1 //===-- PPCISelLowering.cpp - PPC DAG Lowering Implementation -------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the PPCISelLowering class.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "PPCISelLowering.h"
14 #include "MCTargetDesc/PPCPredicates.h"
15 #include "PPC.h"
16 #include "PPCCCState.h"
17 #include "PPCCallingConv.h"
18 #include "PPCFrameLowering.h"
19 #include "PPCInstrInfo.h"
20 #include "PPCMachineFunctionInfo.h"
21 #include "PPCPerfectShuffle.h"
22 #include "PPCRegisterInfo.h"
23 #include "PPCSubtarget.h"
24 #include "PPCTargetMachine.h"
25 #include "llvm/ADT/APFloat.h"
26 #include "llvm/ADT/APInt.h"
27 #include "llvm/ADT/ArrayRef.h"
28 #include "llvm/ADT/DenseMap.h"
29 #include "llvm/ADT/None.h"
30 #include "llvm/ADT/STLExtras.h"
31 #include "llvm/ADT/SmallPtrSet.h"
32 #include "llvm/ADT/SmallSet.h"
33 #include "llvm/ADT/SmallVector.h"
34 #include "llvm/ADT/Statistic.h"
35 #include "llvm/ADT/StringRef.h"
36 #include "llvm/ADT/StringSwitch.h"
37 #include "llvm/CodeGen/CallingConvLower.h"
38 #include "llvm/CodeGen/ISDOpcodes.h"
39 #include "llvm/CodeGen/MachineBasicBlock.h"
40 #include "llvm/CodeGen/MachineFrameInfo.h"
41 #include "llvm/CodeGen/MachineFunction.h"
42 #include "llvm/CodeGen/MachineInstr.h"
43 #include "llvm/CodeGen/MachineInstrBuilder.h"
44 #include "llvm/CodeGen/MachineJumpTableInfo.h"
45 #include "llvm/CodeGen/MachineLoopInfo.h"
46 #include "llvm/CodeGen/MachineMemOperand.h"
47 #include "llvm/CodeGen/MachineModuleInfo.h"
48 #include "llvm/CodeGen/MachineOperand.h"
49 #include "llvm/CodeGen/MachineRegisterInfo.h"
50 #include "llvm/CodeGen/RuntimeLibcalls.h"
51 #include "llvm/CodeGen/SelectionDAG.h"
52 #include "llvm/CodeGen/SelectionDAGNodes.h"
53 #include "llvm/CodeGen/TargetInstrInfo.h"
54 #include "llvm/CodeGen/TargetLowering.h"
55 #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h"
56 #include "llvm/CodeGen/TargetRegisterInfo.h"
57 #include "llvm/CodeGen/ValueTypes.h"
58 #include "llvm/IR/CallSite.h"
59 #include "llvm/IR/CallingConv.h"
60 #include "llvm/IR/Constant.h"
61 #include "llvm/IR/Constants.h"
62 #include "llvm/IR/DataLayout.h"
63 #include "llvm/IR/DebugLoc.h"
64 #include "llvm/IR/DerivedTypes.h"
65 #include "llvm/IR/Function.h"
66 #include "llvm/IR/GlobalValue.h"
67 #include "llvm/IR/IRBuilder.h"
68 #include "llvm/IR/Instructions.h"
69 #include "llvm/IR/Intrinsics.h"
70 #include "llvm/IR/IntrinsicsPowerPC.h"
71 #include "llvm/IR/Module.h"
72 #include "llvm/IR/Type.h"
73 #include "llvm/IR/Use.h"
74 #include "llvm/IR/Value.h"
75 #include "llvm/MC/MCContext.h"
76 #include "llvm/MC/MCExpr.h"
77 #include "llvm/MC/MCRegisterInfo.h"
78 #include "llvm/MC/MCSymbolXCOFF.h"
79 #include "llvm/Support/AtomicOrdering.h"
80 #include "llvm/Support/BranchProbability.h"
81 #include "llvm/Support/Casting.h"
82 #include "llvm/Support/CodeGen.h"
83 #include "llvm/Support/CommandLine.h"
84 #include "llvm/Support/Compiler.h"
85 #include "llvm/Support/Debug.h"
86 #include "llvm/Support/ErrorHandling.h"
87 #include "llvm/Support/Format.h"
88 #include "llvm/Support/KnownBits.h"
89 #include "llvm/Support/MachineValueType.h"
90 #include "llvm/Support/MathExtras.h"
91 #include "llvm/Support/raw_ostream.h"
92 #include "llvm/Target/TargetMachine.h"
93 #include "llvm/Target/TargetOptions.h"
94 #include <algorithm>
95 #include <cassert>
96 #include <cstdint>
97 #include <iterator>
98 #include <list>
99 #include <utility>
100 #include <vector>
101 
102 using namespace llvm;
103 
104 #define DEBUG_TYPE "ppc-lowering"
105 
106 static cl::opt<bool> DisablePPCPreinc("disable-ppc-preinc",
107 cl::desc("disable preincrement load/store generation on PPC"), cl::Hidden);
108 
109 static cl::opt<bool> DisableILPPref("disable-ppc-ilp-pref",
110 cl::desc("disable setting the node scheduling preference to ILP on PPC"), cl::Hidden);
111 
112 static cl::opt<bool> DisablePPCUnaligned("disable-ppc-unaligned",
113 cl::desc("disable unaligned load/store generation on PPC"), cl::Hidden);
114 
115 static cl::opt<bool> DisableSCO("disable-ppc-sco",
116 cl::desc("disable sibling call optimization on ppc"), cl::Hidden);
117 
118 static cl::opt<bool> DisableInnermostLoopAlign32("disable-ppc-innermost-loop-align32",
119 cl::desc("don't always align innermost loop to 32 bytes on ppc"), cl::Hidden);
120 
121 static cl::opt<bool> EnableQuadPrecision("enable-ppc-quad-precision",
122 cl::desc("enable quad precision float support on ppc"), cl::Hidden);
123 
124 static cl::opt<bool> UseAbsoluteJumpTables("ppc-use-absolute-jumptables",
125 cl::desc("use absolute jump tables on ppc"), cl::Hidden);
126 
127 STATISTIC(NumTailCalls, "Number of tail calls");
128 STATISTIC(NumSiblingCalls, "Number of sibling calls");
129 
130 static bool isNByteElemShuffleMask(ShuffleVectorSDNode *, unsigned, int);
131 
132 static SDValue widenVec(SelectionDAG &DAG, SDValue Vec, const SDLoc &dl);
133 
134 // FIXME: Remove this once the bug has been fixed!
135 extern cl::opt<bool> ANDIGlueBug;
136 
137 PPCTargetLowering::PPCTargetLowering(const PPCTargetMachine &TM,
138                                      const PPCSubtarget &STI)
139     : TargetLowering(TM), Subtarget(STI) {
140   // On PPC32/64, arguments smaller than 4/8 bytes are extended, so all
141   // arguments are at least 4/8 bytes aligned.
142   bool isPPC64 = Subtarget.isPPC64();
143   setMinStackArgumentAlignment(isPPC64 ? Align(8) : Align(4));
144 
145   // Set up the register classes.
146   addRegisterClass(MVT::i32, &PPC::GPRCRegClass);
147   if (!useSoftFloat()) {
148     if (hasSPE()) {
149       addRegisterClass(MVT::f32, &PPC::GPRCRegClass);
150       addRegisterClass(MVT::f64, &PPC::SPERCRegClass);
151     } else {
152       addRegisterClass(MVT::f32, &PPC::F4RCRegClass);
153       addRegisterClass(MVT::f64, &PPC::F8RCRegClass);
154     }
155   }
156 
157   // Match BITREVERSE to customized fast code sequence in the td file.
158   setOperationAction(ISD::BITREVERSE, MVT::i32, Legal);
159   setOperationAction(ISD::BITREVERSE, MVT::i64, Legal);
160 
161   // Sub-word ATOMIC_CMP_SWAP need to ensure that the input is zero-extended.
162   setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i32, Custom);
163 
164   // PowerPC has an i16 but no i8 (or i1) SEXTLOAD.
165   for (MVT VT : MVT::integer_valuetypes()) {
166     setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote);
167     setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i8, Expand);
168   }
169 
170   setTruncStoreAction(MVT::f64, MVT::f32, Expand);
171 
172   // PowerPC has pre-inc load and store's.
173   setIndexedLoadAction(ISD::PRE_INC, MVT::i1, Legal);
174   setIndexedLoadAction(ISD::PRE_INC, MVT::i8, Legal);
175   setIndexedLoadAction(ISD::PRE_INC, MVT::i16, Legal);
176   setIndexedLoadAction(ISD::PRE_INC, MVT::i32, Legal);
177   setIndexedLoadAction(ISD::PRE_INC, MVT::i64, Legal);
178   setIndexedStoreAction(ISD::PRE_INC, MVT::i1, Legal);
179   setIndexedStoreAction(ISD::PRE_INC, MVT::i8, Legal);
180   setIndexedStoreAction(ISD::PRE_INC, MVT::i16, Legal);
181   setIndexedStoreAction(ISD::PRE_INC, MVT::i32, Legal);
182   setIndexedStoreAction(ISD::PRE_INC, MVT::i64, Legal);
183   if (!Subtarget.hasSPE()) {
184     setIndexedLoadAction(ISD::PRE_INC, MVT::f32, Legal);
185     setIndexedLoadAction(ISD::PRE_INC, MVT::f64, Legal);
186     setIndexedStoreAction(ISD::PRE_INC, MVT::f32, Legal);
187     setIndexedStoreAction(ISD::PRE_INC, MVT::f64, Legal);
188   }
189 
190   // PowerPC uses ADDC/ADDE/SUBC/SUBE to propagate carry.
191   const MVT ScalarIntVTs[] = { MVT::i32, MVT::i64 };
192   for (MVT VT : ScalarIntVTs) {
193     setOperationAction(ISD::ADDC, VT, Legal);
194     setOperationAction(ISD::ADDE, VT, Legal);
195     setOperationAction(ISD::SUBC, VT, Legal);
196     setOperationAction(ISD::SUBE, VT, Legal);
197   }
198 
199   if (Subtarget.useCRBits()) {
200     setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
201 
202     if (isPPC64 || Subtarget.hasFPCVT()) {
203       setOperationAction(ISD::SINT_TO_FP, MVT::i1, Promote);
204       AddPromotedToType (ISD::SINT_TO_FP, MVT::i1,
205                          isPPC64 ? MVT::i64 : MVT::i32);
206       setOperationAction(ISD::UINT_TO_FP, MVT::i1, Promote);
207       AddPromotedToType(ISD::UINT_TO_FP, MVT::i1,
208                         isPPC64 ? MVT::i64 : MVT::i32);
209     } else {
210       setOperationAction(ISD::SINT_TO_FP, MVT::i1, Custom);
211       setOperationAction(ISD::UINT_TO_FP, MVT::i1, Custom);
212     }
213 
214     // PowerPC does not support direct load/store of condition registers.
215     setOperationAction(ISD::LOAD, MVT::i1, Custom);
216     setOperationAction(ISD::STORE, MVT::i1, Custom);
217 
218     // FIXME: Remove this once the ANDI glue bug is fixed:
219     if (ANDIGlueBug)
220       setOperationAction(ISD::TRUNCATE, MVT::i1, Custom);
221 
222     for (MVT VT : MVT::integer_valuetypes()) {
223       setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote);
224       setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i1, Promote);
225       setTruncStoreAction(VT, MVT::i1, Expand);
226     }
227 
228     addRegisterClass(MVT::i1, &PPC::CRBITRCRegClass);
229   }
230 
231   // Expand ppcf128 to i32 by hand for the benefit of llvm-gcc bootstrap on
232   // PPC (the libcall is not available).
233   setOperationAction(ISD::FP_TO_SINT, MVT::ppcf128, Custom);
234   setOperationAction(ISD::FP_TO_UINT, MVT::ppcf128, Custom);
235 
236   // We do not currently implement these libm ops for PowerPC.
237   setOperationAction(ISD::FFLOOR, MVT::ppcf128, Expand);
238   setOperationAction(ISD::FCEIL,  MVT::ppcf128, Expand);
239   setOperationAction(ISD::FTRUNC, MVT::ppcf128, Expand);
240   setOperationAction(ISD::FRINT,  MVT::ppcf128, Expand);
241   setOperationAction(ISD::FNEARBYINT, MVT::ppcf128, Expand);
242   setOperationAction(ISD::FREM, MVT::ppcf128, Expand);
243 
244   // PowerPC has no SREM/UREM instructions unless we are on P9
245   // On P9 we may use a hardware instruction to compute the remainder.
246   // The instructions are not legalized directly because in the cases where the
247   // result of both the remainder and the division is required it is more
248   // efficient to compute the remainder from the result of the division rather
249   // than use the remainder instruction.
250   if (Subtarget.isISA3_0()) {
251     setOperationAction(ISD::SREM, MVT::i32, Custom);
252     setOperationAction(ISD::UREM, MVT::i32, Custom);
253     setOperationAction(ISD::SREM, MVT::i64, Custom);
254     setOperationAction(ISD::UREM, MVT::i64, Custom);
255   } else {
256     setOperationAction(ISD::SREM, MVT::i32, Expand);
257     setOperationAction(ISD::UREM, MVT::i32, Expand);
258     setOperationAction(ISD::SREM, MVT::i64, Expand);
259     setOperationAction(ISD::UREM, MVT::i64, Expand);
260   }
261 
262   // Don't use SMUL_LOHI/UMUL_LOHI or SDIVREM/UDIVREM to lower SREM/UREM.
263   setOperationAction(ISD::UMUL_LOHI, MVT::i32, Expand);
264   setOperationAction(ISD::SMUL_LOHI, MVT::i32, Expand);
265   setOperationAction(ISD::UMUL_LOHI, MVT::i64, Expand);
266   setOperationAction(ISD::SMUL_LOHI, MVT::i64, Expand);
267   setOperationAction(ISD::UDIVREM, MVT::i32, Expand);
268   setOperationAction(ISD::SDIVREM, MVT::i32, Expand);
269   setOperationAction(ISD::UDIVREM, MVT::i64, Expand);
270   setOperationAction(ISD::SDIVREM, MVT::i64, Expand);
271 
272   // We don't support sin/cos/sqrt/fmod/pow
273   setOperationAction(ISD::FSIN , MVT::f64, Expand);
274   setOperationAction(ISD::FCOS , MVT::f64, Expand);
275   setOperationAction(ISD::FSINCOS, MVT::f64, Expand);
276   setOperationAction(ISD::FREM , MVT::f64, Expand);
277   setOperationAction(ISD::FPOW , MVT::f64, Expand);
278   setOperationAction(ISD::FSIN , MVT::f32, Expand);
279   setOperationAction(ISD::FCOS , MVT::f32, Expand);
280   setOperationAction(ISD::FSINCOS, MVT::f32, Expand);
281   setOperationAction(ISD::FREM , MVT::f32, Expand);
282   setOperationAction(ISD::FPOW , MVT::f32, Expand);
283   if (Subtarget.hasSPE()) {
284     setOperationAction(ISD::FMA  , MVT::f64, Expand);
285     setOperationAction(ISD::FMA  , MVT::f32, Expand);
286   } else {
287     setOperationAction(ISD::FMA  , MVT::f64, Legal);
288     setOperationAction(ISD::FMA  , MVT::f32, Legal);
289   }
290 
291   setOperationAction(ISD::FLT_ROUNDS_, MVT::i32, Custom);
292 
293   // If we're enabling GP optimizations, use hardware square root
294   if (!Subtarget.hasFSQRT() &&
295       !(TM.Options.UnsafeFPMath && Subtarget.hasFRSQRTE() &&
296         Subtarget.hasFRE()))
297     setOperationAction(ISD::FSQRT, MVT::f64, Expand);
298 
299   if (!Subtarget.hasFSQRT() &&
300       !(TM.Options.UnsafeFPMath && Subtarget.hasFRSQRTES() &&
301         Subtarget.hasFRES()))
302     setOperationAction(ISD::FSQRT, MVT::f32, Expand);
303 
304   if (Subtarget.hasFCPSGN()) {
305     setOperationAction(ISD::FCOPYSIGN, MVT::f64, Legal);
306     setOperationAction(ISD::FCOPYSIGN, MVT::f32, Legal);
307   } else {
308     setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
309     setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand);
310   }
311 
312   if (Subtarget.hasFPRND()) {
313     setOperationAction(ISD::FFLOOR, MVT::f64, Legal);
314     setOperationAction(ISD::FCEIL,  MVT::f64, Legal);
315     setOperationAction(ISD::FTRUNC, MVT::f64, Legal);
316     setOperationAction(ISD::FROUND, MVT::f64, Legal);
317 
318     setOperationAction(ISD::FFLOOR, MVT::f32, Legal);
319     setOperationAction(ISD::FCEIL,  MVT::f32, Legal);
320     setOperationAction(ISD::FTRUNC, MVT::f32, Legal);
321     setOperationAction(ISD::FROUND, MVT::f32, Legal);
322   }
323 
324   // PowerPC does not have BSWAP, but we can use vector BSWAP instruction xxbrd
325   // to speed up scalar BSWAP64.
326   // CTPOP or CTTZ were introduced in P8/P9 respectively
327   setOperationAction(ISD::BSWAP, MVT::i32  , Expand);
328   if (Subtarget.hasP9Vector())
329     setOperationAction(ISD::BSWAP, MVT::i64  , Custom);
330   else
331     setOperationAction(ISD::BSWAP, MVT::i64  , Expand);
332   if (Subtarget.isISA3_0()) {
333     setOperationAction(ISD::CTTZ , MVT::i32  , Legal);
334     setOperationAction(ISD::CTTZ , MVT::i64  , Legal);
335   } else {
336     setOperationAction(ISD::CTTZ , MVT::i32  , Expand);
337     setOperationAction(ISD::CTTZ , MVT::i64  , Expand);
338   }
339 
340   if (Subtarget.hasPOPCNTD() == PPCSubtarget::POPCNTD_Fast) {
341     setOperationAction(ISD::CTPOP, MVT::i32  , Legal);
342     setOperationAction(ISD::CTPOP, MVT::i64  , Legal);
343   } else {
344     setOperationAction(ISD::CTPOP, MVT::i32  , Expand);
345     setOperationAction(ISD::CTPOP, MVT::i64  , Expand);
346   }
347 
348   // PowerPC does not have ROTR
349   setOperationAction(ISD::ROTR, MVT::i32   , Expand);
350   setOperationAction(ISD::ROTR, MVT::i64   , Expand);
351 
352   if (!Subtarget.useCRBits()) {
353     // PowerPC does not have Select
354     setOperationAction(ISD::SELECT, MVT::i32, Expand);
355     setOperationAction(ISD::SELECT, MVT::i64, Expand);
356     setOperationAction(ISD::SELECT, MVT::f32, Expand);
357     setOperationAction(ISD::SELECT, MVT::f64, Expand);
358   }
359 
360   // PowerPC wants to turn select_cc of FP into fsel when possible.
361   setOperationAction(ISD::SELECT_CC, MVT::f32, Custom);
362   setOperationAction(ISD::SELECT_CC, MVT::f64, Custom);
363 
364   // PowerPC wants to optimize integer setcc a bit
365   if (!Subtarget.useCRBits())
366     setOperationAction(ISD::SETCC, MVT::i32, Custom);
367 
368   // PowerPC does not have BRCOND which requires SetCC
369   if (!Subtarget.useCRBits())
370     setOperationAction(ISD::BRCOND, MVT::Other, Expand);
371 
372   setOperationAction(ISD::BR_JT,  MVT::Other, Expand);
373 
374   if (Subtarget.hasSPE()) {
375     // SPE has built-in conversions
376     setOperationAction(ISD::FP_TO_SINT, MVT::i32, Legal);
377     setOperationAction(ISD::SINT_TO_FP, MVT::i32, Legal);
378     setOperationAction(ISD::UINT_TO_FP, MVT::i32, Legal);
379   } else {
380     // PowerPC turns FP_TO_SINT into FCTIWZ and some load/stores.
381     setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom);
382 
383     // PowerPC does not have [U|S]INT_TO_FP
384     setOperationAction(ISD::SINT_TO_FP, MVT::i32, Expand);
385     setOperationAction(ISD::UINT_TO_FP, MVT::i32, Expand);
386   }
387 
388   if (Subtarget.hasDirectMove() && isPPC64) {
389     setOperationAction(ISD::BITCAST, MVT::f32, Legal);
390     setOperationAction(ISD::BITCAST, MVT::i32, Legal);
391     setOperationAction(ISD::BITCAST, MVT::i64, Legal);
392     setOperationAction(ISD::BITCAST, MVT::f64, Legal);
393     if (TM.Options.UnsafeFPMath) {
394       setOperationAction(ISD::LRINT, MVT::f64, Legal);
395       setOperationAction(ISD::LRINT, MVT::f32, Legal);
396       setOperationAction(ISD::LLRINT, MVT::f64, Legal);
397       setOperationAction(ISD::LLRINT, MVT::f32, Legal);
398       setOperationAction(ISD::LROUND, MVT::f64, Legal);
399       setOperationAction(ISD::LROUND, MVT::f32, Legal);
400       setOperationAction(ISD::LLROUND, MVT::f64, Legal);
401       setOperationAction(ISD::LLROUND, MVT::f32, Legal);
402     }
403   } else {
404     setOperationAction(ISD::BITCAST, MVT::f32, Expand);
405     setOperationAction(ISD::BITCAST, MVT::i32, Expand);
406     setOperationAction(ISD::BITCAST, MVT::i64, Expand);
407     setOperationAction(ISD::BITCAST, MVT::f64, Expand);
408   }
409 
410   // We cannot sextinreg(i1).  Expand to shifts.
411   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
412 
413   // NOTE: EH_SJLJ_SETJMP/_LONGJMP supported here is NOT intended to support
414   // SjLj exception handling but a light-weight setjmp/longjmp replacement to
415   // support continuation, user-level threading, and etc.. As a result, no
416   // other SjLj exception interfaces are implemented and please don't build
417   // your own exception handling based on them.
418   // LLVM/Clang supports zero-cost DWARF exception handling.
419   setOperationAction(ISD::EH_SJLJ_SETJMP, MVT::i32, Custom);
420   setOperationAction(ISD::EH_SJLJ_LONGJMP, MVT::Other, Custom);
421 
422   // We want to legalize GlobalAddress and ConstantPool nodes into the
423   // appropriate instructions to materialize the address.
424   setOperationAction(ISD::GlobalAddress, MVT::i32, Custom);
425   setOperationAction(ISD::GlobalTLSAddress, MVT::i32, Custom);
426   setOperationAction(ISD::BlockAddress,  MVT::i32, Custom);
427   setOperationAction(ISD::ConstantPool,  MVT::i32, Custom);
428   setOperationAction(ISD::JumpTable,     MVT::i32, Custom);
429   setOperationAction(ISD::GlobalAddress, MVT::i64, Custom);
430   setOperationAction(ISD::GlobalTLSAddress, MVT::i64, Custom);
431   setOperationAction(ISD::BlockAddress,  MVT::i64, Custom);
432   setOperationAction(ISD::ConstantPool,  MVT::i64, Custom);
433   setOperationAction(ISD::JumpTable,     MVT::i64, Custom);
434 
435   // TRAP is legal.
436   setOperationAction(ISD::TRAP, MVT::Other, Legal);
437 
438   // TRAMPOLINE is custom lowered.
439   setOperationAction(ISD::INIT_TRAMPOLINE, MVT::Other, Custom);
440   setOperationAction(ISD::ADJUST_TRAMPOLINE, MVT::Other, Custom);
441 
442   // VASTART needs to be custom lowered to use the VarArgsFrameIndex
443   setOperationAction(ISD::VASTART           , MVT::Other, Custom);
444 
445   if (Subtarget.is64BitELFABI()) {
446     // VAARG always uses double-word chunks, so promote anything smaller.
447     setOperationAction(ISD::VAARG, MVT::i1, Promote);
448     AddPromotedToType(ISD::VAARG, MVT::i1, MVT::i64);
449     setOperationAction(ISD::VAARG, MVT::i8, Promote);
450     AddPromotedToType(ISD::VAARG, MVT::i8, MVT::i64);
451     setOperationAction(ISD::VAARG, MVT::i16, Promote);
452     AddPromotedToType(ISD::VAARG, MVT::i16, MVT::i64);
453     setOperationAction(ISD::VAARG, MVT::i32, Promote);
454     AddPromotedToType(ISD::VAARG, MVT::i32, MVT::i64);
455     setOperationAction(ISD::VAARG, MVT::Other, Expand);
456   } else if (Subtarget.is32BitELFABI()) {
457     // VAARG is custom lowered with the 32-bit SVR4 ABI.
458     setOperationAction(ISD::VAARG, MVT::Other, Custom);
459     setOperationAction(ISD::VAARG, MVT::i64, Custom);
460   } else
461     setOperationAction(ISD::VAARG, MVT::Other, Expand);
462 
463   // VACOPY is custom lowered with the 32-bit SVR4 ABI.
464   if (Subtarget.is32BitELFABI())
465     setOperationAction(ISD::VACOPY            , MVT::Other, Custom);
466   else
467     setOperationAction(ISD::VACOPY            , MVT::Other, Expand);
468 
469   // Use the default implementation.
470   setOperationAction(ISD::VAEND             , MVT::Other, Expand);
471   setOperationAction(ISD::STACKSAVE         , MVT::Other, Expand);
472   setOperationAction(ISD::STACKRESTORE      , MVT::Other, Custom);
473   setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32  , Custom);
474   setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i64  , Custom);
475   setOperationAction(ISD::GET_DYNAMIC_AREA_OFFSET, MVT::i32, Custom);
476   setOperationAction(ISD::GET_DYNAMIC_AREA_OFFSET, MVT::i64, Custom);
477   setOperationAction(ISD::EH_DWARF_CFA, MVT::i32, Custom);
478   setOperationAction(ISD::EH_DWARF_CFA, MVT::i64, Custom);
479 
480   // We want to custom lower some of our intrinsics.
481   setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
482 
483   // To handle counter-based loop conditions.
484   setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i1, Custom);
485 
486   setOperationAction(ISD::INTRINSIC_VOID, MVT::i8, Custom);
487   setOperationAction(ISD::INTRINSIC_VOID, MVT::i16, Custom);
488   setOperationAction(ISD::INTRINSIC_VOID, MVT::i32, Custom);
489   setOperationAction(ISD::INTRINSIC_VOID, MVT::Other, Custom);
490 
491   // Comparisons that require checking two conditions.
492   if (Subtarget.hasSPE()) {
493     setCondCodeAction(ISD::SETO, MVT::f32, Expand);
494     setCondCodeAction(ISD::SETO, MVT::f64, Expand);
495     setCondCodeAction(ISD::SETUO, MVT::f32, Expand);
496     setCondCodeAction(ISD::SETUO, MVT::f64, Expand);
497   }
498   setCondCodeAction(ISD::SETULT, MVT::f32, Expand);
499   setCondCodeAction(ISD::SETULT, MVT::f64, Expand);
500   setCondCodeAction(ISD::SETUGT, MVT::f32, Expand);
501   setCondCodeAction(ISD::SETUGT, MVT::f64, Expand);
502   setCondCodeAction(ISD::SETUEQ, MVT::f32, Expand);
503   setCondCodeAction(ISD::SETUEQ, MVT::f64, Expand);
504   setCondCodeAction(ISD::SETOGE, MVT::f32, Expand);
505   setCondCodeAction(ISD::SETOGE, MVT::f64, Expand);
506   setCondCodeAction(ISD::SETOLE, MVT::f32, Expand);
507   setCondCodeAction(ISD::SETOLE, MVT::f64, Expand);
508   setCondCodeAction(ISD::SETONE, MVT::f32, Expand);
509   setCondCodeAction(ISD::SETONE, MVT::f64, Expand);
510 
511   if (Subtarget.has64BitSupport()) {
512     // They also have instructions for converting between i64 and fp.
513     setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom);
514     setOperationAction(ISD::FP_TO_UINT, MVT::i64, Expand);
515     setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom);
516     setOperationAction(ISD::UINT_TO_FP, MVT::i64, Expand);
517     // This is just the low 32 bits of a (signed) fp->i64 conversion.
518     // We cannot do this with Promote because i64 is not a legal type.
519     setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom);
520 
521     if (Subtarget.hasLFIWAX() || Subtarget.isPPC64())
522       setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom);
523   } else {
524     // PowerPC does not have FP_TO_UINT on 32-bit implementations.
525     if (Subtarget.hasSPE())
526       setOperationAction(ISD::FP_TO_UINT, MVT::i32, Legal);
527     else
528       setOperationAction(ISD::FP_TO_UINT, MVT::i32, Expand);
529   }
530 
531   // With the instructions enabled under FPCVT, we can do everything.
532   if (Subtarget.hasFPCVT()) {
533     if (Subtarget.has64BitSupport()) {
534       setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom);
535       setOperationAction(ISD::FP_TO_UINT, MVT::i64, Custom);
536       setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom);
537       setOperationAction(ISD::UINT_TO_FP, MVT::i64, Custom);
538     }
539 
540     setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom);
541     setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom);
542     setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom);
543     setOperationAction(ISD::UINT_TO_FP, MVT::i32, Custom);
544   }
545 
546   if (Subtarget.use64BitRegs()) {
547     // 64-bit PowerPC implementations can support i64 types directly
548     addRegisterClass(MVT::i64, &PPC::G8RCRegClass);
549     // BUILD_PAIR can't be handled natively, and should be expanded to shl/or
550     setOperationAction(ISD::BUILD_PAIR, MVT::i64, Expand);
551     // 64-bit PowerPC wants to expand i128 shifts itself.
552     setOperationAction(ISD::SHL_PARTS, MVT::i64, Custom);
553     setOperationAction(ISD::SRA_PARTS, MVT::i64, Custom);
554     setOperationAction(ISD::SRL_PARTS, MVT::i64, Custom);
555   } else {
556     // 32-bit PowerPC wants to expand i64 shifts itself.
557     setOperationAction(ISD::SHL_PARTS, MVT::i32, Custom);
558     setOperationAction(ISD::SRA_PARTS, MVT::i32, Custom);
559     setOperationAction(ISD::SRL_PARTS, MVT::i32, Custom);
560   }
561 
562   if (Subtarget.hasVSX()) {
563     setOperationAction(ISD::FMAXNUM_IEEE, MVT::f64, Legal);
564     setOperationAction(ISD::FMAXNUM_IEEE, MVT::f32, Legal);
565     setOperationAction(ISD::FMINNUM_IEEE, MVT::f64, Legal);
566     setOperationAction(ISD::FMINNUM_IEEE, MVT::f32, Legal);
567   }
568 
569   if (Subtarget.hasAltivec()) {
570     // First set operation action for all vector types to expand. Then we
571     // will selectively turn on ones that can be effectively codegen'd.
572     for (MVT VT : MVT::fixedlen_vector_valuetypes()) {
573       // add/sub are legal for all supported vector VT's.
574       setOperationAction(ISD::ADD, VT, Legal);
575       setOperationAction(ISD::SUB, VT, Legal);
576 
577       // For v2i64, these are only valid with P8Vector. This is corrected after
578       // the loop.
579       if (VT.getSizeInBits() <= 128 && VT.getScalarSizeInBits() <= 64) {
580         setOperationAction(ISD::SMAX, VT, Legal);
581         setOperationAction(ISD::SMIN, VT, Legal);
582         setOperationAction(ISD::UMAX, VT, Legal);
583         setOperationAction(ISD::UMIN, VT, Legal);
584       }
585       else {
586         setOperationAction(ISD::SMAX, VT, Expand);
587         setOperationAction(ISD::SMIN, VT, Expand);
588         setOperationAction(ISD::UMAX, VT, Expand);
589         setOperationAction(ISD::UMIN, VT, Expand);
590       }
591 
592       if (Subtarget.hasVSX()) {
593         setOperationAction(ISD::FMAXNUM, VT, Legal);
594         setOperationAction(ISD::FMINNUM, VT, Legal);
595       }
596 
597       // Vector instructions introduced in P8
598       if (Subtarget.hasP8Altivec() && (VT.SimpleTy != MVT::v1i128)) {
599         setOperationAction(ISD::CTPOP, VT, Legal);
600         setOperationAction(ISD::CTLZ, VT, Legal);
601       }
602       else {
603         setOperationAction(ISD::CTPOP, VT, Expand);
604         setOperationAction(ISD::CTLZ, VT, Expand);
605       }
606 
607       // Vector instructions introduced in P9
608       if (Subtarget.hasP9Altivec() && (VT.SimpleTy != MVT::v1i128))
609         setOperationAction(ISD::CTTZ, VT, Legal);
610       else
611         setOperationAction(ISD::CTTZ, VT, Expand);
612 
613       // We promote all shuffles to v16i8.
614       setOperationAction(ISD::VECTOR_SHUFFLE, VT, Promote);
615       AddPromotedToType (ISD::VECTOR_SHUFFLE, VT, MVT::v16i8);
616 
617       // We promote all non-typed operations to v4i32.
618       setOperationAction(ISD::AND   , VT, Promote);
619       AddPromotedToType (ISD::AND   , VT, MVT::v4i32);
620       setOperationAction(ISD::OR    , VT, Promote);
621       AddPromotedToType (ISD::OR    , VT, MVT::v4i32);
622       setOperationAction(ISD::XOR   , VT, Promote);
623       AddPromotedToType (ISD::XOR   , VT, MVT::v4i32);
624       setOperationAction(ISD::LOAD  , VT, Promote);
625       AddPromotedToType (ISD::LOAD  , VT, MVT::v4i32);
626       setOperationAction(ISD::SELECT, VT, Promote);
627       AddPromotedToType (ISD::SELECT, VT, MVT::v4i32);
628       setOperationAction(ISD::VSELECT, VT, Legal);
629       setOperationAction(ISD::SELECT_CC, VT, Promote);
630       AddPromotedToType (ISD::SELECT_CC, VT, MVT::v4i32);
631       setOperationAction(ISD::STORE, VT, Promote);
632       AddPromotedToType (ISD::STORE, VT, MVT::v4i32);
633 
634       // No other operations are legal.
635       setOperationAction(ISD::MUL , VT, Expand);
636       setOperationAction(ISD::SDIV, VT, Expand);
637       setOperationAction(ISD::SREM, VT, Expand);
638       setOperationAction(ISD::UDIV, VT, Expand);
639       setOperationAction(ISD::UREM, VT, Expand);
640       setOperationAction(ISD::FDIV, VT, Expand);
641       setOperationAction(ISD::FREM, VT, Expand);
642       setOperationAction(ISD::FNEG, VT, Expand);
643       setOperationAction(ISD::FSQRT, VT, Expand);
644       setOperationAction(ISD::FLOG, VT, Expand);
645       setOperationAction(ISD::FLOG10, VT, Expand);
646       setOperationAction(ISD::FLOG2, VT, Expand);
647       setOperationAction(ISD::FEXP, VT, Expand);
648       setOperationAction(ISD::FEXP2, VT, Expand);
649       setOperationAction(ISD::FSIN, VT, Expand);
650       setOperationAction(ISD::FCOS, VT, Expand);
651       setOperationAction(ISD::FABS, VT, Expand);
652       setOperationAction(ISD::FFLOOR, VT, Expand);
653       setOperationAction(ISD::FCEIL,  VT, Expand);
654       setOperationAction(ISD::FTRUNC, VT, Expand);
655       setOperationAction(ISD::FRINT,  VT, Expand);
656       setOperationAction(ISD::FNEARBYINT, VT, Expand);
657       setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Expand);
658       setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Expand);
659       setOperationAction(ISD::BUILD_VECTOR, VT, Expand);
660       setOperationAction(ISD::MULHU, VT, Expand);
661       setOperationAction(ISD::MULHS, VT, Expand);
662       setOperationAction(ISD::UMUL_LOHI, VT, Expand);
663       setOperationAction(ISD::SMUL_LOHI, VT, Expand);
664       setOperationAction(ISD::UDIVREM, VT, Expand);
665       setOperationAction(ISD::SDIVREM, VT, Expand);
666       setOperationAction(ISD::SCALAR_TO_VECTOR, VT, Expand);
667       setOperationAction(ISD::FPOW, VT, Expand);
668       setOperationAction(ISD::BSWAP, VT, Expand);
669       setOperationAction(ISD::SIGN_EXTEND_INREG, VT, Expand);
670       setOperationAction(ISD::ROTL, VT, Expand);
671       setOperationAction(ISD::ROTR, VT, Expand);
672 
673       for (MVT InnerVT : MVT::fixedlen_vector_valuetypes()) {
674         setTruncStoreAction(VT, InnerVT, Expand);
675         setLoadExtAction(ISD::SEXTLOAD, VT, InnerVT, Expand);
676         setLoadExtAction(ISD::ZEXTLOAD, VT, InnerVT, Expand);
677         setLoadExtAction(ISD::EXTLOAD, VT, InnerVT, Expand);
678       }
679     }
680     if (!Subtarget.hasP8Vector()) {
681       setOperationAction(ISD::SMAX, MVT::v2i64, Expand);
682       setOperationAction(ISD::SMIN, MVT::v2i64, Expand);
683       setOperationAction(ISD::UMAX, MVT::v2i64, Expand);
684       setOperationAction(ISD::UMIN, MVT::v2i64, Expand);
685     }
686 
687     for (auto VT : {MVT::v2i64, MVT::v4i32, MVT::v8i16, MVT::v16i8})
688       setOperationAction(ISD::ABS, VT, Custom);
689 
690     // We can custom expand all VECTOR_SHUFFLEs to VPERM, others we can handle
691     // with merges, splats, etc.
692     setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v16i8, Custom);
693 
694     // Vector truncates to sub-word integer that fit in an Altivec/VSX register
695     // are cheap, so handle them before they get expanded to scalar.
696     setOperationAction(ISD::TRUNCATE, MVT::v8i8, Custom);
697     setOperationAction(ISD::TRUNCATE, MVT::v4i8, Custom);
698     setOperationAction(ISD::TRUNCATE, MVT::v2i8, Custom);
699     setOperationAction(ISD::TRUNCATE, MVT::v4i16, Custom);
700     setOperationAction(ISD::TRUNCATE, MVT::v2i16, Custom);
701 
702     setOperationAction(ISD::AND   , MVT::v4i32, Legal);
703     setOperationAction(ISD::OR    , MVT::v4i32, Legal);
704     setOperationAction(ISD::XOR   , MVT::v4i32, Legal);
705     setOperationAction(ISD::LOAD  , MVT::v4i32, Legal);
706     setOperationAction(ISD::SELECT, MVT::v4i32,
707                        Subtarget.useCRBits() ? Legal : Expand);
708     setOperationAction(ISD::STORE , MVT::v4i32, Legal);
709     setOperationAction(ISD::FP_TO_SINT, MVT::v4i32, Legal);
710     setOperationAction(ISD::FP_TO_UINT, MVT::v4i32, Legal);
711     setOperationAction(ISD::SINT_TO_FP, MVT::v4i32, Legal);
712     setOperationAction(ISD::UINT_TO_FP, MVT::v4i32, Legal);
713     setOperationAction(ISD::FFLOOR, MVT::v4f32, Legal);
714     setOperationAction(ISD::FCEIL, MVT::v4f32, Legal);
715     setOperationAction(ISD::FTRUNC, MVT::v4f32, Legal);
716     setOperationAction(ISD::FNEARBYINT, MVT::v4f32, Legal);
717 
718     // Without hasP8Altivec set, v2i64 SMAX isn't available.
719     // But ABS custom lowering requires SMAX support.
720     if (!Subtarget.hasP8Altivec())
721       setOperationAction(ISD::ABS, MVT::v2i64, Expand);
722 
723     // With hasAltivec set, we can lower ISD::ROTL to vrl(b|h|w).
724     if (Subtarget.hasAltivec())
725       for (auto VT : {MVT::v4i32, MVT::v8i16, MVT::v16i8})
726         setOperationAction(ISD::ROTL, VT, Legal);
727     // With hasP8Altivec set, we can lower ISD::ROTL to vrld.
728     if (Subtarget.hasP8Altivec())
729       setOperationAction(ISD::ROTL, MVT::v2i64, Legal);
730 
731     addRegisterClass(MVT::v4f32, &PPC::VRRCRegClass);
732     addRegisterClass(MVT::v4i32, &PPC::VRRCRegClass);
733     addRegisterClass(MVT::v8i16, &PPC::VRRCRegClass);
734     addRegisterClass(MVT::v16i8, &PPC::VRRCRegClass);
735 
736     setOperationAction(ISD::MUL, MVT::v4f32, Legal);
737     setOperationAction(ISD::FMA, MVT::v4f32, Legal);
738 
739     if (TM.Options.UnsafeFPMath || Subtarget.hasVSX()) {
740       setOperationAction(ISD::FDIV, MVT::v4f32, Legal);
741       setOperationAction(ISD::FSQRT, MVT::v4f32, Legal);
742     }
743 
744     if (Subtarget.hasP8Altivec())
745       setOperationAction(ISD::MUL, MVT::v4i32, Legal);
746     else
747       setOperationAction(ISD::MUL, MVT::v4i32, Custom);
748 
749     setOperationAction(ISD::MUL, MVT::v8i16, Custom);
750     setOperationAction(ISD::MUL, MVT::v16i8, Custom);
751 
752     setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f32, Custom);
753     setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4i32, Custom);
754 
755     setOperationAction(ISD::BUILD_VECTOR, MVT::v16i8, Custom);
756     setOperationAction(ISD::BUILD_VECTOR, MVT::v8i16, Custom);
757     setOperationAction(ISD::BUILD_VECTOR, MVT::v4i32, Custom);
758     setOperationAction(ISD::BUILD_VECTOR, MVT::v4f32, Custom);
759 
760     // Altivec does not contain unordered floating-point compare instructions
761     setCondCodeAction(ISD::SETUO, MVT::v4f32, Expand);
762     setCondCodeAction(ISD::SETUEQ, MVT::v4f32, Expand);
763     setCondCodeAction(ISD::SETO,   MVT::v4f32, Expand);
764     setCondCodeAction(ISD::SETONE, MVT::v4f32, Expand);
765 
766     if (Subtarget.hasVSX()) {
767       setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v2f64, Legal);
768       setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Legal);
769       if (Subtarget.hasP8Vector()) {
770         setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f32, Legal);
771         setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Legal);
772       }
773       if (Subtarget.hasDirectMove() && isPPC64) {
774         setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v16i8, Legal);
775         setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v8i16, Legal);
776         setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4i32, Legal);
777         setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v2i64, Legal);
778         setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v16i8, Legal);
779         setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v8i16, Legal);
780         setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4i32, Legal);
781         setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i64, Legal);
782       }
783       setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Legal);
784 
785       // The nearbyint variants are not allowed to raise the inexact exception
786       // so we can only code-gen them with unsafe math.
787       if (TM.Options.UnsafeFPMath) {
788         setOperationAction(ISD::FNEARBYINT, MVT::f64, Legal);
789         setOperationAction(ISD::FNEARBYINT, MVT::f32, Legal);
790       }
791 
792       setOperationAction(ISD::FFLOOR, MVT::v2f64, Legal);
793       setOperationAction(ISD::FCEIL, MVT::v2f64, Legal);
794       setOperationAction(ISD::FTRUNC, MVT::v2f64, Legal);
795       setOperationAction(ISD::FNEARBYINT, MVT::v2f64, Legal);
796       setOperationAction(ISD::FROUND, MVT::v2f64, Legal);
797       setOperationAction(ISD::FROUND, MVT::f64, Legal);
798 
799       setOperationAction(ISD::FNEARBYINT, MVT::v4f32, Legal);
800       setOperationAction(ISD::FROUND, MVT::v4f32, Legal);
801       setOperationAction(ISD::FROUND, MVT::f32, Legal);
802 
803       setOperationAction(ISD::MUL, MVT::v2f64, Legal);
804       setOperationAction(ISD::FMA, MVT::v2f64, Legal);
805 
806       setOperationAction(ISD::FDIV, MVT::v2f64, Legal);
807       setOperationAction(ISD::FSQRT, MVT::v2f64, Legal);
808 
809       // Share the Altivec comparison restrictions.
810       setCondCodeAction(ISD::SETUO, MVT::v2f64, Expand);
811       setCondCodeAction(ISD::SETUEQ, MVT::v2f64, Expand);
812       setCondCodeAction(ISD::SETO,   MVT::v2f64, Expand);
813       setCondCodeAction(ISD::SETONE, MVT::v2f64, Expand);
814 
815       setOperationAction(ISD::LOAD, MVT::v2f64, Legal);
816       setOperationAction(ISD::STORE, MVT::v2f64, Legal);
817 
818       setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v2f64, Legal);
819 
820       if (Subtarget.hasP8Vector())
821         addRegisterClass(MVT::f32, &PPC::VSSRCRegClass);
822 
823       addRegisterClass(MVT::f64, &PPC::VSFRCRegClass);
824 
825       addRegisterClass(MVT::v4i32, &PPC::VSRCRegClass);
826       addRegisterClass(MVT::v4f32, &PPC::VSRCRegClass);
827       addRegisterClass(MVT::v2f64, &PPC::VSRCRegClass);
828 
829       if (Subtarget.hasP8Altivec()) {
830         setOperationAction(ISD::SHL, MVT::v2i64, Legal);
831         setOperationAction(ISD::SRA, MVT::v2i64, Legal);
832         setOperationAction(ISD::SRL, MVT::v2i64, Legal);
833 
834         // 128 bit shifts can be accomplished via 3 instructions for SHL and
835         // SRL, but not for SRA because of the instructions available:
836         // VS{RL} and VS{RL}O. However due to direct move costs, it's not worth
837         // doing
838         setOperationAction(ISD::SHL, MVT::v1i128, Expand);
839         setOperationAction(ISD::SRL, MVT::v1i128, Expand);
840         setOperationAction(ISD::SRA, MVT::v1i128, Expand);
841 
842         setOperationAction(ISD::SETCC, MVT::v2i64, Legal);
843       }
844       else {
845         setOperationAction(ISD::SHL, MVT::v2i64, Expand);
846         setOperationAction(ISD::SRA, MVT::v2i64, Expand);
847         setOperationAction(ISD::SRL, MVT::v2i64, Expand);
848 
849         setOperationAction(ISD::SETCC, MVT::v2i64, Custom);
850 
851         // VSX v2i64 only supports non-arithmetic operations.
852         setOperationAction(ISD::ADD, MVT::v2i64, Expand);
853         setOperationAction(ISD::SUB, MVT::v2i64, Expand);
854       }
855 
856       setOperationAction(ISD::LOAD, MVT::v2i64, Promote);
857       AddPromotedToType (ISD::LOAD, MVT::v2i64, MVT::v2f64);
858       setOperationAction(ISD::STORE, MVT::v2i64, Promote);
859       AddPromotedToType (ISD::STORE, MVT::v2i64, MVT::v2f64);
860 
861       setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v2i64, Legal);
862 
863       setOperationAction(ISD::SINT_TO_FP, MVT::v2i64, Legal);
864       setOperationAction(ISD::UINT_TO_FP, MVT::v2i64, Legal);
865       setOperationAction(ISD::FP_TO_SINT, MVT::v2i64, Legal);
866       setOperationAction(ISD::FP_TO_UINT, MVT::v2i64, Legal);
867 
868       // Custom handling for partial vectors of integers converted to
869       // floating point. We already have optimal handling for v2i32 through
870       // the DAG combine, so those aren't necessary.
871       setOperationAction(ISD::UINT_TO_FP, MVT::v2i8, Custom);
872       setOperationAction(ISD::UINT_TO_FP, MVT::v4i8, Custom);
873       setOperationAction(ISD::UINT_TO_FP, MVT::v2i16, Custom);
874       setOperationAction(ISD::UINT_TO_FP, MVT::v4i16, Custom);
875       setOperationAction(ISD::SINT_TO_FP, MVT::v2i8, Custom);
876       setOperationAction(ISD::SINT_TO_FP, MVT::v4i8, Custom);
877       setOperationAction(ISD::SINT_TO_FP, MVT::v2i16, Custom);
878       setOperationAction(ISD::SINT_TO_FP, MVT::v4i16, Custom);
879 
880       setOperationAction(ISD::FNEG, MVT::v4f32, Legal);
881       setOperationAction(ISD::FNEG, MVT::v2f64, Legal);
882       setOperationAction(ISD::FABS, MVT::v4f32, Legal);
883       setOperationAction(ISD::FABS, MVT::v2f64, Legal);
884       setOperationAction(ISD::FCOPYSIGN, MVT::v4f32, Legal);
885       setOperationAction(ISD::FCOPYSIGN, MVT::v2f64, Legal);
886 
887       if (Subtarget.hasDirectMove())
888         setOperationAction(ISD::BUILD_VECTOR, MVT::v2i64, Custom);
889       setOperationAction(ISD::BUILD_VECTOR, MVT::v2f64, Custom);
890 
891       addRegisterClass(MVT::v2i64, &PPC::VSRCRegClass);
892     }
893 
894     if (Subtarget.hasP8Altivec()) {
895       addRegisterClass(MVT::v2i64, &PPC::VRRCRegClass);
896       addRegisterClass(MVT::v1i128, &PPC::VRRCRegClass);
897     }
898 
899     if (Subtarget.hasP9Vector()) {
900       setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4i32, Custom);
901       setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4f32, Custom);
902 
903       // 128 bit shifts can be accomplished via 3 instructions for SHL and
904       // SRL, but not for SRA because of the instructions available:
905       // VS{RL} and VS{RL}O.
906       setOperationAction(ISD::SHL, MVT::v1i128, Legal);
907       setOperationAction(ISD::SRL, MVT::v1i128, Legal);
908       setOperationAction(ISD::SRA, MVT::v1i128, Expand);
909 
910       if (EnableQuadPrecision) {
911         addRegisterClass(MVT::f128, &PPC::VRRCRegClass);
912         setOperationAction(ISD::FADD, MVT::f128, Legal);
913         setOperationAction(ISD::FSUB, MVT::f128, Legal);
914         setOperationAction(ISD::FDIV, MVT::f128, Legal);
915         setOperationAction(ISD::FMUL, MVT::f128, Legal);
916         setOperationAction(ISD::FP_EXTEND, MVT::f128, Legal);
917         // No extending loads to f128 on PPC.
918         for (MVT FPT : MVT::fp_valuetypes())
919           setLoadExtAction(ISD::EXTLOAD, MVT::f128, FPT, Expand);
920         setOperationAction(ISD::FMA, MVT::f128, Legal);
921         setCondCodeAction(ISD::SETULT, MVT::f128, Expand);
922         setCondCodeAction(ISD::SETUGT, MVT::f128, Expand);
923         setCondCodeAction(ISD::SETUEQ, MVT::f128, Expand);
924         setCondCodeAction(ISD::SETOGE, MVT::f128, Expand);
925         setCondCodeAction(ISD::SETOLE, MVT::f128, Expand);
926         setCondCodeAction(ISD::SETONE, MVT::f128, Expand);
927 
928         setOperationAction(ISD::FTRUNC, MVT::f128, Legal);
929         setOperationAction(ISD::FRINT, MVT::f128, Legal);
930         setOperationAction(ISD::FFLOOR, MVT::f128, Legal);
931         setOperationAction(ISD::FCEIL, MVT::f128, Legal);
932         setOperationAction(ISD::FNEARBYINT, MVT::f128, Legal);
933         setOperationAction(ISD::FROUND, MVT::f128, Legal);
934 
935         setOperationAction(ISD::SELECT, MVT::f128, Expand);
936         setOperationAction(ISD::FP_ROUND, MVT::f64, Legal);
937         setOperationAction(ISD::FP_ROUND, MVT::f32, Legal);
938         setTruncStoreAction(MVT::f128, MVT::f64, Expand);
939         setTruncStoreAction(MVT::f128, MVT::f32, Expand);
940         setOperationAction(ISD::BITCAST, MVT::i128, Custom);
941         // No implementation for these ops for PowerPC.
942         setOperationAction(ISD::FSIN , MVT::f128, Expand);
943         setOperationAction(ISD::FCOS , MVT::f128, Expand);
944         setOperationAction(ISD::FPOW, MVT::f128, Expand);
945         setOperationAction(ISD::FPOWI, MVT::f128, Expand);
946         setOperationAction(ISD::FREM, MVT::f128, Expand);
947       }
948       setOperationAction(ISD::FP_EXTEND, MVT::v2f32, Custom);
949       setOperationAction(ISD::BSWAP, MVT::v8i16, Legal);
950       setOperationAction(ISD::BSWAP, MVT::v4i32, Legal);
951       setOperationAction(ISD::BSWAP, MVT::v2i64, Legal);
952       setOperationAction(ISD::BSWAP, MVT::v1i128, Legal);
953     }
954 
955     if (Subtarget.hasP9Altivec()) {
956       setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v8i16, Custom);
957       setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v16i8, Custom);
958 
959       setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v4i8,  Legal);
960       setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v4i16, Legal);
961       setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v4i32, Legal);
962       setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i8,  Legal);
963       setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i16, Legal);
964       setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i32, Legal);
965       setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i64, Legal);
966     }
967   }
968 
969   if (Subtarget.hasQPX()) {
970     setOperationAction(ISD::FADD, MVT::v4f64, Legal);
971     setOperationAction(ISD::FSUB, MVT::v4f64, Legal);
972     setOperationAction(ISD::FMUL, MVT::v4f64, Legal);
973     setOperationAction(ISD::FREM, MVT::v4f64, Expand);
974 
975     setOperationAction(ISD::FCOPYSIGN, MVT::v4f64, Legal);
976     setOperationAction(ISD::FGETSIGN, MVT::v4f64, Expand);
977 
978     setOperationAction(ISD::LOAD  , MVT::v4f64, Custom);
979     setOperationAction(ISD::STORE , MVT::v4f64, Custom);
980 
981     setTruncStoreAction(MVT::v4f64, MVT::v4f32, Custom);
982     setLoadExtAction(ISD::EXTLOAD, MVT::v4f64, MVT::v4f32, Custom);
983 
984     if (!Subtarget.useCRBits())
985       setOperationAction(ISD::SELECT, MVT::v4f64, Expand);
986     setOperationAction(ISD::VSELECT, MVT::v4f64, Legal);
987 
988     setOperationAction(ISD::EXTRACT_VECTOR_ELT , MVT::v4f64, Legal);
989     setOperationAction(ISD::INSERT_VECTOR_ELT , MVT::v4f64, Expand);
990     setOperationAction(ISD::CONCAT_VECTORS , MVT::v4f64, Expand);
991     setOperationAction(ISD::EXTRACT_SUBVECTOR , MVT::v4f64, Expand);
992     setOperationAction(ISD::VECTOR_SHUFFLE , MVT::v4f64, Custom);
993     setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f64, Legal);
994     setOperationAction(ISD::BUILD_VECTOR, MVT::v4f64, Custom);
995 
996     setOperationAction(ISD::FP_TO_SINT , MVT::v4f64, Legal);
997     setOperationAction(ISD::FP_TO_UINT , MVT::v4f64, Expand);
998 
999     setOperationAction(ISD::FP_ROUND , MVT::v4f32, Legal);
1000     setOperationAction(ISD::FP_EXTEND, MVT::v4f64, Legal);
1001 
1002     setOperationAction(ISD::FNEG , MVT::v4f64, Legal);
1003     setOperationAction(ISD::FABS , MVT::v4f64, Legal);
1004     setOperationAction(ISD::FSIN , MVT::v4f64, Expand);
1005     setOperationAction(ISD::FCOS , MVT::v4f64, Expand);
1006     setOperationAction(ISD::FPOW , MVT::v4f64, Expand);
1007     setOperationAction(ISD::FLOG , MVT::v4f64, Expand);
1008     setOperationAction(ISD::FLOG2 , MVT::v4f64, Expand);
1009     setOperationAction(ISD::FLOG10 , MVT::v4f64, Expand);
1010     setOperationAction(ISD::FEXP , MVT::v4f64, Expand);
1011     setOperationAction(ISD::FEXP2 , MVT::v4f64, Expand);
1012 
1013     setOperationAction(ISD::FMINNUM, MVT::v4f64, Legal);
1014     setOperationAction(ISD::FMAXNUM, MVT::v4f64, Legal);
1015 
1016     setIndexedLoadAction(ISD::PRE_INC, MVT::v4f64, Legal);
1017     setIndexedStoreAction(ISD::PRE_INC, MVT::v4f64, Legal);
1018 
1019     addRegisterClass(MVT::v4f64, &PPC::QFRCRegClass);
1020 
1021     setOperationAction(ISD::FADD, MVT::v4f32, Legal);
1022     setOperationAction(ISD::FSUB, MVT::v4f32, Legal);
1023     setOperationAction(ISD::FMUL, MVT::v4f32, Legal);
1024     setOperationAction(ISD::FREM, MVT::v4f32, Expand);
1025 
1026     setOperationAction(ISD::FCOPYSIGN, MVT::v4f32, Legal);
1027     setOperationAction(ISD::FGETSIGN, MVT::v4f32, Expand);
1028 
1029     setOperationAction(ISD::LOAD  , MVT::v4f32, Custom);
1030     setOperationAction(ISD::STORE , MVT::v4f32, Custom);
1031 
1032     if (!Subtarget.useCRBits())
1033       setOperationAction(ISD::SELECT, MVT::v4f32, Expand);
1034     setOperationAction(ISD::VSELECT, MVT::v4f32, Legal);
1035 
1036     setOperationAction(ISD::EXTRACT_VECTOR_ELT , MVT::v4f32, Legal);
1037     setOperationAction(ISD::INSERT_VECTOR_ELT , MVT::v4f32, Expand);
1038     setOperationAction(ISD::CONCAT_VECTORS , MVT::v4f32, Expand);
1039     setOperationAction(ISD::EXTRACT_SUBVECTOR , MVT::v4f32, Expand);
1040     setOperationAction(ISD::VECTOR_SHUFFLE , MVT::v4f32, Custom);
1041     setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f32, Legal);
1042     setOperationAction(ISD::BUILD_VECTOR, MVT::v4f32, Custom);
1043 
1044     setOperationAction(ISD::FP_TO_SINT , MVT::v4f32, Legal);
1045     setOperationAction(ISD::FP_TO_UINT , MVT::v4f32, Expand);
1046 
1047     setOperationAction(ISD::FNEG , MVT::v4f32, Legal);
1048     setOperationAction(ISD::FABS , MVT::v4f32, Legal);
1049     setOperationAction(ISD::FSIN , MVT::v4f32, Expand);
1050     setOperationAction(ISD::FCOS , MVT::v4f32, Expand);
1051     setOperationAction(ISD::FPOW , MVT::v4f32, Expand);
1052     setOperationAction(ISD::FLOG , MVT::v4f32, Expand);
1053     setOperationAction(ISD::FLOG2 , MVT::v4f32, Expand);
1054     setOperationAction(ISD::FLOG10 , MVT::v4f32, Expand);
1055     setOperationAction(ISD::FEXP , MVT::v4f32, Expand);
1056     setOperationAction(ISD::FEXP2 , MVT::v4f32, Expand);
1057 
1058     setOperationAction(ISD::FMINNUM, MVT::v4f32, Legal);
1059     setOperationAction(ISD::FMAXNUM, MVT::v4f32, Legal);
1060 
1061     setIndexedLoadAction(ISD::PRE_INC, MVT::v4f32, Legal);
1062     setIndexedStoreAction(ISD::PRE_INC, MVT::v4f32, Legal);
1063 
1064     addRegisterClass(MVT::v4f32, &PPC::QSRCRegClass);
1065 
1066     setOperationAction(ISD::AND , MVT::v4i1, Legal);
1067     setOperationAction(ISD::OR , MVT::v4i1, Legal);
1068     setOperationAction(ISD::XOR , MVT::v4i1, Legal);
1069 
1070     if (!Subtarget.useCRBits())
1071       setOperationAction(ISD::SELECT, MVT::v4i1, Expand);
1072     setOperationAction(ISD::VSELECT, MVT::v4i1, Legal);
1073 
1074     setOperationAction(ISD::LOAD  , MVT::v4i1, Custom);
1075     setOperationAction(ISD::STORE , MVT::v4i1, Custom);
1076 
1077     setOperationAction(ISD::EXTRACT_VECTOR_ELT , MVT::v4i1, Custom);
1078     setOperationAction(ISD::INSERT_VECTOR_ELT , MVT::v4i1, Expand);
1079     setOperationAction(ISD::CONCAT_VECTORS , MVT::v4i1, Expand);
1080     setOperationAction(ISD::EXTRACT_SUBVECTOR , MVT::v4i1, Expand);
1081     setOperationAction(ISD::VECTOR_SHUFFLE , MVT::v4i1, Custom);
1082     setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4i1, Expand);
1083     setOperationAction(ISD::BUILD_VECTOR, MVT::v4i1, Custom);
1084 
1085     setOperationAction(ISD::SINT_TO_FP, MVT::v4i1, Custom);
1086     setOperationAction(ISD::UINT_TO_FP, MVT::v4i1, Custom);
1087 
1088     addRegisterClass(MVT::v4i1, &PPC::QBRCRegClass);
1089 
1090     setOperationAction(ISD::FFLOOR, MVT::v4f64, Legal);
1091     setOperationAction(ISD::FCEIL,  MVT::v4f64, Legal);
1092     setOperationAction(ISD::FTRUNC, MVT::v4f64, Legal);
1093     setOperationAction(ISD::FROUND, MVT::v4f64, Legal);
1094 
1095     setOperationAction(ISD::FFLOOR, MVT::v4f32, Legal);
1096     setOperationAction(ISD::FCEIL,  MVT::v4f32, Legal);
1097     setOperationAction(ISD::FTRUNC, MVT::v4f32, Legal);
1098     setOperationAction(ISD::FROUND, MVT::v4f32, Legal);
1099 
1100     setOperationAction(ISD::FNEARBYINT, MVT::v4f64, Expand);
1101     setOperationAction(ISD::FNEARBYINT, MVT::v4f32, Expand);
1102 
1103     // These need to set FE_INEXACT, and so cannot be vectorized here.
1104     setOperationAction(ISD::FRINT, MVT::v4f64, Expand);
1105     setOperationAction(ISD::FRINT, MVT::v4f32, Expand);
1106 
1107     if (TM.Options.UnsafeFPMath) {
1108       setOperationAction(ISD::FDIV, MVT::v4f64, Legal);
1109       setOperationAction(ISD::FSQRT, MVT::v4f64, Legal);
1110 
1111       setOperationAction(ISD::FDIV, MVT::v4f32, Legal);
1112       setOperationAction(ISD::FSQRT, MVT::v4f32, Legal);
1113     } else {
1114       setOperationAction(ISD::FDIV, MVT::v4f64, Expand);
1115       setOperationAction(ISD::FSQRT, MVT::v4f64, Expand);
1116 
1117       setOperationAction(ISD::FDIV, MVT::v4f32, Expand);
1118       setOperationAction(ISD::FSQRT, MVT::v4f32, Expand);
1119     }
1120   }
1121 
1122   if (Subtarget.has64BitSupport())
1123     setOperationAction(ISD::PREFETCH, MVT::Other, Legal);
1124 
1125   setOperationAction(ISD::READCYCLECOUNTER, MVT::i64, isPPC64 ? Legal : Custom);
1126 
1127   if (!isPPC64) {
1128     setOperationAction(ISD::ATOMIC_LOAD,  MVT::i64, Expand);
1129     setOperationAction(ISD::ATOMIC_STORE, MVT::i64, Expand);
1130   }
1131 
1132   setBooleanContents(ZeroOrOneBooleanContent);
1133 
1134   if (Subtarget.hasAltivec()) {
1135     // Altivec instructions set fields to all zeros or all ones.
1136     setBooleanVectorContents(ZeroOrNegativeOneBooleanContent);
1137   }
1138 
1139   if (!isPPC64) {
1140     // These libcalls are not available in 32-bit.
1141     setLibcallName(RTLIB::SHL_I128, nullptr);
1142     setLibcallName(RTLIB::SRL_I128, nullptr);
1143     setLibcallName(RTLIB::SRA_I128, nullptr);
1144   }
1145 
1146   setStackPointerRegisterToSaveRestore(isPPC64 ? PPC::X1 : PPC::R1);
1147 
1148   // We have target-specific dag combine patterns for the following nodes:
1149   setTargetDAGCombine(ISD::ADD);
1150   setTargetDAGCombine(ISD::SHL);
1151   setTargetDAGCombine(ISD::SRA);
1152   setTargetDAGCombine(ISD::SRL);
1153   setTargetDAGCombine(ISD::MUL);
1154   setTargetDAGCombine(ISD::SINT_TO_FP);
1155   setTargetDAGCombine(ISD::BUILD_VECTOR);
1156   if (Subtarget.hasFPCVT())
1157     setTargetDAGCombine(ISD::UINT_TO_FP);
1158   setTargetDAGCombine(ISD::LOAD);
1159   setTargetDAGCombine(ISD::STORE);
1160   setTargetDAGCombine(ISD::BR_CC);
1161   if (Subtarget.useCRBits())
1162     setTargetDAGCombine(ISD::BRCOND);
1163   setTargetDAGCombine(ISD::BSWAP);
1164   setTargetDAGCombine(ISD::INTRINSIC_WO_CHAIN);
1165   setTargetDAGCombine(ISD::INTRINSIC_W_CHAIN);
1166   setTargetDAGCombine(ISD::INTRINSIC_VOID);
1167 
1168   setTargetDAGCombine(ISD::SIGN_EXTEND);
1169   setTargetDAGCombine(ISD::ZERO_EXTEND);
1170   setTargetDAGCombine(ISD::ANY_EXTEND);
1171 
1172   setTargetDAGCombine(ISD::TRUNCATE);
1173   setTargetDAGCombine(ISD::VECTOR_SHUFFLE);
1174 
1175 
1176   if (Subtarget.useCRBits()) {
1177     setTargetDAGCombine(ISD::TRUNCATE);
1178     setTargetDAGCombine(ISD::SETCC);
1179     setTargetDAGCombine(ISD::SELECT_CC);
1180   }
1181 
1182   // Use reciprocal estimates.
1183   if (TM.Options.UnsafeFPMath) {
1184     setTargetDAGCombine(ISD::FDIV);
1185     setTargetDAGCombine(ISD::FSQRT);
1186   }
1187 
1188   if (Subtarget.hasP9Altivec()) {
1189     setTargetDAGCombine(ISD::ABS);
1190     setTargetDAGCombine(ISD::VSELECT);
1191   }
1192 
1193   // Darwin long double math library functions have $LDBL128 appended.
1194   if (Subtarget.isDarwin()) {
1195     setLibcallName(RTLIB::COS_PPCF128, "cosl$LDBL128");
1196     setLibcallName(RTLIB::POW_PPCF128, "powl$LDBL128");
1197     setLibcallName(RTLIB::REM_PPCF128, "fmodl$LDBL128");
1198     setLibcallName(RTLIB::SIN_PPCF128, "sinl$LDBL128");
1199     setLibcallName(RTLIB::SQRT_PPCF128, "sqrtl$LDBL128");
1200     setLibcallName(RTLIB::LOG_PPCF128, "logl$LDBL128");
1201     setLibcallName(RTLIB::LOG2_PPCF128, "log2l$LDBL128");
1202     setLibcallName(RTLIB::LOG10_PPCF128, "log10l$LDBL128");
1203     setLibcallName(RTLIB::EXP_PPCF128, "expl$LDBL128");
1204     setLibcallName(RTLIB::EXP2_PPCF128, "exp2l$LDBL128");
1205   }
1206 
1207   if (EnableQuadPrecision) {
1208     setLibcallName(RTLIB::LOG_F128, "logf128");
1209     setLibcallName(RTLIB::LOG2_F128, "log2f128");
1210     setLibcallName(RTLIB::LOG10_F128, "log10f128");
1211     setLibcallName(RTLIB::EXP_F128, "expf128");
1212     setLibcallName(RTLIB::EXP2_F128, "exp2f128");
1213     setLibcallName(RTLIB::SIN_F128, "sinf128");
1214     setLibcallName(RTLIB::COS_F128, "cosf128");
1215     setLibcallName(RTLIB::POW_F128, "powf128");
1216     setLibcallName(RTLIB::FMIN_F128, "fminf128");
1217     setLibcallName(RTLIB::FMAX_F128, "fmaxf128");
1218     setLibcallName(RTLIB::POWI_F128, "__powikf2");
1219     setLibcallName(RTLIB::REM_F128, "fmodf128");
1220   }
1221 
1222   // With 32 condition bits, we don't need to sink (and duplicate) compares
1223   // aggressively in CodeGenPrep.
1224   if (Subtarget.useCRBits()) {
1225     setHasMultipleConditionRegisters();
1226     setJumpIsExpensive();
1227   }
1228 
1229   setMinFunctionAlignment(Align(4));
1230   if (Subtarget.isDarwin())
1231     setPrefFunctionAlignment(Align(16));
1232 
1233   switch (Subtarget.getCPUDirective()) {
1234   default: break;
1235   case PPC::DIR_970:
1236   case PPC::DIR_A2:
1237   case PPC::DIR_E500:
1238   case PPC::DIR_E500mc:
1239   case PPC::DIR_E5500:
1240   case PPC::DIR_PWR4:
1241   case PPC::DIR_PWR5:
1242   case PPC::DIR_PWR5X:
1243   case PPC::DIR_PWR6:
1244   case PPC::DIR_PWR6X:
1245   case PPC::DIR_PWR7:
1246   case PPC::DIR_PWR8:
1247   case PPC::DIR_PWR9:
1248   case PPC::DIR_PWR_FUTURE:
1249     setPrefLoopAlignment(Align(16));
1250     setPrefFunctionAlignment(Align(16));
1251     break;
1252   }
1253 
1254   if (Subtarget.enableMachineScheduler())
1255     setSchedulingPreference(Sched::Source);
1256   else
1257     setSchedulingPreference(Sched::Hybrid);
1258 
1259   computeRegisterProperties(STI.getRegisterInfo());
1260 
1261   // The Freescale cores do better with aggressive inlining of memcpy and
1262   // friends. GCC uses same threshold of 128 bytes (= 32 word stores).
1263   if (Subtarget.getCPUDirective() == PPC::DIR_E500mc ||
1264       Subtarget.getCPUDirective() == PPC::DIR_E5500) {
1265     MaxStoresPerMemset = 32;
1266     MaxStoresPerMemsetOptSize = 16;
1267     MaxStoresPerMemcpy = 32;
1268     MaxStoresPerMemcpyOptSize = 8;
1269     MaxStoresPerMemmove = 32;
1270     MaxStoresPerMemmoveOptSize = 8;
1271   } else if (Subtarget.getCPUDirective() == PPC::DIR_A2) {
1272     // The A2 also benefits from (very) aggressive inlining of memcpy and
1273     // friends. The overhead of a the function call, even when warm, can be
1274     // over one hundred cycles.
1275     MaxStoresPerMemset = 128;
1276     MaxStoresPerMemcpy = 128;
1277     MaxStoresPerMemmove = 128;
1278     MaxLoadsPerMemcmp = 128;
1279   } else {
1280     MaxLoadsPerMemcmp = 8;
1281     MaxLoadsPerMemcmpOptSize = 4;
1282   }
1283 }
1284 
1285 /// getMaxByValAlign - Helper for getByValTypeAlignment to determine
1286 /// the desired ByVal argument alignment.
1287 static void getMaxByValAlign(Type *Ty, unsigned &MaxAlign,
1288                              unsigned MaxMaxAlign) {
1289   if (MaxAlign == MaxMaxAlign)
1290     return;
1291   if (VectorType *VTy = dyn_cast<VectorType>(Ty)) {
1292     if (MaxMaxAlign >= 32 && VTy->getBitWidth() >= 256)
1293       MaxAlign = 32;
1294     else if (VTy->getBitWidth() >= 128 && MaxAlign < 16)
1295       MaxAlign = 16;
1296   } else if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
1297     unsigned EltAlign = 0;
1298     getMaxByValAlign(ATy->getElementType(), EltAlign, MaxMaxAlign);
1299     if (EltAlign > MaxAlign)
1300       MaxAlign = EltAlign;
1301   } else if (StructType *STy = dyn_cast<StructType>(Ty)) {
1302     for (auto *EltTy : STy->elements()) {
1303       unsigned EltAlign = 0;
1304       getMaxByValAlign(EltTy, EltAlign, MaxMaxAlign);
1305       if (EltAlign > MaxAlign)
1306         MaxAlign = EltAlign;
1307       if (MaxAlign == MaxMaxAlign)
1308         break;
1309     }
1310   }
1311 }
1312 
1313 /// getByValTypeAlignment - Return the desired alignment for ByVal aggregate
1314 /// function arguments in the caller parameter area.
1315 unsigned PPCTargetLowering::getByValTypeAlignment(Type *Ty,
1316                                                   const DataLayout &DL) const {
1317   // Darwin passes everything on 4 byte boundary.
1318   if (Subtarget.isDarwin())
1319     return 4;
1320 
1321   // 16byte and wider vectors are passed on 16byte boundary.
1322   // The rest is 8 on PPC64 and 4 on PPC32 boundary.
1323   unsigned Align = Subtarget.isPPC64() ? 8 : 4;
1324   if (Subtarget.hasAltivec() || Subtarget.hasQPX())
1325     getMaxByValAlign(Ty, Align, Subtarget.hasQPX() ? 32 : 16);
1326   return Align;
1327 }
1328 
1329 bool PPCTargetLowering::useSoftFloat() const {
1330   return Subtarget.useSoftFloat();
1331 }
1332 
1333 bool PPCTargetLowering::hasSPE() const {
1334   return Subtarget.hasSPE();
1335 }
1336 
1337 bool PPCTargetLowering::preferIncOfAddToSubOfNot(EVT VT) const {
1338   return VT.isScalarInteger();
1339 }
1340 
1341 const char *PPCTargetLowering::getTargetNodeName(unsigned Opcode) const {
1342   switch ((PPCISD::NodeType)Opcode) {
1343   case PPCISD::FIRST_NUMBER:    break;
1344   case PPCISD::FSEL:            return "PPCISD::FSEL";
1345   case PPCISD::XSMAXCDP:        return "PPCISD::XSMAXCDP";
1346   case PPCISD::XSMINCDP:        return "PPCISD::XSMINCDP";
1347   case PPCISD::FCFID:           return "PPCISD::FCFID";
1348   case PPCISD::FCFIDU:          return "PPCISD::FCFIDU";
1349   case PPCISD::FCFIDS:          return "PPCISD::FCFIDS";
1350   case PPCISD::FCFIDUS:         return "PPCISD::FCFIDUS";
1351   case PPCISD::FCTIDZ:          return "PPCISD::FCTIDZ";
1352   case PPCISD::FCTIWZ:          return "PPCISD::FCTIWZ";
1353   case PPCISD::FCTIDUZ:         return "PPCISD::FCTIDUZ";
1354   case PPCISD::FCTIWUZ:         return "PPCISD::FCTIWUZ";
1355   case PPCISD::FP_TO_UINT_IN_VSR:
1356                                 return "PPCISD::FP_TO_UINT_IN_VSR,";
1357   case PPCISD::FP_TO_SINT_IN_VSR:
1358                                 return "PPCISD::FP_TO_SINT_IN_VSR";
1359   case PPCISD::FRE:             return "PPCISD::FRE";
1360   case PPCISD::FRSQRTE:         return "PPCISD::FRSQRTE";
1361   case PPCISD::STFIWX:          return "PPCISD::STFIWX";
1362   case PPCISD::VMADDFP:         return "PPCISD::VMADDFP";
1363   case PPCISD::VNMSUBFP:        return "PPCISD::VNMSUBFP";
1364   case PPCISD::VPERM:           return "PPCISD::VPERM";
1365   case PPCISD::XXSPLT:          return "PPCISD::XXSPLT";
1366   case PPCISD::VECINSERT:       return "PPCISD::VECINSERT";
1367   case PPCISD::XXPERMDI:        return "PPCISD::XXPERMDI";
1368   case PPCISD::VECSHL:          return "PPCISD::VECSHL";
1369   case PPCISD::CMPB:            return "PPCISD::CMPB";
1370   case PPCISD::Hi:              return "PPCISD::Hi";
1371   case PPCISD::Lo:              return "PPCISD::Lo";
1372   case PPCISD::TOC_ENTRY:       return "PPCISD::TOC_ENTRY";
1373   case PPCISD::ATOMIC_CMP_SWAP_8: return "PPCISD::ATOMIC_CMP_SWAP_8";
1374   case PPCISD::ATOMIC_CMP_SWAP_16: return "PPCISD::ATOMIC_CMP_SWAP_16";
1375   case PPCISD::DYNALLOC:        return "PPCISD::DYNALLOC";
1376   case PPCISD::DYNAREAOFFSET:   return "PPCISD::DYNAREAOFFSET";
1377   case PPCISD::GlobalBaseReg:   return "PPCISD::GlobalBaseReg";
1378   case PPCISD::SRL:             return "PPCISD::SRL";
1379   case PPCISD::SRA:             return "PPCISD::SRA";
1380   case PPCISD::SHL:             return "PPCISD::SHL";
1381   case PPCISD::SRA_ADDZE:       return "PPCISD::SRA_ADDZE";
1382   case PPCISD::CALL:            return "PPCISD::CALL";
1383   case PPCISD::CALL_NOP:        return "PPCISD::CALL_NOP";
1384   case PPCISD::MTCTR:           return "PPCISD::MTCTR";
1385   case PPCISD::BCTRL:           return "PPCISD::BCTRL";
1386   case PPCISD::BCTRL_LOAD_TOC:  return "PPCISD::BCTRL_LOAD_TOC";
1387   case PPCISD::RET_FLAG:        return "PPCISD::RET_FLAG";
1388   case PPCISD::READ_TIME_BASE:  return "PPCISD::READ_TIME_BASE";
1389   case PPCISD::EH_SJLJ_SETJMP:  return "PPCISD::EH_SJLJ_SETJMP";
1390   case PPCISD::EH_SJLJ_LONGJMP: return "PPCISD::EH_SJLJ_LONGJMP";
1391   case PPCISD::MFOCRF:          return "PPCISD::MFOCRF";
1392   case PPCISD::MFVSR:           return "PPCISD::MFVSR";
1393   case PPCISD::MTVSRA:          return "PPCISD::MTVSRA";
1394   case PPCISD::MTVSRZ:          return "PPCISD::MTVSRZ";
1395   case PPCISD::SINT_VEC_TO_FP:  return "PPCISD::SINT_VEC_TO_FP";
1396   case PPCISD::UINT_VEC_TO_FP:  return "PPCISD::UINT_VEC_TO_FP";
1397   case PPCISD::ANDI_rec_1_EQ_BIT:
1398     return "PPCISD::ANDI_rec_1_EQ_BIT";
1399   case PPCISD::ANDI_rec_1_GT_BIT:
1400     return "PPCISD::ANDI_rec_1_GT_BIT";
1401   case PPCISD::VCMP:            return "PPCISD::VCMP";
1402   case PPCISD::VCMPo:           return "PPCISD::VCMPo";
1403   case PPCISD::LBRX:            return "PPCISD::LBRX";
1404   case PPCISD::STBRX:           return "PPCISD::STBRX";
1405   case PPCISD::LFIWAX:          return "PPCISD::LFIWAX";
1406   case PPCISD::LFIWZX:          return "PPCISD::LFIWZX";
1407   case PPCISD::LXSIZX:          return "PPCISD::LXSIZX";
1408   case PPCISD::STXSIX:          return "PPCISD::STXSIX";
1409   case PPCISD::VEXTS:           return "PPCISD::VEXTS";
1410   case PPCISD::SExtVElems:      return "PPCISD::SExtVElems";
1411   case PPCISD::LXVD2X:          return "PPCISD::LXVD2X";
1412   case PPCISD::STXVD2X:         return "PPCISD::STXVD2X";
1413   case PPCISD::LOAD_VEC_BE:     return "PPCISD::LOAD_VEC_BE";
1414   case PPCISD::STORE_VEC_BE:    return "PPCISD::STORE_VEC_BE";
1415   case PPCISD::ST_VSR_SCAL_INT:
1416                                 return "PPCISD::ST_VSR_SCAL_INT";
1417   case PPCISD::COND_BRANCH:     return "PPCISD::COND_BRANCH";
1418   case PPCISD::BDNZ:            return "PPCISD::BDNZ";
1419   case PPCISD::BDZ:             return "PPCISD::BDZ";
1420   case PPCISD::MFFS:            return "PPCISD::MFFS";
1421   case PPCISD::FADDRTZ:         return "PPCISD::FADDRTZ";
1422   case PPCISD::TC_RETURN:       return "PPCISD::TC_RETURN";
1423   case PPCISD::CR6SET:          return "PPCISD::CR6SET";
1424   case PPCISD::CR6UNSET:        return "PPCISD::CR6UNSET";
1425   case PPCISD::PPC32_GOT:       return "PPCISD::PPC32_GOT";
1426   case PPCISD::PPC32_PICGOT:    return "PPCISD::PPC32_PICGOT";
1427   case PPCISD::ADDIS_GOT_TPREL_HA: return "PPCISD::ADDIS_GOT_TPREL_HA";
1428   case PPCISD::LD_GOT_TPREL_L:  return "PPCISD::LD_GOT_TPREL_L";
1429   case PPCISD::ADD_TLS:         return "PPCISD::ADD_TLS";
1430   case PPCISD::ADDIS_TLSGD_HA:  return "PPCISD::ADDIS_TLSGD_HA";
1431   case PPCISD::ADDI_TLSGD_L:    return "PPCISD::ADDI_TLSGD_L";
1432   case PPCISD::GET_TLS_ADDR:    return "PPCISD::GET_TLS_ADDR";
1433   case PPCISD::ADDI_TLSGD_L_ADDR: return "PPCISD::ADDI_TLSGD_L_ADDR";
1434   case PPCISD::ADDIS_TLSLD_HA:  return "PPCISD::ADDIS_TLSLD_HA";
1435   case PPCISD::ADDI_TLSLD_L:    return "PPCISD::ADDI_TLSLD_L";
1436   case PPCISD::GET_TLSLD_ADDR:  return "PPCISD::GET_TLSLD_ADDR";
1437   case PPCISD::ADDI_TLSLD_L_ADDR: return "PPCISD::ADDI_TLSLD_L_ADDR";
1438   case PPCISD::ADDIS_DTPREL_HA: return "PPCISD::ADDIS_DTPREL_HA";
1439   case PPCISD::ADDI_DTPREL_L:   return "PPCISD::ADDI_DTPREL_L";
1440   case PPCISD::VADD_SPLAT:      return "PPCISD::VADD_SPLAT";
1441   case PPCISD::SC:              return "PPCISD::SC";
1442   case PPCISD::CLRBHRB:         return "PPCISD::CLRBHRB";
1443   case PPCISD::MFBHRBE:         return "PPCISD::MFBHRBE";
1444   case PPCISD::RFEBB:           return "PPCISD::RFEBB";
1445   case PPCISD::XXSWAPD:         return "PPCISD::XXSWAPD";
1446   case PPCISD::SWAP_NO_CHAIN:   return "PPCISD::SWAP_NO_CHAIN";
1447   case PPCISD::VABSD:           return "PPCISD::VABSD";
1448   case PPCISD::QVFPERM:         return "PPCISD::QVFPERM";
1449   case PPCISD::QVGPCI:          return "PPCISD::QVGPCI";
1450   case PPCISD::QVALIGNI:        return "PPCISD::QVALIGNI";
1451   case PPCISD::QVESPLATI:       return "PPCISD::QVESPLATI";
1452   case PPCISD::QBFLT:           return "PPCISD::QBFLT";
1453   case PPCISD::QVLFSb:          return "PPCISD::QVLFSb";
1454   case PPCISD::BUILD_FP128:     return "PPCISD::BUILD_FP128";
1455   case PPCISD::BUILD_SPE64:     return "PPCISD::BUILD_SPE64";
1456   case PPCISD::EXTRACT_SPE:     return "PPCISD::EXTRACT_SPE";
1457   case PPCISD::EXTSWSLI:        return "PPCISD::EXTSWSLI";
1458   case PPCISD::LD_VSX_LH:       return "PPCISD::LD_VSX_LH";
1459   case PPCISD::FP_EXTEND_HALF:  return "PPCISD::FP_EXTEND_HALF";
1460   case PPCISD::LD_SPLAT:        return "PPCISD::LD_SPLAT";
1461   }
1462   return nullptr;
1463 }
1464 
1465 EVT PPCTargetLowering::getSetCCResultType(const DataLayout &DL, LLVMContext &C,
1466                                           EVT VT) const {
1467   if (!VT.isVector())
1468     return Subtarget.useCRBits() ? MVT::i1 : MVT::i32;
1469 
1470   if (Subtarget.hasQPX())
1471     return EVT::getVectorVT(C, MVT::i1, VT.getVectorNumElements());
1472 
1473   return VT.changeVectorElementTypeToInteger();
1474 }
1475 
1476 bool PPCTargetLowering::enableAggressiveFMAFusion(EVT VT) const {
1477   assert(VT.isFloatingPoint() && "Non-floating-point FMA?");
1478   return true;
1479 }
1480 
1481 //===----------------------------------------------------------------------===//
1482 // Node matching predicates, for use by the tblgen matching code.
1483 //===----------------------------------------------------------------------===//
1484 
1485 /// isFloatingPointZero - Return true if this is 0.0 or -0.0.
1486 static bool isFloatingPointZero(SDValue Op) {
1487   if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(Op))
1488     return CFP->getValueAPF().isZero();
1489   else if (ISD::isEXTLoad(Op.getNode()) || ISD::isNON_EXTLoad(Op.getNode())) {
1490     // Maybe this has already been legalized into the constant pool?
1491     if (ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(Op.getOperand(1)))
1492       if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CP->getConstVal()))
1493         return CFP->getValueAPF().isZero();
1494   }
1495   return false;
1496 }
1497 
1498 /// isConstantOrUndef - Op is either an undef node or a ConstantSDNode.  Return
1499 /// true if Op is undef or if it matches the specified value.
1500 static bool isConstantOrUndef(int Op, int Val) {
1501   return Op < 0 || Op == Val;
1502 }
1503 
1504 /// isVPKUHUMShuffleMask - Return true if this is the shuffle mask for a
1505 /// VPKUHUM instruction.
1506 /// The ShuffleKind distinguishes between big-endian operations with
1507 /// two different inputs (0), either-endian operations with two identical
1508 /// inputs (1), and little-endian operations with two different inputs (2).
1509 /// For the latter, the input operands are swapped (see PPCInstrAltivec.td).
1510 bool PPC::isVPKUHUMShuffleMask(ShuffleVectorSDNode *N, unsigned ShuffleKind,
1511                                SelectionDAG &DAG) {
1512   bool IsLE = DAG.getDataLayout().isLittleEndian();
1513   if (ShuffleKind == 0) {
1514     if (IsLE)
1515       return false;
1516     for (unsigned i = 0; i != 16; ++i)
1517       if (!isConstantOrUndef(N->getMaskElt(i), i*2+1))
1518         return false;
1519   } else if (ShuffleKind == 2) {
1520     if (!IsLE)
1521       return false;
1522     for (unsigned i = 0; i != 16; ++i)
1523       if (!isConstantOrUndef(N->getMaskElt(i), i*2))
1524         return false;
1525   } else if (ShuffleKind == 1) {
1526     unsigned j = IsLE ? 0 : 1;
1527     for (unsigned i = 0; i != 8; ++i)
1528       if (!isConstantOrUndef(N->getMaskElt(i),    i*2+j) ||
1529           !isConstantOrUndef(N->getMaskElt(i+8),  i*2+j))
1530         return false;
1531   }
1532   return true;
1533 }
1534 
1535 /// isVPKUWUMShuffleMask - Return true if this is the shuffle mask for a
1536 /// VPKUWUM instruction.
1537 /// The ShuffleKind distinguishes between big-endian operations with
1538 /// two different inputs (0), either-endian operations with two identical
1539 /// inputs (1), and little-endian operations with two different inputs (2).
1540 /// For the latter, the input operands are swapped (see PPCInstrAltivec.td).
1541 bool PPC::isVPKUWUMShuffleMask(ShuffleVectorSDNode *N, unsigned ShuffleKind,
1542                                SelectionDAG &DAG) {
1543   bool IsLE = DAG.getDataLayout().isLittleEndian();
1544   if (ShuffleKind == 0) {
1545     if (IsLE)
1546       return false;
1547     for (unsigned i = 0; i != 16; i += 2)
1548       if (!isConstantOrUndef(N->getMaskElt(i  ),  i*2+2) ||
1549           !isConstantOrUndef(N->getMaskElt(i+1),  i*2+3))
1550         return false;
1551   } else if (ShuffleKind == 2) {
1552     if (!IsLE)
1553       return false;
1554     for (unsigned i = 0; i != 16; i += 2)
1555       if (!isConstantOrUndef(N->getMaskElt(i  ),  i*2) ||
1556           !isConstantOrUndef(N->getMaskElt(i+1),  i*2+1))
1557         return false;
1558   } else if (ShuffleKind == 1) {
1559     unsigned j = IsLE ? 0 : 2;
1560     for (unsigned i = 0; i != 8; i += 2)
1561       if (!isConstantOrUndef(N->getMaskElt(i  ),  i*2+j)   ||
1562           !isConstantOrUndef(N->getMaskElt(i+1),  i*2+j+1) ||
1563           !isConstantOrUndef(N->getMaskElt(i+8),  i*2+j)   ||
1564           !isConstantOrUndef(N->getMaskElt(i+9),  i*2+j+1))
1565         return false;
1566   }
1567   return true;
1568 }
1569 
1570 /// isVPKUDUMShuffleMask - Return true if this is the shuffle mask for a
1571 /// VPKUDUM instruction, AND the VPKUDUM instruction exists for the
1572 /// current subtarget.
1573 ///
1574 /// The ShuffleKind distinguishes between big-endian operations with
1575 /// two different inputs (0), either-endian operations with two identical
1576 /// inputs (1), and little-endian operations with two different inputs (2).
1577 /// For the latter, the input operands are swapped (see PPCInstrAltivec.td).
1578 bool PPC::isVPKUDUMShuffleMask(ShuffleVectorSDNode *N, unsigned ShuffleKind,
1579                                SelectionDAG &DAG) {
1580   const PPCSubtarget& Subtarget =
1581       static_cast<const PPCSubtarget&>(DAG.getSubtarget());
1582   if (!Subtarget.hasP8Vector())
1583     return false;
1584 
1585   bool IsLE = DAG.getDataLayout().isLittleEndian();
1586   if (ShuffleKind == 0) {
1587     if (IsLE)
1588       return false;
1589     for (unsigned i = 0; i != 16; i += 4)
1590       if (!isConstantOrUndef(N->getMaskElt(i  ),  i*2+4) ||
1591           !isConstantOrUndef(N->getMaskElt(i+1),  i*2+5) ||
1592           !isConstantOrUndef(N->getMaskElt(i+2),  i*2+6) ||
1593           !isConstantOrUndef(N->getMaskElt(i+3),  i*2+7))
1594         return false;
1595   } else if (ShuffleKind == 2) {
1596     if (!IsLE)
1597       return false;
1598     for (unsigned i = 0; i != 16; i += 4)
1599       if (!isConstantOrUndef(N->getMaskElt(i  ),  i*2) ||
1600           !isConstantOrUndef(N->getMaskElt(i+1),  i*2+1) ||
1601           !isConstantOrUndef(N->getMaskElt(i+2),  i*2+2) ||
1602           !isConstantOrUndef(N->getMaskElt(i+3),  i*2+3))
1603         return false;
1604   } else if (ShuffleKind == 1) {
1605     unsigned j = IsLE ? 0 : 4;
1606     for (unsigned i = 0; i != 8; i += 4)
1607       if (!isConstantOrUndef(N->getMaskElt(i  ),  i*2+j)   ||
1608           !isConstantOrUndef(N->getMaskElt(i+1),  i*2+j+1) ||
1609           !isConstantOrUndef(N->getMaskElt(i+2),  i*2+j+2) ||
1610           !isConstantOrUndef(N->getMaskElt(i+3),  i*2+j+3) ||
1611           !isConstantOrUndef(N->getMaskElt(i+8),  i*2+j)   ||
1612           !isConstantOrUndef(N->getMaskElt(i+9),  i*2+j+1) ||
1613           !isConstantOrUndef(N->getMaskElt(i+10), i*2+j+2) ||
1614           !isConstantOrUndef(N->getMaskElt(i+11), i*2+j+3))
1615         return false;
1616   }
1617   return true;
1618 }
1619 
1620 /// isVMerge - Common function, used to match vmrg* shuffles.
1621 ///
1622 static bool isVMerge(ShuffleVectorSDNode *N, unsigned UnitSize,
1623                      unsigned LHSStart, unsigned RHSStart) {
1624   if (N->getValueType(0) != MVT::v16i8)
1625     return false;
1626   assert((UnitSize == 1 || UnitSize == 2 || UnitSize == 4) &&
1627          "Unsupported merge size!");
1628 
1629   for (unsigned i = 0; i != 8/UnitSize; ++i)     // Step over units
1630     for (unsigned j = 0; j != UnitSize; ++j) {   // Step over bytes within unit
1631       if (!isConstantOrUndef(N->getMaskElt(i*UnitSize*2+j),
1632                              LHSStart+j+i*UnitSize) ||
1633           !isConstantOrUndef(N->getMaskElt(i*UnitSize*2+UnitSize+j),
1634                              RHSStart+j+i*UnitSize))
1635         return false;
1636     }
1637   return true;
1638 }
1639 
1640 /// isVMRGLShuffleMask - Return true if this is a shuffle mask suitable for
1641 /// a VMRGL* instruction with the specified unit size (1,2 or 4 bytes).
1642 /// The ShuffleKind distinguishes between big-endian merges with two
1643 /// different inputs (0), either-endian merges with two identical inputs (1),
1644 /// and little-endian merges with two different inputs (2).  For the latter,
1645 /// the input operands are swapped (see PPCInstrAltivec.td).
1646 bool PPC::isVMRGLShuffleMask(ShuffleVectorSDNode *N, unsigned UnitSize,
1647                              unsigned ShuffleKind, SelectionDAG &DAG) {
1648   if (DAG.getDataLayout().isLittleEndian()) {
1649     if (ShuffleKind == 1) // unary
1650       return isVMerge(N, UnitSize, 0, 0);
1651     else if (ShuffleKind == 2) // swapped
1652       return isVMerge(N, UnitSize, 0, 16);
1653     else
1654       return false;
1655   } else {
1656     if (ShuffleKind == 1) // unary
1657       return isVMerge(N, UnitSize, 8, 8);
1658     else if (ShuffleKind == 0) // normal
1659       return isVMerge(N, UnitSize, 8, 24);
1660     else
1661       return false;
1662   }
1663 }
1664 
1665 /// isVMRGHShuffleMask - Return true if this is a shuffle mask suitable for
1666 /// a VMRGH* instruction with the specified unit size (1,2 or 4 bytes).
1667 /// The ShuffleKind distinguishes between big-endian merges with two
1668 /// different inputs (0), either-endian merges with two identical inputs (1),
1669 /// and little-endian merges with two different inputs (2).  For the latter,
1670 /// the input operands are swapped (see PPCInstrAltivec.td).
1671 bool PPC::isVMRGHShuffleMask(ShuffleVectorSDNode *N, unsigned UnitSize,
1672                              unsigned ShuffleKind, SelectionDAG &DAG) {
1673   if (DAG.getDataLayout().isLittleEndian()) {
1674     if (ShuffleKind == 1) // unary
1675       return isVMerge(N, UnitSize, 8, 8);
1676     else if (ShuffleKind == 2) // swapped
1677       return isVMerge(N, UnitSize, 8, 24);
1678     else
1679       return false;
1680   } else {
1681     if (ShuffleKind == 1) // unary
1682       return isVMerge(N, UnitSize, 0, 0);
1683     else if (ShuffleKind == 0) // normal
1684       return isVMerge(N, UnitSize, 0, 16);
1685     else
1686       return false;
1687   }
1688 }
1689 
1690 /**
1691  * Common function used to match vmrgew and vmrgow shuffles
1692  *
1693  * The indexOffset determines whether to look for even or odd words in
1694  * the shuffle mask. This is based on the of the endianness of the target
1695  * machine.
1696  *   - Little Endian:
1697  *     - Use offset of 0 to check for odd elements
1698  *     - Use offset of 4 to check for even elements
1699  *   - Big Endian:
1700  *     - Use offset of 0 to check for even elements
1701  *     - Use offset of 4 to check for odd elements
1702  * A detailed description of the vector element ordering for little endian and
1703  * big endian can be found at
1704  * http://www.ibm.com/developerworks/library/l-ibm-xl-c-cpp-compiler/index.html
1705  * Targeting your applications - what little endian and big endian IBM XL C/C++
1706  * compiler differences mean to you
1707  *
1708  * The mask to the shuffle vector instruction specifies the indices of the
1709  * elements from the two input vectors to place in the result. The elements are
1710  * numbered in array-access order, starting with the first vector. These vectors
1711  * are always of type v16i8, thus each vector will contain 16 elements of size
1712  * 8. More info on the shuffle vector can be found in the
1713  * http://llvm.org/docs/LangRef.html#shufflevector-instruction
1714  * Language Reference.
1715  *
1716  * The RHSStartValue indicates whether the same input vectors are used (unary)
1717  * or two different input vectors are used, based on the following:
1718  *   - If the instruction uses the same vector for both inputs, the range of the
1719  *     indices will be 0 to 15. In this case, the RHSStart value passed should
1720  *     be 0.
1721  *   - If the instruction has two different vectors then the range of the
1722  *     indices will be 0 to 31. In this case, the RHSStart value passed should
1723  *     be 16 (indices 0-15 specify elements in the first vector while indices 16
1724  *     to 31 specify elements in the second vector).
1725  *
1726  * \param[in] N The shuffle vector SD Node to analyze
1727  * \param[in] IndexOffset Specifies whether to look for even or odd elements
1728  * \param[in] RHSStartValue Specifies the starting index for the righthand input
1729  * vector to the shuffle_vector instruction
1730  * \return true iff this shuffle vector represents an even or odd word merge
1731  */
1732 static bool isVMerge(ShuffleVectorSDNode *N, unsigned IndexOffset,
1733                      unsigned RHSStartValue) {
1734   if (N->getValueType(0) != MVT::v16i8)
1735     return false;
1736 
1737   for (unsigned i = 0; i < 2; ++i)
1738     for (unsigned j = 0; j < 4; ++j)
1739       if (!isConstantOrUndef(N->getMaskElt(i*4+j),
1740                              i*RHSStartValue+j+IndexOffset) ||
1741           !isConstantOrUndef(N->getMaskElt(i*4+j+8),
1742                              i*RHSStartValue+j+IndexOffset+8))
1743         return false;
1744   return true;
1745 }
1746 
1747 /**
1748  * Determine if the specified shuffle mask is suitable for the vmrgew or
1749  * vmrgow instructions.
