1 //===-- PPCInstrInfo.cpp - PowerPC Instruction Information ----------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file contains the PowerPC implementation of the TargetInstrInfo class.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "PPCInstrInfo.h"
14 #include "MCTargetDesc/PPCPredicates.h"
15 #include "PPC.h"
16 #include "PPCHazardRecognizers.h"
17 #include "PPCInstrBuilder.h"
18 #include "PPCMachineFunctionInfo.h"
19 #include "PPCTargetMachine.h"
20 #include "llvm/ADT/DenseSet.h"
21 #include "llvm/ADT/STLExtras.h"
22 #include "llvm/ADT/Statistic.h"
23 #include "llvm/Analysis/AliasAnalysis.h"
24 #include "llvm/CodeGen/LiveIntervals.h"
25 #include "llvm/CodeGen/MachineCombinerPattern.h"
26 #include "llvm/CodeGen/MachineConstantPool.h"
27 #include "llvm/CodeGen/MachineFrameInfo.h"
28 #include "llvm/CodeGen/MachineFunctionPass.h"
29 #include "llvm/CodeGen/MachineInstrBuilder.h"
30 #include "llvm/CodeGen/MachineMemOperand.h"
31 #include "llvm/CodeGen/MachineRegisterInfo.h"
32 #include "llvm/CodeGen/PseudoSourceValue.h"
33 #include "llvm/CodeGen/RegisterClassInfo.h"
34 #include "llvm/CodeGen/RegisterPressure.h"
35 #include "llvm/CodeGen/ScheduleDAG.h"
36 #include "llvm/CodeGen/SlotIndexes.h"
37 #include "llvm/CodeGen/StackMaps.h"
38 #include "llvm/MC/MCAsmInfo.h"
39 #include "llvm/MC/MCInst.h"
40 #include "llvm/MC/TargetRegistry.h"
41 #include "llvm/Support/CommandLine.h"
42 #include "llvm/Support/Debug.h"
43 #include "llvm/Support/ErrorHandling.h"
44 #include "llvm/Support/raw_ostream.h"
45 
46 using namespace llvm;
47 
48 #define DEBUG_TYPE "ppc-instr-info"
49 
50 #define GET_INSTRMAP_INFO
51 #define GET_INSTRINFO_CTOR_DTOR
52 #include "PPCGenInstrInfo.inc"
53 
54 STATISTIC(NumStoreSPILLVSRRCAsVec,
55           "Number of spillvsrrc spilled to stack as vec");
56 STATISTIC(NumStoreSPILLVSRRCAsGpr,
57           "Number of spillvsrrc spilled to stack as gpr");
58 STATISTIC(NumGPRtoVSRSpill, "Number of gpr spills to spillvsrrc");
59 STATISTIC(CmpIselsConverted,
60           "Number of ISELs that depend on comparison of constants converted");
61 STATISTIC(MissedConvertibleImmediateInstrs,
62           "Number of compare-immediate instructions fed by constants");
63 STATISTIC(NumRcRotatesConvertedToRcAnd,
64           "Number of record-form rotates converted to record-form andi");
65 
66 static cl::
67 opt<bool> DisableCTRLoopAnal("disable-ppc-ctrloop-analysis", cl::Hidden,
68             cl::desc("Disable analysis for CTR loops"));
69 
70 static cl::opt<bool> DisableCmpOpt("disable-ppc-cmp-opt",
71 cl::desc("Disable compare instruction optimization"), cl::Hidden);
72 
73 static cl::opt<bool> VSXSelfCopyCrash("crash-on-ppc-vsx-self-copy",
74 cl::desc("Causes the backend to crash instead of generating a nop VSX copy"),
75 cl::Hidden);
76 
77 static cl::opt<bool>
78 UseOldLatencyCalc("ppc-old-latency-calc", cl::Hidden,
79   cl::desc("Use the old (incorrect) instruction latency calculation"));
80 
81 static cl::opt<float>
82     FMARPFactor("ppc-fma-rp-factor", cl::Hidden, cl::init(1.5),
83                 cl::desc("register pressure factor for the transformations."));
84 
85 static cl::opt<bool> EnableFMARegPressureReduction(
86     "ppc-fma-rp-reduction", cl::Hidden, cl::init(true),
87     cl::desc("enable register pressure reduce in machine combiner pass."));
88 
89 // Pin the vtable to this file.
90 void PPCInstrInfo::anchor() {}
91 
92 PPCInstrInfo::PPCInstrInfo(PPCSubtarget &STI)
93     : PPCGenInstrInfo(PPC::ADJCALLSTACKDOWN, PPC::ADJCALLSTACKUP,
94                       /* CatchRetOpcode */ -1,
95                       STI.isPPC64() ? PPC::BLR8 : PPC::BLR),
96       Subtarget(STI), RI(STI.getTargetMachine()) {}
97 
98 /// CreateTargetHazardRecognizer - Return the hazard recognizer to use for
99 /// this target when scheduling the DAG.
100 ScheduleHazardRecognizer *
101 PPCInstrInfo::CreateTargetHazardRecognizer(const TargetSubtargetInfo *STI,
102                                            const ScheduleDAG *DAG) const {
103   unsigned Directive =
104       static_cast<const PPCSubtarget *>(STI)->getCPUDirective();
105   if (Directive == PPC::DIR_440 || Directive == PPC::DIR_A2 ||
106       Directive == PPC::DIR_E500mc || Directive == PPC::DIR_E5500) {
107     const InstrItineraryData *II =
108         static_cast<const PPCSubtarget *>(STI)->getInstrItineraryData();
109     return new ScoreboardHazardRecognizer(II, DAG);
110   }
111 
112   return TargetInstrInfo::CreateTargetHazardRecognizer(STI, DAG);
113 }
114 
115 /// CreateTargetPostRAHazardRecognizer - Return the postRA hazard recognizer
116 /// to use for this target when scheduling the DAG.
117 ScheduleHazardRecognizer *
118 PPCInstrInfo::CreateTargetPostRAHazardRecognizer(const InstrItineraryData *II,
119                                                  const ScheduleDAG *DAG) const {
120   unsigned Directive =
121       DAG->MF.getSubtarget<PPCSubtarget>().getCPUDirective();
122 
123   // FIXME: Leaving this as-is until we have POWER9 scheduling info
124   if (Directive == PPC::DIR_PWR7 || Directive == PPC::DIR_PWR8)
125     return new PPCDispatchGroupSBHazardRecognizer(II, DAG);
126 
127   // Most subtargets use a PPC970 recognizer.
128   if (Directive != PPC::DIR_440 && Directive != PPC::DIR_A2 &&
129       Directive != PPC::DIR_E500mc && Directive != PPC::DIR_E5500) {
130     assert(DAG->TII && "No InstrInfo?");
131 
132     return new PPCHazardRecognizer970(*DAG);
133   }
134 
135   return new ScoreboardHazardRecognizer(II, DAG);
136 }
137 
138 unsigned PPCInstrInfo::getInstrLatency(const InstrItineraryData *ItinData,
139                                        const MachineInstr &MI,
140                                        unsigned *PredCost) const {
141   if (!ItinData || UseOldLatencyCalc)
142     return PPCGenInstrInfo::getInstrLatency(ItinData, MI, PredCost);
143 
144   // The default implementation of getInstrLatency calls getStageLatency, but
145   // getStageLatency does not do the right thing for us. While we have
146   // itinerary, most cores are fully pipelined, and so the itineraries only
147   // express the first part of the pipeline, not every stage. Instead, we need
148   // to use the listed output operand cycle number (using operand 0 here, which
149   // is an output).
150 
151   unsigned Latency = 1;
152   unsigned DefClass = MI.getDesc().getSchedClass();
153   for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
154     const MachineOperand &MO = MI.getOperand(i);
155     if (!MO.isReg() || !MO.isDef() || MO.isImplicit())
156       continue;
157 
158     int Cycle = ItinData->getOperandCycle(DefClass, i);
159     if (Cycle < 0)
160       continue;
161 
162     Latency = std::max(Latency, (unsigned) Cycle);
163   }
164 
165   return Latency;
166 }
167 
168 int PPCInstrInfo::getOperandLatency(const InstrItineraryData *ItinData,
169                                     const MachineInstr &DefMI, unsigned DefIdx,
170                                     const MachineInstr &UseMI,
171                                     unsigned UseIdx) const {
172   int Latency = PPCGenInstrInfo::getOperandLatency(ItinData, DefMI, DefIdx,
173                                                    UseMI, UseIdx);
174 
175   if (!DefMI.getParent())
176     return Latency;
177 
178   const MachineOperand &DefMO = DefMI.getOperand(DefIdx);
179   Register Reg = DefMO.getReg();
180 
181   bool IsRegCR;
182   if (Reg.isVirtual()) {
183     const MachineRegisterInfo *MRI =
184         &DefMI.getParent()->getParent()->getRegInfo();
185     IsRegCR = MRI->getRegClass(Reg)->hasSuperClassEq(&PPC::CRRCRegClass) ||
186               MRI->getRegClass(Reg)->hasSuperClassEq(&PPC::CRBITRCRegClass);
187   } else {
188     IsRegCR = PPC::CRRCRegClass.contains(Reg) ||
189               PPC::CRBITRCRegClass.contains(Reg);
190   }
191 
192   if (UseMI.isBranch() && IsRegCR) {
193     if (Latency < 0)
194       Latency = getInstrLatency(ItinData, DefMI);
195 
196     // On some cores, there is an additional delay between writing to a condition
197     // register, and using it from a branch.
198     unsigned Directive = Subtarget.getCPUDirective();
199     switch (Directive) {
200     default: break;
201     case PPC::DIR_7400:
202     case PPC::DIR_750:
203     case PPC::DIR_970:
204     case PPC::DIR_E5500:
205     case PPC::DIR_PWR4:
206     case PPC::DIR_PWR5:
207     case PPC::DIR_PWR5X:
208     case PPC::DIR_PWR6:
209     case PPC::DIR_PWR6X:
210     case PPC::DIR_PWR7:
211     case PPC::DIR_PWR8:
212     // FIXME: Is this needed for POWER9?
213       Latency += 2;
214       break;
215     }
216   }
217 
218   return Latency;
219 }
220 
221 /// This is an architecture-specific helper function of reassociateOps.
222 /// Set special operand attributes for new instructions after reassociation.
223 void PPCInstrInfo::setSpecialOperandAttr(MachineInstr &OldMI1,
224                                          MachineInstr &OldMI2,
225                                          MachineInstr &NewMI1,
226                                          MachineInstr &NewMI2) const {
227   // Propagate FP flags from the original instructions.
228   // But clear poison-generating flags because those may not be valid now.
229   uint32_t IntersectedFlags = OldMI1.getFlags() & OldMI2.getFlags();
230   NewMI1.setFlags(IntersectedFlags);
231   NewMI1.clearFlag(MachineInstr::MIFlag::NoSWrap);
232   NewMI1.clearFlag(MachineInstr::MIFlag::NoUWrap);
233   NewMI1.clearFlag(MachineInstr::MIFlag::IsExact);
234 
235   NewMI2.setFlags(IntersectedFlags);
236   NewMI2.clearFlag(MachineInstr::MIFlag::NoSWrap);
237   NewMI2.clearFlag(MachineInstr::MIFlag::NoUWrap);
238   NewMI2.clearFlag(MachineInstr::MIFlag::IsExact);
239 }
240 
241 void PPCInstrInfo::setSpecialOperandAttr(MachineInstr &MI,
242                                          uint32_t Flags) const {
243   MI.setFlags(Flags);
244   MI.clearFlag(MachineInstr::MIFlag::NoSWrap);
245   MI.clearFlag(MachineInstr::MIFlag::NoUWrap);
246   MI.clearFlag(MachineInstr::MIFlag::IsExact);
247 }
248 
249 // This function does not list all associative and commutative operations, but
250 // only those worth feeding through the machine combiner in an attempt to
251 // reduce the critical path. Mostly, this means floating-point operations,
252 // because they have high latencies(>=5) (compared to other operations, such as
253 // and/or, which are also associative and commutative, but have low latencies).
254 bool PPCInstrInfo::isAssociativeAndCommutative(const MachineInstr &Inst,
255                                                bool Invert) const {
256   if (Invert)
257     return false;
258   switch (Inst.getOpcode()) {
259   // Floating point:
260   // FP Add:
261   case PPC::FADD:
262   case PPC::FADDS:
263   // FP Multiply:
264   case PPC::FMUL:
265   case PPC::FMULS:
266   // Altivec Add:
267   case PPC::VADDFP:
268   // VSX Add:
269   case PPC::XSADDDP:
270   case PPC::XVADDDP:
271   case PPC::XVADDSP:
272   case PPC::XSADDSP:
273   // VSX Multiply:
274   case PPC::XSMULDP:
275   case PPC::XVMULDP:
276   case PPC::XVMULSP:
277   case PPC::XSMULSP:
278     return Inst.getFlag(MachineInstr::MIFlag::FmReassoc) &&
279            Inst.getFlag(MachineInstr::MIFlag::FmNsz);
280   // Fixed point:
281   // Multiply:
282   case PPC::MULHD:
283   case PPC::MULLD:
284   case PPC::MULHW:
285   case PPC::MULLW:
286     return true;
287   default:
288     return false;
289   }
290 }
291 
292 #define InfoArrayIdxFMAInst 0
293 #define InfoArrayIdxFAddInst 1
294 #define InfoArrayIdxFMULInst 2
295 #define InfoArrayIdxAddOpIdx 3
296 #define InfoArrayIdxMULOpIdx 4
297 #define InfoArrayIdxFSubInst 5
298 // Array keeps info for FMA instructions:
299 // Index 0(InfoArrayIdxFMAInst): FMA instruction;
300 // Index 1(InfoArrayIdxFAddInst): ADD instruction associated with FMA;
301 // Index 2(InfoArrayIdxFMULInst): MUL instruction associated with FMA;
302 // Index 3(InfoArrayIdxAddOpIdx): ADD operand index in FMA operands;
303 // Index 4(InfoArrayIdxMULOpIdx): first MUL operand index in FMA operands;
304 //                                second MUL operand index is plus 1;
305 // Index 5(InfoArrayIdxFSubInst): SUB instruction associated with FMA.
306 static const uint16_t FMAOpIdxInfo[][6] = {
307     // FIXME: Add more FMA instructions like XSNMADDADP and so on.
308     {PPC::XSMADDADP, PPC::XSADDDP, PPC::XSMULDP, 1, 2, PPC::XSSUBDP},
309     {PPC::XSMADDASP, PPC::XSADDSP, PPC::XSMULSP, 1, 2, PPC::XSSUBSP},
310     {PPC::XVMADDADP, PPC::XVADDDP, PPC::XVMULDP, 1, 2, PPC::XVSUBDP},
311     {PPC::XVMADDASP, PPC::XVADDSP, PPC::XVMULSP, 1, 2, PPC::XVSUBSP},
312     {PPC::FMADD, PPC::FADD, PPC::FMUL, 3, 1, PPC::FSUB},
313     {PPC::FMADDS, PPC::FADDS, PPC::FMULS, 3, 1, PPC::FSUBS}};
314 
315 // Check if an opcode is a FMA instruction. If it is, return the index in array
316 // FMAOpIdxInfo. Otherwise, return -1.
317 int16_t PPCInstrInfo::getFMAOpIdxInfo(unsigned Opcode) const {
318   for (unsigned I = 0; I < std::size(FMAOpIdxInfo); I++)
319     if (FMAOpIdxInfo[I][InfoArrayIdxFMAInst] == Opcode)
320       return I;
321   return -1;
322 }
323 
324 // On PowerPC target, we have two kinds of patterns related to FMA:
325 // 1: Improve ILP.
326 // Try to reassociate FMA chains like below:
327 //
328 // Pattern 1:
329 //   A =  FADD X,  Y          (Leaf)
330 //   B =  FMA  A,  M21,  M22  (Prev)
331 //   C =  FMA  B,  M31,  M32  (Root)
332 // -->
333 //   A =  FMA  X,  M21,  M22
334 //   B =  FMA  Y,  M31,  M32
335 //   C =  FADD A,  B
336 //
337 // Pattern 2:
338 //   A =  FMA  X,  M11,  M12  (Leaf)
339 //   B =  FMA  A,  M21,  M22  (Prev)
340 //   C =  FMA  B,  M31,  M32  (Root)
341 // -->
342 //   A =  FMUL M11,  M12
343 //   B =  FMA  X,  M21,  M22
344 //   D =  FMA  A,  M31,  M32
345 //   C =  FADD B,  D
346 //
347 // breaking the dependency between A and B, allowing FMA to be executed in
348 // parallel (or back-to-back in a pipeline) instead of depending on each other.
349 //
350 // 2: Reduce register pressure.
351 // Try to reassociate FMA with FSUB and a constant like below:
352 // C is a floating point const.
353 //
354 // Pattern 1:
355 //   A = FSUB  X,  Y      (Leaf)
356 //   D = FMA   B,  C,  A  (Root)
357 // -->
358 //   A = FMA   B,  Y,  -C
359 //   D = FMA   A,  X,  C
360 //
361 // Pattern 2:
362 //   A = FSUB  X,  Y      (Leaf)
363 //   D = FMA   B,  A,  C  (Root)
364 // -->
365 //   A = FMA   B,  Y,  -C
366 //   D = FMA   A,  X,  C
367 //
368 //  Before the transformation, A must be assigned with different hardware
369 //  register with D. After the transformation, A and D must be assigned with
370 //  same hardware register due to TIE attribute of FMA instructions.
371 //
372 bool PPCInstrInfo::getFMAPatterns(
373     MachineInstr &Root, SmallVectorImpl<MachineCombinerPattern> &Patterns,
374     bool DoRegPressureReduce) const {
375   MachineBasicBlock *MBB = Root.getParent();
376   const MachineRegisterInfo *MRI = &MBB->getParent()->getRegInfo();
377   const TargetRegisterInfo *TRI = &getRegisterInfo();
378 
379   auto IsAllOpsVirtualReg = [](const MachineInstr &Instr) {
380     for (const auto &MO : Instr.explicit_operands())
381       if (!(MO.isReg() && MO.getReg().isVirtual()))
382         return false;
383     return true;
384   };
385 
386   auto IsReassociableAddOrSub = [&](const MachineInstr &Instr,
387                                     unsigned OpType) {
388     if (Instr.getOpcode() !=
389         FMAOpIdxInfo[getFMAOpIdxInfo(Root.getOpcode())][OpType])
390       return false;
391 
392     // Instruction can be reassociated.
393     // fast math flags may prohibit reassociation.
394     if (!(Instr.getFlag(MachineInstr::MIFlag::FmReassoc) &&
395           Instr.getFlag(MachineInstr::MIFlag::FmNsz)))
396       return false;
397 
398     // Instruction operands are virtual registers for reassociation.
399     if (!IsAllOpsVirtualReg(Instr))
400       return false;
401 
402     // For register pressure reassociation, the FSub must have only one use as
403     // we want to delete the sub to save its def.
404     if (OpType == InfoArrayIdxFSubInst &&
405         !MRI->hasOneNonDBGUse(Instr.getOperand(0).getReg()))
406       return false;
407 
408     return true;
409   };
410 
411   auto IsReassociableFMA = [&](const MachineInstr &Instr, int16_t &AddOpIdx,
412                                int16_t &MulOpIdx, bool IsLeaf) {
413     int16_t Idx = getFMAOpIdxInfo(Instr.getOpcode());
414     if (Idx < 0)
415       return false;
416 
417     // Instruction can be reassociated.
418     // fast math flags may prohibit reassociation.
419     if (!(Instr.getFlag(MachineInstr::MIFlag::FmReassoc) &&
420           Instr.getFlag(MachineInstr::MIFlag::FmNsz)))
421       return false;
422 
423     // Instruction operands are virtual registers for reassociation.
424     if (!IsAllOpsVirtualReg(Instr))
425       return false;
426 
427     MulOpIdx = FMAOpIdxInfo[Idx][InfoArrayIdxMULOpIdx];
428     if (IsLeaf)
429       return true;
430 
431     AddOpIdx = FMAOpIdxInfo[Idx][InfoArrayIdxAddOpIdx];
432 
433     const MachineOperand &OpAdd = Instr.getOperand(AddOpIdx);
434     MachineInstr *MIAdd = MRI->getUniqueVRegDef(OpAdd.getReg());
435     // If 'add' operand's def is not in current block, don't do ILP related opt.
436     if (!MIAdd || MIAdd->getParent() != MBB)
437       return false;
438 
439     // If this is not Leaf FMA Instr, its 'add' operand should only have one use
440     // as this fma will be changed later.
441     return IsLeaf ? true : MRI->hasOneNonDBGUse(OpAdd.getReg());
442   };
443 
444   int16_t AddOpIdx = -1;
445   int16_t MulOpIdx = -1;
446 
447   bool IsUsedOnceL = false;
448   bool IsUsedOnceR = false;
449   MachineInstr *MULInstrL = nullptr;
450   MachineInstr *MULInstrR = nullptr;
451 
452   auto IsRPReductionCandidate = [&]() {
453     // Currently, we only support float and double.
454     // FIXME: add support for other types.
455     unsigned Opcode = Root.getOpcode();
456     if (Opcode != PPC::XSMADDASP && Opcode != PPC::XSMADDADP)
457       return false;
458 
459     // Root must be a valid FMA like instruction.
460     // Treat it as leaf as we don't care its add operand.
461     if (IsReassociableFMA(Root, AddOpIdx, MulOpIdx, true)) {
462       assert((MulOpIdx >= 0) && "mul operand index not right!");
463       Register MULRegL = TRI->lookThruSingleUseCopyChain(
464           Root.getOperand(MulOpIdx).getReg(), MRI);
465       Register MULRegR = TRI->lookThruSingleUseCopyChain(
466           Root.getOperand(MulOpIdx + 1).getReg(), MRI);
467       if (!MULRegL && !MULRegR)
468         return false;
469 
470       if (MULRegL && !MULRegR) {
471         MULRegR =
472             TRI->lookThruCopyLike(Root.getOperand(MulOpIdx + 1).getReg(), MRI);
473         IsUsedOnceL = true;
474       } else if (!MULRegL && MULRegR) {
475         MULRegL =
476             TRI->lookThruCopyLike(Root.getOperand(MulOpIdx).getReg(), MRI);
477         IsUsedOnceR = true;
478       } else {
479         IsUsedOnceL = true;
480         IsUsedOnceR = true;
481       }
482 
483       if (!MULRegL.isVirtual() || !MULRegR.isVirtual())
484         return false;
485 
486       MULInstrL = MRI->getVRegDef(MULRegL);
487       MULInstrR = MRI->getVRegDef(MULRegR);
488       return true;
489     }
490     return false;
491   };
492 
493   // Register pressure fma reassociation patterns.
494   if (DoRegPressureReduce && IsRPReductionCandidate()) {
495     assert((MULInstrL && MULInstrR) && "wrong register preduction candidate!");
496     // Register pressure pattern 1
497     if (isLoadFromConstantPool(MULInstrL) && IsUsedOnceR &&
498         IsReassociableAddOrSub(*MULInstrR, InfoArrayIdxFSubInst)) {
499       LLVM_DEBUG(dbgs() << "add pattern REASSOC_XY_BCA\n");
500       Patterns.push_back(MachineCombinerPattern::REASSOC_XY_BCA);
501       return true;
502     }
503 
504     // Register pressure pattern 2
505     if ((isLoadFromConstantPool(MULInstrR) && IsUsedOnceL &&
506          IsReassociableAddOrSub(*MULInstrL, InfoArrayIdxFSubInst))) {
507       LLVM_DEBUG(dbgs() << "add pattern REASSOC_XY_BAC\n");
508       Patterns.push_back(MachineCombinerPattern::REASSOC_XY_BAC);
509       return true;
510     }
511   }
512 
513   // ILP fma reassociation patterns.
514   // Root must be a valid FMA like instruction.
515   AddOpIdx = -1;
516   if (!IsReassociableFMA(Root, AddOpIdx, MulOpIdx, false))
517     return false;
518 
519   assert((AddOpIdx >= 0) && "add operand index not right!");
520 
521   Register RegB = Root.getOperand(AddOpIdx).getReg();
522   MachineInstr *Prev = MRI->getUniqueVRegDef(RegB);
523 
524   // Prev must be a valid FMA like instruction.
525   AddOpIdx = -1;
526   if (!IsReassociableFMA(*Prev, AddOpIdx, MulOpIdx, false))
527     return false;
528 
529   assert((AddOpIdx >= 0) && "add operand index not right!");
530 
531   Register RegA = Prev->getOperand(AddOpIdx).getReg();
532   MachineInstr *Leaf = MRI->getUniqueVRegDef(RegA);
533   AddOpIdx = -1;
534   if (IsReassociableFMA(*Leaf, AddOpIdx, MulOpIdx, true)) {
535     Patterns.push_back(MachineCombinerPattern::REASSOC_XMM_AMM_BMM);
536     LLVM_DEBUG(dbgs() << "add pattern REASSOC_XMM_AMM_BMM\n");
537     return true;
538   }
539   if (IsReassociableAddOrSub(*Leaf, InfoArrayIdxFAddInst)) {
540     Patterns.push_back(MachineCombinerPattern::REASSOC_XY_AMM_BMM);
541     LLVM_DEBUG(dbgs() << "add pattern REASSOC_XY_AMM_BMM\n");
542     return true;
543   }
544   return false;
545 }
546 
547 void PPCInstrInfo::finalizeInsInstrs(
548     MachineInstr &Root, MachineCombinerPattern &P,
549     SmallVectorImpl<MachineInstr *> &InsInstrs) const {
550   assert(!InsInstrs.empty() && "Instructions set to be inserted is empty!");
551 
552   MachineFunction *MF = Root.getMF();
553   MachineRegisterInfo *MRI = &MF->getRegInfo();
554   const TargetRegisterInfo *TRI = &getRegisterInfo();
555   MachineConstantPool *MCP = MF->getConstantPool();
556 
557   int16_t Idx = getFMAOpIdxInfo(Root.getOpcode());
558   if (Idx < 0)
559     return;
560 
561   uint16_t FirstMulOpIdx = FMAOpIdxInfo[Idx][InfoArrayIdxMULOpIdx];
562 
563   // For now we only need to fix up placeholder for register pressure reduce
564   // patterns.
565   Register ConstReg = 0;
566   switch (P) {
567   case MachineCombinerPattern::REASSOC_XY_BCA:
568     ConstReg =
569         TRI->lookThruCopyLike(Root.getOperand(FirstMulOpIdx).getReg(), MRI);
570     break;
571   case MachineCombinerPattern::REASSOC_XY_BAC:
572     ConstReg =
573         TRI->lookThruCopyLike(Root.getOperand(FirstMulOpIdx + 1).getReg(), MRI);
574     break;
575   default:
576     // Not register pressure reduce patterns.
577     return;
578   }
579 
580   MachineInstr *ConstDefInstr = MRI->getVRegDef(ConstReg);
581   // Get const value from const pool.
582   const Constant *C = getConstantFromConstantPool(ConstDefInstr);
583   assert(isa<llvm::ConstantFP>(C) && "not a valid constant!");
584 
585   // Get negative fp const.
586   APFloat F1((dyn_cast<ConstantFP>(C))->getValueAPF());
587   F1.changeSign();
588   Constant *NegC = ConstantFP::get(dyn_cast<ConstantFP>(C)->getContext(), F1);
589   Align Alignment = MF->getDataLayout().getPrefTypeAlign(C->getType());
590 
591   // Put negative fp const into constant pool.
592   unsigned ConstPoolIdx = MCP->getConstantPoolIndex(NegC, Alignment);
593 
594   MachineOperand *Placeholder = nullptr;
595   // Record the placeholder PPC::ZERO8 we add in reassociateFMA.
596   for (auto *Inst : InsInstrs) {
597     for (MachineOperand &Operand : Inst->explicit_operands()) {
598       assert(Operand.isReg() && "Invalid instruction in InsInstrs!");
599       if (Operand.getReg() == PPC::ZERO8) {
600         Placeholder = &Operand;
601         break;
602       }
603     }
604   }
605 
606   assert(Placeholder && "Placeholder does not exist!");
607 
608   // Generate instructions to load the const fp from constant pool.
609   // We only support PPC64 and medium code model.
610   Register LoadNewConst =
611       generateLoadForNewConst(ConstPoolIdx, &Root, C->getType(), InsInstrs);
612 
613   // Fill the placeholder with the new load from constant pool.
614   Placeholder->setReg(LoadNewConst);
615 }
616 
617 bool PPCInstrInfo::shouldReduceRegisterPressure(
618     const MachineBasicBlock *MBB, const RegisterClassInfo *RegClassInfo) const {
619 
620   if (!EnableFMARegPressureReduction)
621     return false;
622 
623   // Currently, we only enable register pressure reducing in machine combiner
624   // for: 1: PPC64; 2: Code Model is Medium; 3: Power9 which also has vector
625   // support.
626   //
627   // So we need following instructions to access a TOC entry:
628   //
629   // %6:g8rc_and_g8rc_nox0 = ADDIStocHA8 $x2, %const.0
630   // %7:vssrc = DFLOADf32 target-flags(ppc-toc-lo) %const.0,
631   //   killed %6:g8rc_and_g8rc_nox0, implicit $x2 :: (load 4 from constant-pool)
632   //
633   // FIXME: add more supported targets, like Small and Large code model, PPC32,
634   // AIX.
635   if (!(Subtarget.isPPC64() && Subtarget.hasP9Vector() &&
636         Subtarget.getTargetMachine().getCodeModel() == CodeModel::Medium))
637     return false;
638 
639   const TargetRegisterInfo *TRI = &getRegisterInfo();
640   const MachineFunction *MF = MBB->getParent();
641   const MachineRegisterInfo *MRI = &MF->getRegInfo();
642 
643   auto GetMBBPressure =
644       [&](const MachineBasicBlock *MBB) -> std::vector<unsigned> {
645     RegionPressure Pressure;
646     RegPressureTracker RPTracker(Pressure);
647 
648     // Initialize the register pressure tracker.
649     RPTracker.init(MBB->getParent(), RegClassInfo, nullptr, MBB, MBB->end(),
650                    /*TrackLaneMasks*/ false, /*TrackUntiedDefs=*/true);
651 
652     for (const auto &MI : reverse(*MBB)) {
653       if (MI.isDebugValue() || MI.isDebugLabel())
654         continue;
655       RegisterOperands RegOpers;
656       RegOpers.collect(MI, *TRI, *MRI, false, false);
657       RPTracker.recedeSkipDebugValues();
658       assert(&*RPTracker.getPos() == &MI && "RPTracker sync error!");
659       RPTracker.recede(RegOpers);
660     }
661 
662     // Close the RPTracker to finalize live ins.
663     RPTracker.closeRegion();
664 
665     return RPTracker.getPressure().MaxSetPressure;
666   };
667 
668   // For now we only care about float and double type fma.
669   unsigned VSSRCLimit = TRI->getRegPressureSetLimit(
670       *MBB->getParent(), PPC::RegisterPressureSets::VSSRC);
671 
672   // Only reduce register pressure when pressure is high.
673   return GetMBBPressure(MBB)[PPC::RegisterPressureSets::VSSRC] >
674          (float)VSSRCLimit * FMARPFactor;
675 }
676 
677 bool PPCInstrInfo::isLoadFromConstantPool(MachineInstr *I) const {
678   // I has only one memory operand which is load from constant pool.
679   if (!I->hasOneMemOperand())
680     return false;
681 
682   MachineMemOperand *Op = I->memoperands()[0];
683   return Op->isLoad() && Op->getPseudoValue() &&
684          Op->getPseudoValue()->kind() == PseudoSourceValue::ConstantPool;
685 }
686 
687 Register PPCInstrInfo::generateLoadForNewConst(
688     unsigned Idx, MachineInstr *MI, Type *Ty,
689     SmallVectorImpl<MachineInstr *> &InsInstrs) const {
690   // Now we only support PPC64, Medium code model and P9 with vector.
691   // We have immutable pattern to access const pool. See function
692   // shouldReduceRegisterPressure.
693   assert((Subtarget.isPPC64() && Subtarget.hasP9Vector() &&
694           Subtarget.getTargetMachine().getCodeModel() == CodeModel::Medium) &&
695          "Target not supported!\n");
696 
697   MachineFunction *MF = MI->getMF();
698   MachineRegisterInfo *MRI = &MF->getRegInfo();
699 
700   // Generate ADDIStocHA8
701   Register VReg1 = MRI->createVirtualRegister(&PPC::G8RC_and_G8RC_NOX0RegClass);
702   MachineInstrBuilder TOCOffset =
703       BuildMI(*MF, MI->getDebugLoc(), get(PPC::ADDIStocHA8), VReg1)
704           .addReg(PPC::X2)
705           .addConstantPoolIndex(Idx);
706 
707   assert((Ty->isFloatTy() || Ty->isDoubleTy()) &&
708          "Only float and double are supported!");
709 
710   unsigned LoadOpcode;
711   // Should be float type or double type.
712   if (Ty->isFloatTy())
713     LoadOpcode = PPC::DFLOADf32;
714   else
715     LoadOpcode = PPC::DFLOADf64;
716 
717   const TargetRegisterClass *RC = MRI->getRegClass(MI->getOperand(0).getReg());
718   Register VReg2 = MRI->createVirtualRegister(RC);
719   MachineMemOperand *MMO = MF->getMachineMemOperand(
720       MachinePointerInfo::getConstantPool(*MF), MachineMemOperand::MOLoad,
721       Ty->getScalarSizeInBits() / 8, MF->getDataLayout().getPrefTypeAlign(Ty));
722 
723   // Generate Load from constant pool.
724   MachineInstrBuilder Load =
725       BuildMI(*MF, MI->getDebugLoc(), get(LoadOpcode), VReg2)
726           .addConstantPoolIndex(Idx)
727           .addReg(VReg1, getKillRegState(true))
728           .addMemOperand(MMO);
729 
730   Load->getOperand(1).setTargetFlags(PPCII::MO_TOC_LO);
731 
732   // Insert the toc load instructions into InsInstrs.
733   InsInstrs.insert(InsInstrs.begin(), Load);
734   InsInstrs.insert(InsInstrs.begin(), TOCOffset);
735   return VReg2;
736 }
737 
738 // This function returns the const value in constant pool if the \p I is a load
739 // from constant pool.
740 const Constant *
741 PPCInstrInfo::getConstantFromConstantPool(MachineInstr *I) const {
742   MachineFunction *MF = I->getMF();
743   MachineRegisterInfo *MRI = &MF->getRegInfo();
744   MachineConstantPool *MCP = MF->getConstantPool();
745   assert(I->mayLoad() && "Should be a load instruction.\n");
746   for (auto MO : I->uses()) {
747     if (!MO.isReg())
748       continue;
749     Register Reg = MO.getReg();
750     if (Reg == 0 || !Reg.isVirtual())
751       continue;
752     // Find the toc address.
753     MachineInstr *DefMI = MRI->getVRegDef(Reg);
754     for (auto MO2 : DefMI->uses())
755       if (MO2.isCPI())
756         return (MCP->getConstants())[MO2.getIndex()].Val.ConstVal;
757   }
758   return nullptr;
759 }
760 
761 bool PPCInstrInfo::getMachineCombinerPatterns(
762     MachineInstr &Root, SmallVectorImpl<MachineCombinerPattern> &Patterns,
763     bool DoRegPressureReduce) const {
764   // Using the machine combiner in this way is potentially expensive, so
765   // restrict to when aggressive optimizations are desired.
