check if this is a splat of a constant value.
8715   APInt APSplatBits, APSplatUndef;
8716   unsigned SplatBitSize;
8717   bool HasAnyUndefs;
8718   if (! BVN->isConstantSplat(APSplatBits, APSplatUndef, SplatBitSize,
8719                              HasAnyUndefs, 0, !Subtarget.isLittleEndian()) ||
8720       SplatBitSize > 32) {
8721 
8722     const SDValue *InputLoad = getNormalLoadInput(Op.getOperand(0));
8723     // Handle load-and-splat patterns as we have instructions that will do this
8724     // in one go.
8725     if (InputLoad && DAG.isSplatValue(Op, true)) {
8726       LoadSDNode *LD = cast<LoadSDNode>(*InputLoad);
8727 
8728       // We have handling for 4 and 8 byte elements.
8729       unsigned ElementSize = LD->getMemoryVT().getScalarSizeInBits();
8730 
8731       // Checking for a single use of this load, we have to check for vector
8732       // width (128 bits) / ElementSize uses (since each operand of the
8733       // BUILD_VECTOR is a separate use of the value.
8734       if (InputLoad->getNode()->hasNUsesOfValue(128 / ElementSize, 0) &&
8735           ((Subtarget.hasVSX() && ElementSize == 64) ||
8736            (Subtarget.hasP9Vector() && ElementSize == 32))) {
8737         SDValue Ops[] = {
8738           LD->getChain(),    // Chain
8739           LD->getBasePtr(),  // Ptr
8740           DAG.getValueType(Op.getValueType()) // VT
8741         };
8742         return
8743           DAG.getMemIntrinsicNode(PPCISD::LD_SPLAT, dl,
8744                                   DAG.getVTList(Op.getValueType(), MVT::Other),
8745                                   Ops, LD->getMemoryVT(), LD->getMemOperand());
8746       }
8747     }
8748 
8749     // BUILD_VECTOR nodes that are not constant splats of up to 32-bits can be
8750     // lowered to VSX instructions under certain conditions.
8751     // Without VSX, there is no pattern more efficient than expanding the node.
8752     if (Subtarget.hasVSX() &&
8753         haveEfficientBuildVectorPattern(BVN, Subtarget.hasDirectMove(),
8754                                         Subtarget.hasP8Vector()))
8755       return Op;
8756     return SDValue();
8757   }
8758 
8759   unsigned SplatBits = APSplatBits.getZExtValue();
8760   unsigned SplatUndef = APSplatUndef.getZExtValue();
8761   unsigned SplatSize = SplatBitSize / 8;
8762 
8763   // First, handle single instruction cases.
8764 
8765   // All zeros?
8766   if (SplatBits == 0) {
8767     // Canonicalize all zero vectors to be v4i32.
8768     if (Op.getValueType() != MVT::v4i32 || HasAnyUndefs) {
8769       SDValue Z = DAG.getConstant(0, dl, MVT::v4i32);
8770       Op = DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Z);
8771     }
8772     return Op;
8773   }
8774 
8775   // We have XXSPLTIB for constant splats one byte wide
8776   // FIXME: SplatBits is an unsigned int being cast to an int while passing it
8777   // as an argument to BuildSplatiI. Given SplatSize == 1 it is okay here.
8778   if (Subtarget.hasP9Vector() && SplatSize == 1)
8779     return BuildSplatI(SplatBits, SplatSize, Op.getValueType(), DAG, dl);
8780 
8781   // If the sign extended value is in the range [-16,15], use VSPLTI[bhw].
8782   int32_t SextVal= (int32_t(SplatBits << (32-SplatBitSize)) >>
8783                     (32-SplatBitSize));
8784   if (SextVal >= -16 && SextVal <= 15)
8785     return BuildSplatI(SextVal, SplatSize, Op.getValueType(), DAG, dl);
8786 
8787   // Two instruction sequences.
8788 
8789   // If this value is in the range [-32,30] and is even, use:
8790   //     VSPLTI[bhw](val/2) + VSPLTI[bhw](val/2)
8791   // If this value is in the range [17,31] and is odd, use:
8792   //     VSPLTI[bhw](val-16) - VSPLTI[bhw](-16)
8793   // If this value is in the range [-31,-17] and is odd, use:
8794   //     VSPLTI[bhw](val+16) + VSPLTI[bhw](-16)
8795   // Note the last two are three-instruction sequences.
8796   if (SextVal >= -32 && SextVal <= 31) {
8797     // To avoid having these optimizations undone by constant folding,
8798     // we convert to a pseudo that will be expanded later into one of
8799     // the above forms.
8800     SDValue Elt = DAG.getConstant(SextVal, dl, MVT::i32);
8801     EVT VT = (SplatSize == 1 ? MVT::v16i8 :
8802               (SplatSize == 2 ? MVT::v8i16 : MVT::v4i32));
8803     SDValue EltSize = DAG.getConstant(SplatSize, dl, MVT::i32);
8804     SDValue RetVal = DAG.getNode(PPCISD::VADD_SPLAT, dl, VT, Elt, EltSize);
8805     if (VT == Op.getValueType())
8806       return RetVal;
8807     else
8808       return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), RetVal);
8809   }
8810 
8811   // If this is 0x8000_0000 x 4, turn into vspltisw + vslw.  If it is
8812   // 0x7FFF_FFFF x 4, turn it into not(0x8000_0000).  This is important
8813   // for fneg/fabs.
8814   if (SplatSize == 4 && SplatBits == (0x7FFFFFFF&~SplatUndef)) {
8815     // Make -1 and vspltisw -1:
8816     SDValue OnesV = BuildSplatI(-1, 4, MVT::v4i32, DAG, dl);
8817 
8818     // Make the VSLW intrinsic, computing 0x8000_0000.
8819     SDValue Res = BuildIntrinsicOp(Intrinsic::ppc_altivec_vslw, OnesV,
8820                                    OnesV, DAG, dl);
8821 
8822     // xor by OnesV to invert it.
8823     Res = DAG.getNode(ISD::XOR, dl, MVT::v4i32, Res, OnesV);
8824     return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res);
8825   }
8826 
8827   // Check to see if this is a wide variety of vsplti*, binop self cases.
8828   static const signed char SplatCsts[] = {
8829     -1, 1, -2, 2, -3, 3, -4, 4, -5, 5, -6, 6, -7, 7,
8830     -8, 8, -9, 9, -10, 10, -11, 11, -12, 12, -13, 13, 14, -14, 15, -15, -16
8831   };
8832 
8833   for (unsigned idx = 0; idx < array_lengthof(SplatCsts); ++idx) {
8834     // Indirect through the SplatCsts array so that we favor 'vsplti -1' for
8835     // cases which are ambiguous (e.g. formation of 0x8000_0000).  'vsplti -1'
8836     int i = SplatCsts[idx];
8837 
8838     // Figure out what shift amount will be used by altivec if shifted by i in
8839     // this splat size.
8840     unsigned TypeShiftAmt = i & (SplatBitSize-1);
8841 
8842     // vsplti + shl self.
8843     if (SextVal == (int)((unsigned)i << TypeShiftAmt)) {
8844       SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl);
8845       static const unsigned IIDs[] = { // Intrinsic to use for each size.
8846         Intrinsic::ppc_altivec_vslb, Intrinsic::ppc_altivec_vslh, 0,
8847         Intrinsic::ppc_altivec_vslw
8848       };
8849       Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl);
8850       return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res);
8851     }
8852 
8853     // vsplti + srl self.
8854     if (SextVal == (int)((unsigned)i >> TypeShiftAmt)) {
8855       SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl);
8856       static const unsigned IIDs[] = { // Intrinsic to use for each size.
8857         Intrinsic::ppc_altivec_vsrb, Intrinsic::ppc_altivec_vsrh, 0,
8858         Intrinsic::ppc_altivec_vsrw
8859       };
8860       Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl);
8861       return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res);
8862     }
8863 
8864     // vsplti + sra self.
8865     if (SextVal == (int)((unsigned)i >> TypeShiftAmt)) {
8866       SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl);
8867       static const unsigned IIDs[] = { // Intrinsic to use for each size.
8868         Intrinsic::ppc_altivec_vsrab, Intrinsic::ppc_altivec_vsrah, 0,
8869         Intrinsic::ppc_altivec_vsraw
8870       };
8871       Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl);
8872       return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res);
8873     }
8874 
8875     // vsplti + rol self.
8876     if (SextVal == (int)(((unsigned)i << TypeShiftAmt) |
8877                          ((unsigned)i >> (SplatBitSize-TypeShiftAmt)))) {
8878       SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl);
8879       static const unsigned IIDs[] = { // Intrinsic to use for each size.
8880         Intrinsic::ppc_altivec_vrlb, Intrinsic::ppc_altivec_vrlh, 0,
8881         Intrinsic::ppc_altivec_vrlw
8882       };
8883       Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl);
8884       return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res);
8885     }
8886 
8887     // t = vsplti c, result = vsldoi t, t, 1
8888     if (SextVal == (int)(((unsigned)i << 8) | (i < 0 ? 0xFF : 0))) {
8889       SDValue T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG, dl);
8890       unsigned Amt = Subtarget.isLittleEndian() ? 15 : 1;
8891       return BuildVSLDOI(T, T, Amt, Op.getValueType(), DAG, dl);
8892     }
8893     // t = vsplti c, result = vsldoi t, t, 2
8894     if (SextVal == (int)(((unsigned)i << 16) | (i < 0 ? 0xFFFF : 0))) {
8895       SDValue T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG, dl);
8896       unsigned Amt = Subtarget.isLittleEndian() ? 14 : 2;
8897       return BuildVSLDOI(T, T, Amt, Op.getValueType(), DAG, dl);
8898     }
8899     // t = vsplti c, result = vsldoi t, t, 3
8900     if (SextVal == (int)(((unsigned)i << 24) | (i < 0 ? 0xFFFFFF : 0))) {
8901       SDValue T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG, dl);
8902       unsigned Amt = Subtarget.isLittleEndian() ? 13 : 3;
8903       return BuildVSLDOI(T, T, Amt, Op.getValueType(), DAG, dl);
8904     }
8905   }
8906 
8907   return SDValue();
8908 }
8909 
8910 /// GeneratePerfectShuffle - Given an entry in the perfect-shuffle table, emit
8911 /// the specified operations to build the shuffle.
8912 static SDValue GeneratePerfectShuffle(unsigned PFEntry, SDValue LHS,
8913                                       SDValue RHS, SelectionDAG &DAG,
8914                                       const SDLoc &dl) {
8915   unsigned OpNum = (PFEntry >> 26) & 0x0F;
8916   unsigned LHSID = (PFEntry >> 13) & ((1 << 13)-1);
8917   unsigned RHSID = (PFEntry >>  0) & ((1 << 13)-1);
8918 
8919   enum {
8920     OP_COPY = 0,  // Copy, used for things like <u,u,u,3> to say it is <0,1,2,3>
8921     OP_VMRGHW,
8922     OP_VMRGLW,
8923     OP_VSPLTISW0,
8924     OP_VSPLTISW1,
8925     OP_VSPLTISW2,
8926     OP_VSPLTISW3,
8927     OP_VSLDOI4,
8928     OP_VSLDOI8,
8929     OP_VSLDOI12
8930   };
8931 
8932   if (OpNum == OP_COPY) {
8933     if (LHSID == (1*9+2)*9+3) return LHS;
8934     assert(LHSID == ((4*9+5)*9+6)*9+7 && "Illegal OP_COPY!");
8935     return RHS;
8936   }
8937 
8938   SDValue OpLHS, OpRHS;
8939   OpLHS = GeneratePerfectShuffle(PerfectShuffleTable[LHSID], LHS, RHS, DAG, dl);
8940   OpRHS = GeneratePerfectShuffle(PerfectShuffleTable[RHSID], LHS, RHS, DAG, dl);
8941 
8942   int ShufIdxs[16];
8943   switch (OpNum) {
8944   default: llvm_unreachable("Unknown i32 permute!");
8945   case OP_VMRGHW:
8946     ShufIdxs[ 0] =  0; ShufIdxs[ 1] =  1; ShufIdxs[ 2] =  2; ShufIdxs[ 3] =  3;
8947     ShufIdxs[ 4] = 16; ShufIdxs[ 5] = 17; ShufIdxs[ 6] = 18; ShufIdxs[ 7] = 19;
8948     ShufIdxs[ 8] =  4; ShufIdxs[ 9] =  5; ShufIdxs[10] =  6; ShufIdxs[11] =  7;
8949     ShufIdxs[12] = 20; ShufIdxs[13] = 21; ShufIdxs[14] = 22; ShufIdxs[15] = 23;
8950     break;
8951   case OP_VMRGLW:
8952     ShufIdxs[ 0] =  8; ShufIdxs[ 1] =  9; ShufIdxs[ 2] = 10; ShufIdxs[ 3] = 11;
8953     ShufIdxs[ 4] = 24; ShufIdxs[ 5] = 25; ShufIdxs[ 6] = 26; ShufIdxs[ 7] = 27;
8954     ShufIdxs[ 8] = 12; ShufIdxs[ 9] = 13; ShufIdxs[10] = 14; ShufIdxs[11] = 15;
8955     ShufIdxs[12] = 28; ShufIdxs[13] = 29; ShufIdxs[14] = 30; ShufIdxs[15] = 31;
8956     break;
8957   case OP_VSPLTISW0:
8958     for (unsigned i = 0; i != 16; ++i)
8959       ShufIdxs[i] = (i&3)+0;
8960     break;
8961   case OP_VSPLTISW1:
8962     for (unsigned i = 0; i != 16; ++i)
8963       ShufIdxs[i] = (i&3)+4;
8964     break;
8965   case OP_VSPLTISW2:
8966     for (unsigned i = 0; i != 16; ++i)
8967       ShufIdxs[i] = (i&3)+8;
8968     break;
8969   case OP_VSPLTISW3:
8970     for (unsigned i = 0; i != 16; ++i)
8971       ShufIdxs[i] = (i&3)+12;
8972     break;
8973   case OP_VSLDOI4:
8974     return BuildVSLDOI(OpLHS, OpRHS, 4, OpLHS.getValueType(), DAG, dl);
8975   case OP_VSLDOI8:
8976     return BuildVSLDOI(OpLHS, OpRHS, 8, OpLHS.getValueType(), DAG, dl);
8977   case OP_VSLDOI12:
8978     return BuildVSLDOI(OpLHS, OpRHS, 12, OpLHS.getValueType(), DAG, dl);
8979   }
8980   EVT VT = OpLHS.getValueType();
8981   OpLHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OpLHS);
8982   OpRHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OpRHS);
8983   SDValue T = DAG.getVectorShuffle(MVT::v16i8, dl, OpLHS, OpRHS, ShufIdxs);
8984   return DAG.getNode(ISD::BITCAST, dl, VT, T);
8985 }
8986 
8987 /// lowerToVINSERTB - Return the SDValue if this VECTOR_SHUFFLE can be handled
8988 /// by the VINSERTB instruction introduced in ISA 3.0, else just return default
8989 /// SDValue.
8990 SDValue PPCTargetLowering::lowerToVINSERTB(ShuffleVectorSDNode *N,
8991                                            SelectionDAG &DAG) const {
8992   const unsigned BytesInVector = 16;
8993   bool IsLE = Subtarget.isLittleEndian();
8994   SDLoc dl(N);
8995   SDValue V1 = N->getOperand(0);
8996   SDValue V2 = N->getOperand(1);
8997   unsigned ShiftElts = 0, InsertAtByte = 0;
8998   bool Swap = false;
8999 
9000   // Shifts required to get the byte we want at element 7.
9001   unsigned LittleEndianShifts[] = {8, 7,  6,  5,  4,  3,  2,  1,
9002                                    0, 15, 14, 13, 12, 11, 10, 9};
9003   unsigned BigEndianShifts[] = {9, 10, 11, 12, 13, 14, 15, 0,
9004                                 1, 2,  3,  4,  5,  6,  7,  8};
9005 
9006   ArrayRef<int> Mask = N->getMask();
9007   int OriginalOrder[] = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15};
9008 
9009   // For each mask element, find out if we're just inserting something
9010   // from V2 into V1 or vice versa.
9011   // Possible permutations inserting an element from V2 into V1:
9012   //   X, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15
9013   //   0, X, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15
9014   //   ...
9015   //   0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, X
9016   // Inserting from V1 into V2 will be similar, except mask range will be
9017   // [16,31].
9018 
9019   bool FoundCandidate = false;
9020   // If both vector operands for the shuffle are the same vector, the mask
9021   // will contain only elements from the first one and the second one will be
9022   // undef.
9023   unsigned VINSERTBSrcElem = IsLE ? 8 : 7;
9024   // Go through the mask of half-words to find an element that's being moved
9025   // from one vector to the other.
9026   for (unsigned i = 0; i < BytesInVector; ++i) {
9027     unsigned CurrentElement = Mask[i];
9028     // If 2nd operand is undefined, we should only look for element 7 in the
9029     // Mask.
9030     if (V2.isUndef() && CurrentElement != VINSERTBSrcElem)
9031       continue;
9032 
9033     bool OtherElementsInOrder = true;
9034     // Examine the other elements in the Mask to see if they're in original
9035     // order.
9036     for (unsigned j = 0; j < BytesInVector; ++j) {
9037       if (j == i)
9038         continue;
9039       // If CurrentElement is from V1 [0,15], then we the rest of the Mask to be
9040       // from V2 [16,31] and vice versa.  Unless the 2nd operand is undefined,
9041       // in which we always assume we're always picking from the 1st operand.
9042       int MaskOffset =
9043           (!V2.isUndef() && CurrentElement < BytesInVector) ? BytesInVector : 0;
9044       if (Mask[j] != OriginalOrder[j] + MaskOffset) {
9045         OtherElementsInOrder = false;
9046         break;
9047       }
9048     }
9049     // If other elements are in original order, we record the number of shifts
9050     // we need to get the element we want into element 7. Also record which byte
9051     // in the vector we should insert into.
9052     if (OtherElementsInOrder) {
9053       // If 2nd operand is undefined, we assume no shifts and no swapping.
9054       if (V2.isUndef()) {
9055         ShiftElts = 0;
9056         Swap = false;
9057       } else {
9058         // Only need the last 4-bits for shifts because operands will be swapped if CurrentElement is >= 2^4.
9059         ShiftElts = IsLE ? LittleEndianShifts[CurrentElement & 0xF]
9060                          : BigEndianShifts[CurrentElement & 0xF];
9061         Swap = CurrentElement < BytesInVector;
9062       }
9063       InsertAtByte = IsLE ? BytesInVector - (i + 1) : i;
9064       FoundCandidate = true;
9065       break;
9066     }
9067   }
9068 
9069   if (!FoundCandidate)
9070     return SDValue();
9071 
9072   // Candidate found, construct the proper SDAG sequence with VINSERTB,
9073   // optionally with VECSHL if shift is required.
9074   if (Swap)
9075     std::swap(V1, V2);
9076   if (V2.isUndef())
9077     V2 = V1;
9078   if (ShiftElts) {
9079     SDValue Shl = DAG.getNode(PPCISD::VECSHL, dl, MVT::v16i8, V2, V2,
9080                               DAG.getConstant(ShiftElts, dl, MVT::i32));
9081     return DAG.getNode(PPCISD::VECINSERT, dl, MVT::v16i8, V1, Shl,
9082                        DAG.getConstant(InsertAtByte, dl, MVT::i32));
9083   }
9084   return DAG.getNode(PPCISD::VECINSERT, dl, MVT::v16i8, V1, V2,
9085                      DAG.getConstant(InsertAtByte, dl, MVT::i32));
9086 }
9087 
9088 /// lowerToVINSERTH - Return the SDValue if this VECTOR_SHUFFLE can be handled
9089 /// by the VINSERTH instruction introduced in ISA 3.0, else just return default
9090 /// SDValue.
9091 SDValue PPCTargetLowering::lowerToVINSERTH(ShuffleVectorSDNode *N,
9092                                            SelectionDAG &DAG) const {
9093   const unsigned NumHalfWords = 8;
9094   const unsigned BytesInVector = NumHalfWords * 2;
9095   // Check that the shuffle is on half-words.
9096   if (!isNByteElemShuffleMask(N, 2, 1))
9097     return SDValue();
9098 
9099   bool IsLE = Subtarget.isLittleEndian();
9100   SDLoc dl(N);
9101   SDValue V1 = N->getOperand(0);
9102   SDValue V2 = N->getOperand(1);
9103   unsigned ShiftElts = 0, InsertAtByte = 0;
9104   bool Swap = false;
9105 
9106   // Shifts required to get the half-word we want at element 3.
9107   unsigned LittleEndianShifts[] = {4, 3, 2, 1, 0, 7, 6, 5};
9108   unsigned BigEndianShifts[] = {5, 6, 7, 0, 1, 2, 3, 4};
9109 
9110   uint32_t Mask = 0;
9111   uint32_t OriginalOrderLow = 0x1234567;
9112   uint32_t OriginalOrderHigh = 0x89ABCDEF;
9113   // Now we look at mask elements 0,2,4,6,8,10,12,14.  Pack the mask into a
9114   // 32-bit space, only need 4-bit nibbles per element.
9115   for (unsigned i = 0; i < NumHalfWords; ++i) {
9116     unsigned MaskShift = (NumHalfWords - 1 - i) * 4;
9117     Mask |= ((uint32_t)(N->getMaskElt(i * 2) / 2) << MaskShift);
9118   }
9119 
9120   // For each mask element, find out if we're just inserting something
9121   // from V2 into V1 or vice versa.  Possible permutations inserting an element
9122   // from V2 into V1:
9123   //   X, 1, 2, 3, 4, 5, 6, 7
9124   //   0, X, 2, 3, 4, 5, 6, 7
9125   //   0, 1, X, 3, 4, 5, 6, 7
9126   //   0, 1, 2, X, 4, 5, 6, 7
9127   //   0, 1, 2, 3, X, 5, 6, 7
9128   //   0, 1, 2, 3, 4, X, 6, 7
9129   //   0, 1, 2, 3, 4, 5, X, 7
9130   //   0, 1, 2, 3, 4, 5, 6, X
9131   // Inserting from V1 into V2 will be similar, except mask range will be [8,15].
9132 
9133   bool FoundCandidate = false;
9134   // Go through the mask of half-words to find an element that's being moved
9135   // from one vector to the other.
9136   for (unsigned i = 0; i < NumHalfWords; ++i) {
9137     unsigned MaskShift = (NumHalfWords - 1 - i) * 4;
9138     uint32_t MaskOneElt = (Mask >> MaskShift) & 0xF;
9139     uint32_t MaskOtherElts = ~(0xF << MaskShift);
9140     uint32_t TargetOrder = 0x0;
9141 
9142     // If both vector operands for the shuffle are the same vector, the mask
9143     // will contain only elements from the first one and the second one will be
9144     // undef.
9145     if (V2.isUndef()) {
9146       ShiftElts = 0;
9147       unsigned VINSERTHSrcElem = IsLE ? 4 : 3;
9148       TargetOrder = OriginalOrderLow;
9149       Swap = false;
9150       // Skip if not the correct element or mask of other elements don't equal
9151       // to our expected order.
9152       if (MaskOneElt == VINSERTHSrcElem &&
9153           (Mask & MaskOtherElts) == (TargetOrder & MaskOtherElts)) {
9154         InsertAtByte = IsLE ? BytesInVector - (i + 1) * 2 : i * 2;
9155         FoundCandidate = true;
9156         break;
9157       }
9158     } else { // If both operands are defined.
9159       // Target order is [8,15] if the current mask is between [0,7].
9160       TargetOrder =
9161           (MaskOneElt < NumHalfWords) ? OriginalOrderHigh : OriginalOrderLow;
9162       // Skip if mask of other elements don't equal our expected order.
9163       if ((Mask & MaskOtherElts) == (TargetOrder & MaskOtherElts)) {
9164         // We only need the last 3 bits for the number of shifts.
9165         ShiftElts = IsLE ? LittleEndianShifts[MaskOneElt & 0x7]
9166                          : BigEndianShifts[MaskOneElt & 0x7];
9167         InsertAtByte = IsLE ? BytesInVector - (i + 1) * 2 : i * 2;
9168         Swap = MaskOneElt < NumHalfWords;
9169         FoundCandidate = true;
9170         break;
9171       }
9172     }
9173   }
9174 
9175   if (!FoundCandidate)
9176     return SDValue();
9177 
9178   // Candidate found, construct the proper SDAG sequence with VINSERTH,
9179   // optionally with VECSHL if shift is required.
9180   if (Swap)
9181     std::swap(V1, V2);
9182   if (V2.isUndef())
9183     V2 = V1;
9184   SDValue Conv1 = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V1);
9185   if (ShiftElts) {
9186     // Double ShiftElts because we're left shifting on v16i8 type.
9187     SDValue Shl = DAG.getNode(PPCISD::VECSHL, dl, MVT::v16i8, V2, V2,
9188                               DAG.getConstant(2 * ShiftElts, dl, MVT::i32));
9189     SDValue Conv2 = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, Shl);
9190     SDValue Ins = DAG.getNode(PPCISD::VECINSERT, dl, MVT::v8i16, Conv1, Conv2,
9191                               DAG.getConstant(InsertAtByte, dl, MVT::i32));
9192     return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Ins);
9193   }
9194   SDValue Conv2 = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V2);
9195   SDValue Ins = DAG.getNode(PPCISD::VECINSERT, dl, MVT::v8i16, Conv1, Conv2,
9196                             DAG.getConstant(InsertAtByte, dl, MVT::i32));
9197   return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Ins);
9198 }
9199 
9200 /// LowerVECTOR_SHUFFLE - Return the code we lower for VECTOR_SHUFFLE.  If this
9201 /// is a shuffle we can handle in a single instruction, return it.  Otherwise,
9202 /// return the code it can be lowered into.  Worst case, it can always be
9203 /// lowered into a vperm.
9204 SDValue PPCTargetLowering::LowerVECTOR_SHUFFLE(SDValue Op,
9205                                                SelectionDAG &DAG) const {
9206   SDLoc dl(Op);
9207   SDValue V1 = Op.getOperand(0);
9208   SDValue V2 = Op.getOperand(1);
9209   ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
9210   EVT VT = Op.getValueType();
9211   bool isLittleEndian = Subtarget.isLittleEndian();
9212 
9213   unsigned ShiftElts, InsertAtByte;
9214   bool Swap = false;
9215 
9216   // If this is a load-and-splat, we can do that with a single instruction
9217   // in some cases. However if the load has multiple uses, we don't want to
9218   // combine it because that will just produce multiple loads.
9219   const SDValue *InputLoad = getNormalLoadInput(V1);
9220   if (InputLoad && Subtarget.hasVSX() && V2.isUndef() &&
9221       (PPC::isSplatShuffleMask(SVOp, 4) || PPC::isSplatShuffleMask(SVOp, 8)) &&
9222       InputLoad->hasOneUse()) {
9223     bool IsFourByte = PPC::isSplatShuffleMask(SVOp, 4);
9224     int SplatIdx =
9225       PPC::getSplatIdxForPPCMnemonics(SVOp, IsFourByte ? 4 : 8, DAG);
9226 
9227     LoadSDNode *LD = cast<LoadSDNode>(*InputLoad);
9228     // For 4-byte load-and-splat, we need Power9.
9229     if ((IsFourByte && Subtarget.hasP9Vector()) || !IsFourByte) {
9230       uint64_t Offset = 0;
9231       if (IsFourByte)
9232         Offset = isLittleEndian ? (3 - SplatIdx) * 4 : SplatIdx * 4;
9233       else
9234         Offset = isLittleEndian ? (1 - SplatIdx) * 8 : SplatIdx * 8;
9235       SDValue BasePtr = LD->getBasePtr();
9236       if (Offset != 0)
9237         BasePtr = DAG.getNode(ISD::ADD, dl, getPointerTy(DAG.getDataLayout()),
9238                               BasePtr, DAG.getIntPtrConstant(Offset, dl));
9239       SDValue Ops[] = {
9240         LD->getChain(),    // Chain
9241         BasePtr,           // BasePtr
9242         DAG.getValueType(Op.getValueType()) // VT
9243       };
9244       SDVTList VTL =
9245         DAG.getVTList(IsFourByte ? MVT::v4i32 : MVT::v2i64, MVT::Other);
9246       SDValue LdSplt =
9247         DAG.getMemIntrinsicNode(PPCISD::LD_SPLAT, dl, VTL,
9248                                 Ops, LD->getMemoryVT(), LD->getMemOperand());
9249       if (LdSplt.getValueType() != SVOp->getValueType(0))
9250         LdSplt = DAG.getBitcast(SVOp->getValueType(0), LdSplt);
9251       return LdSplt;
9252     }
9253   }
9254   if (Subtarget.hasP9Vector() &&
9255       PPC::isXXINSERTWMask(SVOp, ShiftElts, InsertAtByte, Swap,
9256                            isLittleEndian)) {
9257     if (Swap)
9258       std::swap(V1, V2);
9259     SDValue Conv1 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V1);
9260     SDValue Conv2 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V2);
9261     if (ShiftElts) {
9262       SDValue Shl = DAG.getNode(PPCISD::VECSHL, dl, MVT::v4i32, Conv2, Conv2,
9263                                 DAG.getConstant(ShiftElts, dl, MVT::i32));
9264       SDValue Ins = DAG.getNode(PPCISD::VECINSERT, dl, MVT::v4i32, Conv1, Shl,
9265                                 DAG.getConstant(InsertAtByte, dl, MVT::i32));
9266       return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Ins);
9267     }
9268     SDValue Ins = DAG.getNode(PPCISD::VECINSERT, dl, MVT::v4i32, Conv1, Conv2,
9269                               DAG.getConstant(InsertAtByte, dl, MVT::i32));
9270     return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Ins);
9271   }
9272 
9273   if (Subtarget.hasP9Altivec()) {
9274     SDValue NewISDNode;
9275     if ((NewISDNode = lowerToVINSERTH(SVOp, DAG)))
9276       return NewISDNode;
9277 
9278     if ((NewISDNode = lowerToVINSERTB(SVOp, DAG)))
9279       return NewISDNode;
9280   }
9281 
9282   if (Subtarget.hasVSX() &&
9283       PPC::isXXSLDWIShuffleMask(SVOp, ShiftElts, Swap, isLittleEndian)) {
9284     if (Swap)
9285       std::swap(V1, V2);
9286     SDValue Conv1 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V1);
9287     SDValue Conv2 =
9288         DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V2.isUndef() ? V1 : V2);
9289 
9290     SDValue Shl = DAG.getNode(PPCISD::VECSHL, dl, MVT::v4i32, Conv1, Conv2,
9291                               DAG.getConstant(ShiftElts, dl, MVT::i32));
9292     return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Shl);
9293   }
9294 
9295   if (Subtarget.hasVSX() &&
9296     PPC::isXXPERMDIShuffleMask(SVOp, ShiftElts, Swap, isLittleEndian)) {
9297     if (Swap)
9298       std::swap(V1, V2);
9299     SDValue Conv1 = DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, V1);
9300     SDValue Conv2 =
9301         DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, V2.isUndef() ? V1 : V2);
9302 
9303     SDValue PermDI = DAG.getNode(PPCISD::XXPERMDI, dl, MVT::v2i64, Conv1, Conv2,
9304                               DAG.getConstant(ShiftElts, dl, MVT::i32));
9305     return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, PermDI);
9306   }
9307 
9308   if (Subtarget.hasP9Vector()) {
9309      if (PPC::isXXBRHShuffleMask(SVOp)) {
9310       SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V1);
9311       SDValue ReveHWord = DAG.getNode(ISD::BSWAP, dl, MVT::v8i16, Conv);
9312       return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, ReveHWord);
9313     } else if (PPC::isXXBRWShuffleMask(SVOp)) {
9314       SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V1);
9315       SDValue ReveWord = DAG.getNode(ISD::BSWAP, dl, MVT::v4i32, Conv);
9316       return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, ReveWord);
9317     } else if (PPC::isXXBRDShuffleMask(SVOp)) {
9318       SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, V1);
9319       SDValue ReveDWord = DAG.getNode(ISD::BSWAP, dl, MVT::v2i64, Conv);
9320       return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, ReveDWord);
9321     } else if (PPC::isXXBRQShuffleMask(SVOp)) {
9322       SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v1i128, V1);
9323       SDValue ReveQWord = DAG.getNode(ISD::BSWAP, dl, MVT::v1i128, Conv);
9324       return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, ReveQWord);
9325     }
9326   }
9327 
9328   if (Subtarget.hasVSX()) {
9329     if (V2.isUndef() && PPC::isSplatShuffleMask(SVOp, 4)) {
9330       int SplatIdx = PPC::getSplatIdxForPPCMnemonics(SVOp, 4, DAG);
9331 
9332       SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V1);
9333       SDValue Splat = DAG.getNode(PPCISD::XXSPLT, dl, MVT::v4i32, Conv,
9334                                   DAG.getConstant(SplatIdx, dl, MVT::i32));
9335       return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Splat);
9336     }
9337 
9338     // Left shifts of 8 bytes are actually swaps. Convert accordingly.
9339     if (V2.isUndef() && PPC::isVSLDOIShuffleMask(SVOp, 1, DAG) == 8) {
9340       SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, V1);
9341       SDValue Swap = DAG.getNode(PPCISD::SWAP_NO_CHAIN, dl, MVT::v2f64, Conv);
9342       return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Swap);
9343     }
9344   }
9345 
9346   if (Subtarget.hasQPX()) {
9347     if (VT.getVectorNumElements() != 4)
9348       return SDValue();
9349 
9350     if (V2.isUndef()) V2 = V1;
9351 
9352     int AlignIdx = PPC::isQVALIGNIShuffleMask(SVOp);
9353     if (AlignIdx != -1) {
9354       return DAG.getNode(PPCISD::QVALIGNI, dl, VT, V1, V2,
9355                          DAG.getConstant(AlignIdx, dl, MVT::i32));
9356     } else if (SVOp->isSplat()) {
9357       int SplatIdx = SVOp->getSplatIndex();
9358       if (SplatIdx >= 4) {
9359         std::swap(V1, V2);
9360         SplatIdx -= 4;
9361       }
9362 
9363       return DAG.getNode(PPCISD::QVESPLATI, dl, VT, V1,
9364                          DAG.getConstant(SplatIdx, dl, MVT::i32));
9365     }
9366 
9367     // Lower this into a qvgpci/qvfperm pair.
9368 
9369     // Compute the qvgpci literal
9370     unsigned idx = 0;
9371     for (unsigned i = 0; i < 4; ++i) {
9372       int m = SVOp->getMaskElt(i);
9373       unsigned mm = m >= 0 ? (unsigned) m : i;
9374       idx |= mm << (3-i)*3;
9375     }
9376 
9377     SDValue V3 = DAG.getNode(PPCISD::QVGPCI, dl, MVT::v4f64,
9378                              DAG.getConstant(idx, dl, MVT::i32));
9379     return DAG.getNode(PPCISD::QVFPERM, dl, VT, V1, V2, V3);
9380   }
9381 
9382   // Cases that are handled by instructions that take permute immediates
9383   // (such as vsplt*) should be left as VECTOR_SHUFFLE nodes so they can be
9384   // selected by the instruction selector.
9385   if (V2.isUndef()) {
9386     if (PPC::isSplatShuffleMask(SVOp, 1) ||
9387         PPC::isSplatShuffleMask(SVOp, 2) ||
9388         PPC::isSplatShuffleMask(SVOp, 4) ||
9389         PPC::isVPKUWUMShuffleMask(SVOp, 1, DAG) ||
9390         PPC::isVPKUHUMShuffleMask(SVOp, 1, DAG) ||
9391         PPC::isVSLDOIShuffleMask(SVOp, 1, DAG) != -1 ||
9392         PPC::isVMRGLShuffleMask(SVOp, 1, 1, DAG) ||
9393         PPC::isVMRGLShuffleMask(SVOp, 2, 1, DAG) ||
9394         PPC::isVMRGLShuffleMask(SVOp, 4, 1, DAG) ||
9395         PPC::isVMRGHShuffleMask(SVOp, 1, 1, DAG) ||
9396         PPC::isVMRGHShuffleMask(SVOp, 2, 1, DAG) ||
9397         PPC::isVMRGHShuffleMask(SVOp, 4, 1, DAG) ||
9398         (Subtarget.hasP8Altivec() && (
9399          PPC::isVPKUDUMShuffleMask(SVOp, 1, DAG) ||
9400          PPC::isVMRGEOShuffleMask(SVOp, true, 1, DAG) ||
9401          PPC::isVMRGEOShuffleMask(SVOp, false, 1, DAG)))) {
9402       return Op;
9403     }
9404   }
9405 
9406   // Altivec has a variety of "shuffle immediates" that take two vector inputs
9407   // and produce a fixed permutation.  If any of these match, do not lower to
9408   // VPERM.
9409   unsigned int ShuffleKind = isLittleEndian ? 2 : 0;
9410   if (PPC::isVPKUWUMShuffleMask(SVOp, ShuffleKind, DAG) ||
9411       PPC::isVPKUHUMShuffleMask(SVOp, ShuffleKind, DAG) ||
9412       PPC::isVSLDOIShuffleMask(SVOp, ShuffleKind, DAG) != -1 ||
9413       PPC::isVMRGLShuffleMask(SVOp, 1, ShuffleKind, DAG) ||
9414       PPC::isVMRGLShuffleMask(SVOp, 2, ShuffleKind, DAG) ||
9415       PPC::isVMRGLShuffleMask(SVOp, 4, ShuffleKind, DAG) ||
9416       PPC::isVMRGHShuffleMask(SVOp, 1, ShuffleKind, DAG) ||
9417       PPC::isVMRGHShuffleMask(SVOp, 2, ShuffleKind, DAG) ||
9418       PPC::isVMRGHShuffleMask(SVOp, 4, ShuffleKind, DAG) ||
9419       (Subtarget.hasP8Altivec() && (
9420        PPC::isVPKUDUMShuffleMask(SVOp, ShuffleKind, DAG) ||
9421        PPC::isVMRGEOShuffleMask(SVOp, true, ShuffleKind, DAG) ||
9422        PPC::isVMRGEOShuffleMask(SVOp, false, ShuffleKind, DAG))))
9423     return Op;
9424 
9425   // Check to see if this is a shuffle of 4-byte values.  If so, we can use our
9426   // perfect shuffle table to emit an optimal matching sequence.
9427   ArrayRef<int> PermMask = SVOp->getMask();
9428 
9429   unsigned PFIndexes[4];
9430   bool isFourElementShuffle = true;
9431   for (unsigned i = 0; i != 4 && isFourElementShuffle; ++i) { // Element number
9432     unsigned EltNo = 8;   // Start out undef.
9433     for (unsigned j = 0; j != 4; ++j) {  // Intra-element byte.
9434       if (PermMask[i*4+j] < 0)
9435         continue;   // Undef, ignore it.
9436 
9437       unsigned ByteSource = PermMask[i*4+j];
9438       if ((ByteSource & 3) != j) {
9439         isFourElementShuffle = false;
9440         break;
9441       }
9442 
9443       if (EltNo == 8) {
9444         EltNo = ByteSource/4;
9445       } else if (EltNo != ByteSource/4) {
9446         isFourElementShuffle = false;
9447         break;
9448       }
9449     }
9450     PFIndexes[i] = EltNo;
9451   }
9452 
9453   // If this shuffle can be expressed as a shuffle of 4-byte elements, use the
9454   // perfect shuffle vector to determine if it is cost effective to do this as
9455   // discrete instructions, or whether we should use a vperm.
9456   // For now, we skip this for little endian until such time as we have a
9457   // little-endian perfect shuffle table.
9458   if (isFourElementShuffle && !isLittleEndian) {
9459     // Compute the index in the perfect shuffle table.
9460     unsigned PFTableIndex =
9461       PFIndexes[0]*9*9*9+PFIndexes[1]*9*9+PFIndexes[2]*9+PFIndexes[3];
9462 
9463     unsigned PFEntry = PerfectShuffleTable[PFTableIndex];
9464     unsigned Cost  = (PFEntry >> 30);
9465 
9466     // Determining when to avoid vperm is tricky.  Many things affect the cost
9467     // of vperm, particularly how many times the perm mask needs to be computed.
9468     // For example, if the perm mask can be hoisted out of a loop or is already
9469     // used (perhaps because there are multiple permutes with the same shuffle
9470     // mask?) the vperm has a cost of 1.  OTOH, hoisting the permute mask out of
9471     // the loop requires an extra register.
9472     //
9473     // As a compromise, we only emit discrete instructions if the shuffle can be
9474     // generated in 3 or fewer operations.  When we have loop information
9475     // available, if this block is within a loop, we should avoid using vperm
9476     // for 3-operation perms and use a constant pool load instead.
9477     if (Cost < 3)
9478       return GeneratePerfectShuffle(PFEntry, V1, V2, DAG, dl);
9479   }
9480 
9481   // Lower this to a VPERM(V1, V2, V3) expression, where V3 is a constant
9482   // vector that will get spilled to the constant pool.
9483   if (V2.isUndef()) V2 = V1;
9484 
9485   // The SHUFFLE_VECTOR mask is almost exactly what we want for vperm, except
9486   // that it is in input element units, not in bytes.  Convert now.
9487 
9488   // For little endian, the order of the input vectors is reversed, and
9489   // the permutation mask is complemented with respect to 31.  This is
9490   // necessary to produce proper semantics with the big-endian-biased vperm
9491   // instruction.
9492   EVT EltVT = V1.getValueType().getVectorElementType();
9493   unsigned BytesPerElement = EltVT.getSizeInBits()/8;
9494 
9495   SmallVector<SDValue, 16> ResultMask;
9496   for (unsigned i = 0, e = VT.getVectorNumElements(); i != e; ++i) {
9497     unsigned SrcElt = PermMask[i] < 0 ? 0 : PermMask[i];
9498 
9499     for (unsigned j = 0; j != BytesPerElement; ++j)
9500       if (isLittleEndian)
9501         ResultMask.push_back(DAG.getConstant(31 - (SrcElt*BytesPerElement + j),
9502                                              dl, MVT::i32));
9503       else
9504         ResultMask.push_back(DAG.getConstant(SrcElt*BytesPerElement + j, dl,
9505                                              MVT::i32));
9506   }
9507 
9508   SDValue VPermMask = DAG.getBuildVector(MVT::v16i8, dl, ResultMask);
9509   if (isLittleEndian)
9510     return DAG.getNode(PPCISD::VPERM, dl, V1.getValueType(),
9511                        V2, V1, VPermMask);
9512   else
9513     return DAG.getNode(PPCISD::VPERM, dl, V1.getValueType(),
9514                        V1, V2, VPermMask);
9515 }
9516 
9517 /// getVectorCompareInfo - Given an intrinsic, return false if it is not a
9518 /// vector comparison.  If it is, return true and fill in Opc/isDot with
9519 /// information about the intrinsic.
9520 static bool getVectorCompareInfo(SDValue Intrin, int &CompareOpc,
9521                                  bool &isDot, const PPCSubtarget &Subtarget) {
9522   unsigned IntrinsicID =
9523       cast<ConstantSDNode>(Intrin.getOperand(0))->getZExtValue();
9524   CompareOpc = -1;
9525   isDot = false;
9526   switch (IntrinsicID) {
9527   default:
9528     return false;
9529   // Comparison predicates.