1750  *
1751  * \param[in] N The shuffle vector SD Node to analyze
1752  * \param[in] CheckEven Check for an even merge (true) or an odd merge (false)
1753  * \param[in] ShuffleKind Identify the type of merge:
1754  *   - 0 = big-endian merge with two different inputs;
1755  *   - 1 = either-endian merge with two identical inputs;
1756  *   - 2 = little-endian merge with two different inputs (inputs are swapped for
1757  *     little-endian merges).
1758  * \param[in] DAG The current SelectionDAG
1759  * \return true iff this shuffle mask
1760  */
1761 bool PPC::isVMRGEOShuffleMask(ShuffleVectorSDNode *N, bool CheckEven,
1762                               unsigned ShuffleKind, SelectionDAG &DAG) {
1763   if (DAG.getDataLayout().isLittleEndian()) {
1764     unsigned indexOffset = CheckEven ? 4 : 0;
1765     if (ShuffleKind == 1) // Unary
1766       return isVMerge(N, indexOffset, 0);
1767     else if (ShuffleKind == 2) // swapped
1768       return isVMerge(N, indexOffset, 16);
1769     else
1770       return false;
1771   }
1772   else {
1773     unsigned indexOffset = CheckEven ? 0 : 4;
1774     if (ShuffleKind == 1) // Unary
1775       return isVMerge(N, indexOffset, 0);
1776     else if (ShuffleKind == 0) // Normal
1777       return isVMerge(N, indexOffset, 16);
1778     else
1779       return false;
1780   }
1781   return false;
1782 }
1783 
1784 /// isVSLDOIShuffleMask - If this is a vsldoi shuffle mask, return the shift
1785 /// amount, otherwise return -1.
1786 /// The ShuffleKind distinguishes between big-endian operations with two
1787 /// different inputs (0), either-endian operations with two identical inputs
1788 /// (1), and little-endian operations with two different inputs (2).  For the
1789 /// latter, the input operands are swapped (see PPCInstrAltivec.td).
1790 int PPC::isVSLDOIShuffleMask(SDNode *N, unsigned ShuffleKind,
1791                              SelectionDAG &DAG) {
1792   if (N->getValueType(0) != MVT::v16i8)
1793     return -1;
1794 
1795   ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
1796 
1797   // Find the first non-undef value in the shuffle mask.
1798   unsigned i;
1799   for (i = 0; i != 16 && SVOp->getMaskElt(i) < 0; ++i)
1800     /*search*/;
1801 
1802   if (i == 16) return -1;  // all undef.
1803 
1804   // Otherwise, check to see if the rest of the elements are consecutively
1805   // numbered from this value.
1806   unsigned ShiftAmt = SVOp->getMaskElt(i);
1807   if (ShiftAmt < i) return -1;
1808 
1809   ShiftAmt -= i;
1810   bool isLE = DAG.getDataLayout().isLittleEndian();
1811 
1812   if ((ShuffleKind == 0 && !isLE) || (ShuffleKind == 2 && isLE)) {
1813     // Check the rest of the elements to see if they are consecutive.
1814     for (++i; i != 16; ++i)
1815       if (!isConstantOrUndef(SVOp->getMaskElt(i), ShiftAmt+i))
1816         return -1;
1817   } else if (ShuffleKind == 1) {
1818     // Check the rest of the elements to see if they are consecutive.
1819     for (++i; i != 16; ++i)
1820       if (!isConstantOrUndef(SVOp->getMaskElt(i), (ShiftAmt+i) & 15))
1821         return -1;
1822   } else
1823     return -1;
1824 
1825   if (isLE)
1826     ShiftAmt = 16 - ShiftAmt;
1827 
1828   return ShiftAmt;
1829 }
1830 
1831 /// isSplatShuffleMask - Return true if the specified VECTOR_SHUFFLE operand
1832 /// specifies a splat of a single element that is suitable for input to
1833 /// one of the splat operations (VSPLTB/VSPLTH/VSPLTW/XXSPLTW/LXVDSX/etc.).
1834 bool PPC::isSplatShuffleMask(ShuffleVectorSDNode *N, unsigned EltSize) {
1835   assert(N->getValueType(0) == MVT::v16i8 && isPowerOf2_32(EltSize) &&
1836          EltSize <= 8 && "Can only handle 1,2,4,8 byte element sizes");
1837 
1838   // The consecutive indices need to specify an element, not part of two
1839   // different elements.  So abandon ship early if this isn't the case.
1840   if (N->getMaskElt(0) % EltSize != 0)
1841     return false;
1842 
1843   // This is a splat operation if each element of the permute is the same, and
1844   // if the value doesn't reference the second vector.
1845   unsigned ElementBase = N->getMaskElt(0);
1846 
1847   // FIXME: Handle UNDEF elements too!
1848   if (ElementBase >= 16)
1849     return false;
1850 
1851   // Check that the indices are consecutive, in the case of a multi-byte element
1852   // splatted with a v16i8 mask.
1853   for (unsigned i = 1; i != EltSize; ++i)
1854     if (N->getMaskElt(i) < 0 || N->getMaskElt(i) != (int)(i+ElementBase))
1855       return false;
1856 
1857   for (unsigned i = EltSize, e = 16; i != e; i += EltSize) {
1858     if (N->getMaskElt(i) < 0) continue;
1859     for (unsigned j = 0; j != EltSize; ++j)
1860       if (N->getMaskElt(i+j) != N->getMaskElt(j))
1861         return false;
1862   }
1863   return true;
1864 }
1865 
1866 /// Check that the mask is shuffling N byte elements. Within each N byte
1867 /// element of the mask, the indices could be either in increasing or
1868 /// decreasing order as long as they are consecutive.
1869 /// \param[in] N the shuffle vector SD Node to analyze
1870 /// \param[in] Width the element width in bytes, could be 2/4/8/16 (HalfWord/
1871 /// Word/DoubleWord/QuadWord).
1872 /// \param[in] StepLen the delta indices number among the N byte element, if
1873 /// the mask is in increasing/decreasing order then it is 1/-1.
1874 /// \return true iff the mask is shuffling N byte elements.
1875 static bool isNByteElemShuffleMask(ShuffleVectorSDNode *N, unsigned Width,
1876                                    int StepLen) {
1877   assert((Width == 2 || Width == 4 || Width == 8 || Width == 16) &&
1878          "Unexpected element width.");
1879   assert((StepLen == 1 || StepLen == -1) && "Unexpected element width.");
1880 
1881   unsigned NumOfElem = 16 / Width;
1882   unsigned MaskVal[16]; //  Width is never greater than 16
1883   for (unsigned i = 0; i < NumOfElem; ++i) {
1884     MaskVal[0] = N->getMaskElt(i * Width);
1885     if ((StepLen == 1) && (MaskVal[0] % Width)) {
1886       return false;
1887     } else if ((StepLen == -1) && ((MaskVal[0] + 1) % Width)) {
1888       return false;
1889     }
1890 
1891     for (unsigned int j = 1; j < Width; ++j) {
1892       MaskVal[j] = N->getMaskElt(i * Width + j);
1893       if (MaskVal[j] != MaskVal[j-1] + StepLen) {
1894         return false;
1895       }
1896     }
1897   }
1898 
1899   return true;
1900 }
1901 
1902 bool PPC::isXXINSERTWMask(ShuffleVectorSDNode *N, unsigned &ShiftElts,
1903                           unsigned &InsertAtByte, bool &Swap, bool IsLE) {
1904   if (!isNByteElemShuffleMask(N, 4, 1))
1905     return false;
1906 
1907   // Now we look at mask elements 0,4,8,12
1908   unsigned M0 = N->getMaskElt(0) / 4;
1909   unsigned M1 = N->getMaskElt(4) / 4;
1910   unsigned M2 = N->getMaskElt(8) / 4;
1911   unsigned M3 = N->getMaskElt(12) / 4;
1912   unsigned LittleEndianShifts[] = { 2, 1, 0, 3 };
1913   unsigned BigEndianShifts[] = { 3, 0, 1, 2 };
1914 
1915   // Below, let H and L be arbitrary elements of the shuffle mask
1916   // where H is in the range [4,7] and L is in the range [0,3].
1917   // H, 1, 2, 3 or L, 5, 6, 7
1918   if ((M0 > 3 && M1 == 1 && M2 == 2 && M3 == 3) ||
1919       (M0 < 4 && M1 == 5 && M2 == 6 && M3 == 7)) {
1920     ShiftElts = IsLE ? LittleEndianShifts[M0 & 0x3] : BigEndianShifts[M0 & 0x3];
1921     InsertAtByte = IsLE ? 12 : 0;
1922     Swap = M0 < 4;
1923     return true;
1924   }
1925   // 0, H, 2, 3 or 4, L, 6, 7
1926   if ((M1 > 3 && M0 == 0 && M2 == 2 && M3 == 3) ||
1927       (M1 < 4 && M0 == 4 && M2 == 6 && M3 == 7)) {
1928     ShiftElts = IsLE ? LittleEndianShifts[M1 & 0x3] : BigEndianShifts[M1 & 0x3];
1929     InsertAtByte = IsLE ? 8 : 4;
1930     Swap = M1 < 4;
1931     return true;
1932   }
1933   // 0, 1, H, 3 or 4, 5, L, 7
1934   if ((M2 > 3 && M0 == 0 && M1 == 1 && M3 == 3) ||
1935       (M2 < 4 && M0 == 4 && M1 == 5 && M3 == 7)) {
1936     ShiftElts = IsLE ? LittleEndianShifts[M2 & 0x3] : BigEndianShifts[M2 & 0x3];
1937     InsertAtByte = IsLE ? 4 : 8;
1938     Swap = M2 < 4;
1939     return true;
1940   }
1941   // 0, 1, 2, H or 4, 5, 6, L
1942   if ((M3 > 3 && M0 == 0 && M1 == 1 && M2 == 2) ||
1943       (M3 < 4 && M0 == 4 && M1 == 5 && M2 == 6)) {
1944     ShiftElts = IsLE ? LittleEndianShifts[M3 & 0x3] : BigEndianShifts[M3 & 0x3];
1945     InsertAtByte = IsLE ? 0 : 12;
1946     Swap = M3 < 4;
1947     return true;
1948   }
1949 
1950   // If both vector operands for the shuffle are the same vector, the mask will
1951   // contain only elements from the first one and the second one will be undef.
1952   if (N->getOperand(1).isUndef()) {
1953     ShiftElts = 0;
1954     Swap = true;
1955     unsigned XXINSERTWSrcElem = IsLE ? 2 : 1;
1956     if (M0 == XXINSERTWSrcElem && M1 == 1 && M2 == 2 && M3 == 3) {
1957       InsertAtByte = IsLE ? 12 : 0;
1958       return true;
1959     }
1960     if (M0 == 0 && M1 == XXINSERTWSrcElem && M2 == 2 && M3 == 3) {
1961       InsertAtByte = IsLE ? 8 : 4;
1962       return true;
1963     }
1964     if (M0 == 0 && M1 == 1 && M2 == XXINSERTWSrcElem && M3 == 3) {
1965       InsertAtByte = IsLE ? 4 : 8;
1966       return true;
1967     }
1968     if (M0 == 0 && M1 == 1 && M2 == 2 && M3 == XXINSERTWSrcElem) {
1969       InsertAtByte = IsLE ? 0 : 12;
1970       return true;
1971     }
1972   }
1973 
1974   return false;
1975 }
1976 
1977 bool PPC::isXXSLDWIShuffleMask(ShuffleVectorSDNode *N, unsigned &ShiftElts,
1978                                bool &Swap, bool IsLE) {
1979   assert(N->getValueType(0) == MVT::v16i8 && "Shuffle vector expects v16i8");
1980   // Ensure each byte index of the word is consecutive.
1981   if (!isNByteElemShuffleMask(N, 4, 1))
1982     return false;
1983 
1984   // Now we look at mask elements 0,4,8,12, which are the beginning of words.
1985   unsigned M0 = N->getMaskElt(0) / 4;
1986   unsigned M1 = N->getMaskElt(4) / 4;
1987   unsigned M2 = N->getMaskElt(8) / 4;
1988   unsigned M3 = N->getMaskElt(12) / 4;
1989 
1990   // If both vector operands for the shuffle are the same vector, the mask will
1991   // contain only elements from the first one and the second one will be undef.
1992   if (N->getOperand(1).isUndef()) {
1993     assert(M0 < 4 && "Indexing into an undef vector?");
1994     if (M1 != (M0 + 1) % 4 || M2 != (M1 + 1) % 4 || M3 != (M2 + 1) % 4)
1995       return false;
1996 
1997     ShiftElts = IsLE ? (4 - M0) % 4 : M0;
1998     Swap = false;
1999     return true;
2000   }
2001 
2002   // Ensure each word index of the ShuffleVector Mask is consecutive.
2003   if (M1 != (M0 + 1) % 8 || M2 != (M1 + 1) % 8 || M3 != (M2 + 1) % 8)
2004     return false;
2005 
2006   if (IsLE) {
2007     if (M0 == 0 || M0 == 7 || M0 == 6 || M0 == 5) {
2008       // Input vectors don't need to be swapped if the leading element
2009       // of the result is one of the 3 left elements of the second vector
2010       // (or if there is no shift to be done at all).
2011       Swap = false;
2012       ShiftElts = (8 - M0) % 8;
2013     } else if (M0 == 4 || M0 == 3 || M0 == 2 || M0 == 1) {
2014       // Input vectors need to be swapped if the leading element
2015       // of the result is one of the 3 left elements of the first vector
2016       // (or if we're shifting by 4 - thereby simply swapping the vectors).
2017       Swap = true;
2018       ShiftElts = (4 - M0) % 4;
2019     }
2020 
2021     return true;
2022   } else {                                          // BE
2023     if (M0 == 0 || M0 == 1 || M0 == 2 || M0 == 3) {
2024       // Input vectors don't need to be swapped if the leading element
2025       // of the result is one of the 4 elements of the first vector.
2026       Swap = false;
2027       ShiftElts = M0;
2028     } else if (M0 == 4 || M0 == 5 || M0 == 6 || M0 == 7) {
2029       // Input vectors need to be swapped if the leading element
2030       // of the result is one of the 4 elements of the right vector.
2031       Swap = true;
2032       ShiftElts = M0 - 4;
2033     }
2034 
2035     return true;
2036   }
2037 }
2038 
2039 bool static isXXBRShuffleMaskHelper(ShuffleVectorSDNode *N, int Width) {
2040   assert(N->getValueType(0) == MVT::v16i8 && "Shuffle vector expects v16i8");
2041 
2042   if (!isNByteElemShuffleMask(N, Width, -1))
2043     return false;
2044 
2045   for (int i = 0; i < 16; i += Width)
2046     if (N->getMaskElt(i) != i + Width - 1)
2047       return false;
2048 
2049   return true;
2050 }
2051 
2052 bool PPC::isXXBRHShuffleMask(ShuffleVectorSDNode *N) {
2053   return isXXBRShuffleMaskHelper(N, 2);
2054 }
2055 
2056 bool PPC::isXXBRWShuffleMask(ShuffleVectorSDNode *N) {
2057   return isXXBRShuffleMaskHelper(N, 4);
2058 }
2059 
2060 bool PPC::isXXBRDShuffleMask(ShuffleVectorSDNode *N) {
2061   return isXXBRShuffleMaskHelper(N, 8);
2062 }
2063 
2064 bool PPC::isXXBRQShuffleMask(ShuffleVectorSDNode *N) {
2065   return isXXBRShuffleMaskHelper(N, 16);
2066 }
2067 
2068 /// Can node \p N be lowered to an XXPERMDI instruction? If so, set \p Swap
2069 /// if the inputs to the instruction should be swapped and set \p DM to the
2070 /// value for the immediate.
2071 /// Specifically, set \p Swap to true only if \p N can be lowered to XXPERMDI
2072 /// AND element 0 of the result comes from the first input (LE) or second input
2073 /// (BE). Set \p DM to the calculated result (0-3) only if \p N can be lowered.
2074 /// \return true iff the given mask of shuffle node \p N is a XXPERMDI shuffle
2075 /// mask.
2076 bool PPC::isXXPERMDIShuffleMask(ShuffleVectorSDNode *N, unsigned &DM,
2077                                bool &Swap, bool IsLE) {
2078   assert(N->getValueType(0) == MVT::v16i8 && "Shuffle vector expects v16i8");
2079 
2080   // Ensure each byte index of the double word is consecutive.
2081   if (!isNByteElemShuffleMask(N, 8, 1))
2082     return false;
2083 
2084   unsigned M0 = N->getMaskElt(0) / 8;
2085   unsigned M1 = N->getMaskElt(8) / 8;
2086   assert(((M0 | M1) < 4) && "A mask element out of bounds?");
2087 
2088   // If both vector operands for the shuffle are the same vector, the mask will
2089   // contain only elements from the first one and the second one will be undef.
2090   if (N->getOperand(1).isUndef()) {
2091     if ((M0 | M1) < 2) {
2092       DM = IsLE ? (((~M1) & 1) << 1) + ((~M0) & 1) : (M0 << 1) + (M1 & 1);
2093       Swap = false;
2094       return true;
2095     } else
2096       return false;
2097   }
2098 
2099   if (IsLE) {
2100     if (M0 > 1 && M1 < 2) {
2101       Swap = false;
2102     } else if (M0 < 2 && M1 > 1) {
2103       M0 = (M0 + 2) % 4;
2104       M1 = (M1 + 2) % 4;
2105       Swap = true;
2106     } else
2107       return false;
2108 
2109     // Note: if control flow comes here that means Swap is already set above
2110     DM = (((~M1) & 1) << 1) + ((~M0) & 1);
2111     return true;
2112   } else { // BE
2113     if (M0 < 2 && M1 > 1) {
2114       Swap = false;
2115     } else if (M0 > 1 && M1 < 2) {
2116       M0 = (M0 + 2) % 4;
2117       M1 = (M1 + 2) % 4;
2118       Swap = true;
2119     } else
2120       return false;
2121 
2122     // Note: if control flow comes here that means Swap is already set above
2123     DM = (M0 << 1) + (M1 & 1);
2124     return true;
2125   }
2126 }
2127 
2128 
2129 /// getSplatIdxForPPCMnemonics - Return the splat index as a value that is
2130 /// appropriate for PPC mnemonics (which have a big endian bias - namely
2131 /// elements are counted from the left of the vector register).
2132 unsigned PPC::getSplatIdxForPPCMnemonics(SDNode *N, unsigned EltSize,
2133                                          SelectionDAG &DAG) {
2134   ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
2135   assert(isSplatShuffleMask(SVOp, EltSize));
2136   if (DAG.getDataLayout().isLittleEndian())
2137     return (16 / EltSize) - 1 - (SVOp->getMaskElt(0) / EltSize);
2138   else
2139     return SVOp->getMaskElt(0) / EltSize;
2140 }
2141 
2142 /// get_VSPLTI_elt - If this is a build_vector of constants which can be formed
2143 /// by using a vspltis[bhw] instruction of the specified element size, return
2144 /// the constant being splatted.  The ByteSize field indicates the number of
2145 /// bytes of each element [124] -> [bhw].
2146 SDValue PPC::get_VSPLTI_elt(SDNode *N, unsigned ByteSize, SelectionDAG &DAG) {
2147   SDValue OpVal(nullptr, 0);
2148 
2149   // If ByteSize of the splat is bigger than the element size of the
2150   // build_vector, then we have a case where we are checking for a splat where
2151   // multiple elements of the buildvector are folded together into a single
2152   // logical element of the splat (e.g. "vsplish 1" to splat {0,1}*8).
2153   unsigned EltSize = 16/N->getNumOperands();
2154   if (EltSize < ByteSize) {
2155     unsigned Multiple = ByteSize/EltSize;   // Number of BV entries per spltval.
2156     SDValue UniquedVals[4];
2157     assert(Multiple > 1 && Multiple <= 4 && "How can this happen?");
2158 
2159     // See if all of the elements in the buildvector agree across.
2160     for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
2161       if (N->getOperand(i).isUndef()) continue;
2162       // If the element isn't a constant, bail fully out.
2163       if (!isa<ConstantSDNode>(N->getOperand(i))) return SDValue();
2164 
2165       if (!UniquedVals[i&(Multiple-1)].getNode())
2166         UniquedVals[i&(Multiple-1)] = N->getOperand(i);
2167       else if (UniquedVals[i&(Multiple-1)] != N->getOperand(i))
2168         return SDValue();  // no match.
2169     }
2170 
2171     // Okay, if we reached this point, UniquedVals[0..Multiple-1] contains
2172     // either constant or undef values that are identical for each chunk.  See
2173     // if these chunks can form into a larger vspltis*.
2174 
2175     // Check to see if all of the leading entries are either 0 or -1.  If
2176     // neither, then this won't fit into the immediate field.
2177     bool LeadingZero = true;
2178     bool LeadingOnes = true;
2179     for (unsigned i = 0; i != Multiple-1; ++i) {
2180       if (!UniquedVals[i].getNode()) continue;  // Must have been undefs.
2181 
2182       LeadingZero &= isNullConstant(UniquedVals[i]);
2183       LeadingOnes &= isAllOnesConstant(UniquedVals[i]);
2184     }
2185     // Finally, check the least significant entry.
2186     if (LeadingZero) {
2187       if (!UniquedVals[Multiple-1].getNode())
2188         return DAG.getTargetConstant(0, SDLoc(N), MVT::i32);  // 0,0,0,undef
2189       int Val = cast<ConstantSDNode>(UniquedVals[Multiple-1])->getZExtValue();
2190       if (Val < 16)                                   // 0,0,0,4 -> vspltisw(4)
2191         return DAG.getTargetConstant(Val, SDLoc(N), MVT::i32);
2192     }
2193     if (LeadingOnes) {
2194       if (!UniquedVals[Multiple-1].getNode())
2195         return DAG.getTargetConstant(~0U, SDLoc(N), MVT::i32); // -1,-1,-1,undef
2196       int Val =cast<ConstantSDNode>(UniquedVals[Multiple-1])->getSExtValue();
2197       if (Val >= -16)                            // -1,-1,-1,-2 -> vspltisw(-2)
2198         return DAG.getTargetConstant(Val, SDLoc(N), MVT::i32);
2199     }
2200 
2201     return SDValue();
2202   }
2203 
2204   // Check to see if this buildvec has a single non-undef value in its elements.
2205   for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
2206     if (N->getOperand(i).isUndef()) continue;
2207     if (!OpVal.getNode())
2208       OpVal = N->getOperand(i);
2209     else if (OpVal != N->getOperand(i))
2210       return SDValue();
2211   }
2212 
2213   if (!OpVal.getNode()) return SDValue();  // All UNDEF: use implicit def.
2214 
2215   unsigned ValSizeInBytes = EltSize;
2216   uint64_t Value = 0;
2217   if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(OpVal)) {
2218     Value = CN->getZExtValue();
2219   } else if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(OpVal)) {
2220     assert(CN->getValueType(0) == MVT::f32 && "Only one legal FP vector type!");
2221     Value = FloatToBits(CN->getValueAPF().convertToFloat());
2222   }
2223 
2224   // If the splat value is larger than the element value, then we can never do
2225   // this splat.  The only case that we could fit the replicated bits into our
2226   // immediate field for would be zero, and we prefer to use vxor for it.
2227   if (ValSizeInBytes < ByteSize) return SDValue();
2228 
2229   // If the element value is larger than the splat value, check if it consists
2230   // of a repeated bit pattern of size ByteSize.
2231   if (!APInt(ValSizeInBytes * 8, Value).isSplat(ByteSize * 8))
2232     return SDValue();
2233 
2234   // Properly sign extend the value.
2235   int MaskVal = SignExtend32(Value, ByteSize * 8);
2236 
2237   // If this is zero, don't match, zero matches ISD::isBuildVectorAllZeros.
2238   if (MaskVal == 0) return SDValue();
2239 
2240   // Finally, if this value fits in a 5 bit sext field, return it
2241   if (SignExtend32<5>(MaskVal) == MaskVal)
2242     return DAG.getTargetConstant(MaskVal, SDLoc(N), MVT::i32);
2243   return SDValue();
2244 }
2245 
2246 /// isQVALIGNIShuffleMask - If this is a qvaligni shuffle mask, return the shift
2247 /// amount, otherwise return -1.
2248 int PPC::isQVALIGNIShuffleMask(SDNode *N) {
2249   EVT VT = N->getValueType(0);
2250   if (VT != MVT::v4f64 && VT != MVT::v4f32 && VT != MVT::v4i1)
2251     return -1;
2252 
2253   ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
2254 
2255   // Find the first non-undef value in the shuffle mask.
2256   unsigned i;
2257   for (i = 0; i != 4 && SVOp->getMaskElt(i) < 0; ++i)
2258     /*search*/;
2259 
2260   if (i == 4) return -1;  // all undef.
2261 
2262   // Otherwise, check to see if the rest of the elements are consecutively
2263   // numbered from this value.
2264   unsigned ShiftAmt = SVOp->getMaskElt(i);
2265   if (ShiftAmt < i) return -1;
2266   ShiftAmt -= i;
2267 
2268   // Check the rest of the elements to see if they are consecutive.
2269   for (++i; i != 4; ++i)
2270     if (!isConstantOrUndef(SVOp->getMaskElt(i), ShiftAmt+i))
2271       return -1;
2272 
2273   return ShiftAmt;
2274 }
2275 
2276 //===----------------------------------------------------------------------===//
2277 //  Addressing Mode Selection
2278 //===----------------------------------------------------------------------===//
2279 
2280 /// isIntS16Immediate - This method tests to see if the node is either a 32-bit
2281 /// or 64-bit immediate, and if the value can be accurately represented as a
2282 /// sign extension from a 16-bit value.  If so, this returns true and the
2283 /// immediate.
2284 bool llvm::isIntS16Immediate(SDNode *N, int16_t &Imm) {
2285   if (!isa<ConstantSDNode>(N))
2286     return false;
2287 
2288   Imm = (int16_t)cast<ConstantSDNode>(N)->getZExtValue();
2289   if (N->getValueType(0) == MVT::i32)
2290     return Imm == (int32_t)cast<ConstantSDNode>(N)->getZExtValue();
2291   else
2292     return Imm == (int64_t)cast<ConstantSDNode>(N)->getZExtValue();
2293 }
2294 bool llvm::isIntS16Immediate(SDValue Op, int16_t &Imm) {
2295   return isIntS16Immediate(Op.getNode(), Imm);
2296 }
2297 
2298 
2299 /// SelectAddressEVXRegReg - Given the specified address, check to see if it can
2300 /// be represented as an indexed [r+r] operation.
2301 bool PPCTargetLowering::SelectAddressEVXRegReg(SDValue N, SDValue &Base,
2302                                                SDValue &Index,
2303                                                SelectionDAG &DAG) const {
2304   for (SDNode::use_iterator UI = N->use_begin(), E = N->use_end();
2305       UI != E; ++UI) {
2306     if (MemSDNode *Memop = dyn_cast<MemSDNode>(*UI)) {
2307       if (Memop->getMemoryVT() == MVT::f64) {
2308           Base = N.getOperand(0);
2309           Index = N.getOperand(1);
2310           return true;
2311       }
2312     }
2313   }
2314   return false;
2315 }
2316 
2317 /// SelectAddressRegReg - Given the specified addressed, check to see if it
2318 /// can be represented as an indexed [r+r] operation.  Returns false if it
2319 /// can be more efficiently represented as [r+imm]. If \p EncodingAlignment is
2320 /// non-zero and N can be represented by a base register plus a signed 16-bit
2321 /// displacement, make a more precise judgement by checking (displacement % \p
2322 /// EncodingAlignment).
2323 bool PPCTargetLowering::SelectAddressRegReg(SDValue N, SDValue &Base,
2324                                             SDValue &Index, SelectionDAG &DAG,
2325                                             unsigned EncodingAlignment) const {
2326   int16_t imm = 0;
2327   if (N.getOpcode() == ISD::ADD) {
2328     // Is there any SPE load/store (f64), which can't handle 16bit offset?
2329     // SPE load/store can only handle 8-bit offsets.
2330     if (hasSPE() && SelectAddressEVXRegReg(N, Base, Index, DAG))
2331         return true;
2332     if (isIntS16Immediate(N.getOperand(1), imm) &&
2333         (!EncodingAlignment || !(imm % EncodingAlignment)))
2334       return false; // r+i
2335     if (N.getOperand(1).getOpcode() == PPCISD::Lo)
2336       return false;    // r+i
2337 
2338     Base = N.getOperand(0);
2339     Index = N.getOperand(1);
2340     return true;
2341   } else if (N.getOpcode() == ISD::OR) {
2342     if (isIntS16Immediate(N.getOperand(1), imm) &&
2343         (!EncodingAlignment || !(imm % EncodingAlignment)))
2344       return false; // r+i can fold it if we can.
2345 
2346     // If this is an or of disjoint bitfields, we can codegen this as an add
2347     // (for better address arithmetic) if the LHS and RHS of the OR are provably
2348     // disjoint.
2349     KnownBits LHSKnown = DAG.computeKnownBits(N.getOperand(0));
2350 
2351     if (LHSKnown.Zero.getBoolValue()) {
2352       KnownBits RHSKnown = DAG.computeKnownBits(N.getOperand(1));
2353       // If all of the bits are known zero on the LHS or RHS, the add won't
2354       // carry.
2355       if (~(LHSKnown.Zero | RHSKnown.Zero) == 0) {
2356         Base = N.getOperand(0);
2357         Index = N.getOperand(1);
2358         return true;
2359       }
2360     }
2361   }
2362 
2363   return false;
2364 }
2365 
2366 // If we happen to be doing an i64 load or store into a stack slot that has
2367 // less than a 4-byte alignment, then the frame-index elimination may need to
2368 // use an indexed load or store instruction (because the offset may not be a
2369 // multiple of 4). The extra register needed to hold the offset comes from the
2370 // register scavenger, and it is possible that the scavenger will need to use
2371 // an emergency spill slot. As a result, we need to make sure that a spill slot
2372 // is allocated when doing an i64 load/store into a less-than-4-byte-aligned
2373 // stack slot.
2374 static void fixupFuncForFI(SelectionDAG &DAG, int FrameIdx, EVT VT) {
2375   // FIXME: This does not handle the LWA case.
2376   if (VT != MVT::i64)
2377     return;
2378 
2379   // NOTE: We'll exclude negative FIs here, which come from argument
2380   // lowering, because there are no known test cases triggering this problem
2381   // using packed structures (or similar). We can remove this exclusion if
2382   // we find such a test case. The reason why this is so test-case driven is
2383   // because this entire 'fixup' is only to prevent crashes (from the
2384   // register scavenger) on not-really-valid inputs. For example, if we have:
2385   //   %a = alloca i1
2386   //   %b = bitcast i1* %a to i64*
2387   //   store i64* a, i64 b
2388   // then the store should really be marked as 'align 1', but is not. If it
2389   // were marked as 'align 1' then the indexed form would have been
2390   // instruction-selected initially, and the problem this 'fixup' is preventing
2391   // won't happen regardless.
2392   if (FrameIdx < 0)
2393     return;
2394 
2395   MachineFunction &MF = DAG.getMachineFunction();
2396   MachineFrameInfo &MFI = MF.getFrameInfo();
2397 
2398   unsigned Align = MFI.getObjectAlignment(FrameIdx);
2399   if (Align >= 4)
2400     return;
2401 
2402   PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
2403   FuncInfo->setHasNonRISpills();
2404 }
2405 
2406 /// Returns true if the address N can be represented by a base register plus
2407 /// a signed 16-bit displacement [r+imm], and if it is not better
2408 /// represented as reg+reg.  If \p EncodingAlignment is non-zero, only accept
2409 /// displacements that are multiples of that value.
2410 bool PPCTargetLowering::SelectAddressRegImm(SDValue N, SDValue &Disp,
2411                                             SDValue &Base,
2412                                             SelectionDAG &DAG,
2413                                             unsigned EncodingAlignment) const {
2414   // FIXME dl should come from parent load or store, not from address
2415   SDLoc dl(N);
2416   // If this can be more profitably realized as r+r, fail.
2417   if (SelectAddressRegReg(N, Disp, Base, DAG, EncodingAlignment))
2418     return false;
2419 
2420   if (N.getOpcode() == ISD::ADD) {
2421     int16_t imm = 0;
2422     if (isIntS16Immediate(N.getOperand(1), imm) &&
2423         (!EncodingAlignment || (imm % EncodingAlignment) == 0)) {
2424       Disp = DAG.getTargetConstant(imm, dl, N.getValueType());
2425       if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N.getOperand(0))) {
2426         Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
2427         fixupFuncForFI(DAG, FI->getIndex(), N.getValueType());
2428       } else {
2429         Base = N.getOperand(0);
2430       }
2431       return true; // [r+i]
2432     } else if (N.getOperand(1).getOpcode() == PPCISD::Lo) {
2433       // Match LOAD (ADD (X, Lo(G))).
2434       assert(!cast<ConstantSDNode>(N.getOperand(1).getOperand(1))->getZExtValue()
2435              && "Cannot handle constant offsets yet!");
2436       Disp = N.getOperand(1).getOperand(0);  // The global address.
2437       assert(Disp.getOpcode() == ISD::TargetGlobalAddress ||
2438              Disp.getOpcode() == ISD::TargetGlobalTLSAddress ||
2439              Disp.getOpcode() == ISD::TargetConstantPool ||
2440              Disp.getOpcode() == ISD::TargetJumpTable);
2441       Base = N.getOperand(0);
2442       return true;  // [&g+r]
2443     }
2444   } else if (N.getOpcode() == ISD::OR) {
2445     int16_t imm = 0;
2446     if (isIntS16Immediate(N.getOperand(1), imm) &&
2447         (!EncodingAlignment || (imm % EncodingAlignment) == 0)) {
2448       // If this is an or of disjoint bitfields, we can codegen this as an add
2449       // (for better address arithmetic) if the LHS and RHS of the OR are
2450       // provably disjoint.
2451       KnownBits LHSKnown = DAG.computeKnownBits(N.getOperand(0));
2452 
2453       if ((LHSKnown.Zero.getZExtValue()|~(uint64_t)imm) == ~0ULL) {
2454         // If all of the bits are known zero on the LHS or RHS, the add won't
2455         // carry.
2456         if (FrameIndexSDNode *FI =
2457               dyn_cast<FrameIndexSDNode>(N.getOperand(0))) {
2458           Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
2459           fixupFuncForFI(DAG, FI->getIndex(), N.getValueType());
2460         } else {
2461           Base = N.getOperand(0);
2462         }
2463         Disp = DAG.getTargetConstant(imm, dl, N.getValueType());
2464         return true;
2465       }
2466     }
2467   } else if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N)) {
2468     // Loading from a constant address.
2469 
2470     // If this address fits entirely in a 16-bit sext immediate field, codegen
2471     // this as "d, 0"
2472     int16_t Imm;
2473     if (isIntS16Immediate(CN, Imm) &&
2474         (!EncodingAlignment || (Imm % EncodingAlignment) == 0)) {
2475       Disp = DAG.getTargetConstant(Imm, dl, CN->getValueType(0));
2476       Base = DAG.getRegister(Subtarget.isPPC64() ? PPC::ZERO8 : PPC::ZERO,
2477                              CN->getValueType(0));
2478       return true;
2479     }
2480 
2481     // Handle 32-bit sext immediates with LIS + addr mode.
2482     if ((CN->getValueType(0) == MVT::i32 ||
2483          (int64_t)CN->getZExtValue() == (int)CN->getZExtValue()) &&
2484         (!EncodingAlignment || (CN->getZExtValue() % EncodingAlignment) == 0)) {
2485       int Addr = (int)CN->getZExtValue();
2486 
2487       // Otherwise, break this down into an LIS + disp.
2488       Disp = DAG.getTargetConstant((short)Addr, dl, MVT::i32);
2489 
2490       Base = DAG.getTargetConstant((Addr - (signed short)Addr) >> 16, dl,
2491                                    MVT::i32);
2492       unsigned Opc = CN->getValueType(0) == MVT::i32 ? PPC::LIS : PPC::LIS8;
2493       Base = SDValue(DAG.getMachineNode(Opc, dl, CN->getValueType(0), Base), 0);
2494       return true;
2495     }
2496   }
2497 
2498   Disp = DAG.getTargetConstant(0, dl, getPointerTy(DAG.getDataLayout()));
2499   if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N)) {
2500     Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
2501     fixupFuncForFI(DAG, FI->getIndex(), N.getValueType());
2502   } else
2503     Base = N;
2504   return true;      // [r+0]
2505 }
2506 
2507 /// SelectAddressRegRegOnly - Given the specified addressed, force it to be
2508 /// represented as an indexed [r+r] operation.
2509 bool PPCTargetLowering::SelectAddressRegRegOnly(SDValue N, SDValue &Base,
2510                                                 SDValue &Index,
2511                                                 SelectionDAG &DAG) const {
2512   // Check to see if we can easily represent this as an [r+r] address.  This
2513   // will fail if it thinks that the address is more profitably represented as
2514   // reg+imm, e.g. where imm = 0.
2515   if (SelectAddressRegReg(N, Base, Index, DAG))
2516     return true;
2517 
2518   // If the address is the result of an add, we will utilize the fact that the
2519   // address calculation includes an implicit add.  However, we can reduce
2520   // register pressure if we do not materialize a constant just for use as the
2521   // index register.  We only get rid of the add if it is not an add of a
2522   // value and a 16-bit signed constant and both have a single use.
2523   int16_t imm = 0;
2524   if (N.getOpcode() == ISD::ADD &&
2525       (!isIntS16Immediate(N.getOperand(1), imm) ||
2526        !N.getOperand(1).hasOneUse() || !N.getOperand(0).hasOneUse())) {
2527     Base = N.getOperand(0);
2528     Index = N.getOperand(1);
2529     return true;
2530   }
2531 
2532   // Otherwise, do it the hard way, using R0 as the base register.
2533   Base = DAG.getRegister(Subtarget.isPPC64() ? PPC::ZERO8 : PPC::ZERO,
2534                          N.getValueType());
2535   Index = N;
2536   return true;
2537 }
2538 
2539 /// Returns true if we should use a direct load into vector instruction
2540 /// (such as lxsd or lfd), instead of a load into gpr + direct move sequence.
2541 static bool usePartialVectorLoads(SDNode *N, const PPCSubtarget& ST) {
2542 
2543   // If there are any other uses other than scalar to vector, then we should
2544   // keep it as a scalar load -> direct move pattern to prevent multiple
2545   // loads.
2546   LoadSDNode *LD = dyn_cast<LoadSDNode>(N);
2547   if (!LD)
2548     return false;
2549 
2550   EVT MemVT = LD->getMemoryVT();
2551   if (!MemVT.isSimple())
2552     return false;
2553   switch(MemVT.getSimpleVT().SimpleTy) {
2554   case MVT::i64:
2555     break;
2556   case MVT::i32:
2557     if (!ST.hasP8Vector())
2558       return false;
2559     break;
2560   case MVT::i16:
2561   case MVT::i8:
2562     if (!ST.hasP9Vector())
2563       return false;
2564     break;
2565   default:
2566     return false;
2567   }
2568 
2569   SDValue LoadedVal(N, 0);
2570   if (!LoadedVal.hasOneUse())
2571     return false;
2572 
2573   for (SDNode::use_iterator UI = LD->use_begin(), UE = LD->use_end();
2574        UI != UE; ++UI)
2575     if (UI.getUse().get().getResNo() == 0 &&
2576         UI->getOpcode() != ISD::SCALAR_TO_VECTOR)
2577       return false;
2578 
2579   return true;
2580 }
2581 
2582 /// getPreIndexedAddressParts - returns true by value, base pointer and
2583 /// offset pointer and addressing mode by reference if the node's address
2584 /// can be legally represented as pre-indexed load / store address.
2585 bool PPCTargetLowering::getPreIndexedAddressParts(SDNode *N, SDValue &Base,
2586                                                   SDValue &Offset,
2587                                                   ISD::MemIndexedMode &AM,
2588                                                   SelectionDAG &DAG) const {
2589   if (DisablePPCPreinc) return false;
2590 
2591   bool isLoad = true;
2592   SDValue Ptr;
2593   EVT VT;
2594   unsigned Alignment;
2595   if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
2596     Ptr = LD->getBasePtr();
2597     VT = LD->getMemoryVT();
2598     Alignment = LD->getAlignment();
2599   } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
2600     Ptr = ST->getBasePtr();
2601     VT  = ST->getMemoryVT();
2602     Alignment = ST->getAlignment();
2603     isLoad = false;
2604   } else
2605     return false;
2606 
2607   // Do not generate pre-inc forms for specific loads that feed scalar_to_vector
2608   // instructions because we can fold these into a more efficient instruction
2609   // instead, (such as LXSD).
2610   if (isLoad && usePartialVectorLoads(N, Subtarget)) {
2611     return false;
2612   }
2613 
2614   // PowerPC doesn't have preinc load/store instructions for vectors (except
2615   // for QPX, which does have preinc r+r forms).
2616   if (VT.isVector()) {
2617     if (!Subtarget.hasQPX() || (VT != MVT::v4f64 && VT != MVT::v4f32)) {
2618       return false;
2619     } else if (SelectAddressRegRegOnly(Ptr, Offset, Base, DAG)) {
2620       AM = ISD::PRE_INC;
2621       return true;
2622     }
2623   }
2624 
2625   if (SelectAddressRegReg(Ptr, Base, Offset, DAG)) {
2626     // Common code will reject creating a pre-inc form if the base pointer
2627     // is a frame index, or if N is a store and the base pointer is either
2628     // the same as or a predecessor of the value being stored.  Check for
2629     // those situations here, and try with swapped Base/Offset instead.
2630     bool Swap = false;
2631 
2632     if (isa<FrameIndexSDNode>(Base) || isa<RegisterSDNode>(Base))
2633       Swap = true;
2634     else if (!isLoad) {
2635       SDValue Val = cast<StoreSDNode>(N)->getValue();
2636       if (Val == Base || Base.getNode()->isPredecessorOf(Val.getNode()))
2637         Swap = true;
2638     }
2639 
2640     if (Swap)
2641       std::swap(Base, Offset);
2642 
2643     AM = ISD::PRE_INC;
2644     return true;
2645   }
2646 
2647   // LDU/STU can only handle immediates that are a multiple of 4.
2648   if (VT != MVT::i64) {
2649     if (!SelectAddressRegImm(Ptr, Offset, Base, DAG, 0))
2650       return false;
2651   } else {
2652     // LDU/STU need an address with at least 4-byte alignment.
2653     if (Alignment < 4)
2654       return false;
2655 
2656     if (!SelectAddressRegImm(Ptr, Offset, Base, DAG, 4))
2657       return false;
2658   }
2659 
2660   if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
2661     // PPC64 doesn't have lwau, but it does have lwaux.  Reject preinc load of
2662     // sext i32 to i64 when addr mode is r+i.
2663     if (LD->getValueType(0) == MVT::i64 && LD->getMemoryVT() == MVT::i32 &&
2664         LD->getExtensionType() == ISD::SEXTLOAD &&
2665         isa<ConstantSDNode>(Offset))
2666       return false;
2667   }
2668 
2669   AM = ISD::PRE_INC;
2670   return true;
2671 }
2672 
2673 //===----------------------------------------------------------------------===//
2674 //  LowerOperation implementation
2675 //===----------------------------------------------------------------------===//
2676 
2677 /// Return true if we should reference labels using a PICBase, set the HiOpFlags
2678 /// and LoOpFlags to the target MO flags.
2679 static void getLabelAccessInfo(bool IsPIC, const PPCSubtarget &Subtarget,
2680                                unsigned &HiOpFlags, unsigned &LoOpFlags,
2681                                const GlobalValue *GV = nullptr) {
2682   HiOpFlags = PPCII::MO_HA;
2683   LoOpFlags = PPCII::MO_LO;
2684 
2685   // Don't use the pic base if not in PIC relocation model.
2686   if (IsPIC) {
2687     HiOpFlags |= PPCII::MO_PIC_FLAG;
2688     LoOpFlags |= PPCII::MO_PIC_FLAG;
2689   }
2690 
2691   // If this is a reference to a global value that requires a non-lazy-ptr, make
2692   // sure that instruction lowering adds it.
2693   if (GV && Subtarget.hasLazyResolverStub(GV)) {
2694     HiOpFlags |= PPCII::MO_NLP_FLAG;
2695     LoOpFlags |= PPCII::MO_NLP_FLAG;
2696 
2697     if (GV->hasHiddenVisibility()) {
2698       HiOpFlags |= PPCII::MO_NLP_HIDDEN_FLAG;
2699       LoOpFlags |= PPCII::MO_NLP_HIDDEN_FLAG;
2700     }
2701   }
2702 }
2703 
2704 static SDValue LowerLabelRef(SDValue HiPart, SDValue LoPart, bool isPIC,
2705                              SelectionDAG &DAG) {
2706   SDLoc DL(HiPart);
2707   EVT PtrVT = HiPart.getValueType();
2708   SDValue Zero = DAG.getConstant(0, DL, PtrVT);
2709 
2710   SDValue Hi = DAG.getNode(PPCISD::Hi, DL, PtrVT, HiPart, Zero);
2711   SDValue Lo = DAG.getNode(PPCISD::Lo, DL, PtrVT, LoPart, Zero);
2712 
2713   // With PIC, the first instruction is actually "GR+hi(&G)".
2714   if (isPIC)
2715     Hi = DAG.getNode(ISD::ADD, DL, PtrVT,
2716                      DAG.getNode(PPCISD::GlobalBaseReg, DL, PtrVT), Hi);
2717 
2718   // Generate non-pic code that has direct accesses to the constant pool.
2719   // The address of the global is just (hi(&g)+lo(&g)).
2720   return DAG.getNode(ISD::ADD, DL, PtrVT, Hi, Lo);
2721 }
2722 
2723 static void setUsesTOCBasePtr(MachineFunction &MF) {
2724   PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
2725   FuncInfo->setUsesTOCBasePtr();
2726 }
2727 
2728 static void setUsesTOCBasePtr(SelectionDAG &DAG) {
2729   setUsesTOCBasePtr(DAG.getMachineFunction());
2730 }
2731 
2732 SDValue PPCTargetLowering::getTOCEntry(SelectionDAG &DAG, const SDLoc &dl,
2733                                        SDValue GA) const {
2734   const bool Is64Bit = Subtarget.isPPC64();
2735   EVT VT = Is64Bit ? MVT::i64 : MVT::i32;
2736   SDValue Reg = Is64Bit ? DAG.getRegister(PPC::X2, VT)
2737                         : Subtarget.isAIXABI()
2738                               ? DAG.getRegister(PPC::R2, VT)
2739                               : DAG.getNode(PPCISD::GlobalBaseReg, dl, VT);
2740   SDValue Ops[] = { GA, Reg };
2741   return DAG.getMemIntrinsicNode(
2742       PPCISD::TOC_ENTRY, dl, DAG.getVTList(VT, MVT::Other), Ops, VT,
2743       MachinePointerInfo::getGOT(DAG.getMachineFunction()), 0,
2744       MachineMemOperand::MOLoad);
2745 }
2746 
2747 SDValue PPCTargetLowering::LowerConstantPool(SDValue Op,
2748                                              SelectionDAG &DAG) const {
2749   EVT PtrVT = Op.getValueType();
2750   ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op);
2751   const Constant *C = CP->getConstVal();
2752 
2753   // 64-bit SVR4 ABI and AIX ABI code are always position-independent.
2754   // The actual address of the GlobalValue is stored in the TOC.
2755   if (Subtarget.is64BitELFABI() || Subtarget.isAIXABI()) {
2756     setUsesTOCBasePtr(DAG);
2757     SDValue GA = DAG.getTargetConstantPool(C, PtrVT, CP->getAlignment(), 0);
2758     return getTOCEntry(DAG, SDLoc(CP), GA);
2759   }
2760 
2761   unsigned MOHiFlag, MOLoFlag;
2762   bool IsPIC = isPositionIndependent();
2763   getLabelAccessInfo(IsPIC, Subtarget, MOHiFlag, MOLoFlag);
2764 
2765   if (IsPIC && Subtarget.isSVR4ABI()) {
2766     SDValue GA = DAG.getTargetConstantPool(C, PtrVT, CP->getAlignment(),
2767                                            PPCII::MO_PIC_FLAG);
2768     return getTOCEntry(DAG, SDLoc(CP), GA);
2769   }
2770 
2771   SDValue CPIHi =
2772     DAG.getTargetConstantPool(C, PtrVT, CP->getAlignment(), 0, MOHiFlag);
2773   SDValue CPILo =
2774     DAG.getTargetConstantPool(C, PtrVT, CP->getAlignment(), 0, MOLoFlag);
2775   return LowerLabelRef(CPIHi, CPILo, IsPIC, DAG);
2776 }
2777 
2778 // For 64-bit PowerPC, prefer the more compact relative encodings.
2779 // This trades 32 bits per jump table entry for one or two instructions
2780 // on the jump site.
2781 unsigned PPCTargetLowering::getJumpTableEncoding() const {
2782   if (isJumpTableRelative())
2783     return MachineJumpTableInfo::EK_LabelDifference32;
2784 
2785   return TargetLowering::getJumpTableEncoding();
2786 }
2787 
2788 bool PPCTargetLowering::isJumpTableRelative() const {
2789   if (UseAbsoluteJumpTables)
2790     return false;
2791   if (Subtarget.isPPC64() || Subtarget.isAIXABI())
2792     return true;
2793   return TargetLowering::isJumpTableRelative();
2794 }
2795 
2796 SDValue PPCTargetLowering::getPICJumpTableRelocBase(SDValue Table,
2797                                                     SelectionDAG &DAG) const {
2798   if (!Subtarget.isPPC64() || Subtarget.isAIXABI())
2799     return TargetLowering::getPICJumpTableRelocBase(Table, DAG);
2800 
2801   switch (getTargetMachine().getCodeModel()) {
2802   case CodeModel::Small:
2803   case CodeModel::Medium:
2804     return TargetLowering::getPICJumpTableRelocBase(Table, DAG);
2805   default:
2806     return DAG.getNode(PPCISD::GlobalBaseReg, SDLoc(),
2807                        getPointerTy(DAG.getDataLayout()));
2808   }
2809 }
2810 
2811 const MCExpr *
2812 PPCTargetLowering::getPICJumpTableRelocBaseExpr(const MachineFunction *MF,
2813                                                 unsigned JTI,
2814                                                 MCContext &Ctx) const {
2815   if (!Subtarget.isPPC64() || Subtarget.isAIXABI())
2816     return TargetLowering::getPICJumpTableRelocBaseExpr(MF, JTI, Ctx);
2817 
2818   switch (getTargetMachine().getCodeModel()) {
2819   case CodeModel::Small:
2820   case CodeModel::Medium:
2821     return TargetLowering::getPICJumpTableRelocBaseExpr(MF, JTI, Ctx);
2822   default:
2823     return MCSymbolRefExpr::create(MF->getPICBaseSymbol(), Ctx);
2824   }
2825 }
2826 
2827 SDValue PPCTargetLowering::LowerJumpTable(SDValue Op, SelectionDAG &DAG) const {
2828   EVT PtrVT = Op.getValueType();
2829   JumpTableSDNode *JT = cast<JumpTableSDNode>(Op);
2830 
2831   // 64-bit SVR4 ABI and AIX ABI code are always position-independent.
2832   // The actual address of the GlobalValue is stored in the TOC.
2833   if (Subtarget.is64BitELFABI() || Subtarget.isAIXABI()) {
2834     setUsesTOCBasePtr(DAG);
2835     SDValue GA = DAG.getTargetJumpTable(JT->getIndex(), PtrVT);
2836     return getTOCEntry(DAG, SDLoc(JT), GA);
2837   }
2838 
2839   unsigned MOHiFlag, MOLoFlag;
2840   bool IsPIC = isPositionIndependent();
2841   getLabelAccessInfo(IsPIC, Subtarget, MOHiFlag, MOLoFlag);
2842 
2843   if (IsPIC && Subtarget.isSVR4ABI()) {
2844     SDValue GA = DAG.getTargetJumpTable(JT->getIndex(), PtrVT,
2845                                         PPCII::MO_PIC_FLAG);
2846     return getTOCEntry(DAG, SDLoc(GA), GA);
2847   }
2848 
2849   SDValue JTIHi = DAG.getTargetJumpTable(JT->getIndex(), PtrVT, MOHiFlag);
2850   SDValue JTILo = DAG.getTargetJumpTable(JT->getIndex(), PtrVT, MOLoFlag);
2851   return LowerLabelRef(JTIHi, JTILo, IsPIC, DAG);
2852 }
2853 
2854 SDValue PPCTargetLowering::LowerBlockAddress(SDValue Op,
2855                                              SelectionDAG &DAG) const {
2856   EVT PtrVT = Op.getValueType();
2857   BlockAddressSDNode *BASDN = cast<BlockAddressSDNode>(Op);
2858   const BlockAddress *BA = BASDN->getBlockAddress();
2859 
2860   // 64-bit SVR4 ABI and AIX ABI code are always position-independent.
2861   // The actual BlockAddress is stored in the TOC.
2862   if (Subtarget.is64BitELFABI() || Subtarget.isAIXABI()) {
2863     setUsesTOCBasePtr(DAG);
2864     SDValue GA = DAG.getTargetBlockAddress(BA, PtrVT, BASDN->getOffset());
2865     return getTOCEntry(DAG, SDLoc(BASDN), GA);
2866   }
2867 
2868   // 32-bit position-independent ELF stores the BlockAddress in the .got.
2869   if (Subtarget.is32BitELFABI() && isPositionIndependent())
2870     return getTOCEntry(
2871         DAG, SDLoc(BASDN),
2872         DAG.getTargetBlockAddress(BA, PtrVT, BASDN->getOffset()));
2873 
2874   unsigned MOHiFlag, MOLoFlag;
2875   bool IsPIC = isPositionIndependent();
2876   getLabelAccessInfo(IsPIC, Subtarget, MOHiFlag, MOLoFlag);
2877   SDValue TgtBAHi = DAG.getTargetBlockAddress(BA, PtrVT, 0, MOHiFlag);
2878   SDValue TgtBALo = DAG.getTargetBlockAddress(BA, PtrVT, 0, MOLoFlag);
2879   return LowerLabelRef(TgtBAHi, TgtBALo, IsPIC, DAG);
2880 }
2881 
2882 SDValue PPCTargetLowering::LowerGlobalTLSAddress(SDValue Op,
2883                                               SelectionDAG &DAG) const {
2884   // FIXME: TLS addresses currently use medium model code sequences,
2885   // which is the most useful form.  Eventually support for small and
2886   // large models could be added if users need it, at the cost of
2887   // additional complexity.
2888   GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op);
2889   if (DAG.getTarget().useEmulatedTLS())
2890     return LowerToTLSEmulatedModel(GA, DAG);
2891 
2892   SDLoc dl(GA);
2893   const GlobalValue *GV = GA->getGlobal();
2894   EVT PtrVT = getPointerTy(DAG.getDataLayout());
2895   bool is64bit = Subtarget.isPPC64();
2896   const Module *M = DAG.getMachineFunction().getFunction().getParent();
2897   PICLevel::Level picLevel = M->getPICLevel();
2898 
2899   const TargetMachine &TM = getTargetMachine();
2900   TLSModel::Model Model = TM.getTLSModel(GV);
2901 
2902   if (Model == TLSModel::LocalExec) {
2903     SDValue TGAHi = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0,
2904                                                PPCII::MO_TPREL_HA);
2905     SDValue TGALo = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0,
2906                                                PPCII::MO_TPREL_LO);
2907     SDValue TLSReg = is64bit ? DAG.getRegister(PPC::X13, MVT::i64)
2908                              : DAG.getRegister(PPC::R2, MVT::i32);
2909 
2910     SDValue Hi = DAG.getNode(PPCISD::Hi, dl, PtrVT, TGAHi, TLSReg);
2911     return DAG.getNode(PPCISD::Lo, dl, PtrVT, TGALo, Hi);
2912   }
2913 
2914   if (Model == TLSModel::InitialExec) {
2915     SDValue TGA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 0);
2916     SDValue TGATLS = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0,
2917                                                 PPCII::MO_TLS);
2918     SDValue GOTPtr;
2919     if (is64bit) {
2920       setUsesTOCBasePtr(DAG);
2921       SDValue GOTReg = DAG.getRegister(PPC::X2, MVT::i64);
2922       GOTPtr = DAG.getNode(PPCISD::ADDIS_GOT_TPREL_HA, dl,
2923                            PtrVT, GOTReg, TGA);
2924     } else {
2925       if (!TM.isPositionIndependent())
2926         GOTPtr = DAG.getNode(PPCISD::PPC32_GOT, dl, PtrVT);
2927       else if (picLevel == PICLevel::SmallPIC)
2928         GOTPtr = DAG.getNode(PPCISD::GlobalBaseReg, dl, PtrVT);
2929       else
2930         GOTPtr = DAG.getNode(PPCISD::PPC32_PICGOT, dl, PtrVT);
2931     }
2932     SDValue TPOffset = DAG.getNode(PPCISD::LD_GOT_TPREL_L, dl,
2933                                    PtrVT, TGA, GOTPtr);
2934     return DAG.getNode(PPCISD::ADD_TLS, dl, PtrVT, TPOffset, TGATLS);
2935   }
2936 
2937   if (Model == TLSModel::GeneralDynamic) {
2938     SDValue TGA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 0);
2939     SDValue GOTPtr;
2940     if (is64bit) {
2941       setUsesTOCBasePtr(DAG);
2942       SDValue GOTReg = DAG.getRegister(PPC::X2, MVT::i64);
2943       GOTPtr = DAG.getNode(PPCISD::ADDIS_TLSGD_HA, dl, PtrVT,
2944                                    GOTReg, TGA);
2945     } else {
2946       if (picLevel == PICLevel::SmallPIC)
2947         GOTPtr = DAG.getNode(PPCISD::GlobalBaseReg, dl, PtrVT);
2948       else
2949         GOTPtr = DAG.getNode(PPCISD::PPC32_PICGOT, dl, PtrVT);
2950     }
2951     return DAG.getNode(PPCISD::ADDI_TLSGD_L_ADDR, dl, PtrVT,
2952                        GOTPtr, TGA, TGA);
2953   }
2954 
2955   if (Model == TLSModel::LocalDynamic) {
2956     SDValue TGA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 0);
2957     SDValue GOTPtr;
2958     if (is64bit) {
2959       setUsesTOCBasePtr(DAG);
2960       SDValue GOTReg = DAG.getRegister(PPC::X2, MVT::i64);
2961       GOTPtr = DAG.getNode(PPCISD::ADDIS_TLSLD_HA, dl, PtrVT,
2962                            GOTReg, TGA);
2963     } else {
2964       if (picLevel == PICLevel::SmallPIC)
2965         GOTPtr = DAG.getNode(PPCISD::GlobalBaseReg, dl, PtrVT);
2966       else
2967         GOTPtr = DAG.getNode(PPCISD::PPC32_PICGOT, dl, PtrVT);
2968     }
2969     SDValue TLSAddr = DAG.getNode(PPCISD::ADDI_TLSLD_L_ADDR, dl,
2970                                   PtrVT, GOTPtr, TGA, TGA);
2971     SDValue DtvOffsetHi = DAG.getNode(PPCISD::ADDIS_DTPREL_HA, dl,
2972                                       PtrVT, TLSAddr, TGA);
2973     return DAG.getNode(PPCISD::ADDI_DTPREL_L, dl, PtrVT, DtvOffsetHi, TGA);
2974   }
2975 
2976   llvm_unreachable("Unknown TLS model!");
2977 }
2978 
2979 SDValue PPCTargetLowering::LowerGlobalAddress(SDValue Op,
2980                                               SelectionDAG &DAG) const {
2981   EVT PtrVT = Op.getValueType();
2982   GlobalAddressSDNode *GSDN = cast<GlobalAddressSDNode>(Op);
2983   SDLoc DL(GSDN);
2984   const GlobalValue *GV = GSDN->getGlobal();
2985 
2986   // 64-bit SVR4 ABI & AIX ABI code is always position-independent.
2987   // The actual address of the GlobalValue is stored in the TOC.
2988   if (Subtarget.is64BitELFABI() || Subtarget.isAIXABI()) {
2989     setUsesTOCBasePtr(DAG);
2990     SDValue GA = DAG.getTargetGlobalAddress(GV, DL, PtrVT, GSDN->getOffset());
2991     return getTOCEntry(DAG, DL, GA);
2992   }
2993 
2994   unsigned MOHiFlag, MOLoFlag;
2995   bool IsPIC = isPositionIndependent();
2996   getLabelAccessInfo(IsPIC, Subtarget, MOHiFlag, MOLoFlag, GV);
2997 
2998   if (IsPIC && Subtarget.isSVR4ABI()) {
2999     SDValue GA = DAG.getTargetGlobalAddress(GV, DL, PtrVT,
3000                                             GSDN->getOffset(),
3001                                             PPCII::MO_PIC_FLAG);
3002     return getTOCEntry(DAG, DL, GA);
3003   }
3004 
3005   SDValue GAHi =
3006     DAG.getTargetGlobalAddress(GV, DL, PtrVT, GSDN->getOffset(), MOHiFlag);
3007   SDValue GALo =
3008     DAG.getTargetGlobalAddress(GV, DL, PtrVT, GSDN->getOffset(), MOLoFlag);
3009 
3010   SDValue Ptr = LowerLabelRef(GAHi, GALo, IsPIC, DAG);
3011 
3012   // If the global reference is actually to a non-lazy-pointer, we have to do an
3013   // extra load to get the address of the global.
3014   if (MOHiFlag & PPCII::MO_NLP_FLAG)
3015     Ptr = DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), Ptr, MachinePointerInfo());
3016   return Ptr;
3017 }
3018 
3019 SDValue PPCTargetLowering::LowerSETCC(SDValue Op, SelectionDAG &DAG) const {
3020   ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
3021   SDLoc dl(Op);
3022 
3023   if (Op.getValueType() == MVT::v2i64) {
3024     // When the operands themselves are v2i64 values, we need to do something
3025     // special because VSX has no underlying comparison operations for these.
3026     if (Op.getOperand(0).getValueType() == MVT::v2i64) {
3027       // Equality can be handled by casting to the legal type for Altivec
3028       // comparisons, everything else needs to be expanded.
3029       if (CC == ISD::SETEQ || CC == ISD::SETNE) {
3030         return DAG.getNode(ISD::BITCAST, dl, MVT::v2i64,
3031                  DAG.getSetCC(dl, MVT::v4i32,
3032                    DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, Op.getOperand(0)),
3033                    DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, Op.getOperand(1)),
3034                    CC));
3035       }
3036 
3037       return SDValue();
3038     }
3039 
3040     // We handle most of these in the usual way.
3041     return Op;
3042   }
3043 
3044   // If we're comparing for equality to zero, expose the fact that this is
3045   // implemented as a ctlz/srl pair on ppc, so that the dag combiner can
3046   // fold the new nodes.
3047   if (SDValue V = lowerCmpEqZeroToCtlzSrl(Op, DAG))
3048     return V;
3049 
3050   if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
3051     // Leave comparisons against 0 and -1 alone for now, since they're usually
3052     // optimized.  FIXME: revisit this when we can custom lower all setcc
3053     // optimizations.
3054     if (C->isAllOnesValue() || C->isNullValue())
3055       return SDValue();
3056   }
3057 
3058   // If we have an integer seteq/setne, turn it into a compare against zero
3059   // by xor'ing the rhs with the lhs, which is faster than setting a
3060   // condition register, reading it back out, and masking the correct bit.  The
3061   // normal approach here uses sub to do this instead of xor.  Using xor exposes
3062   // the result to other bit-twiddling opportunities.
3063   EVT LHSVT = Op.getOperand(0).getValueType();
3064   if (LHSVT.isInteger() && (CC == ISD::SETEQ || CC == ISD::SETNE)) {
3065     EVT VT = Op.getValueType();
3066     SDValue Sub = DAG.getNode(ISD::XOR, dl, LHSVT, Op.getOperand(0),
3067                                 Op.getOperand(1));
3068     return DAG.getSetCC(dl, VT, Sub, DAG.getConstant(0, dl, LHSVT), CC);
3069   }
3070   return SDValue();
3071 }
3072 
3073 SDValue PPCTargetLowering::LowerVAARG(SDValue Op, SelectionDAG &DAG) const {
3074   SDNode *Node = Op.getNode();
3075   EVT VT = Node->getValueType(0);
3076   EVT PtrVT = getPointerTy(DAG.getDataLayout());
3077   SDValue InChain = Node->getOperand(0);
3078   SDValue VAListPtr = Node->getOperand(1);
3079   const Value *SV = cast<SrcValueSDNode>(Node->getOperand(2))->getValue();
3080   SDLoc dl(Node);
3081 
3082   assert(!Subtarget.isPPC64() && "LowerVAARG is PPC32 only");
3083 
3084   // gpr_index
3085   SDValue GprIndex = DAG.getExtLoad(ISD::ZEXTLOAD, dl, MVT::i32, InChain,
3086                                     VAListPtr, MachinePointerInfo(SV), MVT::i8);
3087   InChain = GprIndex.getValue(1);
3088 
3089   if (VT == MVT::i64) {
3090     // Check if GprIndex is even
3091     SDValue GprAnd = DAG.getNode(ISD::AND, dl, MVT::i32, GprIndex,
3092                                  DAG.getConstant(1, dl, MVT::i32));
3093     SDValue CC64 = DAG.getSetCC(dl, MVT::i32, GprAnd,
3094                                 DAG.getConstant(0, dl, MVT::i32), ISD::SETNE);
3095     SDValue GprIndexPlusOne = DAG.getNode(ISD::ADD, dl, MVT::i32, GprIndex,
3096                                           DAG.getConstant(1, dl, MVT::i32));
3097     // Align GprIndex to be even if it isn't
3098     GprIndex = DAG.getNode(ISD::SELECT, dl, MVT::i32, CC64, GprIndexPlusOne,
3099                            GprIndex);
3100   }
3101 
3102   // fpr index is 1 byte after gpr
3103   SDValue FprPtr = DAG.getNode(ISD::ADD, dl, PtrVT, VAListPtr,
3104                                DAG.getConstant(1, dl, MVT::i32));
3105 
3106   // fpr
3107   SDValue FprIndex = DAG.getExtLoad(ISD::ZEXTLOAD, dl, MVT::i32, InChain,
3108                                     FprPtr, MachinePointerInfo(SV), MVT::i8);
3109   InChain = FprIndex.getValue(1);
3110 
3111   SDValue RegSaveAreaPtr = DAG.getNode(ISD::ADD, dl, PtrVT, VAListPtr,
3112                                        DAG.getConstant(8, dl, MVT::i32));
3113 
3114   SDValue OverflowAreaPtr = DAG.getNode(ISD::ADD, dl, PtrVT, VAListPtr,
3115                                         DAG.getConstant(4, dl, MVT::i32));
3116 
3117   // areas
3118   SDValue OverflowArea =
3119       DAG.getLoad(MVT::i32, dl, InChain, OverflowAreaPtr, MachinePointerInfo());
3120   InChain = OverflowArea.getValue(1);
3121 
3122   SDValue RegSaveArea =
3123       DAG.getLoad(MVT::i32, dl, InChain, RegSaveAreaPtr, MachinePointerInfo());
3124   InChain = RegSaveArea.getValue(1);
3125 
3126   // select overflow_area if index > 8
3127   SDValue CC = DAG.getSetCC(dl, MVT::i32, VT.isInteger() ? GprIndex : FprIndex,
3128                             DAG.getConstant(8, dl, MVT::i32), ISD::SETLT);
3129 
3130   // adjustment constant gpr_index * 4/8
3131   SDValue RegConstant = DAG.getNode(ISD::MUL, dl, MVT::i32,
3132                                     VT.isInteger() ? GprIndex : FprIndex,
3133                                     DAG.getConstant(VT.isInteger() ? 4 : 8, dl,
3134                                                     MVT::i32));
3135 
3136   // OurReg = RegSaveArea + RegConstant
3137   SDValue OurReg = DAG.getNode(ISD::ADD, dl, PtrVT, RegSaveArea,
3138                                RegConstant);
3139 
3140   // Floating types are 32 bytes into RegSaveArea
3141   if (VT.isFloatingPoint())
3142     OurReg = DAG.getNode(ISD::ADD, dl, PtrVT, OurReg,
3143                          DAG.getConstant(32, dl, MVT::i32));
3144 
3145   // increase {f,g}pr_index by 1 (or 2 if VT is i64)
3146   SDValue IndexPlus1 = DAG.getNode(ISD::ADD, dl, MVT::i32,
3147                                    VT.isInteger() ? GprIndex : FprIndex,
3148                                    DAG.getConstant(VT == MVT::i64 ? 2 : 1, dl,
3149                                                    MVT::i32));
3150 
3151   InChain = DAG.getTruncStore(InChain, dl, IndexPlus1,
3152                               VT.isInteger() ? VAListPtr : FprPtr,
3153                               MachinePointerInfo(SV), MVT::i8);
3154 
3155   // determine if we should load from reg_save_area or overflow_area
3156   SDValue Result = DAG.getNode(ISD::SELECT, dl, PtrVT, CC, OurReg, OverflowArea);
3157 
3158   // increase overflow_area by 4/8 if gpr/fpr > 8
3159   SDValue OverflowAreaPlusN = DAG.getNode(ISD::ADD, dl, PtrVT, OverflowArea,
3160                                           DAG.getConstant(VT.isInteger() ? 4 : 8,
3161                                           dl, MVT::i32));
3162 
3163   OverflowArea = DAG.getNode(ISD::SELECT, dl, MVT::i32, CC, OverflowArea,
3164                              OverflowAreaPlusN);
3165 
3166   InChain = DAG.getTruncStore(InChain, dl, OverflowArea, OverflowAreaPtr,
3167                               MachinePointerInfo(), MVT::i32);
3168 
3169   return DAG.getLoad(VT, dl, InChain, Result, MachinePointerInfo());
3170 }
3171 
3172 SDValue PPCTargetLowering::LowerVACOPY(SDValue Op, SelectionDAG &DAG) const {
3173   assert(!Subtarget.isPPC64() && "LowerVACOPY is PPC32 only");
3174 
3175   // We have to copy the entire va_list struct:
3176   // 2*sizeof(char) + 2 Byte alignment + 2*sizeof(char*) = 12 Byte
3177   return DAG.getMemcpy(Op.getOperand(0), Op,
3178                        Op.getOperand(1), Op.getOperand(2),
3179                        DAG.getConstant(12, SDLoc(Op), MVT::i32), 8, false, true,
3180                        false, MachinePointerInfo(), MachinePointerInfo());
3181 }
3182 
3183 SDValue PPCTargetLowering::LowerADJUST_TRAMPOLINE(SDValue Op,
3184                                                   SelectionDAG &DAG) const {
3185   if (Subtarget.isAIXABI())
3186     report_fatal_error("ADJUST_TRAMPOLINE operation is not supported on AIX.");
3187 
3188   return Op.getOperand(0);
3189 }
3190 
3191 SDValue PPCTargetLowering::LowerINIT_TRAMPOLINE(SDValue Op,
3192                                                 SelectionDAG &DAG) const {
3193   if (Subtarget.isAIXABI())
3194     report_fatal_error("INIT_TRAMPOLINE operation is not supported on AIX.");
3195 
3196   SDValue Chain = Op.getOperand(0);
3197   SDValue Trmp = Op.getOperand(1); // trampoline
3198   SDValue FPtr = Op.getOperand(2); // nested function
3199   SDValue Nest = Op.getOperand(3); // 'nest' parameter value
3200   SDLoc dl(Op);
3201 
3202   EVT PtrVT = getPointerTy(DAG.getDataLayout());
3203   bool isPPC64 = (PtrVT == MVT::i64);
3204   Type *IntPtrTy = DAG.getDataLayout().getIntPtrType(*DAG.getContext());
3205 
3206   TargetLowering::ArgListTy Args;
3207   TargetLowering::ArgListEntry Entry;
3208 
3209   Entry.Ty = IntPtrTy;
3210   Entry.Node = Trmp; Args.push_back(Entry);
3211 
3212   // TrampSize == (isPPC64 ? 48 : 40);
3213   Entry.Node = DAG.getConstant(isPPC64 ? 48 : 40, dl,
3214                                isPPC64 ? MVT::i64 : MVT::i32);
3215   Args.push_back(Entry);
3216 
3217   Entry.Node = FPtr; Args.push_back(Entry);
3218   Entry.Node = Nest; Args.push_back(Entry);
3219 
3220   // Lower to a call to __trampoline_setup(Trmp, TrampSize, FPtr, ctx_reg)
3221   TargetLowering::CallLoweringInfo CLI(DAG);
3222   CLI.setDebugLoc(dl).setChain(Chain).setLibCallee(
3223       CallingConv::C, Type::getVoidTy(*DAG.getContext()),
3224       DAG.getExternalSymbol("__trampoline_setup", PtrVT), std::move(Args));
3225 
3226   std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI);
3227   return CallResult.second;
3228 }
3229 
3230 SDValue PPCTargetLowering::LowerVASTART(SDValue Op, SelectionDAG &DAG) const {
3231   MachineFunction &MF = DAG.getMachineFunction();
3232   PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
3233   EVT PtrVT = getPointerTy(MF.getDataLayout());
3234 
3235   SDLoc dl(Op);
3236 
3237   if (Subtarget.isDarwinABI() || Subtarget.isPPC64()) {
3238     // vastart just stores the address of the VarArgsFrameIndex slot into the
3239     // memory location argument.
3240     SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT);
3241     const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
3242     return DAG.getStore(Op.getOperand(0), dl, FR, Op.getOperand(1),
3243                         MachinePointerInfo(SV));
3244   }
3245 
3246   // For the 32-bit SVR4 ABI we follow the layout of the va_list struct.
3247   // We suppose the given va_list is already allocated.
3248   //
3249   // typedef struct {
3250   //  char gpr;     /* index into the array of 8 GPRs
3251   //                 * stored in the register save area
3252   //                 * gpr=0 corresponds to r3,
3253   //                 * gpr=1 to r4, etc.
3254   //                 */
3255   //  char fpr;     /* index into the array of 8 FPRs
3256   //                 * stored in the register save area
3257   //                 * fpr=0 corresponds to f1,
3258   //                 * fpr=1 to f2, etc.
3259   //                 */
3260   //  char *overflow_arg_area;
3261   //                /* location on stack that holds
3262   //                 * the next overflow argument
3263   //                 */
3264   //  char *reg_save_area;
3265   //               /* where r3:r10 and f1:f8 (if saved)
3266   //                * are stored
3267   //                */
3268   // } va_list[1];
3269 
3270   SDValue ArgGPR = DAG.getConstant(FuncInfo->getVarArgsNumGPR(), dl, MVT::i32);
3271   SDValue ArgFPR = DAG.getConstant(FuncInfo->getVarArgsNumFPR(), dl, MVT::i32);
3272   SDValue StackOffsetFI = DAG.getFrameIndex(FuncInfo->getVarArgsStackOffset(),
3273                                             PtrVT);
3274   SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(),
3275                                  PtrVT);
3276 
3277   uint64_t FrameOffset = PtrVT.getSizeInBits()/8;
3278   SDValue ConstFrameOffset = DAG.getConstant(FrameOffset, dl, PtrVT);
3279 
3280   uint64_t StackOffset = PtrVT.getSizeInBits()/8 - 1;
3281   SDValue ConstStackOffset = DAG.getConstant(StackOffset, dl, PtrVT);
3282 
3283   uint64_t FPROffset = 1;
3284   SDValue ConstFPROffset = DAG.getConstant(FPROffset, dl, PtrVT);
3285 
3286   const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
3287 
3288   // Store first byte : number of int regs
3289   SDValue firstStore =
3290       DAG.getTruncStore(Op.getOperand(0), dl, ArgGPR, Op.getOperand(1),
3291                         MachinePointerInfo(SV), MVT::i8);
3292   uint64_t nextOffset = FPROffset;
3293   SDValue nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, Op.getOperand(1),
3294                                   ConstFPROffset);
3295 
3296   // Store second byte : number of float regs
3297   SDValue secondStore =
3298       DAG.getTruncStore(firstStore, dl, ArgFPR, nextPtr,
3299                         MachinePointerInfo(SV, nextOffset), MVT::i8);
3300   nextOffset += StackOffset;
3301   nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, nextPtr, ConstStackOffset);
3302 
3303   // Store second word : arguments given on stack
3304   SDValue thirdStore = DAG.getStore(secondStore, dl, StackOffsetFI, nextPtr,
3305                                     MachinePointerInfo(SV, nextOffset));
3306   nextOffset += FrameOffset;
3307   nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, nextPtr, ConstFrameOffset);
3308 
3309   // Store third word : arguments given in registers
3310   return DAG.getStore(thirdStore, dl, FR, nextPtr,
3311                       MachinePointerInfo(SV, nextOffset));
3312 }
3313 
3314 /// FPR - The set of FP registers that should be allocated for arguments
3315 /// on Darwin and AIX.
3316 static const MCPhysReg FPR[] = {PPC::F1,  PPC::F2,  PPC::F3, PPC::F4, PPC::F5,
3317                                 PPC::F6,  PPC::F7,  PPC::F8, PPC::F9, PPC::F10,
3318                                 PPC::F11, PPC::F12, PPC::F13};
3319 
3320 /// QFPR - The set of QPX registers that should be allocated for arguments.
3321 static const MCPhysReg QFPR[] = {
3322     PPC::QF1, PPC::QF2, PPC::QF3,  PPC::QF4,  PPC::QF5,  PPC::QF6, PPC::QF7,
3323     PPC::QF8, PPC::QF9, PPC::QF10, PPC::QF11, PPC::QF12, PPC::QF13};
3324 
3325 /// CalculateStackSlotSize - Calculates the size reserved for this argument on
3326 /// the stack.
3327 static unsigned CalculateStackSlotSize(EVT ArgVT, ISD::ArgFlagsTy Flags,
3328                                        unsigned PtrByteSize) {
3329   unsigned ArgSize = ArgVT.getStoreSize();
3330   if (Flags.isByVal())
3331     ArgSize = Flags.getByValSize();
3332 
3333   // Round up to multiples of the pointer size, except for array members,
3334   // which are always packed.
3335   if (!Flags.isInConsecutiveRegs())
3336     ArgSize = ((ArgSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
3337 
3338   return ArgSize;
3339 }
3340 
3341 /// CalculateStackSlotAlignment - Calculates the alignment of this argument
3342 /// on the stack.
3343 static unsigned CalculateStackSlotAlignment(EVT ArgVT, EVT OrigVT,
3344                                             ISD::ArgFlagsTy Flags,
3345                                             unsigned PtrByteSize) {
3346   unsigned Align = PtrByteSize;
3347 
3348   // Altivec parameters are padded to a 16 byte boundary.
3349   if (ArgVT == MVT::v4f32 || ArgVT == MVT::v4i32 ||
3350       ArgVT == MVT::v8i16 || ArgVT == MVT::v16i8 ||
3351       ArgVT == MVT::v2f64 || ArgVT == MVT::v2i64 ||
3352       ArgVT == MVT::v1i128 || ArgVT == MVT::f128)
3353     Align = 16;
3354   // QPX vector types stored in double-precision are padded to a 32 byte
3355   // boundary.
3356   else if (ArgVT == MVT::v4f64 || ArgVT == MVT::v4i1)
3357     Align = 32;
3358 
3359   // ByVal parameters are aligned as requested.
3360   if (Flags.isByVal()) {
3361     unsigned BVAlign = Flags.getByValAlign();
3362     if (BVAlign > PtrByteSize) {
3363       if (BVAlign % PtrByteSize != 0)
3364           llvm_unreachable(
3365             "ByVal alignment is not a multiple of the pointer size");
3366 
3367       Align = BVAlign;
3368     }
3369   }
3370 
3371   // Array members are always packed to their original alignment.
3372   if (Flags.isInConsecutiveRegs()) {
3373     // If the array member was split into multiple registers, the first
3374     // needs to be aligned to the size of the full type.  (Except for
3375     // ppcf128, which is only aligned as its f64 components.)
3376     if (Flags.isSplit() && OrigVT != MVT::ppcf128)
3377       Align = OrigVT.getStoreSize();
3378     else
3379       Align = ArgVT.getStoreSize();
3380   }
3381 
3382   return Align;
3383 }
3384 
3385 /// CalculateStackSlotUsed - Return whether this argument will use its
3386 /// stack slot (instead of being passed in registers).  ArgOffset,
3387 /// AvailableFPRs, and AvailableVRs must hold the current argument
3388 /// position, and will be updated to account for this argument.
3389 static bool CalculateStackSlotUsed(EVT ArgVT, EVT OrigVT,
3390                                    ISD::ArgFlagsTy Flags,
3391                                    unsigned PtrByteSize,
3392                                    unsigned LinkageSize,
3393                                    unsigned ParamAreaSize,
3394                                    unsigned &ArgOffset,
3395                                    unsigned &AvailableFPRs,
3396                                    unsigned &AvailableVRs, bool HasQPX) {
3397   bool UseMemory = false;
3398 
3399   // Respect alignment of argument on the stack.
3400   unsigned Align =
3401     CalculateStackSlotAlignment(ArgVT, OrigVT, Flags, PtrByteSize);
3402   ArgOffset = ((ArgOffset + Align - 1) / Align) * Align;
3403   // If there's no space left in the argument save area, we must
3404   // use memory (this check also catches zero-sized arguments).
3405   if (ArgOffset >= LinkageSize + ParamAreaSize)
3406     UseMemory = true;
3407 
3408   // Allocate argument on the stack.
3409   ArgOffset += CalculateStackSlotSize(ArgVT, Flags, PtrByteSize);
3410   if (Flags.isInConsecutiveRegsLast())
3411     ArgOffset = ((ArgOffset + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
3412   // If we overran the argument save area, we must use memory
3413   // (this check catches arguments passed partially in memory)
3414   if (ArgOffset > LinkageSize + ParamAreaSize)
3415     UseMemory = true;
3416 
3417   // However, if the argument is actually passed in an FPR or a VR,
3418   // we don't use memory after all.
3419   if (!Flags.isByVal()) {
3420     if (ArgVT == MVT::f32 || ArgVT == MVT::f64 ||
3421         // QPX registers overlap with the scalar FP registers.
3422         (HasQPX && (ArgVT == MVT::v4f32 ||
3423                     ArgVT == MVT::v4f64 ||
3424                     ArgVT == MVT::v4i1)))
3425       if (AvailableFPRs > 0) {
3426         --AvailableFPRs;
3427         return false;
3428       }
3429     if (ArgVT == MVT::v4f32 || ArgVT == MVT::v4i32 ||
3430         ArgVT == MVT::v8i16 || ArgVT == MVT::v16i8 ||
3431         ArgVT == MVT::v2f64 || ArgVT == MVT::v2i64 ||
3432         ArgVT == MVT::v1i128 || ArgVT == MVT::f128)
3433       if (AvailableVRs > 0) {
3434         --AvailableVRs;
3435         return false;
3436       }
3437   }
3438 
3439   return UseMemory;
3440 }
3441 
3442 /// EnsureStackAlignment - Round stack frame size up from NumBytes to
3443 /// ensure minimum alignment required for target.
3444 static unsigned EnsureStackAlignment(const PPCFrameLowering *Lowering,
3445                                      unsigned NumBytes) {
3446   unsigned TargetAlign = Lowering->getStackAlignment();
3447   unsigned AlignMask = TargetAlign - 1;
3448   NumBytes = (NumBytes + AlignMask) & ~AlignMask;
3449   return NumBytes;
3450 }
3451 
3452 SDValue PPCTargetLowering::LowerFormalArguments(
3453     SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
3454     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
3455     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
3456   if (Subtarget.isAIXABI())
3457     return LowerFormalArguments_AIX(Chain, CallConv, isVarArg, Ins, dl, DAG,
3458                                     InVals);
3459   if (Subtarget.is64BitELFABI())
3460     return LowerFormalArguments_64SVR4(Chain, CallConv, isVarArg, Ins, dl, DAG,
3461                                        InVals);
3462   if (Subtarget.is32BitELFABI())
3463     return LowerFormalArguments_32SVR4(Chain, CallConv, isVarArg, Ins, dl, DAG,
3464                                        InVals);
3465 
3466   return LowerFormalArguments_Darwin(Chain, CallConv, isVarArg, Ins, dl, DAG,
3467                                      InVals);
3468 }
3469 
3470 SDValue PPCTargetLowering::LowerFormalArguments_32SVR4(
3471     SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
3472     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
3473     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
3474 
3475   // 32-bit SVR4 ABI Stack Frame Layout:
3476   //              +-----------------------------------+
3477   //        +-->  |            Back chain             |
3478   //        |     +-----------------------------------+
3479   //        |     | Floating-point register save area |
3480   //        |     +-----------------------------------+
3481   //        |     |    General register save area     |
3482   //        |     +-----------------------------------+
3483   //        |     |          CR save word             |
3484   //        |     +-----------------------------------+
3485   //        |     |         VRSAVE save word          |
3486   //        |     +-----------------------------------+
3487   //        |     |         Alignment padding         |
3488   //        |     +-----------------------------------+
3489   //        |     |     Vector register save area     |
3490   //        |     +-----------------------------------+
3491   //        |     |       Local variable space        |
3492   //        |     +-----------------------------------+
3493   //        |     |        Parameter list area        |
3494   //        |     +-----------------------------------+
3495   //        |     |           LR save word            |
3496   //        |     +-----------------------------------+
3497   // SP-->  +---  |            Back chain             |
3498   //              +-----------------------------------+
3499   //
3500   // Specifications:
3501   //   System V Application Binary Interface PowerPC Processor Supplement
3502   //   AltiVec Technology Programming Interface Manual
3503 
3504   MachineFunction &MF = DAG.getMachineFunction();
3505   MachineFrameInfo &MFI = MF.getFrameInfo();
3506   PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
3507 
3508   EVT PtrVT = getPointerTy(MF.getDataLayout());
3509   // Potential tail calls could cause overwriting of argument stack slots.
3510   bool isImmutable = !(getTargetMachine().Options.GuaranteedTailCallOpt &&
3511                        (CallConv == CallingConv::Fast));
3512   unsigned PtrByteSize = 4;
3513 
3514   // Assign locations to all of the incoming arguments.
3515   SmallVector<CCValAssign, 16> ArgLocs;
3516   PPCCCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), ArgLocs,
3517                  *DAG.getContext());
3518 
3519   // Reserve space for the linkage area on the stack.
3520   unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize();
3521   CCInfo.AllocateStack(LinkageSize, PtrByteSize);
3522   if (useSoftFloat())
3523     CCInfo.PreAnalyzeFormalArguments(Ins);
3524 
3525   CCInfo.AnalyzeFormalArguments(Ins, CC_PPC32_SVR4);
3526   CCInfo.clearWasPPCF128();
3527 
3528   for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
3529     CCValAssign &VA = ArgLocs[i];
3530 
3531     // Arguments stored in registers.
3532     if (VA.isRegLoc()) {
3533       const TargetRegisterClass *RC;
3534       EVT ValVT = VA.getValVT();
3535 
3536       switch (ValVT.getSimpleVT().SimpleTy) {
3537         default:
3538           llvm_unreachable("ValVT not supported by formal arguments Lowering");
3539         case MVT::i1:
3540         case MVT::i32:
3541           RC = &PPC::GPRCRegClass;
3542           break;
3543         case MVT::f32:
3544           if (Subtarget.hasP8Vector())
3545             RC = &PPC::VSSRCRegClass;
3546           else if (Subtarget.hasSPE())
3547             RC = &PPC::GPRCRegClass;
3548           else
3549             RC = &PPC::F4RCRegClass;
3550           break;
3551         case MVT::f64:
3552           if (Subtarget.hasVSX())
3553             RC = &PPC::VSFRCRegClass;
3554           else if (Subtarget.hasSPE())
3555             // SPE passes doubles in GPR pairs.
3556             RC = &PPC::GPRCRegClass;
3557           else
3558             RC = &PPC::F8RCRegClass;
3559           break;
3560         case MVT::v16i8:
3561         case MVT::v8i16:
3562         case MVT::v4i32:
3563           RC = &PPC::VRRCRegClass;
3564           break;
3565         case MVT::v4f32:
3566           RC = Subtarget.hasQPX() ? &PPC::QSRCRegClass : &PPC::VRRCRegClass;
3567           break;
3568         case MVT::v2f64:
3569         case MVT::v2i64:
3570           RC = &PPC::VRRCRegClass;
3571           break;
3572         case MVT::v4f64:
3573           RC = &PPC::QFRCRegClass;
3574           break;
3575         case MVT::v4i1:
3576           RC = &PPC::QBRCRegClass;
3577           break;
3578       }
3579 
3580       SDValue ArgValue;
3581       // Transform the arguments stored in physical registers into
3582       // virtual ones.
3583       if (VA.getLocVT() == MVT::f64 && Subtarget.hasSPE()) {
3584         assert(i + 1 < e && "No second half of double precision argument");
3585         unsigned RegLo = MF.addLiveIn(VA.getLocReg(), RC);
3586         unsigned RegHi = MF.addLiveIn(ArgLocs[++i].getLocReg(), RC);
3587         SDValue ArgValueLo = DAG.getCopyFromReg(Chain, dl, RegLo, MVT::i32);
3588         SDValue ArgValueHi = DAG.getCopyFromReg(Chain, dl, RegHi, MVT::i32);
3589         if (!Subtarget.isLittleEndian())
3590           std::swap (ArgValueLo, ArgValueHi);
3591         ArgValue = DAG.getNode(PPCISD::BUILD_SPE64, dl, MVT::f64, ArgValueLo,
3592                                ArgValueHi);
3593       } else {
3594         unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC);
3595         ArgValue = DAG.getCopyFromReg(Chain, dl, Reg,
3596                                       ValVT == MVT::i1 ? MVT::i32 : ValVT);
3597         if (ValVT == MVT::i1)
3598           ArgValue = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, ArgValue);
3599       }
3600 
3601       InVals.push_back(ArgValue);
3602     } else {
3603       // Argument stored in memory.
3604       assert(VA.isMemLoc());
3605 
3606       // Get the extended size of the argument type in stack
3607       unsigned ArgSize = VA.getLocVT().getStoreSize();
3608       // Get the actual size of the argument type
3609       unsigned ObjSize = VA.getValVT().getStoreSize();
3610       unsigned ArgOffset = VA.getLocMemOffset();
3611       // Stack objects in PPC32 are right justified.
3612       ArgOffset += ArgSize - ObjSize;
3613       int FI = MFI.CreateFixedObject(ArgSize, ArgOffset, isImmutable);
3614 
3615       // Create load nodes to retrieve arguments from the stack.
3616       SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
3617       InVals.push_back(
3618           DAG.getLoad(VA.getValVT(), dl, Chain, FIN, MachinePointerInfo()));
3619     }
3620   }
3621 
3622   // Assign locations to all of the incoming aggregate by value arguments.
3623   // Aggregates passed by value are stored in the local variable space of the
3624   // caller's stack frame, right above the parameter list area.
3625   SmallVector<CCValAssign, 16> ByValArgLocs;
3626   CCState CCByValInfo(CallConv, isVarArg, DAG.getMachineFunction(),
3627                       ByValArgLocs, *DAG.getContext());
3628 
3629   // Reserve stack space for the allocations in CCInfo.
3630   CCByValInfo.AllocateStack(CCInfo.getNextStackOffset(), PtrByteSize);
3631 
3632   CCByValInfo.AnalyzeFormalArguments(Ins, CC_PPC32_SVR4_ByVal);
3633 
3634   // Area that is at least reserved in the caller of this function.
3635   unsigned MinReservedArea = CCByValInfo.getNextStackOffset();
3636   MinReservedArea = std::max(MinReservedArea, LinkageSize);
3637 
3638   // Set the size that is at least reserved in caller of this function.  Tail
3639   // call optimized function's reserved stack space needs to be aligned so that
3640   // taking the difference between two stack areas will result in an aligned
3641   // stack.
3642   MinReservedArea =
3643       EnsureStackAlignment(Subtarget.getFrameLowering(), MinReservedArea);
3644   FuncInfo->setMinReservedArea(MinReservedArea);
3645 
3646   SmallVector<SDValue, 8> MemOps;
3647 
3648   // If the function takes variable number of arguments, make a frame index for
3649   // the start of the first vararg value... for expansion of llvm.va_start.
3650   if (isVarArg) {
3651     static const MCPhysReg GPArgRegs[] = {
3652       PPC::R3, PPC::R4, PPC::R5, PPC::R6,
3653       PPC::R7, PPC::R8, PPC::R9, PPC::R10,
3654     };
3655     const unsigned NumGPArgRegs = array_lengthof(GPArgRegs);
3656 
3657     static const MCPhysReg FPArgRegs[] = {
3658       PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, PPC::F6, PPC::F7,
3659       PPC::F8
3660     };
3661     unsigned NumFPArgRegs = array_lengthof(FPArgRegs);
3662 
3663     if (useSoftFloat() || hasSPE())
3664        NumFPArgRegs = 0;
3665 
3666     FuncInfo->setVarArgsNumGPR(CCInfo.getFirstUnallocated(GPArgRegs));
3667     FuncInfo->setVarArgsNumFPR(CCInfo.getFirstUnallocated(FPArgRegs));
3668 
3669     // Make room for NumGPArgRegs and NumFPArgRegs.
3670     int Depth = NumGPArgRegs * PtrVT.getSizeInBits()/8 +
3671                 NumFPArgRegs * MVT(MVT::f64).getSizeInBits()/8;
3672 
3673     FuncInfo->setVarArgsStackOffset(
3674       MFI.CreateFixedObject(PtrVT.getSizeInBits()/8,
3675                             CCInfo.getNextStackOffset(), true));
3676 
3677     FuncInfo->setVarArgsFrameIndex(MFI.CreateStackObject(Depth, 8, false));
3678     SDValue FIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT);
3679 
3680     // The fixed integer arguments of a variadic function are stored to the
3681     // VarArgsFrameIndex on the stack so that they may be loaded by
3682     // dereferencing the result of va_next.
3683     for (unsigned GPRIndex = 0; GPRIndex != NumGPArgRegs; ++GPRIndex) {
3684       // Get an existing live-in vreg, or add a new one.
3685       unsigned VReg = MF.getRegInfo().getLiveInVirtReg(GPArgRegs[GPRIndex]);
3686       if (!VReg)
3687         VReg = MF.addLiveIn(GPArgRegs[GPRIndex], &PPC::GPRCRegClass);
3688 
3689       SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
3690       SDValue Store =
3691           DAG.getStore(Val.getValue(1), dl, Val, FIN, MachinePointerInfo());
3692       MemOps.push_back(Store);
3693       // Increment the address by four for the next argument to store
3694       SDValue PtrOff = DAG.getConstant(PtrVT.getSizeInBits()/8, dl, PtrVT);
3695       FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff);
3696     }
3697 
3698     // FIXME 32-bit SVR4: We only need to save FP argument registers if CR bit 6
3699     // is set.
3700     // The double arguments are stored to the VarArgsFrameIndex
3701     // on the stack.
3702     for (unsigned FPRIndex = 0; FPRIndex != NumFPArgRegs; ++FPRIndex) {
3703       // Get an existing live-in vreg, or add a new one.
3704       unsigned VReg = MF.getRegInfo().getLiveInVirtReg(FPArgRegs[FPRIndex]);
3705       if (!VReg)
3706         VReg = MF.addLiveIn(FPArgRegs[FPRIndex], &PPC::F8RCRegClass);
3707 
3708       SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::f64);
3709       SDValue Store =
3710           DAG.getStore(Val.getValue(1), dl, Val, FIN, MachinePointerInfo());
3711       MemOps.push_back(Store);
3712       // Increment the address by eight for the next argument to store
3713       SDValue PtrOff = DAG.getConstant(MVT(MVT::f64).getSizeInBits()/8, dl,
3714                                          PtrVT);
3715       FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff);
3716     }
3717   }
3718 
3719   if (!MemOps.empty())
3720     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOps);
3721 
3722   return Chain;
3723 }
3724 
3725 // PPC64 passes i8, i16, and i32 values in i64 registers. Promote
3726 // value to MVT::i64 and then truncate to the correct register size.
3727 SDValue PPCTargetLowering::extendArgForPPC64(ISD::ArgFlagsTy Flags,
3728                                              EVT ObjectVT, SelectionDAG &DAG,
3729                                              SDValue ArgVal,
3730                                              const SDLoc &dl) const {
3731   if (Flags.isSExt())
3732     ArgVal = DAG.getNode(ISD::AssertSext, dl, MVT::i64, ArgVal,
3733                          DAG.getValueType(ObjectVT));
3734   else if (Flags.isZExt())
3735     ArgVal = DAG.getNode(ISD::AssertZext, dl, MVT::i64, ArgVal,
3736                          DAG.getValueType(ObjectVT));
3737 
3738   return DAG.getNode(ISD::TRUNCATE, dl, ObjectVT, ArgVal);
3739 }
3740 
3741 SDValue PPCTargetLowering::LowerFormalArguments_64SVR4(
3742     SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
3743     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
3744     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
3745   // TODO: add description of PPC stack frame format, or at least some docs.
3746   //
3747   bool isELFv2ABI = Subtarget.isELFv2ABI();
3748   bool isLittleEndian = Subtarget.isLittleEndian();
3749   MachineFunction &MF = DAG.getMachineFunction();
3750   MachineFrameInfo &MFI = MF.getFrameInfo();
3751   PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
3752 
3753   assert(!(CallConv == CallingConv::Fast && isVarArg) &&
3754          "fastcc not supported on varargs functions");
3755 
3756   EVT PtrVT = getPointerTy(MF.getDataLayout());
3757   // Potential tail calls could cause overwriting of argument stack slots.
