1 //===-------------- PPCMIPeephole.cpp - MI Peephole Cleanups -------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===---------------------------------------------------------------------===//
8 //
9 // This pass performs peephole optimizations to clean up ugly code
10 // sequences at the MachineInstruction layer.  It runs at the end of
11 // the SSA phases, following VSX swap removal.  A pass of dead code
12 // elimination follows this one for quick clean-up of any dead
13 // instructions introduced here.  Although we could do this as callbacks
14 // from the generic peephole pass, this would have a couple of bad
15 // effects:  it might remove optimization opportunities for VSX swap
16 // removal, and it would miss cleanups made possible following VSX
17 // swap removal.
18 //
19 //===---------------------------------------------------------------------===//
20 
21 #include "MCTargetDesc/PPCMCTargetDesc.h"
22 #include "MCTargetDesc/PPCPredicates.h"
23 #include "PPC.h"
24 #include "PPCInstrBuilder.h"
25 #include "PPCInstrInfo.h"
26 #include "PPCMachineFunctionInfo.h"
27 #include "PPCTargetMachine.h"
28 #include "llvm/ADT/Statistic.h"
29 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h"
30 #include "llvm/CodeGen/MachineDominators.h"
31 #include "llvm/CodeGen/MachineFunctionPass.h"
32 #include "llvm/CodeGen/MachineInstrBuilder.h"
33 #include "llvm/CodeGen/MachinePostDominators.h"
34 #include "llvm/CodeGen/MachineRegisterInfo.h"
35 #include "llvm/InitializePasses.h"
36 #include "llvm/Support/Debug.h"
37 
38 using namespace llvm;
39 
40 #define DEBUG_TYPE "ppc-mi-peepholes"
41 
42 STATISTIC(RemoveTOCSave, "Number of TOC saves removed");
43 STATISTIC(MultiTOCSaves,
44           "Number of functions with multiple TOC saves that must be kept");
45 STATISTIC(NumTOCSavesInPrologue, "Number of TOC saves placed in the prologue");
46 STATISTIC(NumEliminatedSExt, "Number of eliminated sign-extensions");
47 STATISTIC(NumEliminatedZExt, "Number of eliminated zero-extensions");
48 STATISTIC(NumOptADDLIs, "Number of optimized ADD instruction fed by LI");
49 STATISTIC(NumConvertedToImmediateForm,
50           "Number of instructions converted to their immediate form");
51 STATISTIC(NumFunctionsEnteredInMIPeephole,
52           "Number of functions entered in PPC MI Peepholes");
53 STATISTIC(NumFixedPointIterations,
54           "Number of fixed-point iterations converting reg-reg instructions "
55           "to reg-imm ones");
56 STATISTIC(NumRotatesCollapsed,
57           "Number of pairs of rotate left, clear left/right collapsed");
58 STATISTIC(NumEXTSWAndSLDICombined,
59           "Number of pairs of EXTSW and SLDI combined as EXTSWSLI");
60 STATISTIC(NumLoadImmZeroFoldedAndRemoved,
61           "Number of LI(8) reg, 0 that are folded to r0 and removed");
62 
63 static cl::opt<bool>
64 FixedPointRegToImm("ppc-reg-to-imm-fixed-point", cl::Hidden, cl::init(true),
65                    cl::desc("Iterate to a fixed point when attempting to "
66                             "convert reg-reg instructions to reg-imm"));
67 
68 static cl::opt<bool>
69 ConvertRegReg("ppc-convert-rr-to-ri", cl::Hidden, cl::init(true),
70               cl::desc("Convert eligible reg+reg instructions to reg+imm"));
71 
72 static cl::opt<bool>
73     EnableSExtElimination("ppc-eliminate-signext",
74                           cl::desc("enable elimination of sign-extensions"),
75                           cl::init(false), cl::Hidden);
76 
77 static cl::opt<bool>
78     EnableZExtElimination("ppc-eliminate-zeroext",
79                           cl::desc("enable elimination of zero-extensions"),
80                           cl::init(false), cl::Hidden);
81 
82 namespace {
83 
84 struct PPCMIPeephole : public MachineFunctionPass {
85 
86   static char ID;
87   const PPCInstrInfo *TII;
88   MachineFunction *MF;
89   MachineRegisterInfo *MRI;
90 
91   PPCMIPeephole() : MachineFunctionPass(ID) {
92     initializePPCMIPeepholePass(*PassRegistry::getPassRegistry());
93   }
94 
95 private:
96   MachineDominatorTree *MDT;
97   MachinePostDominatorTree *MPDT;
98   MachineBlockFrequencyInfo *MBFI;
99   uint64_t EntryFreq;
100 
101   // Initialize class variables.
102   void initialize(MachineFunction &MFParm);
103 
104   // Perform peepholes.
105   bool simplifyCode(void);
106 
107   // Perform peepholes.
108   bool eliminateRedundantCompare(void);
109   bool eliminateRedundantTOCSaves(std::map<MachineInstr *, bool> &TOCSaves);
110   bool combineSEXTAndSHL(MachineInstr &MI, MachineInstr *&ToErase);
111   bool emitRLDICWhenLoweringJumpTables(MachineInstr &MI);
112   void UpdateTOCSaves(std::map<MachineInstr *, bool> &TOCSaves,
113                       MachineInstr *MI);
114 
115 public:
116 
117   void getAnalysisUsage(AnalysisUsage &AU) const override {
118     AU.addRequired<MachineDominatorTree>();
119     AU.addRequired<MachinePostDominatorTree>();
120     AU.addRequired<MachineBlockFrequencyInfo>();
121     AU.addPreserved<MachineDominatorTree>();
122     AU.addPreserved<MachinePostDominatorTree>();
123     AU.addPreserved<MachineBlockFrequencyInfo>();
124     MachineFunctionPass::getAnalysisUsage(AU);
125   }
126 
127   // Main entry point for this pass.
128   bool runOnMachineFunction(MachineFunction &MF) override {
129     initialize(MF);
130     // At this point, TOC pointer should not be used in a function that uses
131     // PC-Relative addressing.
132     assert((MF.getRegInfo().use_empty(PPC::X2) ||
133             !MF.getSubtarget<PPCSubtarget>().isUsingPCRelativeCalls()) &&
134            "TOC pointer used in a function using PC-Relative addressing!");
135     if (skipFunction(MF.getFunction()))
136       return false;
137     return simplifyCode();
138   }
139 };
140 
141 // Initialize class variables.
142 void PPCMIPeephole::initialize(MachineFunction &MFParm) {
143   MF = &MFParm;
144   MRI = &MF->getRegInfo();
145   MDT = &getAnalysis<MachineDominatorTree>();
146   MPDT = &getAnalysis<MachinePostDominatorTree>();
147   MBFI = &getAnalysis<MachineBlockFrequencyInfo>();
148   EntryFreq = MBFI->getEntryFreq();
149   TII = MF->getSubtarget<PPCSubtarget>().getInstrInfo();
150   LLVM_DEBUG(dbgs() << "*** PowerPC MI peephole pass ***\n\n");
151   LLVM_DEBUG(MF->dump());
152 }
153 
154 static MachineInstr *getVRegDefOrNull(MachineOperand *Op,
155                                       MachineRegisterInfo *MRI) {
156   assert(Op && "Invalid Operand!");
157   if (!Op->isReg())
158     return nullptr;
159 
160   Register Reg = Op->getReg();
161   if (!Register::isVirtualRegister(Reg))
162     return nullptr;
163 
164   return MRI->getVRegDef(Reg);
165 }
166 
167 // This function returns number of known zero bits in output of MI
168 // starting from the most significant bit.
169 static unsigned
170 getKnownLeadingZeroCount(MachineInstr *MI, const PPCInstrInfo *TII) {
171   unsigned Opcode = MI->getOpcode();
172   if (Opcode == PPC::RLDICL || Opcode == PPC::RLDICL_rec ||
173       Opcode == PPC::RLDCL || Opcode == PPC::RLDCL_rec)
174     return MI->getOperand(3).getImm();
175 
176   if ((Opcode == PPC::RLDIC || Opcode == PPC::RLDIC_rec) &&
177       MI->getOperand(3).getImm() <= 63 - MI->getOperand(2).getImm())
178     return MI->getOperand(3).getImm();
179 
180   if ((Opcode == PPC::RLWINM || Opcode == PPC::RLWINM_rec ||
181        Opcode == PPC::RLWNM || Opcode == PPC::RLWNM_rec ||
182        Opcode == PPC::RLWINM8 || Opcode == PPC::RLWNM8) &&
183       MI->getOperand(3).getImm() <= MI->getOperand(4).getImm())
184     return 32 + MI->getOperand(3).getImm();
185 
186   if (Opcode == PPC::ANDI_rec) {
187     uint16_t Imm = MI->getOperand(2).getImm();
188     return 48 + countLeadingZeros(Imm);
189   }
190 
191   if (Opcode == PPC::CNTLZW || Opcode == PPC::CNTLZW_rec ||
192       Opcode == PPC::CNTTZW || Opcode == PPC::CNTTZW_rec ||
193       Opcode == PPC::CNTLZW8 || Opcode == PPC::CNTTZW8)
194     // The result ranges from 0 to 32.