9530   case Intrinsic::ppc_altivec_vcmpbfp_p:
9531     CompareOpc = 966;
9532     isDot = true;
9533     break;
9534   case Intrinsic::ppc_altivec_vcmpeqfp_p:
9535     CompareOpc = 198;
9536     isDot = true;
9537     break;
9538   case Intrinsic::ppc_altivec_vcmpequb_p:
9539     CompareOpc = 6;
9540     isDot = true;
9541     break;
9542   case Intrinsic::ppc_altivec_vcmpequh_p:
9543     CompareOpc = 70;
9544     isDot = true;
9545     break;
9546   case Intrinsic::ppc_altivec_vcmpequw_p:
9547     CompareOpc = 134;
9548     isDot = true;
9549     break;
9550   case Intrinsic::ppc_altivec_vcmpequd_p:
9551     if (Subtarget.hasP8Altivec()) {
9552       CompareOpc = 199;
9553       isDot = true;
9554     } else
9555       return false;
9556     break;
9557   case Intrinsic::ppc_altivec_vcmpneb_p:
9558   case Intrinsic::ppc_altivec_vcmpneh_p:
9559   case Intrinsic::ppc_altivec_vcmpnew_p:
9560   case Intrinsic::ppc_altivec_vcmpnezb_p:
9561   case Intrinsic::ppc_altivec_vcmpnezh_p:
9562   case Intrinsic::ppc_altivec_vcmpnezw_p:
9563     if (Subtarget.hasP9Altivec()) {
9564       switch (IntrinsicID) {
9565       default:
9566         llvm_unreachable("Unknown comparison intrinsic.");
9567       case Intrinsic::ppc_altivec_vcmpneb_p:
9568         CompareOpc = 7;
9569         break;
9570       case Intrinsic::ppc_altivec_vcmpneh_p:
9571         CompareOpc = 71;
9572         break;
9573       case Intrinsic::ppc_altivec_vcmpnew_p:
9574         CompareOpc = 135;
9575         break;
9576       case Intrinsic::ppc_altivec_vcmpnezb_p:
9577         CompareOpc = 263;
9578         break;
9579       case Intrinsic::ppc_altivec_vcmpnezh_p:
9580         CompareOpc = 327;
9581         break;
9582       case Intrinsic::ppc_altivec_vcmpnezw_p:
9583         CompareOpc = 391;
9584         break;
9585       }
9586       isDot = true;
9587     } else
9588       return false;
9589     break;
9590   case Intrinsic::ppc_altivec_vcmpgefp_p:
9591     CompareOpc = 454;
9592     isDot = true;
9593     break;
9594   case Intrinsic::ppc_altivec_vcmpgtfp_p:
9595     CompareOpc = 710;
9596     isDot = true;
9597     break;
9598   case Intrinsic::ppc_altivec_vcmpgtsb_p:
9599     CompareOpc = 774;
9600     isDot = true;
9601     break;
9602   case Intrinsic::ppc_altivec_vcmpgtsh_p:
9603     CompareOpc = 838;
9604     isDot = true;
9605     break;
9606   case Intrinsic::ppc_altivec_vcmpgtsw_p:
9607     CompareOpc = 902;
9608     isDot = true;
9609     break;
9610   case Intrinsic::ppc_altivec_vcmpgtsd_p:
9611     if (Subtarget.hasP8Altivec()) {
9612       CompareOpc = 967;
9613       isDot = true;
9614     } else
9615       return false;
9616     break;
9617   case Intrinsic::ppc_altivec_vcmpgtub_p:
9618     CompareOpc = 518;
9619     isDot = true;
9620     break;
9621   case Intrinsic::ppc_altivec_vcmpgtuh_p:
9622     CompareOpc = 582;
9623     isDot = true;
9624     break;
9625   case Intrinsic::ppc_altivec_vcmpgtuw_p:
9626     CompareOpc = 646;
9627     isDot = true;
9628     break;
9629   case Intrinsic::ppc_altivec_vcmpgtud_p:
9630     if (Subtarget.hasP8Altivec()) {
9631       CompareOpc = 711;
9632       isDot = true;
9633     } else
9634       return false;
9635     break;
9636 
9637   // VSX predicate comparisons use the same infrastructure
9638   case Intrinsic::ppc_vsx_xvcmpeqdp_p:
9639   case Intrinsic::ppc_vsx_xvcmpgedp_p:
9640   case Intrinsic::ppc_vsx_xvcmpgtdp_p:
9641   case Intrinsic::ppc_vsx_xvcmpeqsp_p:
9642   case Intrinsic::ppc_vsx_xvcmpgesp_p:
9643   case Intrinsic::ppc_vsx_xvcmpgtsp_p:
9644     if (Subtarget.hasVSX()) {
9645       switch (IntrinsicID) {
9646       case Intrinsic::ppc_vsx_xvcmpeqdp_p:
9647         CompareOpc = 99;
9648         break;
9649       case Intrinsic::ppc_vsx_xvcmpgedp_p:
9650         CompareOpc = 115;
9651         break;
9652       case Intrinsic::ppc_vsx_xvcmpgtdp_p:
9653         CompareOpc = 107;
9654         break;
9655       case Intrinsic::ppc_vsx_xvcmpeqsp_p:
9656         CompareOpc = 67;
9657         break;
9658       case Intrinsic::ppc_vsx_xvcmpgesp_p:
9659         CompareOpc = 83;
9660         break;
9661       case Intrinsic::ppc_vsx_xvcmpgtsp_p:
9662         CompareOpc = 75;
9663         break;
9664       }
9665       isDot = true;
9666     } else
9667       return false;
9668     break;
9669 
9670   // Normal Comparisons.
9671   case Intrinsic::ppc_altivec_vcmpbfp:
9672     CompareOpc = 966;
9673     break;
9674   case Intrinsic::ppc_altivec_vcmpeqfp:
9675     CompareOpc = 198;
9676     break;
9677   case Intrinsic::ppc_altivec_vcmpequb:
9678     CompareOpc = 6;
9679     break;
9680   case Intrinsic::ppc_altivec_vcmpequh:
9681     CompareOpc = 70;
9682     break;
9683   case Intrinsic::ppc_altivec_vcmpequw:
9684     CompareOpc = 134;
9685     break;
9686   case Intrinsic::ppc_altivec_vcmpequd:
9687     if (Subtarget.hasP8Altivec())
9688       CompareOpc = 199;
9689     else
9690       return false;
9691     break;
9692   case Intrinsic::ppc_altivec_vcmpneb:
9693   case Intrinsic::ppc_altivec_vcmpneh:
9694   case Intrinsic::ppc_altivec_vcmpnew:
9695   case Intrinsic::ppc_altivec_vcmpnezb:
9696   case Intrinsic::ppc_altivec_vcmpnezh:
9697   case Intrinsic::ppc_altivec_vcmpnezw:
9698     if (Subtarget.hasP9Altivec())
9699       switch (IntrinsicID) {
9700       default:
9701         llvm_unreachable("Unknown comparison intrinsic.");
9702       case Intrinsic::ppc_altivec_vcmpneb:
9703         CompareOpc = 7;
9704         break;
9705       case Intrinsic::ppc_altivec_vcmpneh:
9706         CompareOpc = 71;
9707         break;
9708       case Intrinsic::ppc_altivec_vcmpnew:
9709         CompareOpc = 135;
9710         break;
9711       case Intrinsic::ppc_altivec_vcmpnezb:
9712         CompareOpc = 263;
9713         break;
9714       case Intrinsic::ppc_altivec_vcmpnezh:
9715         CompareOpc = 327;
9716         break;
9717       case Intrinsic::ppc_altivec_vcmpnezw:
9718         CompareOpc = 391;
9719         break;
9720       }
9721     else
9722       return false;
9723     break;
9724   case Intrinsic::ppc_altivec_vcmpgefp:
9725     CompareOpc = 454;
9726     break;
9727   case Intrinsic::ppc_altivec_vcmpgtfp:
9728     CompareOpc = 710;
9729     break;
9730   case Intrinsic::ppc_altivec_vcmpgtsb:
9731     CompareOpc = 774;
9732     break;
9733   case Intrinsic::ppc_altivec_vcmpgtsh:
9734     CompareOpc = 838;
9735     break;
9736   case Intrinsic::ppc_altivec_vcmpgtsw:
9737     CompareOpc = 902;
9738     break;
9739   case Intrinsic::ppc_altivec_vcmpgtsd:
9740     if (Subtarget.hasP8Altivec())
9741       CompareOpc = 967;
9742     else
9743       return false;
9744     break;
9745   case Intrinsic::ppc_altivec_vcmpgtub:
9746     CompareOpc = 518;
9747     break;
9748   case Intrinsic::ppc_altivec_vcmpgtuh:
9749     CompareOpc = 582;
9750     break;
9751   case Intrinsic::ppc_altivec_vcmpgtuw:
9752     CompareOpc = 646;
9753     break;
9754   case Intrinsic::ppc_altivec_vcmpgtud:
9755     if (Subtarget.hasP8Altivec())
9756       CompareOpc = 711;
9757     else
9758       return false;
9759     break;
9760   }
9761   return true;
9762 }
9763 
9764 /// LowerINTRINSIC_WO_CHAIN - If this is an intrinsic that we want to custom
9765 /// lower, do it, otherwise return null.
9766 SDValue PPCTargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op,
9767                                                    SelectionDAG &DAG) const {
9768   unsigned IntrinsicID =
9769     cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
9770 
9771   SDLoc dl(Op);
9772 
9773   if (IntrinsicID == Intrinsic::thread_pointer) {
9774     // Reads the thread pointer register, used for __builtin_thread_pointer.
9775     if (Subtarget.isPPC64())
9776       return DAG.getRegister(PPC::X13, MVT::i64);
9777     return DAG.getRegister(PPC::R2, MVT::i32);
9778   }
9779 
9780   // If this is a lowered altivec predicate compare, CompareOpc is set to the
9781   // opcode number of the comparison.
9782   int CompareOpc;
9783   bool isDot;
9784   if (!getVectorCompareInfo(Op, CompareOpc, isDot, Subtarget))
9785     return SDValue();    // Don't custom lower most intrinsics.
9786 
9787   // If this is a non-dot comparison, make the VCMP node and we are done.
9788   if (!isDot) {
9789     SDValue Tmp = DAG.getNode(PPCISD::VCMP, dl, Op.getOperand(2).getValueType(),
9790                               Op.getOperand(1), Op.getOperand(2),
9791                               DAG.getConstant(CompareOpc, dl, MVT::i32));
9792     return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Tmp);
9793   }
9794 
9795   // Create the PPCISD altivec 'dot' comparison node.
9796   SDValue Ops[] = {
9797     Op.getOperand(2),  // LHS
9798     Op.getOperand(3),  // RHS
9799     DAG.getConstant(CompareOpc, dl, MVT::i32)
9800   };
9801   EVT VTs[] = { Op.getOperand(2).getValueType(), MVT::Glue };
9802   SDValue CompNode = DAG.getNode(PPCISD::VCMPo, dl, VTs, Ops);
9803 
9804   // Now that we have the comparison, emit a copy from the CR to a GPR.
9805   // This is flagged to the above dot comparison.
9806   SDValue Flags = DAG.getNode(PPCISD::MFOCRF, dl, MVT::i32,
9807                                 DAG.getRegister(PPC::CR6, MVT::i32),
9808                                 CompNode.getValue(1));
9809 
9810   // Unpack the result based on how the target uses it.
9811   unsigned BitNo;   // Bit # of CR6.
9812   bool InvertBit;   // Invert result?
9813   switch (cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue()) {
9814   default:  // Can't happen, don't crash on invalid number though.
9815   case 0:   // Return the value of the EQ bit of CR6.
9816     BitNo = 0; InvertBit = false;
9817     break;
9818   case 1:   // Return the inverted value of the EQ bit of CR6.
9819     BitNo = 0; InvertBit = true;
9820     break;
9821   case 2:   // Return the value of the LT bit of CR6.
9822     BitNo = 2; InvertBit = false;
9823     break;
9824   case 3:   // Return the inverted value of the LT bit of CR6.
9825     BitNo = 2; InvertBit = true;
9826     break;
9827   }
9828 
9829   // Shift the bit into the low position.
9830   Flags = DAG.getNode(ISD::SRL, dl, MVT::i32, Flags,
9831                       DAG.getConstant(8 - (3 - BitNo), dl, MVT::i32));
9832   // Isolate the bit.
9833   Flags = DAG.getNode(ISD::AND, dl, MVT::i32, Flags,
9834                       DAG.getConstant(1, dl, MVT::i32));
9835 
9836   // If we are supposed to, toggle the bit.
9837   if (InvertBit)
9838     Flags = DAG.getNode(ISD::XOR, dl, MVT::i32, Flags,
9839                         DAG.getConstant(1, dl, MVT::i32));
9840   return Flags;
9841 }
9842 
9843 SDValue PPCTargetLowering::LowerINTRINSIC_VOID(SDValue Op,
9844                                                SelectionDAG &DAG) const {
9845   // SelectionDAGBuilder::visitTargetIntrinsic may insert one extra chain to
9846   // the beginning of the argument list.
9847   int ArgStart = isa<ConstantSDNode>(Op.getOperand(0)) ? 0 : 1;
9848   SDLoc DL(Op);
9849   switch (cast<ConstantSDNode>(Op.getOperand(ArgStart))->getZExtValue()) {
9850   case Intrinsic::ppc_cfence: {
9851     assert(ArgStart == 1 && "llvm.ppc.cfence must carry a chain argument.");
9852     assert(Subtarget.isPPC64() && "Only 64-bit is supported for now.");
9853     return SDValue(DAG.getMachineNode(PPC::CFENCE8, DL, MVT::Other,
9854                                       DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64,
9855                                                   Op.getOperand(ArgStart + 1)),
9856                                       Op.getOperand(0)),
9857                    0);
9858   }
9859   default:
9860     break;
9861   }
9862   return SDValue();
9863 }
9864 
9865 SDValue PPCTargetLowering::LowerREM(SDValue Op, SelectionDAG &DAG) const {
9866   // Check for a DIV with the same operands as this REM.
9867   for (auto UI : Op.getOperand(1)->uses()) {
9868     if ((Op.getOpcode() == ISD::SREM && UI->getOpcode() == ISD::SDIV) ||
9869         (Op.getOpcode() == ISD::UREM && UI->getOpcode() == ISD::UDIV))
9870       if (UI->getOperand(0) == Op.getOperand(0) &&
9871           UI->getOperand(1) == Op.getOperand(1))
9872         return SDValue();
9873   }
9874   return Op;
9875 }
9876 
9877 // Lower scalar BSWAP64 to xxbrd.
9878 SDValue PPCTargetLowering::LowerBSWAP(SDValue Op, SelectionDAG &DAG) const {
9879   SDLoc dl(Op);
9880   // MTVSRDD
9881   Op = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v2i64, Op.getOperand(0),
9882                    Op.getOperand(0));
9883   // XXBRD
9884   Op = DAG.getNode(ISD::BSWAP, dl, MVT::v2i64, Op);
9885   // MFVSRD
9886   int VectorIndex = 0;
9887   if (Subtarget.isLittleEndian())
9888     VectorIndex = 1;
9889   Op = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i64, Op,
9890                    DAG.getTargetConstant(VectorIndex, dl, MVT::i32));
9891   return Op;
9892 }
9893 
9894 // ATOMIC_CMP_SWAP for i8/i16 needs to zero-extend its input since it will be
9895 // compared to a value that is atomically loaded (atomic loads zero-extend).
9896 SDValue PPCTargetLowering::LowerATOMIC_CMP_SWAP(SDValue Op,
9897                                                 SelectionDAG &DAG) const {
9898   assert(Op.getOpcode() == ISD::ATOMIC_CMP_SWAP &&
9899          "Expecting an atomic compare-and-swap here.");
9900   SDLoc dl(Op);
9901   auto *AtomicNode = cast<AtomicSDNode>(Op.getNode());
9902   EVT MemVT = AtomicNode->getMemoryVT();
9903   if (MemVT.getSizeInBits() >= 32)
9904     return Op;
9905 
9906   SDValue CmpOp = Op.getOperand(2);
9907   // If this is already correctly zero-extended, leave it alone.
9908   auto HighBits = APInt::getHighBitsSet(32, 32 - MemVT.getSizeInBits());
9909   if (DAG.MaskedValueIsZero(CmpOp, HighBits))
9910     return Op;
9911 
9912   // Clear the high bits of the compare operand.
9913   unsigned MaskVal = (1 << MemVT.getSizeInBits()) - 1;
9914   SDValue NewCmpOp =
9915     DAG.getNode(ISD::AND, dl, MVT::i32, CmpOp,
9916                 DAG.getConstant(MaskVal, dl, MVT::i32));
9917 
9918   // Replace the existing compare operand with the properly zero-extended one.
9919   SmallVector<SDValue, 4> Ops;
9920   for (int i = 0, e = AtomicNode->getNumOperands(); i < e; i++)
9921     Ops.push_back(AtomicNode->getOperand(i));
9922   Ops[2] = NewCmpOp;
9923   MachineMemOperand *MMO = AtomicNode->getMemOperand();
9924   SDVTList Tys = DAG.getVTList(MVT::i32, MVT::Other);
9925   auto NodeTy =
9926     (MemVT == MVT::i8) ? PPCISD::ATOMIC_CMP_SWAP_8 : PPCISD::ATOMIC_CMP_SWAP_16;
9927   return DAG.getMemIntrinsicNode(NodeTy, dl, Tys, Ops, MemVT, MMO);
9928 }
9929 
9930 SDValue PPCTargetLowering::LowerSCALAR_TO_VECTOR(SDValue Op,
9931                                                  SelectionDAG &DAG) const {
9932   SDLoc dl(Op);
9933   // Create a stack slot that is 16-byte aligned.
9934   MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
9935   int FrameIdx = MFI.CreateStackObject(16, 16, false);
9936   EVT PtrVT = getPointerTy(DAG.getDataLayout());
9937   SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
9938 
9939   // Store the input value into Value#0 of the stack slot.
9940   SDValue Store = DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0), FIdx,
9941                                MachinePointerInfo());
9942   // Load it out.
9943   return DAG.getLoad(Op.getValueType(), dl, Store, FIdx, MachinePointerInfo());
9944 }
9945 
9946 SDValue PPCTargetLowering::LowerINSERT_VECTOR_ELT(SDValue Op,
9947                                                   SelectionDAG &DAG) const {
9948   assert(Op.getOpcode() == ISD::INSERT_VECTOR_ELT &&
9949          "Should only be called for ISD::INSERT_VECTOR_ELT");
9950 
9951   ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(2));
9952   // We have legal lowering for constant indices but not for variable ones.
9953   if (!C)
9954     return SDValue();
9955 
9956   EVT VT = Op.getValueType();
9957   SDLoc dl(Op);
9958   SDValue V1 = Op.getOperand(0);
9959   SDValue V2 = Op.getOperand(1);
9960   // We can use MTVSRZ + VECINSERT for v8i16 and v16i8 types.
9961   if (VT == MVT::v8i16 || VT == MVT::v16i8) {
9962     SDValue Mtvsrz = DAG.getNode(PPCISD::MTVSRZ, dl, VT, V2);
9963     unsigned BytesInEachElement = VT.getVectorElementType().getSizeInBits() / 8;
9964     unsigned InsertAtElement = C->getZExtValue();
9965     unsigned InsertAtByte = InsertAtElement * BytesInEachElement;
9966     if (Subtarget.isLittleEndian()) {
9967       InsertAtByte = (16 - BytesInEachElement) - InsertAtByte;
9968     }
9969     return DAG.getNode(PPCISD::VECINSERT, dl, VT, V1, Mtvsrz,
9970                        DAG.getConstant(InsertAtByte, dl, MVT::i32));
9971   }
9972   return Op;
9973 }
9974 
9975 SDValue PPCTargetLowering::LowerEXTRACT_VECTOR_ELT(SDValue Op,
9976                                                    SelectionDAG &DAG) const {
9977   SDLoc dl(Op);
9978   SDNode *N = Op.getNode();
9979 
9980   assert(N->getOperand(0).getValueType() == MVT::v4i1 &&
9981          "Unknown extract_vector_elt type");
9982 
9983   SDValue Value = N->getOperand(0);
9984 
9985   // The first part of this is like the store lowering except that we don't
9986   // need to track the chain.
9987 
9988   // The values are now known to be -1 (false) or 1 (true). To convert this
9989   // into 0 (false) and 1 (true), add 1 and then divide by 2 (multiply by 0.5).
9990   // This can be done with an fma and the 0.5 constant: (V+1.0)*0.5 = 0.5*V+0.5
9991   Value = DAG.getNode(PPCISD::QBFLT, dl, MVT::v4f64, Value);
9992 
9993   // FIXME: We can make this an f32 vector, but the BUILD_VECTOR code needs to
9994   // understand how to form the extending load.
9995   SDValue FPHalfs = DAG.getConstantFP(0.5, dl, MVT::v4f64);
9996 
9997   Value = DAG.getNode(ISD::FMA, dl, MVT::v4f64, Value, FPHalfs, FPHalfs);
9998 
9999   // Now convert to an integer and store.
10000   Value = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f64,
10001     DAG.getConstant(Intrinsic::ppc_qpx_qvfctiwu, dl, MVT::i32),
10002     Value);
10003 
10004   MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
10005   int FrameIdx = MFI.CreateStackObject(16, 16, false);
10006   MachinePointerInfo PtrInfo =
10007       MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx);
10008   EVT PtrVT = getPointerTy(DAG.getDataLayout());
10009   SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
10010 
10011   SDValue StoreChain = DAG.getEntryNode();
10012   SDValue Ops[] = {StoreChain,
10013                    DAG.getConstant(Intrinsic::ppc_qpx_qvstfiw, dl, MVT::i32),
10014                    Value, FIdx};
10015   SDVTList VTs = DAG.getVTList(/*chain*/ MVT::Other);
10016 
10017   StoreChain = DAG.getMemIntrinsicNode(ISD::INTRINSIC_VOID,
10018     dl, VTs, Ops, MVT::v4i32, PtrInfo);
10019 
10020   // Extract the value requested.
10021   unsigned Offset = 4*cast<ConstantSDNode>(N->getOperand(1))->getZExtValue();
10022   SDValue Idx = DAG.getConstant(Offset, dl, FIdx.getValueType());
10023   Idx = DAG.getNode(ISD::ADD, dl, FIdx.getValueType(), FIdx, Idx);
10024 
10025   SDValue IntVal =
10026       DAG.getLoad(MVT::i32, dl, StoreChain, Idx, PtrInfo.getWithOffset(Offset));
10027 
10028   if (!Subtarget.useCRBits())
10029     return IntVal;
10030 
10031   return DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, IntVal);
10032 }
10033 
10034 /// Lowering for QPX v4i1 loads
10035 SDValue PPCTargetLowering::LowerVectorLoad(SDValue Op,
10036                                            SelectionDAG &DAG) const {
10037   SDLoc dl(Op);
10038   LoadSDNode *LN = cast<LoadSDNode>(Op.getNode());
10039   SDValue LoadChain = LN->getChain();
10040   SDValue BasePtr = LN->getBasePtr();
10041 
10042   if (Op.getValueType() == MVT::v4f64 ||
10043       Op.getValueType() == MVT::v4f32) {
10044     EVT MemVT = LN->getMemoryVT();
10045     unsigned Alignment = LN->getAlignment();
10046 
10047     // If this load is properly aligned, then it is legal.
10048     if (Alignment >= MemVT.getStoreSize())
10049       return Op;
10050 
10051     EVT ScalarVT = Op.getValueType().getScalarType(),
10052         ScalarMemVT = MemVT.getScalarType();
10053     unsigned Stride = ScalarMemVT.getStoreSize();
10054 
10055     SDValue Vals[4], LoadChains[4];
10056     for (unsigned Idx = 0; Idx < 4; ++Idx) {
10057       SDValue Load;
10058       if (ScalarVT != ScalarMemVT)
10059         Load = DAG.getExtLoad(LN->getExtensionType(), dl, ScalarVT, LoadChain,
10060                               BasePtr,
10061                               LN->getPointerInfo().getWithOffset(Idx * Stride),
10062                               ScalarMemVT, MinAlign(Alignment, Idx * Stride),
10063                               LN->getMemOperand()->getFlags(), LN->getAAInfo());
10064       else
10065         Load = DAG.getLoad(ScalarVT, dl, LoadChain, BasePtr,
10066                            LN->getPointerInfo().getWithOffset(Idx * Stride),
10067                            MinAlign(Alignment, Idx * Stride),
10068                            LN->getMemOperand()->getFlags(), LN->getAAInfo());
10069 
10070       if (Idx == 0 && LN->isIndexed()) {
10071         assert(LN->getAddressingMode() == ISD::PRE_INC &&
10072                "Unknown addressing mode on vector load");
10073         Load = DAG.getIndexedLoad(Load, dl, BasePtr, LN->getOffset(),
10074                                   LN->getAddressingMode());
10075       }
10076 
10077       Vals[Idx] = Load;
10078       LoadChains[Idx] = Load.getValue(1);
10079 
10080       BasePtr = DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr,
10081                             DAG.getConstant(Stride, dl,
10082                                             BasePtr.getValueType()));
10083     }
10084 
10085     SDValue TF =  DAG.getNode(ISD::TokenFactor, dl, MVT::Other, LoadChains);
10086     SDValue Value = DAG.getBuildVector(Op.getValueType(), dl, Vals);
10087 
10088     if (LN->isIndexed()) {
10089       SDValue RetOps[] = { Value, Vals[0].getValue(1), TF };
10090       return DAG.getMergeValues(RetOps, dl);
10091     }
10092 
10093     SDValue RetOps[] = { Value, TF };
10094     return DAG.getMergeValues(RetOps, dl);
10095   }
10096 
10097   assert(Op.getValueType() == MVT::v4i1 && "Unknown load to lower");
10098   assert(LN->isUnindexed() && "Indexed v4i1 loads are not supported");
10099 
10100   // To lower v4i1 from a byte array, we load the byte elements of the
10101   // vector and then reuse the BUILD_VECTOR logic.
10102 
10103   SDValue VectElmts[4], VectElmtChains[4];
10104   for (unsigned i = 0; i < 4; ++i) {
10105     SDValue Idx = DAG.getConstant(i, dl, BasePtr.getValueType());
10106     Idx = DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr, Idx);
10107 
10108     VectElmts[i] = DAG.getExtLoad(
10109         ISD::EXTLOAD, dl, MVT::i32, LoadChain, Idx,
10110         LN->getPointerInfo().getWithOffset(i), MVT::i8,
10111         /* Alignment = */ 1, LN->getMemOperand()->getFlags(), LN->getAAInfo());
10112     VectElmtChains[i] = VectElmts[i].getValue(1);
10113   }
10114 
10115   LoadChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, VectElmtChains);
10116   SDValue Value = DAG.getBuildVector(MVT::v4i1, dl, VectElmts);
10117 
10118   SDValue RVals[] = { Value, LoadChain };
10119   return DAG.getMergeValues(RVals, dl);
10120 }
10121 
10122 /// Lowering for QPX v4i1 stores
10123 SDValue PPCTargetLowering::LowerVectorStore(SDValue Op,
10124                                             SelectionDAG &DAG) const {
10125   SDLoc dl(Op);
10126   StoreSDNode *SN = cast<StoreSDNode>(Op.getNode());
10127   SDValue StoreChain = SN->getChain();
10128   SDValue BasePtr = SN->getBasePtr();
10129   SDValue Value = SN->getValue();
10130 
10131   if (Value.getValueType() == MVT::v4f64 ||
10132       Value.getValueType() == MVT::v4f32) {
10133     EVT MemVT = SN->getMemoryVT();
10134     unsigned Alignment = SN->getAlignment();
10135 
10136     // If this store is properly aligned, then it is legal.
10137     if (Alignment >= MemVT.getStoreSize())
10138       return Op;
10139 
10140     EVT ScalarVT = Value.getValueType().getScalarType(),
10141         ScalarMemVT = MemVT.getScalarType();
10142     unsigned Stride = ScalarMemVT.getStoreSize();
10143 
10144     SDValue Stores[4];
10145     for (unsigned Idx = 0; Idx < 4; ++Idx) {
10146       SDValue Ex = DAG.getNode(
10147           ISD::EXTRACT_VECTOR_ELT, dl, ScalarVT, Value,
10148           DAG.getConstant(Idx, dl, getVectorIdxTy(DAG.getDataLayout())));
10149       SDValue Store;
10150       if (ScalarVT != ScalarMemVT)
10151         Store =
10152             DAG.getTruncStore(StoreChain, dl, Ex, BasePtr,
10153                               SN->getPointerInfo().getWithOffset(Idx * Stride),
10154                               ScalarMemVT, MinAlign(Alignment, Idx * Stride),
10155                               SN->getMemOperand()->getFlags(), SN->getAAInfo());
10156       else
10157         Store = DAG.getStore(StoreChain, dl, Ex, BasePtr,
10158                              SN->getPointerInfo().getWithOffset(Idx * Stride),
10159                              MinAlign(Alignment, Idx * Stride),
10160                              SN->getMemOperand()->getFlags(), SN->getAAInfo());
10161 
10162       if (Idx == 0 && SN->isIndexed()) {
10163         assert(SN->getAddressingMode() == ISD::PRE_INC &&
10164                "Unknown addressing mode on vector store");
10165         Store = DAG.getIndexedStore(Store, dl, BasePtr, SN->getOffset(),
10166                                     SN->getAddressingMode());
10167       }
10168 
10169       BasePtr = DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr,
10170                             DAG.getConstant(Stride, dl,
10171                                             BasePtr.getValueType()));
10172       Stores[Idx] = Store;
10173     }
10174 
10175     SDValue TF =  DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores);
10176 
10177     if (SN->isIndexed()) {
10178       SDValue RetOps[] = { TF, Stores[0].getValue(1) };
10179       return DAG.getMergeValues(RetOps, dl);
10180     }
10181 
10182     return TF;
10183   }
10184 
10185   assert(SN->isUnindexed() && "Indexed v4i1 stores are not supported");
10186   assert(Value.getValueType() == MVT::v4i1 && "Unknown store to lower");
10187 
10188   // The values are now known to be -1 (false) or 1 (true). To convert this
10189   // into 0 (false) and 1 (true), add 1 and then divide by 2 (multiply by 0.5).
10190   // This can be done with an fma and the 0.5 constant: (V+1.0)*0.5 = 0.5*V+0.5
10191   Value = DAG.getNode(PPCISD::QBFLT, dl, MVT::v4f64, Value);
10192 
10193   // FIXME: We can make this an f32 vector, but the BUILD_VECTOR code needs to
10194   // understand how to form the extending load.
10195   SDValue FPHalfs = DAG.getConstantFP(0.5, dl, MVT::v4f64);
10196 
10197   Value = DAG.getNode(ISD::FMA, dl, MVT::v4f64, Value, FPHalfs, FPHalfs);
10198 
10199   // Now convert to an integer and store.
10200   Value = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f64,
10201     DAG.getConstant(Intrinsic::ppc_qpx_qvfctiwu, dl, MVT::i32),
10202     Value);
10203 
10204   MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
10205   int FrameIdx = MFI.CreateStackObject(16, 16, false);
10206   MachinePointerInfo PtrInfo =
10207       MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx);
10208   EVT PtrVT = getPointerTy(DAG.getDataLayout());
10209   SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
10210 
10211   SDValue Ops[] = {StoreChain,
10212                    DAG.getConstant(Intrinsic::ppc_qpx_qvstfiw, dl, MVT::i32),
10213                    Value, FIdx};
10214   SDVTList VTs = DAG.getVTList(/*chain*/ MVT::Other);
10215 
10216   StoreChain = DAG.getMemIntrinsicNode(ISD::INTRINSIC_VOID,
10217     dl, VTs, Ops, MVT::v4i32, PtrInfo);
10218 
10219   // Move data into the byte array.
10220   SDValue Loads[4], LoadChains[4];
10221   for (unsigned i = 0; i < 4; ++i) {
10222     unsigned Offset = 4*i;
10223     SDValue Idx = DAG.getConstant(Offset, dl, FIdx.getValueType());
10224     Idx = DAG.getNode(ISD::ADD, dl, FIdx.getValueType(), FIdx, Idx);
10225 
10226     Loads[i] = DAG.getLoad(MVT::i32, dl, StoreChain, Idx,
10227                            PtrInfo.getWithOffset(Offset));
10228     LoadChains[i] = Loads[i].getValue(1);
10229   }
10230 
10231   StoreChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, LoadChains);
10232 
10233   SDValue Stores[4];
10234   for (unsigned i = 0; i < 4; ++i) {
10235     SDValue Idx = DAG.getConstant(i, dl, BasePtr.getValueType());
10236     Idx = DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr, Idx);
10237 
10238     Stores[i] = DAG.getTruncStore(
10239         StoreChain, dl, Loads[i], Idx, SN->getPointerInfo().getWithOffset(i),
10240         MVT::i8, /* Alignment = */ 1, SN->getMemOperand()->getFlags(),
10241         SN->getAAInfo());
10242   }
10243 
10244   StoreChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores);
10245 
10246   return StoreChain;
10247 }
10248 
10249 SDValue PPCTargetLowering::LowerMUL(SDValue Op, SelectionDAG &DAG) const {
10250   SDLoc dl(Op);
10251   if (Op.getValueType() == MVT::v4i32) {
10252     SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1);
10253 
10254     SDValue Zero  = BuildSplatI(  0, 1, MVT::v4i32, DAG, dl);
10255     SDValue Neg16 = BuildSplatI(-16, 4, MVT::v4i32, DAG, dl);//+16 as shift amt.
10256 
10257     SDValue RHSSwap =   // = vrlw RHS, 16
10258       BuildIntrinsicOp(Intrinsic::ppc_altivec_vrlw, RHS, Neg16, DAG, dl);
10259 
10260     // Shrinkify inputs to v8i16.
10261     LHS = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, LHS);
10262     RHS = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, RHS);
10263     RHSSwap = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, RHSSwap);
10264 
10265     // Low parts multiplied together, generating 32-bit results (we ignore the
10266     // top parts).
10267     SDValue LoProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmulouh,
10268                                         LHS, RHS, DAG, dl, MVT::v4i32);
10269 
10270     SDValue HiProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmsumuhm,
10271                                       LHS, RHSSwap, Zero, DAG, dl, MVT::v4i32);
10272     // Shift the high parts up 16 bits.
10273     HiProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vslw, HiProd,
10274                               Neg16, DAG, dl);
10275     return DAG.getNode(ISD::ADD, dl, MVT::v4i32, LoProd, HiProd);
10276   } else if (Op.getValueType() == MVT::v8i16) {
10277     SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1);
10278 
10279     SDValue Zero = BuildSplatI(0, 1, MVT::v8i16, DAG, dl);
10280 
10281     return BuildIntrinsicOp(Intrinsic::ppc_altivec_vmladduhm,
10282                             LHS, RHS, Zero, DAG, dl);
10283   } else if (Op.getValueType() == MVT::v16i8) {
10284     SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1);
10285     bool isLittleEndian = Subtarget.isLittleEndian();
10286 
10287     // Multiply the even 8-bit parts, producing 16-bit sums.
10288     SDValue EvenParts = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmuleub,
10289                                            LHS, RHS, DAG, dl, MVT::v8i16);
10290     EvenParts = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, EvenParts);
10291 
10292     // Multiply the odd 8-bit parts, producing 16-bit sums.
10293     SDValue OddParts = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmuloub,
10294                                           LHS, RHS, DAG, dl, MVT::v8i16);
10295     OddParts = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OddParts);
10296 
10297     // Merge the results together.  Because vmuleub and vmuloub are
10298     // instructions with a big-endian bias, we must reverse the
10299     // element numbering and reverse the meaning of "odd" and "even"
10300     // when generating little endian code.
10301     int Ops[16];
10302     for (unsigned i = 0; i != 8; ++i) {
10303       if (isLittleEndian) {
10304         Ops[i*2  ] = 2*i;
10305         Ops[i*2+1] = 2*i+16;
10306       } else {
10307         Ops[i*2  ] = 2*i+1;
10308         Ops[i*2+1] = 2*i+1+16;
10309       }
10310     }
10311     if (isLittleEndian)
10312       return DAG.getVectorShuffle(MVT::v16i8, dl, OddParts, EvenParts, Ops);
10313     else
10314       return DAG.getVectorShuffle(MVT::v16i8, dl, EvenParts, OddParts, Ops);
10315   } else {
10316     llvm_unreachable("Unknown mul to lower!");
10317   }
10318 }
10319 
10320 SDValue PPCTargetLowering::LowerABS(SDValue Op, SelectionDAG &DAG) const {
10321 
10322   assert(Op.getOpcode() == ISD::ABS && "Should only be called for ISD::ABS");
10323 
10324   EVT VT = Op.getValueType();
10325   assert(VT.isVector() &&
10326          "Only set vector abs as custom, scalar abs shouldn't reach here!");
10327   assert((VT == MVT::v2i64 || VT == MVT::v4i32 || VT == MVT::v8i16 ||
10328           VT == MVT::v16i8) &&
10329          "Unexpected vector element type!");
10330   assert((VT != MVT::v2i64 || Subtarget.hasP8Altivec()) &&
10331          "Current subtarget doesn't support smax v2i64!");
10332 
10333   // For vector abs, it can be lowered to:
10334   // abs x
10335   // ==>
10336   // y = -x
10337   // smax(x, y)
10338 
10339   SDLoc dl(Op);
10340   SDValue X = Op.getOperand(0);
10341   SDValue Zero = DAG.getConstant(0, dl, VT);
10342   SDValue Y = DAG.getNode(ISD::SUB, dl, VT, Zero, X);
10343 
10344   // SMAX patch https://reviews.llvm.org/D47332
10345   // hasn't landed yet, so use intrinsic first here.
10346   // TODO: Should use SMAX directly once SMAX patch landed
10347   Intrinsic::ID BifID = Intrinsic::ppc_altivec_vmaxsw;
10348   if (VT == MVT::v2i64)
10349     BifID = Intrinsic::ppc_altivec_vmaxsd;
10350   else if (VT == MVT::v8i16)
10351     BifID = Intrinsic::ppc_altivec_vmaxsh;
10352   else if (VT == MVT::v16i8)
10353     BifID = Intrinsic::ppc_altivec_vmaxsb;
10354 
10355   return BuildIntrinsicOp(BifID, X, Y, DAG, dl, VT);
10356 }
10357 
10358 // Custom lowering for fpext vf32 to v2f64
10359 SDValue PPCTargetLowering::LowerFP_EXTEND(SDValue Op, SelectionDAG &DAG) const {
10360 
10361   assert(Op.getOpcode() == ISD::FP_EXTEND &&
10362          "Should only be called for ISD::FP_EXTEND");
10363 
10364   // We only want to custom lower an extend from v2f32 to v2f64.
10365   if (Op.getValueType() != MVT::v2f64 ||
10366       Op.getOperand(0).getValueType() != MVT::v2f32)
10367     return SDValue();
10368 
10369   SDLoc dl(Op);
10370   SDValue Op0 = Op.getOperand(0);
10371 
10372   switch (Op0.getOpcode()) {
10373   default:
10374     return SDValue();
10375   case ISD::EXTRACT_SUBVECTOR: {
10376     assert(Op0.getNumOperands() == 2 &&
10377            isa<ConstantSDNode>(Op0->getOperand(1)) &&
10378            "Node should have 2 operands with second one being a constant!");
10379 
10380     if (Op0.getOperand(0).getValueType() != MVT::v4f32)
10381       return SDValue();
10382 
10383     // Custom lower is only done for high or low doubleword.
10384     int Idx = cast<ConstantSDNode>(Op0.getOperand(1))->getZExtValue();
10385     if (Idx % 2 != 0)
10386       return SDValue();
10387 
10388     // Since input is v4f32, at this point Idx is either 0 or 2.
10389     // Shift to get the doubleword position we want.
10390     int DWord = Idx >> 1;
10391 
10392     // High and low word positions are different on little endian.
10393     if (Subtarget.isLittleEndian())
10394       DWord ^= 0x1;
10395 
10396     return DAG.getNode(PPCISD::FP_EXTEND_HALF, dl, MVT::v2f64,
10397                        Op0.getOperand(0), DAG.getConstant(DWord, dl, MVT::i32));
10398   }
10399   case ISD::FADD:
10400   case ISD::FMUL:
10401   case ISD::FSUB: {
10402     SDValue NewLoad[2];
10403     for (unsigned i = 0, ie = Op0.getNumOperands(); i != ie; ++i) {
10404       // Ensure both input are loads.
10405       SDValue LdOp = Op0.getOperand(i);
10406       if (LdOp.getOpcode() != ISD::LOAD)
10407         return SDValue();
10408       // Generate new load node.
10409       LoadSDNode *LD = cast<LoadSDNode>(LdOp);
10410       SDValue LoadOps[] = {LD->getChain(), LD->getBasePtr()};
10411       NewLoad[i] = DAG.getMemIntrinsicNode(
10412           PPCISD::LD_VSX_LH, dl, DAG.getVTList(MVT::v4f32, MVT::Other), LoadOps,
10413           LD->getMemoryVT(), LD->getMemOperand());
10414     }
10415     SDValue NewOp =
10416         DAG.getNode(Op0.getOpcode(), SDLoc(Op0), MVT::v4f32, NewLoad[0],
10417                     NewLoad[1], Op0.getNode()->getFlags());
10418     return DAG.getNode(PPCISD::FP_EXTEND_HALF, dl, MVT::v2f64, NewOp,
10419                        DAG.getConstant(0, dl, MVT::i32));
10420   }
10421   case ISD::LOAD: {
10422     LoadSDNode *LD = cast<LoadSDNode>(Op0);
10423     SDValue LoadOps[] = {LD->getChain(), LD->getBasePtr()};
10424     SDValue NewLd = DAG.getMemIntrinsicNode(
10425         PPCISD::LD_VSX_LH, dl, DAG.getVTList(MVT::v4f32, MVT::Other), LoadOps,
10426         LD->getMemoryVT(), LD->getMemOperand());
10427     return DAG.getNode(PPCISD::FP_EXTEND_HALF, dl, MVT::v2f64, NewLd,
10428                        DAG.getConstant(0, dl, MVT::i32));
10429   }
10430   }
10431   llvm_unreachable("ERROR:Should return for all cases within swtich.");
10432 }
10433 
10434 /// LowerOperation - Provide custom lowering hooks for some operations.
10435 ///
10436 SDValue PPCTargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
10437   switch (Op.getOpcode()) {
10438   default: llvm_unreachable("Wasn't expecting to be able to lower this!");
10439   case ISD::ConstantPool:       return LowerConstantPool(Op, DAG);
10440   case ISD::BlockAddress:       return LowerBlockAddress(Op, DAG);
10441   case ISD::GlobalAddress:      return LowerGlobalAddress(Op, DAG);
10442   case ISD::GlobalTLSAddress:   return LowerGlobalTLSAddress(Op, DAG);
10443   case ISD::JumpTable:          return LowerJumpTable(Op, DAG);
10444   case ISD::SETCC:              return LowerSETCC(Op, DAG);
10445   case ISD::INIT_TRAMPOLINE:    return LowerINIT_TRAMPOLINE(Op, DAG);
10446   case ISD::ADJUST_TRAMPOLINE:  return LowerADJUST_TRAMPOLINE(Op, DAG);
10447 
10448   // Variable argument lowering.
10449   case ISD::VASTART:            return LowerVASTART(Op, DAG);
10450   case ISD::VAARG:              return LowerVAARG(Op, DAG);
10451   case ISD::VACOPY:             return LowerVACOPY(Op, DAG);
10452 
10453   case ISD::STACKRESTORE:       return LowerSTACKRESTORE(Op, DAG);
10454   case ISD::DYNAMIC_STACKALLOC: return LowerDYNAMIC_STACKALLOC(Op, DAG);
10455   case ISD::GET_DYNAMIC_AREA_OFFSET:
10456     return LowerGET_DYNAMIC_AREA_OFFSET(Op, DAG);
10457 
10458   // Exception handling lowering.
10459   case ISD::EH_DWARF_CFA:       return LowerEH_DWARF_CFA(Op, DAG);
10460   case ISD::EH_SJLJ_SETJMP:     return lowerEH_SJLJ_SETJMP(Op, DAG);
10461   case ISD::EH_SJLJ_LONGJMP:    return lowerEH_SJLJ_LONGJMP(Op, DAG);
10462 
10463   case ISD::LOAD:               return LowerLOAD(Op, DAG);
10464   case ISD::STORE:              return LowerSTORE(Op, DAG);
10465   case ISD::TRUNCATE:           return LowerTRUNCATE(Op, DAG);
10466   case ISD::SELECT_CC:          return LowerSELECT_CC(Op, DAG);
10467   case ISD::FP_TO_UINT:
10468   case ISD::FP_TO_SINT:         return LowerFP_TO_INT(Op, DAG, SDLoc(Op));
10469   case ISD::UINT_TO_FP:
10470   case ISD::SINT_TO_FP:         return LowerINT_TO_FP(Op, DAG);
10471   case ISD::FLT_ROUNDS_:        return LowerFLT_ROUNDS_(Op, DAG);
10472 
10473   // Lower 64-bit shifts.