3758   bool isImmutable = !(getTargetMachine().Options.GuaranteedTailCallOpt &&
3759                        (CallConv == CallingConv::Fast));
3760   unsigned PtrByteSize = 8;
3761   unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize();
3762 
3763   static const MCPhysReg GPR[] = {
3764     PPC::X3, PPC::X4, PPC::X5, PPC::X6,
3765     PPC::X7, PPC::X8, PPC::X9, PPC::X10,
3766   };
3767   static const MCPhysReg VR[] = {
3768     PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8,
3769     PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13
3770   };
3771 
3772   const unsigned Num_GPR_Regs = array_lengthof(GPR);
3773   const unsigned Num_FPR_Regs = useSoftFloat() ? 0 : 13;
3774   const unsigned Num_VR_Regs  = array_lengthof(VR);
3775   const unsigned Num_QFPR_Regs = Num_FPR_Regs;
3776 
3777   // Do a first pass over the arguments to determine whether the ABI
3778   // guarantees that our caller has allocated the parameter save area
3779   // on its stack frame.  In the ELFv1 ABI, this is always the case;
3780   // in the ELFv2 ABI, it is true if this is a vararg function or if
3781   // any parameter is located in a stack slot.
3782 
3783   bool HasParameterArea = !isELFv2ABI || isVarArg;
3784   unsigned ParamAreaSize = Num_GPR_Regs * PtrByteSize;
3785   unsigned NumBytes = LinkageSize;
3786   unsigned AvailableFPRs = Num_FPR_Regs;
3787   unsigned AvailableVRs = Num_VR_Regs;
3788   for (unsigned i = 0, e = Ins.size(); i != e; ++i) {
3789     if (Ins[i].Flags.isNest())
3790       continue;
3791 
3792     if (CalculateStackSlotUsed(Ins[i].VT, Ins[i].ArgVT, Ins[i].Flags,
3793                                PtrByteSize, LinkageSize, ParamAreaSize,
3794                                NumBytes, AvailableFPRs, AvailableVRs,
3795                                Subtarget.hasQPX()))
3796       HasParameterArea = true;
3797   }
3798 
3799   // Add DAG nodes to load the arguments or copy them out of registers.  On
3800   // entry to a function on PPC, the arguments start after the linkage area,
3801   // although the first ones are often in registers.
3802 
3803   unsigned ArgOffset = LinkageSize;
3804   unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0;
3805   unsigned &QFPR_idx = FPR_idx;
3806   SmallVector<SDValue, 8> MemOps;
3807   Function::const_arg_iterator FuncArg = MF.getFunction().arg_begin();
3808   unsigned CurArgIdx = 0;
3809   for (unsigned ArgNo = 0, e = Ins.size(); ArgNo != e; ++ArgNo) {
3810     SDValue ArgVal;
3811     bool needsLoad = false;
3812     EVT ObjectVT = Ins[ArgNo].VT;
3813     EVT OrigVT = Ins[ArgNo].ArgVT;
3814     unsigned ObjSize = ObjectVT.getStoreSize();
3815     unsigned ArgSize = ObjSize;
3816     ISD::ArgFlagsTy Flags = Ins[ArgNo].Flags;
3817     if (Ins[ArgNo].isOrigArg()) {
3818       std::advance(FuncArg, Ins[ArgNo].getOrigArgIndex() - CurArgIdx);
3819       CurArgIdx = Ins[ArgNo].getOrigArgIndex();
3820     }
3821     // We re-align the argument offset for each argument, except when using the
3822     // fast calling convention, when we need to make sure we do that only when
3823     // we'll actually use a stack slot.
3824     unsigned CurArgOffset, Align;
3825     auto ComputeArgOffset = [&]() {
3826       /* Respect alignment of argument on the stack.  */
3827       Align = CalculateStackSlotAlignment(ObjectVT, OrigVT, Flags, PtrByteSize);
3828       ArgOffset = ((ArgOffset + Align - 1) / Align) * Align;
3829       CurArgOffset = ArgOffset;
3830     };
3831 
3832     if (CallConv != CallingConv::Fast) {
3833       ComputeArgOffset();
3834 
3835       /* Compute GPR index associated with argument offset.  */
3836       GPR_idx = (ArgOffset - LinkageSize) / PtrByteSize;
3837       GPR_idx = std::min(GPR_idx, Num_GPR_Regs);
3838     }
3839 
3840     // FIXME the codegen can be much improved in some cases.
3841     // We do not have to keep everything in memory.
3842     if (Flags.isByVal()) {
3843       assert(Ins[ArgNo].isOrigArg() && "Byval arguments cannot be implicit");
3844 
3845       if (CallConv == CallingConv::Fast)
3846         ComputeArgOffset();
3847 
3848       // ObjSize is the true size, ArgSize rounded up to multiple of registers.
3849       ObjSize = Flags.getByValSize();
3850       ArgSize = ((ObjSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
3851       // Empty aggregate parameters do not take up registers.  Examples:
3852       //   struct { } a;
3853       //   union  { } b;
3854       //   int c[0];
3855       // etc.  However, we have to provide a place-holder in InVals, so
3856       // pretend we have an 8-byte item at the current address for that
3857       // purpose.
3858       if (!ObjSize) {
3859         int FI = MFI.CreateFixedObject(PtrByteSize, ArgOffset, true);
3860         SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
3861         InVals.push_back(FIN);
3862         continue;
3863       }
3864 
3865       // Create a stack object covering all stack doublewords occupied
3866       // by the argument.  If the argument is (fully or partially) on
3867       // the stack, or if the argument is fully in registers but the
3868       // caller has allocated the parameter save anyway, we can refer
3869       // directly to the caller's stack frame.  Otherwise, create a
3870       // local copy in our own frame.
3871       int FI;
3872       if (HasParameterArea ||
3873           ArgSize + ArgOffset > LinkageSize + Num_GPR_Regs * PtrByteSize)
3874         FI = MFI.CreateFixedObject(ArgSize, ArgOffset, false, true);
3875       else
3876         FI = MFI.CreateStackObject(ArgSize, Align, false);
3877       SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
3878 
3879       // Handle aggregates smaller than 8 bytes.
3880       if (ObjSize < PtrByteSize) {
3881         // The value of the object is its address, which differs from the
3882         // address of the enclosing doubleword on big-endian systems.
3883         SDValue Arg = FIN;
3884         if (!isLittleEndian) {
3885           SDValue ArgOff = DAG.getConstant(PtrByteSize - ObjSize, dl, PtrVT);
3886           Arg = DAG.getNode(ISD::ADD, dl, ArgOff.getValueType(), Arg, ArgOff);
3887         }
3888         InVals.push_back(Arg);
3889 
3890         if (GPR_idx != Num_GPR_Regs) {
3891           unsigned VReg = MF.addLiveIn(GPR[GPR_idx++], &PPC::G8RCRegClass);
3892           FuncInfo->addLiveInAttr(VReg, Flags);
3893           SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
3894           SDValue Store;
3895 
3896           if (ObjSize==1 || ObjSize==2 || ObjSize==4) {
3897             EVT ObjType = (ObjSize == 1 ? MVT::i8 :
3898                            (ObjSize == 2 ? MVT::i16 : MVT::i32));
3899             Store = DAG.getTruncStore(Val.getValue(1), dl, Val, Arg,
3900                                       MachinePointerInfo(&*FuncArg), ObjType);
3901           } else {
3902             // For sizes that don't fit a truncating store (3, 5, 6, 7),
3903             // store the whole register as-is to the parameter save area
3904             // slot.
3905             Store = DAG.getStore(Val.getValue(1), dl, Val, FIN,
3906                                  MachinePointerInfo(&*FuncArg));
3907           }
3908 
3909           MemOps.push_back(Store);
3910         }
3911         // Whether we copied from a register or not, advance the offset
3912         // into the parameter save area by a full doubleword.
3913         ArgOffset += PtrByteSize;
3914         continue;
3915       }
3916 
3917       // The value of the object is its address, which is the address of
3918       // its first stack doubleword.
3919       InVals.push_back(FIN);
3920 
3921       // Store whatever pieces of the object are in registers to memory.
3922       for (unsigned j = 0; j < ArgSize; j += PtrByteSize) {
3923         if (GPR_idx == Num_GPR_Regs)
3924           break;
3925 
3926         unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
3927         FuncInfo->addLiveInAttr(VReg, Flags);
3928         SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
3929         SDValue Addr = FIN;
3930         if (j) {
3931           SDValue Off = DAG.getConstant(j, dl, PtrVT);
3932           Addr = DAG.getNode(ISD::ADD, dl, Off.getValueType(), Addr, Off);
3933         }
3934         SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, Addr,
3935                                      MachinePointerInfo(&*FuncArg, j));
3936         MemOps.push_back(Store);
3937         ++GPR_idx;
3938       }
3939       ArgOffset += ArgSize;
3940       continue;
3941     }
3942 
3943     switch (ObjectVT.getSimpleVT().SimpleTy) {
3944     default: llvm_unreachable("Unhandled argument type!");
3945     case MVT::i1:
3946     case MVT::i32:
3947     case MVT::i64:
3948       if (Flags.isNest()) {
3949         // The 'nest' parameter, if any, is passed in R11.
3950         unsigned VReg = MF.addLiveIn(PPC::X11, &PPC::G8RCRegClass);
3951         ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64);
3952 
3953         if (ObjectVT == MVT::i32 || ObjectVT == MVT::i1)
3954           ArgVal = extendArgForPPC64(Flags, ObjectVT, DAG, ArgVal, dl);
3955 
3956         break;
3957       }
3958 
3959       // These can be scalar arguments or elements of an integer array type
3960       // passed directly.  Clang may use those instead of "byval" aggregate
3961       // types to avoid forcing arguments to memory unnecessarily.
3962       if (GPR_idx != Num_GPR_Regs) {
3963         unsigned VReg = MF.addLiveIn(GPR[GPR_idx++], &PPC::G8RCRegClass);
3964         FuncInfo->addLiveInAttr(VReg, Flags);
3965         ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64);
3966 
3967         if (ObjectVT == MVT::i32 || ObjectVT == MVT::i1)
3968           // PPC64 passes i8, i16, and i32 values in i64 registers. Promote
3969           // value to MVT::i64 and then truncate to the correct register size.
3970           ArgVal = extendArgForPPC64(Flags, ObjectVT, DAG, ArgVal, dl);
3971       } else {
3972         if (CallConv == CallingConv::Fast)
3973           ComputeArgOffset();
3974 
3975         needsLoad = true;
3976         ArgSize = PtrByteSize;
3977       }
3978       if (CallConv != CallingConv::Fast || needsLoad)
3979         ArgOffset += 8;
3980       break;
3981 
3982     case MVT::f32:
3983     case MVT::f64:
3984       // These can be scalar arguments or elements of a float array type
3985       // passed directly.  The latter are used to implement ELFv2 homogenous
3986       // float aggregates.
3987       if (FPR_idx != Num_FPR_Regs) {
3988         unsigned VReg;
3989 
3990         if (ObjectVT == MVT::f32)
3991           VReg = MF.addLiveIn(FPR[FPR_idx],
3992                               Subtarget.hasP8Vector()
3993                                   ? &PPC::VSSRCRegClass
3994                                   : &PPC::F4RCRegClass);
3995         else
3996           VReg = MF.addLiveIn(FPR[FPR_idx], Subtarget.hasVSX()
3997                                                 ? &PPC::VSFRCRegClass
3998                                                 : &PPC::F8RCRegClass);
3999 
4000         ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT);
4001         ++FPR_idx;
4002       } else if (GPR_idx != Num_GPR_Regs && CallConv != CallingConv::Fast) {
4003         // FIXME: We may want to re-enable this for CallingConv::Fast on the P8
4004         // once we support fp <-> gpr moves.
4005 
4006         // This can only ever happen in the presence of f32 array types,
4007         // since otherwise we never run out of FPRs before running out
4008         // of GPRs.
4009         unsigned VReg = MF.addLiveIn(GPR[GPR_idx++], &PPC::G8RCRegClass);
4010         FuncInfo->addLiveInAttr(VReg, Flags);
4011         ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64);
4012 
4013         if (ObjectVT == MVT::f32) {
4014           if ((ArgOffset % PtrByteSize) == (isLittleEndian ? 4 : 0))
4015             ArgVal = DAG.getNode(ISD::SRL, dl, MVT::i64, ArgVal,
4016                                  DAG.getConstant(32, dl, MVT::i32));
4017           ArgVal = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, ArgVal);
4018         }
4019 
4020         ArgVal = DAG.getNode(ISD::BITCAST, dl, ObjectVT, ArgVal);
4021       } else {
4022         if (CallConv == CallingConv::Fast)
4023           ComputeArgOffset();
4024 
4025         needsLoad = true;
4026       }
4027 
4028       // When passing an array of floats, the array occupies consecutive
4029       // space in the argument area; only round up to the next doubleword
4030       // at the end of the array.  Otherwise, each float takes 8 bytes.
4031       if (CallConv != CallingConv::Fast || needsLoad) {
4032         ArgSize = Flags.isInConsecutiveRegs() ? ObjSize : PtrByteSize;
4033         ArgOffset += ArgSize;
4034         if (Flags.isInConsecutiveRegsLast())
4035           ArgOffset = ((ArgOffset + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
4036       }
4037       break;
4038     case MVT::v4f32:
4039     case MVT::v4i32:
4040     case MVT::v8i16:
4041     case MVT::v16i8:
4042     case MVT::v2f64:
4043     case MVT::v2i64:
4044     case MVT::v1i128:
4045     case MVT::f128:
4046       if (!Subtarget.hasQPX()) {
4047         // These can be scalar arguments or elements of a vector array type
4048         // passed directly.  The latter are used to implement ELFv2 homogenous
4049         // vector aggregates.
4050         if (VR_idx != Num_VR_Regs) {
4051           unsigned VReg = MF.addLiveIn(VR[VR_idx], &PPC::VRRCRegClass);
4052           ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT);
4053           ++VR_idx;
4054         } else {
4055           if (CallConv == CallingConv::Fast)
4056             ComputeArgOffset();
4057           needsLoad = true;
4058         }
4059         if (CallConv != CallingConv::Fast || needsLoad)
4060           ArgOffset += 16;
4061         break;
4062       } // not QPX
4063 
4064       assert(ObjectVT.getSimpleVT().SimpleTy == MVT::v4f32 &&
4065              "Invalid QPX parameter type");
4066       LLVM_FALLTHROUGH;
4067 
4068     case MVT::v4f64:
4069     case MVT::v4i1:
4070       // QPX vectors are treated like their scalar floating-point subregisters
4071       // (except that they're larger).
4072       unsigned Sz = ObjectVT.getSimpleVT().SimpleTy == MVT::v4f32 ? 16 : 32;
4073       if (QFPR_idx != Num_QFPR_Regs) {
4074         const TargetRegisterClass *RC;
4075         switch (ObjectVT.getSimpleVT().SimpleTy) {
4076         case MVT::v4f64: RC = &PPC::QFRCRegClass; break;
4077         case MVT::v4f32: RC = &PPC::QSRCRegClass; break;
4078         default:         RC = &PPC::QBRCRegClass; break;
4079         }
4080 
4081         unsigned VReg = MF.addLiveIn(QFPR[QFPR_idx], RC);
4082         ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT);
4083         ++QFPR_idx;
4084       } else {
4085         if (CallConv == CallingConv::Fast)
4086           ComputeArgOffset();
4087         needsLoad = true;
4088       }
4089       if (CallConv != CallingConv::Fast || needsLoad)
4090         ArgOffset += Sz;
4091       break;
4092     }
4093 
4094     // We need to load the argument to a virtual register if we determined
4095     // above that we ran out of physical registers of the appropriate type.
4096     if (needsLoad) {
4097       if (ObjSize < ArgSize && !isLittleEndian)
4098         CurArgOffset += ArgSize - ObjSize;
4099       int FI = MFI.CreateFixedObject(ObjSize, CurArgOffset, isImmutable);
4100       SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
4101       ArgVal = DAG.getLoad(ObjectVT, dl, Chain, FIN, MachinePointerInfo());
4102     }
4103 
4104     InVals.push_back(ArgVal);
4105   }
4106 
4107   // Area that is at least reserved in the caller of this function.
4108   unsigned MinReservedArea;
4109   if (HasParameterArea)
4110     MinReservedArea = std::max(ArgOffset, LinkageSize + 8 * PtrByteSize);
4111   else
4112     MinReservedArea = LinkageSize;
4113 
4114   // Set the size that is at least reserved in caller of this function.  Tail
4115   // call optimized functions' reserved stack space needs to be aligned so that
4116   // taking the difference between two stack areas will result in an aligned
4117   // stack.
4118   MinReservedArea =
4119       EnsureStackAlignment(Subtarget.getFrameLowering(), MinReservedArea);
4120   FuncInfo->setMinReservedArea(MinReservedArea);
4121 
4122   // If the function takes variable number of arguments, make a frame index for
4123   // the start of the first vararg value... for expansion of llvm.va_start.
4124   if (isVarArg) {
4125     int Depth = ArgOffset;
4126 
4127     FuncInfo->setVarArgsFrameIndex(
4128       MFI.CreateFixedObject(PtrByteSize, Depth, true));
4129     SDValue FIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT);
4130 
4131     // If this function is vararg, store any remaining integer argument regs
4132     // to their spots on the stack so that they may be loaded by dereferencing
4133     // the result of va_next.
4134     for (GPR_idx = (ArgOffset - LinkageSize) / PtrByteSize;
4135          GPR_idx < Num_GPR_Regs; ++GPR_idx) {
4136       unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
4137       SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
4138       SDValue Store =
4139           DAG.getStore(Val.getValue(1), dl, Val, FIN, MachinePointerInfo());
4140       MemOps.push_back(Store);
4141       // Increment the address by four for the next argument to store
4142       SDValue PtrOff = DAG.getConstant(PtrByteSize, dl, PtrVT);
4143       FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff);
4144     }
4145   }
4146 
4147   if (!MemOps.empty())
4148     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOps);
4149 
4150   return Chain;
4151 }
4152 
4153 SDValue PPCTargetLowering::LowerFormalArguments_Darwin(
4154     SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
4155     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
4156     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
4157   // TODO: add description of PPC stack frame format, or at least some docs.
4158   //
4159   MachineFunction &MF = DAG.getMachineFunction();
4160   MachineFrameInfo &MFI = MF.getFrameInfo();
4161   PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
4162 
4163   EVT PtrVT = getPointerTy(MF.getDataLayout());
4164   bool isPPC64 = PtrVT == MVT::i64;
4165   // Potential tail calls could cause overwriting of argument stack slots.
4166   bool isImmutable = !(getTargetMachine().Options.GuaranteedTailCallOpt &&
4167                        (CallConv == CallingConv::Fast));
4168   unsigned PtrByteSize = isPPC64 ? 8 : 4;
4169   unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize();
4170   unsigned ArgOffset = LinkageSize;
4171   // Area that is at least reserved in caller of this function.
4172   unsigned MinReservedArea = ArgOffset;
4173 
4174   static const MCPhysReg GPR_32[] = {           // 32-bit registers.
4175     PPC::R3, PPC::R4, PPC::R5, PPC::R6,
4176     PPC::R7, PPC::R8, PPC::R9, PPC::R10,
4177   };
4178   static const MCPhysReg GPR_64[] = {           // 64-bit registers.
4179     PPC::X3, PPC::X4, PPC::X5, PPC::X6,
4180     PPC::X7, PPC::X8, PPC::X9, PPC::X10,
4181   };
4182   static const MCPhysReg VR[] = {
4183     PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8,
4184     PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13
4185   };
4186 
4187   const unsigned Num_GPR_Regs = array_lengthof(GPR_32);
4188   const unsigned Num_FPR_Regs = useSoftFloat() ? 0 : 13;
4189   const unsigned Num_VR_Regs  = array_lengthof( VR);
4190 
4191   unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0;
4192 
4193   const MCPhysReg *GPR = isPPC64 ? GPR_64 : GPR_32;
4194 
4195   // In 32-bit non-varargs functions, the stack space for vectors is after the
4196   // stack space for non-vectors.  We do not use this space unless we have
4197   // too many vectors to fit in registers, something that only occurs in
4198   // constructed examples:), but we have to walk the arglist to figure
4199   // that out...for the pathological case, compute VecArgOffset as the
4200   // start of the vector parameter area.  Computing VecArgOffset is the
4201   // entire point of the following loop.
4202   unsigned VecArgOffset = ArgOffset;
4203   if (!isVarArg && !isPPC64) {
4204     for (unsigned ArgNo = 0, e = Ins.size(); ArgNo != e;
4205          ++ArgNo) {
4206       EVT ObjectVT = Ins[ArgNo].VT;
4207       ISD::ArgFlagsTy Flags = Ins[ArgNo].Flags;
4208 
4209       if (Flags.isByVal()) {
4210         // ObjSize is the true size, ArgSize rounded up to multiple of regs.
4211         unsigned ObjSize = Flags.getByValSize();
4212         unsigned ArgSize =
4213                 ((ObjSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
4214         VecArgOffset += ArgSize;
4215         continue;
4216       }
4217 
4218       switch(ObjectVT.getSimpleVT().SimpleTy) {
4219       default: llvm_unreachable("Unhandled argument type!");
4220       case MVT::i1:
4221       case MVT::i32:
4222       case MVT::f32:
4223         VecArgOffset += 4;
4224         break;
4225       case MVT::i64:  // PPC64
4226       case MVT::f64:
4227         // FIXME: We are guaranteed to be !isPPC64 at this point.
4228         // Does MVT::i64 apply?
4229         VecArgOffset += 8;
4230         break;
4231       case MVT::v4f32:
4232       case MVT::v4i32:
4233       case MVT::v8i16:
4234       case MVT::v16i8:
4235         // Nothing to do, we're only looking at Nonvector args here.
4236         break;
4237       }
4238     }
4239   }
4240   // We've found where the vector parameter area in memory is.  Skip the
4241   // first 12 parameters; these don't use that memory.
4242   VecArgOffset = ((VecArgOffset+15)/16)*16;
4243   VecArgOffset += 12*16;
4244 
4245   // Add DAG nodes to load the arguments or copy them out of registers.  On
4246   // entry to a function on PPC, the arguments start after the linkage area,
4247   // although the first ones are often in registers.
4248 
4249   SmallVector<SDValue, 8> MemOps;
4250   unsigned nAltivecParamsAtEnd = 0;
4251   Function::const_arg_iterator FuncArg = MF.getFunction().arg_begin();
4252   unsigned CurArgIdx = 0;
4253   for (unsigned ArgNo = 0, e = Ins.size(); ArgNo != e; ++ArgNo) {
4254     SDValue ArgVal;
4255     bool needsLoad = false;
4256     EVT ObjectVT = Ins[ArgNo].VT;
4257     unsigned ObjSize = ObjectVT.getSizeInBits()/8;
4258     unsigned ArgSize = ObjSize;
4259     ISD::ArgFlagsTy Flags = Ins[ArgNo].Flags;
4260     if (Ins[ArgNo].isOrigArg()) {
4261       std::advance(FuncArg, Ins[ArgNo].getOrigArgIndex() - CurArgIdx);
4262       CurArgIdx = Ins[ArgNo].getOrigArgIndex();
4263     }
4264     unsigned CurArgOffset = ArgOffset;
4265 
4266     // Varargs or 64 bit Altivec parameters are padded to a 16 byte boundary.
4267     if (ObjectVT==MVT::v4f32 || ObjectVT==MVT::v4i32 ||
4268         ObjectVT==MVT::v8i16 || ObjectVT==MVT::v16i8) {
4269       if (isVarArg || isPPC64) {
4270         MinReservedArea = ((MinReservedArea+15)/16)*16;
4271         MinReservedArea += CalculateStackSlotSize(ObjectVT,
4272                                                   Flags,
4273                                                   PtrByteSize);
4274       } else  nAltivecParamsAtEnd++;
4275     } else
4276       // Calculate min reserved area.
4277       MinReservedArea += CalculateStackSlotSize(Ins[ArgNo].VT,
4278                                                 Flags,
4279                                                 PtrByteSize);
4280 
4281     // FIXME the codegen can be much improved in some cases.
4282     // We do not have to keep everything in memory.
4283     if (Flags.isByVal()) {
4284       assert(Ins[ArgNo].isOrigArg() && "Byval arguments cannot be implicit");
4285 
4286       // ObjSize is the true size, ArgSize rounded up to multiple of registers.
4287       ObjSize = Flags.getByValSize();
4288       ArgSize = ((ObjSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
4289       // Objects of size 1 and 2 are right justified, everything else is
4290       // left justified.  This means the memory address is adjusted forwards.
4291       if (ObjSize==1 || ObjSize==2) {
4292         CurArgOffset = CurArgOffset + (4 - ObjSize);
4293       }
4294       // The value of the object is its address.
4295       int FI = MFI.CreateFixedObject(ObjSize, CurArgOffset, false, true);
4296       SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
4297       InVals.push_back(FIN);
4298       if (ObjSize==1 || ObjSize==2) {
4299         if (GPR_idx != Num_GPR_Regs) {
4300           unsigned VReg;
4301           if (isPPC64)
4302             VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
4303           else
4304             VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass);
4305           SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
4306           EVT ObjType = ObjSize == 1 ? MVT::i8 : MVT::i16;
4307           SDValue Store =
4308               DAG.getTruncStore(Val.getValue(1), dl, Val, FIN,
4309                                 MachinePointerInfo(&*FuncArg), ObjType);
4310           MemOps.push_back(Store);
4311           ++GPR_idx;
4312         }
4313 
4314         ArgOffset += PtrByteSize;
4315 
4316         continue;
4317       }
4318       for (unsigned j = 0; j < ArgSize; j += PtrByteSize) {
4319         // Store whatever pieces of the object are in registers
4320         // to memory.  ArgOffset will be the address of the beginning
4321         // of the object.
4322         if (GPR_idx != Num_GPR_Regs) {
4323           unsigned VReg;
4324           if (isPPC64)
4325             VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
4326           else
4327             VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass);
4328           int FI = MFI.CreateFixedObject(PtrByteSize, ArgOffset, true);
4329           SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
4330           SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
4331           SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, FIN,
4332                                        MachinePointerInfo(&*FuncArg, j));
4333           MemOps.push_back(Store);
4334           ++GPR_idx;
4335           ArgOffset += PtrByteSize;
4336         } else {
4337           ArgOffset += ArgSize - (ArgOffset-CurArgOffset);
4338           break;
4339         }
4340       }
4341       continue;
4342     }
4343 
4344     switch (ObjectVT.getSimpleVT().SimpleTy) {
4345     default: llvm_unreachable("Unhandled argument type!");
4346     case MVT::i1:
4347     case MVT::i32:
4348       if (!isPPC64) {
4349         if (GPR_idx != Num_GPR_Regs) {
4350           unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass);
4351           ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i32);
4352 
4353           if (ObjectVT == MVT::i1)
4354             ArgVal = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, ArgVal);
4355 
4356           ++GPR_idx;
4357         } else {
4358           needsLoad = true;
4359           ArgSize = PtrByteSize;
4360         }
4361         // All int arguments reserve stack space in the Darwin ABI.
4362         ArgOffset += PtrByteSize;
4363         break;
4364       }
4365       LLVM_FALLTHROUGH;
4366     case MVT::i64:  // PPC64
4367       if (GPR_idx != Num_GPR_Regs) {
4368         unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
4369         ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64);
4370 
4371         if (ObjectVT == MVT::i32 || ObjectVT == MVT::i1)
4372           // PPC64 passes i8, i16, and i32 values in i64 registers. Promote
4373           // value to MVT::i64 and then truncate to the correct register size.
4374           ArgVal = extendArgForPPC64(Flags, ObjectVT, DAG, ArgVal, dl);
4375 
4376         ++GPR_idx;
4377       } else {
4378         needsLoad = true;
4379         ArgSize = PtrByteSize;
4380       }
4381       // All int arguments reserve stack space in the Darwin ABI.
4382       ArgOffset += 8;
4383       break;
4384 
4385     case MVT::f32:
4386     case MVT::f64:
4387       // Every 4 bytes of argument space consumes one of the GPRs available for
4388       // argument passing.
4389       if (GPR_idx != Num_GPR_Regs) {
4390         ++GPR_idx;
4391         if (ObjSize == 8 && GPR_idx != Num_GPR_Regs && !isPPC64)
4392           ++GPR_idx;
4393       }
4394       if (FPR_idx != Num_FPR_Regs) {
4395         unsigned VReg;
4396 
4397         if (ObjectVT == MVT::f32)
4398           VReg = MF.addLiveIn(FPR[FPR_idx], &PPC::F4RCRegClass);
4399         else
4400           VReg = MF.addLiveIn(FPR[FPR_idx], &PPC::F8RCRegClass);
4401 
4402         ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT);
4403         ++FPR_idx;
4404       } else {
4405         needsLoad = true;
4406       }
4407 
4408       // All FP arguments reserve stack space in the Darwin ABI.
4409       ArgOffset += isPPC64 ? 8 : ObjSize;
4410       break;
4411     case MVT::v4f32:
4412     case MVT::v4i32:
4413     case MVT::v8i16:
4414     case MVT::v16i8:
4415       // Note that vector arguments in registers don't reserve stack space,
4416       // except in varargs functions.
4417       if (VR_idx != Num_VR_Regs) {
4418         unsigned VReg = MF.addLiveIn(VR[VR_idx], &PPC::VRRCRegClass);
4419         ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT);
4420         if (isVarArg) {
4421           while ((ArgOffset % 16) != 0) {
4422             ArgOffset += PtrByteSize;
4423             if (GPR_idx != Num_GPR_Regs)
4424               GPR_idx++;
4425           }
4426           ArgOffset += 16;
4427           GPR_idx = std::min(GPR_idx+4, Num_GPR_Regs); // FIXME correct for ppc64?
4428         }
4429         ++VR_idx;
4430       } else {
4431         if (!isVarArg && !isPPC64) {
4432           // Vectors go after all the nonvectors.
4433           CurArgOffset = VecArgOffset;
4434           VecArgOffset += 16;
4435         } else {
4436           // Vectors are aligned.
4437           ArgOffset = ((ArgOffset+15)/16)*16;
4438           CurArgOffset = ArgOffset;
4439           ArgOffset += 16;
4440         }
4441         needsLoad = true;
4442       }
4443       break;
4444     }
4445 
4446     // We need to load the argument to a virtual register if we determined above
4447     // that we ran out of physical registers of the appropriate type.
4448     if (needsLoad) {
4449       int FI = MFI.CreateFixedObject(ObjSize,
4450                                      CurArgOffset + (ArgSize - ObjSize),
4451                                      isImmutable);
4452       SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
4453       ArgVal = DAG.getLoad(ObjectVT, dl, Chain, FIN, MachinePointerInfo());
4454     }
4455 
4456     InVals.push_back(ArgVal);
4457   }
4458 
4459   // Allow for Altivec parameters at the end, if needed.
4460   if (nAltivecParamsAtEnd) {
4461     MinReservedArea = ((MinReservedArea+15)/16)*16;
4462     MinReservedArea += 16*nAltivecParamsAtEnd;
4463   }
4464 
4465   // Area that is at least reserved in the caller of this function.
4466   MinReservedArea = std::max(MinReservedArea, LinkageSize + 8 * PtrByteSize);
4467 
4468   // Set the size that is at least reserved in caller of this function.  Tail
4469   // call optimized functions' reserved stack space needs to be aligned so that
4470   // taking the difference between two stack areas will result in an aligned
4471   // stack.
4472   MinReservedArea =
4473       EnsureStackAlignment(Subtarget.getFrameLowering(), MinReservedArea);
4474   FuncInfo->setMinReservedArea(MinReservedArea);
4475 
4476   // If the function takes variable number of arguments, make a frame index for
4477   // the start of the first vararg value... for expansion of llvm.va_start.
4478   if (isVarArg) {
4479     int Depth = ArgOffset;
4480 
4481     FuncInfo->setVarArgsFrameIndex(
4482       MFI.CreateFixedObject(PtrVT.getSizeInBits()/8,
4483                             Depth, true));
4484     SDValue FIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT);
4485 
4486     // If this function is vararg, store any remaining integer argument regs
4487     // to their spots on the stack so that they may be loaded by dereferencing
4488     // the result of va_next.
4489     for (; GPR_idx != Num_GPR_Regs; ++GPR_idx) {
4490       unsigned VReg;
4491 
4492       if (isPPC64)
4493         VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
4494       else
4495         VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass);
4496 
4497       SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
4498       SDValue Store =
4499           DAG.getStore(Val.getValue(1), dl, Val, FIN, MachinePointerInfo());
4500       MemOps.push_back(Store);
4501       // Increment the address by four for the next argument to store
4502       SDValue PtrOff = DAG.getConstant(PtrVT.getSizeInBits()/8, dl, PtrVT);
4503       FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff);
4504     }
4505   }
4506 
4507   if (!MemOps.empty())
4508     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOps);
4509 
4510   return Chain;
4511 }
4512 
4513 /// CalculateTailCallSPDiff - Get the amount the stack pointer has to be
4514 /// adjusted to accommodate the arguments for the tailcall.
4515 static int CalculateTailCallSPDiff(SelectionDAG& DAG, bool isTailCall,
4516                                    unsigned ParamSize) {
4517 
4518   if (!isTailCall) return 0;
4519 
4520   PPCFunctionInfo *FI = DAG.getMachineFunction().getInfo<PPCFunctionInfo>();
4521   unsigned CallerMinReservedArea = FI->getMinReservedArea();
4522   int SPDiff = (int)CallerMinReservedArea - (int)ParamSize;
4523   // Remember only if the new adjustment is bigger.
4524   if (SPDiff < FI->getTailCallSPDelta())
4525     FI->setTailCallSPDelta(SPDiff);
4526 
4527   return SPDiff;
4528 }
4529 
4530 static bool isFunctionGlobalAddress(SDValue Callee);
4531 
4532 static bool
4533 callsShareTOCBase(const Function *Caller, SDValue Callee,
4534                     const TargetMachine &TM) {
4535    // Callee is either a GlobalAddress or an ExternalSymbol. ExternalSymbols
4536    // don't have enough information to determine if the caller and calle share
4537    // the same  TOC base, so we have to pessimistically assume they don't for
4538    // correctness.
4539    GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee);
4540    if (!G)
4541      return false;
4542 
4543    const GlobalValue *GV = G->getGlobal();
4544   // The medium and large code models are expected to provide a sufficiently
4545   // large TOC to provide all data addressing needs of a module with a
4546   // single TOC. Since each module will be addressed with a single TOC then we
4547   // only need to check that caller and callee don't cross dso boundaries.
4548   if (CodeModel::Medium == TM.getCodeModel() ||
4549       CodeModel::Large == TM.getCodeModel())
4550     return TM.shouldAssumeDSOLocal(*Caller->getParent(), GV);
4551 
4552   // Otherwise we need to ensure callee and caller are in the same section,
4553   // since the linker may allocate multiple TOCs, and we don't know which
4554   // sections will belong to the same TOC base.
4555 
4556   if (!GV->isStrongDefinitionForLinker())
4557     return false;
4558 
4559   // Any explicitly-specified sections and section prefixes must also match.
4560   // Also, if we're using -ffunction-sections, then each function is always in
4561   // a different section (the same is true for COMDAT functions).
4562   if (TM.getFunctionSections() || GV->hasComdat() || Caller->hasComdat() ||
4563       GV->getSection() != Caller->getSection())
4564     return false;
4565   if (const auto *F = dyn_cast<Function>(GV)) {
4566     if (F->getSectionPrefix() != Caller->getSectionPrefix())
4567       return false;
4568   }
4569 
4570   // If the callee might be interposed, then we can't assume the ultimate call
4571   // target will be in the same section. Even in cases where we can assume that
4572   // interposition won't happen, in any case where the linker might insert a
4573   // stub to allow for interposition, we must generate code as though
4574   // interposition might occur. To understand why this matters, consider a
4575   // situation where: a -> b -> c where the arrows indicate calls. b and c are
4576   // in the same section, but a is in a different module (i.e. has a different
4577   // TOC base pointer). If the linker allows for interposition between b and c,
4578   // then it will generate a stub for the call edge between b and c which will
4579   // save the TOC pointer into the designated stack slot allocated by b. If we
4580   // return true here, and therefore allow a tail call between b and c, that
4581   // stack slot won't exist and the b -> c stub will end up saving b'c TOC base
4582   // pointer into the stack slot allocated by a (where the a -> b stub saved
4583   // a's TOC base pointer). If we're not considering a tail call, but rather,
4584   // whether a nop is needed after the call instruction in b, because the linker
4585   // will insert a stub, it might complain about a missing nop if we omit it
4586   // (although many don't complain in this case).
4587   if (!TM.shouldAssumeDSOLocal(*Caller->getParent(), GV))
4588     return false;
4589 
4590   return true;
4591 }
4592 
4593 static bool
4594 needStackSlotPassParameters(const PPCSubtarget &Subtarget,
4595                             const SmallVectorImpl<ISD::OutputArg> &Outs) {
4596   assert(Subtarget.is64BitELFABI());
4597 
4598   const unsigned PtrByteSize = 8;
4599   const unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize();
4600 
4601   static const MCPhysReg GPR[] = {
4602     PPC::X3, PPC::X4, PPC::X5, PPC::X6,
4603     PPC::X7, PPC::X8, PPC::X9, PPC::X10,
4604   };
4605   static const MCPhysReg VR[] = {
4606     PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8,
4607     PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13
4608   };
4609 
4610   const unsigned NumGPRs = array_lengthof(GPR);
4611   const unsigned NumFPRs = 13;
4612   const unsigned NumVRs = array_lengthof(VR);
4613   const unsigned ParamAreaSize = NumGPRs * PtrByteSize;
4614 
4615   unsigned NumBytes = LinkageSize;
4616   unsigned AvailableFPRs = NumFPRs;
4617   unsigned AvailableVRs = NumVRs;
4618 
4619   for (const ISD::OutputArg& Param : Outs) {
4620     if (Param.Flags.isNest()) continue;
4621 
4622     if (CalculateStackSlotUsed(Param.VT, Param.ArgVT, Param.Flags,
4623                                PtrByteSize, LinkageSize, ParamAreaSize,
4624                                NumBytes, AvailableFPRs, AvailableVRs,
4625                                Subtarget.hasQPX()))
4626       return true;
4627   }
4628   return false;
4629 }
4630 
4631 static bool
4632 hasSameArgumentList(const Function *CallerFn, ImmutableCallSite CS) {
4633   if (CS.arg_size() != CallerFn->arg_size())
4634     return false;
4635 
4636   ImmutableCallSite::arg_iterator CalleeArgIter = CS.arg_begin();
4637   ImmutableCallSite::arg_iterator CalleeArgEnd = CS.arg_end();
4638   Function::const_arg_iterator CallerArgIter = CallerFn->arg_begin();
4639 
4640   for (; CalleeArgIter != CalleeArgEnd; ++CalleeArgIter, ++CallerArgIter) {
4641     const Value* CalleeArg = *CalleeArgIter;
4642     const Value* CallerArg = &(*CallerArgIter);
4643     if (CalleeArg == CallerArg)
4644       continue;
4645 
4646     // e.g. @caller([4 x i64] %a, [4 x i64] %b) {
4647     //        tail call @callee([4 x i64] undef, [4 x i64] %b)
4648     //      }
4649     // 1st argument of callee is undef and has the same type as caller.
4650     if (CalleeArg->getType() == CallerArg->getType() &&
4651         isa<UndefValue>(CalleeArg))
4652       continue;
4653 
4654     return false;
4655   }
4656 
4657   return true;
4658 }
4659 
4660 // Returns true if TCO is possible between the callers and callees
4661 // calling conventions.
4662 static bool
4663 areCallingConvEligibleForTCO_64SVR4(CallingConv::ID CallerCC,
4664                                     CallingConv::ID CalleeCC) {
4665   // Tail calls are possible with fastcc and ccc.
4666   auto isTailCallableCC  = [] (CallingConv::ID CC){
4667       return  CC == CallingConv::C || CC == CallingConv::Fast;
4668   };
4669   if (!isTailCallableCC(CallerCC) || !isTailCallableCC(CalleeCC))
4670     return false;
4671 
4672   // We can safely tail call both fastcc and ccc callees from a c calling
4673   // convention caller. If the caller is fastcc, we may have less stack space
4674   // than a non-fastcc caller with the same signature so disable tail-calls in
4675   // that case.
4676   return CallerCC == CallingConv::C || CallerCC == CalleeCC;
4677 }
4678 
4679 bool
4680 PPCTargetLowering::IsEligibleForTailCallOptimization_64SVR4(
4681                                     SDValue Callee,
4682                                     CallingConv::ID CalleeCC,
4683                                     ImmutableCallSite CS,
4684                                     bool isVarArg,
4685                                     const SmallVectorImpl<ISD::OutputArg> &Outs,
4686                                     const SmallVectorImpl<ISD::InputArg> &Ins,
4687                                     SelectionDAG& DAG) const {
4688   bool TailCallOpt = getTargetMachine().Options.GuaranteedTailCallOpt;
4689 
4690   if (DisableSCO && !TailCallOpt) return false;
4691 
4692   // Variadic argument functions are not supported.
4693   if (isVarArg) return false;
4694 
4695   auto &Caller = DAG.getMachineFunction().getFunction();
4696   // Check that the calling conventions are compatible for tco.
4697   if (!areCallingConvEligibleForTCO_64SVR4(Caller.getCallingConv(), CalleeCC))
4698     return false;
4699 
4700   // Caller contains any byval parameter is not supported.
4701   if (any_of(Ins, [](const ISD::InputArg &IA) { return IA.Flags.isByVal(); }))
4702     return false;
4703 
4704   // Callee contains any byval parameter is not supported, too.
4705   // Note: This is a quick work around, because in some cases, e.g.
4706   // caller's stack size > callee's stack size, we are still able to apply
4707   // sibling call optimization. For example, gcc is able to do SCO for caller1
4708   // in the following example, but not for caller2.
4709   //   struct test {
4710   //     long int a;
4711   //     char ary[56];
4712   //   } gTest;
4713   //   __attribute__((noinline)) int callee(struct test v, struct test *b) {
4714   //     b->a = v.a;
4715   //     return 0;
4716   //   }
4717   //   void caller1(struct test a, struct test c, struct test *b) {
4718   //     callee(gTest, b); }
4719   //   void caller2(struct test *b) { callee(gTest, b); }
4720   if (any_of(Outs, [](const ISD::OutputArg& OA) { return OA.Flags.isByVal(); }))
4721     return false;
4722 
4723   // If callee and caller use different calling conventions, we cannot pass
4724   // parameters on stack since offsets for the parameter area may be different.
4725   if (Caller.getCallingConv() != CalleeCC &&
4726       needStackSlotPassParameters(Subtarget, Outs))
4727     return false;
4728 
4729   // No TCO/SCO on indirect call because Caller have to restore its TOC
4730   if (!isFunctionGlobalAddress(Callee) &&
4731       !isa<ExternalSymbolSDNode>(Callee))
4732     return false;
4733 
4734   // If the caller and callee potentially have different TOC bases then we
4735   // cannot tail call since we need to restore the TOC pointer after the call.
4736   // ref: https://bugzilla.mozilla.org/show_bug.cgi?id=973977
4737   if (!callsShareTOCBase(&Caller, Callee, getTargetMachine()))
4738     return false;
4739 
4740   // TCO allows altering callee ABI, so we don't have to check further.
4741   if (CalleeCC == CallingConv::Fast && TailCallOpt)
4742     return true;
4743 
4744   if (DisableSCO) return false;
4745 
4746   // If callee use the same argument list that caller is using, then we can
4747   // apply SCO on this case. If it is not, then we need to check if callee needs
4748   // stack for passing arguments.
4749   if (!hasSameArgumentList(&Caller, CS) &&
4750       needStackSlotPassParameters(Subtarget, Outs)) {
4751     return false;
4752   }
4753 
4754   return true;
4755 }
4756 
4757 /// IsEligibleForTailCallOptimization - Check whether the call is eligible
4758 /// for tail call optimization. Targets which want to do tail call
4759 /// optimization should implement this function.
4760 bool
4761 PPCTargetLowering::IsEligibleForTailCallOptimization(SDValue Callee,
4762                                                      CallingConv::ID CalleeCC,
4763                                                      bool isVarArg,
4764                                       const SmallVectorImpl<ISD::InputArg> &Ins,
4765                                                      SelectionDAG& DAG) const {
4766   if (!getTargetMachine().Options.GuaranteedTailCallOpt)
4767     return false;
4768 
4769   // Variable argument functions are not supported.
4770   if (isVarArg)
4771     return false;
4772 
4773   MachineFunction &MF = DAG.getMachineFunction();
4774   CallingConv::ID CallerCC = MF.getFunction().getCallingConv();
4775   if (CalleeCC == CallingConv::Fast && CallerCC == CalleeCC) {
4776     // Functions containing by val parameters are not supported.
4777     for (unsigned i = 0; i != Ins.size(); i++) {
4778        ISD::ArgFlagsTy Flags = Ins[i].Flags;
4779        if (Flags.isByVal()) return false;
4780     }
4781 
4782     // Non-PIC/GOT tail calls are supported.
4783     if (getTargetMachine().getRelocationModel() != Reloc::PIC_)
4784       return true;
4785 
4786     // At the moment we can only do local tail calls (in same module, hidden
4787     // or protected) if we are generating PIC.
4788     if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee))
4789       return G->getGlobal()->hasHiddenVisibility()
4790           || G->getGlobal()->hasProtectedVisibility();
4791   }
4792 
4793   return false;
4794 }
4795 
4796 /// isCallCompatibleAddress - Return the immediate to use if the specified
4797 /// 32-bit value is representable in the immediate field of a BxA instruction.
4798 static SDNode *isBLACompatibleAddress(SDValue Op, SelectionDAG &DAG) {
4799   ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op);
4800   if (!C) return nullptr;
4801 
4802   int Addr = C->getZExtValue();
4803   if ((Addr & 3) != 0 ||  // Low 2 bits are implicitly zero.
4804       SignExtend32<26>(Addr) != Addr)
4805     return nullptr;  // Top 6 bits have to be sext of immediate.
4806 
4807   return DAG
4808       .getConstant(
4809           (int)C->getZExtValue() >> 2, SDLoc(Op),
4810           DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()))
4811       .getNode();
4812 }
4813 
4814 namespace {
4815 
4816 struct TailCallArgumentInfo {
4817   SDValue Arg;
4818   SDValue FrameIdxOp;
4819   int FrameIdx = 0;
4820 
4821   TailCallArgumentInfo() = default;
4822 };
4823 
4824 } // end anonymous namespace
4825 
4826 /// StoreTailCallArgumentsToStackSlot - Stores arguments to their stack slot.
4827 static void StoreTailCallArgumentsToStackSlot(
4828     SelectionDAG &DAG, SDValue Chain,
4829     const SmallVectorImpl<TailCallArgumentInfo> &TailCallArgs,
4830     SmallVectorImpl<SDValue> &MemOpChains, const SDLoc &dl) {
4831   for (unsigned i = 0, e = TailCallArgs.size(); i != e; ++i) {
4832     SDValue Arg = TailCallArgs[i].Arg;
4833     SDValue FIN = TailCallArgs[i].FrameIdxOp;
4834     int FI = TailCallArgs[i].FrameIdx;
4835     // Store relative to framepointer.
4836     MemOpChains.push_back(DAG.getStore(
4837         Chain, dl, Arg, FIN,
4838         MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI)));
4839   }
4840 }
4841 
4842 /// EmitTailCallStoreFPAndRetAddr - Move the frame pointer and return address to
4843 /// the appropriate stack slot for the tail call optimized function call.
4844 static SDValue EmitTailCallStoreFPAndRetAddr(SelectionDAG &DAG, SDValue Chain,
4845                                              SDValue OldRetAddr, SDValue OldFP,
4846                                              int SPDiff, const SDLoc &dl) {
4847   if (SPDiff) {
4848     // Calculate the new stack slot for the return address.
4849     MachineFunction &MF = DAG.getMachineFunction();
4850     const PPCSubtarget &Subtarget = MF.getSubtarget<PPCSubtarget>();
4851     const PPCFrameLowering *FL = Subtarget.getFrameLowering();
4852     bool isPPC64 = Subtarget.isPPC64();
4853     int SlotSize = isPPC64 ? 8 : 4;
4854     int NewRetAddrLoc = SPDiff + FL->getReturnSaveOffset();
4855     int NewRetAddr = MF.getFrameInfo().CreateFixedObject(SlotSize,
4856                                                          NewRetAddrLoc, true);
4857     EVT VT = isPPC64 ? MVT::i64 : MVT::i32;
4858     SDValue NewRetAddrFrIdx = DAG.getFrameIndex(NewRetAddr, VT);
4859     Chain = DAG.getStore(Chain, dl, OldRetAddr, NewRetAddrFrIdx,
4860                          MachinePointerInfo::getFixedStack(MF, NewRetAddr));
4861 
4862     // When using the 32/64-bit SVR4 ABI there is no need to move the FP stack
4863     // slot as the FP is never overwritten.
4864     if (Subtarget.isDarwinABI()) {
4865       int NewFPLoc = SPDiff + FL->getFramePointerSaveOffset();
4866       int NewFPIdx = MF.getFrameInfo().CreateFixedObject(SlotSize, NewFPLoc,
4867                                                          true);
4868       SDValue NewFramePtrIdx = DAG.getFrameIndex(NewFPIdx, VT);
4869       Chain = DAG.getStore(Chain, dl, OldFP, NewFramePtrIdx,
4870                            MachinePointerInfo::getFixedStack(
4871                                DAG.getMachineFunction(), NewFPIdx));
4872     }
4873   }
4874   return Chain;
4875 }
4876 
4877 /// CalculateTailCallArgDest - Remember Argument for later processing. Calculate
4878 /// the position of the argument.
4879 static void
4880 CalculateTailCallArgDest(SelectionDAG &DAG, MachineFunction &MF, bool isPPC64,
4881                          SDValue Arg, int SPDiff, unsigned ArgOffset,
4882                      SmallVectorImpl<TailCallArgumentInfo>& TailCallArguments) {
4883   int Offset = ArgOffset + SPDiff;
4884   uint32_t OpSize = (Arg.getValueSizeInBits() + 7) / 8;
4885   int FI = MF.getFrameInfo().CreateFixedObject(OpSize, Offset, true);
4886   EVT VT = isPPC64 ? MVT::i64 : MVT::i32;
4887   SDValue FIN = DAG.getFrameIndex(FI, VT);
4888   TailCallArgumentInfo Info;
4889   Info.Arg = Arg;
4890   Info.FrameIdxOp = FIN;
4891   Info.FrameIdx = FI;
4892   TailCallArguments.push_back(Info);
4893 }
4894 
4895 /// EmitTCFPAndRetAddrLoad - Emit load from frame pointer and return address
4896 /// stack slot. Returns the chain as result and the loaded frame pointers in
4897 /// LROpOut/FPOpout. Used when tail calling.
4898 SDValue PPCTargetLowering::EmitTailCallLoadFPAndRetAddr(
4899     SelectionDAG &DAG, int SPDiff, SDValue Chain, SDValue &LROpOut,
4900     SDValue &FPOpOut, const SDLoc &dl) const {
4901   if (SPDiff) {
4902     // Load the LR and FP stack slot for later adjusting.
4903     EVT VT = Subtarget.isPPC64() ? MVT::i64 : MVT::i32;
4904     LROpOut = getReturnAddrFrameIndex(DAG);
4905     LROpOut = DAG.getLoad(VT, dl, Chain, LROpOut, MachinePointerInfo());
4906     Chain = SDValue(LROpOut.getNode(), 1);
4907 
4908     // When using the 32/64-bit SVR4 ABI there is no need to load the FP stack
4909     // slot as the FP is never overwritten.
4910     if (Subtarget.isDarwinABI()) {
4911       FPOpOut = getFramePointerFrameIndex(DAG);
4912       FPOpOut = DAG.getLoad(VT, dl, Chain, FPOpOut, MachinePointerInfo());
4913       Chain = SDValue(FPOpOut.getNode(), 1);
4914     }
4915   }
4916   return Chain;
4917 }
4918 
4919 /// CreateCopyOfByValArgument - Make a copy of an aggregate at address specified
4920 /// by "Src" to address "Dst" of size "Size".  Alignment information is
4921 /// specified by the specific parameter attribute. The copy will be passed as
4922 /// a byval function parameter.
4923 /// Sometimes what we are copying is the end of a larger object, the part that
4924 /// does not fit in registers.
4925 static SDValue CreateCopyOfByValArgument(SDValue Src, SDValue Dst,
4926                                          SDValue Chain, ISD::ArgFlagsTy Flags,
4927                                          SelectionDAG &DAG, const SDLoc &dl) {
4928   SDValue SizeNode = DAG.getConstant(Flags.getByValSize(), dl, MVT::i32);
4929   return DAG.getMemcpy(Chain, dl, Dst, Src, SizeNode, Flags.getByValAlign(),
4930                        false, false, false, MachinePointerInfo(),
4931                        MachinePointerInfo());
4932 }
4933 
4934 /// LowerMemOpCallTo - Store the argument to the stack or remember it in case of
4935 /// tail calls.
4936 static void LowerMemOpCallTo(
4937     SelectionDAG &DAG, MachineFunction &MF, SDValue Chain, SDValue Arg,
4938     SDValue PtrOff, int SPDiff, unsigned ArgOffset, bool isPPC64,
4939     bool isTailCall, bool isVector, SmallVectorImpl<SDValue> &MemOpChains,
4940     SmallVectorImpl<TailCallArgumentInfo> &TailCallArguments, const SDLoc &dl) {
4941   EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout());
4942   if (!isTailCall) {
4943     if (isVector) {
4944       SDValue StackPtr;
4945       if (isPPC64)
4946         StackPtr = DAG.getRegister(PPC::X1, MVT::i64);
4947       else
4948         StackPtr = DAG.getRegister(PPC::R1, MVT::i32);
4949       PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr,
4950                            DAG.getConstant(ArgOffset, dl, PtrVT));
4951     }
4952     MemOpChains.push_back(
4953         DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo()));
4954     // Calculate and remember argument location.
4955   } else CalculateTailCallArgDest(DAG, MF, isPPC64, Arg, SPDiff, ArgOffset,
4956                                   TailCallArguments);
4957 }
4958 
4959 static void
4960 PrepareTailCall(SelectionDAG &DAG, SDValue &InFlag, SDValue &Chain,
4961                 const SDLoc &dl, int SPDiff, unsigned NumBytes, SDValue LROp,
4962                 SDValue FPOp,
4963                 SmallVectorImpl<TailCallArgumentInfo> &TailCallArguments) {
4964   // Emit a sequence of copyto/copyfrom virtual registers for arguments that
4965   // might overwrite each other in case of tail call optimization.
4966   SmallVector<SDValue, 8> MemOpChains2;
4967   // Do not flag preceding copytoreg stuff together with the following stuff.
4968   InFlag = SDValue();
4969   StoreTailCallArgumentsToStackSlot(DAG, Chain, TailCallArguments,
4970                                     MemOpChains2, dl);
4971   if (!MemOpChains2.empty())
4972     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains2);
4973 
4974   // Store the return address to the appropriate stack slot.
4975   Chain = EmitTailCallStoreFPAndRetAddr(DAG, Chain, LROp, FPOp, SPDiff, dl);
4976 
4977   // Emit callseq_end just before tailcall node.
4978   Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, dl, true),
4979                              DAG.getIntPtrConstant(0, dl, true), InFlag, dl);
4980   InFlag = Chain.getValue(1);
4981 }
4982 
4983 // Is this global address that of a function that can be called by name? (as
4984 // opposed to something that must hold a descriptor for an indirect call).
4985 static bool isFunctionGlobalAddress(SDValue Callee) {
4986   if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
4987     if (Callee.getOpcode() == ISD::GlobalTLSAddress ||
4988         Callee.getOpcode() == ISD::TargetGlobalTLSAddress)
4989       return false;
4990 
4991     return G->getGlobal()->getValueType()->isFunctionTy();
4992   }
4993 
4994   return false;
4995 }
4996 
4997 SDValue PPCTargetLowering::LowerCallResult(
4998     SDValue Chain, SDValue InFlag, CallingConv::ID CallConv, bool isVarArg,
4999     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
5000     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
5001   SmallVector<CCValAssign, 16> RVLocs;
5002   CCState CCRetInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs,
5003                     *DAG.getContext());
5004 
5005   CCRetInfo.AnalyzeCallResult(
5006       Ins, (Subtarget.isSVR4ABI() && CallConv == CallingConv::Cold)
5007                ? RetCC_PPC_Cold
5008                : RetCC_PPC);
5009 
5010   // Copy all of the result registers out of their specified physreg.
5011   for (unsigned i = 0, e = RVLocs.size(); i != e; ++i) {
5012     CCValAssign &VA = RVLocs[i];
5013     assert(VA.isRegLoc() && "Can only return in registers!");
5014 
5015     SDValue Val;
5016 
5017     if (Subtarget.hasSPE() && VA.getLocVT() == MVT::f64) {
5018       SDValue Lo = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), MVT::i32,
5019                                       InFlag);
5020       Chain = Lo.getValue(1);
5021       InFlag = Lo.getValue(2);
5022       VA = RVLocs[++i]; // skip ahead to next loc
5023       SDValue Hi = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), MVT::i32,
5024                                       InFlag);
5025       Chain = Hi.getValue(1);
5026       InFlag = Hi.getValue(2);
5027       if (!Subtarget.isLittleEndian())
5028         std::swap (Lo, Hi);
5029       Val = DAG.getNode(PPCISD::BUILD_SPE64, dl, MVT::f64, Lo, Hi);
5030     } else {
5031       Val = DAG.getCopyFromReg(Chain, dl,
5032                                VA.getLocReg(), VA.getLocVT(), InFlag);
5033       Chain = Val.getValue(1);
5034       InFlag = Val.getValue(2);
5035     }
5036 
5037     switch (VA.getLocInfo()) {
5038     default: llvm_unreachable("Unknown loc info!");
5039     case CCValAssign::Full: break;
5040     case CCValAssign::AExt:
5041       Val = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), Val);
5042       break;
5043     case CCValAssign::ZExt:
5044       Val = DAG.getNode(ISD::AssertZext, dl, VA.getLocVT(), Val,
5045                         DAG.getValueType(VA.getValVT()));
5046       Val = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), Val);
5047       break;
5048     case CCValAssign::SExt:
5049       Val = DAG.getNode(ISD::AssertSext, dl, VA.getLocVT(), Val,
5050                         DAG.getValueType(VA.getValVT()));
5051       Val = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), Val);
5052       break;
5053     }
5054 
5055     InVals.push_back(Val);
5056   }
5057 
5058   return Chain;
5059 }
5060 
5061 static bool isIndirectCall(const SDValue &Callee, SelectionDAG &DAG,
5062                            const PPCSubtarget &Subtarget, bool isPatchPoint) {
5063   // PatchPoint calls are not indirect.
5064   if (isPatchPoint)
5065     return false;
5066 
5067   if (isFunctionGlobalAddress(Callee) || dyn_cast<ExternalSymbolSDNode>(Callee))
5068     return false;
5069 
5070   // Darwin, and 32-bit ELF can use a BLA. The descriptor based ABIs can not
5071   // becuase the immediate function pointer points to a descriptor instead of
5072   // a function entry point. The ELFv2 ABI cannot use a BLA because the function
5073   // pointer immediate points to the global entry point, while the BLA would
5074   // need to jump to the local entry point (see rL211174).
5075   if (!Subtarget.usesFunctionDescriptors() && !Subtarget.isELFv2ABI() &&
5076       isBLACompatibleAddress(Callee, DAG))
5077     return false;
5078 
5079   return true;
5080 }
5081 
5082 static unsigned getCallOpcode(bool isIndirectCall, bool isPatchPoint,
5083                               bool isTailCall, const Function &Caller,
5084                               const SDValue &Callee,
5085                               const PPCSubtarget &Subtarget,
5086                               const TargetMachine &TM) {
5087   if (isTailCall)
5088     return PPCISD::TC_RETURN;
5089 
5090   // This is a call through a function pointer.
5091   if (isIndirectCall) {
5092     // AIX and the 64-bit ELF ABIs need to maintain the TOC pointer accross
5093     // indirect calls. The save of the caller's TOC pointer to the stack will be
5094     // inserted into the DAG as part of call lowering. The restore of the TOC
5095     // pointer is modeled by using a pseudo instruction for the call opcode that
5096     // represents the 2 instruction sequence of an indirect branch and link,
5097     // immediately followed by a load of the TOC pointer from the the stack save
5098     // slot into gpr2.
5099     if (Subtarget.isAIXABI() || Subtarget.is64BitELFABI())
5100       return PPCISD::BCTRL_LOAD_TOC;
5101 
5102     // An indirect call that does not need a TOC restore.
5103     return PPCISD::BCTRL;
5104   }
5105 
5106   // The ABIs that maintain a TOC pointer accross calls need to have a nop
5107   // immediately following the call instruction if the caller and callee may
5108   // have different TOC bases. At link time if the linker determines the calls
5109   // may not share a TOC base, the call is redirected to a trampoline inserted
5110   // by the linker. The trampoline will (among other things) save the callers
5111   // TOC pointer at an ABI designated offset in the linkage area and the linker
5112   // will rewrite the nop to be a load of the TOC pointer from the linkage area
5113   // into gpr2.
5114   if (Subtarget.isAIXABI() || Subtarget.is64BitELFABI())
5115     return callsShareTOCBase(&Caller, Callee, TM) ? PPCISD::CALL
5116                                                   : PPCISD::CALL_NOP;
5117 
5118   return PPCISD::CALL;
5119 }
5120 
5121 static bool isValidAIXExternalSymSDNode(StringRef SymName) {
5122   return StringSwitch<bool>(SymName)
5123       .Cases("__divdi3", "__fixunsdfdi", "__floatundidf", "__floatundisf",
5124              "__moddi3", "__udivdi3", "__umoddi3", true)
5125       .Cases("ceil", "floor", "memcpy", "memmove", "memset", "round", true)
5126       .Default(false);
5127 }
5128 
5129 static SDValue transformCallee(const SDValue &Callee, SelectionDAG &DAG,
5130                                const SDLoc &dl, const PPCSubtarget &Subtarget) {
5131   if (!Subtarget.usesFunctionDescriptors() && !Subtarget.isELFv2ABI())
5132     if (SDNode *Dest = isBLACompatibleAddress(Callee, DAG))
5133       return SDValue(Dest, 0);
5134 
5135   // Returns true if the callee is local, and false otherwise.
5136   auto isLocalCallee = [&]() {
5137     const GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee);
5138     const Module *Mod = DAG.getMachineFunction().getFunction().getParent();
5139     const GlobalValue *GV = G ? G->getGlobal() : nullptr;
5140 
5141     return DAG.getTarget().shouldAssumeDSOLocal(*Mod, GV) &&
5142            !dyn_cast_or_null<GlobalIFunc>(GV);
5143   };
5144 
5145   // The PLT is only used in 32-bit ELF PIC mode.  Attempting to use the PLT in
5146   // a static relocation model causes some versions of GNU LD (2.17.50, at
5147   // least) to force BSS-PLT, instead of secure-PLT, even if all objects are
5148   // built with secure-PLT.
5149   bool UsePlt =
5150       Subtarget.is32BitELFABI() && !isLocalCallee() &&
5151       Subtarget.getTargetMachine().getRelocationModel() == Reloc::PIC_;
5152 
5153   // On AIX, direct function calls reference the symbol for the function's
5154   // entry point, which is named by prepending a "." before the function's
5155   // C-linkage name.
5156   const auto getAIXFuncEntryPointSymbolSDNode =
5157       [&](StringRef FuncName, bool IsDeclaration,
5158           const XCOFF::StorageClass &SC) {
5159         auto &Context = DAG.getMachineFunction().getMMI().getContext();
5160 
5161         MCSymbolXCOFF *S = cast<MCSymbolXCOFF>(
5162             Context.getOrCreateSymbol(Twine(".") + Twine(FuncName)));
5163 
5164         if (IsDeclaration && !S->hasContainingCsect()) {
5165           // On AIX, an undefined symbol needs to be associated with a
5166           // MCSectionXCOFF to get the correct storage mapping class.
5167           // In this case, XCOFF::XMC_PR.
5168           MCSectionXCOFF *Sec = Context.getXCOFFSection(
5169               S->getName(), XCOFF::XMC_PR, XCOFF::XTY_ER, SC,
5170               SectionKind::getMetadata());
5171           S->setContainingCsect(Sec);
5172         }
5173 
5174         MVT PtrVT =
5175             DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout());
5176         return DAG.getMCSymbol(S, PtrVT);
5177       };
5178 
5179   if (isFunctionGlobalAddress(Callee)) {
5180     const GlobalAddressSDNode *G = cast<GlobalAddressSDNode>(Callee);
5181     const GlobalValue *GV = G->getGlobal();
5182 
5183     if (!Subtarget.isAIXABI())
5184       return DAG.getTargetGlobalAddress(GV, dl, Callee.getValueType(), 0,
5185                                         UsePlt ? PPCII::MO_PLT : 0);
5186 
5187     assert(!isa<GlobalIFunc>(GV) && "IFunc is not supported on AIX.");
5188     const GlobalObject *GO = cast<GlobalObject>(GV);
5189     const XCOFF::StorageClass SC =
5190         TargetLoweringObjectFileXCOFF::getStorageClassForGlobal(GO);
5191     return getAIXFuncEntryPointSymbolSDNode(GO->getName(), GO->isDeclaration(),
5192                                             SC);
5193   }
5194 
5195   if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) {
5196     const char *SymName = S->getSymbol();
5197     if (!Subtarget.isAIXABI())
5198       return DAG.getTargetExternalSymbol(SymName, Callee.getValueType(),
5199                                          UsePlt ? PPCII::MO_PLT : 0);
5200 
5201     // If there exists a user-declared function whose name is the same as the
5202     // ExternalSymbol's, then we pick up the user-declared version.
5203     const Module *Mod = DAG.getMachineFunction().getFunction().getParent();
5204     if (const Function *F =
5205             dyn_cast_or_null<Function>(Mod->getNamedValue(SymName))) {
5206       const XCOFF::StorageClass SC =
5207           TargetLoweringObjectFileXCOFF::getStorageClassForGlobal(F);
5208       return getAIXFuncEntryPointSymbolSDNode(F->getName(), F->isDeclaration(),
5209                                               SC);
5210     }
5211 
5212     // TODO: Remove this when the support for ExternalSymbolSDNode is complete.
5213     if (isValidAIXExternalSymSDNode(SymName)) {
5214       return getAIXFuncEntryPointSymbolSDNode(SymName, true, XCOFF::C_EXT);
5215     }
5216 
5217     report_fatal_error("Unexpected ExternalSymbolSDNode: " + Twine(SymName));
5218   }
5219 
5220   // No transformation needed.
5221   assert(Callee.getNode() && "What no callee?");
5222   return Callee;
5223 }
5224 
5225 static SDValue getOutputChainFromCallSeq(SDValue CallSeqStart) {
5226   assert(CallSeqStart.getOpcode() == ISD::CALLSEQ_START &&
5227          "Expected a CALLSEQ_STARTSDNode.");
5228 
5229   // The last operand is the chain, except when the node has glue. If the node
5230   // has glue, then the last operand is the glue, and the chain is the second
5231   // last operand.
5232   SDValue LastValue = CallSeqStart.getValue(CallSeqStart->getNumValues() - 1);
5233   if (LastValue.getValueType() != MVT::Glue)
5234     return LastValue;
5235 
5236   return CallSeqStart.getValue(CallSeqStart->getNumValues() - 2);
5237 }
5238 
5239 // Creates the node that moves a functions address into the count register
5240 // to prepare for an indirect call instruction.
5241 static void prepareIndirectCall(SelectionDAG &DAG, SDValue &Callee,
5242                                 SDValue &Glue, SDValue &Chain,
5243                                 const SDLoc &dl) {
5244   SDValue MTCTROps[] = {Chain, Callee, Glue};
5245   EVT ReturnTypes[] = {MVT::Other, MVT::Glue};
5246   Chain = DAG.getNode(PPCISD::MTCTR, dl, makeArrayRef(ReturnTypes, 2),
5247                       makeArrayRef(MTCTROps, Glue.getNode() ? 3 : 2));
5248   // The glue is the second value produced.
5249   Glue = Chain.getValue(1);
5250 }
5251 
5252 static void prepareDescriptorIndirectCall(SelectionDAG &DAG, SDValue &Callee,
5253                                           SDValue &Glue, SDValue &Chain,
5254                                           SDValue CallSeqStart,
5255                                           ImmutableCallSite CS, const SDLoc &dl,
5256                                           bool hasNest,
5257                                           const PPCSubtarget &Subtarget) {
5258   // Function pointers in the 64-bit SVR4 ABI do not point to the function
5259   // entry point, but to the function descriptor (the function entry point
5260   // address is part of the function descriptor though).
5261   // The function descriptor is a three doubleword structure with the
5262   // following fields: function entry point, TOC base address and
5263   // environment pointer.
5264   // Thus for a call through a function pointer, the following actions need
5265   // to be performed:
5266   //   1. Save the TOC of the caller in the TOC save area of its stack
5267   //      frame (this is done in LowerCall_Darwin() or LowerCall_64SVR4()).
5268   //   2. Load the address of the function entry point from the function
5269   //      descriptor.
5270   //   3. Load the TOC of the callee from the function descriptor into r2.
5271   //   4. Load the environment pointer from the function descriptor into
5272   //      r11.
5273   //   5. Branch to the function entry point address.
5274   //   6. On return of the callee, the TOC of the caller needs to be
5275   //      restored (this is done in FinishCall()).
5276   //
5277   // The loads are scheduled at the beginning of the call sequence, and the
5278   // register copies are flagged together to ensure that no other
5279   // operations can be scheduled in between. E.g. without flagging the
5280   // copies together, a TOC access in the caller could be scheduled between
5281   // the assignment of the callee TOC and the branch to the callee, which leads
5282   // to incorrect code.
5283 
5284   // Start by loading the function address from the descriptor.
5285   SDValue LDChain = getOutputChainFromCallSeq(CallSeqStart);
5286   auto MMOFlags = Subtarget.hasInvariantFunctionDescriptors()
5287                       ? (MachineMemOperand::MODereferenceable |
5288                          MachineMemOperand::MOInvariant)
5289                       : MachineMemOperand::MONone;
5290 
5291   MachinePointerInfo MPI(CS ? CS.getCalledValue() : nullptr);
5292 
5293   // Registers used in building the DAG.
5294   const MCRegister EnvPtrReg = Subtarget.getEnvironmentPointerRegister();
5295   const MCRegister TOCReg = Subtarget.getTOCPointerRegister();
5296 
5297   // Offsets of descriptor members.
5298   const unsigned TOCAnchorOffset = Subtarget.descriptorTOCAnchorOffset();
5299   const unsigned EnvPtrOffset = Subtarget.descriptorEnvironmentPointerOffset();
5300 
5301   const MVT RegVT = Subtarget.isPPC64() ? MVT::i64 : MVT::i32;
5302   const unsigned Alignment = Subtarget.isPPC64() ? 8 : 4;
5303 
5304   // One load for the functions entry point address.
5305   SDValue LoadFuncPtr = DAG.getLoad(RegVT, dl, LDChain, Callee, MPI,
5306                                     Alignment, MMOFlags);
5307 
5308   // One for loading the TOC anchor for the module that contains the called
5309   // function.
5310   SDValue TOCOff = DAG.getIntPtrConstant(TOCAnchorOffset, dl);
5311   SDValue AddTOC = DAG.getNode(ISD::ADD, dl, RegVT, Callee, TOCOff);
5312   SDValue TOCPtr =
5313       DAG.getLoad(RegVT, dl, LDChain, AddTOC,
5314                   MPI.getWithOffset(TOCAnchorOffset), Alignment, MMOFlags);
5315 
5316   // One for loading the environment pointer.
5317   SDValue PtrOff = DAG.getIntPtrConstant(EnvPtrOffset, dl);
5318   SDValue AddPtr = DAG.getNode(ISD::ADD, dl, RegVT, Callee, PtrOff);
5319   SDValue LoadEnvPtr =
5320       DAG.getLoad(RegVT, dl, LDChain, AddPtr,
5321                   MPI.getWithOffset(EnvPtrOffset), Alignment, MMOFlags);
5322 
5323 
5324   // Then copy the newly loaded TOC anchor to the TOC pointer.
5325   SDValue TOCVal = DAG.getCopyToReg(Chain, dl, TOCReg, TOCPtr, Glue);
5326   Chain = TOCVal.getValue(0);
5327   Glue = TOCVal.getValue(1);
5328 
5329   // If the function call has an explicit 'nest' parameter, it takes the
5330   // place of the environment pointer.
5331   assert((!hasNest || !Subtarget.isAIXABI()) &&
5332          "Nest parameter is not supported on AIX.");
5333   if (!hasNest) {
5334     SDValue EnvVal = DAG.getCopyToReg(Chain, dl, EnvPtrReg, LoadEnvPtr, Glue);
5335     Chain = EnvVal.getValue(0);
5336     Glue = EnvVal.getValue(1);
5337   }
5338 
5339   // The rest of the indirect call sequence is the same as the non-descriptor
5340   // DAG.
5341   prepareIndirectCall(DAG, LoadFuncPtr, Glue, Chain, dl);
5342 }
5343 
5344 static void
5345 buildCallOperands(SmallVectorImpl<SDValue> &Ops, CallingConv::ID CallConv,
5346                   const SDLoc &dl, bool isTailCall, bool isVarArg,
5347                   bool isPatchPoint, bool hasNest, SelectionDAG &DAG,
5348                   SmallVector<std::pair<unsigned, SDValue>, 8> &RegsToPass,
5349                   SDValue Glue, SDValue Chain, SDValue &Callee, int SPDiff,
5350                   const PPCSubtarget &Subtarget, bool isIndirect) {
5351   const bool IsPPC64 = Subtarget.isPPC64();
5352   // MVT for a general purpose register.
5353   const MVT RegVT = IsPPC64 ? MVT::i64 : MVT::i32;
5354 
5355   // First operand is always the chain.
5356   Ops.push_back(Chain);
5357 
5358   // If it's a direct call pass the callee as the second operand.
5359   if (!isIndirect)
5360     Ops.push_back(Callee);
5361   else {
5362     assert(!isPatchPoint && "Patch point call are not indirect.");
5363 
5364     // For the TOC based ABIs, we have saved the TOC pointer to the linkage area
5365     // on the stack (this would have been done in `LowerCall_64SVR4` or
5366     // `LowerCall_AIX`). The call instruction is a pseudo instruction that
5367     // represents both the indirect branch and a load that restores the TOC
5368     // pointer from the linkage area. The operand for the TOC restore is an add
5369     // of the TOC save offset to the stack pointer. This must be the second
5370     // operand: after the chain input but before any other variadic arguments.
5371     if (Subtarget.is64BitELFABI() || Subtarget.isAIXABI()) {
5372       const MCRegister StackPtrReg = Subtarget.getStackPointerRegister();
5373 
5374       SDValue StackPtr = DAG.getRegister(StackPtrReg, RegVT);
5375       unsigned TOCSaveOffset = Subtarget.getFrameLowering()->getTOCSaveOffset();
5376       SDValue TOCOff = DAG.getIntPtrConstant(TOCSaveOffset, dl);
5377       SDValue AddTOC = DAG.getNode(ISD::ADD, dl, RegVT, StackPtr, TOCOff);
5378       Ops.push_back(AddTOC);
5379     }
5380 
5381     // Add the register used for the environment pointer.
5382     if (Subtarget.usesFunctionDescriptors() && !hasNest)
5383       Ops.push_back(DAG.getRegister(Subtarget.getEnvironmentPointerRegister(),
5384                                     RegVT));
5385 
5386 
5387     // Add CTR register as callee so a bctr can be emitted later.
5388     if (isTailCall)
5389       Ops.push_back(DAG.getRegister(IsPPC64 ? PPC::CTR8 : PPC::CTR, RegVT));
5390   }
5391 
5392   // If this is a tail call add stack pointer delta.
5393   if (isTailCall)
5394     Ops.push_back(DAG.getConstant(SPDiff, dl, MVT::i32));
5395 
5396   // Add argument registers to the end of the list so that they are known live
5397   // into the call.
5398   for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
5399     Ops.push_back(DAG.getRegister(RegsToPass[i].first,
5400                                   RegsToPass[i].second.getValueType()));
5401 
5402   // We cannot add R2/X2 as an operand here for PATCHPOINT, because there is
5403   // no way to mark dependencies as implicit here.
5404   // We will add the R2/X2 dependency in EmitInstrWithCustomInserter.
5405   if ((Subtarget.is64BitELFABI() || Subtarget.isAIXABI()) && !isPatchPoint)
5406     Ops.push_back(DAG.getRegister(Subtarget.getTOCPointerRegister(), RegVT));
5407 
5408   // Add implicit use of CR bit 6 for 32-bit SVR4 vararg calls
5409   if (isVarArg && Subtarget.is32BitELFABI())
5410     Ops.push_back(DAG.getRegister(PPC::CR1EQ, MVT::i32));
5411 
5412   // Add a register mask operand representing the call-preserved registers.
5413   const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo();
5414   const uint32_t *Mask =
5415       TRI->getCallPreservedMask(DAG.getMachineFunction(), CallConv);
5416   assert(Mask && "Missing call preserved mask for calling convention");
5417   Ops.push_back(DAG.getRegisterMask(Mask));
5418 
5419   // If the glue is valid, it is the last operand.
5420   if (Glue.getNode())
5421     Ops.push_back(Glue);
5422 }
5423 
5424 SDValue PPCTargetLowering::FinishCall(
5425     CallingConv::ID CallConv, const SDLoc &dl, bool isTailCall, bool isVarArg,
5426     bool isPatchPoint, bool hasNest, SelectionDAG &DAG,
5427     SmallVector<std::pair<unsigned, SDValue>, 8> &RegsToPass, SDValue Glue,
5428     SDValue Chain, SDValue CallSeqStart, SDValue &Callee, int SPDiff,
5429     unsigned NumBytes, const SmallVectorImpl<ISD::InputArg> &Ins,
5430     SmallVectorImpl<SDValue> &InVals, ImmutableCallSite CS) const {
5431 
5432   if (Subtarget.is64BitELFABI() || Subtarget.isAIXABI())
5433     setUsesTOCBasePtr(DAG);
5434 
5435   const bool isIndirect = isIndirectCall(Callee, DAG, Subtarget, isPatchPoint);
5436   unsigned CallOpc = getCallOpcode(isIndirect, isPatchPoint, isTailCall,
5437                                    DAG.getMachineFunction().getFunction(),
5438                                    Callee, Subtarget, DAG.getTarget());
5439 
5440   if (!isIndirect)
5441     Callee = transformCallee(Callee, DAG, dl, Subtarget);
5442   else if (Subtarget.usesFunctionDescriptors())
5443     prepareDescriptorIndirectCall(DAG, Callee, Glue, Chain, CallSeqStart, CS,
5444                                   dl, hasNest, Subtarget);
5445   else
5446     prepareIndirectCall(DAG, Callee, Glue, Chain, dl);
5447 
5448   // Build the operand list for the call instruction.
5449   SmallVector<SDValue, 8> Ops;
5450   buildCallOperands(Ops, CallConv, dl, isTailCall, isVarArg, isPatchPoint,
5451                     hasNest, DAG, RegsToPass, Glue, Chain, Callee, SPDiff,
5452                     Subtarget, isIndirect);
5453 
5454   // Emit tail call.
5455   if (isTailCall) {
5456     assert(((Callee.getOpcode() == ISD::Register &&
5457              cast<RegisterSDNode>(Callee)->getReg() == PPC::CTR) ||
5458             Callee.getOpcode() == ISD::TargetExternalSymbol ||
5459             Callee.getOpcode() == ISD::TargetGlobalAddress ||
5460             isa<ConstantSDNode>(Callee)) &&
5461            "Expecting a global address, external symbol, absolute value or "
5462            "register");
5463     assert(CallOpc == PPCISD::TC_RETURN &&
5464            "Unexpected call opcode for a tail call.");
5465     DAG.getMachineFunction().getFrameInfo().setHasTailCall();
5466     return DAG.getNode(CallOpc, dl, MVT::Other, Ops);
5467   }
5468 
5469   std::array<EVT, 2> ReturnTypes = {{MVT::Other, MVT::Glue}};
5470   Chain = DAG.getNode(CallOpc, dl, ReturnTypes, Ops);
5471   Glue = Chain.getValue(1);
5472 
5473   // When performing tail call optimization the callee pops its arguments off
5474   // the stack. Account for this here so these bytes can be pushed back on in
5475   // PPCFrameLowering::eliminateCallFramePseudoInstr.
5476   int BytesCalleePops = (CallConv == CallingConv::Fast &&
5477                          getTargetMachine().Options.GuaranteedTailCallOpt)
5478                             ? NumBytes
5479                             : 0;
5480 
5481   Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, dl, true),
5482                              DAG.getIntPtrConstant(BytesCalleePops, dl, true),
5483                              Glue, dl);
5484   Glue = Chain.getValue(1);
5485 
5486   return LowerCallResult(Chain, Glue, CallConv, isVarArg, Ins, dl, DAG, InVals);
5487 }
5488 
5489 SDValue
5490 PPCTargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI,
5491                              SmallVectorImpl<SDValue> &InVals) const {
5492   SelectionDAG &DAG                     = CLI.DAG;
5493   SDLoc &dl                             = CLI.DL;
5494   SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs;
5495   SmallVectorImpl<SDValue> &OutVals     = CLI.OutVals;
5496   SmallVectorImpl<ISD::InputArg> &Ins   = CLI.Ins;
5497   SDValue Chain                         = CLI.Chain;
5498   SDValue Callee                        = CLI.Callee;
5499   bool &isTailCall                      = CLI.IsTailCall;
5500   CallingConv::ID CallConv              = CLI.CallConv;
5501   bool isVarArg                         = CLI.IsVarArg;
5502   bool isPatchPoint                     = CLI.IsPatchPoint;
5503   ImmutableCallSite CS                  = CLI.CS;
5504 
5505   if (isTailCall) {
5506     if (Subtarget.useLongCalls() && !(CS && CS.isMustTailCall()))
5507       isTailCall = false;
5508     else if (Subtarget.isSVR4ABI() && Subtarget.isPPC64())
5509       isTailCall =
5510         IsEligibleForTailCallOptimization_64SVR4(Callee, CallConv, CS,
5511                                                  isVarArg, Outs, Ins, DAG);
5512     else
5513       isTailCall = IsEligibleForTailCallOptimization(Callee, CallConv, isVarArg,
5514                                                      Ins, DAG);
5515     if (isTailCall) {
5516       ++NumTailCalls;
5517       if (!getTargetMachine().Options.GuaranteedTailCallOpt)
5518         ++NumSiblingCalls;
5519 
5520       assert(isa<GlobalAddressSDNode>(Callee) &&
5521              "Callee should be an llvm::Function object.");
5522       LLVM_DEBUG(
5523           const GlobalValue *GV =
5524               cast<GlobalAddressSDNode>(Callee)->getGlobal();
5525           const unsigned Width =
5526               80 - strlen("TCO caller: ") - strlen(", callee linkage: 0, 0");
5527           dbgs() << "TCO caller: "
5528                  << left_justify(DAG.getMachineFunction().getName(), Width)
5529                  << ", callee linkage: " << GV->getVisibility() << ", "
5530                  << GV->getLinkage() << "\n");
5531     }
5532   }
5533 
5534   if (!isTailCall && CS && CS.isMustTailCall())
5535     report_fatal_error("failed to perform tail call elimination on a call "
5536                        "site marked musttail");
5537 
5538   // When long calls (i.e. indirect calls) are always used, calls are always
5539   // made via function pointer. If we have a function name, first translate it
5540   // into a pointer.
5541   if (Subtarget.useLongCalls() && isa<GlobalAddressSDNode>(Callee) &&
5542       !isTailCall)
5543     Callee = LowerGlobalAddress(Callee, DAG);
5544 
5545   if (Subtarget.isSVR4ABI() && Subtarget.isPPC64())
5546     return LowerCall_64SVR4(Chain, Callee, CallConv, isVarArg,
5547                             isTailCall, isPatchPoint, Outs, OutVals, Ins,
5548                             dl, DAG, InVals, CS);
5549 
5550   if (Subtarget.isSVR4ABI())
5551     return LowerCall_32SVR4(Chain, Callee, CallConv, isVarArg,
5552                             isTailCall, isPatchPoint, Outs, OutVals, Ins,
5553                             dl, DAG, InVals, CS);
5554 
5555   if (Subtarget.isAIXABI())
5556     return LowerCall_AIX(Chain, Callee, CallConv, isVarArg,
5557                          isTailCall, isPatchPoint, Outs, OutVals, Ins,
5558                          dl, DAG, InVals, CS);
5559 
5560   return LowerCall_Darwin(Chain, Callee, CallConv, isVarArg,
5561                           isTailCall, isPatchPoint, Outs, OutVals, Ins,
5562                           dl, DAG, InVals, CS);
5563 }
5564 
5565 SDValue PPCTargetLowering::LowerCall_32SVR4(
5566     SDValue Chain, SDValue Callee, CallingConv::ID CallConv, bool isVarArg,
5567     bool isTailCall, bool isPatchPoint,
5568     const SmallVectorImpl<ISD::OutputArg> &Outs,
5569     const SmallVectorImpl<SDValue> &OutVals,
5570     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
5571     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals,
5572     ImmutableCallSite CS) const {
5573   // See PPCTargetLowering::LowerFormalArguments_32SVR4() for a description
5574   // of the 32-bit SVR4 ABI stack frame layout.
5575 
5576   assert((CallConv == CallingConv::C ||
5577           CallConv == CallingConv::Cold ||
5578           CallConv == CallingConv::Fast) && "Unknown calling convention!");
5579 
5580   unsigned PtrByteSize = 4;
5581 
5582   MachineFunction &MF = DAG.getMachineFunction();
5583 
5584   // Mark this function as potentially containing a function that contains a
5585   // tail call. As a consequence the frame pointer will be used for dynamicalloc
5586   // and restoring the callers stack pointer in this functions epilog. This is
5587   // done because by tail calling the called function might overwrite the value
5588   // in this function's (MF) stack pointer stack slot 0(SP).
5589   if (getTargetMachine().Options.GuaranteedTailCallOpt &&
5590       CallConv == CallingConv::Fast)
5591     MF.getInfo<PPCFunctionInfo>()->setHasFastCall();
5592 
5593   // Count how many bytes are to be pushed on the stack, including the linkage
5594   // area, parameter list area and the part of the local variable space which
5595   // contains copies of aggregates which are passed by value.
5596 
5597   // Assign locations to all of the outgoing arguments.
5598   SmallVector<CCValAssign, 16> ArgLocs;
5599   PPCCCState CCInfo(CallConv, isVarArg, MF, ArgLocs, *DAG.getContext());
5600 
5601   // Reserve space for the linkage area on the stack.
5602   CCInfo.AllocateStack(Subtarget.getFrameLowering()->getLinkageSize(),
5603                        PtrByteSize);
5604   if (useSoftFloat())
5605     CCInfo.PreAnalyzeCallOperands(Outs);
5606 
5607   if (isVarArg) {
5608     // Handle fixed and variable vector arguments differently.
5609     // Fixed vector arguments go into registers as long as registers are
5610     // available. Variable vector arguments always go into memory.
5611     unsigned NumArgs = Outs.size();
5612 
5613     for (unsigned i = 0; i != NumArgs; ++i) {
5614       MVT ArgVT = Outs[i].VT;
5615       ISD::ArgFlagsTy ArgFlags = Outs[i].Flags;
5616       bool Result;
5617 
5618       if (Outs[i].IsFixed) {
5619         Result = CC_PPC32_SVR4(i, ArgVT, ArgVT, CCValAssign::Full, ArgFlags,
5620                                CCInfo);
5621       } else {
5622         Result = CC_PPC32_SVR4_VarArg(i, ArgVT, ArgVT, CCValAssign::Full,
5623                                       ArgFlags, CCInfo);
5624       }
5625 
5626       if (Result) {
5627 #ifndef NDEBUG
5628         errs() << "Call operand #" << i << " has unhandled type "
5629              << EVT(ArgVT).getEVTString() << "\n";
5630 #endif
5631         llvm_unreachable(nullptr);
5632       }
5633     }
5634   } else {
5635     // All arguments are treated the same.
5636     CCInfo.AnalyzeCallOperands(Outs, CC_PPC32_SVR4);
5637   }
5638   CCInfo.clearWasPPCF128();
5639 
5640   // Assign locations to all of the outgoing aggregate by value arguments.
5641   SmallVector<CCValAssign, 16> ByValArgLocs;
5642   CCState CCByValInfo(CallConv, isVarArg, MF, ByValArgLocs, *DAG.getContext());
5643 
5644   // Reserve stack space for the allocations in CCInfo.
5645   CCByValInfo.AllocateStack(CCInfo.getNextStackOffset(), PtrByteSize);
5646 
5647   CCByValInfo.AnalyzeCallOperands(Outs, CC_PPC32_SVR4_ByVal);
5648 
5649   // Size of the linkage area, parameter list area and the part of the local
5650   // space variable where copies of aggregates which are passed by value are
5651   // stored.
5652   unsigned NumBytes = CCByValInfo.getNextStackOffset();
5653 
5654   // Calculate by how many bytes the stack has to be adjusted in case of tail
5655   // call optimization.
5656   int SPDiff = CalculateTailCallSPDiff(DAG, isTailCall, NumBytes);
5657 
5658   // Adjust the stack pointer for the new arguments...
5659   // These operations are automatically eliminated by the prolog/epilog pass
5660   Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, dl);
5661   SDValue CallSeqStart = Chain;
5662 
5663   // Load the return address and frame pointer so it can be moved somewhere else
5664   // later.
5665   SDValue LROp, FPOp;
5666   Chain = EmitTailCallLoadFPAndRetAddr(DAG, SPDiff, Chain, LROp, FPOp, dl);
5667 
5668   // Set up a copy of the stack pointer for use loading and storing any
5669   // arguments that may not fit in the registers available for argument
5670   // passing.
5671   SDValue StackPtr = DAG.getRegister(PPC::R1, MVT::i32);
5672 
5673   SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
5674   SmallVector<TailCallArgumentInfo, 8> TailCallArguments;
5675   SmallVector<SDValue, 8> MemOpChains;
5676 
5677   bool seenFloatArg = false;
5678   // Walk the register/memloc assignments, inserting copies/loads.
5679   // i - Tracks the index into the list of registers allocated for the call
5680   // RealArgIdx - Tracks the index into the list of actual function arguments
5681   // j - Tracks the index into the list of byval arguments
5682   for (unsigned i = 0, RealArgIdx = 0, j = 0, e = ArgLocs.size();
5683        i != e;
5684        ++i, ++RealArgIdx) {
5685     CCValAssign &VA = ArgLocs[i];
5686     SDValue Arg = OutVals[RealArgIdx];
5687     ISD::ArgFlagsTy Flags = Outs[RealArgIdx].Flags;
5688 
5689     if (Flags.isByVal()) {
5690       // Argument is an aggregate which is passed by value, thus we need to
5691       // create a copy of it in the local variable space of the current stack
5692       // frame (which is the stack frame of the caller) and pass the address of
5693       // this copy to the callee.
5694       assert((j < ByValArgLocs.size()) && "Index out of bounds!");
5695       CCValAssign &ByValVA = ByValArgLocs[j++];
5696       assert((VA.getValNo() == ByValVA.getValNo()) && "ValNo mismatch!");
5697 
5698       // Memory reserved in the local variable space of the callers stack frame.
5699       unsigned LocMemOffset = ByValVA.getLocMemOffset();
5700 
5701       SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset, dl);
5702       PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(MF.getDataLayout()),
5703                            StackPtr, PtrOff);
5704 
5705       // Create a copy of the argument in the local area of the current
5706       // stack frame.
5707       SDValue MemcpyCall =
5708         CreateCopyOfByValArgument(Arg, PtrOff,
5709                                   CallSeqStart.getNode()->getOperand(0),
5710                                   Flags, DAG, dl);
5711 
5712       // This must go outside the CALLSEQ_START..END.
5713       SDValue NewCallSeqStart = DAG.getCALLSEQ_START(MemcpyCall, NumBytes, 0,
5714                                                      SDLoc(MemcpyCall));
5715       DAG.ReplaceAllUsesWith(CallSeqStart.getNode(),
5716                              NewCallSeqStart.getNode());
5717       Chain = CallSeqStart = NewCallSeqStart;
5718 
5719       // Pass the address of the aggregate copy on the stack either in a
5720       // physical register or in the parameter list area of the current stack
5721       // frame to the callee.
5722       Arg = PtrOff;
5723     }
5724 
5725     // When useCRBits() is true, there can be i1 arguments.
5726     // It is because getRegisterType(MVT::i1) => MVT::i1,
5727     // and for other integer types getRegisterType() => MVT::i32.
5728     // Extend i1 and ensure callee will get i32.
5729     if (Arg.getValueType() == MVT::i1)
5730       Arg = DAG.getNode(Flags.isSExt() ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND,
5731                         dl, MVT::i32, Arg);
5732 
5733     if (VA.isRegLoc()) {
5734       seenFloatArg |= VA.getLocVT().isFloatingPoint();
5735       // Put argument in a physical register.
5736       if (Subtarget.hasSPE() && Arg.getValueType() == MVT::f64) {
5737         bool IsLE = Subtarget.isLittleEndian();
5738         SDValue SVal = DAG.getNode(PPCISD::EXTRACT_SPE, dl, MVT::i32, Arg,
5739                         DAG.getIntPtrConstant(IsLE ? 0 : 1, dl));
5740         RegsToPass.push_back(std::make_pair(VA.getLocReg(), SVal.getValue(0)));
5741         SVal = DAG.getNode(PPCISD::EXTRACT_SPE, dl, MVT::i32, Arg,
5742                            DAG.getIntPtrConstant(IsLE ? 1 : 0, dl));
5743         RegsToPass.push_back(std::make_pair(ArgLocs[++i].getLocReg(),
5744                              SVal.getValue(0)));
5745       } else
5746         RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
5747     } else {
5748       // Put argument in the parameter list area of the current stack frame.
5749       assert(VA.isMemLoc());
5750       unsigned LocMemOffset = VA.getLocMemOffset();
5751 
5752       if (!isTailCall) {
5753         SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset, dl);
5754         PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(MF.getDataLayout()),
5755                              StackPtr, PtrOff);
5756 
5757         MemOpChains.push_back(
5758             DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo()));
5759       } else {
5760         // Calculate and remember argument location.
5761         CalculateTailCallArgDest(DAG, MF, false, Arg, SPDiff, LocMemOffset,
5762                                  TailCallArguments);
5763       }
5764     }
5765   }
5766 
5767   if (!MemOpChains.empty())
5768     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains);
5769 
5770   // Build a sequence of copy-to-reg nodes chained together with token chain
5771   // and flag operands which copy the outgoing args into the appropriate regs.
5772   SDValue InFlag;
5773   for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
5774     Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
5775                              RegsToPass[i].second, InFlag);
5776     InFlag = Chain.getValue(1);
5777   }
5778 
5779   // Set CR bit 6 to true if this is a vararg call with floating args passed in
5780   // registers.
5781   if (isVarArg) {
5782     SDVTList VTs = DAG.getVTList(MVT::Other, MVT::Glue);
5783     SDValue Ops[] = { Chain, InFlag };
5784 
5785     Chain = DAG.getNode(seenFloatArg ? PPCISD::CR6SET : PPCISD::CR6UNSET,
5786                         dl, VTs, makeArrayRef(Ops, InFlag.getNode() ? 2 : 1));
5787 
5788     InFlag = Chain.getValue(1);
5789   }
5790 
5791   if (isTailCall)
5792     PrepareTailCall(DAG, InFlag, Chain, dl, SPDiff, NumBytes, LROp, FPOp,
5793                     TailCallArguments);
5794 
5795   return FinishCall(CallConv, dl, isTailCall, isVarArg, isPatchPoint,
5796                     /* unused except on PPC64 ELFv1 */ false, DAG,
5797                     RegsToPass, InFlag, Chain, CallSeqStart, Callee, SPDiff,
5798                     NumBytes, Ins, InVals, CS);
5799 }
5800 
5801 // Copy an argument into memory, being careful to do this outside the
5802 // call sequence for the call to which the argument belongs.
5803 SDValue PPCTargetLowering::createMemcpyOutsideCallSeq(
5804     SDValue Arg, SDValue PtrOff, SDValue CallSeqStart, ISD::ArgFlagsTy Flags,
5805     SelectionDAG &DAG, const SDLoc &dl) const {
5806   SDValue MemcpyCall = CreateCopyOfByValArgument(Arg, PtrOff,
5807                         CallSeqStart.getNode()->getOperand(0),
5808                         Flags, DAG, dl);
5809   // The MEMCPY must go outside the CALLSEQ_START..END.
5810   int64_t FrameSize = CallSeqStart.getConstantOperandVal(1);
5811   SDValue NewCallSeqStart = DAG.getCALLSEQ_START(MemcpyCall, FrameSize, 0,
5812                                                  SDLoc(MemcpyCall));
5813   DAG.ReplaceAllUsesWith(CallSeqStart.getNode(),
5814                          NewCallSeqStart.getNode());
5815   return NewCallSeqStart;
5816 }
5817 
5818 SDValue PPCTargetLowering::LowerCall_64SVR4(
5819     SDValue Chain, SDValue Callee, CallingConv::ID CallConv, bool isVarArg,
5820     bool isTailCall, bool isPatchPoint,
5821     const SmallVectorImpl<ISD::OutputArg> &Outs,
5822     const SmallVectorImpl<SDValue> &OutVals,
5823     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
5824     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals,
5825     ImmutableCallSite CS) const {
5826   bool isELFv2ABI = Subtarget.isELFv2ABI();
5827   bool isLittleEndian = Subtarget.isLittleEndian();
5828   unsigned NumOps = Outs.size();
5829   bool hasNest = false;
5830   bool IsSibCall = false;
5831 
5832   EVT PtrVT = getPointerTy(DAG.getDataLayout());
5833   unsigned PtrByteSize = 8;
5834 
5835   MachineFunction &MF = DAG.getMachineFunction();
5836 
5837   if (isTailCall && !getTargetMachine().Options.GuaranteedTailCallOpt)
5838     IsSibCall = true;
5839 
5840   // Mark this function as potentially containing a function that contains a
5841   // tail call. As a consequence the frame pointer will be used for dynamicalloc
5842   // and restoring the callers stack pointer in this functions epilog. This is
5843   // done because by tail calling the called function might overwrite the value
5844   // in this function's (MF) stack pointer stack slot 0(SP).