195     return 58;
196 
197   if (Opcode == PPC::CNTLZD || Opcode == PPC::CNTLZD_rec ||
198       Opcode == PPC::CNTTZD || Opcode == PPC::CNTTZD_rec)
199     // The result ranges from 0 to 64.
200     return 57;
201 
202   if (Opcode == PPC::LHZ   || Opcode == PPC::LHZX  ||
203       Opcode == PPC::LHZ8  || Opcode == PPC::LHZX8 ||
204       Opcode == PPC::LHZU  || Opcode == PPC::LHZUX ||
205       Opcode == PPC::LHZU8 || Opcode == PPC::LHZUX8)
206     return 48;
207 
208   if (Opcode == PPC::LBZ   || Opcode == PPC::LBZX  ||
209       Opcode == PPC::LBZ8  || Opcode == PPC::LBZX8 ||
210       Opcode == PPC::LBZU  || Opcode == PPC::LBZUX ||
211       Opcode == PPC::LBZU8 || Opcode == PPC::LBZUX8)
212     return 56;
213 
214   if (TII->isZeroExtended(*MI))
215     return 32;
216 
217   return 0;
218 }
219 
220 // This function maintains a map for the pairs <TOC Save Instr, Keep>
221 // Each time a new TOC save is encountered, it checks if any of the existing
222 // ones are dominated by the new one. If so, it marks the existing one as
223 // redundant by setting it's entry in the map as false. It then adds the new
224 // instruction to the map with either true or false depending on if any
225 // existing instructions dominated the new one.
226 void PPCMIPeephole::UpdateTOCSaves(
227   std::map<MachineInstr *, bool> &TOCSaves, MachineInstr *MI) {
228   assert(TII->isTOCSaveMI(*MI) && "Expecting a TOC save instruction here");
229   // FIXME: Saving TOC in prologue hasn't been implemented well in AIX ABI part,
230   // here only support it under ELFv2.
231   if (MF->getSubtarget<PPCSubtarget>().isELFv2ABI()) {
232     PPCFunctionInfo *FI = MF->getInfo<PPCFunctionInfo>();
233 
234     MachineBasicBlock *Entry = &MF->front();
235     uint64_t CurrBlockFreq = MBFI->getBlockFreq(MI->getParent()).getFrequency();
236 
237     // If the block in which the TOC save resides is in a block that
238     // post-dominates Entry, or a block that is hotter than entry (keep in mind
239     // that early MachineLICM has already run so the TOC save won't be hoisted)
240     // we can just do the save in the prologue.
241     if (CurrBlockFreq > EntryFreq || MPDT->dominates(MI->getParent(), Entry))
242       FI->setMustSaveTOC(true);
243 
244     // If we are saving the TOC in the prologue, all the TOC saves can be
245     // removed from the code.
246     if (FI->mustSaveTOC()) {
247       for (auto &TOCSave : TOCSaves)
248         TOCSave.second = false;
249       // Add new instruction to map.
250       TOCSaves[MI] = false;
251       return;
252     }
253   }
254 
255   bool Keep = true;
256   for (auto It = TOCSaves.begin(); It != TOCSaves.end(); It++ ) {
257     MachineInstr *CurrInst = It->first;
258     // If new instruction dominates an existing one, mark existing one as
259     // redundant.
260     if (It->second && MDT->dominates(MI, CurrInst))
261       It->second = false;
262     // Check if the new instruction is redundant.
263     if (MDT->dominates(CurrInst, MI)) {
264       Keep = false;
265       break;
266     }
267   }
268   // Add new instruction to map.
269   TOCSaves[MI] = Keep;
270 }
271 
272 // This function returns a list of all PHI nodes in the tree starting from
273 // the RootPHI node. We perform a BFS traversal to get an ordered list of nodes.
274 // The list initially only contains the root PHI. When we visit a PHI node, we
275 // add it to the list. We continue to look for other PHI node operands while
276 // there are nodes to visit in the list. The function returns false if the
277 // optimization cannot be applied on this tree.
278 static bool collectUnprimedAccPHIs(MachineRegisterInfo *MRI,
279                                    MachineInstr *RootPHI,
280                                    SmallVectorImpl<MachineInstr *> &PHIs) {
281   PHIs.push_back(RootPHI);
282   unsigned VisitedIndex = 0;
283   while (VisitedIndex < PHIs.size()) {
284     MachineInstr *VisitedPHI = PHIs[VisitedIndex];
285     for (unsigned PHIOp = 1, NumOps = VisitedPHI->getNumOperands();
286          PHIOp != NumOps; PHIOp += 2) {
287       Register RegOp = VisitedPHI->getOperand(PHIOp).getReg();
288       if (!Register::isVirtualRegister(RegOp))
289         return false;
290       MachineInstr *Instr = MRI->getVRegDef(RegOp);
291       // While collecting the PHI nodes, we check if they can be converted (i.e.
292       // all the operands are either copies, implicit defs or PHI nodes).
293       unsigned Opcode = Instr->getOpcode();
294       if (Opcode == PPC::COPY) {
295         Register Reg = Instr->getOperand(1).getReg();
296         if (!Register::isVirtualRegister(Reg) ||
297             MRI->getRegClass(Reg) != &PPC::ACCRCRegClass)
298           return false;
299       } else if (Opcode != PPC::IMPLICIT_DEF && Opcode != PPC::PHI)
300         return false;
301       // If we detect a cycle in the PHI nodes, we exit. It would be
302       // possible to change cycles as well, but that would add a lot
303       // of complexity for a case that is unlikely to occur with MMA
304       // code.
305       if (Opcode != PPC::PHI)
306         continue;
307       if (llvm::is_contained(PHIs, Instr))
308         return false;
309       PHIs.push_back(Instr);
310     }
311     VisitedIndex++;
312   }
313   return true;
314 }
315 
316 // This function changes the unprimed accumulator PHI nodes in the PHIs list to
317 // primed accumulator PHI nodes. The list is traversed in reverse order to
318 // change all the PHI operands of a PHI node before changing the node itself.
319 // We keep a map to associate each changed PHI node to its non-changed form.
320 static void convertUnprimedAccPHIs(const PPCInstrInfo *TII,
321                                    MachineRegisterInfo *MRI,
322                                    SmallVectorImpl<MachineInstr *> &PHIs,
323                                    Register Dst) {
324   DenseMap<MachineInstr *, MachineInstr *> ChangedPHIMap;
325   for (auto It = PHIs.rbegin(), End = PHIs.rend(); It != End; ++It) {
326     MachineInstr *PHI = *It;
327     SmallVector<std::pair<MachineOperand, MachineOperand>, 4> PHIOps;
328     // We check if the current PHI node can be changed by looking at its
329     // operands. If all the operands are either copies from primed
330     // accumulators, implicit definitions or other unprimed accumulator
331     // PHI nodes, we change it.
332     for (unsigned PHIOp = 1, NumOps = PHI->getNumOperands(); PHIOp != NumOps;
333          PHIOp += 2) {
334       Register RegOp = PHI->getOperand(PHIOp).getReg();
335       MachineInstr *PHIInput = MRI->getVRegDef(RegOp);
336       unsigned Opcode = PHIInput->getOpcode();
337       assert((Opcode == PPC::COPY || Opcode == PPC::IMPLICIT_DEF ||
338               Opcode == PPC::PHI) &&
339              "Unexpected instruction");
340       if (Opcode == PPC::COPY) {
341         assert(MRI->getRegClass(PHIInput->getOperand(1).getReg()) ==
342                    &PPC::ACCRCRegClass &&
343                "Unexpected register class");
344         PHIOps.push_back({PHIInput->getOperand(1), PHI->getOperand(PHIOp + 1)});
345       } else if (Opcode == PPC::IMPLICIT_DEF) {
346         Register AccReg = MRI->createVirtualRegister(&PPC::ACCRCRegClass);
347         BuildMI(*PHIInput->getParent(), PHIInput, PHIInput->getDebugLoc(),
348                 TII->get(PPC::IMPLICIT_DEF), AccReg);
349         PHIOps.push_back({MachineOperand::CreateReg(AccReg, false),
350                           PHI->getOperand(PHIOp + 1)});
351       } else if (Opcode == PPC::PHI) {
352         // We found a PHI operand. At this point we know this operand
353         // has already been changed so we get its associated changed form
354         // from the map.