10474   case ISD::SHL_PARTS:          return LowerSHL_PARTS(Op, DAG);
10475   case ISD::SRL_PARTS:          return LowerSRL_PARTS(Op, DAG);
10476   case ISD::SRA_PARTS:          return LowerSRA_PARTS(Op, DAG);
10477 
10478   // Vector-related lowering.
10479   case ISD::BUILD_VECTOR:       return LowerBUILD_VECTOR(Op, DAG);
10480   case ISD::VECTOR_SHUFFLE:     return LowerVECTOR_SHUFFLE(Op, DAG);
10481   case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG);
10482   case ISD::SCALAR_TO_VECTOR:   return LowerSCALAR_TO_VECTOR(Op, DAG);
10483   case ISD::EXTRACT_VECTOR_ELT: return LowerEXTRACT_VECTOR_ELT(Op, DAG);
10484   case ISD::INSERT_VECTOR_ELT:  return LowerINSERT_VECTOR_ELT(Op, DAG);
10485   case ISD::MUL:                return LowerMUL(Op, DAG);
10486   case ISD::ABS:                return LowerABS(Op, DAG);
10487   case ISD::FP_EXTEND:          return LowerFP_EXTEND(Op, DAG);
10488 
10489   // For counter-based loop handling.
10490   case ISD::INTRINSIC_W_CHAIN:  return SDValue();
10491 
10492   case ISD::BITCAST:            return LowerBITCAST(Op, DAG);
10493 
10494   // Frame & Return address.
10495   case ISD::RETURNADDR:         return LowerRETURNADDR(Op, DAG);
10496   case ISD::FRAMEADDR:          return LowerFRAMEADDR(Op, DAG);
10497 
10498   case ISD::INTRINSIC_VOID:
10499     return LowerINTRINSIC_VOID(Op, DAG);
10500   case ISD::SREM:
10501   case ISD::UREM:
10502     return LowerREM(Op, DAG);
10503   case ISD::BSWAP:
10504     return LowerBSWAP(Op, DAG);
10505   case ISD::ATOMIC_CMP_SWAP:
10506     return LowerATOMIC_CMP_SWAP(Op, DAG);
10507   }
10508 }
10509 
10510 void PPCTargetLowering::ReplaceNodeResults(SDNode *N,
10511                                            SmallVectorImpl<SDValue>&Results,
10512                                            SelectionDAG &DAG) const {
10513   SDLoc dl(N);
10514   switch (N->getOpcode()) {
10515   default:
10516     llvm_unreachable("Do not know how to custom type legalize this operation!");
10517   case ISD::READCYCLECOUNTER: {
10518     SDVTList VTs = DAG.getVTList(MVT::i32, MVT::i32, MVT::Other);
10519     SDValue RTB = DAG.getNode(PPCISD::READ_TIME_BASE, dl, VTs, N->getOperand(0));
10520 
10521     Results.push_back(RTB);
10522     Results.push_back(RTB.getValue(1));
10523     Results.push_back(RTB.getValue(2));
10524     break;
10525   }
10526   case ISD::INTRINSIC_W_CHAIN: {
10527     if (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue() !=
10528         Intrinsic::loop_decrement)
10529       break;
10530 
10531     assert(N->getValueType(0) == MVT::i1 &&
10532            "Unexpected result type for CTR decrement intrinsic");
10533     EVT SVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(),
10534                                  N->getValueType(0));
10535     SDVTList VTs = DAG.getVTList(SVT, MVT::Other);
10536     SDValue NewInt = DAG.getNode(N->getOpcode(), dl, VTs, N->getOperand(0),
10537                                  N->getOperand(1));
10538 
10539     Results.push_back(DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, NewInt));
10540     Results.push_back(NewInt.getValue(1));
10541     break;
10542   }
10543   case ISD::VAARG: {
10544     if (!Subtarget.isSVR4ABI() || Subtarget.isPPC64())
10545       return;
10546 
10547     EVT VT = N->getValueType(0);
10548 
10549     if (VT == MVT::i64) {
10550       SDValue NewNode = LowerVAARG(SDValue(N, 1), DAG);
10551 
10552       Results.push_back(NewNode);
10553       Results.push_back(NewNode.getValue(1));
10554     }
10555     return;
10556   }
10557   case ISD::FP_TO_SINT:
10558   case ISD::FP_TO_UINT:
10559     // LowerFP_TO_INT() can only handle f32 and f64.
10560     if (N->getOperand(0).getValueType() == MVT::ppcf128)
10561       return;
10562     Results.push_back(LowerFP_TO_INT(SDValue(N, 0), DAG, dl));
10563     return;
10564   case ISD::TRUNCATE: {
10565     EVT TrgVT = N->getValueType(0);
10566     EVT OpVT = N->getOperand(0).getValueType();
10567     if (TrgVT.isVector() &&
10568         isOperationCustom(N->getOpcode(), TrgVT) &&
10569         OpVT.getSizeInBits() <= 128 &&
10570         isPowerOf2_32(OpVT.getVectorElementType().getSizeInBits()))
10571       Results.push_back(LowerTRUNCATEVector(SDValue(N, 0), DAG));
10572     return;
10573   }
10574   case ISD::BITCAST:
10575     // Don't handle bitcast here.
10576     return;
10577   }
10578 }
10579 
10580 //===----------------------------------------------------------------------===//
10581 //  Other Lowering Code
10582 //===----------------------------------------------------------------------===//
10583 
10584 static Instruction* callIntrinsic(IRBuilder<> &Builder, Intrinsic::ID Id) {
10585   Module *M = Builder.GetInsertBlock()->getParent()->getParent();
10586   Function *Func = Intrinsic::getDeclaration(M, Id);
10587   return Builder.CreateCall(Func, {});
10588 }
10589 
10590 // The mappings for emitLeading/TrailingFence is taken from
10591 // http://www.cl.cam.ac.uk/~pes20/cpp/cpp0xmappings.html
10592 Instruction *PPCTargetLowering::emitLeadingFence(IRBuilder<> &Builder,
10593                                                  Instruction *Inst,
10594                                                  AtomicOrdering Ord) const {
10595   if (Ord == AtomicOrdering::SequentiallyConsistent)
10596     return callIntrinsic(Builder, Intrinsic::ppc_sync);
10597   if (isReleaseOrStronger(Ord))
10598     return callIntrinsic(Builder, Intrinsic::ppc_lwsync);
10599   return nullptr;
10600 }
10601 
10602 Instruction *PPCTargetLowering::emitTrailingFence(IRBuilder<> &Builder,
10603                                                   Instruction *Inst,
10604                                                   AtomicOrdering Ord) const {
10605   if (Inst->hasAtomicLoad() && isAcquireOrStronger(Ord)) {
10606     // See http://www.cl.cam.ac.uk/~pes20/cpp/cpp0xmappings.html and
10607     // http://www.rdrop.com/users/paulmck/scalability/paper/N2745r.2011.03.04a.html
10608     // and http://www.cl.cam.ac.uk/~pes20/cppppc/ for justification.
10609     if (isa<LoadInst>(Inst) && Subtarget.isPPC64())
10610       return Builder.CreateCall(
10611           Intrinsic::getDeclaration(
10612               Builder.GetInsertBlock()->getParent()->getParent(),
10613               Intrinsic::ppc_cfence, {Inst->getType()}),
10614           {Inst});
10615     // FIXME: Can use isync for rmw operation.
10616     return callIntrinsic(Builder, Intrinsic::ppc_lwsync);
10617   }
10618   return nullptr;
10619 }
10620 
10621 MachineBasicBlock *
10622 PPCTargetLowering::EmitAtomicBinary(MachineInstr &MI, MachineBasicBlock *BB,
10623                                     unsigned AtomicSize,
10624                                     unsigned BinOpcode,
10625                                     unsigned CmpOpcode,
10626                                     unsigned CmpPred) const {
10627   // This also handles ATOMIC_SWAP, indicated by BinOpcode==0.
10628   const TargetInstrInfo *TII = Subtarget.getInstrInfo();
10629 
10630   auto LoadMnemonic = PPC::LDARX;
10631   auto StoreMnemonic = PPC::STDCX;
10632   switch (AtomicSize) {
10633   default:
10634     llvm_unreachable("Unexpected size of atomic entity");
10635   case 1:
10636     LoadMnemonic = PPC::LBARX;
10637     StoreMnemonic = PPC::STBCX;
10638     assert(Subtarget.hasPartwordAtomics() && "Call this only with size >=4");
10639     break;
10640   case 2:
10641     LoadMnemonic = PPC::LHARX;
10642     StoreMnemonic = PPC::STHCX;
10643     assert(Subtarget.hasPartwordAtomics() && "Call this only with size >=4");
10644     break;
10645   case 4:
10646     LoadMnemonic = PPC::LWARX;
10647     StoreMnemonic = PPC::STWCX;
10648     break;
10649   case 8:
10650     LoadMnemonic = PPC::LDARX;
10651     StoreMnemonic = PPC::STDCX;
10652     break;
10653   }
10654 
10655   const BasicBlock *LLVM_BB = BB->getBasicBlock();
10656   MachineFunction *F = BB->getParent();
10657   MachineFunction::iterator It = ++BB->getIterator();
10658 
10659   Register dest = MI.getOperand(0).getReg();
10660   Register ptrA = MI.getOperand(1).getReg();
10661   Register ptrB = MI.getOperand(2).getReg();
10662   Register incr = MI.getOperand(3).getReg();
10663   DebugLoc dl = MI.getDebugLoc();
10664 
10665   MachineBasicBlock *loopMBB = F->CreateMachineBasicBlock(LLVM_BB);
10666   MachineBasicBlock *loop2MBB =
10667     CmpOpcode ? F->CreateMachineBasicBlock(LLVM_BB) : nullptr;
10668   MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB);
10669   F->insert(It, loopMBB);
10670   if (CmpOpcode)
10671     F->insert(It, loop2MBB);
10672   F->insert(It, exitMBB);
10673   exitMBB->splice(exitMBB->begin(), BB,
10674                   std::next(MachineBasicBlock::iterator(MI)), BB->end());
10675   exitMBB->transferSuccessorsAndUpdatePHIs(BB);
10676 
10677   MachineRegisterInfo &RegInfo = F->getRegInfo();
10678   Register TmpReg = (!BinOpcode) ? incr :
10679     RegInfo.createVirtualRegister( AtomicSize == 8 ? &PPC::G8RCRegClass
10680                                            : &PPC::GPRCRegClass);
10681 
10682   //  thisMBB:
10683   //   ...
10684   //   fallthrough --> loopMBB
10685   BB->addSuccessor(loopMBB);
10686 
10687   //  loopMBB:
10688   //   l[wd]arx dest, ptr
10689   //   add r0, dest, incr
10690   //   st[wd]cx. r0, ptr
10691   //   bne- loopMBB
10692   //   fallthrough --> exitMBB
10693 
10694   // For max/min...
10695   //  loopMBB:
10696   //   l[wd]arx dest, ptr
10697   //   cmpl?[wd] incr, dest
10698   //   bgt exitMBB
10699   //  loop2MBB:
10700   //   st[wd]cx. dest, ptr
10701   //   bne- loopMBB
10702   //   fallthrough --> exitMBB
10703 
10704   BB = loopMBB;
10705   BuildMI(BB, dl, TII->get(LoadMnemonic), dest)
10706     .addReg(ptrA).addReg(ptrB);
10707   if (BinOpcode)
10708     BuildMI(BB, dl, TII->get(BinOpcode), TmpReg).addReg(incr).addReg(dest);
10709   if (CmpOpcode) {
10710     // Signed comparisons of byte or halfword values must be sign-extended.
10711     if (CmpOpcode == PPC::CMPW && AtomicSize < 4) {
10712       Register ExtReg = RegInfo.createVirtualRegister(&PPC::GPRCRegClass);
10713       BuildMI(BB, dl, TII->get(AtomicSize == 1 ? PPC::EXTSB : PPC::EXTSH),
10714               ExtReg).addReg(dest);
10715       BuildMI(BB, dl, TII->get(CmpOpcode), PPC::CR0)
10716         .addReg(incr).addReg(ExtReg);
10717     } else
10718       BuildMI(BB, dl, TII->get(CmpOpcode), PPC::CR0)
10719         .addReg(incr).addReg(dest);
10720 
10721     BuildMI(BB, dl, TII->get(PPC::BCC))
10722       .addImm(CmpPred).addReg(PPC::CR0).addMBB(exitMBB);
10723     BB->addSuccessor(loop2MBB);
10724     BB->addSuccessor(exitMBB);
10725     BB = loop2MBB;
10726   }
10727   BuildMI(BB, dl, TII->get(StoreMnemonic))
10728     .addReg(TmpReg).addReg(ptrA).addReg(ptrB);
10729   BuildMI(BB, dl, TII->get(PPC::BCC))
10730     .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(loopMBB);
10731   BB->addSuccessor(loopMBB);
10732   BB->addSuccessor(exitMBB);
10733 
10734   //  exitMBB:
10735   //   ...
10736   BB = exitMBB;
10737   return BB;
10738 }
10739 
10740 MachineBasicBlock *PPCTargetLowering::EmitPartwordAtomicBinary(
10741     MachineInstr &MI, MachineBasicBlock *BB,
10742     bool is8bit, // operation
10743     unsigned BinOpcode, unsigned CmpOpcode, unsigned CmpPred) const {
10744   // If we support part-word atomic mnemonics, just use them
10745   if (Subtarget.hasPartwordAtomics())
10746     return EmitAtomicBinary(MI, BB, is8bit ? 1 : 2, BinOpcode, CmpOpcode,
10747                             CmpPred);
10748 
10749   // This also handles ATOMIC_SWAP, indicated by BinOpcode==0.
10750   const TargetInstrInfo *TII = Subtarget.getInstrInfo();
10751   // In 64 bit mode we have to use 64 bits for addresses, even though the
10752   // lwarx/stwcx are 32 bits.  With the 32-bit atomics we can use address
10753   // registers without caring whether they're 32 or 64, but here we're
10754   // doing actual arithmetic on the addresses.
10755   bool is64bit = Subtarget.isPPC64();
10756   bool isLittleEndian = Subtarget.isLittleEndian();
10757   unsigned ZeroReg = is64bit ? PPC::ZERO8 : PPC::ZERO;
10758 
10759   const BasicBlock *LLVM_BB = BB->getBasicBlock();
10760   MachineFunction *F = BB->getParent();
10761   MachineFunction::iterator It = ++BB->getIterator();
10762 
10763   Register dest = MI.getOperand(0).getReg();
10764   Register ptrA = MI.getOperand(1).getReg();
10765   Register ptrB = MI.getOperand(2).getReg();
10766   Register incr = MI.getOperand(3).getReg();
10767   DebugLoc dl = MI.getDebugLoc();
10768 
10769   MachineBasicBlock *loopMBB = F->CreateMachineBasicBlock(LLVM_BB);
10770   MachineBasicBlock *loop2MBB =
10771       CmpOpcode ? F->CreateMachineBasicBlock(LLVM_BB) : nullptr;
10772   MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB);
10773   F->insert(It, loopMBB);
10774   if (CmpOpcode)
10775     F->insert(It, loop2MBB);
10776   F->insert(It, exitMBB);
10777   exitMBB->splice(exitMBB->begin(), BB,
10778                   std::next(MachineBasicBlock::iterator(MI)), BB->end());
10779   exitMBB->transferSuccessorsAndUpdatePHIs(BB);
10780 
10781   MachineRegisterInfo &RegInfo = F->getRegInfo();
10782   const TargetRegisterClass *RC =
10783       is64bit ? &PPC::G8RCRegClass : &PPC::GPRCRegClass;
10784   const TargetRegisterClass *GPRC = &PPC::GPRCRegClass;
10785 
10786   Register PtrReg = RegInfo.createVirtualRegister(RC);
10787   Register Shift1Reg = RegInfo.createVirtualRegister(GPRC);
10788   Register ShiftReg =
10789       isLittleEndian ? Shift1Reg : RegInfo.createVirtualRegister(GPRC);
10790   Register Incr2Reg = RegInfo.createVirtualRegister(GPRC);
10791   Register MaskReg = RegInfo.createVirtualRegister(GPRC);
10792   Register Mask2Reg = RegInfo.createVirtualRegister(GPRC);
10793   Register Mask3Reg = RegInfo.createVirtualRegister(GPRC);
10794   Register Tmp2Reg = RegInfo.createVirtualRegister(GPRC);
10795   Register Tmp3Reg = RegInfo.createVirtualRegister(GPRC);
10796   Register Tmp4Reg = RegInfo.createVirtualRegister(GPRC);
10797   Register TmpDestReg = RegInfo.createVirtualRegister(GPRC);
10798   Register Ptr1Reg;
10799   Register TmpReg =
10800       (!BinOpcode) ? Incr2Reg : RegInfo.createVirtualRegister(GPRC);
10801 
10802   //  thisMBB:
10803   //   ...
10804   //   fallthrough --> loopMBB
10805   BB->addSuccessor(loopMBB);
10806 
10807   // The 4-byte load must be aligned, while a char or short may be
10808   // anywhere in the word.  Hence all this nasty bookkeeping code.
10809   //   add ptr1, ptrA, ptrB [copy if ptrA==0]
10810   //   rlwinm shift1, ptr1, 3, 27, 28 [3, 27, 27]
10811   //   xori shift, shift1, 24 [16]
10812   //   rlwinm ptr, ptr1, 0, 0, 29
10813   //   slw incr2, incr, shift
10814   //   li mask2, 255 [li mask3, 0; ori mask2, mask3, 65535]
10815   //   slw mask, mask2, shift
10816   //  loopMBB:
10817   //   lwarx tmpDest, ptr
10818   //   add tmp, tmpDest, incr2
10819   //   andc tmp2, tmpDest, mask
10820   //   and tmp3, tmp, mask
10821   //   or tmp4, tmp3, tmp2
10822   //   stwcx. tmp4, ptr
10823   //   bne- loopMBB
10824   //   fallthrough --> exitMBB
10825   //   srw dest, tmpDest, shift
10826   if (ptrA != ZeroReg) {
10827     Ptr1Reg = RegInfo.createVirtualRegister(RC);
10828     BuildMI(BB, dl, TII->get(is64bit ? PPC::ADD8 : PPC::ADD4), Ptr1Reg)
10829         .addReg(ptrA)
10830         .addReg(ptrB);
10831   } else {
10832     Ptr1Reg = ptrB;
10833   }
10834   // We need use 32-bit subregister to avoid mismatch register class in 64-bit
10835   // mode.
10836   BuildMI(BB, dl, TII->get(PPC::RLWINM), Shift1Reg)
10837       .addReg(Ptr1Reg, 0, is64bit ? PPC::sub_32 : 0)
10838       .addImm(3)
10839       .addImm(27)
10840       .addImm(is8bit ? 28 : 27);
10841   if (!isLittleEndian)
10842     BuildMI(BB, dl, TII->get(PPC::XORI), ShiftReg)
10843         .addReg(Shift1Reg)
10844         .addImm(is8bit ? 24 : 16);
10845   if (is64bit)
10846     BuildMI(BB, dl, TII->get(PPC::RLDICR), PtrReg)
10847         .addReg(Ptr1Reg)
10848         .addImm(0)
10849         .addImm(61);
10850   else
10851     BuildMI(BB, dl, TII->get(PPC::RLWINM), PtrReg)
10852         .addReg(Ptr1Reg)
10853         .addImm(0)
10854         .addImm(0)
10855         .addImm(29);
10856   BuildMI(BB, dl, TII->get(PPC::SLW), Incr2Reg).addReg(incr).addReg(ShiftReg);
10857   if (is8bit)
10858     BuildMI(BB, dl, TII->get(PPC::LI), Mask2Reg).addImm(255);
10859   else {
10860     BuildMI(BB, dl, TII->get(PPC::LI), Mask3Reg).addImm(0);
10861     BuildMI(BB, dl, TII->get(PPC::ORI), Mask2Reg)
10862         .addReg(Mask3Reg)
10863         .addImm(65535);
10864   }
10865   BuildMI(BB, dl, TII->get(PPC::SLW), MaskReg)
10866       .addReg(Mask2Reg)
10867       .addReg(ShiftReg);
10868 
10869   BB = loopMBB;
10870   BuildMI(BB, dl, TII->get(PPC::LWARX), TmpDestReg)
10871       .addReg(ZeroReg)
10872       .addReg(PtrReg);
10873   if (BinOpcode)
10874     BuildMI(BB, dl, TII->get(BinOpcode), TmpReg)
10875         .addReg(Incr2Reg)
10876         .addReg(TmpDestReg);
10877   BuildMI(BB, dl, TII->get(PPC::ANDC), Tmp2Reg)
10878       .addReg(TmpDestReg)
10879       .addReg(MaskReg);
10880   BuildMI(BB, dl, TII->get(PPC::AND), Tmp3Reg).addReg(TmpReg).addReg(MaskReg);
10881   if (CmpOpcode) {
10882     // For unsigned comparisons, we can directly compare the shifted values.
10883     // For signed comparisons we shift and sign extend.
10884     Register SReg = RegInfo.createVirtualRegister(GPRC);
10885     BuildMI(BB, dl, TII->get(PPC::AND), SReg)
10886         .addReg(TmpDestReg)
10887         .addReg(MaskReg);
10888     unsigned ValueReg = SReg;
10889     unsigned CmpReg = Incr2Reg;
10890     if (CmpOpcode == PPC::CMPW) {
10891       ValueReg = RegInfo.createVirtualRegister(GPRC);
10892       BuildMI(BB, dl, TII->get(PPC::SRW), ValueReg)
10893           .addReg(SReg)
10894           .addReg(ShiftReg);
10895       Register ValueSReg = RegInfo.createVirtualRegister(GPRC);
10896       BuildMI(BB, dl, TII->get(is8bit ? PPC::EXTSB : PPC::EXTSH), ValueSReg)
10897           .addReg(ValueReg);
10898       ValueReg = ValueSReg;
10899       CmpReg = incr;
10900     }
10901     BuildMI(BB, dl, TII->get(CmpOpcode), PPC::CR0)
10902         .addReg(CmpReg)
10903         .addReg(ValueReg);
10904     BuildMI(BB, dl, TII->get(PPC::BCC))
10905         .addImm(CmpPred)
10906         .addReg(PPC::CR0)
10907         .addMBB(exitMBB);
10908     BB->addSuccessor(loop2MBB);
10909     BB->addSuccessor(exitMBB);
10910     BB = loop2MBB;
10911   }
10912   BuildMI(BB, dl, TII->get(PPC::OR), Tmp4Reg).addReg(Tmp3Reg).addReg(Tmp2Reg);
10913   BuildMI(BB, dl, TII->get(PPC::STWCX))
10914       .addReg(Tmp4Reg)
10915       .addReg(ZeroReg)
10916       .addReg(PtrReg);
10917   BuildMI(BB, dl, TII->get(PPC::BCC))
10918       .addImm(PPC::PRED_NE)
10919       .addReg(PPC::CR0)
10920       .addMBB(loopMBB);
10921   BB->addSuccessor(loopMBB);
10922   BB->addSuccessor(exitMBB);
10923 
10924   //  exitMBB:
10925   //   ...
10926   BB = exitMBB;
10927   BuildMI(*BB, BB->begin(), dl, TII->get(PPC::SRW), dest)
10928       .addReg(TmpDestReg)
10929       .addReg(ShiftReg);
10930   return BB;
10931 }
10932 
10933 llvm::MachineBasicBlock *
10934 PPCTargetLowering::emitEHSjLjSetJmp(MachineInstr &MI,
10935                                     MachineBasicBlock *MBB) const {
10936   DebugLoc DL = MI.getDebugLoc();
10937   const TargetInstrInfo *TII = Subtarget.getInstrInfo();
10938   const PPCRegisterInfo *TRI = Subtarget.getRegisterInfo();
10939 
10940   MachineFunction *MF = MBB->getParent();
10941   MachineRegisterInfo &MRI = MF->getRegInfo();
10942 
10943   const BasicBlock *BB = MBB->getBasicBlock();
10944   MachineFunction::iterator I = ++MBB->getIterator();
10945 
10946   Register DstReg = MI.getOperand(0).getReg();
10947   const TargetRegisterClass *RC = MRI.getRegClass(DstReg);
10948   assert(TRI->isTypeLegalForClass(*RC, MVT::i32) && "Invalid destination!");
10949   Register mainDstReg = MRI.createVirtualRegister(RC);
10950   Register restoreDstReg = MRI.createVirtualRegister(RC);
10951 
10952   MVT PVT = getPointerTy(MF->getDataLayout());
10953   assert((PVT == MVT::i64 || PVT == MVT::i32) &&
10954          "Invalid Pointer Size!");
10955   // For v = setjmp(buf), we generate
10956   //
10957   // thisMBB:
10958   //  SjLjSetup mainMBB
10959   //  bl mainMBB
10960   //  v_restore = 1
10961   //  b sinkMBB
10962   //
10963   // mainMBB:
10964   //  buf[LabelOffset] = LR
10965   //  v_main = 0
10966   //
10967   // sinkMBB:
10968   //  v = phi(main, restore)
10969   //
10970 
10971   MachineBasicBlock *thisMBB = MBB;
10972   MachineBasicBlock *mainMBB = MF->CreateMachineBasicBlock(BB);
10973   MachineBasicBlock *sinkMBB = MF->CreateMachineBasicBlock(BB);
10974   MF->insert(I, mainMBB);
10975   MF->insert(I, sinkMBB);
10976 
10977   MachineInstrBuilder MIB;
10978 
10979   // Transfer the remainder of BB and its successor edges to sinkMBB.
10980   sinkMBB->splice(sinkMBB->begin(), MBB,
10981                   std::next(MachineBasicBlock::iterator(MI)), MBB->end());
10982   sinkMBB->transferSuccessorsAndUpdatePHIs(MBB);
10983 
10984   // Note that the structure of the jmp_buf used here is not compatible
10985   // with that used by libc, and is not designed to be. Specifically, it
10986   // stores only those 'reserved' registers that LLVM does not otherwise
10987   // understand how to spill. Also, by convention, by the time this
10988   // intrinsic is called, Clang has already stored the frame address in the
10989   // first slot of the buffer and stack address in the third. Following the
10990   // X86 target code, we'll store the jump address in the second slot. We also
10991   // need to save the TOC pointer (R2) to handle jumps between shared
10992   // libraries, and that will be stored in the fourth slot. The thread
10993   // identifier (R13) is not affected.
10994 
10995   // thisMBB:
10996   const int64_t LabelOffset = 1 * PVT.getStoreSize();
10997   const int64_t TOCOffset   = 3 * PVT.getStoreSize();
10998   const int64_t BPOffset    = 4 * PVT.getStoreSize();
10999 
11000   // Prepare IP either in reg.
11001   const TargetRegisterClass *PtrRC = getRegClassFor(PVT);
11002   Register LabelReg = MRI.createVirtualRegister(PtrRC);
11003   Register BufReg = MI.getOperand(1).getReg();
11004 
11005   if (Subtarget.is64BitELFABI()) {
11006     setUsesTOCBasePtr(*MBB->getParent());
11007     MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::STD))
11008               .addReg(PPC::X2)
11009               .addImm(TOCOffset)
11010               .addReg(BufReg)
11011               .cloneMemRefs(MI);
11012   }
11013 
11014   // Naked functions never have a base pointer, and so we use r1. For all
11015   // other functions, this decision must be delayed until during PEI.
11016   unsigned BaseReg;
11017   if (MF->getFunction().hasFnAttribute(Attribute::Naked))
11018     BaseReg = Subtarget.isPPC64() ? PPC::X1 : PPC::R1;
11019   else
11020     BaseReg = Subtarget.isPPC64() ? PPC::BP8 : PPC::BP;
11021 
11022   MIB = BuildMI(*thisMBB, MI, DL,
11023                 TII->get(Subtarget.isPPC64() ? PPC::STD : PPC::STW))
11024             .addReg(BaseReg)
11025             .addImm(BPOffset)
11026             .addReg(BufReg)
11027             .cloneMemRefs(MI);
11028 
11029   // Setup
11030   MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::BCLalways)).addMBB(mainMBB);
11031   MIB.addRegMask(TRI->getNoPreservedMask());
11032 
11033   BuildMI(*thisMBB, MI, DL, TII->get(PPC::LI), restoreDstReg).addImm(1);
11034 
11035   MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::EH_SjLj_Setup))
11036           .addMBB(mainMBB);
11037   MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::B)).addMBB(sinkMBB);
11038 
11039   thisMBB->addSuccessor(mainMBB, BranchProbability::getZero());
11040   thisMBB->addSuccessor(sinkMBB, BranchProbability::getOne());
11041 
11042   // mainMBB:
11043   //  mainDstReg = 0
11044   MIB =
11045       BuildMI(mainMBB, DL,
11046               TII->get(Subtarget.isPPC64() ? PPC::MFLR8 : PPC::MFLR), LabelReg);
11047 
11048   // Store IP
11049   if (Subtarget.isPPC64()) {
11050     MIB = BuildMI(mainMBB, DL, TII->get(PPC::STD))
11051             .addReg(LabelReg)
11052             .addImm(LabelOffset)
11053             .addReg(BufReg);
11054   } else {
11055     MIB = BuildMI(mainMBB, DL, TII->get(PPC::STW))
11056             .addReg(LabelReg)
11057             .addImm(LabelOffset)
11058             .addReg(BufReg);
11059   }
11060   MIB.cloneMemRefs(MI);
11061 
11062   BuildMI(mainMBB, DL, TII->get(PPC::LI), mainDstReg).addImm(0);
11063   mainMBB->addSuccessor(sinkMBB);
11064 
11065   // sinkMBB:
11066   BuildMI(*sinkMBB, sinkMBB->begin(), DL,
11067           TII->get(PPC::PHI), DstReg)
11068     .addReg(mainDstReg).addMBB(mainMBB)
11069     .addReg(restoreDstReg).addMBB(thisMBB);
11070 
11071   MI.eraseFromParent();
11072   return sinkMBB;
11073 }
11074 
11075 MachineBasicBlock *
11076 PPCTargetLowering::emitEHSjLjLongJmp(MachineInstr &MI,
11077                                      MachineBasicBlock *MBB) const {
11078   DebugLoc DL = MI.getDebugLoc();
11079   const TargetInstrInfo *TII = Subtarget.getInstrInfo();
11080 
11081   MachineFunction *MF = MBB->getParent();
11082   MachineRegisterInfo &MRI = MF->getRegInfo();
11083 
11084   MVT PVT = getPointerTy(MF->getDataLayout());
11085   assert((PVT == MVT::i64 || PVT == MVT::i32) &&
11086          "Invalid Pointer Size!");
11087 
11088   const TargetRegisterClass *RC =
11089     (PVT == MVT::i64) ? &PPC::G8RCRegClass : &PPC::GPRCRegClass;
11090   Register Tmp = MRI.createVirtualRegister(RC);
11091   // Since FP is only updated here but NOT referenced, it's treated as GPR.
11092   unsigned FP  = (PVT == MVT::i64) ? PPC::X31 : PPC::R31;
11093   unsigned SP  = (PVT == MVT::i64) ? PPC::X1 : PPC::R1;
11094   unsigned BP =
11095       (PVT == MVT::i64)
11096           ? PPC::X30
11097           : (Subtarget.isSVR4ABI() && isPositionIndependent() ? PPC::R29
11098                                                               : PPC::R30);
11099 
11100   MachineInstrBuilder MIB;
11101 
11102   const int64_t LabelOffset = 1 * PVT.getStoreSize();
11103   const int64_t SPOffset    = 2 * PVT.getStoreSize();
11104   const int64_t TOCOffset   = 3 * PVT.getStoreSize();
11105   const int64_t BPOffset    = 4 * PVT.getStoreSize();
11106 
11107   Register BufReg = MI.getOperand(0).getReg();
11108 
11109   // Reload FP (the jumped-to function may not have had a
11110   // frame pointer, and if so, then its r31 will be restored
11111   // as necessary).
11112   if (PVT == MVT::i64) {
11113     MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), FP)
11114             .addImm(0)
11115             .addReg(BufReg);
11116   } else {
11117     MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), FP)
11118             .addImm(0)
11119             .addReg(BufReg);
11120   }
11121   MIB.cloneMemRefs(MI);
11122 
11123   // Reload IP
11124   if (PVT == MVT::i64) {
11125     MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), Tmp)
11126             .addImm(LabelOffset)
11127             .addReg(BufReg);
11128   } else {
11129     MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), Tmp)
11130             .addImm(LabelOffset)
11131             .addReg(BufReg);
11132   }
11133   MIB.cloneMemRefs(MI);
11134 
11135   // Reload SP
11136   if (PVT == MVT::i64) {
11137     MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), SP)
11138             .addImm(SPOffset)
11139             .addReg(BufReg);
11140   } else {
11141     MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), SP)
11142             .addImm(SPOffset)
11143             .addReg(BufReg);
11144   }
11145   MIB.cloneMemRefs(MI);
11146 
11147   // Reload BP
11148   if (PVT == MVT::i64) {
11149     MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), BP)
11150             .addImm(BPOffset)
11151             .addReg(BufReg);
11152   } else {
11153     MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), BP)
11154             .addImm(BPOffset)
11155             .addReg(BufReg);
11156   }
11157   MIB.cloneMemRefs(MI);
11158 
11159   // Reload TOC
11160   if (PVT == MVT::i64 && Subtarget.isSVR4ABI()) {
11161     setUsesTOCBasePtr(*MBB->getParent());
11162     MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), PPC::X2)
11163               .addImm(TOCOffset)
11164               .addReg(BufReg)
11165               .cloneMemRefs(MI);
11166   }
11167 
11168   // Jump
11169   BuildMI(*MBB, MI, DL,
11170           TII->get(PVT == MVT::i64 ? PPC::MTCTR8 : PPC::MTCTR)).addReg(Tmp);
11171   BuildMI(*MBB, MI, DL, TII->get(PVT == MVT::i64 ? PPC::BCTR8 : PPC::BCTR));
11172 
11173   MI.eraseFromParent();
11174   return MBB;
11175 }
11176 
11177 MachineBasicBlock *
11178 PPCTargetLowering::EmitInstrWithCustomInserter(MachineInstr &MI,
11179                                                MachineBasicBlock *BB) const {
11180   if (MI.getOpcode() == TargetOpcode::STACKMAP ||
11181       MI.getOpcode() == TargetOpcode::PATCHPOINT) {
11182     if (Subtarget.is64BitELFABI() &&
11183         MI.getOpcode() == TargetOpcode::PATCHPOINT) {
11184       // Call lowering should have added an r2 operand to indicate a dependence
11185       // on the TOC base pointer value. It can't however, because there is no
11186       // way to mark the dependence as implicit there, and so the stackmap code
11187       // will confuse it with a regular operand. Instead, add the dependence
11188       // here.
11189       MI.addOperand(MachineOperand::CreateReg(PPC::X2, false, true));
11190     }
11191 
11192     return emitPatchPoint(MI, BB);
11193   }
11194 
11195   if (MI.getOpcode() == PPC::EH_SjLj_SetJmp32 ||
11196       MI.getOpcode() == PPC::EH_SjLj_SetJmp64) {
11197     return emitEHSjLjSetJmp(MI, BB);
11198   } else if (MI.getOpcode() == PPC::EH_SjLj_LongJmp32 ||
11199              MI.getOpcode() == PPC::EH_SjLj_LongJmp64) {
11200     return emitEHSjLjLongJmp(MI, BB);
11201   }
11202 
11203   const TargetInstrInfo *TII = Subtarget.getInstrInfo();
11204 
11205   // To "insert" these instructions we actually have to insert their
11206   // control-flow patterns.
11207   const BasicBlock *LLVM_BB = BB->getBasicBlock();
11208   MachineFunction::iterator It = ++BB->getIterator();
11209 
11210   MachineFunction *F = BB->getParent();
11211 
11212   if (MI.getOpcode() == PPC::SELECT_CC_I4 ||
11213       MI.getOpcode() == PPC::SELECT_CC_I8 || MI.getOpcode() == PPC::SELECT_I4 ||
11214       MI.getOpcode() == PPC::SELECT_I8) {
11215     SmallVector<MachineOperand, 2> Cond;
11216     if (MI.getOpcode() == PPC::SELECT_CC_I4 ||
11217         MI.getOpcode() == PPC::SELECT_CC_I8)
11218       Cond.push_back(MI.getOperand(4));
11219     else
11220       Cond.push_back(MachineOperand::CreateImm(PPC::PRED_BIT_SET));
11221     Cond.push_back(MI.getOperand(1));
11222 
11223     DebugLoc dl = MI.getDebugLoc();
11224     TII->insertSelect(*BB, MI, dl, MI.getOperand(0).getReg(), Cond,
11225                       MI.getOperand(2).getReg(), MI.getOperand(3).getReg());
11226   } else if (MI.getOpcode() == PPC::SELECT_CC_F4 ||
11227              MI.getOpcode() == PPC::SELECT_CC_F8 ||
11228              MI.getOpcode() == PPC::SELECT_CC_F16 ||
11229              MI.getOpcode() == PPC::SELECT_CC_QFRC ||
11230              MI.getOpcode() == PPC::SELECT_CC_QSRC ||
11231              MI.getOpcode() == PPC::SELECT_CC_QBRC ||
11232              MI.getOpcode() == PPC::SELECT_CC_VRRC ||
11233              MI.getOpcode() == PPC::SELECT_CC_VSFRC ||
11234              MI.getOpcode() == PPC::SELECT_CC_VSSRC ||
11235              MI.getOpcode() == PPC::SELECT_CC_VSRC ||
11236              MI.getOpcode() == PPC::SELECT_CC_SPE4 ||
11237              MI.getOpcode() == PPC::SELECT_CC_SPE ||
11238              MI.getOpcode() == PPC::SELECT_F4 ||
11239              MI.getOpcode() == PPC::SELECT_F8 ||
11240              MI.getOpcode() == PPC::SELECT_F16 ||
11241              MI.getOpcode() == PPC::SELECT_QFRC ||
11242              MI.getOpcode() == PPC::SELECT_QSRC ||
11243              MI.getOpcode() == PPC::SELECT_QBRC ||
11244              MI.getOpcode() == PPC::SELECT_SPE ||
11245              MI.getOpcode() == PPC::SELECT_SPE4 ||
11246              MI.getOpcode() == PPC::SELECT_VRRC ||
11247              MI.getOpcode() == PPC::SELECT_VSFRC ||
11248              MI.getOpcode() == PPC::SELECT_VSSRC ||
11249              MI.getOpcode() == PPC::SELECT_VSRC) {
11250     // The incoming instruction knows the destination vreg to set, the
11251     // condition code register to branch on, the true/false values to
11252     // select between, and a branch opcode to use.
11253 
11254     //  thisMBB:
11255     //  ...
11256     //   TrueVal = ...
11257     //   cmpTY ccX, r1, r2
11258     //   bCC copy1MBB
11259     //   fallthrough --> copy0MBB
11260     MachineBasicBlock *thisMBB = BB;
11261     MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB);
11262     MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB);
11263     DebugLoc dl = MI.getDebugLoc();
11264     F->insert(It, copy0MBB);
11265     F->insert(It, sinkMBB);
11266 
11267     // Transfer the remainder of BB and its successor edges to sinkMBB.
11268     sinkMBB->splice(sinkMBB->begin(), BB,
11269                     std::next(MachineBasicBlock::iterator(MI)), BB->end());
11270     sinkMBB->transferSuccessorsAndUpdatePHIs(BB);
11271 
11272     // Next, add the true and fallthrough blocks as its successors.
11273     BB->addSuccessor(copy0MBB);
11274     BB->addSuccessor(sinkMBB);
11275 
11276     if (MI.getOpcode() == PPC::SELECT_I4 || MI.getOpcode() == PPC::SELECT_I8 ||
11277         MI.getOpcode() == PPC::SELECT_F4 || MI.getOpcode() == PPC::SELECT_F8 ||
11278         MI.getOpcode() == PPC::SELECT_F16 ||
11279         MI.getOpcode() == PPC::SELECT_SPE4 ||
11280         MI.getOpcode() == PPC::SELECT_SPE ||
11281         MI.getOpcode() == PPC::SELECT_QFRC ||
11282         MI.getOpcode() == PPC::SELECT_QSRC ||
11283         MI.getOpcode() == PPC::SELECT_QBRC ||
11284         MI.getOpcode() == PPC::SELECT_VRRC ||
11285         MI.getOpcode() == PPC::SELECT_VSFRC ||
11286         MI.getOpcode() == PPC::SELECT_VSSRC ||
11287         MI.getOpcode() == PPC::SELECT_VSRC) {
11288       BuildMI(BB, dl, TII->get(PPC::BC))
11289           .addReg(MI.getOperand(1).getReg())
11290           .addMBB(sinkMBB);
11291     } else {
11292       unsigned SelectPred = MI.getOperand(4).getImm();
11293       BuildMI(BB, dl, TII->get(PPC::BCC))
11294           .addImm(SelectPred)
11295           .addReg(MI.getOperand(1).getReg())
11296           .addMBB(sinkMBB);
11297     }
11298 
11299     //  copy0MBB:
11300     //   %FalseValue = ...
11301     //   # fallthrough to sinkMBB
11302     BB = copy0MBB;
11303 
11304     // Update machine-CFG edges
11305     BB->addSuccessor(sinkMBB);
11306 
11307     //  sinkMBB:
11308     //   %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ]
11309     //  ...
11310     BB = sinkMBB;
11311     BuildMI(*BB, BB->begin(), dl, TII->get(PPC::PHI), MI.getOperand(0).getReg())
11312         .addReg(MI.getOperand(3).getReg())
11313         .addMBB(copy0MBB)
11314         .addReg(MI.getOperand(2).getReg())
11315         .addMBB(thisMBB);
11316   } else if (MI.getOpcode() == PPC::ReadTB) {
11317     // To read the 64-bit time-base register on a 32-bit target, we read the
11318     // two halves. Should the counter have wrapped while it was being read, we
11319     // need to try again.
11320     // ...
11321     // readLoop:
11322     // mfspr Rx,TBU # load from TBU
11323     // mfspr Ry,TB  # load from TB
11324     // mfspr Rz,TBU # load from TBU
11325     // cmpw crX,Rx,Rz # check if 'old'='new'
11326     // bne readLoop   # branch if they're not equal
11327     // ...
11328 
11329     MachineBasicBlock *readMBB = F->CreateMachineBasicBlock(LLVM_BB);
11330     MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB);
11331     DebugLoc dl = MI.getDebugLoc();
11332     F->insert(It, readMBB);
11333     F->insert(It, sinkMBB);
11334 
11335     // Transfer the remainder of BB and its successor edges to sinkMBB.