766   if (Subtarget.getTargetMachine().getOptLevel() != CodeGenOpt::Aggressive)
767     return false;
768 
769   if (getFMAPatterns(Root, Patterns, DoRegPressureReduce))
770     return true;
771 
772   return TargetInstrInfo::getMachineCombinerPatterns(Root, Patterns,
773                                                      DoRegPressureReduce);
774 }
775 
776 void PPCInstrInfo::genAlternativeCodeSequence(
777     MachineInstr &Root, MachineCombinerPattern Pattern,
778     SmallVectorImpl<MachineInstr *> &InsInstrs,
779     SmallVectorImpl<MachineInstr *> &DelInstrs,
780     DenseMap<unsigned, unsigned> &InstrIdxForVirtReg) const {
781   switch (Pattern) {
782   case MachineCombinerPattern::REASSOC_XY_AMM_BMM:
783   case MachineCombinerPattern::REASSOC_XMM_AMM_BMM:
784   case MachineCombinerPattern::REASSOC_XY_BCA:
785   case MachineCombinerPattern::REASSOC_XY_BAC:
786     reassociateFMA(Root, Pattern, InsInstrs, DelInstrs, InstrIdxForVirtReg);
787     break;
788   default:
789     // Reassociate default patterns.
790     TargetInstrInfo::genAlternativeCodeSequence(Root, Pattern, InsInstrs,
791                                                 DelInstrs, InstrIdxForVirtReg);
792     break;
793   }
794 }
795 
796 void PPCInstrInfo::reassociateFMA(
797     MachineInstr &Root, MachineCombinerPattern Pattern,
798     SmallVectorImpl<MachineInstr *> &InsInstrs,
799     SmallVectorImpl<MachineInstr *> &DelInstrs,
800     DenseMap<unsigned, unsigned> &InstrIdxForVirtReg) const {
801   MachineFunction *MF = Root.getMF();
802   MachineRegisterInfo &MRI = MF->getRegInfo();
803   const TargetRegisterInfo *TRI = &getRegisterInfo();
804   MachineOperand &OpC = Root.getOperand(0);
805   Register RegC = OpC.getReg();
806   const TargetRegisterClass *RC = MRI.getRegClass(RegC);
807   MRI.constrainRegClass(RegC, RC);
808 
809   unsigned FmaOp = Root.getOpcode();
810   int16_t Idx = getFMAOpIdxInfo(FmaOp);
811   assert(Idx >= 0 && "Root must be a FMA instruction");
812 
813   bool IsILPReassociate =
814       (Pattern == MachineCombinerPattern::REASSOC_XY_AMM_BMM) ||
815       (Pattern == MachineCombinerPattern::REASSOC_XMM_AMM_BMM);
816 
817   uint16_t AddOpIdx = FMAOpIdxInfo[Idx][InfoArrayIdxAddOpIdx];
818   uint16_t FirstMulOpIdx = FMAOpIdxInfo[Idx][InfoArrayIdxMULOpIdx];
819 
820   MachineInstr *Prev = nullptr;
821   MachineInstr *Leaf = nullptr;
822   switch (Pattern) {
823   default:
824     llvm_unreachable("not recognized pattern!");
825   case MachineCombinerPattern::REASSOC_XY_AMM_BMM:
826   case MachineCombinerPattern::REASSOC_XMM_AMM_BMM:
827     Prev = MRI.getUniqueVRegDef(Root.getOperand(AddOpIdx).getReg());
828     Leaf = MRI.getUniqueVRegDef(Prev->getOperand(AddOpIdx).getReg());
829     break;
830   case MachineCombinerPattern::REASSOC_XY_BAC: {
831     Register MULReg =
832         TRI->lookThruCopyLike(Root.getOperand(FirstMulOpIdx).getReg(), &MRI);
833     Leaf = MRI.getVRegDef(MULReg);
834     break;
835   }
836   case MachineCombinerPattern::REASSOC_XY_BCA: {
837     Register MULReg = TRI->lookThruCopyLike(
838         Root.getOperand(FirstMulOpIdx + 1).getReg(), &MRI);
839     Leaf = MRI.getVRegDef(MULReg);
840     break;
841   }
842   }
843 
844   uint32_t IntersectedFlags = 0;
845   if (IsILPReassociate)
846     IntersectedFlags = Root.getFlags() & Prev->getFlags() & Leaf->getFlags();
847   else
848     IntersectedFlags = Root.getFlags() & Leaf->getFlags();
849 
850   auto GetOperandInfo = [&](const MachineOperand &Operand, Register &Reg,
851                             bool &KillFlag) {
852     Reg = Operand.getReg();
853     MRI.constrainRegClass(Reg, RC);
854     KillFlag = Operand.isKill();
855   };
856 
857   auto GetFMAInstrInfo = [&](const MachineInstr &Instr, Register &MulOp1,
858                              Register &MulOp2, Register &AddOp,
859                              bool &MulOp1KillFlag, bool &MulOp2KillFlag,
860                              bool &AddOpKillFlag) {
861     GetOperandInfo(Instr.getOperand(FirstMulOpIdx), MulOp1, MulOp1KillFlag);
862     GetOperandInfo(Instr.getOperand(FirstMulOpIdx + 1), MulOp2, MulOp2KillFlag);
863     GetOperandInfo(Instr.getOperand(AddOpIdx), AddOp, AddOpKillFlag);
864   };
865 
866   Register RegM11, RegM12, RegX, RegY, RegM21, RegM22, RegM31, RegM32, RegA11,
867       RegA21, RegB;
868   bool KillX = false, KillY = false, KillM11 = false, KillM12 = false,
869        KillM21 = false, KillM22 = false, KillM31 = false, KillM32 = false,
870        KillA11 = false, KillA21 = false, KillB = false;
871 
872   GetFMAInstrInfo(Root, RegM31, RegM32, RegB, KillM31, KillM32, KillB);
873 
874   if (IsILPReassociate)
875     GetFMAInstrInfo(*Prev, RegM21, RegM22, RegA21, KillM21, KillM22, KillA21);
876 
877   if (Pattern == MachineCombinerPattern::REASSOC_XMM_AMM_BMM) {
878     GetFMAInstrInfo(*Leaf, RegM11, RegM12, RegA11, KillM11, KillM12, KillA11);
879     GetOperandInfo(Leaf->getOperand(AddOpIdx), RegX, KillX);
880   } else if (Pattern == MachineCombinerPattern::REASSOC_XY_AMM_BMM) {
881     GetOperandInfo(Leaf->getOperand(1), RegX, KillX);
882     GetOperandInfo(Leaf->getOperand(2), RegY, KillY);
883   } else {
884     // Get FSUB instruction info.
885     GetOperandInfo(Leaf->getOperand(1), RegX, KillX);
886     GetOperandInfo(Leaf->getOperand(2), RegY, KillY);
887   }
888 
889   // Create new virtual registers for the new results instead of
890   // recycling legacy ones because the MachineCombiner's computation of the
891   // critical path requires a new register definition rather than an existing
892   // one.
893   // For register pressure reassociation, we only need create one virtual
894   // register for the new fma.
895   Register NewVRA = MRI.createVirtualRegister(RC);
896   InstrIdxForVirtReg.insert(std::make_pair(NewVRA, 0));
897 
898   Register NewVRB = 0;
899   if (IsILPReassociate) {
900     NewVRB = MRI.createVirtualRegister(RC);
901     InstrIdxForVirtReg.insert(std::make_pair(NewVRB, 1));
902   }
903 
904   Register NewVRD = 0;
905   if (Pattern == MachineCombinerPattern::REASSOC_XMM_AMM_BMM) {
906     NewVRD = MRI.createVirtualRegister(RC);
907     InstrIdxForVirtReg.insert(std::make_pair(NewVRD, 2));
908   }
909 
910   auto AdjustOperandOrder = [&](MachineInstr *MI, Register RegAdd, bool KillAdd,
911                                 Register RegMul1, bool KillRegMul1,
912                                 Register RegMul2, bool KillRegMul2) {
913     MI->getOperand(AddOpIdx).setReg(RegAdd);
914     MI->getOperand(AddOpIdx).setIsKill(KillAdd);
915     MI->getOperand(FirstMulOpIdx).setReg(RegMul1);
916     MI->getOperand(FirstMulOpIdx).setIsKill(KillRegMul1);
917     MI->getOperand(FirstMulOpIdx + 1).setReg(RegMul2);
918     MI->getOperand(FirstMulOpIdx + 1).setIsKill(KillRegMul2);
919   };
920 
921   MachineInstrBuilder NewARegPressure, NewCRegPressure;
922   switch (Pattern) {
923   default:
924     llvm_unreachable("not recognized pattern!");
925   case MachineCombinerPattern::REASSOC_XY_AMM_BMM: {
926     // Create new instructions for insertion.
927     MachineInstrBuilder MINewB =
928         BuildMI(*MF, Prev->getDebugLoc(), get(FmaOp), NewVRB)
929             .addReg(RegX, getKillRegState(KillX))
930             .addReg(RegM21, getKillRegState(KillM21))
931             .addReg(RegM22, getKillRegState(KillM22));
932     MachineInstrBuilder MINewA =
933         BuildMI(*MF, Root.getDebugLoc(), get(FmaOp), NewVRA)
934             .addReg(RegY, getKillRegState(KillY))
935             .addReg(RegM31, getKillRegState(KillM31))
936             .addReg(RegM32, getKillRegState(KillM32));
937     // If AddOpIdx is not 1, adjust the order.
938     if (AddOpIdx != 1) {
939       AdjustOperandOrder(MINewB, RegX, KillX, RegM21, KillM21, RegM22, KillM22);
940       AdjustOperandOrder(MINewA, RegY, KillY, RegM31, KillM31, RegM32, KillM32);
941     }
942 
943     MachineInstrBuilder MINewC =
944         BuildMI(*MF, Root.getDebugLoc(),
945                 get(FMAOpIdxInfo[Idx][InfoArrayIdxFAddInst]), RegC)
946             .addReg(NewVRB, getKillRegState(true))
947             .addReg(NewVRA, getKillRegState(true));
948 
949     // Update flags for newly created instructions.
950     setSpecialOperandAttr(*MINewA, IntersectedFlags);
951     setSpecialOperandAttr(*MINewB, IntersectedFlags);
952     setSpecialOperandAttr(*MINewC, IntersectedFlags);
953 
954     // Record new instructions for insertion.
955     InsInstrs.push_back(MINewA);
956     InsInstrs.push_back(MINewB);
957     InsInstrs.push_back(MINewC);
958     break;
959   }
960   case MachineCombinerPattern::REASSOC_XMM_AMM_BMM: {
961     assert(NewVRD && "new FMA register not created!");
962     // Create new instructions for insertion.
963     MachineInstrBuilder MINewA =
964         BuildMI(*MF, Leaf->getDebugLoc(),
965                 get(FMAOpIdxInfo[Idx][InfoArrayIdxFMULInst]), NewVRA)
966             .addReg(RegM11, getKillRegState(KillM11))
967             .addReg(RegM12, getKillRegState(KillM12));
968     MachineInstrBuilder MINewB =
969         BuildMI(*MF, Prev->getDebugLoc(), get(FmaOp), NewVRB)
970             .addReg(RegX, getKillRegState(KillX))
971             .addReg(RegM21, getKillRegState(KillM21))
972             .addReg(RegM22, getKillRegState(KillM22));
973     MachineInstrBuilder MINewD =
974         BuildMI(*MF, Root.getDebugLoc(), get(FmaOp), NewVRD)
975             .addReg(NewVRA, getKillRegState(true))
976             .addReg(RegM31, getKillRegState(KillM31))
977             .addReg(RegM32, getKillRegState(KillM32));
978     // If AddOpIdx is not 1, adjust the order.
979     if (AddOpIdx != 1) {
980       AdjustOperandOrder(MINewB, RegX, KillX, RegM21, KillM21, RegM22, KillM22);
981       AdjustOperandOrder(MINewD, NewVRA, true, RegM31, KillM31, RegM32,
982                          KillM32);
983     }
984 
985     MachineInstrBuilder MINewC =
986         BuildMI(*MF, Root.getDebugLoc(),
987                 get(FMAOpIdxInfo[Idx][InfoArrayIdxFAddInst]), RegC)
988             .addReg(NewVRB, getKillRegState(true))
989             .addReg(NewVRD, getKillRegState(true));
990 
991     // Update flags for newly created instructions.
992     setSpecialOperandAttr(*MINewA, IntersectedFlags);
993     setSpecialOperandAttr(*MINewB, IntersectedFlags);
994     setSpecialOperandAttr(*MINewD, IntersectedFlags);
995     setSpecialOperandAttr(*MINewC, IntersectedFlags);
996 
997     // Record new instructions for insertion.
998     InsInstrs.push_back(MINewA);
999     InsInstrs.push_back(MINewB);
1000     InsInstrs.push_back(MINewD);
1001     InsInstrs.push_back(MINewC);
1002     break;
1003   }
1004   case MachineCombinerPattern::REASSOC_XY_BAC:
1005   case MachineCombinerPattern::REASSOC_XY_BCA: {
1006     Register VarReg;
1007     bool KillVarReg = false;
1008     if (Pattern == MachineCombinerPattern::REASSOC_XY_BCA) {
1009       VarReg = RegM31;
1010       KillVarReg = KillM31;
1011     } else {
1012       VarReg = RegM32;
1013       KillVarReg = KillM32;
1014     }
1015     // We don't want to get negative const from memory pool too early, as the
1016     // created entry will not be deleted even if it has no users. Since all
1017     // operand of Leaf and Root are virtual register, we use zero register
1018     // here as a placeholder. When the InsInstrs is selected in
1019     // MachineCombiner, we call finalizeInsInstrs to replace the zero register
1020     // with a virtual register which is a load from constant pool.
1021     NewARegPressure = BuildMI(*MF, Root.getDebugLoc(), get(FmaOp), NewVRA)
1022                           .addReg(RegB, getKillRegState(RegB))
1023                           .addReg(RegY, getKillRegState(KillY))
1024                           .addReg(PPC::ZERO8);
1025     NewCRegPressure = BuildMI(*MF, Root.getDebugLoc(), get(FmaOp), RegC)
1026                           .addReg(NewVRA, getKillRegState(true))
1027                           .addReg(RegX, getKillRegState(KillX))
1028                           .addReg(VarReg, getKillRegState(KillVarReg));
1029     // For now, we only support xsmaddadp/xsmaddasp, their add operand are
1030     // both at index 1, no need to adjust.
1031     // FIXME: when add more fma instructions support, like fma/fmas, adjust
1032     // the operand index here.
1033     break;
1034   }
1035   }
1036 
1037   if (!IsILPReassociate) {
1038     setSpecialOperandAttr(*NewARegPressure, IntersectedFlags);
1039     setSpecialOperandAttr(*NewCRegPressure, IntersectedFlags);
1040 
1041     InsInstrs.push_back(NewARegPressure);
1042     InsInstrs.push_back(NewCRegPressure);
1043   }
1044 
1045   assert(!InsInstrs.empty() &&
1046          "Insertion instructions set should not be empty!");
1047 
1048   // Record old instructions for deletion.
1049   DelInstrs.push_back(Leaf);
1050   if (IsILPReassociate)
1051     DelInstrs.push_back(Prev);
1052   DelInstrs.push_back(&Root);
1053 }
1054 
1055 // Detect 32 -> 64-bit extensions where we may reuse the low sub-register.
1056 bool PPCInstrInfo::isCoalescableExtInstr(const MachineInstr &MI,
1057                                          Register &SrcReg, Register &DstReg,
1058                                          unsigned &SubIdx) const {
1059   switch (MI.getOpcode()) {
1060   default: return false;
1061   case PPC::EXTSW:
1062   case PPC::EXTSW_32:
1063   case PPC::EXTSW_32_64:
1064     SrcReg = MI.getOperand(1).getReg();
1065     DstReg = MI.getOperand(0).getReg();
1066     SubIdx = PPC::sub_32;
1067     return true;
1068   }
1069 }
1070 
1071 unsigned PPCInstrInfo::isLoadFromStackSlot(const MachineInstr &MI,
1072                                            int &FrameIndex) const {
1073   if (llvm::is_contained(getLoadOpcodesForSpillArray(), MI.getOpcode())) {
1074     // Check for the operands added by addFrameReference (the immediate is the
1075     // offset which defaults to 0).
1076     if (MI.getOperand(1).isImm() && !MI.getOperand(1).getImm() &&
1077         MI.getOperand(2).isFI()) {
1078       FrameIndex = MI.getOperand(2).getIndex();
1079       return MI.getOperand(0).getReg();
1080     }
1081   }
1082   return 0;
1083 }
1084 
1085 // For opcodes with the ReMaterializable flag set, this function is called to
1086 // verify the instruction is really rematable.
1087 bool PPCInstrInfo::isReallyTriviallyReMaterializable(
1088     const MachineInstr &MI) const {
1089   switch (MI.getOpcode()) {
1090   default:
1091     // This function should only be called for opcodes with the ReMaterializable
1092     // flag set.
1093     llvm_unreachable("Unknown rematerializable operation!");
1094     break;
1095   case PPC::LI:
1096   case PPC::LI8:
1097   case PPC::PLI:
1098   case PPC::PLI8:
1099   case PPC::LIS:
1100   case PPC::LIS8:
1101   case PPC::ADDIStocHA:
1102   case PPC::ADDIStocHA8:
1103   case PPC::ADDItocL:
1104   case PPC::LOAD_STACK_GUARD:
1105   case PPC::XXLXORz:
1106   case PPC::XXLXORspz:
1107   case PPC::XXLXORdpz:
1108   case PPC::XXLEQVOnes:
1109   case PPC::XXSPLTI32DX:
1110   case PPC::XXSPLTIW:
1111   case PPC::XXSPLTIDP:
1112   case PPC::V_SET0B:
1113   case PPC::V_SET0H:
1114   case PPC::V_SET0:
1115   case PPC::V_SETALLONESB:
1116   case PPC::V_SETALLONESH:
1117   case PPC::V_SETALLONES:
1118   case PPC::CRSET:
1119   case PPC::CRUNSET:
1120   case PPC::XXSETACCZ:
1121   case PPC::XXSETACCZW:
1122     return true;
1123   }
1124   return false;
1125 }
1126 
1127 unsigned PPCInstrInfo::isStoreToStackSlot(const MachineInstr &MI,
1128                                           int &FrameIndex) const {
1129   if (llvm::is_contained(getStoreOpcodesForSpillArray(), MI.getOpcode())) {
1130     if (MI.getOperand(1).isImm() && !MI.getOperand(1).getImm() &&
1131         MI.getOperand(2).isFI()) {
1132       FrameIndex = MI.getOperand(2).getIndex();
1133       return MI.getOperand(0).getReg();
1134     }
1135   }
1136   return 0;
1137 }
1138 
1139 MachineInstr *PPCInstrInfo::commuteInstructionImpl(MachineInstr &MI, bool NewMI,
1140                                                    unsigned OpIdx1,
1141                                                    unsigned OpIdx2) const {
1142   MachineFunction &MF = *MI.getParent()->getParent();
1143 
1144   // Normal instructions can be commuted the obvious way.
1145   if (MI.getOpcode() != PPC::RLWIMI && MI.getOpcode() != PPC::RLWIMI_rec)
1146     return TargetInstrInfo::commuteInstructionImpl(MI, NewMI, OpIdx1, OpIdx2);
1147   // Note that RLWIMI can be commuted as a 32-bit instruction, but not as a
1148   // 64-bit instruction (so we don't handle PPC::RLWIMI8 here), because
1149   // changing the relative order of the mask operands might change what happens
1150   // to the high-bits of the mask (and, thus, the result).
1151 
1152   // Cannot commute if it has a non-zero rotate count.
1153   if (MI.getOperand(3).getImm() != 0)
1154     return nullptr;
1155 
1156   // If we have a zero rotate count, we have:
1157   //   M = mask(MB,ME)
1158   //   Op0 = (Op1 & ~M) | (Op2 & M)
1159   // Change this to:
1160   //   M = mask((ME+1)&31, (MB-1)&31)
1161   //   Op0 = (Op2 & ~M) | (Op1 & M)
1162 
1163   // Swap op1/op2
1164   assert(((OpIdx1 == 1 && OpIdx2 == 2) || (OpIdx1 == 2 && OpIdx2 == 1)) &&
1165          "Only the operands 1 and 2 can be swapped in RLSIMI/RLWIMI_rec.");
1166   Register Reg0 = MI.getOperand(0).getReg();
1167   Register Reg1 = MI.getOperand(1).getReg();
1168   Register Reg2 = MI.getOperand(2).getReg();
1169   unsigned SubReg1 = MI.getOperand(1).getSubReg();
1170   unsigned SubReg2 = MI.getOperand(2).getSubReg();
1171   bool Reg1IsKill = MI.getOperand(1).isKill();
1172   bool Reg2IsKill = MI.getOperand(2).isKill();
1173   bool ChangeReg0 = false;
1174   // If machine instrs are no longer in two-address forms, update
1175   // destination register as well.
1176   if (Reg0 == Reg1) {
1177     // Must be two address instruction!
1178     assert(MI.getDesc().getOperandConstraint(0, MCOI::TIED_TO) &&
1179            "Expecting a two-address instruction!");
1180     assert(MI.getOperand(0).getSubReg() == SubReg1 && "Tied subreg mismatch");
1181     Reg2IsKill = false;
1182     ChangeReg0 = true;
1183   }
1184 
1185   // Masks.
1186   unsigned MB = MI.getOperand(4).getImm();
1187   unsigned ME = MI.getOperand(5).getImm();
1188 
1189   // We can't commute a trivial mask (there is no way to represent an all-zero
1190   // mask).
1191   if (MB == 0 && ME == 31)
1192     return nullptr;
1193 
1194   if (NewMI) {
1195     // Create a new instruction.
1196     Register Reg0 = ChangeReg0 ? Reg2 : MI.getOperand(0).getReg();
1197     bool Reg0IsDead = MI.getOperand(0).isDead();
1198     return BuildMI(MF, MI.getDebugLoc(), MI.getDesc())
1199         .addReg(Reg0, RegState::Define | getDeadRegState(Reg0IsDead))
1200         .addReg(Reg2, getKillRegState(Reg2IsKill))
1201         .addReg(Reg1, getKillRegState(Reg1IsKill))
1202         .addImm((ME + 1) & 31)
1203         .addImm((MB - 1) & 31);
1204   }
1205 
1206   if (ChangeReg0) {
1207     MI.getOperand(0).setReg(Reg2);
1208     MI.getOperand(0).setSubReg(SubReg2);
1209   }
1210   MI.getOperand(2).setReg(Reg1);
1211   MI.getOperand(1).setReg(Reg2);
1212   MI.getOperand(2).setSubReg(SubReg1);
1213   MI.getOperand(1).setSubReg(SubReg2);
1214   MI.getOperand(2).setIsKill(Reg1IsKill);
1215   MI.getOperand(1).setIsKill(Reg2IsKill);
1216 
1217   // Swap the mask around.
1218   MI.getOperand(4).setImm((ME + 1) & 31);
1219   MI.getOperand(5).setImm((MB - 1) & 31);
1220   return &MI;
1221 }
1222 
1223 bool PPCInstrInfo::findCommutedOpIndices(const MachineInstr &MI,
1224                                          unsigned &SrcOpIdx1,
1225                                          unsigned &SrcOpIdx2) const {
1226   // For VSX A-Type FMA instructions, it is the first two operands that can be
1227   // commuted, however, because the non-encoded tied input operand is listed
1228   // first, the operands to swap are actually the second and third.
1229 
1230   int AltOpc = PPC::getAltVSXFMAOpcode(MI.getOpcode());
1231   if (AltOpc == -1)
1232     return TargetInstrInfo::findCommutedOpIndices(MI, SrcOpIdx1, SrcOpIdx2);
1233 
1234   // The commutable operand indices are 2 and 3. Return them in SrcOpIdx1
1235   // and SrcOpIdx2.
1236   return fixCommutedOpIndices(SrcOpIdx1, SrcOpIdx2, 2, 3);
1237 }
1238 
1239 void PPCInstrInfo::insertNoop(MachineBasicBlock &MBB,
1240                               MachineBasicBlock::iterator MI) const {
1241   // This function is used for scheduling, and the nop wanted here is the type
1242   // that terminates dispatch groups on the POWER cores.
1243   unsigned Directive = Subtarget.getCPUDirective();
1244   unsigned Opcode;
1245   switch (Directive) {
1246   default:            Opcode = PPC::NOP; break;
1247   case PPC::DIR_PWR6: Opcode = PPC::NOP_GT_PWR6; break;
1248   case PPC::DIR_PWR7: Opcode = PPC::NOP_GT_PWR7; break;
1249   case PPC::DIR_PWR8: Opcode = PPC::NOP_GT_PWR7; break; /* FIXME: Update when P8 InstrScheduling model is ready */
1250   // FIXME: Update when POWER9 scheduling model is ready.
1251   case PPC::DIR_PWR9: Opcode = PPC::NOP_GT_PWR7; break;
1252   }
1253 
1254   DebugLoc DL;
1255   BuildMI(MBB, MI, DL, get(Opcode));
1256 }
1257 
1258 /// Return the noop instruction to use for a noop.
1259 MCInst PPCInstrInfo::getNop() const {
1260   MCInst Nop;
1261   Nop.setOpcode(PPC::NOP);
1262   return Nop;
1263 }
1264 
1265 // Branch analysis.
1266 // Note: If the condition register is set to CTR or CTR8 then this is a
1267 // BDNZ (imm == 1) or BDZ (imm == 0) branch.
1268 bool PPCInstrInfo::analyzeBranch(MachineBasicBlock &MBB,
1269                                  MachineBasicBlock *&TBB,
1270                                  MachineBasicBlock *&FBB,
1271                                  SmallVectorImpl<MachineOperand> &Cond,
1272                                  bool AllowModify) const {
1273   bool isPPC64 = Subtarget.isPPC64();
1274 
1275   // If the block has no terminators, it just falls into the block after it.
1276   MachineBasicBlock::iterator I = MBB.getLastNonDebugInstr();
1277   if (I == MBB.end())
1278     return false;
1279 
1280   if (!isUnpredicatedTerminator(*I))
1281     return false;
1282 
1283   if (AllowModify) {
1284     // If the BB ends with an unconditional branch to the fallthrough BB,
1285     // we eliminate the branch instruction.
1286     if (I->getOpcode() == PPC::B &&
1287         MBB.isLayoutSuccessor(I->getOperand(0).getMBB())) {
1288       I->eraseFromParent();
1289 
1290       // We update iterator after deleting the last branch.
1291       I = MBB.getLastNonDebugInstr();
1292       if (I == MBB.end() || !isUnpredicatedTerminator(*I))
1293         return false;
1294     }
1295   }
1296 
1297   // Get the last instruction in the block.
1298   MachineInstr &LastInst = *I;
1299 
1300   // If there is only one terminator instruction, process it.
1301   if (I == MBB.begin() || !isUnpredicatedTerminator(*--I)) {
1302     if (LastInst.getOpcode() == PPC::B) {
1303       if (!LastInst.getOperand(0).isMBB())
1304         return true;
1305       TBB = LastInst.getOperand(0).getMBB();
1306       return false;
1307     } else if (LastInst.getOpcode() == PPC::BCC) {
1308       if (!LastInst.getOperand(2).isMBB())
1309         return true;
1310       // Block ends with fall-through condbranch.
1311       TBB = LastInst.getOperand(2).getMBB();
1312       Cond.push_back(LastInst.getOperand(0));
1313       Cond.push_back(LastInst.getOperand(1));
1314       return false;
1315     } else if (LastInst.getOpcode() == PPC::BC) {
1316       if (!LastInst.getOperand(1).isMBB())
1317         return true;
1318       // Block ends with fall-through condbranch.
1319       TBB = LastInst.getOperand(1).getMBB();
1320       Cond.push_back(MachineOperand::CreateImm(PPC::PRED_BIT_SET));
1321       Cond.push_back(LastInst.getOperand(0));
1322       return false;
1323     } else if (LastInst.getOpcode() == PPC::BCn) {
1324       if (!LastInst.getOperand(1).isMBB())
1325         return true;
1326       // Block ends with fall-through condbranch.
1327       TBB = LastInst.getOperand(1).getMBB();
1328       Cond.push_back(MachineOperand::CreateImm(PPC::PRED_BIT_UNSET));
1329       Cond.push_back(LastInst.getOperand(0));
1330       return false;
1331     } else if (LastInst.getOpcode() == PPC::BDNZ8 ||
1332                LastInst.getOpcode() == PPC::BDNZ) {
1333       if (!LastInst.getOperand(0).isMBB())
1334         return true;
1335       if (DisableCTRLoopAnal)
1336         return true;
1337       TBB = LastInst.getOperand(0).getMBB();
1338       Cond.push_back(MachineOperand::CreateImm(1));
1339       Cond.push_back(MachineOperand::CreateReg(isPPC64 ? PPC::CTR8 : PPC::CTR,
1340                                                true));
1341       return false;
1342     } else if (LastInst.getOpcode() == PPC::BDZ8 ||
1343                LastInst.getOpcode() == PPC::BDZ) {
1344       if (!LastInst.getOperand(0).isMBB())
1345         return true;
1346       if (DisableCTRLoopAnal)
1347         return true;
1348       TBB = LastInst.getOperand(0).getMBB();
1349       Cond.push_back(MachineOperand::CreateImm(0));
1350       Cond.push_back(MachineOperand::CreateReg(isPPC64 ? PPC::CTR8 : PPC::CTR,
1351                                                true));
1352       return false;
1353     }
1354 
1355     // Otherwise, don't know what this is.
1356     return true;
1357   }
1358 
1359   // Get the instruction before it if it's a terminator.
1360   MachineInstr &SecondLastInst = *I;
1361 
1362   // If there are three terminators, we don't know what sort of block this is.
1363   if (I != MBB.begin() && isUnpredicatedTerminator(*--I))
1364     return true;
1365 
1366   // If the block ends with PPC::B and PPC:BCC, handle it.
1367   if (SecondLastInst.getOpcode() == PPC::BCC &&
1368       LastInst.getOpcode() == PPC::B) {
1369     if (!SecondLastInst.getOperand(2).isMBB() ||
1370         !LastInst.getOperand(0).isMBB())
1371       return true;
1372     TBB = SecondLastInst.getOperand(2).getMBB();
1373     Cond.push_back(SecondLastInst.getOperand(0));
1374     Cond.push_back(SecondLastInst.getOperand(1));
1375     FBB = LastInst.getOperand(0).getMBB();
1376     return false;
1377   } else if (SecondLastInst.getOpcode() == PPC::BC &&
1378              LastInst.getOpcode() == PPC::B) {
1379     if (!SecondLastInst.getOperand(1).isMBB() ||
1380         !LastInst.getOperand(0).isMBB())
1381       return true;
1382     TBB = SecondLastInst.getOperand(1).getMBB();
1383     Cond.push_back(MachineOperand::CreateImm(PPC::PRED_BIT_SET));
1384     Cond.push_back(SecondLastInst.getOperand(0));
1385     FBB = LastInst.getOperand(0).getMBB();
1386     return false;
1387   } else if (SecondLastInst.getOpcode() == PPC::BCn &&
1388              LastInst.getOpcode() == PPC::B) {
1389     if (!SecondLastInst.getOperand(1).isMBB() ||
1390         !LastInst.getOperand(0).isMBB())
1391       return true;
1392     TBB = SecondLastInst.getOperand(1).getMBB();
1393     Cond.push_back(MachineOperand::CreateImm(PPC::PRED_BIT_UNSET));
1394     Cond.push_back(SecondLastInst.getOperand(0));
1395     FBB = LastInst.getOperand(0).getMBB();
1396     return false;
1397   } else if ((SecondLastInst.getOpcode() == PPC::BDNZ8 ||
1398               SecondLastInst.getOpcode() == PPC::BDNZ) &&
1399              LastInst.getOpcode() == PPC::B) {
1400     if (!SecondLastInst.getOperand(0).isMBB() ||
1401         !LastInst.getOperand(0).isMBB())
1402       return true;
1403     if (DisableCTRLoopAnal)
1404       return true;
1405     TBB = SecondLastInst.getOperand(0).getMBB();
1406     Cond.push_back(MachineOperand::CreateImm(1));
1407     Cond.push_back(MachineOperand::CreateReg(isPPC64 ? PPC::CTR8 : PPC::CTR,
1408                                              true));
1409     FBB = LastInst.getOperand(0).getMBB();
1410     return false;
1411   } else if ((SecondLastInst.getOpcode() == PPC::BDZ8 ||
1412               SecondLastInst.getOpcode() == PPC::BDZ) &&
1413              LastInst.getOpcode() == PPC::B) {
1414     if (!SecondLastInst.getOperand(0).isMBB() ||
1415         !LastInst.getOperand(0).isMBB())
1416       return true;
1417     if (DisableCTRLoopAnal)
1418       return true;
1419     TBB = SecondLastInst.getOperand(0).getMBB();
1420     Cond.push_back(MachineOperand::CreateImm(0));
1421     Cond.push_back(MachineOperand::CreateReg(isPPC64 ? PPC::CTR8 : PPC::CTR,
1422                                              true));
1423     FBB = LastInst.getOperand(0).getMBB();
1424     return false;
1425   }
1426 
1427   // If the block ends with two PPC:Bs, handle it.  The second one is not
1428   // executed, so remove it.
1429   if (SecondLastInst.getOpcode() == PPC::B && LastInst.getOpcode() == PPC::B) {
1430     if (!SecondLastInst.getOperand(0).isMBB())
1431       return true;
1432     TBB = SecondLastInst.getOperand(0).getMBB();
1433     I = LastInst;
1434     if (AllowModify)
1435       I->eraseFromParent();
1436     return false;
1437   }
1438 
1439   // Otherwise, can't handle this.
1440   return true;
1441 }
1442 
1443 unsigned PPCInstrInfo::removeBranch(MachineBasicBlock &MBB,
1444                                     int *BytesRemoved) const {
1445   assert(!BytesRemoved && "code size not handled");
1446 
1447   MachineBasicBlock::iterator I = MBB.getLastNonDebugInstr();
1448   if (I == MBB.end())
1449     return 0;
1450 
1451   if (I->getOpcode() != PPC::B && I->getOpcode() != PPC::BCC &&
1452       I->getOpcode() != PPC::BC && I->getOpcode() != PPC::BCn &&
1453       I->getOpcode() != PPC::BDNZ8 && I->getOpcode() != PPC::BDNZ &&
1454       I->getOpcode() != PPC::BDZ8  && I->getOpcode() != PPC::BDZ)
1455     return 0;
1456 
1457   // Remove the branch.
1458   I->eraseFromParent();
1459 
1460   I = MBB.end();
1461 
1462   if (I == MBB.begin()) return 1;
1463   --I;
1464   if (I->getOpcode() != PPC::BCC &&
1465       I->getOpcode() != PPC::BC && I->getOpcode() != PPC::BCn &&
1466       I->getOpcode() != PPC::BDNZ8 && I->getOpcode() != PPC::BDNZ &&
1467       I->getOpcode() != PPC::BDZ8  && I->getOpcode() != PPC::BDZ)
1468     return 1;
1469 
1470   // Remove the branch.