355         assert(ChangedPHIMap.count(PHIInput) == 1 &&
356                "This PHI node should have already been changed.");
357         MachineInstr *PrimedAccPHI = ChangedPHIMap.lookup(PHIInput);
358         PHIOps.push_back({MachineOperand::CreateReg(
359                               PrimedAccPHI->getOperand(0).getReg(), false),
360                           PHI->getOperand(PHIOp + 1)});
361       }
362     }
363     Register AccReg = Dst;
364     // If the PHI node we are changing is the root node, the register it defines
365     // will be the destination register of the original copy (of the PHI def).
366     // For all other PHI's in the list, we need to create another primed
367     // accumulator virtual register as the PHI will no longer define the
368     // unprimed accumulator.
369     if (PHI != PHIs[0])
370       AccReg = MRI->createVirtualRegister(&PPC::ACCRCRegClass);
371     MachineInstrBuilder NewPHI = BuildMI(
372         *PHI->getParent(), PHI, PHI->getDebugLoc(), TII->get(PPC::PHI), AccReg);
373     for (auto RegMBB : PHIOps)
374       NewPHI.add(RegMBB.first).add(RegMBB.second);
375     ChangedPHIMap[PHI] = NewPHI.getInstr();
376   }
377 }
378 
379 // Perform peephole optimizations.
380 bool PPCMIPeephole::simplifyCode(void) {
381   bool Simplified = false;
382   MachineInstr* ToErase = nullptr;
383   std::map<MachineInstr *, bool> TOCSaves;
384   const TargetRegisterInfo *TRI = &TII->getRegisterInfo();
385   NumFunctionsEnteredInMIPeephole++;
386   if (ConvertRegReg) {
387     // Fixed-point conversion of reg/reg instructions fed by load-immediate
388     // into reg/imm instructions. FIXME: This is expensive, control it with
389     // an option.
390     bool SomethingChanged = false;
391     do {
392       NumFixedPointIterations++;
393       SomethingChanged = false;
394       for (MachineBasicBlock &MBB : *MF) {
395         for (MachineInstr &MI : MBB) {
396           if (MI.isDebugInstr())
397             continue;
398 
399           if (TII->convertToImmediateForm(MI)) {
400             // We don't erase anything in case the def has other uses. Let DCE
401             // remove it if it can be removed.
402             LLVM_DEBUG(dbgs() << "Converted instruction to imm form: ");
403             LLVM_DEBUG(MI.dump());
404             NumConvertedToImmediateForm++;
405             SomethingChanged = true;
406             Simplified = true;
407             continue;
408           }
409         }
410       }
411     } while (SomethingChanged && FixedPointRegToImm);
412   }
413 
414   for (MachineBasicBlock &MBB : *MF) {
415     for (MachineInstr &MI : MBB) {
416 
417       // If the previous instruction was marked for elimination,
418       // remove it now.
419       if (ToErase) {
420         ToErase->eraseFromParent();
421         ToErase = nullptr;
422       }
423 
424       // Ignore debug instructions.
425       if (MI.isDebugInstr())
426         continue;
427 
428       // Per-opcode peepholes.
429       switch (MI.getOpcode()) {
430 
431       default:
432         break;
433       case PPC::COPY: {
434         Register Src = MI.getOperand(1).getReg();
435         Register Dst = MI.getOperand(0).getReg();
436         if (!Register::isVirtualRegister(Src) ||
437             !Register::isVirtualRegister(Dst))
438           break;
439         if (MRI->getRegClass(Src) != &PPC::UACCRCRegClass ||
440             MRI->getRegClass(Dst) != &PPC::ACCRCRegClass)
441           break;
442 
443         // We are copying an unprimed accumulator to a primed accumulator.
444         // If the input to the copy is a PHI that is fed only by (i) copies in
445         // the other direction (ii) implicitly defined unprimed accumulators or
446         // (iii) other PHI nodes satisfying (i) and (ii), we can change
447         // the PHI to a PHI on primed accumulators (as long as we also change
448         // its operands). To detect and change such copies, we first get a list
449         // of all the PHI nodes starting from the root PHI node in BFS order.
450         // We then visit all these PHI nodes to check if they can be changed to
451         // primed accumulator PHI nodes and if so, we change them.
452         MachineInstr *RootPHI = MRI->getVRegDef(Src);
453         if (RootPHI->getOpcode() != PPC::PHI)
454           break;
455 
456         SmallVector<MachineInstr *, 4> PHIs;
457         if (!collectUnprimedAccPHIs(MRI, RootPHI, PHIs))
458           break;
459 
460         convertUnprimedAccPHIs(TII, MRI, PHIs, Dst);
461 
462         ToErase = &MI;
463         break;
464       }
465       case PPC::LI:
466       case PPC::LI8: {
467         // If we are materializing a zero, look for any use operands for which
468         // zero means immediate zero. All such operands can be replaced with
469         // PPC::ZERO.
470         if (!MI.getOperand(1).isImm() || MI.getOperand(1).getImm() != 0)
471           break;
472         unsigned MIDestReg = MI.getOperand(0).getReg();
473         for (MachineInstr& UseMI : MRI->use_instructions(MIDestReg))
474           Simplified |= TII->onlyFoldImmediate(UseMI, MI, MIDestReg);
475         if (MRI->use_nodbg_empty(MIDestReg)) {
476           ++NumLoadImmZeroFoldedAndRemoved;
477           ToErase = &MI;
478         }
479         break;
480       }
481       case PPC::STW:
482       case PPC::STD: {
483         MachineFrameInfo &MFI = MF->getFrameInfo();
484         if (MFI.hasVarSizedObjects() ||
485             (!MF->getSubtarget<PPCSubtarget>().isELFv2ABI() &&
486              !MF->getSubtarget<PPCSubtarget>().isAIXABI()))
487           break;
488         // When encountering a TOC save instruction, call UpdateTOCSaves
489         // to add it to the TOCSaves map and mark any existing TOC saves
490         // it dominates as redundant.
491         if (TII->isTOCSaveMI(MI))
492           UpdateTOCSaves(TOCSaves, &MI);
493         break;
494       }
495       case PPC::XXPERMDI: {
496         // Perform simplifications of 2x64 vector swaps and splats.
497         // A swap is identified by an immediate value of 2, and a splat
498         // is identified by an immediate value of 0 or 3.
499         int Immed = MI.getOperand(3).getImm();
500 
501         if (Immed == 1)
502           break;
503 
504         // For each of these simplifications, we need the two source
505         // regs to match.  Unfortunately, MachineCSE ignores COPY and
506         // SUBREG_TO_REG, so for example we can see
507         //   XXPERMDI t, SUBREG_TO_REG(s), SUBREG_TO_REG(s), immed.
508         // We have to look through chains of COPY and SUBREG_TO_REG
509         // to find the real source values for comparison.
510         unsigned TrueReg1 =
511           TRI->lookThruCopyLike(MI.getOperand(1).getReg(), MRI);
512         unsigned TrueReg2 =
513           TRI->lookThruCopyLike(MI.getOperand(2).getReg(), MRI);
514 
515         if (!(TrueReg1 == TrueReg2 && Register::isVirtualRegister(TrueReg1)))
516           break;
517 
518         MachineInstr *DefMI = MRI->getVRegDef(TrueReg1);
519 
520         if (!DefMI)
521           break;
522 
523         unsigned DefOpc = DefMI->getOpcode();
524 
525         // If this is a splat fed by a splatting load, the splat is
526         // redundant. Replace with a copy. This doesn't happen directly due
527         // to code in PPCDAGToDAGISel.cpp, but it can happen when converting
528         // a load of a double to a vector of 64-bit integers.