11336     sinkMBB->splice(sinkMBB->begin(), BB,
11337                     std::next(MachineBasicBlock::iterator(MI)), BB->end());
11338     sinkMBB->transferSuccessorsAndUpdatePHIs(BB);
11339 
11340     BB->addSuccessor(readMBB);
11341     BB = readMBB;
11342 
11343     MachineRegisterInfo &RegInfo = F->getRegInfo();
11344     Register ReadAgainReg = RegInfo.createVirtualRegister(&PPC::GPRCRegClass);
11345     Register LoReg = MI.getOperand(0).getReg();
11346     Register HiReg = MI.getOperand(1).getReg();
11347 
11348     BuildMI(BB, dl, TII->get(PPC::MFSPR), HiReg).addImm(269);
11349     BuildMI(BB, dl, TII->get(PPC::MFSPR), LoReg).addImm(268);
11350     BuildMI(BB, dl, TII->get(PPC::MFSPR), ReadAgainReg).addImm(269);
11351 
11352     Register CmpReg = RegInfo.createVirtualRegister(&PPC::CRRCRegClass);
11353 
11354     BuildMI(BB, dl, TII->get(PPC::CMPW), CmpReg)
11355         .addReg(HiReg)
11356         .addReg(ReadAgainReg);
11357     BuildMI(BB, dl, TII->get(PPC::BCC))
11358         .addImm(PPC::PRED_NE)
11359         .addReg(CmpReg)
11360         .addMBB(readMBB);
11361 
11362     BB->addSuccessor(readMBB);
11363     BB->addSuccessor(sinkMBB);
11364   } else if (MI.getOpcode() == PPC::ATOMIC_LOAD_ADD_I8)
11365     BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::ADD4);
11366   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_ADD_I16)
11367     BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::ADD4);
11368   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_ADD_I32)
11369     BB = EmitAtomicBinary(MI, BB, 4, PPC::ADD4);
11370   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_ADD_I64)
11371     BB = EmitAtomicBinary(MI, BB, 8, PPC::ADD8);
11372 
11373   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_AND_I8)
11374     BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::AND);
11375   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_AND_I16)
11376     BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::AND);
11377   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_AND_I32)
11378     BB = EmitAtomicBinary(MI, BB, 4, PPC::AND);
11379   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_AND_I64)
11380     BB = EmitAtomicBinary(MI, BB, 8, PPC::AND8);
11381 
11382   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_OR_I8)
11383     BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::OR);
11384   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_OR_I16)
11385     BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::OR);
11386   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_OR_I32)
11387     BB = EmitAtomicBinary(MI, BB, 4, PPC::OR);
11388   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_OR_I64)
11389     BB = EmitAtomicBinary(MI, BB, 8, PPC::OR8);
11390 
11391   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_XOR_I8)
11392     BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::XOR);
11393   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_XOR_I16)
11394     BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::XOR);
11395   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_XOR_I32)
11396     BB = EmitAtomicBinary(MI, BB, 4, PPC::XOR);
11397   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_XOR_I64)
11398     BB = EmitAtomicBinary(MI, BB, 8, PPC::XOR8);
11399 
11400   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_NAND_I8)
11401     BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::NAND);
11402   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_NAND_I16)
11403     BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::NAND);
11404   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_NAND_I32)
11405     BB = EmitAtomicBinary(MI, BB, 4, PPC::NAND);
11406   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_NAND_I64)
11407     BB = EmitAtomicBinary(MI, BB, 8, PPC::NAND8);
11408 
11409   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_SUB_I8)
11410     BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::SUBF);
11411   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_SUB_I16)
11412     BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::SUBF);
11413   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_SUB_I32)
11414     BB = EmitAtomicBinary(MI, BB, 4, PPC::SUBF);
11415   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_SUB_I64)
11416     BB = EmitAtomicBinary(MI, BB, 8, PPC::SUBF8);
11417 
11418   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MIN_I8)
11419     BB = EmitPartwordAtomicBinary(MI, BB, true, 0, PPC::CMPW, PPC::PRED_GE);
11420   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MIN_I16)
11421     BB = EmitPartwordAtomicBinary(MI, BB, false, 0, PPC::CMPW, PPC::PRED_GE);
11422   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MIN_I32)
11423     BB = EmitAtomicBinary(MI, BB, 4, 0, PPC::CMPW, PPC::PRED_GE);
11424   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MIN_I64)
11425     BB = EmitAtomicBinary(MI, BB, 8, 0, PPC::CMPD, PPC::PRED_GE);
11426 
11427   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MAX_I8)
11428     BB = EmitPartwordAtomicBinary(MI, BB, true, 0, PPC::CMPW, PPC::PRED_LE);
11429   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MAX_I16)
11430     BB = EmitPartwordAtomicBinary(MI, BB, false, 0, PPC::CMPW, PPC::PRED_LE);
11431   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MAX_I32)
11432     BB = EmitAtomicBinary(MI, BB, 4, 0, PPC::CMPW, PPC::PRED_LE);
11433   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MAX_I64)
11434     BB = EmitAtomicBinary(MI, BB, 8, 0, PPC::CMPD, PPC::PRED_LE);
11435 
11436   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMIN_I8)
11437     BB = EmitPartwordAtomicBinary(MI, BB, true, 0, PPC::CMPLW, PPC::PRED_GE);
11438   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMIN_I16)
11439     BB = EmitPartwordAtomicBinary(MI, BB, false, 0, PPC::CMPLW, PPC::PRED_GE);
11440   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMIN_I32)
11441     BB = EmitAtomicBinary(MI, BB, 4, 0, PPC::CMPLW, PPC::PRED_GE);
11442   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMIN_I64)
11443     BB = EmitAtomicBinary(MI, BB, 8, 0, PPC::CMPLD, PPC::PRED_GE);
11444 
11445   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMAX_I8)
11446     BB = EmitPartwordAtomicBinary(MI, BB, true, 0, PPC::CMPLW, PPC::PRED_LE);
11447   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMAX_I16)
11448     BB = EmitPartwordAtomicBinary(MI, BB, false, 0, PPC::CMPLW, PPC::PRED_LE);
11449   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMAX_I32)
11450     BB = EmitAtomicBinary(MI, BB, 4, 0, PPC::CMPLW, PPC::PRED_LE);
11451   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMAX_I64)
11452     BB = EmitAtomicBinary(MI, BB, 8, 0, PPC::CMPLD, PPC::PRED_LE);
11453 
11454   else if (MI.getOpcode() == PPC::ATOMIC_SWAP_I8)
11455     BB = EmitPartwordAtomicBinary(MI, BB, true, 0);
11456   else if (MI.getOpcode() == PPC::ATOMIC_SWAP_I16)
11457     BB = EmitPartwordAtomicBinary(MI, BB, false, 0);
11458   else if (MI.getOpcode() == PPC::ATOMIC_SWAP_I32)
11459     BB = EmitAtomicBinary(MI, BB, 4, 0);
11460   else if (MI.getOpcode() == PPC::ATOMIC_SWAP_I64)
11461     BB = EmitAtomicBinary(MI, BB, 8, 0);
11462   else if (MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I32 ||
11463            MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I64 ||
11464            (Subtarget.hasPartwordAtomics() &&
11465             MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I8) ||
11466            (Subtarget.hasPartwordAtomics() &&
11467             MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I16)) {
11468     bool is64bit = MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I64;
11469 
11470     auto LoadMnemonic = PPC::LDARX;
11471     auto StoreMnemonic = PPC::STDCX;
11472     switch (MI.getOpcode()) {
11473     default:
11474       llvm_unreachable("Compare and swap of unknown size");
11475     case PPC::ATOMIC_CMP_SWAP_I8:
11476       LoadMnemonic = PPC::LBARX;
11477       StoreMnemonic = PPC::STBCX;
11478       assert(Subtarget.hasPartwordAtomics() && "No support partword atomics.");
11479       break;
11480     case PPC::ATOMIC_CMP_SWAP_I16:
11481       LoadMnemonic = PPC::LHARX;
11482       StoreMnemonic = PPC::STHCX;
11483       assert(Subtarget.hasPartwordAtomics() && "No support partword atomics.");
11484       break;
11485     case PPC::ATOMIC_CMP_SWAP_I32:
11486       LoadMnemonic = PPC::LWARX;
11487       StoreMnemonic = PPC::STWCX;
11488       break;
11489     case PPC::ATOMIC_CMP_SWAP_I64:
11490       LoadMnemonic = PPC::LDARX;
11491       StoreMnemonic = PPC::STDCX;
11492       break;
11493     }
11494     Register dest = MI.getOperand(0).getReg();
11495     Register ptrA = MI.getOperand(1).getReg();
11496     Register ptrB = MI.getOperand(2).getReg();
11497     Register oldval = MI.getOperand(3).getReg();
11498     Register newval = MI.getOperand(4).getReg();
11499     DebugLoc dl = MI.getDebugLoc();
11500 
11501     MachineBasicBlock *loop1MBB = F->CreateMachineBasicBlock(LLVM_BB);
11502     MachineBasicBlock *loop2MBB = F->CreateMachineBasicBlock(LLVM_BB);
11503     MachineBasicBlock *midMBB = F->CreateMachineBasicBlock(LLVM_BB);
11504     MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB);
11505     F->insert(It, loop1MBB);
11506     F->insert(It, loop2MBB);
11507     F->insert(It, midMBB);
11508     F->insert(It, exitMBB);
11509     exitMBB->splice(exitMBB->begin(), BB,
11510                     std::next(MachineBasicBlock::iterator(MI)), BB->end());
11511     exitMBB->transferSuccessorsAndUpdatePHIs(BB);
11512 
11513     //  thisMBB:
11514     //   ...
11515     //   fallthrough --> loopMBB
11516     BB->addSuccessor(loop1MBB);
11517 
11518     // loop1MBB:
11519     //   l[bhwd]arx dest, ptr
11520     //   cmp[wd] dest, oldval
11521     //   bne- midMBB
11522     // loop2MBB:
11523     //   st[bhwd]cx. newval, ptr
11524     //   bne- loopMBB
11525     //   b exitBB
11526     // midMBB:
11527     //   st[bhwd]cx. dest, ptr
11528     // exitBB:
11529     BB = loop1MBB;
11530     BuildMI(BB, dl, TII->get(LoadMnemonic), dest).addReg(ptrA).addReg(ptrB);
11531     BuildMI(BB, dl, TII->get(is64bit ? PPC::CMPD : PPC::CMPW), PPC::CR0)
11532         .addReg(oldval)
11533         .addReg(dest);
11534     BuildMI(BB, dl, TII->get(PPC::BCC))
11535         .addImm(PPC::PRED_NE)
11536         .addReg(PPC::CR0)
11537         .addMBB(midMBB);
11538     BB->addSuccessor(loop2MBB);
11539     BB->addSuccessor(midMBB);
11540 
11541     BB = loop2MBB;
11542     BuildMI(BB, dl, TII->get(StoreMnemonic))
11543         .addReg(newval)
11544         .addReg(ptrA)
11545         .addReg(ptrB);
11546     BuildMI(BB, dl, TII->get(PPC::BCC))
11547         .addImm(PPC::PRED_NE)
11548         .addReg(PPC::CR0)
11549         .addMBB(loop1MBB);
11550     BuildMI(BB, dl, TII->get(PPC::B)).addMBB(exitMBB);
11551     BB->addSuccessor(loop1MBB);
11552     BB->addSuccessor(exitMBB);
11553 
11554     BB = midMBB;
11555     BuildMI(BB, dl, TII->get(StoreMnemonic))
11556         .addReg(dest)
11557         .addReg(ptrA)
11558         .addReg(ptrB);
11559     BB->addSuccessor(exitMBB);
11560 
11561     //  exitMBB:
11562     //   ...
11563     BB = exitMBB;
11564   } else if (MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I8 ||
11565              MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I16) {
11566     // We must use 64-bit registers for addresses when targeting 64-bit,
11567     // since we're actually doing arithmetic on them.  Other registers
11568     // can be 32-bit.
11569     bool is64bit = Subtarget.isPPC64();
11570     bool isLittleEndian = Subtarget.isLittleEndian();
11571     bool is8bit = MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I8;
11572 
11573     Register dest = MI.getOperand(0).getReg();
11574     Register ptrA = MI.getOperand(1).getReg();
11575     Register ptrB = MI.getOperand(2).getReg();
11576     Register oldval = MI.getOperand(3).getReg();
11577     Register newval = MI.getOperand(4).getReg();
11578     DebugLoc dl = MI.getDebugLoc();
11579 
11580     MachineBasicBlock *loop1MBB = F->CreateMachineBasicBlock(LLVM_BB);
11581     MachineBasicBlock *loop2MBB = F->CreateMachineBasicBlock(LLVM_BB);
11582     MachineBasicBlock *midMBB = F->CreateMachineBasicBlock(LLVM_BB);
11583     MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB);
11584     F->insert(It, loop1MBB);
11585     F->insert(It, loop2MBB);
11586     F->insert(It, midMBB);
11587     F->insert(It, exitMBB);
11588     exitMBB->splice(exitMBB->begin(), BB,
11589                     std::next(MachineBasicBlock::iterator(MI)), BB->end());
11590     exitMBB->transferSuccessorsAndUpdatePHIs(BB);
11591 
11592     MachineRegisterInfo &RegInfo = F->getRegInfo();
11593     const TargetRegisterClass *RC =
11594         is64bit ? &PPC::G8RCRegClass : &PPC::GPRCRegClass;
11595     const TargetRegisterClass *GPRC = &PPC::GPRCRegClass;
11596 
11597     Register PtrReg = RegInfo.createVirtualRegister(RC);
11598     Register Shift1Reg = RegInfo.createVirtualRegister(GPRC);
11599     Register ShiftReg =
11600         isLittleEndian ? Shift1Reg : RegInfo.createVirtualRegister(GPRC);
11601     Register NewVal2Reg = RegInfo.createVirtualRegister(GPRC);
11602     Register NewVal3Reg = RegInfo.createVirtualRegister(GPRC);
11603     Register OldVal2Reg = RegInfo.createVirtualRegister(GPRC);
11604     Register OldVal3Reg = RegInfo.createVirtualRegister(GPRC);
11605     Register MaskReg = RegInfo.createVirtualRegister(GPRC);
11606     Register Mask2Reg = RegInfo.createVirtualRegister(GPRC);
11607     Register Mask3Reg = RegInfo.createVirtualRegister(GPRC);
11608     Register Tmp2Reg = RegInfo.createVirtualRegister(GPRC);
11609     Register Tmp4Reg = RegInfo.createVirtualRegister(GPRC);
11610     Register TmpDestReg = RegInfo.createVirtualRegister(GPRC);
11611     Register Ptr1Reg;
11612     Register TmpReg = RegInfo.createVirtualRegister(GPRC);
11613     Register ZeroReg = is64bit ? PPC::ZERO8 : PPC::ZERO;
11614     //  thisMBB:
11615     //   ...
11616     //   fallthrough --> loopMBB
11617     BB->addSuccessor(loop1MBB);
11618 
11619     // The 4-byte load must be aligned, while a char or short may be
11620     // anywhere in the word.  Hence all this nasty bookkeeping code.
11621     //   add ptr1, ptrA, ptrB [copy if ptrA==0]
11622     //   rlwinm shift1, ptr1, 3, 27, 28 [3, 27, 27]
11623     //   xori shift, shift1, 24 [16]
11624     //   rlwinm ptr, ptr1, 0, 0, 29
11625     //   slw newval2, newval, shift
11626     //   slw oldval2, oldval,shift
11627     //   li mask2, 255 [li mask3, 0; ori mask2, mask3, 65535]
11628     //   slw mask, mask2, shift
11629     //   and newval3, newval2, mask
11630     //   and oldval3, oldval2, mask
11631     // loop1MBB:
11632     //   lwarx tmpDest, ptr
11633     //   and tmp, tmpDest, mask
11634     //   cmpw tmp, oldval3
11635     //   bne- midMBB
11636     // loop2MBB:
11637     //   andc tmp2, tmpDest, mask
11638     //   or tmp4, tmp2, newval3
11639     //   stwcx. tmp4, ptr
11640     //   bne- loop1MBB
11641     //   b exitBB
11642     // midMBB:
11643     //   stwcx. tmpDest, ptr
11644     // exitBB:
11645     //   srw dest, tmpDest, shift
11646     if (ptrA != ZeroReg) {
11647       Ptr1Reg = RegInfo.createVirtualRegister(RC);
11648       BuildMI(BB, dl, TII->get(is64bit ? PPC::ADD8 : PPC::ADD4), Ptr1Reg)
11649           .addReg(ptrA)
11650           .addReg(ptrB);
11651     } else {
11652       Ptr1Reg = ptrB;
11653     }
11654 
11655     // We need use 32-bit subregister to avoid mismatch register class in 64-bit
11656     // mode.
11657     BuildMI(BB, dl, TII->get(PPC::RLWINM), Shift1Reg)
11658         .addReg(Ptr1Reg, 0, is64bit ? PPC::sub_32 : 0)
11659         .addImm(3)
11660         .addImm(27)
11661         .addImm(is8bit ? 28 : 27);
11662     if (!isLittleEndian)
11663       BuildMI(BB, dl, TII->get(PPC::XORI), ShiftReg)
11664           .addReg(Shift1Reg)
11665           .addImm(is8bit ? 24 : 16);
11666     if (is64bit)
11667       BuildMI(BB, dl, TII->get(PPC::RLDICR), PtrReg)
11668           .addReg(Ptr1Reg)
11669           .addImm(0)
11670           .addImm(61);
11671     else
11672       BuildMI(BB, dl, TII->get(PPC::RLWINM), PtrReg)
11673           .addReg(Ptr1Reg)
11674           .addImm(0)
11675           .addImm(0)
11676           .addImm(29);
11677     BuildMI(BB, dl, TII->get(PPC::SLW), NewVal2Reg)
11678         .addReg(newval)
11679         .addReg(ShiftReg);
11680     BuildMI(BB, dl, TII->get(PPC::SLW), OldVal2Reg)
11681         .addReg(oldval)
11682         .addReg(ShiftReg);
11683     if (is8bit)
11684       BuildMI(BB, dl, TII->get(PPC::LI), Mask2Reg).addImm(255);
11685     else {
11686       BuildMI(BB, dl, TII->get(PPC::LI), Mask3Reg).addImm(0);
11687       BuildMI(BB, dl, TII->get(PPC::ORI), Mask2Reg)
11688           .addReg(Mask3Reg)
11689           .addImm(65535);
11690     }
11691     BuildMI(BB, dl, TII->get(PPC::SLW), MaskReg)
11692         .addReg(Mask2Reg)
11693         .addReg(ShiftReg);
11694     BuildMI(BB, dl, TII->get(PPC::AND), NewVal3Reg)
11695         .addReg(NewVal2Reg)
11696         .addReg(MaskReg);
11697     BuildMI(BB, dl, TII->get(PPC::AND), OldVal3Reg)
11698         .addReg(OldVal2Reg)
11699         .addReg(MaskReg);
11700 
11701     BB = loop1MBB;
11702     BuildMI(BB, dl, TII->get(PPC::LWARX), TmpDestReg)
11703         .addReg(ZeroReg)
11704         .addReg(PtrReg);
11705     BuildMI(BB, dl, TII->get(PPC::AND), TmpReg)
11706         .addReg(TmpDestReg)
11707         .addReg(MaskReg);
11708     BuildMI(BB, dl, TII->get(PPC::CMPW), PPC::CR0)
11709         .addReg(TmpReg)
11710         .addReg(OldVal3Reg);
11711     BuildMI(BB, dl, TII->get(PPC::BCC))
11712         .addImm(PPC::PRED_NE)
11713         .addReg(PPC::CR0)
11714         .addMBB(midMBB);
11715     BB->addSuccessor(loop2MBB);
11716     BB->addSuccessor(midMBB);
11717 
11718     BB = loop2MBB;
11719     BuildMI(BB, dl, TII->get(PPC::ANDC), Tmp2Reg)
11720         .addReg(TmpDestReg)
11721         .addReg(MaskReg);
11722     BuildMI(BB, dl, TII->get(PPC::OR), Tmp4Reg)
11723         .addReg(Tmp2Reg)
11724         .addReg(NewVal3Reg);
11725     BuildMI(BB, dl, TII->get(PPC::STWCX))
11726         .addReg(Tmp4Reg)
11727         .addReg(ZeroReg)
11728         .addReg(PtrReg);
11729     BuildMI(BB, dl, TII->get(PPC::BCC))
11730         .addImm(PPC::PRED_NE)
11731         .addReg(PPC::CR0)
11732         .addMBB(loop1MBB);
11733     BuildMI(BB, dl, TII->get(PPC::B)).addMBB(exitMBB);
11734     BB->addSuccessor(loop1MBB);
11735     BB->addSuccessor(exitMBB);
11736 
11737     BB = midMBB;
11738     BuildMI(BB, dl, TII->get(PPC::STWCX))
11739         .addReg(TmpDestReg)
11740         .addReg(ZeroReg)
11741         .addReg(PtrReg);
11742     BB->addSuccessor(exitMBB);
11743 
11744     //  exitMBB:
11745     //   ...
11746     BB = exitMBB;
11747     BuildMI(*BB, BB->begin(), dl, TII->get(PPC::SRW), dest)
11748         .addReg(TmpReg)
11749         .addReg(ShiftReg);
11750   } else if (MI.getOpcode() == PPC::FADDrtz) {
11751     // This pseudo performs an FADD with rounding mode temporarily forced
11752     // to round-to-zero.  We emit this via custom inserter since the FPSCR
11753     // is not modeled at the SelectionDAG level.
11754     Register Dest = MI.getOperand(0).getReg();
11755     Register Src1 = MI.getOperand(1).getReg();
11756     Register Src2 = MI.getOperand(2).getReg();
11757     DebugLoc dl = MI.getDebugLoc();
11758 
11759     MachineRegisterInfo &RegInfo = F->getRegInfo();
11760     Register MFFSReg = RegInfo.createVirtualRegister(&PPC::F8RCRegClass);
11761 
11762     // Save FPSCR value.
11763     BuildMI(*BB, MI, dl, TII->get(PPC::MFFS), MFFSReg);
11764 
11765     // Set rounding mode to round-to-zero.
11766     BuildMI(*BB, MI, dl, TII->get(PPC::MTFSB1)).addImm(31);
11767     BuildMI(*BB, MI, dl, TII->get(PPC::MTFSB0)).addImm(30);
11768 
11769     // Perform addition.
11770     BuildMI(*BB, MI, dl, TII->get(PPC::FADD), Dest).addReg(Src1).addReg(Src2);
11771 
11772     // Restore FPSCR value.
11773     BuildMI(*BB, MI, dl, TII->get(PPC::MTFSFb)).addImm(1).addReg(MFFSReg);
11774   } else if (MI.getOpcode() == PPC::ANDI_rec_1_EQ_BIT ||
11775              MI.getOpcode() == PPC::ANDI_rec_1_GT_BIT ||
11776              MI.getOpcode() == PPC::ANDI_rec_1_EQ_BIT8 ||
11777              MI.getOpcode() == PPC::ANDI_rec_1_GT_BIT8) {
11778     unsigned Opcode = (MI.getOpcode() == PPC::ANDI_rec_1_EQ_BIT8 ||
11779                        MI.getOpcode() == PPC::ANDI_rec_1_GT_BIT8)
11780                           ? PPC::ANDI8_rec
11781                           : PPC::ANDI_rec;
11782     bool IsEQ = (MI.getOpcode() == PPC::ANDI_rec_1_EQ_BIT ||
11783                  MI.getOpcode() == PPC::ANDI_rec_1_EQ_BIT8);
11784 
11785     MachineRegisterInfo &RegInfo = F->getRegInfo();
11786     Register Dest = RegInfo.createVirtualRegister(
11787         Opcode == PPC::ANDI_rec ? &PPC::GPRCRegClass : &PPC::G8RCRegClass);
11788 
11789     DebugLoc Dl = MI.getDebugLoc();
11790     BuildMI(*BB, MI, Dl, TII->get(Opcode), Dest)
11791         .addReg(MI.getOperand(1).getReg())
11792         .addImm(1);
11793     BuildMI(*BB, MI, Dl, TII->get(TargetOpcode::COPY),
11794             MI.getOperand(0).getReg())
11795         .addReg(IsEQ ? PPC::CR0EQ : PPC::CR0GT);
11796   } else if (MI.getOpcode() == PPC::TCHECK_RET) {
11797     DebugLoc Dl = MI.getDebugLoc();
11798     MachineRegisterInfo &RegInfo = F->getRegInfo();
11799     Register CRReg = RegInfo.createVirtualRegister(&PPC::CRRCRegClass);
11800     BuildMI(*BB, MI, Dl, TII->get(PPC::TCHECK), CRReg);
11801     BuildMI(*BB, MI, Dl, TII->get(TargetOpcode::COPY),
11802             MI.getOperand(0).getReg())
11803         .addReg(CRReg);
11804   } else if (MI.getOpcode() == PPC::TBEGIN_RET) {
11805     DebugLoc Dl = MI.getDebugLoc();
11806     unsigned Imm = MI.getOperand(1).getImm();
11807     BuildMI(*BB, MI, Dl, TII->get(PPC::TBEGIN)).addImm(Imm);
11808     BuildMI(*BB, MI, Dl, TII->get(TargetOpcode::COPY),
11809             MI.getOperand(0).getReg())
11810         .addReg(PPC::CR0EQ);
11811   } else if (MI.getOpcode() == PPC::SETRNDi) {
11812     DebugLoc dl = MI.getDebugLoc();
11813     Register OldFPSCRReg = MI.getOperand(0).getReg();
11814 
11815     // Save FPSCR value.
11816     BuildMI(*BB, MI, dl, TII->get(PPC::MFFS), OldFPSCRReg);
11817 
11818     // The floating point rounding mode is in the bits 62:63 of FPCSR, and has
11819     // the following settings:
11820     //   00 Round to nearest
11821     //   01 Round to 0
11822     //   10 Round to +inf
11823     //   11 Round to -inf
11824 
11825     // When the operand is immediate, using the two least significant bits of
11826     // the immediate to set the bits 62:63 of FPSCR.
11827     unsigned Mode = MI.getOperand(1).getImm();
11828     BuildMI(*BB, MI, dl, TII->get((Mode & 1) ? PPC::MTFSB1 : PPC::MTFSB0))
11829       .addImm(31);
11830 
11831     BuildMI(*BB, MI, dl, TII->get((Mode & 2) ? PPC::MTFSB1 : PPC::MTFSB0))
11832       .addImm(30);
11833   } else if (MI.getOpcode() == PPC::SETRND) {
11834     DebugLoc dl = MI.getDebugLoc();
11835 
11836     // Copy register from F8RCRegClass::SrcReg to G8RCRegClass::DestReg
11837     // or copy register from G8RCRegClass::SrcReg to F8RCRegClass::DestReg.
11838     // If the target doesn't have DirectMove, we should use stack to do the
11839     // conversion, because the target doesn't have the instructions like mtvsrd
11840     // or mfvsrd to do this conversion directly.
11841     auto copyRegFromG8RCOrF8RC = [&] (unsigned DestReg, unsigned SrcReg) {
11842       if (Subtarget.hasDirectMove()) {
11843         BuildMI(*BB, MI, dl, TII->get(TargetOpcode::COPY), DestReg)
11844           .addReg(SrcReg);
11845       } else {
11846         // Use stack to do the register copy.
11847         unsigned StoreOp = PPC::STD, LoadOp = PPC::LFD;
11848         MachineRegisterInfo &RegInfo = F->getRegInfo();
11849         const TargetRegisterClass *RC = RegInfo.getRegClass(SrcReg);
11850         if (RC == &PPC::F8RCRegClass) {
11851           // Copy register from F8RCRegClass to G8RCRegclass.
11852           assert((RegInfo.getRegClass(DestReg) == &PPC::G8RCRegClass) &&
11853                  "Unsupported RegClass.");
11854 
11855           StoreOp = PPC::STFD;
11856           LoadOp = PPC::LD;
11857         } else {
11858           // Copy register from G8RCRegClass to F8RCRegclass.
11859           assert((RegInfo.getRegClass(SrcReg) == &PPC::G8RCRegClass) &&
11860                  (RegInfo.getRegClass(DestReg) == &PPC::F8RCRegClass) &&
11861                  "Unsupported RegClass.");
11862         }
11863 
11864         MachineFrameInfo &MFI = F->getFrameInfo();
11865         int FrameIdx = MFI.CreateStackObject(8, 8, false);
11866 
11867         MachineMemOperand *MMOStore = F->getMachineMemOperand(
11868           MachinePointerInfo::getFixedStack(*F, FrameIdx, 0),
11869           MachineMemOperand::MOStore, MFI.getObjectSize(FrameIdx),
11870           MFI.getObjectAlignment(FrameIdx));
11871 
11872         // Store the SrcReg into the stack.
11873         BuildMI(*BB, MI, dl, TII->get(StoreOp))
11874           .addReg(SrcReg)
11875           .addImm(0)
11876           .addFrameIndex(FrameIdx)
11877           .addMemOperand(MMOStore);
11878 
11879         MachineMemOperand *MMOLoad = F->getMachineMemOperand(
11880           MachinePointerInfo::getFixedStack(*F, FrameIdx, 0),
11881           MachineMemOperand::MOLoad, MFI.getObjectSize(FrameIdx),
11882           MFI.getObjectAlignment(FrameIdx));
11883 
11884         // Load from the stack where SrcReg is stored, and save to DestReg,
11885         // so we have done the RegClass conversion from RegClass::SrcReg to
11886         // RegClass::DestReg.
11887         BuildMI(*BB, MI, dl, TII->get(LoadOp), DestReg)
11888           .addImm(0)
11889           .addFrameIndex(FrameIdx)
11890           .addMemOperand(MMOLoad);
11891       }
11892     };
11893 
11894     Register OldFPSCRReg = MI.getOperand(0).getReg();
11895 
11896     // Save FPSCR value.
11897     BuildMI(*BB, MI, dl, TII->get(PPC::MFFS), OldFPSCRReg);
11898 
11899     // When the operand is gprc register, use two least significant bits of the
11900     // register and mtfsf instruction to set the bits 62:63 of FPSCR.
11901     //
11902     // copy OldFPSCRTmpReg, OldFPSCRReg
11903     // (INSERT_SUBREG ExtSrcReg, (IMPLICIT_DEF ImDefReg), SrcOp, 1)
11904     // rldimi NewFPSCRTmpReg, ExtSrcReg, OldFPSCRReg, 0, 62
11905     // copy NewFPSCRReg, NewFPSCRTmpReg
11906     // mtfsf 255, NewFPSCRReg
11907     MachineOperand SrcOp = MI.getOperand(1);
11908     MachineRegisterInfo &RegInfo = F->getRegInfo();
11909     Register OldFPSCRTmpReg = RegInfo.createVirtualRegister(&PPC::G8RCRegClass);
11910 
11911     copyRegFromG8RCOrF8RC(OldFPSCRTmpReg, OldFPSCRReg);
11912 
11913     Register ImDefReg = RegInfo.createVirtualRegister(&PPC::G8RCRegClass);
11914     Register ExtSrcReg = RegInfo.createVirtualRegister(&PPC::G8RCRegClass);
11915 
11916     // The first operand of INSERT_SUBREG should be a register which has
11917     // subregisters, we only care about its RegClass, so we should use an
11918     // IMPLICIT_DEF register.
11919     BuildMI(*BB, MI, dl, TII->get(TargetOpcode::IMPLICIT_DEF), ImDefReg);
11920     BuildMI(*BB, MI, dl, TII->get(PPC::INSERT_SUBREG), ExtSrcReg)
11921       .addReg(ImDefReg)
11922       .add(SrcOp)
11923       .addImm(1);
11924 
11925     Register NewFPSCRTmpReg = RegInfo.createVirtualRegister(&PPC::G8RCRegClass);
11926     BuildMI(*BB, MI, dl, TII->get(PPC::RLDIMI), NewFPSCRTmpReg)
11927       .addReg(OldFPSCRTmpReg)
11928       .addReg(ExtSrcReg)
11929       .addImm(0)
11930       .addImm(62);
11931 
11932     Register NewFPSCRReg = RegInfo.createVirtualRegister(&PPC::F8RCRegClass);
11933     copyRegFromG8RCOrF8RC(NewFPSCRReg, NewFPSCRTmpReg);
11934 
11935     // The mask 255 means that put the 32:63 bits of NewFPSCRReg to the 32:63
11936     // bits of FPSCR.
11937     BuildMI(*BB, MI, dl, TII->get(PPC::MTFSF))
11938       .addImm(255)
11939       .addReg(NewFPSCRReg)
11940       .addImm(0)
11941       .addImm(0);
11942   } else {
11943     llvm_unreachable("Unexpected instr type to insert");
11944   }
11945 
11946   MI.eraseFromParent(); // The pseudo instruction is gone now.
11947   return BB;
11948 }
11949 
11950 //===----------------------------------------------------------------------===//
11951 // Target Optimization Hooks
11952 //===----------------------------------------------------------------------===//
11953 
11954 static int getEstimateRefinementSteps(EVT VT, const PPCSubtarget &Subtarget) {
11955   // For the estimates, convergence is quadratic, so we essentially double the
11956   // number of digits correct after every iteration. For both FRE and FRSQRTE,
11957   // the minimum architected relative accuracy is 2^-5. When hasRecipPrec(),
11958   // this is 2^-14. IEEE float has 23 digits and double has 52 digits.
11959   int RefinementSteps = Subtarget.hasRecipPrec() ? 1 : 3;
11960   if (VT.getScalarType() == MVT::f64)
11961     RefinementSteps++;
11962   return RefinementSteps;
11963 }
11964 
11965 SDValue PPCTargetLowering::getSqrtEstimate(SDValue Operand, SelectionDAG &DAG,
11966                                            int Enabled, int &RefinementSteps,
11967                                            bool &UseOneConstNR,
11968                                            bool Reciprocal) const {
11969   EVT VT = Operand.getValueType();
11970   if ((VT == MVT::f32 && Subtarget.hasFRSQRTES()) ||
11971       (VT == MVT::f64 && Subtarget.hasFRSQRTE()) ||
11972       (VT == MVT::v4f32 && Subtarget.hasAltivec()) ||
11973       (VT == MVT::v2f64 && Subtarget.hasVSX()) ||
11974       (VT == MVT::v4f32 && Subtarget.hasQPX()) ||
11975       (VT == MVT::v4f64 && Subtarget.hasQPX())) {
11976     if (RefinementSteps == ReciprocalEstimate::Unspecified)
11977       RefinementSteps = getEstimateRefinementSteps(VT, Subtarget);
11978 
11979     // The Newton-Raphson computation with a single constant does not provide
11980     // enough accuracy on some CPUs.
11981     UseOneConstNR = !Subtarget.needsTwoConstNR();
11982     return DAG.getNode(PPCISD::FRSQRTE, SDLoc(Operand), VT, Operand);
11983   }
11984   return SDValue();
11985 }
11986 
11987 SDValue PPCTargetLowering::getRecipEstimate(SDValue Operand, SelectionDAG &DAG,
11988                                             int Enabled,
11989                                             int &RefinementSteps) const {
11990   EVT VT = Operand.getValueType();
11991   if ((VT == MVT::f32 && Subtarget.hasFRES()) ||
11992       (VT == MVT::f64 && Subtarget.hasFRE()) ||
11993       (VT == MVT::v4f32 && Subtarget.hasAltivec()) ||
11994       (VT == MVT::v2f64 && Subtarget.hasVSX()) ||
11995       (VT == MVT::v4f32 && Subtarget.hasQPX()) ||
11996       (VT == MVT::v4f64 && Subtarget.hasQPX())) {
11997     if (RefinementSteps == ReciprocalEstimate::Unspecified)
11998       RefinementSteps = getEstimateRefinementSteps(VT, Subtarget);
11999     return DAG.getNode(PPCISD::FRE, SDLoc(Operand), VT, Operand);
12000   }
12001   return SDValue();
12002 }
12003 
12004 unsigned PPCTargetLowering::combineRepeatedFPDivisors() const {
12005   // Note: This functionality is used only when unsafe-fp-math is enabled, and
12006   // on cores with reciprocal estimates (which are used when unsafe-fp-math is
12007   // enabled for division), this functionality is redundant with the default
12008   // combiner logic (once the division -> reciprocal/multiply transformation
12009   // has taken place). As a result, this matters more for older cores than for
12010   // newer ones.
12011 
12012   // Combine multiple FDIVs with the same divisor into multiple FMULs by the
12013   // reciprocal if there are two or more FDIVs (for embedded cores with only
12014   // one FP pipeline) for three or more FDIVs (for generic OOO cores).
12015   switch (Subtarget.getCPUDirective()) {
12016   default:
12017     return 3;
12018   case PPC::DIR_440:
12019   case PPC::DIR_A2:
12020   case PPC::DIR_E500:
12021   case PPC::DIR_E500mc:
12022   case PPC::DIR_E5500:
12023     return 2;
12024   }
12025 }
12026 
12027 // isConsecutiveLSLoc needs to work even if all adds have not yet been
12028 // collapsed, and so we need to look through chains of them.
12029 static void getBaseWithConstantOffset(SDValue Loc, SDValue &Base,
12030                                      int64_t& Offset, SelectionDAG &DAG) {
12031   if (DAG.isBaseWithConstantOffset(Loc)) {
12032     Base = Loc.getOperand(0);
12033     Offset += cast<ConstantSDNode>(Loc.getOperand(1))->getSExtValue();
12034 
12035     // The base might itself be a base plus an offset, and if so, accumulate
12036     // that as well.
12037     getBaseWithConstantOffset(Loc.getOperand(0), Base, Offset, DAG);
12038   }
12039 }
12040 
12041 static bool isConsecutiveLSLoc(SDValue Loc, EVT VT, LSBaseSDNode *Base,
12042                             unsigned Bytes, int Dist,
12043                             SelectionDAG &DAG) {
12044   if (VT.getSizeInBits() / 8 != Bytes)
12045     return false;
12046 
12047   SDValue BaseLoc = Base->getBasePtr();
12048   if (Loc.getOpcode() == ISD::FrameIndex) {
12049     if (BaseLoc.getOpcode() != ISD::FrameIndex)
12050       return false;
12051     const MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
12052     int FI  = cast<FrameIndexSDNode>(Loc)->getIndex();
12053     int BFI = cast<FrameIndexSDNode>(BaseLoc)->getIndex();
12054     int FS  = MFI.getObjectSize(FI);
12055     int BFS = MFI.getObjectSize(BFI);
12056     if (FS != BFS || FS != (int)Bytes) return false;
12057     return MFI.getObjectOffset(FI) == (MFI.getObjectOffset(BFI) + Dist*Bytes);
12058   }
12059 
12060   SDValue Base1 = Loc, Base2 = BaseLoc;
12061   int64_t Offset1 = 0, Offset2 = 0;
12062   getBaseWithConstantOffset(Loc, Base1, Offset1, DAG);
12063   getBaseWithConstantOffset(BaseLoc, Base2, Offset2, DAG);
12064   if (Base1 == Base2 && Offset1 == (Offset2 + Dist * Bytes))
12065     return true;
12066 
12067   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
12068   const GlobalValue *GV1 = nullptr;
12069   const GlobalValue *GV2 = nullptr;
12070   Offset1 = 0;
12071   Offset2 = 0;
12072   bool isGA1 = TLI.isGAPlusOffset(Loc.getNode(), GV1, Offset1);
12073   bool isGA2 = TLI.isGAPlusOffset(BaseLoc.getNode(), GV2, Offset2);
12074   if (isGA1 && isGA2 && GV1 == GV2)
12075     return Offset1 == (Offset2 + Dist*Bytes);
12076   return false;
12077 }
12078 
12079 // Like SelectionDAG::isConsecutiveLoad, but also works for stores, and does
12080 // not enforce equality of the chain operands.
12081 static bool isConsecutiveLS(SDNode *N, LSBaseSDNode *Base,
12082                             unsigned Bytes, int Dist,
12083                             SelectionDAG &DAG) {
12084   if (LSBaseSDNode *LS = dyn_cast<LSBaseSDNode>(N)) {
12085     EVT VT = LS->getMemoryVT();
12086     SDValue Loc = LS->getBasePtr();
12087     return isConsecutiveLSLoc(Loc, VT, Base, Bytes, Dist, DAG);
12088   }
12089 
12090   if (N->getOpcode() == ISD::INTRINSIC_W_CHAIN) {
12091     EVT VT;
12092     switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) {
12093     default: return false;
12094     case Intrinsic::ppc_qpx_qvlfd:
12095     case Intrinsic::ppc_qpx_qvlfda:
12096       VT = MVT::v4f64;
12097       break;
12098     case Intrinsic::ppc_qpx_qvlfs:
12099     case Intrinsic::ppc_qpx_qvlfsa:
12100       VT = MVT::v4f32;
12101       break;
12102     case Intrinsic::ppc_qpx_qvlfcd:
12103     case Intrinsic::ppc_qpx_qvlfcda:
12104       VT = MVT::v2f64;
12105       break;
12106     case Intrinsic::ppc_qpx_qvlfcs:
12107     case Intrinsic::ppc_qpx_qvlfcsa:
12108       VT = MVT::v2f32;
12109       break;
12110     case Intrinsic::ppc_qpx_qvlfiwa:
12111     case Intrinsic::ppc_qpx_qvlfiwz:
12112     case Intrinsic::ppc_altivec_lvx:
12113     case Intrinsic::ppc_altivec_lvxl:
12114     case Intrinsic::ppc_vsx_lxvw4x:
12115     case Intrinsic::ppc_vsx_lxvw4x_be:
12116       VT = MVT::v4i32;
12117       break;
12118     case Intrinsic::ppc_vsx_lxvd2x:
12119     case Intrinsic::ppc_vsx_lxvd2x_be:
12120       VT = MVT::v2f64;
12121       break;
12122     case Intrinsic::ppc_altivec_lvebx:
12123       VT = MVT::i8;
12124       break;
12125     case Intrinsic::ppc_altivec_lvehx:
12126       VT = MVT::i16;
12127       break;
12128     case Intrinsic::ppc_altivec_lvewx:
12129       VT = MVT::i32;
12130       break;
12131     }
12132 
12133     return isConsecutiveLSLoc(N->getOperand(2), VT, Base, Bytes, Dist, DAG);
12134   }
12135 
12136   if (N->getOpcode() == ISD::INTRINSIC_VOID) {
12137     EVT VT;
12138     switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) {
12139     default: return false;
12140     case Intrinsic::ppc_qpx_qvstfd:
12141     case Intrinsic::ppc_qpx_qvstfda:
12142       VT = MVT::v4f64;
12143       break;
12144     case Intrinsic::ppc_qpx_qvstfs:
12145     case Intrinsic::ppc_qpx_qvstfsa:
12146       VT = MVT::v4f32;
12147       break;
12148     case Intrinsic::ppc_qpx_qvstfcd:
12149     case Intrinsic::ppc_qpx_qvstfcda:
12150       VT = MVT::v2f64;
12151       break;
12152     case Intrinsic::ppc_qpx_qvstfcs:
12153     case Intrinsic::ppc_qpx_qvstfcsa:
12154       VT = MVT::v2f32;
12155       break;
12156     case Intrinsic::ppc_qpx_qvstfiw:
12157     case Intrinsic::ppc_qpx_qvstfiwa:
12158     case Intrinsic::ppc_altivec_stvx:
12159     case Intrinsic::ppc_altivec_stvxl:
12160     case Intrinsic::ppc_vsx_stxvw4x:
12161       VT = MVT::v4i32;
12162       break;
12163     case Intrinsic::ppc_vsx_stxvd2x:
12164       VT = MVT::v2f64;
12165       break;
12166     case Intrinsic::ppc_vsx_stxvw4x_be:
12167       VT = MVT::v4i32;
12168       break;
12169     case Intrinsic::ppc_vsx_stxvd2x_be:
12170       VT = MVT::v2f64;
12171       break;
12172     case Intrinsic::ppc_altivec_stvebx:
12173       VT = MVT::i8;
12174       break;
12175     case Intrinsic::ppc_altivec_stvehx:
12176       VT = MVT::i16;
12177       break;
12178     case Intrinsic::ppc_altivec_stvewx:
12179       VT = MVT::i32;
12180       break;
12181     }
12182 
12183     return isConsecutiveLSLoc(N->getOperand(3), VT, Base, Bytes, Dist, DAG);
12184   }
12185 
12186   return false;
12187 }
12188 
12189 // Return true is there is a nearyby consecutive load to the one provided
12190 // (regardless of alignment). We search up and down the chain, looking though
12191 // token factors and other loads (but nothing else). As a result, a true result
12192 // indicates that it is safe to create a new consecutive load adjacent to the
12193 // load provided.
12194 static bool findConsecutiveLoad(LoadSDNode *LD, SelectionDAG &DAG) {
12195   SDValue Chain = LD->getChain();
12196   EVT VT = LD->getMemoryVT();
12197 
12198   SmallSet<SDNode *, 16> LoadRoots;
12199   SmallVector<SDNode *, 8> Queue(1, Chain.getNode());
12200   SmallSet<SDNode *, 16> Visited;
12201 
12202   // First, search up the chain, branching to follow all token-factor operands.
12203   // If we find a consecutive load, then we're done, otherwise, record all
12204   // nodes just above the top-level loads and token factors.
12205   while (!Queue.empty()) {
12206     SDNode *ChainNext = Queue.pop_back_val();
12207     if (!Visited.insert(ChainNext).second)
12208       continue;
12209 
12210     if (MemSDNode *ChainLD = dyn_cast<MemSDNode>(ChainNext)) {
12211       if (isConsecutiveLS(ChainLD, LD, VT.getStoreSize(), 1, DAG))
12212         return true;
12213 
12214       if (!Visited.count(ChainLD->getChain().getNode()))
12215         Queue.push_back(ChainLD->getChain().getNode());
12216     } else if (ChainNext->getOpcode() == ISD::TokenFactor) {
12217       for (const SDUse &O : ChainNext->ops())
12218         if (!Visited.count(O.getNode()))
12219           Queue.push_back(O.getNode());
12220     } else
12221       LoadRoots.insert(ChainNext);
12222   }
12223 
12224   // Second, search down the chain, starting from the top-level nodes recorded
12225   // in the first phase. These top-level nodes are the nodes just above all
12226   // loads and token factors. Starting with their uses, recursively look though
12227   // all loads (just the chain uses) and token factors to find a consecutive
12228   // load.