5845   if (getTargetMachine().Options.GuaranteedTailCallOpt &&
5846       CallConv == CallingConv::Fast)
5847     MF.getInfo<PPCFunctionInfo>()->setHasFastCall();
5848 
5849   assert(!(CallConv == CallingConv::Fast && isVarArg) &&
5850          "fastcc not supported on varargs functions");
5851 
5852   // Count how many bytes are to be pushed on the stack, including the linkage
5853   // area, and parameter passing area.  On ELFv1, the linkage area is 48 bytes
5854   // reserved space for [SP][CR][LR][2 x unused][TOC]; on ELFv2, the linkage
5855   // area is 32 bytes reserved space for [SP][CR][LR][TOC].
5856   unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize();
5857   unsigned NumBytes = LinkageSize;
5858   unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0;
5859   unsigned &QFPR_idx = FPR_idx;
5860 
5861   static const MCPhysReg GPR[] = {
5862     PPC::X3, PPC::X4, PPC::X5, PPC::X6,
5863     PPC::X7, PPC::X8, PPC::X9, PPC::X10,
5864   };
5865   static const MCPhysReg VR[] = {
5866     PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8,
5867     PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13
5868   };
5869 
5870   const unsigned NumGPRs = array_lengthof(GPR);
5871   const unsigned NumFPRs = useSoftFloat() ? 0 : 13;
5872   const unsigned NumVRs  = array_lengthof(VR);
5873   const unsigned NumQFPRs = NumFPRs;
5874 
5875   // On ELFv2, we can avoid allocating the parameter area if all the arguments
5876   // can be passed to the callee in registers.
5877   // For the fast calling convention, there is another check below.
5878   // Note: We should keep consistent with LowerFormalArguments_64SVR4()
5879   bool HasParameterArea = !isELFv2ABI || isVarArg || CallConv == CallingConv::Fast;
5880   if (!HasParameterArea) {
5881     unsigned ParamAreaSize = NumGPRs * PtrByteSize;
5882     unsigned AvailableFPRs = NumFPRs;
5883     unsigned AvailableVRs = NumVRs;
5884     unsigned NumBytesTmp = NumBytes;
5885     for (unsigned i = 0; i != NumOps; ++i) {
5886       if (Outs[i].Flags.isNest()) continue;
5887       if (CalculateStackSlotUsed(Outs[i].VT, Outs[i].ArgVT, Outs[i].Flags,
5888                                 PtrByteSize, LinkageSize, ParamAreaSize,
5889                                 NumBytesTmp, AvailableFPRs, AvailableVRs,
5890                                 Subtarget.hasQPX()))
5891         HasParameterArea = true;
5892     }
5893   }
5894 
5895   // When using the fast calling convention, we don't provide backing for
5896   // arguments that will be in registers.
5897   unsigned NumGPRsUsed = 0, NumFPRsUsed = 0, NumVRsUsed = 0;
5898 
5899   // Avoid allocating parameter area for fastcc functions if all the arguments
5900   // can be passed in the registers.
5901   if (CallConv == CallingConv::Fast)
5902     HasParameterArea = false;
5903 
5904   // Add up all the space actually used.
5905   for (unsigned i = 0; i != NumOps; ++i) {
5906     ISD::ArgFlagsTy Flags = Outs[i].Flags;
5907     EVT ArgVT = Outs[i].VT;
5908     EVT OrigVT = Outs[i].ArgVT;
5909 
5910     if (Flags.isNest())
5911       continue;
5912 
5913     if (CallConv == CallingConv::Fast) {
5914       if (Flags.isByVal()) {
5915         NumGPRsUsed += (Flags.getByValSize()+7)/8;
5916         if (NumGPRsUsed > NumGPRs)
5917           HasParameterArea = true;
5918       } else {
5919         switch (ArgVT.getSimpleVT().SimpleTy) {
5920         default: llvm_unreachable("Unexpected ValueType for argument!");
5921         case MVT::i1:
5922         case MVT::i32:
5923         case MVT::i64:
5924           if (++NumGPRsUsed <= NumGPRs)
5925             continue;
5926           break;
5927         case MVT::v4i32:
5928         case MVT::v8i16:
5929         case MVT::v16i8:
5930         case MVT::v2f64:
5931         case MVT::v2i64:
5932         case MVT::v1i128:
5933         case MVT::f128:
5934           if (++NumVRsUsed <= NumVRs)
5935             continue;
5936           break;
5937         case MVT::v4f32:
5938           // When using QPX, this is handled like a FP register, otherwise, it
5939           // is an Altivec register.
5940           if (Subtarget.hasQPX()) {
5941             if (++NumFPRsUsed <= NumFPRs)
5942               continue;
5943           } else {
5944             if (++NumVRsUsed <= NumVRs)
5945               continue;
5946           }
5947           break;
5948         case MVT::f32:
5949         case MVT::f64:
5950         case MVT::v4f64: // QPX
5951         case MVT::v4i1:  // QPX
5952           if (++NumFPRsUsed <= NumFPRs)
5953             continue;
5954           break;
5955         }
5956         HasParameterArea = true;
5957       }
5958     }
5959 
5960     /* Respect alignment of argument on the stack.  */
5961     unsigned Align =
5962       CalculateStackSlotAlignment(ArgVT, OrigVT, Flags, PtrByteSize);
5963     NumBytes = ((NumBytes + Align - 1) / Align) * Align;
5964 
5965     NumBytes += CalculateStackSlotSize(ArgVT, Flags, PtrByteSize);
5966     if (Flags.isInConsecutiveRegsLast())
5967       NumBytes = ((NumBytes + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
5968   }
5969 
5970   unsigned NumBytesActuallyUsed = NumBytes;
5971 
5972   // In the old ELFv1 ABI,
5973   // the prolog code of the callee may store up to 8 GPR argument registers to
5974   // the stack, allowing va_start to index over them in memory if its varargs.
5975   // Because we cannot tell if this is needed on the caller side, we have to
5976   // conservatively assume that it is needed.  As such, make sure we have at
5977   // least enough stack space for the caller to store the 8 GPRs.
5978   // In the ELFv2 ABI, we allocate the parameter area iff a callee
5979   // really requires memory operands, e.g. a vararg function.
5980   if (HasParameterArea)
5981     NumBytes = std::max(NumBytes, LinkageSize + 8 * PtrByteSize);
5982   else
5983     NumBytes = LinkageSize;
5984 
5985   // Tail call needs the stack to be aligned.
5986   if (getTargetMachine().Options.GuaranteedTailCallOpt &&
5987       CallConv == CallingConv::Fast)
5988     NumBytes = EnsureStackAlignment(Subtarget.getFrameLowering(), NumBytes);
5989 
5990   int SPDiff = 0;
5991 
5992   // Calculate by how many bytes the stack has to be adjusted in case of tail
5993   // call optimization.
5994   if (!IsSibCall)
5995     SPDiff = CalculateTailCallSPDiff(DAG, isTailCall, NumBytes);
5996 
5997   // To protect arguments on the stack from being clobbered in a tail call,
5998   // force all the loads to happen before doing any other lowering.
5999   if (isTailCall)
6000     Chain = DAG.getStackArgumentTokenFactor(Chain);
6001 
6002   // Adjust the stack pointer for the new arguments...
6003   // These operations are automatically eliminated by the prolog/epilog pass
6004   if (!IsSibCall)
6005     Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, dl);
6006   SDValue CallSeqStart = Chain;
6007 
6008   // Load the return address and frame pointer so it can be move somewhere else
6009   // later.
6010   SDValue LROp, FPOp;
6011   Chain = EmitTailCallLoadFPAndRetAddr(DAG, SPDiff, Chain, LROp, FPOp, dl);
6012 
6013   // Set up a copy of the stack pointer for use loading and storing any
6014   // arguments that may not fit in the registers available for argument
6015   // passing.
6016   SDValue StackPtr = DAG.getRegister(PPC::X1, MVT::i64);
6017 
6018   // Figure out which arguments are going to go in registers, and which in
6019   // memory.  Also, if this is a vararg function, floating point operations
6020   // must be stored to our stack, and loaded into integer regs as well, if
6021   // any integer regs are available for argument passing.
6022   unsigned ArgOffset = LinkageSize;
6023 
6024   SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
6025   SmallVector<TailCallArgumentInfo, 8> TailCallArguments;
6026 
6027   SmallVector<SDValue, 8> MemOpChains;
6028   for (unsigned i = 0; i != NumOps; ++i) {
6029     SDValue Arg = OutVals[i];
6030     ISD::ArgFlagsTy Flags = Outs[i].Flags;
6031     EVT ArgVT = Outs[i].VT;
6032     EVT OrigVT = Outs[i].ArgVT;
6033 
6034     // PtrOff will be used to store the current argument to the stack if a
6035     // register cannot be found for it.
6036     SDValue PtrOff;
6037 
6038     // We re-align the argument offset for each argument, except when using the
6039     // fast calling convention, when we need to make sure we do that only when
6040     // we'll actually use a stack slot.
6041     auto ComputePtrOff = [&]() {
6042       /* Respect alignment of argument on the stack.  */
6043       unsigned Align =
6044         CalculateStackSlotAlignment(ArgVT, OrigVT, Flags, PtrByteSize);
6045       ArgOffset = ((ArgOffset + Align - 1) / Align) * Align;
6046 
6047       PtrOff = DAG.getConstant(ArgOffset, dl, StackPtr.getValueType());
6048 
6049       PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff);
6050     };
6051 
6052     if (CallConv != CallingConv::Fast) {
6053       ComputePtrOff();
6054 
6055       /* Compute GPR index associated with argument offset.  */
6056       GPR_idx = (ArgOffset - LinkageSize) / PtrByteSize;
6057       GPR_idx = std::min(GPR_idx, NumGPRs);
6058     }
6059 
6060     // Promote integers to 64-bit values.
6061     if (Arg.getValueType() == MVT::i32 || Arg.getValueType() == MVT::i1) {
6062       // FIXME: Should this use ANY_EXTEND if neither sext nor zext?
6063       unsigned ExtOp = Flags.isSExt() ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
6064       Arg = DAG.getNode(ExtOp, dl, MVT::i64, Arg);
6065     }
6066 
6067     // FIXME memcpy is used way more than necessary.  Correctness first.
6068     // Note: "by value" is code for passing a structure by value, not
6069     // basic types.
6070     if (Flags.isByVal()) {
6071       // Note: Size includes alignment padding, so
6072       //   struct x { short a; char b; }
6073       // will have Size = 4.  With #pragma pack(1), it will have Size = 3.
6074       // These are the proper values we need for right-justifying the
6075       // aggregate in a parameter register.
6076       unsigned Size = Flags.getByValSize();
6077 
6078       // An empty aggregate parameter takes up no storage and no
6079       // registers.
6080       if (Size == 0)
6081         continue;
6082 
6083       if (CallConv == CallingConv::Fast)
6084         ComputePtrOff();
6085 
6086       // All aggregates smaller than 8 bytes must be passed right-justified.
6087       if (Size==1 || Size==2 || Size==4) {
6088         EVT VT = (Size==1) ? MVT::i8 : ((Size==2) ? MVT::i16 : MVT::i32);
6089         if (GPR_idx != NumGPRs) {
6090           SDValue Load = DAG.getExtLoad(ISD::EXTLOAD, dl, PtrVT, Chain, Arg,
6091                                         MachinePointerInfo(), VT);
6092           MemOpChains.push_back(Load.getValue(1));
6093           RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
6094 
6095           ArgOffset += PtrByteSize;
6096           continue;
6097         }
6098       }
6099 
6100       if (GPR_idx == NumGPRs && Size < 8) {
6101         SDValue AddPtr = PtrOff;
6102         if (!isLittleEndian) {
6103           SDValue Const = DAG.getConstant(PtrByteSize - Size, dl,
6104                                           PtrOff.getValueType());
6105           AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, Const);
6106         }
6107         Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, AddPtr,
6108                                                           CallSeqStart,
6109                                                           Flags, DAG, dl);
6110         ArgOffset += PtrByteSize;
6111         continue;
6112       }
6113       // Copy entire object into memory.  There are cases where gcc-generated
6114       // code assumes it is there, even if it could be put entirely into
6115       // registers.  (This is not what the doc says.)
6116 
6117       // FIXME: The above statement is likely due to a misunderstanding of the
6118       // documents.  All arguments must be copied into the parameter area BY
6119       // THE CALLEE in the event that the callee takes the address of any
6120       // formal argument.  That has not yet been implemented.  However, it is
6121       // reasonable to use the stack area as a staging area for the register
6122       // load.
6123 
6124       // Skip this for small aggregates, as we will use the same slot for a
6125       // right-justified copy, below.
6126       if (Size >= 8)
6127         Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, PtrOff,
6128                                                           CallSeqStart,
6129                                                           Flags, DAG, dl);
6130 
6131       // When a register is available, pass a small aggregate right-justified.
6132       if (Size < 8 && GPR_idx != NumGPRs) {
6133         // The easiest way to get this right-justified in a register
6134         // is to copy the structure into the rightmost portion of a
6135         // local variable slot, then load the whole slot into the
6136         // register.
6137         // FIXME: The memcpy seems to produce pretty awful code for
6138         // small aggregates, particularly for packed ones.
6139         // FIXME: It would be preferable to use the slot in the
6140         // parameter save area instead of a new local variable.
6141         SDValue AddPtr = PtrOff;
6142         if (!isLittleEndian) {
6143           SDValue Const = DAG.getConstant(8 - Size, dl, PtrOff.getValueType());
6144           AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, Const);
6145         }
6146         Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, AddPtr,
6147                                                           CallSeqStart,
6148                                                           Flags, DAG, dl);
6149 
6150         // Load the slot into the register.
6151         SDValue Load =
6152             DAG.getLoad(PtrVT, dl, Chain, PtrOff, MachinePointerInfo());
6153         MemOpChains.push_back(Load.getValue(1));
6154         RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
6155 
6156         // Done with this argument.
6157         ArgOffset += PtrByteSize;
6158         continue;
6159       }
6160 
6161       // For aggregates larger than PtrByteSize, copy the pieces of the
6162       // object that fit into registers from the parameter save area.
6163       for (unsigned j=0; j<Size; j+=PtrByteSize) {
6164         SDValue Const = DAG.getConstant(j, dl, PtrOff.getValueType());
6165         SDValue AddArg = DAG.getNode(ISD::ADD, dl, PtrVT, Arg, Const);
6166         if (GPR_idx != NumGPRs) {
6167           SDValue Load =
6168               DAG.getLoad(PtrVT, dl, Chain, AddArg, MachinePointerInfo());
6169           MemOpChains.push_back(Load.getValue(1));
6170           RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
6171           ArgOffset += PtrByteSize;
6172         } else {
6173           ArgOffset += ((Size - j + PtrByteSize-1)/PtrByteSize)*PtrByteSize;
6174           break;
6175         }
6176       }
6177       continue;
6178     }
6179 
6180     switch (Arg.getSimpleValueType().SimpleTy) {
6181     default: llvm_unreachable("Unexpected ValueType for argument!");
6182     case MVT::i1:
6183     case MVT::i32:
6184     case MVT::i64:
6185       if (Flags.isNest()) {
6186         // The 'nest' parameter, if any, is passed in R11.
6187         RegsToPass.push_back(std::make_pair(PPC::X11, Arg));
6188         hasNest = true;
6189         break;
6190       }
6191 
6192       // These can be scalar arguments or elements of an integer array type
6193       // passed directly.  Clang may use those instead of "byval" aggregate
6194       // types to avoid forcing arguments to memory unnecessarily.
6195       if (GPR_idx != NumGPRs) {
6196         RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Arg));
6197       } else {
6198         if (CallConv == CallingConv::Fast)
6199           ComputePtrOff();
6200 
6201         assert(HasParameterArea &&
6202                "Parameter area must exist to pass an argument in memory.");
6203         LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
6204                          true, isTailCall, false, MemOpChains,
6205                          TailCallArguments, dl);
6206         if (CallConv == CallingConv::Fast)
6207           ArgOffset += PtrByteSize;
6208       }
6209       if (CallConv != CallingConv::Fast)
6210         ArgOffset += PtrByteSize;
6211       break;
6212     case MVT::f32:
6213     case MVT::f64: {
6214       // These can be scalar arguments or elements of a float array type
6215       // passed directly.  The latter are used to implement ELFv2 homogenous
6216       // float aggregates.
6217 
6218       // Named arguments go into FPRs first, and once they overflow, the
6219       // remaining arguments go into GPRs and then the parameter save area.
6220       // Unnamed arguments for vararg functions always go to GPRs and
6221       // then the parameter save area.  For now, put all arguments to vararg
6222       // routines always in both locations (FPR *and* GPR or stack slot).
6223       bool NeedGPROrStack = isVarArg || FPR_idx == NumFPRs;
6224       bool NeededLoad = false;
6225 
6226       // First load the argument into the next available FPR.
6227       if (FPR_idx != NumFPRs)
6228         RegsToPass.push_back(std::make_pair(FPR[FPR_idx++], Arg));
6229 
6230       // Next, load the argument into GPR or stack slot if needed.
6231       if (!NeedGPROrStack)
6232         ;
6233       else if (GPR_idx != NumGPRs && CallConv != CallingConv::Fast) {
6234         // FIXME: We may want to re-enable this for CallingConv::Fast on the P8
6235         // once we support fp <-> gpr moves.
6236 
6237         // In the non-vararg case, this can only ever happen in the
6238         // presence of f32 array types, since otherwise we never run
6239         // out of FPRs before running out of GPRs.
6240         SDValue ArgVal;
6241 
6242         // Double values are always passed in a single GPR.
6243         if (Arg.getValueType() != MVT::f32) {
6244           ArgVal = DAG.getNode(ISD::BITCAST, dl, MVT::i64, Arg);
6245 
6246         // Non-array float values are extended and passed in a GPR.
6247         } else if (!Flags.isInConsecutiveRegs()) {
6248           ArgVal = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Arg);
6249           ArgVal = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i64, ArgVal);
6250 
6251         // If we have an array of floats, we collect every odd element
6252         // together with its predecessor into one GPR.
6253         } else if (ArgOffset % PtrByteSize != 0) {
6254           SDValue Lo, Hi;
6255           Lo = DAG.getNode(ISD::BITCAST, dl, MVT::i32, OutVals[i - 1]);
6256           Hi = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Arg);
6257           if (!isLittleEndian)
6258             std::swap(Lo, Hi);
6259           ArgVal = DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Lo, Hi);
6260 
6261         // The final element, if even, goes into the first half of a GPR.
6262         } else if (Flags.isInConsecutiveRegsLast()) {
6263           ArgVal = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Arg);
6264           ArgVal = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i64, ArgVal);
6265           if (!isLittleEndian)
6266             ArgVal = DAG.getNode(ISD::SHL, dl, MVT::i64, ArgVal,
6267                                  DAG.getConstant(32, dl, MVT::i32));
6268 
6269         // Non-final even elements are skipped; they will be handled
6270         // together the with subsequent argument on the next go-around.
6271         } else
6272           ArgVal = SDValue();
6273 
6274         if (ArgVal.getNode())
6275           RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], ArgVal));
6276       } else {
6277         if (CallConv == CallingConv::Fast)
6278           ComputePtrOff();
6279 
6280         // Single-precision floating-point values are mapped to the
6281         // second (rightmost) word of the stack doubleword.
6282         if (Arg.getValueType() == MVT::f32 &&
6283             !isLittleEndian && !Flags.isInConsecutiveRegs()) {
6284           SDValue ConstFour = DAG.getConstant(4, dl, PtrOff.getValueType());
6285           PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, ConstFour);
6286         }
6287 
6288         assert(HasParameterArea &&
6289                "Parameter area must exist to pass an argument in memory.");
6290         LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
6291                          true, isTailCall, false, MemOpChains,
6292                          TailCallArguments, dl);
6293 
6294         NeededLoad = true;
6295       }
6296       // When passing an array of floats, the array occupies consecutive
6297       // space in the argument area; only round up to the next doubleword
6298       // at the end of the array.  Otherwise, each float takes 8 bytes.
6299       if (CallConv != CallingConv::Fast || NeededLoad) {
6300         ArgOffset += (Arg.getValueType() == MVT::f32 &&
6301                       Flags.isInConsecutiveRegs()) ? 4 : 8;
6302         if (Flags.isInConsecutiveRegsLast())
6303           ArgOffset = ((ArgOffset + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
6304       }
6305       break;
6306     }
6307     case MVT::v4f32:
6308     case MVT::v4i32:
6309     case MVT::v8i16:
6310     case MVT::v16i8:
6311     case MVT::v2f64:
6312     case MVT::v2i64:
6313     case MVT::v1i128:
6314     case MVT::f128:
6315       if (!Subtarget.hasQPX()) {
6316       // These can be scalar arguments or elements of a vector array type
6317       // passed directly.  The latter are used to implement ELFv2 homogenous
6318       // vector aggregates.
6319 
6320       // For a varargs call, named arguments go into VRs or on the stack as
6321       // usual; unnamed arguments always go to the stack or the corresponding
6322       // GPRs when within range.  For now, we always put the value in both
6323       // locations (or even all three).
6324       if (isVarArg) {
6325         assert(HasParameterArea &&
6326                "Parameter area must exist if we have a varargs call.");
6327         // We could elide this store in the case where the object fits
6328         // entirely in R registers.  Maybe later.
6329         SDValue Store =
6330             DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo());
6331         MemOpChains.push_back(Store);
6332         if (VR_idx != NumVRs) {
6333           SDValue Load =
6334               DAG.getLoad(MVT::v4f32, dl, Store, PtrOff, MachinePointerInfo());
6335           MemOpChains.push_back(Load.getValue(1));
6336           RegsToPass.push_back(std::make_pair(VR[VR_idx++], Load));
6337         }
6338         ArgOffset += 16;
6339         for (unsigned i=0; i<16; i+=PtrByteSize) {
6340           if (GPR_idx == NumGPRs)
6341             break;
6342           SDValue Ix = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff,
6343                                    DAG.getConstant(i, dl, PtrVT));
6344           SDValue Load =
6345               DAG.getLoad(PtrVT, dl, Store, Ix, MachinePointerInfo());
6346           MemOpChains.push_back(Load.getValue(1));
6347           RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
6348         }
6349         break;
6350       }
6351 
6352       // Non-varargs Altivec params go into VRs or on the stack.
6353       if (VR_idx != NumVRs) {
6354         RegsToPass.push_back(std::make_pair(VR[VR_idx++], Arg));
6355       } else {
6356         if (CallConv == CallingConv::Fast)
6357           ComputePtrOff();
6358 
6359         assert(HasParameterArea &&
6360                "Parameter area must exist to pass an argument in memory.");
6361         LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
6362                          true, isTailCall, true, MemOpChains,
6363                          TailCallArguments, dl);
6364         if (CallConv == CallingConv::Fast)
6365           ArgOffset += 16;
6366       }
6367 
6368       if (CallConv != CallingConv::Fast)
6369         ArgOffset += 16;
6370       break;
6371       } // not QPX
6372 
6373       assert(Arg.getValueType().getSimpleVT().SimpleTy == MVT::v4f32 &&
6374              "Invalid QPX parameter type");
6375 
6376       LLVM_FALLTHROUGH;
6377     case MVT::v4f64:
6378     case MVT::v4i1: {
6379       bool IsF32 = Arg.getValueType().getSimpleVT().SimpleTy == MVT::v4f32;
6380       if (isVarArg) {
6381         assert(HasParameterArea &&
6382                "Parameter area must exist if we have a varargs call.");
6383         // We could elide this store in the case where the object fits
6384         // entirely in R registers.  Maybe later.
6385         SDValue Store =
6386             DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo());
6387         MemOpChains.push_back(Store);
6388         if (QFPR_idx != NumQFPRs) {
6389           SDValue Load = DAG.getLoad(IsF32 ? MVT::v4f32 : MVT::v4f64, dl, Store,
6390                                      PtrOff, MachinePointerInfo());
6391           MemOpChains.push_back(Load.getValue(1));
6392           RegsToPass.push_back(std::make_pair(QFPR[QFPR_idx++], Load));
6393         }
6394         ArgOffset += (IsF32 ? 16 : 32);
6395         for (unsigned i = 0; i < (IsF32 ? 16U : 32U); i += PtrByteSize) {
6396           if (GPR_idx == NumGPRs)
6397             break;
6398           SDValue Ix = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff,
6399                                    DAG.getConstant(i, dl, PtrVT));
6400           SDValue Load =
6401               DAG.getLoad(PtrVT, dl, Store, Ix, MachinePointerInfo());
6402           MemOpChains.push_back(Load.getValue(1));
6403           RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
6404         }
6405         break;
6406       }
6407 
6408       // Non-varargs QPX params go into registers or on the stack.
6409       if (QFPR_idx != NumQFPRs) {
6410         RegsToPass.push_back(std::make_pair(QFPR[QFPR_idx++], Arg));
6411       } else {
6412         if (CallConv == CallingConv::Fast)
6413           ComputePtrOff();
6414 
6415         assert(HasParameterArea &&
6416                "Parameter area must exist to pass an argument in memory.");
6417         LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
6418                          true, isTailCall, true, MemOpChains,
6419                          TailCallArguments, dl);
6420         if (CallConv == CallingConv::Fast)
6421           ArgOffset += (IsF32 ? 16 : 32);
6422       }
6423 
6424       if (CallConv != CallingConv::Fast)
6425         ArgOffset += (IsF32 ? 16 : 32);
6426       break;
6427       }
6428     }
6429   }
6430 
6431   assert((!HasParameterArea || NumBytesActuallyUsed == ArgOffset) &&
6432          "mismatch in size of parameter area");
6433   (void)NumBytesActuallyUsed;
6434 
6435   if (!MemOpChains.empty())
6436     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains);
6437 
6438   // Check if this is an indirect call (MTCTR/BCTRL).
6439   // See prepareDescriptorIndirectCall and buildCallOperands for more
6440   // information about calls through function pointers in the 64-bit SVR4 ABI.
6441   if (!isTailCall && !isPatchPoint &&
6442       !isFunctionGlobalAddress(Callee) &&
6443       !isa<ExternalSymbolSDNode>(Callee)) {
6444     // Load r2 into a virtual register and store it to the TOC save area.
6445     setUsesTOCBasePtr(DAG);
6446     SDValue Val = DAG.getCopyFromReg(Chain, dl, PPC::X2, MVT::i64);
6447     // TOC save area offset.
6448     unsigned TOCSaveOffset = Subtarget.getFrameLowering()->getTOCSaveOffset();
6449     SDValue PtrOff = DAG.getIntPtrConstant(TOCSaveOffset, dl);
6450     SDValue AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff);
6451     Chain = DAG.getStore(
6452         Val.getValue(1), dl, Val, AddPtr,
6453         MachinePointerInfo::getStack(DAG.getMachineFunction(), TOCSaveOffset));
6454     // In the ELFv2 ABI, R12 must contain the address of an indirect callee.
6455     // This does not mean the MTCTR instruction must use R12; it's easier
6456     // to model this as an extra parameter, so do that.
6457     if (isELFv2ABI && !isPatchPoint)
6458       RegsToPass.push_back(std::make_pair((unsigned)PPC::X12, Callee));
6459   }
6460 
6461   // Build a sequence of copy-to-reg nodes chained together with token chain
6462   // and flag operands which copy the outgoing args into the appropriate regs.
6463   SDValue InFlag;
6464   for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
6465     Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
6466                              RegsToPass[i].second, InFlag);
6467     InFlag = Chain.getValue(1);
6468   }
6469 
6470   if (isTailCall && !IsSibCall)
6471     PrepareTailCall(DAG, InFlag, Chain, dl, SPDiff, NumBytes, LROp, FPOp,
6472                     TailCallArguments);
6473 
6474   return FinishCall(CallConv, dl, isTailCall, isVarArg, isPatchPoint, hasNest,
6475                     DAG, RegsToPass, InFlag, Chain, CallSeqStart, Callee,
6476                     SPDiff, NumBytes, Ins, InVals, CS);
6477 }
6478 
6479 SDValue PPCTargetLowering::LowerCall_Darwin(
6480     SDValue Chain, SDValue Callee, CallingConv::ID CallConv, bool isVarArg,
6481     bool isTailCall, bool isPatchPoint,
6482     const SmallVectorImpl<ISD::OutputArg> &Outs,
6483     const SmallVectorImpl<SDValue> &OutVals,
6484     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
6485     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals,
6486     ImmutableCallSite CS) const {
6487   unsigned NumOps = Outs.size();
6488 
6489   EVT PtrVT = getPointerTy(DAG.getDataLayout());
6490   bool isPPC64 = PtrVT == MVT::i64;
6491   unsigned PtrByteSize = isPPC64 ? 8 : 4;
6492 
6493   MachineFunction &MF = DAG.getMachineFunction();
6494 
6495   // Mark this function as potentially containing a function that contains a
6496   // tail call. As a consequence the frame pointer will be used for dynamicalloc
6497   // and restoring the callers stack pointer in this functions epilog. This is
6498   // done because by tail calling the called function might overwrite the value
6499   // in this function's (MF) stack pointer stack slot 0(SP).
6500   if (getTargetMachine().Options.GuaranteedTailCallOpt &&
6501       CallConv == CallingConv::Fast)
6502     MF.getInfo<PPCFunctionInfo>()->setHasFastCall();
6503 
6504   // Count how many bytes are to be pushed on the stack, including the linkage
6505   // area, and parameter passing area.  We start with 24/48 bytes, which is
6506   // prereserved space for [SP][CR][LR][3 x unused].
6507   unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize();
6508   unsigned NumBytes = LinkageSize;
6509 
6510   // Add up all the space actually used.
6511   // In 32-bit non-varargs calls, Altivec parameters all go at the end; usually
6512   // they all go in registers, but we must reserve stack space for them for
6513   // possible use by the caller.  In varargs or 64-bit calls, parameters are
6514   // assigned stack space in order, with padding so Altivec parameters are
6515   // 16-byte aligned.
6516   unsigned nAltivecParamsAtEnd = 0;
6517   for (unsigned i = 0; i != NumOps; ++i) {
6518     ISD::ArgFlagsTy Flags = Outs[i].Flags;
6519     EVT ArgVT = Outs[i].VT;
6520     // Varargs Altivec parameters are padded to a 16 byte boundary.
6521     if (ArgVT == MVT::v4f32 || ArgVT == MVT::v4i32 ||
6522         ArgVT == MVT::v8i16 || ArgVT == MVT::v16i8 ||
6523         ArgVT == MVT::v2f64 || ArgVT == MVT::v2i64) {
6524       if (!isVarArg && !isPPC64) {
6525         // Non-varargs Altivec parameters go after all the non-Altivec
6526         // parameters; handle those later so we know how much padding we need.
6527         nAltivecParamsAtEnd++;
6528         continue;
6529       }
6530       // Varargs and 64-bit Altivec parameters are padded to 16 byte boundary.
6531       NumBytes = ((NumBytes+15)/16)*16;
6532     }
6533     NumBytes += CalculateStackSlotSize(ArgVT, Flags, PtrByteSize);
6534   }
6535 
6536   // Allow for Altivec parameters at the end, if needed.
6537   if (nAltivecParamsAtEnd) {
6538     NumBytes = ((NumBytes+15)/16)*16;
6539     NumBytes += 16*nAltivecParamsAtEnd;
6540   }
6541 
6542   // The prolog code of the callee may store up to 8 GPR argument registers to
6543   // the stack, allowing va_start to index over them in memory if its varargs.
6544   // Because we cannot tell if this is needed on the caller side, we have to
6545   // conservatively assume that it is needed.  As such, make sure we have at
6546   // least enough stack space for the caller to store the 8 GPRs.
6547   NumBytes = std::max(NumBytes, LinkageSize + 8 * PtrByteSize);
6548 
6549   // Tail call needs the stack to be aligned.
6550   if (getTargetMachine().Options.GuaranteedTailCallOpt &&
6551       CallConv == CallingConv::Fast)
6552     NumBytes = EnsureStackAlignment(Subtarget.getFrameLowering(), NumBytes);
6553 
6554   // Calculate by how many bytes the stack has to be adjusted in case of tail
6555   // call optimization.
6556   int SPDiff = CalculateTailCallSPDiff(DAG, isTailCall, NumBytes);
6557 
6558   // To protect arguments on the stack from being clobbered in a tail call,
6559   // force all the loads to happen before doing any other lowering.
6560   if (isTailCall)
6561     Chain = DAG.getStackArgumentTokenFactor(Chain);
6562 
6563   // Adjust the stack pointer for the new arguments...
6564   // These operations are automatically eliminated by the prolog/epilog pass
6565   Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, dl);
6566   SDValue CallSeqStart = Chain;
6567 
6568   // Load the return address and frame pointer so it can be move somewhere else
6569   // later.
6570   SDValue LROp, FPOp;
6571   Chain = EmitTailCallLoadFPAndRetAddr(DAG, SPDiff, Chain, LROp, FPOp, dl);
6572 
6573   // Set up a copy of the stack pointer for use loading and storing any
6574   // arguments that may not fit in the registers available for argument
6575   // passing.
6576   SDValue StackPtr;
6577   if (isPPC64)
6578     StackPtr = DAG.getRegister(PPC::X1, MVT::i64);
6579   else
6580     StackPtr = DAG.getRegister(PPC::R1, MVT::i32);
6581 
6582   // Figure out which arguments are going to go in registers, and which in
6583   // memory.  Also, if this is a vararg function, floating point operations
6584   // must be stored to our stack, and loaded into integer regs as well, if
6585   // any integer regs are available for argument passing.
6586   unsigned ArgOffset = LinkageSize;
6587   unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0;
6588 
6589   static const MCPhysReg GPR_32[] = {           // 32-bit registers.
6590     PPC::R3, PPC::R4, PPC::R5, PPC::R6,
6591     PPC::R7, PPC::R8, PPC::R9, PPC::R10,
6592   };
6593   static const MCPhysReg GPR_64[] = {           // 64-bit registers.
6594     PPC::X3, PPC::X4, PPC::X5, PPC::X6,
6595     PPC::X7, PPC::X8, PPC::X9, PPC::X10,
6596   };
6597   static const MCPhysReg VR[] = {
6598     PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8,
6599     PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13
6600   };
6601   const unsigned NumGPRs = array_lengthof(GPR_32);
6602   const unsigned NumFPRs = 13;
6603   const unsigned NumVRs  = array_lengthof(VR);
6604 
6605   const MCPhysReg *GPR = isPPC64 ? GPR_64 : GPR_32;
6606 
6607   SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
6608   SmallVector<TailCallArgumentInfo, 8> TailCallArguments;
6609 
6610   SmallVector<SDValue, 8> MemOpChains;
6611   for (unsigned i = 0; i != NumOps; ++i) {
6612     SDValue Arg = OutVals[i];
6613     ISD::ArgFlagsTy Flags = Outs[i].Flags;
6614 
6615     // PtrOff will be used to store the current argument to the stack if a
6616     // register cannot be found for it.
6617     SDValue PtrOff;
6618 
6619     PtrOff = DAG.getConstant(ArgOffset, dl, StackPtr.getValueType());
6620 
6621     PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff);
6622 
6623     // On PPC64, promote integers to 64-bit values.
6624     if (isPPC64 && Arg.getValueType() == MVT::i32) {
6625       // FIXME: Should this use ANY_EXTEND if neither sext nor zext?
6626       unsigned ExtOp = Flags.isSExt() ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
6627       Arg = DAG.getNode(ExtOp, dl, MVT::i64, Arg);
6628     }
6629 
6630     // FIXME memcpy is used way more than necessary.  Correctness first.
6631     // Note: "by value" is code for passing a structure by value, not
6632     // basic types.
6633     if (Flags.isByVal()) {
6634       unsigned Size = Flags.getByValSize();
6635       // Very small objects are passed right-justified.  Everything else is
6636       // passed left-justified.
6637       if (Size==1 || Size==2) {
6638         EVT VT = (Size==1) ? MVT::i8 : MVT::i16;
6639         if (GPR_idx != NumGPRs) {
6640           SDValue Load = DAG.getExtLoad(ISD::EXTLOAD, dl, PtrVT, Chain, Arg,
6641                                         MachinePointerInfo(), VT);
6642           MemOpChains.push_back(Load.getValue(1));
6643           RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
6644 
6645           ArgOffset += PtrByteSize;
6646         } else {
6647           SDValue Const = DAG.getConstant(PtrByteSize - Size, dl,
6648                                           PtrOff.getValueType());
6649           SDValue AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, Const);
6650           Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, AddPtr,
6651                                                             CallSeqStart,
6652                                                             Flags, DAG, dl);
6653           ArgOffset += PtrByteSize;
6654         }
6655         continue;
6656       }
6657       // Copy entire object into memory.  There are cases where gcc-generated
6658       // code assumes it is there, even if it could be put entirely into
6659       // registers.  (This is not what the doc says.)
6660       Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, PtrOff,
6661                                                         CallSeqStart,
6662                                                         Flags, DAG, dl);
6663 
6664       // For small aggregates (Darwin only) and aggregates >= PtrByteSize,
6665       // copy the pieces of the object that fit into registers from the
6666       // parameter save area.
6667       for (unsigned j=0; j<Size; j+=PtrByteSize) {
6668         SDValue Const = DAG.getConstant(j, dl, PtrOff.getValueType());
6669         SDValue AddArg = DAG.getNode(ISD::ADD, dl, PtrVT, Arg, Const);
6670         if (GPR_idx != NumGPRs) {
6671           SDValue Load =
6672               DAG.getLoad(PtrVT, dl, Chain, AddArg, MachinePointerInfo());
6673           MemOpChains.push_back(Load.getValue(1));
6674           RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
6675           ArgOffset += PtrByteSize;
6676         } else {
6677           ArgOffset += ((Size - j + PtrByteSize-1)/PtrByteSize)*PtrByteSize;
6678           break;
6679         }
6680       }
6681       continue;
6682     }
6683 
6684     switch (Arg.getSimpleValueType().SimpleTy) {
6685     default: llvm_unreachable("Unexpected ValueType for argument!");
6686     case MVT::i1:
6687     case MVT::i32:
6688     case MVT::i64:
6689       if (GPR_idx != NumGPRs) {
6690         if (Arg.getValueType() == MVT::i1)
6691           Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, PtrVT, Arg);
6692 
6693         RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Arg));
6694       } else {
6695         LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
6696                          isPPC64, isTailCall, false, MemOpChains,
6697                          TailCallArguments, dl);
6698       }
6699       ArgOffset += PtrByteSize;
6700       break;
6701     case MVT::f32:
6702     case MVT::f64:
6703       if (FPR_idx != NumFPRs) {
6704         RegsToPass.push_back(std::make_pair(FPR[FPR_idx++], Arg));
6705 
6706         if (isVarArg) {
6707           SDValue Store =
6708               DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo());
6709           MemOpChains.push_back(Store);
6710 
6711           // Float varargs are always shadowed in available integer registers
6712           if (GPR_idx != NumGPRs) {
6713             SDValue Load =
6714                 DAG.getLoad(PtrVT, dl, Store, PtrOff, MachinePointerInfo());
6715             MemOpChains.push_back(Load.getValue(1));
6716             RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
6717           }
6718           if (GPR_idx != NumGPRs && Arg.getValueType() == MVT::f64 && !isPPC64){
6719             SDValue ConstFour = DAG.getConstant(4, dl, PtrOff.getValueType());
6720             PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, ConstFour);
6721             SDValue Load =
6722                 DAG.getLoad(PtrVT, dl, Store, PtrOff, MachinePointerInfo());
6723             MemOpChains.push_back(Load.getValue(1));
6724             RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
6725           }
6726         } else {
6727           // If we have any FPRs remaining, we may also have GPRs remaining.
6728           // Args passed in FPRs consume either 1 (f32) or 2 (f64) available
6729           // GPRs.
6730           if (GPR_idx != NumGPRs)
6731             ++GPR_idx;
6732           if (GPR_idx != NumGPRs && Arg.getValueType() == MVT::f64 &&
6733               !isPPC64)  // PPC64 has 64-bit GPR's obviously :)
6734             ++GPR_idx;
6735         }
6736       } else
6737         LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
6738                          isPPC64, isTailCall, false, MemOpChains,
6739                          TailCallArguments, dl);
6740       if (isPPC64)
6741         ArgOffset += 8;
6742       else
6743         ArgOffset += Arg.getValueType() == MVT::f32 ? 4 : 8;
6744       break;
6745     case MVT::v4f32:
6746     case MVT::v4i32:
6747     case MVT::v8i16:
6748     case MVT::v16i8:
6749       if (isVarArg) {
6750         // These go aligned on the stack, or in the corresponding R registers
6751         // when within range.  The Darwin PPC ABI doc claims they also go in
6752         // V registers; in fact gcc does this only for arguments that are
6753         // prototyped, not for those that match the ...  We do it for all
6754         // arguments, seems to work.
6755         while (ArgOffset % 16 !=0) {
6756           ArgOffset += PtrByteSize;
6757           if (GPR_idx != NumGPRs)
6758             GPR_idx++;
6759         }
6760         // We could elide this store in the case where the object fits
6761         // entirely in R registers.  Maybe later.
6762         PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr,
6763                              DAG.getConstant(ArgOffset, dl, PtrVT));
6764         SDValue Store =
6765             DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo());
6766         MemOpChains.push_back(Store);
6767         if (VR_idx != NumVRs) {
6768           SDValue Load =
6769               DAG.getLoad(MVT::v4f32, dl, Store, PtrOff, MachinePointerInfo());
6770           MemOpChains.push_back(Load.getValue(1));
6771           RegsToPass.push_back(std::make_pair(VR[VR_idx++], Load));
6772         }
6773         ArgOffset += 16;
6774         for (unsigned i=0; i<16; i+=PtrByteSize) {
6775           if (GPR_idx == NumGPRs)
6776             break;
6777           SDValue Ix = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff,
6778                                    DAG.getConstant(i, dl, PtrVT));
6779           SDValue Load =
6780               DAG.getLoad(PtrVT, dl, Store, Ix, MachinePointerInfo());
6781           MemOpChains.push_back(Load.getValue(1));
6782           RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
6783         }
6784         break;
6785       }
6786 
6787       // Non-varargs Altivec params generally go in registers, but have
6788       // stack space allocated at the end.
6789       if (VR_idx != NumVRs) {
6790         // Doesn't have GPR space allocated.
6791         RegsToPass.push_back(std::make_pair(VR[VR_idx++], Arg));
6792       } else if (nAltivecParamsAtEnd==0) {
6793         // We are emitting Altivec params in order.
6794         LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
6795                          isPPC64, isTailCall, true, MemOpChains,
6796                          TailCallArguments, dl);
6797         ArgOffset += 16;
6798       }
6799       break;
6800     }
6801   }
6802   // If all Altivec parameters fit in registers, as they usually do,
6803   // they get stack space following the non-Altivec parameters.  We
6804   // don't track this here because nobody below needs it.
6805   // If there are more Altivec parameters than fit in registers emit
6806   // the stores here.
6807   if (!isVarArg && nAltivecParamsAtEnd > NumVRs) {
6808     unsigned j = 0;
6809     // Offset is aligned; skip 1st 12 params which go in V registers.
6810     ArgOffset = ((ArgOffset+15)/16)*16;
6811     ArgOffset += 12*16;
6812     for (unsigned i = 0; i != NumOps; ++i) {
6813       SDValue Arg = OutVals[i];
6814       EVT ArgType = Outs[i].VT;
6815       if (ArgType==MVT::v4f32 || ArgType==MVT::v4i32 ||
6816           ArgType==MVT::v8i16 || ArgType==MVT::v16i8) {
6817         if (++j > NumVRs) {
6818           SDValue PtrOff;
6819           // We are emitting Altivec params in order.
6820           LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
6821                            isPPC64, isTailCall, true, MemOpChains,
6822                            TailCallArguments, dl);
6823           ArgOffset += 16;
6824         }
6825       }
6826     }
6827   }
6828 
6829   if (!MemOpChains.empty())
6830     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains);
6831 
6832   // On Darwin, R12 must contain the address of an indirect callee.  This does
6833   // not mean the MTCTR instruction must use R12; it's easier to model this as
6834   // an extra parameter, so do that.
6835   if (!isTailCall &&
6836       !isFunctionGlobalAddress(Callee) &&
6837       !isa<ExternalSymbolSDNode>(Callee) &&
6838       !isBLACompatibleAddress(Callee, DAG))
6839     RegsToPass.push_back(std::make_pair((unsigned)(isPPC64 ? PPC::X12 :
6840                                                    PPC::R12), Callee));
6841 
6842   // Build a sequence of copy-to-reg nodes chained together with token chain
6843   // and flag operands which copy the outgoing args into the appropriate regs.
6844   SDValue InFlag;
6845   for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
6846     Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
6847                              RegsToPass[i].second, InFlag);
6848     InFlag = Chain.getValue(1);
6849   }
6850 
6851   if (isTailCall)
6852     PrepareTailCall(DAG, InFlag, Chain, dl, SPDiff, NumBytes, LROp, FPOp,
6853                     TailCallArguments);
6854 
6855   return FinishCall(CallConv, dl, isTailCall, isVarArg, isPatchPoint,
6856                     /* unused except on PPC64 ELFv1 */ false, DAG,
6857                     RegsToPass, InFlag, Chain, CallSeqStart, Callee, SPDiff,
6858                     NumBytes, Ins, InVals, CS);
6859 }
6860 
6861 static bool CC_AIX(unsigned ValNo, MVT ValVT, MVT LocVT,
6862                    CCValAssign::LocInfo LocInfo, ISD::ArgFlagsTy ArgFlags,
6863                    CCState &State) {
6864 
6865   if (ValVT == MVT::f128)
6866     report_fatal_error("f128 is unimplemented on AIX.");
6867 
6868   if (ArgFlags.isByVal())
6869     report_fatal_error("Passing structure by value is unimplemented.");
6870 
6871   if (ArgFlags.isNest())
6872     report_fatal_error("Nest arguments are unimplemented.");
6873 
6874   if (ValVT.isVector() || LocVT.isVector())
6875     report_fatal_error("Vector arguments are unimplemented on AIX.");
6876 
6877   const PPCSubtarget &Subtarget = static_cast<const PPCSubtarget &>(
6878       State.getMachineFunction().getSubtarget());
6879   const bool IsPPC64 = Subtarget.isPPC64();
6880   const unsigned PtrByteSize = IsPPC64 ? 8 : 4;
6881 
6882   static const MCPhysReg GPR_32[] = {// 32-bit registers.
6883                                      PPC::R3, PPC::R4, PPC::R5, PPC::R6,
6884                                      PPC::R7, PPC::R8, PPC::R9, PPC::R10};
6885   static const MCPhysReg GPR_64[] = {// 64-bit registers.
6886                                      PPC::X3, PPC::X4, PPC::X5, PPC::X6,
6887                                      PPC::X7, PPC::X8, PPC::X9, PPC::X10};
6888 
6889   // Arguments always reserve parameter save area.
6890   switch (ValVT.SimpleTy) {
6891   default:
6892     report_fatal_error("Unhandled value type for argument.");
6893   case MVT::i64:
6894     // i64 arguments should have been split to i32 for PPC32.
6895     assert(IsPPC64 && "PPC32 should have split i64 values.");
6896     LLVM_FALLTHROUGH;
6897   case MVT::i1:
6898   case MVT::i32:
6899     State.AllocateStack(PtrByteSize, PtrByteSize);
6900     if (unsigned Reg = State.AllocateReg(IsPPC64 ? GPR_64 : GPR_32)) {
6901       MVT RegVT = IsPPC64 ? MVT::i64 : MVT::i32;
6902       // Promote integers if needed.
6903       if (ValVT.getSizeInBits() < RegVT.getSizeInBits())
6904         LocInfo = ArgFlags.isSExt() ? CCValAssign::LocInfo::SExt
6905                                     : CCValAssign::LocInfo::ZExt;
6906       State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, RegVT, LocInfo));
6907     }
6908     else
6909       report_fatal_error("Handling of placing parameters on the stack is "
6910                          "unimplemented!");
6911     return false;
6912 
6913   case MVT::f32:
6914   case MVT::f64: {
6915     // Parameter save area (PSA) is reserved even if the float passes in fpr.
6916     const unsigned StoreSize = LocVT.getStoreSize();
6917     // Floats are always 4-byte aligned in the PSA on AIX.
6918     // This includes f64 in 64-bit mode for ABI compatibility.
6919     State.AllocateStack(IsPPC64 ? 8 : StoreSize, 4);
6920     if (unsigned Reg = State.AllocateReg(FPR))
6921       State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
6922     else
6923       report_fatal_error("Handling of placing parameters on the stack is "
6924                          "unimplemented!");
6925 
6926     // AIX requires that GPRs are reserved for float arguments.
6927     // Successfully reserved GPRs are only initialized for vararg calls.
6928     MVT RegVT = IsPPC64 ? MVT::i64 : MVT::i32;
6929     for (unsigned I = 0; I < StoreSize; I += PtrByteSize) {
6930       if (unsigned Reg = State.AllocateReg(IsPPC64 ? GPR_64 : GPR_32)) {
6931         if (State.isVarArg()) {
6932           // Custom handling is required for:
6933           //   f64 in PPC32 needs to be split into 2 GPRs.
6934           //   f32 in PPC64 needs to occupy only lower 32 bits of 64-bit GPR.
6935           State.addLoc(
6936               CCValAssign::getCustomReg(ValNo, ValVT, Reg, RegVT, LocInfo));
6937         }
6938       } else if (State.isVarArg()) {
6939         report_fatal_error("Handling of placing parameters on the stack is "
6940                            "unimplemented!");
6941       }
6942     }
6943 
6944     return false;
6945   }
6946   }
6947   return true;
6948 }
6949 
6950 static const TargetRegisterClass *getRegClassForSVT(MVT::SimpleValueType SVT,
6951                                                     bool IsPPC64) {
6952   assert((IsPPC64 || SVT != MVT::i64) &&
6953          "i64 should have been split for 32-bit codegen.");
6954 
6955   switch (SVT) {
6956   default:
6957     report_fatal_error("Unexpected value type for formal argument");
6958   case MVT::i1:
6959   case MVT::i32:
6960   case MVT::i64:
6961     return IsPPC64 ? &PPC::G8RCRegClass : &PPC::GPRCRegClass;
6962   case MVT::f32:
6963     return &PPC::F4RCRegClass;
6964   case MVT::f64:
6965     return &PPC::F8RCRegClass;
6966   }
6967 }
6968 
6969 static SDValue truncateScalarIntegerArg(ISD::ArgFlagsTy Flags, EVT ValVT,
6970                                         SelectionDAG &DAG, SDValue ArgValue,
6971                                         MVT LocVT, const SDLoc &dl) {
6972   assert(ValVT.isScalarInteger() && LocVT.isScalarInteger());
6973   assert(ValVT.getSizeInBits() < LocVT.getSizeInBits());
6974 
6975   if (Flags.isSExt())
6976     ArgValue = DAG.getNode(ISD::AssertSext, dl, LocVT, ArgValue,
6977                            DAG.getValueType(ValVT));
6978   else if (Flags.isZExt())
6979     ArgValue = DAG.getNode(ISD::AssertZext, dl, LocVT, ArgValue,
6980                            DAG.getValueType(ValVT));
6981 
6982   return DAG.getNode(ISD::TRUNCATE, dl, ValVT, ArgValue);
6983 }
6984 
6985 SDValue PPCTargetLowering::LowerFormalArguments_AIX(
6986     SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
6987     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
6988     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
6989 
6990   assert((CallConv == CallingConv::C || CallConv == CallingConv::Cold ||
6991           CallConv == CallingConv::Fast) &&
6992          "Unexpected calling convention!");
6993 
6994   if (isVarArg)
6995     report_fatal_error("This call type is unimplemented on AIX.");
6996 
6997   if (getTargetMachine().Options.GuaranteedTailCallOpt)
6998     report_fatal_error("Tail call support is unimplemented on AIX.");
6999 
7000   if (useSoftFloat())
7001     report_fatal_error("Soft float support is unimplemented on AIX.");
7002 
7003   const PPCSubtarget &Subtarget =
7004       static_cast<const PPCSubtarget &>(DAG.getSubtarget());
7005   if (Subtarget.hasQPX())
7006     report_fatal_error("QPX support is not supported on AIX.");
7007 
7008   const bool IsPPC64 = Subtarget.isPPC64();
7009   const unsigned PtrByteSize = IsPPC64 ? 8 : 4;
7010 
7011   // Assign locations to all of the incoming arguments.
7012   SmallVector<CCValAssign, 16> ArgLocs;
7013   MachineFunction &MF = DAG.getMachineFunction();
7014   CCState CCInfo(CallConv, isVarArg, MF, ArgLocs, *DAG.getContext());
7015 
7016   // Reserve space for the linkage area on the stack.
7017   const unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize();
7018   // On AIX a minimum of 8 words is saved to the parameter save area.
7019   const unsigned MinParameterSaveArea = 8 * PtrByteSize;
7020   CCInfo.AllocateStack(LinkageSize + MinParameterSaveArea, PtrByteSize);
7021   CCInfo.AnalyzeFormalArguments(Ins, CC_AIX);
7022 
7023   for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
7024     CCValAssign &VA = ArgLocs[i];
7025     SDValue ArgValue;
7026     ISD::ArgFlagsTy Flags = Ins[i].Flags;
7027     if (VA.isRegLoc()) {
7028       EVT ValVT = VA.getValVT();
7029       MVT LocVT = VA.getLocVT();
7030       MVT::SimpleValueType SVT = ValVT.getSimpleVT().SimpleTy;
7031       unsigned VReg =
7032           MF.addLiveIn(VA.getLocReg(), getRegClassForSVT(SVT, IsPPC64));
7033       ArgValue = DAG.getCopyFromReg(Chain, dl, VReg, LocVT);
7034       if (ValVT.isScalarInteger() &&
7035           (ValVT.getSizeInBits() < LocVT.getSizeInBits())) {
7036         ArgValue =
7037             truncateScalarIntegerArg(Flags, ValVT, DAG, ArgValue, LocVT, dl);
7038       }
7039       InVals.push_back(ArgValue);
7040     } else {
7041       report_fatal_error("Handling of formal arguments on the stack is "
7042                          "unimplemented!");
7043     }
7044   }
7045 
7046   // Area that is at least reserved in the caller of this function.
7047   unsigned MinReservedArea = CCInfo.getNextStackOffset();
7048 
7049   // Set the size that is at least reserved in caller of this function. Tail
7050   // call optimized function's reserved stack space needs to be aligned so
7051   // that taking the difference between two stack areas will result in an
7052   // aligned stack.
7053   MinReservedArea =
7054       EnsureStackAlignment(Subtarget.getFrameLowering(), MinReservedArea);
7055   PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
7056   FuncInfo->setMinReservedArea(MinReservedArea);
7057 
7058   return Chain;
7059 }
7060 
7061 SDValue PPCTargetLowering::LowerCall_AIX(
7062     SDValue Chain, SDValue Callee, CallingConv::ID CallConv, bool isVarArg,
7063     bool isTailCall, bool isPatchPoint,
7064     const SmallVectorImpl<ISD::OutputArg> &Outs,
7065     const SmallVectorImpl<SDValue> &OutVals,
7066     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
7067     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals,
7068     ImmutableCallSite CS) const {
7069 
7070   assert((CallConv == CallingConv::C ||
7071           CallConv == CallingConv::Cold ||
7072           CallConv == CallingConv::Fast) && "Unexpected calling convention!");
7073 
7074   if (isPatchPoint)
7075     report_fatal_error("This call type is unimplemented on AIX.");
7076 
7077   const PPCSubtarget& Subtarget =
7078       static_cast<const PPCSubtarget&>(DAG.getSubtarget());
7079   if (Subtarget.hasQPX())
7080     report_fatal_error("QPX is not supported on AIX.");
7081   if (Subtarget.hasAltivec())
7082     report_fatal_error("Altivec support is unimplemented on AIX.");
7083 
7084   MachineFunction &MF = DAG.getMachineFunction();
7085   SmallVector<CCValAssign, 16> ArgLocs;
7086   CCState CCInfo(CallConv, isVarArg, MF, ArgLocs, *DAG.getContext());
7087 
7088   // Reserve space for the linkage save area (LSA) on the stack.
7089   // In both PPC32 and PPC64 there are 6 reserved slots in the LSA:
7090   //   [SP][CR][LR][2 x reserved][TOC].
7091   // The LSA is 24 bytes (6x4) in PPC32 and 48 bytes (6x8) in PPC64.
7092   const unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize();
7093   const bool IsPPC64 = Subtarget.isPPC64();
7094   const unsigned PtrByteSize = IsPPC64 ? 8 : 4;
7095   CCInfo.AllocateStack(LinkageSize, PtrByteSize);
7096   CCInfo.AnalyzeCallOperands(Outs, CC_AIX);
7097 
7098   // The prolog code of the callee may store up to 8 GPR argument registers to
7099   // the stack, allowing va_start to index over them in memory if the callee
7100   // is variadic.
7101   // Because we cannot tell if this is needed on the caller side, we have to
7102   // conservatively assume that it is needed.  As such, make sure we have at
7103   // least enough stack space for the caller to store the 8 GPRs.
7104   const unsigned MinParameterSaveAreaSize = 8 * PtrByteSize;
7105   const unsigned NumBytes = LinkageSize + MinParameterSaveAreaSize;
7106 
7107   // Adjust the stack pointer for the new arguments...
7108   // These operations are automatically eliminated by the prolog/epilog pass.
7109   Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, dl);
7110   SDValue CallSeqStart = Chain;
7111 
7112   SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
7113 
7114   for (unsigned I = 0, E = ArgLocs.size(); I != E;) {
7115     CCValAssign &VA = ArgLocs[I++];
7116 
7117     if (VA.isMemLoc())
7118       report_fatal_error("Handling of placing parameters on the stack is "
7119                          "unimplemented!");
7120     if (!VA.isRegLoc())
7121       report_fatal_error(
7122           "Unexpected non-register location for function call argument.");
7123 
7124     SDValue Arg = OutVals[VA.getValNo()];
7125 
7126     if (!VA.needsCustom()) {
7127       switch (VA.getLocInfo()) {
7128       default:
7129         report_fatal_error("Unexpected argument extension type.");
7130       case CCValAssign::Full:
7131         break;
7132       case CCValAssign::ZExt:
7133         Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, VA.getLocVT(), Arg);
7134         break;
7135       case CCValAssign::SExt:
7136         Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, VA.getLocVT(), Arg);
7137         break;
7138       }
7139       RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
7140 
7141       continue;
7142     }
7143 
7144     // Custom handling is used for GPR initializations for vararg float
7145     // arguments.
7146     assert(isVarArg && VA.getValVT().isFloatingPoint() &&
7147            VA.getLocVT().isInteger() &&
7148            "Unexpected custom register handling for calling convention.");
7149 
7150     SDValue ArgAsInt =
7151         DAG.getBitcast(MVT::getIntegerVT(VA.getValVT().getSizeInBits()), Arg);
7152 
7153     if (Arg.getValueType().getStoreSize() == VA.getLocVT().getStoreSize())
7154       // f32 in 32-bit GPR
7155       // f64 in 64-bit GPR
7156       RegsToPass.push_back(std::make_pair(VA.getLocReg(), ArgAsInt));
7157     else if (Arg.getValueType().getSizeInBits() < VA.getLocVT().getSizeInBits())
7158       // f32 in 64-bit GPR.
7159       RegsToPass.push_back(std::make_pair(
7160           VA.getLocReg(), DAG.getZExtOrTrunc(ArgAsInt, dl, VA.getLocVT())));
7161     else {
7162       // f64 in two 32-bit GPRs
7163       // The 2 GPRs are marked custom and expected to be adjacent in ArgLocs.
7164       assert(Arg.getValueType() == MVT::f64 && isVarArg && !IsPPC64 &&
7165              "Unexpected custom register for argument!");
7166       CCValAssign &GPR1 = VA;
7167       SDValue MSWAsI64 = DAG.getNode(ISD::SRL, dl, MVT::i64, ArgAsInt,
7168                                      DAG.getConstant(32, dl, MVT::i8));
7169       RegsToPass.push_back(std::make_pair(
7170           GPR1.getLocReg(), DAG.getZExtOrTrunc(MSWAsI64, dl, MVT::i32)));
7171       assert(I != E && "A second custom GPR is expected!");
7172       CCValAssign &GPR2 = ArgLocs[I++];
7173       assert(GPR2.isRegLoc() && GPR2.getValNo() == GPR1.getValNo() &&
7174              GPR2.needsCustom() && "A second custom GPR is expected!");
7175       RegsToPass.push_back(std::make_pair(
7176           GPR2.getLocReg(), DAG.getZExtOrTrunc(ArgAsInt, dl, MVT::i32)));
7177     }
7178   }
7179 
7180   // For indirect calls, we need to save the TOC base to the stack for
7181   // restoration after the call.
7182   if (!isTailCall && !isPatchPoint &&
7183       !isFunctionGlobalAddress(Callee) && !isa<ExternalSymbolSDNode>(Callee)) {
7184     const MCRegister TOCBaseReg = Subtarget.getTOCPointerRegister();
7185     const MCRegister StackPtrReg = Subtarget.getStackPointerRegister();
7186     const MVT PtrVT = Subtarget.isPPC64() ? MVT::i64 : MVT::i32;
7187     const unsigned TOCSaveOffset =
7188         Subtarget.getFrameLowering()->getTOCSaveOffset();
7189 
7190     setUsesTOCBasePtr(DAG);
7191     SDValue Val = DAG.getCopyFromReg(Chain, dl, TOCBaseReg, PtrVT);
7192     SDValue PtrOff = DAG.getIntPtrConstant(TOCSaveOffset, dl);
7193     SDValue StackPtr = DAG.getRegister(StackPtrReg, PtrVT);
7194     SDValue AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff);
7195     Chain = DAG.getStore(
7196         Val.getValue(1), dl, Val, AddPtr,
7197         MachinePointerInfo::getStack(DAG.getMachineFunction(), TOCSaveOffset));
7198   }
7199 
7200   // Build a sequence of copy-to-reg nodes chained together with token chain
7201   // and flag operands which copy the outgoing args into the appropriate regs.
7202   SDValue InFlag;
7203   for (auto Reg : RegsToPass) {
7204     Chain = DAG.getCopyToReg(Chain, dl, Reg.first, Reg.second, InFlag);
7205     InFlag = Chain.getValue(1);
7206   }
7207 
7208   const int SPDiff = 0;
7209   return FinishCall(CallConv, dl, isTailCall, isVarArg, isPatchPoint,
7210                     /* unused except on PPC64 ELFv1 */ false, DAG, RegsToPass,
7211                     InFlag, Chain, CallSeqStart, Callee, SPDiff, NumBytes, Ins,
7212                     InVals, CS);
7213 }
7214 
7215 bool
7216 PPCTargetLowering::CanLowerReturn(CallingConv::ID CallConv,
7217                                   MachineFunction &MF, bool isVarArg,
7218                                   const SmallVectorImpl<ISD::OutputArg> &Outs,
7219                                   LLVMContext &Context) const {
7220   SmallVector<CCValAssign, 16> RVLocs;
7221   CCState CCInfo(CallConv, isVarArg, MF, RVLocs, Context);
7222   return CCInfo.CheckReturn(
7223       Outs, (Subtarget.isSVR4ABI() && CallConv == CallingConv::Cold)
7224                 ? RetCC_PPC_Cold
7225                 : RetCC_PPC);
7226 }
7227 
7228 SDValue
7229 PPCTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv,
7230                                bool isVarArg,
7231                                const SmallVectorImpl<ISD::OutputArg> &Outs,
7232                                const SmallVectorImpl<SDValue> &OutVals,
7233                                const SDLoc &dl, SelectionDAG &DAG) const {
7234   SmallVector<CCValAssign, 16> RVLocs;
7235   CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs,
7236                  *DAG.getContext());
7237   CCInfo.AnalyzeReturn(Outs,
7238                        (Subtarget.isSVR4ABI() && CallConv == CallingConv::Cold)
7239                            ? RetCC_PPC_Cold
7240                            : RetCC_PPC);
7241 
7242   SDValue Flag;
7243   SmallVector<SDValue, 4> RetOps(1, Chain);
7244 
7245   // Copy the result values into the output registers.
7246   for (unsigned i = 0, RealResIdx = 0; i != RVLocs.size(); ++i, ++RealResIdx) {
7247     CCValAssign &VA = RVLocs[i];
7248     assert(VA.isRegLoc() && "Can only return in registers!");
7249 
7250     SDValue Arg = OutVals[RealResIdx];
7251 
7252     switch (VA.getLocInfo()) {
7253     default: llvm_unreachable("Unknown loc info!");
7254     case CCValAssign::Full: break;
7255     case CCValAssign::AExt:
7256       Arg = DAG.getNode(ISD::ANY_EXTEND, dl, VA.getLocVT(), Arg);
7257       break;
7258     case CCValAssign::ZExt:
7259       Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, VA.getLocVT(), Arg);
7260       break;
7261     case CCValAssign::SExt:
7262       Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, VA.getLocVT(), Arg);
7263       break;
7264     }
7265     if (Subtarget.hasSPE() && VA.getLocVT() == MVT::f64) {
7266       bool isLittleEndian = Subtarget.isLittleEndian();
7267       // Legalize ret f64 -> ret 2 x i32.
7268       SDValue SVal =
7269           DAG.getNode(PPCISD::EXTRACT_SPE, dl, MVT::i32, Arg,
7270                       DAG.getIntPtrConstant(isLittleEndian ? 0 : 1, dl));
7271       Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), SVal, Flag);
7272       RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
7273       SVal = DAG.getNode(PPCISD::EXTRACT_SPE, dl, MVT::i32, Arg,
7274                          DAG.getIntPtrConstant(isLittleEndian ? 1 : 0, dl));
7275       Flag = Chain.getValue(1);
7276       VA = RVLocs[++i]; // skip ahead to next loc
7277       Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), SVal, Flag);
7278     } else
7279       Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), Arg, Flag);
7280     Flag = Chain.getValue(1);
7281     RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
7282   }
7283 
7284   const PPCRegisterInfo *TRI = Subtarget.getRegisterInfo();
7285   const MCPhysReg *I =
7286     TRI->getCalleeSavedRegsViaCopy(&DAG.getMachineFunction());
7287   if (I) {
7288     for (; *I; ++I) {
7289 
7290       if (PPC::G8RCRegClass.contains(*I))
7291         RetOps.push_back(DAG.getRegister(*I, MVT::i64));
7292       else if (PPC::F8RCRegClass.contains(*I))
7293         RetOps.push_back(DAG.getRegister(*I, MVT::getFloatingPointVT(64)));
7294       else if (PPC::CRRCRegClass.contains(*I))
7295         RetOps.push_back(DAG.getRegister(*I, MVT::i1));
7296       else if (PPC::VRRCRegClass.contains(*I))
7297         RetOps.push_back(DAG.getRegister(*I, MVT::Other));
7298       else
7299         llvm_unreachable("Unexpected register class in CSRsViaCopy!");
7300     }
7301   }
7302 
7303   RetOps[0] = Chain;  // Update chain.
7304 
7305   // Add the flag if we have it.
7306   if (Flag.getNode())
7307     RetOps.push_back(Flag);
7308 
7309   return DAG.getNode(PPCISD::RET_FLAG, dl, MVT::Other, RetOps);
7310 }
7311 
7312 SDValue
7313 PPCTargetLowering::LowerGET_DYNAMIC_AREA_OFFSET(SDValue Op,
7314                                                 SelectionDAG &DAG) const {
7315   SDLoc dl(Op);
7316 
7317   // Get the correct type for integers.
7318   EVT IntVT = Op.getValueType();
7319 
7320   // Get the inputs.
7321   SDValue Chain = Op.getOperand(0);
7322   SDValue FPSIdx = getFramePointerFrameIndex(DAG);
7323   // Build a DYNAREAOFFSET node.
7324   SDValue Ops[2] = {Chain, FPSIdx};
7325   SDVTList VTs = DAG.getVTList(IntVT);
7326   return DAG.getNode(PPCISD::DYNAREAOFFSET, dl, VTs, Ops);
7327 }
7328 
7329 SDValue PPCTargetLowering::LowerSTACKRESTORE(SDValue Op,
7330                                              SelectionDAG &DAG) const {
7331   // When we pop the dynamic allocation we need to restore the SP link.
7332   SDLoc dl(Op);
7333 
7334   // Get the correct type for pointers.
7335   EVT PtrVT = getPointerTy(DAG.getDataLayout());
7336 
7337   // Construct the stack pointer operand.
7338   bool isPPC64 = Subtarget.isPPC64();
7339   unsigned SP = isPPC64 ? PPC::X1 : PPC::R1;
7340   SDValue StackPtr = DAG.getRegister(SP, PtrVT);
7341 
7342   // Get the operands for the STACKRESTORE.
7343   SDValue Chain = Op.getOperand(0);
7344   SDValue SaveSP = Op.getOperand(1);
7345 
7346   // Load the old link SP.
7347   SDValue LoadLinkSP =
7348       DAG.getLoad(PtrVT, dl, Chain, StackPtr, MachinePointerInfo());
7349 
7350   // Restore the stack pointer.
7351   Chain = DAG.getCopyToReg(LoadLinkSP.getValue(1), dl, SP, SaveSP);
7352 
7353   // Store the old link SP.
7354   return DAG.getStore(Chain, dl, LoadLinkSP, StackPtr, MachinePointerInfo());
7355 }
7356 
7357 SDValue PPCTargetLowering::getReturnAddrFrameIndex(SelectionDAG &DAG) const {
7358   MachineFunction &MF = DAG.getMachineFunction();
7359   bool isPPC64 = Subtarget.isPPC64();
7360   EVT PtrVT = getPointerTy(MF.getDataLayout());
7361 
7362   // Get current frame pointer save index.  The users of this index will be
7363   // primarily DYNALLOC instructions.
7364   PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>();
7365   int RASI = FI->getReturnAddrSaveIndex();
7366 
7367   // If the frame pointer save index hasn't been defined yet.
7368   if (!RASI) {
7369     // Find out what the fix offset of the frame pointer save area.
7370     int LROffset = Subtarget.getFrameLowering()->getReturnSaveOffset();
7371     // Allocate the frame index for frame pointer save area.
7372     RASI = MF.getFrameInfo().CreateFixedObject(isPPC64? 8 : 4, LROffset, false);
7373     // Save the result.
7374     FI->setReturnAddrSaveIndex(RASI);
7375   }
7376   return DAG.getFrameIndex(RASI, PtrVT);
7377 }
7378 
7379 SDValue
7380 PPCTargetLowering::getFramePointerFrameIndex(SelectionDAG & DAG) const {
7381   MachineFunction &MF = DAG.getMachineFunction();
7382   bool isPPC64 = Subtarget.isPPC64();
7383   EVT PtrVT = getPointerTy(MF.getDataLayout());
7384 
7385   // Get current frame pointer save index.  The users of this index will be
7386   // primarily DYNALLOC instructions.
7387   PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>();
7388   int FPSI = FI->getFramePointerSaveIndex();
7389 
7390   // If the frame pointer save index hasn't been defined yet.
7391   if (!FPSI) {
7392     // Find out what the fix offset of the frame pointer save area.
7393     int FPOffset = Subtarget.getFrameLowering()->getFramePointerSaveOffset();
7394     // Allocate the frame index for frame pointer save area.
7395     FPSI = MF.getFrameInfo().CreateFixedObject(isPPC64? 8 : 4, FPOffset, true);
7396     // Save the result.
7397     FI->setFramePointerSaveIndex(FPSI);
7398   }
7399   return DAG.getFrameIndex(FPSI, PtrVT);
7400 }
7401 
7402 SDValue PPCTargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op,
7403                                                    SelectionDAG &DAG) const {
7404   // Get the inputs.
7405   SDValue Chain = Op.getOperand(0);
7406   SDValue Size  = Op.getOperand(1);
7407   SDLoc dl(Op);
7408 
7409   // Get the correct type for pointers.
7410   EVT PtrVT = getPointerTy(DAG.getDataLayout());
7411   // Negate the size.
7412   SDValue NegSize = DAG.getNode(ISD::SUB, dl, PtrVT,
7413                                 DAG.getConstant(0, dl, PtrVT), Size);
7414   // Construct a node for the frame pointer save index.
7415   SDValue FPSIdx = getFramePointerFrameIndex(DAG);
7416   // Build a DYNALLOC node.
7417   SDValue Ops[3] = { Chain, NegSize, FPSIdx };
7418   SDVTList VTs = DAG.getVTList(PtrVT, MVT::Other);
7419   return DAG.getNode(PPCISD::DYNALLOC, dl, VTs, Ops);
7420 }
7421 
7422 SDValue PPCTargetLowering::LowerEH_DWARF_CFA(SDValue Op,
7423                                                      SelectionDAG &DAG) const {
7424   MachineFunction &MF = DAG.getMachineFunction();
7425 
7426   bool isPPC64 = Subtarget.isPPC64();
7427   EVT PtrVT = getPointerTy(DAG.getDataLayout());
7428 
7429   int FI = MF.getFrameInfo().CreateFixedObject(isPPC64 ? 8 : 4, 0, false);
7430   return DAG.getFrameIndex(FI, PtrVT);
7431 }
7432 
7433 SDValue PPCTargetLowering::lowerEH_SJLJ_SETJMP(SDValue Op,
7434                                                SelectionDAG &DAG) const {
7435   SDLoc DL(Op);
7436   return DAG.getNode(PPCISD::EH_SJLJ_SETJMP, DL,
7437                      DAG.getVTList(MVT::i32, MVT::Other),
7438                      Op.getOperand(0), Op.getOperand(1));
7439 }
7440 
7441 SDValue PPCTargetLowering::lowerEH_SJLJ_LONGJMP(SDValue Op,
7442                                                 SelectionDAG &DAG) const {
7443   SDLoc DL(Op);
7444   return DAG.getNode(PPCISD::EH_SJLJ_LONGJMP, DL, MVT::Other,
7445                      Op.getOperand(0), Op.getOperand(1));
7446 }
7447 
7448 SDValue PPCTargetLowering::LowerLOAD(SDValue Op, SelectionDAG &DAG) const {
7449   if (Op.getValueType().isVector())
7450     return LowerVectorLoad(Op, DAG);
7451 
7452   assert(Op.getValueType() == MVT::i1 &&
7453          "Custom lowering only for i1 loads");
7454 
7455   // First, load 8 bits into 32 bits, then truncate to 1 bit.
7456 
7457   SDLoc dl(Op);
7458   LoadSDNode *LD = cast<LoadSDNode>(Op);
7459 
7460   SDValue Chain = LD->getChain();
7461   SDValue BasePtr = LD->getBasePtr();
7462   MachineMemOperand *MMO = LD->getMemOperand();
7463 
7464   SDValue NewLD =
7465       DAG.getExtLoad(ISD::EXTLOAD, dl, getPointerTy(DAG.getDataLayout()), Chain,
7466                      BasePtr, MVT::i8, MMO);
7467   SDValue Result = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, NewLD);
7468 
7469   SDValue Ops[] = { Result, SDValue(NewLD.getNode(), 1) };
7470   return DAG.getMergeValues(Ops, dl);
7471 }
7472 
7473 SDValue PPCTargetLowering::LowerSTORE(SDValue Op, SelectionDAG &DAG) const {
7474   if (Op.getOperand(1).getValueType().isVector())
7475     return LowerVectorStore(Op, DAG);
7476 
7477   assert(Op.getOperand(1).getValueType() == MVT::i1 &&
7478          "Custom lowering only for i1 stores");
7479 
7480   // First, zero extend to 32 bits, then use a truncating store to 8 bits.
7481 
7482   SDLoc dl(Op);
7483   StoreSDNode *ST = cast<StoreSDNode>(Op);
7484 
7485   SDValue Chain = ST->getChain();
7486   SDValue BasePtr = ST->getBasePtr();
7487   SDValue Value = ST->getValue();
7488   MachineMemOperand *MMO = ST->getMemOperand();
7489 
7490   Value = DAG.getNode(ISD::ZERO_EXTEND, dl, getPointerTy(DAG.getDataLayout()),
7491                       Value);
7492   return DAG.getTruncStore(Chain, dl, Value, BasePtr, MVT::i8, MMO);
7493 }
7494 
7495 // FIXME: Remove this once the ANDI glue bug is fixed:
7496 SDValue PPCTargetLowering::LowerTRUNCATE(SDValue Op, SelectionDAG &DAG) const {
7497   assert(Op.getValueType() == MVT::i1 &&
7498          "Custom lowering only for i1 results");
7499 
7500   SDLoc DL(Op);
7501   return DAG.getNode(PPCISD::ANDI_rec_1_GT_BIT, DL, MVT::i1, Op.getOperand(0));
7502 }
7503 
7504 SDValue PPCTargetLowering::LowerTRUNCATEVector(SDValue Op,
7505                                                SelectionDAG &DAG) const {
7506 
7507   // Implements a vector truncate that fits in a vector register as a shuffle.
7508   // We want to legalize vector truncates down to where the source fits in
7509   // a vector register (and target is therefore smaller than vector register
7510   // size).  At that point legalization will try to custom lower the sub-legal
7511   // result and get here - where we can contain the truncate as a single target
7512   // operation.
7513 
7514   // For example a trunc <2 x i16> to <2 x i8> could be visualized as follows:
7515   //   <MSB1|LSB1, MSB2|LSB2> to <LSB1, LSB2>
7516   //
7517   // We will implement it for big-endian ordering as this (where x denotes
7518   // undefined):
7519   //   < MSB1|LSB1, MSB2|LSB2, uu, uu, uu, uu, uu, uu> to
7520   //   < LSB1, LSB2, u, u, u, u, u, u, u, u, u, u, u, u, u, u>
7521   //
7522   // The same operation in little-endian ordering will be:
7523   //   <uu, uu, uu, uu, uu, uu, LSB2|MSB2, LSB1|MSB1> to
7524   //   <u, u, u, u, u, u, u, u, u, u, u, u, u, u, LSB2, LSB1>
7525 
7526   assert(Op.getValueType().isVector() && "Vector type expected.");
7527 
7528   SDLoc DL(Op);
7529   SDValue N1 = Op.getOperand(0);
7530   unsigned SrcSize = N1.getValueType().getSizeInBits();
7531   assert(SrcSize <= 128 && "Source must fit in an Altivec/VSX vector");
7532   SDValue WideSrc = SrcSize == 128 ? N1 : widenVec(DAG, N1, DL);
7533 
7534   EVT TrgVT = Op.getValueType();
7535   unsigned TrgNumElts = TrgVT.getVectorNumElements();
7536   EVT EltVT = TrgVT.getVectorElementType();
7537   unsigned WideNumElts = 128 / EltVT.getSizeInBits();
7538   EVT WideVT = EVT::getVectorVT(*DAG.getContext(), EltVT, WideNumElts);
7539 
7540   // First list the elements we want to keep.
7541   unsigned SizeMult = SrcSize / TrgVT.getSizeInBits();
7542   SmallVector<int, 16> ShuffV;
7543   if (Subtarget.isLittleEndian())
7544     for (unsigned i = 0; i < TrgNumElts; ++i)
7545       ShuffV.push_back(i * SizeMult);
7546   else
7547     for (unsigned i = 1; i <= TrgNumElts; ++i)
7548       ShuffV.push_back(i * SizeMult - 1);
7549 
7550   // Populate the remaining elements with undefs.
7551   for (unsigned i = TrgNumElts; i < WideNumElts; ++i)
7552     // ShuffV.push_back(i + WideNumElts);
7553     ShuffV.push_back(WideNumElts + 1);
7554 
7555   SDValue Conv = DAG.getNode(ISD::BITCAST, DL, WideVT, WideSrc);
7556   return DAG.getVectorShuffle(WideVT, DL, Conv, DAG.getUNDEF(WideVT), ShuffV);
7557 }
7558 
7559 /// LowerSELECT_CC - Lower floating point select_cc's into fsel instruction when
7560 /// possible.
7561 SDValue PPCTargetLowering::LowerSELECT_CC(SDValue Op, SelectionDAG &DAG) const {
7562   // Not FP? Not a fsel.
7563   if (!Op.getOperand(0).getValueType().isFloatingPoint() ||
7564       !Op.getOperand(2).getValueType().isFloatingPoint())
7565     return Op;
7566 
7567   bool HasNoInfs = DAG.getTarget().Options.NoInfsFPMath;
7568   bool HasNoNaNs = DAG.getTarget().Options.NoNaNsFPMath;
7569   // We might be able to do better than this under some circumstances, but in
7570   // general, fsel-based lowering of select is a finite-math-only optimization.
7571   // For more information, see section F.3 of the 2.06 ISA specification.
7572   // With ISA 3.0, we have xsmaxcdp/xsmincdp which are OK to emit even in the
7573   // presence of infinities.
7574   if (!Subtarget.hasP9Vector() && (!HasNoInfs || !HasNoNaNs))
7575     return Op;
7576   ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get();
7577 
7578   EVT ResVT = Op.getValueType();
7579   EVT CmpVT = Op.getOperand(0).getValueType();
7580   SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1);
7581   SDValue TV  = Op.getOperand(2), FV  = Op.getOperand(3);
7582   SDLoc dl(Op);
7583 
7584   if (Subtarget.hasP9Vector() && LHS == TV && RHS == FV) {
7585     switch (CC) {
7586     default:
7587       // Not a min/max but with finite math, we may still be able to use fsel.
7588       if (HasNoInfs && HasNoNaNs)
7589         break;
7590       return Op;
7591     case ISD::SETOGT:
7592     case ISD::SETGT:
7593       return DAG.getNode(PPCISD::XSMAXCDP, dl, Op.getValueType(), LHS, RHS);
7594     case ISD::SETOLT:
7595     case ISD::SETLT:
7596       return DAG.getNode(PPCISD::XSMINCDP, dl, Op.getValueType(), LHS, RHS);
7597     }
7598   }
7599 
7600   // TODO: Propagate flags from the select rather than global settings.
7601   SDNodeFlags Flags;
7602   Flags.setNoInfs(true);
7603   Flags.setNoNaNs(true);
7604 
7605   // If the RHS of the comparison is a 0.0, we don't need to do the
7606   // subtraction at all.
7607   SDValue Sel1;
7608   if (isFloatingPointZero(RHS))
7609     switch (CC) {
7610     default: break;       // SETUO etc aren't handled by fsel.
7611     case ISD::SETNE:
7612       std::swap(TV, FV);
7613       LLVM_FALLTHROUGH;
7614     case ISD::SETEQ:
7615       if (LHS.getValueType() == MVT::f32)   // Comparison is always 64-bits
7616         LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, LHS);
7617       Sel1 = DAG.getNode(PPCISD::FSEL, dl, ResVT, LHS, TV, FV);
7618       if (Sel1.getValueType() == MVT::f32)   // Comparison is always 64-bits
7619         Sel1 = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Sel1);
7620       return DAG.getNode(PPCISD::FSEL, dl, ResVT,
7621                          DAG.getNode(ISD::FNEG, dl, MVT::f64, LHS), Sel1, FV);
7622     case ISD::SETULT:
7623     case ISD::SETLT:
7624       std::swap(TV, FV);  // fsel is natively setge, swap operands for setlt
7625       LLVM_FALLTHROUGH;
7626     case ISD::SETOGE:
7627     case ISD::SETGE:
7628       if (LHS.getValueType() == MVT::f32)   // Comparison is always 64-bits
7629         LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, LHS);
7630       return DAG.getNode(PPCISD::FSEL, dl, ResVT, LHS, TV, FV);
7631     case ISD::SETUGT:
7632     case ISD::SETGT:
7633       std::swap(TV, FV);  // fsel is natively setge, swap operands for setlt
7634       LLVM_FALLTHROUGH;
7635     case ISD::SETOLE:
7636     case ISD::SETLE:
7637       if (LHS.getValueType() == MVT::f32)   // Comparison is always 64-bits
7638         LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, LHS);
7639       return DAG.getNode(PPCISD::FSEL, dl, ResVT,
7640                          DAG.getNode(ISD::FNEG, dl, MVT::f64, LHS), TV, FV);
7641     }
7642 
7643   SDValue Cmp;
7644   switch (CC) {
7645   default: break;       // SETUO etc aren't handled by fsel.
7646   case ISD::SETNE:
7647     std::swap(TV, FV);
7648     LLVM_FALLTHROUGH;
7649   case ISD::SETEQ:
7650     Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, LHS, RHS, Flags);
7651     if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
7652       Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp);
7653     Sel1 = DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, TV, FV);
7654     if (Sel1.getValueType() == MVT::f32)   // Comparison is always 64-bits
7655       Sel1 = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Sel1);
7656     return DAG.getNode(PPCISD::FSEL, dl, ResVT,
7657                        DAG.getNode(ISD::FNEG, dl, MVT::f64, Cmp), Sel1, FV);
7658   case ISD::SETULT:
7659   case ISD::SETLT:
7660     Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, LHS, RHS, Flags);
7661     if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
7662       Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp);
7663     return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, FV, TV);
7664   case ISD::SETOGE:
7665   case ISD::SETGE:
7666     Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, LHS, RHS, Flags);
7667     if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
7668       Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp);
7669     return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, TV, FV);
7670   case ISD::SETUGT:
7671   case ISD::SETGT:
7672     Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, RHS, LHS, Flags);
7673     if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
7674       Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp);
7675     return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, FV, TV);
7676   case ISD::SETOLE:
7677   case ISD::SETLE:
7678     Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, RHS, LHS, Flags);
7679     if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
7680       Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp);
7681     return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, TV, FV);
7682   }
7683   return Op;
7684 }
7685 
7686 void PPCTargetLowering::LowerFP_TO_INTForReuse(SDValue Op, ReuseLoadInfo &RLI,
7687                                                SelectionDAG &DAG,
7688                                                const SDLoc &dl) const {
7689   assert(Op.getOperand(0).getValueType().isFloatingPoint());
7690   SDValue Src = Op.getOperand(0);
7691   if (Src.getValueType() == MVT::f32)
7692     Src = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Src);
7693 
7694   SDValue Tmp;
7695   switch (Op.getSimpleValueType().SimpleTy) {
7696   default: llvm_unreachable("Unhandled FP_TO_INT type in custom expander!");
7697   case MVT::i32:
7698     Tmp = DAG.getNode(
7699         Op.getOpcode() == ISD::FP_TO_SINT
7700             ? PPCISD::FCTIWZ
7701             : (Subtarget.hasFPCVT() ? PPCISD::FCTIWUZ : PPCISD::FCTIDZ),
7702         dl, MVT::f64, Src);
7703     break;
7704   case MVT::i64:
7705     assert((Op.getOpcode() == ISD::FP_TO_SINT || Subtarget.hasFPCVT()) &&
7706            "i64 FP_TO_UINT is supported only with FPCVT");
7707     Tmp = DAG.getNode(Op.getOpcode()==ISD::FP_TO_SINT ? PPCISD::FCTIDZ :
7708                                                         PPCISD::FCTIDUZ,
7709                       dl, MVT::f64, Src);
7710     break;
7711   }
7712 
7713   // Convert the FP value to an int value through memory.
7714   bool i32Stack = Op.getValueType() == MVT::i32 && Subtarget.hasSTFIWX() &&
7715     (Op.getOpcode() == ISD::FP_TO_SINT || Subtarget.hasFPCVT());
7716   SDValue FIPtr = DAG.CreateStackTemporary(i32Stack ? MVT::i32 : MVT::f64);
7717   int FI = cast<FrameIndexSDNode>(FIPtr)->getIndex();
7718   MachinePointerInfo MPI =
7719       MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI);
7720 
7721   // Emit a store to the stack slot.
7722   SDValue Chain;
7723   if (i32Stack) {
7724     MachineFunction &MF = DAG.getMachineFunction();
7725     MachineMemOperand *MMO =
7726       MF.getMachineMemOperand(MPI, MachineMemOperand::MOStore, 4, 4);
7727     SDValue Ops[] = { DAG.getEntryNode(), Tmp, FIPtr };
7728     Chain = DAG.getMemIntrinsicNode(PPCISD::STFIWX, dl,
7729               DAG.getVTList(MVT::Other), Ops, MVT::i32, MMO);
7730   } else
7731     Chain = DAG.getStore(DAG.getEntryNode(), dl, Tmp, FIPtr, MPI);
7732 
7733   // Result is a load from the stack slot.  If loading 4 bytes, make sure to
7734   // add in a bias on big endian.
7735   if (Op.getValueType() == MVT::i32 && !i32Stack) {
7736     FIPtr = DAG.getNode(ISD::ADD, dl, FIPtr.getValueType(), FIPtr,
7737                         DAG.getConstant(4, dl, FIPtr.getValueType()));
7738     MPI = MPI.getWithOffset(Subtarget.isLittleEndian() ? 0 : 4);
7739   }
7740 
7741   RLI.Chain = Chain;
7742   RLI.Ptr = FIPtr;
7743   RLI.MPI = MPI;
7744 }
7745 
7746 /// Custom lowers floating point to integer conversions to use
7747 /// the direct move instructions available in ISA 2.07 to avoid the
7748 /// need for load/store combinations.
7749 SDValue PPCTargetLowering::LowerFP_TO_INTDirectMove(SDValue Op,
7750                                                     SelectionDAG &DAG,
7751                                                     const SDLoc &dl) const {
7752   assert(Op.getOperand(0).getValueType().isFloatingPoint());
7753   SDValue Src = Op.getOperand(0);
7754 
7755   if (Src.getValueType() == MVT::f32)
7756     Src = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Src);
7757 
7758   SDValue Tmp;
7759   switch (Op.getSimpleValueType().SimpleTy) {
7760   default: llvm_unreachable("Unhandled FP_TO_INT type in custom expander!");
7761   case MVT::i32:
7762     Tmp = DAG.getNode(
7763         Op.getOpcode() == ISD::FP_TO_SINT
7764             ? PPCISD::FCTIWZ
7765             : (Subtarget.hasFPCVT() ? PPCISD::FCTIWUZ : PPCISD::FCTIDZ),
7766         dl, MVT::f64, Src);
7767     Tmp = DAG.getNode(PPCISD::MFVSR, dl, MVT::i32, Tmp);
7768     break;
7769   case MVT::i64:
7770     assert((Op.getOpcode() == ISD::FP_TO_SINT || Subtarget.hasFPCVT()) &&
7771            "i64 FP_TO_UINT is supported only with FPCVT");
7772     Tmp = DAG.getNode(Op.getOpcode()==ISD::FP_TO_SINT ? PPCISD::FCTIDZ :
7773                                                         PPCISD::FCTIDUZ,
7774                       dl, MVT::f64, Src);
7775     Tmp = DAG.getNode(PPCISD::MFVSR, dl, MVT::i64, Tmp);
7776     break;
7777   }
7778   return Tmp;
7779 }
7780 
7781 SDValue PPCTargetLowering::LowerFP_TO_INT(SDValue Op, SelectionDAG &DAG,
7782                                           const SDLoc &dl) const {
7783 
7784   // FP to INT conversions are legal for f128.
7785   if (EnableQuadPrecision && (Op->getOperand(0).getValueType() == MVT::f128))
7786     return Op;
7787 
7788   // Expand ppcf128 to i32 by hand for the benefit of llvm-gcc bootstrap on
7789   // PPC (the libcall is not available).
7790   if (Op.getOperand(0).getValueType() == MVT::ppcf128) {
7791     if (Op.getValueType() == MVT::i32) {
7792       if (Op.getOpcode() == ISD::FP_TO_SINT) {
7793         SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, dl,
7794                                  MVT::f64, Op.getOperand(0),
7795                                  DAG.getIntPtrConstant(0, dl));
7796         SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, dl,
7797                                  MVT::f64, Op.getOperand(0),
7798                                  DAG.getIntPtrConstant(1, dl));
7799 
7800         // Add the two halves of the long double in round-to-zero mode.
7801         SDValue Res = DAG.getNode(PPCISD::FADDRTZ, dl, MVT::f64, Lo, Hi);
7802 
7803         // Now use a smaller FP_TO_SINT.
7804         return DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, Res);
7805       }
7806       if (Op.getOpcode() == ISD::FP_TO_UINT) {
7807         const uint64_t TwoE31[] = {0x41e0000000000000LL, 0};
7808         APFloat APF = APFloat(APFloat::PPCDoubleDouble(), APInt(128, TwoE31));
7809         SDValue Tmp = DAG.getConstantFP(APF, dl, MVT::ppcf128);
7810         //  X>=2^31 ? (int)(X-2^31)+0x80000000 : (int)X
7811         // FIXME: generated code sucks.
7812         // TODO: Are there fast-math-flags to propagate to this FSUB?
7813         SDValue True = DAG.getNode(ISD::FSUB, dl, MVT::ppcf128,
7814                                    Op.getOperand(0), Tmp);
7815         True = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, True);
7816         True = DAG.getNode(ISD::ADD, dl, MVT::i32, True,
7817                            DAG.getConstant(0x80000000, dl, MVT::i32));
7818         SDValue False = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32,
7819                                     Op.getOperand(0));
7820         return DAG.getSelectCC(dl, Op.getOperand(0), Tmp, True, False,
7821                                ISD::SETGE);
7822       }
7823     }
7824 
7825     return SDValue();
7826   }
7827 
7828   if (Subtarget.hasDirectMove() && Subtarget.isPPC64())
7829     return LowerFP_TO_INTDirectMove(Op, DAG, dl);
7830 
7831   ReuseLoadInfo RLI;
7832   LowerFP_TO_INTForReuse(Op, RLI, DAG, dl);
7833 
7834   return DAG.getLoad(Op.getValueType(), dl, RLI.Chain, RLI.Ptr, RLI.MPI,
7835                      RLI.Alignment, RLI.MMOFlags(), RLI.AAInfo, RLI.Ranges);
7836 }
7837 
7838 // We're trying to insert a regular store, S, and then a load, L. If the
7839 // incoming value, O, is a load, we might just be able to have our load use the
7840 // address used by O. However, we don't know if anything else will store to
7841 // that address before we can load from it. To prevent this situation, we need
7842 // to insert our load, L, into the chain as a peer of O. To do this, we give L
7843 // the same chain operand as O, we create a token factor from the chain results
7844 // of O and L, and we replace all uses of O's chain result with that token
7845 // factor (see spliceIntoChain below for this last part).
7846 bool PPCTargetLowering::canReuseLoadAddress(SDValue Op, EVT MemVT,
7847                                             ReuseLoadInfo &RLI,
7848                                             SelectionDAG &DAG,
7849                                             ISD::LoadExtType ET) const {
7850   SDLoc dl(Op);
7851   if (ET == ISD::NON_EXTLOAD &&
7852       (Op.getOpcode() == ISD::FP_TO_UINT ||
7853        Op.getOpcode() == ISD::FP_TO_SINT) &&
7854       isOperationLegalOrCustom(Op.getOpcode(),
7855                                Op.getOperand(0).getValueType())) {
7856 
7857     LowerFP_TO_INTForReuse(Op, RLI, DAG, dl);
7858     return true;
7859   }
7860 
7861   LoadSDNode *LD = dyn_cast<LoadSDNode>(Op);
7862   if (!LD || LD->getExtensionType() != ET || LD->isVolatile() ||
7863       LD->isNonTemporal())
7864     return false;
7865   if (LD->getMemoryVT() != MemVT)
7866     return false;
7867 
7868   RLI.Ptr = LD->getBasePtr();
7869   if (LD->isIndexed() && !LD->getOffset().isUndef()) {
7870     assert(LD->getAddressingMode() == ISD::PRE_INC &&
7871            "Non-pre-inc AM on PPC?");
7872     RLI.Ptr = DAG.getNode(ISD::ADD, dl, RLI.Ptr.getValueType(), RLI.Ptr,
7873                           LD->getOffset());
7874   }
7875 
7876   RLI.Chain = LD->getChain();
7877   RLI.MPI = LD->getPointerInfo();
7878   RLI.IsDereferenceable = LD->isDereferenceable();
7879   RLI.IsInvariant = LD->isInvariant();
7880   RLI.Alignment = LD->getAlignment();
7881   RLI.AAInfo = LD->getAAInfo();
7882   RLI.Ranges = LD->getRanges();
7883 
7884   RLI.ResChain = SDValue(LD, LD->isIndexed() ? 2 : 1);
7885   return true;
7886 }
7887 
7888 // Given the head of the old chain, ResChain, insert a token factor containing
7889 // it and NewResChain, and make users of ResChain now be users of that token
7890 // factor.
7891 // TODO: Remove and use DAG::makeEquivalentMemoryOrdering() instead.
7892 void PPCTargetLowering::spliceIntoChain(SDValue ResChain,
7893                                         SDValue NewResChain,
7894                                         SelectionDAG &DAG) const {
7895   if (!ResChain)
7896     return;
7897 
7898   SDLoc dl(NewResChain);
7899 
7900   SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
7901                            NewResChain, DAG.getUNDEF(MVT::Other));
7902   assert(TF.getNode() != NewResChain.getNode() &&
7903          "A new TF really is required here");
7904 
7905   DAG.ReplaceAllUsesOfValueWith(ResChain, TF);
7906   DAG.UpdateNodeOperands(TF.getNode(), ResChain, NewResChain);
7907 }
7908 
7909 /// Analyze profitability of direct move
7910 /// prefer float load to int load plus direct move
7911 /// when there is no integer use of int load
7912 bool PPCTargetLowering::directMoveIsProfitable(const SDValue &Op) const {
7913   SDNode *Origin = Op.getOperand(0).getNode();
7914   if (Origin->getOpcode() != ISD::LOAD)
7915     return true;
7916 
7917   // If there is no LXSIBZX/LXSIHZX, like Power8,
7918   // prefer direct move if the memory size is 1 or 2 bytes.
7919   MachineMemOperand *MMO = cast<LoadSDNode>(Origin)->getMemOperand();
7920   if (!Subtarget.hasP9Vector() && MMO->getSize() <= 2)
7921     return true;
7922 
7923   for (SDNode::use_iterator UI = Origin->use_begin(),
7924                             UE = Origin->use_end();
7925        UI != UE; ++UI) {
7926 
7927     // Only look at the users of the loaded value.
7928     if (UI.getUse().get().getResNo() != 0)
7929       continue;
7930 
7931     if (UI->getOpcode() != ISD::SINT_TO_FP &&
7932         UI->getOpcode() != ISD::UINT_TO_FP)
7933       return true;
7934   }
7935 
7936   return false;
7937 }
7938 
7939 /// Custom lowers integer to floating point conversions to use
7940 /// the direct move instructions available in ISA 2.07 to avoid the
7941 /// need for load/store combinations.