529         auto isConversionOfLoadAndSplat = [=]() -> bool {
530           if (DefOpc != PPC::XVCVDPSXDS && DefOpc != PPC::XVCVDPUXDS)
531             return false;
532           unsigned FeedReg1 =
533             TRI->lookThruCopyLike(DefMI->getOperand(1).getReg(), MRI);
534           if (Register::isVirtualRegister(FeedReg1)) {
535             MachineInstr *LoadMI = MRI->getVRegDef(FeedReg1);
536             if (LoadMI && LoadMI->getOpcode() == PPC::LXVDSX)
537               return true;
538           }
539           return false;
540         };
541         if ((Immed == 0 || Immed == 3) &&
542             (DefOpc == PPC::LXVDSX || isConversionOfLoadAndSplat())) {
543           LLVM_DEBUG(dbgs() << "Optimizing load-and-splat/splat "
544                                "to load-and-splat/copy: ");
545           LLVM_DEBUG(MI.dump());
546           BuildMI(MBB, &MI, MI.getDebugLoc(), TII->get(PPC::COPY),
547                   MI.getOperand(0).getReg())
548               .add(MI.getOperand(1));
549           ToErase = &MI;
550           Simplified = true;
551         }
552 
553         // If this is a splat or a swap fed by another splat, we
554         // can replace it with a copy.
555         if (DefOpc == PPC::XXPERMDI) {
556           unsigned DefReg1 = DefMI->getOperand(1).getReg();
557           unsigned DefReg2 = DefMI->getOperand(2).getReg();
558           unsigned DefImmed = DefMI->getOperand(3).getImm();
559 
560           // If the two inputs are not the same register, check to see if
561           // they originate from the same virtual register after only
562           // copy-like instructions.
563           if (DefReg1 != DefReg2) {
564             unsigned FeedReg1 = TRI->lookThruCopyLike(DefReg1, MRI);
565             unsigned FeedReg2 = TRI->lookThruCopyLike(DefReg2, MRI);
566 
567             if (!(FeedReg1 == FeedReg2 &&
568                   Register::isVirtualRegister(FeedReg1)))
569               break;
570           }
571 
572           if (DefImmed == 0 || DefImmed == 3) {
573             LLVM_DEBUG(dbgs() << "Optimizing splat/swap or splat/splat "
574                                  "to splat/copy: ");
575             LLVM_DEBUG(MI.dump());
576             BuildMI(MBB, &MI, MI.getDebugLoc(), TII->get(PPC::COPY),
577                     MI.getOperand(0).getReg())
578                 .add(MI.getOperand(1));
579             ToErase = &MI;
580             Simplified = true;
581           }
582 
583           // If this is a splat fed by a swap, we can simplify modify
584           // the splat to splat the other value from the swap's input
585           // parameter.
586           else if ((Immed == 0 || Immed == 3) && DefImmed == 2) {
587             LLVM_DEBUG(dbgs() << "Optimizing swap/splat => splat: ");
588             LLVM_DEBUG(MI.dump());
589             MI.getOperand(1).setReg(DefReg1);
590             MI.getOperand(2).setReg(DefReg2);
591             MI.getOperand(3).setImm(3 - Immed);
592             Simplified = true;
593           }
594 
595           // If this is a swap fed by a swap, we can replace it
596           // with a copy from the first swap's input.
597           else if (Immed == 2 && DefImmed == 2) {
598             LLVM_DEBUG(dbgs() << "Optimizing swap/swap => copy: ");
599             LLVM_DEBUG(MI.dump());
600             BuildMI(MBB, &MI, MI.getDebugLoc(), TII->get(PPC::COPY),
601                     MI.getOperand(0).getReg())
602                 .add(DefMI->getOperand(1));
603             ToErase = &MI;
604             Simplified = true;
605           }
606         } else if ((Immed == 0 || Immed == 3) && DefOpc == PPC::XXPERMDIs &&
607                    (DefMI->getOperand(2).getImm() == 0 ||
608                     DefMI->getOperand(2).getImm() == 3)) {
609           // Splat fed by another splat - switch the output of the first
610           // and remove the second.
611           DefMI->getOperand(0).setReg(MI.getOperand(0).getReg());
612           ToErase = &MI;
613           Simplified = true;
614           LLVM_DEBUG(dbgs() << "Removing redundant splat: ");
615           LLVM_DEBUG(MI.dump());
616         }
617         break;
618       }
619       case PPC::VSPLTB:
620       case PPC::VSPLTH:
621       case PPC::XXSPLTW: {
622         unsigned MyOpcode = MI.getOpcode();
623         unsigned OpNo = MyOpcode == PPC::XXSPLTW ? 1 : 2;
624         unsigned TrueReg =
625           TRI->lookThruCopyLike(MI.getOperand(OpNo).getReg(), MRI);
626         if (!Register::isVirtualRegister(TrueReg))
627           break;
628         MachineInstr *DefMI = MRI->getVRegDef(TrueReg);
629         if (!DefMI)
630           break;
631         unsigned DefOpcode = DefMI->getOpcode();
632         auto isConvertOfSplat = [=]() -> bool {
633           if (DefOpcode != PPC::XVCVSPSXWS && DefOpcode != PPC::XVCVSPUXWS)
634             return false;
635           Register ConvReg = DefMI->getOperand(1).getReg();
636           if (!Register::isVirtualRegister(ConvReg))
637             return false;
638           MachineInstr *Splt = MRI->getVRegDef(ConvReg);
639           return Splt && (Splt->getOpcode() == PPC::LXVWSX ||
640             Splt->getOpcode() == PPC::XXSPLTW);
641         };
642         bool AlreadySplat = (MyOpcode == DefOpcode) ||
643           (MyOpcode == PPC::VSPLTB && DefOpcode == PPC::VSPLTBs) ||
644           (MyOpcode == PPC::VSPLTH && DefOpcode == PPC::VSPLTHs) ||
645           (MyOpcode == PPC::XXSPLTW && DefOpcode == PPC::XXSPLTWs) ||
646           (MyOpcode == PPC::XXSPLTW && DefOpcode == PPC::LXVWSX) ||
647           (MyOpcode == PPC::XXSPLTW && DefOpcode == PPC::MTVSRWS)||
648           (MyOpcode == PPC::XXSPLTW && isConvertOfSplat());
649         // If the instruction[s] that feed this splat have already splat
650         // the value, this splat is redundant.
651         if (AlreadySplat) {
652           LLVM_DEBUG(dbgs() << "Changing redundant splat to a copy: ");
653           LLVM_DEBUG(MI.dump());
654           BuildMI(MBB, &MI, MI.getDebugLoc(), TII->get(PPC::COPY),
655                   MI.getOperand(0).getReg())
656               .add(MI.getOperand(OpNo));
657           ToErase = &MI;
658           Simplified = true;
659         }
660         // Splat fed by a shift. Usually when we align value to splat into
661         // vector element zero.
662         if (DefOpcode == PPC::XXSLDWI) {
663           Register ShiftRes = DefMI->getOperand(0).getReg();
664           Register ShiftOp1 = DefMI->getOperand(1).getReg();
665           Register ShiftOp2 = DefMI->getOperand(2).getReg();
666           unsigned ShiftImm = DefMI->getOperand(3).getImm();
667           unsigned SplatImm =
668               MI.getOperand(MyOpcode == PPC::XXSPLTW ? 2 : 1).getImm();
669           if (ShiftOp1 == ShiftOp2) {
670             unsigned NewElem = (SplatImm + ShiftImm) & 0x3;
671             if (MRI->hasOneNonDBGUse(ShiftRes)) {
672               LLVM_DEBUG(dbgs() << "Removing redundant shift: ");
673               LLVM_DEBUG(DefMI->dump());
674               ToErase = DefMI;
675             }
676             Simplified = true;
677             LLVM_DEBUG(dbgs() << "Changing splat immediate from " << SplatImm
678                               << " to " << NewElem << " in instruction: ");
679             LLVM_DEBUG(MI.dump());
680             MI.getOperand(1).setReg(ShiftOp1);
681             MI.getOperand(2).setImm(NewElem);
682           }
683         }
684         break;
685       }
686       case PPC::XVCVDPSP: {
687         // If this is a DP->SP conversion fed by an FRSP, the FRSP is redundant.
688         unsigned TrueReg =
689           TRI->lookThruCopyLike(MI.getOperand(1).getReg(), MRI);
690         if (!Register::isVirtualRegister(TrueReg))
691           break;
692         MachineInstr *DefMI = MRI->getVRegDef(TrueReg);
693 
694         // This can occur when building a vector of single precision or integer
695         // values.