12229   Visited.clear();
12230   Queue.clear();
12231 
12232   for (SmallSet<SDNode *, 16>::iterator I = LoadRoots.begin(),
12233        IE = LoadRoots.end(); I != IE; ++I) {
12234     Queue.push_back(*I);
12235 
12236     while (!Queue.empty()) {
12237       SDNode *LoadRoot = Queue.pop_back_val();
12238       if (!Visited.insert(LoadRoot).second)
12239         continue;
12240 
12241       if (MemSDNode *ChainLD = dyn_cast<MemSDNode>(LoadRoot))
12242         if (isConsecutiveLS(ChainLD, LD, VT.getStoreSize(), 1, DAG))
12243           return true;
12244 
12245       for (SDNode::use_iterator UI = LoadRoot->use_begin(),
12246            UE = LoadRoot->use_end(); UI != UE; ++UI)
12247         if (((isa<MemSDNode>(*UI) &&
12248             cast<MemSDNode>(*UI)->getChain().getNode() == LoadRoot) ||
12249             UI->getOpcode() == ISD::TokenFactor) && !Visited.count(*UI))
12250           Queue.push_back(*UI);
12251     }
12252   }
12253 
12254   return false;
12255 }
12256 
12257 /// This function is called when we have proved that a SETCC node can be replaced
12258 /// by subtraction (and other supporting instructions) so that the result of
12259 /// comparison is kept in a GPR instead of CR. This function is purely for
12260 /// codegen purposes and has some flags to guide the codegen process.
12261 static SDValue generateEquivalentSub(SDNode *N, int Size, bool Complement,
12262                                      bool Swap, SDLoc &DL, SelectionDAG &DAG) {
12263   assert(N->getOpcode() == ISD::SETCC && "ISD::SETCC Expected.");
12264 
12265   // Zero extend the operands to the largest legal integer. Originally, they
12266   // must be of a strictly smaller size.
12267   auto Op0 = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i64, N->getOperand(0),
12268                          DAG.getConstant(Size, DL, MVT::i32));
12269   auto Op1 = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i64, N->getOperand(1),
12270                          DAG.getConstant(Size, DL, MVT::i32));
12271 
12272   // Swap if needed. Depends on the condition code.
12273   if (Swap)
12274     std::swap(Op0, Op1);
12275 
12276   // Subtract extended integers.
12277   auto SubNode = DAG.getNode(ISD::SUB, DL, MVT::i64, Op0, Op1);
12278 
12279   // Move the sign bit to the least significant position and zero out the rest.
12280   // Now the least significant bit carries the result of original comparison.
12281   auto Shifted = DAG.getNode(ISD::SRL, DL, MVT::i64, SubNode,
12282                              DAG.getConstant(Size - 1, DL, MVT::i32));
12283   auto Final = Shifted;
12284 
12285   // Complement the result if needed. Based on the condition code.
12286   if (Complement)
12287     Final = DAG.getNode(ISD::XOR, DL, MVT::i64, Shifted,
12288                         DAG.getConstant(1, DL, MVT::i64));
12289 
12290   return DAG.getNode(ISD::TRUNCATE, DL, MVT::i1, Final);
12291 }
12292 
12293 SDValue PPCTargetLowering::ConvertSETCCToSubtract(SDNode *N,
12294                                                   DAGCombinerInfo &DCI) const {
12295   assert(N->getOpcode() == ISD::SETCC && "ISD::SETCC Expected.");
12296 
12297   SelectionDAG &DAG = DCI.DAG;
12298   SDLoc DL(N);
12299 
12300   // Size of integers being compared has a critical role in the following
12301   // analysis, so we prefer to do this when all types are legal.
12302   if (!DCI.isAfterLegalizeDAG())
12303     return SDValue();
12304 
12305   // If all users of SETCC extend its value to a legal integer type
12306   // then we replace SETCC with a subtraction
12307   for (SDNode::use_iterator UI = N->use_begin(),
12308        UE = N->use_end(); UI != UE; ++UI) {
12309     if (UI->getOpcode() != ISD::ZERO_EXTEND)
12310       return SDValue();
12311   }
12312 
12313   ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(2))->get();
12314   auto OpSize = N->getOperand(0).getValueSizeInBits();
12315 
12316   unsigned Size = DAG.getDataLayout().getLargestLegalIntTypeSizeInBits();
12317 
12318   if (OpSize < Size) {
12319     switch (CC) {
12320     default: break;
12321     case ISD::SETULT:
12322       return generateEquivalentSub(N, Size, false, false, DL, DAG);
12323     case ISD::SETULE:
12324       return generateEquivalentSub(N, Size, true, true, DL, DAG);
12325     case ISD::SETUGT:
12326       return generateEquivalentSub(N, Size, false, true, DL, DAG);
12327     case ISD::SETUGE:
12328       return generateEquivalentSub(N, Size, true, false, DL, DAG);
12329     }
12330   }
12331 
12332   return SDValue();
12333 }
12334 
12335 SDValue PPCTargetLowering::DAGCombineTruncBoolExt(SDNode *N,
12336                                                   DAGCombinerInfo &DCI) const {
12337   SelectionDAG &DAG = DCI.DAG;
12338   SDLoc dl(N);
12339 
12340   assert(Subtarget.useCRBits() && "Expecting to be tracking CR bits");
12341   // If we're tracking CR bits, we need to be careful that we don't have:
12342   //   trunc(binary-ops(zext(x), zext(y)))
12343   // or
12344   //   trunc(binary-ops(binary-ops(zext(x), zext(y)), ...)
12345   // such that we're unnecessarily moving things into GPRs when it would be
12346   // better to keep them in CR bits.
12347 
12348   // Note that trunc here can be an actual i1 trunc, or can be the effective
12349   // truncation that comes from a setcc or select_cc.
12350   if (N->getOpcode() == ISD::TRUNCATE &&
12351       N->getValueType(0) != MVT::i1)
12352     return SDValue();
12353 
12354   if (N->getOperand(0).getValueType() != MVT::i32 &&
12355       N->getOperand(0).getValueType() != MVT::i64)
12356     return SDValue();
12357 
12358   if (N->getOpcode() == ISD::SETCC ||
12359       N->getOpcode() == ISD::SELECT_CC) {
12360     // If we're looking at a comparison, then we need to make sure that the
12361     // high bits (all except for the first) don't matter the result.
12362     ISD::CondCode CC =
12363       cast<CondCodeSDNode>(N->getOperand(
12364         N->getOpcode() == ISD::SETCC ? 2 : 4))->get();
12365     unsigned OpBits = N->getOperand(0).getValueSizeInBits();
12366 
12367     if (ISD::isSignedIntSetCC(CC)) {
12368       if (DAG.ComputeNumSignBits(N->getOperand(0)) != OpBits ||
12369           DAG.ComputeNumSignBits(N->getOperand(1)) != OpBits)
12370         return SDValue();
12371     } else if (ISD::isUnsignedIntSetCC(CC)) {
12372       if (!DAG.MaskedValueIsZero(N->getOperand(0),
12373                                  APInt::getHighBitsSet(OpBits, OpBits-1)) ||
12374           !DAG.MaskedValueIsZero(N->getOperand(1),
12375                                  APInt::getHighBitsSet(OpBits, OpBits-1)))
12376         return (N->getOpcode() == ISD::SETCC ? ConvertSETCCToSubtract(N, DCI)
12377                                              : SDValue());
12378     } else {
12379       // This is neither a signed nor an unsigned comparison, just make sure
12380       // that the high bits are equal.
12381       KnownBits Op1Known = DAG.computeKnownBits(N->getOperand(0));
12382       KnownBits Op2Known = DAG.computeKnownBits(N->getOperand(1));
12383 
12384       // We don't really care about what is known about the first bit (if
12385       // anything), so clear it in all masks prior to comparing them.
12386       Op1Known.Zero.clearBit(0); Op1Known.One.clearBit(0);
12387       Op2Known.Zero.clearBit(0); Op2Known.One.clearBit(0);
12388 
12389       if (Op1Known.Zero != Op2Known.Zero || Op1Known.One != Op2Known.One)
12390         return SDValue();
12391     }
12392   }
12393 
12394   // We now know that the higher-order bits are irrelevant, we just need to
12395   // make sure that all of the intermediate operations are bit operations, and
12396   // all inputs are extensions.
12397   if (N->getOperand(0).getOpcode() != ISD::AND &&
12398       N->getOperand(0).getOpcode() != ISD::OR  &&
12399       N->getOperand(0).getOpcode() != ISD::XOR &&
12400       N->getOperand(0).getOpcode() != ISD::SELECT &&
12401       N->getOperand(0).getOpcode() != ISD::SELECT_CC &&
12402       N->getOperand(0).getOpcode() != ISD::TRUNCATE &&
12403       N->getOperand(0).getOpcode() != ISD::SIGN_EXTEND &&
12404       N->getOperand(0).getOpcode() != ISD::ZERO_EXTEND &&
12405       N->getOperand(0).getOpcode() != ISD::ANY_EXTEND)
12406     return SDValue();
12407 
12408   if ((N->getOpcode() == ISD::SETCC || N->getOpcode() == ISD::SELECT_CC) &&
12409       N->getOperand(1).getOpcode() != ISD::AND &&
12410       N->getOperand(1).getOpcode() != ISD::OR  &&
12411       N->getOperand(1).getOpcode() != ISD::XOR &&
12412       N->getOperand(1).getOpcode() != ISD::SELECT &&
12413       N->getOperand(1).getOpcode() != ISD::SELECT_CC &&
12414       N->getOperand(1).getOpcode() != ISD::TRUNCATE &&
12415       N->getOperand(1).getOpcode() != ISD::SIGN_EXTEND &&
12416       N->getOperand(1).getOpcode() != ISD::ZERO_EXTEND &&
12417       N->getOperand(1).getOpcode() != ISD::ANY_EXTEND)
12418     return SDValue();
12419 
12420   SmallVector<SDValue, 4> Inputs;
12421   SmallVector<SDValue, 8> BinOps, PromOps;
12422   SmallPtrSet<SDNode *, 16> Visited;
12423 
12424   for (unsigned i = 0; i < 2; ++i) {
12425     if (((N->getOperand(i).getOpcode() == ISD::SIGN_EXTEND ||
12426           N->getOperand(i).getOpcode() == ISD::ZERO_EXTEND ||
12427           N->getOperand(i).getOpcode() == ISD::ANY_EXTEND) &&
12428           N->getOperand(i).getOperand(0).getValueType() == MVT::i1) ||
12429         isa<ConstantSDNode>(N->getOperand(i)))
12430       Inputs.push_back(N->getOperand(i));
12431     else
12432       BinOps.push_back(N->getOperand(i));
12433 
12434     if (N->getOpcode() == ISD::TRUNCATE)
12435       break;
12436   }
12437 
12438   // Visit all inputs, collect all binary operations (and, or, xor and
12439   // select) that are all fed by extensions.
12440   while (!BinOps.empty()) {
12441     SDValue BinOp = BinOps.back();
12442     BinOps.pop_back();
12443 
12444     if (!Visited.insert(BinOp.getNode()).second)
12445       continue;
12446 
12447     PromOps.push_back(BinOp);
12448 
12449     for (unsigned i = 0, ie = BinOp.getNumOperands(); i != ie; ++i) {
12450       // The condition of the select is not promoted.
12451       if (BinOp.getOpcode() == ISD::SELECT && i == 0)
12452         continue;
12453       if (BinOp.getOpcode() == ISD::SELECT_CC && i != 2 && i != 3)
12454         continue;
12455 
12456       if (((BinOp.getOperand(i).getOpcode() == ISD::SIGN_EXTEND ||
12457             BinOp.getOperand(i).getOpcode() == ISD::ZERO_EXTEND ||
12458             BinOp.getOperand(i).getOpcode() == ISD::ANY_EXTEND) &&
12459            BinOp.getOperand(i).getOperand(0).getValueType() == MVT::i1) ||
12460           isa<ConstantSDNode>(BinOp.getOperand(i))) {
12461         Inputs.push_back(BinOp.getOperand(i));
12462       } else if (BinOp.getOperand(i).getOpcode() == ISD::AND ||
12463                  BinOp.getOperand(i).getOpcode() == ISD::OR  ||
12464                  BinOp.getOperand(i).getOpcode() == ISD::XOR ||
12465                  BinOp.getOperand(i).getOpcode() == ISD::SELECT ||
12466                  BinOp.getOperand(i).getOpcode() == ISD::SELECT_CC ||
12467                  BinOp.getOperand(i).getOpcode() == ISD::TRUNCATE ||
12468                  BinOp.getOperand(i).getOpcode() == ISD::SIGN_EXTEND ||
12469                  BinOp.getOperand(i).getOpcode() == ISD::ZERO_EXTEND ||
12470                  BinOp.getOperand(i).getOpcode() == ISD::ANY_EXTEND) {
12471         BinOps.push_back(BinOp.getOperand(i));
12472       } else {
12473         // We have an input that is not an extension or another binary
12474         // operation; we'll abort this transformation.
12475         return SDValue();
12476       }
12477     }
12478   }
12479 
12480   // Make sure that this is a self-contained cluster of operations (which
12481   // is not quite the same thing as saying that everything has only one
12482   // use).
12483   for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) {
12484     if (isa<ConstantSDNode>(Inputs[i]))
12485       continue;
12486 
12487     for (SDNode::use_iterator UI = Inputs[i].getNode()->use_begin(),
12488                               UE = Inputs[i].getNode()->use_end();
12489          UI != UE; ++UI) {
12490       SDNode *User = *UI;
12491       if (User != N && !Visited.count(User))
12492         return SDValue();
12493 
12494       // Make sure that we're not going to promote the non-output-value
12495       // operand(s) or SELECT or SELECT_CC.
12496       // FIXME: Although we could sometimes handle this, and it does occur in
12497       // practice that one of the condition inputs to the select is also one of
12498       // the outputs, we currently can't deal with this.
12499       if (User->getOpcode() == ISD::SELECT) {
12500         if (User->getOperand(0) == Inputs[i])
12501           return SDValue();
12502       } else if (User->getOpcode() == ISD::SELECT_CC) {
12503         if (User->getOperand(0) == Inputs[i] ||
12504             User->getOperand(1) == Inputs[i])
12505           return SDValue();
12506       }
12507     }
12508   }
12509 
12510   for (unsigned i = 0, ie = PromOps.size(); i != ie; ++i) {
12511     for (SDNode::use_iterator UI = PromOps[i].getNode()->use_begin(),
12512                               UE = PromOps[i].getNode()->use_end();
12513          UI != UE; ++UI) {
12514       SDNode *User = *UI;
12515       if (User != N && !Visited.count(User))
12516         return SDValue();
12517 
12518       // Make sure that we're not going to promote the non-output-value
12519       // operand(s) or SELECT or SELECT_CC.
12520       // FIXME: Although we could sometimes handle this, and it does occur in
12521       // practice that one of the condition inputs to the select is also one of
12522       // the outputs, we currently can't deal with this.
12523       if (User->getOpcode() == ISD::SELECT) {
12524         if (User->getOperand(0) == PromOps[i])
12525           return SDValue();
12526       } else if (User->getOpcode() == ISD::SELECT_CC) {
12527         if (User->getOperand(0) == PromOps[i] ||
12528             User->getOperand(1) == PromOps[i])
12529           return SDValue();
12530       }
12531     }
12532   }
12533 
12534   // Replace all inputs with the extension operand.
12535   for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) {
12536     // Constants may have users outside the cluster of to-be-promoted nodes,
12537     // and so we need to replace those as we do the promotions.
12538     if (isa<ConstantSDNode>(Inputs[i]))
12539       continue;
12540     else
12541       DAG.ReplaceAllUsesOfValueWith(Inputs[i], Inputs[i].getOperand(0));
12542   }
12543 
12544   std::list<HandleSDNode> PromOpHandles;
12545   for (auto &PromOp : PromOps)
12546     PromOpHandles.emplace_back(PromOp);
12547 
12548   // Replace all operations (these are all the same, but have a different
12549   // (i1) return type). DAG.getNode will validate that the types of
12550   // a binary operator match, so go through the list in reverse so that
12551   // we've likely promoted both operands first. Any intermediate truncations or
12552   // extensions disappear.
12553   while (!PromOpHandles.empty()) {
12554     SDValue PromOp = PromOpHandles.back().getValue();
12555     PromOpHandles.pop_back();
12556 
12557     if (PromOp.getOpcode() == ISD::TRUNCATE ||
12558         PromOp.getOpcode() == ISD::SIGN_EXTEND ||
12559         PromOp.getOpcode() == ISD::ZERO_EXTEND ||
12560         PromOp.getOpcode() == ISD::ANY_EXTEND) {
12561       if (!isa<ConstantSDNode>(PromOp.getOperand(0)) &&
12562           PromOp.getOperand(0).getValueType() != MVT::i1) {
12563         // The operand is not yet ready (see comment below).
12564         PromOpHandles.emplace_front(PromOp);
12565         continue;
12566       }
12567 
12568       SDValue RepValue = PromOp.getOperand(0);
12569       if (isa<ConstantSDNode>(RepValue))
12570         RepValue = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, RepValue);
12571 
12572       DAG.ReplaceAllUsesOfValueWith(PromOp, RepValue);
12573       continue;
12574     }
12575 
12576     unsigned C;
12577     switch (PromOp.getOpcode()) {
12578     default:             C = 0; break;
12579     case ISD::SELECT:    C = 1; break;
12580     case ISD::SELECT_CC: C = 2; break;
12581     }
12582 
12583     if ((!isa<ConstantSDNode>(PromOp.getOperand(C)) &&
12584          PromOp.getOperand(C).getValueType() != MVT::i1) ||
12585         (!isa<ConstantSDNode>(PromOp.getOperand(C+1)) &&
12586          PromOp.getOperand(C+1).getValueType() != MVT::i1)) {
12587       // The to-be-promoted operands of this node have not yet been
12588       // promoted (this should be rare because we're going through the
12589       // list backward, but if one of the operands has several users in
12590       // this cluster of to-be-promoted nodes, it is possible).
12591       PromOpHandles.emplace_front(PromOp);
12592       continue;
12593     }
12594 
12595     SmallVector<SDValue, 3> Ops(PromOp.getNode()->op_begin(),
12596                                 PromOp.getNode()->op_end());
12597 
12598     // If there are any constant inputs, make sure they're replaced now.
12599     for (unsigned i = 0; i < 2; ++i)
12600       if (isa<ConstantSDNode>(Ops[C+i]))
12601         Ops[C+i] = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, Ops[C+i]);
12602 
12603     DAG.ReplaceAllUsesOfValueWith(PromOp,
12604       DAG.getNode(PromOp.getOpcode(), dl, MVT::i1, Ops));
12605   }
12606 
12607   // Now we're left with the initial truncation itself.
12608   if (N->getOpcode() == ISD::TRUNCATE)
12609     return N->getOperand(0);
12610 
12611   // Otherwise, this is a comparison. The operands to be compared have just
12612   // changed type (to i1), but everything else is the same.
12613   return SDValue(N, 0);
12614 }
12615 
12616 SDValue PPCTargetLowering::DAGCombineExtBoolTrunc(SDNode *N,
12617                                                   DAGCombinerInfo &DCI) const {
12618   SelectionDAG &DAG = DCI.DAG;
12619   SDLoc dl(N);
12620 
12621   // If we're tracking CR bits, we need to be careful that we don't have:
12622   //   zext(binary-ops(trunc(x), trunc(y)))
12623   // or
12624   //   zext(binary-ops(binary-ops(trunc(x), trunc(y)), ...)
12625   // such that we're unnecessarily moving things into CR bits that can more
12626   // efficiently stay in GPRs. Note that if we're not certain that the high
12627   // bits are set as required by the final extension, we still may need to do
12628   // some masking to get the proper behavior.
12629 
12630   // This same functionality is important on PPC64 when dealing with
12631   // 32-to-64-bit extensions; these occur often when 32-bit values are used as
12632   // the return values of functions. Because it is so similar, it is handled
12633   // here as well.
12634 
12635   if (N->getValueType(0) != MVT::i32 &&
12636       N->getValueType(0) != MVT::i64)
12637     return SDValue();
12638 
12639   if (!((N->getOperand(0).getValueType() == MVT::i1 && Subtarget.useCRBits()) ||
12640         (N->getOperand(0).getValueType() == MVT::i32 && Subtarget.isPPC64())))
12641     return SDValue();
12642 
12643   if (N->getOperand(0).getOpcode() != ISD::AND &&
12644       N->getOperand(0).getOpcode() != ISD::OR  &&
12645       N->getOperand(0).getOpcode() != ISD::XOR &&
12646       N->getOperand(0).getOpcode() != ISD::SELECT &&
12647       N->getOperand(0).getOpcode() != ISD::SELECT_CC)
12648     return SDValue();
12649 
12650   SmallVector<SDValue, 4> Inputs;
12651   SmallVector<SDValue, 8> BinOps(1, N->getOperand(0)), PromOps;
12652   SmallPtrSet<SDNode *, 16> Visited;
12653 
12654   // Visit all inputs, collect all binary operations (and, or, xor and
12655   // select) that are all fed by truncations.
12656   while (!BinOps.empty()) {
12657     SDValue BinOp = BinOps.back();
12658     BinOps.pop_back();
12659 
12660     if (!Visited.insert(BinOp.getNode()).second)
12661       continue;
12662 
12663     PromOps.push_back(BinOp);
12664 
12665     for (unsigned i = 0, ie = BinOp.getNumOperands(); i != ie; ++i) {
12666       // The condition of the select is not promoted.
12667       if (BinOp.getOpcode() == ISD::SELECT && i == 0)
12668         continue;
12669       if (BinOp.getOpcode() == ISD::SELECT_CC && i != 2 && i != 3)
12670         continue;
12671 
12672       if (BinOp.getOperand(i).getOpcode() == ISD::TRUNCATE ||
12673           isa<ConstantSDNode>(BinOp.getOperand(i))) {
12674         Inputs.push_back(BinOp.getOperand(i));
12675       } else if (BinOp.getOperand(i).getOpcode() == ISD::AND ||
12676                  BinOp.getOperand(i).getOpcode() == ISD::OR  ||
12677                  BinOp.getOperand(i).getOpcode() == ISD::XOR ||
12678                  BinOp.getOperand(i).getOpcode() == ISD::SELECT ||
12679                  BinOp.getOperand(i).getOpcode() == ISD::SELECT_CC) {
12680         BinOps.push_back(BinOp.getOperand(i));
12681       } else {
12682         // We have an input that is not a truncation or another binary
12683         // operation; we'll abort this transformation.
12684         return SDValue();
12685       }
12686     }
12687   }
12688 
12689   // The operands of a select that must be truncated when the select is
12690   // promoted because the operand is actually part of the to-be-promoted set.
12691   DenseMap<SDNode *, EVT> SelectTruncOp[2];
12692 
12693   // Make sure that this is a self-contained cluster of operations (which
12694   // is not quite the same thing as saying that everything has only one
12695   // use).
12696   for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) {
12697     if (isa<ConstantSDNode>(Inputs[i]))
12698       continue;
12699 
12700     for (SDNode::use_iterator UI = Inputs[i].getNode()->use_begin(),
12701                               UE = Inputs[i].getNode()->use_end();
12702          UI != UE; ++UI) {
12703       SDNode *User = *UI;
12704       if (User != N && !Visited.count(User))
12705         return SDValue();
12706 
12707       // If we're going to promote the non-output-value operand(s) or SELECT or
12708       // SELECT_CC, record them for truncation.
12709       if (User->getOpcode() == ISD::SELECT) {
12710         if (User->getOperand(0) == Inputs[i])
12711           SelectTruncOp[0].insert(std::make_pair(User,
12712                                     User->getOperand(0).getValueType()));
12713       } else if (User->getOpcode() == ISD::SELECT_CC) {
12714         if (User->getOperand(0) == Inputs[i])
12715           SelectTruncOp[0].insert(std::make_pair(User,
12716                                     User->getOperand(0).getValueType()));
12717         if (User->getOperand(1) == Inputs[i])
12718           SelectTruncOp[1].insert(std::make_pair(User,
12719                                     User->getOperand(1).getValueType()));
12720       }
12721     }
12722   }
12723 
12724   for (unsigned i = 0, ie = PromOps.size(); i != ie; ++i) {
12725     for (SDNode::use_iterator UI = PromOps[i].getNode()->use_begin(),
12726                               UE = PromOps[i].getNode()->use_end();
12727          UI != UE; ++UI) {
12728       SDNode *User = *UI;
12729       if (User != N && !Visited.count(User))
12730         return SDValue();
12731 
12732       // If we're going to promote the non-output-value operand(s) or SELECT or
12733       // SELECT_CC, record them for truncation.
12734       if (User->getOpcode() == ISD::SELECT) {
12735         if (User->getOperand(0) == PromOps[i])
12736           SelectTruncOp[0].insert(std::make_pair(User,
12737                                     User->getOperand(0).getValueType()));
12738       } else if (User->getOpcode() == ISD::SELECT_CC) {
12739         if (User->getOperand(0) == PromOps[i])
12740           SelectTruncOp[0].insert(std::make_pair(User,
12741                                     User->getOperand(0).getValueType()));
12742         if (User->getOperand(1) == PromOps[i])
12743           SelectTruncOp[1].insert(std::make_pair(User,
12744                                     User->getOperand(1).getValueType()));
12745       }
12746     }
12747   }
12748 
12749   unsigned PromBits = N->getOperand(0).getValueSizeInBits();
12750   bool ReallyNeedsExt = false;
12751   if (N->getOpcode() != ISD::ANY_EXTEND) {
12752     // If all of the inputs are not already sign/zero extended, then
12753     // we'll still need to do that at the end.
12754     for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) {
12755       if (isa<ConstantSDNode>(Inputs[i]))
12756         continue;
12757 
12758       unsigned OpBits =
12759         Inputs[i].getOperand(0).getValueSizeInBits();
12760       assert(PromBits < OpBits && "Truncation not to a smaller bit count?");
12761 
12762       if ((N->getOpcode() == ISD::ZERO_EXTEND &&
12763            !DAG.MaskedValueIsZero(Inputs[i].getOperand(0),
12764                                   APInt::getHighBitsSet(OpBits,
12765                                                         OpBits-PromBits))) ||
12766           (N->getOpcode() == ISD::SIGN_EXTEND &&
12767            DAG.ComputeNumSignBits(Inputs[i].getOperand(0)) <
12768              (OpBits-(PromBits-1)))) {
12769         ReallyNeedsExt = true;
12770         break;
12771       }
12772     }
12773   }
12774 
12775   // Replace all inputs, either with the truncation operand, or a
12776   // truncation or extension to the final output type.
12777   for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) {
12778     // Constant inputs need to be replaced with the to-be-promoted nodes that
12779     // use them because they might have users outside of the cluster of
12780     // promoted nodes.
12781     if (isa<ConstantSDNode>(Inputs[i]))
12782       continue;
12783 
12784     SDValue InSrc = Inputs[i].getOperand(0);
12785     if (Inputs[i].getValueType() == N->getValueType(0))
12786       DAG.ReplaceAllUsesOfValueWith(Inputs[i], InSrc);
12787     else if (N->getOpcode() == ISD::SIGN_EXTEND)
12788       DAG.ReplaceAllUsesOfValueWith(Inputs[i],
12789         DAG.getSExtOrTrunc(InSrc, dl, N->getValueType(0)));
12790     else if (N->getOpcode() == ISD::ZERO_EXTEND)
12791       DAG.ReplaceAllUsesOfValueWith(Inputs[i],
12792         DAG.getZExtOrTrunc(InSrc, dl, N->getValueType(0)));
12793     else
12794       DAG.ReplaceAllUsesOfValueWith(Inputs[i],
12795         DAG.getAnyExtOrTrunc(InSrc, dl, N->getValueType(0)));
12796   }
12797 
12798   std::list<HandleSDNode> PromOpHandles;
12799   for (auto &PromOp : PromOps)
12800     PromOpHandles.emplace_back(PromOp);
12801 
12802   // Replace all operations (these are all the same, but have a different
12803   // (promoted) return type). DAG.getNode will validate that the types of
12804   // a binary operator match, so go through the list in reverse so that
12805   // we've likely promoted both operands first.
12806   while (!PromOpHandles.empty()) {
12807     SDValue PromOp = PromOpHandles.back().getValue();
12808     PromOpHandles.pop_back();
12809 
12810     unsigned C;
12811     switch (PromOp.getOpcode()) {
12812     default:             C = 0; break;
12813     case ISD::SELECT:    C = 1; break;
12814     case ISD::SELECT_CC: C = 2; break;
12815     }
12816 
12817     if ((!isa<ConstantSDNode>(PromOp.getOperand(C)) &&
12818          PromOp.getOperand(C).getValueType() != N->getValueType(0)) ||
12819         (!isa<ConstantSDNode>(PromOp.getOperand(C+1)) &&
12820          PromOp.getOperand(C+1).getValueType() != N->getValueType(0))) {
12821       // The to-be-promoted operands of this node have not yet been
12822       // promoted (this should be rare because we're going through the
12823       // list backward, but if one of the operands has several users in
12824       // this cluster of to-be-promoted nodes, it is possible).
12825       PromOpHandles.emplace_front(PromOp);
12826       continue;
12827     }
12828 
12829     // For SELECT and SELECT_CC nodes, we do a similar check for any
12830     // to-be-promoted comparison inputs.
12831     if (PromOp.getOpcode() == ISD::SELECT ||
12832         PromOp.getOpcode() == ISD::SELECT_CC) {
12833       if ((SelectTruncOp[0].count(PromOp.getNode()) &&
12834            PromOp.getOperand(0).getValueType() != N->getValueType(0)) ||
12835           (SelectTruncOp[1].count(PromOp.getNode()) &&
12836            PromOp.getOperand(1).getValueType() != N->getValueType(0))) {
12837         PromOpHandles.emplace_front(PromOp);
12838         continue;
12839       }
12840     }
12841 
12842     SmallVector<SDValue, 3> Ops(PromOp.getNode()->op_begin(),
12843                                 PromOp.getNode()->op_end());
12844 
12845     // If this node has constant inputs, then they'll need to be promoted here.
12846     for (unsigned i = 0; i < 2; ++i) {
12847       if (!isa<ConstantSDNode>(Ops[C+i]))
12848         continue;
12849       if (Ops[C+i].getValueType() == N->getValueType(0))
12850         continue;
12851 
12852       if (N->getOpcode() == ISD::SIGN_EXTEND)
12853         Ops[C+i] = DAG.getSExtOrTrunc(Ops[C+i], dl, N->getValueType(0));
12854       else if (N->getOpcode() == ISD::ZERO_EXTEND)
12855         Ops[C+i] = DAG.getZExtOrTrunc(Ops[C+i], dl, N->getValueType(0));
12856       else
12857         Ops[C+i] = DAG.getAnyExtOrTrunc(Ops[C+i], dl, N->getValueType(0));
12858     }
12859 
12860     // If we've promoted the comparison inputs of a SELECT or SELECT_CC,
12861     // truncate them again to the original value type.
12862     if (PromOp.getOpcode() == ISD::SELECT ||
12863         PromOp.getOpcode() == ISD::SELECT_CC) {
12864       auto SI0 = SelectTruncOp[0].find(PromOp.getNode());
12865       if (SI0 != SelectTruncOp[0].end())
12866         Ops[0] = DAG.getNode(ISD::TRUNCATE, dl, SI0->second, Ops[0]);
12867       auto SI1 = SelectTruncOp[1].find(PromOp.getNode());
12868       if (SI1 != SelectTruncOp[1].end())
12869         Ops[1] = DAG.getNode(ISD::TRUNCATE, dl, SI1->second, Ops[1]);
12870     }
12871 
12872     DAG.ReplaceAllUsesOfValueWith(PromOp,
12873       DAG.getNode(PromOp.getOpcode(), dl, N->getValueType(0), Ops));
12874   }
12875 
12876   // Now we're left with the initial extension itself.
12877   if (!ReallyNeedsExt)
12878     return N->getOperand(0);
12879 
12880   // To zero extend, just mask off everything except for the first bit (in the
12881   // i1 case).
12882   if (N->getOpcode() == ISD::ZERO_EXTEND)
12883     return DAG.getNode(ISD::AND, dl, N->getValueType(0), N->getOperand(0),
12884                        DAG.getConstant(APInt::getLowBitsSet(
12885                                          N->getValueSizeInBits(0), PromBits),
12886                                        dl, N->getValueType(0)));
12887 
12888   assert(N->getOpcode() == ISD::SIGN_EXTEND &&
12889          "Invalid extension type");
12890   EVT ShiftAmountTy = getShiftAmountTy(N->getValueType(0), DAG.getDataLayout());
12891   SDValue ShiftCst =
12892       DAG.getConstant(N->getValueSizeInBits(0) - PromBits, dl, ShiftAmountTy);
12893   return DAG.getNode(
12894       ISD::SRA, dl, N->getValueType(0),
12895       DAG.getNode(ISD::SHL, dl, N->getValueType(0), N->getOperand(0), ShiftCst),
12896       ShiftCst);
12897 }
12898 
12899 SDValue PPCTargetLowering::combineSetCC(SDNode *N,
12900                                         DAGCombinerInfo &DCI) const {
12901   assert(N->getOpcode() == ISD::SETCC &&
12902          "Should be called with a SETCC node");
12903 
12904   ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(2))->get();
12905   if (CC == ISD::SETNE || CC == ISD::SETEQ) {
12906     SDValue LHS = N->getOperand(0);
12907     SDValue RHS = N->getOperand(1);
12908 
12909     // If there is a '0 - y' pattern, canonicalize the pattern to the RHS.
12910     if (LHS.getOpcode() == ISD::SUB && isNullConstant(LHS.getOperand(0)) &&
12911         LHS.hasOneUse())
12912       std::swap(LHS, RHS);
12913 
12914     // x == 0-y --> x+y == 0
12915     // x != 0-y --> x+y != 0
12916     if (RHS.getOpcode() == ISD::SUB && isNullConstant(RHS.getOperand(0)) &&
12917         RHS.hasOneUse()) {
12918       SDLoc DL(N);
12919       SelectionDAG &DAG = DCI.DAG;
12920       EVT VT = N->getValueType(0);
12921       EVT OpVT = LHS.getValueType();
12922       SDValue Add = DAG.getNode(ISD::ADD, DL, OpVT, LHS, RHS.getOperand(1));
12923       return DAG.getSetCC(DL, VT, Add, DAG.getConstant(0, DL, OpVT), CC);
12924     }
12925   }
12926 
12927   return DAGCombineTruncBoolExt(N, DCI);
12928 }
12929 
12930 // Is this an extending load from an f32 to an f64?
12931 static bool isFPExtLoad(SDValue Op) {
12932   if (LoadSDNode *LD = dyn_cast<LoadSDNode>(Op.getNode()))
12933     return LD->getExtensionType() == ISD::EXTLOAD &&
12934       Op.getValueType() == MVT::f64;
12935   return false;
12936 }
12937 
12938 /// Reduces the number of fp-to-int conversion when building a vector.
12939 ///
12940 /// If this vector is built out of floating to integer conversions,
12941 /// transform it to a vector built out of floating point values followed by a
12942 /// single floating to integer conversion of the vector.
12943 /// Namely  (build_vector (fptosi $A), (fptosi $B), ...)
12944 /// becomes (fptosi (build_vector ($A, $B, ...)))
12945 SDValue PPCTargetLowering::
12946 combineElementTruncationToVectorTruncation(SDNode *N,
12947                                            DAGCombinerInfo &DCI) const {
12948   assert(N->getOpcode() == ISD::BUILD_VECTOR &&
12949          "Should be called with a BUILD_VECTOR node");
12950 
12951   SelectionDAG &DAG = DCI.DAG;
12952   SDLoc dl(N);
12953 
12954   SDValue FirstInput = N->getOperand(0);
12955   assert(FirstInput.getOpcode() == PPCISD::MFVSR &&
12956          "The input operand must be an fp-to-int conversion.");
12957 
12958   // This combine happens after legalization so the fp_to_[su]i nodes are
12959   // already converted to PPCSISD nodes.
12960   unsigned FirstConversion = FirstInput.getOperand(0).getOpcode();
12961   if (FirstConversion == PPCISD::FCTIDZ ||
12962       FirstConversion == PPCISD::FCTIDUZ ||
12963       FirstConversion == PPCISD::FCTIWZ ||
12964       FirstConversion == PPCISD::FCTIWUZ) {
12965     bool IsSplat = true;
12966     bool Is32Bit = FirstConversion == PPCISD::FCTIWZ ||
12967       FirstConversion == PPCISD::FCTIWUZ;
12968     EVT SrcVT = FirstInput.getOperand(0).getValueType();
12969     SmallVector<SDValue, 4> Ops;
12970     EVT TargetVT = N->getValueType(0);
12971     for (int i = 0, e = N->getNumOperands(); i < e; ++i) {
12972       SDValue NextOp = N->getOperand(i);
12973       if (NextOp.getOpcode() != PPCISD::MFVSR)
12974         return SDValue();
12975       unsigned NextConversion = NextOp.getOperand(0).getOpcode();
12976       if (NextConversion != FirstConversion)
12977         return SDValue();
12978       // If we are converting to 32-bit integers, we need to add an FP_ROUND.
12979       // This is not valid if the input was originally double precision. It is
12980       // also not profitable to do unless this is an extending load in which
12981       // case doing this combine will allow us to combine consecutive loads.
12982       if (Is32Bit && !isFPExtLoad(NextOp.getOperand(0).getOperand(0)))
12983         return SDValue();
12984       if (N->getOperand(i) != FirstInput)
12985         IsSplat = false;
12986     }
12987 
12988     // If this is a splat, we leave it as-is since there will be only a single
12989     // fp-to-int conversion followed by a splat of the integer. This is better
12990     // for 32-bit and smaller ints and neutral for 64-bit ints.
12991     if (IsSplat)
12992       return SDValue();
12993 
12994     // Now that we know we have the right type of node, get its operands
12995     for (int i = 0, e = N->getNumOperands(); i < e; ++i) {
12996       SDValue In = N->getOperand(i).getOperand(0);
12997       if (Is32Bit) {
12998         // For 32-bit values, we need to add an FP_ROUND node (if we made it
12999         // here, we know that all inputs are extending loads so this is safe).
13000         if (In.isUndef())
13001           Ops.push_back(DAG.getUNDEF(SrcVT));
13002         else {
13003           SDValue Trunc = DAG.getNode(ISD::FP_ROUND, dl,
13004                                       MVT::f32, In.getOperand(0),
13005                                       DAG.getIntPtrConstant(1, dl));
13006           Ops.push_back(Trunc);
13007         }
13008       } else
13009         Ops.push_back(In.isUndef() ? DAG.getUNDEF(SrcVT) : In.getOperand(0));
13010     }
13011 
13012     unsigned Opcode;
13013     if (FirstConversion == PPCISD::FCTIDZ ||
13014         FirstConversion == PPCISD::FCTIWZ)
13015       Opcode = ISD::FP_TO_SINT;
13016     else
13017       Opcode = ISD::FP_TO_UINT;
13018 
13019     EVT NewVT = TargetVT == MVT::v2i64 ? MVT::v2f64 : MVT::v4f32;
13020     SDValue BV = DAG.getBuildVector(NewVT, dl, Ops);
13021     return DAG.getNode(Opcode, dl, TargetVT, BV);
13022   }
13023   return SDValue();
13024 }
13025 
13026 /// Reduce the number of loads when building a vector.
13027 ///
13028 /// Building a vector out of multiple loads can be converted to a load
13029 /// of the vector type if the loads are consecutive. If the loads are
13030 /// consecutive but in descending order, a shuffle is added at the end
13031 /// to reorder the vector.
13032 static SDValue combineBVOfConsecutiveLoads(SDNode *N, SelectionDAG &DAG) {
13033   assert(N->getOpcode() == ISD::BUILD_VECTOR &&
13034          "Should be called with a BUILD_VECTOR node");
13035 
13036   SDLoc dl(N);
13037 
13038   // Return early for non byte-sized type, as they can't be consecutive.
13039   if (!N->getValueType(0).getVectorElementType().isByteSized())
13040     return SDValue();
13041 
13042   bool InputsAreConsecutiveLoads = true;
13043   bool InputsAreReverseConsecutive = true;
13044   unsigned ElemSize = N->getValueType(0).getScalarType().getStoreSize();
13045   SDValue FirstInput = N->getOperand(0);
13046   bool IsRoundOfExtLoad = false;
13047 
13048   if (FirstInput.getOpcode() == ISD::FP_ROUND &&
13049       FirstInput.getOperand(0).getOpcode() == ISD::LOAD) {
13050     LoadSDNode *LD = dyn_cast<LoadSDNode>(FirstInput.getOperand(0));
13051     IsRoundOfExtLoad = LD->getExtensionType() == ISD::EXTLOAD;
13052   }
13053   // Not a build vector of (possibly fp_rounded) loads.
13054   if ((!IsRoundOfExtLoad && FirstInput.getOpcode() != ISD::LOAD) ||
13055       N->getNumOperands() == 1)
13056     return SDValue();
13057 
13058   for (int i = 1, e = N->getNumOperands(); i < e; ++i) {
13059     // If any inputs are fp_round(extload), they all must be.
13060     if (IsRoundOfExtLoad && N->getOperand(i).getOpcode() != ISD::FP_ROUND)
13061       return SDValue();
13062 
13063     SDValue NextInput = IsRoundOfExtLoad ? N->getOperand(i).getOperand(0) :
13064       N->getOperand(i);
13065     if (NextInput.getOpcode() != ISD::LOAD)
13066       return SDValue();
13067 
13068     SDValue PreviousInput =
13069       IsRoundOfExtLoad ? N->getOperand(i-1).getOperand(0) : N->getOperand(i-1);
13070     LoadSDNode *LD1 = dyn_cast<LoadSDNode>(PreviousInput);
13071     LoadSDNode *LD2 = dyn_cast<LoadSDNode>(NextInput);
13072 
13073     // If any inputs are fp_round(extload), they all must be.
13074     if (IsRoundOfExtLoad && LD2->getExtensionType() != ISD::EXTLOAD)
13075       return SDValue();
13076 
13077     if (!isConsecutiveLS(LD2, LD1, ElemSize, 1, DAG))
13078       InputsAreConsecutiveLoads = false;
13079     if (!isConsecutiveLS(LD1, LD2, ElemSize, 1, DAG))
13080       InputsAreReverseConsecutive = false;
13081 
13082     // Exit early if the loads are neither consecutive nor reverse consecutive.
13083     if (!InputsAreConsecutiveLoads && !InputsAreReverseConsecutive)
13084       return SDValue();
13085   }
13086 
13087   assert(!(InputsAreConsecutiveLoads && InputsAreReverseConsecutive) &&
13088          "The loads cannot be both consecutive and reverse consecutive.");
13089 
13090   SDValue FirstLoadOp =
13091     IsRoundOfExtLoad ? FirstInput.getOperand(0) : FirstInput;
13092   SDValue LastLoadOp =
13093     IsRoundOfExtLoad ? N->getOperand(N->getNumOperands()-1).getOperand(0) :
13094                        N->getOperand(N->getNumOperands()-1);
13095 
13096   LoadSDNode *LD1 = dyn_cast<LoadSDNode>(FirstLoadOp);
13097   LoadSDNode *LDL = dyn_cast<LoadSDNode>(LastLoadOp);
13098   if (InputsAreConsecutiveLoads) {
13099     assert(LD1 && "Input needs to be a LoadSDNode.");
13100     return DAG.getLoad(N->getValueType(0), dl, LD1->getChain(),
13101                        LD1->getBasePtr(), LD1->getPointerInfo(),
13102                        LD1->getAlignment());
13103   }
13104   if (InputsAreReverseConsecutive) {
13105     assert(LDL && "Input needs to be a LoadSDNode.");
13106     SDValue Load = DAG.getLoad(N->getValueType(0), dl, LDL->getChain(),
13107                                LDL->getBasePtr(), LDL->getPointerInfo(),
13108                                LDL->getAlignment());
13109     SmallVector<int, 16> Ops;
13110     for (int i = N->getNumOperands() - 1; i >= 0; i--)
13111       Ops.push_back(i);
13112 
13113     return DAG.getVectorShuffle(N->getValueType(0), dl, Load,
13114                                 DAG.getUNDEF(N->getValueType(0)), Ops);
13115   }
13116   return SDValue();
13117 }
13118 
13119 // This function adds the required vector_shuffle needed to get
13120 // the elements of the vector extract in the correct position
13121 // as specified by the CorrectElems encoding.