1471   I->eraseFromParent();
1472   return 2;
1473 }
1474 
1475 unsigned PPCInstrInfo::insertBranch(MachineBasicBlock &MBB,
1476                                     MachineBasicBlock *TBB,
1477                                     MachineBasicBlock *FBB,
1478                                     ArrayRef<MachineOperand> Cond,
1479                                     const DebugLoc &DL,
1480                                     int *BytesAdded) const {
1481   // Shouldn't be a fall through.
1482   assert(TBB && "insertBranch must not be told to insert a fallthrough");
1483   assert((Cond.size() == 2 || Cond.size() == 0) &&
1484          "PPC branch conditions have two components!");
1485   assert(!BytesAdded && "code size not handled");
1486 
1487   bool isPPC64 = Subtarget.isPPC64();
1488 
1489   // One-way branch.
1490   if (!FBB) {
1491     if (Cond.empty())   // Unconditional branch
1492       BuildMI(&MBB, DL, get(PPC::B)).addMBB(TBB);
1493     else if (Cond[1].getReg() == PPC::CTR || Cond[1].getReg() == PPC::CTR8)
1494       BuildMI(&MBB, DL, get(Cond[0].getImm() ?
1495                               (isPPC64 ? PPC::BDNZ8 : PPC::BDNZ) :
1496                               (isPPC64 ? PPC::BDZ8  : PPC::BDZ))).addMBB(TBB);
1497     else if (Cond[0].getImm() == PPC::PRED_BIT_SET)
1498       BuildMI(&MBB, DL, get(PPC::BC)).add(Cond[1]).addMBB(TBB);
1499     else if (Cond[0].getImm() == PPC::PRED_BIT_UNSET)
1500       BuildMI(&MBB, DL, get(PPC::BCn)).add(Cond[1]).addMBB(TBB);
1501     else                // Conditional branch
1502       BuildMI(&MBB, DL, get(PPC::BCC))
1503           .addImm(Cond[0].getImm())
1504           .add(Cond[1])
1505           .addMBB(TBB);
1506     return 1;
1507   }
1508 
1509   // Two-way Conditional Branch.
1510   if (Cond[1].getReg() == PPC::CTR || Cond[1].getReg() == PPC::CTR8)
1511     BuildMI(&MBB, DL, get(Cond[0].getImm() ?
1512                             (isPPC64 ? PPC::BDNZ8 : PPC::BDNZ) :
1513                             (isPPC64 ? PPC::BDZ8  : PPC::BDZ))).addMBB(TBB);
1514   else if (Cond[0].getImm() == PPC::PRED_BIT_SET)
1515     BuildMI(&MBB, DL, get(PPC::BC)).add(Cond[1]).addMBB(TBB);
1516   else if (Cond[0].getImm() == PPC::PRED_BIT_UNSET)
1517     BuildMI(&MBB, DL, get(PPC::BCn)).add(Cond[1]).addMBB(TBB);
1518   else
1519     BuildMI(&MBB, DL, get(PPC::BCC))
1520         .addImm(Cond[0].getImm())
1521         .add(Cond[1])
1522         .addMBB(TBB);
1523   BuildMI(&MBB, DL, get(PPC::B)).addMBB(FBB);
1524   return 2;
1525 }
1526 
1527 // Select analysis.
1528 bool PPCInstrInfo::canInsertSelect(const MachineBasicBlock &MBB,
1529                                    ArrayRef<MachineOperand> Cond,
1530                                    Register DstReg, Register TrueReg,
1531                                    Register FalseReg, int &CondCycles,
1532                                    int &TrueCycles, int &FalseCycles) const {
1533   if (Cond.size() != 2)
1534     return false;
1535 
1536   // If this is really a bdnz-like condition, then it cannot be turned into a
1537   // select.
1538   if (Cond[1].getReg() == PPC::CTR || Cond[1].getReg() == PPC::CTR8)
1539     return false;
1540 
1541   // If the conditional branch uses a physical register, then it cannot be
1542   // turned into a select.
1543   if (Cond[1].getReg().isPhysical())
1544     return false;
1545 
1546   // Check register classes.
1547   const MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo();
1548   const TargetRegisterClass *RC =
1549     RI.getCommonSubClass(MRI.getRegClass(TrueReg), MRI.getRegClass(FalseReg));
1550   if (!RC)
1551     return false;
1552 
1553   // isel is for regular integer GPRs only.
1554   if (!PPC::GPRCRegClass.hasSubClassEq(RC) &&
1555       !PPC::GPRC_NOR0RegClass.hasSubClassEq(RC) &&
1556       !PPC::G8RCRegClass.hasSubClassEq(RC) &&
1557       !PPC::G8RC_NOX0RegClass.hasSubClassEq(RC))
1558     return false;
1559 
1560   // FIXME: These numbers are for the A2, how well they work for other cores is
1561   // an open question. On the A2, the isel instruction has a 2-cycle latency
1562   // but single-cycle throughput. These numbers are used in combination with
1563   // the MispredictPenalty setting from the active SchedMachineModel.
1564   CondCycles = 1;
1565   TrueCycles = 1;
1566   FalseCycles = 1;
1567 
1568   return true;
1569 }
1570 
1571 void PPCInstrInfo::insertSelect(MachineBasicBlock &MBB,
1572                                 MachineBasicBlock::iterator MI,
1573                                 const DebugLoc &dl, Register DestReg,
1574                                 ArrayRef<MachineOperand> Cond, Register TrueReg,
1575                                 Register FalseReg) const {
1576   assert(Cond.size() == 2 &&
1577          "PPC branch conditions have two components!");
1578 
1579   // Get the register classes.
1580   MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo();
1581   const TargetRegisterClass *RC =
1582     RI.getCommonSubClass(MRI.getRegClass(TrueReg), MRI.getRegClass(FalseReg));
1583   assert(RC && "TrueReg and FalseReg must have overlapping register classes");
1584 
1585   bool Is64Bit = PPC::G8RCRegClass.hasSubClassEq(RC) ||
1586                  PPC::G8RC_NOX0RegClass.hasSubClassEq(RC);
1587   assert((Is64Bit ||
1588           PPC::GPRCRegClass.hasSubClassEq(RC) ||
1589           PPC::GPRC_NOR0RegClass.hasSubClassEq(RC)) &&
1590          "isel is for regular integer GPRs only");
1591 
1592   unsigned OpCode = Is64Bit ? PPC::ISEL8 : PPC::ISEL;
1593   auto SelectPred = static_cast<PPC::Predicate>(Cond[0].getImm());
1594 
1595   unsigned SubIdx = 0;
1596   bool SwapOps = false;
1597   switch (SelectPred) {
1598   case PPC::PRED_EQ:
1599   case PPC::PRED_EQ_MINUS:
1600   case PPC::PRED_EQ_PLUS:
1601       SubIdx = PPC::sub_eq; SwapOps = false; break;
1602   case PPC::PRED_NE:
1603   case PPC::PRED_NE_MINUS:
1604   case PPC::PRED_NE_PLUS:
1605       SubIdx = PPC::sub_eq; SwapOps = true; break;
1606   case PPC::PRED_LT:
1607   case PPC::PRED_LT_MINUS:
1608   case PPC::PRED_LT_PLUS:
1609       SubIdx = PPC::sub_lt; SwapOps = false; break;
1610   case PPC::PRED_GE:
1611   case PPC::PRED_GE_MINUS:
1612   case PPC::PRED_GE_PLUS:
1613       SubIdx = PPC::sub_lt; SwapOps = true; break;
1614   case PPC::PRED_GT:
1615   case PPC::PRED_GT_MINUS:
1616   case PPC::PRED_GT_PLUS:
1617       SubIdx = PPC::sub_gt; SwapOps = false; break;
1618   case PPC::PRED_LE:
1619   case PPC::PRED_LE_MINUS:
1620   case PPC::PRED_LE_PLUS:
1621       SubIdx = PPC::sub_gt; SwapOps = true; break;
1622   case PPC::PRED_UN:
1623   case PPC::PRED_UN_MINUS:
1624   case PPC::PRED_UN_PLUS:
1625       SubIdx = PPC::sub_un; SwapOps = false; break;
1626   case PPC::PRED_NU:
1627   case PPC::PRED_NU_MINUS:
1628   case PPC::PRED_NU_PLUS:
1629       SubIdx = PPC::sub_un; SwapOps = true; break;
1630   case PPC::PRED_BIT_SET:   SubIdx = 0; SwapOps = false; break;
1631   case PPC::PRED_BIT_UNSET: SubIdx = 0; SwapOps = true; break;
1632   }
1633 
1634   Register FirstReg =  SwapOps ? FalseReg : TrueReg,
1635            SecondReg = SwapOps ? TrueReg  : FalseReg;
1636 
1637   // The first input register of isel cannot be r0. If it is a member
1638   // of a register class that can be r0, then copy it first (the
1639   // register allocator should eliminate the copy).
1640   if (MRI.getRegClass(FirstReg)->contains(PPC::R0) ||
1641       MRI.getRegClass(FirstReg)->contains(PPC::X0)) {
1642     const TargetRegisterClass *FirstRC =
1643       MRI.getRegClass(FirstReg)->contains(PPC::X0) ?
1644         &PPC::G8RC_NOX0RegClass : &PPC::GPRC_NOR0RegClass;
1645     Register OldFirstReg = FirstReg;
1646     FirstReg = MRI.createVirtualRegister(FirstRC);
1647     BuildMI(MBB, MI, dl, get(TargetOpcode::COPY), FirstReg)
1648       .addReg(OldFirstReg);
1649   }
1650 
1651   BuildMI(MBB, MI, dl, get(OpCode), DestReg)
1652     .addReg(FirstReg).addReg(SecondReg)
1653     .addReg(Cond[1].getReg(), 0, SubIdx);
1654 }
1655 
1656 static unsigned getCRBitValue(unsigned CRBit) {
1657   unsigned Ret = 4;
1658   if (CRBit == PPC::CR0LT || CRBit == PPC::CR1LT ||
1659       CRBit == PPC::CR2LT || CRBit == PPC::CR3LT ||
1660       CRBit == PPC::CR4LT || CRBit == PPC::CR5LT ||
1661       CRBit == PPC::CR6LT || CRBit == PPC::CR7LT)
1662     Ret = 3;
1663   if (CRBit == PPC::CR0GT || CRBit == PPC::CR1GT ||
1664       CRBit == PPC::CR2GT || CRBit == PPC::CR3GT ||
1665       CRBit == PPC::CR4GT || CRBit == PPC::CR5GT ||
1666       CRBit == PPC::CR6GT || CRBit == PPC::CR7GT)
1667     Ret = 2;
1668   if (CRBit == PPC::CR0EQ || CRBit == PPC::CR1EQ ||
1669       CRBit == PPC::CR2EQ || CRBit == PPC::CR3EQ ||
1670       CRBit == PPC::CR4EQ || CRBit == PPC::CR5EQ ||
1671       CRBit == PPC::CR6EQ || CRBit == PPC::CR7EQ)
1672     Ret = 1;
1673   if (CRBit == PPC::CR0UN || CRBit == PPC::CR1UN ||
1674       CRBit == PPC::CR2UN || CRBit == PPC::CR3UN ||
1675       CRBit == PPC::CR4UN || CRBit == PPC::CR5UN ||
1676       CRBit == PPC::CR6UN || CRBit == PPC::CR7UN)
1677     Ret = 0;
1678 
1679   assert(Ret != 4 && "Invalid CR bit register");
1680   return Ret;
1681 }
1682 
1683 void PPCInstrInfo::copyPhysReg(MachineBasicBlock &MBB,
1684                                MachineBasicBlock::iterator I,
1685                                const DebugLoc &DL, MCRegister DestReg,
1686                                MCRegister SrcReg, bool KillSrc) const {
1687   // We can end up with self copies and similar things as a result of VSX copy
1688   // legalization. Promote them here.
1689   const TargetRegisterInfo *TRI = &getRegisterInfo();
1690   if (PPC::F8RCRegClass.contains(DestReg) &&
1691       PPC::VSRCRegClass.contains(SrcReg)) {
1692     MCRegister SuperReg =
1693         TRI->getMatchingSuperReg(DestReg, PPC::sub_64, &PPC::VSRCRegClass);
1694 
1695     if (VSXSelfCopyCrash && SrcReg == SuperReg)
1696       llvm_unreachable("nop VSX copy");
1697 
1698     DestReg = SuperReg;
1699   } else if (PPC::F8RCRegClass.contains(SrcReg) &&
1700              PPC::VSRCRegClass.contains(DestReg)) {
1701     MCRegister SuperReg =
1702         TRI->getMatchingSuperReg(SrcReg, PPC::sub_64, &PPC::VSRCRegClass);
1703 
1704     if (VSXSelfCopyCrash && DestReg == SuperReg)
1705       llvm_unreachable("nop VSX copy");
1706 
1707     SrcReg = SuperReg;
1708   }
1709 
1710   // Different class register copy
1711   if (PPC::CRBITRCRegClass.contains(SrcReg) &&
1712       PPC::GPRCRegClass.contains(DestReg)) {
1713     MCRegister CRReg = getCRFromCRBit(SrcReg);
1714     BuildMI(MBB, I, DL, get(PPC::MFOCRF), DestReg).addReg(CRReg);
1715     getKillRegState(KillSrc);
1716     // Rotate the CR bit in the CR fields to be the least significant bit and
1717     // then mask with 0x1 (MB = ME = 31).
1718     BuildMI(MBB, I, DL, get(PPC::RLWINM), DestReg)
1719        .addReg(DestReg, RegState::Kill)
1720        .addImm(TRI->getEncodingValue(CRReg) * 4 + (4 - getCRBitValue(SrcReg)))
1721        .addImm(31)
1722        .addImm(31);
1723     return;
1724   } else if (PPC::CRRCRegClass.contains(SrcReg) &&
1725              (PPC::G8RCRegClass.contains(DestReg) ||
1726               PPC::GPRCRegClass.contains(DestReg))) {
1727     bool Is64Bit = PPC::G8RCRegClass.contains(DestReg);
1728     unsigned MvCode = Is64Bit ? PPC::MFOCRF8 : PPC::MFOCRF;
1729     unsigned ShCode = Is64Bit ? PPC::RLWINM8 : PPC::RLWINM;
1730     unsigned CRNum = TRI->getEncodingValue(SrcReg);
1731     BuildMI(MBB, I, DL, get(MvCode), DestReg).addReg(SrcReg);
1732     getKillRegState(KillSrc);
1733     if (CRNum == 7)
1734       return;
1735     // Shift the CR bits to make the CR field in the lowest 4 bits of GRC.
1736     BuildMI(MBB, I, DL, get(ShCode), DestReg)
1737         .addReg(DestReg, RegState::Kill)
1738         .addImm(CRNum * 4 + 4)
1739         .addImm(28)
1740         .addImm(31);
1741     return;
1742   } else if (PPC::G8RCRegClass.contains(SrcReg) &&
1743              PPC::VSFRCRegClass.contains(DestReg)) {
1744     assert(Subtarget.hasDirectMove() &&
1745            "Subtarget doesn't support directmove, don't know how to copy.");
1746     BuildMI(MBB, I, DL, get(PPC::MTVSRD), DestReg).addReg(SrcReg);
1747     NumGPRtoVSRSpill++;
1748     getKillRegState(KillSrc);
1749     return;
1750   } else if (PPC::VSFRCRegClass.contains(SrcReg) &&
1751              PPC::G8RCRegClass.contains(DestReg)) {
1752     assert(Subtarget.hasDirectMove() &&
1753            "Subtarget doesn't support directmove, don't know how to copy.");
1754     BuildMI(MBB, I, DL, get(PPC::MFVSRD), DestReg).addReg(SrcReg);
1755     getKillRegState(KillSrc);
1756     return;
1757   } else if (PPC::SPERCRegClass.contains(SrcReg) &&
1758              PPC::GPRCRegClass.contains(DestReg)) {
1759     BuildMI(MBB, I, DL, get(PPC::EFSCFD), DestReg).addReg(SrcReg);
1760     getKillRegState(KillSrc);
1761     return;
1762   } else if (PPC::GPRCRegClass.contains(SrcReg) &&
1763              PPC::SPERCRegClass.contains(DestReg)) {
1764     BuildMI(MBB, I, DL, get(PPC::EFDCFS), DestReg).addReg(SrcReg);
1765     getKillRegState(KillSrc);
1766     return;
1767   }
1768 
1769   unsigned Opc;
1770   if (PPC::GPRCRegClass.contains(DestReg, SrcReg))
1771     Opc = PPC::OR;
1772   else if (PPC::G8RCRegClass.contains(DestReg, SrcReg))
1773     Opc = PPC::OR8;
1774   else if (PPC::F4RCRegClass.contains(DestReg, SrcReg))
1775     Opc = PPC::FMR;
1776   else if (PPC::CRRCRegClass.contains(DestReg, SrcReg))
1777     Opc = PPC::MCRF;
1778   else if (PPC::VRRCRegClass.contains(DestReg, SrcReg))
1779     Opc = PPC::VOR;
1780   else if (PPC::VSRCRegClass.contains(DestReg, SrcReg))
1781     // There are two different ways this can be done:
1782     //   1. xxlor : This has lower latency (on the P7), 2 cycles, but can only
1783     //      issue in VSU pipeline 0.
1784     //   2. xmovdp/xmovsp: This has higher latency (on the P7), 6 cycles, but
1785     //      can go to either pipeline.
1786     // We'll always use xxlor here, because in practically all cases where
1787     // copies are generated, they are close enough to some use that the
1788     // lower-latency form is preferable.
1789     Opc = PPC::XXLOR;
1790   else if (PPC::VSFRCRegClass.contains(DestReg, SrcReg) ||
1791            PPC::VSSRCRegClass.contains(DestReg, SrcReg))
1792     Opc = (Subtarget.hasP9Vector()) ? PPC::XSCPSGNDP : PPC::XXLORf;
1793   else if (Subtarget.pairedVectorMemops() &&
1794            PPC::VSRpRCRegClass.contains(DestReg, SrcReg)) {
1795     if (SrcReg > PPC::VSRp15)
1796       SrcReg = PPC::V0 + (SrcReg - PPC::VSRp16) * 2;
1797     else
1798       SrcReg = PPC::VSL0 + (SrcReg - PPC::VSRp0) * 2;
1799     if (DestReg > PPC::VSRp15)
1800       DestReg = PPC::V0 + (DestReg - PPC::VSRp16) * 2;
1801     else
1802       DestReg = PPC::VSL0 + (DestReg - PPC::VSRp0) * 2;
1803     BuildMI(MBB, I, DL, get(PPC::XXLOR), DestReg).
1804       addReg(SrcReg).addReg(SrcReg, getKillRegState(KillSrc));
1805     BuildMI(MBB, I, DL, get(PPC::XXLOR), DestReg + 1).
1806       addReg(SrcReg + 1).addReg(SrcReg + 1, getKillRegState(KillSrc));
1807     return;
1808   }
1809   else if (PPC::CRBITRCRegClass.contains(DestReg, SrcReg))
1810     Opc = PPC::CROR;
1811   else if (PPC::SPERCRegClass.contains(DestReg, SrcReg))
1812     Opc = PPC::EVOR;
1813   else if ((PPC::ACCRCRegClass.contains(DestReg) ||
1814             PPC::UACCRCRegClass.contains(DestReg)) &&
1815            (PPC::ACCRCRegClass.contains(SrcReg) ||
1816             PPC::UACCRCRegClass.contains(SrcReg))) {
1817     // If primed, de-prime the source register, copy the individual registers
1818     // and prime the destination if needed. The vector subregisters are
1819     // vs[(u)acc * 4] - vs[(u)acc * 4 + 3]. If the copy is not a kill and the
1820     // source is primed, we need to re-prime it after the copy as well.
1821     PPCRegisterInfo::emitAccCopyInfo(MBB, DestReg, SrcReg);
1822     bool DestPrimed = PPC::ACCRCRegClass.contains(DestReg);
1823     bool SrcPrimed = PPC::ACCRCRegClass.contains(SrcReg);
1824     MCRegister VSLSrcReg =
1825         PPC::VSL0 + (SrcReg - (SrcPrimed ? PPC::ACC0 : PPC::UACC0)) * 4;
1826     MCRegister VSLDestReg =
1827         PPC::VSL0 + (DestReg - (DestPrimed ? PPC::ACC0 : PPC::UACC0)) * 4;
1828     if (SrcPrimed)
1829       BuildMI(MBB, I, DL, get(PPC::XXMFACC), SrcReg).addReg(SrcReg);
1830     for (unsigned Idx = 0; Idx < 4; Idx++)
1831       BuildMI(MBB, I, DL, get(PPC::XXLOR), VSLDestReg + Idx)
1832           .addReg(VSLSrcReg + Idx)
1833           .addReg(VSLSrcReg + Idx, getKillRegState(KillSrc));
1834     if (DestPrimed)
1835       BuildMI(MBB, I, DL, get(PPC::XXMTACC), DestReg).addReg(DestReg);
1836     if (SrcPrimed && !KillSrc)
1837       BuildMI(MBB, I, DL, get(PPC::XXMTACC), SrcReg).addReg(SrcReg);
1838     return;
1839   } else if (PPC::G8pRCRegClass.contains(DestReg) &&
1840              PPC::G8pRCRegClass.contains(SrcReg)) {
1841     // TODO: Handle G8RC to G8pRC (and vice versa) copy.
1842     unsigned DestRegIdx = DestReg - PPC::G8p0;
1843     MCRegister DestRegSub0 = PPC::X0 + 2 * DestRegIdx;
1844     MCRegister DestRegSub1 = PPC::X0 + 2 * DestRegIdx + 1;
1845     unsigned SrcRegIdx = SrcReg - PPC::G8p0;
1846     MCRegister SrcRegSub0 = PPC::X0 + 2 * SrcRegIdx;
1847     MCRegister SrcRegSub1 = PPC::X0 + 2 * SrcRegIdx + 1;
1848     BuildMI(MBB, I, DL, get(PPC::OR8), DestRegSub0)
1849         .addReg(SrcRegSub0)
1850         .addReg(SrcRegSub0, getKillRegState(KillSrc));
1851     BuildMI(MBB, I, DL, get(PPC::OR8), DestRegSub1)
1852         .addReg(SrcRegSub1)
1853         .addReg(SrcRegSub1, getKillRegState(KillSrc));
1854     return;
1855   } else
1856     llvm_unreachable("Impossible reg-to-reg copy");
1857 
1858   const MCInstrDesc &MCID = get(Opc);
1859   if (MCID.getNumOperands() == 3)
1860     BuildMI(MBB, I, DL, MCID, DestReg)
1861       .addReg(SrcReg).addReg(SrcReg, getKillRegState(KillSrc));
1862   else
1863     BuildMI(MBB, I, DL, MCID, DestReg).addReg(SrcReg, getKillRegState(KillSrc));
1864 }
1865 
1866 unsigned PPCInstrInfo::getSpillIndex(const TargetRegisterClass *RC) const {
1867   int OpcodeIndex = 0;
1868 
1869   if (PPC::GPRCRegClass.hasSubClassEq(RC) ||
1870       PPC::GPRC_NOR0RegClass.hasSubClassEq(RC)) {
1871     OpcodeIndex = SOK_Int4Spill;
1872   } else if (PPC::G8RCRegClass.hasSubClassEq(RC) ||
1873              PPC::G8RC_NOX0RegClass.hasSubClassEq(RC)) {
1874     OpcodeIndex = SOK_Int8Spill;
1875   } else if (PPC::F8RCRegClass.hasSubClassEq(RC)) {
1876     OpcodeIndex = SOK_Float8Spill;
1877   } else if (PPC::F4RCRegClass.hasSubClassEq(RC)) {
1878     OpcodeIndex = SOK_Float4Spill;
1879   } else if (PPC::SPERCRegClass.hasSubClassEq(RC)) {
1880     OpcodeIndex = SOK_SPESpill;
1881   } else if (PPC::CRRCRegClass.hasSubClassEq(RC)) {
1882     OpcodeIndex = SOK_CRSpill;
1883   } else if (PPC::CRBITRCRegClass.hasSubClassEq(RC)) {
1884     OpcodeIndex = SOK_CRBitSpill;
1885   } else if (PPC::VRRCRegClass.hasSubClassEq(RC)) {
1886     OpcodeIndex = SOK_VRVectorSpill;
1887   } else if (PPC::VSRCRegClass.hasSubClassEq(RC)) {
1888     OpcodeIndex = SOK_VSXVectorSpill;
1889   } else if (PPC::VSFRCRegClass.hasSubClassEq(RC)) {
1890     OpcodeIndex = SOK_VectorFloat8Spill;
1891   } else if (PPC::VSSRCRegClass.hasSubClassEq(RC)) {
1892     OpcodeIndex = SOK_VectorFloat4Spill;
1893   } else if (PPC::SPILLTOVSRRCRegClass.hasSubClassEq(RC)) {
1894     OpcodeIndex = SOK_SpillToVSR;
1895   } else if (PPC::ACCRCRegClass.hasSubClassEq(RC)) {
1896     assert(Subtarget.pairedVectorMemops() &&
1897            "Register unexpected when paired memops are disabled.");
1898     OpcodeIndex = SOK_AccumulatorSpill;
1899   } else if (PPC::UACCRCRegClass.hasSubClassEq(RC)) {
1900     assert(Subtarget.pairedVectorMemops() &&
1901            "Register unexpected when paired memops are disabled.");
1902     OpcodeIndex = SOK_UAccumulatorSpill;
1903   } else if (PPC::WACCRCRegClass.hasSubClassEq(RC)) {
1904     assert(Subtarget.pairedVectorMemops() &&
1905            "Register unexpected when paired memops are disabled.");
1906     OpcodeIndex = SOK_WAccumulatorSpill;
1907   } else if (PPC::VSRpRCRegClass.hasSubClassEq(RC)) {
1908     assert(Subtarget.pairedVectorMemops() &&
1909            "Register unexpected when paired memops are disabled.");
1910     OpcodeIndex = SOK_PairedVecSpill;
1911   } else if (PPC::G8pRCRegClass.hasSubClassEq(RC)) {
1912     OpcodeIndex = SOK_PairedG8Spill;
1913   } else {
1914     llvm_unreachable("Unknown regclass!");
1915   }
1916   return OpcodeIndex;
1917 }
1918 
1919 unsigned
1920 PPCInstrInfo::getStoreOpcodeForSpill(const TargetRegisterClass *RC) const {
1921   ArrayRef<unsigned> OpcodesForSpill = getStoreOpcodesForSpillArray();
1922   return OpcodesForSpill[getSpillIndex(RC)];
1923 }
1924 
1925 unsigned
1926 PPCInstrInfo::getLoadOpcodeForSpill(const TargetRegisterClass *RC) const {
1927   ArrayRef<unsigned> OpcodesForSpill = getLoadOpcodesForSpillArray();
1928   return OpcodesForSpill[getSpillIndex(RC)];
1929 }
1930 
1931 void PPCInstrInfo::StoreRegToStackSlot(
1932     MachineFunction &MF, unsigned SrcReg, bool isKill, int FrameIdx,
1933     const TargetRegisterClass *RC,
1934     SmallVectorImpl<MachineInstr *> &NewMIs) const {
1935   unsigned Opcode = getStoreOpcodeForSpill(RC);
1936   DebugLoc DL;
1937 
1938   PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
1939   FuncInfo->setHasSpills();
1940 
1941   NewMIs.push_back(addFrameReference(
1942       BuildMI(MF, DL, get(Opcode)).addReg(SrcReg, getKillRegState(isKill)),
1943       FrameIdx));
1944 
1945   if (PPC::CRRCRegClass.hasSubClassEq(RC) ||
1946       PPC::CRBITRCRegClass.hasSubClassEq(RC))
1947     FuncInfo->setSpillsCR();
1948 
1949   if (isXFormMemOp(Opcode))
1950     FuncInfo->setHasNonRISpills();
1951 }
1952 
1953 void PPCInstrInfo::storeRegToStackSlotNoUpd(
1954     MachineBasicBlock &MBB, MachineBasicBlock::iterator MI, unsigned SrcReg,
1955     bool isKill, int FrameIdx, const TargetRegisterClass *RC,
1956     const TargetRegisterInfo *TRI) const {
1957   MachineFunction &MF = *MBB.getParent();
1958   SmallVector<MachineInstr *, 4> NewMIs;
1959 
1960   StoreRegToStackSlot(MF, SrcReg, isKill, FrameIdx, RC, NewMIs);
1961 
1962   for (unsigned i = 0, e = NewMIs.size(); i != e; ++i)
1963     MBB.insert(MI, NewMIs[i]);
1964 
1965   const MachineFrameInfo &MFI = MF.getFrameInfo();
1966   MachineMemOperand *MMO = MF.getMachineMemOperand(
1967       MachinePointerInfo::getFixedStack(MF, FrameIdx),
1968       MachineMemOperand::MOStore, MFI.getObjectSize(FrameIdx),
1969       MFI.getObjectAlign(FrameIdx));
1970   NewMIs.back()->addMemOperand(MF, MMO);
1971 }
1972 
1973 void PPCInstrInfo::storeRegToStackSlot(
1974     MachineBasicBlock &MBB, MachineBasicBlock::iterator MI, Register SrcReg,
1975     bool isKill, int FrameIdx, const TargetRegisterClass *RC,
1976     const TargetRegisterInfo *TRI, Register VReg) const {
1977   // We need to avoid a situation in which the value from a VRRC register is
1978   // spilled using an Altivec instruction and reloaded into a VSRC register
1979   // using a VSX instruction. The issue with this is that the VSX
1980   // load/store instructions swap the doublewords in the vector and the Altivec
1981   // ones don't. The register classes on the spill/reload may be different if
1982   // the register is defined using an Altivec instruction and is then used by a
1983   // VSX instruction.
1984   RC = updatedRC(RC);
1985   storeRegToStackSlotNoUpd(MBB, MI, SrcReg, isKill, FrameIdx, RC, TRI);
1986 }
1987 
1988 void PPCInstrInfo::LoadRegFromStackSlot(MachineFunction &MF, const DebugLoc &DL,
1989                                         unsigned DestReg, int FrameIdx,
1990                                         const TargetRegisterClass *RC,
1991                                         SmallVectorImpl<MachineInstr *> &NewMIs)
1992                                         const {
1993   unsigned Opcode = getLoadOpcodeForSpill(RC);
1994   NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(Opcode), DestReg),
1995                                      FrameIdx));
1996   PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
1997 
1998   if (PPC::CRRCRegClass.hasSubClassEq(RC) ||
1999       PPC::CRBITRCRegClass.hasSubClassEq(RC))
2000     FuncInfo->setSpillsCR();
2001 
2002   if (isXFormMemOp(Opcode))
2003     FuncInfo->setHasNonRISpills();
2004 }
2005 
2006 void PPCInstrInfo::loadRegFromStackSlotNoUpd(
2007     MachineBasicBlock &MBB, MachineBasicBlock::iterator MI, unsigned DestReg,
2008     int FrameIdx, const TargetRegisterClass *RC,
2009     const TargetRegisterInfo *TRI) const {
2010   MachineFunction &MF = *MBB.getParent();
2011   SmallVector<MachineInstr*, 4> NewMIs;
2012   DebugLoc DL;
2013   if (MI != MBB.end()) DL = MI->getDebugLoc();
2014 
2015   PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
2016   FuncInfo->setHasSpills();
2017 
2018   LoadRegFromStackSlot(MF, DL, DestReg, FrameIdx, RC, NewMIs);
2019 
2020   for (unsigned i = 0, e = NewMIs.size(); i != e; ++i)
2021     MBB.insert(MI, NewMIs[i]);
2022 
2023   const MachineFrameInfo &MFI = MF.getFrameInfo();
2024   MachineMemOperand *MMO = MF.getMachineMemOperand(
2025       MachinePointerInfo::getFixedStack(MF, FrameIdx),
2026       MachineMemOperand::MOLoad, MFI.getObjectSize(FrameIdx),
2027       MFI.getObjectAlign(FrameIdx));
2028   NewMIs.back()->addMemOperand(MF, MMO);
2029 }
2030 
2031 void PPCInstrInfo::loadRegFromStackSlot(MachineBasicBlock &MBB,
2032                                         MachineBasicBlock::iterator MI,
2033                                         Register DestReg, int FrameIdx,
2034                                         const TargetRegisterClass *RC,
2035                                         const TargetRegisterInfo *TRI,
2036                                         Register VReg) const {
2037   // We need to avoid a situation in which the value from a VRRC register is
2038   // spilled using an Altivec instruction and reloaded into a VSRC register
2039   // using a VSX instruction. The issue with this is that the VSX
2040   // load/store instructions swap the doublewords in the vector and the Altivec
2041   // ones don't. The register classes on the spill/reload may be different if
2042   // the register is defined using an Altivec instruction and is then used by a
2043   // VSX instruction.
2044   RC = updatedRC(RC);
2045 
2046   loadRegFromStackSlotNoUpd(MBB, MI, DestReg, FrameIdx, RC, TRI);
2047 }
2048 
2049 bool PPCInstrInfo::
2050 reverseBranchCondition(SmallVectorImpl<MachineOperand> &Cond) const {
2051   assert(Cond.size() == 2 && "Invalid PPC branch opcode!");
2052   if (Cond[1].getReg() == PPC::CTR8 || Cond[1].getReg() == PPC::CTR)
2053     Cond[0].setImm(Cond[0].getImm() == 0 ? 1 : 0);
2054   else
2055     // Leave the CR# the same, but invert the condition.
2056     Cond[0].setImm(PPC::InvertPredicate((PPC::Predicate)Cond[0].getImm()));
2057   return false;
2058 }
2059 
2060 // For some instructions, it is legal to fold ZERO into the RA register field.
2061 // This function performs that fold by replacing the operand with PPC::ZERO,
2062 // it does not consider whether the load immediate zero is no longer in use.
2063 bool PPCInstrInfo::onlyFoldImmediate(MachineInstr &UseMI, MachineInstr &DefMI,
2064                                      Register Reg) const {
2065   // A zero immediate should always be loaded with a single li.
2066   unsigned DefOpc = DefMI.getOpcode();
2067   if (DefOpc != PPC::LI && DefOpc != PPC::LI8)
2068     return false;
2069   if (!DefMI.getOperand(1).isImm())
2070     return false;
2071   if (DefMI.getOperand(1).getImm() != 0)
2072     return false;
2073 
2074   // Note that we cannot here invert the arguments of an isel in order to fold
2075   // a ZERO into what is presented as the second argument. All we have here
2076   // is the condition bit, and that might come from a CR-logical bit operation.
2077 
2078   const MCInstrDesc &UseMCID = UseMI.getDesc();
2079 
2080   // Only fold into real machine instructions.
2081   if (UseMCID.isPseudo())
2082     return false;
2083 
2084   // We need to find which of the User's operands is to be folded, that will be
2085   // the operand that matches the given register ID.
2086   unsigned UseIdx;
2087   for (UseIdx = 0; UseIdx < UseMI.getNumOperands(); ++UseIdx)
2088     if (UseMI.getOperand(UseIdx).isReg() &&
2089         UseMI.getOperand(UseIdx).getReg() == Reg)
2090       break;
2091 
2092   assert(UseIdx < UseMI.getNumOperands() && "Cannot find Reg in UseMI");
2093   assert(UseIdx < UseMCID.getNumOperands() && "No operand description for Reg");
2094 
2095   const MCOperandInfo *UseInfo = &UseMCID.operands()[UseIdx];
2096 
2097   // We can fold the zero if this register requires a GPRC_NOR0/G8RC_NOX0
2098   // register (which might also be specified as a pointer class kind).