696         if (DefMI && DefMI->getOpcode() == PPC::XXPERMDI) {
697           unsigned DefsReg1 =
698             TRI->lookThruCopyLike(DefMI->getOperand(1).getReg(), MRI);
699           unsigned DefsReg2 =
700             TRI->lookThruCopyLike(DefMI->getOperand(2).getReg(), MRI);
701           if (!Register::isVirtualRegister(DefsReg1) ||
702               !Register::isVirtualRegister(DefsReg2))
703             break;
704           MachineInstr *P1 = MRI->getVRegDef(DefsReg1);
705           MachineInstr *P2 = MRI->getVRegDef(DefsReg2);
706 
707           if (!P1 || !P2)
708             break;
709 
710           // Remove the passed FRSP/XSRSP instruction if it only feeds this MI
711           // and set any uses of that FRSP/XSRSP (in this MI) to the source of
712           // the FRSP/XSRSP.
713           auto removeFRSPIfPossible = [&](MachineInstr *RoundInstr) {
714             unsigned Opc = RoundInstr->getOpcode();
715             if ((Opc == PPC::FRSP || Opc == PPC::XSRSP) &&
716                 MRI->hasOneNonDBGUse(RoundInstr->getOperand(0).getReg())) {
717               Simplified = true;
718               Register ConvReg1 = RoundInstr->getOperand(1).getReg();
719               Register FRSPDefines = RoundInstr->getOperand(0).getReg();
720               MachineInstr &Use = *(MRI->use_instr_nodbg_begin(FRSPDefines));
721               for (int i = 0, e = Use.getNumOperands(); i < e; ++i)
722                 if (Use.getOperand(i).isReg() &&
723                     Use.getOperand(i).getReg() == FRSPDefines)
724                   Use.getOperand(i).setReg(ConvReg1);
725               LLVM_DEBUG(dbgs() << "Removing redundant FRSP/XSRSP:\n");
726               LLVM_DEBUG(RoundInstr->dump());
727               LLVM_DEBUG(dbgs() << "As it feeds instruction:\n");
728               LLVM_DEBUG(MI.dump());
729               LLVM_DEBUG(dbgs() << "Through instruction:\n");
730               LLVM_DEBUG(DefMI->dump());
731               RoundInstr->eraseFromParent();
732             }
733           };
734 
735           // If the input to XVCVDPSP is a vector that was built (even
736           // partially) out of FRSP's, the FRSP(s) can safely be removed
737           // since this instruction performs the same operation.
738           if (P1 != P2) {
739             removeFRSPIfPossible(P1);
740             removeFRSPIfPossible(P2);
741             break;
742           }
743           removeFRSPIfPossible(P1);
744         }
745         break;
746       }
747       case PPC::EXTSH:
748       case PPC::EXTSH8:
749       case PPC::EXTSH8_32_64: {
750         if (!EnableSExtElimination) break;
751         Register NarrowReg = MI.getOperand(1).getReg();
752         if (!Register::isVirtualRegister(NarrowReg))
753           break;
754 
755         MachineInstr *SrcMI = MRI->getVRegDef(NarrowReg);
756         // If we've used a zero-extending load that we will sign-extend,
757         // just do a sign-extending load.
758         if (SrcMI->getOpcode() == PPC::LHZ ||
759             SrcMI->getOpcode() == PPC::LHZX) {
760           if (!MRI->hasOneNonDBGUse(SrcMI->getOperand(0).getReg()))
761             break;
762           auto is64Bit = [] (unsigned Opcode) {
763             return Opcode == PPC::EXTSH8;
764           };
765           auto isXForm = [] (unsigned Opcode) {
766             return Opcode == PPC::LHZX;
767           };
768           auto getSextLoadOp = [] (bool is64Bit, bool isXForm) {
769             if (is64Bit)
770               if (isXForm) return PPC::LHAX8;
771               else         return PPC::LHA8;
772             else
773               if (isXForm) return PPC::LHAX;
774               else         return PPC::LHA;
775           };
776           unsigned Opc = getSextLoadOp(is64Bit(MI.getOpcode()),
777                                        isXForm(SrcMI->getOpcode()));
778           LLVM_DEBUG(dbgs() << "Zero-extending load\n");
779           LLVM_DEBUG(SrcMI->dump());
780           LLVM_DEBUG(dbgs() << "and sign-extension\n");
781           LLVM_DEBUG(MI.dump());
782           LLVM_DEBUG(dbgs() << "are merged into sign-extending load\n");
783           SrcMI->setDesc(TII->get(Opc));
784           SrcMI->getOperand(0).setReg(MI.getOperand(0).getReg());
785           ToErase = &MI;
786           Simplified = true;
787           NumEliminatedSExt++;
788         }
789         break;
790       }
791       case PPC::EXTSW:
792       case PPC::EXTSW_32:
793       case PPC::EXTSW_32_64: {
794         if (!EnableSExtElimination) break;
795         Register NarrowReg = MI.getOperand(1).getReg();
796         if (!Register::isVirtualRegister(NarrowReg))
797           break;
798 
799         MachineInstr *SrcMI = MRI->getVRegDef(NarrowReg);
800         // If we've used a zero-extending load that we will sign-extend,
801         // just do a sign-extending load.
802         if (SrcMI->getOpcode() == PPC::LWZ ||
803             SrcMI->getOpcode() == PPC::LWZX) {
804           if (!MRI->hasOneNonDBGUse(SrcMI->getOperand(0).getReg()))
805             break;
806           auto is64Bit = [] (unsigned Opcode) {
807             return Opcode == PPC::EXTSW || Opcode == PPC::EXTSW_32_64;
808           };
809           auto isXForm = [] (unsigned Opcode) {
810             return Opcode == PPC::LWZX;
811           };
812           auto getSextLoadOp = [] (bool is64Bit, bool isXForm) {
813             if (is64Bit)
814               if (isXForm) return PPC::LWAX;
815               else         return PPC::LWA;
816             else
817               if (isXForm) return PPC::LWAX_32;
818               else         return PPC::LWA_32;
819           };
820           unsigned Opc = getSextLoadOp(is64Bit(MI.getOpcode()),
821                                        isXForm(SrcMI->getOpcode()));
822           LLVM_DEBUG(dbgs() << "Zero-extending load\n");
823           LLVM_DEBUG(SrcMI->dump());
824           LLVM_DEBUG(dbgs() << "and sign-extension\n");
825           LLVM_DEBUG(MI.dump());
826           LLVM_DEBUG(dbgs() << "are merged into sign-extending load\n");
827           SrcMI->setDesc(TII->get(Opc));
828           SrcMI->getOperand(0).setReg(MI.getOperand(0).getReg());
829           ToErase = &MI;
830           Simplified = true;
831           NumEliminatedSExt++;
832         } else if (MI.getOpcode() == PPC::EXTSW_32_64 &&
833                    TII->isSignExtended(*SrcMI)) {
834           // We can eliminate EXTSW if the input is known to be already
835           // sign-extended.
836           LLVM_DEBUG(dbgs() << "Removing redundant sign-extension\n");
837           Register TmpReg =
838               MF->getRegInfo().createVirtualRegister(&PPC::G8RCRegClass);
839           BuildMI(MBB, &MI, MI.getDebugLoc(), TII->get(PPC::IMPLICIT_DEF),
840                   TmpReg);
841           BuildMI(MBB, &MI, MI.getDebugLoc(), TII->get(PPC::INSERT_SUBREG),
842                   MI.getOperand(0).getReg())
843               .addReg(TmpReg)
844               .addReg(NarrowReg)
845               .addImm(PPC::sub_32);
846           ToErase = &MI;
847           Simplified = true;
848           NumEliminatedSExt++;
849         }
850         break;
851       }
852       case PPC::RLDICL: {
853         // We can eliminate RLDICL (e.g. for zero-extension)
854         // if all bits to clear are already zero in the input.
855         // This code assume following code sequence for zero-extension.