13122 static SDValue addShuffleForVecExtend(SDNode *N, SelectionDAG &DAG,
13123                                       SDValue Input, uint64_t Elems,
13124                                       uint64_t CorrectElems) {
13125   SDLoc dl(N);
13126 
13127   unsigned NumElems = Input.getValueType().getVectorNumElements();
13128   SmallVector<int, 16> ShuffleMask(NumElems, -1);
13129 
13130   // Knowing the element indices being extracted from the original
13131   // vector and the order in which they're being inserted, just put
13132   // them at element indices required for the instruction.
13133   for (unsigned i = 0; i < N->getNumOperands(); i++) {
13134     if (DAG.getDataLayout().isLittleEndian())
13135       ShuffleMask[CorrectElems & 0xF] = Elems & 0xF;
13136     else
13137       ShuffleMask[(CorrectElems & 0xF0) >> 4] = (Elems & 0xF0) >> 4;
13138     CorrectElems = CorrectElems >> 8;
13139     Elems = Elems >> 8;
13140   }
13141 
13142   SDValue Shuffle =
13143       DAG.getVectorShuffle(Input.getValueType(), dl, Input,
13144                            DAG.getUNDEF(Input.getValueType()), ShuffleMask);
13145 
13146   EVT Ty = N->getValueType(0);
13147   SDValue BV = DAG.getNode(PPCISD::SExtVElems, dl, Ty, Shuffle);
13148   return BV;
13149 }
13150 
13151 // Look for build vector patterns where input operands come from sign
13152 // extended vector_extract elements of specific indices. If the correct indices
13153 // aren't used, add a vector shuffle to fix up the indices and create a new
13154 // PPCISD:SExtVElems node which selects the vector sign extend instructions
13155 // during instruction selection.
13156 static SDValue combineBVOfVecSExt(SDNode *N, SelectionDAG &DAG) {
13157   // This array encodes the indices that the vector sign extend instructions
13158   // extract from when extending from one type to another for both BE and LE.
13159   // The right nibble of each byte corresponds to the LE incides.
13160   // and the left nibble of each byte corresponds to the BE incides.
13161   // For example: 0x3074B8FC  byte->word
13162   // For LE: the allowed indices are: 0x0,0x4,0x8,0xC
13163   // For BE: the allowed indices are: 0x3,0x7,0xB,0xF
13164   // For example: 0x000070F8  byte->double word
13165   // For LE: the allowed indices are: 0x0,0x8
13166   // For BE: the allowed indices are: 0x7,0xF
13167   uint64_t TargetElems[] = {
13168       0x3074B8FC, // b->w
13169       0x000070F8, // b->d
13170       0x10325476, // h->w
13171       0x00003074, // h->d
13172       0x00001032, // w->d
13173   };
13174 
13175   uint64_t Elems = 0;
13176   int Index;
13177   SDValue Input;
13178 
13179   auto isSExtOfVecExtract = [&](SDValue Op) -> bool {
13180     if (!Op)
13181       return false;
13182     if (Op.getOpcode() != ISD::SIGN_EXTEND &&
13183         Op.getOpcode() != ISD::SIGN_EXTEND_INREG)
13184       return false;
13185 
13186     // A SIGN_EXTEND_INREG might be fed by an ANY_EXTEND to produce a value
13187     // of the right width.
13188     SDValue Extract = Op.getOperand(0);
13189     if (Extract.getOpcode() == ISD::ANY_EXTEND)
13190       Extract = Extract.getOperand(0);
13191     if (Extract.getOpcode() != ISD::EXTRACT_VECTOR_ELT)
13192       return false;
13193 
13194     ConstantSDNode *ExtOp = dyn_cast<ConstantSDNode>(Extract.getOperand(1));
13195     if (!ExtOp)
13196       return false;
13197 
13198     Index = ExtOp->getZExtValue();
13199     if (Input && Input != Extract.getOperand(0))
13200       return false;
13201 
13202     if (!Input)
13203       Input = Extract.getOperand(0);
13204 
13205     Elems = Elems << 8;
13206     Index = DAG.getDataLayout().isLittleEndian() ? Index : Index << 4;
13207     Elems |= Index;
13208 
13209     return true;
13210   };
13211 
13212   // If the build vector operands aren't sign extended vector extracts,
13213   // of the same input vector, then return.
13214   for (unsigned i = 0; i < N->getNumOperands(); i++) {
13215     if (!isSExtOfVecExtract(N->getOperand(i))) {
13216       return SDValue();
13217     }
13218   }
13219 
13220   // If the vector extract indicies are not correct, add the appropriate
13221   // vector_shuffle.
13222   int TgtElemArrayIdx;
13223   int InputSize = Input.getValueType().getScalarSizeInBits();
13224   int OutputSize = N->getValueType(0).getScalarSizeInBits();
13225   if (InputSize + OutputSize == 40)
13226     TgtElemArrayIdx = 0;
13227   else if (InputSize + OutputSize == 72)
13228     TgtElemArrayIdx = 1;
13229   else if (InputSize + OutputSize == 48)
13230     TgtElemArrayIdx = 2;
13231   else if (InputSize + OutputSize == 80)
13232     TgtElemArrayIdx = 3;
13233   else if (InputSize + OutputSize == 96)
13234     TgtElemArrayIdx = 4;
13235   else
13236     return SDValue();
13237 
13238   uint64_t CorrectElems = TargetElems[TgtElemArrayIdx];
13239   CorrectElems = DAG.getDataLayout().isLittleEndian()
13240                      ? CorrectElems & 0x0F0F0F0F0F0F0F0F
13241                      : CorrectElems & 0xF0F0F0F0F0F0F0F0;
13242   if (Elems != CorrectElems) {
13243     return addShuffleForVecExtend(N, DAG, Input, Elems, CorrectElems);
13244   }
13245 
13246   // Regular lowering will catch cases where a shuffle is not needed.
13247   return SDValue();
13248 }
13249 
13250 SDValue PPCTargetLowering::DAGCombineBuildVector(SDNode *N,
13251                                                  DAGCombinerInfo &DCI) const {
13252   assert(N->getOpcode() == ISD::BUILD_VECTOR &&
13253          "Should be called with a BUILD_VECTOR node");
13254 
13255   SelectionDAG &DAG = DCI.DAG;
13256   SDLoc dl(N);
13257 
13258   if (!Subtarget.hasVSX())
13259     return SDValue();
13260 
13261   // The target independent DAG combiner will leave a build_vector of
13262   // float-to-int conversions intact. We can generate MUCH better code for
13263   // a float-to-int conversion of a vector of floats.
13264   SDValue FirstInput = N->getOperand(0);
13265   if (FirstInput.getOpcode() == PPCISD::MFVSR) {
13266     SDValue Reduced = combineElementTruncationToVectorTruncation(N, DCI);
13267     if (Reduced)
13268       return Reduced;
13269   }
13270 
13271   // If we're building a vector out of consecutive loads, just load that
13272   // vector type.
13273   SDValue Reduced = combineBVOfConsecutiveLoads(N, DAG);
13274   if (Reduced)
13275     return Reduced;
13276 
13277   // If we're building a vector out of extended elements from another vector
13278   // we have P9 vector integer extend instructions. The code assumes legal
13279   // input types (i.e. it can't handle things like v4i16) so do not run before
13280   // legalization.
13281   if (Subtarget.hasP9Altivec() && !DCI.isBeforeLegalize()) {
13282     Reduced = combineBVOfVecSExt(N, DAG);
13283     if (Reduced)
13284       return Reduced;
13285   }
13286 
13287 
13288   if (N->getValueType(0) != MVT::v2f64)
13289     return SDValue();
13290 
13291   // Looking for:
13292   // (build_vector ([su]int_to_fp (extractelt 0)), [su]int_to_fp (extractelt 1))
13293   if (FirstInput.getOpcode() != ISD::SINT_TO_FP &&
13294       FirstInput.getOpcode() != ISD::UINT_TO_FP)
13295     return SDValue();
13296   if (N->getOperand(1).getOpcode() != ISD::SINT_TO_FP &&
13297       N->getOperand(1).getOpcode() != ISD::UINT_TO_FP)
13298     return SDValue();
13299   if (FirstInput.getOpcode() != N->getOperand(1).getOpcode())
13300     return SDValue();
13301 
13302   SDValue Ext1 = FirstInput.getOperand(0);
13303   SDValue Ext2 = N->getOperand(1).getOperand(0);
13304   if(Ext1.getOpcode() != ISD::EXTRACT_VECTOR_ELT ||
13305      Ext2.getOpcode() != ISD::EXTRACT_VECTOR_ELT)
13306     return SDValue();
13307 
13308   ConstantSDNode *Ext1Op = dyn_cast<ConstantSDNode>(Ext1.getOperand(1));
13309   ConstantSDNode *Ext2Op = dyn_cast<ConstantSDNode>(Ext2.getOperand(1));
13310   if (!Ext1Op || !Ext2Op)
13311     return SDValue();
13312   if (Ext1.getOperand(0).getValueType() != MVT::v4i32 ||
13313       Ext1.getOperand(0) != Ext2.getOperand(0))
13314     return SDValue();
13315 
13316   int FirstElem = Ext1Op->getZExtValue();
13317   int SecondElem = Ext2Op->getZExtValue();
13318   int SubvecIdx;
13319   if (FirstElem == 0 && SecondElem == 1)
13320     SubvecIdx = Subtarget.isLittleEndian() ? 1 : 0;
13321   else if (FirstElem == 2 && SecondElem == 3)
13322     SubvecIdx = Subtarget.isLittleEndian() ? 0 : 1;
13323   else
13324     return SDValue();
13325 
13326   SDValue SrcVec = Ext1.getOperand(0);
13327   auto NodeType = (N->getOperand(1).getOpcode() == ISD::SINT_TO_FP) ?
13328     PPCISD::SINT_VEC_TO_FP : PPCISD::UINT_VEC_TO_FP;
13329   return DAG.getNode(NodeType, dl, MVT::v2f64,
13330                      SrcVec, DAG.getIntPtrConstant(SubvecIdx, dl));
13331 }
13332 
13333 SDValue PPCTargetLowering::combineFPToIntToFP(SDNode *N,
13334                                               DAGCombinerInfo &DCI) const {
13335   assert((N->getOpcode() == ISD::SINT_TO_FP ||
13336           N->getOpcode() == ISD::UINT_TO_FP) &&
13337          "Need an int -> FP conversion node here");
13338 
13339   if (useSoftFloat() || !Subtarget.has64BitSupport())
13340     return SDValue();
13341 
13342   SelectionDAG &DAG = DCI.DAG;
13343   SDLoc dl(N);
13344   SDValue Op(N, 0);
13345 
13346   // Don't handle ppc_fp128 here or conversions that are out-of-range capable
13347   // from the hardware.
13348   if (Op.getValueType() != MVT::f32 && Op.getValueType() != MVT::f64)
13349     return SDValue();
13350   if (Op.getOperand(0).getValueType().getSimpleVT() <= MVT(MVT::i1) ||
13351       Op.getOperand(0).getValueType().getSimpleVT() > MVT(MVT::i64))
13352     return SDValue();
13353 
13354   SDValue FirstOperand(Op.getOperand(0));
13355   bool SubWordLoad = FirstOperand.getOpcode() == ISD::LOAD &&
13356     (FirstOperand.getValueType() == MVT::i8 ||
13357      FirstOperand.getValueType() == MVT::i16);
13358   if (Subtarget.hasP9Vector() && Subtarget.hasP9Altivec() && SubWordLoad) {
13359     bool Signed = N->getOpcode() == ISD::SINT_TO_FP;
13360     bool DstDouble = Op.getValueType() == MVT::f64;
13361     unsigned ConvOp = Signed ?
13362       (DstDouble ? PPCISD::FCFID  : PPCISD::FCFIDS) :
13363       (DstDouble ? PPCISD::FCFIDU : PPCISD::FCFIDUS);
13364     SDValue WidthConst =
13365       DAG.getIntPtrConstant(FirstOperand.getValueType() == MVT::i8 ? 1 : 2,
13366                             dl, false);
13367     LoadSDNode *LDN = cast<LoadSDNode>(FirstOperand.getNode());
13368     SDValue Ops[] = { LDN->getChain(), LDN->getBasePtr(), WidthConst };
13369     SDValue Ld = DAG.getMemIntrinsicNode(PPCISD::LXSIZX, dl,
13370                                          DAG.getVTList(MVT::f64, MVT::Other),
13371                                          Ops, MVT::i8, LDN->getMemOperand());
13372 
13373     // For signed conversion, we need to sign-extend the value in the VSR
13374     if (Signed) {
13375       SDValue ExtOps[] = { Ld, WidthConst };
13376       SDValue Ext = DAG.getNode(PPCISD::VEXTS, dl, MVT::f64, ExtOps);
13377       return DAG.getNode(ConvOp, dl, DstDouble ? MVT::f64 : MVT::f32, Ext);
13378     } else
13379       return DAG.getNode(ConvOp, dl, DstDouble ? MVT::f64 : MVT::f32, Ld);
13380   }
13381 
13382 
13383   // For i32 intermediate values, unfortunately, the conversion functions
13384   // leave the upper 32 bits of the value are undefined. Within the set of
13385   // scalar instructions, we have no method for zero- or sign-extending the
13386   // value. Thus, we cannot handle i32 intermediate values here.
13387   if (Op.getOperand(0).getValueType() == MVT::i32)
13388     return SDValue();
13389 
13390   assert((Op.getOpcode() == ISD::SINT_TO_FP || Subtarget.hasFPCVT()) &&
13391          "UINT_TO_FP is supported only with FPCVT");
13392 
13393   // If we have FCFIDS, then use it when converting to single-precision.
13394   // Otherwise, convert to double-precision and then round.
13395   unsigned FCFOp = (Subtarget.hasFPCVT() && Op.getValueType() == MVT::f32)
13396                        ? (Op.getOpcode() == ISD::UINT_TO_FP ? PPCISD::FCFIDUS
13397                                                             : PPCISD::FCFIDS)
13398                        : (Op.getOpcode() == ISD::UINT_TO_FP ? PPCISD::FCFIDU
13399                                                             : PPCISD::FCFID);
13400   MVT FCFTy = (Subtarget.hasFPCVT() && Op.getValueType() == MVT::f32)
13401                   ? MVT::f32
13402                   : MVT::f64;
13403 
13404   // If we're converting from a float, to an int, and back to a float again,
13405   // then we don't need the store/load pair at all.
13406   if ((Op.getOperand(0).getOpcode() == ISD::FP_TO_UINT &&
13407        Subtarget.hasFPCVT()) ||
13408       (Op.getOperand(0).getOpcode() == ISD::FP_TO_SINT)) {
13409     SDValue Src = Op.getOperand(0).getOperand(0);
13410     if (Src.getValueType() == MVT::f32) {
13411       Src = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Src);
13412       DCI.AddToWorklist(Src.getNode());
13413     } else if (Src.getValueType() != MVT::f64) {
13414       // Make sure that we don't pick up a ppc_fp128 source value.
13415       return SDValue();
13416     }
13417 
13418     unsigned FCTOp =
13419       Op.getOperand(0).getOpcode() == ISD::FP_TO_SINT ? PPCISD::FCTIDZ :
13420                                                         PPCISD::FCTIDUZ;
13421 
13422     SDValue Tmp = DAG.getNode(FCTOp, dl, MVT::f64, Src);
13423     SDValue FP = DAG.getNode(FCFOp, dl, FCFTy, Tmp);
13424 
13425     if (Op.getValueType() == MVT::f32 && !Subtarget.hasFPCVT()) {
13426       FP = DAG.getNode(ISD::FP_ROUND, dl,
13427                        MVT::f32, FP, DAG.getIntPtrConstant(0, dl));
13428       DCI.AddToWorklist(FP.getNode());
13429     }
13430 
13431     return FP;
13432   }
13433 
13434   return SDValue();
13435 }
13436 
13437 // expandVSXLoadForLE - Convert VSX loads (which may be intrinsics for
13438 // builtins) into loads with swaps.
13439 SDValue PPCTargetLowering::expandVSXLoadForLE(SDNode *N,
13440                                               DAGCombinerInfo &DCI) const {
13441   SelectionDAG &DAG = DCI.DAG;
13442   SDLoc dl(N);
13443   SDValue Chain;
13444   SDValue Base;
13445   MachineMemOperand *MMO;
13446 
13447   switch (N->getOpcode()) {
13448   default:
13449     llvm_unreachable("Unexpected opcode for little endian VSX load");
13450   case ISD::LOAD: {
13451     LoadSDNode *LD = cast<LoadSDNode>(N);
13452     Chain = LD->getChain();
13453     Base = LD->getBasePtr();
13454     MMO = LD->getMemOperand();
13455     // If the MMO suggests this isn't a load of a full vector, leave
13456     // things alone.  For a built-in, we have to make the change for
13457     // correctness, so if there is a size problem that will be a bug.
13458     if (MMO->getSize() < 16)
13459       return SDValue();
13460     break;
13461   }
13462   case ISD::INTRINSIC_W_CHAIN: {
13463     MemIntrinsicSDNode *Intrin = cast<MemIntrinsicSDNode>(N);
13464     Chain = Intrin->getChain();
13465     // Similarly to the store case below, Intrin->getBasePtr() doesn't get
13466     // us what we want. Get operand 2 instead.
13467     Base = Intrin->getOperand(2);
13468     MMO = Intrin->getMemOperand();
13469     break;
13470   }
13471   }
13472 
13473   MVT VecTy = N->getValueType(0).getSimpleVT();
13474 
13475   // Do not expand to PPCISD::LXVD2X + PPCISD::XXSWAPD when the load is
13476   // aligned and the type is a vector with elements up to 4 bytes
13477   if (Subtarget.needsSwapsForVSXMemOps() && !(MMO->getAlignment()%16)
13478       && VecTy.getScalarSizeInBits() <= 32 ) {
13479     return SDValue();
13480   }
13481 
13482   SDValue LoadOps[] = { Chain, Base };
13483   SDValue Load = DAG.getMemIntrinsicNode(PPCISD::LXVD2X, dl,
13484                                          DAG.getVTList(MVT::v2f64, MVT::Other),
13485                                          LoadOps, MVT::v2f64, MMO);
13486 
13487   DCI.AddToWorklist(Load.getNode());
13488   Chain = Load.getValue(1);
13489   SDValue Swap = DAG.getNode(
13490       PPCISD::XXSWAPD, dl, DAG.getVTList(MVT::v2f64, MVT::Other), Chain, Load);
13491   DCI.AddToWorklist(Swap.getNode());
13492 
13493   // Add a bitcast if the resulting load type doesn't match v2f64.
13494   if (VecTy != MVT::v2f64) {
13495     SDValue N = DAG.getNode(ISD::BITCAST, dl, VecTy, Swap);
13496     DCI.AddToWorklist(N.getNode());
13497     // Package {bitcast value, swap's chain} to match Load's shape.
13498     return DAG.getNode(ISD::MERGE_VALUES, dl, DAG.getVTList(VecTy, MVT::Other),
13499                        N, Swap.getValue(1));
13500   }
13501 
13502   return Swap;
13503 }
13504 
13505 // expandVSXStoreForLE - Convert VSX stores (which may be intrinsics for
13506 // builtins) into stores with swaps.
13507 SDValue PPCTargetLowering::expandVSXStoreForLE(SDNode *N,
13508                                                DAGCombinerInfo &DCI) const {
13509   SelectionDAG &DAG = DCI.DAG;
13510   SDLoc dl(N);
13511   SDValue Chain;
13512   SDValue Base;
13513   unsigned SrcOpnd;
13514   MachineMemOperand *MMO;
13515 
13516   switch (N->getOpcode()) {
13517   default:
13518     llvm_unreachable("Unexpected opcode for little endian VSX store");
13519   case ISD::STORE: {
13520     StoreSDNode *ST = cast<StoreSDNode>(N);
13521     Chain = ST->getChain();
13522     Base = ST->getBasePtr();
13523     MMO = ST->getMemOperand();
13524     SrcOpnd = 1;
13525     // If the MMO suggests this isn't a store of a full vector, leave
13526     // things alone.  For a built-in, we have to make the change for
13527     // correctness, so if there is a size problem that will be a bug.
13528     if (MMO->getSize() < 16)
13529       return SDValue();
13530     break;
13531   }
13532   case ISD::INTRINSIC_VOID: {
13533     MemIntrinsicSDNode *Intrin = cast<MemIntrinsicSDNode>(N);
13534     Chain = Intrin->getChain();
13535     // Intrin->getBasePtr() oddly does not get what we want.
13536     Base = Intrin->getOperand(3);
13537     MMO = Intrin->getMemOperand();
13538     SrcOpnd = 2;
13539     break;
13540   }
13541   }
13542 
13543   SDValue Src = N->getOperand(SrcOpnd);
13544   MVT VecTy = Src.getValueType().getSimpleVT();
13545 
13546   // Do not expand to PPCISD::XXSWAPD and PPCISD::STXVD2X when the load is
13547   // aligned and the type is a vector with elements up to 4 bytes
13548   if (Subtarget.needsSwapsForVSXMemOps() && !(MMO->getAlignment()%16)
13549       && VecTy.getScalarSizeInBits() <= 32 ) {
13550     return SDValue();
13551   }
13552 
13553   // All stores are done as v2f64 and possible bit cast.
13554   if (VecTy != MVT::v2f64) {
13555     Src = DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, Src);
13556     DCI.AddToWorklist(Src.getNode());
13557   }
13558 
13559   SDValue Swap = DAG.getNode(PPCISD::XXSWAPD, dl,
13560                              DAG.getVTList(MVT::v2f64, MVT::Other), Chain, Src);
13561   DCI.AddToWorklist(Swap.getNode());
13562   Chain = Swap.getValue(1);
13563   SDValue StoreOps[] = { Chain, Swap, Base };
13564   SDValue Store = DAG.getMemIntrinsicNode(PPCISD::STXVD2X, dl,
13565                                           DAG.getVTList(MVT::Other),
13566                                           StoreOps, VecTy, MMO);
13567   DCI.AddToWorklist(Store.getNode());
13568   return Store;
13569 }
13570 
13571 // Handle DAG combine for STORE (FP_TO_INT F).
13572 SDValue PPCTargetLowering::combineStoreFPToInt(SDNode *N,
13573                                                DAGCombinerInfo &DCI) const {
13574 
13575   SelectionDAG &DAG = DCI.DAG;
13576   SDLoc dl(N);
13577   unsigned Opcode = N->getOperand(1).getOpcode();
13578 
13579   assert((Opcode == ISD::FP_TO_SINT || Opcode == ISD::FP_TO_UINT)
13580          && "Not a FP_TO_INT Instruction!");
13581 
13582   SDValue Val = N->getOperand(1).getOperand(0);
13583   EVT Op1VT = N->getOperand(1).getValueType();
13584   EVT ResVT = Val.getValueType();
13585 
13586   // Floating point types smaller than 32 bits are not legal on Power.
13587   if (ResVT.getScalarSizeInBits() < 32)
13588     return SDValue();
13589 
13590   // Only perform combine for conversion to i64/i32 or power9 i16/i8.
13591   bool ValidTypeForStoreFltAsInt =
13592         (Op1VT == MVT::i32 || Op1VT == MVT::i64 ||
13593          (Subtarget.hasP9Vector() && (Op1VT == MVT::i16 || Op1VT == MVT::i8)));
13594 
13595   if (ResVT == MVT::ppcf128 || !Subtarget.hasP8Vector() ||
13596       cast<StoreSDNode>(N)->isTruncatingStore() || !ValidTypeForStoreFltAsInt)
13597     return SDValue();
13598 
13599   // Extend f32 values to f64
13600   if (ResVT.getScalarSizeInBits() == 32) {
13601     Val = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Val);
13602     DCI.AddToWorklist(Val.getNode());
13603   }
13604 
13605   // Set signed or unsigned conversion opcode.
13606   unsigned ConvOpcode = (Opcode == ISD::FP_TO_SINT) ?
13607                           PPCISD::FP_TO_SINT_IN_VSR :
13608                           PPCISD::FP_TO_UINT_IN_VSR;
13609 
13610   Val = DAG.getNode(ConvOpcode,
13611                     dl, ResVT == MVT::f128 ? MVT::f128 : MVT::f64, Val);
13612   DCI.AddToWorklist(Val.getNode());
13613 
13614   // Set number of bytes being converted.
13615   unsigned ByteSize = Op1VT.getScalarSizeInBits() / 8;
13616   SDValue Ops[] = { N->getOperand(0), Val, N->getOperand(2),
13617                     DAG.getIntPtrConstant(ByteSize, dl, false),
13618                     DAG.getValueType(Op1VT) };
13619 
13620   Val = DAG.getMemIntrinsicNode(PPCISD::ST_VSR_SCAL_INT, dl,
13621           DAG.getVTList(MVT::Other), Ops,
13622           cast<StoreSDNode>(N)->getMemoryVT(),
13623           cast<StoreSDNode>(N)->getMemOperand());
13624 
13625   DCI.AddToWorklist(Val.getNode());
13626   return Val;
13627 }
13628 
13629 SDValue PPCTargetLowering::combineVReverseMemOP(ShuffleVectorSDNode *SVN,
13630                                                 LSBaseSDNode *LSBase,
13631                                                 DAGCombinerInfo &DCI) const {
13632   assert((ISD::isNormalLoad(LSBase) || ISD::isNormalStore(LSBase)) &&
13633         "Not a reverse memop pattern!");
13634 
13635   auto IsElementReverse = [](const ShuffleVectorSDNode *SVN) -> bool {
13636     auto Mask = SVN->getMask();
13637     int i = 0;
13638     auto I = Mask.rbegin();
13639     auto E = Mask.rend();
13640 
13641     for (; I != E; ++I) {
13642       if (*I != i)
13643         return false;
13644       i++;
13645     }
13646     return true;
13647   };
13648 
13649   SelectionDAG &DAG = DCI.DAG;
13650   EVT VT = SVN->getValueType(0);
13651 
13652   if (!isTypeLegal(VT) || !Subtarget.isLittleEndian() || !Subtarget.hasVSX())
13653     return SDValue();
13654 
13655   // Before P9, we have PPCVSXSwapRemoval pass to hack the element order.
13656   // See comment in PPCVSXSwapRemoval.cpp.
13657   // It is conflict with PPCVSXSwapRemoval opt. So we don't do it.
13658   if (!Subtarget.hasP9Vector())
13659     return SDValue();
13660 
13661   if(!IsElementReverse(SVN))
13662     return SDValue();
13663 
13664   if (LSBase->getOpcode() == ISD::LOAD) {
13665     SDLoc dl(SVN);
13666     SDValue LoadOps[] = {LSBase->getChain(), LSBase->getBasePtr()};
13667     return DAG.getMemIntrinsicNode(
13668         PPCISD::LOAD_VEC_BE, dl, DAG.getVTList(VT, MVT::Other), LoadOps,
13669         LSBase->getMemoryVT(), LSBase->getMemOperand());
13670   }
13671 
13672   if (LSBase->getOpcode() == ISD::STORE) {
13673     SDLoc dl(LSBase);
13674     SDValue StoreOps[] = {LSBase->getChain(), SVN->getOperand(0),
13675                           LSBase->getBasePtr()};
13676     return DAG.getMemIntrinsicNode(
13677         PPCISD::STORE_VEC_BE, dl, DAG.getVTList(MVT::Other), StoreOps,
13678         LSBase->getMemoryVT(), LSBase->getMemOperand());
13679   }
13680 
13681   llvm_unreachable("Expected a load or store node here");
13682 }
13683 
13684 SDValue PPCTargetLowering::PerformDAGCombine(SDNode *N,
13685                                              DAGCombinerInfo &DCI) const {
13686   SelectionDAG &DAG = DCI.DAG;
13687   SDLoc dl(N);
13688   switch (N->getOpcode()) {
13689   default: break;
13690   case ISD::ADD:
13691     return combineADD(N, DCI);
13692   case ISD::SHL:
13693     return combineSHL(N, DCI);
13694   case ISD::SRA:
13695     return combineSRA(N, DCI);
13696   case ISD::SRL:
13697     return combineSRL(N, DCI);
13698   case ISD::MUL:
13699     return combineMUL(N, DCI);
13700   case PPCISD::SHL:
13701     if (isNullConstant(N->getOperand(0))) // 0 << V -> 0.
13702         return N->getOperand(0);
13703     break;
13704   case PPCISD::SRL:
13705     if (isNullConstant(N->getOperand(0))) // 0 >>u V -> 0.
13706         return N->getOperand(0);
13707     break;
13708   case PPCISD::SRA:
13709     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(0))) {
13710       if (C->isNullValue() ||   //  0 >>s V -> 0.
13711           C->isAllOnesValue())    // -1 >>s V -> -1.
13712         return N->getOperand(0);
13713     }
13714     break;
13715   case ISD::SIGN_EXTEND:
13716   case ISD::ZERO_EXTEND:
13717   case ISD::ANY_EXTEND:
13718     return DAGCombineExtBoolTrunc(N, DCI);
13719   case ISD::TRUNCATE:
13720     return combineTRUNCATE(N, DCI);
13721   case ISD::SETCC:
13722     if (SDValue CSCC = combineSetCC(N, DCI))
13723       return CSCC;
13724     LLVM_FALLTHROUGH;
13725   case ISD::SELECT_CC:
13726     return DAGCombineTruncBoolExt(N, DCI);
13727   case ISD::SINT_TO_FP:
13728   case ISD::UINT_TO_FP:
13729     return combineFPToIntToFP(N, DCI);
13730   case ISD::VECTOR_SHUFFLE:
13731     if (ISD::isNormalLoad(N->getOperand(0).getNode())) {
13732       LSBaseSDNode* LSBase = cast<LSBaseSDNode>(N->getOperand(0));
13733       return combineVReverseMemOP(cast<ShuffleVectorSDNode>(N), LSBase, DCI);
13734     }
13735     break;
13736   case ISD::STORE: {
13737 
13738     EVT Op1VT = N->getOperand(1).getValueType();
13739     unsigned Opcode = N->getOperand(1).getOpcode();
13740 
13741     if (Opcode == ISD::FP_TO_SINT || Opcode == ISD::FP_TO_UINT) {
13742       SDValue Val= combineStoreFPToInt(N, DCI);
13743       if (Val)
13744         return Val;
13745     }
13746 
13747     if (Opcode == ISD::VECTOR_SHUFFLE && ISD::isNormalStore(N)) {
13748       ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N->getOperand(1));
13749       SDValue Val= combineVReverseMemOP(SVN, cast<LSBaseSDNode>(N), DCI);
13750       if (Val)
13751         return Val;
13752     }
13753 
13754     // Turn STORE (BSWAP) -> sthbrx/stwbrx.
13755     if (cast<StoreSDNode>(N)->isUnindexed() && Opcode == ISD::BSWAP &&
13756         N->getOperand(1).getNode()->hasOneUse() &&
13757         (Op1VT == MVT::i32 || Op1VT == MVT::i16 ||
13758          (Subtarget.hasLDBRX() && Subtarget.isPPC64() && Op1VT == MVT::i64))) {
13759 
13760       // STBRX can only handle simple types and it makes no sense to store less
13761       // two bytes in byte-reversed order.
13762       EVT mVT = cast<StoreSDNode>(N)->getMemoryVT();
13763       if (mVT.isExtended() || mVT.getSizeInBits() < 16)
13764         break;
13765 
13766       SDValue BSwapOp = N->getOperand(1).getOperand(0);
13767       // Do an any-extend to 32-bits if this is a half-word input.
13768       if (BSwapOp.getValueType() == MVT::i16)
13769         BSwapOp = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, BSwapOp);
13770 
13771       // If the type of BSWAP operand is wider than stored memory width
13772       // it need to be shifted to the right side before STBRX.
13773       if (Op1VT.bitsGT(mVT)) {
13774         int Shift = Op1VT.getSizeInBits() - mVT.getSizeInBits();
13775         BSwapOp = DAG.getNode(ISD::SRL, dl, Op1VT, BSwapOp,
13776                               DAG.getConstant(Shift, dl, MVT::i32));
13777         // Need to truncate if this is a bswap of i64 stored as i32/i16.
13778         if (Op1VT == MVT::i64)
13779           BSwapOp = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, BSwapOp);
13780       }
13781 
13782       SDValue Ops[] = {
13783         N->getOperand(0), BSwapOp, N->getOperand(2), DAG.getValueType(mVT)
13784       };
13785       return
13786         DAG.getMemIntrinsicNode(PPCISD::STBRX, dl, DAG.getVTList(MVT::Other),
13787                                 Ops, cast<StoreSDNode>(N)->getMemoryVT(),
13788                                 cast<StoreSDNode>(N)->getMemOperand());
13789     }
13790 
13791     // STORE Constant:i32<0>  ->  STORE<trunc to i32> Constant:i64<0>
13792     // So it can increase the chance of CSE constant construction.
13793     if (Subtarget.isPPC64() && !DCI.isBeforeLegalize() &&
13794         isa<ConstantSDNode>(N->getOperand(1)) && Op1VT == MVT::i32) {
13795       // Need to sign-extended to 64-bits to handle negative values.
13796       EVT MemVT = cast<StoreSDNode>(N)->getMemoryVT();
13797       uint64_t Val64 = SignExtend64(N->getConstantOperandVal(1),
13798                                     MemVT.getSizeInBits());
13799       SDValue Const64 = DAG.getConstant(Val64, dl, MVT::i64);
13800 
13801       // DAG.getTruncStore() can't be used here because it doesn't accept
13802       // the general (base + offset) addressing mode.
13803       // So we use UpdateNodeOperands and setTruncatingStore instead.
13804       DAG.UpdateNodeOperands(N, N->getOperand(0), Const64, N->getOperand(2),
13805                              N->getOperand(3));
13806       cast<StoreSDNode>(N)->setTruncatingStore(true);
13807       return SDValue(N, 0);
13808     }
13809 
13810     // For little endian, VSX stores require generating xxswapd/lxvd2x.
13811     // Not needed on ISA 3.0 based CPUs since we have a non-permuting store.
13812     if (Op1VT.isSimple()) {
13813       MVT StoreVT = Op1VT.getSimpleVT();
13814       if (Subtarget.needsSwapsForVSXMemOps() &&
13815           (StoreVT == MVT::v2f64 || StoreVT == MVT::v2i64 ||
13816            StoreVT == MVT::v4f32 || StoreVT == MVT::v4i32))
13817         return expandVSXStoreForLE(N, DCI);
13818     }
13819     break;
13820   }
13821   case ISD::LOAD: {
13822     LoadSDNode *LD = cast<LoadSDNode>(N);
13823     EVT VT = LD->getValueType(0);
13824 
13825     // For little endian, VSX loads require generating lxvd2x/xxswapd.
13826     // Not needed on ISA 3.0 based CPUs since we have a non-permuting load.
13827     if (VT.isSimple()) {
13828       MVT LoadVT = VT.getSimpleVT();
13829       if (Subtarget.needsSwapsForVSXMemOps() &&
13830           (LoadVT == MVT::v2f64 || LoadVT == MVT::v2i64 ||
13831            LoadVT == MVT::v4f32 || LoadVT == MVT::v4i32))
13832         return expandVSXLoadForLE(N, DCI);
13833     }
13834 
13835     // We sometimes end up with a 64-bit integer load, from which we extract
13836     // two single-precision floating-point numbers. This happens with
13837     // std::complex<float>, and other similar structures, because of the way we
13838     // canonicalize structure copies. However, if we lack direct moves,
13839     // then the final bitcasts from the extracted integer values to the
13840     // floating-point numbers turn into store/load pairs. Even with direct moves,
13841     // just loading the two floating-point numbers is likely better.
13842     auto ReplaceTwoFloatLoad = [&]() {
13843       if (VT != MVT::i64)
13844         return false;
13845 
13846       if (LD->getExtensionType() != ISD::NON_EXTLOAD ||
13847           LD->isVolatile())
13848         return false;
13849 
13850       //  We're looking for a sequence like this:
13851       //  t13: i64,ch = load<LD8[%ref.tmp]> t0, t6, undef:i64
13852       //      t16: i64 = srl t13, Constant:i32<32>
13853       //    t17: i32 = truncate t16
13854       //  t18: f32 = bitcast t17
13855       //    t19: i32 = truncate t13
13856       //  t20: f32 = bitcast t19
13857 
13858       if (!LD->hasNUsesOfValue(2, 0))
13859         return false;
13860 
13861       auto UI = LD->use_begin();
13862       while (UI.getUse().getResNo() != 0) ++UI;
13863       SDNode *Trunc = *UI++;
13864       while (UI.getUse().getResNo() != 0) ++UI;
13865       SDNode *RightShift = *UI;
13866       if (Trunc->getOpcode() != ISD::TRUNCATE)
13867         std::swap(Trunc, RightShift);
13868 
13869       if (Trunc->getOpcode() != ISD::TRUNCATE ||
13870           Trunc->getValueType(0) != MVT::i32 ||
13871           !Trunc->hasOneUse())
13872         return false;
13873       if (RightShift->getOpcode() != ISD::SRL ||
13874           !isa<ConstantSDNode>(RightShift->getOperand(1)) ||
13875           RightShift->getConstantOperandVal(1) != 32 ||
13876           !RightShift->hasOneUse())
13877         return false;
13878 
13879       SDNode *Trunc2 = *RightShift->use_begin();
13880       if (Trunc2->getOpcode() != ISD::TRUNCATE ||
13881           Trunc2->getValueType(0) != MVT::i32 ||
13882           !Trunc2->hasOneUse())
13883         return false;
13884 
13885       SDNode *Bitcast = *Trunc->use_begin();
13886       SDNode *Bitcast2 = *Trunc2->use_begin();
13887 
13888       if (Bitcast->getOpcode() != ISD::BITCAST ||
13889           Bitcast->getValueType(0) != MVT::f32)
13890         return false;
13891       if (Bitcast2->getOpcode() != ISD::BITCAST ||
13892           Bitcast2->getValueType(0) != MVT::f32)
13893         return false;
13894 
13895       if (Subtarget.isLittleEndian())
13896         std::swap(Bitcast, Bitcast2);
13897 
13898       // Bitcast has the second float (in memory-layout order) and Bitcast2
13899       // has the first one.
13900 
13901       SDValue BasePtr = LD->getBasePtr();
13902       if (LD->isIndexed()) {
13903         assert(LD->getAddressingMode() == ISD::PRE_INC &&
13904                "Non-pre-inc AM on PPC?");
13905         BasePtr =
13906           DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr,
13907                       LD->getOffset());
13908       }
13909 
13910       auto MMOFlags =
13911           LD->getMemOperand()->getFlags() & ~MachineMemOperand::MOVolatile;
13912       SDValue FloatLoad = DAG.getLoad(MVT::f32, dl, LD->getChain(), BasePtr,
13913                                       LD->getPointerInfo(), LD->getAlignment(),
13914                                       MMOFlags, LD->getAAInfo());
13915       SDValue AddPtr =
13916         DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(),
13917                     BasePtr, DAG.getIntPtrConstant(4, dl));
13918       SDValue FloatLoad2 = DAG.getLoad(
13919           MVT::f32, dl, SDValue(FloatLoad.getNode(), 1), AddPtr,
13920           LD->getPointerInfo().getWithOffset(4),
13921           MinAlign(LD->getAlignment(), 4), MMOFlags, LD->getAAInfo());
13922 
13923       if (LD->isIndexed()) {
13924         // Note that DAGCombine should re-form any pre-increment load(s) from
13925         // what is produced here if that makes sense.
13926         DAG.ReplaceAllUsesOfValueWith(SDValue(LD, 1), BasePtr);
13927       }
13928 
13929       DCI.CombineTo(Bitcast2, FloatLoad);
13930       DCI.CombineTo(Bitcast, FloatLoad2);
13931 
13932       DAG.ReplaceAllUsesOfValueWith(SDValue(LD, LD->isIndexed() ? 2 : 1),
13933                                     SDValue(FloatLoad2.getNode(), 1));
13934       return true;
13935     };
13936 
13937     if (ReplaceTwoFloatLoad())
13938       return SDValue(N, 0);
13939 
13940     EVT MemVT = LD->getMemoryVT();
13941     Type *Ty = MemVT.getTypeForEVT(*DAG.getContext());
13942     unsigned ABIAlignment = DAG.getDataLayout().getABITypeAlignment(Ty);
13943     Type *STy = MemVT.getScalarType().getTypeForEVT(*DAG.getContext());
13944     unsigned ScalarABIAlignment = DAG.getDataLayout().getABITypeAlignment(STy);
13945     if (LD->isUnindexed() && VT.isVector() &&
13946         ((Subtarget.hasAltivec() && ISD::isNON_EXTLoad(N) &&
13947           // P8 and later hardware should just use LOAD.
13948           !Subtarget.hasP8Vector() && (VT == MVT::v16i8 || VT == MVT::v8i16 ||
13949                                        VT == MVT::v4i32 || VT == MVT::v4f32)) ||
13950          (Subtarget.hasQPX() && (VT == MVT::v4f64 || VT == MVT::v4f32) &&
13951           LD->getAlignment() >= ScalarABIAlignment)) &&
13952         LD->getAlignment() < ABIAlignment) {
13953       // This is a type-legal unaligned Altivec or QPX load.
13954       SDValue Chain = LD->getChain();
13955       SDValue Ptr = LD->getBasePtr();
13956       bool isLittleEndian = Subtarget.isLittleEndian();
13957 
13958       // This implements the loading of unaligned vectors as described in
13959       // the venerable Apple Velocity Engine overview. Specifically:
13960       // https://developer.apple.com/hardwaredrivers/ve/alignment.html
13961       // https://developer.apple.com/hardwaredrivers/ve/code_optimization.html
13962       //
13963       // The general idea is to expand a sequence of one or more unaligned
13964       // loads into an alignment-based permutation-control instruction (lvsl
13965       // or lvsr), a series of regular vector loads (which always truncate
13966       // their input address to an aligned address), and a series of
13967       // permutations.  The results of these permutations are the requested
13968       // loaded values.  The trick is that the last "extra" load is not taken
13969       // from the address you might suspect (sizeof(vector) bytes after the
13970       // last requested load), but rather sizeof(vector) - 1 bytes after the
13971       // last requested vector. The point of this is to avoid a page fault if
13972       // the base address happened to be aligned. This works because if the
13973       // base address is aligned, then adding less than a full vector length
13974       // will cause the last vector in the sequence to be (re)loaded.
13975       // Otherwise, the next vector will be fetched as you might suspect was
13976       // necessary.
13977 
13978       // We might be able to reuse the permutation generation from
13979       // a different base address offset from this one by an aligned amount.
13980       // The INTRINSIC_WO_CHAIN DAG combine will attempt to perform this
13981       // optimization later.
13982       Intrinsic::ID Intr, IntrLD, IntrPerm;
13983       MVT PermCntlTy, PermTy, LDTy;
13984       if (Subtarget.hasAltivec()) {
13985         Intr = isLittleEndian ?  Intrinsic::ppc_altivec_lvsr :
13986                                  Intrinsic::ppc_altivec_lvsl;
13987         IntrLD = Intrinsic::ppc_altivec_lvx;
13988         IntrPerm = Intrinsic::ppc_altivec_vperm;
13989         PermCntlTy = MVT::v16i8;
13990         PermTy = MVT::v4i32;
13991         LDTy = MVT::v4i32;
13992       } else {
13993         Intr =   MemVT == MVT::v4f64 ? Intrinsic::ppc_qpx_qvlpcld :
13994                                        Intrinsic::ppc_qpx_qvlpcls;
13995         IntrLD = MemVT == MVT::v4f64 ? Intrinsic::ppc_qpx_qvlfd :
13996                                        Intrinsic::ppc_qpx_qvlfs;
13997         IntrPerm = Intrinsic::ppc_qpx_qvfperm;
13998         PermCntlTy = MVT::v4f64;
13999         PermTy = MVT::v4f64;
14000         LDTy = MemVT.getSimpleVT();
14001       }
14002 
14003       SDValue PermCntl = BuildIntrinsicOp(Intr, Ptr, DAG, dl, PermCntlTy);
14004 
14005       // Create the new MMO for the new base load. It is like the original MMO,
14006       // but represents an area in memory almost twice the vector size centered
14007       // on the original address. If the address is unaligned, we might start
14008       // reading up to (sizeof(vector)-1) bytes below the address of the
14009       // original unaligned load.