2099   if (UseInfo->isLookupPtrRegClass()) {
2100     if (UseInfo->RegClass /* Kind */ != 1)
2101       return false;
2102   } else {
2103     if (UseInfo->RegClass != PPC::GPRC_NOR0RegClassID &&
2104         UseInfo->RegClass != PPC::G8RC_NOX0RegClassID)
2105       return false;
2106   }
2107 
2108   // Make sure this is not tied to an output register (or otherwise
2109   // constrained). This is true for ST?UX registers, for example, which
2110   // are tied to their output registers.
2111   if (UseInfo->Constraints != 0)
2112     return false;
2113 
2114   MCRegister ZeroReg;
2115   if (UseInfo->isLookupPtrRegClass()) {
2116     bool isPPC64 = Subtarget.isPPC64();
2117     ZeroReg = isPPC64 ? PPC::ZERO8 : PPC::ZERO;
2118   } else {
2119     ZeroReg = UseInfo->RegClass == PPC::G8RC_NOX0RegClassID ?
2120               PPC::ZERO8 : PPC::ZERO;
2121   }
2122 
2123   LLVM_DEBUG(dbgs() << "Folded immediate zero for: ");
2124   LLVM_DEBUG(UseMI.dump());
2125   UseMI.getOperand(UseIdx).setReg(ZeroReg);
2126   LLVM_DEBUG(dbgs() << "Into: ");
2127   LLVM_DEBUG(UseMI.dump());
2128   return true;
2129 }
2130 
2131 // Folds zero into instructions which have a load immediate zero as an operand
2132 // but also recognize zero as immediate zero. If the definition of the load
2133 // has no more users it is deleted.
2134 bool PPCInstrInfo::FoldImmediate(MachineInstr &UseMI, MachineInstr &DefMI,
2135                                  Register Reg, MachineRegisterInfo *MRI) const {
2136   bool Changed = onlyFoldImmediate(UseMI, DefMI, Reg);
2137   if (MRI->use_nodbg_empty(Reg))
2138     DefMI.eraseFromParent();
2139   return Changed;
2140 }
2141 
2142 static bool MBBDefinesCTR(MachineBasicBlock &MBB) {
2143   for (MachineInstr &MI : MBB)
2144     if (MI.definesRegister(PPC::CTR) || MI.definesRegister(PPC::CTR8))
2145       return true;
2146   return false;
2147 }
2148 
2149 // We should make sure that, if we're going to predicate both sides of a
2150 // condition (a diamond), that both sides don't define the counter register. We
2151 // can predicate counter-decrement-based branches, but while that predicates
2152 // the branching, it does not predicate the counter decrement. If we tried to
2153 // merge the triangle into one predicated block, we'd decrement the counter
2154 // twice.
2155 bool PPCInstrInfo::isProfitableToIfCvt(MachineBasicBlock &TMBB,
2156                      unsigned NumT, unsigned ExtraT,
2157                      MachineBasicBlock &FMBB,
2158                      unsigned NumF, unsigned ExtraF,
2159                      BranchProbability Probability) const {
2160   return !(MBBDefinesCTR(TMBB) && MBBDefinesCTR(FMBB));
2161 }
2162 
2163 
2164 bool PPCInstrInfo::isPredicated(const MachineInstr &MI) const {
2165   // The predicated branches are identified by their type, not really by the
2166   // explicit presence of a predicate. Furthermore, some of them can be
2167   // predicated more than once. Because if conversion won't try to predicate
2168   // any instruction which already claims to be predicated (by returning true
2169   // here), always return false. In doing so, we let isPredicable() be the
2170   // final word on whether not the instruction can be (further) predicated.
2171 
2172   return false;
2173 }
2174 
2175 bool PPCInstrInfo::isSchedulingBoundary(const MachineInstr &MI,
2176                                         const MachineBasicBlock *MBB,
2177                                         const MachineFunction &MF) const {
2178   // Set MFFS and MTFSF as scheduling boundary to avoid unexpected code motion
2179   // across them, since some FP operations may change content of FPSCR.
2180   // TODO: Model FPSCR in PPC instruction definitions and remove the workaround
2181   if (MI.getOpcode() == PPC::MFFS || MI.getOpcode() == PPC::MTFSF)
2182     return true;
2183   return TargetInstrInfo::isSchedulingBoundary(MI, MBB, MF);
2184 }
2185 
2186 bool PPCInstrInfo::PredicateInstruction(MachineInstr &MI,
2187                                         ArrayRef<MachineOperand> Pred) const {
2188   unsigned OpC = MI.getOpcode();
2189   if (OpC == PPC::BLR || OpC == PPC::BLR8) {
2190     if (Pred[1].getReg() == PPC::CTR8 || Pred[1].getReg() == PPC::CTR) {
2191       bool isPPC64 = Subtarget.isPPC64();
2192       MI.setDesc(get(Pred[0].getImm() ? (isPPC64 ? PPC::BDNZLR8 : PPC::BDNZLR)
2193                                       : (isPPC64 ? PPC::BDZLR8 : PPC::BDZLR)));
2194       // Need add Def and Use for CTR implicit operand.
2195       MachineInstrBuilder(*MI.getParent()->getParent(), MI)
2196           .addReg(Pred[1].getReg(), RegState::Implicit)
2197           .addReg(Pred[1].getReg(), RegState::ImplicitDefine);
2198     } else if (Pred[0].getImm() == PPC::PRED_BIT_SET) {
2199       MI.setDesc(get(PPC::BCLR));
2200       MachineInstrBuilder(*MI.getParent()->getParent(), MI).add(Pred[1]);
2201     } else if (Pred[0].getImm() == PPC::PRED_BIT_UNSET) {
2202       MI.setDesc(get(PPC::BCLRn));
2203       MachineInstrBuilder(*MI.getParent()->getParent(), MI).add(Pred[1]);
2204     } else {
2205       MI.setDesc(get(PPC::BCCLR));
2206       MachineInstrBuilder(*MI.getParent()->getParent(), MI)
2207           .addImm(Pred[0].getImm())
2208           .add(Pred[1]);
2209     }
2210 
2211     return true;
2212   } else if (OpC == PPC::B) {
2213     if (Pred[1].getReg() == PPC::CTR8 || Pred[1].getReg() == PPC::CTR) {
2214       bool isPPC64 = Subtarget.isPPC64();
2215       MI.setDesc(get(Pred[0].getImm() ? (isPPC64 ? PPC::BDNZ8 : PPC::BDNZ)
2216                                       : (isPPC64 ? PPC::BDZ8 : PPC::BDZ)));
2217       // Need add Def and Use for CTR implicit operand.
2218       MachineInstrBuilder(*MI.getParent()->getParent(), MI)
2219           .addReg(Pred[1].getReg(), RegState::Implicit)
2220           .addReg(Pred[1].getReg(), RegState::ImplicitDefine);
2221     } else if (Pred[0].getImm() == PPC::PRED_BIT_SET) {
2222       MachineBasicBlock *MBB = MI.getOperand(0).getMBB();
2223       MI.removeOperand(0);
2224 
2225       MI.setDesc(get(PPC::BC));
2226       MachineInstrBuilder(*MI.getParent()->getParent(), MI)
2227           .add(Pred[1])
2228           .addMBB(MBB);
2229     } else if (Pred[0].getImm() == PPC::PRED_BIT_UNSET) {
2230       MachineBasicBlock *MBB = MI.getOperand(0).getMBB();
2231       MI.removeOperand(0);
2232 
2233       MI.setDesc(get(PPC::BCn));
2234       MachineInstrBuilder(*MI.getParent()->getParent(), MI)
2235           .add(Pred[1])
2236           .addMBB(MBB);
2237     } else {
2238       MachineBasicBlock *MBB = MI.getOperand(0).getMBB();
2239       MI.removeOperand(0);
2240 
2241       MI.setDesc(get(PPC::BCC));
2242       MachineInstrBuilder(*MI.getParent()->getParent(), MI)
2243           .addImm(Pred[0].getImm())
2244           .add(Pred[1])
2245           .addMBB(MBB);
2246     }
2247 
2248     return true;
2249   } else if (OpC == PPC::BCTR || OpC == PPC::BCTR8 || OpC == PPC::BCTRL ||
2250              OpC == PPC::BCTRL8 || OpC == PPC::BCTRL_RM ||
2251              OpC == PPC::BCTRL8_RM) {
2252     if (Pred[1].getReg() == PPC::CTR8 || Pred[1].getReg() == PPC::CTR)
2253       llvm_unreachable("Cannot predicate bctr[l] on the ctr register");
2254 
2255     bool setLR = OpC == PPC::BCTRL || OpC == PPC::BCTRL8 ||
2256                  OpC == PPC::BCTRL_RM || OpC == PPC::BCTRL8_RM;
2257     bool isPPC64 = Subtarget.isPPC64();
2258 
2259     if (Pred[0].getImm() == PPC::PRED_BIT_SET) {
2260       MI.setDesc(get(isPPC64 ? (setLR ? PPC::BCCTRL8 : PPC::BCCTR8)
2261                              : (setLR ? PPC::BCCTRL : PPC::BCCTR)));
2262       MachineInstrBuilder(*MI.getParent()->getParent(), MI).add(Pred[1]);
2263     } else if (Pred[0].getImm() == PPC::PRED_BIT_UNSET) {
2264       MI.setDesc(get(isPPC64 ? (setLR ? PPC::BCCTRL8n : PPC::BCCTR8n)
2265                              : (setLR ? PPC::BCCTRLn : PPC::BCCTRn)));
2266       MachineInstrBuilder(*MI.getParent()->getParent(), MI).add(Pred[1]);
2267     } else {
2268       MI.setDesc(get(isPPC64 ? (setLR ? PPC::BCCCTRL8 : PPC::BCCCTR8)
2269                              : (setLR ? PPC::BCCCTRL : PPC::BCCCTR)));
2270       MachineInstrBuilder(*MI.getParent()->getParent(), MI)
2271           .addImm(Pred[0].getImm())
2272           .add(Pred[1]);
2273     }
2274 
2275     // Need add Def and Use for LR implicit operand.
2276     if (setLR)
2277       MachineInstrBuilder(*MI.getParent()->getParent(), MI)
2278           .addReg(isPPC64 ? PPC::LR8 : PPC::LR, RegState::Implicit)
2279           .addReg(isPPC64 ? PPC::LR8 : PPC::LR, RegState::ImplicitDefine);
2280     if (OpC == PPC::BCTRL_RM || OpC == PPC::BCTRL8_RM)
2281       MachineInstrBuilder(*MI.getParent()->getParent(), MI)
2282           .addReg(PPC::RM, RegState::ImplicitDefine);
2283 
2284     return true;
2285   }
2286 
2287   return false;
2288 }
2289 
2290 bool PPCInstrInfo::SubsumesPredicate(ArrayRef<MachineOperand> Pred1,
2291                                      ArrayRef<MachineOperand> Pred2) const {
2292   assert(Pred1.size() == 2 && "Invalid PPC first predicate");
2293   assert(Pred2.size() == 2 && "Invalid PPC second predicate");
2294 
2295   if (Pred1[1].getReg() == PPC::CTR8 || Pred1[1].getReg() == PPC::CTR)
2296     return false;
2297   if (Pred2[1].getReg() == PPC::CTR8 || Pred2[1].getReg() == PPC::CTR)
2298     return false;
2299 
2300   // P1 can only subsume P2 if they test the same condition register.
2301   if (Pred1[1].getReg() != Pred2[1].getReg())
2302     return false;
2303 
2304   PPC::Predicate P1 = (PPC::Predicate) Pred1[0].getImm();
2305   PPC::Predicate P2 = (PPC::Predicate) Pred2[0].getImm();
2306 
2307   if (P1 == P2)
2308     return true;
2309 
2310   // Does P1 subsume P2, e.g. GE subsumes GT.
2311   if (P1 == PPC::PRED_LE &&
2312       (P2 == PPC::PRED_LT || P2 == PPC::PRED_EQ))
2313     return true;
2314   if (P1 == PPC::PRED_GE &&
2315       (P2 == PPC::PRED_GT || P2 == PPC::PRED_EQ))
2316     return true;
2317 
2318   return false;
2319 }
2320 
2321 bool PPCInstrInfo::ClobbersPredicate(MachineInstr &MI,
2322                                      std::vector<MachineOperand> &Pred,
2323                                      bool SkipDead) const {
2324   // Note: At the present time, the contents of Pred from this function is
2325   // unused by IfConversion. This implementation follows ARM by pushing the
2326   // CR-defining operand. Because the 'DZ' and 'DNZ' count as types of
2327   // predicate, instructions defining CTR or CTR8 are also included as
2328   // predicate-defining instructions.
2329 
2330   const TargetRegisterClass *RCs[] =
2331     { &PPC::CRRCRegClass, &PPC::CRBITRCRegClass,
2332       &PPC::CTRRCRegClass, &PPC::CTRRC8RegClass };
2333 
2334   bool Found = false;
2335   for (const MachineOperand &MO : MI.operands()) {
2336     for (unsigned c = 0; c < std::size(RCs) && !Found; ++c) {
2337       const TargetRegisterClass *RC = RCs[c];
2338       if (MO.isReg()) {
2339         if (MO.isDef() && RC->contains(MO.getReg())) {
2340           Pred.push_back(MO);
2341           Found = true;
2342         }
2343       } else if (MO.isRegMask()) {
2344         for (MCPhysReg R : *RC)
2345           if (MO.clobbersPhysReg(R)) {
2346             Pred.push_back(MO);
2347             Found = true;
2348           }
2349       }
2350     }
2351   }
2352 
2353   return Found;
2354 }
2355 
2356 bool PPCInstrInfo::analyzeCompare(const MachineInstr &MI, Register &SrcReg,
2357                                   Register &SrcReg2, int64_t &Mask,
2358                                   int64_t &Value) const {
2359   unsigned Opc = MI.getOpcode();
2360 
2361   switch (Opc) {
2362   default: return false;
2363   case PPC::CMPWI:
2364   case PPC::CMPLWI:
2365   case PPC::CMPDI:
2366   case PPC::CMPLDI:
2367     SrcReg = MI.getOperand(1).getReg();
2368     SrcReg2 = 0;
2369     Value = MI.getOperand(2).getImm();
2370     Mask = 0xFFFF;
2371     return true;
2372   case PPC::CMPW:
2373   case PPC::CMPLW:
2374   case PPC::CMPD:
2375   case PPC::CMPLD:
2376   case PPC::FCMPUS:
2377   case PPC::FCMPUD:
2378     SrcReg = MI.getOperand(1).getReg();
2379     SrcReg2 = MI.getOperand(2).getReg();
2380     Value = 0;
2381     Mask = 0;
2382     return true;
2383   }
2384 }
2385 
2386 bool PPCInstrInfo::optimizeCompareInstr(MachineInstr &CmpInstr, Register SrcReg,
2387                                         Register SrcReg2, int64_t Mask,
2388                                         int64_t Value,
2389                                         const MachineRegisterInfo *MRI) const {
2390   if (DisableCmpOpt)
2391     return false;
2392 
2393   int OpC = CmpInstr.getOpcode();
2394   Register CRReg = CmpInstr.getOperand(0).getReg();
2395 
2396   // FP record forms set CR1 based on the exception status bits, not a
2397   // comparison with zero.
2398   if (OpC == PPC::FCMPUS || OpC == PPC::FCMPUD)
2399     return false;
2400 
2401   const TargetRegisterInfo *TRI = &getRegisterInfo();
2402   // The record forms set the condition register based on a signed comparison
2403   // with zero (so says the ISA manual). This is not as straightforward as it
2404   // seems, however, because this is always a 64-bit comparison on PPC64, even
2405   // for instructions that are 32-bit in nature (like slw for example).
2406   // So, on PPC32, for unsigned comparisons, we can use the record forms only
2407   // for equality checks (as those don't depend on the sign). On PPC64,
2408   // we are restricted to equality for unsigned 64-bit comparisons and for
2409   // signed 32-bit comparisons the applicability is more restricted.
2410   bool isPPC64 = Subtarget.isPPC64();
2411   bool is32BitSignedCompare   = OpC ==  PPC::CMPWI || OpC == PPC::CMPW;
2412   bool is32BitUnsignedCompare = OpC == PPC::CMPLWI || OpC == PPC::CMPLW;
2413   bool is64BitUnsignedCompare = OpC == PPC::CMPLDI || OpC == PPC::CMPLD;
2414 
2415   // Look through copies unless that gets us to a physical register.
2416   Register ActualSrc = TRI->lookThruCopyLike(SrcReg, MRI);
2417   if (ActualSrc.isVirtual())
2418     SrcReg = ActualSrc;
2419 
2420   // Get the unique definition of SrcReg.
2421   MachineInstr *MI = MRI->getUniqueVRegDef(SrcReg);
2422   if (!MI) return false;
2423 
2424   bool equalityOnly = false;
2425   bool noSub = false;
2426   if (isPPC64) {
2427     if (is32BitSignedCompare) {
2428       // We can perform this optimization only if SrcReg is sign-extending.
2429       if (isSignExtended(SrcReg, MRI))
2430         noSub = true;
2431       else
2432         return false;
2433     } else if (is32BitUnsignedCompare) {
2434       // We can perform this optimization, equality only, if SrcReg is
2435       // zero-extending.
2436       if (isZeroExtended(SrcReg, MRI)) {
2437         noSub = true;
2438         equalityOnly = true;
2439       } else
2440         return false;
2441     } else
2442       equalityOnly = is64BitUnsignedCompare;
2443   } else
2444     equalityOnly = is32BitUnsignedCompare;
2445 
2446   if (equalityOnly) {
2447     // We need to check the uses of the condition register in order to reject
2448     // non-equality comparisons.
2449     for (MachineRegisterInfo::use_instr_iterator
2450          I = MRI->use_instr_begin(CRReg), IE = MRI->use_instr_end();
2451          I != IE; ++I) {
2452       MachineInstr *UseMI = &*I;
2453       if (UseMI->getOpcode() == PPC::BCC) {
2454         PPC::Predicate Pred = (PPC::Predicate)UseMI->getOperand(0).getImm();
2455         unsigned PredCond = PPC::getPredicateCondition(Pred);
2456         // We ignore hint bits when checking for non-equality comparisons.
2457         if (PredCond != PPC::PRED_EQ && PredCond != PPC::PRED_NE)
2458           return false;
2459       } else if (UseMI->getOpcode() == PPC::ISEL ||
2460                  UseMI->getOpcode() == PPC::ISEL8) {
2461         unsigned SubIdx = UseMI->getOperand(3).getSubReg();
2462         if (SubIdx != PPC::sub_eq)
2463           return false;
2464       } else
2465         return false;
2466     }
2467   }
2468 
2469   MachineBasicBlock::iterator I = CmpInstr;
2470 
2471   // Scan forward to find the first use of the compare.
2472   for (MachineBasicBlock::iterator EL = CmpInstr.getParent()->end(); I != EL;
2473        ++I) {
2474     bool FoundUse = false;
2475     for (MachineRegisterInfo::use_instr_iterator
2476          J = MRI->use_instr_begin(CRReg), JE = MRI->use_instr_end();
2477          J != JE; ++J)
2478       if (&*J == &*I) {
2479         FoundUse = true;
2480         break;
2481       }
2482 
2483     if (FoundUse)
2484       break;
2485   }
2486 
2487   SmallVector<std::pair<MachineOperand*, PPC::Predicate>, 4> PredsToUpdate;
2488   SmallVector<std::pair<MachineOperand*, unsigned>, 4> SubRegsToUpdate;
2489 
2490   // There are two possible candidates which can be changed to set CR[01].
2491   // One is MI, the other is a SUB instruction.
2492   // For CMPrr(r1,r2), we are looking for SUB(r1,r2) or SUB(r2,r1).
2493   MachineInstr *Sub = nullptr;
2494   if (SrcReg2 != 0)
2495     // MI is not a candidate for CMPrr.
2496     MI = nullptr;
2497   // FIXME: Conservatively refuse to convert an instruction which isn't in the
2498   // same BB as the comparison. This is to allow the check below to avoid calls
2499   // (and other explicit clobbers); instead we should really check for these
2500   // more explicitly (in at least a few predecessors).
2501   else if (MI->getParent() != CmpInstr.getParent())
2502     return false;
2503   else if (Value != 0) {
2504     // The record-form instructions set CR bit based on signed comparison
2505     // against 0. We try to convert a compare against 1 or -1 into a compare
2506     // against 0 to exploit record-form instructions. For example, we change
2507     // the condition "greater than -1" into "greater than or equal to 0"
2508     // and "less than 1" into "less than or equal to 0".
2509 
2510     // Since we optimize comparison based on a specific branch condition,
2511     // we don't optimize if condition code is used by more than once.
2512     if (equalityOnly || !MRI->hasOneUse(CRReg))
2513       return false;
2514 
2515     MachineInstr *UseMI = &*MRI->use_instr_begin(CRReg);
2516     if (UseMI->getOpcode() != PPC::BCC)
2517       return false;
2518 
2519     PPC::Predicate Pred = (PPC::Predicate)UseMI->getOperand(0).getImm();
2520     unsigned PredCond = PPC::getPredicateCondition(Pred);
2521     unsigned PredHint = PPC::getPredicateHint(Pred);
2522     int16_t Immed = (int16_t)Value;
2523 
2524     // When modifying the condition in the predicate, we propagate hint bits
2525     // from the original predicate to the new one.
2526     if (Immed == -1 && PredCond == PPC::PRED_GT)
2527       // We convert "greater than -1" into "greater than or equal to 0",
2528       // since we are assuming signed comparison by !equalityOnly
2529       Pred = PPC::getPredicate(PPC::PRED_GE, PredHint);
2530     else if (Immed == -1 && PredCond == PPC::PRED_LE)
2531       // We convert "less than or equal to -1" into "less than 0".
2532       Pred = PPC::getPredicate(PPC::PRED_LT, PredHint);
2533     else if (Immed == 1 && PredCond == PPC::PRED_LT)
2534       // We convert "less than 1" into "less than or equal to 0".
2535       Pred = PPC::getPredicate(PPC::PRED_LE, PredHint);
2536     else if (Immed == 1 && PredCond == PPC::PRED_GE)
2537       // We convert "greater than or equal to 1" into "greater than 0".
2538       Pred = PPC::getPredicate(PPC::PRED_GT, PredHint);
2539     else
2540       return false;
2541 
2542     // Convert the comparison and its user to a compare against zero with the
2543     // appropriate predicate on the branch. Zero comparison might provide
2544     // optimization opportunities post-RA (see optimization in
2545     // PPCPreEmitPeephole.cpp).
2546     UseMI->getOperand(0).setImm(Pred);
2547     CmpInstr.getOperand(2).setImm(0);
2548   }
2549 
2550   // Search for Sub.
2551   --I;
2552 
2553   // Get ready to iterate backward from CmpInstr.
2554   MachineBasicBlock::iterator E = MI, B = CmpInstr.getParent()->begin();
2555 
2556   for (; I != E && !noSub; --I) {
2557     const MachineInstr &Instr = *I;
2558     unsigned IOpC = Instr.getOpcode();
2559 
2560     if (&*I != &CmpInstr && (Instr.modifiesRegister(PPC::CR0, TRI) ||
2561                              Instr.readsRegister(PPC::CR0, TRI)))
2562       // This instruction modifies or uses the record condition register after
2563       // the one we want to change. While we could do this transformation, it
2564       // would likely not be profitable. This transformation removes one
2565       // instruction, and so even forcing RA to generate one move probably
2566       // makes it unprofitable.
2567       return false;
2568 
2569     // Check whether CmpInstr can be made redundant by the current instruction.
2570     if ((OpC == PPC::CMPW || OpC == PPC::CMPLW ||
2571          OpC == PPC::CMPD || OpC == PPC::CMPLD) &&
2572         (IOpC == PPC::SUBF || IOpC == PPC::SUBF8) &&
2573         ((Instr.getOperand(1).getReg() == SrcReg &&
2574           Instr.getOperand(2).getReg() == SrcReg2) ||
2575         (Instr.getOperand(1).getReg() == SrcReg2 &&
2576          Instr.getOperand(2).getReg() == SrcReg))) {
2577       Sub = &*I;
2578       break;
2579     }
2580 
2581     if (I == B)
2582       // The 'and' is below the comparison instruction.
2583       return false;
2584   }
2585 
2586   // Return false if no candidates exist.
2587   if (!MI && !Sub)
2588     return false;
2589 
2590   // The single candidate is called MI.
2591   if (!MI) MI = Sub;
2592 
2593   int NewOpC = -1;
2594   int MIOpC = MI->getOpcode();
2595   if (MIOpC == PPC::ANDI_rec || MIOpC == PPC::ANDI8_rec ||
2596       MIOpC == PPC::ANDIS_rec || MIOpC == PPC::ANDIS8_rec)
2597     NewOpC = MIOpC;
2598   else {
2599     NewOpC = PPC::getRecordFormOpcode(MIOpC);
2600     if (NewOpC == -1 && PPC::getNonRecordFormOpcode(MIOpC) != -1)
2601       NewOpC = MIOpC;
2602   }
2603 
2604   // FIXME: On the non-embedded POWER architectures, only some of the record
2605   // forms are fast, and we should use only the fast ones.
2606 
2607   // The defining instruction has a record form (or is already a record
2608   // form). It is possible, however, that we'll need to reverse the condition
2609   // code of the users.
2610   if (NewOpC == -1)
2611     return false;
2612 
2613   // This transformation should not be performed if `nsw` is missing and is not
2614   // `equalityOnly` comparison. Since if there is overflow, sub_lt, sub_gt in
2615   // CRReg do not reflect correct order. If `equalityOnly` is true, sub_eq in
2616   // CRReg can reflect if compared values are equal, this optz is still valid.
2617   if (!equalityOnly && (NewOpC == PPC::SUBF_rec || NewOpC == PPC::SUBF8_rec) &&
2618       Sub && !Sub->getFlag(MachineInstr::NoSWrap))
2619     return false;
2620 
2621   // If we have SUB(r1, r2) and CMP(r2, r1), the condition code based on CMP
2622   // needs to be updated to be based on SUB.  Push the condition code
2623   // operands to OperandsToUpdate.  If it is safe to remove CmpInstr, the
2624   // condition code of these operands will be modified.
2625   // Here, Value == 0 means we haven't converted comparison against 1 or -1 to
2626   // comparison against 0, which may modify predicate.
2627   bool ShouldSwap = false;
2628   if (Sub && Value == 0) {
2629     ShouldSwap = SrcReg2 != 0 && Sub->getOperand(1).getReg() == SrcReg2 &&
2630       Sub->getOperand(2).getReg() == SrcReg;
2631 
2632     // The operands to subf are the opposite of sub, so only in the fixed-point
2633     // case, invert the order.
2634     ShouldSwap = !ShouldSwap;
2635   }
2636 
2637   if (ShouldSwap)
2638     for (MachineRegisterInfo::use_instr_iterator
2639          I = MRI->use_instr_begin(CRReg), IE = MRI->use_instr_end();
2640          I != IE; ++I) {
2641       MachineInstr *UseMI = &*I;
2642       if (UseMI->getOpcode() == PPC::BCC) {
2643         PPC::Predicate Pred = (PPC::Predicate) UseMI->getOperand(0).getImm();
2644         unsigned PredCond = PPC::getPredicateCondition(Pred);
2645         assert((!equalityOnly ||
2646                 PredCond == PPC::PRED_EQ || PredCond == PPC::PRED_NE) &&
2647                "Invalid predicate for equality-only optimization");
2648         (void)PredCond; // To suppress warning in release build.
2649         PredsToUpdate.push_back(std::make_pair(&(UseMI->getOperand(0)),
2650                                 PPC::getSwappedPredicate(Pred)));
2651       } else if (UseMI->getOpcode() == PPC::ISEL ||
2652                  UseMI->getOpcode() == PPC::ISEL8) {
2653         unsigned NewSubReg = UseMI->getOperand(3).getSubReg();
2654         assert((!equalityOnly || NewSubReg == PPC::sub_eq) &&
2655                "Invalid CR bit for equality-only optimization");
2656 
2657         if (NewSubReg == PPC::sub_lt)
2658           NewSubReg = PPC::sub_gt;
2659         else if (NewSubReg == PPC::sub_gt)
2660           NewSubReg = PPC::sub_lt;
2661 
2662         SubRegsToUpdate.push_back(std::make_pair(&(UseMI->getOperand(3)),
2663                                                  NewSubReg));
2664       } else // We need to abort on a user we don't understand.
2665         return false;
2666     }
2667   assert(!(Value != 0 && ShouldSwap) &&
2668          "Non-zero immediate support and ShouldSwap"
2669          "may conflict in updating predicate");
2670 
2671   // Create a new virtual register to hold the value of the CR set by the
2672   // record-form instruction. If the instruction was not previously in
2673   // record form, then set the kill flag on the CR.
2674   CmpInstr.eraseFromParent();
2675 
2676   MachineBasicBlock::iterator MII = MI;
2677   BuildMI(*MI->getParent(), std::next(MII), MI->getDebugLoc(),
2678           get(TargetOpcode::COPY), CRReg)
2679     .addReg(PPC::CR0, MIOpC != NewOpC ? RegState::Kill : 0);
2680 
2681   // Even if CR0 register were dead before, it is alive now since the
2682   // instruction we just built uses it.
2683   MI->clearRegisterDeads(PPC::CR0);
2684 
2685   if (MIOpC != NewOpC) {
2686     // We need to be careful here: we're replacing one instruction with
2687     // another, and we need to make sure that we get all of the right
2688     // implicit uses and defs. On the other hand, the caller may be holding
2689     // an iterator to this instruction, and so we can't delete it (this is
2690     // specifically the case if this is the instruction directly after the
2691     // compare).
2692 
2693     // Rotates are expensive instructions. If we're emitting a record-form
2694     // rotate that can just be an andi/andis, we should just emit that.
2695     if (MIOpC == PPC::RLWINM || MIOpC == PPC::RLWINM8) {
2696       Register GPRRes = MI->getOperand(0).getReg();
2697       int64_t SH = MI->getOperand(2).getImm();
2698       int64_t MB = MI->getOperand(3).getImm();
2699       int64_t ME = MI->getOperand(4).getImm();
2700       // We can only do this if both the start and end of the mask are in the
2701       // same halfword.
2702       bool MBInLoHWord = MB >= 16;
2703       bool MEInLoHWord = ME >= 16;
2704       uint64_t Mask = ~0LLU;
2705 
2706       if (MB <= ME && MBInLoHWord == MEInLoHWord && SH == 0) {
2707         Mask = ((1LLU << (32 - MB)) - 1) & ~((1LLU << (31 - ME)) - 1);
2708         // The mask value needs to shift right 16 if we're emitting andis.
2709         Mask >>= MBInLoHWord ? 0 : 16;
2710         NewOpC = MIOpC == PPC::RLWINM
2711                      ? (MBInLoHWord ? PPC::ANDI_rec : PPC::ANDIS_rec)
2712                      : (MBInLoHWord ? PPC::ANDI8_rec : PPC::ANDIS8_rec);
2713       } else if (MRI->use_empty(GPRRes) && (ME == 31) &&
2714                  (ME - MB + 1 == SH) && (MB >= 16)) {
2715         // If we are rotating by the exact number of bits as are in the mask
2716         // and the mask is in the least significant bits of the register,
2717         // that's just an andis. (as long as the GPR result has no uses).
2718         Mask = ((1LLU << 32) - 1) & ~((1LLU << (32 - SH)) - 1);
2719         Mask >>= 16;
2720         NewOpC = MIOpC == PPC::RLWINM ? PPC::ANDIS_rec : PPC::ANDIS8_rec;
2721       }
2722       // If we've set the mask, we can transform.
2723       if (Mask != ~0LLU) {
2724         MI->removeOperand(4);
2725         MI->removeOperand(3);
2726         MI->getOperand(2).setImm(Mask);
2727         NumRcRotatesConvertedToRcAnd++;
2728       }
2729     } else if (MIOpC == PPC::RLDICL && MI->getOperand(2).getImm() == 0) {
2730       int64_t MB = MI->getOperand(3).getImm();
2731       if (MB >= 48) {
2732         uint64_t Mask = (1LLU << (63 - MB + 1)) - 1;
2733         NewOpC = PPC::ANDI8_rec;
2734         MI->removeOperand(3);
2735         MI->getOperand(2).setImm(Mask);
2736         NumRcRotatesConvertedToRcAnd++;
2737       }
2738     }
2739 
2740     const MCInstrDesc &NewDesc = get(NewOpC);
2741     MI->setDesc(NewDesc);
2742 
2743     for (MCPhysReg ImpDef : NewDesc.implicit_defs()) {
2744       if (!MI->definesRegister(ImpDef)) {
2745         MI->addOperand(*MI->getParent()->getParent(),
2746                        MachineOperand::CreateReg(ImpDef, true, true));
2747       }
2748     }
2749     for (MCPhysReg ImpUse : NewDesc.implicit_uses()) {
2750       if (!MI->readsRegister(ImpUse)) {
2751         MI->addOperand(*MI->getParent()->getParent(),
2752                        MachineOperand::CreateReg(ImpUse, false, true));
2753       }
2754     }
2755   }
2756   assert(MI->definesRegister(PPC::CR0) &&
2757          "Record-form instruction does not define cr0?");
2758 
2759   // Modify the condition code of operands in OperandsToUpdate.
2760   // Since we have SUB(r1, r2) and CMP(r2, r1), the condition code needs to
2761   // be changed from r2 > r1 to r1 < r2, from r2 < r1 to r1 > r2, etc.
2762   for (unsigned i = 0, e = PredsToUpdate.size(); i < e; i++)
2763     PredsToUpdate[i].first->setImm(PredsToUpdate[i].second);
2764 
2765   for (unsigned i = 0, e = SubRegsToUpdate.size(); i < e; i++)
2766     SubRegsToUpdate[i].first->setSubReg(SubRegsToUpdate[i].second);
2767 
2768   return true;
2769 }
2770 
2771 bool PPCInstrInfo::optimizeCmpPostRA(MachineInstr &CmpMI) const {
2772   MachineRegisterInfo *MRI = &CmpMI.getParent()->getParent()->getRegInfo();
2773   if (MRI->isSSA())
2774     return false;
2775 
2776   Register SrcReg, SrcReg2;
2777   int64_t CmpMask, CmpValue;
2778   if (!analyzeCompare(CmpMI, SrcReg, SrcReg2, CmpMask, CmpValue))
2779     return false;
2780 
2781   // Try to optimize the comparison against 0.
2782   if (CmpValue || !CmpMask || SrcReg2)
2783     return false;
2784 
2785   // The record forms set the condition register based on a signed comparison
2786   // with zero (see comments in optimizeCompareInstr). Since we can't do the
2787   // equality checks in post-RA, we are more restricted on a unsigned
2788   // comparison.
2789   unsigned Opc = CmpMI.getOpcode();
2790   if (Opc == PPC::CMPLWI || Opc == PPC::CMPLDI)
2791     return false;
2792 
2793   // The record forms are always based on a 64-bit comparison on PPC64
2794   // (similary, a 32-bit comparison on PPC32), while the CMPWI is a 32-bit
2795   // comparison. Since we can't do the equality checks in post-RA, we bail out
2796   // the case.
2797   if (Subtarget.isPPC64() && Opc == PPC::CMPWI)
2798     return false;
2799 
2800   // CmpMI can't be deleted if it has implicit def.