856         //   %6 = COPY %5:sub_32; (optional)
857         //   %8 = IMPLICIT_DEF;
858         //   %7<def,tied1> = INSERT_SUBREG %8<tied0>, %6, sub_32;
859         if (!EnableZExtElimination) break;
860 
861         if (MI.getOperand(2).getImm() != 0)
862           break;
863 
864         Register SrcReg = MI.getOperand(1).getReg();
865         if (!Register::isVirtualRegister(SrcReg))
866           break;
867 
868         MachineInstr *SrcMI = MRI->getVRegDef(SrcReg);
869         if (!(SrcMI && SrcMI->getOpcode() == PPC::INSERT_SUBREG &&
870               SrcMI->getOperand(0).isReg() && SrcMI->getOperand(1).isReg()))
871           break;
872 
873         MachineInstr *ImpDefMI, *SubRegMI;
874         ImpDefMI = MRI->getVRegDef(SrcMI->getOperand(1).getReg());
875         SubRegMI = MRI->getVRegDef(SrcMI->getOperand(2).getReg());
876         if (ImpDefMI->getOpcode() != PPC::IMPLICIT_DEF) break;
877 
878         SrcMI = SubRegMI;
879         if (SubRegMI->getOpcode() == PPC::COPY) {
880           Register CopyReg = SubRegMI->getOperand(1).getReg();
881           if (Register::isVirtualRegister(CopyReg))
882             SrcMI = MRI->getVRegDef(CopyReg);
883         }
884 
885         unsigned KnownZeroCount = getKnownLeadingZeroCount(SrcMI, TII);
886         if (MI.getOperand(3).getImm() <= KnownZeroCount) {
887           LLVM_DEBUG(dbgs() << "Removing redundant zero-extension\n");
888           BuildMI(MBB, &MI, MI.getDebugLoc(), TII->get(PPC::COPY),
889                   MI.getOperand(0).getReg())
890               .addReg(SrcReg);
891           ToErase = &MI;
892           Simplified = true;
893           NumEliminatedZExt++;
894         }
895         break;
896       }
897 
898       // TODO: Any instruction that has an immediate form fed only by a PHI
899       // whose operands are all load immediate can be folded away. We currently
900       // do this for ADD instructions, but should expand it to arithmetic and
901       // binary instructions with immediate forms in the future.
902       case PPC::ADD4:
903       case PPC::ADD8: {
904         auto isSingleUsePHI = [&](MachineOperand *PhiOp) {
905           assert(PhiOp && "Invalid Operand!");
906           MachineInstr *DefPhiMI = getVRegDefOrNull(PhiOp, MRI);
907 
908           return DefPhiMI && (DefPhiMI->getOpcode() == PPC::PHI) &&
909                  MRI->hasOneNonDBGUse(DefPhiMI->getOperand(0).getReg());
910         };
911 
912         auto dominatesAllSingleUseLIs = [&](MachineOperand *DominatorOp,
913                                             MachineOperand *PhiOp) {
914           assert(PhiOp && "Invalid Operand!");
915           assert(DominatorOp && "Invalid Operand!");
916           MachineInstr *DefPhiMI = getVRegDefOrNull(PhiOp, MRI);
917           MachineInstr *DefDomMI = getVRegDefOrNull(DominatorOp, MRI);
918 
919           // Note: the vregs only show up at odd indices position of PHI Node,
920           // the even indices position save the BB info.
921           for (unsigned i = 1; i < DefPhiMI->getNumOperands(); i += 2) {
922             MachineInstr *LiMI =
923                 getVRegDefOrNull(&DefPhiMI->getOperand(i), MRI);
924             if (!LiMI ||
925                 (LiMI->getOpcode() != PPC::LI && LiMI->getOpcode() != PPC::LI8)
926                 || !MRI->hasOneNonDBGUse(LiMI->getOperand(0).getReg()) ||
927                 !MDT->dominates(DefDomMI, LiMI))
928               return false;
929           }
930 
931           return true;
932         };
933 
934         MachineOperand Op1 = MI.getOperand(1);
935         MachineOperand Op2 = MI.getOperand(2);
936         if (isSingleUsePHI(&Op2) && dominatesAllSingleUseLIs(&Op1, &Op2))
937           std::swap(Op1, Op2);
938         else if (!isSingleUsePHI(&Op1) || !dominatesAllSingleUseLIs(&Op2, &Op1))
939           break; // We don't have an ADD fed by LI's that can be transformed
940 
941         // Now we know that Op1 is the PHI node and Op2 is the dominator
942         Register DominatorReg = Op2.getReg();
943 
944         const TargetRegisterClass *TRC = MI.getOpcode() == PPC::ADD8
945                                              ? &PPC::G8RC_and_G8RC_NOX0RegClass
946                                              : &PPC::GPRC_and_GPRC_NOR0RegClass;
947         MRI->setRegClass(DominatorReg, TRC);
948 
949         // replace LIs with ADDIs
950         MachineInstr *DefPhiMI = getVRegDefOrNull(&Op1, MRI);
951         for (unsigned i = 1; i < DefPhiMI->getNumOperands(); i += 2) {
952           MachineInstr *LiMI = getVRegDefOrNull(&DefPhiMI->getOperand(i), MRI);
953           LLVM_DEBUG(dbgs() << "Optimizing LI to ADDI: ");
954           LLVM_DEBUG(LiMI->dump());
955 
956           // There could be repeated registers in the PHI, e.g: %1 =
957           // PHI %6, <%bb.2>, %8, <%bb.3>, %8, <%bb.6>; So if we've
958           // already replaced the def instruction, skip.
959           if (LiMI->getOpcode() == PPC::ADDI || LiMI->getOpcode() == PPC::ADDI8)
960             continue;
961 
962           assert((LiMI->getOpcode() == PPC::LI ||
963                   LiMI->getOpcode() == PPC::LI8) &&
964                  "Invalid Opcode!");
965           auto LiImm = LiMI->getOperand(1).getImm(); // save the imm of LI
966           LiMI->RemoveOperand(1);                    // remove the imm of LI
967           LiMI->setDesc(TII->get(LiMI->getOpcode() == PPC::LI ? PPC::ADDI
968                                                               : PPC::ADDI8));
969           MachineInstrBuilder(*LiMI->getParent()->getParent(), *LiMI)
970               .addReg(DominatorReg)
971               .addImm(LiImm); // restore the imm of LI
972           LLVM_DEBUG(LiMI->dump());
973         }
974 
975         // Replace ADD with COPY
976         LLVM_DEBUG(dbgs() << "Optimizing ADD to COPY: ");
977         LLVM_DEBUG(MI.dump());
978         BuildMI(MBB, &MI, MI.getDebugLoc(), TII->get(PPC::COPY),
979                 MI.getOperand(0).getReg())
980             .add(Op1);
981         ToErase = &MI;
982         Simplified = true;
983         NumOptADDLIs++;
984         break;
985       }
986       case PPC::RLDICR: {
987         Simplified |= emitRLDICWhenLoweringJumpTables(MI) ||
988                       combineSEXTAndSHL(MI, ToErase);
989         break;
990       }
991       case PPC::RLWINM:
992       case PPC::RLWINM_rec:
993       case PPC::RLWINM8:
994       case PPC::RLWINM8_rec: {
995         Simplified = TII->combineRLWINM(MI, &ToErase);
996         if (Simplified)
997           ++NumRotatesCollapsed;
998         break;
999       }
1000       }
1001     }
1002 
1003     // If the last instruction was marked for elimination,
1004     // remove it now.
1005     if (ToErase) {
1006       ToErase->eraseFromParent();
1007       ToErase = nullptr;
1008     }
1009   }
1010 
1011   // Eliminate all the TOC save instructions which are redundant.
1012   Simplified |= eliminateRedundantTOCSaves(TOCSaves);
1013   PPCFunctionInfo *FI = MF->getInfo<PPCFunctionInfo>();
1014   if (FI->mustSaveTOC())
1015     NumTOCSavesInPrologue++;
1016 
1017   // We try to eliminate redundant compare instruction.