14010       MachineFunction &MF = DAG.getMachineFunction();
14011       MachineMemOperand *BaseMMO =
14012         MF.getMachineMemOperand(LD->getMemOperand(),
14013                                 -(long)MemVT.getStoreSize()+1,
14014                                 2*MemVT.getStoreSize()-1);
14015 
14016       // Create the new base load.
14017       SDValue LDXIntID =
14018           DAG.getTargetConstant(IntrLD, dl, getPointerTy(MF.getDataLayout()));
14019       SDValue BaseLoadOps[] = { Chain, LDXIntID, Ptr };
14020       SDValue BaseLoad =
14021         DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, dl,
14022                                 DAG.getVTList(PermTy, MVT::Other),
14023                                 BaseLoadOps, LDTy, BaseMMO);
14024 
14025       // Note that the value of IncOffset (which is provided to the next
14026       // load's pointer info offset value, and thus used to calculate the
14027       // alignment), and the value of IncValue (which is actually used to
14028       // increment the pointer value) are different! This is because we
14029       // require the next load to appear to be aligned, even though it
14030       // is actually offset from the base pointer by a lesser amount.
14031       int IncOffset = VT.getSizeInBits() / 8;
14032       int IncValue = IncOffset;
14033 
14034       // Walk (both up and down) the chain looking for another load at the real
14035       // (aligned) offset (the alignment of the other load does not matter in
14036       // this case). If found, then do not use the offset reduction trick, as
14037       // that will prevent the loads from being later combined (as they would
14038       // otherwise be duplicates).
14039       if (!findConsecutiveLoad(LD, DAG))
14040         --IncValue;
14041 
14042       SDValue Increment =
14043           DAG.getConstant(IncValue, dl, getPointerTy(MF.getDataLayout()));
14044       Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, Increment);
14045 
14046       MachineMemOperand *ExtraMMO =
14047         MF.getMachineMemOperand(LD->getMemOperand(),
14048                                 1, 2*MemVT.getStoreSize()-1);
14049       SDValue ExtraLoadOps[] = { Chain, LDXIntID, Ptr };
14050       SDValue ExtraLoad =
14051         DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, dl,
14052                                 DAG.getVTList(PermTy, MVT::Other),
14053                                 ExtraLoadOps, LDTy, ExtraMMO);
14054 
14055       SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
14056         BaseLoad.getValue(1), ExtraLoad.getValue(1));
14057 
14058       // Because vperm has a big-endian bias, we must reverse the order
14059       // of the input vectors and complement the permute control vector
14060       // when generating little endian code.  We have already handled the
14061       // latter by using lvsr instead of lvsl, so just reverse BaseLoad
14062       // and ExtraLoad here.
14063       SDValue Perm;
14064       if (isLittleEndian)
14065         Perm = BuildIntrinsicOp(IntrPerm,
14066                                 ExtraLoad, BaseLoad, PermCntl, DAG, dl);
14067       else
14068         Perm = BuildIntrinsicOp(IntrPerm,
14069                                 BaseLoad, ExtraLoad, PermCntl, DAG, dl);
14070 
14071       if (VT != PermTy)
14072         Perm = Subtarget.hasAltivec() ?
14073                  DAG.getNode(ISD::BITCAST, dl, VT, Perm) :
14074                  DAG.getNode(ISD::FP_ROUND, dl, VT, Perm, // QPX
14075                                DAG.getTargetConstant(1, dl, MVT::i64));
14076                                // second argument is 1 because this rounding
14077                                // is always exact.
14078 
14079       // The output of the permutation is our loaded result, the TokenFactor is
14080       // our new chain.
14081       DCI.CombineTo(N, Perm, TF);
14082       return SDValue(N, 0);
14083     }
14084     }
14085     break;
14086     case ISD::INTRINSIC_WO_CHAIN: {
14087       bool isLittleEndian = Subtarget.isLittleEndian();
14088       unsigned IID = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue();
14089       Intrinsic::ID Intr = (isLittleEndian ? Intrinsic::ppc_altivec_lvsr
14090                                            : Intrinsic::ppc_altivec_lvsl);
14091       if ((IID == Intr ||
14092            IID == Intrinsic::ppc_qpx_qvlpcld  ||
14093            IID == Intrinsic::ppc_qpx_qvlpcls) &&
14094         N->getOperand(1)->getOpcode() == ISD::ADD) {
14095         SDValue Add = N->getOperand(1);
14096 
14097         int Bits = IID == Intrinsic::ppc_qpx_qvlpcld ?
14098                    5 /* 32 byte alignment */ : 4 /* 16 byte alignment */;
14099 
14100         if (DAG.MaskedValueIsZero(Add->getOperand(1),
14101                                   APInt::getAllOnesValue(Bits /* alignment */)
14102                                       .zext(Add.getScalarValueSizeInBits()))) {
14103           SDNode *BasePtr = Add->getOperand(0).getNode();
14104           for (SDNode::use_iterator UI = BasePtr->use_begin(),
14105                                     UE = BasePtr->use_end();
14106                UI != UE; ++UI) {
14107             if (UI->getOpcode() == ISD::INTRINSIC_WO_CHAIN &&
14108                 cast<ConstantSDNode>(UI->getOperand(0))->getZExtValue() == IID) {
14109               // We've found another LVSL/LVSR, and this address is an aligned
14110               // multiple of that one. The results will be the same, so use the
14111               // one we've just found instead.
14112 
14113               return SDValue(*UI, 0);
14114             }
14115           }
14116         }
14117 
14118         if (isa<ConstantSDNode>(Add->getOperand(1))) {
14119           SDNode *BasePtr = Add->getOperand(0).getNode();
14120           for (SDNode::use_iterator UI = BasePtr->use_begin(),
14121                UE = BasePtr->use_end(); UI != UE; ++UI) {
14122             if (UI->getOpcode() == ISD::ADD &&
14123                 isa<ConstantSDNode>(UI->getOperand(1)) &&
14124                 (cast<ConstantSDNode>(Add->getOperand(1))->getZExtValue() -
14125                  cast<ConstantSDNode>(UI->getOperand(1))->getZExtValue()) %
14126                 (1ULL << Bits) == 0) {
14127               SDNode *OtherAdd = *UI;
14128               for (SDNode::use_iterator VI = OtherAdd->use_begin(),
14129                    VE = OtherAdd->use_end(); VI != VE; ++VI) {
14130                 if (VI->getOpcode() == ISD::INTRINSIC_WO_CHAIN &&
14131                     cast<ConstantSDNode>(VI->getOperand(0))->getZExtValue() == IID) {
14132                   return SDValue(*VI, 0);
14133                 }
14134               }
14135             }
14136           }
14137         }
14138       }
14139 
14140       // Combine vmaxsw/h/b(a, a's negation) to abs(a)
14141       // Expose the vabsduw/h/b opportunity for down stream
14142       if (!DCI.isAfterLegalizeDAG() && Subtarget.hasP9Altivec() &&
14143           (IID == Intrinsic::ppc_altivec_vmaxsw ||
14144            IID == Intrinsic::ppc_altivec_vmaxsh ||
14145            IID == Intrinsic::ppc_altivec_vmaxsb)) {
14146         SDValue V1 = N->getOperand(1);
14147         SDValue V2 = N->getOperand(2);
14148         if ((V1.getSimpleValueType() == MVT::v4i32 ||
14149              V1.getSimpleValueType() == MVT::v8i16 ||
14150              V1.getSimpleValueType() == MVT::v16i8) &&
14151             V1.getSimpleValueType() == V2.getSimpleValueType()) {
14152           // (0-a, a)
14153           if (V1.getOpcode() == ISD::SUB &&
14154               ISD::isBuildVectorAllZeros(V1.getOperand(0).getNode()) &&
14155               V1.getOperand(1) == V2) {
14156             return DAG.getNode(ISD::ABS, dl, V2.getValueType(), V2);
14157           }
14158           // (a, 0-a)
14159           if (V2.getOpcode() == ISD::SUB &&
14160               ISD::isBuildVectorAllZeros(V2.getOperand(0).getNode()) &&
14161               V2.getOperand(1) == V1) {
14162             return DAG.getNode(ISD::ABS, dl, V1.getValueType(), V1);
14163           }
14164           // (x-y, y-x)
14165           if (V1.getOpcode() == ISD::SUB && V2.getOpcode() == ISD::SUB &&
14166               V1.getOperand(0) == V2.getOperand(1) &&
14167               V1.getOperand(1) == V2.getOperand(0)) {
14168             return DAG.getNode(ISD::ABS, dl, V1.getValueType(), V1);
14169           }
14170         }
14171       }
14172     }
14173 
14174     break;
14175   case ISD::INTRINSIC_W_CHAIN:
14176     // For little endian, VSX loads require generating lxvd2x/xxswapd.
14177     // Not needed on ISA 3.0 based CPUs since we have a non-permuting load.
14178     if (Subtarget.needsSwapsForVSXMemOps()) {
14179       switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) {
14180       default:
14181         break;
14182       case Intrinsic::ppc_vsx_lxvw4x:
14183       case Intrinsic::ppc_vsx_lxvd2x:
14184         return expandVSXLoadForLE(N, DCI);
14185       }
14186     }
14187     break;
14188   case ISD::INTRINSIC_VOID:
14189     // For little endian, VSX stores require generating xxswapd/stxvd2x.
14190     // Not needed on ISA 3.0 based CPUs since we have a non-permuting store.
14191     if (Subtarget.needsSwapsForVSXMemOps()) {
14192       switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) {
14193       default:
14194         break;
14195       case Intrinsic::ppc_vsx_stxvw4x:
14196       case Intrinsic::ppc_vsx_stxvd2x:
14197         return expandVSXStoreForLE(N, DCI);
14198       }
14199     }
14200     break;
14201   case ISD::BSWAP:
14202     // Turn BSWAP (LOAD) -> lhbrx/lwbrx.
14203     if (ISD::isNON_EXTLoad(N->getOperand(0).getNode()) &&
14204         N->getOperand(0).hasOneUse() &&
14205         (N->getValueType(0) == MVT::i32 || N->getValueType(0) == MVT::i16 ||
14206          (Subtarget.hasLDBRX() && Subtarget.isPPC64() &&
14207           N->getValueType(0) == MVT::i64))) {
14208       SDValue Load = N->getOperand(0);
14209       LoadSDNode *LD = cast<LoadSDNode>(Load);
14210       // Create the byte-swapping load.
14211       SDValue Ops[] = {
14212         LD->getChain(),    // Chain
14213         LD->getBasePtr(),  // Ptr
14214         DAG.getValueType(N->getValueType(0)) // VT
14215       };
14216       SDValue BSLoad =
14217         DAG.getMemIntrinsicNode(PPCISD::LBRX, dl,
14218                                 DAG.getVTList(N->getValueType(0) == MVT::i64 ?
14219                                               MVT::i64 : MVT::i32, MVT::Other),
14220                                 Ops, LD->getMemoryVT(), LD->getMemOperand());
14221 
14222       // If this is an i16 load, insert the truncate.
14223       SDValue ResVal = BSLoad;
14224       if (N->getValueType(0) == MVT::i16)
14225         ResVal = DAG.getNode(ISD::TRUNCATE, dl, MVT::i16, BSLoad);
14226 
14227       // First, combine the bswap away.  This makes the value produced by the
14228       // load dead.
14229       DCI.CombineTo(N, ResVal);
14230 
14231       // Next, combine the load away, we give it a bogus result value but a real
14232       // chain result.  The result value is dead because the bswap is dead.
14233       DCI.CombineTo(Load.getNode(), ResVal, BSLoad.getValue(1));
14234 
14235       // Return N so it doesn't get rechecked!
14236       return SDValue(N, 0);
14237     }
14238     break;
14239   case PPCISD::VCMP:
14240     // If a VCMPo node already exists with exactly the same operands as this
14241     // node, use its result instead of this node (VCMPo computes both a CR6 and
14242     // a normal output).
14243     //
14244     if (!N->getOperand(0).hasOneUse() &&
14245         !N->getOperand(1).hasOneUse() &&
14246         !N->getOperand(2).hasOneUse()) {
14247 
14248       // Scan all of the users of the LHS, looking for VCMPo's that match.
14249       SDNode *VCMPoNode = nullptr;
14250 
14251       SDNode *LHSN = N->getOperand(0).getNode();
14252       for (SDNode::use_iterator UI = LHSN->use_begin(), E = LHSN->use_end();
14253            UI != E; ++UI)
14254         if (UI->getOpcode() == PPCISD::VCMPo &&
14255             UI->getOperand(1) == N->getOperand(1) &&
14256             UI->getOperand(2) == N->getOperand(2) &&
14257             UI->getOperand(0) == N->getOperand(0)) {
14258           VCMPoNode = *UI;
14259           break;
14260         }
14261 
14262       // If there is no VCMPo node, or if the flag value has a single use, don't
14263       // transform this.
14264       if (!VCMPoNode || VCMPoNode->hasNUsesOfValue(0, 1))
14265         break;
14266 
14267       // Look at the (necessarily single) use of the flag value.  If it has a
14268       // chain, this transformation is more complex.  Note that multiple things
14269       // could use the value result, which we should ignore.
14270       SDNode *FlagUser = nullptr;
14271       for (SDNode::use_iterator UI = VCMPoNode->use_begin();
14272            FlagUser == nullptr; ++UI) {
14273         assert(UI != VCMPoNode->use_end() && "Didn't find user!");
14274         SDNode *User = *UI;
14275         for (unsigned i = 0, e = User->getNumOperands(); i != e; ++i) {
14276           if (User->getOperand(i) == SDValue(VCMPoNode, 1)) {
14277             FlagUser = User;
14278             break;
14279           }
14280         }
14281       }
14282 
14283       // If the user is a MFOCRF instruction, we know this is safe.
14284       // Otherwise we give up for right now.
14285       if (FlagUser->getOpcode() == PPCISD::MFOCRF)
14286         return SDValue(VCMPoNode, 0);
14287     }
14288     break;
14289   case ISD::BRCOND: {
14290     SDValue Cond = N->getOperand(1);
14291     SDValue Target = N->getOperand(2);
14292 
14293     if (Cond.getOpcode() == ISD::INTRINSIC_W_CHAIN &&
14294         cast<ConstantSDNode>(Cond.getOperand(1))->getZExtValue() ==
14295           Intrinsic::loop_decrement) {
14296 
14297       // We now need to make the intrinsic dead (it cannot be instruction
14298       // selected).
14299       DAG.ReplaceAllUsesOfValueWith(Cond.getValue(1), Cond.getOperand(0));
14300       assert(Cond.getNode()->hasOneUse() &&
14301              "Counter decrement has more than one use");
14302 
14303       return DAG.getNode(PPCISD::BDNZ, dl, MVT::Other,
14304                          N->getOperand(0), Target);
14305     }
14306   }
14307   break;
14308   case ISD::BR_CC: {
14309     // If this is a branch on an altivec predicate comparison, lower this so
14310     // that we don't have to do a MFOCRF: instead, branch directly on CR6.  This
14311     // lowering is done pre-legalize, because the legalizer lowers the predicate
14312     // compare down to code that is difficult to reassemble.
14313     ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(1))->get();
14314     SDValue LHS = N->getOperand(2), RHS = N->getOperand(3);
14315 
14316     // Sometimes the promoted value of the intrinsic is ANDed by some non-zero
14317     // value. If so, pass-through the AND to get to the intrinsic.
14318     if (LHS.getOpcode() == ISD::AND &&
14319         LHS.getOperand(0).getOpcode() == ISD::INTRINSIC_W_CHAIN &&
14320         cast<ConstantSDNode>(LHS.getOperand(0).getOperand(1))->getZExtValue() ==
14321           Intrinsic::loop_decrement &&
14322         isa<ConstantSDNode>(LHS.getOperand(1)) &&
14323         !isNullConstant(LHS.getOperand(1)))
14324       LHS = LHS.getOperand(0);
14325 
14326     if (LHS.getOpcode() == ISD::INTRINSIC_W_CHAIN &&
14327         cast<ConstantSDNode>(LHS.getOperand(1))->getZExtValue() ==
14328           Intrinsic::loop_decrement &&
14329         isa<ConstantSDNode>(RHS)) {
14330       assert((CC == ISD::SETEQ || CC == ISD::SETNE) &&
14331              "Counter decrement comparison is not EQ or NE");
14332 
14333       unsigned Val = cast<ConstantSDNode>(RHS)->getZExtValue();
14334       bool isBDNZ = (CC == ISD::SETEQ && Val) ||
14335                     (CC == ISD::SETNE && !Val);
14336 
14337       // We now need to make the intrinsic dead (it cannot be instruction
14338       // selected).
14339       DAG.ReplaceAllUsesOfValueWith(LHS.getValue(1), LHS.getOperand(0));
14340       assert(LHS.getNode()->hasOneUse() &&
14341              "Counter decrement has more than one use");
14342 
14343       return DAG.getNode(isBDNZ ? PPCISD::BDNZ : PPCISD::BDZ, dl, MVT::Other,
14344                          N->getOperand(0), N->getOperand(4));
14345     }
14346 
14347     int CompareOpc;
14348     bool isDot;
14349 
14350     if (LHS.getOpcode() == ISD::INTRINSIC_WO_CHAIN &&
14351         isa<ConstantSDNode>(RHS) && (CC == ISD::SETEQ || CC == ISD::SETNE) &&
14352         getVectorCompareInfo(LHS, CompareOpc, isDot, Subtarget)) {
14353       assert(isDot && "Can't compare against a vector result!");
14354 
14355       // If this is a comparison against something other than 0/1, then we know
14356       // that the condition is never/always true.
14357       unsigned Val = cast<ConstantSDNode>(RHS)->getZExtValue();
14358       if (Val != 0 && Val != 1) {
14359         if (CC == ISD::SETEQ)      // Cond never true, remove branch.
14360           return N->getOperand(0);
14361         // Always !=, turn it into an unconditional branch.
14362         return DAG.getNode(ISD::BR, dl, MVT::Other,
14363                            N->getOperand(0), N->getOperand(4));
14364       }
14365 
14366       bool BranchOnWhenPredTrue = (CC == ISD::SETEQ) ^ (Val == 0);
14367 
14368       // Create the PPCISD altivec 'dot' comparison node.
14369       SDValue Ops[] = {
14370         LHS.getOperand(2),  // LHS of compare
14371         LHS.getOperand(3),  // RHS of compare
14372         DAG.getConstant(CompareOpc, dl, MVT::i32)
14373       };
14374       EVT VTs[] = { LHS.getOperand(2).getValueType(), MVT::Glue };
14375       SDValue CompNode = DAG.getNode(PPCISD::VCMPo, dl, VTs, Ops);
14376 
14377       // Unpack the result based on how the target uses it.
14378       PPC::Predicate CompOpc;
14379       switch (cast<ConstantSDNode>(LHS.getOperand(1))->getZExtValue()) {
14380       default:  // Can't happen, don't crash on invalid number though.
14381       case 0:   // Branch on the value of the EQ bit of CR6.
14382         CompOpc = BranchOnWhenPredTrue ? PPC::PRED_EQ : PPC::PRED_NE;
14383         break;
14384       case 1:   // Branch on the inverted value of the EQ bit of CR6.
14385         CompOpc = BranchOnWhenPredTrue ? PPC::PRED_NE : PPC::PRED_EQ;
14386         break;
14387       case 2:   // Branch on the value of the LT bit of CR6.
14388         CompOpc = BranchOnWhenPredTrue ? PPC::PRED_LT : PPC::PRED_GE;
14389         break;
14390       case 3:   // Branch on the inverted value of the LT bit of CR6.
14391         CompOpc = BranchOnWhenPredTrue ? PPC::PRED_GE : PPC::PRED_LT;
14392         break;
14393       }
14394 
14395       return DAG.getNode(PPCISD::COND_BRANCH, dl, MVT::Other, N->getOperand(0),
14396                          DAG.getConstant(CompOpc, dl, MVT::i32),
14397                          DAG.getRegister(PPC::CR6, MVT::i32),
14398                          N->getOperand(4), CompNode.getValue(1));
14399     }
14400     break;
14401   }
14402   case ISD::BUILD_VECTOR:
14403     return DAGCombineBuildVector(N, DCI);
14404   case ISD::ABS:
14405     return combineABS(N, DCI);
14406   case ISD::VSELECT:
14407     return combineVSelect(N, DCI);
14408   }
14409 
14410   return SDValue();
14411 }
14412 
14413 SDValue
14414 PPCTargetLowering::BuildSDIVPow2(SDNode *N, const APInt &Divisor,
14415                                  SelectionDAG &DAG,
14416                                  SmallVectorImpl<SDNode *> &Created) const {
14417   // fold (sdiv X, pow2)
14418   EVT VT = N->getValueType(0);
14419   if (VT == MVT::i64 && !Subtarget.isPPC64())
14420     return SDValue();
14421   if ((VT != MVT::i32 && VT != MVT::i64) ||
14422       !(Divisor.isPowerOf2() || (-Divisor).isPowerOf2()))
14423     return SDValue();
14424 
14425   SDLoc DL(N);
14426   SDValue N0 = N->getOperand(0);
14427 
14428   bool IsNegPow2 = (-Divisor).isPowerOf2();
14429   unsigned Lg2 = (IsNegPow2 ? -Divisor : Divisor).countTrailingZeros();
14430   SDValue ShiftAmt = DAG.getConstant(Lg2, DL, VT);
14431 
14432   SDValue Op = DAG.getNode(PPCISD::SRA_ADDZE, DL, VT, N0, ShiftAmt);
14433   Created.push_back(Op.getNode());
14434 
14435   if (IsNegPow2) {
14436     Op = DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), Op);
14437     Created.push_back(Op.getNode());
14438   }
14439 
14440   return Op;
14441 }
14442 
14443 //===----------------------------------------------------------------------===//
14444 // Inline Assembly Support
14445 //===----------------------------------------------------------------------===//
14446 
14447 void PPCTargetLowering::computeKnownBitsForTargetNode(const SDValue Op,
14448                                                       KnownBits &Known,
14449                                                       const APInt &DemandedElts,
14450                                                       const SelectionDAG &DAG,
14451                                                       unsigned Depth) const {
14452   Known.resetAll();
14453   switch (Op.getOpcode()) {
14454   default: break;
14455   case PPCISD::LBRX: {
14456     // lhbrx is known to have the top bits cleared out.
14457     if (cast<VTSDNode>(Op.getOperand(2))->getVT() == MVT::i16)
14458       Known.Zero = 0xFFFF0000;
14459     break;
14460   }
14461   case ISD::INTRINSIC_WO_CHAIN: {
14462     switch (cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue()) {
14463     default: break;
14464     case Intrinsic::ppc_altivec_vcmpbfp_p:
14465     case Intrinsic::ppc_altivec_vcmpeqfp_p:
14466     case Intrinsic::ppc_altivec_vcmpequb_p:
14467     case Intrinsic::ppc_altivec_vcmpequh_p:
14468     case Intrinsic::ppc_altivec_vcmpequw_p:
14469     case Intrinsic::ppc_altivec_vcmpequd_p:
14470     case Intrinsic::ppc_altivec_vcmpgefp_p:
14471     case Intrinsic::ppc_altivec_vcmpgtfp_p:
14472     case Intrinsic::ppc_altivec_vcmpgtsb_p:
14473     case Intrinsic::ppc_altivec_vcmpgtsh_p:
14474     case Intrinsic::ppc_altivec_vcmpgtsw_p:
14475     case Intrinsic::ppc_altivec_vcmpgtsd_p:
14476     case Intrinsic::ppc_altivec_vcmpgtub_p:
14477     case Intrinsic::ppc_altivec_vcmpgtuh_p:
14478     case Intrinsic::ppc_altivec_vcmpgtuw_p:
14479     case Intrinsic::ppc_altivec_vcmpgtud_p:
14480       Known.Zero = ~1U;  // All bits but the low one are known to be zero.
14481       break;
14482     }
14483   }
14484   }
14485 }
14486 
14487 Align PPCTargetLowering::getPrefLoopAlignment(MachineLoop *ML) const {
14488   switch (Subtarget.getCPUDirective()) {
14489   default: break;
14490   case PPC::DIR_970:
14491   case PPC::DIR_PWR4:
14492   case PPC::DIR_PWR5:
14493   case PPC::DIR_PWR5X:
14494   case PPC::DIR_PWR6:
14495   case PPC::DIR_PWR6X:
14496   case PPC::DIR_PWR7:
14497   case PPC::DIR_PWR8:
14498   case PPC::DIR_PWR9:
14499   case PPC::DIR_PWR_FUTURE: {
14500     if (!ML)
14501       break;
14502 
14503     if (!DisableInnermostLoopAlign32) {
14504       // If the nested loop is an innermost loop, prefer to a 32-byte alignment,
14505       // so that we can decrease cache misses and branch-prediction misses.
14506       // Actual alignment of the loop will depend on the hotness check and other
14507       // logic in alignBlocks.
14508       if (ML->getLoopDepth() > 1 && ML->getSubLoops().empty())
14509         return Align(32);
14510     }
14511 
14512     const PPCInstrInfo *TII = Subtarget.getInstrInfo();
14513 
14514     // For small loops (between 5 and 8 instructions), align to a 32-byte
14515     // boundary so that the entire loop fits in one instruction-cache line.
14516     uint64_t LoopSize = 0;
14517     for (auto I = ML->block_begin(), IE = ML->block_end(); I != IE; ++I)
14518       for (auto J = (*I)->begin(), JE = (*I)->end(); J != JE; ++J) {
14519         LoopSize += TII->getInstSizeInBytes(*J);
14520         if (LoopSize > 32)
14521           break;
14522       }
14523 
14524     if (LoopSize > 16 && LoopSize <= 32)
14525       return Align(32);
14526 
14527     break;
14528   }
14529   }
14530 
14531   return TargetLowering::getPrefLoopAlignment(ML);
14532 }
14533 
14534 /// getConstraintType - Given a constraint, return the type of
14535 /// constraint it is for this target.
14536 PPCTargetLowering::ConstraintType
14537 PPCTargetLowering::getConstraintType(StringRef Constraint) const {
14538   if (Constraint.size() == 1) {
14539     switch (Constraint[0]) {
14540     default: break;
14541     case 'b':
14542     case 'r':
14543     case 'f':
14544     case 'd':
14545     case 'v':
14546     case 'y':
14547       return C_RegisterClass;
14548     case 'Z':
14549       // FIXME: While Z does indicate a memory constraint, it specifically
14550       // indicates an r+r address (used in conjunction with the 'y' modifier
14551       // in the replacement string). Currently, we're forcing the base
14552       // register to be r0 in the asm printer (which is interpreted as zero)
14553       // and forming the complete address in the second register. This is
14554       // suboptimal.
14555       return C_Memory;
14556     }
14557   } else if (Constraint == "wc") { // individual CR bits.
14558     return C_RegisterClass;
14559   } else if (Constraint == "wa" || Constraint == "wd" ||
14560              Constraint == "wf" || Constraint == "ws" ||
14561              Constraint == "wi" || Constraint == "ww") {
14562     return C_RegisterClass; // VSX registers.
14563   }
14564   return TargetLowering::getConstraintType(Constraint);
14565 }
14566 
14567 /// Examine constraint type and operand type and determine a weight value.
14568 /// This object must already have been set up with the operand type
14569 /// and the current alternative constraint selected.
14570 TargetLowering::ConstraintWeight
14571 PPCTargetLowering::getSingleConstraintMatchWeight(
14572     AsmOperandInfo &info, const char *constraint) const {
14573   ConstraintWeight weight = CW_Invalid;
14574   Value *CallOperandVal = info.CallOperandVal;
14575     // If we don't have a value, we can't do a match,
14576     // but allow it at the lowest weight.
14577   if (!CallOperandVal)
14578     return CW_Default;
14579   Type *type = CallOperandVal->getType();
14580 
14581   // Look at the constraint type.
14582   if (StringRef(constraint) == "wc" && type->isIntegerTy(1))
14583     return CW_Register; // an individual CR bit.
14584   else if ((StringRef(constraint) == "wa" ||
14585             StringRef(constraint) == "wd" ||
14586             StringRef(constraint) == "wf") &&
14587            type->isVectorTy())
14588     return CW_Register;
14589   else if (StringRef(constraint) == "wi" && type->isIntegerTy(64))
14590     return CW_Register; // just hold 64-bit integers data.
14591   else if (StringRef(constraint) == "ws" && type->isDoubleTy())
14592     return CW_Register;
14593   else if (StringRef(constraint) == "ww" && type->isFloatTy())
14594     return CW_Register;
14595 
14596   switch (*constraint) {
14597   default:
14598     weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint);
14599     break;
14600   case 'b':
14601     if (type->isIntegerTy())
14602       weight = CW_Register;
14603     break;
14604   case 'f':
14605     if (type->isFloatTy())
14606       weight = CW_Register;
14607     break;
14608   case 'd':
14609     if (type->isDoubleTy())
14610       weight = CW_Register;
14611     break;
14612   case 'v':
14613     if (type->isVectorTy())
14614       weight = CW_Register;
14615     break;
14616   case 'y':
14617     weight = CW_Register;
14618     break;
14619   case 'Z':
14620     weight = CW_Memory;
14621     break;
14622   }
14623   return weight;
14624 }
14625 
14626 std::pair<unsigned, const TargetRegisterClass *>
14627 PPCTargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI,
14628                                                 StringRef Constraint,
14629                                                 MVT VT) const {
14630   if (Constraint.size() == 1) {
14631     // GCC RS6000 Constraint Letters
14632     switch (Constraint[0]) {
14633     case 'b':   // R1-R31
14634       if (VT == MVT::i64 && Subtarget.isPPC64())
14635         return std::make_pair(0U, &PPC::G8RC_NOX0RegClass);
14636       return std::make_pair(0U, &PPC::GPRC_NOR0RegClass);
14637     case 'r':   // R0-R31
14638       if (VT == MVT::i64 && Subtarget.isPPC64())
14639         return std::make_pair(0U, &PPC::G8RCRegClass);
14640       return std::make_pair(0U, &PPC::GPRCRegClass);
14641     // 'd' and 'f' constraints are both defined to be "the floating point
14642     // registers", where one is for 32-bit and the other for 64-bit. We don't
14643     // really care overly much here so just give them all the same reg classes.
14644     case 'd':
14645     case 'f':
14646       if (Subtarget.hasSPE()) {
14647         if (VT == MVT::f32 || VT == MVT::i32)
14648           return std::make_pair(0U, &PPC::GPRCRegClass);
14649         if (VT == MVT::f64 || VT == MVT::i64)
14650           return std::make_pair(0U, &PPC::SPERCRegClass);
14651       } else {
14652         if (VT == MVT::f32 || VT == MVT::i32)
14653           return std::make_pair(0U, &PPC::F4RCRegClass);
14654         if (VT == MVT::f64 || VT == MVT::i64)
14655           return std::make_pair(0U, &PPC::F8RCRegClass);
14656         if (VT == MVT::v4f64 && Subtarget.hasQPX())
14657           return std::make_pair(0U, &PPC::QFRCRegClass);
14658         if (VT == MVT::v4f32 && Subtarget.hasQPX())
14659           return std::make_pair(0U, &PPC::QSRCRegClass);
14660       }
14661       break;
14662     case 'v':
14663       if (VT == MVT::v4f64 && Subtarget.hasQPX())
14664         return std::make_pair(0U, &PPC::QFRCRegClass);
14665       if (VT == MVT::v4f32 && Subtarget.hasQPX())
14666         return std::make_pair(0U, &PPC::QSRCRegClass);
14667       if (Subtarget.hasAltivec())
14668         return std::make_pair(0U, &PPC::VRRCRegClass);
14669       break;
14670     case 'y':   // crrc
14671       return std::make_pair(0U, &PPC::CRRCRegClass);
14672     }
14673   } else if (Constraint == "wc" && Subtarget.useCRBits()) {
14674     // An individual CR bit.
14675     return std::make_pair(0U, &PPC::CRBITRCRegClass);
14676   } else if ((Constraint == "wa" || Constraint == "wd" ||
14677              Constraint == "wf" || Constraint == "wi") &&
14678              Subtarget.hasVSX()) {
14679     return std::make_pair(0U, &PPC::VSRCRegClass);
14680   } else if ((Constraint == "ws" || Constraint == "ww") && Subtarget.hasVSX()) {
14681     if (VT == MVT::f32 && Subtarget.hasP8Vector())
14682       return std::make_pair(0U, &PPC::VSSRCRegClass);
14683     else
14684       return std::make_pair(0U, &PPC::VSFRCRegClass);
14685   }
14686 
14687   // If we name a VSX register, we can't defer to the base class because it
14688   // will not recognize the correct register (their names will be VSL{0-31}
14689   // and V{0-31} so they won't match). So we match them here.
14690   if (Constraint.size() > 3 && Constraint[1] == 'v' && Constraint[2] == 's') {
14691     int VSNum = atoi(Constraint.data() + 3);
14692     assert(VSNum >= 0 && VSNum <= 63 &&
14693            "Attempted to access a vsr out of range");
14694     if (VSNum < 32)
14695       return std::make_pair(PPC::VSL0 + VSNum, &PPC::VSRCRegClass);
14696     return std::make_pair(PPC::V0 + VSNum - 32, &PPC::VSRCRegClass);
14697   }
14698   std::pair<unsigned, const TargetRegisterClass *> R =
14699       TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT);
14700 
14701   // r[0-9]+ are used, on PPC64, to refer to the corresponding 64-bit registers
14702   // (which we call X[0-9]+). If a 64-bit value has been requested, and a
14703   // 32-bit GPR has been selected, then 'upgrade' it to the 64-bit parent
14704   // register.
14705   // FIXME: If TargetLowering::getRegForInlineAsmConstraint could somehow use
14706   // the AsmName field from *RegisterInfo.td, then this would not be necessary.
14707   if (R.first && VT == MVT::i64 && Subtarget.isPPC64() &&
14708       PPC::GPRCRegClass.contains(R.first))
14709     return std::make_pair(TRI->getMatchingSuperReg(R.first,
14710                             PPC::sub_32, &PPC::G8RCRegClass),
14711                           &PPC::G8RCRegClass);
14712 
14713   // GCC accepts 'cc' as an alias for 'cr0', and we need to do the same.
14714   if (!R.second && StringRef("{cc}").equals_lower(Constraint)) {
14715     R.first = PPC::CR0;
14716     R.second = &PPC::CRRCRegClass;
14717   }
14718 
14719   return R;
14720 }
14721 
14722 /// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
14723 /// vector.  If it is invalid, don't add anything to Ops.
14724 void PPCTargetLowering::LowerAsmOperandForConstraint(SDValue Op,
14725                                                      std::string &Constraint,
14726                                                      std::vector<SDValue>&Ops,
14727                                                      SelectionDAG &DAG) const {
14728   SDValue Result;
14729 
14730   // Only support length 1 constraints.
14731   if (Constraint.length() > 1) return;
14732 
14733   char Letter = Constraint[0];
14734   switch (Letter) {
14735   default: break;
14736   case 'I':
14737   case 'J':
14738   case 'K':
14739   case 'L':
14740   case 'M':
14741   case 'N':
14742   case 'O':
14743   case 'P': {
14744     ConstantSDNode *CST = dyn_cast<ConstantSDNode>(Op);
14745     if (!CST) return; // Must be an immediate to match.
14746     SDLoc dl(Op);
14747     int64_t Value = CST->getSExtValue();
14748     EVT TCVT = MVT::i64; // All constants taken to be 64 bits so that negative
14749                          // numbers are printed as such.
14750     switch (Letter) {
14751     default: llvm_unreachable("Unknown constraint letter!");
14752     case 'I':  // "I" is a signed 16-bit constant.
14753       if (isInt<16>(Value))
14754         Result = DAG.getTargetConstant(Value, dl, TCVT);
14755       break;
14756     case 'J':  // "J" is a constant with only the high-order 16 bits nonzero.
14757       if (isShiftedUInt<16, 16>(Value))
14758         Result = DAG.getTargetConstant(Value, dl, TCVT);
14759       break;
14760     case 'L':  // "L" is a signed 16-bit constant shifted left 16 bits.
14761       if (isShiftedInt<16, 16>(Value))
14762         Result = DAG.getTargetConstant(Value, dl, TCVT);
14763       break;
14764     case 'K':  // "K" is a constant with only the low-order 16 bits nonzero.
14765       if (isUInt<16>(Value))
14766         Result = DAG.getTargetConstant(Value, dl, TCVT);
14767       break;
14768     case 'M':  // "M" is a constant that is greater than 31.
14769       if (Value > 31)
14770         Result = DAG.getTargetConstant(Value, dl, TCVT);
14771       break;
14772     case 'N':  // "N" is a positive constant that is an exact power of two.
14773       if (Value > 0 && isPowerOf2_64(Value))
14774         Result = DAG.getTargetConstant(Value, dl, TCVT);
14775       break;
14776     case 'O':  // "O" is the constant zero.
14777       if (Value == 0)
14778         Result = DAG.getTargetConstant(Value, dl, TCVT);
14779       break;
14780     case 'P':  // "P" is a constant whose negation is a signed 16-bit constant.
14781       if (isInt<16>(-Value))
14782         Result = DAG.getTargetConstant(Value, dl, TCVT);
14783       break;
14784     }
14785     break;
14786   }
14787   }
14788 
14789   if (Result.getNode()) {
14790     Ops.push_back(Result);
14791     return;
14792   }
14793 
14794   // Handle standard constraint letters.
14795   TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
14796 }
14797 
14798 // isLegalAddressingMode - Return true if the addressing mode represented
14799 // by AM is legal for this target, for a load/store of the specified type.
14800 bool PPCTargetLowering::isLegalAddressingMode(const DataLayout &DL,
14801                                               const AddrMode &AM, Type *Ty,
14802                                               unsigned AS, Instruction *I) const {
14803   // PPC does not allow r+i addressing modes for vectors!
14804   if (Ty->isVectorTy() && AM.BaseOffs != 0)
14805     return false;
14806 
14807   // PPC allows a sign-extended 16-bit immediate field.
14808   if (AM.BaseOffs <= -(1LL << 16) || AM.BaseOffs >= (1LL << 16)-1)
14809     return false;
14810 
14811   // No global is ever allowed as a base.
14812   if (AM.BaseGV)
14813     return false;
14814 
14815   // PPC only support r+r,
14816   switch (AM.Scale) {
14817   case 0:  // "r+i" or just "i", depending on HasBaseReg.
14818     break;
14819   case 1:
14820     if (AM.HasBaseReg && AM.BaseOffs)  // "r+r+i" is not allowed.
14821       return false;
14822     // Otherwise we have r+r or r+i.
14823     break;
14824   case 2:
14825     if (AM.HasBaseReg || AM.BaseOffs)  // 2*r+r  or  2*r+i is not allowed.
14826       return false;
14827     // Allow 2*r as r+r.
14828     break;
14829   default:
14830     // No other scales are supported.
14831     return false;
14832   }
14833 
14834   return true;
14835 }
14836 
14837 SDValue PPCTargetLowering::LowerRETURNADDR(SDValue Op,
14838                                            SelectionDAG &DAG) const {
14839   MachineFunction &MF = DAG.getMachineFunction();
14840   MachineFrameInfo &MFI = MF.getFrameInfo();
14841   MFI.setReturnAddressIsTaken(true);
14842 
14843   if (verifyReturnAddressArgumentIsConstant(Op, DAG))
14844     return SDValue();
14845 
14846   SDLoc dl(Op);
14847   unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
14848 
14849   // Make sure the function does not optimize away the store of the RA to
14850   // the stack.
14851   PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
14852   FuncInfo->setLRStoreRequired();
14853   bool isPPC64 = Subtarget.isPPC64();
14854   auto PtrVT = getPointerTy(MF.getDataLayout());
14855 
14856   if (Depth > 0) {
14857     SDValue FrameAddr = LowerFRAMEADDR(Op, DAG);
14858     SDValue Offset =
14859         DAG.getConstant(Subtarget.getFrameLowering()->getReturnSaveOffset(), dl,
14860                         isPPC64 ? MVT::i64 : MVT::i32);
14861     return DAG.getLoad(PtrVT, dl, DAG.getEntryNode(),
14862                        DAG.getNode(ISD::ADD, dl, PtrVT, FrameAddr, Offset),
14863                        MachinePointerInfo());
14864   }
14865 
14866   // Just load the return address off the stack.
14867   SDValue RetAddrFI = getReturnAddrFrameIndex(DAG);
14868   return DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), RetAddrFI,
14869                      MachinePointerInfo());
14870 }
14871 
14872 SDValue PPCTargetLowering::LowerFRAMEADDR(SDValue Op,
14873                                           SelectionDAG &DAG) const {
14874   SDLoc dl(Op);
14875   unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
14876 
14877   MachineFunction &MF = DAG.getMachineFunction();
14878   MachineFrameInfo &MFI = MF.getFrameInfo();
14879   MFI.setFrameAddressIsTaken(true);
14880 
14881   EVT PtrVT = getPointerTy(MF.getDataLayout());
14882   bool isPPC64 = PtrVT == MVT::i64;
14883 
14884   // Naked functions never have a frame pointer, and so we use r1. For all
14885   // other functions, this decision must be delayed until during PEI.
14886   unsigned FrameReg;
14887   if (MF.getFunction().hasFnAttribute(Attribute::Naked))
14888     FrameReg = isPPC64 ? PPC::X1 : PPC::R1;
14889   else
14890     FrameReg = isPPC64 ? PPC::FP8 : PPC::FP;
14891 
14892   SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), dl, FrameReg,
14893                                          PtrVT);
14894   while (Depth--)
14895     FrameAddr = DAG.getLoad(Op.getValueType(), dl, DAG.getEntryNode(),
14896                             FrameAddr, MachinePointerInfo());
14897   return FrameAddr;
14898 }
14899 
14900 // FIXME? Maybe this could be a TableGen attribute on some registers and
14901 // this table could be generated automatically from RegInfo.
14902 Register PPCTargetLowering::getRegisterByName(const char* RegName, LLT VT,
14903                                               const MachineFunction &MF) const {
14904   bool isPPC64 = Subtarget.isPPC64();
14905   bool IsDarwinABI = Subtarget.isDarwinABI();
14906 
14907   bool is64Bit = isPPC64 && VT == LLT::scalar(64);
14908   if (!is64Bit && VT != LLT::scalar(32))
14909     report_fatal_error("Invalid register global variable type");
14910 
14911   Register Reg = StringSwitch<Register>(RegName)
14912                    .Case("r1", is64Bit ? PPC::X1 : PPC::R1)
14913                    .Case("r2", (IsDarwinABI || isPPC64) ? Register() : PPC::R2)
14914                    .Case("r13", (!isPPC64 && IsDarwinABI) ? Register() :
14915                                   (is64Bit ? PPC::X13 : PPC::R13))
14916                    .Default(Register());
14917 
14918   if (Reg)
14919     return Reg;
14920   report_fatal_error("Invalid register name global variable");
14921 }
14922 
14923 bool PPCTargetLowering::isAccessedAsGotIndirect(SDValue GA) const {
14924   // 32-bit SVR4 ABI access everything as got-indirect.
14925   if (Subtarget.is32BitELFABI())
14926     return true;
14927 
14928   // AIX accesses everything indirectly through the TOC, which is similar to
14929   // the GOT.
14930   if (Subtarget.isAIXABI())
14931     return true;
14932 
14933   CodeModel::Model CModel = getTargetMachine().getCodeModel();
14934   // If it is small or large code model, module locals are accessed
14935   // indirectly by loading their address from .toc/.got.
14936   if (CModel == CodeModel::Small || CModel == CodeModel::Large)
14937     return true;
14938 
14939   // JumpTable and BlockAddress are accessed as got-indirect.