2801   if (CmpMI.hasImplicitDef())
2802     return false;
2803 
2804   bool SrcRegHasOtherUse = false;
2805   MachineInstr *SrcMI = getDefMIPostRA(SrcReg, CmpMI, SrcRegHasOtherUse);
2806   if (!SrcMI || !SrcMI->definesRegister(SrcReg))
2807     return false;
2808 
2809   MachineOperand RegMO = CmpMI.getOperand(0);
2810   Register CRReg = RegMO.getReg();
2811   if (CRReg != PPC::CR0)
2812     return false;
2813 
2814   // Make sure there is no def/use of CRReg between SrcMI and CmpMI.
2815   bool SeenUseOfCRReg = false;
2816   bool IsCRRegKilled = false;
2817   if (!isRegElgibleForForwarding(RegMO, *SrcMI, CmpMI, false, IsCRRegKilled,
2818                                  SeenUseOfCRReg) ||
2819       SrcMI->definesRegister(CRReg) || SeenUseOfCRReg)
2820     return false;
2821 
2822   int SrcMIOpc = SrcMI->getOpcode();
2823   int NewOpC = PPC::getRecordFormOpcode(SrcMIOpc);
2824   if (NewOpC == -1)
2825     return false;
2826 
2827   LLVM_DEBUG(dbgs() << "Replace Instr: ");
2828   LLVM_DEBUG(SrcMI->dump());
2829 
2830   const MCInstrDesc &NewDesc = get(NewOpC);
2831   SrcMI->setDesc(NewDesc);
2832   MachineInstrBuilder(*SrcMI->getParent()->getParent(), SrcMI)
2833       .addReg(CRReg, RegState::ImplicitDefine);
2834   SrcMI->clearRegisterDeads(CRReg);
2835 
2836   // Fix up killed/dead flag for SrcReg after transformation.
2837   if (SrcRegHasOtherUse || CmpMI.getOperand(1).isKill())
2838     fixupIsDeadOrKill(SrcMI, &CmpMI, SrcReg);
2839 
2840   assert(SrcMI->definesRegister(PPC::CR0) &&
2841          "Record-form instruction does not define cr0?");
2842 
2843   LLVM_DEBUG(dbgs() << "with: ");
2844   LLVM_DEBUG(SrcMI->dump());
2845   LLVM_DEBUG(dbgs() << "Delete dead instruction: ");
2846   LLVM_DEBUG(CmpMI.dump());
2847   return true;
2848 }
2849 
2850 bool PPCInstrInfo::getMemOperandsWithOffsetWidth(
2851     const MachineInstr &LdSt, SmallVectorImpl<const MachineOperand *> &BaseOps,
2852     int64_t &Offset, bool &OffsetIsScalable, unsigned &Width,
2853     const TargetRegisterInfo *TRI) const {
2854   const MachineOperand *BaseOp;
2855   OffsetIsScalable = false;
2856   if (!getMemOperandWithOffsetWidth(LdSt, BaseOp, Offset, Width, TRI))
2857     return false;
2858   BaseOps.push_back(BaseOp);
2859   return true;
2860 }
2861 
2862 static bool isLdStSafeToCluster(const MachineInstr &LdSt,
2863                                 const TargetRegisterInfo *TRI) {
2864   // If this is a volatile load/store, don't mess with it.
2865   if (LdSt.hasOrderedMemoryRef() || LdSt.getNumExplicitOperands() != 3)
2866     return false;
2867 
2868   if (LdSt.getOperand(2).isFI())
2869     return true;
2870 
2871   assert(LdSt.getOperand(2).isReg() && "Expected a reg operand.");
2872   // Can't cluster if the instruction modifies the base register
2873   // or it is update form. e.g. ld r2,3(r2)
2874   if (LdSt.modifiesRegister(LdSt.getOperand(2).getReg(), TRI))
2875     return false;
2876 
2877   return true;
2878 }
2879 
2880 // Only cluster instruction pair that have the same opcode, and they are
2881 // clusterable according to PowerPC specification.
2882 static bool isClusterableLdStOpcPair(unsigned FirstOpc, unsigned SecondOpc,
2883                                      const PPCSubtarget &Subtarget) {
2884   switch (FirstOpc) {
2885   default:
2886     return false;
2887   case PPC::STD:
2888   case PPC::STFD:
2889   case PPC::STXSD:
2890   case PPC::DFSTOREf64:
2891     return FirstOpc == SecondOpc;
2892   // PowerPC backend has opcode STW/STW8 for instruction "stw" to deal with
2893   // 32bit and 64bit instruction selection. They are clusterable pair though
2894   // they are different opcode.
2895   case PPC::STW:
2896   case PPC::STW8:
2897     return SecondOpc == PPC::STW || SecondOpc == PPC::STW8;
2898   }
2899 }
2900 
2901 bool PPCInstrInfo::shouldClusterMemOps(
2902     ArrayRef<const MachineOperand *> BaseOps1,
2903     ArrayRef<const MachineOperand *> BaseOps2, unsigned NumLoads,
2904     unsigned NumBytes) const {
2905 
2906   assert(BaseOps1.size() == 1 && BaseOps2.size() == 1);
2907   const MachineOperand &BaseOp1 = *BaseOps1.front();
2908   const MachineOperand &BaseOp2 = *BaseOps2.front();
2909   assert((BaseOp1.isReg() || BaseOp1.isFI()) &&
2910          "Only base registers and frame indices are supported.");
2911 
2912   // The NumLoads means the number of loads that has been clustered.
2913   // Don't cluster memory op if there are already two ops clustered at least.
2914   if (NumLoads > 2)
2915     return false;
2916 
2917   // Cluster the load/store only when they have the same base
2918   // register or FI.
2919   if ((BaseOp1.isReg() != BaseOp2.isReg()) ||
2920       (BaseOp1.isReg() && BaseOp1.getReg() != BaseOp2.getReg()) ||
2921       (BaseOp1.isFI() && BaseOp1.getIndex() != BaseOp2.getIndex()))
2922     return false;
2923 
2924   // Check if the load/store are clusterable according to the PowerPC
2925   // specification.
2926   const MachineInstr &FirstLdSt = *BaseOp1.getParent();
2927   const MachineInstr &SecondLdSt = *BaseOp2.getParent();
2928   unsigned FirstOpc = FirstLdSt.getOpcode();
2929   unsigned SecondOpc = SecondLdSt.getOpcode();
2930   const TargetRegisterInfo *TRI = &getRegisterInfo();
2931   // Cluster the load/store only when they have the same opcode, and they are
2932   // clusterable opcode according to PowerPC specification.
2933   if (!isClusterableLdStOpcPair(FirstOpc, SecondOpc, Subtarget))
2934     return false;
2935 
2936   // Can't cluster load/store that have ordered or volatile memory reference.
2937   if (!isLdStSafeToCluster(FirstLdSt, TRI) ||
2938       !isLdStSafeToCluster(SecondLdSt, TRI))
2939     return false;
2940 
2941   int64_t Offset1 = 0, Offset2 = 0;
2942   unsigned Width1 = 0, Width2 = 0;
2943   const MachineOperand *Base1 = nullptr, *Base2 = nullptr;
2944   if (!getMemOperandWithOffsetWidth(FirstLdSt, Base1, Offset1, Width1, TRI) ||
2945       !getMemOperandWithOffsetWidth(SecondLdSt, Base2, Offset2, Width2, TRI) ||
2946       Width1 != Width2)
2947     return false;
2948 
2949   assert(Base1 == &BaseOp1 && Base2 == &BaseOp2 &&
2950          "getMemOperandWithOffsetWidth return incorrect base op");
2951   // The caller should already have ordered FirstMemOp/SecondMemOp by offset.
2952   assert(Offset1 <= Offset2 && "Caller should have ordered offsets.");
2953   return Offset1 + Width1 == Offset2;
2954 }
2955 
2956 /// GetInstSize - Return the number of bytes of code the specified
2957 /// instruction may be.  This returns the maximum number of bytes.
2958 ///
2959 unsigned PPCInstrInfo::getInstSizeInBytes(const MachineInstr &MI) const {
2960   unsigned Opcode = MI.getOpcode();
2961 
2962   if (Opcode == PPC::INLINEASM || Opcode == PPC::INLINEASM_BR) {
2963     const MachineFunction *MF = MI.getParent()->getParent();
2964     const char *AsmStr = MI.getOperand(0).getSymbolName();
2965     return getInlineAsmLength(AsmStr, *MF->getTarget().getMCAsmInfo());
2966   } else if (Opcode == TargetOpcode::STACKMAP) {
2967     StackMapOpers Opers(&MI);
2968     return Opers.getNumPatchBytes();
2969   } else if (Opcode == TargetOpcode::PATCHPOINT) {
2970     PatchPointOpers Opers(&MI);
2971     return Opers.getNumPatchBytes();
2972   } else {
2973     return get(Opcode).getSize();
2974   }
2975 }
2976 
2977 std::pair<unsigned, unsigned>
2978 PPCInstrInfo::decomposeMachineOperandsTargetFlags(unsigned TF) const {
2979   const unsigned Mask = PPCII::MO_ACCESS_MASK;
2980   return std::make_pair(TF & Mask, TF & ~Mask);
2981 }
2982 
2983 ArrayRef<std::pair<unsigned, const char *>>
2984 PPCInstrInfo::getSerializableDirectMachineOperandTargetFlags() const {
2985   using namespace PPCII;
2986   static const std::pair<unsigned, const char *> TargetFlags[] = {
2987       {MO_LO, "ppc-lo"},
2988       {MO_HA, "ppc-ha"},
2989       {MO_TPREL_LO, "ppc-tprel-lo"},
2990       {MO_TPREL_HA, "ppc-tprel-ha"},
2991       {MO_DTPREL_LO, "ppc-dtprel-lo"},
2992       {MO_TLSLD_LO, "ppc-tlsld-lo"},
2993       {MO_TOC_LO, "ppc-toc-lo"},
2994       {MO_TLS, "ppc-tls"}};
2995   return ArrayRef(TargetFlags);
2996 }
2997 
2998 ArrayRef<std::pair<unsigned, const char *>>
2999 PPCInstrInfo::getSerializableBitmaskMachineOperandTargetFlags() const {
3000   using namespace PPCII;
3001   static const std::pair<unsigned, const char *> TargetFlags[] = {
3002       {MO_PLT, "ppc-plt"},
3003       {MO_PIC_FLAG, "ppc-pic"},
3004       {MO_PCREL_FLAG, "ppc-pcrel"},
3005       {MO_GOT_FLAG, "ppc-got"},
3006       {MO_PCREL_OPT_FLAG, "ppc-opt-pcrel"},
3007       {MO_TLSGD_FLAG, "ppc-tlsgd"},
3008       {MO_TLSLD_FLAG, "ppc-tlsld"},
3009       {MO_TPREL_FLAG, "ppc-tprel"},
3010       {MO_TLSGDM_FLAG, "ppc-tlsgdm"},
3011       {MO_GOT_TLSGD_PCREL_FLAG, "ppc-got-tlsgd-pcrel"},
3012       {MO_GOT_TLSLD_PCREL_FLAG, "ppc-got-tlsld-pcrel"},
3013       {MO_GOT_TPREL_PCREL_FLAG, "ppc-got-tprel-pcrel"}};
3014   return ArrayRef(TargetFlags);
3015 }
3016 
3017 // Expand VSX Memory Pseudo instruction to either a VSX or a FP instruction.
3018 // The VSX versions have the advantage of a full 64-register target whereas
3019 // the FP ones have the advantage of lower latency and higher throughput. So
3020 // what we are after is using the faster instructions in low register pressure
3021 // situations and using the larger register file in high register pressure
3022 // situations.
3023 bool PPCInstrInfo::expandVSXMemPseudo(MachineInstr &MI) const {
3024     unsigned UpperOpcode, LowerOpcode;
3025     switch (MI.getOpcode()) {
3026     case PPC::DFLOADf32:
3027       UpperOpcode = PPC::LXSSP;
3028       LowerOpcode = PPC::LFS;
3029       break;
3030     case PPC::DFLOADf64:
3031       UpperOpcode = PPC::LXSD;
3032       LowerOpcode = PPC::LFD;
3033       break;
3034     case PPC::DFSTOREf32:
3035       UpperOpcode = PPC::STXSSP;
3036       LowerOpcode = PPC::STFS;
3037       break;
3038     case PPC::DFSTOREf64:
3039       UpperOpcode = PPC::STXSD;
3040       LowerOpcode = PPC::STFD;
3041       break;
3042     case PPC::XFLOADf32:
3043       UpperOpcode = PPC::LXSSPX;
3044       LowerOpcode = PPC::LFSX;
3045       break;
3046     case PPC::XFLOADf64:
3047       UpperOpcode = PPC::LXSDX;
3048       LowerOpcode = PPC::LFDX;
3049       break;
3050     case PPC::XFSTOREf32:
3051       UpperOpcode = PPC::STXSSPX;
3052       LowerOpcode = PPC::STFSX;
3053       break;
3054     case PPC::XFSTOREf64:
3055       UpperOpcode = PPC::STXSDX;
3056       LowerOpcode = PPC::STFDX;
3057       break;
3058     case PPC::LIWAX:
3059       UpperOpcode = PPC::LXSIWAX;
3060       LowerOpcode = PPC::LFIWAX;
3061       break;
3062     case PPC::LIWZX:
3063       UpperOpcode = PPC::LXSIWZX;
3064       LowerOpcode = PPC::LFIWZX;
3065       break;
3066     case PPC::STIWX:
3067       UpperOpcode = PPC::STXSIWX;
3068       LowerOpcode = PPC::STFIWX;
3069       break;
3070     default:
3071       llvm_unreachable("Unknown Operation!");
3072     }
3073 
3074     Register TargetReg = MI.getOperand(0).getReg();
3075     unsigned Opcode;
3076     if ((TargetReg >= PPC::F0 && TargetReg <= PPC::F31) ||
3077         (TargetReg >= PPC::VSL0 && TargetReg <= PPC::VSL31))
3078       Opcode = LowerOpcode;
3079     else
3080       Opcode = UpperOpcode;
3081     MI.setDesc(get(Opcode));
3082     return true;
3083 }
3084 
3085 static bool isAnImmediateOperand(const MachineOperand &MO) {
3086   return MO.isCPI() || MO.isGlobal() || MO.isImm();
3087 }
3088 
3089 bool PPCInstrInfo::expandPostRAPseudo(MachineInstr &MI) const {
3090   auto &MBB = *MI.getParent();
3091   auto DL = MI.getDebugLoc();
3092 
3093   switch (MI.getOpcode()) {
3094   case PPC::BUILD_UACC: {
3095     MCRegister ACC = MI.getOperand(0).getReg();
3096     MCRegister UACC = MI.getOperand(1).getReg();
3097     if (ACC - PPC::ACC0 != UACC - PPC::UACC0) {
3098       MCRegister SrcVSR = PPC::VSL0 + (UACC - PPC::UACC0) * 4;
3099       MCRegister DstVSR = PPC::VSL0 + (ACC - PPC::ACC0) * 4;
3100       // FIXME: This can easily be improved to look up to the top of the MBB
3101       // to see if the inputs are XXLOR's. If they are and SrcReg is killed,
3102       // we can just re-target any such XXLOR's to DstVSR + offset.
3103       for (int VecNo = 0; VecNo < 4; VecNo++)
3104         BuildMI(MBB, MI, DL, get(PPC::XXLOR), DstVSR + VecNo)
3105             .addReg(SrcVSR + VecNo)
3106             .addReg(SrcVSR + VecNo);
3107     }
3108     // BUILD_UACC is expanded to 4 copies of the underlying vsx registers.
3109     // So after building the 4 copies, we can replace the BUILD_UACC instruction
3110     // with a NOP.
3111     [[fallthrough]];
3112   }
3113   case PPC::KILL_PAIR: {
3114     MI.setDesc(get(PPC::UNENCODED_NOP));
3115     MI.removeOperand(1);
3116     MI.removeOperand(0);
3117     return true;
3118   }
3119   case TargetOpcode::LOAD_STACK_GUARD: {
3120     assert(Subtarget.isTargetLinux() &&
3121            "Only Linux target is expected to contain LOAD_STACK_GUARD");
3122     const int64_t Offset = Subtarget.isPPC64() ? -0x7010 : -0x7008;
3123     const unsigned Reg = Subtarget.isPPC64() ? PPC::X13 : PPC::R2;
3124     MI.setDesc(get(Subtarget.isPPC64() ? PPC::LD : PPC::LWZ));
3125     MachineInstrBuilder(*MI.getParent()->getParent(), MI)
3126         .addImm(Offset)
3127         .addReg(Reg);
3128     return true;
3129   }
3130   case PPC::DFLOADf32:
3131   case PPC::DFLOADf64:
3132   case PPC::DFSTOREf32:
3133   case PPC::DFSTOREf64: {
3134     assert(Subtarget.hasP9Vector() &&
3135            "Invalid D-Form Pseudo-ops on Pre-P9 target.");
3136     assert(MI.getOperand(2).isReg() &&
3137            isAnImmediateOperand(MI.getOperand(1)) &&
3138            "D-form op must have register and immediate operands");
3139     return expandVSXMemPseudo(MI);
3140   }
3141   case PPC::XFLOADf32:
3142   case PPC::XFSTOREf32:
3143   case PPC::LIWAX:
3144   case PPC::LIWZX:
3145   case PPC::STIWX: {
3146     assert(Subtarget.hasP8Vector() &&
3147            "Invalid X-Form Pseudo-ops on Pre-P8 target.");
3148     assert(MI.getOperand(2).isReg() && MI.getOperand(1).isReg() &&
3149            "X-form op must have register and register operands");
3150     return expandVSXMemPseudo(MI);
3151   }
3152   case PPC::XFLOADf64:
3153   case PPC::XFSTOREf64: {
3154     assert(Subtarget.hasVSX() &&
3155            "Invalid X-Form Pseudo-ops on target that has no VSX.");
3156     assert(MI.getOperand(2).isReg() && MI.getOperand(1).isReg() &&
3157            "X-form op must have register and register operands");
3158     return expandVSXMemPseudo(MI);
3159   }
3160   case PPC::SPILLTOVSR_LD: {
3161     Register TargetReg = MI.getOperand(0).getReg();
3162     if (PPC::VSFRCRegClass.contains(TargetReg)) {
3163       MI.setDesc(get(PPC::DFLOADf64));
3164       return expandPostRAPseudo(MI);
3165     }
3166     else
3167       MI.setDesc(get(PPC::LD));
3168     return true;
3169   }
3170   case PPC::SPILLTOVSR_ST: {
3171     Register SrcReg = MI.getOperand(0).getReg();
3172     if (PPC::VSFRCRegClass.contains(SrcReg)) {
3173       NumStoreSPILLVSRRCAsVec++;
3174       MI.setDesc(get(PPC::DFSTOREf64));
3175       return expandPostRAPseudo(MI);
3176     } else {
3177       NumStoreSPILLVSRRCAsGpr++;
3178       MI.setDesc(get(PPC::STD));
3179     }
3180     return true;
3181   }
3182   case PPC::SPILLTOVSR_LDX: {
3183     Register TargetReg = MI.getOperand(0).getReg();
3184     if (PPC::VSFRCRegClass.contains(TargetReg))
3185       MI.setDesc(get(PPC::LXSDX));
3186     else
3187       MI.setDesc(get(PPC::LDX));
3188     return true;
3189   }
3190   case PPC::SPILLTOVSR_STX: {
3191     Register SrcReg = MI.getOperand(0).getReg();
3192     if (PPC::VSFRCRegClass.contains(SrcReg)) {
3193       NumStoreSPILLVSRRCAsVec++;
3194       MI.setDesc(get(PPC::STXSDX));
3195     } else {
3196       NumStoreSPILLVSRRCAsGpr++;
3197       MI.setDesc(get(PPC::STDX));
3198     }
3199     return true;
3200   }
3201 
3202     // FIXME: Maybe we can expand it in 'PowerPC Expand Atomic' pass.
3203   case PPC::CFENCE8: {
3204     auto Val = MI.getOperand(0).getReg();
3205     BuildMI(MBB, MI, DL, get(PPC::CMPD), PPC::CR7).addReg(Val).addReg(Val);
3206     BuildMI(MBB, MI, DL, get(PPC::CTRL_DEP))
3207         .addImm(PPC::PRED_NE_MINUS)
3208         .addReg(PPC::CR7)
3209         .addImm(1);
3210     MI.setDesc(get(PPC::ISYNC));
3211     MI.removeOperand(0);
3212     return true;
3213   }
3214   }
3215   return false;
3216 }
3217 
3218 // Essentially a compile-time implementation of a compare->isel sequence.
3219 // It takes two constants to compare, along with the true/false registers
3220 // and the comparison type (as a subreg to a CR field) and returns one
3221 // of the true/false registers, depending on the comparison results.
3222 static unsigned selectReg(int64_t Imm1, int64_t Imm2, unsigned CompareOpc,
3223                           unsigned TrueReg, unsigned FalseReg,
3224                           unsigned CRSubReg) {
3225   // Signed comparisons. The immediates are assumed to be sign-extended.
3226   if (CompareOpc == PPC::CMPWI || CompareOpc == PPC::CMPDI) {
3227     switch (CRSubReg) {
3228     default: llvm_unreachable("Unknown integer comparison type.");
3229     case PPC::sub_lt:
3230       return Imm1 < Imm2 ? TrueReg : FalseReg;
3231     case PPC::sub_gt:
3232       return Imm1 > Imm2 ? TrueReg : FalseReg;
3233     case PPC::sub_eq:
3234       return Imm1 == Imm2 ? TrueReg : FalseReg;
3235     }
3236   }
3237   // Unsigned comparisons.
3238   else if (CompareOpc == PPC::CMPLWI || CompareOpc == PPC::CMPLDI) {
3239     switch (CRSubReg) {
3240     default: llvm_unreachable("Unknown integer comparison type.");
3241     case PPC::sub_lt:
3242       return (uint64_t)Imm1 < (uint64_t)Imm2 ? TrueReg : FalseReg;
3243     case PPC::sub_gt:
3244       return (uint64_t)Imm1 > (uint64_t)Imm2 ? TrueReg : FalseReg;
3245     case PPC::sub_eq:
3246       return Imm1 == Imm2 ? TrueReg : FalseReg;
3247     }
3248   }
3249   return PPC::NoRegister;
3250 }
3251 
3252 void PPCInstrInfo::replaceInstrOperandWithImm(MachineInstr &MI,
3253                                               unsigned OpNo,
3254                                               int64_t Imm) const {
3255   assert(MI.getOperand(OpNo).isReg() && "Operand must be a REG");
3256   // Replace the REG with the Immediate.
3257   Register InUseReg = MI.getOperand(OpNo).getReg();
3258   MI.getOperand(OpNo).ChangeToImmediate(Imm);
3259 
3260   // We need to make sure that the MI didn't have any implicit use
3261   // of this REG any more. We don't call MI.implicit_operands().empty() to
3262   // return early, since MI's MCID might be changed in calling context, as a
3263   // result its number of explicit operands may be changed, thus the begin of
3264   // implicit operand is changed.
3265   const TargetRegisterInfo *TRI = &getRegisterInfo();
3266   int UseOpIdx = MI.findRegisterUseOperandIdx(InUseReg, false, TRI);
3267   if (UseOpIdx >= 0) {
3268     MachineOperand &MO = MI.getOperand(UseOpIdx);
3269     if (MO.isImplicit())
3270       // The operands must always be in the following order:
3271       // - explicit reg defs,
3272       // - other explicit operands (reg uses, immediates, etc.),
3273       // - implicit reg defs
3274       // - implicit reg uses
3275       // Therefore, removing the implicit operand won't change the explicit
3276       // operands layout.
3277       MI.removeOperand(UseOpIdx);
3278   }
3279 }
3280 
3281 // Replace an instruction with one that materializes a constant (and sets
3282 // CR0 if the original instruction was a record-form instruction).
3283 void PPCInstrInfo::replaceInstrWithLI(MachineInstr &MI,
3284                                       const LoadImmediateInfo &LII) const {
3285   // Remove existing operands.
3286   int OperandToKeep = LII.SetCR ? 1 : 0;
3287   for (int i = MI.getNumOperands() - 1; i > OperandToKeep; i--)
3288     MI.removeOperand(i);
3289 
3290   // Replace the instruction.
3291   if (LII.SetCR) {
3292     MI.setDesc(get(LII.Is64Bit ? PPC::ANDI8_rec : PPC::ANDI_rec));
3293     // Set the immediate.
3294     MachineInstrBuilder(*MI.getParent()->getParent(), MI)
3295         .addImm(LII.Imm).addReg(PPC::CR0, RegState::ImplicitDefine);
3296     return;
3297   }
3298   else
3299     MI.setDesc(get(LII.Is64Bit ? PPC::LI8 : PPC::LI));
3300 
3301   // Set the immediate.
3302   MachineInstrBuilder(*MI.getParent()->getParent(), MI)
3303       .addImm(LII.Imm);
3304 }
3305 
3306 MachineInstr *PPCInstrInfo::getDefMIPostRA(unsigned Reg, MachineInstr &MI,
3307                                            bool &SeenIntermediateUse) const {
3308   assert(!MI.getParent()->getParent()->getRegInfo().isSSA() &&
3309          "Should be called after register allocation.");
3310   const TargetRegisterInfo *TRI = &getRegisterInfo();
3311   MachineBasicBlock::reverse_iterator E = MI.getParent()->rend(), It = MI;
3312   It++;
3313   SeenIntermediateUse = false;
3314   for (; It != E; ++It) {
3315     if (It->modifiesRegister(Reg, TRI))
3316       return &*It;
3317     if (It->readsRegister(Reg, TRI))
3318       SeenIntermediateUse = true;
3319   }
3320   return nullptr;
3321 }
3322 
3323 void PPCInstrInfo::materializeImmPostRA(MachineBasicBlock &MBB,
3324                                         MachineBasicBlock::iterator MBBI,
3325                                         const DebugLoc &DL, Register Reg,
3326                                         int64_t Imm) const {
3327   assert(!MBB.getParent()->getRegInfo().isSSA() &&
3328          "Register should be in non-SSA form after RA");
3329   bool isPPC64 = Subtarget.isPPC64();
3330   // FIXME: Materialization here is not optimal.
3331   // For some special bit patterns we can use less instructions.
3332   // See `selectI64ImmDirect` in PPCISelDAGToDAG.cpp.
3333   if (isInt<16>(Imm)) {
3334     BuildMI(MBB, MBBI, DL, get(isPPC64 ? PPC::LI8 : PPC::LI), Reg).addImm(Imm);
3335   } else if (isInt<32>(Imm)) {
3336     BuildMI(MBB, MBBI, DL, get(isPPC64 ? PPC::LIS8 : PPC::LIS), Reg)
3337         .addImm(Imm >> 16);
3338     if (Imm & 0xFFFF)
3339       BuildMI(MBB, MBBI, DL, get(isPPC64 ? PPC::ORI8 : PPC::ORI), Reg)
3340           .addReg(Reg, RegState::Kill)
3341           .addImm(Imm & 0xFFFF);
3342   } else {
3343     assert(isPPC64 && "Materializing 64-bit immediate to single register is "
3344                       "only supported in PPC64");
3345     BuildMI(MBB, MBBI, DL, get(PPC::LIS8), Reg).addImm(Imm >> 48);
3346     if ((Imm >> 32) & 0xFFFF)
3347       BuildMI(MBB, MBBI, DL, get(PPC::ORI8), Reg)
3348           .addReg(Reg, RegState::Kill)
3349           .addImm((Imm >> 32) & 0xFFFF);
3350     BuildMI(MBB, MBBI, DL, get(PPC::RLDICR), Reg)
3351         .addReg(Reg, RegState::Kill)
3352         .addImm(32)
3353         .addImm(31);
3354     BuildMI(MBB, MBBI, DL, get(PPC::ORIS8), Reg)
3355         .addReg(Reg, RegState::Kill)
3356         .addImm((Imm >> 16) & 0xFFFF);
3357     if (Imm & 0xFFFF)
3358       BuildMI(MBB, MBBI, DL, get(PPC::ORI8), Reg)
3359           .addReg(Reg, RegState::Kill)
3360           .addImm(Imm & 0xFFFF);
3361   }
3362 }
3363 
3364 MachineInstr *PPCInstrInfo::getForwardingDefMI(
3365   MachineInstr &MI,
3366   unsigned &OpNoForForwarding,
3367   bool &SeenIntermediateUse) const {
3368   OpNoForForwarding = ~0U;
3369   MachineInstr *DefMI = nullptr;
3370   MachineRegisterInfo *MRI = &MI.getParent()->getParent()->getRegInfo();
3371   const TargetRegisterInfo *TRI = &getRegisterInfo();
3372   // If we're in SSA, get the defs through the MRI. Otherwise, only look
3373   // within the basic block to see if the register is defined using an
3374   // LI/LI8/ADDI/ADDI8.
3375   if (MRI->isSSA()) {
3376     for (int i = 1, e = MI.getNumOperands(); i < e; i++) {
3377       if (!MI.getOperand(i).isReg())
3378         continue;
3379       Register Reg = MI.getOperand(i).getReg();
3380       if (!Reg.isVirtual())
3381         continue;
3382       Register TrueReg = TRI->lookThruCopyLike(Reg, MRI);
3383       if (TrueReg.isVirtual()) {
3384         MachineInstr *DefMIForTrueReg = MRI->getVRegDef(TrueReg);
3385         if (DefMIForTrueReg->getOpcode() == PPC::LI ||
3386             DefMIForTrueReg->getOpcode() == PPC::LI8 ||
3387             DefMIForTrueReg->getOpcode() == PPC::ADDI ||
3388             DefMIForTrueReg->getOpcode() == PPC::ADDI8) {
3389           OpNoForForwarding = i;
3390           DefMI = DefMIForTrueReg;
3391           // The ADDI and LI operand maybe exist in one instruction at same
3392           // time. we prefer to fold LI operand as LI only has one Imm operand
3393           // and is more possible to be converted. So if current DefMI is
3394           // ADDI/ADDI8, we continue to find possible LI/LI8.
3395           if (DefMI->getOpcode() == PPC::LI || DefMI->getOpcode() == PPC::LI8)
3396             break;
3397         }
3398       }
3399     }
3400   } else {
3401     // Looking back through the definition for each operand could be expensive,
3402     // so exit early if this isn't an instruction that either has an immediate
3403     // form or is already an immediate form that we can handle.
3404     ImmInstrInfo III;
3405     unsigned Opc = MI.getOpcode();
3406     bool ConvertibleImmForm =
3407         Opc == PPC::CMPWI || Opc == PPC::CMPLWI || Opc == PPC::CMPDI ||
3408         Opc == PPC::CMPLDI || Opc == PPC::ADDI || Opc == PPC::ADDI8 ||
3409         Opc == PPC::ORI || Opc == PPC::ORI8 || Opc == PPC::XORI ||
3410         Opc == PPC::XORI8 || Opc == PPC::RLDICL || Opc == PPC::RLDICL_rec ||
3411         Opc == PPC::RLDICL_32 || Opc == PPC::RLDICL_32_64 ||
3412         Opc == PPC::RLWINM || Opc == PPC::RLWINM_rec || Opc == PPC::RLWINM8 ||
3413         Opc == PPC::RLWINM8_rec;
3414     bool IsVFReg = (MI.getNumOperands() && MI.getOperand(0).isReg())
3415                        ? isVFRegister(MI.getOperand(0).getReg())
3416                        : false;
3417     if (!ConvertibleImmForm && !instrHasImmForm(Opc, IsVFReg, III, true))
3418       return nullptr;
3419 
3420     // Don't convert or %X, %Y, %Y since that's just a register move.
3421     if ((Opc == PPC::OR || Opc == PPC::OR8) &&
3422         MI.getOperand(1).getReg() == MI.getOperand(2).getReg())
3423       return nullptr;
3424     for (int i = 1, e = MI.getNumOperands(); i < e; i++) {
3425       MachineOperand &MO = MI.getOperand(i);
3426       SeenIntermediateUse = false;
3427       if (MO.isReg() && MO.isUse() && !MO.isImplicit()) {
3428         Register Reg = MI.getOperand(i).getReg();
3429         // If we see another use of this reg between the def and the MI,
3430         // we want to flag it so the def isn't deleted.
3431         MachineInstr *DefMI = getDefMIPostRA(Reg, MI, SeenIntermediateUse);
3432         if (DefMI) {
3433           // Is this register defined by some form of add-immediate (including
3434           // load-immediate) within this basic block?
3435           switch (DefMI->getOpcode()) {
3436           default:
3437             break;
3438           case PPC::LI:
3439           case PPC::LI8:
3440           case PPC::ADDItocL:
3441           case PPC::ADDI:
3442           case PPC::ADDI8:
3443             OpNoForForwarding = i;
3444             return DefMI;
3445           }
3446         }
3447       }
3448     }
3449   }
3450   return OpNoForForwarding == ~0U ? nullptr : DefMI;
3451 }
3452 
3453 unsigned PPCInstrInfo::getSpillTarget() const {
3454   // With P10, we may need to spill paired vector registers or accumulator
3455   // registers. MMA implies paired vectors, so we can just check that.
3456   bool IsP10Variant = Subtarget.isISA3_1() || Subtarget.pairedVectorMemops();
3457   return Subtarget.isISAFuture() ? 3 : IsP10Variant ?
3458                                    2 : Subtarget.hasP9Vector() ?
3459                                    1 : 0;
3460 }
3461 
3462 ArrayRef<unsigned> PPCInstrInfo::getStoreOpcodesForSpillArray() const {
3463   return {StoreSpillOpcodesArray[getSpillTarget()], SOK_LastOpcodeSpill};
3464 }
3465 
3466 ArrayRef<unsigned> PPCInstrInfo::getLoadOpcodesForSpillArray() const {
3467   return {LoadSpillOpcodesArray[getSpillTarget()], SOK_LastOpcodeSpill};
3468 }
3469 
3470 void PPCInstrInfo::fixupIsDeadOrKill(MachineInstr *StartMI, MachineInstr *EndMI,
3471                                      unsigned RegNo) const {
3472   // Conservatively clear kill flag for the register if the instructions are in
3473   // different basic blocks and in SSA form, because the kill flag may no longer
3474   // be right. There is no need to bother with dead flags since defs with no
3475   // uses will be handled by DCE.
3476   MachineRegisterInfo &MRI = StartMI->getParent()->getParent()->getRegInfo();
3477   if (MRI.isSSA() && (StartMI->getParent() != EndMI->getParent())) {
3478     MRI.clearKillFlags(RegNo);
3479     return;
3480   }
3481 
3482   // Instructions between [StartMI, EndMI] should be in same basic block.
3483   assert((StartMI->getParent() == EndMI->getParent()) &&
3484          "Instructions are not in same basic block");
3485 
3486   // If before RA, StartMI may be def through COPY, we need to adjust it to the
3487   // real def. See function getForwardingDefMI.
3488   if (MRI.isSSA()) {
3489     bool Reads, Writes;
3490     std::tie(Reads, Writes) = StartMI->readsWritesVirtualRegister(RegNo);
3491     if (!Reads && !Writes) {
3492       assert(Register::isVirtualRegister(RegNo) &&
3493              "Must be a virtual register");
3494       // Get real def and ignore copies.