1018   Simplified |= eliminateRedundantCompare();
1019 
1020   return Simplified;
1021 }
1022 
1023 // helper functions for eliminateRedundantCompare
1024 static bool isEqOrNe(MachineInstr *BI) {
1025   PPC::Predicate Pred = (PPC::Predicate)BI->getOperand(0).getImm();
1026   unsigned PredCond = PPC::getPredicateCondition(Pred);
1027   return (PredCond == PPC::PRED_EQ || PredCond == PPC::PRED_NE);
1028 }
1029 
1030 static bool isSupportedCmpOp(unsigned opCode) {
1031   return (opCode == PPC::CMPLD  || opCode == PPC::CMPD  ||
1032           opCode == PPC::CMPLW  || opCode == PPC::CMPW  ||
1033           opCode == PPC::CMPLDI || opCode == PPC::CMPDI ||
1034           opCode == PPC::CMPLWI || opCode == PPC::CMPWI);
1035 }
1036 
1037 static bool is64bitCmpOp(unsigned opCode) {
1038   return (opCode == PPC::CMPLD  || opCode == PPC::CMPD ||
1039           opCode == PPC::CMPLDI || opCode == PPC::CMPDI);
1040 }
1041 
1042 static bool isSignedCmpOp(unsigned opCode) {
1043   return (opCode == PPC::CMPD  || opCode == PPC::CMPW ||
1044           opCode == PPC::CMPDI || opCode == PPC::CMPWI);
1045 }
1046 
1047 static unsigned getSignedCmpOpCode(unsigned opCode) {
1048   if (opCode == PPC::CMPLD)  return PPC::CMPD;
1049   if (opCode == PPC::CMPLW)  return PPC::CMPW;
1050   if (opCode == PPC::CMPLDI) return PPC::CMPDI;
1051   if (opCode == PPC::CMPLWI) return PPC::CMPWI;
1052   return opCode;
1053 }
1054 
1055 // We can decrement immediate x in (GE x) by changing it to (GT x-1) or
1056 // (LT x) to (LE x-1)
1057 static unsigned getPredicateToDecImm(MachineInstr *BI, MachineInstr *CMPI) {
1058   uint64_t Imm = CMPI->getOperand(2).getImm();
1059   bool SignedCmp = isSignedCmpOp(CMPI->getOpcode());
1060   if ((!SignedCmp && Imm == 0) || (SignedCmp && Imm == 0x8000))
1061     return 0;
1062 
1063   PPC::Predicate Pred = (PPC::Predicate)BI->getOperand(0).getImm();
1064   unsigned PredCond = PPC::getPredicateCondition(Pred);
1065   unsigned PredHint = PPC::getPredicateHint(Pred);
1066   if (PredCond == PPC::PRED_GE)
1067     return PPC::getPredicate(PPC::PRED_GT, PredHint);
1068   if (PredCond == PPC::PRED_LT)
1069     return PPC::getPredicate(PPC::PRED_LE, PredHint);
1070 
1071   return 0;
1072 }
1073 
1074 // We can increment immediate x in (GT x) by changing it to (GE x+1) or
1075 // (LE x) to (LT x+1)
1076 static unsigned getPredicateToIncImm(MachineInstr *BI, MachineInstr *CMPI) {
1077   uint64_t Imm = CMPI->getOperand(2).getImm();
1078   bool SignedCmp = isSignedCmpOp(CMPI->getOpcode());
1079   if ((!SignedCmp && Imm == 0xFFFF) || (SignedCmp && Imm == 0x7FFF))
1080     return 0;
1081 
1082   PPC::Predicate Pred = (PPC::Predicate)BI->getOperand(0).getImm();
1083   unsigned PredCond = PPC::getPredicateCondition(Pred);
1084   unsigned PredHint = PPC::getPredicateHint(Pred);
1085   if (PredCond == PPC::PRED_GT)
1086     return PPC::getPredicate(PPC::PRED_GE, PredHint);
1087   if (PredCond == PPC::PRED_LE)
1088     return PPC::getPredicate(PPC::PRED_LT, PredHint);
1089 
1090   return 0;
1091 }
1092 
1093 // This takes a Phi node and returns a register value for the specified BB.
1094 static unsigned getIncomingRegForBlock(MachineInstr *Phi,
1095                                        MachineBasicBlock *MBB) {
1096   for (unsigned I = 2, E = Phi->getNumOperands() + 1; I != E; I += 2) {
1097     MachineOperand &MO = Phi->getOperand(I);
1098     if (MO.getMBB() == MBB)
1099       return Phi->getOperand(I-1).getReg();
1100   }
1101   llvm_unreachable("invalid src basic block for this Phi node\n");
1102   return 0;
1103 }
1104 
1105 // This function tracks the source of the register through register copy.
1106 // If BB1 and BB2 are non-NULL, we also track PHI instruction in BB2
1107 // assuming that the control comes from BB1 into BB2.
1108 static unsigned getSrcVReg(unsigned Reg, MachineBasicBlock *BB1,
1109                            MachineBasicBlock *BB2, MachineRegisterInfo *MRI) {
1110   unsigned SrcReg = Reg;
1111   while (1) {
1112     unsigned NextReg = SrcReg;
1113     MachineInstr *Inst = MRI->getVRegDef(SrcReg);
1114     if (BB1 && Inst->getOpcode() == PPC::PHI && Inst->getParent() == BB2) {
1115       NextReg = getIncomingRegForBlock(Inst, BB1);
1116       // We track through PHI only once to avoid infinite loop.
1117       BB1 = nullptr;
1118     }
1119     else if (Inst->isFullCopy())
1120       NextReg = Inst->getOperand(1).getReg();
1121     if (NextReg == SrcReg || !Register::isVirtualRegister(NextReg))
1122       break;
1123     SrcReg = NextReg;
1124   }
1125   return SrcReg;
1126 }
1127 
1128 static bool eligibleForCompareElimination(MachineBasicBlock &MBB,
1129                                           MachineBasicBlock *&PredMBB,
1130                                           MachineBasicBlock *&MBBtoMoveCmp,
1131                                           MachineRegisterInfo *MRI) {
1132 
1133   auto isEligibleBB = [&](MachineBasicBlock &BB) {
1134     auto BII = BB.getFirstInstrTerminator();
1135     // We optimize BBs ending with a conditional branch.
1136     // We check only for BCC here, not BCCLR, because BCCLR
1137     // will be formed only later in the pipeline.
1138     if (BB.succ_size() == 2 &&
1139         BII != BB.instr_end() &&
1140         (*BII).getOpcode() == PPC::BCC &&
1141         (*BII).getOperand(1).isReg()) {
1142       // We optimize only if the condition code is used only by one BCC.
1143       Register CndReg = (*BII).getOperand(1).getReg();
1144       if (!Register::isVirtualRegister(CndReg) || !MRI->hasOneNonDBGUse(CndReg))
1145         return false;
1146 
1147       MachineInstr *CMPI = MRI->getVRegDef(CndReg);
1148       // We assume compare and branch are in the same BB for ease of analysis.
1149       if (CMPI->getParent() != &BB)
1150         return false;
1151 
1152       // We skip this BB if a physical register is used in comparison.
1153       for (MachineOperand &MO : CMPI->operands())
1154         if (MO.isReg() && !Register::isVirtualRegister(MO.getReg()))
1155           return false;
1156 
1157       return true;
1158     }
1159     return false;
1160   };
1161 
1162   // If this BB has more than one successor, we can create a new BB and
1163   // move the compare instruction in the new BB.
1164   // So far, we do not move compare instruction to a BB having multiple
1165   // successors to avoid potentially increasing code size.
1166   auto isEligibleForMoveCmp = [](MachineBasicBlock &BB) {
1167     return BB.succ_size() == 1;
1168   };
1169 
1170   if (!isEligibleBB(MBB))
1171     return false;
1172 
1173   unsigned NumPredBBs = MBB.pred_size();
1174   if (NumPredBBs == 1) {
1175     MachineBasicBlock *TmpMBB = *MBB.pred_begin();
1176     if (isEligibleBB(*TmpMBB)) {
1177       PredMBB = TmpMBB;
1178       MBBtoMoveCmp = nullptr;
1179       return true;
1180     }
1181   }
1182   else if (NumPredBBs == 2) {
1183     // We check for partially redundant case.
1184     // So far, we support cases with only two predecessors
1185     // to avoid increasing the number of instructions.
1186     MachineBasicBlock::pred_iterator PI = MBB.pred_begin();
1187     MachineBasicBlock *Pred1MBB = *PI;
1188     MachineBasicBlock *Pred2MBB = *(PI+1);
1189 
1190     if (isEligibleBB(*Pred1MBB) && isEligibleForMoveCmp(*Pred2MBB)) {
1191       // We assume Pred1MBB is the BB containing the compare to be merged and
1192       // Pred2MBB is the BB to which we will append a compare instruction.
1193       // Hence we can proceed as is.
1194     }
1195     else if (isEligibleBB(*Pred2MBB) && isEligibleForMoveCmp(*Pred1MBB)) {
1196       // We need to swap Pred1MBB and Pred2MBB to canonicalize.
1197       std::swap(Pred1MBB, Pred2MBB);
1198     }
1199     else return false;
1200 
1201     // Here, Pred2MBB is the BB to which we need to append a compare inst.
1202     // We cannot move the compare instruction if operands are not available
1203     // in Pred2MBB (i.e. defined in MBB by an instruction other than PHI).
1204     MachineInstr *BI = &*MBB.getFirstInstrTerminator();
1205     MachineInstr *CMPI = MRI->getVRegDef(BI->getOperand(1).getReg());
1206     for (int I = 1; I <= 2; I++)
1207       if (CMPI->getOperand(I).isReg()) {
1208         MachineInstr *Inst = MRI->getVRegDef(CMPI->getOperand(I).getReg());
1209         if (Inst->getParent() == &MBB && Inst->getOpcode() != PPC::PHI)
1210           return false;
1211       }
1212 
1213     PredMBB = Pred1MBB;
1214     MBBtoMoveCmp = Pred2MBB;
1215     return true;
1216   }
1217 
1218   return false;
1219 }
1220 
1221 // This function will iterate over the input map containing a pair of TOC save
1222 // instruction and a flag. The flag will be set to false if the TOC save is
1223 // proven redundant. This function will erase from the basic block all the TOC
1224 // saves marked as redundant.