7942 SDValue PPCTargetLowering::LowerINT_TO_FPDirectMove(SDValue Op,
7943                                                     SelectionDAG &DAG,
7944                                                     const SDLoc &dl) const {
7945   assert((Op.getValueType() == MVT::f32 ||
7946           Op.getValueType() == MVT::f64) &&
7947          "Invalid floating point type as target of conversion");
7948   assert(Subtarget.hasFPCVT() &&
7949          "Int to FP conversions with direct moves require FPCVT");
7950   SDValue FP;
7951   SDValue Src = Op.getOperand(0);
7952   bool SinglePrec = Op.getValueType() == MVT::f32;
7953   bool WordInt = Src.getSimpleValueType().SimpleTy == MVT::i32;
7954   bool Signed = Op.getOpcode() == ISD::SINT_TO_FP;
7955   unsigned ConvOp = Signed ? (SinglePrec ? PPCISD::FCFIDS : PPCISD::FCFID) :
7956                              (SinglePrec ? PPCISD::FCFIDUS : PPCISD::FCFIDU);
7957 
7958   if (WordInt) {
7959     FP = DAG.getNode(Signed ? PPCISD::MTVSRA : PPCISD::MTVSRZ,
7960                      dl, MVT::f64, Src);
7961     FP = DAG.getNode(ConvOp, dl, SinglePrec ? MVT::f32 : MVT::f64, FP);
7962   }
7963   else {
7964     FP = DAG.getNode(PPCISD::MTVSRA, dl, MVT::f64, Src);
7965     FP = DAG.getNode(ConvOp, dl, SinglePrec ? MVT::f32 : MVT::f64, FP);
7966   }
7967 
7968   return FP;
7969 }
7970 
7971 static SDValue widenVec(SelectionDAG &DAG, SDValue Vec, const SDLoc &dl) {
7972 
7973   EVT VecVT = Vec.getValueType();
7974   assert(VecVT.isVector() && "Expected a vector type.");
7975   assert(VecVT.getSizeInBits() < 128 && "Vector is already full width.");
7976 
7977   EVT EltVT = VecVT.getVectorElementType();
7978   unsigned WideNumElts = 128 / EltVT.getSizeInBits();
7979   EVT WideVT = EVT::getVectorVT(*DAG.getContext(), EltVT, WideNumElts);
7980 
7981   unsigned NumConcat = WideNumElts / VecVT.getVectorNumElements();
7982   SmallVector<SDValue, 16> Ops(NumConcat);
7983   Ops[0] = Vec;
7984   SDValue UndefVec = DAG.getUNDEF(VecVT);
7985   for (unsigned i = 1; i < NumConcat; ++i)
7986     Ops[i] = UndefVec;
7987 
7988   return DAG.getNode(ISD::CONCAT_VECTORS, dl, WideVT, Ops);
7989 }
7990 
7991 SDValue PPCTargetLowering::LowerINT_TO_FPVector(SDValue Op, SelectionDAG &DAG,
7992                                                 const SDLoc &dl) const {
7993 
7994   unsigned Opc = Op.getOpcode();
7995   assert((Opc == ISD::UINT_TO_FP || Opc == ISD::SINT_TO_FP) &&
7996          "Unexpected conversion type");
7997   assert((Op.getValueType() == MVT::v2f64 || Op.getValueType() == MVT::v4f32) &&
7998          "Supports conversions to v2f64/v4f32 only.");
7999 
8000   bool SignedConv = Opc == ISD::SINT_TO_FP;
8001   bool FourEltRes = Op.getValueType() == MVT::v4f32;
8002 
8003   SDValue Wide = widenVec(DAG, Op.getOperand(0), dl);
8004   EVT WideVT = Wide.getValueType();
8005   unsigned WideNumElts = WideVT.getVectorNumElements();
8006   MVT IntermediateVT = FourEltRes ? MVT::v4i32 : MVT::v2i64;
8007 
8008   SmallVector<int, 16> ShuffV;
8009   for (unsigned i = 0; i < WideNumElts; ++i)
8010     ShuffV.push_back(i + WideNumElts);
8011 
8012   int Stride = FourEltRes ? WideNumElts / 4 : WideNumElts / 2;
8013   int SaveElts = FourEltRes ? 4 : 2;
8014   if (Subtarget.isLittleEndian())
8015     for (int i = 0; i < SaveElts; i++)
8016       ShuffV[i * Stride] = i;
8017   else
8018     for (int i = 1; i <= SaveElts; i++)
8019       ShuffV[i * Stride - 1] = i - 1;
8020 
8021   SDValue ShuffleSrc2 =
8022       SignedConv ? DAG.getUNDEF(WideVT) : DAG.getConstant(0, dl, WideVT);
8023   SDValue Arrange = DAG.getVectorShuffle(WideVT, dl, Wide, ShuffleSrc2, ShuffV);
8024   unsigned ExtendOp =
8025       SignedConv ? (unsigned)PPCISD::SExtVElems : (unsigned)ISD::BITCAST;
8026 
8027   SDValue Extend;
8028   if (!Subtarget.hasP9Altivec() && SignedConv) {
8029     Arrange = DAG.getBitcast(IntermediateVT, Arrange);
8030     Extend = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, IntermediateVT, Arrange,
8031                          DAG.getValueType(Op.getOperand(0).getValueType()));
8032   } else
8033     Extend = DAG.getNode(ExtendOp, dl, IntermediateVT, Arrange);
8034 
8035   return DAG.getNode(Opc, dl, Op.getValueType(), Extend);
8036 }
8037 
8038 SDValue PPCTargetLowering::LowerINT_TO_FP(SDValue Op,
8039                                           SelectionDAG &DAG) const {
8040   SDLoc dl(Op);
8041 
8042   EVT InVT = Op.getOperand(0).getValueType();
8043   EVT OutVT = Op.getValueType();
8044   if (OutVT.isVector() && OutVT.isFloatingPoint() &&
8045       isOperationCustom(Op.getOpcode(), InVT))
8046     return LowerINT_TO_FPVector(Op, DAG, dl);
8047 
8048   // Conversions to f128 are legal.
8049   if (EnableQuadPrecision && (Op.getValueType() == MVT::f128))
8050     return Op;
8051 
8052   if (Subtarget.hasQPX() && Op.getOperand(0).getValueType() == MVT::v4i1) {
8053     if (Op.getValueType() != MVT::v4f32 && Op.getValueType() != MVT::v4f64)
8054       return SDValue();
8055 
8056     SDValue Value = Op.getOperand(0);
8057     // The values are now known to be -1 (false) or 1 (true). To convert this
8058     // into 0 (false) and 1 (true), add 1 and then divide by 2 (multiply by 0.5).
8059     // This can be done with an fma and the 0.5 constant: (V+1.0)*0.5 = 0.5*V+0.5
8060     Value = DAG.getNode(PPCISD::QBFLT, dl, MVT::v4f64, Value);
8061 
8062     SDValue FPHalfs = DAG.getConstantFP(0.5, dl, MVT::v4f64);
8063 
8064     Value = DAG.getNode(ISD::FMA, dl, MVT::v4f64, Value, FPHalfs, FPHalfs);
8065 
8066     if (Op.getValueType() != MVT::v4f64)
8067       Value = DAG.getNode(ISD::FP_ROUND, dl,
8068                           Op.getValueType(), Value,
8069                           DAG.getIntPtrConstant(1, dl));
8070     return Value;
8071   }
8072 
8073   // Don't handle ppc_fp128 here; let it be lowered to a libcall.
8074   if (Op.getValueType() != MVT::f32 && Op.getValueType() != MVT::f64)
8075     return SDValue();
8076 
8077   if (Op.getOperand(0).getValueType() == MVT::i1)
8078     return DAG.getNode(ISD::SELECT, dl, Op.getValueType(), Op.getOperand(0),
8079                        DAG.getConstantFP(1.0, dl, Op.getValueType()),
8080                        DAG.getConstantFP(0.0, dl, Op.getValueType()));
8081 
8082   // If we have direct moves, we can do all the conversion, skip the store/load
8083   // however, without FPCVT we can't do most conversions.
8084   if (Subtarget.hasDirectMove() && directMoveIsProfitable(Op) &&
8085       Subtarget.isPPC64() && Subtarget.hasFPCVT())
8086     return LowerINT_TO_FPDirectMove(Op, DAG, dl);
8087 
8088   assert((Op.getOpcode() == ISD::SINT_TO_FP || Subtarget.hasFPCVT()) &&
8089          "UINT_TO_FP is supported only with FPCVT");
8090 
8091   // If we have FCFIDS, then use it when converting to single-precision.
8092   // Otherwise, convert to double-precision and then round.
8093   unsigned FCFOp = (Subtarget.hasFPCVT() && Op.getValueType() == MVT::f32)
8094                        ? (Op.getOpcode() == ISD::UINT_TO_FP ? PPCISD::FCFIDUS
8095                                                             : PPCISD::FCFIDS)
8096                        : (Op.getOpcode() == ISD::UINT_TO_FP ? PPCISD::FCFIDU
8097                                                             : PPCISD::FCFID);
8098   MVT FCFTy = (Subtarget.hasFPCVT() && Op.getValueType() == MVT::f32)
8099                   ? MVT::f32
8100                   : MVT::f64;
8101 
8102   if (Op.getOperand(0).getValueType() == MVT::i64) {
8103     SDValue SINT = Op.getOperand(0);
8104     // When converting to single-precision, we actually need to convert
8105     // to double-precision first and then round to single-precision.
8106     // To avoid double-rounding effects during that operation, we have
8107     // to prepare the input operand.  Bits that might be truncated when
8108     // converting to double-precision are replaced by a bit that won't
8109     // be lost at this stage, but is below the single-precision rounding
8110     // position.
8111     //
8112     // However, if -enable-unsafe-fp-math is in effect, accept double
8113     // rounding to avoid the extra overhead.
8114     if (Op.getValueType() == MVT::f32 &&
8115         !Subtarget.hasFPCVT() &&
8116         !DAG.getTarget().Options.UnsafeFPMath) {
8117 
8118       // Twiddle input to make sure the low 11 bits are zero.  (If this
8119       // is the case, we are guaranteed the value will fit into the 53 bit
8120       // mantissa of an IEEE double-precision value without rounding.)
8121       // If any of those low 11 bits were not zero originally, make sure
8122       // bit 12 (value 2048) is set instead, so that the final rounding
8123       // to single-precision gets the correct result.
8124       SDValue Round = DAG.getNode(ISD::AND, dl, MVT::i64,
8125                                   SINT, DAG.getConstant(2047, dl, MVT::i64));
8126       Round = DAG.getNode(ISD::ADD, dl, MVT::i64,
8127                           Round, DAG.getConstant(2047, dl, MVT::i64));
8128       Round = DAG.getNode(ISD::OR, dl, MVT::i64, Round, SINT);
8129       Round = DAG.getNode(ISD::AND, dl, MVT::i64,
8130                           Round, DAG.getConstant(-2048, dl, MVT::i64));
8131 
8132       // However, we cannot use that value unconditionally: if the magnitude
8133       // of the input value is small, the bit-twiddling we did above might
8134       // end up visibly changing the output.  Fortunately, in that case, we
8135       // don't need to twiddle bits since the original input will convert
8136       // exactly to double-precision floating-point already.  Therefore,
8137       // construct a conditional to use the original value if the top 11
8138       // bits are all sign-bit copies, and use the rounded value computed
8139       // above otherwise.
8140       SDValue Cond = DAG.getNode(ISD::SRA, dl, MVT::i64,
8141                                  SINT, DAG.getConstant(53, dl, MVT::i32));
8142       Cond = DAG.getNode(ISD::ADD, dl, MVT::i64,
8143                          Cond, DAG.getConstant(1, dl, MVT::i64));
8144       Cond = DAG.getSetCC(dl, MVT::i32,
8145                           Cond, DAG.getConstant(1, dl, MVT::i64), ISD::SETUGT);
8146 
8147       SINT = DAG.getNode(ISD::SELECT, dl, MVT::i64, Cond, Round, SINT);
8148     }
8149 
8150     ReuseLoadInfo RLI;
8151     SDValue Bits;
8152 
8153     MachineFunction &MF = DAG.getMachineFunction();
8154     if (canReuseLoadAddress(SINT, MVT::i64, RLI, DAG)) {
8155       Bits = DAG.getLoad(MVT::f64, dl, RLI.Chain, RLI.Ptr, RLI.MPI,
8156                          RLI.Alignment, RLI.MMOFlags(), RLI.AAInfo, RLI.Ranges);
8157       spliceIntoChain(RLI.ResChain, Bits.getValue(1), DAG);
8158     } else if (Subtarget.hasLFIWAX() &&
8159                canReuseLoadAddress(SINT, MVT::i32, RLI, DAG, ISD::SEXTLOAD)) {
8160       MachineMemOperand *MMO =
8161         MF.getMachineMemOperand(RLI.MPI, MachineMemOperand::MOLoad, 4,
8162                                 RLI.Alignment, RLI.AAInfo, RLI.Ranges);
8163       SDValue Ops[] = { RLI.Chain, RLI.Ptr };
8164       Bits = DAG.getMemIntrinsicNode(PPCISD::LFIWAX, dl,
8165                                      DAG.getVTList(MVT::f64, MVT::Other),
8166                                      Ops, MVT::i32, MMO);
8167       spliceIntoChain(RLI.ResChain, Bits.getValue(1), DAG);
8168     } else if (Subtarget.hasFPCVT() &&
8169                canReuseLoadAddress(SINT, MVT::i32, RLI, DAG, ISD::ZEXTLOAD)) {
8170       MachineMemOperand *MMO =
8171         MF.getMachineMemOperand(RLI.MPI, MachineMemOperand::MOLoad, 4,
8172                                 RLI.Alignment, RLI.AAInfo, RLI.Ranges);
8173       SDValue Ops[] = { RLI.Chain, RLI.Ptr };
8174       Bits = DAG.getMemIntrinsicNode(PPCISD::LFIWZX, dl,
8175                                      DAG.getVTList(MVT::f64, MVT::Other),
8176                                      Ops, MVT::i32, MMO);
8177       spliceIntoChain(RLI.ResChain, Bits.getValue(1), DAG);
8178     } else if (((Subtarget.hasLFIWAX() &&
8179                  SINT.getOpcode() == ISD::SIGN_EXTEND) ||
8180                 (Subtarget.hasFPCVT() &&
8181                  SINT.getOpcode() == ISD::ZERO_EXTEND)) &&
8182                SINT.getOperand(0).getValueType() == MVT::i32) {
8183       MachineFrameInfo &MFI = MF.getFrameInfo();
8184       EVT PtrVT = getPointerTy(DAG.getDataLayout());
8185 
8186       int FrameIdx = MFI.CreateStackObject(4, 4, false);
8187       SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
8188 
8189       SDValue Store =
8190           DAG.getStore(DAG.getEntryNode(), dl, SINT.getOperand(0), FIdx,
8191                        MachinePointerInfo::getFixedStack(
8192                            DAG.getMachineFunction(), FrameIdx));
8193 
8194       assert(cast<StoreSDNode>(Store)->getMemoryVT() == MVT::i32 &&
8195              "Expected an i32 store");
8196 
8197       RLI.Ptr = FIdx;
8198       RLI.Chain = Store;
8199       RLI.MPI =
8200           MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx);
8201       RLI.Alignment = 4;
8202 
8203       MachineMemOperand *MMO =
8204         MF.getMachineMemOperand(RLI.MPI, MachineMemOperand::MOLoad, 4,
8205                                 RLI.Alignment, RLI.AAInfo, RLI.Ranges);
8206       SDValue Ops[] = { RLI.Chain, RLI.Ptr };
8207       Bits = DAG.getMemIntrinsicNode(SINT.getOpcode() == ISD::ZERO_EXTEND ?
8208                                      PPCISD::LFIWZX : PPCISD::LFIWAX,
8209                                      dl, DAG.getVTList(MVT::f64, MVT::Other),
8210                                      Ops, MVT::i32, MMO);
8211     } else
8212       Bits = DAG.getNode(ISD::BITCAST, dl, MVT::f64, SINT);
8213 
8214     SDValue FP = DAG.getNode(FCFOp, dl, FCFTy, Bits);
8215 
8216     if (Op.getValueType() == MVT::f32 && !Subtarget.hasFPCVT())
8217       FP = DAG.getNode(ISD::FP_ROUND, dl,
8218                        MVT::f32, FP, DAG.getIntPtrConstant(0, dl));
8219     return FP;
8220   }
8221 
8222   assert(Op.getOperand(0).getValueType() == MVT::i32 &&
8223          "Unhandled INT_TO_FP type in custom expander!");
8224   // Since we only generate this in 64-bit mode, we can take advantage of
8225   // 64-bit registers.  In particular, sign extend the input value into the
8226   // 64-bit register with extsw, store the WHOLE 64-bit value into the stack
8227   // then lfd it and fcfid it.
8228   MachineFunction &MF = DAG.getMachineFunction();
8229   MachineFrameInfo &MFI = MF.getFrameInfo();
8230   EVT PtrVT = getPointerTy(MF.getDataLayout());
8231 
8232   SDValue Ld;
8233   if (Subtarget.hasLFIWAX() || Subtarget.hasFPCVT()) {
8234     ReuseLoadInfo RLI;
8235     bool ReusingLoad;
8236     if (!(ReusingLoad = canReuseLoadAddress(Op.getOperand(0), MVT::i32, RLI,
8237                                             DAG))) {
8238       int FrameIdx = MFI.CreateStackObject(4, 4, false);
8239       SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
8240 
8241       SDValue Store =
8242           DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0), FIdx,
8243                        MachinePointerInfo::getFixedStack(
8244                            DAG.getMachineFunction(), FrameIdx));
8245 
8246       assert(cast<StoreSDNode>(Store)->getMemoryVT() == MVT::i32 &&
8247              "Expected an i32 store");
8248 
8249       RLI.Ptr = FIdx;
8250       RLI.Chain = Store;
8251       RLI.MPI =
8252           MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx);
8253       RLI.Alignment = 4;
8254     }
8255 
8256     MachineMemOperand *MMO =
8257       MF.getMachineMemOperand(RLI.MPI, MachineMemOperand::MOLoad, 4,
8258                               RLI.Alignment, RLI.AAInfo, RLI.Ranges);
8259     SDValue Ops[] = { RLI.Chain, RLI.Ptr };
8260     Ld = DAG.getMemIntrinsicNode(Op.getOpcode() == ISD::UINT_TO_FP ?
8261                                    PPCISD::LFIWZX : PPCISD::LFIWAX,
8262                                  dl, DAG.getVTList(MVT::f64, MVT::Other),
8263                                  Ops, MVT::i32, MMO);
8264     if (ReusingLoad)
8265       spliceIntoChain(RLI.ResChain, Ld.getValue(1), DAG);
8266   } else {
8267     assert(Subtarget.isPPC64() &&
8268            "i32->FP without LFIWAX supported only on PPC64");
8269 
8270     int FrameIdx = MFI.CreateStackObject(8, 8, false);
8271     SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
8272 
8273     SDValue Ext64 = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::i64,
8274                                 Op.getOperand(0));
8275 
8276     // STD the extended value into the stack slot.
8277     SDValue Store = DAG.getStore(
8278         DAG.getEntryNode(), dl, Ext64, FIdx,
8279         MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx));
8280 
8281     // Load the value as a double.
8282     Ld = DAG.getLoad(
8283         MVT::f64, dl, Store, FIdx,
8284         MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx));
8285   }
8286 
8287   // FCFID it and return it.
8288   SDValue FP = DAG.getNode(FCFOp, dl, FCFTy, Ld);
8289   if (Op.getValueType() == MVT::f32 && !Subtarget.hasFPCVT())
8290     FP = DAG.getNode(ISD::FP_ROUND, dl, MVT::f32, FP,
8291                      DAG.getIntPtrConstant(0, dl));
8292   return FP;
8293 }
8294 
8295 SDValue PPCTargetLowering::LowerFLT_ROUNDS_(SDValue Op,
8296                                             SelectionDAG &DAG) const {
8297   SDLoc dl(Op);
8298   /*
8299    The rounding mode is in bits 30:31 of FPSR, and has the following
8300    settings:
8301      00 Round to nearest
8302      01 Round to 0
8303      10 Round to +inf
8304      11 Round to -inf
8305 
8306   FLT_ROUNDS, on the other hand, expects the following:
8307     -1 Undefined
8308      0 Round to 0
8309      1 Round to nearest
8310      2 Round to +inf
8311      3 Round to -inf
8312 
8313   To perform the conversion, we do:
8314     ((FPSCR & 0x3) ^ ((~FPSCR & 0x3) >> 1))
8315   */
8316 
8317   MachineFunction &MF = DAG.getMachineFunction();
8318   EVT VT = Op.getValueType();
8319   EVT PtrVT = getPointerTy(MF.getDataLayout());
8320 
8321   // Save FP Control Word to register
8322   EVT NodeTys[] = {
8323     MVT::f64,    // return register
8324     MVT::Glue    // unused in this context
8325   };
8326   SDValue Chain = DAG.getNode(PPCISD::MFFS, dl, NodeTys, None);
8327 
8328   // Save FP register to stack slot
8329   int SSFI = MF.getFrameInfo().CreateStackObject(8, 8, false);
8330   SDValue StackSlot = DAG.getFrameIndex(SSFI, PtrVT);
8331   SDValue Store = DAG.getStore(DAG.getEntryNode(), dl, Chain, StackSlot,
8332                                MachinePointerInfo());
8333 
8334   // Load FP Control Word from low 32 bits of stack slot.
8335   SDValue Four = DAG.getConstant(4, dl, PtrVT);
8336   SDValue Addr = DAG.getNode(ISD::ADD, dl, PtrVT, StackSlot, Four);
8337   SDValue CWD = DAG.getLoad(MVT::i32, dl, Store, Addr, MachinePointerInfo());
8338 
8339   // Transform as necessary
8340   SDValue CWD1 =
8341     DAG.getNode(ISD::AND, dl, MVT::i32,
8342                 CWD, DAG.getConstant(3, dl, MVT::i32));
8343   SDValue CWD2 =
8344     DAG.getNode(ISD::SRL, dl, MVT::i32,
8345                 DAG.getNode(ISD::AND, dl, MVT::i32,
8346                             DAG.getNode(ISD::XOR, dl, MVT::i32,
8347                                         CWD, DAG.getConstant(3, dl, MVT::i32)),
8348                             DAG.getConstant(3, dl, MVT::i32)),
8349                 DAG.getConstant(1, dl, MVT::i32));
8350 
8351   SDValue RetVal =
8352     DAG.getNode(ISD::XOR, dl, MVT::i32, CWD1, CWD2);
8353 
8354   return DAG.getNode((VT.getSizeInBits() < 16 ?
8355                       ISD::TRUNCATE : ISD::ZERO_EXTEND), dl, VT, RetVal);
8356 }
8357 
8358 SDValue PPCTargetLowering::LowerSHL_PARTS(SDValue Op, SelectionDAG &DAG) const {
8359   EVT VT = Op.getValueType();
8360   unsigned BitWidth = VT.getSizeInBits();
8361   SDLoc dl(Op);
8362   assert(Op.getNumOperands() == 3 &&
8363          VT == Op.getOperand(1).getValueType() &&
8364          "Unexpected SHL!");
8365 
8366   // Expand into a bunch of logical ops.  Note that these ops
8367   // depend on the PPC behavior for oversized shift amounts.
8368   SDValue Lo = Op.getOperand(0);
8369   SDValue Hi = Op.getOperand(1);
8370   SDValue Amt = Op.getOperand(2);
8371   EVT AmtVT = Amt.getValueType();
8372 
8373   SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT,
8374                              DAG.getConstant(BitWidth, dl, AmtVT), Amt);
8375   SDValue Tmp2 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Amt);
8376   SDValue Tmp3 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Tmp1);
8377   SDValue Tmp4 = DAG.getNode(ISD::OR , dl, VT, Tmp2, Tmp3);
8378   SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt,
8379                              DAG.getConstant(-BitWidth, dl, AmtVT));
8380   SDValue Tmp6 = DAG.getNode(PPCISD::SHL, dl, VT, Lo, Tmp5);
8381   SDValue OutHi = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp6);
8382   SDValue OutLo = DAG.getNode(PPCISD::SHL, dl, VT, Lo, Amt);
8383   SDValue OutOps[] = { OutLo, OutHi };
8384   return DAG.getMergeValues(OutOps, dl);
8385 }
8386 
8387 SDValue PPCTargetLowering::LowerSRL_PARTS(SDValue Op, SelectionDAG &DAG) const {
8388   EVT VT = Op.getValueType();
8389   SDLoc dl(Op);
8390   unsigned BitWidth = VT.getSizeInBits();
8391   assert(Op.getNumOperands() == 3 &&
8392          VT == Op.getOperand(1).getValueType() &&
8393          "Unexpected SRL!");
8394 
8395   // Expand into a bunch of logical ops.  Note that these ops
8396   // depend on the PPC behavior for oversized shift amounts.
8397   SDValue Lo = Op.getOperand(0);
8398   SDValue Hi = Op.getOperand(1);
8399   SDValue Amt = Op.getOperand(2);
8400   EVT AmtVT = Amt.getValueType();
8401 
8402   SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT,
8403                              DAG.getConstant(BitWidth, dl, AmtVT), Amt);
8404   SDValue Tmp2 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Amt);
8405   SDValue Tmp3 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Tmp1);
8406   SDValue Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3);
8407   SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt,
8408                              DAG.getConstant(-BitWidth, dl, AmtVT));
8409   SDValue Tmp6 = DAG.getNode(PPCISD::SRL, dl, VT, Hi, Tmp5);
8410   SDValue OutLo = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp6);
8411   SDValue OutHi = DAG.getNode(PPCISD::SRL, dl, VT, Hi, Amt);
8412   SDValue OutOps[] = { OutLo, OutHi };
8413   return DAG.getMergeValues(OutOps, dl);
8414 }
8415 
8416 SDValue PPCTargetLowering::LowerSRA_PARTS(SDValue Op, SelectionDAG &DAG) const {
8417   SDLoc dl(Op);
8418   EVT VT = Op.getValueType();
8419   unsigned BitWidth = VT.getSizeInBits();
8420   assert(Op.getNumOperands() == 3 &&
8421          VT == Op.getOperand(1).getValueType() &&
8422          "Unexpected SRA!");
8423 
8424   // Expand into a bunch of logical ops, followed by a select_cc.
8425   SDValue Lo = Op.getOperand(0);
8426   SDValue Hi = Op.getOperand(1);
8427   SDValue Amt = Op.getOperand(2);
8428   EVT AmtVT = Amt.getValueType();
8429 
8430   SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT,
8431                              DAG.getConstant(BitWidth, dl, AmtVT), Amt);
8432   SDValue Tmp2 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Amt);
8433   SDValue Tmp3 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Tmp1);
8434   SDValue Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3);
8435   SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt,
8436                              DAG.getConstant(-BitWidth, dl, AmtVT));
8437   SDValue Tmp6 = DAG.getNode(PPCISD::SRA, dl, VT, Hi, Tmp5);
8438   SDValue OutHi = DAG.getNode(PPCISD::SRA, dl, VT, Hi, Amt);
8439   SDValue OutLo = DAG.getSelectCC(dl, Tmp5, DAG.getConstant(0, dl, AmtVT),
8440                                   Tmp4, Tmp6, ISD::SETLE);
8441   SDValue OutOps[] = { OutLo, OutHi };
8442   return DAG.getMergeValues(OutOps, dl);
8443 }
8444 
8445 //===----------------------------------------------------------------------===//
8446 // Vector related lowering.
8447 //
8448 
8449 /// BuildSplatI - Build a canonical splati of Val with an element size of
8450 /// SplatSize.  Cast the result to VT.
8451 static SDValue BuildSplatI(int Val, unsigned SplatSize, EVT VT,
8452                            SelectionDAG &DAG, const SDLoc &dl) {
8453   static const MVT VTys[] = { // canonical VT to use for each size.
8454     MVT::v16i8, MVT::v8i16, MVT::Other, MVT::v4i32
8455   };
8456 
8457   EVT ReqVT = VT != MVT::Other ? VT : VTys[SplatSize-1];
8458 
8459   // Force vspltis[hw] -1 to vspltisb -1 to canonicalize.
8460   if (Val == -1)
8461     SplatSize = 1;
8462 
8463   EVT CanonicalVT = VTys[SplatSize-1];
8464 
8465   // Build a canonical splat for this value.
8466   return DAG.getBitcast(ReqVT, DAG.getConstant(Val, dl, CanonicalVT));
8467 }
8468 
8469 /// BuildIntrinsicOp - Return a unary operator intrinsic node with the
8470 /// specified intrinsic ID.
8471 static SDValue BuildIntrinsicOp(unsigned IID, SDValue Op, SelectionDAG &DAG,
8472                                 const SDLoc &dl, EVT DestVT = MVT::Other) {
8473   if (DestVT == MVT::Other) DestVT = Op.getValueType();
8474   return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT,
8475                      DAG.getConstant(IID, dl, MVT::i32), Op);
8476 }
8477 
8478 /// BuildIntrinsicOp - Return a binary operator intrinsic node with the
8479 /// specified intrinsic ID.
8480 static SDValue BuildIntrinsicOp(unsigned IID, SDValue LHS, SDValue RHS,
8481                                 SelectionDAG &DAG, const SDLoc &dl,
8482                                 EVT DestVT = MVT::Other) {
8483   if (DestVT == MVT::Other) DestVT = LHS.getValueType();
8484   return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT,
8485                      DAG.getConstant(IID, dl, MVT::i32), LHS, RHS);
8486 }
8487 
8488 /// BuildIntrinsicOp - Return a ternary operator intrinsic node with the
8489 /// specified intrinsic ID.
8490 static SDValue BuildIntrinsicOp(unsigned IID, SDValue Op0, SDValue Op1,
8491                                 SDValue Op2, SelectionDAG &DAG, const SDLoc &dl,
8492                                 EVT DestVT = MVT::Other) {
8493   if (DestVT == MVT::Other) DestVT = Op0.getValueType();
8494   return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT,
8495                      DAG.getConstant(IID, dl, MVT::i32), Op0, Op1, Op2);
8496 }
8497 
8498 /// BuildVSLDOI - Return a VECTOR_SHUFFLE that is a vsldoi of the specified
8499 /// amount.  The result has the specified value type.
8500 static SDValue BuildVSLDOI(SDValue LHS, SDValue RHS, unsigned Amt, EVT VT,
8501                            SelectionDAG &DAG, const SDLoc &dl) {
8502   // Force LHS/RHS to be the right type.
8503   LHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, LHS);
8504   RHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, RHS);
8505 
8506   int Ops[16];
8507   for (unsigned i = 0; i != 16; ++i)
8508     Ops[i] = i + Amt;
8509   SDValue T = DAG.getVectorShuffle(MVT::v16i8, dl, LHS, RHS, Ops);
8510   return DAG.getNode(ISD::BITCAST, dl, VT, T);
8511 }
8512 
8513 /// Do we have an efficient pattern in a .td file for this node?
8514 ///
8515 /// \param V - pointer to the BuildVectorSDNode being matched
8516 /// \param HasDirectMove - does this subtarget have VSR <-> GPR direct moves?
8517 ///
8518 /// There are some patterns where it is beneficial to keep a BUILD_VECTOR
8519 /// node as a BUILD_VECTOR node rather than expanding it. The patterns where
8520 /// the opposite is true (expansion is beneficial) are:
8521 /// - The node builds a vector out of integers that are not 32 or 64-bits
8522 /// - The node builds a vector out of constants
8523 /// - The node is a "load-and-splat"
8524 /// In all other cases, we will choose to keep the BUILD_VECTOR.
8525 static bool haveEfficientBuildVectorPattern(BuildVectorSDNode *V,
8526                                             bool HasDirectMove,
8527                                             bool HasP8Vector) {
8528   EVT VecVT = V->getValueType(0);
8529   bool RightType = VecVT == MVT::v2f64 ||
8530     (HasP8Vector && VecVT == MVT::v4f32) ||
8531     (HasDirectMove && (VecVT == MVT::v2i64 || VecVT == MVT::v4i32));
8532   if (!RightType)
8533     return false;
8534 
8535   bool IsSplat = true;
8536   bool IsLoad = false;
8537   SDValue Op0 = V->getOperand(0);
8538 
8539   // This function is called in a block that confirms the node is not a constant
8540   // splat. So a constant BUILD_VECTOR here means the vector is built out of
8541   // different constants.
8542   if (V->isConstant())
8543     return false;
8544   for (int i = 0, e = V->getNumOperands(); i < e; ++i) {
8545     if (V->getOperand(i).isUndef())
8546       return false;
8547     // We want to expand nodes that represent load-and-splat even if the
8548     // loaded value is a floating point truncation or conversion to int.
8549     if (V->getOperand(i).getOpcode() == ISD::LOAD ||
8550         (V->getOperand(i).getOpcode() == ISD::FP_ROUND &&
8551          V->getOperand(i).getOperand(0).getOpcode() == ISD::LOAD) ||
8552         (V->getOperand(i).getOpcode() == ISD::FP_TO_SINT &&
8553          V->getOperand(i).getOperand(0).getOpcode() == ISD::LOAD) ||
8554         (V->getOperand(i).getOpcode() == ISD::FP_TO_UINT &&
8555          V->getOperand(i).getOperand(0).getOpcode() == ISD::LOAD))
8556       IsLoad = true;
8557     // If the operands are different or the input is not a load and has more
8558     // uses than just this BV node, then it isn't a splat.
8559     if (V->getOperand(i) != Op0 ||
8560         (!IsLoad && !V->isOnlyUserOf(V->getOperand(i).getNode())))
8561       IsSplat = false;
8562   }
8563   return !(IsSplat && IsLoad);
8564 }
8565 
8566 // Lower BITCAST(f128, (build_pair i64, i64)) to BUILD_FP128.
8567 SDValue PPCTargetLowering::LowerBITCAST(SDValue Op, SelectionDAG &DAG) const {
8568 
8569   SDLoc dl(Op);
8570   SDValue Op0 = Op->getOperand(0);
8571 
8572   if (!EnableQuadPrecision ||
8573       (Op.getValueType() != MVT::f128 ) ||
8574       (Op0.getOpcode() != ISD::BUILD_PAIR) ||
8575       (Op0.getOperand(0).getValueType() !=  MVT::i64) ||
8576       (Op0.getOperand(1).getValueType() != MVT::i64))
8577     return SDValue();
8578 
8579   return DAG.getNode(PPCISD::BUILD_FP128, dl, MVT::f128, Op0.getOperand(0),
8580                      Op0.getOperand(1));
8581 }
8582 
8583 static const SDValue *getNormalLoadInput(const SDValue &Op) {
8584   const SDValue *InputLoad = &Op;
8585   if (InputLoad->getOpcode() == ISD::BITCAST)
8586     InputLoad = &InputLoad->getOperand(0);
8587   if (InputLoad->getOpcode() == ISD::SCALAR_TO_VECTOR)
8588     InputLoad = &InputLoad->getOperand(0);
8589   if (InputLoad->getOpcode() != ISD::LOAD)
8590     return nullptr;
8591   LoadSDNode *LD = cast<LoadSDNode>(*InputLoad);
8592   return ISD::isNormalLoad(LD) ? InputLoad : nullptr;
8593 }
8594 
8595 // If this is a case we can't handle, return null and let the default
8596 // expansion code take care of it.  If we CAN select this case, and if it
8597 // selects to a single instruction, return Op.  Otherwise, if we can codegen
8598 // this case more efficiently than a constant pool load, lower it to the
8599 // sequence of ops that should be used.
8600 SDValue PPCTargetLowering::LowerBUILD_VECTOR(SDValue Op,
8601                                              SelectionDAG &DAG) const {
8602   SDLoc dl(Op);
8603   BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(Op.getNode());
8604   assert(BVN && "Expected a BuildVectorSDNode in LowerBUILD_VECTOR");
8605 
8606   if (Subtarget.hasQPX() && Op.getValueType() == MVT::v4i1) {
8607     // We first build an i32 vector, load it into a QPX register,
8608     // then convert it to a floating-point vector and compare it
8609     // to a zero vector to get the boolean result.
8610     MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
8611     int FrameIdx = MFI.CreateStackObject(16, 16, false);
8612     MachinePointerInfo PtrInfo =
8613         MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx);
8614     EVT PtrVT = getPointerTy(DAG.getDataLayout());
8615     SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
8616 
8617     assert(BVN->getNumOperands() == 4 &&
8618       "BUILD_VECTOR for v4i1 does not have 4 operands");
8619 
8620     bool IsConst = true;
8621     for (unsigned i = 0; i < 4; ++i) {
8622       if (BVN->getOperand(i).isUndef()) continue;
8623       if (!isa<ConstantSDNode>(BVN->getOperand(i))) {
8624         IsConst = false;
8625         break;
8626       }
8627     }
8628 
8629     if (IsConst) {
8630       Constant *One =
8631         ConstantFP::get(Type::getFloatTy(*DAG.getContext()), 1.0);
8632       Constant *NegOne =
8633         ConstantFP::get(Type::getFloatTy(*DAG.getContext()), -1.0);
8634 
8635       Constant *CV[4];
8636       for (unsigned i = 0; i < 4; ++i) {
8637         if (BVN->getOperand(i).isUndef())
8638           CV[i] = UndefValue::get(Type::getFloatTy(*DAG.getContext()));
8639         else if (isNullConstant(BVN->getOperand(i)))
8640           CV[i] = NegOne;
8641         else
8642           CV[i] = One;
8643       }
8644 
8645       Constant *CP = ConstantVector::get(CV);
8646       SDValue CPIdx = DAG.getConstantPool(CP, getPointerTy(DAG.getDataLayout()),
8647                                           16 /* alignment */);
8648 
8649       SDValue Ops[] = {DAG.getEntryNode(), CPIdx};
8650       SDVTList VTs = DAG.getVTList({MVT::v4i1, /*chain*/ MVT::Other});
8651       return DAG.getMemIntrinsicNode(
8652           PPCISD::QVLFSb, dl, VTs, Ops, MVT::v4f32,
8653           MachinePointerInfo::getConstantPool(DAG.getMachineFunction()));
8654     }
8655 
8656     SmallVector<SDValue, 4> Stores;
8657     for (unsigned i = 0; i < 4; ++i) {
8658       if (BVN->getOperand(i).isUndef()) continue;
8659 
8660       unsigned Offset = 4*i;
8661       SDValue Idx = DAG.getConstant(Offset, dl, FIdx.getValueType());
8662       Idx = DAG.getNode(ISD::ADD, dl, FIdx.getValueType(), FIdx, Idx);
8663 
8664       unsigned StoreSize = BVN->getOperand(i).getValueType().getStoreSize();
8665       if (StoreSize > 4) {
8666         Stores.push_back(
8667             DAG.getTruncStore(DAG.getEntryNode(), dl, BVN->getOperand(i), Idx,
8668                               PtrInfo.getWithOffset(Offset), MVT::i32));
8669       } else {
8670         SDValue StoreValue = BVN->getOperand(i);
8671         if (StoreSize < 4)
8672           StoreValue = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, StoreValue);
8673 
8674         Stores.push_back(DAG.getStore(DAG.getEntryNode(), dl, StoreValue, Idx,
8675                                       PtrInfo.getWithOffset(Offset)));
8676       }
8677     }
8678 
8679     SDValue StoreChain;
8680     if (!Stores.empty())
8681       StoreChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores);
8682     else
8683       StoreChain = DAG.getEntryNode();
8684 
8685     // Now load from v4i32 into the QPX register; this will extend it to
8686     // v4i64 but not yet convert it to a floating point. Nevertheless, this
8687     // is typed as v4f64 because the QPX register integer states are not
8688     // explicitly represented.
8689 
8690     SDValue Ops[] = {StoreChain,
8691                      DAG.getConstant(Intrinsic::ppc_qpx_qvlfiwz, dl, MVT::i32),
8692                      FIdx};
8693     SDVTList VTs = DAG.getVTList({MVT::v4f64, /*chain*/ MVT::Other});
8694 
8695     SDValue LoadedVect = DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN,
8696       dl, VTs, Ops, MVT::v4i32, PtrInfo);
8697     LoadedVect = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f64,
8698       DAG.getConstant(Intrinsic::ppc_qpx_qvfcfidu, dl, MVT::i32),
8699       LoadedVect);
8700 
8701     SDValue FPZeros = DAG.getConstantFP(0.0, dl, MVT::v4f64);
8702 
8703     return DAG.getSetCC(dl, MVT::v4i1, LoadedVect, FPZeros, ISD::SETEQ);
8704   }
8705 
8706   // All other QPX vectors are handled by generic code.
8707   if (Subtarget.hasQPX())
8708     return SDValue();
8709 
8710   // Check if this is a splat of a constant value.
8711   APInt APSplatBits, APSplatUndef;
8712   unsigned SplatBitSize;
8713   bool HasAnyUndefs;
8714   if (! BVN->isConstantSplat(APSplatBits, APSplatUndef, SplatBitSize,
8715                              HasAnyUndefs, 0, !Subtarget.isLittleEndian()) ||
8716       SplatBitSize > 32) {
8717 
8718     const SDValue *InputLoad = getNormalLoadInput(Op.getOperand(0));
8719     // Handle load-and-splat patterns as we have instructions that will do this
8720     // in one go.
8721     if (InputLoad && DAG.isSplatValue(Op, true)) {
8722       LoadSDNode *LD = cast<LoadSDNode>(*InputLoad);
8723 
8724       // We have handling for 4 and 8 byte elements.
8725       unsigned ElementSize = LD->getMemoryVT().getScalarSizeInBits();
8726 
8727       // Checking for a single use of this load, we have to check for vector
8728       // width (128 bits) / ElementSize uses (since each operand of the
8729       // BUILD_VECTOR is a separate use of the value.
8730       if (InputLoad->getNode()->hasNUsesOfValue(128 / ElementSize, 0) &&
8731           ((Subtarget.hasVSX() && ElementSize == 64) ||
8732            (Subtarget.hasP9Vector() && ElementSize == 32))) {
8733         SDValue Ops[] = {
8734           LD->getChain(),    // Chain
8735           LD->getBasePtr(),  // Ptr
8736           DAG.getValueType(Op.getValueType()) // VT
8737         };
8738         return
8739           DAG.getMemIntrinsicNode(PPCISD::LD_SPLAT, dl,
8740                                   DAG.getVTList(Op.getValueType(), MVT::Other),
8741                                   Ops, LD->getMemoryVT(), LD->getMemOperand());
8742       }
8743     }
8744 
8745     // BUILD_VECTOR nodes that are not constant splats of up to 32-bits can be
8746     // lowered to VSX instructions under certain conditions.
8747     // Without VSX, there is no pattern more efficient than expanding the node.
8748     if (Subtarget.hasVSX() &&
8749         haveEfficientBuildVectorPattern(BVN, Subtarget.hasDirectMove(),
8750                                         Subtarget.hasP8Vector()))
8751       return Op;
8752     return SDValue();
8753   }
8754 
8755   unsigned SplatBits = APSplatBits.getZExtValue();
8756   unsigned SplatUndef = APSplatUndef.getZExtValue();
8757   unsigned SplatSize = SplatBitSize / 8;
8758 
8759   // First, handle single instruction cases.
8760 
8761   // All zeros?
8762   if (SplatBits == 0) {
8763     // Canonicalize all zero vectors to be v4i32.
8764     if (Op.getValueType() != MVT::v4i32 || HasAnyUndefs) {
8765       SDValue Z = DAG.getConstant(0, dl, MVT::v4i32);
8766       Op = DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Z);
8767     }
8768     return Op;
8769   }
8770 
8771   // We have XXSPLTIB for constant splats one byte wide
8772   // FIXME: SplatBits is an unsigned int being cast to an int while passing it
8773   // as an argument to BuildSplatiI. Given SplatSize == 1 it is okay here.
8774   if (Subtarget.hasP9Vector() && SplatSize == 1)
8775     return BuildSplatI(SplatBits, SplatSize, Op.getValueType(), DAG, dl);
8776 
8777   // If the sign extended value is in the range [-16,15], use VSPLTI[bhw].
8778   int32_t SextVal= (int32_t(SplatBits << (32-SplatBitSize)) >>
8779                     (32-SplatBitSize));
8780   if (SextVal >= -16 && SextVal <= 15)
8781     return BuildSplatI(SextVal, SplatSize, Op.getValueType(), DAG, dl);
8782 
8783   // Two instruction sequences.
8784 
8785   // If this value is in the range [-32,30] and is even, use:
8786   //     VSPLTI[bhw](val/2) + VSPLTI[bhw](val/2)
8787   // If this value is in the range [17,31] and is odd, use:
8788   //     VSPLTI[bhw](val-16) - VSPLTI[bhw](-16)
8789   // If this value is in the range [-31,-17] and is odd, use:
8790   //     VSPLTI[bhw](val+16) + VSPLTI[bhw](-16)
8791   // Note the last two are three-instruction sequences.
8792   if (SextVal >= -32 && SextVal <= 31) {
8793     // To avoid having these optimizations undone by constant folding,
8794     // we convert to a pseudo that will be expanded later into one of
8795     // the above forms.
8796     SDValue Elt = DAG.getConstant(SextVal, dl, MVT::i32);
8797     EVT VT = (SplatSize == 1 ? MVT::v16i8 :
8798               (SplatSize == 2 ? MVT::v8i16 : MVT::v4i32));
8799     SDValue EltSize = DAG.getConstant(SplatSize, dl, MVT::i32);
8800     SDValue RetVal = DAG.getNode(PPCISD::VADD_SPLAT, dl, VT, Elt, EltSize);
8801     if (VT == Op.getValueType())
8802       return RetVal;
8803     else
8804       return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), RetVal);
8805   }
8806 
8807   // If this is 0x8000_0000 x 4, turn into vspltisw + vslw.  If it is
8808   // 0x7FFF_FFFF x 4, turn it into not(0x8000_0000).  This is important
8809   // for fneg/fabs.
8810   if (SplatSize == 4 && SplatBits == (0x7FFFFFFF&~SplatUndef)) {
8811     // Make -1 and vspltisw -1:
8812     SDValue OnesV = BuildSplatI(-1, 4, MVT::v4i32, DAG, dl);
8813 
8814     // Make the VSLW intrinsic, computing 0x8000_0000.
8815     SDValue Res = BuildIntrinsicOp(Intrinsic::ppc_altivec_vslw, OnesV,
8816                                    OnesV, DAG, dl);
8817 
8818     // xor by OnesV to invert it.
8819     Res = DAG.getNode(ISD::XOR, dl, MVT::v4i32, Res, OnesV);
8820     return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res);
8821   }
8822 
8823   // Check to see if this is a wide variety of vsplti*, binop self cases.
8824   static const signed char SplatCsts[] = {
8825     -1, 1, -2, 2, -3, 3, -4, 4, -5, 5, -6, 6, -7, 7,
8826     -8, 8, -9, 9, -10, 10, -11, 11, -12, 12, -13, 13, 14, -14, 15, -15, -16
8827   };
8828 
8829   for (unsigned idx = 0; idx < array_lengthof(SplatCsts); ++idx) {
8830     // Indirect through the SplatCsts array so that we favor 'vsplti -1' for
8831     // cases which are ambiguous (e.g. formation of 0x8000_0000).  'vsplti -1'
8832     int i = SplatCsts[idx];
8833 
8834     // Figure out what shift amount will be used by altivec if shifted by i in
8835     // this splat size.
8836     unsigned TypeShiftAmt = i & (SplatBitSize-1);
8837 
8838     // vsplti + shl self.
8839     if (SextVal == (int)((unsigned)i << TypeShiftAmt)) {
8840       SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl);
8841       static const unsigned IIDs[] = { // Intrinsic to use for each size.
8842         Intrinsic::ppc_altivec_vslb, Intrinsic::ppc_altivec_vslh, 0,
8843         Intrinsic::ppc_altivec_vslw
8844       };
8845       Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl);
8846       return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res);
8847     }
8848 
8849     // vsplti + srl self.
8850     if (SextVal == (int)((unsigned)i >> TypeShiftAmt)) {
8851       SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl);
8852       static const unsigned IIDs[] = { // Intrinsic to use for each size.
8853         Intrinsic::ppc_altivec_vsrb, Intrinsic::ppc_altivec_vsrh, 0,
8854         Intrinsic::ppc_altivec_vsrw
8855       };
8856       Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl);
8857       return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res);
8858     }
8859 
8860     // vsplti + sra self.
8861     if (SextVal == (int)((unsigned)i >> TypeShiftAmt)) {
8862       SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl);
8863       static const unsigned IIDs[] = { // Intrinsic to use for each size.
8864         Intrinsic::ppc_altivec_vsrab, Intrinsic::ppc_altivec_vsrah, 0,
8865         Intrinsic::ppc_altivec_vsraw
8866       };
8867       Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl);
8868       return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res);
8869     }
8870 
8871     // vsplti + rol self.
8872     if (SextVal == (int)(((unsigned)i << TypeShiftAmt) |
8873                          ((unsigned)i >> (SplatBitSize-TypeShiftAmt)))) {
8874       SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl);
8875       static const unsigned IIDs[] = { // Intrinsic to use for each size.
8876         Intrinsic::ppc_altivec_vrlb, Intrinsic::ppc_altivec_vrlh, 0,
8877         Intrinsic::ppc_altivec_vrlw
8878       };
8879       Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl);
8880       return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res);
8881     }
8882 
8883     // t = vsplti c, result = vsldoi t, t, 1
8884     if (SextVal == (int)(((unsigned)i << 8) | (i < 0 ? 0xFF : 0))) {
8885       SDValue T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG, dl);
8886       unsigned Amt = Subtarget.isLittleEndian() ? 15 : 1;
8887       return BuildVSLDOI(T, T, Amt, Op.getValueType(), DAG, dl);
8888     }
8889     // t = vsplti c, result = vsldoi t, t, 2
8890     if (SextVal == (int)(((unsigned)i << 16) | (i < 0 ? 0xFFFF : 0))) {
8891       SDValue T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG, dl);
8892       unsigned Amt = Subtarget.isLittleEndian() ? 14 : 2;
8893       return BuildVSLDOI(T, T, Amt, Op.getValueType(), DAG, dl);
8894     }
8895     // t = vsplti c, result = vsldoi t, t, 3
8896     if (SextVal == (int)(((unsigned)i << 24) | (i < 0 ? 0xFFFFFF : 0))) {
8897       SDValue T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG, dl);
8898       unsigned Amt = Subtarget.isLittleEndian() ? 13 : 3;
8899       return BuildVSLDOI(T, T, Amt, Op.getValueType(), DAG, dl);
8900     }
8901   }
8902 
8903   return SDValue();
8904 }
8905 
8906 /// GeneratePerfectShuffle - Given an entry in the perfect-shuffle table, emit
8907 /// the specified operations to build the shuffle.
8908 static SDValue GeneratePerfectShuffle(unsigned PFEntry, SDValue LHS,
8909                                       SDValue RHS, SelectionDAG &DAG,
8910                                       const SDLoc &dl) {
8911   unsigned OpNum = (PFEntry >> 26) & 0x0F;
8912   unsigned LHSID = (PFEntry >> 13) & ((1 << 13)-1);
8913   unsigned RHSID = (PFEntry >>  0) & ((1 << 13)-1);
8914 
8915   enum {
8916     OP_COPY = 0,  // Copy, used for things like <u,u,u,3> to say it is <0,1,2,3>
8917     OP_VMRGHW,
8918     OP_VMRGLW,
8919     OP_VSPLTISW0,
8920     OP_VSPLTISW1,
8921     OP_VSPLTISW2,
8922     OP_VSPLTISW3,
8923     OP_VSLDOI4,
8924     OP_VSLDOI8,
8925     OP_VSLDOI12
8926   };
8927 
8928   if (OpNum == OP_COPY) {
8929     if (LHSID == (1*9+2)*9+3) return LHS;
8930     assert(LHSID == ((4*9+5)*9+6)*9+7 && "Illegal OP_COPY!");
8931     return RHS;
8932   }
8933 
8934   SDValue OpLHS, OpRHS;
8935   OpLHS = GeneratePerfectShuffle(PerfectShuffleTable[LHSID], LHS, RHS, DAG, dl);
8936   OpRHS = GeneratePerfectShuffle(PerfectShuffleTable[RHSID], LHS, RHS, DAG, dl);
8937 
8938   int ShufIdxs[16];
8939   switch (OpNum) {
8940   default: llvm_unreachable("Unknown i32 permute!");
8941   case OP_VMRGHW:
8942     ShufIdxs[ 0] =  0; ShufIdxs[ 1] =  1; ShufIdxs[ 2] =  2; ShufIdxs[ 3] =  3;
8943     ShufIdxs[ 4] = 16; ShufIdxs[ 5] = 17; ShufIdxs[ 6] = 18; ShufIdxs[ 7] = 19;
8944     ShufIdxs[ 8] =  4; ShufIdxs[ 9] =  5; ShufIdxs[10] =  6; ShufIdxs[11] =  7;
8945     ShufIdxs[12] = 20; ShufIdxs[13] = 21; ShufIdxs[14] = 22; ShufIdxs[15] = 23;
8946     break;
8947   case OP_VMRGLW:
8948     ShufIdxs[ 0] =  8; ShufIdxs[ 1] =  9; ShufIdxs[ 2] = 10; ShufIdxs[ 3] = 11;
8949     ShufIdxs[ 4] = 24; ShufIdxs[ 5] = 25; ShufIdxs[ 6] = 26; ShufIdxs[ 7] = 27;
8950     ShufIdxs[ 8] = 12; ShufIdxs[ 9] = 13; ShufIdxs[10] = 14; ShufIdxs[11] = 15;
8951     ShufIdxs[12] = 28; ShufIdxs[13] = 29; ShufIdxs[14] = 30; ShufIdxs[15] = 31;
8952     break;
8953   case OP_VSPLTISW0:
8954     for (unsigned i = 0; i != 16; ++i)
8955       ShufIdxs[i] = (i&3)+0;
8956     break;
8957   case OP_VSPLTISW1:
8958     for (unsigned i = 0; i != 16; ++i)
8959       ShufIdxs[i] = (i&3)+4;
8960     break;
8961   case OP_VSPLTISW2:
8962     for (unsigned i = 0; i != 16; ++i)
8963       ShufIdxs[i] = (i&3)+8;
8964     break;
8965   case OP_VSPLTISW3:
8966     for (unsigned i = 0; i != 16; ++i)
8967       ShufIdxs[i] = (i&3)+12;
8968     break;
8969   case OP_VSLDOI4:
8970     return BuildVSLDOI(OpLHS, OpRHS, 4, OpLHS.getValueType(), DAG, dl);
8971   case OP_VSLDOI8:
8972     return BuildVSLDOI(OpLHS, OpRHS, 8, OpLHS.getValueType(), DAG, dl);
8973   case OP_VSLDOI12:
8974     return BuildVSLDOI(OpLHS, OpRHS, 12, OpLHS.getValueType(), DAG, dl);
8975   }
8976   EVT VT = OpLHS.getValueType();
8977   OpLHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OpLHS);
8978   OpRHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OpRHS);
8979   SDValue T = DAG.getVectorShuffle(MVT::v16i8, dl, OpLHS, OpRHS, ShufIdxs);
8980   return DAG.getNode(ISD::BITCAST, dl, VT, T);
8981 }
8982 
8983 /// lowerToVINSERTB - Return the SDValue if this VECTOR_SHUFFLE can be handled
8984 /// by the VINSERTB instruction introduced in ISA 3.0, else just return default
8985 /// SDValue.
8986 SDValue PPCTargetLowering::lowerToVINSERTB(ShuffleVectorSDNode *N,
8987                                            SelectionDAG &DAG) const {
8988   const unsigned BytesInVector = 16;
8989   bool IsLE = Subtarget.isLittleEndian();
8990   SDLoc dl(N);
8991   SDValue V1 = N->getOperand(0);
8992   SDValue V2 = N->getOperand(1);
8993   unsigned ShiftElts = 0, InsertAtByte = 0;
8994   bool Swap = false;
8995 
8996   // Shifts required to get the byte we want at element 7.
8997   unsigned LittleEndianShifts[] = {8, 7,  6,  5,  4,  3,  2,  1,
8998                                    0, 15, 14, 13, 12, 11, 10, 9};
8999   unsigned BigEndianShifts[] = {9, 10, 11, 12, 13, 14, 15, 0,
9000                                 1, 2,  3,  4,  5,  6,  7,  8};
9001 
9002   ArrayRef<int> Mask = N->getMask();
9003   int OriginalOrder[] = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15};
9004 
9005   // For each mask element, find out if we're just inserting something
9006   // from V2 into V1 or vice versa.
9007   // Possible permutations inserting an element from V2 into V1:
9008   //   X, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15
9009   //   0, X, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15
9010   //   ...
9011   //   0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, X
9012   // Inserting from V1 into V2 will be similar, except mask range will be
9013   // [16,31].
9014 
9015   bool FoundCandidate = false;
9016   // If both vector operands for the shuffle are the same vector, the mask
9017   // will contain only elements from the first one and the second one will be
9018   // undef.
9019   unsigned VINSERTBSrcElem = IsLE ? 8 : 7;
9020   // Go through the mask of half-words to find an element that's being moved
9021   // from one vector to the other.
9022   for (unsigned i = 0; i < BytesInVector; ++i) {
9023     unsigned CurrentElement = Mask[i];
9024     // If 2nd operand is undefined, we should only look for element 7 in the
9025     // Mask.
9026     if (V2.isUndef() && CurrentElement != VINSERTBSrcElem)
9027       continue;
9028 
9029     bool OtherElementsInOrder = true;
9030     // Examine the other elements in the Mask to see if they're in original
9031     // order.
9032     for (unsigned j = 0; j < BytesInVector; ++j) {
9033       if (j == i)
9034         continue;
9035       // If CurrentElement is from V1 [0,15], then we the rest of the Mask to be
9036       // from V2 [16,31] and vice versa.  Unless the 2nd operand is undefined,
9037       // in which we always assume we're always picking from the 1st operand.
9038       int MaskOffset =
9039           (!V2.isUndef() && CurrentElement < BytesInVector) ? BytesInVector : 0;
9040       if (Mask[j] != OriginalOrder[j] + MaskOffset) {
9041         OtherElementsInOrder = false;
9042         break;
9043       }
9044     }
9045     // If other elements are in original order, we record the number of shifts
9046     // we need to get the element we want into element 7. Also record which byte
9047     // in the vector we should insert into.
9048     if (OtherElementsInOrder) {
9049       // If 2nd operand is undefined, we assume no shifts and no swapping.
9050       if (V2.isUndef()) {
9051         ShiftElts = 0;
9052         Swap = false;
9053       } else {
9054         // Only need the last 4-bits for shifts because operands will be swapped if CurrentElement is >= 2^4.
9055         ShiftElts = IsLE ? LittleEndianShifts[CurrentElement & 0xF]
9056                          : BigEndianShifts[CurrentElement & 0xF];
9057         Swap = CurrentElement < BytesInVector;
9058       }
9059       InsertAtByte = IsLE ? BytesInVector - (i + 1) : i;
9060       FoundCandidate = true;
9061       break;
9062     }
9063   }
9064 
9065   if (!FoundCandidate)
9066     return SDValue();
9067 
9068   // Candidate found, construct the proper SDAG sequence with VINSERTB,
9069   // optionally with VECSHL if shift is required.
9070   if (Swap)
9071     std::swap(V1, V2);
9072   if (V2.isUndef())
9073     V2 = V1;
9074   if (ShiftElts) {
9075     SDValue Shl = DAG.getNode(PPCISD::VECSHL, dl, MVT::v16i8, V2, V2,
9076                               DAG.getConstant(ShiftElts, dl, MVT::i32));
9077     return DAG.getNode(PPCISD::VECINSERT, dl, MVT::v16i8, V1, Shl,
9078                        DAG.getConstant(InsertAtByte, dl, MVT::i32));
9079   }
9080   return DAG.getNode(PPCISD::VECINSERT, dl, MVT::v16i8, V1, V2,
9081                      DAG.getConstant(InsertAtByte, dl, MVT::i32));
9082 }
9083 
9084 /// lowerToVINSERTH - Return the SDValue if this VECTOR_SHUFFLE can be handled
9085 /// by the VINSERTH instruction introduced in ISA 3.0, else just return default
9086 /// SDValue.
9087 SDValue PPCTargetLowering::lowerToVINSERTH(ShuffleVectorSDNode *N,
9088                                            SelectionDAG &DAG) const {
9089   const unsigned NumHalfWords = 8;
9090   const unsigned BytesInVector = NumHalfWords * 2;
9091   // Check that the shuffle is on half-words.
9092   if (!isNByteElemShuffleMask(N, 2, 1))
9093     return SDValue();
9094 
9095   bool IsLE = Subtarget.isLittleEndian();
9096   SDLoc dl(N);
9097   SDValue V1 = N->getOperand(0);
9098   SDValue V2 = N->getOperand(1);
9099   unsigned ShiftElts = 0, InsertAtByte = 0;
9100   bool Swap = false;
9101 
9102   // Shifts required to get the half-word we want at element 3.
9103   unsigned LittleEndianShifts[] = {4, 3, 2, 1, 0, 7, 6, 5};
9104   unsigned BigEndianShifts[] = {5, 6, 7, 0, 1, 2, 3, 4};
9105 
9106   uint32_t Mask = 0;
9107   uint32_t OriginalOrderLow = 0x1234567;
9108   uint32_t OriginalOrderHigh = 0x89ABCDEF;
9109   // Now we look at mask elements 0,2,4,6,8,10,12,14.  Pack the mask into a
9110   // 32-bit space, only need 4-bit nibbles per element.
9111   for (unsigned i = 0; i < NumHalfWords; ++i) {
9112     unsigned MaskShift = (NumHalfWords - 1 - i) * 4;
9113     Mask |= ((uint32_t)(N->getMaskElt(i * 2) / 2) << MaskShift);
9114   }
9115 
9116   // For each mask element, find out if we're just inserting something
9117   // from V2 into V1 or vice versa.  Possible permutations inserting an element
9118   // from V2 into V1:
9119   //   X, 1, 2, 3, 4, 5, 6, 7
9120   //   0, X, 2, 3, 4, 5, 6, 7
9121   //   0, 1, X, 3, 4, 5, 6, 7
9122   //   0, 1, 2, X, 4, 5, 6, 7
9123   //   0, 1, 2, 3, X, 5, 6, 7
9124   //   0, 1, 2, 3, 4, X, 6, 7
9125   //   0, 1, 2, 3, 4, 5, X, 7
9126   //   0, 1, 2, 3, 4, 5, 6, X
9127   // Inserting from V1 into V2 will be similar, except mask range will be [8,15].
9128 
9129   bool FoundCandidate = false;
9130   // Go through the mask of half-words to find an element that's being moved
9131   // from one vector to the other.
9132   for (unsigned i = 0; i < NumHalfWords; ++i) {
9133     unsigned MaskShift = (NumHalfWords - 1 - i) * 4;
9134     uint32_t MaskOneElt = (Mask >> MaskShift) & 0xF;
9135     uint32_t MaskOtherElts = ~(0xF << MaskShift);
9136     uint32_t TargetOrder = 0x0;
9137 
9138     // If both vector operands for the shuffle are the same vector, the mask
9139     // will contain only elements from the first one and the second one will be
9140     // undef.
9141     if (V2.isUndef()) {
9142       ShiftElts = 0;
9143       unsigned VINSERTHSrcElem = IsLE ? 4 : 3;
9144       TargetOrder = OriginalOrderLow;
9145       Swap = false;
9146       // Skip if not the correct element or mask of other elements don't equal
9147       // to our expected order.
9148       if (MaskOneElt == VINSERTHSrcElem &&
9149           (Mask & MaskOtherElts) == (TargetOrder & MaskOtherElts)) {
9150         InsertAtByte = IsLE ? BytesInVector - (i + 1) * 2 : i * 2;
9151         FoundCandidate = true;
9152         break;
9153       }
9154     } else { // If both operands are defined.
9155       // Target order is [8,15] if the current mask is between [0,7].
9156       TargetOrder =
9157           (MaskOneElt < NumHalfWords) ? OriginalOrderHigh : OriginalOrderLow;
9158       // Skip if mask of other elements don't equal our expected order.
9159       if ((Mask & MaskOtherElts) == (TargetOrder & MaskOtherElts)) {
9160         // We only need the last 3 bits for the number of shifts.
9161         ShiftElts = IsLE ? LittleEndianShifts[MaskOneElt & 0x7]
9162                          : BigEndianShifts[MaskOneElt & 0x7];
9163         InsertAtByte = IsLE ? BytesInVector - (i + 1) * 2 : i * 2;
9164         Swap = MaskOneElt < NumHalfWords;
9165         FoundCandidate = true;
9166         break;
9167       }
9168     }
9169   }
9170 
9171   if (!FoundCandidate)
9172     return SDValue();
9173 
9174   // Candidate found, construct the proper SDAG sequence with VINSERTH,
9175   // optionally with VECSHL if shift is required.
9176   if (Swap)
9177     std::swap(V1, V2);
9178   if (V2.isUndef())
9179     V2 = V1;
9180   SDValue Conv1 = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V1);
9181   if (ShiftElts) {
9182     // Double ShiftElts because we're left shifting on v16i8 type.
9183     SDValue Shl = DAG.getNode(PPCISD::VECSHL, dl, MVT::v16i8, V2, V2,
9184                               DAG.getConstant(2 * ShiftElts, dl, MVT::i32));
9185     SDValue Conv2 = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, Shl);
9186     SDValue Ins = DAG.getNode(PPCISD::VECINSERT, dl, MVT::v8i16, Conv1, Conv2,
9187                               DAG.getConstant(InsertAtByte, dl, MVT::i32));
9188     return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Ins);
9189   }
9190   SDValue Conv2 = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V2);
9191   SDValue Ins = DAG.getNode(PPCISD::VECINSERT, dl, MVT::v8i16, Conv1, Conv2,
9192                             DAG.getConstant(InsertAtByte, dl, MVT::i32));
9193   return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Ins);
9194 }
9195 
9196 /// LowerVECTOR_SHUFFLE - Return the code we lower for VECTOR_SHUFFLE.  If this
9197 /// is a shuffle we can handle in a single instruction, return it.  Otherwise,
9198 /// return the code it can be lowered into.  Worst case, it can always be
9199 /// lowered into a vperm.
9200 SDValue PPCTargetLowering::LowerVECTOR_SHUFFLE(SDValue Op,
9201                                                SelectionDAG &DAG) const {
9202   SDLoc dl(Op);
9203   SDValue V1 = Op.getOperand(0);
9204   SDValue V2 = Op.getOperand(1);
9205   ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
9206   EVT VT = Op.getValueType();
9207   bool isLittleEndian = Subtarget.isLittleEndian();
9208 
9209   unsigned ShiftElts, InsertAtByte;
9210   bool Swap = false;
9211 
9212   // If this is a load-and-splat, we can do that with a single instruction
9213   // in some cases. However if the load has multiple uses, we don't want to
9214   // combine it because that will just produce multiple loads.
9215   const SDValue *InputLoad = getNormalLoadInput(V1);
9216   if (InputLoad && Subtarget.hasVSX() && V2.isUndef() &&
9217       (PPC::isSplatShuffleMask(SVOp, 4) || PPC::isSplatShuffleMask(SVOp, 8)) &&
9218       InputLoad->hasOneUse()) {
9219     bool IsFourByte = PPC::isSplatShuffleMask(SVOp, 4);
9220     int SplatIdx =
9221       PPC::getSplatIdxForPPCMnemonics(SVOp, IsFourByte ? 4 : 8, DAG);
9222 
9223     LoadSDNode *LD = cast<LoadSDNode>(*InputLoad);
9224     // For 4-byte load-and-splat, we need Power9.
9225     if ((IsFourByte && Subtarget.hasP9Vector()) || !IsFourByte) {
9226       uint64_t Offset = 0;
9227       if (IsFourByte)
9228         Offset = isLittleEndian ? (3 - SplatIdx) * 4 : SplatIdx * 4;
9229       else
9230         Offset = isLittleEndian ? (1 - SplatIdx) * 8 : SplatIdx * 8;
9231       SDValue BasePtr = LD->getBasePtr();
9232       if (Offset != 0)
9233         BasePtr = DAG.getNode(ISD::ADD, dl, getPointerTy(DAG.getDataLayout()),
9234                               BasePtr, DAG.getIntPtrConstant(Offset, dl));
9235       SDValue Ops[] = {
9236         LD->getChain(),    // Chain
9237         BasePtr,           // BasePtr
9238         DAG.getValueType(Op.getValueType()) // VT
9239       };
9240       SDVTList VTL =
9241         DAG.getVTList(IsFourByte ? MVT::v4i32 : MVT::v2i64, MVT::Other);
9242       SDValue LdSplt =
9243         DAG.getMemIntrinsicNode(PPCISD::LD_SPLAT, dl, VTL,
9244                                 Ops, LD->getMemoryVT(), LD->getMemOperand());
9245       if (LdSplt.getValueType() != SVOp->getValueType(0))
9246         LdSplt = DAG.getBitcast(SVOp->getValueType(0), LdSplt);
9247       return LdSplt;
9248     }
9249   }
9250   if (Subtarget.hasP9Vector() &&
9251       PPC::isXXINSERTWMask(SVOp, ShiftElts, InsertAtByte, Swap,
9252                            isLittleEndian)) {
9253     if (Swap)
9254       std::swap(V1, V2);
9255     SDValue Conv1 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V1);
9256     SDValue Conv2 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V2);
9257     if (ShiftElts) {
9258       SDValue Shl = DAG.getNode(PPCISD::VECSHL, dl, MVT::v4i32, Conv2, Conv2,
9259                                 DAG.getConstant(ShiftElts, dl, MVT::i32));
9260       SDValue Ins = DAG.getNode(PPCISD::VECINSERT, dl, MVT::v4i32, Conv1, Shl,
9261                                 DAG.getConstant(InsertAtByte, dl, MVT::i32));
9262       return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Ins);
9263     }
9264     SDValue Ins = DAG.getNode(PPCISD::VECINSERT, dl, MVT::v4i32, Conv1, Conv2,
9265                               DAG.getConstant(InsertAtByte, dl, MVT::i32));
9266     return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Ins);
9267   }
9268 
9269   if (Subtarget.hasP9Altivec()) {
9270     SDValue NewISDNode;
9271     if ((NewISDNode = lowerToVINSERTH(SVOp, DAG)))
9272       return NewISDNode;
9273 
9274     if ((NewISDNode = lowerToVINSERTB(SVOp, DAG)))
9275       return NewISDNode;
9276   }
9277 
9278   if (Subtarget.hasVSX() &&
9279       PPC::isXXSLDWIShuffleMask(SVOp, ShiftElts, Swap, isLittleEndian)) {
9280     if (Swap)
9281       std::swap(V1, V2);
9282     SDValue Conv1 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V1);
9283     SDValue Conv2 =
9284         DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V2.isUndef() ? V1 : V2);
9285 
9286     SDValue Shl = DAG.getNode(PPCISD::VECSHL, dl, MVT::v4i32, Conv1, Conv2,
9287                               DAG.getConstant(ShiftElts, dl, MVT::i32));
9288     return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Shl);
9289   }
9290 
9291   if (Subtarget.hasVSX() &&
9292     PPC::isXXPERMDIShuffleMask(SVOp, ShiftElts, Swap, isLittleEndian)) {
9293     if (Swap)
9294       std::swap(V1, V2);
9295     SDValue Conv1 = DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, V1);
9296     SDValue Conv2 =
9297         DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, V2.isUndef() ? V1 : V2);
9298 
9299     SDValue PermDI = DAG.getNode(PPCISD::XXPERMDI, dl, MVT::v2i64, Conv1, Conv2,
9300                               DAG.getConstant(ShiftElts, dl, MVT::i32));
9301     return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, PermDI);
9302   }
9303 
9304   if (Subtarget.hasP9Vector()) {
9305      if (PPC::isXXBRHShuffleMask(SVOp)) {
9306       SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V1);
9307       SDValue ReveHWord = DAG.getNode(ISD::BSWAP, dl, MVT::v8i16, Conv);
9308       return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, ReveHWord);
9309     } else if (PPC::isXXBRWShuffleMask(SVOp)) {
9310       SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V1);
9311       SDValue ReveWord = DAG.getNode(ISD::BSWAP, dl, MVT::v4i32, Conv);
9312       return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, ReveWord);
9313     } else if (PPC::isXXBRDShuffleMask(SVOp)) {
9314       SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, V1);
9315       SDValue ReveDWord = DAG.getNode(ISD::BSWAP, dl, MVT::v2i64, Conv);
9316       return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, ReveDWord);
9317     } else if (PPC::isXXBRQShuffleMask(SVOp)) {
9318       SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v1i128, V1);
9319       SDValue ReveQWord = DAG.getNode(ISD::BSWAP, dl, MVT::v1i128, Conv);
9320       return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, ReveQWord);
9321     }
9322   }
9323 
9324   if (Subtarget.hasVSX()) {
9325     if (V2.isUndef() && PPC::isSplatShuffleMask(SVOp, 4)) {
9326       int SplatIdx = PPC::getSplatIdxForPPCMnemonics(SVOp, 4, DAG);
9327 
9328       SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V1);
9329       SDValue Splat = DAG.getNode(PPCISD::XXSPLT, dl, MVT::v4i32, Conv,
9330                                   DAG.getConstant(SplatIdx, dl, MVT::i32));
9331       return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Splat);
9332     }
9333 
9334     // Left shifts of 8 bytes are actually swaps. Convert accordingly.
9335     if (V2.isUndef() && PPC::isVSLDOIShuffleMask(SVOp, 1, DAG) == 8) {
9336       SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, V1);
9337       SDValue Swap = DAG.getNode(PPCISD::SWAP_NO_CHAIN, dl, MVT::v2f64, Conv);
9338       return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Swap);
9339     }
9340   }
9341 
9342   if (Subtarget.hasQPX()) {
9343     if (VT.getVectorNumElements() != 4)
9344       return SDValue();
9345 
9346     if (V2.isUndef()) V2 = V1;
9347 
9348     int AlignIdx = PPC::isQVALIGNIShuffleMask(SVOp);
9349     if (AlignIdx != -1) {
9350       return DAG.getNode(PPCISD::QVALIGNI, dl, VT, V1, V2,
9351                          DAG.getConstant(AlignIdx, dl, MVT::i32));
9352     } else if (SVOp->isSplat()) {
9353       int SplatIdx = SVOp->getSplatIndex();
9354       if (SplatIdx >= 4) {
9355         std::swap(V1, V2);
9356         SplatIdx -= 4;
9357       }
9358 
9359       return DAG.getNode(PPCISD::QVESPLATI, dl, VT, V1,
9360                          DAG.getConstant(SplatIdx, dl, MVT::i32));
9361     }
9362 
9363     // Lower this into a qvgpci/qvfperm pair.
9364 
9365     // Compute the qvgpci literal
9366     unsigned idx = 0;
9367     for (unsigned i = 0; i < 4; ++i) {
9368       int m = SVOp->getMaskElt(i);
9369       unsigned mm = m >= 0 ? (unsigned) m : i;
9370       idx |= mm << (3-i)*3;
9371     }
9372 
9373     SDValue V3 = DAG.getNode(PPCISD::QVGPCI, dl, MVT::v4f64,
9374                              DAG.getConstant(idx, dl, MVT::i32));
9375     return DAG.getNode(PPCISD::QVFPERM, dl, VT, V1, V2, V3);
9376   }
9377 
9378   // Cases that are handled by instructions that take permute immediates
9379   // (such as vsplt*) should be left as VECTOR_SHUFFLE nodes so they can be
9380   // selected by the instruction selector.
9381   if (V2.isUndef()) {
9382     if (PPC::isSplatShuffleMask(SVOp, 1) ||
9383         PPC::isSplatShuffleMask(SVOp, 2) ||
9384         PPC::isSplatShuffleMask(SVOp, 4) ||
9385         PPC::isVPKUWUMShuffleMask(SVOp, 1, DAG) ||
9386         PPC::isVPKUHUMShuffleMask(SVOp, 1, DAG) ||
9387         PPC::isVSLDOIShuffleMask(SVOp, 1, DAG) != -1 ||
9388         PPC::isVMRGLShuffleMask(SVOp, 1, 1, DAG) ||
9389         PPC::isVMRGLShuffleMask(SVOp, 2, 1, DAG) ||
9390         PPC::isVMRGLShuffleMask(SVOp, 4, 1, DAG) ||
9391         PPC::isVMRGHShuffleMask(SVOp, 1, 1, DAG) ||
9392         PPC::isVMRGHShuffleMask(SVOp, 2, 1, DAG) ||
9393         PPC::isVMRGHShuffleMask(SVOp, 4, 1, DAG) ||
9394         (Subtarget.hasP8Altivec() && (
9395          PPC::isVPKUDUMShuffleMask(SVOp, 1, DAG) ||
9396          PPC::isVMRGEOShuffleMask(SVOp, true, 1, DAG) ||
9397          PPC::isVMRGEOShuffleMask(SVOp, false, 1, DAG)))) {
9398       return Op;
9399     }
9400   }
9401 
9402   // Altivec has a variety of "shuffle immediates" that take two vector inputs
9403   // and produce a fixed permutation.  If any of these match, do not lower to
9404   // VPERM.
9405   unsigned int ShuffleKind = isLittleEndian ? 2 : 0;
9406   if (PPC::isVPKUWUMShuffleMask(SVOp, ShuffleKind, DAG) ||
9407       PPC::isVPKUHUMShuffleMask(SVOp, ShuffleKind, DAG) ||
9408       PPC::isVSLDOIShuffleMask(SVOp, ShuffleKind, DAG) != -1 ||
9409       PPC::isVMRGLShuffleMask(SVOp, 1, ShuffleKind, DAG) ||
9410       PPC::isVMRGLShuffleMask(SVOp, 2, ShuffleKind, DAG) ||
9411       PPC::isVMRGLShuffleMask(SVOp, 4, ShuffleKind, DAG) ||
9412       PPC::isVMRGHShuffleMask(SVOp, 1, ShuffleKind, DAG) ||
9413       PPC::isVMRGHShuffleMask(SVOp, 2, ShuffleKind, DAG) ||
9414       PPC::isVMRGHShuffleMask(SVOp, 4, ShuffleKind, DAG) ||
9415       (Subtarget.hasP8Altivec() && (
9416        PPC::isVPKUDUMShuffleMask(SVOp, ShuffleKind, DAG) ||
9417        PPC::isVMRGEOShuffleMask(SVOp, true, ShuffleKind, DAG) ||
9418        PPC::isVMRGEOShuffleMask(SVOp, false, ShuffleKind, DAG))))
9419     return Op;
9420 
9421   // Check to see if this is a shuffle of 4-byte values.  If so, we can use our
9422   // perfect shuffle table to emit an optimal matching sequence.
9423   ArrayRef<int> PermMask = SVOp->getMask();
9424 
9425   unsigned PFIndexes[4];
9426   bool isFourElementShuffle = true;
9427   for (unsigned i = 0; i != 4 && isFourElementShuffle; ++i) { // Element number
9428     unsigned EltNo = 8;   // Start out undef.
9429     for (unsigned j = 0; j != 4; ++j) {  // Intra-element byte.
9430       if (PermMask[i*4+j] < 0)
9431         continue;   // Undef, ignore it.
9432 
9433       unsigned ByteSource = PermMask[i*4+j];
9434       if ((ByteSource & 3) != j) {
9435         isFourElementShuffle = false;
9436         break;
9437       }
9438 
9439       if (EltNo == 8) {
9440         EltNo = ByteSource/4;
9441       } else if (EltNo != ByteSource/4) {
9442         isFourElementShuffle = false;
9443         break;
9444       }
9445     }
9446     PFIndexes[i] = EltNo;
9447   }
9448 
9449   // If this shuffle can be expressed as a shuffle of 4-byte elements, use the
9450   // perfect shuffle vector to determine if it is cost effective to do this as
9451   // discrete instructions, or whether we should use a vperm.
9452   // For now, we skip this for little endian until such time as we have a
9453   // little-endian perfect shuffle table.
9454   if (isFourElementShuffle && !isLittleEndian) {
9455     // Compute the index in the perfect shuffle table.
9456     unsigned PFTableIndex =
9457       PFIndexes[0]*9*9*9+PFIndexes[1]*9*9+PFIndexes[2]*9+PFIndexes[3];
9458 
9459     unsigned PFEntry = PerfectShuffleTable[PFTableIndex];
9460     unsigned Cost  = (PFEntry >> 30);
9461 
9462     // Determining when to avoid vperm is tricky.  Many things affect the cost
9463     // of vperm, particularly how many times the perm mask needs to be computed.
9464     // For example, if the perm mask can be hoisted out of a loop or is already
9465     // used (perhaps because there are multiple permutes with the same shuffle
9466     // mask?) the vperm has a cost of 1.  OTOH, hoisting the permute mask out of
9467     // the loop requires an extra register.
9468     //
9469     // As a compromise, we only emit discrete instructions if the shuffle can be
9470     // generated in 3 or fewer operations.  When we have loop information
9471     // available, if this block is within a loop, we should avoid using vperm
9472     // for 3-operation perms and use a constant pool load instead.
9473     if (Cost < 3)
9474       return GeneratePerfectShuffle(PFEntry, V1, V2, DAG, dl);
9475   }
9476 
9477   // Lower this to a VPERM(V1, V2, V3) expression, where V3 is a constant
9478   // vector that will get spilled to the constant pool.
9479   if (V2.isUndef()) V2 = V1;
9480 
9481   // The SHUFFLE_VECTOR mask is almost exactly what we want for vperm, except
9482   // that it is in input element units, not in bytes.  Convert now.
9483 
9484   // For little endian, the order of the input vectors is reversed, and
9485   // the permutation mask is complemented with respect to 31.  This is
9486   // necessary to produce proper semantics with the big-endian-biased vperm
9487   // instruction.
9488   EVT EltVT = V1.getValueType().getVectorElementType();
9489   unsigned BytesPerElement = EltVT.getSizeInBits()/8;
9490 
9491   SmallVector<SDValue, 16> ResultMask;
9492   for (unsigned i = 0, e = VT.getVectorNumElements(); i != e; ++i) {
9493     unsigned SrcElt = PermMask[i] < 0 ? 0 : PermMask[i];
9494 
9495     for (unsigned j = 0; j != BytesPerElement; ++j)
9496       if (isLittleEndian)
9497         ResultMask.push_back(DAG.getConstant(31 - (SrcElt*BytesPerElement + j),
9498                                              dl, MVT::i32));
9499       else
9500         ResultMask.push_back(DAG.getConstant(SrcElt*BytesPerElement + j, dl,
9501                                              MVT::i32));
9502   }
9503 
9504   SDValue VPermMask = DAG.getBuildVector(MVT::v16i8, dl, ResultMask);
9505   if (isLittleEndian)
9506     return DAG.getNode(PPCISD::VPERM, dl, V1.getValueType(),
9507                        V2, V1, VPermMask);
9508   else
9509     return DAG.getNode(PPCISD::VPERM, dl, V1.getValueType(),
9510                        V1, V2, VPermMask);
9511 }
9512 
9513 /// getVectorCompareInfo - Given an intrinsic, return false if it is not a
9514 /// vector comparison.  If it is, return true and fill in Opc/isDot with
9515 /// information about the intrinsic.
9516 static bool getVectorCompareInfo(SDValue Intrin, int &CompareOpc,
9517                                  bool &isDot, const PPCSubtarget &Subtarget) {
9518   unsigned IntrinsicID =
9519       cast<ConstantSDNode>(Intrin.getOperand(0))->getZExtValue();
9520   CompareOpc = -1;
9521   isDot = false;
9522   switch (IntrinsicID) {
9523   default:
9524     return false;
9525   // Comparison predicates.
9526   case Intrinsic::ppc_altivec_vcmpbfp_p:
9527     CompareOpc = 966;
9528     isDot = true;
9529     break;
9530   case Intrinsic::ppc_altivec_vcmpeqfp_p:
9531     CompareOpc = 198;
9532     isDot = true;
9533     break;
9534   case Intrinsic::ppc_altivec_vcmpequb_p:
9535     CompareOpc = 6;
9536     isDot = true;
9537     break;
9538   case Intrinsic::ppc_altivec_vcmpequh_p:
9539     CompareOpc = 70;
9540     isDot = true;
9541     break;
9542   case Intrinsic::ppc_altivec_vcmpequw_p:
9543     CompareOpc = 134;
9544     isDot = true;
9545     break;
9546   case Intrinsic::ppc_altivec_vcmpequd_p:
9547     if (Subtarget.hasP8Altivec()) {
9548       CompareOpc = 199;
9549       isDot = true;
9550     } else
9551       return false;
9552     break;
9553   case Intrinsic::ppc_altivec_vcmpneb_p:
9554   case Intrinsic::ppc_altivec_vcmpneh_p:
9555   case Intrinsic::ppc_altivec_vcmpnew_p:
9556   case Intrinsic::ppc_altivec_vcmpnezb_p:
9557   case Intrinsic::ppc_altivec_vcmpnezh_p:
9558   case Intrinsic::ppc_altivec_vcmpnezw_p:
9559     if (Subtarget.hasP9Altivec()) {
9560       switch (IntrinsicID) {
9561       default:
9562         llvm_unreachable("Unknown comparison intrinsic.");
9563       case Intrinsic::ppc_altivec_vcmpneb_p:
9564         CompareOpc = 7;
9565         break;
9566       case Intrinsic::ppc_altivec_vcmpneh_p:
9567         CompareOpc = 71;
9568         break;
9569       case Intrinsic::ppc_altivec_vcmpnew_p:
9570         CompareOpc = 135;
9571         break;
9572       case Intrinsic::ppc_altivec_vcmpnezb_p:
9573         CompareOpc = 263;
9574         break;
9575       case Intrinsic::ppc_altivec_vcmpnezh_p:
9576         CompareOpc = 327;
9577         break;
9578       case Intrinsic::ppc_altivec_vcmpnezw_p:
9579         CompareOpc = 391;
9580         break;
9581       }
9582       isDot = true;
9583     } else
9584       return false;
9585     break;
9586   case Intrinsic::ppc_altivec_vcmpgefp_p:
9587     CompareOpc = 454;
9588     isDot = true;
9589     break;
9590   case Intrinsic::ppc_altivec_vcmpgtfp_p:
9591     CompareOpc = 710;
9592     isDot = true;
9593     break;
9594   case Intrinsic::ppc_altivec_vcmpgtsb_p:
9595     CompareOpc = 774;
9596     isDot = true;
9597     break;
9598   case Intrinsic::ppc_altivec_vcmpgtsh_p:
9599     CompareOpc = 838;
9600     isDot = true;
9601     break;
9602   case Intrinsic::ppc_altivec_vcmpgtsw_p:
9603     CompareOpc = 902;
9604     isDot = true;
9605     break;
9606   case Intrinsic::ppc_altivec_vcmpgtsd_p:
9607     if (Subtarget.hasP8Altivec()) {
9608       CompareOpc = 967;
9609       isDot = true;
9610     } else
9611       return false;
9612     break;
9613   case Intrinsic::ppc_altivec_vcmpgtub_p:
9614     CompareOpc = 518;
9615     isDot = true;
9616     break;
9617   case Intrinsic::ppc_altivec_vcmpgtuh_p:
9618     CompareOpc = 582;
9619     isDot = true;
9620     break;
9621   case Intrinsic::ppc_altivec_vcmpgtuw_p:
9622     CompareOpc = 646;
9623     isDot = true;
9624     break;
9625   case Intrinsic::ppc_altivec_vcmpgtud_p:
9626     if (Subtarget.hasP8Altivec()) {
9627       CompareOpc = 711;
9628       isDot = true;
9629     } else
9630       return false;
9631     break;
9632 
9633   // VSX predicate comparisons use the same infrastructure
9634   case Intrinsic::ppc_vsx_xvcmpeqdp_p:
9635   case Intrinsic::ppc_vsx_xvcmpgedp_p:
9636   case Intrinsic::ppc_vsx_xvcmpgtdp_p:
9637   case Intrinsic::ppc_vsx_xvcmpeqsp_p:
9638   case Intrinsic::ppc_vsx_xvcmpgesp_p:
9639   case Intrinsic::ppc_vsx_xvcmpgtsp_p:
9640     if (Subtarget.hasVSX()) {
9641       switch (IntrinsicID) {
9642       case Intrinsic::ppc_vsx_xvcmpeqdp_p:
9643         CompareOpc = 99;
9644         break;
9645       case Intrinsic::ppc_vsx_xvcmpgedp_p:
9646         CompareOpc = 115;
9647         break;
9648       case Intrinsic::ppc_vsx_xvcmpgtdp_p:
9649         CompareOpc = 107;
9650         break;
9651       case Intrinsic::ppc_vsx_xvcmpeqsp_p:
9652         CompareOpc = 67;
9653         break;
9654       case Intrinsic::ppc_vsx_xvcmpgesp_p:
9655         CompareOpc = 83;
9656         break;
9657       case Intrinsic::ppc_vsx_xvcmpgtsp_p:
9658         CompareOpc = 75;
9659         break;
9660       }
9661       isDot = true;
9662     } else
9663       return false;
9664     break;
9665 
9666   // Normal Comparisons.
9667   case Intrinsic::ppc_altivec_vcmpbfp:
9668     CompareOpc = 966;
9669     break;
9670   case Intrinsic::ppc_altivec_vcmpeqfp:
9671     CompareOpc = 198;
9672     break;
9673   case Intrinsic::ppc_altivec_vcmpequb:
9674     CompareOpc = 6;
9675     break;
9676   case Intrinsic::ppc_altivec_vcmpequh:
9677     CompareOpc = 70;
9678     break;
9679   case Intrinsic::ppc_altivec_vcmpequw:
9680     CompareOpc = 134;
9681     break;
9682   case Intrinsic::ppc_altivec_vcmpequd:
9683     if (Subtarget.hasP8Altivec())
9684       CompareOpc = 199;
9685     else
9686       return false;
9687     break;
9688   case Intrinsic::ppc_altivec_vcmpneb:
9689   case Intrinsic::ppc_altivec_vcmpneh:
9690   case Intrinsic::ppc_altivec_vcmpnew:
9691   case Intrinsic::ppc_altivec_vcmpnezb:
9692   case Intrinsic::ppc_altivec_vcmpnezh:
9693   case Intrinsic::ppc_altivec_vcmpnezw:
9694     if (Subtarget.hasP9Altivec())
9695       switch (IntrinsicID) {
9696       default:
9697         llvm_unreachable("Unknown comparison intrinsic.");
9698       case Intrinsic::ppc_altivec_vcmpneb:
9699         CompareOpc = 7;
9700         break;
9701       case Intrinsic::ppc_altivec_vcmpneh:
9702         CompareOpc = 71;
9703         break;
9704       case Intrinsic::ppc_altivec_vcmpnew:
9705         CompareOpc = 135;
9706         break;
9707       case Intrinsic::ppc_altivec_vcmpnezb:
9708         CompareOpc = 263;
9709         break;
9710       case Intrinsic::ppc_altivec_vcmpnezh:
9711         CompareOpc = 327;
9712         break;
9713       case Intrinsic::ppc_altivec_vcmpnezw:
9714         CompareOpc = 391;
9715         break;
9716       }
9717     else
9718       return false;
9719     break;
9720   case Intrinsic::ppc_altivec_vcmpgefp:
9721     CompareOpc = 454;
9722     break;
9723   case Intrinsic::ppc_altivec_vcmpgtfp:
9724     CompareOpc = 710;
9725     break;
9726   case Intrinsic::ppc_altivec_vcmpgtsb:
9727     CompareOpc = 774;
9728     break;
9729   case Intrinsic::ppc_altivec_vcmpgtsh:
9730     CompareOpc = 838;
9731     break;
9732   case Intrinsic::ppc_altivec_vcmpgtsw:
9733     CompareOpc = 902;
9734     break;
9735   case Intrinsic::ppc_altivec_vcmpgtsd:
9736     if (Subtarget.hasP8Altivec())
9737       CompareOpc = 967;
9738     else
9739       return false;
9740     break;
9741   case Intrinsic::ppc_altivec_vcmpgtub:
9742     CompareOpc = 518;
9743     break;
9744   case Intrinsic::ppc_altivec_vcmpgtuh:
9745     CompareOpc = 582;
9746     break;
9747   case Intrinsic::ppc_altivec_vcmpgtuw:
9748     CompareOpc = 646;
9749     break;
9750   case Intrinsic::ppc_altivec_vcmpgtud:
9751     if (Subtarget.hasP8Altivec())
9752       CompareOpc = 711;
9753     else
9754       return false;
9755     break;
9756   }
9757   return true;
9758 }
9759 
9760 /// LowerINTRINSIC_WO_CHAIN - If this is an intrinsic that we want to custom
9761 /// lower, do it, otherwise return null.
9762 SDValue PPCTargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op,
9763                                                    SelectionDAG &DAG) const {
9764   unsigned IntrinsicID =
9765     cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
9766 
9767   SDLoc dl(Op);
9768 
9769   if (IntrinsicID == Intrinsic::thread_pointer) {
9770     // Reads the thread pointer register, used for __builtin_thread_pointer.
9771     if (Subtarget.isPPC64())
9772       return DAG.getRegister(PPC::X13, MVT::i64);
9773     return DAG.getRegister(PPC::R2, MVT::i32);
9774   }
9775 
9776   // If this is a lowered altivec predicate compare, CompareOpc is set to the
9777   // opcode number of the comparison.
9778   int CompareOpc;
9779   bool isDot;
9780   if (!getVectorCompareInfo(Op, CompareOpc, isDot, Subtarget))
9781     return SDValue();    // Don't custom lower most intrinsics.
9782 
9783   // If this is a non-dot comparison, make the VCMP node and we are done.
9784   if (!isDot) {
9785     SDValue Tmp = DAG.getNode(PPCISD::VCMP, dl, Op.getOperand(2).getValueType(),
9786                               Op.getOperand(1), Op.getOperand(2),
9787                               DAG.getConstant(CompareOpc, dl, MVT::i32));
9788     return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Tmp);
9789   }
9790 
9791   // Create the PPCISD altivec 'dot' comparison node.
9792   SDValue Ops[] = {
9793     Op.getOperand(2),  // LHS
9794     Op.getOperand(3),  // RHS
9795     DAG.getConstant(CompareOpc, dl, MVT::i32)
9796   };
9797   EVT VTs[] = { Op.getOperand(2).getValueType(), MVT::Glue };
9798   SDValue CompNode = DAG.getNode(PPCISD::VCMPo, dl, VTs, Ops);
9799 
9800   // Now that we have the comparison, emit a copy from the CR to a GPR.
9801   // This is flagged to the above dot comparison.
9802   SDValue Flags = DAG.getNode(PPCISD::MFOCRF, dl, MVT::i32,
9803                                 DAG.getRegister(PPC::CR6, MVT::i32),
9804                                 CompNode.getValue(1));
9805 
9806   // Unpack the result based on how the target uses it.
9807   unsigned BitNo;   // Bit # of CR6.
9808   bool InvertBit;   // Invert result?
9809   switch (cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue()) {
9810   default:  // Can't happen, don't crash on invalid number though.
9811   case 0:   // Return the value of the EQ bit of CR6.
9812     BitNo = 0; InvertBit = false;
9813     break;
9814   case 1:   // Return the inverted value of the EQ bit of CR6.
9815     BitNo = 0; InvertBit = true;
9816     break;
9817   case 2:   // Return the value of the LT bit of CR6.
9818     BitNo = 2; InvertBit = false;
9819     break;
9820   case 3:   // Return the inverted value of the LT bit of CR6.
9821     BitNo = 2; InvertBit = true;
9822     break;
9823   }
9824 
9825   // Shift the bit into the low position.
9826   Flags = DAG.getNode(ISD::SRL, dl, MVT::i32, Flags,
9827                       DAG.getConstant(8 - (3 - BitNo), dl, MVT::i32));
9828   // Isolate the bit.
9829   Flags = DAG.getNode(ISD::AND, dl, MVT::i32, Flags,
9830                       DAG.getConstant(1, dl, MVT::i32));
9831 
9832   // If we are supposed to, toggle the bit.
9833   if (InvertBit)
9834     Flags = DAG.getNode(ISD::XOR, dl, MVT::i32, Flags,
9835                         DAG.getConstant(1, dl, MVT::i32));
9836   return Flags;
9837 }
9838 
9839 SDValue PPCTargetLowering::LowerINTRINSIC_VOID(SDValue Op,
9840                                                SelectionDAG &DAG) const {
9841   // SelectionDAGBuilder::visitTargetIntrinsic may insert one extra chain to
9842   // the beginning of the argument list.
9843   int ArgStart = isa<ConstantSDNode>(Op.getOperand(0)) ? 0 : 1;
9844   SDLoc DL(Op);
9845   switch (cast<ConstantSDNode>(Op.getOperand(ArgStart))->getZExtValue()) {
9846   case Intrinsic::ppc_cfence: {
9847     assert(ArgStart == 1 && "llvm.ppc.cfence must carry a chain argument.");
9848     assert(Subtarget.isPPC64() && "Only 64-bit is supported for now.");
9849     return SDValue(DAG.getMachineNode(PPC::CFENCE8, DL, MVT::Other,
9850                                       DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64,
9851                                                   Op.getOperand(ArgStart + 1)),
9852                                       Op.getOperand(0)),
9853                    0);
9854   }
9855   default:
9856     break;
9857   }
9858   return SDValue();
9859 }
9860 
9861 SDValue PPCTargetLowering::LowerREM(SDValue Op, SelectionDAG &DAG) const {
9862   // Check for a DIV with the same operands as this REM.
9863   for (auto UI : Op.getOperand(1)->uses()) {
9864     if ((Op.getOpcode() == ISD::SREM && UI->getOpcode() == ISD::SDIV) ||
9865         (Op.getOpcode() == ISD::UREM && UI->getOpcode() == ISD::UDIV))
9866       if (UI->getOperand(0) == Op.getOperand(0) &&
9867           UI->getOperand(1) == Op.getOperand(1))
9868         return SDValue();
9869   }
9870   return Op;
9871 }
9872 
9873 // Lower scalar BSWAP64 to xxbrd.