3495       StartMI = MRI.getVRegDef(RegNo);
3496     }
3497   }
3498 
3499   bool IsKillSet = false;
3500 
3501   auto clearOperandKillInfo = [=] (MachineInstr &MI, unsigned Index) {
3502     MachineOperand &MO = MI.getOperand(Index);
3503     if (MO.isReg() && MO.isUse() && MO.isKill() &&
3504         getRegisterInfo().regsOverlap(MO.getReg(), RegNo))
3505       MO.setIsKill(false);
3506   };
3507 
3508   // Set killed flag for EndMI.
3509   // No need to do anything if EndMI defines RegNo.
3510   int UseIndex =
3511       EndMI->findRegisterUseOperandIdx(RegNo, false, &getRegisterInfo());
3512   if (UseIndex != -1) {
3513     EndMI->getOperand(UseIndex).setIsKill(true);
3514     IsKillSet = true;
3515     // Clear killed flag for other EndMI operands related to RegNo. In some
3516     // upexpected cases, killed may be set multiple times for same register
3517     // operand in same MI.
3518     for (int i = 0, e = EndMI->getNumOperands(); i != e; ++i)
3519       if (i != UseIndex)
3520         clearOperandKillInfo(*EndMI, i);
3521   }
3522 
3523   // Walking the inst in reverse order (EndMI -> StartMI].
3524   MachineBasicBlock::reverse_iterator It = *EndMI;
3525   MachineBasicBlock::reverse_iterator E = EndMI->getParent()->rend();
3526   // EndMI has been handled above, skip it here.
3527   It++;
3528   MachineOperand *MO = nullptr;
3529   for (; It != E; ++It) {
3530     // Skip insturctions which could not be a def/use of RegNo.
3531     if (It->isDebugInstr() || It->isPosition())
3532       continue;
3533 
3534     // Clear killed flag for all It operands related to RegNo. In some
3535     // upexpected cases, killed may be set multiple times for same register
3536     // operand in same MI.
3537     for (int i = 0, e = It->getNumOperands(); i != e; ++i)
3538         clearOperandKillInfo(*It, i);
3539 
3540     // If killed is not set, set killed for its last use or set dead for its def
3541     // if no use found.
3542     if (!IsKillSet) {
3543       if ((MO = It->findRegisterUseOperand(RegNo, false, &getRegisterInfo()))) {
3544         // Use found, set it killed.
3545         IsKillSet = true;
3546         MO->setIsKill(true);
3547         continue;
3548       } else if ((MO = It->findRegisterDefOperand(RegNo, false, true,
3549                                                   &getRegisterInfo()))) {
3550         // No use found, set dead for its def.
3551         assert(&*It == StartMI && "No new def between StartMI and EndMI.");
3552         MO->setIsDead(true);
3553         break;
3554       }
3555     }
3556 
3557     if ((&*It) == StartMI)
3558       break;
3559   }
3560   // Ensure RegMo liveness is killed after EndMI.
3561   assert((IsKillSet || (MO && MO->isDead())) &&
3562          "RegNo should be killed or dead");
3563 }
3564 
3565 // This opt tries to convert the following imm form to an index form to save an
3566 // add for stack variables.
3567 // Return false if no such pattern found.
3568 //
3569 // ADDI instr: ToBeChangedReg = ADDI FrameBaseReg, OffsetAddi
3570 // ADD instr:  ToBeDeletedReg = ADD ToBeChangedReg(killed), ScaleReg
3571 // Imm instr:  Reg            = op OffsetImm, ToBeDeletedReg(killed)
3572 //
3573 // can be converted to:
3574 //
3575 // new ADDI instr: ToBeChangedReg = ADDI FrameBaseReg, (OffsetAddi + OffsetImm)
3576 // Index instr:    Reg            = opx ScaleReg, ToBeChangedReg(killed)
3577 //
3578 // In order to eliminate ADD instr, make sure that:
3579 // 1: (OffsetAddi + OffsetImm) must be int16 since this offset will be used in
3580 //    new ADDI instr and ADDI can only take int16 Imm.
3581 // 2: ToBeChangedReg must be killed in ADD instr and there is no other use
3582 //    between ADDI and ADD instr since its original def in ADDI will be changed
3583 //    in new ADDI instr. And also there should be no new def for it between
3584 //    ADD and Imm instr as ToBeChangedReg will be used in Index instr.
3585 // 3: ToBeDeletedReg must be killed in Imm instr and there is no other use
3586 //    between ADD and Imm instr since ADD instr will be eliminated.
3587 // 4: ScaleReg must not be redefined between ADD and Imm instr since it will be
3588 //    moved to Index instr.
3589 bool PPCInstrInfo::foldFrameOffset(MachineInstr &MI) const {
3590   MachineFunction *MF = MI.getParent()->getParent();
3591   MachineRegisterInfo *MRI = &MF->getRegInfo();
3592   bool PostRA = !MRI->isSSA();
3593   // Do this opt after PEI which is after RA. The reason is stack slot expansion
3594   // in PEI may expose such opportunities since in PEI, stack slot offsets to
3595   // frame base(OffsetAddi) are determined.
3596   if (!PostRA)
3597     return false;
3598   unsigned ToBeDeletedReg = 0;
3599   int64_t OffsetImm = 0;
3600   unsigned XFormOpcode = 0;
3601   ImmInstrInfo III;
3602 
3603   // Check if Imm instr meets requirement.
3604   if (!isImmInstrEligibleForFolding(MI, ToBeDeletedReg, XFormOpcode, OffsetImm,
3605                                     III))
3606     return false;
3607 
3608   bool OtherIntermediateUse = false;
3609   MachineInstr *ADDMI = getDefMIPostRA(ToBeDeletedReg, MI, OtherIntermediateUse);
3610 
3611   // Exit if there is other use between ADD and Imm instr or no def found.
3612   if (OtherIntermediateUse || !ADDMI)
3613     return false;
3614 
3615   // Check if ADD instr meets requirement.
3616   if (!isADDInstrEligibleForFolding(*ADDMI))
3617     return false;
3618 
3619   unsigned ScaleRegIdx = 0;
3620   int64_t OffsetAddi = 0;
3621   MachineInstr *ADDIMI = nullptr;
3622 
3623   // Check if there is a valid ToBeChangedReg in ADDMI.
3624   // 1: It must be killed.
3625   // 2: Its definition must be a valid ADDIMI.
3626   // 3: It must satify int16 offset requirement.
3627   if (isValidToBeChangedReg(ADDMI, 1, ADDIMI, OffsetAddi, OffsetImm))
3628     ScaleRegIdx = 2;
3629   else if (isValidToBeChangedReg(ADDMI, 2, ADDIMI, OffsetAddi, OffsetImm))
3630     ScaleRegIdx = 1;
3631   else
3632     return false;
3633 
3634   assert(ADDIMI && "There should be ADDIMI for valid ToBeChangedReg.");
3635   Register ToBeChangedReg = ADDIMI->getOperand(0).getReg();
3636   Register ScaleReg = ADDMI->getOperand(ScaleRegIdx).getReg();
3637   auto NewDefFor = [&](unsigned Reg, MachineBasicBlock::iterator Start,
3638                        MachineBasicBlock::iterator End) {
3639     for (auto It = ++Start; It != End; It++)
3640       if (It->modifiesRegister(Reg, &getRegisterInfo()))
3641         return true;
3642     return false;
3643   };
3644 
3645   // We are trying to replace the ImmOpNo with ScaleReg. Give up if it is
3646   // treated as special zero when ScaleReg is R0/X0 register.
3647   if (III.ZeroIsSpecialOrig == III.ImmOpNo &&
3648       (ScaleReg == PPC::R0 || ScaleReg == PPC::X0))
3649     return false;
3650 
3651   // Make sure no other def for ToBeChangedReg and ScaleReg between ADD Instr
3652   // and Imm Instr.
3653   if (NewDefFor(ToBeChangedReg, *ADDMI, MI) || NewDefFor(ScaleReg, *ADDMI, MI))
3654     return false;
3655 
3656   // Now start to do the transformation.
3657   LLVM_DEBUG(dbgs() << "Replace instruction: "
3658                     << "\n");
3659   LLVM_DEBUG(ADDIMI->dump());
3660   LLVM_DEBUG(ADDMI->dump());
3661   LLVM_DEBUG(MI.dump());
3662   LLVM_DEBUG(dbgs() << "with: "
3663                     << "\n");
3664 
3665   // Update ADDI instr.
3666   ADDIMI->getOperand(2).setImm(OffsetAddi + OffsetImm);
3667 
3668   // Update Imm instr.
3669   MI.setDesc(get(XFormOpcode));
3670   MI.getOperand(III.ImmOpNo)
3671       .ChangeToRegister(ScaleReg, false, false,
3672                         ADDMI->getOperand(ScaleRegIdx).isKill());
3673 
3674   MI.getOperand(III.OpNoForForwarding)
3675       .ChangeToRegister(ToBeChangedReg, false, false, true);
3676 
3677   // Eliminate ADD instr.
3678   ADDMI->eraseFromParent();
3679 
3680   LLVM_DEBUG(ADDIMI->dump());
3681   LLVM_DEBUG(MI.dump());
3682 
3683   return true;
3684 }
3685 
3686 bool PPCInstrInfo::isADDIInstrEligibleForFolding(MachineInstr &ADDIMI,
3687                                                  int64_t &Imm) const {
3688   unsigned Opc = ADDIMI.getOpcode();
3689 
3690   // Exit if the instruction is not ADDI.
3691   if (Opc != PPC::ADDI && Opc != PPC::ADDI8)
3692     return false;
3693 
3694   // The operand may not necessarily be an immediate - it could be a relocation.
3695   if (!ADDIMI.getOperand(2).isImm())
3696     return false;
3697 
3698   Imm = ADDIMI.getOperand(2).getImm();
3699 
3700   return true;
3701 }
3702 
3703 bool PPCInstrInfo::isADDInstrEligibleForFolding(MachineInstr &ADDMI) const {
3704   unsigned Opc = ADDMI.getOpcode();
3705 
3706   // Exit if the instruction is not ADD.
3707   return Opc == PPC::ADD4 || Opc == PPC::ADD8;
3708 }
3709 
3710 bool PPCInstrInfo::isImmInstrEligibleForFolding(MachineInstr &MI,
3711                                                 unsigned &ToBeDeletedReg,
3712                                                 unsigned &XFormOpcode,
3713                                                 int64_t &OffsetImm,
3714                                                 ImmInstrInfo &III) const {
3715   // Only handle load/store.
3716   if (!MI.mayLoadOrStore())
3717     return false;
3718 
3719   unsigned Opc = MI.getOpcode();
3720 
3721   XFormOpcode = RI.getMappedIdxOpcForImmOpc(Opc);
3722 
3723   // Exit if instruction has no index form.
3724   if (XFormOpcode == PPC::INSTRUCTION_LIST_END)
3725     return false;
3726 
3727   // TODO: sync the logic between instrHasImmForm() and ImmToIdxMap.
3728   if (!instrHasImmForm(XFormOpcode, isVFRegister(MI.getOperand(0).getReg()),
3729                        III, true))
3730     return false;
3731 
3732   if (!III.IsSummingOperands)
3733     return false;
3734 
3735   MachineOperand ImmOperand = MI.getOperand(III.ImmOpNo);
3736   MachineOperand RegOperand = MI.getOperand(III.OpNoForForwarding);
3737   // Only support imm operands, not relocation slots or others.
3738   if (!ImmOperand.isImm())
3739     return false;
3740 
3741   assert(RegOperand.isReg() && "Instruction format is not right");
3742 
3743   // There are other use for ToBeDeletedReg after Imm instr, can not delete it.
3744   if (!RegOperand.isKill())
3745     return false;
3746 
3747   ToBeDeletedReg = RegOperand.getReg();
3748   OffsetImm = ImmOperand.getImm();
3749 
3750   return true;
3751 }
3752 
3753 bool PPCInstrInfo::isValidToBeChangedReg(MachineInstr *ADDMI, unsigned Index,
3754                                          MachineInstr *&ADDIMI,
3755                                          int64_t &OffsetAddi,
3756                                          int64_t OffsetImm) const {
3757   assert((Index == 1 || Index == 2) && "Invalid operand index for add.");
3758   MachineOperand &MO = ADDMI->getOperand(Index);
3759 
3760   if (!MO.isKill())
3761     return false;
3762 
3763   bool OtherIntermediateUse = false;
3764 
3765   ADDIMI = getDefMIPostRA(MO.getReg(), *ADDMI, OtherIntermediateUse);
3766   // Currently handle only one "add + Imminstr" pair case, exit if other
3767   // intermediate use for ToBeChangedReg found.
3768   // TODO: handle the cases where there are other "add + Imminstr" pairs
3769   // with same offset in Imminstr which is like:
3770   //
3771   // ADDI instr: ToBeChangedReg  = ADDI FrameBaseReg, OffsetAddi
3772   // ADD instr1: ToBeDeletedReg1 = ADD ToBeChangedReg, ScaleReg1
3773   // Imm instr1: Reg1            = op1 OffsetImm, ToBeDeletedReg1(killed)
3774   // ADD instr2: ToBeDeletedReg2 = ADD ToBeChangedReg(killed), ScaleReg2
3775   // Imm instr2: Reg2            = op2 OffsetImm, ToBeDeletedReg2(killed)
3776   //
3777   // can be converted to:
3778   //
3779   // new ADDI instr: ToBeChangedReg = ADDI FrameBaseReg,
3780   //                                       (OffsetAddi + OffsetImm)
3781   // Index instr1:   Reg1           = opx1 ScaleReg1, ToBeChangedReg
3782   // Index instr2:   Reg2           = opx2 ScaleReg2, ToBeChangedReg(killed)
3783 
3784   if (OtherIntermediateUse || !ADDIMI)
3785     return false;
3786   // Check if ADDI instr meets requirement.
3787   if (!isADDIInstrEligibleForFolding(*ADDIMI, OffsetAddi))
3788     return false;
3789 
3790   if (isInt<16>(OffsetAddi + OffsetImm))
3791     return true;
3792   return false;
3793 }
3794 
3795 // If this instruction has an immediate form and one of its operands is a
3796 // result of a load-immediate or an add-immediate, convert it to
3797 // the immediate form if the constant is in range.
3798 bool PPCInstrInfo::convertToImmediateForm(MachineInstr &MI,
3799                                           MachineInstr **KilledDef) const {
3800   MachineFunction *MF = MI.getParent()->getParent();
3801   MachineRegisterInfo *MRI = &MF->getRegInfo();
3802   bool PostRA = !MRI->isSSA();
3803   bool SeenIntermediateUse = true;
3804   unsigned ForwardingOperand = ~0U;
3805   MachineInstr *DefMI = getForwardingDefMI(MI, ForwardingOperand,
3806                                            SeenIntermediateUse);
3807   if (!DefMI)
3808     return false;
3809   assert(ForwardingOperand < MI.getNumOperands() &&
3810          "The forwarding operand needs to be valid at this point");
3811   bool IsForwardingOperandKilled = MI.getOperand(ForwardingOperand).isKill();
3812   bool KillFwdDefMI = !SeenIntermediateUse && IsForwardingOperandKilled;
3813   if (KilledDef && KillFwdDefMI)
3814     *KilledDef = DefMI;
3815 
3816   // If this is a imm instruction and its register operands is produced by ADDI,
3817   // put the imm into imm inst directly.
3818   if (RI.getMappedIdxOpcForImmOpc(MI.getOpcode()) !=
3819           PPC::INSTRUCTION_LIST_END &&
3820       transformToNewImmFormFedByAdd(MI, *DefMI, ForwardingOperand))
3821     return true;
3822 
3823   ImmInstrInfo III;
3824   bool IsVFReg = MI.getOperand(0).isReg()
3825                      ? isVFRegister(MI.getOperand(0).getReg())
3826                      : false;
3827   bool HasImmForm = instrHasImmForm(MI.getOpcode(), IsVFReg, III, PostRA);
3828   // If this is a reg+reg instruction that has a reg+imm form,
3829   // and one of the operands is produced by an add-immediate,
3830   // try to convert it.
3831   if (HasImmForm &&
3832       transformToImmFormFedByAdd(MI, III, ForwardingOperand, *DefMI,
3833                                  KillFwdDefMI))
3834     return true;
3835 
3836   // If this is a reg+reg instruction that has a reg+imm form,
3837   // and one of the operands is produced by LI, convert it now.
3838   if (HasImmForm &&
3839       transformToImmFormFedByLI(MI, III, ForwardingOperand, *DefMI))
3840     return true;
3841 
3842   // If this is not a reg+reg, but the DefMI is LI/LI8, check if its user MI
3843   // can be simpified to LI.
3844   if (!HasImmForm && simplifyToLI(MI, *DefMI, ForwardingOperand, KilledDef))
3845     return true;
3846 
3847   return false;
3848 }
3849 
3850 bool PPCInstrInfo::combineRLWINM(MachineInstr &MI,
3851                                  MachineInstr **ToErase) const {
3852   MachineRegisterInfo *MRI = &MI.getParent()->getParent()->getRegInfo();
3853   Register FoldingReg = MI.getOperand(1).getReg();
3854   if (!FoldingReg.isVirtual())
3855     return false;
3856   MachineInstr *SrcMI = MRI->getVRegDef(FoldingReg);
3857   if (SrcMI->getOpcode() != PPC::RLWINM &&
3858       SrcMI->getOpcode() != PPC::RLWINM_rec &&
3859       SrcMI->getOpcode() != PPC::RLWINM8 &&
3860       SrcMI->getOpcode() != PPC::RLWINM8_rec)
3861     return false;
3862   assert((MI.getOperand(2).isImm() && MI.getOperand(3).isImm() &&
3863           MI.getOperand(4).isImm() && SrcMI->getOperand(2).isImm() &&
3864           SrcMI->getOperand(3).isImm() && SrcMI->getOperand(4).isImm()) &&
3865          "Invalid PPC::RLWINM Instruction!");
3866   uint64_t SHSrc = SrcMI->getOperand(2).getImm();
3867   uint64_t SHMI = MI.getOperand(2).getImm();
3868   uint64_t MBSrc = SrcMI->getOperand(3).getImm();
3869   uint64_t MBMI = MI.getOperand(3).getImm();
3870   uint64_t MESrc = SrcMI->getOperand(4).getImm();
3871   uint64_t MEMI = MI.getOperand(4).getImm();
3872 
3873   assert((MEMI < 32 && MESrc < 32 && MBMI < 32 && MBSrc < 32) &&
3874          "Invalid PPC::RLWINM Instruction!");
3875   // If MBMI is bigger than MEMI, we always can not get run of ones.
3876   // RotatedSrcMask non-wrap:
3877   //                 0........31|32........63
3878   // RotatedSrcMask:   B---E        B---E
3879   // MaskMI:         -----------|--E  B------
3880   // Result:           -----          ---      (Bad candidate)
3881   //
3882   // RotatedSrcMask wrap:
3883   //                 0........31|32........63
3884   // RotatedSrcMask: --E   B----|--E    B----
3885   // MaskMI:         -----------|--E  B------
3886   // Result:         ---   -----|---    -----  (Bad candidate)
3887   //
3888   // One special case is RotatedSrcMask is a full set mask.
3889   // RotatedSrcMask full:
3890   //                 0........31|32........63
3891   // RotatedSrcMask: ------EB---|-------EB---
3892   // MaskMI:         -----------|--E  B------
3893   // Result:         -----------|---  -------  (Good candidate)
3894 
3895   // Mark special case.
3896   bool SrcMaskFull = (MBSrc - MESrc == 1) || (MBSrc == 0 && MESrc == 31);
3897 
3898   // For other MBMI > MEMI cases, just return.
3899   if ((MBMI > MEMI) && !SrcMaskFull)
3900     return false;
3901 
3902   // Handle MBMI <= MEMI cases.
3903   APInt MaskMI = APInt::getBitsSetWithWrap(32, 32 - MEMI - 1, 32 - MBMI);
3904   // In MI, we only need low 32 bits of SrcMI, just consider about low 32
3905   // bit of SrcMI mask. Note that in APInt, lowerest bit is at index 0,
3906   // while in PowerPC ISA, lowerest bit is at index 63.
3907   APInt MaskSrc = APInt::getBitsSetWithWrap(32, 32 - MESrc - 1, 32 - MBSrc);
3908 
3909   APInt RotatedSrcMask = MaskSrc.rotl(SHMI);
3910   APInt FinalMask = RotatedSrcMask & MaskMI;
3911   uint32_t NewMB, NewME;
3912   bool Simplified = false;
3913 
3914   // If final mask is 0, MI result should be 0 too.
3915   if (FinalMask.isZero()) {
3916     bool Is64Bit =
3917         (MI.getOpcode() == PPC::RLWINM8 || MI.getOpcode() == PPC::RLWINM8_rec);
3918     Simplified = true;
3919     LLVM_DEBUG(dbgs() << "Replace Instr: ");
3920     LLVM_DEBUG(MI.dump());
3921 
3922     if (MI.getOpcode() == PPC::RLWINM || MI.getOpcode() == PPC::RLWINM8) {
3923       // Replace MI with "LI 0"
3924       MI.removeOperand(4);
3925       MI.removeOperand(3);
3926       MI.removeOperand(2);
3927       MI.getOperand(1).ChangeToImmediate(0);
3928       MI.setDesc(get(Is64Bit ? PPC::LI8 : PPC::LI));
3929     } else {
3930       // Replace MI with "ANDI_rec reg, 0"
3931       MI.removeOperand(4);
3932       MI.removeOperand(3);
3933       MI.getOperand(2).setImm(0);
3934       MI.setDesc(get(Is64Bit ? PPC::ANDI8_rec : PPC::ANDI_rec));
3935       MI.getOperand(1).setReg(SrcMI->getOperand(1).getReg());
3936       if (SrcMI->getOperand(1).isKill()) {
3937         MI.getOperand(1).setIsKill(true);
3938         SrcMI->getOperand(1).setIsKill(false);
3939       } else
3940         // About to replace MI.getOperand(1), clear its kill flag.
3941         MI.getOperand(1).setIsKill(false);
3942     }
3943 
3944     LLVM_DEBUG(dbgs() << "With: ");
3945     LLVM_DEBUG(MI.dump());
3946 
3947   } else if ((isRunOfOnes((unsigned)(FinalMask.getZExtValue()), NewMB, NewME) &&
3948               NewMB <= NewME) ||
3949              SrcMaskFull) {
3950     // Here we only handle MBMI <= MEMI case, so NewMB must be no bigger
3951     // than NewME. Otherwise we get a 64 bit value after folding, but MI
3952     // return a 32 bit value.
3953     Simplified = true;
3954     LLVM_DEBUG(dbgs() << "Converting Instr: ");
3955     LLVM_DEBUG(MI.dump());
3956 
3957     uint16_t NewSH = (SHSrc + SHMI) % 32;
3958     MI.getOperand(2).setImm(NewSH);
3959     // If SrcMI mask is full, no need to update MBMI and MEMI.
3960     if (!SrcMaskFull) {
3961       MI.getOperand(3).setImm(NewMB);
3962       MI.getOperand(4).setImm(NewME);
3963     }
3964     MI.getOperand(1).setReg(SrcMI->getOperand(1).getReg());
3965     if (SrcMI->getOperand(1).isKill()) {
3966       MI.getOperand(1).setIsKill(true);
3967       SrcMI->getOperand(1).setIsKill(false);
3968     } else
3969       // About to replace MI.getOperand(1), clear its kill flag.
3970       MI.getOperand(1).setIsKill(false);
3971 
3972     LLVM_DEBUG(dbgs() << "To: ");
3973     LLVM_DEBUG(MI.dump());
3974   }
3975   if (Simplified & MRI->use_nodbg_empty(FoldingReg) &&
3976       !SrcMI->hasImplicitDef()) {
3977     // If FoldingReg has no non-debug use and it has no implicit def (it
3978     // is not RLWINMO or RLWINM8o), it's safe to delete its def SrcMI.
3979     // Otherwise keep it.
3980     *ToErase = SrcMI;
3981     LLVM_DEBUG(dbgs() << "Delete dead instruction: ");
3982     LLVM_DEBUG(SrcMI->dump());
3983   }
3984   return Simplified;
3985 }
3986 
3987 bool PPCInstrInfo::instrHasImmForm(unsigned Opc, bool IsVFReg,
3988                                    ImmInstrInfo &III, bool PostRA) const {
3989   // The vast majority of the instructions would need their operand 2 replaced
3990   // with an immediate when switching to the reg+imm form. A marked exception
3991   // are the update form loads/stores for which a constant operand 2 would need
3992   // to turn into a displacement and move operand 1 to the operand 2 position.
3993   III.ImmOpNo = 2;
3994   III.OpNoForForwarding = 2;
3995   III.ImmWidth = 16;
3996   III.ImmMustBeMultipleOf = 1;
3997   III.TruncateImmTo = 0;
3998   III.IsSummingOperands = false;
3999   switch (Opc) {
4000   default: return false;
4001   case PPC::ADD4:
4002   case PPC::ADD8:
4003     III.SignedImm = true;
4004     III.ZeroIsSpecialOrig = 0;
4005     III.ZeroIsSpecialNew = 1;
4006     III.IsCommutative = true;
4007     III.IsSummingOperands = true;
4008     III.ImmOpcode = Opc == PPC::ADD4 ? PPC::ADDI : PPC::ADDI8;
4009     break;
4010   case PPC::ADDC:
4011   case PPC::ADDC8:
4012     III.SignedImm = true;
4013     III.ZeroIsSpecialOrig = 0;
4014     III.ZeroIsSpecialNew = 0;
4015     III.IsCommutative = true;
4016     III.IsSummingOperands = true;
4017     III.ImmOpcode = Opc == PPC::ADDC ? PPC::ADDIC : PPC::ADDIC8;
4018     break;
4019   case PPC::ADDC_rec:
4020     III.SignedImm = true;
4021     III.ZeroIsSpecialOrig = 0;
4022     III.ZeroIsSpecialNew = 0;
4023     III.IsCommutative = true;
4024     III.IsSummingOperands = true;
4025     III.ImmOpcode = PPC::ADDIC_rec;
4026     break;
4027   case PPC::SUBFC:
4028   case PPC::SUBFC8:
4029     III.SignedImm = true;
4030     III.ZeroIsSpecialOrig = 0;
4031     III.ZeroIsSpecialNew = 0;
4032     III.IsCommutative = false;
4033     III.ImmOpcode = Opc == PPC::SUBFC ? PPC::SUBFIC : PPC::SUBFIC8;
4034     break;
4035   case PPC::CMPW:
4036   case PPC::CMPD:
4037     III.SignedImm = true;
4038     III.ZeroIsSpecialOrig = 0;
4039     III.ZeroIsSpecialNew = 0;
4040     III.IsCommutative = false;
4041     III.ImmOpcode = Opc == PPC::CMPW ? PPC::CMPWI : PPC::CMPDI;
4042     break;
4043   case PPC::CMPLW:
4044   case PPC::CMPLD:
4045     III.SignedImm = false;
4046     III.ZeroIsSpecialOrig = 0;
4047     III.ZeroIsSpecialNew = 0;
4048     III.IsCommutative = false;
4049     III.ImmOpcode = Opc == PPC::CMPLW ? PPC::CMPLWI : PPC::CMPLDI;
4050     break;
4051   case PPC::AND_rec:
4052   case PPC::AND8_rec:
4053   case PPC::OR:
4054   case PPC::OR8:
4055   case PPC::XOR:
4056   case PPC::XOR8:
4057     III.SignedImm = false;
4058     III.ZeroIsSpecialOrig = 0;
4059     III.ZeroIsSpecialNew = 0;
4060     III.IsCommutative = true;
4061     switch(Opc) {
4062     default: llvm_unreachable("Unknown opcode");
4063     case PPC::AND_rec:
4064       III.ImmOpcode = PPC::ANDI_rec;
4065       break;
4066     case PPC::AND8_rec:
4067       III.ImmOpcode = PPC::ANDI8_rec;
4068       break;
4069     case PPC::OR: III.ImmOpcode = PPC::ORI; break;
4070     case PPC::OR8: III.ImmOpcode = PPC::ORI8; break;
4071     case PPC::XOR: III.ImmOpcode = PPC::XORI; break;
4072     case PPC::XOR8: III.ImmOpcode = PPC::XORI8; break;
4073     }
4074     break;
4075   case PPC::RLWNM:
4076   case PPC::RLWNM8:
4077   case PPC::RLWNM_rec:
4078   case PPC::RLWNM8_rec:
4079   case PPC::SLW:
4080   case PPC::SLW8:
4081   case PPC::SLW_rec:
4082   case PPC::SLW8_rec:
4083   case PPC::SRW:
4084   case PPC::SRW8:
4085   case PPC::SRW_rec:
4086   case PPC::SRW8_rec:
4087   case PPC::SRAW:
4088   case PPC::SRAW_rec:
4089     III.SignedImm = false;
4090     III.ZeroIsSpecialOrig = 0;
4091     III.ZeroIsSpecialNew = 0;
4092     III.IsCommutative = false;
4093     // This isn't actually true, but the instructions ignore any of the
4094     // upper bits, so any immediate loaded with an LI is acceptable.
4095     // This does not apply to shift right algebraic because a value
4096     // out of range will produce a -1/0.
4097     III.ImmWidth = 16;
4098     if (Opc == PPC::RLWNM || Opc == PPC::RLWNM8 || Opc == PPC::RLWNM_rec ||
4099         Opc == PPC::RLWNM8_rec)
4100       III.TruncateImmTo = 5;
4101     else
4102       III.TruncateImmTo = 6;
4103     switch(Opc) {
4104     default: llvm_unreachable("Unknown opcode");
4105     case PPC::RLWNM: III.ImmOpcode = PPC::RLWINM; break;
4106     case PPC::RLWNM8: III.ImmOpcode = PPC::RLWINM8; break;
4107     case PPC::RLWNM_rec:
4108       III.ImmOpcode = PPC::RLWINM_rec;
4109       break;
4110     case PPC::RLWNM8_rec:
4111       III.ImmOpcode = PPC::RLWINM8_rec;
4112       break;
4113     case PPC::SLW: III.ImmOpcode = PPC::RLWINM; break;
4114     case PPC::SLW8: III.ImmOpcode = PPC::RLWINM8; break;
4115     case PPC::SLW_rec:
4116       III.ImmOpcode = PPC::RLWINM_rec;
4117       break;
4118     case PPC::SLW8_rec:
4119       III.ImmOpcode = PPC::RLWINM8_rec;
4120       break;
4121     case PPC::SRW: III.ImmOpcode = PPC::RLWINM; break;
4122     case PPC::SRW8: III.ImmOpcode = PPC::RLWINM8; break;
4123     case PPC::SRW_rec:
4124       III.ImmOpcode = PPC::RLWINM_rec;
4125       break;
4126     case PPC::SRW8_rec:
4127       III.ImmOpcode = PPC::RLWINM8_rec;
4128       break;
4129     case PPC::SRAW:
4130       III.ImmWidth = 5;
4131       III.TruncateImmTo = 0;
4132       III.ImmOpcode = PPC::SRAWI;
4133       break;
4134     case PPC::SRAW_rec:
4135       III.ImmWidth = 5;
4136       III.TruncateImmTo = 0;
4137       III.ImmOpcode = PPC::SRAWI_rec;
4138       break;
4139     }
4140     break;
4141   case PPC::RLDCL:
4142   case PPC::RLDCL_rec:
4143   case PPC::RLDCR:
4144   case PPC::RLDCR_rec:
4145   case PPC::SLD:
4146   case PPC::SLD_rec:
4147   case PPC::SRD:
4148   case PPC::SRD_rec:
4149   case PPC::SRAD:
4150   case PPC::SRAD_rec:
4151     III.SignedImm = false;
4152     III.ZeroIsSpecialOrig = 0;
4153     III.ZeroIsSpecialNew = 0;
4154     III.IsCommutative = false;
4155     // This isn't actually true, but the instructions ignore any of the
4156     // upper bits, so any immediate loaded with an LI is acceptable.
4157     // This does not apply to shift right algebraic because a value
4158     // out of range will produce a -1/0.