14940   if (isa<JumpTableSDNode>(GA) || isa<BlockAddressSDNode>(GA))
14941     return true;
14942 
14943   if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(GA))
14944     return Subtarget.isGVIndirectSymbol(G->getGlobal());
14945 
14946   return false;
14947 }
14948 
14949 bool
14950 PPCTargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const {
14951   // The PowerPC target isn't yet aware of offsets.
14952   return false;
14953 }
14954 
14955 bool PPCTargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info,
14956                                            const CallInst &I,
14957                                            MachineFunction &MF,
14958                                            unsigned Intrinsic) const {
14959   switch (Intrinsic) {
14960   case Intrinsic::ppc_qpx_qvlfd:
14961   case Intrinsic::ppc_qpx_qvlfs:
14962   case Intrinsic::ppc_qpx_qvlfcd:
14963   case Intrinsic::ppc_qpx_qvlfcs:
14964   case Intrinsic::ppc_qpx_qvlfiwa:
14965   case Intrinsic::ppc_qpx_qvlfiwz:
14966   case Intrinsic::ppc_altivec_lvx:
14967   case Intrinsic::ppc_altivec_lvxl:
14968   case Intrinsic::ppc_altivec_lvebx:
14969   case Intrinsic::ppc_altivec_lvehx:
14970   case Intrinsic::ppc_altivec_lvewx:
14971   case Intrinsic::ppc_vsx_lxvd2x:
14972   case Intrinsic::ppc_vsx_lxvw4x: {
14973     EVT VT;
14974     switch (Intrinsic) {
14975     case Intrinsic::ppc_altivec_lvebx:
14976       VT = MVT::i8;
14977       break;
14978     case Intrinsic::ppc_altivec_lvehx:
14979       VT = MVT::i16;
14980       break;
14981     case Intrinsic::ppc_altivec_lvewx:
14982       VT = MVT::i32;
14983       break;
14984     case Intrinsic::ppc_vsx_lxvd2x:
14985       VT = MVT::v2f64;
14986       break;
14987     case Intrinsic::ppc_qpx_qvlfd:
14988       VT = MVT::v4f64;
14989       break;
14990     case Intrinsic::ppc_qpx_qvlfs:
14991       VT = MVT::v4f32;
14992       break;
14993     case Intrinsic::ppc_qpx_qvlfcd:
14994       VT = MVT::v2f64;
14995       break;
14996     case Intrinsic::ppc_qpx_qvlfcs:
14997       VT = MVT::v2f32;
14998       break;
14999     default:
15000       VT = MVT::v4i32;
15001       break;
15002     }
15003 
15004     Info.opc = ISD::INTRINSIC_W_CHAIN;
15005     Info.memVT = VT;
15006     Info.ptrVal = I.getArgOperand(0);
15007     Info.offset = -VT.getStoreSize()+1;
15008     Info.size = 2*VT.getStoreSize()-1;
15009     Info.align = Align::None();
15010     Info.flags = MachineMemOperand::MOLoad;
15011     return true;
15012   }
15013   case Intrinsic::ppc_qpx_qvlfda:
15014   case Intrinsic::ppc_qpx_qvlfsa:
15015   case Intrinsic::ppc_qpx_qvlfcda:
15016   case Intrinsic::ppc_qpx_qvlfcsa:
15017   case Intrinsic::ppc_qpx_qvlfiwaa:
15018   case Intrinsic::ppc_qpx_qvlfiwza: {
15019     EVT VT;
15020     switch (Intrinsic) {
15021     case Intrinsic::ppc_qpx_qvlfda:
15022       VT = MVT::v4f64;
15023       break;
15024     case Intrinsic::ppc_qpx_qvlfsa:
15025       VT = MVT::v4f32;
15026       break;
15027     case Intrinsic::ppc_qpx_qvlfcda:
15028       VT = MVT::v2f64;
15029       break;
15030     case Intrinsic::ppc_qpx_qvlfcsa:
15031       VT = MVT::v2f32;
15032       break;
15033     default:
15034       VT = MVT::v4i32;
15035       break;
15036     }
15037 
15038     Info.opc = ISD::INTRINSIC_W_CHAIN;
15039     Info.memVT = VT;
15040     Info.ptrVal = I.getArgOperand(0);
15041     Info.offset = 0;
15042     Info.size = VT.getStoreSize();
15043     Info.align = Align::None();
15044     Info.flags = MachineMemOperand::MOLoad;
15045     return true;
15046   }
15047   case Intrinsic::ppc_qpx_qvstfd:
15048   case Intrinsic::ppc_qpx_qvstfs:
15049   case Intrinsic::ppc_qpx_qvstfcd:
15050   case Intrinsic::ppc_qpx_qvstfcs:
15051   case Intrinsic::ppc_qpx_qvstfiw:
15052   case Intrinsic::ppc_altivec_stvx:
15053   case Intrinsic::ppc_altivec_stvxl:
15054   case Intrinsic::ppc_altivec_stvebx:
15055   case Intrinsic::ppc_altivec_stvehx:
15056   case Intrinsic::ppc_altivec_stvewx:
15057   case Intrinsic::ppc_vsx_stxvd2x:
15058   case Intrinsic::ppc_vsx_stxvw4x: {
15059     EVT VT;
15060     switch (Intrinsic) {
15061     case Intrinsic::ppc_altivec_stvebx:
15062       VT = MVT::i8;
15063       break;
15064     case Intrinsic::ppc_altivec_stvehx:
15065       VT = MVT::i16;
15066       break;
15067     case Intrinsic::ppc_altivec_stvewx:
15068       VT = MVT::i32;
15069       break;
15070     case Intrinsic::ppc_vsx_stxvd2x:
15071       VT = MVT::v2f64;
15072       break;
15073     case Intrinsic::ppc_qpx_qvstfd:
15074       VT = MVT::v4f64;
15075       break;
15076     case Intrinsic::ppc_qpx_qvstfs:
15077       VT = MVT::v4f32;
15078       break;
15079     case Intrinsic::ppc_qpx_qvstfcd:
15080       VT = MVT::v2f64;
15081       break;
15082     case Intrinsic::ppc_qpx_qvstfcs:
15083       VT = MVT::v2f32;
15084       break;
15085     default:
15086       VT = MVT::v4i32;
15087       break;
15088     }
15089 
15090     Info.opc = ISD::INTRINSIC_VOID;
15091     Info.memVT = VT;
15092     Info.ptrVal = I.getArgOperand(1);
15093     Info.offset = -VT.getStoreSize()+1;
15094     Info.size = 2*VT.getStoreSize()-1;
15095     Info.align = Align::None();
15096     Info.flags = MachineMemOperand::MOStore;
15097     return true;
15098   }
15099   case Intrinsic::ppc_qpx_qvstfda:
15100   case Intrinsic::ppc_qpx_qvstfsa:
15101   case Intrinsic::ppc_qpx_qvstfcda:
15102   case Intrinsic::ppc_qpx_qvstfcsa:
15103   case Intrinsic::ppc_qpx_qvstfiwa: {
15104     EVT VT;
15105     switch (Intrinsic) {
15106     case Intrinsic::ppc_qpx_qvstfda:
15107       VT = MVT::v4f64;
15108       break;
15109     case Intrinsic::ppc_qpx_qvstfsa:
15110       VT = MVT::v4f32;
15111       break;
15112     case Intrinsic::ppc_qpx_qvstfcda:
15113       VT = MVT::v2f64;
15114       break;
15115     case Intrinsic::ppc_qpx_qvstfcsa:
15116       VT = MVT::v2f32;
15117       break;
15118     default:
15119       VT = MVT::v4i32;
15120       break;
15121     }
15122 
15123     Info.opc = ISD::INTRINSIC_VOID;
15124     Info.memVT = VT;
15125     Info.ptrVal = I.getArgOperand(1);
15126     Info.offset = 0;
15127     Info.size = VT.getStoreSize();
15128     Info.align = Align::None();
15129     Info.flags = MachineMemOperand::MOStore;
15130     return true;
15131   }
15132   default:
15133     break;
15134   }
15135 
15136   return false;
15137 }
15138 
15139 /// getOptimalMemOpType - Returns the target specific optimal type for load
15140 /// and store operations as a result of memset, memcpy, and memmove
15141 /// lowering. If DstAlign is zero that means it's safe to destination
15142 /// alignment can satisfy any constraint. Similarly if SrcAlign is zero it
15143 /// means there isn't a need to check it against alignment requirement,
15144 /// probably because the source does not need to be loaded. If 'IsMemset' is
15145 /// true, that means it's expanding a memset. If 'ZeroMemset' is true, that
15146 /// means it's a memset of zero. 'MemcpyStrSrc' indicates whether the memcpy
15147 /// source is constant so it does not need to be loaded.
15148 /// It returns EVT::Other if the type should be determined using generic
15149 /// target-independent logic.
15150 EVT PPCTargetLowering::getOptimalMemOpType(
15151     uint64_t Size, unsigned DstAlign, unsigned SrcAlign, bool IsMemset,
15152     bool ZeroMemset, bool MemcpyStrSrc,
15153     const AttributeList &FuncAttributes) const {
15154   if (getTargetMachine().getOptLevel() != CodeGenOpt::None) {
15155     // When expanding a memset, require at least two QPX instructions to cover
15156     // the cost of loading the value to be stored from the constant pool.
15157     if (Subtarget.hasQPX() && Size >= 32 && (!IsMemset || Size >= 64) &&
15158        (!SrcAlign || SrcAlign >= 32) && (!DstAlign || DstAlign >= 32) &&
15159         !FuncAttributes.hasFnAttribute(Attribute::NoImplicitFloat)) {
15160       return MVT::v4f64;
15161     }
15162 
15163     // We should use Altivec/VSX loads and stores when available. For unaligned
15164     // addresses, unaligned VSX loads are only fast starting with the P8.
15165     if (Subtarget.hasAltivec() && Size >= 16 &&
15166         (((!SrcAlign || SrcAlign >= 16) && (!DstAlign || DstAlign >= 16)) ||
15167          ((IsMemset && Subtarget.hasVSX()) || Subtarget.hasP8Vector())))
15168       return MVT::v4i32;
15169   }
15170 
15171   if (Subtarget.isPPC64()) {
15172     return MVT::i64;
15173   }
15174 
15175   return MVT::i32;
15176 }
15177 
15178 /// Returns true if it is beneficial to convert a load of a constant
15179 /// to just the constant itself.
15180 bool PPCTargetLowering::shouldConvertConstantLoadToIntImm(const APInt &Imm,
15181                                                           Type *Ty) const {
15182   assert(Ty->isIntegerTy());
15183 
15184   unsigned BitSize = Ty->getPrimitiveSizeInBits();
15185   return !(BitSize == 0 || BitSize > 64);
15186 }
15187 
15188 bool PPCTargetLowering::isTruncateFree(Type *Ty1, Type *Ty2) const {
15189   if (!Ty1->isIntegerTy() || !Ty2->isIntegerTy())
15190     return false;
15191   unsigned NumBits1 = Ty1->getPrimitiveSizeInBits();
15192   unsigned NumBits2 = Ty2->getPrimitiveSizeInBits();
15193   return NumBits1 == 64 && NumBits2 == 32;
15194 }
15195 
15196 bool PPCTargetLowering::isTruncateFree(EVT VT1, EVT VT2) const {
15197   if (!VT1.isInteger() || !VT2.isInteger())
15198     return false;
15199   unsigned NumBits1 = VT1.getSizeInBits();
15200   unsigned NumBits2 = VT2.getSizeInBits();
15201   return NumBits1 == 64 && NumBits2 == 32;
15202 }
15203 
15204 bool PPCTargetLowering::isZExtFree(SDValue Val, EVT VT2) const {
15205   // Generally speaking, zexts are not free, but they are free when they can be
15206   // folded with other operations.
15207   if (LoadSDNode *LD = dyn_cast<LoadSDNode>(Val)) {
15208     EVT MemVT = LD->getMemoryVT();
15209     if ((MemVT == MVT::i1 || MemVT == MVT::i8 || MemVT == MVT::i16 ||
15210          (Subtarget.isPPC64() && MemVT == MVT::i32)) &&
15211         (LD->getExtensionType() == ISD::NON_EXTLOAD ||
15212          LD->getExtensionType() == ISD::ZEXTLOAD))
15213       return true;
15214   }
15215 
15216   // FIXME: Add other cases...
15217   //  - 32-bit shifts with a zext to i64
15218   //  - zext after ctlz, bswap, etc.
15219   //  - zext after and by a constant mask
15220 
15221   return TargetLowering::isZExtFree(Val, VT2);
15222 }
15223 
15224 bool PPCTargetLowering::isFPExtFree(EVT DestVT, EVT SrcVT) const {
15225   assert(DestVT.isFloatingPoint() && SrcVT.isFloatingPoint() &&
15226          "invalid fpext types");
15227   // Extending to float128 is not free.
15228   if (DestVT == MVT::f128)
15229     return false;
15230   return true;
15231 }
15232 
15233 bool PPCTargetLowering::isLegalICmpImmediate(int64_t Imm) const {
15234   return isInt<16>(Imm) || isUInt<16>(Imm);
15235 }
15236 
15237 bool PPCTargetLowering::isLegalAddImmediate(int64_t Imm) const {
15238   return isInt<16>(Imm) || isUInt<16>(Imm);
15239 }
15240 
15241 bool PPCTargetLowering::allowsMisalignedMemoryAccesses(EVT VT,
15242                                                        unsigned,
15243                                                        unsigned,
15244                                                        MachineMemOperand::Flags,
15245                                                        bool *Fast) const {
15246   if (DisablePPCUnaligned)
15247     return false;
15248 
15249   // PowerPC supports unaligned memory access for simple non-vector types.
15250   // Although accessing unaligned addresses is not as efficient as accessing
15251   // aligned addresses, it is generally more efficient than manual expansion,
15252   // and generally only traps for software emulation when crossing page
15253   // boundaries.
15254 
15255   if (!VT.isSimple())
15256     return false;
15257 
15258   if (VT.getSimpleVT().isVector()) {
15259     if (Subtarget.hasVSX()) {
15260       if (VT != MVT::v2f64 && VT != MVT::v2i64 &&
15261           VT != MVT::v4f32 && VT != MVT::v4i32)
15262         return false;
15263     } else {
15264       return false;
15265     }
15266   }
15267 
15268   if (VT == MVT::ppcf128)
15269     return false;
15270 
15271   if (Fast)
15272     *Fast = true;
15273 
15274   return true;
15275 }
15276 
15277 bool PPCTargetLowering::isFMAFasterThanFMulAndFAdd(const MachineFunction &MF,
15278                                                    EVT VT) const {
15279   VT = VT.getScalarType();
15280 
15281   if (!VT.isSimple())
15282     return false;
15283 
15284   switch (VT.getSimpleVT().SimpleTy) {
15285   case MVT::f32:
15286   case MVT::f64:
15287     return true;
15288   case MVT::f128:
15289     return (EnableQuadPrecision && Subtarget.hasP9Vector());
15290   default:
15291     break;
15292   }
15293 
15294   return false;
15295 }
15296 
15297 const MCPhysReg *
15298 PPCTargetLowering::getScratchRegisters(CallingConv::ID) const {
15299   // LR is a callee-save register, but we must treat it as clobbered by any call
15300   // site. Hence we include LR in the scratch registers, which are in turn added
15301   // as implicit-defs for stackmaps and patchpoints. The same reasoning applies
15302   // to CTR, which is used by any indirect call.
15303   static const MCPhysReg ScratchRegs[] = {
15304     PPC::X12, PPC::LR8, PPC::CTR8, 0
15305   };
15306 
15307   return ScratchRegs;
15308 }
15309 
15310 unsigned PPCTargetLowering::getExceptionPointerRegister(
15311     const Constant *PersonalityFn) const {
15312   return Subtarget.isPPC64() ? PPC::X3 : PPC::R3;
15313 }
15314 
15315 unsigned PPCTargetLowering::getExceptionSelectorRegister(
15316     const Constant *PersonalityFn) const {
15317   return Subtarget.isPPC64() ? PPC::X4 : PPC::R4;
15318 }
15319 
15320 bool
15321 PPCTargetLowering::shouldExpandBuildVectorWithShuffles(
15322                      EVT VT , unsigned DefinedValues) const {
15323   if (VT == MVT::v2i64)
15324     return Subtarget.hasDirectMove(); // Don't need stack ops with direct moves
15325 
15326   if (Subtarget.hasVSX() || Subtarget.hasQPX())
15327     return true;
15328 
15329   return TargetLowering::shouldExpandBuildVectorWithShuffles(VT, DefinedValues);
15330 }
15331 
15332 Sched::Preference PPCTargetLowering::getSchedulingPreference(SDNode *N) const {
15333   if (DisableILPPref || Subtarget.enableMachineScheduler())
15334     return TargetLowering::getSchedulingPreference(N);
15335 
15336   return Sched::ILP;
15337 }
15338 
15339 // Create a fast isel object.
15340 FastISel *
15341 PPCTargetLowering::createFastISel(FunctionLoweringInfo &FuncInfo,
15342                                   const TargetLibraryInfo *LibInfo) const {
15343   return PPC::createFastISel(FuncInfo, LibInfo);
15344 }
15345 
15346 void PPCTargetLowering::initializeSplitCSR(MachineBasicBlock *Entry) const {
15347   if (Subtarget.isDarwinABI()) return;
15348   if (!Subtarget.isPPC64()) return;
15349 
15350   // Update IsSplitCSR in PPCFunctionInfo
15351   PPCFunctionInfo *PFI = Entry->getParent()->getInfo<PPCFunctionInfo>();
15352   PFI->setIsSplitCSR(true);
15353 }
15354 
15355 void PPCTargetLowering::insertCopiesSplitCSR(
15356   MachineBasicBlock *Entry,
15357   const SmallVectorImpl<MachineBasicBlock *> &Exits) const {
15358   const PPCRegisterInfo *TRI = Subtarget.getRegisterInfo();
15359   const MCPhysReg *IStart = TRI->getCalleeSavedRegsViaCopy(Entry->getParent());
15360   if (!IStart)
15361     return;
15362 
15363   const TargetInstrInfo *TII = Subtarget.getInstrInfo();
15364   MachineRegisterInfo *MRI = &Entry->getParent()->getRegInfo();
15365   MachineBasicBlock::iterator MBBI = Entry->begin();
15366   for (const MCPhysReg *I = IStart; *I; ++I) {
15367     const TargetRegisterClass *RC = nullptr;
15368     if (PPC::G8RCRegClass.contains(*I))
15369       RC = &PPC::G8RCRegClass;
15370     else if (PPC::F8RCRegClass.contains(*I))
15371       RC = &PPC::F8RCRegClass;
15372     else if (PPC::CRRCRegClass.contains(*I))
15373       RC = &PPC::CRRCRegClass;
15374     else if (PPC::VRRCRegClass.contains(*I))
15375       RC = &PPC::VRRCRegClass;
15376     else
15377       llvm_unreachable("Unexpected register class in CSRsViaCopy!");
15378 
15379     Register NewVR = MRI->createVirtualRegister(RC);
15380     // Create copy from CSR to a virtual register.
15381     // FIXME: this currently does not emit CFI pseudo-instructions, it works
15382     // fine for CXX_FAST_TLS since the C++-style TLS access functions should be
15383     // nounwind. If we want to generalize this later, we may need to emit
15384     // CFI pseudo-instructions.
15385     assert(Entry->getParent()->getFunction().hasFnAttribute(
15386              Attribute::NoUnwind) &&
15387            "Function should be nounwind in insertCopiesSplitCSR!");
15388     Entry->addLiveIn(*I);
15389     BuildMI(*Entry, MBBI, DebugLoc(), TII->get(TargetOpcode::COPY), NewVR)
15390       .addReg(*I);
15391 
15392     // Insert the copy-back instructions right before the terminator.
15393     for (auto *Exit : Exits)
15394       BuildMI(*Exit, Exit->getFirstTerminator(), DebugLoc(),
15395               TII->get(TargetOpcode::COPY), *I)
15396         .addReg(NewVR);
15397   }
15398 }
15399 
15400 // Override to enable LOAD_STACK_GUARD lowering on Linux.
15401 bool PPCTargetLowering::useLoadStackGuardNode() const {
15402   if (!Subtarget.isTargetLinux())
15403     return TargetLowering::useLoadStackGuardNode();
15404   return true;
15405 }
15406 
15407 // Override to disable global variable loading on Linux.
15408 void PPCTargetLowering::insertSSPDeclarations(Module &M) const {
15409   if (!Subtarget.isTargetLinux())
15410     return TargetLowering::insertSSPDeclarations(M);
15411 }
15412 
15413 bool PPCTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT,
15414                                      bool ForCodeSize) const {
15415   if (!VT.isSimple() || !Subtarget.hasVSX())
15416     return false;
15417 
15418   switch(VT.getSimpleVT().SimpleTy) {
15419   default:
15420     // For FP types that are currently not supported by PPC backend, return
15421     // false. Examples: f16, f80.
15422     return false;
15423   case MVT::f32:
15424   case MVT::f64:
15425   case MVT::ppcf128:
15426     return Imm.isPosZero();
15427   }
15428 }
15429 
15430 // For vector shift operation op, fold
15431 // (op x, (and y, ((1 << numbits(x)) - 1))) -> (target op x, y)
15432 static SDValue stripModuloOnShift(const TargetLowering &TLI, SDNode *N,
15433                                   SelectionDAG &DAG) {
15434   SDValue N0 = N->getOperand(0);
15435   SDValue N1 = N->getOperand(1);
15436   EVT VT = N0.getValueType();
15437   unsigned OpSizeInBits = VT.getScalarSizeInBits();
15438   unsigned Opcode = N->getOpcode();
15439   unsigned TargetOpcode;
15440 
15441   switch (Opcode) {
15442   default:
15443     llvm_unreachable("Unexpected shift operation");
15444   case ISD::SHL:
15445     TargetOpcode = PPCISD::SHL;
15446     break;
15447   case ISD::SRL:
15448     TargetOpcode = PPCISD::SRL;
15449     break;
15450   case ISD::SRA:
15451     TargetOpcode = PPCISD::SRA;
15452     break;
15453   }
15454 
15455   if (VT.isVector() && TLI.isOperationLegal(Opcode, VT) &&
15456       N1->getOpcode() == ISD::AND)
15457     if (ConstantSDNode *Mask = isConstOrConstSplat(N1->getOperand(1)))
15458       if (Mask->getZExtValue() == OpSizeInBits - 1)
15459         return DAG.getNode(TargetOpcode, SDLoc(N), VT, N0, N1->getOperand(0));
15460 
15461   return SDValue();
15462 }
15463 
15464 SDValue PPCTargetLowering::combineSHL(SDNode *N, DAGCombinerInfo &DCI) const {
15465   if (auto Value = stripModuloOnShift(*this, N, DCI.DAG))
15466     return Value;
15467 
15468   SDValue N0 = N->getOperand(0);
15469   ConstantSDNode *CN1 = dyn_cast<ConstantSDNode>(N->getOperand(1));
15470   if (!Subtarget.isISA3_0() ||
15471       N0.getOpcode() != ISD::SIGN_EXTEND ||
15472       N0.getOperand(0).getValueType() != MVT::i32 ||
15473       CN1 == nullptr || N->getValueType(0) != MVT::i64)
15474     return SDValue();
15475 
15476   // We can't save an operation here if the value is already extended, and
15477   // the existing shift is easier to combine.
15478   SDValue ExtsSrc = N0.getOperand(0);
15479   if (ExtsSrc.getOpcode() == ISD::TRUNCATE &&
15480       ExtsSrc.getOperand(0).getOpcode() == ISD::AssertSext)
15481     return SDValue();
15482 
15483   SDLoc DL(N0);
15484   SDValue ShiftBy = SDValue(CN1, 0);
15485   // We want the shift amount to be i32 on the extswli, but the shift could
15486   // have an i64.
15487   if (ShiftBy.getValueType() == MVT::i64)
15488     ShiftBy = DCI.DAG.getConstant(CN1->getZExtValue(), DL, MVT::i32);
15489 
15490   return DCI.DAG.getNode(PPCISD::EXTSWSLI, DL, MVT::i64, N0->getOperand(0),
15491                          ShiftBy);
15492 }
15493 
15494 SDValue PPCTargetLowering::combineSRA(SDNode *N, DAGCombinerInfo &DCI) const {
15495   if (auto Value = stripModuloOnShift(*this, N, DCI.DAG))
15496     return Value;
15497 
15498   return SDValue();
15499 }
15500 
15501 SDValue PPCTargetLowering::combineSRL(SDNode *N, DAGCombinerInfo &DCI) const {
15502   if (auto Value = stripModuloOnShift(*this, N, DCI.DAG))
15503     return Value;
15504 
15505   return SDValue();
15506 }
15507 
15508 // Transform (add X, (zext(setne Z, C))) -> (addze X, (addic (addi Z, -C), -1))
15509 // Transform (add X, (zext(sete  Z, C))) -> (addze X, (subfic (addi Z, -C), 0))
15510 // When C is zero, the equation (addi Z, -C) can be simplified to Z
15511 // Requirement: -C in [-32768, 32767], X and Z are MVT::i64 types
15512 static SDValue combineADDToADDZE(SDNode *N, SelectionDAG &DAG,
15513                                  const PPCSubtarget &Subtarget) {
15514   if (!Subtarget.isPPC64())
15515     return SDValue();
15516 
15517   SDValue LHS = N->getOperand(0);
15518   SDValue RHS = N->getOperand(1);
15519 
15520   auto isZextOfCompareWithConstant = [](SDValue Op) {
15521     if (Op.getOpcode() != ISD::ZERO_EXTEND || !Op.hasOneUse() ||
15522         Op.getValueType() != MVT::i64)
15523       return false;
15524 
15525     SDValue Cmp = Op.getOperand(0);
15526     if (Cmp.getOpcode() != ISD::SETCC || !Cmp.hasOneUse() ||
15527         Cmp.getOperand(0).getValueType() != MVT::i64)
15528       return false;
15529 
15530     if (auto *Constant = dyn_cast<ConstantSDNode>(Cmp.getOperand(1))) {
15531       int64_t NegConstant = 0 - Constant->getSExtValue();
15532       // Due to the limitations of the addi instruction,
15533       // -C is required to be [-32768, 32767].
15534       return isInt<16>(NegConstant);
15535     }
15536 
15537     return false;
15538   };
15539 
15540   bool LHSHasPattern = isZextOfCompareWithConstant(LHS);
15541   bool RHSHasPattern = isZextOfCompareWithConstant(RHS);
15542 
15543   // If there is a pattern, canonicalize a zext operand to the RHS.
15544   if (LHSHasPattern && !RHSHasPattern)
15545     std::swap(LHS, RHS);
15546   else if (!LHSHasPattern && !RHSHasPattern)
15547     return SDValue();
15548 
15549   SDLoc DL(N);
15550   SDVTList VTs = DAG.getVTList(MVT::i64, MVT::Glue);
15551   SDValue Cmp = RHS.getOperand(0);
15552   SDValue Z = Cmp.getOperand(0);
15553   auto *Constant = dyn_cast<ConstantSDNode>(Cmp.getOperand(1));
15554 
15555   assert(Constant && "Constant Should not be a null pointer.");
15556   int64_t NegConstant = 0 - Constant->getSExtValue();
15557 
15558   switch(cast<CondCodeSDNode>(Cmp.getOperand(2))->get()) {
15559   default: break;
15560   case ISD::SETNE: {
15561     //                                 when C == 0
15562     //                             --> addze X, (addic Z, -1).carry
15563     //                            /
15564     // add X, (zext(setne Z, C))--
15565     //                            \    when -32768 <= -C <= 32767 && C != 0
15566     //                             --> addze X, (addic (addi Z, -C), -1).carry
15567     SDValue Add = DAG.getNode(ISD::ADD, DL, MVT::i64, Z,
15568                               DAG.getConstant(NegConstant, DL, MVT::i64));
15569     SDValue AddOrZ = NegConstant != 0 ? Add : Z;
15570     SDValue Addc = DAG.getNode(ISD::ADDC, DL, DAG.getVTList(MVT::i64, MVT::Glue),
15571                                AddOrZ, DAG.getConstant(-1ULL, DL, MVT::i64));
15572     return DAG.getNode(ISD::ADDE, DL, VTs, LHS, DAG.getConstant(0, DL, MVT::i64),
15573                        SDValue(Addc.getNode(), 1));
15574     }
15575   case ISD::SETEQ: {
15576     //                                 when C == 0
15577     //                             --> addze X, (subfic Z, 0).carry
15578     //                            /
15579     // add X, (zext(sete  Z, C))--
15580     //                            \    when -32768 <= -C <= 32767 && C != 0
15581     //                             --> addze X, (subfic (addi Z, -C), 0).carry
15582     SDValue Add = DAG.getNode(ISD::ADD, DL, MVT::i64, Z,
15583                               DAG.getConstant(NegConstant, DL, MVT::i64));
15584     SDValue AddOrZ = NegConstant != 0 ? Add : Z;
15585     SDValue Subc = DAG.getNode(ISD::SUBC, DL, DAG.getVTList(MVT::i64, MVT::Glue),
15586                                DAG.getConstant(0, DL, MVT::i64), AddOrZ);
15587     return DAG.getNode(ISD::ADDE, DL, VTs, LHS, DAG.getConstant(0, DL, MVT::i64),
15588                        SDValue(Subc.getNode(), 1));
15589     }
15590   }
15591 
15592   return SDValue();
15593 }
15594 
15595 SDValue PPCTargetLowering::combineADD(SDNode *N, DAGCombinerInfo &DCI) const {
15596   if (auto Value = combineADDToADDZE(N, DCI.DAG, Subtarget))
15597     return Value;
15598 
15599   return SDValue();
15600 }
15601 
15602 // Detect TRUNCATE operations on bitcasts of float128 values.
15603 // What we are looking for here is the situtation where we extract a subset
15604 // of bits from a 128 bit float.
15605 // This can be of two forms:
15606 // 1) BITCAST of f128 feeding TRUNCATE
15607 // 2) BITCAST of f128 feeding SRL (a shift) feeding TRUNCATE
15608 // The reason this is required is because we do not have a legal i128 type
15609 // and so we want to prevent having to store the f128 and then reload part
15610 // of it.
15611 SDValue PPCTargetLowering::combineTRUNCATE(SDNode *N,
15612                                            DAGCombinerInfo &DCI) const {
15613   // If we are using CRBits then try that first.
15614   if (Subtarget.useCRBits()) {
15615     // Check if CRBits did anything and return that if it did.
15616     if (SDValue CRTruncValue = DAGCombineTruncBoolExt(N, DCI))
15617       return CRTruncValue;
15618   }
15619 
15620   SDLoc dl(N);
15621   SDValue Op0 = N->getOperand(0);
15622 
15623   // Looking for a truncate of i128 to i64.
15624   if (Op0.getValueType() != MVT::i128 || N->getValueType(0) != MVT::i64)
15625     return SDValue();
15626 
15627   int EltToExtract = DCI.DAG.getDataLayout().isBigEndian() ? 1 : 0;
15628 
15629   // SRL feeding TRUNCATE.
15630   if (Op0.getOpcode() == ISD::SRL) {
15631     ConstantSDNode *ConstNode = dyn_cast<ConstantSDNode>(Op0.getOperand(1));
15632     // The right shift has to be by 64 bits.
15633     if (!ConstNode || ConstNode->getZExtValue() != 64)
15634       return SDValue();
15635 
15636     // Switch the element number to extract.
15637     EltToExtract = EltToExtract ? 0 : 1;
15638     // Update Op0 past the SRL.
15639     Op0 = Op0.getOperand(0);
15640   }
15641 
15642   // BITCAST feeding a TRUNCATE possibly via SRL.
15643   if (Op0.getOpcode() == ISD::BITCAST &&
15644       Op0.getValueType() == MVT::i128 &&
15645       Op0.getOperand(0).getValueType() == MVT::f128) {
15646     SDValue Bitcast = DCI.DAG.getBitcast(MVT::v2i64, Op0.getOperand(0));
15647     return DCI.DAG.getNode(
15648         ISD::EXTRACT_VECTOR_ELT, dl, MVT::i64, Bitcast,
15649         DCI.DAG.getTargetConstant(EltToExtract, dl, MVT::i32));
15650   }
15651   return SDValue();
15652 }
15653 
15654 SDValue PPCTargetLowering::combineMUL(SDNode *N, DAGCombinerInfo &DCI) const {
15655   SelectionDAG &DAG = DCI.DAG;
15656 
15657   ConstantSDNode *ConstOpOrElement = isConstOrConstSplat(N->getOperand(1));
15658   if (!ConstOpOrElement)
15659     return SDValue();
15660 
15661   // An imul is usually smaller than the alternative sequence for legal type.
15662   if (DAG.getMachineFunction().getFunction().hasMinSize() &&
15663       isOperationLegal(ISD::MUL, N->getValueType(0)))
15664     return SDValue();
15665 
15666   auto IsProfitable = [this](bool IsNeg, bool IsAddOne, EVT VT) -> bool {
15667     switch (this->Subtarget.getCPUDirective()) {
15668     default:
15669       // TODO: enhance the condition for subtarget before pwr8
15670       return false;
15671     case PPC::DIR_PWR8:
15672       //  type        mul     add    shl
15673       // scalar        4       1      1
15674       // vector        7       2      2
15675       return true;
15676     case PPC::DIR_PWR9:
15677     case PPC::DIR_PWR_FUTURE:
15678       //  type        mul     add    shl
15679       // scalar        5       2      2
15680       // vector        7       2      2
15681 
15682       // The cycle RATIO of related operations are showed as a table above.
15683       // Because mul is 5(scalar)/7(vector), add/sub/shl are all 2 for both
15684       // scalar and vector type. For 2 instrs patterns, add/sub + shl
15685       // are 4, it is always profitable; but for 3 instrs patterns
15686       // (mul x, -(2^N + 1)) => -(add (shl x, N), x), sub + add + shl are 6.
15687       // So we should only do it for vector type.
15688       return IsAddOne && IsNeg ? VT.isVector() : true;
15689     }
15690   };
15691 
15692   EVT VT = N->getValueType(0);
15693   SDLoc DL(N);
15694 
15695   const APInt &MulAmt = ConstOpOrElement->getAPIntValue();
15696   bool IsNeg = MulAmt.isNegative();
15697   APInt MulAmtAbs = MulAmt.abs();
15698 
15699   if ((MulAmtAbs - 1).isPowerOf2()) {
15700     // (mul x, 2^N + 1) => (add (shl x, N), x)
15701     // (mul x, -(2^N + 1)) => -(add (shl x, N), x)
15702 
15703     if (!IsProfitable(IsNeg, true, VT))
15704       return SDValue();
15705 
15706     SDValue Op0 = N->getOperand(0);
15707     SDValue Op1 =
15708         DAG.getNode(ISD::SHL, DL, VT, N->getOperand(0),
15709                     DAG.getConstant((MulAmtAbs - 1).logBase2(), DL, VT));
15710     SDValue Res = DAG.getNode(ISD::ADD, DL, VT, Op0, Op1);
15711 
15712     if (!IsNeg)
15713       return Res;
15714 
15715     return DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), Res);
15716   } else if ((MulAmtAbs + 1).isPowerOf2()) {
15717     // (mul x, 2^N - 1) => (sub (shl x, N), x)
15718     // (mul x, -(2^N - 1)) => (sub x, (shl x, N))
15719 
15720     if (!IsProfitable(IsNeg, false, VT))
15721       return SDValue();
15722 
15723     SDValue Op0 = N->getOperand(0);
15724     SDValue Op1 =
15725         DAG.getNode(ISD::SHL, DL, VT, N->getOperand(0),
15726                     DAG.getConstant((MulAmtAbs + 1).logBase2(), DL, VT));
15727 
15728     if (!IsNeg)
15729       return DAG.getNode(ISD::SUB, DL, VT, Op1, Op0);
15730     else
15731       return DAG.getNode(ISD::SUB, DL, VT, Op0, Op1);
15732 
15733   } else {
15734     return SDValue();
15735   }
15736 }
15737 
15738 bool PPCTargetLowering::mayBeEmittedAsTailCall(const CallInst *CI) const {
15739   // Only duplicate to increase tail-calls for the 64bit SysV ABIs.
15740   if (!Subtarget.is64BitELFABI())
15741     return false;
15742 
15743   // If not a tail call then no need to proceed.
15744   if (!CI->isTailCall())
15745     return false;
15746 
15747   // If sibling calls have been disabled and tail-calls aren't guaranteed
15748   // there is no reason to duplicate.
15749   auto &TM = getTargetMachine();
15750   if (!TM.Options.GuaranteedTailCallOpt && DisableSCO)
15751     return false;
15752 
15753   // Can't tail call a function called indirectly, or if it has variadic args.
15754   const Function *Callee = CI->getCalledFunction();
15755   if (!Callee || Callee->isVarArg())
15756     return false;
15757 
15758   // Make sure the callee and caller calling conventions are eligible for tco.
15759   const Function *Caller = CI->getParent()->getParent();
15760   if (!areCallingConvEligibleForTCO_64SVR4(Caller->getCallingConv(),
15761                                            CI->getCallingConv()))
15762       return false;
15763 
15764   // If the function is local then we have a good chance at tail-calling it
15765   return getTargetMachine().shouldAssumeDSOLocal(*Caller->getParent(), Callee);
15766 }
15767 
15768 bool PPCTargetLowering::hasBitPreservingFPLogic(EVT VT) const {
15769   if (!Subtarget.hasVSX())
15770     return false;
15771   if (Subtarget.hasP9Vector() && VT == MVT::f128)
15772     return true;
15773   return VT == MVT::f32 || VT == MVT::f64 ||
15774     VT == MVT::v4f32 || VT == MVT::v2f64;
15775 }
15776 
15777 bool PPCTargetLowering::
15778 isMaskAndCmp0FoldingBeneficial(const Instruction &AndI) const {
15779   const Value *Mask = AndI.getOperand(1);
15780   // If the mask is suitable for andi. or andis. we should sink the and.
15781   if (const ConstantInt *CI = dyn_cast<ConstantInt>(Mask)) {
15782     // Can't handle constants wider than 64-bits.
15783     if (CI->getBitWidth() > 64)
15784       return false;
15785     int64_t ConstVal = CI->getZExtValue();
15786     return isUInt<16>(ConstVal) ||
15787       (isUInt<16>(ConstVal >> 16) && !(ConstVal & 0xFFFF));
15788   }
15789 
15790   // For non-constant masks, we can always use the record-form and.
15791   return true;
15792 }
15793 
15794 // Transform (abs (sub (zext a), (zext b))) to (vabsd a b 0)
15795 // Transform (abs (sub (zext a), (zext_invec b))) to (vabsd a b 0)
15796 // Transform (abs (sub (zext_invec a), (zext_invec b))) to (vabsd a b 0)
15797 // Transform (abs (sub (zext_invec a), (zext b))) to (vabsd a b 0)
15798 // Transform (abs (sub a, b) to (vabsd a b 1)) if a & b of type v4i32
15799 SDValue PPCTargetLowering::combineABS(SDNode *N, DAGCombinerInfo &DCI) const {
15800   assert((N->getOpcode() == ISD::ABS) && "Need ABS node here");
15801   assert(Subtarget.hasP9Altivec() &&
15802          "Only combine this when P9 altivec supported!");
15803   EVT VT = N->getValueType(0);
15804   if (VT != MVT::v4i32 && VT != MVT::v8i16 && VT != MVT::v16i8)
15805     return SDValue();
15806 
15807   SelectionDAG &DAG = DCI.DAG;
15808   SDLoc dl(N);
15809   if (N->getOperand(0).getOpcode() == ISD::SUB) {
15810     // Even for signed integers, if it's known to be positive (as signed
15811     // integer) due to zero-extended inputs.
15812     unsigned SubOpcd0 = N->getOperand(0)->getOperand(0).getOpcode();
15813     unsigned SubOpcd1 = N->getOperand(0)->getOperand(1).getOpcode();
15814     if ((SubOpcd0 == ISD::ZERO_EXTEND ||
15815          SubOpcd0 == ISD::ZERO_EXTEND_VECTOR_INREG) &&
15816         (SubOpcd1 == ISD::ZERO_EXTEND ||
15817          SubOpcd1 == ISD::ZERO_EXTEND_VECTOR_INREG)) {
15818       return DAG.getNode(PPCISD::VABSD, dl, N->getOperand(0).getValueType(),
15819                          N->getOperand(0)->getOperand(0),
15820                          N->getOperand(0)->getOperand(1),
15821                          DAG.getTargetConstant(0, dl, MVT::i32));
15822     }
15823 
15824     // For type v4i32, it can be optimized with xvnegsp + vabsduw
15825     if (N->getOperand(0).getValueType() == MVT::v4i32 &&
15826         N->getOperand(0).hasOneUse()) {
15827       return DAG.getNode(PPCISD::VABSD, dl, N->getOperand(0).getValueType(),
15828                          N->getOperand(0)->getOperand(0),
15829                          N->getOperand(0)->getOperand(1),
15830                          DAG.getTargetConstant(1, dl, MVT::i32));
15831     }
15832   }
15833 
15834   return SDValue();
15835 }
15836 
15837 // For type v4i32/v8ii16/v16i8, transform
15838 // from (vselect (setcc a, b, setugt), (sub a, b), (sub b, a)) to (vabsd a, b)
15839 // from (vselect (setcc a, b, setuge), (sub a, b), (sub b, a)) to (vabsd a, b)
15840 // from (vselect (setcc a, b, setult), (sub b, a), (sub a, b)) to (vabsd a, b)
15841 // from (vselect (setcc a, b, setule), (sub b, a), (sub a, b)) to (vabsd a, b)
15842 SDValue PPCTargetLowering::combineVSelect(SDNode *N,
15843                                           DAGCombinerInfo &DCI) const {
15844   assert((N->getOpcode() == ISD::VSELECT) && "Need VSELECT node here");
15845   assert(Subtarget.hasP9Altivec() &&
15846          "Only combine this when P9 altivec supported!");
15847 
15848   SelectionDAG &DAG = DCI.DAG;
15849   SDLoc dl(N);
15850   SDValue Cond = N->getOperand(0);
15851   SDValue TrueOpnd = N->getOperand(1);
15852   SDValue FalseOpnd = N->getOperand(2);
15853   EVT VT = N->getOperand(1).getValueType();
15854 
15855   if (Cond.getOpcode() != ISD::SETCC || TrueOpnd.getOpcode() != ISD::SUB ||
15856       FalseOpnd.getOpcode() != ISD::SUB)
15857     return SDValue();
15858 
15859   // ABSD only available for type v4i32/v8i16/v16i8
15860   if (VT != MVT::v4i32 && VT != MVT::v8i16 && VT != MVT::v16i8)
15861     return SDValue();
15862 
15863   // At least to save one more dependent computation
15864   if (!(Cond.hasOneUse() || TrueOpnd.hasOneUse() || FalseOpnd.hasOneUse()))
15865     return SDValue();
15866 
15867   ISD::CondCode CC = cast<CondCodeSDNode>(Cond.getOperand(2))->get();
15868 
15869   // Can only handle unsigned comparison here
15870   switch (CC) {
15871   default:
15872     return SDValue();
15873   case ISD::SETUGT:
15874   case ISD::SETUGE:
15875     break;
15876   case ISD::SETULT:
15877   case ISD::SETULE:
15878     std::swap(TrueOpnd, FalseOpnd);
15879     break;
15880   }
15881 
15882   SDValue CmpOpnd1 = Cond.getOperand(0);
15883   SDValue CmpOpnd2 = Cond.getOperand(1);
15884 
15885   // SETCC CmpOpnd1 CmpOpnd2 cond
15886   // TrueOpnd = CmpOpnd1 - CmpOpnd2
15887   // FalseOpnd = CmpOpnd2 - CmpOpnd1
15888   if (TrueOpnd.getOperand(0) == CmpOpnd1 &&
15889       TrueOpnd.getOperand(1) == CmpOpnd2 &&
15890       FalseOpnd.getOperand(0) == CmpOpnd2 &&
15891       FalseOpnd.getOperand(1) == CmpOpnd1) {
15892     return DAG.getNode(PPCISD::VABSD, dl, N->getOperand(1).getValueType(),
15893                        CmpOpnd1, CmpOpnd2,
15894                        DAG.getTargetConstant(0, dl, MVT::i32));
15895   }
15896 
15897   return SDValue();
15898 }
15899