9874 SDValue PPCTargetLowering::LowerBSWAP(SDValue Op, SelectionDAG &DAG) const {
9875   SDLoc dl(Op);
9876   // MTVSRDD
9877   Op = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v2i64, Op.getOperand(0),
9878                    Op.getOperand(0));
9879   // XXBRD
9880   Op = DAG.getNode(ISD::BSWAP, dl, MVT::v2i64, Op);
9881   // MFVSRD
9882   int VectorIndex = 0;
9883   if (Subtarget.isLittleEndian())
9884     VectorIndex = 1;
9885   Op = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i64, Op,
9886                    DAG.getTargetConstant(VectorIndex, dl, MVT::i32));
9887   return Op;
9888 }
9889 
9890 // ATOMIC_CMP_SWAP for i8/i16 needs to zero-extend its input since it will be
9891 // compared to a value that is atomically loaded (atomic loads zero-extend).
9892 SDValue PPCTargetLowering::LowerATOMIC_CMP_SWAP(SDValue Op,
9893                                                 SelectionDAG &DAG) const {
9894   assert(Op.getOpcode() == ISD::ATOMIC_CMP_SWAP &&
9895          "Expecting an atomic compare-and-swap here.");
9896   SDLoc dl(Op);
9897   auto *AtomicNode = cast<AtomicSDNode>(Op.getNode());
9898   EVT MemVT = AtomicNode->getMemoryVT();
9899   if (MemVT.getSizeInBits() >= 32)
9900     return Op;
9901 
9902   SDValue CmpOp = Op.getOperand(2);
9903   // If this is already correctly zero-extended, leave it alone.
9904   auto HighBits = APInt::getHighBitsSet(32, 32 - MemVT.getSizeInBits());
9905   if (DAG.MaskedValueIsZero(CmpOp, HighBits))
9906     return Op;
9907 
9908   // Clear the high bits of the compare operand.
9909   unsigned MaskVal = (1 << MemVT.getSizeInBits()) - 1;
9910   SDValue NewCmpOp =
9911     DAG.getNode(ISD::AND, dl, MVT::i32, CmpOp,
9912                 DAG.getConstant(MaskVal, dl, MVT::i32));
9913 
9914   // Replace the existing compare operand with the properly zero-extended one.
9915   SmallVector<SDValue, 4> Ops;
9916   for (int i = 0, e = AtomicNode->getNumOperands(); i < e; i++)
9917     Ops.push_back(AtomicNode->getOperand(i));
9918   Ops[2] = NewCmpOp;
9919   MachineMemOperand *MMO = AtomicNode->getMemOperand();
9920   SDVTList Tys = DAG.getVTList(MVT::i32, MVT::Other);
9921   auto NodeTy =
9922     (MemVT == MVT::i8) ? PPCISD::ATOMIC_CMP_SWAP_8 : PPCISD::ATOMIC_CMP_SWAP_16;
9923   return DAG.getMemIntrinsicNode(NodeTy, dl, Tys, Ops, MemVT, MMO);
9924 }
9925 
9926 SDValue PPCTargetLowering::LowerSCALAR_TO_VECTOR(SDValue Op,
9927                                                  SelectionDAG &DAG) const {
9928   SDLoc dl(Op);
9929   // Create a stack slot that is 16-byte aligned.
9930   MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
9931   int FrameIdx = MFI.CreateStackObject(16, 16, false);
9932   EVT PtrVT = getPointerTy(DAG.getDataLayout());
9933   SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
9934 
9935   // Store the input value into Value#0 of the stack slot.
9936   SDValue Store = DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0), FIdx,
9937                                MachinePointerInfo());
9938   // Load it out.
9939   return DAG.getLoad(Op.getValueType(), dl, Store, FIdx, MachinePointerInfo());
9940 }
9941 
9942 SDValue PPCTargetLowering::LowerINSERT_VECTOR_ELT(SDValue Op,
9943                                                   SelectionDAG &DAG) const {
9944   assert(Op.getOpcode() == ISD::INSERT_VECTOR_ELT &&
9945          "Should only be called for ISD::INSERT_VECTOR_ELT");
9946 
9947   ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(2));
9948   // We have legal lowering for constant indices but not for variable ones.
9949   if (!C)
9950     return SDValue();
9951 
9952   EVT VT = Op.getValueType();
9953   SDLoc dl(Op);
9954   SDValue V1 = Op.getOperand(0);
9955   SDValue V2 = Op.getOperand(1);
9956   // We can use MTVSRZ + VECINSERT for v8i16 and v16i8 types.
9957   if (VT == MVT::v8i16 || VT == MVT::v16i8) {
9958     SDValue Mtvsrz = DAG.getNode(PPCISD::MTVSRZ, dl, VT, V2);
9959     unsigned BytesInEachElement = VT.getVectorElementType().getSizeInBits() / 8;
9960     unsigned InsertAtElement = C->getZExtValue();
9961     unsigned InsertAtByte = InsertAtElement * BytesInEachElement;
9962     if (Subtarget.isLittleEndian()) {
9963       InsertAtByte = (16 - BytesInEachElement) - InsertAtByte;
9964     }
9965     return DAG.getNode(PPCISD::VECINSERT, dl, VT, V1, Mtvsrz,
9966                        DAG.getConstant(InsertAtByte, dl, MVT::i32));
9967   }
9968   return Op;
9969 }
9970 
9971 SDValue PPCTargetLowering::LowerEXTRACT_VECTOR_ELT(SDValue Op,
9972                                                    SelectionDAG &DAG) const {
9973   SDLoc dl(Op);
9974   SDNode *N = Op.getNode();
9975 
9976   assert(N->getOperand(0).getValueType() == MVT::v4i1 &&
9977          "Unknown extract_vector_elt type");
9978 
9979   SDValue Value = N->getOperand(0);
9980 
9981   // The first part of this is like the store lowering except that we don't
9982   // need to track the chain.
9983 
9984   // The values are now known to be -1 (false) or 1 (true). To convert this
9985   // into 0 (false) and 1 (true), add 1 and then divide by 2 (multiply by 0.5).
9986   // This can be done with an fma and the 0.5 constant: (V+1.0)*0.5 = 0.5*V+0.5
9987   Value = DAG.getNode(PPCISD::QBFLT, dl, MVT::v4f64, Value);
9988 
9989   // FIXME: We can make this an f32 vector, but the BUILD_VECTOR code needs to
9990   // understand how to form the extending load.
9991   SDValue FPHalfs = DAG.getConstantFP(0.5, dl, MVT::v4f64);
9992 
9993   Value = DAG.getNode(ISD::FMA, dl, MVT::v4f64, Value, FPHalfs, FPHalfs);
9994 
9995   // Now convert to an integer and store.
9996   Value = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f64,
9997     DAG.getConstant(Intrinsic::ppc_qpx_qvfctiwu, dl, MVT::i32),
9998     Value);
9999 
10000   MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
10001   int FrameIdx = MFI.CreateStackObject(16, 16, false);
10002   MachinePointerInfo PtrInfo =
10003       MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx);
10004   EVT PtrVT = getPointerTy(DAG.getDataLayout());
10005   SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
10006 
10007   SDValue StoreChain = DAG.getEntryNode();
10008   SDValue Ops[] = {StoreChain,
10009                    DAG.getConstant(Intrinsic::ppc_qpx_qvstfiw, dl, MVT::i32),
10010                    Value, FIdx};
10011   SDVTList VTs = DAG.getVTList(/*chain*/ MVT::Other);
10012 
10013   StoreChain = DAG.getMemIntrinsicNode(ISD::INTRINSIC_VOID,
10014     dl, VTs, Ops, MVT::v4i32, PtrInfo);
10015 
10016   // Extract the value requested.
10017   unsigned Offset = 4*cast<ConstantSDNode>(N->getOperand(1))->getZExtValue();
10018   SDValue Idx = DAG.getConstant(Offset, dl, FIdx.getValueType());
10019   Idx = DAG.getNode(ISD::ADD, dl, FIdx.getValueType(), FIdx, Idx);
10020 
10021   SDValue IntVal =
10022       DAG.getLoad(MVT::i32, dl, StoreChain, Idx, PtrInfo.getWithOffset(Offset));
10023 
10024   if (!Subtarget.useCRBits())
10025     return IntVal;
10026 
10027   return DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, IntVal);
10028 }
10029 
10030 /// Lowering for QPX v4i1 loads
10031 SDValue PPCTargetLowering::LowerVectorLoad(SDValue Op,
10032                                            SelectionDAG &DAG) const {
10033   SDLoc dl(Op);
10034   LoadSDNode *LN = cast<LoadSDNode>(Op.getNode());
10035   SDValue LoadChain = LN->getChain();
10036   SDValue BasePtr = LN->getBasePtr();
10037 
10038   if (Op.getValueType() == MVT::v4f64 ||
10039       Op.getValueType() == MVT::v4f32) {
10040     EVT MemVT = LN->getMemoryVT();
10041     unsigned Alignment = LN->getAlignment();
10042 
10043     // If this load is properly aligned, then it is legal.
10044     if (Alignment >= MemVT.getStoreSize())
10045       return Op;
10046 
10047     EVT ScalarVT = Op.getValueType().getScalarType(),
10048         ScalarMemVT = MemVT.getScalarType();
10049     unsigned Stride = ScalarMemVT.getStoreSize();
10050 
10051     SDValue Vals[4], LoadChains[4];
10052     for (unsigned Idx = 0; Idx < 4; ++Idx) {
10053       SDValue Load;
10054       if (ScalarVT != ScalarMemVT)
10055         Load = DAG.getExtLoad(LN->getExtensionType(), dl, ScalarVT, LoadChain,
10056                               BasePtr,
10057                               LN->getPointerInfo().getWithOffset(Idx * Stride),
10058                               ScalarMemVT, MinAlign(Alignment, Idx * Stride),
10059                               LN->getMemOperand()->getFlags(), LN->getAAInfo());
10060       else
10061         Load = DAG.getLoad(ScalarVT, dl, LoadChain, BasePtr,
10062                            LN->getPointerInfo().getWithOffset(Idx * Stride),
10063                            MinAlign(Alignment, Idx * Stride),
10064                            LN->getMemOperand()->getFlags(), LN->getAAInfo());
10065 
10066       if (Idx == 0 && LN->isIndexed()) {
10067         assert(LN->getAddressingMode() == ISD::PRE_INC &&
10068                "Unknown addressing mode on vector load");
10069         Load = DAG.getIndexedLoad(Load, dl, BasePtr, LN->getOffset(),
10070                                   LN->getAddressingMode());
10071       }
10072 
10073       Vals[Idx] = Load;
10074       LoadChains[Idx] = Load.getValue(1);
10075 
10076       BasePtr = DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr,
10077                             DAG.getConstant(Stride, dl,
10078                                             BasePtr.getValueType()));
10079     }
10080 
10081     SDValue TF =  DAG.getNode(ISD::TokenFactor, dl, MVT::Other, LoadChains);
10082     SDValue Value = DAG.getBuildVector(Op.getValueType(), dl, Vals);
10083 
10084     if (LN->isIndexed()) {
10085       SDValue RetOps[] = { Value, Vals[0].getValue(1), TF };
10086       return DAG.getMergeValues(RetOps, dl);
10087     }
10088 
10089     SDValue RetOps[] = { Value, TF };
10090     return DAG.getMergeValues(RetOps, dl);
10091   }
10092 
10093   assert(Op.getValueType() == MVT::v4i1 && "Unknown load to lower");
10094   assert(LN->isUnindexed() && "Indexed v4i1 loads are not supported");
10095 
10096   // To lower v4i1 from a byte array, we load the byte elements of the
10097   // vector and then reuse the BUILD_VECTOR logic.
10098 
10099   SDValue VectElmts[4], VectElmtChains[4];
10100   for (unsigned i = 0; i < 4; ++i) {
10101     SDValue Idx = DAG.getConstant(i, dl, BasePtr.getValueType());
10102     Idx = DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr, Idx);
10103 
10104     VectElmts[i] = DAG.getExtLoad(
10105         ISD::EXTLOAD, dl, MVT::i32, LoadChain, Idx,
10106         LN->getPointerInfo().getWithOffset(i), MVT::i8,
10107         /* Alignment = */ 1, LN->getMemOperand()->getFlags(), LN->getAAInfo());
10108     VectElmtChains[i] = VectElmts[i].getValue(1);
10109   }
10110 
10111   LoadChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, VectElmtChains);
10112   SDValue Value = DAG.getBuildVector(MVT::v4i1, dl, VectElmts);
10113 
10114   SDValue RVals[] = { Value, LoadChain };
10115   return DAG.getMergeValues(RVals, dl);
10116 }
10117 
10118 /// Lowering for QPX v4i1 stores
10119 SDValue PPCTargetLowering::LowerVectorStore(SDValue Op,
10120                                             SelectionDAG &DAG) const {
10121   SDLoc dl(Op);
10122   StoreSDNode *SN = cast<StoreSDNode>(Op.getNode());
10123   SDValue StoreChain = SN->getChain();
10124   SDValue BasePtr = SN->getBasePtr();
10125   SDValue Value = SN->getValue();
10126 
10127   if (Value.getValueType() == MVT::v4f64 ||
10128       Value.getValueType() == MVT::v4f32) {
10129     EVT MemVT = SN->getMemoryVT();
10130     unsigned Alignment = SN->getAlignment();
10131 
10132     // If this store is properly aligned, then it is legal.
10133     if (Alignment >= MemVT.getStoreSize())
10134       return Op;
10135 
10136     EVT ScalarVT = Value.getValueType().getScalarType(),
10137         ScalarMemVT = MemVT.getScalarType();
10138     unsigned Stride = ScalarMemVT.getStoreSize();
10139 
10140     SDValue Stores[4];
10141     for (unsigned Idx = 0; Idx < 4; ++Idx) {
10142       SDValue Ex = DAG.getNode(
10143           ISD::EXTRACT_VECTOR_ELT, dl, ScalarVT, Value,
10144           DAG.getConstant(Idx, dl, getVectorIdxTy(DAG.getDataLayout())));
10145       SDValue Store;
10146       if (ScalarVT != ScalarMemVT)
10147         Store =
10148             DAG.getTruncStore(StoreChain, dl, Ex, BasePtr,
10149                               SN->getPointerInfo().getWithOffset(Idx * Stride),
10150                               ScalarMemVT, MinAlign(Alignment, Idx * Stride),
10151                               SN->getMemOperand()->getFlags(), SN->getAAInfo());
10152       else
10153         Store = DAG.getStore(StoreChain, dl, Ex, BasePtr,
10154                              SN->getPointerInfo().getWithOffset(Idx * Stride),
10155                              MinAlign(Alignment, Idx * Stride),
10156                              SN->getMemOperand()->getFlags(), SN->getAAInfo());
10157 
10158       if (Idx == 0 && SN->isIndexed()) {
10159         assert(SN->getAddressingMode() == ISD::PRE_INC &&
10160                "Unknown addressing mode on vector store");
10161         Store = DAG.getIndexedStore(Store, dl, BasePtr, SN->getOffset(),
10162                                     SN->getAddressingMode());
10163       }
10164 
10165       BasePtr = DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr,
10166                             DAG.getConstant(Stride, dl,
10167                                             BasePtr.getValueType()));
10168       Stores[Idx] = Store;
10169     }
10170 
10171     SDValue TF =  DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores);
10172 
10173     if (SN->isIndexed()) {
10174       SDValue RetOps[] = { TF, Stores[0].getValue(1) };
10175       return DAG.getMergeValues(RetOps, dl);
10176     }
10177 
10178     return TF;
10179   }
10180 
10181   assert(SN->isUnindexed() && "Indexed v4i1 stores are not supported");
10182   assert(Value.getValueType() == MVT::v4i1 && "Unknown store to lower");
10183 
10184   // The values are now known to be -1 (false) or 1 (true). To convert this
10185   // into 0 (false) and 1 (true), add 1 and then divide by 2 (multiply by 0.5).
10186   // This can be done with an fma and the 0.5 constant: (V+1.0)*0.5 = 0.5*V+0.5
10187   Value = DAG.getNode(PPCISD::QBFLT, dl, MVT::v4f64, Value);
10188 
10189   // FIXME: We can make this an f32 vector, but the BUILD_VECTOR code needs to
10190   // understand how to form the extending load.
10191   SDValue FPHalfs = DAG.getConstantFP(0.5, dl, MVT::v4f64);
10192 
10193   Value = DAG.getNode(ISD::FMA, dl, MVT::v4f64, Value, FPHalfs, FPHalfs);
10194 
10195   // Now convert to an integer and store.
10196   Value = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f64,
10197     DAG.getConstant(Intrinsic::ppc_qpx_qvfctiwu, dl, MVT::i32),
10198     Value);
10199 
10200   MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
10201   int FrameIdx = MFI.CreateStackObject(16, 16, false);
10202   MachinePointerInfo PtrInfo =
10203       MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx);
10204   EVT PtrVT = getPointerTy(DAG.getDataLayout());
10205   SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
10206 
10207   SDValue Ops[] = {StoreChain,
10208                    DAG.getConstant(Intrinsic::ppc_qpx_qvstfiw, dl, MVT::i32),
10209                    Value, FIdx};
10210   SDVTList VTs = DAG.getVTList(/*chain*/ MVT::Other);
10211 
10212   StoreChain = DAG.getMemIntrinsicNode(ISD::INTRINSIC_VOID,
10213     dl, VTs, Ops, MVT::v4i32, PtrInfo);
10214 
10215   // Move data into the byte array.
10216   SDValue Loads[4], LoadChains[4];
10217   for (unsigned i = 0; i < 4; ++i) {
10218     unsigned Offset = 4*i;
10219     SDValue Idx = DAG.getConstant(Offset, dl, FIdx.getValueType());
10220     Idx = DAG.getNode(ISD::ADD, dl, FIdx.getValueType(), FIdx, Idx);
10221 
10222     Loads[i] = DAG.getLoad(MVT::i32, dl, StoreChain, Idx,
10223                            PtrInfo.getWithOffset(Offset));
10224     LoadChains[i] = Loads[i].getValue(1);
10225   }
10226 
10227   StoreChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, LoadChains);
10228 
10229   SDValue Stores[4];
10230   for (unsigned i = 0; i < 4; ++i) {
10231     SDValue Idx = DAG.getConstant(i, dl, BasePtr.getValueType());
10232     Idx = DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr, Idx);
10233 
10234     Stores[i] = DAG.getTruncStore(
10235         StoreChain, dl, Loads[i], Idx, SN->getPointerInfo().getWithOffset(i),
10236         MVT::i8, /* Alignment = */ 1, SN->getMemOperand()->getFlags(),
10237         SN->getAAInfo());
10238   }
10239 
10240   StoreChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores);
10241 
10242   return StoreChain;
10243 }
10244 
10245 SDValue PPCTargetLowering::LowerMUL(SDValue Op, SelectionDAG &DAG) const {
10246   SDLoc dl(Op);
10247   if (Op.getValueType() == MVT::v4i32) {
10248     SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1);
10249 
10250     SDValue Zero  = BuildSplatI(  0, 1, MVT::v4i32, DAG, dl);
10251     SDValue Neg16 = BuildSplatI(-16, 4, MVT::v4i32, DAG, dl);//+16 as shift amt.
10252 
10253     SDValue RHSSwap =   // = vrlw RHS, 16
10254       BuildIntrinsicOp(Intrinsic::ppc_altivec_vrlw, RHS, Neg16, DAG, dl);
10255 
10256     // Shrinkify inputs to v8i16.
10257     LHS = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, LHS);
10258     RHS = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, RHS);
10259     RHSSwap = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, RHSSwap);
10260 
10261     // Low parts multiplied together, generating 32-bit results (we ignore the
10262     // top parts).
10263     SDValue LoProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmulouh,
10264                                         LHS, RHS, DAG, dl, MVT::v4i32);
10265 
10266     SDValue HiProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmsumuhm,
10267                                       LHS, RHSSwap, Zero, DAG, dl, MVT::v4i32);
10268     // Shift the high parts up 16 bits.
10269     HiProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vslw, HiProd,
10270                               Neg16, DAG, dl);
10271     return DAG.getNode(ISD::ADD, dl, MVT::v4i32, LoProd, HiProd);
10272   } else if (Op.getValueType() == MVT::v8i16) {
10273     SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1);
10274 
10275     SDValue Zero = BuildSplatI(0, 1, MVT::v8i16, DAG, dl);
10276 
10277     return BuildIntrinsicOp(Intrinsic::ppc_altivec_vmladduhm,
10278                             LHS, RHS, Zero, DAG, dl);
10279   } else if (Op.getValueType() == MVT::v16i8) {
10280     SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1);
10281     bool isLittleEndian = Subtarget.isLittleEndian();
10282 
10283     // Multiply the even 8-bit parts, producing 16-bit sums.
10284     SDValue EvenParts = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmuleub,
10285                                            LHS, RHS, DAG, dl, MVT::v8i16);
10286     EvenParts = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, EvenParts);
10287 
10288     // Multiply the odd 8-bit parts, producing 16-bit sums.
10289     SDValue OddParts = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmuloub,
10290                                           LHS, RHS, DAG, dl, MVT::v8i16);
10291     OddParts = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OddParts);
10292 
10293     // Merge the results together.  Because vmuleub and vmuloub are
10294     // instructions with a big-endian bias, we must reverse the
10295     // element numbering and reverse the meaning of "odd" and "even"
10296     // when generating little endian code.
10297     int Ops[16];
10298     for (unsigned i = 0; i != 8; ++i) {
10299       if (isLittleEndian) {
10300         Ops[i*2  ] = 2*i;
10301         Ops[i*2+1] = 2*i+16;
10302       } else {
10303         Ops[i*2  ] = 2*i+1;
10304         Ops[i*2+1] = 2*i+1+16;
10305       }
10306     }
10307     if (isLittleEndian)
10308       return DAG.getVectorShuffle(MVT::v16i8, dl, OddParts, EvenParts, Ops);
10309     else
10310       return DAG.getVectorShuffle(MVT::v16i8, dl, EvenParts, OddParts, Ops);
10311   } else {
10312     llvm_unreachable("Unknown mul to lower!");
10313   }
10314 }
10315 
10316 SDValue PPCTargetLowering::LowerABS(SDValue Op, SelectionDAG &DAG) const {
10317 
10318   assert(Op.getOpcode() == ISD::ABS && "Should only be called for ISD::ABS");
10319 
10320   EVT VT = Op.getValueType();
10321   assert(VT.isVector() &&
10322          "Only set vector abs as custom, scalar abs shouldn't reach here!");
10323   assert((VT == MVT::v2i64 || VT == MVT::v4i32 || VT == MVT::v8i16 ||
10324           VT == MVT::v16i8) &&
10325          "Unexpected vector element type!");
10326   assert((VT != MVT::v2i64 || Subtarget.hasP8Altivec()) &&
10327          "Current subtarget doesn't support smax v2i64!");
10328 
10329   // For vector abs, it can be lowered to:
10330   // abs x
10331   // ==>
10332   // y = -x
10333   // smax(x, y)
10334 
10335   SDLoc dl(Op);
10336   SDValue X = Op.getOperand(0);
10337   SDValue Zero = DAG.getConstant(0, dl, VT);
10338   SDValue Y = DAG.getNode(ISD::SUB, dl, VT, Zero, X);
10339 
10340   // SMAX patch https://reviews.llvm.org/D47332
10341   // hasn't landed yet, so use intrinsic first here.
10342   // TODO: Should use SMAX directly once SMAX patch landed
10343   Intrinsic::ID BifID = Intrinsic::ppc_altivec_vmaxsw;
10344   if (VT == MVT::v2i64)
10345     BifID = Intrinsic::ppc_altivec_vmaxsd;
10346   else if (VT == MVT::v8i16)
10347     BifID = Intrinsic::ppc_altivec_vmaxsh;
10348   else if (VT == MVT::v16i8)
10349     BifID = Intrinsic::ppc_altivec_vmaxsb;
10350 
10351   return BuildIntrinsicOp(BifID, X, Y, DAG, dl, VT);
10352 }
10353 
10354 // Custom lowering for fpext vf32 to v2f64
10355 SDValue PPCTargetLowering::LowerFP_EXTEND(SDValue Op, SelectionDAG &DAG) const {
10356 
10357   assert(Op.getOpcode() == ISD::FP_EXTEND &&
10358          "Should only be called for ISD::FP_EXTEND");
10359 
10360   // We only want to custom lower an extend from v2f32 to v2f64.
10361   if (Op.getValueType() != MVT::v2f64 ||
10362       Op.getOperand(0).getValueType() != MVT::v2f32)
10363     return SDValue();
10364 
10365   SDLoc dl(Op);
10366   SDValue Op0 = Op.getOperand(0);
10367 
10368   switch (Op0.getOpcode()) {
10369   default:
10370     return SDValue();
10371   case ISD::EXTRACT_SUBVECTOR: {
10372     assert(Op0.getNumOperands() == 2 &&
10373            isa<ConstantSDNode>(Op0->getOperand(1)) &&
10374            "Node should have 2 operands with second one being a constant!");
10375 
10376     if (Op0.getOperand(0).getValueType() != MVT::v4f32)
10377       return SDValue();
10378 
10379     // Custom lower is only done for high or low doubleword.
10380     int Idx = cast<ConstantSDNode>(Op0.getOperand(1))->getZExtValue();
10381     if (Idx % 2 != 0)
10382       return SDValue();
10383 
10384     // Since input is v4f32, at this point Idx is either 0 or 2.
10385     // Shift to get the doubleword position we want.
10386     int DWord = Idx >> 1;
10387 
10388     // High and low word positions are different on little endian.
10389     if (Subtarget.isLittleEndian())
10390       DWord ^= 0x1;
10391 
10392     return DAG.getNode(PPCISD::FP_EXTEND_HALF, dl, MVT::v2f64,
10393                        Op0.getOperand(0), DAG.getConstant(DWord, dl, MVT::i32));
10394   }
10395   case ISD::FADD:
10396   case ISD::FMUL:
10397   case ISD::FSUB: {
10398     SDValue NewLoad[2];
10399     for (unsigned i = 0, ie = Op0.getNumOperands(); i != ie; ++i) {
10400       // Ensure both input are loads.
10401       SDValue LdOp = Op0.getOperand(i);
10402       if (LdOp.getOpcode() != ISD::LOAD)
10403         return SDValue();
10404       // Generate new load node.
10405       LoadSDNode *LD = cast<LoadSDNode>(LdOp);
10406       SDValue LoadOps[] = {LD->getChain(), LD->getBasePtr()};
10407       NewLoad[i] = DAG.getMemIntrinsicNode(
10408           PPCISD::LD_VSX_LH, dl, DAG.getVTList(MVT::v4f32, MVT::Other), LoadOps,
10409           LD->getMemoryVT(), LD->getMemOperand());
10410     }
10411     SDValue NewOp =
10412         DAG.getNode(Op0.getOpcode(), SDLoc(Op0), MVT::v4f32, NewLoad[0],
10413                     NewLoad[1], Op0.getNode()->getFlags());
10414     return DAG.getNode(PPCISD::FP_EXTEND_HALF, dl, MVT::v2f64, NewOp,
10415                        DAG.getConstant(0, dl, MVT::i32));
10416   }
10417   case ISD::LOAD: {
10418     LoadSDNode *LD = cast<LoadSDNode>(Op0);
10419     SDValue LoadOps[] = {LD->getChain(), LD->getBasePtr()};
10420     SDValue NewLd = DAG.getMemIntrinsicNode(
10421         PPCISD::LD_VSX_LH, dl, DAG.getVTList(MVT::v4f32, MVT::Other), LoadOps,
10422         LD->getMemoryVT(), LD->getMemOperand());
10423     return DAG.getNode(PPCISD::FP_EXTEND_HALF, dl, MVT::v2f64, NewLd,
10424                        DAG.getConstant(0, dl, MVT::i32));
10425   }
10426   }
10427   llvm_unreachable("ERROR:Should return for all cases within swtich.");
10428 }
10429 
10430 /// LowerOperation - Provide custom lowering hooks for some operations.
10431 ///
10432 SDValue PPCTargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
10433   switch (Op.getOpcode()) {
10434   default: llvm_unreachable("Wasn't expecting to be able to lower this!");
10435   case ISD::ConstantPool:       return LowerConstantPool(Op, DAG);
10436   case ISD::BlockAddress:       return LowerBlockAddress(Op, DAG);
10437   case ISD::GlobalAddress:      return LowerGlobalAddress(Op, DAG);
10438   case ISD::GlobalTLSAddress:   return LowerGlobalTLSAddress(Op, DAG);
10439   case ISD::JumpTable:          return LowerJumpTable(Op, DAG);
10440   case ISD::SETCC:              return LowerSETCC(Op, DAG);
10441   case ISD::INIT_TRAMPOLINE:    return LowerINIT_TRAMPOLINE(Op, DAG);
10442   case ISD::ADJUST_TRAMPOLINE:  return LowerADJUST_TRAMPOLINE(Op, DAG);
10443 
10444   // Variable argument lowering.
10445   case ISD::VASTART:            return LowerVASTART(Op, DAG);
10446   case ISD::VAARG:              return LowerVAARG(Op, DAG);
10447   case ISD::VACOPY:             return LowerVACOPY(Op, DAG);
10448 
10449   case ISD::STACKRESTORE:       return LowerSTACKRESTORE(Op, DAG);
10450   case ISD::DYNAMIC_STACKALLOC: return LowerDYNAMIC_STACKALLOC(Op, DAG);
10451   case ISD::GET_DYNAMIC_AREA_OFFSET:
10452     return LowerGET_DYNAMIC_AREA_OFFSET(Op, DAG);
10453 
10454   // Exception handling lowering.
10455   case ISD::EH_DWARF_CFA:       return LowerEH_DWARF_CFA(Op, DAG);
10456   case ISD::EH_SJLJ_SETJMP:     return lowerEH_SJLJ_SETJMP(Op, DAG);
10457   case ISD::EH_SJLJ_LONGJMP:    return lowerEH_SJLJ_LONGJMP(Op, DAG);
10458 
10459   case ISD::LOAD:               return LowerLOAD(Op, DAG);
10460   case ISD::STORE:              return LowerSTORE(Op, DAG);
10461   case ISD::TRUNCATE:           return LowerTRUNCATE(Op, DAG);
10462   case ISD::SELECT_CC:          return LowerSELECT_CC(Op, DAG);
10463   case ISD::FP_TO_UINT:
10464   case ISD::FP_TO_SINT:         return LowerFP_TO_INT(Op, DAG, SDLoc(Op));
10465   case ISD::UINT_TO_FP:
10466   case ISD::SINT_TO_FP:         return LowerINT_TO_FP(Op, DAG);
10467   case ISD::FLT_ROUNDS_:        return LowerFLT_ROUNDS_(Op, DAG);
10468 
10469   // Lower 64-bit shifts.
10470   case ISD::SHL_PARTS:          return LowerSHL_PARTS(Op, DAG);
10471   case ISD::SRL_PARTS:          return LowerSRL_PARTS(Op, DAG);
10472   case ISD::SRA_PARTS:          return LowerSRA_PARTS(Op, DAG);
10473 
10474   // Vector-related lowering.
10475   case ISD::BUILD_VECTOR:       return LowerBUILD_VECTOR(Op, DAG);
10476   case ISD::VECTOR_SHUFFLE:     return LowerVECTOR_SHUFFLE(Op, DAG);
10477   case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG);
10478   case ISD::SCALAR_TO_VECTOR:   return LowerSCALAR_TO_VECTOR(Op, DAG);
10479   case ISD::EXTRACT_VECTOR_ELT: return LowerEXTRACT_VECTOR_ELT(Op, DAG);
10480   case ISD::INSERT_VECTOR_ELT:  return LowerINSERT_VECTOR_ELT(Op, DAG);
10481   case ISD::MUL:                return LowerMUL(Op, DAG);
10482   case ISD::ABS:                return LowerABS(Op, DAG);
10483   case ISD::FP_EXTEND:          return LowerFP_EXTEND(Op, DAG);
10484 
10485   // For counter-based loop handling.
10486   case ISD::INTRINSIC_W_CHAIN:  return SDValue();
10487 
10488   case ISD::BITCAST:            return LowerBITCAST(Op, DAG);
10489 
10490   // Frame & Return address.
10491   case ISD::RETURNADDR:         return LowerRETURNADDR(Op, DAG);
10492   case ISD::FRAMEADDR:          return LowerFRAMEADDR(Op, DAG);
10493 
10494   case ISD::INTRINSIC_VOID:
10495     return LowerINTRINSIC_VOID(Op, DAG);
10496   case ISD::SREM:
10497   case ISD::UREM:
10498     return LowerREM(Op, DAG);
10499   case ISD::BSWAP:
10500     return LowerBSWAP(Op, DAG);
10501   case ISD::ATOMIC_CMP_SWAP:
10502     return LowerATOMIC_CMP_SWAP(Op, DAG);
10503   }
10504 }
10505 
10506 void PPCTargetLowering::ReplaceNodeResults(SDNode *N,
10507                                            SmallVectorImpl<SDValue>&Results,
10508                                            SelectionDAG &DAG) const {
10509   SDLoc dl(N);
10510   switch (N->getOpcode()) {
10511   default:
10512     llvm_unreachable("Do not know how to custom type legalize this operation!");
10513   case ISD::READCYCLECOUNTER: {
10514     SDVTList VTs = DAG.getVTList(MVT::i32, MVT::i32, MVT::Other);
10515     SDValue RTB = DAG.getNode(PPCISD::READ_TIME_BASE, dl, VTs, N->getOperand(0));
10516 
10517     Results.push_back(RTB);
10518     Results.push_back(RTB.getValue(1));
10519     Results.push_back(RTB.getValue(2));
10520     break;
10521   }
10522   case ISD::INTRINSIC_W_CHAIN: {
10523     if (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue() !=
10524         Intrinsic::loop_decrement)
10525       break;
10526 
10527     assert(N->getValueType(0) == MVT::i1 &&
10528            "Unexpected result type for CTR decrement intrinsic");
10529     EVT SVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(),
10530                                  N->getValueType(0));
10531     SDVTList VTs = DAG.getVTList(SVT, MVT::Other);
10532     SDValue NewInt = DAG.getNode(N->getOpcode(), dl, VTs, N->getOperand(0),
10533                                  N->getOperand(1));
10534 
10535     Results.push_back(DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, NewInt));
10536     Results.push_back(NewInt.getValue(1));
10537     break;
10538   }
10539   case ISD::VAARG: {
10540     if (!Subtarget.isSVR4ABI() || Subtarget.isPPC64())
10541       return;
10542 
10543     EVT VT = N->getValueType(0);
10544 
10545     if (VT == MVT::i64) {
10546       SDValue NewNode = LowerVAARG(SDValue(N, 1), DAG);
10547 
10548       Results.push_back(NewNode);
10549       Results.push_back(NewNode.getValue(1));
10550     }
10551     return;
10552   }
10553   case ISD::FP_TO_SINT:
10554   case ISD::FP_TO_UINT:
10555     // LowerFP_TO_INT() can only handle f32 and f64.
10556     if (N->getOperand(0).getValueType() == MVT::ppcf128)
10557       return;
10558     Results.push_back(LowerFP_TO_INT(SDValue(N, 0), DAG, dl));
10559     return;
10560   case ISD::TRUNCATE: {
10561     EVT TrgVT = N->getValueType(0);
10562     EVT OpVT = N->getOperand(0).getValueType();
10563     if (TrgVT.isVector() &&
10564         isOperationCustom(N->getOpcode(), TrgVT) &&
10565         OpVT.getSizeInBits() <= 128 &&
10566         isPowerOf2_32(OpVT.getVectorElementType().getSizeInBits()))
10567       Results.push_back(LowerTRUNCATEVector(SDValue(N, 0), DAG));
10568     return;
10569   }
10570   case ISD::BITCAST:
10571     // Don't handle bitcast here.
10572     return;
10573   }
10574 }
10575 
10576 //===----------------------------------------------------------------------===//
10577 //  Other Lowering Code
10578 //===----------------------------------------------------------------------===//
10579 
10580 static Instruction* callIntrinsic(IRBuilder<> &Builder, Intrinsic::ID Id) {
10581   Module *M = Builder.GetInsertBlock()->getParent()->getParent();
10582   Function *Func = Intrinsic::getDeclaration(M, Id);
10583   return Builder.CreateCall(Func, {});
10584 }
10585 
10586 // The mappings for emitLeading/TrailingFence is taken from
10587 // http://www.cl.cam.ac.uk/~pes20/cpp/cpp0xmappings.html
10588 Instruction *PPCTargetLowering::emitLeadingFence(IRBuilder<> &Builder,
10589                                                  Instruction *Inst,
10590                                                  AtomicOrdering Ord) const {
10591   if (Ord == AtomicOrdering::SequentiallyConsistent)
10592     return callIntrinsic(Builder, Intrinsic::ppc_sync);
10593   if (isReleaseOrStronger(Ord))
10594     return callIntrinsic(Builder, Intrinsic::ppc_lwsync);
10595   return nullptr;
10596 }
10597 
10598 Instruction *PPCTargetLowering::emitTrailingFence(IRBuilder<> &Builder,
10599                                                   Instruction *Inst,
10600                                                   AtomicOrdering Ord) const {
10601   if (Inst->hasAtomicLoad() && isAcquireOrStronger(Ord)) {
10602     // See http://www.cl.cam.ac.uk/~pes20/cpp/cpp0xmappings.html and
10603     // http://www.rdrop.com/users/paulmck/scalability/paper/N2745r.2011.03.04a.html
10604     // and http://www.cl.cam.ac.uk/~pes20/cppppc/ for justification.
10605     if (isa<LoadInst>(Inst) && Subtarget.isPPC64())
10606       return Builder.CreateCall(
10607           Intrinsic::getDeclaration(
10608               Builder.GetInsertBlock()->getParent()->getParent(),
10609               Intrinsic::ppc_cfence, {Inst->getType()}),
10610           {Inst});
10611     // FIXME: Can use isync for rmw operation.
10612     return callIntrinsic(Builder, Intrinsic::ppc_lwsync);
10613   }
10614   return nullptr;
10615 }
10616 
10617 MachineBasicBlock *
10618 PPCTargetLowering::EmitAtomicBinary(MachineInstr &MI, MachineBasicBlock *BB,
10619                                     unsigned AtomicSize,
10620                                     unsigned BinOpcode,
10621                                     unsigned CmpOpcode,
10622                                     unsigned CmpPred) const {
10623   // This also handles ATOMIC_SWAP, indicated by BinOpcode==0.
10624   const TargetInstrInfo *TII = Subtarget.getInstrInfo();
10625 
10626   auto LoadMnemonic = PPC::LDARX;
10627   auto StoreMnemonic = PPC::STDCX;
10628   switch (AtomicSize) {
10629   default:
10630     llvm_unreachable("Unexpected size of atomic entity");
10631   case 1:
10632     LoadMnemonic = PPC::LBARX;
10633     StoreMnemonic = PPC::STBCX;
10634     assert(Subtarget.hasPartwordAtomics() && "Call this only with size >=4");
10635     break;
10636   case 2:
10637     LoadMnemonic = PPC::LHARX;
10638     StoreMnemonic = PPC::STHCX;
10639     assert(Subtarget.hasPartwordAtomics() && "Call this only with size >=4");
10640     break;
10641   case 4:
10642     LoadMnemonic = PPC::LWARX;
10643     StoreMnemonic = PPC::STWCX;
10644     break;
10645   case 8:
10646     LoadMnemonic = PPC::LDARX;
10647     StoreMnemonic = PPC::STDCX;
10648     break;
10649   }
10650 
10651   const BasicBlock *LLVM_BB = BB->getBasicBlock();
10652   MachineFunction *F = BB->getParent();
10653   MachineFunction::iterator It = ++BB->getIterator();
10654 
10655   Register dest = MI.getOperand(0).getReg();
10656   Register ptrA = MI.getOperand(1).getReg();
10657   Register ptrB = MI.getOperand(2).getReg();
10658   Register incr = MI.getOperand(3).getReg();
10659   DebugLoc dl = MI.getDebugLoc();
10660 
10661   MachineBasicBlock *loopMBB = F->CreateMachineBasicBlock(LLVM_BB);
10662   MachineBasicBlock *loop2MBB =
10663     CmpOpcode ? F->CreateMachineBasicBlock(LLVM_BB) : nullptr;
10664   MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB);
10665   F->insert(It, loopMBB);
10666   if (CmpOpcode)
10667     F->insert(It, loop2MBB);
10668   F->insert(It, exitMBB);
10669   exitMBB->splice(exitMBB->begin(), BB,
10670                   std::next(MachineBasicBlock::iterator(MI)), BB->end());
10671   exitMBB->transferSuccessorsAndUpdatePHIs(BB);
10672 
10673   MachineRegisterInfo &RegInfo = F->getRegInfo();
10674   Register TmpReg = (!BinOpcode) ? incr :
10675     RegInfo.createVirtualRegister( AtomicSize == 8 ? &PPC::G8RCRegClass
10676                                            : &PPC::GPRCRegClass);
10677 
10678   //  thisMBB:
10679   //   ...
10680   //   fallthrough --> loopMBB
10681   BB->addSuccessor(loopMBB);
10682 
10683   //  loopMBB:
10684   //   l[wd]arx dest, ptr
10685   //   add r0, dest, incr
10686   //   st[wd]cx. r0, ptr
10687   //   bne- loopMBB
10688   //   fallthrough --> exitMBB
10689 
10690   // For max/min...
10691   //  loopMBB:
10692   //   l[wd]arx dest, ptr
10693   //   cmpl?[wd] incr, dest
10694   //   bgt exitMBB
10695   //  loop2MBB:
10696   //   st[wd]cx. dest, ptr
10697   //   bne- loopMBB
10698   //   fallthrough --> exitMBB
10699 
10700   BB = loopMBB;
10701   BuildMI(BB, dl, TII->get(LoadMnemonic), dest)
10702     .addReg(ptrA).addReg(ptrB);
10703   if (BinOpcode)
10704     BuildMI(BB, dl, TII->get(BinOpcode), TmpReg).addReg(incr).addReg(dest);
10705   if (CmpOpcode) {
10706     // Signed comparisons of byte or halfword values must be sign-extended.
10707     if (CmpOpcode == PPC::CMPW && AtomicSize < 4) {
10708       Register ExtReg = RegInfo.createVirtualRegister(&PPC::GPRCRegClass);
10709       BuildMI(BB, dl, TII->get(AtomicSize == 1 ? PPC::EXTSB : PPC::EXTSH),
10710               ExtReg).addReg(dest);
10711       BuildMI(BB, dl, TII->get(CmpOpcode), PPC::CR0)
10712         .addReg(incr).addReg(ExtReg);
10713     } else
10714       BuildMI(BB, dl, TII->get(CmpOpcode), PPC::CR0)
10715         .addReg(incr).addReg(dest);
10716 
10717     BuildMI(BB, dl, TII->get(PPC::BCC))
10718       .addImm(CmpPred).addReg(PPC::CR0).addMBB(exitMBB);
10719     BB->addSuccessor(loop2MBB);
10720     BB->addSuccessor(exitMBB);
10721     BB = loop2MBB;
10722   }
10723   BuildMI(BB, dl, TII->get(StoreMnemonic))
10724     .addReg(TmpReg).addReg(ptrA).addReg(ptrB);
10725   BuildMI(BB, dl, TII->get(PPC::BCC))
10726     .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(loopMBB);
10727   BB->addSuccessor(loopMBB);
10728   BB->addSuccessor(exitMBB);
10729 
10730   //  exitMBB:
10731   //   ...
10732   BB = exitMBB;
10733   return BB;
10734 }
10735 
10736 MachineBasicBlock *PPCTargetLowering::EmitPartwordAtomicBinary(
10737     MachineInstr &MI, MachineBasicBlock *BB,
10738     bool is8bit, // operation
10739     unsigned BinOpcode, unsigned CmpOpcode, unsigned CmpPred) const {
10740   // If we support part-word atomic mnemonics, just use them
10741   if (Subtarget.hasPartwordAtomics())
10742     return EmitAtomicBinary(MI, BB, is8bit ? 1 : 2, BinOpcode, CmpOpcode,
10743                             CmpPred);
10744 
10745   // This also handles ATOMIC_SWAP, indicated by BinOpcode==0.
10746   const TargetInstrInfo *TII = Subtarget.getInstrInfo();
10747   // In 64 bit mode we have to use 64 bits for addresses, even though the
10748   // lwarx/stwcx are 32 bits.  With the 32-bit atomics we can use address
10749   // registers without caring whether they're 32 or 64, but here we're
10750   // doing actual arithmetic on the addresses.
10751   bool is64bit = Subtarget.isPPC64();
10752   bool isLittleEndian = Subtarget.isLittleEndian();
10753   unsigned ZeroReg = is64bit ? PPC::ZERO8 : PPC::ZERO;
10754 
10755   const BasicBlock *LLVM_BB = BB->getBasicBlock();
10756   MachineFunction *F = BB->getParent();
10757   MachineFunction::iterator It = ++BB->getIterator();
10758 
10759   Register dest = MI.getOperand(0).getReg();
10760   Register ptrA = MI.getOperand(1).getReg();
10761   Register ptrB = MI.getOperand(2).getReg();
10762   Register incr = MI.getOperand(3).getReg();
10763   DebugLoc dl = MI.getDebugLoc();
10764 
10765   MachineBasicBlock *loopMBB = F->CreateMachineBasicBlock(LLVM_BB);
10766   MachineBasicBlock *loop2MBB =
10767       CmpOpcode ? F->CreateMachineBasicBlock(LLVM_BB) : nullptr;
10768   MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB);
10769   F->insert(It, loopMBB);
10770   if (CmpOpcode)
10771     F->insert(It, loop2MBB);
10772   F->insert(It, exitMBB);
10773   exitMBB->splice(exitMBB->begin(), BB,
10774                   std::next(MachineBasicBlock::iterator(MI)), BB->end());
10775   exitMBB->transferSuccessorsAndUpdatePHIs(BB);
10776 
10777   MachineRegisterInfo &RegInfo = F->getRegInfo();
10778   const TargetRegisterClass *RC =
10779       is64bit ? &PPC::G8RCRegClass : &PPC::GPRCRegClass;
10780   const TargetRegisterClass *GPRC = &PPC::GPRCRegClass;
10781 
10782   Register PtrReg = RegInfo.createVirtualRegister(RC);
10783   Register Shift1Reg = RegInfo.createVirtualRegister(GPRC);
10784   Register ShiftReg =
10785       isLittleEndian ? Shift1Reg : RegInfo.createVirtualRegister(GPRC);
10786   Register Incr2Reg = RegInfo.createVirtualRegister(GPRC);
10787   Register MaskReg = RegInfo.createVirtualRegister(GPRC);
10788   Register Mask2Reg = RegInfo.createVirtualRegister(GPRC);
10789   Register Mask3Reg = RegInfo.createVirtualRegister(GPRC);
10790   Register Tmp2Reg = RegInfo.createVirtualRegister(GPRC);
10791   Register Tmp3Reg = RegInfo.createVirtualRegister(GPRC);
10792   Register Tmp4Reg = RegInfo.createVirtualRegister(GPRC);
10793   Register TmpDestReg = RegInfo.createVirtualRegister(GPRC);
10794   Register Ptr1Reg;
10795   Register TmpReg =
10796       (!BinOpcode) ? Incr2Reg : RegInfo.createVirtualRegister(GPRC);
10797 
10798   //  thisMBB:
10799   //   ...
10800   //   fallthrough --> loopMBB
10801   BB->addSuccessor(loopMBB);
10802 
10803   // The 4-byte load must be aligned, while a char or short may be
10804   // anywhere in the word.  Hence all this nasty bookkeeping code.
10805   //   add ptr1, ptrA, ptrB [copy if ptrA==0]
10806   //   rlwinm shift1, ptr1, 3, 27, 28 [3, 27, 27]
10807   //   xori shift, shift1, 24 [16]
10808   //   rlwinm ptr, ptr1, 0, 0, 29
10809   //   slw incr2, incr, shift
10810   //   li mask2, 255 [li mask3, 0; ori mask2, mask3, 65535]
10811   //   slw mask, mask2, shift
10812   //  loopMBB:
10813   //   lwarx tmpDest, ptr
10814   //   add tmp, tmpDest, incr2
10815   //   andc tmp2, tmpDest, mask
10816   //   and tmp3, tmp, mask
10817   //   or tmp4, tmp3, tmp2
10818   //   stwcx. tmp4, ptr
10819   //   bne- loopMBB
10820   //   fallthrough --> exitMBB
10821   //   srw dest, tmpDest, shift
10822   if (ptrA != ZeroReg) {
10823     Ptr1Reg = RegInfo.createVirtualRegister(RC);
10824     BuildMI(BB, dl, TII->get(is64bit ? PPC::ADD8 : PPC::ADD4), Ptr1Reg)
10825         .addReg(ptrA)
10826         .addReg(ptrB);
10827   } else {
10828     Ptr1Reg = ptrB;
10829   }
10830   // We need use 32-bit subregister to avoid mismatch register class in 64-bit
10831   // mode.
10832   BuildMI(BB, dl, TII->get(PPC::RLWINM), Shift1Reg)
10833       .addReg(Ptr1Reg, 0, is64bit ? PPC::sub_32 : 0)
10834       .addImm(3)
10835       .addImm(27)
10836       .addImm(is8bit ? 28 : 27);
10837   if (!isLittleEndian)
10838     BuildMI(BB, dl, TII->get(PPC::XORI), ShiftReg)
10839         .addReg(Shift1Reg)
10840         .addImm(is8bit ? 24 : 16);
10841   if (is64bit)
10842     BuildMI(BB, dl, TII->get(PPC::RLDICR), PtrReg)
10843         .addReg(Ptr1Reg)
10844         .addImm(0)
10845         .addImm(61);
10846   else
10847     BuildMI(BB, dl, TII->get(PPC::RLWINM), PtrReg)
10848         .addReg(Ptr1Reg)
10849         .addImm(0)
10850         .addImm(0)
10851         .addImm(29);
10852   BuildMI(BB, dl, TII->get(PPC::SLW), Incr2Reg).addReg(incr).addReg(ShiftReg);
10853   if (is8bit)
10854     BuildMI(BB, dl, TII->get(PPC::LI), Mask2Reg).addImm(255);
10855   else {
10856     BuildMI(BB, dl, TII->get(PPC::LI), Mask3Reg).addImm(0);
10857     BuildMI(BB, dl, TII->get(PPC::ORI), Mask2Reg)
10858         .addReg(Mask3Reg)
10859         .addImm(65535);
10860   }
10861   BuildMI(BB, dl, TII->get(PPC::SLW), MaskReg)
10862       .addReg(Mask2Reg)
10863       .addReg(ShiftReg);
10864 
10865   BB = loopMBB;
10866   BuildMI(BB, dl, TII->get(PPC::LWARX), TmpDestReg)
10867       .addReg(ZeroReg)
10868       .addReg(PtrReg);
10869   if (BinOpcode)
10870     BuildMI(BB, dl, TII->get(BinOpcode), TmpReg)
10871         .addReg(Incr2Reg)
10872         .addReg(TmpDestReg);
10873   BuildMI(BB, dl, TII->get(PPC::ANDC), Tmp2Reg)
10874       .addReg(TmpDestReg)
10875       .addReg(MaskReg);
10876   BuildMI(BB, dl, TII->get(PPC::AND), Tmp3Reg).addReg(TmpReg).addReg(MaskReg);
10877   if (CmpOpcode) {
10878     // For unsigned comparisons, we can directly compare the shifted values.
10879     // For signed comparisons we shift and sign extend.
10880     Register SReg = RegInfo.createVirtualRegister(GPRC);
10881     BuildMI(BB, dl, TII->get(PPC::AND), SReg)
10882         .addReg(TmpDestReg)
10883         .addReg(MaskReg);
10884     unsigned ValueReg = SReg;
10885     unsigned CmpReg = Incr2Reg;
10886     if (CmpOpcode == PPC::CMPW) {
10887       ValueReg = RegInfo.createVirtualRegister(GPRC);
10888       BuildMI(BB, dl, TII->get(PPC::SRW), ValueReg)
10889           .addReg(SReg)
10890           .addReg(ShiftReg);
10891       Register ValueSReg = RegInfo.createVirtualRegister(GPRC);
10892       BuildMI(BB, dl, TII->get(is8bit ? PPC::EXTSB : PPC::EXTSH), ValueSReg)
10893           .addReg(ValueReg);
10894       ValueReg = ValueSReg;
10895       CmpReg = incr;
10896     }
10897     BuildMI(BB, dl, TII->get(CmpOpcode), PPC::CR0)
10898         .addReg(CmpReg)
10899         .addReg(ValueReg);
10900     BuildMI(BB, dl, TII->get(PPC::BCC))
10901         .addImm(CmpPred)
10902         .addReg(PPC::CR0)
10903         .addMBB(exitMBB);
10904     BB->addSuccessor(loop2MBB);
10905     BB->addSuccessor(exitMBB);
10906     BB = loop2MBB;
10907   }
10908   BuildMI(BB, dl, TII->get(PPC::OR), Tmp4Reg).addReg(Tmp3Reg).addReg(Tmp2Reg);
10909   BuildMI(BB, dl, TII->get(PPC::STWCX))
10910       .addReg(Tmp4Reg)
10911       .addReg(ZeroReg)
10912       .addReg(PtrReg);
10913   BuildMI(BB, dl, TII->get(PPC::BCC))
10914       .addImm(PPC::PRED_NE)
10915       .addReg(PPC::CR0)
10916       .addMBB(loopMBB);
10917   BB->addSuccessor(loopMBB);
10918   BB->addSuccessor(exitMBB);
10919 
10920   //  exitMBB:
10921   //   ...
10922   BB = exitMBB;
10923   BuildMI(*BB, BB->begin(), dl, TII->get(PPC::SRW), dest)
10924       .addReg(TmpDestReg)
10925       .addReg(ShiftReg);
10926   return BB;
10927 }
10928 
10929 llvm::MachineBasicBlock *
10930 PPCTargetLowering::emitEHSjLjSetJmp(MachineInstr &MI,
10931                                     MachineBasicBlock *MBB) const {
10932   DebugLoc DL = MI.getDebugLoc();
10933   const TargetInstrInfo *TII = Subtarget.getInstrInfo();
10934   const PPCRegisterInfo *TRI = Subtarget.getRegisterInfo();
10935 
10936   MachineFunction *MF = MBB->getParent();
10937   MachineRegisterInfo &MRI = MF->getRegInfo();
10938 
10939   const BasicBlock *BB = MBB->getBasicBlock();
10940   MachineFunction::iterator I = ++MBB->getIterator();
10941 
10942   Register DstReg = MI.getOperand(0).getReg();
10943   const TargetRegisterClass *RC = MRI.getRegClass(DstReg);
10944   assert(TRI->isTypeLegalForClass(*RC, MVT::i32) && "Invalid destination!");
10945   Register mainDstReg = MRI.createVirtualRegister(RC);
10946   Register restoreDstReg = MRI.createVirtualRegister(RC);
10947 
10948   MVT PVT = getPointerTy(MF->getDataLayout());
10949   assert((PVT == MVT::i64 || PVT == MVT::i32) &&
10950          "Invalid Pointer Size!");
10951   // For v = setjmp(buf), we generate
10952   //
10953   // thisMBB:
10954   //  SjLjSetup mainMBB
10955   //  bl mainMBB
10956   //  v_restore = 1
10957   //  b sinkMBB
10958   //
10959   // mainMBB:
10960   //  buf[LabelOffset] = LR
10961   //  v_main = 0
10962   //
10963   // sinkMBB:
10964   //  v = phi(main, restore)
10965   //
10966 
10967   MachineBasicBlock *thisMBB = MBB;
10968   MachineBasicBlock *mainMBB = MF->CreateMachineBasicBlock(BB);
10969   MachineBasicBlock *sinkMBB = MF->CreateMachineBasicBlock(BB);
10970   MF->insert(I, mainMBB);
10971   MF->insert(I, sinkMBB);
10972 
10973   MachineInstrBuilder MIB;
10974 
10975   // Transfer the remainder of BB and its successor edges to sinkMBB.
10976   sinkMBB->splice(sinkMBB->begin(), MBB,
10977                   std::next(MachineBasicBlock::iterator(MI)), MBB->end());
10978   sinkMBB->transferSuccessorsAndUpdatePHIs(MBB);
10979 
10980   // Note that the structure of the jmp_buf used here is not compatible
10981   // with that used by libc, and is not designed to be. Specifically, it
10982   // stores only those 'reserved' registers that LLVM does not otherwise
10983   // understand how to spill. Also, by convention, by the time this
10984   // intrinsic is called, Clang has already stored the frame address in the
10985   // first slot of the buffer and stack address in the third. Following the
10986   // X86 target code, we'll store the jump address in the second slot. We also
10987   // need to save the TOC pointer (R2) to handle jumps between shared
10988   // libraries, and that will be stored in the fourth slot. The thread
10989   // identifier (R13) is not affected.
10990 
10991   // thisMBB:
10992   const int64_t LabelOffset = 1 * PVT.getStoreSize();
10993   const int64_t TOCOffset   = 3 * PVT.getStoreSize();
10994   const int64_t BPOffset    = 4 * PVT.getStoreSize();
10995 
10996   // Prepare IP either in reg.
10997   const TargetRegisterClass *PtrRC = getRegClassFor(PVT);
10998   Register LabelReg = MRI.createVirtualRegister(PtrRC);
10999   Register BufReg = MI.getOperand(1).getReg();
11000 
11001   if (Subtarget.is64BitELFABI()) {
11002     setUsesTOCBasePtr(*MBB->getParent());
11003     MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::STD))
11004               .addReg(PPC::X2)
11005               .addImm(TOCOffset)
11006               .addReg(BufReg)
11007               .cloneMemRefs(MI);
11008   }
11009 
11010   // Naked functions never have a base pointer, and so we use r1. For all
11011   // other functions, this decision must be delayed until during PEI.
11012   unsigned BaseReg;
11013   if (MF->getFunction().hasFnAttribute(Attribute::Naked))
11014     BaseReg = Subtarget.isPPC64() ? PPC::X1 : PPC::R1;
11015   else
11016     BaseReg = Subtarget.isPPC64() ? PPC::BP8 : PPC::BP;
11017 
11018   MIB = BuildMI(*thisMBB, MI, DL,
11019                 TII->get(Subtarget.isPPC64() ? PPC::STD : PPC::STW))
11020             .addReg(BaseReg)
11021             .addImm(BPOffset)
11022             .addReg(BufReg)
11023             .cloneMemRefs(MI);
11024 
11025   // Setup
11026   MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::BCLalways)).addMBB(mainMBB);
11027   MIB.addRegMask(TRI->getNoPreservedMask());
11028 
11029   BuildMI(*thisMBB, MI, DL, TII->get(PPC::LI), restoreDstReg).addImm(1);
11030 
11031   MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::EH_SjLj_Setup))
11032           .addMBB(mainMBB);
11033   MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::B)).addMBB(sinkMBB);
11034 
11035   thisMBB->addSuccessor(mainMBB, BranchProbability::getZero());
11036   thisMBB->addSuccessor(sinkMBB, BranchProbability::getOne());
11037 
11038   // mainMBB:
11039   //  mainDstReg = 0
11040   MIB =
11041       BuildMI(mainMBB, DL,
11042               TII->get(Subtarget.isPPC64() ? PPC::MFLR8 : PPC::MFLR), LabelReg);
11043 
11044   // Store IP
11045   if (Subtarget.isPPC64()) {
11046     MIB = BuildMI(mainMBB, DL, TII->get(PPC::STD))
11047             .addReg(LabelReg)
11048             .addImm(LabelOffset)
11049             .addReg(BufReg);
11050   } else {
11051     MIB = BuildMI(mainMBB, DL, TII->get(PPC::STW))
11052             .addReg(LabelReg)
11053             .addImm(LabelOffset)
11054             .addReg(BufReg);
11055   }
11056   MIB.cloneMemRefs(MI);
11057 
11058   BuildMI(mainMBB, DL, TII->get(PPC::LI), mainDstReg).addImm(0);
11059   mainMBB->addSuccessor(sinkMBB);
11060 
11061   // sinkMBB:
11062   BuildMI(*sinkMBB, sinkMBB->begin(), DL,
11063           TII->get(PPC::PHI), DstReg)
11064     .addReg(mainDstReg).addMBB(mainMBB)
11065     .addReg(restoreDstReg).addMBB(thisMBB);
11066 
11067   MI.eraseFromParent();
11068   return sinkMBB;
11069 }
11070 
11071 MachineBasicBlock *
11072 PPCTargetLowering::emitEHSjLjLongJmp(MachineInstr &MI,
11073                                      MachineBasicBlock *MBB) const {
11074   DebugLoc DL = MI.getDebugLoc();
11075   const TargetInstrInfo *TII = Subtarget.getInstrInfo();
11076 
11077   MachineFunction *MF = MBB->getParent();
11078   MachineRegisterInfo &MRI = MF->getRegInfo();
11079 
11080   MVT PVT = getPointerTy(MF->getDataLayout());
11081   assert((PVT == MVT::i64 || PVT == MVT::i32) &&
11082          "Invalid Pointer Size!");
11083 
11084   const TargetRegisterClass *RC =
11085     (PVT == MVT::i64) ? &PPC::G8RCRegClass : &PPC::GPRCRegClass;
11086   Register Tmp = MRI.createVirtualRegister(RC);
11087   // Since FP is only updated here but NOT referenced, it's treated as GPR.
11088   unsigned FP  = (PVT == MVT::i64) ? PPC::X31 : PPC::R31;
11089   unsigned SP  = (PVT == MVT::i64) ? PPC::X1 : PPC::R1;
11090   unsigned BP =
11091       (PVT == MVT::i64)
11092           ? PPC::X30
11093           : (Subtarget.isSVR4ABI() && isPositionIndependent() ? PPC::R29
11094                                                               : PPC::R30);
11095 
11096   MachineInstrBuilder MIB;
11097 
11098   const int64_t LabelOffset = 1 * PVT.getStoreSize();
11099   const int64_t SPOffset    = 2 * PVT.getStoreSize();
11100   const int64_t TOCOffset   = 3 * PVT.getStoreSize();
11101   const int64_t BPOffset    = 4 * PVT.getStoreSize();
11102 
11103   Register BufReg = MI.getOperand(0).getReg();
11104 
11105   // Reload FP (the jumped-to function may not have had a
11106   // frame pointer, and if so, then its r31 will be restored
11107   // as necessary).
11108   if (PVT == MVT::i64) {
11109     MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), FP)
11110             .addImm(0)
11111             .addReg(BufReg);
11112   } else {
11113     MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), FP)
11114             .addImm(0)
11115             .addReg(BufReg);
11116   }
11117   MIB.cloneMemRefs(MI);
11118 
11119   // Reload IP
11120   if (PVT == MVT::i64) {
11121     MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), Tmp)
11122             .addImm(LabelOffset)
11123             .addReg(BufReg);
11124   } else {
11125     MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), Tmp)
11126             .addImm(LabelOffset)
11127             .addReg(BufReg);
11128   }
11129   MIB.cloneMemRefs(MI);
11130 
11131   // Reload SP
11132   if (PVT == MVT::i64) {
11133     MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), SP)
11134             .addImm(SPOffset)
11135             .addReg(BufReg);
11136   } else {
11137     MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), SP)
11138             .addImm(SPOffset)
11139             .addReg(BufReg);
11140   }
11141   MIB.cloneMemRefs(MI);
11142 
11143   // Reload BP
11144   if (PVT == MVT::i64) {
11145     MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), BP)
11146             .addImm(BPOffset)
11147             .addReg(BufReg);
11148   } else {
11149     MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), BP)
11150             .addImm(BPOffset)
11151             .addReg(BufReg);
11152   }
11153   MIB.cloneMemRefs(MI);
11154 
11155   // Reload TOC
11156   if (PVT == MVT::i64 && Subtarget.isSVR4ABI()) {
11157     setUsesTOCBasePtr(*MBB->getParent());
11158     MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), PPC::X2)
11159               .addImm(TOCOffset)
11160               .addReg(BufReg)
11161               .cloneMemRefs(MI);
11162   }
11163 
11164   // Jump
11165   BuildMI(*MBB, MI, DL,
11166           TII->get(PVT == MVT::i64 ? PPC::MTCTR8 : PPC::MTCTR)).addReg(Tmp);
11167   BuildMI(*MBB, MI, DL, TII->get(PVT == MVT::i64 ? PPC::BCTR8 : PPC::BCTR));
11168 
11169   MI.eraseFromParent();
11170   return MBB;
11171 }
11172 
11173 MachineBasicBlock *
11174 PPCTargetLowering::EmitInstrWithCustomInserter(MachineInstr &MI,
11175                                                MachineBasicBlock *BB) const {
11176   if (MI.getOpcode() == TargetOpcode::STACKMAP ||
11177       MI.getOpcode() == TargetOpcode::PATCHPOINT) {
11178     if (Subtarget.is64BitELFABI() &&
11179         MI.getOpcode() == TargetOpcode::PATCHPOINT) {
11180       // Call lowering should have added an r2 operand to indicate a dependence
11181       // on the TOC base pointer value. It can't however, because there is no
11182       // way to mark the dependence as implicit there, and so the stackmap code
11183       // will confuse it with a regular operand. Instead, add the dependence
11184       // here.
11185       MI.addOperand(MachineOperand::CreateReg(PPC::X2, false, true));
11186     }
11187 
11188     return emitPatchPoint(MI, BB);
11189   }
11190 
11191   if (MI.getOpcode() == PPC::EH_SjLj_SetJmp32 ||
11192       MI.getOpcode() == PPC::EH_SjLj_SetJmp64) {
11193     return emitEHSjLjSetJmp(MI, BB);
11194   } else if (MI.getOpcode() == PPC::EH_SjLj_LongJmp32 ||
11195              MI.getOpcode() == PPC::EH_SjLj_LongJmp64) {
11196     return emitEHSjLjLongJmp(MI, BB);
11197   }
11198 
11199   const TargetInstrInfo *TII = Subtarget.getInstrInfo();
11200 
11201   // To "insert" these instructions we actually have to insert their
11202   // control-flow patterns.
11203   const BasicBlock *LLVM_BB = BB->getBasicBlock();
11204   MachineFunction::iterator It = ++BB->getIterator();
11205 
11206   MachineFunction *F = BB->getParent();
11207 
11208   if (MI.getOpcode() == PPC::SELECT_CC_I4 ||
11209       MI.getOpcode() == PPC::SELECT_CC_I8 || MI.getOpcode() == PPC::SELECT_I4 ||
11210       MI.getOpcode() == PPC::SELECT_I8) {
11211     SmallVector<MachineOperand, 2> Cond;
11212     if (MI.getOpcode() == PPC::SELECT_CC_I4 ||
11213         MI.getOpcode() == PPC::SELECT_CC_I8)
11214       Cond.push_back(MI.getOperand(4));
11215     else
11216       Cond.push_back(MachineOperand::CreateImm(PPC::PRED_BIT_SET));
11217     Cond.push_back(MI.getOperand(1));
11218 
11219     DebugLoc dl = MI.getDebugLoc();
11220     TII->insertSelect(*BB, MI, dl, MI.getOperand(0).getReg(), Cond,
11221                       MI.getOperand(2).getReg(), MI.getOperand(3).getReg());
11222   } else if (MI.getOpcode() == PPC::SELECT_CC_F4 ||
11223              MI.getOpcode() == PPC::SELECT_CC_F8 ||
11224              MI.getOpcode() == PPC::SELECT_CC_F16 ||
11225              MI.getOpcode() == PPC::SELECT_CC_QFRC ||
11226              MI.getOpcode() == PPC::SELECT_CC_QSRC ||
11227              MI.getOpcode() == PPC::SELECT_CC_QBRC ||
11228              MI.getOpcode() == PPC::SELECT_CC_VRRC ||
11229              MI.getOpcode() == PPC::SELECT_CC_VSFRC ||
11230              MI.getOpcode() == PPC::SELECT_CC_VSSRC ||
11231              MI.getOpcode() == PPC::SELECT_CC_VSRC ||
11232              MI.getOpcode() == PPC::SELECT_CC_SPE4 ||
11233              MI.getOpcode() == PPC::SELECT_CC_SPE ||
11234              MI.getOpcode() == PPC::SELECT_F4 ||
11235              MI.getOpcode() == PPC::SELECT_F8 ||
11236              MI.getOpcode() == PPC::SELECT_F16 ||
11237              MI.getOpcode() == PPC::SELECT_QFRC ||
11238              MI.getOpcode() == PPC::SELECT_QSRC ||
11239              MI.getOpcode() == PPC::SELECT_QBRC ||
11240              MI.getOpcode() == PPC::SELECT_SPE ||
11241              MI.getOpcode() == PPC::SELECT_SPE4 ||
11242              MI.getOpcode() == PPC::SELECT_VRRC ||
11243              MI.getOpcode() == PPC::SELECT_VSFRC ||
11244              MI.getOpcode() == PPC::SELECT_VSSRC ||
11245              MI.getOpcode() == PPC::SELECT_VSRC) {
11246     // The incoming instruction knows the destination vreg to set, the
11247     // condition code register to branch on, the true/false values to
11248     // select between, and a branch opcode to use.
11249 
11250     //  thisMBB:
11251     //  ...
11252     //   TrueVal = ...
11253     //   cmpTY ccX, r1, r2
11254     //   bCC copy1MBB
11255     //   fallthrough --> copy0MBB
11256     MachineBasicBlock *thisMBB = BB;
11257     MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB);
11258     MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB);
11259     DebugLoc dl = MI.getDebugLoc();
11260     F->insert(It, copy0MBB);
11261     F->insert(It, sinkMBB);
11262 
11263     // Transfer the remainder of BB and its successor edges to sinkMBB.
11264     sinkMBB->splice(sinkMBB->begin(), BB,
11265                     std::next(MachineBasicBlock::iterator(MI)), BB->end());
11266     sinkMBB->transferSuccessorsAndUpdatePHIs(BB);
11267 
11268     // Next, add the true and fallthrough blocks as its successors.
11269     BB->addSuccessor(copy0MBB);
11270     BB->addSuccessor(sinkMBB);
11271 
11272     if (MI.getOpcode() == PPC::SELECT_I4 || MI.getOpcode() == PPC::SELECT_I8 ||
11273         MI.getOpcode() == PPC::SELECT_F4 || MI.getOpcode() == PPC::SELECT_F8 ||
11274         MI.getOpcode() == PPC::SELECT_F16 ||
11275         MI.getOpcode() == PPC::SELECT_SPE4 ||
11276         MI.getOpcode() == PPC::SELECT_SPE ||
11277         MI.getOpcode() == PPC::SELECT_QFRC ||
11278         MI.getOpcode() == PPC::SELECT_QSRC ||
11279         MI.getOpcode() == PPC::SELECT_QBRC ||
11280         MI.getOpcode() == PPC::SELECT_VRRC ||
11281         MI.getOpcode() == PPC::SELECT_VSFRC ||
11282         MI.getOpcode() == PPC::SELECT_VSSRC ||
11283         MI.getOpcode() == PPC::SELECT_VSRC) {
11284       BuildMI(BB, dl, TII->get(PPC::BC))
11285           .addReg(MI.getOperand(1).getReg())
11286           .addMBB(sinkMBB);
11287     } else {
11288       unsigned SelectPred = MI.getOperand(4).getImm();
11289       BuildMI(BB, dl, TII->get(PPC::BCC))
11290           .addImm(SelectPred)
11291           .addReg(MI.getOperand(1).getReg())
11292           .addMBB(sinkMBB);
11293     }
11294 
11295     //  copy0MBB:
11296     //   %FalseValue = ...
11297     //   # fallthrough to sinkMBB
11298     BB = copy0MBB;
11299 
11300     // Update machine-CFG edges
11301     BB->addSuccessor(sinkMBB);
11302 
11303     //  sinkMBB:
11304     //   %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ]
11305     //  ...
11306     BB = sinkMBB;
11307     BuildMI(*BB, BB->begin(), dl, TII->get(PPC::PHI), MI.getOperand(0).getReg())
11308         .addReg(MI.getOperand(3).getReg())
11309         .addMBB(copy0MBB)
11310         .addReg(MI.getOperand(2).getReg())
11311         .addMBB(thisMBB);
11312   } else if (MI.getOpcode() == PPC::ReadTB) {
11313     // To read the 64-bit time-base register on a 32-bit target, we read the
11314     // two halves. Should the counter have wrapped while it was being read, we
11315     // need to try again.
11316     // ...
11317     // readLoop:
11318     // mfspr Rx,TBU # load from TBU
11319     // mfspr Ry,TB  # load from TB
11320     // mfspr Rz,TBU # load from TBU
11321     // cmpw crX,Rx,Rz # check if 'old'='new'
11322     // bne readLoop   # branch if they're not equal
11323     // ...
11324 
11325     MachineBasicBlock *readMBB = F->CreateMachineBasicBlock(LLVM_BB);
11326     MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB);
11327     DebugLoc dl = MI.getDebugLoc();
11328     F->insert(It, readMBB);
11329     F->insert(It, sinkMBB);
11330 
11331     // Transfer the remainder of BB and its successor edges to sinkMBB.
11332     sinkMBB->splice(sinkMBB->begin(), BB,
11333                     std::next(MachineBasicBlock::iterator(MI)), BB->end());
11334     sinkMBB->transferSuccessorsAndUpdatePHIs(BB);
11335 
11336     BB->addSuccessor(readMBB);
11337     BB = readMBB;
11338 
11339     MachineRegisterInfo &RegInfo = F->getRegInfo();
11340     Register ReadAgainReg = RegInfo.createVirtualRegister(&PPC::GPRCRegClass);
11341     Register LoReg = MI.getOperand(0).getReg();
11342     Register HiReg = MI.getOperand(1).getReg();
11343 
11344     BuildMI(BB, dl, TII->get(PPC::MFSPR), HiReg).addImm(269);
11345     BuildMI(BB, dl, TII->get(PPC::MFSPR), LoReg).addImm(268);
11346     BuildMI(BB, dl, TII->get(PPC::MFSPR), ReadAgainReg).addImm(269);
11347 
11348     Register CmpReg = RegInfo.createVirtualRegister(&PPC::CRRCRegClass);
11349 
11350     BuildMI(BB, dl, TII->get(PPC::CMPW), CmpReg)
11351         .addReg(HiReg)
11352         .addReg(ReadAgainReg);
11353     BuildMI(BB, dl, TII->get(PPC::BCC))
11354         .addImm(PPC::PRED_NE)
11355         .addReg(CmpReg)
11356         .addMBB(readMBB);
11357 
11358     BB->addSuccessor(readMBB);
11359     BB->addSuccessor(sinkMBB);
11360   } else if (MI.getOpcode() == PPC::ATOMIC_LOAD_ADD_I8)
11361     BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::ADD4);
11362   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_ADD_I16)
11363     BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::ADD4);
11364   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_ADD_I32)
11365     BB = EmitAtomicBinary(MI, BB, 4, PPC::ADD4);
11366   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_ADD_I64)
11367     BB = EmitAtomicBinary(MI, BB, 8, PPC::ADD8);
11368 
11369   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_AND_I8)
11370     BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::AND);
11371   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_AND_I16)
11372     BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::AND);
11373   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_AND_I32)
11374     BB = EmitAtomicBinary(MI, BB, 4, PPC::AND);
11375   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_AND_I64)
11376     BB = EmitAtomicBinary(MI, BB, 8, PPC::AND8);
11377 
11378   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_OR_I8)
11379     BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::OR);
11380   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_OR_I16)
11381     BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::OR);
11382   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_OR_I32)
11383     BB = EmitAtomicBinary(MI, BB, 4, PPC::OR);
11384   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_OR_I64)
11385     BB = EmitAtomicBinary(MI, BB, 8, PPC::OR8);
11386 
11387   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_XOR_I8)
11388     BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::XOR);
11389   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_XOR_I16)
11390     BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::XOR);
11391   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_XOR_I32)
11392     BB = EmitAtomicBinary(MI, BB, 4, PPC::XOR);
11393   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_XOR_I64)
11394     BB = EmitAtomicBinary(MI, BB, 8, PPC::XOR8);
11395 
11396   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_NAND_I8)
11397     BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::NAND);
11398   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_NAND_I16)
11399     BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::NAND);
11400   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_NAND_I32)
11401     BB = EmitAtomicBinary(MI, BB, 4, PPC::NAND);
11402   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_NAND_I64)
11403     BB = EmitAtomicBinary(MI, BB, 8, PPC::NAND8);
11404 
11405   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_SUB_I8)
11406     BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::SUBF);
11407   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_SUB_I16)
11408     BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::SUBF);
11409   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_SUB_I32)
11410     BB = EmitAtomicBinary(MI, BB, 4, PPC::SUBF);
11411   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_SUB_I64)
11412     BB = EmitAtomicBinary(MI, BB, 8, PPC::SUBF8);
11413 
11414   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MIN_I8)
11415     BB = EmitPartwordAtomicBinary(MI, BB, true, 0, PPC::CMPW, PPC::PRED_GE);
11416   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MIN_I16)
11417     BB = EmitPartwordAtomicBinary(MI, BB, false, 0, PPC::CMPW, PPC::PRED_GE);
11418   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MIN_I32)
11419     BB = EmitAtomicBinary(MI, BB, 4, 0, PPC::CMPW, PPC::PRED_GE);
11420   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MIN_I64)
11421     BB = EmitAtomicBinary(MI, BB, 8, 0, PPC::CMPD, PPC::PRED_GE);
11422 
11423   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MAX_I8)
11424     BB = EmitPartwordAtomicBinary(MI, BB, true, 0, PPC::CMPW, PPC::PRED_LE);
11425   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MAX_I16)
11426     BB = EmitPartwordAtomicBinary(MI, BB, false, 0, PPC::CMPW, PPC::PRED_LE);
11427   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MAX_I32)
11428     BB = EmitAtomicBinary(MI, BB, 4, 0, PPC::CMPW, PPC::PRED_LE);
11429   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MAX_I64)
11430     BB = EmitAtomicBinary(MI, BB, 8, 0, PPC::CMPD, PPC::PRED_LE);
11431 
11432   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMIN_I8)
11433     BB = EmitPartwordAtomicBinary(MI, BB, true, 0, PPC::CMPLW, PPC::PRED_GE);
11434   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMIN_I16)
11435     BB = EmitPartwordAtomicBinary(MI, BB, false, 0, PPC::CMPLW, PPC::PRED_GE);
11436   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMIN_I32)
11437     BB = EmitAtomicBinary(MI, BB, 4, 0, PPC::CMPLW, PPC::PRED_GE);
11438   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMIN_I64)
11439     BB = EmitAtomicBinary(MI, BB, 8, 0, PPC::CMPLD, PPC::PRED_GE);
11440 
11441   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMAX_I8)
11442     BB = EmitPartwordAtomicBinary(MI, BB, true, 0, PPC::CMPLW, PPC::PRED_LE);
11443   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMAX_I16)
11444     BB = EmitPartwordAtomicBinary(MI, BB, false, 0, PPC::CMPLW, PPC::PRED_LE);
11445   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMAX_I32)
11446     BB = EmitAtomicBinary(MI, BB, 4, 0, PPC::CMPLW, PPC::PRED_LE);
11447   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMAX_I64)
11448     BB = EmitAtomicBinary(MI, BB, 8, 0, PPC::CMPLD, PPC::PRED_LE);
11449 
11450   else if (MI.getOpcode() == PPC::ATOMIC_SWAP_I8)
11451     BB = EmitPartwordAtomicBinary(MI, BB, true, 0);
11452   else if (MI.getOpcode() == PPC::ATOMIC_SWAP_I16)
11453     BB = EmitPartwordAtomicBinary(MI, BB, false, 0);
11454   else if (MI.getOpcode() == PPC::ATOMIC_SWAP_I32)
11455     BB = EmitAtomicBinary(MI, BB, 4, 0);
11456   else if (MI.getOpcode() == PPC::ATOMIC_SWAP_I64)
11457     BB = EmitAtomicBinary(MI, BB, 8, 0);
11458   else if (MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I32 ||
11459            MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I64 ||
11460            (Subtarget.hasPartwordAtomics() &&
11461             MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I8) ||
11462            (Subtarget.hasPartwordAtomics() &&
11463             MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I16)) {
11464     bool is64bit = MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I64;
11465 
11466     auto LoadMnemonic = PPC::LDARX;
11467     auto StoreMnemonic = PPC::STDCX;
11468     switch (MI.getOpcode()) {
11469     default:
11470       llvm_unreachable("Compare and swap of unknown size");
11471     case PPC::ATOMIC_CMP_SWAP_I8:
11472       LoadMnemonic = PPC::LBARX;
11473       StoreMnemonic = PPC::STBCX;
11474       assert(Subtarget.hasPartwordAtomics() && "No support partword atomics.");
11475       break;
11476     case PPC::ATOMIC_CMP_SWAP_I16:
11477       LoadMnemonic = PPC::LHARX;
11478       StoreMnemonic = PPC::STHCX;
11479       assert(Subtarget.hasPartwordAtomics() && "No support partword atomics.");
11480       break;
11481     case PPC::ATOMIC_CMP_SWAP_I32:
11482       LoadMnemonic = PPC::LWARX;
11483       StoreMnemonic = PPC::STWCX;
11484       break;
11485     case PPC::ATOMIC_CMP_SWAP_I64:
11486       LoadMnemonic = PPC::LDARX;
11487       StoreMnemonic = PPC::STDCX;
11488       break;
11489     }
11490     Register dest = MI.getOperand(0).getReg();
11491     Register ptrA = MI.getOperand(1).getReg();
11492     Register ptrB = MI.getOperand(2).getReg();
11493     Register oldval = MI.getOperand(3).getReg();
11494     Register newval = MI.getOperand(4).getReg();
11495     DebugLoc dl = MI.getDebugLoc();
11496 
11497     MachineBasicBlock *loop1MBB = F->CreateMachineBasicBlock(LLVM_BB);
11498     MachineBasicBlock *loop2MBB = F->CreateMachineBasicBlock(LLVM_BB);
11499     MachineBasicBlock *midMBB = F->CreateMachineBasicBlock(LLVM_BB);
11500     MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB);
11501     F->insert(It, loop1MBB);
11502     F->insert(It, loop2MBB);
11503     F->insert(It, midMBB);
11504     F->insert(It, exitMBB);
11505     exitMBB->splice(exitMBB->begin(), BB,
11506                     std::next(MachineBasicBlock::iterator(MI)), BB->end());
11507     exitMBB->transferSuccessorsAndUpdatePHIs(BB);
11508 
11509     //  thisMBB:
11510     //   ...
11511     //   fallthrough --> loopMBB
11512     BB->addSuccessor(loop1MBB);
11513 
11514     // loop1MBB:
11515     //   l[bhwd]arx dest, ptr
11516     //   cmp[wd] dest, oldval
11517     //   bne- midMBB
11518     // loop2MBB:
11519     //   st[bhwd]cx. newval, ptr
11520     //   bne- loopMBB
11521     //   b exitBB
11522     // midMBB:
11523     //   st[bhwd]cx. dest, ptr
11524     // exitBB:
11525     BB = loop1MBB;
11526     BuildMI(BB, dl, TII->get(LoadMnemonic), dest).addReg(ptrA).addReg(ptrB);
11527     BuildMI(BB, dl, TII->get(is64bit ? PPC::CMPD : PPC::CMPW), PPC::CR0)
11528         .addReg(oldval)
11529         .addReg(dest);
11530     BuildMI(BB, dl, TII->get(PPC::BCC))
11531         .addImm(PPC::PRED_NE)
11532         .addReg(PPC::CR0)
11533         .addMBB(midMBB);
11534     BB->addSuccessor(loop2MBB);
11535     BB->addSuccessor(midMBB);
11536 
11537     BB = loop2MBB;
11538     BuildMI(BB, dl, TII->get(StoreMnemonic))
11539         .addReg(newval)
11540         .addReg(ptrA)
11541         .addReg(ptrB);
11542     BuildMI(BB, dl, TII->get(PPC::BCC))
11543         .addImm(PPC::PRED_NE)
11544         .addReg(PPC::CR0)
11545         .addMBB(loop1MBB);
11546     BuildMI(BB, dl, TII->get(PPC::B)).addMBB(exitMBB);
11547     BB->addSuccessor(loop1MBB);
11548     BB->addSuccessor(exitMBB);
11549 
11550     BB = midMBB;
11551     BuildMI(BB, dl, TII->get(StoreMnemonic))
11552         .addReg(dest)
11553         .addReg(ptrA)
11554         .addReg(ptrB);
11555     BB->addSuccessor(exitMBB);
11556 
11557     //  exitMBB:
11558     //   ...
11559     BB = exitMBB;
11560   } else if (MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I8 ||
11561              MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I16) {
11562     // We must use 64-bit registers for addresses when targeting 64-bit,
11563     // since we're actually doing arithmetic on them.  Other registers
11564     // can be 32-bit.
11565     bool is64bit = Subtarget.isPPC64();
11566     bool isLittleEndian = Subtarget.isLittleEndian();
11567     bool is8bit = MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I8;
11568 
11569     Register dest = MI.getOperand(0).getReg();
11570     Register ptrA = MI.getOperand(1).getReg();
11571     Register ptrB = MI.getOperand(2).getReg();
11572     Register oldval = MI.getOperand(3).getReg();
11573     Register newval = MI.getOperand(4).getReg();
11574     DebugLoc dl = MI.getDebugLoc();
11575 
11576     MachineBasicBlock *loop1MBB = F->CreateMachineBasicBlock(LLVM_BB);
11577     MachineBasicBlock *loop2MBB = F->CreateMachineBasicBlock(LLVM_BB);
11578     MachineBasicBlock *midMBB = F->CreateMachineBasicBlock(LLVM_BB);
11579     MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB);
11580     F->insert(It, loop1MBB);
11581     F->insert(It, loop2MBB);
11582     F->insert(It, midMBB);
11583     F->insert(It, exitMBB);
11584     exitMBB->splice(exitMBB->begin(), BB,
11585                     std::next(MachineBasicBlock::iterator(MI)), BB->end());
11586     exitMBB->transferSuccessorsAndUpdatePHIs(BB);
11587 
11588     MachineRegisterInfo &RegInfo = F->getRegInfo();
11589     const TargetRegisterClass *RC =
11590         is64bit ? &PPC::G8RCRegClass : &PPC::GPRCRegClass;
11591     const TargetRegisterClass *GPRC = &PPC::GPRCRegClass;
11592 
11593     Register PtrReg = RegInfo.createVirtualRegister(RC);
11594     Register Shift1Reg = RegInfo.createVirtualRegister(GPRC);
11595     Register ShiftReg =
11596         isLittleEndian ? Shift1Reg : RegInfo.createVirtualRegister(GPRC);
11597     Register NewVal2Reg = RegInfo.createVirtualRegister(GPRC);
11598     Register NewVal3Reg = RegInfo.createVirtualRegister(GPRC);
11599     Register OldVal2Reg = RegInfo.createVirtualRegister(GPRC);
11600     Register OldVal3Reg = RegInfo.createVirtualRegister(GPRC);
11601     Register MaskReg = RegInfo.createVirtualRegister(GPRC);
11602     Register Mask2Reg = RegInfo.createVirtualRegister(GPRC);
11603     Register Mask3Reg = RegInfo.createVirtualRegister(GPRC);
11604     Register Tmp2Reg = RegInfo.createVirtualRegister(GPRC);
11605     Register Tmp4Reg = RegInfo.createVirtualRegister(GPRC);
11606     Register TmpDestReg = RegInfo.createVirtualRegister(GPRC);
11607     Register Ptr1Reg;
11608     Register TmpReg = RegInfo.createVirtualRegister(GPRC);
11609     Register ZeroReg = is64bit ? PPC::ZERO8 : PPC::ZERO;
11610     //  thisMBB:
11611     //   ...
11612     //   fallthrough --> loopMBB
11613     BB->addSuccessor(loop1MBB);
11614 
11615     // The 4-byte load must be aligned, while a char or short may be
11616     // anywhere in the word.  Hence all this nasty bookkeeping code.
11617     //   add ptr1, ptrA, ptrB [copy if ptrA==0]
11618     //   rlwinm shift1, ptr1, 3, 27, 28 [3, 27, 27]
11619     //   xori shift, shift1, 24 [16]
11620     //   rlwinm ptr, ptr1, 0, 0, 29
11621     //   slw newval2, newval, shift
11622     //   slw oldval2, oldval,shift
11623     //   li mask2, 255 [li mask3, 0; ori mask2, mask3, 65535]
11624     //   slw mask, mask2, shift
11625     //   and newval3, newval2, mask
11626     //   and oldval3, oldval2, mask
11627     // loop1MBB:
11628     //   lwarx tmpDest, ptr
11629     //   and tmp, tmpDest, mask
11630     //   cmpw tmp, oldval3
11631     //   bne- midMBB
11632     // loop2MBB:
11633     //   andc tmp2, tmpDest, mask
11634     //   or tmp4, tmp2, newval3
11635     //   stwcx. tmp4, ptr
11636     //   bne- loop1MBB
11637     //   b exitBB
11638     // midMBB:
11639     //   stwcx. tmpDest, ptr
11640     // exitBB:
11641     //   srw dest, tmpDest, shift
11642     if (ptrA != ZeroReg) {
11643       Ptr1Reg = RegInfo.createVirtualRegister(RC);
11644       BuildMI(BB, dl, TII->get(is64bit ? PPC::ADD8 : PPC::ADD4), Ptr1Reg)
11645           .addReg(ptrA)
11646           .addReg(ptrB);
11647     } else {
11648       Ptr1Reg = ptrB;
11649     }
11650 
11651     // We need use 32-bit subregister to avoid mismatch register class in 64-bit
11652     // mode.
11653     BuildMI(BB, dl, TII->get(PPC::RLWINM), Shift1Reg)
11654         .addReg(Ptr1Reg, 0, is64bit ? PPC::sub_32 : 0)
11655         .addImm(3)
11656         .addImm(27)
11657         .addImm(is8bit ? 28 : 27);
11658     if (!isLittleEndian)
11659       BuildMI(BB, dl, TII->get(PPC::XORI), ShiftReg)
11660           .addReg(Shift1Reg)
11661           .addImm(is8bit ? 24 : 16);
11662     if (is64bit)
11663       BuildMI(BB, dl, TII->get(PPC::RLDICR), PtrReg)
11664           .addReg(Ptr1Reg)
11665           .addImm(0)
11666           .addImm(61);
11667     else
11668       BuildMI(BB, dl, TII->get(PPC::RLWINM), PtrReg)
11669           .addReg(Ptr1Reg)
11670           .addImm(0)
11671           .addImm(0)
11672           .addImm(29);
11673     BuildMI(BB, dl, TII->get(PPC::SLW), NewVal2Reg)
11674         .addReg(newval)
11675         .addReg(ShiftReg);
11676     BuildMI(BB, dl, TII->get(PPC::SLW), OldVal2Reg)
11677         .addReg(oldval)
11678         .addReg(ShiftReg);
11679     if (is8bit)
11680       BuildMI(BB, dl, TII->get(PPC::LI), Mask2Reg).addImm(255);
11681     else {
11682       BuildMI(BB, dl, TII->get(PPC::LI), Mask3Reg).addImm(0);
11683       BuildMI(BB, dl, TII->get(PPC::ORI), Mask2Reg)
11684           .addReg(Mask3Reg)
11685           .addImm(65535);
11686     }
11687     BuildMI(BB, dl, TII->get(PPC::SLW), MaskReg)
11688         .addReg(Mask2Reg)
11689         .addReg(ShiftReg);
11690     BuildMI(BB, dl, TII->get(PPC::AND), NewVal3Reg)
11691         .addReg(NewVal2Reg)
11692         .addReg(MaskReg);
11693     BuildMI(BB, dl, TII->get(PPC::AND), OldVal3Reg)
11694         .addReg(OldVal2Reg)
11695         .addReg(MaskReg);
11696 
11697     BB = loop1MBB;
11698     BuildMI(BB, dl, TII->get(PPC::LWARX), TmpDestReg)
11699         .addReg(ZeroReg)
11700         .addReg(PtrReg);
11701     BuildMI(BB, dl, TII->get(PPC::AND), TmpReg)
11702         .addReg(TmpDestReg)
11703         .addReg(MaskReg);
11704     BuildMI(BB, dl, TII->get(PPC::CMPW), PPC::CR0)
11705         .addReg(TmpReg)
11706         .addReg(OldVal3Reg);
11707     BuildMI(BB, dl, TII->get(PPC::BCC))
11708         .addImm(PPC::PRED_NE)
11709         .addReg(PPC::CR0)
11710         .addMBB(midMBB);
11711     BB->addSuccessor(loop2MBB);
11712     BB->addSuccessor(midMBB);
11713 
11714     BB = loop2MBB;
11715     BuildMI(BB, dl, TII->get(PPC::ANDC), Tmp2Reg)
11716         .addReg(TmpDestReg)
11717         .addReg(MaskReg);
11718     BuildMI(BB, dl, TII->get(PPC::OR), Tmp4Reg)
11719         .addReg(Tmp2Reg)
11720         .addReg(NewVal3Reg);
11721     BuildMI(BB, dl, TII->get(PPC::STWCX))
11722         .addReg(Tmp4Reg)
11723         .addReg(ZeroReg)
11724         .addReg(PtrReg);
11725     BuildMI(BB, dl, TII->get(PPC::BCC))
11726         .addImm(PPC::PRED_NE)
11727         .addReg(PPC::CR0)
11728         .addMBB(loop1MBB);
11729     BuildMI(BB, dl, TII->get(PPC::B)).addMBB(exitMBB);
11730     BB->addSuccessor(loop1MBB);
11731     BB->addSuccessor(exitMBB);
11732 
11733     BB = midMBB;
11734     BuildMI(BB, dl, TII->get(PPC::STWCX))
11735         .addReg(TmpDestReg)
11736         .addReg(ZeroReg)
11737         .addReg(PtrReg);
11738     BB->addSuccessor(exitMBB);
11739 
11740     //  exitMBB:
11741     //   ...
11742     BB = exitMBB;
11743     BuildMI(*BB, BB->begin(), dl, TII->get(PPC::SRW), dest)
11744         .addReg(TmpReg)
11745         .addReg(ShiftReg);
11746   } else if (MI.getOpcode() == PPC::FADDrtz) {
11747     // This pseudo performs an FADD with rounding mode temporarily forced
11748     // to round-to-zero.  We emit this via custom inserter since the FPSCR
11749     // is not modeled at the SelectionDAG level.
11750     Register Dest = MI.getOperand(0).getReg();
11751     Register Src1 = MI.getOperand(1).getReg();
11752     Register Src2 = MI.getOperand(2).getReg();
11753     DebugLoc dl = MI.getDebugLoc();
11754 
11755     MachineRegisterInfo &RegInfo = F->getRegInfo();
11756     Register MFFSReg = RegInfo.createVirtualRegister(&PPC::F8RCRegClass);
11757 
11758     // Save FPSCR value.
11759     BuildMI(*BB, MI, dl, TII->get(PPC::MFFS), MFFSReg);
11760 
11761     // Set rounding mode to round-to-zero.
11762     BuildMI(*BB, MI, dl, TII->get(PPC::MTFSB1)).addImm(31);
11763     BuildMI(*BB, MI, dl, TII->get(PPC::MTFSB0)).addImm(30);
11764 
11765     // Perform addition.
11766     BuildMI(*BB, MI, dl, TII->get(PPC::FADD), Dest).addReg(Src1).addReg(Src2);
11767 
11768     // Restore FPSCR value.
11769     BuildMI(*BB, MI, dl, TII->get(PPC::MTFSFb)).addImm(1).addReg(MFFSReg);
11770   } else if (MI.getOpcode() == PPC::ANDI_rec_1_EQ_BIT ||
11771              MI.getOpcode() == PPC::ANDI_rec_1_GT_BIT ||
11772              MI.getOpcode() == PPC::ANDI_rec_1_EQ_BIT8 ||
11773              MI.getOpcode() == PPC::ANDI_rec_1_GT_BIT8) {
11774     unsigned Opcode = (MI.getOpcode() == PPC::ANDI_rec_1_EQ_BIT8 ||
11775                        MI.getOpcode() == PPC::ANDI_rec_1_GT_BIT8)
11776                           ? PPC::ANDI8_rec
11777                           : PPC::ANDI_rec;
11778     bool IsEQ = (MI.getOpcode() == PPC::ANDI_rec_1_EQ_BIT ||
11779                  MI.getOpcode() == PPC::ANDI_rec_1_EQ_BIT8);
11780 
11781     MachineRegisterInfo &RegInfo = F->getRegInfo();
11782     Register Dest = RegInfo.createVirtualRegister(
11783         Opcode == PPC::ANDI_rec ? &PPC::GPRCRegClass : &PPC::G8RCRegClass);
11784 
11785     DebugLoc Dl = MI.getDebugLoc();
11786     BuildMI(*BB, MI, Dl, TII->get(Opcode), Dest)
11787         .addReg(MI.getOperand(1).getReg())
11788         .addImm(1);
11789     BuildMI(*BB, MI, Dl, TII->get(TargetOpcode::COPY),
11790             MI.getOperand(0).getReg())
11791         .addReg(IsEQ ? PPC::CR0EQ : PPC::CR0GT);
11792   } else if (MI.getOpcode() == PPC::TCHECK_RET) {
11793     DebugLoc Dl = MI.getDebugLoc();
11794     MachineRegisterInfo &RegInfo = F->getRegInfo();
11795     Register CRReg = RegInfo.createVirtualRegister(&PPC::CRRCRegClass);
11796     BuildMI(*BB, MI, Dl, TII->get(PPC::TCHECK), CRReg);
11797     BuildMI(*BB, MI, Dl, TII->get(TargetOpcode::COPY),
11798             MI.getOperand(0).getReg())
11799         .addReg(CRReg);
11800   } else if (MI.getOpcode() == PPC::TBEGIN_RET) {
11801     DebugLoc Dl = MI.getDebugLoc();
11802     unsigned Imm = MI.getOperand(1).getImm();
11803     BuildMI(*BB, MI, Dl, TII->get(PPC::TBEGIN)).addImm(Imm);
11804     BuildMI(*BB, MI, Dl, TII->get(TargetOpcode::COPY),
11805             MI.getOperand(0).getReg())
11806         .addReg(PPC::CR0EQ);
11807   } else if (MI.getOpcode() == PPC::SETRNDi) {
11808     DebugLoc dl = MI.getDebugLoc();
11809     Register OldFPSCRReg = MI.getOperand(0).getReg();
11810 
11811     // Save FPSCR value.
11812     BuildMI(*BB, MI, dl, TII->get(PPC::MFFS), OldFPSCRReg);
11813 
11814     // The floating point rounding mode is in the bits 62:63 of FPCSR, and has
11815     // the following settings:
11816     //   00 Round to nearest
11817     //   01 Round to 0
11818     //   10 Round to +inf
11819     //   11 Round to -inf
11820 
11821     // When the operand is immediate, using the two least significant bits of
11822     // the immediate to set the bits 62:63 of FPSCR.