4159     III.ImmWidth = 16;
4160     if (Opc == PPC::RLDCL || Opc == PPC::RLDCL_rec || Opc == PPC::RLDCR ||
4161         Opc == PPC::RLDCR_rec)
4162       III.TruncateImmTo = 6;
4163     else
4164       III.TruncateImmTo = 7;
4165     switch(Opc) {
4166     default: llvm_unreachable("Unknown opcode");
4167     case PPC::RLDCL: III.ImmOpcode = PPC::RLDICL; break;
4168     case PPC::RLDCL_rec:
4169       III.ImmOpcode = PPC::RLDICL_rec;
4170       break;
4171     case PPC::RLDCR: III.ImmOpcode = PPC::RLDICR; break;
4172     case PPC::RLDCR_rec:
4173       III.ImmOpcode = PPC::RLDICR_rec;
4174       break;
4175     case PPC::SLD: III.ImmOpcode = PPC::RLDICR; break;
4176     case PPC::SLD_rec:
4177       III.ImmOpcode = PPC::RLDICR_rec;
4178       break;
4179     case PPC::SRD: III.ImmOpcode = PPC::RLDICL; break;
4180     case PPC::SRD_rec:
4181       III.ImmOpcode = PPC::RLDICL_rec;
4182       break;
4183     case PPC::SRAD:
4184       III.ImmWidth = 6;
4185       III.TruncateImmTo = 0;
4186       III.ImmOpcode = PPC::SRADI;
4187        break;
4188     case PPC::SRAD_rec:
4189       III.ImmWidth = 6;
4190       III.TruncateImmTo = 0;
4191       III.ImmOpcode = PPC::SRADI_rec;
4192       break;
4193     }
4194     break;
4195   // Loads and stores:
4196   case PPC::LBZX:
4197   case PPC::LBZX8:
4198   case PPC::LHZX:
4199   case PPC::LHZX8:
4200   case PPC::LHAX:
4201   case PPC::LHAX8:
4202   case PPC::LWZX:
4203   case PPC::LWZX8:
4204   case PPC::LWAX:
4205   case PPC::LDX:
4206   case PPC::LFSX:
4207   case PPC::LFDX:
4208   case PPC::STBX:
4209   case PPC::STBX8:
4210   case PPC::STHX:
4211   case PPC::STHX8:
4212   case PPC::STWX:
4213   case PPC::STWX8:
4214   case PPC::STDX:
4215   case PPC::STFSX:
4216   case PPC::STFDX:
4217     III.SignedImm = true;
4218     III.ZeroIsSpecialOrig = 1;
4219     III.ZeroIsSpecialNew = 2;
4220     III.IsCommutative = true;
4221     III.IsSummingOperands = true;
4222     III.ImmOpNo = 1;
4223     III.OpNoForForwarding = 2;
4224     switch(Opc) {
4225     default: llvm_unreachable("Unknown opcode");
4226     case PPC::LBZX: III.ImmOpcode = PPC::LBZ; break;
4227     case PPC::LBZX8: III.ImmOpcode = PPC::LBZ8; break;
4228     case PPC::LHZX: III.ImmOpcode = PPC::LHZ; break;
4229     case PPC::LHZX8: III.ImmOpcode = PPC::LHZ8; break;
4230     case PPC::LHAX: III.ImmOpcode = PPC::LHA; break;
4231     case PPC::LHAX8: III.ImmOpcode = PPC::LHA8; break;
4232     case PPC::LWZX: III.ImmOpcode = PPC::LWZ; break;
4233     case PPC::LWZX8: III.ImmOpcode = PPC::LWZ8; break;
4234     case PPC::LWAX:
4235       III.ImmOpcode = PPC::LWA;
4236       III.ImmMustBeMultipleOf = 4;
4237       break;
4238     case PPC::LDX: III.ImmOpcode = PPC::LD; III.ImmMustBeMultipleOf = 4; break;
4239     case PPC::LFSX: III.ImmOpcode = PPC::LFS; break;
4240     case PPC::LFDX: III.ImmOpcode = PPC::LFD; break;
4241     case PPC::STBX: III.ImmOpcode = PPC::STB; break;
4242     case PPC::STBX8: III.ImmOpcode = PPC::STB8; break;
4243     case PPC::STHX: III.ImmOpcode = PPC::STH; break;
4244     case PPC::STHX8: III.ImmOpcode = PPC::STH8; break;
4245     case PPC::STWX: III.ImmOpcode = PPC::STW; break;
4246     case PPC::STWX8: III.ImmOpcode = PPC::STW8; break;
4247     case PPC::STDX:
4248       III.ImmOpcode = PPC::STD;
4249       III.ImmMustBeMultipleOf = 4;
4250       break;
4251     case PPC::STFSX: III.ImmOpcode = PPC::STFS; break;
4252     case PPC::STFDX: III.ImmOpcode = PPC::STFD; break;
4253     }
4254     break;
4255   case PPC::LBZUX:
4256   case PPC::LBZUX8:
4257   case PPC::LHZUX:
4258   case PPC::LHZUX8:
4259   case PPC::LHAUX:
4260   case PPC::LHAUX8:
4261   case PPC::LWZUX:
4262   case PPC::LWZUX8:
4263   case PPC::LDUX:
4264   case PPC::LFSUX:
4265   case PPC::LFDUX:
4266   case PPC::STBUX:
4267   case PPC::STBUX8:
4268   case PPC::STHUX:
4269   case PPC::STHUX8:
4270   case PPC::STWUX:
4271   case PPC::STWUX8:
4272   case PPC::STDUX:
4273   case PPC::STFSUX:
4274   case PPC::STFDUX:
4275     III.SignedImm = true;
4276     III.ZeroIsSpecialOrig = 2;
4277     III.ZeroIsSpecialNew = 3;
4278     III.IsCommutative = false;
4279     III.IsSummingOperands = true;
4280     III.ImmOpNo = 2;
4281     III.OpNoForForwarding = 3;
4282     switch(Opc) {
4283     default: llvm_unreachable("Unknown opcode");
4284     case PPC::LBZUX: III.ImmOpcode = PPC::LBZU; break;
4285     case PPC::LBZUX8: III.ImmOpcode = PPC::LBZU8; break;
4286     case PPC::LHZUX: III.ImmOpcode = PPC::LHZU; break;
4287     case PPC::LHZUX8: III.ImmOpcode = PPC::LHZU8; break;
4288     case PPC::LHAUX: III.ImmOpcode = PPC::LHAU; break;
4289     case PPC::LHAUX8: III.ImmOpcode = PPC::LHAU8; break;
4290     case PPC::LWZUX: III.ImmOpcode = PPC::LWZU; break;
4291     case PPC::LWZUX8: III.ImmOpcode = PPC::LWZU8; break;
4292     case PPC::LDUX:
4293       III.ImmOpcode = PPC::LDU;
4294       III.ImmMustBeMultipleOf = 4;
4295       break;
4296     case PPC::LFSUX: III.ImmOpcode = PPC::LFSU; break;
4297     case PPC::LFDUX: III.ImmOpcode = PPC::LFDU; break;
4298     case PPC::STBUX: III.ImmOpcode = PPC::STBU; break;
4299     case PPC::STBUX8: III.ImmOpcode = PPC::STBU8; break;
4300     case PPC::STHUX: III.ImmOpcode = PPC::STHU; break;
4301     case PPC::STHUX8: III.ImmOpcode = PPC::STHU8; break;
4302     case PPC::STWUX: III.ImmOpcode = PPC::STWU; break;
4303     case PPC::STWUX8: III.ImmOpcode = PPC::STWU8; break;
4304     case PPC::STDUX:
4305       III.ImmOpcode = PPC::STDU;
4306       III.ImmMustBeMultipleOf = 4;
4307       break;
4308     case PPC::STFSUX: III.ImmOpcode = PPC::STFSU; break;
4309     case PPC::STFDUX: III.ImmOpcode = PPC::STFDU; break;
4310     }
4311     break;
4312   // Power9 and up only. For some of these, the X-Form version has access to all
4313   // 64 VSR's whereas the D-Form only has access to the VR's. We replace those
4314   // with pseudo-ops pre-ra and for post-ra, we check that the register loaded
4315   // into or stored from is one of the VR registers.
4316   case PPC::LXVX:
4317   case PPC::LXSSPX:
4318   case PPC::LXSDX:
4319   case PPC::STXVX:
4320   case PPC::STXSSPX:
4321   case PPC::STXSDX:
4322   case PPC::XFLOADf32:
4323   case PPC::XFLOADf64:
4324   case PPC::XFSTOREf32:
4325   case PPC::XFSTOREf64:
4326     if (!Subtarget.hasP9Vector())
4327       return false;
4328     III.SignedImm = true;
4329     III.ZeroIsSpecialOrig = 1;
4330     III.ZeroIsSpecialNew = 2;
4331     III.IsCommutative = true;
4332     III.IsSummingOperands = true;
4333     III.ImmOpNo = 1;
4334     III.OpNoForForwarding = 2;
4335     III.ImmMustBeMultipleOf = 4;
4336     switch(Opc) {
4337     default: llvm_unreachable("Unknown opcode");
4338     case PPC::LXVX:
4339       III.ImmOpcode = PPC::LXV;
4340       III.ImmMustBeMultipleOf = 16;
4341       break;
4342     case PPC::LXSSPX:
4343       if (PostRA) {
4344         if (IsVFReg)
4345           III.ImmOpcode = PPC::LXSSP;
4346         else {
4347           III.ImmOpcode = PPC::LFS;
4348           III.ImmMustBeMultipleOf = 1;
4349         }
4350         break;
4351       }
4352       [[fallthrough]];
4353     case PPC::XFLOADf32:
4354       III.ImmOpcode = PPC::DFLOADf32;
4355       break;
4356     case PPC::LXSDX:
4357       if (PostRA) {
4358         if (IsVFReg)
4359           III.ImmOpcode = PPC::LXSD;
4360         else {
4361           III.ImmOpcode = PPC::LFD;
4362           III.ImmMustBeMultipleOf = 1;
4363         }
4364         break;
4365       }
4366       [[fallthrough]];
4367     case PPC::XFLOADf64:
4368       III.ImmOpcode = PPC::DFLOADf64;
4369       break;
4370     case PPC::STXVX:
4371       III.ImmOpcode = PPC::STXV;
4372       III.ImmMustBeMultipleOf = 16;
4373       break;
4374     case PPC::STXSSPX:
4375       if (PostRA) {
4376         if (IsVFReg)
4377           III.ImmOpcode = PPC::STXSSP;
4378         else {
4379           III.ImmOpcode = PPC::STFS;
4380           III.ImmMustBeMultipleOf = 1;
4381         }
4382         break;
4383       }
4384       [[fallthrough]];
4385     case PPC::XFSTOREf32:
4386       III.ImmOpcode = PPC::DFSTOREf32;
4387       break;
4388     case PPC::STXSDX:
4389       if (PostRA) {
4390         if (IsVFReg)
4391           III.ImmOpcode = PPC::STXSD;
4392         else {
4393           III.ImmOpcode = PPC::STFD;
4394           III.ImmMustBeMultipleOf = 1;
4395         }
4396         break;
4397       }
4398       [[fallthrough]];
4399     case PPC::XFSTOREf64:
4400       III.ImmOpcode = PPC::DFSTOREf64;
4401       break;
4402     }
4403     break;
4404   }
4405   return true;
4406 }
4407 
4408 // Utility function for swaping two arbitrary operands of an instruction.
4409 static void swapMIOperands(MachineInstr &MI, unsigned Op1, unsigned Op2) {
4410   assert(Op1 != Op2 && "Cannot swap operand with itself.");
4411 
4412   unsigned MaxOp = std::max(Op1, Op2);
4413   unsigned MinOp = std::min(Op1, Op2);
4414   MachineOperand MOp1 = MI.getOperand(MinOp);
4415   MachineOperand MOp2 = MI.getOperand(MaxOp);
4416   MI.removeOperand(std::max(Op1, Op2));
4417   MI.removeOperand(std::min(Op1, Op2));
4418 
4419   // If the operands we are swapping are the two at the end (the common case)
4420   // we can just remove both and add them in the opposite order.
4421   if (MaxOp - MinOp == 1 && MI.getNumOperands() == MinOp) {
4422     MI.addOperand(MOp2);
4423     MI.addOperand(MOp1);
4424   } else {
4425     // Store all operands in a temporary vector, remove them and re-add in the
4426     // right order.
4427     SmallVector<MachineOperand, 2> MOps;
4428     unsigned TotalOps = MI.getNumOperands() + 2; // We've already removed 2 ops.
4429     for (unsigned i = MI.getNumOperands() - 1; i >= MinOp; i--) {
4430       MOps.push_back(MI.getOperand(i));
4431       MI.removeOperand(i);
4432     }
4433     // MOp2 needs to be added next.
4434     MI.addOperand(MOp2);
4435     // Now add the rest.
4436     for (unsigned i = MI.getNumOperands(); i < TotalOps; i++) {
4437       if (i == MaxOp)
4438         MI.addOperand(MOp1);
4439       else {
4440         MI.addOperand(MOps.back());
4441         MOps.pop_back();
4442       }
4443     }
4444   }
4445 }
4446 
4447 // Check if the 'MI' that has the index OpNoForForwarding
4448 // meets the requirement described in the ImmInstrInfo.
4449 bool PPCInstrInfo::isUseMIElgibleForForwarding(MachineInstr &MI,
4450                                                const ImmInstrInfo &III,
4451                                                unsigned OpNoForForwarding
4452                                                ) const {
4453   // As the algorithm of checking for PPC::ZERO/PPC::ZERO8
4454   // would not work pre-RA, we can only do the check post RA.
4455   MachineRegisterInfo &MRI = MI.getParent()->getParent()->getRegInfo();
4456   if (MRI.isSSA())
4457     return false;
4458 
4459   // Cannot do the transform if MI isn't summing the operands.
4460   if (!III.IsSummingOperands)
4461     return false;
4462 
4463   // The instruction we are trying to replace must have the ZeroIsSpecialOrig set.
4464   if (!III.ZeroIsSpecialOrig)
4465     return false;
4466 
4467   // We cannot do the transform if the operand we are trying to replace
4468   // isn't the same as the operand the instruction allows.
4469   if (OpNoForForwarding != III.OpNoForForwarding)
4470     return false;
4471 
4472   // Check if the instruction we are trying to transform really has
4473   // the special zero register as its operand.
4474   if (MI.getOperand(III.ZeroIsSpecialOrig).getReg() != PPC::ZERO &&
4475       MI.getOperand(III.ZeroIsSpecialOrig).getReg() != PPC::ZERO8)
4476     return false;
4477 
4478   // This machine instruction is convertible if it is,
4479   // 1. summing the operands.
4480   // 2. one of the operands is special zero register.
4481   // 3. the operand we are trying to replace is allowed by the MI.
4482   return true;
4483 }
4484 
4485 // Check if the DefMI is the add inst and set the ImmMO and RegMO
4486 // accordingly.
4487 bool PPCInstrInfo::isDefMIElgibleForForwarding(MachineInstr &DefMI,
4488                                                const ImmInstrInfo &III,
4489                                                MachineOperand *&ImmMO,
4490                                                MachineOperand *&RegMO) const {
4491   unsigned Opc = DefMI.getOpcode();
4492   if (Opc != PPC::ADDItocL && Opc != PPC::ADDI && Opc != PPC::ADDI8)
4493     return false;
4494 
4495   assert(DefMI.getNumOperands() >= 3 &&
4496          "Add inst must have at least three operands");
4497   RegMO = &DefMI.getOperand(1);
4498   ImmMO = &DefMI.getOperand(2);
4499 
4500   // Before RA, ADDI first operand could be a frame index.
4501   if (!RegMO->isReg())
4502     return false;
4503 
4504   // This DefMI is elgible for forwarding if it is:
4505   // 1. add inst
4506   // 2. one of the operands is Imm/CPI/Global.
4507   return isAnImmediateOperand(*ImmMO);
4508 }
4509 
4510 bool PPCInstrInfo::isRegElgibleForForwarding(
4511     const MachineOperand &RegMO, const MachineInstr &DefMI,
4512     const MachineInstr &MI, bool KillDefMI,
4513     bool &IsFwdFeederRegKilled, bool &SeenIntermediateUse) const {
4514   // x = addi y, imm
4515   // ...
4516   // z = lfdx 0, x   -> z = lfd imm(y)
4517   // The Reg "y" can be forwarded to the MI(z) only when there is no DEF
4518   // of "y" between the DEF of "x" and "z".
4519   // The query is only valid post RA.
4520   const MachineRegisterInfo &MRI = MI.getParent()->getParent()->getRegInfo();
4521   if (MRI.isSSA())
4522     return false;
4523 
4524   Register Reg = RegMO.getReg();
4525 
4526   // Walking the inst in reverse(MI-->DefMI) to get the last DEF of the Reg.
4527   MachineBasicBlock::const_reverse_iterator It = MI;
4528   MachineBasicBlock::const_reverse_iterator E = MI.getParent()->rend();
4529   It++;
4530   for (; It != E; ++It) {
4531     if (It->modifiesRegister(Reg, &getRegisterInfo()) && (&*It) != &DefMI)
4532       return false;
4533     else if (It->killsRegister(Reg, &getRegisterInfo()) && (&*It) != &DefMI)
4534       IsFwdFeederRegKilled = true;
4535     if (It->readsRegister(Reg, &getRegisterInfo()) && (&*It) != &DefMI)
4536       SeenIntermediateUse = true;
4537     // Made it to DefMI without encountering a clobber.
4538     if ((&*It) == &DefMI)
4539       break;
4540   }
4541   assert((&*It) == &DefMI && "DefMI is missing");
4542 
4543   // If DefMI also defines the register to be forwarded, we can only forward it
4544   // if DefMI is being erased.
4545   if (DefMI.modifiesRegister(Reg, &getRegisterInfo()))
4546     return KillDefMI;
4547 
4548   return true;
4549 }
4550 
4551 bool PPCInstrInfo::isImmElgibleForForwarding(const MachineOperand &ImmMO,
4552                                              const MachineInstr &DefMI,
4553                                              const ImmInstrInfo &III,
4554                                              int64_t &Imm,
4555                                              int64_t BaseImm) const {
4556   assert(isAnImmediateOperand(ImmMO) && "ImmMO is NOT an immediate");
4557   if (DefMI.getOpcode() == PPC::ADDItocL) {
4558     // The operand for ADDItocL is CPI, which isn't imm at compiling time,
4559     // However, we know that, it is 16-bit width, and has the alignment of 4.
4560     // Check if the instruction met the requirement.
4561     if (III.ImmMustBeMultipleOf > 4 ||
4562        III.TruncateImmTo || III.ImmWidth != 16)
4563       return false;
4564 
4565     // Going from XForm to DForm loads means that the displacement needs to be
4566     // not just an immediate but also a multiple of 4, or 16 depending on the
4567     // load. A DForm load cannot be represented if it is a multiple of say 2.
4568     // XForm loads do not have this restriction.
4569     if (ImmMO.isGlobal()) {
4570       const DataLayout &DL = ImmMO.getGlobal()->getParent()->getDataLayout();
4571       if (ImmMO.getGlobal()->getPointerAlignment(DL) < III.ImmMustBeMultipleOf)
4572         return false;
4573     }
4574 
4575     return true;
4576   }
4577 
4578   if (ImmMO.isImm()) {
4579     // It is Imm, we need to check if the Imm fit the range.
4580     // Sign-extend to 64-bits.
4581     // DefMI may be folded with another imm form instruction, the result Imm is
4582     // the sum of Imm of DefMI and BaseImm which is from imm form instruction.
4583     APInt ActualValue(64, ImmMO.getImm() + BaseImm, true);
4584     if (III.SignedImm && !ActualValue.isSignedIntN(III.ImmWidth))
4585       return false;
4586     if (!III.SignedImm && !ActualValue.isIntN(III.ImmWidth))
4587       return false;
4588     Imm = SignExtend64<16>(ImmMO.getImm() + BaseImm);
4589 
4590     if (Imm % III.ImmMustBeMultipleOf)
4591       return false;
4592     if (III.TruncateImmTo)
4593       Imm &= ((1 << III.TruncateImmTo) - 1);
4594   }
4595   else
4596     return false;
4597 
4598   // This ImmMO is forwarded if it meets the requriement describle
4599   // in ImmInstrInfo
4600   return true;
4601 }
4602 
4603 bool PPCInstrInfo::simplifyToLI(MachineInstr &MI, MachineInstr &DefMI,
4604                                 unsigned OpNoForForwarding,
4605                                 MachineInstr **KilledDef) const {
4606   if ((DefMI.getOpcode() != PPC::LI && DefMI.getOpcode() != PPC::LI8) ||
4607       !DefMI.getOperand(1).isImm())
4608     return false;
4609 
4610   MachineFunction *MF = MI.getParent()->getParent();
4611   MachineRegisterInfo *MRI = &MF->getRegInfo();
4612   bool PostRA = !MRI->isSSA();
4613 
4614   int64_t Immediate = DefMI.getOperand(1).getImm();
4615   // Sign-extend to 64-bits.
4616   int64_t SExtImm = SignExtend64<16>(Immediate);
4617 
4618   bool IsForwardingOperandKilled = MI.getOperand(OpNoForForwarding).isKill();
4619   Register ForwardingOperandReg = MI.getOperand(OpNoForForwarding).getReg();
4620 
4621   bool ReplaceWithLI = false;
4622   bool Is64BitLI = false;
4623   int64_t NewImm = 0;
4624   bool SetCR = false;
4625   unsigned Opc = MI.getOpcode();
4626   switch (Opc) {
4627   default:
4628     return false;
4629 
4630   // FIXME: Any branches conditional on such a comparison can be made
4631   // unconditional. At this time, this happens too infrequently to be worth
4632   // the implementation effort, but if that ever changes, we could convert
4633   // such a pattern here.
4634   case PPC::CMPWI:
4635   case PPC::CMPLWI:
4636   case PPC::CMPDI:
4637   case PPC::CMPLDI: {
4638     // Doing this post-RA would require dataflow analysis to reliably find uses
4639     // of the CR register set by the compare.
4640     // No need to fixup killed/dead flag since this transformation is only valid
4641     // before RA.
4642     if (PostRA)
4643       return false;
4644     // If a compare-immediate is fed by an immediate and is itself an input of
4645     // an ISEL (the most common case) into a COPY of the correct register.
4646     bool Changed = false;
4647     Register DefReg = MI.getOperand(0).getReg();
4648     int64_t Comparand = MI.getOperand(2).getImm();
4649     int64_t SExtComparand = ((uint64_t)Comparand & ~0x7FFFuLL) != 0
4650                                 ? (Comparand | 0xFFFFFFFFFFFF0000)
4651                                 : Comparand;
4652 
4653     for (auto &CompareUseMI : MRI->use_instructions(DefReg)) {
4654       unsigned UseOpc = CompareUseMI.getOpcode();
4655       if (UseOpc != PPC::ISEL && UseOpc != PPC::ISEL8)
4656         continue;
4657       unsigned CRSubReg = CompareUseMI.getOperand(3).getSubReg();
4658       Register TrueReg = CompareUseMI.getOperand(1).getReg();
4659       Register FalseReg = CompareUseMI.getOperand(2).getReg();
4660       unsigned RegToCopy =
4661           selectReg(SExtImm, SExtComparand, Opc, TrueReg, FalseReg, CRSubReg);
4662       if (RegToCopy == PPC::NoRegister)
4663         continue;
4664       // Can't use PPC::COPY to copy PPC::ZERO[8]. Convert it to LI[8] 0.
4665       if (RegToCopy == PPC::ZERO || RegToCopy == PPC::ZERO8) {
4666         CompareUseMI.setDesc(get(UseOpc == PPC::ISEL8 ? PPC::LI8 : PPC::LI));
4667         replaceInstrOperandWithImm(CompareUseMI, 1, 0);
4668         CompareUseMI.removeOperand(3);
4669         CompareUseMI.removeOperand(2);
4670         continue;
4671       }
4672       LLVM_DEBUG(
4673           dbgs() << "Found LI -> CMPI -> ISEL, replacing with a copy.\n");
4674       LLVM_DEBUG(DefMI.dump(); MI.dump(); CompareUseMI.dump());
4675       LLVM_DEBUG(dbgs() << "Is converted to:\n");
4676       // Convert to copy and remove unneeded operands.
4677       CompareUseMI.setDesc(get(PPC::COPY));
4678       CompareUseMI.removeOperand(3);
4679       CompareUseMI.removeOperand(RegToCopy == TrueReg ? 2 : 1);
4680       CmpIselsConverted++;
4681       Changed = true;
4682       LLVM_DEBUG(CompareUseMI.dump());
4683     }
4684     if (Changed)
4685       return true;
4686     // This may end up incremented multiple times since this function is called
4687     // during a fixed-point transformation, but it is only meant to indicate the
4688     // presence of this opportunity.
4689     MissedConvertibleImmediateInstrs++;
4690     return false;
4691   }
4692 
4693   // Immediate forms - may simply be convertable to an LI.
4694   case PPC::ADDI:
4695   case PPC::ADDI8: {
4696     // Does the sum fit in a 16-bit signed field?
4697     int64_t Addend = MI.getOperand(2).getImm();
4698     if (isInt<16>(Addend + SExtImm)) {
4699       ReplaceWithLI = true;
4700       Is64BitLI = Opc == PPC::ADDI8;
4701       NewImm = Addend + SExtImm;
4702       break;
4703     }
4704     return false;
4705   }
4706   case PPC::SUBFIC:
4707   case PPC::SUBFIC8: {
4708     // Only transform this if the CARRY implicit operand is dead.
4709     if (MI.getNumOperands() > 3 && !MI.getOperand(3).isDead())
4710       return false;
4711     int64_t Minuend = MI.getOperand(2).getImm();
4712     if (isInt<16>(Minuend - SExtImm)) {
4713       ReplaceWithLI = true;
4714       Is64BitLI = Opc == PPC::SUBFIC8;
4715       NewImm = Minuend - SExtImm;
4716       break;
4717     }
4718     return false;
4719   }
4720   case PPC::RLDICL:
4721   case PPC::RLDICL_rec:
4722   case PPC::RLDICL_32:
4723   case PPC::RLDICL_32_64: {
4724     // Use APInt's rotate function.
4725     int64_t SH = MI.getOperand(2).getImm();
4726     int64_t MB = MI.getOperand(3).getImm();
4727     APInt InVal((Opc == PPC::RLDICL || Opc == PPC::RLDICL_rec) ? 64 : 32,
4728                 SExtImm, true);
4729     InVal = InVal.rotl(SH);
4730     uint64_t Mask = MB == 0 ? -1LLU : (1LLU << (63 - MB + 1)) - 1;
4731     InVal &= Mask;
4732     // Can't replace negative values with an LI as that will sign-extend
4733     // and not clear the left bits. If we're setting the CR bit, we will use
4734     // ANDI_rec which won't sign extend, so that's safe.
4735     if (isUInt<15>(InVal.getSExtValue()) ||
4736         (Opc == PPC::RLDICL_rec && isUInt<16>(InVal.getSExtValue()))) {
4737       ReplaceWithLI = true;
4738       Is64BitLI = Opc != PPC::RLDICL_32;
4739       NewImm = InVal.getSExtValue();
4740       SetCR = Opc == PPC::RLDICL_rec;
4741       break;
4742     }
4743     return false;
4744   }
4745   case PPC::RLWINM:
4746   case PPC::RLWINM8:
4747   case PPC::RLWINM_rec:
4748   case PPC::RLWINM8_rec: {
4749     int64_t SH = MI.getOperand(2).getImm();
4750     int64_t MB = MI.getOperand(3).getImm();
4751     int64_t ME = MI.getOperand(4).getImm();
4752     APInt InVal(32, SExtImm, true);
4753     InVal = InVal.rotl(SH);
4754     APInt Mask = APInt::getBitsSetWithWrap(32, 32 - ME - 1, 32 - MB);
4755     InVal &= Mask;
4756     // Can't replace negative values with an LI as that will sign-extend
4757     // and not clear the left bits. If we're setting the CR bit, we will use
4758     // ANDI_rec which won't sign extend, so that's safe.
4759     bool ValueFits = isUInt<15>(InVal.getSExtValue());
4760     ValueFits |= ((Opc == PPC::RLWINM_rec || Opc == PPC::RLWINM8_rec) &&
4761                   isUInt<16>(InVal.getSExtValue()));
4762     if (ValueFits) {
4763       ReplaceWithLI = true;
4764       Is64BitLI = Opc == PPC::RLWINM8 || Opc == PPC::RLWINM8_rec;
4765       NewImm = InVal.getSExtValue();
4766       SetCR = Opc == PPC::RLWINM_rec || Opc == PPC::RLWINM8_rec;
4767       break;
4768     }
4769     return false;
4770   }
4771   case PPC::ORI:
4772   case PPC::ORI8:
4773   case PPC::XORI:
4774   case PPC::XORI8: {
4775     int64_t LogicalImm = MI.getOperand(2).getImm();
4776     int64_t Result = 0;
4777     if (Opc == PPC::ORI || Opc == PPC::ORI8)
4778       Result = LogicalImm | SExtImm;
4779     else
4780       Result = LogicalImm ^ SExtImm;
4781     if (isInt<16>(Result)) {
4782       ReplaceWithLI = true;
4783       Is64BitLI = Opc == PPC::ORI8 || Opc == PPC::XORI8;
4784       NewImm = Result;
4785       break;
4786     }
4787     return false;
4788   }
4789   }
4790 
4791   if (ReplaceWithLI) {
4792     // We need to be careful with CR-setting instructions we're replacing.
4793     if (SetCR) {
4794       // We don't know anything about uses when we're out of SSA, so only
4795       // replace if the new immediate will be reproduced.
4796       bool ImmChanged = (SExtImm & NewImm) != NewImm;
4797       if (PostRA && ImmChanged)
4798         return false;
4799 
4800       if (!PostRA) {
4801         // If the defining load-immediate has no other uses, we can just replace
4802         // the immediate with the new immediate.
4803         if (MRI->hasOneUse(DefMI.getOperand(0).getReg()))
4804           DefMI.getOperand(1).setImm(NewImm);
4805 
4806         // If we're not using the GPR result of the CR-setting instruction, we
4807         // just need to and with zero/non-zero depending on the new immediate.
4808         else if (MRI->use_empty(MI.getOperand(0).getReg())) {
4809           if (NewImm) {
4810             assert(Immediate && "Transformation converted zero to non-zero?");
4811             NewImm = Immediate;
4812           }
4813         } else if (ImmChanged)
4814           return false;
4815       }
4816     }
4817 
4818     LLVM_DEBUG(dbgs() << "Replacing constant instruction:\n");
4819     LLVM_DEBUG(MI.dump());
4820     LLVM_DEBUG(dbgs() << "Fed by:\n");
4821     LLVM_DEBUG(DefMI.dump());
4822     LoadImmediateInfo LII;
4823     LII.Imm = NewImm;
4824     LII.Is64Bit = Is64BitLI;
4825     LII.SetCR = SetCR;
4826     // If we're setting the CR, the original load-immediate must be kept (as an
4827     // operand to ANDI_rec/ANDI8_rec).
4828     if (KilledDef && SetCR)
4829       *KilledDef = nullptr;
4830     replaceInstrWithLI(MI, LII);
4831 
4832     // Fixup killed/dead flag after transformation.
4833     // Pattern:
4834     // ForwardingOperandReg = LI imm1
4835     // y = op2 imm2, ForwardingOperandReg(killed)
4836     if (IsForwardingOperandKilled)
4837       fixupIsDeadOrKill(&DefMI, &MI, ForwardingOperandReg);
4838 
4839     LLVM_DEBUG(dbgs() << "With:\n");
4840     LLVM_DEBUG(MI.dump());
4841     return true;
4842   }
4843   return false;
4844 }
4845 
4846 bool PPCInstrInfo::transformToNewImmFormFedByAdd(
4847     MachineInstr &MI, MachineInstr &DefMI, unsigned OpNoForForwarding) const {
4848   MachineRegisterInfo *MRI = &MI.getParent()->getParent()->getRegInfo();
4849   bool PostRA = !MRI->isSSA();
4850   // FIXME: extend this to post-ra. Need to do some change in getForwardingDefMI
4851   // for post-ra.
4852   if (PostRA)
4853     return false;
4854 
4855   // Only handle load/store.
4856   if (!MI.mayLoadOrStore())
4857     return false;
4858 
4859   unsigned XFormOpcode = RI.getMappedIdxOpcForImmOpc(MI.getOpcode());
4860 
4861   assert((XFormOpcode != PPC::INSTRUCTION_LIST_END) &&
4862          "MI must have x-form opcode");
4863 
4864   // get Imm Form info.
4865   ImmInstrInfo III;
4866   bool IsVFReg = MI.getOperand(0).isReg()
4867                      ? isVFRegister(MI.getOperand(0).getReg())
4868                      : false;
4869 
4870   if (!instrHasImmForm(XFormOpcode, IsVFReg, III, PostRA))
4871     return false;
4872 
4873   if (!III.IsSummingOperands)
4874     return false;
4875 
4876   if (OpNoForForwarding != III.OpNoForForwarding)
4877     return false;
4878 
4879   MachineOperand ImmOperandMI = MI.getOperand(III.ImmOpNo);
4880   if (!ImmOperandMI.isImm())
4881     return false;
4882 
4883   // Check DefMI.
4884   MachineOperand *ImmMO = nullptr;
4885   MachineOperand *RegMO = nullptr;
4886   if (!isDefMIElgibleForForwarding(DefMI, III, ImmMO, RegMO))
4887     return false;
4888   assert(ImmMO && RegMO && "Imm and Reg operand must have been set");
4889 
4890   // Check Imm.
4891   // Set ImmBase from imm instruction as base and get new Imm inside
4892   // isImmElgibleForForwarding.
4893   int64_t ImmBase = ImmOperandMI.getImm();
4894   int64_t Imm = 0;
4895   if (!isImmElgibleForForwarding(*ImmMO, DefMI, III, Imm, ImmBase))
4896     return false;
4897 
4898   // Get killed info in case fixup needed after transformation.
4899   unsigned ForwardKilledOperandReg = ~0U;
4900   if (MI.getOperand(III.OpNoForForwarding).isKill())
4901     ForwardKilledOperandReg = MI.getOperand(III.OpNoForForwarding).getReg();
4902 
4903   // Do the transform
4904   LLVM_DEBUG(dbgs() << "Replacing existing reg+imm instruction:\n");
4905   LLVM_DEBUG(MI.dump());
4906   LLVM_DEBUG(dbgs() << "Fed by:\n");
4907   LLVM_DEBUG(DefMI.dump());
4908 
4909   MI.getOperand(III.OpNoForForwarding).setReg(RegMO->getReg());
4910   if (RegMO->isKill()) {
4911     MI.getOperand(III.OpNoForForwarding).setIsKill(true);
4912     // Clear the killed flag in RegMO. Doing this here can handle some cases
4913     // that DefMI and MI are not in same basic block.
4914     RegMO->setIsKill(false);
4915   }
4916   MI.getOperand(III.ImmOpNo).setImm(Imm);
4917 
4918   // FIXME: fix kill/dead flag if MI and DefMI are not in same basic block.
4919   if (DefMI.getParent() == MI.getParent()) {
4920     // Check if reg is killed between MI and DefMI.
4921     auto IsKilledFor = [&](unsigned Reg) {
4922       MachineBasicBlock::const_reverse_iterator It = MI;
4923       MachineBasicBlock::const_reverse_iterator E = DefMI;
4924       It++;
4925       for (; It != E; ++It) {
4926         if (It->killsRegister(Reg))
4927           return true;
4928       }
4929       return false;
4930     };
4931 
4932     // Update kill flag
4933     if (RegMO->isKill() || IsKilledFor(RegMO->getReg()))
4934       fixupIsDeadOrKill(&DefMI, &MI, RegMO->getReg());
4935     if (ForwardKilledOperandReg != ~0U)
4936       fixupIsDeadOrKill(&DefMI, &MI, ForwardKilledOperandReg);
4937   }
4938 
4939   LLVM_DEBUG(dbgs() << "With:\n");
4940   LLVM_DEBUG(MI.dump());
4941   return true;
4942 }
4943 
4944 // If an X-Form instruction is fed by an add-immediate and one of its operands
4945 // is the literal zero, attempt to forward the source of the add-immediate to
4946 // the corresponding D-Form instruction with the displacement coming from
4947 // the immediate being added.
4948 bool PPCInstrInfo::transformToImmFormFedByAdd(
4949     MachineInstr &MI, const ImmInstrInfo &III, unsigned OpNoForForwarding,
4950     MachineInstr &DefMI, bool KillDefMI) const {
4951   //         RegMO ImmMO
4952   //           |    |
4953   // x = addi reg, imm  <----- DefMI
4954   // y = op    0 ,  x   <----- MI
4955   //                |
4956   //         OpNoForForwarding
4957   // Check if the MI meet the requirement described in the III.
4958   if (!isUseMIElgibleForForwarding(MI, III, OpNoForForwarding))
4959     return false;
4960 
4961   // Check if the DefMI meet the requirement
4962   // described in the III. If yes, set the ImmMO and RegMO accordingly.
4963   MachineOperand *ImmMO = nullptr;
4964   MachineOperand *RegMO = nullptr;
4965   if (!isDefMIElgibleForForwarding(DefMI, III, ImmMO, RegMO))
4966     return false;
4967   assert(ImmMO && RegMO && "Imm and Reg operand must have been set");
4968 
4969   // As we get the Imm operand now, we need to check if the ImmMO meet
4970   // the requirement described in the III. If yes set the Imm.
4971   int64_t Imm = 0;
4972   if (!isImmElgibleForForwarding(*ImmMO, DefMI, III, Imm))
4973     return false;
4974 
4975   bool IsFwdFeederRegKilled = false;
4976   bool SeenIntermediateUse = false;
4977   // Check if the RegMO can be forwarded to MI.
4978   if (!isRegElgibleForForwarding(*RegMO, DefMI, MI, KillDefMI,
4979                                  IsFwdFeederRegKilled, SeenIntermediateUse))
4980     return false;
4981 
4982   // Get killed info in case fixup needed after transformation.
4983   unsigned ForwardKilledOperandReg = ~0U;
4984   MachineRegisterInfo &MRI = MI.getParent()->getParent()->getRegInfo();
4985   bool PostRA = !MRI.isSSA();
4986   if (PostRA && MI.getOperand(OpNoForForwarding).isKill())
4987     ForwardKilledOperandReg = MI.getOperand(OpNoForForwarding).getReg();
4988 
4989   // We know that, the MI and DefMI both meet the pattern, and
4990   // the Imm also meet the requirement with the new Imm-form.
4991   // It is safe to do the transformation now.
4992   LLVM_DEBUG(dbgs() << "Replacing indexed instruction:\n");
4993   LLVM_DEBUG(MI.dump());
4994   LLVM_DEBUG(dbgs() << "Fed by:\n");
4995   LLVM_DEBUG(DefMI.dump());
4996 
4997   // Update the base reg first.