11823     unsigned Mode = MI.getOperand(1).getImm();
11824     BuildMI(*BB, MI, dl, TII->get((Mode & 1) ? PPC::MTFSB1 : PPC::MTFSB0))
11825       .addImm(31);
11826 
11827     BuildMI(*BB, MI, dl, TII->get((Mode & 2) ? PPC::MTFSB1 : PPC::MTFSB0))
11828       .addImm(30);
11829   } else if (MI.getOpcode() == PPC::SETRND) {
11830     DebugLoc dl = MI.getDebugLoc();
11831 
11832     // Copy register from F8RCRegClass::SrcReg to G8RCRegClass::DestReg
11833     // or copy register from G8RCRegClass::SrcReg to F8RCRegClass::DestReg.
11834     // If the target doesn't have DirectMove, we should use stack to do the
11835     // conversion, because the target doesn't have the instructions like mtvsrd
11836     // or mfvsrd to do this conversion directly.
11837     auto copyRegFromG8RCOrF8RC = [&] (unsigned DestReg, unsigned SrcReg) {
11838       if (Subtarget.hasDirectMove()) {
11839         BuildMI(*BB, MI, dl, TII->get(TargetOpcode::COPY), DestReg)
11840           .addReg(SrcReg);
11841       } else {
11842         // Use stack to do the register copy.
11843         unsigned StoreOp = PPC::STD, LoadOp = PPC::LFD;
11844         MachineRegisterInfo &RegInfo = F->getRegInfo();
11845         const TargetRegisterClass *RC = RegInfo.getRegClass(SrcReg);
11846         if (RC == &PPC::F8RCRegClass) {
11847           // Copy register from F8RCRegClass to G8RCRegclass.
11848           assert((RegInfo.getRegClass(DestReg) == &PPC::G8RCRegClass) &&
11849                  "Unsupported RegClass.");
11850 
11851           StoreOp = PPC::STFD;
11852           LoadOp = PPC::LD;
11853         } else {
11854           // Copy register from G8RCRegClass to F8RCRegclass.
11855           assert((RegInfo.getRegClass(SrcReg) == &PPC::G8RCRegClass) &&
11856                  (RegInfo.getRegClass(DestReg) == &PPC::F8RCRegClass) &&
11857                  "Unsupported RegClass.");
11858         }
11859 
11860         MachineFrameInfo &MFI = F->getFrameInfo();
11861         int FrameIdx = MFI.CreateStackObject(8, 8, false);
11862 
11863         MachineMemOperand *MMOStore = F->getMachineMemOperand(
11864           MachinePointerInfo::getFixedStack(*F, FrameIdx, 0),
11865           MachineMemOperand::MOStore, MFI.getObjectSize(FrameIdx),
11866           MFI.getObjectAlignment(FrameIdx));
11867 
11868         // Store the SrcReg into the stack.
11869         BuildMI(*BB, MI, dl, TII->get(StoreOp))
11870           .addReg(SrcReg)
11871           .addImm(0)
11872           .addFrameIndex(FrameIdx)
11873           .addMemOperand(MMOStore);
11874 
11875         MachineMemOperand *MMOLoad = F->getMachineMemOperand(
11876           MachinePointerInfo::getFixedStack(*F, FrameIdx, 0),
11877           MachineMemOperand::MOLoad, MFI.getObjectSize(FrameIdx),
11878           MFI.getObjectAlignment(FrameIdx));
11879 
11880         // Load from the stack where SrcReg is stored, and save to DestReg,
11881         // so we have done the RegClass conversion from RegClass::SrcReg to
11882         // RegClass::DestReg.
11883         BuildMI(*BB, MI, dl, TII->get(LoadOp), DestReg)
11884           .addImm(0)
11885           .addFrameIndex(FrameIdx)
11886           .addMemOperand(MMOLoad);
11887       }
11888     };
11889 
11890     Register OldFPSCRReg = MI.getOperand(0).getReg();
11891 
11892     // Save FPSCR value.
11893     BuildMI(*BB, MI, dl, TII->get(PPC::MFFS), OldFPSCRReg);
11894 
11895     // When the operand is gprc register, use two least significant bits of the
11896     // register and mtfsf instruction to set the bits 62:63 of FPSCR.
11897     //
11898     // copy OldFPSCRTmpReg, OldFPSCRReg
11899     // (INSERT_SUBREG ExtSrcReg, (IMPLICIT_DEF ImDefReg), SrcOp, 1)
11900     // rldimi NewFPSCRTmpReg, ExtSrcReg, OldFPSCRReg, 0, 62
11901     // copy NewFPSCRReg, NewFPSCRTmpReg
11902     // mtfsf 255, NewFPSCRReg
11903     MachineOperand SrcOp = MI.getOperand(1);
11904     MachineRegisterInfo &RegInfo = F->getRegInfo();
11905     Register OldFPSCRTmpReg = RegInfo.createVirtualRegister(&PPC::G8RCRegClass);
11906 
11907     copyRegFromG8RCOrF8RC(OldFPSCRTmpReg, OldFPSCRReg);
11908 
11909     Register ImDefReg = RegInfo.createVirtualRegister(&PPC::G8RCRegClass);
11910     Register ExtSrcReg = RegInfo.createVirtualRegister(&PPC::G8RCRegClass);
11911 
11912     // The first operand of INSERT_SUBREG should be a register which has
11913     // subregisters, we only care about its RegClass, so we should use an
11914     // IMPLICIT_DEF register.
11915     BuildMI(*BB, MI, dl, TII->get(TargetOpcode::IMPLICIT_DEF), ImDefReg);
11916     BuildMI(*BB, MI, dl, TII->get(PPC::INSERT_SUBREG), ExtSrcReg)
11917       .addReg(ImDefReg)
11918       .add(SrcOp)
11919       .addImm(1);
11920 
11921     Register NewFPSCRTmpReg = RegInfo.createVirtualRegister(&PPC::G8RCRegClass);
11922     BuildMI(*BB, MI, dl, TII->get(PPC::RLDIMI), NewFPSCRTmpReg)
11923       .addReg(OldFPSCRTmpReg)
11924       .addReg(ExtSrcReg)
11925       .addImm(0)
11926       .addImm(62);
11927 
11928     Register NewFPSCRReg = RegInfo.createVirtualRegister(&PPC::F8RCRegClass);
11929     copyRegFromG8RCOrF8RC(NewFPSCRReg, NewFPSCRTmpReg);
11930 
11931     // The mask 255 means that put the 32:63 bits of NewFPSCRReg to the 32:63
11932     // bits of FPSCR.
11933     BuildMI(*BB, MI, dl, TII->get(PPC::MTFSF))
11934       .addImm(255)
11935       .addReg(NewFPSCRReg)
11936       .addImm(0)
11937       .addImm(0);
11938   } else {
11939     llvm_unreachable("Unexpected instr type to insert");
11940   }
11941 
11942   MI.eraseFromParent(); // The pseudo instruction is gone now.
11943   return BB;
11944 }
11945 
11946 //===----------------------------------------------------------------------===//
11947 // Target Optimization Hooks
11948 //===----------------------------------------------------------------------===//
11949 
11950 static int getEstimateRefinementSteps(EVT VT, const PPCSubtarget &Subtarget) {
11951   // For the estimates, convergence is quadratic, so we essentially double the
11952   // number of digits correct after every iteration. For both FRE and FRSQRTE,
11953   // the minimum architected relative accuracy is 2^-5. When hasRecipPrec(),
11954   // this is 2^-14. IEEE float has 23 digits and double has 52 digits.
11955   int RefinementSteps = Subtarget.hasRecipPrec() ? 1 : 3;
11956   if (VT.getScalarType() == MVT::f64)
11957     RefinementSteps++;
11958   return RefinementSteps;
11959 }
11960 
11961 SDValue PPCTargetLowering::getSqrtEstimate(SDValue Operand, SelectionDAG &DAG,
11962                                            int Enabled, int &RefinementSteps,
11963                                            bool &UseOneConstNR,
11964                                            bool Reciprocal) const {
11965   EVT VT = Operand.getValueType();
11966   if ((VT == MVT::f32 && Subtarget.hasFRSQRTES()) ||
11967       (VT == MVT::f64 && Subtarget.hasFRSQRTE()) ||
11968       (VT == MVT::v4f32 && Subtarget.hasAltivec()) ||
11969       (VT == MVT::v2f64 && Subtarget.hasVSX()) ||
11970       (VT == MVT::v4f32 && Subtarget.hasQPX()) ||
11971       (VT == MVT::v4f64 && Subtarget.hasQPX())) {
11972     if (RefinementSteps == ReciprocalEstimate::Unspecified)
11973       RefinementSteps = getEstimateRefinementSteps(VT, Subtarget);
11974 
11975     // The Newton-Raphson computation with a single constant does not provide
11976     // enough accuracy on some CPUs.
11977     UseOneConstNR = !Subtarget.needsTwoConstNR();
11978     return DAG.getNode(PPCISD::FRSQRTE, SDLoc(Operand), VT, Operand);
11979   }
11980   return SDValue();
11981 }
11982 
11983 SDValue PPCTargetLowering::getRecipEstimate(SDValue Operand, SelectionDAG &DAG,
11984                                             int Enabled,
11985                                             int &RefinementSteps) const {
11986   EVT VT = Operand.getValueType();
11987   if ((VT == MVT::f32 && Subtarget.hasFRES()) ||
11988       (VT == MVT::f64 && Subtarget.hasFRE()) ||
11989       (VT == MVT::v4f32 && Subtarget.hasAltivec()) ||
11990       (VT == MVT::v2f64 && Subtarget.hasVSX()) ||
11991       (VT == MVT::v4f32 && Subtarget.hasQPX()) ||
11992       (VT == MVT::v4f64 && Subtarget.hasQPX())) {
11993     if (RefinementSteps == ReciprocalEstimate::Unspecified)
11994       RefinementSteps = getEstimateRefinementSteps(VT, Subtarget);
11995     return DAG.getNode(PPCISD::FRE, SDLoc(Operand), VT, Operand);
11996   }
11997   return SDValue();
11998 }
11999 
12000 unsigned PPCTargetLowering::combineRepeatedFPDivisors() const {
12001   // Note: This functionality is used only when unsafe-fp-math is enabled, and
12002   // on cores with reciprocal estimates (which are used when unsafe-fp-math is
12003   // enabled for division), this functionality is redundant with the default
12004   // combiner logic (once the division -> reciprocal/multiply transformation
12005   // has taken place). As a result, this matters more for older cores than for
12006   // newer ones.
12007 
12008   // Combine multiple FDIVs with the same divisor into multiple FMULs by the
12009   // reciprocal if there are two or more FDIVs (for embedded cores with only
12010   // one FP pipeline) for three or more FDIVs (for generic OOO cores).
12011   switch (Subtarget.getCPUDirective()) {
12012   default:
12013     return 3;
12014   case PPC::DIR_440:
12015   case PPC::DIR_A2:
12016   case PPC::DIR_E500:
12017   case PPC::DIR_E500mc:
12018   case PPC::DIR_E5500:
12019     return 2;
12020   }
12021 }
12022 
12023 // isConsecutiveLSLoc needs to work even if all adds have not yet been
12024 // collapsed, and so we need to look through chains of them.
12025 static void getBaseWithConstantOffset(SDValue Loc, SDValue &Base,
12026                                      int64_t& Offset, SelectionDAG &DAG) {
12027   if (DAG.isBaseWithConstantOffset(Loc)) {
12028     Base = Loc.getOperand(0);
12029     Offset += cast<ConstantSDNode>(Loc.getOperand(1))->getSExtValue();
12030 
12031     // The base might itself be a base plus an offset, and if so, accumulate
12032     // that as well.
12033     getBaseWithConstantOffset(Loc.getOperand(0), Base, Offset, DAG);
12034   }
12035 }
12036 
12037 static bool isConsecutiveLSLoc(SDValue Loc, EVT VT, LSBaseSDNode *Base,
12038                             unsigned Bytes, int Dist,
12039                             SelectionDAG &DAG) {
12040   if (VT.getSizeInBits() / 8 != Bytes)
12041     return false;
12042 
12043   SDValue BaseLoc = Base->getBasePtr();
12044   if (Loc.getOpcode() == ISD::FrameIndex) {
12045     if (BaseLoc.getOpcode() != ISD::FrameIndex)
12046       return false;
12047     const MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
12048     int FI  = cast<FrameIndexSDNode>(Loc)->getIndex();
12049     int BFI = cast<FrameIndexSDNode>(BaseLoc)->getIndex();
12050     int FS  = MFI.getObjectSize(FI);
12051     int BFS = MFI.getObjectSize(BFI);
12052     if (FS != BFS || FS != (int)Bytes) return false;
12053     return MFI.getObjectOffset(FI) == (MFI.getObjectOffset(BFI) + Dist*Bytes);
12054   }
12055 
12056   SDValue Base1 = Loc, Base2 = BaseLoc;
12057   int64_t Offset1 = 0, Offset2 = 0;
12058   getBaseWithConstantOffset(Loc, Base1, Offset1, DAG);
12059   getBaseWithConstantOffset(BaseLoc, Base2, Offset2, DAG);
12060   if (Base1 == Base2 && Offset1 == (Offset2 + Dist * Bytes))
12061     return true;
12062 
12063   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
12064   const GlobalValue *GV1 = nullptr;
12065   const GlobalValue *GV2 = nullptr;
12066   Offset1 = 0;
12067   Offset2 = 0;
12068   bool isGA1 = TLI.isGAPlusOffset(Loc.getNode(), GV1, Offset1);
12069   bool isGA2 = TLI.isGAPlusOffset(BaseLoc.getNode(), GV2, Offset2);
12070   if (isGA1 && isGA2 && GV1 == GV2)
12071     return Offset1 == (Offset2 + Dist*Bytes);
12072   return false;
12073 }
12074 
12075 // Like SelectionDAG::isConsecutiveLoad, but also works for stores, and does
12076 // not enforce equality of the chain operands.
12077 static bool isConsecutiveLS(SDNode *N, LSBaseSDNode *Base,
12078                             unsigned Bytes, int Dist,
12079                             SelectionDAG &DAG) {
12080   if (LSBaseSDNode *LS = dyn_cast<LSBaseSDNode>(N)) {
12081     EVT VT = LS->getMemoryVT();
12082     SDValue Loc = LS->getBasePtr();
12083     return isConsecutiveLSLoc(Loc, VT, Base, Bytes, Dist, DAG);
12084   }
12085 
12086   if (N->getOpcode() == ISD::INTRINSIC_W_CHAIN) {
12087     EVT VT;
12088     switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) {
12089     default: return false;
12090     case Intrinsic::ppc_qpx_qvlfd:
12091     case Intrinsic::ppc_qpx_qvlfda:
12092       VT = MVT::v4f64;
12093       break;
12094     case Intrinsic::ppc_qpx_qvlfs:
12095     case Intrinsic::ppc_qpx_qvlfsa:
12096       VT = MVT::v4f32;
12097       break;
12098     case Intrinsic::ppc_qpx_qvlfcd:
12099     case Intrinsic::ppc_qpx_qvlfcda:
12100       VT = MVT::v2f64;
12101       break;
12102     case Intrinsic::ppc_qpx_qvlfcs:
12103     case Intrinsic::ppc_qpx_qvlfcsa:
12104       VT = MVT::v2f32;
12105       break;
12106     case Intrinsic::ppc_qpx_qvlfiwa:
12107     case Intrinsic::ppc_qpx_qvlfiwz:
12108     case Intrinsic::ppc_altivec_lvx:
12109     case Intrinsic::ppc_altivec_lvxl:
12110     case Intrinsic::ppc_vsx_lxvw4x:
12111     case Intrinsic::ppc_vsx_lxvw4x_be:
12112       VT = MVT::v4i32;
12113       break;
12114     case Intrinsic::ppc_vsx_lxvd2x:
12115     case Intrinsic::ppc_vsx_lxvd2x_be:
12116       VT = MVT::v2f64;
12117       break;
12118     case Intrinsic::ppc_altivec_lvebx:
12119       VT = MVT::i8;
12120       break;
12121     case Intrinsic::ppc_altivec_lvehx:
12122       VT = MVT::i16;
12123       break;
12124     case Intrinsic::ppc_altivec_lvewx:
12125       VT = MVT::i32;
12126       break;
12127     }
12128 
12129     return isConsecutiveLSLoc(N->getOperand(2), VT, Base, Bytes, Dist, DAG);
12130   }
12131 
12132   if (N->getOpcode() == ISD::INTRINSIC_VOID) {
12133     EVT VT;
12134     switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) {
12135     default: return false;
12136     case Intrinsic::ppc_qpx_qvstfd:
12137     case Intrinsic::ppc_qpx_qvstfda:
12138       VT = MVT::v4f64;
12139       break;
12140     case Intrinsic::ppc_qpx_qvstfs:
12141     case Intrinsic::ppc_qpx_qvstfsa:
12142       VT = MVT::v4f32;
12143       break;
12144     case Intrinsic::ppc_qpx_qvstfcd:
12145     case Intrinsic::ppc_qpx_qvstfcda:
12146       VT = MVT::v2f64;
12147       break;
12148     case Intrinsic::ppc_qpx_qvstfcs:
12149     case Intrinsic::ppc_qpx_qvstfcsa:
12150       VT = MVT::v2f32;
12151       break;
12152     case Intrinsic::ppc_qpx_qvstfiw:
12153     case Intrinsic::ppc_qpx_qvstfiwa:
12154     case Intrinsic::ppc_altivec_stvx:
12155     case Intrinsic::ppc_altivec_stvxl:
12156     case Intrinsic::ppc_vsx_stxvw4x:
12157       VT = MVT::v4i32;
12158       break;
12159     case Intrinsic::ppc_vsx_stxvd2x:
12160       VT = MVT::v2f64;
12161       break;
12162     case Intrinsic::ppc_vsx_stxvw4x_be:
12163       VT = MVT::v4i32;
12164       break;
12165     case Intrinsic::ppc_vsx_stxvd2x_be:
12166       VT = MVT::v2f64;
12167       break;
12168     case Intrinsic::ppc_altivec_stvebx:
12169       VT = MVT::i8;
12170       break;
12171     case Intrinsic::ppc_altivec_stvehx:
12172       VT = MVT::i16;
12173       break;
12174     case Intrinsic::ppc_altivec_stvewx:
12175       VT = MVT::i32;
12176       break;
12177     }
12178 
12179     return isConsecutiveLSLoc(N->getOperand(3), VT, Base, Bytes, Dist, DAG);
12180   }
12181 
12182   return false;
12183 }
12184 
12185 // Return true is there is a nearyby consecutive load to the one provided
12186 // (regardless of alignment). We search up and down the chain, looking though
12187 // token factors and other loads (but nothing else). As a result, a true result
12188 // indicates that it is safe to create a new consecutive load adjacent to the
12189 // load provided.
12190 static bool findConsecutiveLoad(LoadSDNode *LD, SelectionDAG &DAG) {
12191   SDValue Chain = LD->getChain();
12192   EVT VT = LD->getMemoryVT();
12193 
12194   SmallSet<SDNode *, 16> LoadRoots;
12195   SmallVector<SDNode *, 8> Queue(1, Chain.getNode());
12196   SmallSet<SDNode *, 16> Visited;
12197 
12198   // First, search up the chain, branching to follow all token-factor operands.
12199   // If we find a consecutive load, then we're done, otherwise, record all
12200   // nodes just above the top-level loads and token factors.
12201   while (!Queue.empty()) {
12202     SDNode *ChainNext = Queue.pop_back_val();
12203     if (!Visited.insert(ChainNext).second)
12204       continue;
12205 
12206     if (MemSDNode *ChainLD = dyn_cast<MemSDNode>(ChainNext)) {
12207       if (isConsecutiveLS(ChainLD, LD, VT.getStoreSize(), 1, DAG))
12208         return true;
12209 
12210       if (!Visited.count(ChainLD->getChain().getNode()))
12211         Queue.push_back(ChainLD->getChain().getNode());
12212     } else if (ChainNext->getOpcode() == ISD::TokenFactor) {
12213       for (const SDUse &O : ChainNext->ops())
12214         if (!Visited.count(O.getNode()))
12215           Queue.push_back(O.getNode());
12216     } else
12217       LoadRoots.insert(ChainNext);
12218   }
12219 
12220   // Second, search down the chain, starting from the top-level nodes recorded
12221   // in the first phase. These top-level nodes are the nodes just above all
12222   // loads and token factors. Starting with their uses, recursively look though
12223   // all loads (just the chain uses) and token factors to find a consecutive
12224   // load.
12225   Visited.clear();
12226   Queue.clear();
12227 
12228   for (SmallSet<SDNode *, 16>::iterator I = LoadRoots.begin(),
12229        IE = LoadRoots.end(); I != IE; ++I) {
12230     Queue.push_back(*I);
12231 
12232     while (!Queue.empty()) {
12233       SDNode *LoadRoot = Queue.pop_back_val();
12234       if (!Visited.insert(LoadRoot).second)
12235         continue;
12236 
12237       if (MemSDNode *ChainLD = dyn_cast<MemSDNode>(LoadRoot))
12238         if (isConsecutiveLS(ChainLD, LD, VT.getStoreSize(), 1, DAG))
12239           return true;
12240 
12241       for (SDNode::use_iterator UI = LoadRoot->use_begin(),
12242            UE = LoadRoot->use_end(); UI != UE; ++UI)
12243         if (((isa<MemSDNode>(*UI) &&
12244             cast<MemSDNode>(*UI)->getChain().getNode() == LoadRoot) ||
12245             UI->getOpcode() == ISD::TokenFactor) && !Visited.count(*UI))
12246           Queue.push_back(*UI);
12247     }
12248   }
12249 
12250   return false;
12251 }
12252 
12253 /// This function is called when we have proved that a SETCC node can be replaced
12254 /// by subtraction (and other supporting instructions) so that the result of
12255 /// comparison is kept in a GPR instead of CR. This function is purely for
12256 /// codegen purposes and has some flags to guide the codegen process.
12257 static SDValue generateEquivalentSub(SDNode *N, int Size, bool Complement,
12258                                      bool Swap, SDLoc &DL, SelectionDAG &DAG) {
12259   assert(N->getOpcode() == ISD::SETCC && "ISD::SETCC Expected.");
12260 
12261   // Zero extend the operands to the largest legal integer. Originally, they
12262   // must be of a strictly smaller size.
12263   auto Op0 = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i64, N->getOperand(0),
12264                          DAG.getConstant(Size, DL, MVT::i32));
12265   auto Op1 = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i64, N->getOperand(1),
12266                          DAG.getConstant(Size, DL, MVT::i32));
12267 
12268   // Swap if needed. Depends on the condition code.
12269   if (Swap)
12270     std::swap(Op0, Op1);
12271 
12272   // Subtract extended integers.
12273   auto SubNode = DAG.getNode(ISD::SUB, DL, MVT::i64, Op0, Op1);
12274 
12275   // Move the sign bit to the least significant position and zero out the rest.
12276   // Now the least significant bit carries the result of original comparison.
12277   auto Shifted = DAG.getNode(ISD::SRL, DL, MVT::i64, SubNode,
12278                              DAG.getConstant(Size - 1, DL, MVT::i32));
12279   auto Final = Shifted;
12280 
12281   // Complement the result if needed. Based on the condition code.
12282   if (Complement)
12283     Final = DAG.getNode(ISD::XOR, DL, MVT::i64, Shifted,
12284                         DAG.getConstant(1, DL, MVT::i64));
12285 
12286   return DAG.getNode(ISD::TRUNCATE, DL, MVT::i1, Final);
12287 }
12288 
12289 SDValue PPCTargetLowering::ConvertSETCCToSubtract(SDNode *N,
12290                                                   DAGCombinerInfo &DCI) const {
12291   assert(N->getOpcode() == ISD::SETCC && "ISD::SETCC Expected.");
12292 
12293   SelectionDAG &DAG = DCI.DAG;
12294   SDLoc DL(N);
12295 
12296   // Size of integers being compared has a critical role in the following
12297   // analysis, so we prefer to do this when all types are legal.
12298   if (!DCI.isAfterLegalizeDAG())
12299     return SDValue();
12300 
12301   // If all users of SETCC extend its value to a legal integer type
12302   // then we replace SETCC with a subtraction
12303   for (SDNode::use_iterator UI = N->use_begin(),
12304        UE = N->use_end(); UI != UE; ++UI) {
12305     if (UI->getOpcode() != ISD::ZERO_EXTEND)
12306       return SDValue();
12307   }
12308 
12309   ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(2))->get();
12310   auto OpSize = N->getOperand(0).getValueSizeInBits();
12311 
12312   unsigned Size = DAG.getDataLayout().getLargestLegalIntTypeSizeInBits();
12313 
12314   if (OpSize < Size) {
12315     switch (CC) {
12316     default: break;
12317     case ISD::SETULT:
12318       return generateEquivalentSub(N, Size, false, false, DL, DAG);
12319     case ISD::SETULE:
12320       return generateEquivalentSub(N, Size, true, true, DL, DAG);
12321     case ISD::SETUGT:
12322       return generateEquivalentSub(N, Size, false, true, DL, DAG);
12323     case ISD::SETUGE:
12324       return generateEquivalentSub(N, Size, true, false, DL, DAG);
12325     }
12326   }
12327 
12328   return SDValue();
12329 }
12330 
12331 SDValue PPCTargetLowering::DAGCombineTruncBoolExt(SDNode *N,
12332                                                   DAGCombinerInfo &DCI) const {
12333   SelectionDAG &DAG = DCI.DAG;
12334   SDLoc dl(N);
12335 
12336   assert(Subtarget.useCRBits() && "Expecting to be tracking CR bits");
12337   // If we're tracking CR bits, we need to be careful that we don't have:
12338   //   trunc(binary-ops(zext(x), zext(y)))
12339   // or
12340   //   trunc(binary-ops(binary-ops(zext(x), zext(y)), ...)
12341   // such that we're unnecessarily moving things into GPRs when it would be
12342   // better to keep them in CR bits.
12343 
12344   // Note that trunc here can be an actual i1 trunc, or can be the effective
12345   // truncation that comes from a setcc or select_cc.
12346   if (N->getOpcode() == ISD::TRUNCATE &&
12347       N->getValueType(0) != MVT::i1)
12348     return SDValue();
12349 
12350   if (N->getOperand(0).getValueType() != MVT::i32 &&
12351       N->getOperand(0).getValueType() != MVT::i64)
12352     return SDValue();
12353 
12354   if (N->getOpcode() == ISD::SETCC ||
12355       N->getOpcode() == ISD::SELECT_CC) {
12356     // If we're looking at a comparison, then we need to make sure that the
12357     // high bits (all except for the first) don't matter the result.
12358     ISD::CondCode CC =
12359       cast<CondCodeSDNode>(N->getOperand(
12360         N->getOpcode() == ISD::SETCC ? 2 : 4))->get();
12361     unsigned OpBits = N->getOperand(0).getValueSizeInBits();
12362 
12363     if (ISD::isSignedIntSetCC(CC)) {
12364       if (DAG.ComputeNumSignBits(N->getOperand(0)) != OpBits ||
12365           DAG.ComputeNumSignBits(N->getOperand(1)) != OpBits)
12366         return SDValue();
12367     } else if (ISD::isUnsignedIntSetCC(CC)) {
12368       if (!DAG.MaskedValueIsZero(N->getOperand(0),
12369                                  APInt::getHighBitsSet(OpBits, OpBits-1)) ||
12370           !DAG.MaskedValueIsZero(N->getOperand(1),
12371                                  APInt::getHighBitsSet(OpBits, OpBits-1)))
12372         return (N->getOpcode() == ISD::SETCC ? ConvertSETCCToSubtract(N, DCI)
12373                                              : SDValue());
12374     } else {
12375       // This is neither a signed nor an unsigned comparison, just make sure
12376       // that the high bits are equal.
12377       KnownBits Op1Known = DAG.computeKnownBits(N->getOperand(0));
12378       KnownBits Op2Known = DAG.computeKnownBits(N->getOperand(1));
12379 
12380       // We don't really care about what is known about the first bit (if
12381       // anything), so clear it in all masks prior to comparing them.
12382       Op1Known.Zero.clearBit(0); Op1Known.One.clearBit(0);
12383       Op2Known.Zero.clearBit(0); Op2Known.One.clearBit(0);
12384 
12385       if (Op1Known.Zero != Op2Known.Zero || Op1Known.One != Op2Known.One)
12386         return SDValue();
12387     }
12388   }
12389 
12390   // We now know that the higher-order bits are irrelevant, we just need to
12391   // make sure that all of the intermediate operations are bit operations, and
12392   // all inputs are extensions.
12393   if (N->getOperand(0).getOpcode() != ISD::AND &&
12394       N->getOperand(0).getOpcode() != ISD::OR  &&
12395       N->getOperand(0).getOpcode() != ISD::XOR &&
12396       N->getOperand(0).getOpcode() != ISD::SELECT &&
12397       N->getOperand(0).getOpcode() != ISD::SELECT_CC &&
12398       N->getOperand(0).getOpcode() != ISD::TRUNCATE &&
12399       N->getOperand(0).getOpcode() != ISD::SIGN_EXTEND &&
12400       N->getOperand(0).getOpcode() != ISD::ZERO_EXTEND &&
12401       N->getOperand(0).getOpcode() != ISD::ANY_EXTEND)
12402     return SDValue();
12403 
12404   if ((N->getOpcode() == ISD::SETCC || N->getOpcode() == ISD::SELECT_CC) &&
12405       N->getOperand(1).getOpcode() != ISD::AND &&
12406       N->getOperand(1).getOpcode() != ISD::OR  &&
12407       N->getOperand(1).getOpcode() != ISD::XOR &&
12408       N->getOperand(1).getOpcode() != ISD::SELECT &&
12409       N->getOperand(1).getOpcode() != ISD::SELECT_CC &&
12410       N->getOperand(1).getOpcode() != ISD::TRUNCATE &&
12411       N->getOperand(1).getOpcode() != ISD::SIGN_EXTEND &&
12412       N->getOperand(1).getOpcode() != ISD::ZERO_EXTEND &&
12413       N->getOperand(1).getOpcode() != ISD::ANY_EXTEND)
12414     return SDValue();
12415 
12416   SmallVector<SDValue, 4> Inputs;
12417   SmallVector<SDValue, 8> BinOps, PromOps;
12418   SmallPtrSet<SDNode *, 16> Visited;
12419 
12420   for (unsigned i = 0; i < 2; ++i) {
12421     if (((N->getOperand(i).getOpcode() == ISD::SIGN_EXTEND ||
12422           N->getOperand(i).getOpcode() == ISD::ZERO_EXTEND ||
12423           N->getOperand(i).getOpcode() == ISD::ANY_EXTEND) &&
12424           N->getOperand(i).getOperand(0).getValueType() == MVT::i1) ||
12425         isa<ConstantSDNode>(N->getOperand(i)))
12426       Inputs.push_back(N->getOperand(i));
12427     else
12428       BinOps.push_back(N->getOperand(i));
12429 
12430     if (N->getOpcode() == ISD::TRUNCATE)
12431       break;
12432   }
12433 
12434   // Visit all inputs, collect all binary operations (and, or, xor and
12435   // select) that are all fed by extensions.
12436   while (!BinOps.empty()) {
12437     SDValue BinOp = BinOps.back();
12438     BinOps.pop_back();
12439 
12440     if (!Visited.insert(BinOp.getNode()).second)
12441       continue;
12442 
12443     PromOps.push_back(BinOp);
12444 
12445     for (unsigned i = 0, ie = BinOp.getNumOperands(); i != ie; ++i) {
12446       // The condition of the select is not promoted.
12447       if (BinOp.getOpcode() == ISD::SELECT && i == 0)
12448         continue;
12449       if (BinOp.getOpcode() == ISD::SELECT_CC && i != 2 && i != 3)
12450         continue;
12451 
12452       if (((BinOp.getOperand(i).getOpcode() == ISD::SIGN_EXTEND ||
12453             BinOp.getOperand(i).getOpcode() == ISD::ZERO_EXTEND ||
12454             BinOp.getOperand(i).getOpcode() == ISD::ANY_EXTEND) &&
12455            BinOp.getOperand(i).getOperand(0).getValueType() == MVT::i1) ||
12456           isa<ConstantSDNode>(BinOp.getOperand(i))) {
12457         Inputs.push_back(BinOp.getOperand(i));
12458       } else if (BinOp.getOperand(i).getOpcode() == ISD::AND ||
12459                  BinOp.getOperand(i).getOpcode() == ISD::OR  ||
12460                  BinOp.getOperand(i).getOpcode() == ISD::XOR ||
12461                  BinOp.getOperand(i).getOpcode() == ISD::SELECT ||
12462                  BinOp.getOperand(i).getOpcode() == ISD::SELECT_CC ||
12463                  BinOp.getOperand(i).getOpcode() == ISD::TRUNCATE ||
12464                  BinOp.getOperand(i).getOpcode() == ISD::SIGN_EXTEND ||
12465                  BinOp.getOperand(i).getOpcode() == ISD::ZERO_EXTEND ||
12466                  BinOp.getOperand(i).getOpcode() == ISD::ANY_EXTEND) {
12467         BinOps.push_back(BinOp.getOperand(i));
12468       } else {
12469         // We have an input that is not an extension or another binary
12470         // operation; we'll abort this transformation.
12471         return SDValue();
12472       }
12473     }
12474   }
12475 
12476   // Make sure that this is a self-contained cluster of operations (which
12477   // is not quite the same thing as saying that everything has only one
12478   // use).
12479   for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) {
12480     if (isa<ConstantSDNode>(Inputs[i]))
12481       continue;
12482 
12483     for (SDNode::use_iterator UI = Inputs[i].getNode()->use_begin(),
12484                               UE = Inputs[i].getNode()->use_end();
12485          UI != UE; ++UI) {
12486       SDNode *User = *UI;
12487       if (User != N && !Visited.count(User))
12488         return SDValue();
12489 
12490       // Make sure that we're not going to promote the non-output-value
12491       // operand(s) or SELECT or SELECT_CC.
12492       // FIXME: Although we could sometimes handle this, and it does occur in
12493       // practice that one of the condition inputs to the select is also one of
12494       // the outputs, we currently can't deal with this.
12495       if (User->getOpcode() == ISD::SELECT) {
12496         if (User->getOperand(0) == Inputs[i])
12497           return SDValue();
12498       } else if (User->getOpcode() == ISD::SELECT_CC) {
12499         if (User->getOperand(0) == Inputs[i] ||
12500             User->getOperand(1) == Inputs[i])
12501           return SDValue();
12502       }
12503     }
12504   }
12505 
12506   for (unsigned i = 0, ie = PromOps.size(); i != ie; ++i) {
12507     for (SDNode::use_iterator UI = PromOps[i].getNode()->use_begin(),
12508                               UE = PromOps[i].getNode()->use_end();
12509          UI != UE; ++UI) {
12510       SDNode *User = *UI;
12511       if (User != N && !Visited.count(User))
12512         return SDValue();
12513 
12514       // Make sure that we're not going to promote the non-output-value
12515       // operand(s) or SELECT or SELECT_CC.
12516       // FIXME: Although we could sometimes handle this, and it does occur in
12517       // practice that one of the condition inputs to the select is also one of
12518       // the outputs, we currently can't deal with this.
12519       if (User->getOpcode() == ISD::SELECT) {
12520         if (User->getOperand(0) == PromOps[i])
12521           return SDValue();
12522       } else if (User->getOpcode() == ISD::SELECT_CC) {
12523         if (User->getOperand(0) == PromOps[i] ||
12524             User->getOperand(1) == PromOps[i])
12525           return SDValue();
12526       }
12527     }
12528   }
12529 
12530   // Replace all inputs with the extension operand.
12531   for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) {
12532     // Constants may have users outside the cluster of to-be-promoted nodes,
12533     // and so we need to replace those as we do the promotions.
12534     if (isa<ConstantSDNode>(Inputs[i]))
12535       continue;
12536     else
12537       DAG.ReplaceAllUsesOfValueWith(Inputs[i], Inputs[i].getOperand(0));
12538   }
12539 
12540   std::list<HandleSDNode> PromOpHandles;
12541   for (auto &PromOp : PromOps)
12542     PromOpHandles.emplace_back(PromOp);
12543 
12544   // Replace all operations (these are all the same, but have a different
12545   // (i1) return type). DAG.getNode will validate that the types of
12546   // a binary operator match, so go through the list in reverse so that
12547   // we've likely promoted both operands first. Any intermediate truncations or
12548   // extensions disappear.
12549   while (!PromOpHandles.empty()) {
12550     SDValue PromOp = PromOpHandles.back().getValue();
12551     PromOpHandles.pop_back();
12552 
12553     if (PromOp.getOpcode() == ISD::TRUNCATE ||
12554         PromOp.getOpcode() == ISD::SIGN_EXTEND ||
12555         PromOp.getOpcode() == ISD::ZERO_EXTEND ||
12556         PromOp.getOpcode() == ISD::ANY_EXTEND) {
12557       if (!isa<ConstantSDNode>(PromOp.getOperand(0)) &&
12558           PromOp.getOperand(0).getValueType() != MVT::i1) {
12559         // The operand is not yet ready (see comment below).
12560         PromOpHandles.emplace_front(PromOp);
12561         continue;
12562       }
12563 
12564       SDValue RepValue = PromOp.getOperand(0);
12565       if (isa<ConstantSDNode>(RepValue))
12566         RepValue = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, RepValue);
12567 
12568       DAG.ReplaceAllUsesOfValueWith(PromOp, RepValue);
12569       continue;
12570     }
12571 
12572     unsigned C;
12573     switch (PromOp.getOpcode()) {
12574     default:             C = 0; break;
12575     case ISD::SELECT:    C = 1; break;
12576     case ISD::SELECT_CC: C = 2; break;
12577     }
12578 
12579     if ((!isa<ConstantSDNode>(PromOp.getOperand(C)) &&
12580          PromOp.getOperand(C).getValueType() != MVT::i1) ||
12581         (!isa<ConstantSDNode>(PromOp.getOperand(C+1)) &&
12582          PromOp.getOperand(C+1).getValueType() != MVT::i1)) {
12583       // The to-be-promoted operands of this node have not yet been
12584       // promoted (this should be rare because we're going through the
12585       // list backward, but if one of the operands has several users in
12586       // this cluster of to-be-promoted nodes, it is possible).
12587       PromOpHandles.emplace_front(PromOp);
12588       continue;
12589     }
12590 
12591     SmallVector<SDValue, 3> Ops(PromOp.getNode()->op_begin(),
12592                                 PromOp.getNode()->op_end());
12593 
12594     // If there are any constant inputs, make sure they're replaced now.
12595     for (unsigned i = 0; i < 2; ++i)
12596       if (isa<ConstantSDNode>(Ops[C+i]))
12597         Ops[C+i] = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, Ops[C+i]);
12598 
12599     DAG.ReplaceAllUsesOfValueWith(PromOp,
12600       DAG.getNode(PromOp.getOpcode(), dl, MVT::i1, Ops));
12601   }
12602 
12603   // Now we're left with the initial truncation itself.
12604   if (N->getOpcode() == ISD::TRUNCATE)
12605     return N->getOperand(0);
12606 
12607   // Otherwise, this is a comparison. The operands to be compared have just
12608   // changed type (to i1), but everything else is the same.
12609   return SDValue(N, 0);
12610 }
12611 
12612 SDValue PPCTargetLowering::DAGCombineExtBoolTrunc(SDNode *N,
12613                                                   DAGCombinerInfo &DCI) const {
12614   SelectionDAG &DAG = DCI.DAG;
12615   SDLoc dl(N);
12616 
12617   // If we're tracking CR bits, we need to be careful that we don't have:
12618   //   zext(binary-ops(trunc(x), trunc(y)))
12619   // or
12620   //   zext(binary-ops(binary-ops(trunc(x), trunc(y)), ...)
12621   // such that we're unnecessarily moving things into CR bits that can more
12622   // efficiently stay in GPRs. Note that if we're not certain that the high
12623   // bits are set as required by the final extension, we still may need to do
12624   // some masking to get the proper behavior.
12625 
12626   // This same functionality is important on PPC64 when dealing with
12627   // 32-to-64-bit extensions; these occur often when 32-bit values are used as
12628   // the return values of functions. Because it is so similar, it is handled
12629   // here as well.
12630 
12631   if (N->getValueType(0) != MVT::i32 &&
12632       N->getValueType(0) != MVT::i64)
12633     return SDValue();
12634 
12635   if (!((N->getOperand(0).getValueType() == MVT::i1 && Subtarget.useCRBits()) ||
12636         (N->getOperand(0).getValueType() == MVT::i32 && Subtarget.isPPC64())))
12637     return SDValue();
12638 
12639   if (N->getOperand(0).getOpcode() != ISD::AND &&
12640       N->getOperand(0).getOpcode() != ISD::OR  &&
12641       N->getOperand(0).getOpcode() != ISD::XOR &&
12642       N->getOperand(0).getOpcode() != ISD::SELECT &&
12643       N->getOperand(0).getOpcode() != ISD::SELECT_CC)
12644     return SDValue();
12645 
12646   SmallVector<SDValue, 4> Inputs;
12647   SmallVector<SDValue, 8> BinOps(1, N->getOperand(0)), PromOps;
12648   SmallPtrSet<SDNode *, 16> Visited;
12649 
12650   // Visit all inputs, collect all binary operations (and, or, xor and
12651   // select) that are all fed by truncations.
12652   while (!BinOps.empty()) {
12653     SDValue BinOp = BinOps.back();
12654     BinOps.pop_back();
12655 
12656     if (!Visited.insert(BinOp.getNode()).second)
12657       continue;
12658 
12659     PromOps.push_back(BinOp);
12660 
12661     for (unsigned i = 0, ie = BinOp.getNumOperands(); i != ie; ++i) {
12662       // The condition of the select is not promoted.
12663       if (BinOp.getOpcode() == ISD::SELECT && i == 0)
12664         continue;
12665       if (BinOp.getOpcode() == ISD::SELECT_CC && i != 2 && i != 3)
12666         continue;
12667 
12668       if (BinOp.getOperand(i).getOpcode() == ISD::TRUNCATE ||
12669           isa<ConstantSDNode>(BinOp.getOperand(i))) {
12670         Inputs.push_back(BinOp.getOperand(i));
12671       } else if (BinOp.getOperand(i).getOpcode() == ISD::AND ||
12672                  BinOp.getOperand(i).getOpcode() == ISD::OR  ||
12673                  BinOp.getOperand(i).getOpcode() == ISD::XOR ||
12674                  BinOp.getOperand(i).getOpcode() == ISD::SELECT ||
12675                  BinOp.getOperand(i).getOpcode() == ISD::SELECT_CC) {
12676         BinOps.push_back(BinOp.getOperand(i));
12677       } else {
12678         // We have an input that is not a truncation or another binary
12679         // operation; we'll abort this transformation.
12680         return SDValue();
12681       }
12682     }
12683   }
12684 
12685   // The operands of a select that must be truncated when the select is
12686   // promoted because the operand is actually part of the to-be-promoted set.
12687   DenseMap<SDNode *, EVT> SelectTruncOp[2];
12688 
12689   // Make sure that this is a self-contained cluster of operations (which
12690   // is not quite the same thing as saying that everything has only one
12691   // use).
12692   for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) {
12693     if (isa<ConstantSDNode>(Inputs[i]))
12694       continue;
12695 
12696     for (SDNode::use_iterator UI = Inputs[i].getNode()->use_begin(),
12697                               UE = Inputs[i].getNode()->use_end();
12698          UI != UE; ++UI) {
12699       SDNode *User = *UI;
12700       if (User != N && !Visited.count(User))
12701         return SDValue();
12702 
12703       // If we're going to promote the non-output-value operand(s) or SELECT or
12704       // SELECT_CC, record them for truncation.
12705       if (User->getOpcode() == ISD::SELECT) {
12706         if (User->getOperand(0) == Inputs[i])
12707           SelectTruncOp[0].insert(std::make_pair(User,
12708                                     User->getOperand(0).getValueType()));
12709       } else if (User->getOpcode() == ISD::SELECT_CC) {
12710         if (User->getOperand(0) == Inputs[i])
12711           SelectTruncOp[0].insert(std::make_pair(User,
12712                                     User->getOperand(0).getValueType()));
12713         if (User->getOperand(1) == Inputs[i])
12714           SelectTruncOp[1].insert(std::make_pair(User,
12715                                     User->getOperand(1).getValueType()));
12716       }
12717     }
12718   }
12719 
12720   for (unsigned i = 0, ie = PromOps.size(); i != ie; ++i) {
12721     for (SDNode::use_iterator UI = PromOps[i].getNode()->use_begin(),
12722                               UE = PromOps[i].getNode()->use_end();
12723          UI != UE; ++UI) {
12724       SDNode *User = *UI;
12725       if (User != N && !Visited.count(User))
12726         return SDValue();
12727 
12728       // If we're going to promote the non-output-value operand(s) or SELECT or
12729       // SELECT_CC, record them for truncation.
12730       if (User->getOpcode() == ISD::SELECT) {
12731         if (User->getOperand(0) == PromOps[i])
12732           SelectTruncOp[0].insert(std::make_pair(User,
12733                                     User->getOperand(0).getValueType()));
12734       } else if (User->getOpcode() == ISD::SELECT_CC) {
12735         if (User->getOperand(0) == PromOps[i])
12736           SelectTruncOp[0].insert(std::make_pair(User,
12737                                     User->getOperand(0).getValueType()));
12738         if (User->getOperand(1) == PromOps[i])
12739           SelectTruncOp[1].insert(std::make_pair(User,
12740                                     User->getOperand(1).getValueType()));
12741       }
12742     }
12743   }
12744 
12745   unsigned PromBits = N->getOperand(0).getValueSizeInBits();
12746   bool ReallyNeedsExt = false;
12747   if (N->getOpcode() != ISD::ANY_EXTEND) {
12748     // If all of the inputs are not already sign/zero extended, then
12749     // we'll still need to do that at the end.
12750     for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) {
12751       if (isa<ConstantSDNode>(Inputs[i]))
12752         continue;
12753 
12754       unsigned OpBits =
12755         Inputs[i].getOperand(0).getValueSizeInBits();
12756       assert(PromBits < OpBits && "Truncation not to a smaller bit count?");
12757 
12758       if ((N->getOpcode() == ISD::ZERO_EXTEND &&
12759            !DAG.MaskedValueIsZero(Inputs[i].getOperand(0),
12760                                   APInt::getHighBitsSet(OpBits,
12761                                                         OpBits-PromBits))) ||
12762           (N->getOpcode() == ISD::SIGN_EXTEND &&
12763            DAG.ComputeNumSignBits(Inputs[i].getOperand(0)) <
12764              (OpBits-(PromBits-1)))) {
12765         ReallyNeedsExt = true;
12766         break;
12767       }
12768     }
12769   }
12770 
12771   // Replace all inputs, either with the truncation operand, or a
12772   // truncation or extension to the final output type.
12773   for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) {
12774     // Constant inputs need to be replaced with the to-be-promoted nodes that
12775     // use them because they might have users outside of the cluster of
12776     // promoted nodes.
12777     if (isa<ConstantSDNode>(Inputs[i]))
12778       continue;
12779 
12780     SDValue InSrc = Inputs[i].getOperand(0);
12781     if (Inputs[i].getValueType() == N->getValueType(0))
12782       DAG.ReplaceAllUsesOfValueWith(Inputs[i], InSrc);
12783     else if (N->getOpcode() == ISD::SIGN_EXTEND)
12784       DAG.ReplaceAllUsesOfValueWith(Inputs[i],
12785         DAG.getSExtOrTrunc(InSrc, dl, N->getValueType(0)));
12786     else if (N->getOpcode() == ISD::ZERO_EXTEND)
12787       DAG.ReplaceAllUsesOfValueWith(Inputs[i],
12788         DAG.getZExtOrTrunc(InSrc, dl, N->getValueType(0)));
12789     else
12790       DAG.ReplaceAllUsesOfValueWith(Inputs[i],
12791         DAG.getAnyExtOrTrunc(InSrc, dl, N->getValueType(0)));
12792   }
12793 
12794   std::list<HandleSDNode> PromOpHandles;
12795   for (auto &PromOp : PromOps)
12796     PromOpHandles.emplace_back(PromOp);
12797 
12798   // Replace all operations (these are all the same, but have a different
12799   // (promoted) return type). DAG.getNode will validate that the types of
12800   // a binary operator match, so go through the list in reverse so that
12801   // we've likely promoted both operands first.
12802   while (!PromOpHandles.empty()) {
12803     SDValue PromOp = PromOpHandles.back().getValue();
12804     PromOpHandles.pop_back();
12805 
12806     unsigned C;
12807     switch (PromOp.getOpcode()) {
12808     default:             C = 0; break;
12809     case ISD::SELECT:    C = 1; break;
12810     case ISD::SELECT_CC: C = 2; break;
12811     }
12812 
12813     if ((!isa<ConstantSDNode>(PromOp.getOperand(C)) &&
12814          PromOp.getOperand(C).getValueType() != N->getValueType(0)) ||
12815         (!isa<ConstantSDNode>(PromOp.getOperand(C+1)) &&
12816          PromOp.getOperand(C+1).getValueType() != N->getValueType(0))) {
12817       // The to-be-promoted operands of this node have not yet been
12818       // promoted (this should be rare because we're going through the
12819       // list backward, but if one of the operands has several users in
12820       // this cluster of to-be-promoted nodes, it is possible).
12821       PromOpHandles.emplace_front(PromOp);
12822       continue;
12823     }
12824 
12825     // For SELECT and SELECT_CC nodes, we do a similar check for any
12826     // to-be-promoted comparison inputs.
12827     if (PromOp.getOpcode() == ISD::SELECT ||
12828         PromOp.getOpcode() == ISD::SELECT_CC) {
12829       if ((SelectTruncOp[0].count(PromOp.getNode()) &&
12830            PromOp.getOperand(0).getValueType() != N->getValueType(0)) ||
12831           (SelectTruncOp[1].count(PromOp.getNode()) &&
12832            PromOp.getOperand(1).getValueType() != N->getValueType(0))) {
12833         PromOpHandles.emplace_front(PromOp);
12834         continue;
12835       }
12836     }
12837 
12838     SmallVector<SDValue, 3> Ops(PromOp.getNode()->op_begin(),
12839                                 PromOp.getNode()->op_end());
12840 
12841     // If this node has constant inputs, then they'll need to be promoted here.
12842     for (unsigned i = 0; i < 2; ++i) {
12843       if (!isa<ConstantSDNode>(Ops[C+i]))
12844         continue;
12845       if (Ops[C+i].getValueType() == N->getValueType(0))
12846         continue;
12847 
12848       if (N->getOpcode() == ISD::SIGN_EXTEND)
12849         Ops[C+i] = DAG.getSExtOrTrunc(Ops[C+i], dl, N->getValueType(0));
12850       else if (N->getOpcode() == ISD::ZERO_EXTEND)
12851         Ops[C+i] = DAG.getZExtOrTrunc(Ops[C+i], dl, N->getValueType(0));
12852       else
12853         Ops[C+i] = DAG.getAnyExtOrTrunc(Ops[C+i], dl, N->getValueType(0));
12854     }
12855 
12856     // If we've promoted the comparison inputs of a SELECT or SELECT_CC,
12857     // truncate them again to the original value type.
12858     if (PromOp.getOpcode() == ISD::SELECT ||
12859         PromOp.getOpcode() == ISD::SELECT_CC) {
12860       auto SI0 = SelectTruncOp[0].find(PromOp.getNode());
12861       if (SI0 != SelectTruncOp[0].end())
12862         Ops[0] = DAG.getNode(ISD::TRUNCATE, dl, SI0->second, Ops[0]);
12863       auto SI1 = SelectTruncOp[1].find(PromOp.getNode());
12864       if (SI1 != SelectTruncOp[1].end())
12865         Ops[1] = DAG.getNode(ISD::TRUNCATE, dl, SI1->second, Ops[1]);
12866     }
12867 
12868     DAG.ReplaceAllUsesOfValueWith(PromOp,
12869       DAG.getNode(PromOp.getOpcode(), dl, N->getValueType(0), Ops));
12870   }
12871 
12872   // Now we're left with the initial extension itself.
12873   if (!ReallyNeedsExt)
12874     return N->getOperand(0);
12875 
12876   // To zero extend, just mask off everything except for the first bit (in the
12877   // i1 case).
12878   if (N->getOpcode() == ISD::ZERO_EXTEND)
12879     return DAG.getNode(ISD::AND, dl, N->getValueType(0), N->getOperand(0),
12880                        DAG.getConstant(APInt::getLowBitsSet(
12881                                          N->getValueSizeInBits(0), PromBits),
12882                                        dl, N->getValueType(0)));
12883 
12884   assert(N->getOpcode() == ISD::SIGN_EXTEND &&
12885          "Invalid extension type");
12886   EVT ShiftAmountTy = getShiftAmountTy(N->getValueType(0), DAG.getDataLayout());
12887   SDValue ShiftCst =
12888       DAG.getConstant(N->getValueSizeInBits(0) - PromBits, dl, ShiftAmountTy);
12889   return DAG.getNode(
12890       ISD::SRA, dl, N->getValueType(0),
12891       DAG.getNode(ISD::SHL, dl, N->getValueType(0), N->getOperand(0), ShiftCst),
12892       ShiftCst);
12893 }
12894 
12895 SDValue PPCTargetLowering::combineSetCC(SDNode *N,
12896                                         DAGCombinerInfo &DCI) const {
12897   assert(N->getOpcode() == ISD::SETCC &&
12898          "Should be called with a SETCC node");
12899 
12900   ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(2))->get();
12901   if (CC == ISD::SETNE || CC == ISD::SETEQ) {
12902     SDValue LHS = N->getOperand(0);
12903     SDValue RHS = N->getOperand(1);
12904 
12905     // If there is a '0 - y' pattern, canonicalize the pattern to the RHS.
12906     if (LHS.getOpcode() == ISD::SUB && isNullConstant(LHS.getOperand(0)) &&
12907         LHS.hasOneUse())
12908       std::swap(LHS, RHS);
12909 
12910     // x == 0-y --> x+y == 0
12911     // x != 0-y --> x+y != 0
12912     if (RHS.getOpcode() == ISD::SUB && isNullConstant(RHS.getOperand(0)) &&
12913         RHS.hasOneUse()) {
12914       SDLoc DL(N);
12915       SelectionDAG &DAG = DCI.DAG;
12916       EVT VT = N->getValueType(0);
12917       EVT OpVT = LHS.getValueType();
12918       SDValue Add = DAG.getNode(ISD::ADD, DL, OpVT, LHS, RHS.getOperand(1));
12919       return DAG.getSetCC(DL, VT, Add, DAG.getConstant(0, DL, OpVT), CC);
12920     }
12921   }
12922 
12923   return DAGCombineTruncBoolExt(N, DCI);
12924 }
12925 
12926 // Is this an extending load from an f32 to an f64?
12927 static bool isFPExtLoad(SDValue Op) {
12928   if (LoadSDNode *LD = dyn_cast<LoadSDNode>(Op.getNode()))
12929     return LD->getExtensionType() == ISD::EXTLOAD &&
12930       Op.getValueType() == MVT::f64;
12931   return false;
12932 }
12933 
12934 /// Reduces the number of fp-to-int conversion when building a vector.
12935 ///
12936 /// If this vector is built out of floating to integer conversions,
12937 /// transform it to a vector built out of floating point values followed by a
12938 /// single floating to integer conversion of the vector.
12939 /// Namely  (build_vector (fptosi $A), (fptosi $B), ...)
12940 /// becomes (fptosi (build_vector ($A, $B, ...)))
12941 SDValue PPCTargetLowering::
12942 combineElementTruncationToVectorTruncation(SDNode *N,
12943                                            DAGCombinerInfo &DCI) const {
12944   assert(N->getOpcode() == ISD::BUILD_VECTOR &&
12945          "Should be called with a BUILD_VECTOR node");
12946 
12947   SelectionDAG &DAG = DCI.DAG;
12948   SDLoc dl(N);
12949 
12950   SDValue FirstInput = N->getOperand(0);
12951   assert(FirstInput.getOpcode() == PPCISD::MFVSR &&
12952          "The input operand must be an fp-to-int conversion.");
12953 
12954   // This combine happens after legalization so the fp_to_[su]i nodes are
12955   // already converted to PPCSISD nodes.
12956   unsigned FirstConversion = FirstInput.getOperand(0).getOpcode();
12957   if (FirstConversion == PPCISD::FCTIDZ ||
12958       FirstConversion == PPCISD::FCTIDUZ ||
12959       FirstConversion == PPCISD::FCTIWZ ||
12960       FirstConversion == PPCISD::FCTIWUZ) {
12961     bool IsSplat = true;
12962     bool Is32Bit = FirstConversion == PPCISD::FCTIWZ ||
12963       FirstConversion == PPCISD::FCTIWUZ;
12964     EVT SrcVT = FirstInput.getOperand(0).getValueType();
12965     SmallVector<SDValue, 4> Ops;
12966     EVT TargetVT = N->getValueType(0);
12967     for (int i = 0, e = N->getNumOperands(); i < e; ++i) {
12968       SDValue NextOp = N->getOperand(i);
12969       if (NextOp.getOpcode() != PPCISD::MFVSR)
12970         return SDValue();
12971       unsigned NextConversion = NextOp.getOperand(0).getOpcode();
12972       if (NextConversion != FirstConversion)
12973         return SDValue();
12974       // If we are converting to 32-bit integers, we need to add an FP_ROUND.
12975       // This is not valid if the input was originally double precision. It is
12976       // also not profitable to do unless this is an extending load in which
12977       // case doing this combine will allow us to combine consecutive loads.
12978       if (Is32Bit && !isFPExtLoad(NextOp.getOperand(0).getOperand(0)))
12979         return SDValue();
12980       if (N->getOperand(i) != FirstInput)
12981         IsSplat = false;
12982     }
12983 
12984     // If this is a splat, we leave it as-is since there will be only a single
12985     // fp-to-int conversion followed by a splat of the integer. This is better
12986     // for 32-bit and smaller ints and neutral for 64-bit ints.
12987     if (IsSplat)
12988       return SDValue();
12989 
12990     // Now that we know we have the right type of node, get its operands
12991     for (int i = 0, e = N->getNumOperands(); i < e; ++i) {
12992       SDValue In = N->getOperand(i).getOperand(0);
12993       if (Is32Bit) {
12994         // For 32-bit values, we need to add an FP_ROUND node (if we made it
12995         // here, we know that all inputs are extending loads so this is safe).
12996         if (In.isUndef())
12997           Ops.push_back(DAG.getUNDEF(SrcVT));
12998         else {
12999           SDValue Trunc = DAG.getNode(ISD::FP_ROUND, dl,
13000                                       MVT::f32, In.getOperand(0),
13001                                       DAG.getIntPtrConstant(1, dl));
13002           Ops.push_back(Trunc);
13003         }
13004       } else
13005         Ops.push_back(In.isUndef() ? DAG.getUNDEF(SrcVT) : In.getOperand(0));
13006     }
13007 
13008     unsigned Opcode;
13009     if (FirstConversion == PPCISD::FCTIDZ ||
13010         FirstConversion == PPCISD::FCTIWZ)
13011       Opcode = ISD::FP_TO_SINT;
13012     else
13013       Opcode = ISD::FP_TO_UINT;
13014 
13015     EVT NewVT = TargetVT == MVT::v2i64 ? MVT::v2f64 : MVT::v4f32;
13016     SDValue BV = DAG.getBuildVector(NewVT, dl, Ops);
13017     return DAG.getNode(Opcode, dl, TargetVT, BV);
13018   }
13019   return SDValue();
13020 }
13021 
13022 /// Reduce the number of loads when building a vector.
13023 ///
13024 /// Building a vector out of multiple loads can be converted to a load
13025 /// of the vector type if the loads are consecutive. If the loads are
13026 /// consecutive but in descending order, a shuffle is added at the end
13027 /// to reorder the vector.
13028 static SDValue combineBVOfConsecutiveLoads(SDNode *N, SelectionDAG &DAG) {
13029   assert(N->getOpcode() == ISD::BUILD_VECTOR &&
13030          "Should be called with a BUILD_VECTOR node");
13031 
13032   SDLoc dl(N);
13033 
13034   // Return early for non byte-sized type, as they can't be consecutive.
13035   if (!N->getValueType(0).getVectorElementType().isByteSized())
13036     return SDValue();
13037 
13038   bool InputsAreConsecutiveLoads = true;
13039   bool InputsAreReverseConsecutive = true;
13040   unsigned ElemSize = N->getValueType(0).getScalarType().getStoreSize();
13041   SDValue FirstInput = N->getOperand(0);
13042   bool IsRoundOfExtLoad = false;
13043 
13044   if (FirstInput.getOpcode() == ISD::FP_ROUND &&
13045       FirstInput.getOperand(0).getOpcode() == ISD::LOAD) {
13046     LoadSDNode *LD = dyn_cast<LoadSDNode>(FirstInput.getOperand(0));
13047     IsRoundOfExtLoad = LD->getExtensionType() == ISD::EXTLOAD;
13048   }
13049   // Not a build vector of (possibly fp_rounded) loads.
13050   if ((!IsRoundOfExtLoad && FirstInput.getOpcode() != ISD::LOAD) ||
13051       N->getNumOperands() == 1)
13052     return SDValue();
13053 
13054   for (int i = 1, e = N->getNumOperands(); i < e; ++i) {
13055     // If any inputs are fp_round(extload), they all must be.
13056     if (IsRoundOfExtLoad && N->getOperand(i).getOpcode() != ISD::FP_ROUND)
13057       return SDValue();
13058 
13059     SDValue NextInput = IsRoundOfExtLoad ? N->getOperand(i).getOperand(0) :
13060       N->getOperand(i);
13061     if (NextInput.getOpcode() != ISD::LOAD)
13062       return SDValue();
13063 
13064     SDValue PreviousInput =
13065       IsRoundOfExtLoad ? N->getOperand(i-1).getOperand(0) : N->getOperand(i-1);
13066     LoadSDNode *LD1 = dyn_cast<LoadSDNode>(PreviousInput);
13067     LoadSDNode *LD2 = dyn_cast<LoadSDNode>(NextInput);
13068 
13069     // If any inputs are fp_round(extload), they all must be.
13070     if (IsRoundOfExtLoad && LD2->getExtensionType() != ISD::EXTLOAD)
13071       return SDValue();
13072 
13073     if (!isConsecutiveLS(LD2, LD1, ElemSize, 1, DAG))
13074       InputsAreConsecutiveLoads = false;
13075     if (!isConsecutiveLS(LD1, LD2, ElemSize, 1, DAG))
13076       InputsAreReverseConsecutive = false;
13077 
13078     // Exit early if the loads are neither consecutive nor reverse consecutive.
13079     if (!InputsAreConsecutiveLoads && !InputsAreReverseConsecutive)
13080       return SDValue();
13081   }
13082 
13083   assert(!(InputsAreConsecutiveLoads && InputsAreReverseConsecutive) &&
13084          "The loads cannot be both consecutive and reverse consecutive.");
13085 
13086   SDValue FirstLoadOp =
13087     IsRoundOfExtLoad ? FirstInput.getOperand(0) : FirstInput;
13088   SDValue LastLoadOp =
13089     IsRoundOfExtLoad ? N->getOperand(N->getNumOperands()-1).getOperand(0) :
13090                        N->getOperand(N->getNumOperands()-1);
13091 
13092   LoadSDNode *LD1 = dyn_cast<LoadSDNode>(FirstLoadOp);
13093   LoadSDNode *LDL = dyn_cast<LoadSDNode>(LastLoadOp);
13094   if (InputsAreConsecutiveLoads) {
13095     assert(LD1 && "Input needs to be a LoadSDNode.");
13096     return DAG.getLoad(N->getValueType(0), dl, LD1->getChain(),
13097                        LD1->getBasePtr(), LD1->getPointerInfo(),
13098                        LD1->getAlignment());
13099   }
13100   if (InputsAreReverseConsecutive) {
13101     assert(LDL && "Input needs to be a LoadSDNode.");
13102     SDValue Load = DAG.getLoad(N->getValueType(0), dl, LDL->getChain(),
13103                                LDL->getBasePtr(), LDL->getPointerInfo(),
13104                                LDL->getAlignment());
13105     SmallVector<int, 16> Ops;
13106     for (int i = N->getNumOperands() - 1; i >= 0; i--)
13107       Ops.push_back(i);
13108 
13109     return DAG.getVectorShuffle(N->getValueType(0), dl, Load,
13110                                 DAG.getUNDEF(N->getValueType(0)), Ops);
13111   }
13112   return SDValue();
13113 }
13114 
13115 // This function adds the required vector_shuffle needed to get
13116 // the elements of the vector extract in the correct position
13117 // as specified by the CorrectElems encoding.
13118 static SDValue addShuffleForVecExtend(SDNode *N, SelectionDAG &DAG,
13119                                       SDValue Input, uint64_t Elems,
13120                                       uint64_t CorrectElems) {
13121   SDLoc dl(N);
13122 
13123   unsigned NumElems = Input.getValueType().getVectorNumElements();
13124   SmallVector<int, 16> ShuffleMask(NumElems, -1);
13125 
13126   // Knowing the element indices being extracted from the original
13127   // vector and the order in which they're being inserted, just put
13128   // them at element indices required for the instruction.
13129   for (unsigned i = 0; i < N->getNumOperands(); i++) {
13130     if (DAG.getDataLayout().isLittleEndian())
13131       ShuffleMask[CorrectElems & 0xF] = Elems & 0xF;
13132     else
13133       ShuffleMask[(CorrectElems & 0xF0) >> 4] = (Elems & 0xF0) >> 4;
13134     CorrectElems = CorrectElems >> 8;
13135     Elems = Elems >> 8;
13136   }
13137 
13138   SDValue Shuffle =
13139       DAG.getVectorShuffle(Input.getValueType(), dl, Input,
13140                            DAG.getUNDEF(Input.getValueType()), ShuffleMask);
13141 
13142   EVT Ty = N->getValueType(0);
13143   SDValue BV = DAG.getNode(PPCISD::SExtVElems, dl, Ty, Shuffle);
13144   return BV;
13145 }
13146 
13147 // Look for build vector patterns where input operands come from sign
13148 // extended vector_extract elements of specific indices. If the correct indices
13149 // aren't used, add a vector shuffle to fix up the indices and create a new
13150 // PPCISD:SExtVElems node which selects the vector sign extend instructions
13151 // during instruction selection.
13152 static SDValue combineBVOfVecSExt(SDNode *N, SelectionDAG &DAG) {
13153   // This array encodes the indices that the vector sign extend instructions
13154   // extract from when extending from one type to another for both BE and LE.
13155   // The right nibble of each byte corresponds to the LE incides.
13156   // and the left nibble of each byte corresponds to the BE incides.
13157   // For example: 0x3074B8FC  byte->word
13158   // For LE: the allowed indices are: 0x0,0x4,0x8,0xC
13159   // For BE: the allowed indices are: 0x3,0x7,0xB,0xF
13160   // For example: 0x000070F8  byte->double word
13161   // For LE: the allowed indices are: 0x0,0x8
13162   // For BE: the allowed indices are: 0x7,0xF
13163   uint64_t TargetElems[] = {
13164       0x3074B8FC, // b->w
13165       0x000070F8, // b->d
13166       0x10325476, // h->w
13167       0x00003074, // h->d
13168       0x00001032, // w->d
13169   };
13170 
13171   uint64_t Elems = 0;
13172   int Index;
13173   SDValue Input;
13174 
13175   auto isSExtOfVecExtract = [&](SDValue Op) -> bool {
13176     if (!Op)
13177       return false;
13178     if (Op.getOpcode() != ISD::SIGN_EXTEND &&
13179         Op.getOpcode() != ISD::SIGN_EXTEND_INREG)
13180       return false;
13181 
13182     // A SIGN_EXTEND_INREG might be fed by an ANY_EXTEND to produce a value
13183     // of the right width.
13184     SDValue Extract = Op.getOperand(0);
13185     if (Extract.getOpcode() == ISD::ANY_EXTEND)
13186       Extract = Extract.getOperand(0);
13187     if (Extract.getOpcode() != ISD::EXTRACT_VECTOR_ELT)
13188       return false;
13189 
13190     ConstantSDNode *ExtOp = dyn_cast<ConstantSDNode>(Extract.getOperand(1));
13191     if (!ExtOp)
13192       return false;
13193 
13194     Index = ExtOp->getZExtValue();
13195     if (Input && Input != Extract.getOperand(0))
13196       return false;
13197 
13198     if (!Input)
13199       Input = Extract.getOperand(0);
13200 
13201     Elems = Elems << 8;
13202     Index = DAG.getDataLayout().isLittleEndian() ? Index : Index << 4;
13203     Elems |= Index;
13204 
13205     return true;
13206   };
13207 
13208   // If the build vector operands aren't sign extended vector extracts,
13209   // of the same input vector, then return.
13210   for (unsigned i = 0; i < N->getNumOperands(); i++) {
13211     if (!isSExtOfVecExtract(N->getOperand(i))) {
13212       return SDValue();
13213     }
13214   }
13215 
13216   // If the vector extract indicies are not correct, add the appropriate
13217   // vector_shuffle.
13218   int TgtElemArrayIdx;
13219   int InputSize = Input.getValueType().getScalarSizeInBits();
13220   int OutputSize = N->getValueType(0).getScalarSizeInBits();
13221   if (InputSize + OutputSize == 40)
13222     TgtElemArrayIdx = 0;
13223   else if (InputSize + OutputSize == 72)
13224     TgtElemArrayIdx = 1;
13225   else if (InputSize + OutputSize == 48)
13226     TgtElemArrayIdx = 2;
13227   else if (InputSize + OutputSize == 80)
13228     TgtElemArrayIdx = 3;
13229   else if (InputSize + OutputSize == 96)
13230     TgtElemArrayIdx = 4;
13231   else
13232     return SDValue();
13233 
13234   uint64_t CorrectElems = TargetElems[TgtElemArrayIdx];
13235   CorrectElems = DAG.getDataLayout().isLittleEndian()
13236                      ? CorrectElems & 0x0F0F0F0F0F0F0F0F
13237                      : CorrectElems & 0xF0F0F0F0F0F0F0F0;
13238   if (Elems != CorrectElems) {
13239     return addShuffleForVecExtend(N, DAG, Input, Elems, CorrectElems);
13240   }
13241 
13242   // Regular lowering will catch cases where a shuffle is not needed.
13243   return SDValue();
13244 }
13245 
13246 SDValue PPCTargetLowering::DAGCombineBuildVector(SDNode *N,
13247                                                  DAGCombinerInfo &DCI) const {
13248   assert(N->getOpcode() == ISD::BUILD_VECTOR &&
13249          "Should be called with a BUILD_VECTOR node");
13250 
13251   SelectionDAG &DAG = DCI.DAG;
13252   SDLoc dl(N);
13253 
13254   if (!Subtarget.hasVSX())
13255     return SDValue();
13256 
13257   // The target independent DAG combiner will leave a build_vector of
13258   // float-to-int conversions intact. We can generate MUCH better code for
13259   // a float-to-int conversion of a vector of floats.
13260   SDValue FirstInput = N->getOperand(0);
13261   if (FirstInput.getOpcode() == PPCISD::MFVSR) {
13262     SDValue Reduced = combineElementTruncationToVectorTruncation(N, DCI);
13263     if (Reduced)
13264       return Reduced;
13265   }
13266 
13267   // If we're building a vector out of consecutive loads, just load that
13268   // vector type.
13269   SDValue Reduced = combineBVOfConsecutiveLoads(N, DAG);
13270   if (Reduced)
13271     return Reduced;
13272 
13273   // If we're building a vector out of extended elements from another vector
13274   // we have P9 vector integer extend instructions. The code assumes legal
13275   // input types (i.e. it can't handle things like v4i16) so do not run before
13276   // legalization.
13277   if (Subtarget.hasP9Altivec() && !DCI.isBeforeLegalize()) {
13278     Reduced = combineBVOfVecSExt(N, DAG);
13279     if (Reduced)
13280       return Reduced;
13281   }
13282 
13283 
13284   if (N->getValueType(0) != MVT::v2f64)
13285     return SDValue();
13286 
13287   // Looking for:
13288   // (build_vector ([su]int_to_fp (extractelt 0)), [su]int_to_fp (extractelt 1))
13289   if (FirstInput.getOpcode() != ISD::SINT_TO_FP &&
13290       FirstInput.getOpcode() != ISD::UINT_TO_FP)
13291     return SDValue();
13292   if (N->getOperand(1).getOpcode() != ISD::SINT_TO_FP &&
13293       N->getOperand(1).getOpcode() != ISD::UINT_TO_FP)
13294     return SDValue();
13295   if (FirstInput.getOpcode() != N->getOperand(1).getOpcode())
13296     return SDValue();
13297 
13298   SDValue Ext1 = FirstInput.getOperand(0);
13299   SDValue Ext2 = N->getOperand(1).getOperand(0);
13300   if(Ext1.getOpcode() != ISD::EXTRACT_VECTOR_ELT ||
13301      Ext2.getOpcode() != ISD::EXTRACT_VECTOR_ELT)
13302     return SDValue();
13303 
13304   ConstantSDNode *Ext1Op = dyn_cast<ConstantSDNode>(Ext1.getOperand(1));
13305   ConstantSDNode *Ext2Op = dyn_cast<ConstantSDNode>(Ext2.getOperand(1));
13306   if (!Ext1Op || !Ext2Op)
13307     return SDValue();
13308   if (Ext1.getOperand(0).getValueType() != MVT::v4i32 ||
13309       Ext1.getOperand(0) != Ext2.getOperand(0))
13310     return SDValue();
13311 
13312   int FirstElem = Ext1Op->getZExtValue();
13313   int SecondElem = Ext2Op->getZExtValue();
13314   int SubvecIdx;
13315   if (FirstElem == 0 && SecondElem == 1)
13316     SubvecIdx = Subtarget.isLittleEndian() ? 1 : 0;
13317   else if (FirstElem == 2 && SecondElem == 3)
13318     SubvecIdx = Subtarget.isLittleEndian() ? 0 : 1;
13319   else
13320     return SDValue();
13321 
13322   SDValue SrcVec = Ext1.getOperand(0);
13323   auto NodeType = (N->getOperand(1).getOpcode() == ISD::SINT_TO_FP) ?
13324     PPCISD::SINT_VEC_TO_FP : PPCISD::UINT_VEC_TO_FP;
13325   return DAG.getNode(NodeType, dl, MVT::v2f64,
13326                      SrcVec, DAG.getIntPtrConstant(SubvecIdx, dl));
13327 }
13328 
13329 SDValue PPCTargetLowering::combineFPToIntToFP(SDNode *N,
13330                                               DAGCombinerInfo &DCI) const {
13331   assert((N->getOpcode() == ISD::SINT_TO_FP ||
13332           N->getOpcode() == ISD::UINT_TO_FP) &&
13333          "Need an int -> FP conversion node here");
13334 
13335   if (useSoftFloat() || !Subtarget.has64BitSupport())
13336     return SDValue();
13337 
13338   SelectionDAG &DAG = DCI.DAG;
13339   SDLoc dl(N);
13340   SDValue Op(N, 0);
13341 
13342   // Don't handle ppc_fp128 here or conversions that are out-of-range capable
13343   // from the hardware.
13344   if (Op.getValueType() != MVT::f32 && Op.getValueType() != MVT::f64)
13345     return SDValue();
13346   if (Op.getOperand(0).getValueType().getSimpleVT() <= MVT(MVT::i1) ||
13347       Op.getOperand(0).getValueType().getSimpleVT() > MVT(MVT::i64))
13348     return SDValue();
13349 
13350   SDValue FirstOperand(Op.getOperand(0));
13351   bool SubWordLoad = FirstOperand.getOpcode() == ISD::LOAD &&
13352     (FirstOperand.getValueType() == MVT::i8 ||
13353      FirstOperand.getValueType() == MVT::i16);
13354   if (Subtarget.hasP9Vector() && Subtarget.hasP9Altivec() && SubWordLoad) {
13355     bool Signed = N->getOpcode() == ISD::SINT_TO_FP;
13356     bool DstDouble = Op.getValueType() == MVT::f64;
13357     unsigned ConvOp = Signed ?
13358       (DstDouble ? PPCISD::FCFID  : PPCISD::FCFIDS) :
13359       (DstDouble ? PPCISD::FCFIDU : PPCISD::FCFIDUS);
13360     SDValue WidthConst =
13361       DAG.getIntPtrConstant(FirstOperand.getValueType() == MVT::i8 ? 1 : 2,
13362                             dl, false);
13363     LoadSDNode *LDN = cast<LoadSDNode>(FirstOperand.getNode());
13364     SDValue Ops[] = { LDN->getChain(), LDN->getBasePtr(), WidthConst };
13365     SDValue Ld = DAG.getMemIntrinsicNode(PPCISD::LXSIZX, dl,
13366                                          DAG.getVTList(MVT::f64, MVT::Other),
13367                                          Ops, MVT::i8, LDN->getMemOperand());
13368 
13369     // For signed conversion, we need to sign-extend the value in the VSR
13370     if (Signed) {
13371       SDValue ExtOps[] = { Ld, WidthConst };
13372       SDValue Ext = DAG.getNode(PPCISD::VEXTS, dl, MVT::f64, ExtOps);
13373       return DAG.getNode(ConvOp, dl, DstDouble ? MVT::f64 : MVT::f32, Ext);
13374     } else
13375       return DAG.getNode(ConvOp, dl, DstDouble ? MVT::f64 : MVT::f32, Ld);
13376   }
13377 
13378 
13379   // For i32 intermediate values, unfortunately, the conversion functions
13380   // leave the upper 32 bits of the value are undefined. Within the set of
13381   // scalar instructions, we have no method for zero- or sign-extending the
13382   // value. Thus, we cannot handle i32 intermediate values here.
13383   if (Op.getOperand(0).getValueType() == MVT::i32)
13384     return SDValue();
13385 
13386   assert((Op.getOpcode() == ISD::SINT_TO_FP || Subtarget.hasFPCVT()) &&
13387          "UINT_TO_FP is supported only with FPCVT");
13388 
13389   // If we have FCFIDS, then use it when converting to single-precision.
13390   // Otherwise, convert to double-precision and then round.
13391   unsigned FCFOp = (Subtarget.hasFPCVT() && Op.getValueType() == MVT::f32)
13392                        ? (Op.getOpcode() == ISD::UINT_TO_FP ? PPCISD::FCFIDUS
13393                                                             : PPCISD::FCFIDS)
13394                        : (Op.getOpcode() == ISD::UINT_TO_FP ? PPCISD::FCFIDU
13395                                                             : PPCISD::FCFID);
13396   MVT FCFTy = (Subtarget.hasFPCVT() && Op.getValueType() == MVT::f32)
13397                   ? MVT::f32
13398                   : MVT::f64;
13399 
13400   // If we're converting from a float, to an int, and back to a float again,
13401   // then we don't need the store/load pair at all.
13402   if ((Op.getOperand(0).getOpcode() == ISD::FP_TO_UINT &&
13403        Subtarget.hasFPCVT()) ||
13404       (Op.getOperand(0).getOpcode() == ISD::FP_TO_SINT)) {
13405     SDValue Src = Op.getOperand(0).getOperand(0);
13406     if (Src.getValueType() == MVT::f32) {
13407       Src = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Src);
13408       DCI.AddToWorklist(Src.getNode());
13409     } else if (Src.getValueType() != MVT::f64) {
13410       // Make sure that we don't pick up a ppc_fp128 source value.
13411       return SDValue();
13412     }
13413 
13414     unsigned FCTOp =
13415       Op.getOperand(0).getOpcode() == ISD::FP_TO_SINT ? PPCISD::FCTIDZ :
13416                                                         PPCISD::FCTIDUZ;
13417 
13418     SDValue Tmp = DAG.getNode(FCTOp, dl, MVT::f64, Src);
13419     SDValue FP = DAG.getNode(FCFOp, dl, FCFTy, Tmp);
13420 
13421     if (Op.getValueType() == MVT::f32 && !Subtarget.hasFPCVT()) {
13422       FP = DAG.getNode(ISD::FP_ROUND, dl,
13423                        MVT::f32, FP, DAG.getIntPtrConstant(0, dl));
13424       DCI.AddToWorklist(FP.getNode());
13425     }
13426 
13427     return FP;
13428   }
13429 
13430   return SDValue();
13431 }
13432 
13433 // expandVSXLoadForLE - Convert VSX loads (which may be intrinsics for
13434 // builtins) into loads with swaps.
13435 SDValue PPCTargetLowering::expandVSXLoadForLE(SDNode *N,
13436                                               DAGCombinerInfo &DCI) const {
13437   SelectionDAG &DAG = DCI.DAG;
13438   SDLoc dl(N);
13439   SDValue Chain;
13440   SDValue Base;
13441   MachineMemOperand *MMO;
13442 
13443   switch (N->getOpcode()) {
13444   default:
13445     llvm_unreachable("Unexpected opcode for little endian VSX load");
13446   case ISD::LOAD: {
13447     LoadSDNode *LD = cast<LoadSDNode>(N);
13448     Chain = LD->getChain();
13449     Base = LD->getBasePtr();
13450     MMO = LD->getMemOperand();
13451     // If the MMO suggests this isn't a load of a full vector, leave
13452     // things alone.  For a built-in, we have to make the change for
13453     // correctness, so if there is a size problem that will be a bug.
13454     if (MMO->getSize() < 16)
13455       return SDValue();
13456     break;
13457   }
13458   case ISD::INTRINSIC_W_CHAIN: {
13459     MemIntrinsicSDNode *Intrin = cast<MemIntrinsicSDNode>(N);
13460     Chain = Intrin->getChain();
13461     // Similarly to the store case below, Intrin->getBasePtr() doesn't get
13462     // us what we want. Get operand 2 instead.
13463     Base = Intrin->getOperand(2);
13464     MMO = Intrin->getMemOperand();
13465     break;
13466   }
13467   }
13468 
13469   MVT VecTy = N->getValueType(0).getSimpleVT();
13470 
13471   // Do not expand to PPCISD::LXVD2X + PPCISD::XXSWAPD when the load is
13472   // aligned and the type is a vector with elements up to 4 bytes
13473   if (Subtarget.needsSwapsForVSXMemOps() && !(MMO->getAlignment()%16)
13474       && VecTy.getScalarSizeInBits() <= 32 ) {
13475     return SDValue();
13476   }
13477 
13478   SDValue LoadOps[] = { Chain, Base };
13479   SDValue Load = DAG.getMemIntrinsicNode(PPCISD::LXVD2X, dl,
13480                                          DAG.getVTList(MVT::v2f64, MVT::Other),
13481                                          LoadOps, MVT::v2f64, MMO);
13482 
13483   DCI.AddToWorklist(Load.getNode());
13484   Chain = Load.getValue(1);
13485   SDValue Swap = DAG.getNode(
13486       PPCISD::XXSWAPD, dl, DAG.getVTList(MVT::v2f64, MVT::Other), Chain, Load);
13487   DCI.AddToWorklist(Swap.getNode());
13488 
13489   // Add a bitcast if the resulting load type doesn't match v2f64.
13490   if (VecTy != MVT::v2f64) {
13491     SDValue N = DAG.getNode(ISD::BITCAST, dl, VecTy, Swap);
13492     DCI.AddToWorklist(N.getNode());
13493     // Package {bitcast value, swap's chain} to match Load's shape.
13494     return DAG.getNode(ISD::MERGE_VALUES, dl, DAG.getVTList(VecTy, MVT::Other),
13495                        N, Swap.getValue(1));
13496   }
13497 
13498   return Swap;
13499 }
13500 
13501 // expandVSXStoreForLE - Convert VSX stores (which may be intrinsics for
13502 // builtins) into stores with swaps.
13503 SDValue PPCTargetLowering::expandVSXStoreForLE(SDNode *N,
13504                                                DAGCombinerInfo &DCI) const {
13505   SelectionDAG &DAG = DCI.DAG;
13506   SDLoc dl(N);
13507   SDValue Chain;
13508   SDValue Base;
13509   unsigned SrcOpnd;
13510   MachineMemOperand *MMO;
13511 
13512   switch (N->getOpcode()) {
13513   default:
13514     llvm_unreachable("Unexpected opcode for little endian VSX store");
13515   case ISD::STORE: {
13516     StoreSDNode *ST = cast<StoreSDNode>(N);
13517     Chain = ST->getChain();
13518     Base = ST->getBasePtr();
13519     MMO = ST->getMemOperand();
13520     SrcOpnd = 1;
13521     // If the MMO suggests this isn't a store of a full vector, leave
13522     // things alone.  For a built-in, we have to make the change for
13523     // correctness, so if there is a size problem that will be a bug.
13524     if (MMO->getSize() < 16)
13525       return SDValue();
13526     break;
13527   }
13528   case ISD::INTRINSIC_VOID: {
13529     MemIntrinsicSDNode *Intrin = cast<MemIntrinsicSDNode>(N);
13530     Chain = Intrin->getChain();
13531     // Intrin->getBasePtr() oddly does not get what we want.
13532     Base = Intrin->getOperand(3);
13533     MMO = Intrin->getMemOperand();
13534     SrcOpnd = 2;
13535     break;
13536   }
13537   }
13538 
13539   SDValue Src = N->getOperand(SrcOpnd);
13540   MVT VecTy = Src.getValueType().getSimpleVT();
13541 
13542   // Do not expand to PPCISD::XXSWAPD and PPCISD::STXVD2X when the load is
13543   // aligned and the type is a vector with elements up to 4 bytes
13544   if (Subtarget.needsSwapsForVSXMemOps() && !(MMO->getAlignment()%16)
13545       && VecTy.getScalarSizeInBits() <= 32 ) {
13546     return SDValue();
13547   }
13548 
13549   // All stores are done as v2f64 and possible bit cast.
13550   if (VecTy != MVT::v2f64) {
13551     Src = DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, Src);
13552     DCI.AddToWorklist(Src.getNode());
13553   }
13554 
13555   SDValue Swap = DAG.getNode(PPCISD::XXSWAPD, dl,
13556                              DAG.getVTList(MVT::v2f64, MVT::Other), Chain, Src);
13557   DCI.AddToWorklist(Swap.getNode());
13558   Chain = Swap.getValue(1);
13559   SDValue StoreOps[] = { Chain, Swap, Base };
13560   SDValue Store = DAG.getMemIntrinsicNode(PPCISD::STXVD2X, dl,
13561                                           DAG.getVTList(MVT::Other),
13562                                           StoreOps, VecTy, MMO);
13563   DCI.AddToWorklist(Store.getNode());
13564   return Store;
13565 }
13566 
13567 // Handle DAG combine for STORE (FP_TO_INT F).
13568 SDValue PPCTargetLowering::combineStoreFPToInt(SDNode *N,
13569                                                DAGCombinerInfo &DCI) const {
13570 
13571   SelectionDAG &DAG = DCI.DAG;
13572   SDLoc dl(N);
13573   unsigned Opcode = N->getOperand(1).getOpcode();
13574 
13575   assert((Opcode == ISD::FP_TO_SINT || Opcode == ISD::FP_TO_UINT)
13576          && "Not a FP_TO_INT Instruction!");
13577 
13578   SDValue Val = N->getOperand(1).getOperand(0);
13579   EVT Op1VT = N->getOperand(1).getValueType();
13580   EVT ResVT = Val.getValueType();
13581 
13582   // Floating point types smaller than 32 bits are not legal on Power.
13583   if (ResVT.getScalarSizeInBits() < 32)
13584     return SDValue();
13585 
13586   // Only perform combine for conversion to i64/i32 or power9 i16/i8.
13587   bool ValidTypeForStoreFltAsInt =
13588         (Op1VT == MVT::i32 || Op1VT == MVT::i64 ||
13589          (Subtarget.hasP9Vector() && (Op1VT == MVT::i16 || Op1VT == MVT::i8)));
13590 
13591   if (ResVT == MVT::ppcf128 || !Subtarget.hasP8Altivec() ||
13592       cast<StoreSDNode>(N)->isTruncatingStore() || !ValidTypeForStoreFltAsInt)
13593     return SDValue();
13594 
13595   // Extend f32 values to f64
13596   if (ResVT.getScalarSizeInBits() == 32) {
13597     Val = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Val);
13598     DCI.AddToWorklist(Val.getNode());
13599   }
13600 
13601   // Set signed or unsigned conversion opcode.
13602   unsigned ConvOpcode = (Opcode == ISD::FP_TO_SINT) ?
13603                           PPCISD::FP_TO_SINT_IN_VSR :
13604                           PPCISD::FP_TO_UINT_IN_VSR;
13605 
13606   Val = DAG.getNode(ConvOpcode,
13607                     dl, ResVT == MVT::f128 ? MVT::f128 : MVT::f64, Val);
13608   DCI.AddToWorklist(Val.getNode());
13609 
13610   // Set number of bytes being converted.
13611   unsigned ByteSize = Op1VT.getScalarSizeInBits() / 8;
13612   SDValue Ops[] = { N->getOperand(0), Val, N->getOperand(2),
13613                     DAG.getIntPtrConstant(ByteSize, dl, false),
13614                     DAG.getValueType(Op1VT) };
13615 
13616   Val = DAG.getMemIntrinsicNode(PPCISD::ST_VSR_SCAL_INT, dl,
13617           DAG.getVTList(MVT::Other), Ops,
13618           cast<StoreSDNode>(N)->getMemoryVT(),
13619           cast<StoreSDNode>(N)->getMemOperand());
13620 
13621   DCI.AddToWorklist(Val.getNode());
13622   return Val;
13623 }
13624 
13625 SDValue PPCTargetLowering::combineVReverseMemOP(ShuffleVectorSDNode *SVN,
13626                                                 LSBaseSDNode *LSBase,
13627                                                 DAGCombinerInfo &DCI) const {
13628   assert((ISD::isNormalLoad(LSBase) || ISD::isNormalStore(LSBase)) &&
13629         "Not a reverse memop pattern!");
13630 
13631   auto IsElementReverse = [](const ShuffleVectorSDNode *SVN) -> bool {
13632     auto Mask = SVN->getMask();
13633     int i = 0;
13634     auto I = Mask.rbegin();
13635     auto E = Mask.rend();
13636 
13637     for (; I != E; ++I) {
13638       if (*I != i)
13639         return false;
13640       i++;
13641     }
13642     return true;
13643   };
13644 
13645   SelectionDAG &DAG = DCI.DAG;
13646   EVT VT = SVN->getValueType(0);
13647 
13648   if (!isTypeLegal(VT) || !Subtarget.isLittleEndian() || !Subtarget.hasVSX())
13649     return SDValue();
13650 
13651   // Before P9, we have PPCVSXSwapRemoval pass to hack the element order.
13652   // See comment in PPCVSXSwapRemoval.cpp.
13653   // It is conflict with PPCVSXSwapRemoval opt. So we don't do it.
13654   if (!Subtarget.hasP9Vector())
13655     return SDValue();
13656 
13657   if(!IsElementReverse(SVN))
13658     return SDValue();
13659 
13660   if (LSBase->getOpcode() == ISD::LOAD) {
13661     SDLoc dl(SVN);
13662     SDValue LoadOps[] = {LSBase->getChain(), LSBase->getBasePtr()};
13663     return DAG.getMemIntrinsicNode(
13664         PPCISD::LOAD_VEC_BE, dl, DAG.getVTList(VT, MVT::Other), LoadOps,
13665         LSBase->getMemoryVT(), LSBase->getMemOperand());
13666   }
13667 
13668   if (LSBase->getOpcode() == ISD::STORE) {
13669     SDLoc dl(LSBase);
13670     SDValue StoreOps[] = {LSBase->getChain(), SVN->getOperand(0),
13671                           LSBase->getBasePtr()};
13672     return DAG.getMemIntrinsicNode(
13673         PPCISD::STORE_VEC_BE, dl, DAG.getVTList(MVT::Other), StoreOps,
13674         LSBase->getMemoryVT(), LSBase->getMemOperand());
13675   }
13676 
13677   llvm_unreachable("Expected a load or store node here");
13678 }
13679 
13680 SDValue PPCTargetLowering::PerformDAGCombine(SDNode *N,
13681                                              DAGCombinerInfo &DCI) const {
13682   SelectionDAG &DAG = DCI.DAG;
13683   SDLoc dl(N);
13684   switch (N->getOpcode()) {
13685   default: break;
13686   case ISD::ADD:
13687     return combineADD(N, DCI);
13688   case ISD::SHL:
13689     return combineSHL(N, DCI);
13690   case ISD::SRA:
13691     return combineSRA(N, DCI);
13692   case ISD::SRL:
13693     return combineSRL(N, DCI);
13694   case ISD::MUL:
13695     return combineMUL(N, DCI);
13696   case PPCISD::SHL:
13697     if (isNullConstant(N->getOperand(0))) // 0 << V -> 0.
13698         return N->getOperand(0);
13699     break;
13700   case PPCISD::SRL:
13701     if (isNullConstant(N->getOperand(0))) // 0 >>u V -> 0.
13702         return N->getOperand(0);
13703     break;
13704   case PPCISD::SRA:
13705     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(0))) {
13706       if (C->isNullValue() ||   //  0 >>s V -> 0.
13707           C->isAllOnesValue())    // -1 >>s V -> -1.
13708         return N->getOperand(0);
13709     }
13710     break;
13711   case ISD::SIGN_EXTEND:
13712   case ISD::ZERO_EXTEND:
13713   case ISD::ANY_EXTEND:
13714     return DAGCombineExtBoolTrunc(N, DCI);
13715   case ISD::TRUNCATE:
13716     return combineTRUNCATE(N, DCI);
13717   case ISD::SETCC:
13718     if (SDValue CSCC = combineSetCC(N, DCI))
13719       return CSCC;
13720     LLVM_FALLTHROUGH;
13721   case ISD::SELECT_CC:
13722     return DAGCombineTruncBoolExt(N, DCI);
13723   case ISD::SINT_TO_FP:
13724   case ISD::UINT_TO_FP:
13725     return combineFPToIntToFP(N, DCI);
13726   case ISD::VECTOR_SHUFFLE:
13727     if (ISD::isNormalLoad(N->getOperand(0).getNode())) {
13728       LSBaseSDNode* LSBase = cast<LSBaseSDNode>(N->getOperand(0));
13729       return combineVReverseMemOP(cast<ShuffleVectorSDNode>(N), LSBase, DCI);
13730     }
13731     break;
13732   case ISD::STORE: {
13733 
13734     EVT Op1VT = N->getOperand(1).getValueType();
13735     unsigned Opcode = N->getOperand(1).getOpcode();
13736 
13737     if (Opcode == ISD::FP_TO_SINT || Opcode == ISD::FP_TO_UINT) {
13738       SDValue Val= combineStoreFPToInt(N, DCI);
13739       if (Val)
13740         return Val;
13741     }
13742 
13743     if (Opcode == ISD::VECTOR_SHUFFLE && ISD::isNormalStore(N)) {
13744       ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N->getOperand(1));
13745       SDValue Val= combineVReverseMemOP(SVN, cast<LSBaseSDNode>(N), DCI);
13746       if (Val)
13747         return Val;
13748     }
13749 
13750     // Turn STORE (BSWAP) -> sthbrx/stwbrx.
13751     if (cast<StoreSDNode>(N)->isUnindexed() && Opcode == ISD::BSWAP &&
13752         N->getOperand(1).getNode()->hasOneUse() &&
13753         (Op1VT == MVT::i32 || Op1VT == MVT::i16 ||
13754          (Subtarget.hasLDBRX() && Subtarget.isPPC64() && Op1VT == MVT::i64))) {
13755 
13756       // STBRX can only handle simple types and it makes no sense to store less
13757       // two bytes in byte-reversed order.
13758       EVT mVT = cast<StoreSDNode>(N)->getMemoryVT();
13759       if (mVT.isExtended() || mVT.getSizeInBits() < 16)
13760         break;
13761 
13762       SDValue BSwapOp = N->getOperand(1).getOperand(0);
13763       // Do an any-extend to 32-bits if this is a half-word input.
13764       if (BSwapOp.getValueType() == MVT::i16)
13765         BSwapOp = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, BSwapOp);
13766 
13767       // If the type of BSWAP operand is wider than stored memory width
13768       // it need to be shifted to the right side before STBRX.
13769       if (Op1VT.bitsGT(mVT)) {
13770         int Shift = Op1VT.getSizeInBits() - mVT.getSizeInBits();
13771         BSwapOp = DAG.getNode(ISD::SRL, dl, Op1VT, BSwapOp,
13772                               DAG.getConstant(Shift, dl, MVT::i32));
13773         // Need to truncate if this is a bswap of i64 stored as i32/i16.
13774         if (Op1VT == MVT::i64)
13775           BSwapOp = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, BSwapOp);
13776       }
13777 
13778       SDValue Ops[] = {
13779         N->getOperand(0), BSwapOp, N->getOperand(2), DAG.getValueType(mVT)
13780       };
13781       return
13782         DAG.getMemIntrinsicNode(PPCISD::STBRX, dl, DAG.getVTList(MVT::Other),
13783                                 Ops, cast<StoreSDNode>(N)->getMemoryVT(),
13784                                 cast<StoreSDNode>(N)->getMemOperand());
13785     }
13786 
13787     // STORE Constant:i32<0>  ->  STORE<trunc to i32> Constant:i64<0>
13788     // So it can increase the chance of CSE constant construction.
13789     if (Subtarget.isPPC64() && !DCI.isBeforeLegalize() &&
13790         isa<ConstantSDNode>(N->getOperand(1)) && Op1VT == MVT::i32) {
13791       // Need to sign-extended to 64-bits to handle negative values.
13792       EVT MemVT = cast<StoreSDNode>(N)->getMemoryVT();
13793       uint64_t Val64 = SignExtend64(N->getConstantOperandVal(1),
13794                                     MemVT.getSizeInBits());
13795       SDValue Const64 = DAG.getConstant(Val64, dl, MVT::i64);
13796 
13797       // DAG.getTruncStore() can't be used here because it doesn't accept
13798       // the general (base + offset) addressing mode.
13799       // So we use UpdateNodeOperands and setTruncatingStore instead.
13800       DAG.UpdateNodeOperands(N, N->getOperand(0), Const64, N->getOperand(2),
13801                              N->getOperand(3));
13802       cast<StoreSDNode>(N)->setTruncatingStore(true);
13803       return SDValue(N, 0);
13804     }
13805 
13806     // For little endian, VSX stores require generating xxswapd/lxvd2x.
13807     // Not needed on ISA 3.0 based CPUs since we have a non-permuting store.
13808     if (Op1VT.isSimple()) {
13809       MVT StoreVT = Op1VT.getSimpleVT();
13810       if (Subtarget.needsSwapsForVSXMemOps() &&
13811           (StoreVT == MVT::v2f64 || StoreVT == MVT::v2i64 ||
13812            StoreVT == MVT::v4f32 || StoreVT == MVT::v4i32))
13813         return expandVSXStoreForLE(N, DCI);
13814     }
13815     break;
13816   }
13817   case ISD::LOAD: {
13818     LoadSDNode *LD = cast<LoadSDNode>(N);
13819     EVT VT = LD->getValueType(0);
13820 
13821     // For little endian, VSX loads require generating lxvd2x/xxswapd.
13822     // Not needed on ISA 3.0 based CPUs since we have a non-permuting load.
13823     if (VT.isSimple()) {
13824       MVT LoadVT = VT.getSimpleVT();
13825       if (Subtarget.needsSwapsForVSXMemOps() &&
13826           (LoadVT == MVT::v2f64 || LoadVT == MVT::v2i64 ||
13827            LoadVT == MVT::v4f32 || LoadVT == MVT::v4i32))
13828         return expandVSXLoadForLE(N, DCI);
13829     }
13830 
13831     // We sometimes end up with a 64-bit integer load, from which we extract
13832     // two single-precision floating-point numbers. This happens with
13833     // std::complex<float>, and other similar structures, because of the way we
13834     // canonicalize structure copies. However, if we lack direct moves,
13835     // then the final bitcasts from the extracted integer values to the
13836     // floating-point numbers turn into store/load pairs. Even with direct moves,
13837     // just loading the two floating-point numbers is likely better.
13838     auto ReplaceTwoFloatLoad = [&]() {
13839       if (VT != MVT::i64)
13840         return false;
13841 
13842       if (LD->getExtensionType() != ISD::NON_EXTLOAD ||
13843           LD->isVolatile())
13844         return false;
13845 
13846       //  We're looking for a sequence like this:
13847       //  t13: i64,ch = load<LD8[%ref.tmp]> t0, t6, undef:i64
13848       //      t16: i64 = srl t13, Constant:i32<32>
13849       //    t17: i32 = truncate t16
13850       //  t18: f32 = bitcast t17
13851       //    t19: i32 = truncate t13
13852       //  t20: f32 = bitcast t19
13853 
13854       if (!LD->hasNUsesOfValue(2, 0))
13855         return false;
13856 
13857       auto UI = LD->use_begin();
13858       while (UI.getUse().getResNo() != 0) ++UI;
13859       SDNode *Trunc = *UI++;
13860       while (UI.getUse().getResNo() != 0) ++UI;
13861       SDNode *RightShift = *UI;
13862       if (Trunc->getOpcode() != ISD::TRUNCATE)
13863         std::swap(Trunc, RightShift);
13864 
13865       if (Trunc->getOpcode() != ISD::TRUNCATE ||
13866           Trunc->getValueType(0) != MVT::i32 ||
13867           !Trunc->hasOneUse())
13868         return false;
13869       if (RightShift->getOpcode() != ISD::SRL ||
13870           !isa<ConstantSDNode>(RightShift->getOperand(1)) ||
13871           RightShift->getConstantOperandVal(1) != 32 ||
13872           !RightShift->hasOneUse())
13873         return false;
13874 
13875       SDNode *Trunc2 = *RightShift->use_begin();
13876       if (Trunc2->getOpcode() != ISD::TRUNCATE ||
13877           Trunc2->getValueType(0) != MVT::i32 ||
13878           !Trunc2->hasOneUse())
13879         return false;
13880 
13881       SDNode *Bitcast = *Trunc->use_begin();
13882       SDNode *Bitcast2 = *Trunc2->use_begin();
13883 
13884       if (Bitcast->getOpcode() != ISD::BITCAST ||
13885           Bitcast->getValueType(0) != MVT::f32)
13886         return false;
13887       if (Bitcast2->getOpcode() != ISD::BITCAST ||
13888           Bitcast2->getValueType(0) != MVT::f32)
13889         return false;
13890 
13891       if (Subtarget.isLittleEndian())
13892         std::swap(Bitcast, Bitcast2);
13893 
13894       // Bitcast has the second float (in memory-layout order) and Bitcast2
13895       // has the first one.
13896 
13897       SDValue BasePtr = LD->getBasePtr();
13898       if (LD->isIndexed()) {
13899         assert(LD->getAddressingMode() == ISD::PRE_INC &&
13900                "Non-pre-inc AM on PPC?");
13901         BasePtr =
13902           DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr,
13903                       LD->getOffset());
13904       }
13905 
13906       auto MMOFlags =
13907           LD->getMemOperand()->getFlags() & ~MachineMemOperand::MOVolatile;
13908       SDValue FloatLoad = DAG.getLoad(MVT::f32, dl, LD->getChain(), BasePtr,
13909                                       LD->getPointerInfo(), LD->getAlignment(),
13910                                       MMOFlags, LD->getAAInfo());
13911       SDValue AddPtr =
13912         DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(),
13913                     BasePtr, DAG.getIntPtrConstant(4, dl));
13914       SDValue FloatLoad2 = DAG.getLoad(
13915           MVT::f32, dl, SDValue(FloatLoad.getNode(), 1), AddPtr,
13916           LD->getPointerInfo().getWithOffset(4),
13917           MinAlign(LD->getAlignment(), 4), MMOFlags, LD->getAAInfo());
13918 
13919       if (LD->isIndexed()) {
13920         // Note that DAGCombine should re-form any pre-increment load(s) from
13921         // what is produced here if that makes sense.
13922         DAG.ReplaceAllUsesOfValueWith(SDValue(LD, 1), BasePtr);
13923       }
13924 
13925       DCI.CombineTo(Bitcast2, FloatLoad);
13926       DCI.CombineTo(Bitcast, FloatLoad2);
13927 
13928       DAG.ReplaceAllUsesOfValueWith(SDValue(LD, LD->isIndexed() ? 2 : 1),
13929                                     SDValue(FloatLoad2.getNode(), 1));
13930       return true;
13931     };
13932 
13933     if (ReplaceTwoFloatLoad())
13934       return SDValue(N, 0);
13935 
13936     EVT MemVT = LD->getMemoryVT();
13937     Type *Ty = MemVT.getTypeForEVT(*DAG.getContext());
13938     unsigned ABIAlignment = DAG.getDataLayout().getABITypeAlignment(Ty);
13939     Type *STy = MemVT.getScalarType().getTypeForEVT(*DAG.getContext());
13940     unsigned ScalarABIAlignment = DAG.getDataLayout().getABITypeAlignment(STy);
13941     if (LD->isUnindexed() && VT.isVector() &&
13942         ((Subtarget.hasAltivec() && ISD::isNON_EXTLoad(N) &&
13943           // P8 and later hardware should just use LOAD.
13944           !Subtarget.hasP8Vector() && (VT == MVT::v16i8 || VT == MVT::v8i16 ||
13945                                        VT == MVT::v4i32 || VT == MVT::v4f32)) ||
13946          (Subtarget.hasQPX() && (VT == MVT::v4f64 || VT == MVT::v4f32) &&
13947           LD->getAlignment() >= ScalarABIAlignment)) &&
13948         LD->getAlignment() < ABIAlignment) {
13949       // This is a type-legal unaligned Altivec or QPX load.
13950       SDValue Chain = LD->getChain();
13951       SDValue Ptr = LD->getBasePtr();
13952       bool isLittleEndian = Subtarget.isLittleEndian();
13953 
13954       // This implements the loading of unaligned vectors as described in
13955       // the venerable Apple Velocity Engine overview. Specifically:
13956       // https://developer.apple.com/hardwaredrivers/ve/alignment.html
13957       // https://developer.apple.com/hardwaredrivers/ve/code_optimization.html
13958       //
13959       // The general idea is to expand a sequence of one or more unaligned
13960       // loads into an alignment-based permutation-control instruction (lvsl
13961       // or lvsr), a series of regular vector loads (which always truncate
13962       // their input address to an aligned address), and a series of
13963       // permutations.  The results of these permutations are the requested
13964       // loaded values.  The trick is that the last "extra" load is not taken
13965       // from the address you might suspect (sizeof(vector) bytes after the
13966       // last requested load), but rather sizeof(vector) - 1 bytes after the
13967       // last requested vector. The point of this is to avoid a page fault if
13968       // the base address happened to be aligned. This works because if the
13969       // base address is aligned, then adding less than a full vector length
13970       // will cause the last vector in the sequence to be (re)loaded.
13971       // Otherwise, the next vector will be fetched as you might suspect was
13972       // necessary.
13973 
13974       // We might be able to reuse the permutation generation from
13975       // a different base address offset from this one by an aligned amount.
13976       // The INTRINSIC_WO_CHAIN DAG combine will attempt to perform this
13977       // optimization later.
13978       Intrinsic::ID Intr, IntrLD, IntrPerm;
13979       MVT PermCntlTy, PermTy, LDTy;
13980       if (Subtarget.hasAltivec()) {
13981         Intr = isLittleEndian ?  Intrinsic::ppc_altivec_lvsr :
13982                                  Intrinsic::ppc_altivec_lvsl;
13983         IntrLD = Intrinsic::ppc_altivec_lvx;
13984         IntrPerm = Intrinsic::ppc_altivec_vperm;
13985         PermCntlTy = MVT::v16i8;
13986         PermTy = MVT::v4i32;
13987         LDTy = MVT::v4i32;
13988       } else {
13989         Intr =   MemVT == MVT::v4f64 ? Intrinsic::ppc_qpx_qvlpcld :
13990                                        Intrinsic::ppc_qpx_qvlpcls;
13991         IntrLD = MemVT == MVT::v4f64 ? Intrinsic::ppc_qpx_qvlfd :
13992                                        Intrinsic::ppc_qpx_qvlfs;
13993         IntrPerm = Intrinsic::ppc_qpx_qvfperm;
13994         PermCntlTy = MVT::v4f64;
13995         PermTy = MVT::v4f64;
13996         LDTy = MemVT.getSimpleVT();
13997       }
13998 
13999       SDValue PermCntl = BuildIntrinsicOp(Intr, Ptr, DAG, dl, PermCntlTy);
14000 
14001       // Create the new MMO for the new base load. It is like the original MMO,
14002       // but represents an area in memory almost twice the vector size centered
14003       // on the original address. If the address is unaligned, we might start
14004       // reading up to (sizeof(vector)-1) bytes below the address of the
14005       // original unaligned load.
14006       MachineFunction &MF = DAG.getMachineFunction();
14007       MachineMemOperand *BaseMMO =
14008         MF.getMachineMemOperand(LD->getMemOperand(),
14009                                 -(long)MemVT.getStoreSize()+1,
14010                                 2*MemVT.getStoreSize()-1);
14011 
14012       // Create the new base load.
14013       SDValue LDXIntID =
14014           DAG.getTargetConstant(IntrLD, dl, getPointerTy(MF.getDataLayout()));
14015       SDValue BaseLoadOps[] = { Chain, LDXIntID, Ptr };
14016       SDValue BaseLoad =
14017         DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, dl,
14018                                 DAG.getVTList(PermTy, MVT::Other),
14019                                 BaseLoadOps, LDTy, BaseMMO);
14020 
14021       // Note that the value of IncOffset (which is provided to the next
14022       // load's pointer info offset value, and thus used to calculate the
14023       // alignment), and the value of IncValue (which is actually used to
14024       // increment the pointer value) are different! This is because we
14025       // require the next load to appear to be aligned, even though it
14026       // is actually offset from the base pointer by a lesser amount.
14027       int IncOffset = VT.getSizeInBits() / 8;
14028       int IncValue = IncOffset;
14029 
14030       // Walk (both up and down) the chain looking for another load at the real
14031       // (aligned) offset (the alignment of the other load does not matter in
14032       // this case). If found, then do not use the offset reduction trick, as
14033       // that will prevent the loads from being later combined (as they would
14034       // otherwise be duplicates).
14035       if (!findConsecutiveLoad(LD, DAG))
14036         --IncValue;
14037 
14038       SDValue Increment =
14039           DAG.getConstant(IncValue, dl, getPointerTy(MF.getDataLayout()));
14040       Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, Increment);
14041 
14042       MachineMemOperand *ExtraMMO =
14043         MF.getMachineMemOperand(LD->getMemOperand(),
14044                                 1, 2*MemVT.getStoreSize()-1);
14045       SDValue ExtraLoadOps[] = { Chain, LDXIntID, Ptr };
14046       SDValue ExtraLoad =
14047         DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, dl,
14048                                 DAG.getVTList(PermTy, MVT::Other),
14049                                 ExtraLoadOps, LDTy, ExtraMMO);
14050 
14051       SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
14052         BaseLoad.getValue(1), ExtraLoad.getValue(1));
14053 
14054       // Because vperm has a big-endian bias, we must reverse the order
14055       // of the input vectors and complement the permute control vector
14056       // when generating little endian code.  We have already handled the
14057       // latter by using lvsr instead of lvsl, so just reverse BaseLoad
14058       // and ExtraLoad here.
14059       SDValue Perm;
14060       if (isLittleEndian)
14061         Perm = BuildIntrinsicOp(IntrPerm,
14062                                 ExtraLoad, BaseLoad, PermCntl, DAG, dl);
14063       else
14064         Perm = BuildIntrinsicOp(IntrPerm,
14065                                 BaseLoad, ExtraLoad, PermCntl, DAG, dl);
14066 
14067       if (VT != PermTy)
14068         Perm = Subtarget.hasAltivec() ?
14069                  DAG.getNode(ISD::BITCAST, dl, VT, Perm) :
14070                  DAG.getNode(ISD::FP_ROUND, dl, VT, Perm, // QPX
14071                                DAG.getTargetConstant(1, dl, MVT::i64));
14072                                // second argument is 1 because this rounding
14073                                // is always exact.
14074 
14075       // The output of the permutation is our loaded result, the TokenFactor is
14076       // our new chain.
14077       DCI.CombineTo(N, Perm, TF);
14078       return SDValue(N, 0);
14079     }
14080     }
14081     break;
14082     case ISD::INTRINSIC_WO_CHAIN: {
14083       bool isLittleEndian = Subtarget.isLittleEndian();
14084       unsigned IID = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue();
14085       Intrinsic::ID Intr = (isLittleEndian ? Intrinsic::ppc_altivec_lvsr
14086                                            : Intrinsic::ppc_altivec_lvsl);
14087       if ((IID == Intr ||
14088            IID == Intrinsic::ppc_qpx_qvlpcld  ||
14089            IID == Intrinsic::ppc_qpx_qvlpcls) &&
14090         N->getOperand(1)->getOpcode() == ISD::ADD) {
14091         SDValue Add = N->getOperand(1);
14092 
14093         int Bits = IID == Intrinsic::ppc_qpx_qvlpcld ?
14094                    5 /* 32 byte alignment */ : 4 /* 16 byte alignment */;
14095 
14096         if (DAG.MaskedValueIsZero(Add->getOperand(1),
14097                                   APInt::getAllOnesValue(Bits /* alignment */)
14098                                       .zext(Add.getScalarValueSizeInBits()))) {
14099           SDNode *BasePtr = Add->getOperand(0).getNode();
14100           for (SDNode::use_iterator UI = BasePtr->use_begin(),
14101                                     UE = BasePtr->use_end();
14102                UI != UE; ++UI) {
14103             if (UI->getOpcode() == ISD::INTRINSIC_WO_CHAIN &&
14104                 cast<ConstantSDNode>(UI->getOperand(0))->getZExtValue() == IID) {
14105               // We've found another LVSL/LVSR, and this address is an aligned
14106               // multiple of that one. The results will be the same, so use the
14107               // one we've just found instead.
14108 
14109               return SDValue(*UI, 0);
14110             }
14111           }
14112         }
14113 
14114         if (isa<ConstantSDNode>(Add->getOperand(1))) {
14115           SDNode *BasePtr = Add->getOperand(0).getNode();
14116           for (SDNode::use_iterator UI = BasePtr->use_begin(),
14117                UE = BasePtr->use_end(); UI != UE; ++UI) {
14118             if (UI->getOpcode() == ISD::ADD &&
14119                 isa<ConstantSDNode>(UI->getOperand(1)) &&
14120                 (cast<ConstantSDNode>(Add->getOperand(1))->getZExtValue() -
14121                  cast<ConstantSDNode>(UI->getOperand(1))->getZExtValue()) %
14122                 (1ULL << Bits) == 0) {
14123               SDNode *OtherAdd = *UI;
14124               for (SDNode::use_iterator VI = OtherAdd->use_begin(),
14125                    VE = OtherAdd->use_end(); VI != VE; ++VI) {
14126                 if (VI->getOpcode() == ISD::INTRINSIC_WO_CHAIN &&
14127                     cast<ConstantSDNode>(VI->getOperand(0))->getZExtValue() == IID) {
14128                   return SDValue(*VI, 0);
14129                 }
14130               }
14131             }
14132           }
14133         }
14134       }
14135 
14136       // Combine vmaxsw/h/b(a, a's negation) to abs(a)
14137       // Expose the vabsduw/h/b opportunity for down stream
14138       if (!DCI.isAfterLegalizeDAG() && Subtarget.hasP9Altivec() &&
14139           (IID == Intrinsic::ppc_altivec_vmaxsw ||
14140            IID == Intrinsic::ppc_altivec_vmaxsh ||
14141            IID == Intrinsic::ppc_altivec_vmaxsb)) {
14142         SDValue V1 = N->getOperand(1);
14143         SDValue V2 = N->getOperand(2);
14144         if ((V1.getSimpleValueType() == MVT::v4i32 ||
14145              V1.getSimpleValueType() == MVT::v8i16 ||
14146              V1.getSimpleValueType() == MVT::v16i8) &&
14147             V1.getSimpleValueType() == V2.getSimpleValueType()) {
14148           // (0-a, a)
14149           if (V1.getOpcode() == ISD::SUB &&
14150               ISD::isBuildVectorAllZeros(V1.getOperand(0).getNode()) &&
14151               V1.getOperand(1) == V2) {
14152             return DAG.getNode(ISD::ABS, dl, V2.getValueType(), V2);
14153           }
14154           // (a, 0-a)
14155           if (V2.getOpcode() == ISD::SUB &&
14156               ISD::isBuildVectorAllZeros(V2.getOperand(0).getNode()) &&
14157               V2.getOperand(1) == V1) {
14158             return DAG.getNode(ISD::ABS, dl, V1.getValueType(), V1);
14159           }
14160           // (x-y, y-x)
14161           if (V1.getOpcode() == ISD::SUB && V2.getOpcode() == ISD::SUB &&
14162               V1.getOperand(0) == V2.getOperand(1) &&
14163               V1.getOperand(1) == V2.getOperand(0)) {
14164             return DAG.getNode(ISD::ABS, dl, V1.getValueType(), V1);
14165           }
14166         }
14167       }
14168     }
14169 
14170     break;
14171   case ISD::INTRINSIC_W_CHAIN:
14172     // For little endian, VSX loads require generating lxvd2x/xxswapd.
14173     // Not needed on ISA 3.0 based CPUs since we have a non-permuting load.
14174     if (Subtarget.needsSwapsForVSXMemOps()) {
14175       switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) {
14176       default:
14177         break;
14178       case Intrinsic::ppc_vsx_lxvw4x:
14179       case Intrinsic::ppc_vsx_lxvd2x:
14180         return expandVSXLoadForLE(N, DCI);
14181       }
14182     }
14183     break;
14184   case ISD::INTRINSIC_VOID:
14185     // For little endian, VSX stores require generating xxswapd/stxvd2x.
14186     // Not needed on ISA 3.0 based CPUs since we have a non-permuting store.
14187     if (Subtarget.needsSwapsForVSXMemOps()) {
14188       switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) {
14189       default:
14190         break;
14191       case Intrinsic::ppc_vsx_stxvw4x:
14192       case Intrinsic::ppc_vsx_stxvd2x:
14193         return expandVSXStoreForLE(N, DCI);
14194       }
14195     }
14196     break;
14197   case ISD::BSWAP:
14198     // Turn BSWAP (LOAD) -> lhbrx/lwbrx.
14199     if (ISD::isNON_EXTLoad(N->getOperand(0).getNode()) &&
14200         N->getOperand(0).hasOneUse() &&
14201         (N->getValueType(0) == MVT::i32 || N->getValueType(0) == MVT::i16 ||
14202          (Subtarget.hasLDBRX() && Subtarget.isPPC64() &&
14203           N->getValueType(0) == MVT::i64))) {
14204       SDValue Load = N->getOperand(0);
14205       LoadSDNode *LD = cast<LoadSDNode>(Load);
14206       // Create the byte-swapping load.
14207       SDValue Ops[] = {
14208         LD->getChain(),    // Chain
14209         LD->getBasePtr(),  // Ptr
14210         DAG.getValueType(N->getValueType(0)) // VT
14211       };
14212       SDValue BSLoad =
14213         DAG.getMemIntrinsicNode(PPCISD::LBRX, dl,
14214                                 DAG.getVTList(N->getValueType(0) == MVT::i64 ?
14215                                               MVT::i64 : MVT::i32, MVT::Other),
14216                                 Ops, LD->getMemoryVT(), LD->getMemOperand());
14217 
14218       // If this is an i16 load, insert the truncate.
14219       SDValue ResVal = BSLoad;
14220       if (N->getValueType(0) == MVT::i16)
14221         ResVal = DAG.getNode(ISD::TRUNCATE, dl, MVT::i16, BSLoad);
14222 
14223       // First, combine the bswap away.  This makes the value produced by the
14224       // load dead.
14225       DCI.CombineTo(N, ResVal);
14226 
14227       // Next, combine the load away, we give it a bogus result value but a real
14228       // chain result.  The result value is dead because the bswap is dead.
14229       DCI.CombineTo(Load.getNode(), ResVal, BSLoad.getValue(1));
14230 
14231       // Return N so it doesn't get rechecked!
14232       return SDValue(N, 0);
14233     }
14234     break;
14235   case PPCISD::VCMP:
14236     // If a VCMPo node already exists with exactly the same operands as this
14237     // node, use its result instead of this node (VCMPo computes both a CR6 and
14238     // a normal output).
14239     //
14240     if (!N->getOperand(0).hasOneUse() &&
14241         !N->getOperand(1).hasOneUse() &&
14242         !N->getOperand(2).hasOneUse()) {
14243 
14244       // Scan all of the users of the LHS, looking for VCMPo's that match.
14245       SDNode *VCMPoNode = nullptr;
14246 
14247       SDNode *LHSN = N->getOperand(0).getNode();
14248       for (SDNode::use_iterator UI = LHSN->use_begin(), E = LHSN->use_end();
14249            UI != E; ++UI)
14250         if (UI->getOpcode() == PPCISD::VCMPo &&
14251             UI->getOperand(1) == N->getOperand(1) &&
14252             UI->getOperand(2) == N->getOperand(2) &&
14253             UI->getOperand(0) == N->getOperand(0)) {
14254           VCMPoNode = *UI;
14255           break;
14256         }
14257 
14258       // If there is no VCMPo node, or if the flag value has a single use, don't
14259       // transform this.
14260       if (!VCMPoNode || VCMPoNode->hasNUsesOfValue(0, 1))
14261         break;
14262 
14263       // Look at the (necessarily single) use of the flag value.  If it has a
14264       // chain, this transformation is more complex.  Note that multiple things
14265       // could use the value result, which we should ignore.
14266       SDNode *FlagUser = nullptr;
14267       for (SDNode::use_iterator UI = VCMPoNode->use_begin();
14268            FlagUser == nullptr; ++UI) {
14269         assert(UI != VCMPoNode->use_end() && "Didn't find user!");
14270         SDNode *User = *UI;
14271         for (unsigned i = 0, e = User->getNumOperands(); i != e; ++i) {
14272           if (User->getOperand(i) == SDValue(VCMPoNode, 1)) {
14273             FlagUser = User;
14274             break;
14275           }
14276         }
14277       }
14278 
14279       // If the user is a MFOCRF instruction, we know this is safe.
14280       // Otherwise we give up for right now.
14281       if (FlagUser->getOpcode() == PPCISD::MFOCRF)
14282         return SDValue(VCMPoNode, 0);
14283     }
14284     break;
14285   case ISD::BRCOND: {
14286     SDValue Cond = N->getOperand(1);
14287     SDValue Target = N->getOperand(2);
14288 
14289     if (Cond.getOpcode() == ISD::INTRINSIC_W_CHAIN &&
14290         cast<ConstantSDNode>(Cond.getOperand(1))->getZExtValue() ==
14291           Intrinsic::loop_decrement) {
14292 
14293       // We now need to make the intrinsic dead (it cannot be instruction
14294       // selected).
14295       DAG.ReplaceAllUsesOfValueWith(Cond.getValue(1), Cond.getOperand(0));
14296       assert(Cond.getNode()->hasOneUse() &&
14297              "Counter decrement has more than one use");
14298 
14299       return DAG.getNode(PPCISD::BDNZ, dl, MVT::Other,
14300                          N->getOperand(0), Target);
14301     }
14302   }
14303   break;
14304   case ISD::BR_CC: {
14305     // If this is a branch on an altivec predicate comparison, lower this so
14306     // that we don't have to do a MFOCRF: instead, branch directly on CR6.  This
14307     // lowering is done pre-legalize, because the legalizer lowers the predicate
14308     // compare down to code that is difficult to reassemble.
14309     ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(1))->get();
14310     SDValue LHS = N->getOperand(2), RHS = N->getOperand(3);
14311 
14312     // Sometimes the promoted value of the intrinsic is ANDed by some non-zero
14313     // value. If so, pass-through the AND to get to the intrinsic.
14314     if (LHS.getOpcode() == ISD::AND &&
14315         LHS.getOperand(0).getOpcode() == ISD::INTRINSIC_W_CHAIN &&
14316         cast<ConstantSDNode>(LHS.getOperand(0).getOperand(1))->getZExtValue() ==
14317           Intrinsic::loop_decrement &&
14318         isa<ConstantSDNode>(LHS.getOperand(1)) &&
14319         !isNullConstant(LHS.getOperand(1)))
14320       LHS = LHS.getOperand(0);
14321 
14322     if (LHS.getOpcode() == ISD::INTRINSIC_W_CHAIN &&
14323         cast<ConstantSDNode>(LHS.getOperand(1))->getZExtValue() ==
14324           Intrinsic::loop_decrement &&
14325         isa<ConstantSDNode>(RHS)) {
14326       assert((CC == ISD::SETEQ || CC == ISD::SETNE) &&
14327              "Counter decrement comparison is not EQ or NE");
14328 
14329       unsigned Val = cast<ConstantSDNode>(RHS)->getZExtValue();
14330       bool isBDNZ = (CC == ISD::SETEQ && Val) ||
14331                     (CC == ISD::SETNE && !Val);
14332 
14333       // We now need to make the intrinsic dead (it cannot be instruction
14334       // selected).
14335       DAG.ReplaceAllUsesOfValueWith(LHS.getValue(1), LHS.getOperand(0));
14336       assert(LHS.getNode()->hasOneUse() &&
14337              "Counter decrement has more than one use");
14338 
14339       return DAG.getNode(isBDNZ ? PPCISD::BDNZ : PPCISD::BDZ, dl, MVT::Other,
14340                          N->getOperand(0), N->getOperand(4));
14341     }
14342 
14343     int CompareOpc;
14344     bool isDot;
14345 
14346     if (LHS.getOpcode() == ISD::INTRINSIC_WO_CHAIN &&
14347         isa<ConstantSDNode>(RHS) && (CC == ISD::SETEQ || CC == ISD::SETNE) &&
14348         getVectorCompareInfo(LHS, CompareOpc, isDot, Subtarget)) {
14349       assert(isDot && "Can't compare against a vector result!");
14350 
14351       // If this is a comparison against something other than 0/1, then we know
14352       // that the condition is never/always true.
14353       unsigned Val = cast<ConstantSDNode>(RHS)->getZExtValue();
14354       if (Val != 0 && Val != 1) {
14355         if (CC == ISD::SETEQ)      // Cond never true, remove branch.
14356           return N->getOperand(0);
14357         // Always !=, turn it into an unconditional branch.
14358         return DAG.getNode(ISD::BR, dl, MVT::Other,
14359                            N->getOperand(0), N->getOperand(4));
14360       }
14361 
14362       bool BranchOnWhenPredTrue = (CC == ISD::SETEQ) ^ (Val == 0);
14363 
14364       // Create the PPCISD altivec 'dot' comparison node.
14365       SDValue Ops[] = {
14366         LHS.getOperand(2),  // LHS of compare
14367         LHS.getOperand(3),  // RHS of compare
14368         DAG.getConstant(CompareOpc, dl, MVT::i32)
14369       };
14370       EVT VTs[] = { LHS.getOperand(2).getValueType(), MVT::Glue };
14371       SDValue CompNode = DAG.getNode(PPCISD::VCMPo, dl, VTs, Ops);
14372 
14373       // Unpack the result based on how the target uses it.
14374       PPC::Predicate CompOpc;
14375       switch (cast<ConstantSDNode>(LHS.getOperand(1))->getZExtValue()) {
14376       default:  // Can't happen, don't crash on invalid number though.
14377       case 0:   // Branch on the value of the EQ bit of CR6.
14378         CompOpc = BranchOnWhenPredTrue ? PPC::PRED_EQ : PPC::PRED_NE;
14379         break;
14380       case 1:   // Branch on the inverted value of the EQ bit of CR6.
14381         CompOpc = BranchOnWhenPredTrue ? PPC::PRED_NE : PPC::PRED_EQ;
14382         break;
14383       case 2:   // Branch on the value of the LT bit of CR6.
14384         CompOpc = BranchOnWhenPredTrue ? PPC::PRED_LT : PPC::PRED_GE;
14385         break;
14386       case 3:   // Branch on the inverted value of the LT bit of CR6.
14387         CompOpc = BranchOnWhenPredTrue ? PPC::PRED_GE : PPC::PRED_LT;
14388         break;
14389       }
14390 
14391       return DAG.getNode(PPCISD::COND_BRANCH, dl, MVT::Other, N->getOperand(0),
14392                          DAG.getConstant(CompOpc, dl, MVT::i32),
14393                          DAG.getRegister(PPC::CR6, MVT::i32),
14394                          N->getOperand(4), CompNode.getValue(1));
14395     }
14396     break;
14397   }
14398   case ISD::BUILD_VECTOR:
14399     return DAGCombineBuildVector(N, DCI);
14400   case ISD::ABS:
14401     return combineABS(N, DCI);
14402   case ISD::VSELECT:
14403     return combineVSelect(N, DCI);
14404   }
14405 
14406   return SDValue();
14407 }
14408 
14409 SDValue
14410 PPCTargetLowering::BuildSDIVPow2(SDNode *N, const APInt &Divisor,
14411                                  SelectionDAG &DAG,
14412                                  SmallVectorImpl<SDNode *> &Created) const {
14413   // fold (sdiv X, pow2)
14414   EVT VT = N->getValueType(0);
14415   if (VT == MVT::i64 && !Subtarget.isPPC64())
14416     return SDValue();
14417   if ((VT != MVT::i32 && VT != MVT::i64) ||
14418       !(Divisor.isPowerOf2() || (-Divisor).isPowerOf2()))
14419     return SDValue();
14420 
14421   SDLoc DL(N);
14422   SDValue N0 = N->getOperand(0);
14423 
14424   bool IsNegPow2 = (-Divisor).isPowerOf2();
14425   unsigned Lg2 = (IsNegPow2 ? -Divisor : Divisor).countTrailingZeros();
14426   SDValue ShiftAmt = DAG.getConstant(Lg2, DL, VT);
14427 
14428   SDValue Op = DAG.getNode(PPCISD::SRA_ADDZE, DL, VT, N0, ShiftAmt);
14429   Created.push_back(Op.getNode());
14430 
14431   if (IsNegPow2) {
14432     Op = DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), Op);
14433     Created.push_back(Op.getNode());
14434   }
14435 
14436   return Op;
14437 }
14438 
14439 //===----------------------------------------------------------------------===//
14440 // Inline Assembly Support
14441 //===----------------------------------------------------------------------===//
14442 
14443 void PPCTargetLowering::computeKnownBitsForTargetNode(const SDValue Op,
14444                                                       KnownBits &Known,
14445                                                       const APInt &DemandedElts,
14446                                                       const SelectionDAG &DAG,
14447                                                       unsigned Depth) const {
14448   Known.resetAll();
14449   switch (Op.getOpcode()) {
14450   default: break;
14451   case PPCISD::LBRX: {
14452     // lhbrx is known to have the top bits cleared out.
14453     if (cast<VTSDNode>(Op.getOperand(2))->getVT() == MVT::i16)
14454       Known.Zero = 0xFFFF0000;
14455     break;
14456   }
14457   case ISD::INTRINSIC_WO_CHAIN: {
14458     switch (cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue()) {
14459     default: break;
14460     case Intrinsic::ppc_altivec_vcmpbfp_p:
14461     case Intrinsic::ppc_altivec_vcmpeqfp_p:
14462     case Intrinsic::ppc_altivec_vcmpequb_p:
14463     case Intrinsic::ppc_altivec_vcmpequh_p:
14464     case Intrinsic::ppc_altivec_vcmpequw_p:
14465     case Intrinsic::ppc_altivec_vcmpequd_p:
14466     case Intrinsic::ppc_altivec_vcmpgefp_p:
14467     case Intrinsic::ppc_altivec_vcmpgtfp_p:
14468     case Intrinsic::ppc_altivec_vcmpgtsb_p:
14469     case Intrinsic::ppc_altivec_vcmpgtsh_p:
14470     case Intrinsic::ppc_altivec_vcmpgtsw_p:
14471     case Intrinsic::ppc_altivec_vcmpgtsd_p:
14472     case Intrinsic::ppc_altivec_vcmpgtub_p:
14473     case Intrinsic::ppc_altivec_vcmpgtuh_p:
14474     case Intrinsic::ppc_altivec_vcmpgtuw_p:
14475     case Intrinsic::ppc_altivec_vcmpgtud_p:
14476       Known.Zero = ~1U;  // All bits but the low one are known to be zero.
14477       break;
14478     }
14479   }
14480   }
14481 }
14482 
14483 Align PPCTargetLowering::getPrefLoopAlignment(MachineLoop *ML) const {
14484   switch (Subtarget.getCPUDirective()) {
14485   default: break;
14486   case PPC::DIR_970:
14487   case PPC::DIR_PWR4:
14488   case PPC::DIR_PWR5:
14489   case PPC::DIR_PWR5X:
14490   case PPC::DIR_PWR6:
14491   case PPC::DIR_PWR6X:
14492   case PPC::DIR_PWR7:
14493   case PPC::DIR_PWR8:
14494   case PPC::DIR_PWR9:
14495   case PPC::DIR_PWR_FUTURE: {
14496     if (!ML)
14497       break;
14498 
14499     if (!DisableInnermostLoopAlign32) {
14500       // If the nested loop is an innermost loop, prefer to a 32-byte alignment,
14501       // so that we can decrease cache misses and branch-prediction misses.
14502       // Actual alignment of the loop will depend on the hotness check and other
14503       // logic in alignBlocks.
14504       if (ML->getLoopDepth() > 1 && ML->getSubLoops().empty())
14505         return Align(32);
14506     }
14507 
14508     const PPCInstrInfo *TII = Subtarget.getInstrInfo();
14509 
14510     // For small loops (between 5 and 8 instructions), align to a 32-byte
14511     // boundary so that the entire loop fits in one instruction-cache line.
14512     uint64_t LoopSize = 0;
14513     for (auto I = ML->block_begin(), IE = ML->block_end(); I != IE; ++I)
14514       for (auto J = (*I)->begin(), JE = (*I)->end(); J != JE; ++J) {
14515         LoopSize += TII->getInstSizeInBytes(*J);
14516         if (LoopSize > 32)
14517           break;
14518       }
14519 
14520     if (LoopSize > 16 && LoopSize <= 32)
14521       return Align(32);
14522 
14523     break;
14524   }
14525   }
14526 
14527   return TargetLowering::getPrefLoopAlignment(ML);
14528 }
14529 
14530 /// getConstraintType - Given a constraint, return the type of
14531 /// constraint it is for this target.
14532 PPCTargetLowering::ConstraintType
14533 PPCTargetLowering::getConstraintType(StringRef Constraint) const {
14534   if (Constraint.size() == 1) {
14535     switch (Constraint[0]) {
14536     default: break;
14537     case 'b':
14538     case 'r':
14539     case 'f':
14540     case 'd':
14541     case 'v':
14542     case 'y':
14543       return C_RegisterClass;
14544     case 'Z':
14545       // FIXME: While Z does indicate a memory constraint, it specifically
14546       // indicates an r+r address (used in conjunction with the 'y' modifier
14547       // in the replacement string). Currently, we're forcing the base
14548       // register to be r0 in the asm printer (which is interpreted as zero)
14549       // and forming the complete address in the second register. This is
14550       // suboptimal.
14551       return C_Memory;
14552     }
14553   } else if (Constraint == "wc") { // individual CR bits.
14554     return C_RegisterClass;
14555   } else if (Constraint == "wa" || Constraint == "wd" ||
14556              Constraint == "wf" || Constraint == "ws" ||
14557              Constraint == "wi" || Constraint == "ww") {
14558     return C_RegisterClass; // VSX registers.
14559   }
14560   return TargetLowering::getConstraintType(Constraint);
14561 }
14562 
14563 /// Examine constraint type and operand type and determine a weight value.
14564 /// This object must already have been set up with the operand type
14565 /// and the current alternative constraint selected.
14566 TargetLowering::ConstraintWeight
14567 PPCTargetLowering::getSingleConstraintMatchWeight(
14568     AsmOperandInfo &info, const char *constraint) const {
14569   ConstraintWeight weight = CW_Invalid;
14570   Value *CallOperandVal = info.CallOperandVal;
14571     // If we don't have a value, we can't do a match,
14572     // but allow it at the lowest weight.
14573   if (!CallOperandVal)
14574     return CW_Default;
14575   Type *type = CallOperandVal->getType();
14576 
14577   // Look at the constraint type.
14578   if (StringRef(constraint) == "wc" && type->isIntegerTy(1))
14579     return CW_Register; // an individual CR bit.
14580   else if ((StringRef(constraint) == "wa" ||
14581             StringRef(constraint) == "wd" ||
14582             StringRef(constraint) == "wf") &&
14583            type->isVectorTy())
14584     return CW_Register;
14585   else if (StringRef(constraint) == "wi" && type->isIntegerTy(64))
14586     return CW_Register; // just hold 64-bit integers data.
14587   else if (StringRef(constraint) == "ws" && type->isDoubleTy())
14588     return CW_Register;
14589   else if (StringRef(constraint) == "ww" && type->isFloatTy())
14590     return CW_Register;
14591 
14592   switch (*constraint) {
14593   default:
14594     weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint);
14595     break;
14596   case 'b':
14597     if (type->isIntegerTy())
14598       weight = CW_Register;
14599     break;
14600   case 'f':
14601     if (type->isFloatTy())
14602       weight = CW_Register;
14603     break;
14604   case 'd':
14605     if (type->isDoubleTy())
14606       weight = CW_Register;
14607     break;
14608   case 'v':
14609     if (type->isVectorTy())
14610       weight = CW_Register;
14611     break;
14612   case 'y':
14613     weight = CW_Register;
14614     break;
14615   case 'Z':
14616     weight = CW_Memory;
14617     break;
14618   }
14619   return weight;
14620 }
14621 
14622 std::pair<unsigned, const TargetRegisterClass *>
14623 PPCTargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI,
14624                                                 StringRef Constraint,
14625                                                 MVT VT) const {
14626   if (Constraint.size() == 1) {
14627     // GCC RS6000 Constraint Letters
14628     switch (Constraint[0]) {
14629     case 'b':   // R1-R31
14630       if (VT == MVT::i64 && Subtarget.isPPC64())
14631         return std::make_pair(0U, &PPC::G8RC_NOX0RegClass);
14632       return std::make_pair(0U, &PPC::GPRC_NOR0RegClass);
14633     case 'r':   // R0-R31
14634       if (VT == MVT::i64 && Subtarget.isPPC64())
14635         return std::make_pair(0U, &PPC::G8RCRegClass);
14636       return std::make_pair(0U, &PPC::GPRCRegClass);
14637     // 'd' and 'f' constraints are both defined to be "the floating point
14638     // registers", where one is for 32-bit and the other for 64-bit. We don't
14639     // really care overly much here so just give them all the same reg classes.
14640     case 'd':
14641     case 'f':
14642       if (Subtarget.hasSPE()) {
14643         if (VT == MVT::f32 || VT == MVT::i32)
14644           return std::make_pair(0U, &PPC::GPRCRegClass);
14645         if (VT == MVT::f64 || VT == MVT::i64)
14646           return std::make_pair(0U, &PPC::SPERCRegClass);
14647       } else {
14648         if (VT == MVT::f32 || VT == MVT::i32)
14649           return std::make_pair(0U, &PPC::F4RCRegClass);
14650         if (VT == MVT::f64 || VT == MVT::i64)
14651           return std::make_pair(0U, &PPC::F8RCRegClass);
14652         if (VT == MVT::v4f64 && Subtarget.hasQPX())
14653           return std::make_pair(0U, &PPC::QFRCRegClass);
14654         if (VT == MVT::v4f32 && Subtarget.hasQPX())
14655           return std::make_pair(0U, &PPC::QSRCRegClass);
14656       }
14657       break;
14658     case 'v':
14659       if (VT == MVT::v4f64 && Subtarget.hasQPX())
14660         return std::make_pair(0U, &PPC::QFRCRegClass);
14661       if (VT == MVT::v4f32 && Subtarget.hasQPX())
14662         return std::make_pair(0U, &PPC::QSRCRegClass);
14663       if (Subtarget.hasAltivec())
14664         return std::make_pair(0U, &PPC::VRRCRegClass);
14665       break;
14666     case 'y':   // crrc
14667       return std::make_pair(0U, &PPC::CRRCRegClass);
14668     }
14669   } else if (Constraint == "wc" && Subtarget.useCRBits()) {
14670     // An individual CR bit.
14671     return std::make_pair(0U, &PPC::CRBITRCRegClass);
14672   } else if ((Constraint == "wa" || Constraint == "wd" ||
14673              Constraint == "wf" || Constraint == "wi") &&
14674              Subtarget.hasVSX()) {
14675     return std::make_pair(0U, &PPC::VSRCRegClass);
14676   } else if ((Constraint == "ws" || Constraint == "ww") && Subtarget.hasVSX()) {
14677     if (VT == MVT::f32 && Subtarget.hasP8Vector())
14678       return std::make_pair(0U, &PPC::VSSRCRegClass);
14679     else
14680       return std::make_pair(0U, &PPC::VSFRCRegClass);
14681   }
14682 
14683   // If we name a VSX register, we can't defer to the base class because it
14684   // will not recognize the correct register (their names will be VSL{0-31}
14685   // and V{0-31} so they won't match). So we match them here.
14686   if (Constraint.size() > 3 && Constraint[1] == 'v' && Constraint[2] == 's') {
14687     int VSNum = atoi(Constraint.data() + 3);
14688     assert(VSNum >= 0 && VSNum <= 63 &&
14689            "Attempted to access a vsr out of range");
14690     if (VSNum < 32)
14691       return std::make_pair(PPC::VSL0 + VSNum, &PPC::VSRCRegClass);
14692     return std::make_pair(PPC::V0 + VSNum - 32, &PPC::VSRCRegClass);
14693   }
14694   std::pair<unsigned, const TargetRegisterClass *> R =
14695       TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT);
14696 
14697   // r[0-9]+ are used, on PPC64, to refer to the corresponding 64-bit registers
14698   // (which we call X[0-9]+). If a 64-bit value has been requested, and a
14699   // 32-bit GPR has been selected, then 'upgrade' it to the 64-bit parent
14700   // register.
14701   // FIXME: If TargetLowering::getRegForInlineAsmConstraint could somehow use
14702   // the AsmName field from *RegisterInfo.td, then this would not be necessary.
14703   if (R.first && VT == MVT::i64 && Subtarget.isPPC64() &&
14704       PPC::GPRCRegClass.contains(R.first))
14705     return std::make_pair(TRI->getMatchingSuperReg(R.first,
14706                             PPC::sub_32, &PPC::G8RCRegClass),
14707                           &PPC::G8RCRegClass);
14708 
14709   // GCC accepts 'cc' as an alias for 'cr0', and we need to do the same.
14710   if (!R.second && StringRef("{cc}").equals_lower(Constraint)) {
14711     R.first = PPC::CR0;
14712     R.second = &PPC::CRRCRegClass;
14713   }
14714 
14715   return R;
14716 }
14717 
14718 /// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
14719 /// vector.  If it is invalid, don't add anything to Ops.
14720 void PPCTargetLowering::LowerAsmOperandForConstraint(SDValue Op,
14721                                                      std::string &Constraint,
14722                                                      std::vector<SDValue>&Ops,
14723                                                      SelectionDAG &DAG) const {
14724   SDValue Result;
14725 
14726   // Only support length 1 constraints.
14727   if (Constraint.length() > 1) return;
14728 
14729   char Letter = Constraint[0];
14730   switch (Letter) {
14731   default: break;
14732   case 'I':
14733   case 'J':
14734   case 'K':
14735   case 'L':
14736   case 'M':
14737   case 'N':
14738   case 'O':
14739   case 'P': {
14740     ConstantSDNode *CST = dyn_cast<ConstantSDNode>(Op);
14741     if (!CST) return; // Must be an immediate to match.
14742     SDLoc dl(Op);
14743     int64_t Value = CST->getSExtValue();
14744     EVT TCVT = MVT::i64; // All constants taken to be 64 bits so that negative
14745                          // numbers are printed as such.
14746     switch (Letter) {
14747     default: llvm_unreachable("Unknown constraint letter!");
14748     case 'I':  // "I" is a signed 16-bit constant.
14749       if (isInt<16>(Value))
14750         Result = DAG.getTargetConstant(Value, dl, TCVT);
14751       break;
14752     case 'J':  // "J" is a constant with only the high-order 16 bits nonzero.
14753       if (isShiftedUInt<16, 16>(Value))
14754         Result = DAG.getTargetConstant(Value, dl, TCVT);
14755       break;
14756     case 'L':  // "L" is a signed 16-bit constant shifted left 16 bits.
14757       if (isShiftedInt<16, 16>(Value))
14758         Result = DAG.getTargetConstant(Value, dl, TCVT);
14759       break;
14760     case 'K':  // "K" is a constant with only the low-order 16 bits nonzero.
14761       if (isUInt<16>(Value))
14762         Result = DAG.getTargetConstant(Value, dl, TCVT);
14763       break;
14764     case 'M':  // "M" is a constant that is greater than 31.
14765       if (Value > 31)
14766         Result = DAG.getTargetConstant(Value, dl, TCVT);
14767       break;
14768     case 'N':  // "N" is a positive constant that is an exact power of two.
14769       if (Value > 0 && isPowerOf2_64(Value))
14770         Result = DAG.getTargetConstant(Value, dl, TCVT);
14771       break;
14772     case 'O':  // "O" is the constant zero.
14773       if (Value == 0)
14774         Result = DAG.getTargetConstant(Value, dl, TCVT);
14775       break;
14776     case 'P':  // "P" is a constant whose negation is a signed 16-bit constant.
14777       if (isInt<16>(-Value))
14778         Result = DAG.getTargetConstant(Value, dl, TCVT);
14779       break;
14780     }
14781     break;
14782   }
14783   }
14784 
14785   if (Result.getNode()) {
14786     Ops.push_back(Result);
14787     return;
14788   }
14789 
14790   // Handle standard constraint letters.
14791   TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
14792 }
14793 
14794 // isLegalAddressingMode - Return true if the addressing mode represented
14795 // by AM is legal for this target, for a load/store of the specified type.
14796 bool PPCTargetLowering::isLegalAddressingMode(const DataLayout &DL,
14797                                               const AddrMode &AM, Type *Ty,
14798                                               unsigned AS, Instruction *I) const {
14799   // PPC does not allow r+i addressing modes for vectors!
14800   if (Ty->isVectorTy() && AM.BaseOffs != 0)
14801     return false;
14802 
14803   // PPC allows a sign-extended 16-bit immediate field.
14804   if (AM.BaseOffs <= -(1LL << 16) || AM.BaseOffs >= (1LL << 16)-1)
14805     return false;
14806 
14807   // No global is ever allowed as a base.
14808   if (AM.BaseGV)
14809     return false;
14810 
14811   // PPC only support r+r,
14812   switch (AM.Scale) {
14813   case 0:  // "r+i" or just "i", depending on HasBaseReg.
14814     break;
14815   case 1:
14816     if (AM.HasBaseReg && AM.BaseOffs)  // "r+r+i" is not allowed.
14817       return false;
14818     // Otherwise we have r+r or r+i.
14819     break;
14820   case 2:
14821     if (AM.HasBaseReg || AM.BaseOffs)  // 2*r+r  or  2*r+i is not allowed.
14822       return false;
14823     // Allow 2*r as r+r.
14824     break;
14825   default:
14826     // No other scales are supported.
14827     return false;
14828   }
14829 
14830   return true;
14831 }
14832 
14833 SDValue PPCTargetLowering::LowerRETURNADDR(SDValue Op,
14834                                            SelectionDAG &DAG) const {
14835   MachineFunction &MF = DAG.getMachineFunction();
14836   MachineFrameInfo &MFI = MF.getFrameInfo();
14837   MFI.setReturnAddressIsTaken(true);
14838 
14839   if (verifyReturnAddressArgumentIsConstant(Op, DAG))
14840     return SDValue();
14841 
14842   SDLoc dl(Op);
14843   unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
14844 
14845   // Make sure the function does not optimize away the store of the RA to
14846   // the stack.
14847   PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
14848   FuncInfo->setLRStoreRequired();
14849   bool isPPC64 = Subtarget.isPPC64();
14850   auto PtrVT = getPointerTy(MF.getDataLayout());
14851 
14852   if (Depth > 0) {
14853     SDValue FrameAddr = LowerFRAMEADDR(Op, DAG);
14854     SDValue Offset =
14855         DAG.getConstant(Subtarget.getFrameLowering()->getReturnSaveOffset(), dl,
14856                         isPPC64 ? MVT::i64 : MVT::i32);
14857     return DAG.getLoad(PtrVT, dl, DAG.getEntryNode(),
14858                        DAG.getNode(ISD::ADD, dl, PtrVT, FrameAddr, Offset),
14859                        MachinePointerInfo());
14860   }
14861 
14862   // Just load the return address off the stack.
14863   SDValue RetAddrFI = getReturnAddrFrameIndex(DAG);
14864   return DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), RetAddrFI,
14865                      MachinePointerInfo());
14866 }
14867 
14868 SDValue PPCTargetLowering::LowerFRAMEADDR(SDValue Op,
14869                                           SelectionDAG &DAG) const {
14870   SDLoc dl(Op);
14871   unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
14872 
14873   MachineFunction &MF = DAG.getMachineFunction();
14874   MachineFrameInfo &MFI = MF.getFrameInfo();
14875   MFI.setFrameAddressIsTaken(true);
14876 
14877   EVT PtrVT = getPointerTy(MF.getDataLayout());
14878   bool isPPC64 = PtrVT == MVT::i64;
14879 
14880   // Naked functions never have a frame pointer, and so we use r1. For all
14881   // other functions, this decision must be delayed until during PEI.
14882   unsigned FrameReg;
14883   if (MF.getFunction().hasFnAttribute(Attribute::Naked))
14884     FrameReg = isPPC64 ? PPC::X1 : PPC::R1;
14885   else
14886     FrameReg = isPPC64 ? PPC::FP8 : PPC::FP;
14887 
14888   SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), dl, FrameReg,
14889                                          PtrVT);
14890   while (Depth--)
14891     FrameAddr = DAG.getLoad(Op.getValueType(), dl, DAG.getEntryNode(),
14892                             FrameAddr, MachinePointerInfo());
14893   return FrameAddr;
14894 }
14895 
14896 // FIXME? Maybe this could be a TableGen attribute on some registers and
14897 // this table could be generated automatically from RegInfo.
14898 Register PPCTargetLowering::getRegisterByName(const char* RegName, LLT VT,
14899                                               const MachineFunction &MF) const {
14900   bool isPPC64 = Subtarget.isPPC64();
14901   bool IsDarwinABI = Subtarget.isDarwinABI();
14902 
14903   bool is64Bit = isPPC64 && VT == LLT::scalar(64);
14904   if (!is64Bit && VT != LLT::scalar(32))
14905     report_fatal_error("Invalid register global variable type");
14906 
14907   Register Reg = StringSwitch<Register>(RegName)
14908                    .Case("r1", is64Bit ? PPC::X1 : PPC::R1)
14909                    .Case("r2", (IsDarwinABI || isPPC64) ? Register() : PPC::R2)
14910                    .Case("r13", (!isPPC64 && IsDarwinABI) ? Register() :
14911                                   (is64Bit ? PPC::X13 : PPC::R13))
14912                    .Default(Register());
14913 
14914   if (Reg)
14915     return Reg;
14916   report_fatal_error("Invalid register name global variable");
14917 }
14918 
14919 bool PPCTargetLowering::isAccessedAsGotIndirect(SDValue GA) const {
14920   // 32-bit SVR4 ABI access everything as got-indirect.
14921   if (Subtarget.is32BitELFABI())
14922     return true;
14923 
14924   // AIX accesses everything indirectly through the TOC, which is similar to
14925   // the GOT.
14926   if (Subtarget.isAIXABI())
14927     return true;
14928 
14929   CodeModel::Model CModel = getTargetMachine().getCodeModel();
14930   // If it is small or large code model, module locals are accessed
14931   // indirectly by loading their address from .toc/.got.
14932   if (CModel == CodeModel::Small || CModel == CodeModel::Large)
14933     return true;
14934 
14935   // JumpTable and BlockAddress are accessed as got-indirect.
14936   if (isa<JumpTableSDNode>(GA) || isa<BlockAddressSDNode>(GA))
14937     return true;
14938 
14939   if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(GA))
14940     return Subtarget.isGVIndirectSymbol(G->getGlobal());
14941 
14942   return false;
14943 }
14944 
14945 bool
14946 PPCTargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const {
14947   // The PowerPC target isn't yet aware of offsets.
14948   return false;
14949 }
14950 
14951 bool PPCTargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info,
14952                                            const CallInst &I,
14953                                            MachineFunction &MF,
14954                                            unsigned Intrinsic) const {
14955   switch (Intrinsic) {
14956   case Intrinsic::ppc_qpx_qvlfd:
14957   case Intrinsic::ppc_qpx_qvlfs:
14958   case Intrinsic::ppc_qpx_qvlfcd:
14959   case Intrinsic::ppc_qpx_qvlfcs:
14960   case Intrinsic::ppc_qpx_qvlfiwa:
14961   case Intrinsic::ppc_qpx_qvlfiwz:
14962   case Intrinsic::ppc_altivec_lvx:
14963   case Intrinsic::ppc_altivec_lvxl:
14964   case Intrinsic::ppc_altivec_lvebx:
14965   case Intrinsic::ppc_altivec_lvehx:
14966   case Intrinsic::ppc_altivec_lvewx:
14967   case Intrinsic::ppc_vsx_lxvd2x:
14968   case Intrinsic::ppc_vsx_lxvw4x: {
14969     EVT VT;
14970     switch (Intrinsic) {
14971     case Intrinsic::ppc_altivec_lvebx:
14972       VT = MVT::i8;
14973       break;
14974     case Intrinsic::ppc_altivec_lvehx:
14975       VT = MVT::i16;
14976       break;
14977     case Intrinsic::ppc_altivec_lvewx:
14978       VT = MVT::i32;
14979       break;
14980     case Intrinsic::ppc_vsx_lxvd2x:
14981       VT = MVT::v2f64;
14982       break;
14983     case Intrinsic::ppc_qpx_qvlfd:
14984       VT = MVT::v4f64;
14985       break;
14986     case Intrinsic::ppc_qpx_qvlfs:
14987       VT = MVT::v4f32;
14988       break;
14989     case Intrinsic::ppc_qpx_qvlfcd:
14990       VT = MVT::v2f64;
14991       break;
14992     case Intrinsic::ppc_qpx_qvlfcs:
14993       VT = MVT::v2f32;
14994       break;
14995     default:
14996       VT = MVT::v4i32;
14997       break;
14998     }
14999 
15000     Info.opc = ISD::INTRINSIC_W_CHAIN;
15001     Info.memVT = VT;
15002     Info.ptrVal = I.getArgOperand(0);
15003     Info.offset = -VT.getStoreSize()+1;
15004     Info.size = 2*VT.getStoreSize()-1;
15005     Info.align = Align::None();
15006     Info.flags = MachineMemOperand::MOLoad;
15007     return true;
15008   }
15009   case Intrinsic::ppc_qpx_qvlfda:
15010   case Intrinsic::ppc_qpx_qvlfsa:
15011   case Intrinsic::ppc_qpx_qvlfcda:
15012   case Intrinsic::ppc_qpx_qvlfcsa:
15013   case Intrinsic::ppc_qpx_qvlfiwaa:
15014   case Intrinsic::ppc_qpx_qvlfiwza: {
15015     EVT VT;
15016     switch (Intrinsic) {
15017     case Intrinsic::ppc_qpx_qvlfda:
15018       VT = MVT::v4f64;
15019       break;
15020     case Intrinsic::ppc_qpx_qvlfsa:
15021       VT = MVT::v4f32;
15022       break;
15023     case Intrinsic::ppc_qpx_qvlfcda:
15024       VT = MVT::v2f64;
15025       break;
15026     case Intrinsic::ppc_qpx_qvlfcsa:
15027       VT = MVT::v2f32;
15028       break;
15029     default:
15030       VT = MVT::v4i32;
15031       break;
15032     }
15033 
15034     Info.opc = ISD::INTRINSIC_W_CHAIN;
15035     Info.memVT = VT;
15036     Info.ptrVal = I.getArgOperand(0);
15037     Info.offset = 0;
15038     Info.size = VT.getStoreSize();
15039     Info.align = Align::None();
15040     Info.flags = MachineMemOperand::MOLoad;
15041     return true;
15042   }
15043   case Intrinsic::ppc_qpx_qvstfd:
15044   case Intrinsic::ppc_qpx_qvstfs:
15045   case Intrinsic::ppc_qpx_qvstfcd:
15046   case Intrinsic::ppc_qpx_qvstfcs:
15047   case Intrinsic::ppc_qpx_qvstfiw:
15048   case Intrinsic::ppc_altivec_stvx:
15049   case Intrinsic::ppc_altivec_stvxl:
15050   case Intrinsic::ppc_altivec_stvebx:
15051   case Intrinsic::ppc_altivec_stvehx:
15052   case Intrinsic::ppc_altivec_stvewx:
15053   case Intrinsic::ppc_vsx_stxvd2x:
15054   case Intrinsic::ppc_vsx_stxvw4x: {
15055     EVT VT;
15056     switch (Intrinsic) {
15057     case Intrinsic::ppc_altivec_stvebx:
15058       VT = MVT::i8;
15059       break;
15060     case Intrinsic::ppc_altivec_stvehx:
15061       VT = MVT::i16;
15062       break;
15063     case Intrinsic::ppc_altivec_stvewx:
15064       VT = MVT::i32;
15065       break;
15066     case Intrinsic::ppc_vsx_stxvd2x:
15067       VT = MVT::v2f64;
15068       break;
15069     case Intrinsic::ppc_qpx_qvstfd:
15070       VT = MVT::v4f64;
15071       break;
15072     case Intrinsic::ppc_qpx_qvstfs:
15073       VT = MVT::v4f32;
15074       break;
15075     case Intrinsic::ppc_qpx_qvstfcd:
15076       VT = MVT::v2f64;
15077       break;
15078     case Intrinsic::ppc_qpx_qvstfcs:
15079       VT = MVT::v2f32;
15080       break;
15081     default:
15082       VT = MVT::v4i32;
15083       break;
15084     }
15085 
15086     Info.opc = ISD::INTRINSIC_VOID;
15087     Info.memVT = VT;
15088     Info.ptrVal = I.getArgOperand(1);
15089     Info.offset = -VT.getStoreSize()+1;
15090     Info.size = 2*VT.getStoreSize()-1;
15091     Info.align = Align::None();
15092     Info.flags = MachineMemOperand::MOStore;
15093     return true;
15094   }
15095   case Intrinsic::ppc_qpx_qvstfda:
15096   case Intrinsic::ppc_qpx_qvstfsa:
15097   case Intrinsic::ppc_qpx_qvstfcda:
15098   case Intrinsic::ppc_qpx_qvstfcsa:
15099   case Intrinsic::ppc_qpx_qvstfiwa: {
15100     EVT VT;
15101     switch (Intrinsic) {
15102     case Intrinsic::ppc_qpx_qvstfda:
15103       VT = MVT::v4f64;
15104       break;
15105     case Intrinsic::ppc_qpx_qvstfsa:
15106       VT = MVT::v4f32;
15107       break;
15108     case Intrinsic::ppc_qpx_qvstfcda:
15109       VT = MVT::v2f64;
15110       break;
15111     case Intrinsic::ppc_qpx_qvstfcsa:
15112       VT = MVT::v2f32;
15113       break;
15114     default:
15115       VT = MVT::v4i32;
15116       break;
15117     }
15118 
15119     Info.opc = ISD::INTRINSIC_VOID;
15120     Info.memVT = VT;
15121     Info.ptrVal = I.getArgOperand(1);
15122     Info.offset = 0;
15123     Info.size = VT.getStoreSize();
15124     Info.align = Align::None();
15125     Info.flags = MachineMemOperand::MOStore;
15126     return true;
15127   }
15128   default:
15129     break;
15130   }
15131 
15132   return false;
15133 }
15134 
15135 /// getOptimalMemOpType - Returns the target specific optimal type for load
15136 /// and store operations as a result of memset, memcpy, and memmove
15137 /// lowering. If DstAlign is zero that means it's safe to destination
15138 /// alignment can satisfy any constraint. Similarly if SrcAlign is zero it
15139 /// means there isn't a need to check it against alignment requirement,
15140 /// probably because the source does not need to be loaded. If 'IsMemset' is
15141 /// true, that means it's expanding a memset. If 'ZeroMemset' is true, that
15142 /// means it's a memset of zero. 'MemcpyStrSrc' indicates whether the memcpy
15143 /// source is constant so it does not need to be loaded.
15144 /// It returns EVT::Other if the type should be determined using generic
15145 /// target-independent logic.
15146 EVT PPCTargetLowering::getOptimalMemOpType(
15147     uint64_t Size, unsigned DstAlign, unsigned SrcAlign, bool IsMemset,
15148     bool ZeroMemset, bool MemcpyStrSrc,
15149     const AttributeList &FuncAttributes) const {
15150   if (getTargetMachine().getOptLevel() != CodeGenOpt::None) {
15151     // When expanding a memset, require at least two QPX instructions to cover
15152     // the cost of loading the value to be stored from the constant pool.
15153     if (Subtarget.hasQPX() && Size >= 32 && (!IsMemset || Size >= 64) &&
15154        (!SrcAlign || SrcAlign >= 32) && (!DstAlign || DstAlign >= 32) &&
15155         !FuncAttributes.hasFnAttribute(Attribute::NoImplicitFloat)) {
15156       return MVT::v4f64;
15157     }
15158 
15159     // We should use Altivec/VSX loads and stores when available. For unaligned
15160     // addresses, unaligned VSX loads are only fast starting with the P8.
15161     if (Subtarget.hasAltivec() && Size >= 16 &&
15162         (((!SrcAlign || SrcAlign >= 16) && (!DstAlign || DstAlign >= 16)) ||
15163          ((IsMemset && Subtarget.hasVSX()) || Subtarget.hasP8Vector())))
15164       return MVT::v4i32;
15165   }
15166 
15167   if (Subtarget.isPPC64()) {
15168     return MVT::i64;
15169   }
15170 
15171   return MVT::i32;
15172 }
15173 
15174 /// Returns true if it is beneficial to convert a load of a constant
15175 /// to just the constant itself.
15176 bool PPCTargetLowering::shouldConvertConstantLoadToIntImm(const APInt &Imm,
15177                                                           Type *Ty) const {
15178   assert(Ty->isIntegerTy());
15179 
15180   unsigned BitSize = Ty->getPrimitiveSizeInBits();
15181   return !(BitSize == 0 || BitSize > 64);
15182 }
15183 
15184 bool PPCTargetLowering::isTruncateFree(Type *Ty1, Type *Ty2) const {
15185   if (!Ty1->isIntegerTy() || !Ty2->isIntegerTy())
15186     return false;
15187   unsigned NumBits1 = Ty1->getPrimitiveSizeInBits();
15188   unsigned NumBits2 = Ty2->getPrimitiveSizeInBits();
15189   return NumBits1 == 64 && NumBits2 == 32;
15190 }
15191 
15192 bool PPCTargetLowering::isTruncateFree(EVT VT1, EVT VT2) const {
15193   if (!VT1.isInteger() || !VT2.isInteger())
15194     return false;
15195   unsigned NumBits1 = VT1.getSizeInBits();
15196   unsigned NumBits2 = VT2.getSizeInBits();
15197   return NumBits1 == 64 && NumBits2 == 32;
15198 }
15199 
15200 bool PPCTargetLowering::isZExtFree(SDValue Val, EVT VT2) const {
15201   // Generally speaking, zexts are not free, but they are free when they can be
15202   // folded with other operations.
15203   if (LoadSDNode *LD = dyn_cast<LoadSDNode>(Val)) {
15204     EVT MemVT = LD->getMemoryVT();
15205     if ((MemVT == MVT::i1 || MemVT == MVT::i8 || MemVT == MVT::i16 ||
15206          (Subtarget.isPPC64() && MemVT == MVT::i32)) &&
15207         (LD->getExtensionType() == ISD::NON_EXTLOAD ||
15208          LD->getExtensionType() == ISD::ZEXTLOAD))
15209       return true;
15210   }
15211 
15212   // FIXME: Add other cases...
15213   //  - 32-bit shifts with a zext to i64
15214   //  - zext after ctlz, bswap, etc.
15215   //  - zext after and by a constant mask
15216 
15217   return TargetLowering::isZExtFree(Val, VT2);
15218 }
15219 
15220 bool PPCTargetLowering::isFPExtFree(EVT DestVT, EVT SrcVT) const {
15221   assert(DestVT.isFloatingPoint() && SrcVT.isFloatingPoint() &&
15222          "invalid fpext types");
15223   // Extending to float128 is not free.
15224   if (DestVT == MVT::f128)
15225     return false;
15226   return true;
15227 }
15228 
15229 bool PPCTargetLowering::isLegalICmpImmediate(int64_t Imm) const {
15230   return isInt<16>(Imm) || isUInt<16>(Imm);
15231 }
15232 
15233 bool PPCTargetLowering::isLegalAddImmediate(int64_t Imm) const {
15234   return isInt<16>(Imm) || isUInt<16>(Imm);
15235 }
15236 
15237 bool PPCTargetLowering::allowsMisalignedMemoryAccesses(EVT VT,
15238                                                        unsigned,
15239                                                        unsigned,
15240                                                        MachineMemOperand::Flags,
15241                                                        bool *Fast) const {
15242   if (DisablePPCUnaligned)
15243     return false;
15244 
15245   // PowerPC supports unaligned memory access for simple non-vector types.
15246   // Although accessing unaligned addresses is not as efficient as accessing
15247   // aligned addresses, it is generally more efficient than manual expansion,
15248   // and generally only traps for software emulation when crossing page
15249   // boundaries.
15250 
15251   if (!VT.isSimple())
15252     return false;
15253 
15254   if (VT.isFloatingPoint() && !Subtarget.allowsUnalignedFPAccess())
15255     return false;
15256 
15257   if (VT.getSimpleVT().isVector()) {
15258     if (Subtarget.hasVSX()) {
15259       if (VT != MVT::v2f64 && VT != MVT::v2i64 &&
15260           VT != MVT::v4f32 && VT != MVT::v4i32)
15261         return false;
15262     } else {
15263       return false;
15264     }
15265   }
15266 
15267   if (VT == MVT::ppcf128)
15268     return false;
15269 
15270   if (Fast)
15271     *Fast = true;
15272 
15273   return true;
15274 }
15275 
15276 bool PPCTargetLowering::isFMAFasterThanFMulAndFAdd(const MachineFunction &MF,
15277                                                    EVT VT) const {
15278   VT = VT.getScalarType();
15279 
15280   if (!VT.isSimple())
15281     return false;
15282 
15283   switch (VT.getSimpleVT().SimpleTy) {
15284   case MVT::f32:
15285   case MVT::f64:
15286     return true;
15287   case MVT::f128:
15288     return (EnableQuadPrecision && Subtarget.hasP9Vector());
15289   default:
15290     break;
15291   }
15292 
15293   return false;
15294 }
15295 
15296 const MCPhysReg *
15297 PPCTargetLowering::getScratchRegisters(CallingConv::ID) const {
15298   // LR is a callee-save register, but we must treat it as clobbered by any call
15299   // site. Hence we include LR in the scratch registers, which are in turn added
15300   // as implicit-defs for stackmaps and patchpoints. The same reasoning applies
15301   // to CTR, which is used by any indirect call.
15302   static const MCPhysReg ScratchRegs[] = {
15303     PPC::X12, PPC::LR8, PPC::CTR8, 0
15304   };
15305 
15306   return ScratchRegs;
15307 }
15308 
15309 unsigned PPCTargetLowering::getExceptionPointerRegister(
15310     const Constant *PersonalityFn) const {
15311   return Subtarget.isPPC64() ? PPC::X3 : PPC::R3;
15312 }
15313 
15314 unsigned PPCTargetLowering::getExceptionSelectorRegister(
15315     const Constant *PersonalityFn) const {
15316   return Subtarget.isPPC64() ? PPC::X4 : PPC::R4;
15317 }
15318 
15319 bool
15320 PPCTargetLowering::shouldExpandBuildVectorWithShuffles(
15321                      EVT VT , unsigned DefinedValues) const {
15322   if (VT == MVT::v2i64)
15323     return Subtarget.hasDirectMove(); // Don't need stack ops with direct moves
15324 
15325   if (Subtarget.hasVSX() || Subtarget.hasQPX())
15326     return true;
15327 
15328   return TargetLowering::shouldExpandBuildVectorWithShuffles(VT, DefinedValues);
15329 }
15330 
15331 Sched::Preference PPCTargetLowering::getSchedulingPreference(SDNode *N) const {
15332   if (DisableILPPref || Subtarget.enableMachineScheduler())
15333     return TargetLowering::getSchedulingPreference(N);
15334 
15335   return Sched::ILP;
15336 }
15337 
15338 // Create a fast isel object.
15339 FastISel *
15340 PPCTargetLowering::createFastISel(FunctionLoweringInfo &FuncInfo,
15341                                   const TargetLibraryInfo *LibInfo) const {
15342   return PPC::createFastISel(FuncInfo, LibInfo);
15343 }
15344 
15345 void PPCTargetLowering::initializeSplitCSR(MachineBasicBlock *Entry) const {
15346   if (Subtarget.isDarwinABI()) return;
15347   if (!Subtarget.isPPC64()) return;
15348 
15349   // Update IsSplitCSR in PPCFunctionInfo
15350   PPCFunctionInfo *PFI = Entry->getParent()->getInfo<PPCFunctionInfo>();
15351   PFI->setIsSplitCSR(true);
15352 }
15353 
15354 void PPCTargetLowering::insertCopiesSplitCSR(
15355   MachineBasicBlock *Entry,
15356   const SmallVectorImpl<MachineBasicBlock *> &Exits) const {
15357   const PPCRegisterInfo *TRI = Subtarget.getRegisterInfo();
15358   const MCPhysReg *IStart = TRI->getCalleeSavedRegsViaCopy(Entry->getParent());
15359   if (!IStart)
15360     return;
15361 
15362   const TargetInstrInfo *TII = Subtarget.getInstrInfo();
15363   MachineRegisterInfo *MRI = &Entry->getParent()->getRegInfo();
15364   MachineBasicBlock::iterator MBBI = Entry->begin();
15365   for (const MCPhysReg *I = IStart; *I; ++I) {
15366     const TargetRegisterClass *RC = nullptr;
15367     if (PPC::G8RCRegClass.contains(*I))
15368       RC = &PPC::G8RCRegClass;
15369     else if (PPC::F8RCRegClass.contains(*I))
15370       RC = &PPC::F8RCRegClass;
15371     else if (PPC::CRRCRegClass.contains(*I))
15372       RC = &PPC::CRRCRegClass;
15373     else if (PPC::VRRCRegClass.contains(*I))
15374       RC = &PPC::VRRCRegClass;
15375     else
15376       llvm_unreachable("Unexpected register class in CSRsViaCopy!");
15377 
15378     Register NewVR = MRI->createVirtualRegister(RC);
15379     // Create copy from CSR to a virtual register.
15380     // FIXME: this currently does not emit CFI pseudo-instructions, it works
15381     // fine for CXX_FAST_TLS since the C++-style TLS access functions should be
15382     // nounwind. If we want to generalize this later, we may need to emit
15383     // CFI pseudo-instructions.
15384     assert(Entry->getParent()->getFunction().hasFnAttribute(
15385              Attribute::NoUnwind) &&
15386            "Function should be nounwind in insertCopiesSplitCSR!");
15387     Entry->addLiveIn(*I);
15388     BuildMI(*Entry, MBBI, DebugLoc(), TII->get(TargetOpcode::COPY), NewVR)
15389       .addReg(*I);
15390 
15391     // Insert the copy-back instructions right before the terminator.
15392     for (auto *Exit : Exits)
15393       BuildMI(*Exit, Exit->getFirstTerminator(), DebugLoc(),
15394               TII->get(TargetOpcode::COPY), *I)
15395         .addReg(NewVR);
15396   }
15397 }
15398 
15399 // Override to enable LOAD_STACK_GUARD lowering on Linux.
15400 bool PPCTargetLowering::useLoadStackGuardNode() const {
15401   if (!Subtarget.isTargetLinux())
15402     return TargetLowering::useLoadStackGuardNode();
15403   return true;
15404 }
15405 
15406 // Override to disable global variable loading on Linux.
15407 void PPCTargetLowering::insertSSPDeclarations(Module &M) const {
15408   if (!Subtarget.isTargetLinux())
15409     return TargetLowering::insertSSPDeclarations(M);
15410 }
15411 
15412 bool PPCTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT,
15413                                      bool ForCodeSize) const {
15414   if (!VT.isSimple() || !Subtarget.hasVSX())
15415     return false;
15416 
15417   switch(VT.getSimpleVT().SimpleTy) {
15418   default:
15419     // For FP types that are currently not supported by PPC backend, return
15420     // false. Examples: f16, f80.
15421     return false;
15422   case MVT::f32:
15423   case MVT::f64:
15424   case MVT::ppcf128:
15425     return Imm.isPosZero();
15426   }
15427 }
15428 
15429 // For vector shift operation op, fold
15430 // (op x, (and y, ((1 << numbits(x)) - 1))) -> (target op x, y)
15431 static SDValue stripModuloOnShift(const TargetLowering &TLI, SDNode *N,
15432                                   SelectionDAG &DAG) {
15433   SDValue N0 = N->getOperand(0);
15434   SDValue N1 = N->getOperand(1);
15435   EVT VT = N0.getValueType();
15436   unsigned OpSizeInBits = VT.getScalarSizeInBits();
15437   unsigned Opcode = N->getOpcode();
15438   unsigned TargetOpcode;
15439 
15440   switch (Opcode) {
15441   default:
15442     llvm_unreachable("Unexpected shift operation");
15443   case ISD::SHL:
15444     TargetOpcode = PPCISD::SHL;
15445     break;
15446   case ISD::SRL:
15447     TargetOpcode = PPCISD::SRL;
15448     break;
15449   case ISD::SRA:
15450     TargetOpcode = PPCISD::SRA;
15451     break;
15452   }
15453 
15454   if (VT.isVector() && TLI.isOperationLegal(Opcode, VT) &&
15455       N1->getOpcode() == ISD::AND)
15456     if (ConstantSDNode *Mask = isConstOrConstSplat(N1->getOperand(1)))
15457       if (Mask->getZExtValue() == OpSizeInBits - 1)
15458         return DAG.getNode(TargetOpcode, SDLoc(N), VT, N0, N1->getOperand(0));
15459 
15460   return SDValue();
15461 }
15462 
15463 SDValue PPCTargetLowering::combineSHL(SDNode *N, DAGCombinerInfo &DCI) const {
15464   if (auto Value = stripModuloOnShift(*this, N, DCI.DAG))
15465     return Value;
15466 
15467   SDValue N0 = N->getOperand(0);
15468   ConstantSDNode *CN1 = dyn_cast<ConstantSDNode>(N->getOperand(1));
15469   if (!Subtarget.isISA3_0() ||
15470       N0.getOpcode() != ISD::SIGN_EXTEND ||
15471       N0.getOperand(0).getValueType() != MVT::i32 ||
15472       CN1 == nullptr || N->getValueType(0) != MVT::i64)
15473     return SDValue();
15474 
15475   // We can't save an operation here if the value is already extended, and
15476   // the existing shift is easier to combine.
15477   SDValue ExtsSrc = N0.getOperand(0);
15478   if (ExtsSrc.getOpcode() == ISD::TRUNCATE &&
15479       ExtsSrc.getOperand(0).getOpcode() == ISD::AssertSext)
15480     return SDValue();
15481 
15482   SDLoc DL(N0);
15483   SDValue ShiftBy = SDValue(CN1, 0);
15484   // We want the shift amount to be i32 on the extswli, but the shift could
15485   // have an i64.
15486   if (ShiftBy.getValueType() == MVT::i64)
15487     ShiftBy = DCI.DAG.getConstant(CN1->getZExtValue(), DL, MVT::i32);
15488 
15489   return DCI.DAG.getNode(PPCISD::EXTSWSLI, DL, MVT::i64, N0->getOperand(0),
15490                          ShiftBy);
15491 }
15492 
15493 SDValue PPCTargetLowering::combineSRA(SDNode *N, DAGCombinerInfo &DCI) const {
15494   if (auto Value = stripModuloOnShift(*this, N, DCI.DAG))
15495     return Value;
15496 
15497   return SDValue();
15498 }
15499 
15500 SDValue PPCTargetLowering::combineSRL(SDNode *N, DAGCombinerInfo &DCI) const {
15501   if (auto Value = stripModuloOnShift(*this, N, DCI.DAG))
15502     return Value;
15503 
15504   return SDValue();
15505 }
15506 
15507 // Transform (add X, (zext(setne Z, C))) -> (addze X, (addic (addi Z, -C), -1))
15508 // Transform (add X, (zext(sete  Z, C))) -> (addze X, (subfic (addi Z, -C), 0))
15509 // When C is zero, the equation (addi Z, -C) can be simplified to Z
15510 // Requirement: -C in [-32768, 32767], X and Z are MVT::i64 types
15511 static SDValue combineADDToADDZE(SDNode *N, SelectionDAG &DAG,
15512                                  const PPCSubtarget &Subtarget) {
15513   if (!Subtarget.isPPC64())
15514     return SDValue();
15515 
15516   SDValue LHS = N->getOperand(0);
15517   SDValue RHS = N->getOperand(1);
15518 
15519   auto isZextOfCompareWithConstant = [](SDValue Op) {
15520     if (Op.getOpcode() != ISD::ZERO_EXTEND || !Op.hasOneUse() ||
15521         Op.getValueType() != MVT::i64)
15522       return false;
15523 
15524     SDValue Cmp = Op.getOperand(0);
15525     if (Cmp.getOpcode() != ISD::SETCC || !Cmp.hasOneUse() ||
15526         Cmp.getOperand(0).getValueType() != MVT::i64)
15527       return false;
15528 
15529     if (auto *Constant = dyn_cast<ConstantSDNode>(Cmp.getOperand(1))) {
15530       int64_t NegConstant = 0 - Constant->getSExtValue();
15531       // Due to the limitations of the addi instruction,
15532       // -C is required to be [-32768, 32767].
15533       return isInt<16>(NegConstant);
15534     }
15535 
15536     return false;
15537   };
15538 
15539   bool LHSHasPattern = isZextOfCompareWithConstant(LHS);
15540   bool RHSHasPattern = isZextOfCompareWithConstant(RHS);
15541 
15542   // If there is a pattern, canonicalize a zext operand to the RHS.
15543   if (LHSHasPattern && !RHSHasPattern)
15544     std::swap(LHS, RHS);
15545   else if (!LHSHasPattern && !RHSHasPattern)
15546     return SDValue();
15547 
15548   SDLoc DL(N);
15549   SDVTList VTs = DAG.getVTList(MVT::i64, MVT::Glue);
15550   SDValue Cmp = RHS.getOperand(0);
15551   SDValue Z = Cmp.getOperand(0);
15552   auto *Constant = dyn_cast<ConstantSDNode>(Cmp.getOperand(1));
15553 
15554   assert(Constant && "Constant Should not be a null pointer.");
15555   int64_t NegConstant = 0 - Constant->getSExtValue();
15556 
15557   switch(cast<CondCodeSDNode>(Cmp.getOperand(2))->get()) {
15558   default: break;
15559   case ISD::SETNE: {
15560     //                                 when C == 0
15561     //                             --> addze X, (addic Z, -1).carry
15562     //                            /
15563     // add X, (zext(setne Z, C))--
15564     //                            \    when -32768 <= -C <= 32767 && C != 0
15565     //                             --> addze X, (addic (addi Z, -C), -1).carry
15566     SDValue Add = DAG.getNode(ISD::ADD, DL, MVT::i64, Z,
15567                               DAG.getConstant(NegConstant, DL, MVT::i64));
15568     SDValue AddOrZ = NegConstant != 0 ? Add : Z;
15569     SDValue Addc = DAG.getNode(ISD::ADDC, DL, DAG.getVTList(MVT::i64, MVT::Glue),
15570                                AddOrZ, DAG.getConstant(-1ULL, DL, MVT::i64));
15571     return DAG.getNode(ISD::ADDE, DL, VTs, LHS, DAG.getConstant(0, DL, MVT::i64),
15572                        SDValue(Addc.getNode(), 1));
15573     }
15574   case ISD::SETEQ: {
15575     //                                 when C == 0
15576     //                             --> addze X, (subfic Z, 0).carry
15577     //                            /
15578     // add X, (zext(sete  Z, C))--
15579     //                            \    when -32768 <= -C <= 32767 && C != 0
15580     //                             --> addze X, (subfic (addi Z, -C), 0).carry
15581     SDValue Add = DAG.getNode(ISD::ADD, DL, MVT::i64, Z,
15582                               DAG.getConstant(NegConstant, DL, MVT::i64));
15583     SDValue AddOrZ = NegConstant != 0 ? Add : Z;
15584     SDValue Subc = DAG.getNode(ISD::SUBC, DL, DAG.getVTList(MVT::i64, MVT::Glue),
15585                                DAG.getConstant(0, DL, MVT::i64), AddOrZ);
15586     return DAG.getNode(ISD::ADDE, DL, VTs, LHS, DAG.getConstant(0, DL, MVT::i64),
15587                        SDValue(Subc.getNode(), 1));
15588     }
15589   }
15590 
15591   return SDValue();
15592 }
15593 
15594 SDValue PPCTargetLowering::combineADD(SDNode *N, DAGCombinerInfo &DCI) const {
15595   if (auto Value = combineADDToADDZE(N, DCI.DAG, Subtarget))
15596     return Value;
15597 
15598   return SDValue();
15599 }
15600 
15601 // Detect TRUNCATE operations on bitcasts of float128 values.
15602 // What we are looking for here is the situtation where we extract a subset
15603 // of bits from a 128 bit float.
15604 // This can be of two forms:
15605 // 1) BITCAST of f128 feeding TRUNCATE
15606 // 2) BITCAST of f128 feeding SRL (a shift) feeding TRUNCATE
15607 // The reason this is required is because we do not have a legal i128 type
15608 // and so we want to prevent having to store the f128 and then reload part
15609 // of it.
15610 SDValue PPCTargetLowering::combineTRUNCATE(SDNode *N,
15611                                            DAGCombinerInfo &DCI) const {
15612   // If we are using CRBits then try that first.
15613   if (Subtarget.useCRBits()) {
15614     // Check if CRBits did anything and return that if it did.
15615     if (SDValue CRTruncValue = DAGCombineTruncBoolExt(N, DCI))
15616       return CRTruncValue;
15617   }
15618 
15619   SDLoc dl(N);
15620   SDValue Op0 = N->getOperand(0);
15621 
15622   // Looking for a truncate of i128 to i64.
15623   if (Op0.getValueType() != MVT::i128 || N->getValueType(0) != MVT::i64)
15624     return SDValue();
15625 
15626   int EltToExtract = DCI.DAG.getDataLayout().isBigEndian() ? 1 : 0;
15627 
15628   // SRL feeding TRUNCATE.
15629   if (Op0.getOpcode() == ISD::SRL) {
15630     ConstantSDNode *ConstNode = dyn_cast<ConstantSDNode>(Op0.getOperand(1));
15631     // The right shift has to be by 64 bits.
15632     if (!ConstNode || ConstNode->getZExtValue() != 64)
15633       return SDValue();
15634 
15635     // Switch the element number to extract.
15636     EltToExtract = EltToExtract ? 0 : 1;
15637     // Update Op0 past the SRL.
15638     Op0 = Op0.getOperand(0);
15639   }
15640 
15641   // BITCAST feeding a TRUNCATE possibly via SRL.
15642   if (Op0.getOpcode() == ISD::BITCAST &&
15643       Op0.getValueType() == MVT::i128 &&
15644       Op0.getOperand(0).getValueType() == MVT::f128) {
15645     SDValue Bitcast = DCI.DAG.getBitcast(MVT::v2i64, Op0.getOperand(0));
15646     return DCI.DAG.getNode(
15647         ISD::EXTRACT_VECTOR_ELT, dl, MVT::i64, Bitcast,
15648         DCI.DAG.getTargetConstant(EltToExtract, dl, MVT::i32));
15649   }
15650   return SDValue();
15651 }
15652 
15653 SDValue PPCTargetLowering::combineMUL(SDNode *N, DAGCombinerInfo &DCI) const {
15654   SelectionDAG &DAG = DCI.DAG;
15655 
15656   ConstantSDNode *ConstOpOrElement = isConstOrConstSplat(N->getOperand(1));
15657   if (!ConstOpOrElement)
15658     return SDValue();
15659 
15660   // An imul is usually smaller than the alternative sequence for legal type.
15661   if (DAG.getMachineFunction().getFunction().hasMinSize() &&
15662       isOperationLegal(ISD::MUL, N->getValueType(0)))
15663     return SDValue();
15664 
15665   auto IsProfitable = [this](bool IsNeg, bool IsAddOne, EVT VT) -> bool {
15666     switch (this->Subtarget.getCPUDirective()) {
15667     default:
15668       // TODO: enhance the condition for subtarget before pwr8
15669       return false;
15670     case PPC::DIR_PWR8:
15671       //  type        mul     add    shl
15672       // scalar        4       1      1
15673       // vector        7       2      2
15674       return true;
15675     case PPC::DIR_PWR9:
15676     case PPC::DIR_PWR_FUTURE:
15677       //  type        mul     add    shl
15678       // scalar        5       2      2
15679       // vector        7       2      2
15680 
15681       // The cycle RATIO of related operations are showed as a table above.
15682       // Because mul is 5(scalar)/7(vector), add/sub/shl are all 2 for both
15683       // scalar and vector type. For 2 instrs patterns, add/sub + shl
15684       // are 4, it is always profitable; but for 3 instrs patterns
15685       // (mul x, -(2^N + 1)) => -(add (shl x, N), x), sub + add + shl are 6.
15686       // So we should only do it for vector type.
15687       return IsAddOne && IsNeg ? VT.isVector() : true;
15688     }
15689   };
15690 
15691   EVT VT = N->getValueType(0);
15692   SDLoc DL(N);
15693 
15694   const APInt &MulAmt = ConstOpOrElement->getAPIntValue();
15695   bool IsNeg = MulAmt.isNegative();
15696   APInt MulAmtAbs = MulAmt.abs();
15697 
15698   if ((MulAmtAbs - 1).isPowerOf2()) {
15699     // (mul x, 2^N + 1) => (add (shl x, N), x)
15700     // (mul x, -(2^N + 1)) => -(add (shl x, N), x)
15701 
15702     if (!IsProfitable(IsNeg, true, VT))
15703       return SDValue();
15704 
15705     SDValue Op0 = N->getOperand(0);
15706     SDValue Op1 =
15707         DAG.getNode(ISD::SHL, DL, VT, N->getOperand(0),
15708                     DAG.getConstant((MulAmtAbs - 1).logBase2(), DL, VT));
15709     SDValue Res = DAG.getNode(ISD::ADD, DL, VT, Op0, Op1);
15710 
15711     if (!IsNeg)
15712       return Res;
15713 
15714     return DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), Res);
15715   } else if ((MulAmtAbs + 1).isPowerOf2()) {
15716     // (mul x, 2^N - 1) => (sub (shl x, N), x)
15717     // (mul x, -(2^N - 1)) => (sub x, (shl x, N))
15718 
15719     if (!IsProfitable(IsNeg, false, VT))
15720       return SDValue();
15721 
15722     SDValue Op0 = N->getOperand(0);
15723     SDValue Op1 =
15724         DAG.getNode(ISD::SHL, DL, VT, N->getOperand(0),
15725                     DAG.getConstant((MulAmtAbs + 1).logBase2(), DL, VT));
15726 
15727     if (!IsNeg)
15728       return DAG.getNode(ISD::SUB, DL, VT, Op1, Op0);
15729     else
15730       return DAG.getNode(ISD::SUB, DL, VT, Op0, Op1);
15731 
15732   } else {
15733     return SDValue();
15734   }
15735 }
15736 
15737 bool PPCTargetLowering::mayBeEmittedAsTailCall(const CallInst *CI) const {
15738   // Only duplicate to increase tail-calls for the 64bit SysV ABIs.
15739   if (!Subtarget.is64BitELFABI())
15740     return false;
15741 
15742   // If not a tail call then no need to proceed.
15743   if (!CI->isTailCall())
15744     return false;
15745 
15746   // If sibling calls have been disabled and tail-calls aren't guaranteed
15747   // there is no reason to duplicate.
15748   auto &TM = getTargetMachine();
15749   if (!TM.Options.GuaranteedTailCallOpt && DisableSCO)
15750     return false;
15751 
15752   // Can't tail call a function called indirectly, or if it has variadic args.
15753   const Function *Callee = CI->getCalledFunction();
15754   if (!Callee || Callee->isVarArg())
15755     return false;
15756 
15757   // Make sure the callee and caller calling conventions are eligible for tco.
15758   const Function *Caller = CI->getParent()->getParent();
15759   if (!areCallingConvEligibleForTCO_64SVR4(Caller->getCallingConv(),
15760                                            CI->getCallingConv()))
15761       return false;
15762 
15763   // If the function is local then we have a good chance at tail-calling it
15764   return getTargetMachine().shouldAssumeDSOLocal(*Caller->getParent(), Callee);
15765 }
15766 
15767 bool PPCTargetLowering::hasBitPreservingFPLogic(EVT VT) const {
15768   if (!Subtarget.hasVSX())
15769     return false;
15770   if (Subtarget.hasP9Vector() && VT == MVT::f128)
15771     return true;
15772   return VT == MVT::f32 || VT == MVT::f64 ||
15773     VT == MVT::v4f32 || VT == MVT::v2f64;
15774 }
15775 
15776 bool PPCTargetLowering::
15777 isMaskAndCmp0FoldingBeneficial(const Instruction &AndI) const {
15778   const Value *Mask = AndI.getOperand(1);
15779   // If the mask is suitable for andi. or andis. we should sink the and.
15780   if (const ConstantInt *CI = dyn_cast<ConstantInt>(Mask)) {
15781     // Can't handle constants wider than 64-bits.
15782     if (CI->getBitWidth() > 64)
15783       return false;
15784     int64_t ConstVal = CI->getZExtValue();
15785     return isUInt<16>(ConstVal) ||
15786       (isUInt<16>(ConstVal >> 16) && !(ConstVal & 0xFFFF));
15787   }
15788 
15789   // For non-constant masks, we can always use the record-form and.
15790   return true;
15791 }
15792 
15793 // Transform (abs (sub (zext a), (zext b))) to (vabsd a b 0)
15794 // Transform (abs (sub (zext a), (zext_invec b))) to (vabsd a b 0)
15795 // Transform (abs (sub (zext_invec a), (zext_invec b))) to (vabsd a b 0)
15796 // Transform (abs (sub (zext_invec a), (zext b))) to (vabsd a b 0)
15797 // Transform (abs (sub a, b) to (vabsd a b 1)) if a & b of type v4i32
15798 SDValue PPCTargetLowering::combineABS(SDNode *N, DAGCombinerInfo &DCI) const {
15799   assert((N->getOpcode() == ISD::ABS) && "Need ABS node here");
15800   assert(Subtarget.hasP9Altivec() &&
15801          "Only combine this when P9 altivec supported!");
15802   EVT VT = N->getValueType(0);
15803   if (VT != MVT::v4i32 && VT != MVT::v8i16 && VT != MVT::v16i8)
15804     return SDValue();
15805 
15806   SelectionDAG &DAG = DCI.DAG;
15807   SDLoc dl(N);
15808   if (N->getOperand(0).getOpcode() == ISD::SUB) {
15809     // Even for signed integers, if it's known to be positive (as signed
15810     // integer) due to zero-extended inputs.
15811     unsigned SubOpcd0 = N->getOperand(0)->getOperand(0).getOpcode();
15812     unsigned SubOpcd1 = N->getOperand(0)->getOperand(1).getOpcode();
15813     if ((SubOpcd0 == ISD::ZERO_EXTEND ||
15814          SubOpcd0 == ISD::ZERO_EXTEND_VECTOR_INREG) &&
15815         (SubOpcd1 == ISD::ZERO_EXTEND ||
15816          SubOpcd1 == ISD::ZERO_EXTEND_VECTOR_INREG)) {
15817       return DAG.getNode(PPCISD::VABSD, dl, N->getOperand(0).getValueType(),
15818                          N->getOperand(0)->getOperand(0),
15819                          N->getOperand(0)->getOperand(1),
15820                          DAG.getTargetConstant(0, dl, MVT::i32));
15821     }
15822 
15823     // For type v4i32, it can be optimized with xvnegsp + vabsduw
15824     if (N->getOperand(0).getValueType() == MVT::v4i32 &&
15825         N->getOperand(0).hasOneUse()) {
15826       return DAG.getNode(PPCISD::VABSD, dl, N->getOperand(0).getValueType(),
15827                          N->getOperand(0)->getOperand(0),
15828                          N->getOperand(0)->getOperand(1),
15829                          DAG.getTargetConstant(1, dl, MVT::i32));
15830     }
15831   }
15832 
15833   return SDValue();
15834 }
15835 
15836 // For type v4i32/v8ii16/v16i8, transform
15837 // from (vselect (setcc a, b, setugt), (sub a, b), (sub b, a)) to (vabsd a, b)
15838 // from (vselect (setcc a, b, setuge), (sub a, b), (sub b, a)) to (vabsd a, b)
15839 // from (vselect (setcc a, b, setult), (sub b, a), (sub a, b)) to (vabsd a, b)
15840 // from (vselect (setcc a, b, setule), (sub b, a), (sub a, b)) to (vabsd a, b)
15841 SDValue PPCTargetLowering::combineVSelect(SDNode *N,
15842                                           DAGCombinerInfo &DCI) const {
15843   assert((N->getOpcode() == ISD::VSELECT) && "Need VSELECT node here");
15844   assert(Subtarget.hasP9Altivec() &&
15845          "Only combine this when P9 altivec supported!");
15846 
15847   SelectionDAG &DAG = DCI.DAG;
15848   SDLoc dl(N);
15849   SDValue Cond = N->getOperand(0);
15850   SDValue TrueOpnd = N->getOperand(1);
15851   SDValue FalseOpnd = N->getOperand(2);
15852   EVT VT = N->getOperand(1).getValueType();
15853 
15854   if (Cond.getOpcode() != ISD::SETCC || TrueOpnd.getOpcode() != ISD::SUB ||
15855       FalseOpnd.getOpcode() != ISD::SUB)
15856     return SDValue();
15857 
15858   // ABSD only available for type v4i32/v8i16/v16i8
15859   if (VT != MVT::v4i32 && VT != MVT::v8i16 && VT != MVT::v16i8)
15860     return SDValue();
15861 
15862   // At least to save one more dependent computation
15863   if (!(Cond.hasOneUse() || TrueOpnd.hasOneUse() || FalseOpnd.hasOneUse()))
15864     return SDValue();
15865 
15866   ISD::CondCode CC = cast<CondCodeSDNode>(Cond.getOperand(2))->get();
15867 
15868   // Can only handle unsigned comparison here
15869   switch (CC) {
15870   default:
15871     return SDValue();
15872   case ISD::SETUGT:
15873   case ISD::SETUGE:
15874     break;
15875   case ISD::SETULT:
15876   case ISD::SETULE:
15877     std::swap(TrueOpnd, FalseOpnd);
15878     break;
15879   }
15880 
15881   SDValue CmpOpnd1 = Cond.getOperand(0);
15882   SDValue CmpOpnd2 = Cond.getOperand(1);
15883 
15884   // SETCC CmpOpnd1 CmpOpnd2 cond
15885   // TrueOpnd = CmpOpnd1 - CmpOpnd2
15886   // FalseOpnd = CmpOpnd2 - CmpOpnd1
15887   if (TrueOpnd.getOperand(0) == CmpOpnd1 &&
15888       TrueOpnd.getOperand(1) == CmpOpnd2 &&
15889       FalseOpnd.getOperand(0) == CmpOpnd2 &&
15890       FalseOpnd.getOperand(1) == CmpOpnd1) {
15891     return DAG.getNode(PPCISD::VABSD, dl, N->getOperand(1).getValueType(),
15892                        CmpOpnd1, CmpOpnd2,
15893                        DAG.getTargetConstant(0, dl, MVT::i32));
15894   }
15895 
15896   return SDValue();
15897 }
15898