4998   MI.getOperand(III.OpNoForForwarding).ChangeToRegister(RegMO->getReg(),
4999                                                         false, false,
5000                                                         RegMO->isKill());
5001 
5002   // Then, update the imm.
5003   if (ImmMO->isImm()) {
5004     // If the ImmMO is Imm, change the operand that has ZERO to that Imm
5005     // directly.
5006     replaceInstrOperandWithImm(MI, III.ZeroIsSpecialOrig, Imm);
5007   }
5008   else {
5009     // Otherwise, it is Constant Pool Index(CPI) or Global,
5010     // which is relocation in fact. We need to replace the special zero
5011     // register with ImmMO.
5012     // Before that, we need to fixup the target flags for imm.
5013     // For some reason, we miss to set the flag for the ImmMO if it is CPI.
5014     if (DefMI.getOpcode() == PPC::ADDItocL)
5015       ImmMO->setTargetFlags(PPCII::MO_TOC_LO);
5016 
5017     // MI didn't have the interface such as MI.setOperand(i) though
5018     // it has MI.getOperand(i). To repalce the ZERO MachineOperand with
5019     // ImmMO, we need to remove ZERO operand and all the operands behind it,
5020     // and, add the ImmMO, then, move back all the operands behind ZERO.
5021     SmallVector<MachineOperand, 2> MOps;
5022     for (unsigned i = MI.getNumOperands() - 1; i >= III.ZeroIsSpecialOrig; i--) {
5023       MOps.push_back(MI.getOperand(i));
5024       MI.removeOperand(i);
5025     }
5026 
5027     // Remove the last MO in the list, which is ZERO operand in fact.
5028     MOps.pop_back();
5029     // Add the imm operand.
5030     MI.addOperand(*ImmMO);
5031     // Now add the rest back.
5032     for (auto &MO : MOps)
5033       MI.addOperand(MO);
5034   }
5035 
5036   // Update the opcode.
5037   MI.setDesc(get(III.ImmOpcode));
5038 
5039   // Fix up killed/dead flag after transformation.
5040   // Pattern 1:
5041   // x = ADD KilledFwdFeederReg, imm
5042   // n = opn KilledFwdFeederReg(killed), regn
5043   // y = XOP 0, x
5044   // Pattern 2:
5045   // x = ADD reg(killed), imm
5046   // y = XOP 0, x
5047   if (IsFwdFeederRegKilled || RegMO->isKill())
5048     fixupIsDeadOrKill(&DefMI, &MI, RegMO->getReg());
5049   // Pattern 3:
5050   // ForwardKilledOperandReg = ADD reg, imm
5051   // y = XOP 0, ForwardKilledOperandReg(killed)
5052   if (ForwardKilledOperandReg != ~0U)
5053     fixupIsDeadOrKill(&DefMI, &MI, ForwardKilledOperandReg);
5054 
5055   LLVM_DEBUG(dbgs() << "With:\n");
5056   LLVM_DEBUG(MI.dump());
5057 
5058   return true;
5059 }
5060 
5061 bool PPCInstrInfo::transformToImmFormFedByLI(MachineInstr &MI,
5062                                              const ImmInstrInfo &III,
5063                                              unsigned ConstantOpNo,
5064                                              MachineInstr &DefMI) const {
5065   // DefMI must be LI or LI8.
5066   if ((DefMI.getOpcode() != PPC::LI && DefMI.getOpcode() != PPC::LI8) ||
5067       !DefMI.getOperand(1).isImm())
5068     return false;
5069 
5070   // Get Imm operand and Sign-extend to 64-bits.
5071   int64_t Imm = SignExtend64<16>(DefMI.getOperand(1).getImm());
5072 
5073   MachineRegisterInfo &MRI = MI.getParent()->getParent()->getRegInfo();
5074   bool PostRA = !MRI.isSSA();
5075   // Exit early if we can't convert this.
5076   if ((ConstantOpNo != III.OpNoForForwarding) && !III.IsCommutative)
5077     return false;
5078   if (Imm % III.ImmMustBeMultipleOf)
5079     return false;
5080   if (III.TruncateImmTo)
5081     Imm &= ((1 << III.TruncateImmTo) - 1);
5082   if (III.SignedImm) {
5083     APInt ActualValue(64, Imm, true);
5084     if (!ActualValue.isSignedIntN(III.ImmWidth))
5085       return false;
5086   } else {
5087     uint64_t UnsignedMax = (1 << III.ImmWidth) - 1;
5088     if ((uint64_t)Imm > UnsignedMax)
5089       return false;
5090   }
5091 
5092   // If we're post-RA, the instructions don't agree on whether register zero is
5093   // special, we can transform this as long as the register operand that will
5094   // end up in the location where zero is special isn't R0.
5095   if (PostRA && III.ZeroIsSpecialOrig != III.ZeroIsSpecialNew) {
5096     unsigned PosForOrigZero = III.ZeroIsSpecialOrig ? III.ZeroIsSpecialOrig :
5097       III.ZeroIsSpecialNew + 1;
5098     Register OrigZeroReg = MI.getOperand(PosForOrigZero).getReg();
5099     Register NewZeroReg = MI.getOperand(III.ZeroIsSpecialNew).getReg();
5100     // If R0 is in the operand where zero is special for the new instruction,
5101     // it is unsafe to transform if the constant operand isn't that operand.
5102     if ((NewZeroReg == PPC::R0 || NewZeroReg == PPC::X0) &&
5103         ConstantOpNo != III.ZeroIsSpecialNew)
5104       return false;
5105     if ((OrigZeroReg == PPC::R0 || OrigZeroReg == PPC::X0) &&
5106         ConstantOpNo != PosForOrigZero)
5107       return false;
5108   }
5109 
5110   // Get killed info in case fixup needed after transformation.
5111   unsigned ForwardKilledOperandReg = ~0U;
5112   if (PostRA && MI.getOperand(ConstantOpNo).isKill())
5113     ForwardKilledOperandReg = MI.getOperand(ConstantOpNo).getReg();
5114 
5115   unsigned Opc = MI.getOpcode();
5116   bool SpecialShift32 = Opc == PPC::SLW || Opc == PPC::SLW_rec ||
5117                         Opc == PPC::SRW || Opc == PPC::SRW_rec ||
5118                         Opc == PPC::SLW8 || Opc == PPC::SLW8_rec ||
5119                         Opc == PPC::SRW8 || Opc == PPC::SRW8_rec;
5120   bool SpecialShift64 = Opc == PPC::SLD || Opc == PPC::SLD_rec ||
5121                         Opc == PPC::SRD || Opc == PPC::SRD_rec;
5122   bool SetCR = Opc == PPC::SLW_rec || Opc == PPC::SRW_rec ||
5123                Opc == PPC::SLD_rec || Opc == PPC::SRD_rec;
5124   bool RightShift = Opc == PPC::SRW || Opc == PPC::SRW_rec || Opc == PPC::SRD ||
5125                     Opc == PPC::SRD_rec;
5126 
5127   LLVM_DEBUG(dbgs() << "Replacing reg+reg instruction: ");
5128   LLVM_DEBUG(MI.dump());
5129   LLVM_DEBUG(dbgs() << "Fed by load-immediate: ");
5130   LLVM_DEBUG(DefMI.dump());
5131   MI.setDesc(get(III.ImmOpcode));
5132   if (ConstantOpNo == III.OpNoForForwarding) {
5133     // Converting shifts to immediate form is a bit tricky since they may do
5134     // one of three things:
5135     // 1. If the shift amount is between OpSize and 2*OpSize, the result is zero
5136     // 2. If the shift amount is zero, the result is unchanged (save for maybe
5137     //    setting CR0)
5138     // 3. If the shift amount is in [1, OpSize), it's just a shift
5139     if (SpecialShift32 || SpecialShift64) {
5140       LoadImmediateInfo LII;
5141       LII.Imm = 0;
5142       LII.SetCR = SetCR;
5143       LII.Is64Bit = SpecialShift64;
5144       uint64_t ShAmt = Imm & (SpecialShift32 ? 0x1F : 0x3F);
5145       if (Imm & (SpecialShift32 ? 0x20 : 0x40))
5146         replaceInstrWithLI(MI, LII);
5147       // Shifts by zero don't change the value. If we don't need to set CR0,
5148       // just convert this to a COPY. Can't do this post-RA since we've already
5149       // cleaned up the copies.
5150       else if (!SetCR && ShAmt == 0 && !PostRA) {
5151         MI.removeOperand(2);
5152         MI.setDesc(get(PPC::COPY));
5153       } else {
5154         // The 32 bit and 64 bit instructions are quite different.
5155         if (SpecialShift32) {
5156           // Left shifts use (N, 0, 31-N).
5157           // Right shifts use (32-N, N, 31) if 0 < N < 32.
5158           //              use (0, 0, 31)    if N == 0.
5159           uint64_t SH = ShAmt == 0 ? 0 : RightShift ? 32 - ShAmt : ShAmt;
5160           uint64_t MB = RightShift ? ShAmt : 0;
5161           uint64_t ME = RightShift ? 31 : 31 - ShAmt;
5162           replaceInstrOperandWithImm(MI, III.OpNoForForwarding, SH);
5163           MachineInstrBuilder(*MI.getParent()->getParent(), MI).addImm(MB)
5164             .addImm(ME);
5165         } else {
5166           // Left shifts use (N, 63-N).
5167           // Right shifts use (64-N, N) if 0 < N < 64.
5168           //              use (0, 0)    if N == 0.
5169           uint64_t SH = ShAmt == 0 ? 0 : RightShift ? 64 - ShAmt : ShAmt;
5170           uint64_t ME = RightShift ? ShAmt : 63 - ShAmt;
5171           replaceInstrOperandWithImm(MI, III.OpNoForForwarding, SH);
5172           MachineInstrBuilder(*MI.getParent()->getParent(), MI).addImm(ME);
5173         }
5174       }
5175     } else
5176       replaceInstrOperandWithImm(MI, ConstantOpNo, Imm);
5177   }
5178   // Convert commutative instructions (switch the operands and convert the
5179   // desired one to an immediate.
5180   else if (III.IsCommutative) {
5181     replaceInstrOperandWithImm(MI, ConstantOpNo, Imm);
5182     swapMIOperands(MI, ConstantOpNo, III.OpNoForForwarding);
5183   } else
5184     llvm_unreachable("Should have exited early!");
5185 
5186   // For instructions for which the constant register replaces a different
5187   // operand than where the immediate goes, we need to swap them.
5188   if (III.OpNoForForwarding != III.ImmOpNo)
5189     swapMIOperands(MI, III.OpNoForForwarding, III.ImmOpNo);
5190 
5191   // If the special R0/X0 register index are different for original instruction
5192   // and new instruction, we need to fix up the register class in new
5193   // instruction.
5194   if (!PostRA && III.ZeroIsSpecialOrig != III.ZeroIsSpecialNew) {
5195     if (III.ZeroIsSpecialNew) {
5196       // If operand at III.ZeroIsSpecialNew is physical reg(eg: ZERO/ZERO8), no
5197       // need to fix up register class.
5198       Register RegToModify = MI.getOperand(III.ZeroIsSpecialNew).getReg();
5199       if (RegToModify.isVirtual()) {
5200         const TargetRegisterClass *NewRC =
5201           MRI.getRegClass(RegToModify)->hasSuperClassEq(&PPC::GPRCRegClass) ?
5202           &PPC::GPRC_and_GPRC_NOR0RegClass : &PPC::G8RC_and_G8RC_NOX0RegClass;
5203         MRI.setRegClass(RegToModify, NewRC);
5204       }
5205     }
5206   }
5207 
5208   // Fix up killed/dead flag after transformation.
5209   // Pattern:
5210   // ForwardKilledOperandReg = LI imm
5211   // y = XOP reg, ForwardKilledOperandReg(killed)
5212   if (ForwardKilledOperandReg != ~0U)
5213     fixupIsDeadOrKill(&DefMI, &MI, ForwardKilledOperandReg);
5214 
5215   LLVM_DEBUG(dbgs() << "With: ");
5216   LLVM_DEBUG(MI.dump());
5217   LLVM_DEBUG(dbgs() << "\n");
5218   return true;
5219 }
5220 
5221 const TargetRegisterClass *
5222 PPCInstrInfo::updatedRC(const TargetRegisterClass *RC) const {
5223   if (Subtarget.hasVSX() && RC == &PPC::VRRCRegClass)
5224     return &PPC::VSRCRegClass;
5225   return RC;
5226 }
5227 
5228 int PPCInstrInfo::getRecordFormOpcode(unsigned Opcode) {
5229   return PPC::getRecordFormOpcode(Opcode);
5230 }
5231 
5232 static bool isOpZeroOfSubwordPreincLoad(int Opcode) {
5233   return (Opcode == PPC::LBZU || Opcode == PPC::LBZUX || Opcode == PPC::LBZU8 ||
5234           Opcode == PPC::LBZUX8 || Opcode == PPC::LHZU ||
5235           Opcode == PPC::LHZUX || Opcode == PPC::LHZU8 ||
5236           Opcode == PPC::LHZUX8);
5237 }
5238 
5239 // This function checks for sign extension from 32 bits to 64 bits.
5240 static bool definedBySignExtendingOp(const unsigned Reg,
5241                                      const MachineRegisterInfo *MRI) {
5242   if (!Register::isVirtualRegister(Reg))
5243     return false;
5244 
5245   MachineInstr *MI = MRI->getVRegDef(Reg);
5246   if (!MI)
5247     return false;
5248 
5249   int Opcode = MI->getOpcode();
5250   const PPCInstrInfo *TII =
5251       MI->getMF()->getSubtarget<PPCSubtarget>().getInstrInfo();
5252   if (TII->isSExt32To64(Opcode))
5253     return true;
5254 
5255   // The first def of LBZU/LHZU is sign extended.
5256   if (isOpZeroOfSubwordPreincLoad(Opcode) && MI->getOperand(0).getReg() == Reg)
5257     return true;
5258 
5259   // RLDICL generates sign-extended output if it clears at least
5260   // 33 bits from the left (MSB).
5261   if (Opcode == PPC::RLDICL && MI->getOperand(3).getImm() >= 33)
5262     return true;
5263 
5264   // If at least one bit from left in a lower word is masked out,
5265   // all of 0 to 32-th bits of the output are cleared.
5266   // Hence the output is already sign extended.
5267   if ((Opcode == PPC::RLWINM || Opcode == PPC::RLWINM_rec ||
5268        Opcode == PPC::RLWNM || Opcode == PPC::RLWNM_rec) &&
5269       MI->getOperand(3).getImm() > 0 &&
5270       MI->getOperand(3).getImm() <= MI->getOperand(4).getImm())
5271     return true;
5272 
5273   // If the most significant bit of immediate in ANDIS is zero,
5274   // all of 0 to 32-th bits are cleared.
5275   if (Opcode == PPC::ANDIS_rec || Opcode == PPC::ANDIS8_rec) {
5276     uint16_t Imm = MI->getOperand(2).getImm();
5277     if ((Imm & 0x8000) == 0)
5278       return true;
5279   }
5280 
5281   return false;
5282 }
5283 
5284 // This function checks the machine instruction that defines the input register
5285 // Reg. If that machine instruction always outputs a value that has only zeros
5286 // in the higher 32 bits then this function will return true.
5287 static bool definedByZeroExtendingOp(const unsigned Reg,
5288                                      const MachineRegisterInfo *MRI) {
5289   if (!Register::isVirtualRegister(Reg))
5290     return false;
5291 
5292   MachineInstr *MI = MRI->getVRegDef(Reg);
5293   if (!MI)
5294     return false;
5295 
5296   int Opcode = MI->getOpcode();
5297   const PPCInstrInfo *TII =
5298       MI->getMF()->getSubtarget<PPCSubtarget>().getInstrInfo();
5299   if (TII->isZExt32To64(Opcode))
5300     return true;
5301 
5302   // The first def of LBZU/LHZU/LWZU are zero extended.
5303   if ((isOpZeroOfSubwordPreincLoad(Opcode) || Opcode == PPC::LWZU ||
5304        Opcode == PPC::LWZUX || Opcode == PPC::LWZU8 || Opcode == PPC::LWZUX8) &&
5305       MI->getOperand(0).getReg() == Reg)
5306     return true;
5307 
5308   // The 16-bit immediate is sign-extended in li/lis.
5309   // If the most significant bit is zero, all higher bits are zero.
5310   if (Opcode == PPC::LI  || Opcode == PPC::LI8 ||
5311       Opcode == PPC::LIS || Opcode == PPC::LIS8) {
5312     int64_t Imm = MI->getOperand(1).getImm();
5313     if (((uint64_t)Imm & ~0x7FFFuLL) == 0)
5314       return true;
5315   }
5316 
5317   // We have some variations of rotate-and-mask instructions
5318   // that clear higher 32-bits.
5319   if ((Opcode == PPC::RLDICL || Opcode == PPC::RLDICL_rec ||
5320        Opcode == PPC::RLDCL || Opcode == PPC::RLDCL_rec ||
5321        Opcode == PPC::RLDICL_32_64) &&
5322       MI->getOperand(3).getImm() >= 32)
5323     return true;
5324 
5325   if ((Opcode == PPC::RLDIC || Opcode == PPC::RLDIC_rec) &&
5326       MI->getOperand(3).getImm() >= 32 &&
5327       MI->getOperand(3).getImm() <= 63 - MI->getOperand(2).getImm())
5328     return true;
5329 
5330   if ((Opcode == PPC::RLWINM || Opcode == PPC::RLWINM_rec ||
5331        Opcode == PPC::RLWNM || Opcode == PPC::RLWNM_rec ||
5332        Opcode == PPC::RLWINM8 || Opcode == PPC::RLWNM8) &&
5333       MI->getOperand(3).getImm() <= MI->getOperand(4).getImm())
5334     return true;
5335 
5336   return false;
5337 }
5338 
5339 // This function returns true if the input MachineInstr is a TOC save
5340 // instruction.
5341 bool PPCInstrInfo::isTOCSaveMI(const MachineInstr &MI) const {
5342   if (!MI.getOperand(1).isImm() || !MI.getOperand(2).isReg())
5343     return false;
5344   unsigned TOCSaveOffset = Subtarget.getFrameLowering()->getTOCSaveOffset();
5345   unsigned StackOffset = MI.getOperand(1).getImm();
5346   Register StackReg = MI.getOperand(2).getReg();
5347   Register SPReg = Subtarget.isPPC64() ? PPC::X1 : PPC::R1;
5348   if (StackReg == SPReg && StackOffset == TOCSaveOffset)
5349     return true;
5350 
5351   return false;
5352 }
5353 
5354 // We limit the max depth to track incoming values of PHIs or binary ops
5355 // (e.g. AND) to avoid excessive cost.
5356 const unsigned MAX_BINOP_DEPTH = 1;
5357 // The isSignOrZeroExtended function is recursive. The parameter BinOpDepth
5358 // does not count all of the recursions. The parameter BinOpDepth is incremented
5359 // only when isSignOrZeroExtended calls itself more than once. This is done to
5360 // prevent expontential recursion. There is no parameter to track linear
5361 // recursion.
5362 std::pair<bool, bool>
5363 PPCInstrInfo::isSignOrZeroExtended(const unsigned Reg,
5364                                    const unsigned BinOpDepth,
5365                                    const MachineRegisterInfo *MRI) const {
5366   if (!Register::isVirtualRegister(Reg))
5367     return std::pair<bool, bool>(false, false);
5368 
5369   MachineInstr *MI = MRI->getVRegDef(Reg);
5370   if (!MI)
5371     return std::pair<bool, bool>(false, false);
5372 
5373   bool IsSExt = definedBySignExtendingOp(Reg, MRI);
5374   bool IsZExt = definedByZeroExtendingOp(Reg, MRI);
5375 
5376   // If we know the instruction always returns sign- and zero-extended result,
5377   // return here.
5378   if (IsSExt && IsZExt)
5379     return std::pair<bool, bool>(IsSExt, IsZExt);
5380 
5381   switch (MI->getOpcode()) {
5382   case PPC::COPY: {
5383     Register SrcReg = MI->getOperand(1).getReg();
5384 
5385     // In both ELFv1 and v2 ABI, method parameters and the return value
5386     // are sign- or zero-extended.
5387     const MachineFunction *MF = MI->getMF();
5388 
5389     if (!MF->getSubtarget<PPCSubtarget>().isSVR4ABI()) {
5390       // If this is a copy from another register, we recursively check source.
5391       auto SrcExt = isSignOrZeroExtended(SrcReg, BinOpDepth, MRI);
5392       return std::pair<bool, bool>(SrcExt.first || IsSExt,
5393                                    SrcExt.second || IsZExt);
5394     }
5395 
5396     // From here on everything is SVR4ABI
5397     const PPCFunctionInfo *FuncInfo = MF->getInfo<PPCFunctionInfo>();
5398     // We check the ZExt/SExt flags for a method parameter.
5399     if (MI->getParent()->getBasicBlock() ==
5400         &MF->getFunction().getEntryBlock()) {
5401       Register VReg = MI->getOperand(0).getReg();
5402       if (MF->getRegInfo().isLiveIn(VReg)) {
5403         IsSExt |= FuncInfo->isLiveInSExt(VReg);
5404         IsZExt |= FuncInfo->isLiveInZExt(VReg);
5405         return std::pair<bool, bool>(IsSExt, IsZExt);
5406       }
5407     }
5408 
5409     if (SrcReg != PPC::X3) {
5410       // If this is a copy from another register, we recursively check source.
5411       auto SrcExt = isSignOrZeroExtended(SrcReg, BinOpDepth, MRI);
5412       return std::pair<bool, bool>(SrcExt.first || IsSExt,
5413                                    SrcExt.second || IsZExt);
5414     }
5415 
5416     // For a method return value, we check the ZExt/SExt flags in attribute.
5417     // We assume the following code sequence for method call.
5418     //   ADJCALLSTACKDOWN 32, implicit dead %r1, implicit %r1
5419     //   BL8_NOP @func,...
5420     //   ADJCALLSTACKUP 32, 0, implicit dead %r1, implicit %r1
5421     //   %5 = COPY %x3; G8RC:%5
5422     const MachineBasicBlock *MBB = MI->getParent();
5423     std::pair<bool, bool> IsExtendPair = std::pair<bool, bool>(IsSExt, IsZExt);
5424     MachineBasicBlock::const_instr_iterator II =
5425         MachineBasicBlock::const_instr_iterator(MI);
5426     if (II == MBB->instr_begin() || (--II)->getOpcode() != PPC::ADJCALLSTACKUP)
5427       return IsExtendPair;
5428 
5429     const MachineInstr &CallMI = *(--II);
5430     if (!CallMI.isCall() || !CallMI.getOperand(0).isGlobal())
5431       return IsExtendPair;
5432 
5433     const Function *CalleeFn =
5434         dyn_cast_if_present<Function>(CallMI.getOperand(0).getGlobal());
5435     if (!CalleeFn)
5436       return IsExtendPair;
5437     const IntegerType *IntTy = dyn_cast<IntegerType>(CalleeFn->getReturnType());
5438     if (IntTy && IntTy->getBitWidth() <= 32) {
5439       const AttributeSet &Attrs = CalleeFn->getAttributes().getRetAttrs();
5440       IsSExt |= Attrs.hasAttribute(Attribute::SExt);
5441       IsZExt |= Attrs.hasAttribute(Attribute::ZExt);
5442       return std::pair<bool, bool>(IsSExt, IsZExt);
5443     }
5444 
5445     return IsExtendPair;
5446   }
5447 
5448   // OR, XOR with 16-bit immediate does not change the upper 48 bits.
5449   // So, we track the operand register as we do for register copy.
5450   case PPC::ORI:
5451   case PPC::XORI:
5452   case PPC::ORI8:
5453   case PPC::XORI8: {
5454     Register SrcReg = MI->getOperand(1).getReg();
5455     auto SrcExt = isSignOrZeroExtended(SrcReg, BinOpDepth, MRI);
5456     return std::pair<bool, bool>(SrcExt.first || IsSExt,
5457                                  SrcExt.second || IsZExt);
5458   }
5459 
5460   // OR, XOR with shifted 16-bit immediate does not change the upper
5461   // 32 bits. So, we track the operand register for zero extension.
5462   // For sign extension when the MSB of the immediate is zero, we also
5463   // track the operand register since the upper 33 bits are unchanged.
5464   case PPC::ORIS:
5465   case PPC::XORIS:
5466   case PPC::ORIS8:
5467   case PPC::XORIS8: {
5468     Register SrcReg = MI->getOperand(1).getReg();
5469     auto SrcExt = isSignOrZeroExtended(SrcReg, BinOpDepth, MRI);
5470     uint16_t Imm = MI->getOperand(2).getImm();
5471     if (Imm & 0x8000)
5472       return std::pair<bool, bool>(false, SrcExt.second || IsZExt);
5473     else
5474       return std::pair<bool, bool>(SrcExt.first || IsSExt,
5475                                    SrcExt.second || IsZExt);
5476   }
5477 
5478   // If all incoming values are sign-/zero-extended,
5479   // the output of OR, ISEL or PHI is also sign-/zero-extended.
5480   case PPC::OR:
5481   case PPC::OR8:
5482   case PPC::ISEL:
5483   case PPC::PHI: {
5484     if (BinOpDepth >= MAX_BINOP_DEPTH)
5485       return std::pair<bool, bool>(false, false);
5486 
5487     // The input registers for PHI are operand 1, 3, ...
5488     // The input registers for others are operand 1 and 2.
5489     unsigned OperandEnd = 3, OperandStride = 1;
5490     if (MI->getOpcode() == PPC::PHI) {
5491       OperandEnd = MI->getNumOperands();
5492       OperandStride = 2;
5493     }
5494 
5495     IsSExt = true;
5496     IsZExt = true;
5497     for (unsigned I = 1; I != OperandEnd; I += OperandStride) {
5498       if (!MI->getOperand(I).isReg())
5499         return std::pair<bool, bool>(false, false);
5500 
5501       Register SrcReg = MI->getOperand(I).getReg();
5502       auto SrcExt = isSignOrZeroExtended(SrcReg, BinOpDepth + 1, MRI);
5503       IsSExt &= SrcExt.first;
5504       IsZExt &= SrcExt.second;
5505     }
5506     return std::pair<bool, bool>(IsSExt, IsZExt);
5507   }
5508 
5509   // If at least one of the incoming values of an AND is zero extended
5510   // then the output is also zero-extended. If both of the incoming values
5511   // are sign-extended then the output is also sign extended.
5512   case PPC::AND:
5513   case PPC::AND8: {
5514     if (BinOpDepth >= MAX_BINOP_DEPTH)
5515       return std::pair<bool, bool>(false, false);
5516 
5517     Register SrcReg1 = MI->getOperand(1).getReg();
5518     Register SrcReg2 = MI->getOperand(2).getReg();
5519     auto Src1Ext = isSignOrZeroExtended(SrcReg1, BinOpDepth + 1, MRI);
5520     auto Src2Ext = isSignOrZeroExtended(SrcReg2, BinOpDepth + 1, MRI);
5521     return std::pair<bool, bool>(Src1Ext.first && Src2Ext.first,
5522                                  Src1Ext.second || Src2Ext.second);
5523   }
5524 
5525   default:
5526     break;
5527   }
5528   return std::pair<bool, bool>(IsSExt, IsZExt);
5529 }
5530 
5531 bool PPCInstrInfo::isBDNZ(unsigned Opcode) const {
5532   return (Opcode == (Subtarget.isPPC64() ? PPC::BDNZ8 : PPC::BDNZ));
5533 }
5534 
5535 namespace {
5536 class PPCPipelinerLoopInfo : public TargetInstrInfo::PipelinerLoopInfo {
5537   MachineInstr *Loop, *EndLoop, *LoopCount;
5538   MachineFunction *MF;
5539   const TargetInstrInfo *TII;
5540   int64_t TripCount;
5541 
5542 public:
5543   PPCPipelinerLoopInfo(MachineInstr *Loop, MachineInstr *EndLoop,
5544                        MachineInstr *LoopCount)
5545       : Loop(Loop), EndLoop(EndLoop), LoopCount(LoopCount),
5546         MF(Loop->getParent()->getParent()),
5547         TII(MF->getSubtarget().getInstrInfo()) {
5548     // Inspect the Loop instruction up-front, as it may be deleted when we call
5549     // createTripCountGreaterCondition.
5550     if (LoopCount->getOpcode() == PPC::LI8 || LoopCount->getOpcode() == PPC::LI)
5551       TripCount = LoopCount->getOperand(1).getImm();
5552     else
5553       TripCount = -1;
5554   }
5555 
5556   bool shouldIgnoreForPipelining(const MachineInstr *MI) const override {
5557     // Only ignore the terminator.
5558     return MI == EndLoop;
5559   }
5560 
5561   std::optional<bool> createTripCountGreaterCondition(
5562       int TC, MachineBasicBlock &MBB,
5563       SmallVectorImpl<MachineOperand> &Cond) override {
5564     if (TripCount == -1) {
5565       // Since BDZ/BDZ8 that we will insert will also decrease the ctr by 1,
5566       // so we don't need to generate any thing here.
5567       Cond.push_back(MachineOperand::CreateImm(0));
5568       Cond.push_back(MachineOperand::CreateReg(
5569           MF->getSubtarget<PPCSubtarget>().isPPC64() ? PPC::CTR8 : PPC::CTR,
5570           true));
5571       return {};
5572     }
5573 
5574     return TripCount > TC;
5575   }
5576 
5577   void setPreheader(MachineBasicBlock *NewPreheader) override {
5578     // Do nothing. We want the LOOP setup instruction to stay in the *old*
5579     // preheader, so we can use BDZ in the prologs to adapt the loop trip count.
5580   }
5581 
5582   void adjustTripCount(int TripCountAdjust) override {
5583     // If the loop trip count is a compile-time value, then just change the
5584     // value.
5585     if (LoopCount->getOpcode() == PPC::LI8 ||
5586         LoopCount->getOpcode() == PPC::LI) {
5587       int64_t TripCount = LoopCount->getOperand(1).getImm() + TripCountAdjust;
5588       LoopCount->getOperand(1).setImm(TripCount);
5589       return;
5590     }
5591 
5592     // Since BDZ/BDZ8 that we will insert will also decrease the ctr by 1,
5593     // so we don't need to generate any thing here.
5594   }
5595 
5596   void disposed() override {
5597     Loop->eraseFromParent();
5598     // Ensure the loop setup instruction is deleted too.
5599     LoopCount->eraseFromParent();
5600   }
5601 };
5602 } // namespace
5603 
5604 std::unique_ptr<TargetInstrInfo::PipelinerLoopInfo>
5605 PPCInstrInfo::analyzeLoopForPipelining(MachineBasicBlock *LoopBB) const {
5606   // We really "analyze" only hardware loops right now.
5607   MachineBasicBlock::iterator I = LoopBB->getFirstTerminator();
5608   MachineBasicBlock *Preheader = *LoopBB->pred_begin();
5609   if (Preheader == LoopBB)
5610     Preheader = *std::next(LoopBB->pred_begin());
5611   MachineFunction *MF = Preheader->getParent();
5612 
5613   if (I != LoopBB->end() && isBDNZ(I->getOpcode())) {
5614     SmallPtrSet<MachineBasicBlock *, 8> Visited;
5615     if (MachineInstr *LoopInst = findLoopInstr(*Preheader, Visited)) {
5616       Register LoopCountReg = LoopInst->getOperand(0).getReg();
5617       MachineRegisterInfo &MRI = MF->getRegInfo();
5618       MachineInstr *LoopCount = MRI.getUniqueVRegDef(LoopCountReg);
5619       return std::make_unique<PPCPipelinerLoopInfo>(LoopInst, &*I, LoopCount);
5620     }
5621   }
5622   return nullptr;
5623 }
5624 
5625 MachineInstr *PPCInstrInfo::findLoopInstr(
5626     MachineBasicBlock &PreHeader,
5627     SmallPtrSet<MachineBasicBlock *, 8> &Visited) const {
5628 
5629   unsigned LOOPi = (Subtarget.isPPC64() ? PPC::MTCTR8loop : PPC::MTCTRloop);
5630 
5631   // The loop set-up instruction should be in preheader
5632   for (auto &I : PreHeader.instrs())
5633     if (I.getOpcode() == LOOPi)
5634       return &I;
5635   return nullptr;
5636 }
5637 
5638 // Return true if get the base operand, byte offset of an instruction and the
5639 // memory width. Width is the size of memory that is being loaded/stored.
5640 bool PPCInstrInfo::getMemOperandWithOffsetWidth(
5641     const MachineInstr &LdSt, const MachineOperand *&BaseReg, int64_t &Offset,
5642     unsigned &Width, const TargetRegisterInfo *TRI) const {
5643   if (!LdSt.mayLoadOrStore() || LdSt.getNumExplicitOperands() != 3)
5644     return false;
5645 
5646   // Handle only loads/stores with base register followed by immediate offset.
5647   if (!LdSt.getOperand(1).isImm() ||
5648       (!LdSt.getOperand(2).isReg() && !LdSt.getOperand(2).isFI()))
5649     return false;
5650   if (!LdSt.getOperand(1).isImm() ||
5651       (!LdSt.getOperand(2).isReg() && !LdSt.getOperand(2).isFI()))
5652     return false;
5653 
5654   if (!LdSt.hasOneMemOperand())
5655     return false;
5656 
5657   Width = (*LdSt.memoperands_begin())->getSize();
5658   Offset = LdSt.getOperand(1).getImm();
5659   BaseReg = &LdSt.getOperand(2);
5660   return true;
5661 }
5662 
5663 bool PPCInstrInfo::areMemAccessesTriviallyDisjoint(
5664     const MachineInstr &MIa, const MachineInstr &MIb) const {
5665   assert(MIa.mayLoadOrStore() && "MIa must be a load or store.");
5666   assert(MIb.mayLoadOrStore() && "MIb must be a load or store.");
5667 
5668   if (MIa.hasUnmodeledSideEffects() || MIb.hasUnmodeledSideEffects() ||
5669       MIa.hasOrderedMemoryRef() || MIb.hasOrderedMemoryRef())
5670     return false;
5671 
5672   // Retrieve the base register, offset from the base register and width. Width
5673   // is the size of memory that is being loaded/stored (e.g. 1, 2, 4).  If
5674   // base registers are identical, and the offset of a lower memory access +
5675   // the width doesn't overlap the offset of a higher memory access,
5676   // then the memory accesses are different.
5677   const TargetRegisterInfo *TRI = &getRegisterInfo();
5678   const MachineOperand *BaseOpA = nullptr, *BaseOpB = nullptr;
5679   int64_t OffsetA = 0, OffsetB = 0;
5680   unsigned int WidthA = 0, WidthB = 0;
5681   if (getMemOperandWithOffsetWidth(MIa, BaseOpA, OffsetA, WidthA, TRI) &&
5682       getMemOperandWithOffsetWidth(MIb, BaseOpB, OffsetB, WidthB, TRI)) {
5683     if (BaseOpA->isIdenticalTo(*BaseOpB)) {
5684       int LowOffset = std::min(OffsetA, OffsetB);
5685       int HighOffset = std::max(OffsetA, OffsetB);
5686       int LowWidth = (LowOffset == OffsetA) ? WidthA : WidthB;
5687       if (LowOffset + LowWidth <= HighOffset)
5688         return true;
5689     }
5690   }
5691   return false;
5692 }
5693