1225 bool PPCMIPeephole::eliminateRedundantTOCSaves(
1226     std::map<MachineInstr *, bool> &TOCSaves) {
1227   bool Simplified = false;
1228   int NumKept = 0;
1229   for (auto TOCSave : TOCSaves) {
1230     if (!TOCSave.second) {
1231       TOCSave.first->eraseFromParent();
1232       RemoveTOCSave++;
1233       Simplified = true;
1234     } else {
1235       NumKept++;
1236     }
1237   }
1238 
1239   if (NumKept > 1)
1240     MultiTOCSaves++;
1241 
1242   return Simplified;
1243 }
1244 
1245 // If multiple conditional branches are executed based on the (essentially)
1246 // same comparison, we merge compare instructions into one and make multiple
1247 // conditional branches on this comparison.
1248 // For example,
1249 //   if (a == 0) { ... }
1250 //   else if (a < 0) { ... }
1251 // can be executed by one compare and two conditional branches instead of
1252 // two pairs of a compare and a conditional branch.
1253 //
1254 // This method merges two compare instructions in two MBBs and modifies the
1255 // compare and conditional branch instructions if needed.
1256 // For the above example, the input for this pass looks like:
1257 //   cmplwi r3, 0
1258 //   beq    0, .LBB0_3
1259 //   cmpwi  r3, -1
1260 //   bgt    0, .LBB0_4
1261 // So, before merging two compares, we need to modify these instructions as
1262 //   cmpwi  r3, 0       ; cmplwi and cmpwi yield same result for beq
1263 //   beq    0, .LBB0_3
1264 //   cmpwi  r3, 0       ; greather than -1 means greater or equal to 0
1265 //   bge    0, .LBB0_4
1266 
1267 bool PPCMIPeephole::eliminateRedundantCompare(void) {
1268   bool Simplified = false;
1269 
1270   for (MachineBasicBlock &MBB2 : *MF) {
1271     MachineBasicBlock *MBB1 = nullptr, *MBBtoMoveCmp = nullptr;
1272 
1273     // For fully redundant case, we select two basic blocks MBB1 and MBB2
1274     // as an optimization target if
1275     // - both MBBs end with a conditional branch,
1276     // - MBB1 is the only predecessor of MBB2, and
1277     // - compare does not take a physical register as a operand in both MBBs.
1278     // In this case, eligibleForCompareElimination sets MBBtoMoveCmp nullptr.
1279     //
1280     // As partially redundant case, we additionally handle if MBB2 has one
1281     // additional predecessor, which has only one successor (MBB2).
1282     // In this case, we move the compare instruction originally in MBB2 into
1283     // MBBtoMoveCmp. This partially redundant case is typically appear by
1284     // compiling a while loop; here, MBBtoMoveCmp is the loop preheader.
1285     //
1286     // Overview of CFG of related basic blocks
1287     // Fully redundant case        Partially redundant case
1288     //   --------                   ----------------  --------
1289     //   | MBB1 | (w/ 2 succ)       | MBBtoMoveCmp |  | MBB1 | (w/ 2 succ)
1290     //   --------                   ----------------  --------
1291     //      |    \                     (w/ 1 succ) \     |    \
1292     //      |     \                                 \    |     \
1293     //      |                                        \   |
1294     //   --------                                     --------
1295     //   | MBB2 | (w/ 1 pred                          | MBB2 | (w/ 2 pred
1296     //   -------- and 2 succ)                         -------- and 2 succ)
1297     //      |    \                                       |    \
1298     //      |     \                                      |     \
1299     //
1300     if (!eligibleForCompareElimination(MBB2, MBB1, MBBtoMoveCmp, MRI))
1301       continue;
1302 
1303     MachineInstr *BI1   = &*MBB1->getFirstInstrTerminator();
1304     MachineInstr *CMPI1 = MRI->getVRegDef(BI1->getOperand(1).getReg());
1305 
1306     MachineInstr *BI2   = &*MBB2.getFirstInstrTerminator();
1307     MachineInstr *CMPI2 = MRI->getVRegDef(BI2->getOperand(1).getReg());
1308     bool IsPartiallyRedundant = (MBBtoMoveCmp != nullptr);
1309 
1310     // We cannot optimize an unsupported compare opcode or
1311     // a mix of 32-bit and 64-bit comaprisons
1312     if (!isSupportedCmpOp(CMPI1->getOpcode()) ||
1313         !isSupportedCmpOp(CMPI2->getOpcode()) ||
1314         is64bitCmpOp(CMPI1->getOpcode()) != is64bitCmpOp(CMPI2->getOpcode()))
1315       continue;
1316 
1317     unsigned NewOpCode = 0;
1318     unsigned NewPredicate1 = 0, NewPredicate2 = 0;
1319     int16_t Imm1 = 0, NewImm1 = 0, Imm2 = 0, NewImm2 = 0;
1320     bool SwapOperands = false;
1321 
1322     if (CMPI1->getOpcode() != CMPI2->getOpcode()) {
1323       // Typically, unsigned comparison is used for equality check, but
1324       // we replace it with a signed comparison if the comparison
1325       // to be merged is a signed comparison.
1326       // In other cases of opcode mismatch, we cannot optimize this.
1327 
1328       // We cannot change opcode when comparing against an immediate
1329       // if the most significant bit of the immediate is one
1330       // due to the difference in sign extension.
1331       auto CmpAgainstImmWithSignBit = [](MachineInstr *I) {
1332         if (!I->getOperand(2).isImm())
1333           return false;
1334         int16_t Imm = (int16_t)I->getOperand(2).getImm();
1335         return Imm < 0;
1336       };
1337 
1338       if (isEqOrNe(BI2) && !CmpAgainstImmWithSignBit(CMPI2) &&
1339           CMPI1->getOpcode() == getSignedCmpOpCode(CMPI2->getOpcode()))
1340         NewOpCode = CMPI1->getOpcode();
1341       else if (isEqOrNe(BI1) && !CmpAgainstImmWithSignBit(CMPI1) &&
1342                getSignedCmpOpCode(CMPI1->getOpcode()) == CMPI2->getOpcode())
1343         NewOpCode = CMPI2->getOpcode();
1344       else continue;
1345     }
1346 
1347     if (CMPI1->getOperand(2).isReg() && CMPI2->getOperand(2).isReg()) {
1348       // In case of comparisons between two registers, these two registers
1349       // must be same to merge two comparisons.
1350       unsigned Cmp1Operand1 = getSrcVReg(CMPI1->getOperand(1).getReg(),
1351                                          nullptr, nullptr, MRI);
1352       unsigned Cmp1Operand2 = getSrcVReg(CMPI1->getOperand(2).getReg(),
1353                                          nullptr, nullptr, MRI);
1354       unsigned Cmp2Operand1 = getSrcVReg(CMPI2->getOperand(1).getReg(),
1355                                          MBB1, &MBB2, MRI);
1356       unsigned Cmp2Operand2 = getSrcVReg(CMPI2->getOperand(2).getReg(),
1357                                          MBB1, &MBB2, MRI);
1358 
1359       if (Cmp1Operand1 == Cmp2Operand1 && Cmp1Operand2 == Cmp2Operand2) {
1360         // Same pair of registers in the same order; ready to merge as is.
1361       }
1362       else if (Cmp1Operand1 == Cmp2Operand2 && Cmp1Operand2 == Cmp2Operand1) {
1363         // Same pair of registers in different order.
1364         // We reverse the predicate to merge compare instructions.
1365         PPC::Predicate Pred = (PPC::Predicate)BI2->getOperand(0).getImm();
1366         NewPredicate2 = (unsigned)PPC::getSwappedPredicate(Pred);
1367         // In case of partial redundancy, we need to swap operands
1368         // in another compare instruction.
1369         SwapOperands = true;
1370       }
1371       else continue;
1372     }
1373     else if (CMPI1->getOperand(2).isImm() && CMPI2->getOperand(2).isImm()) {
1374       // In case of comparisons between a register and an immediate,
1375       // the operand register must be same for two compare instructions.
1376       unsigned Cmp1Operand1 = getSrcVReg(CMPI1->getOperand(1).getReg(),
1377                                          nullptr, nullptr, MRI);
1378       unsigned Cmp2Operand1 = getSrcVReg(CMPI2->getOperand(1).getReg(),
1379                                          MBB1, &MBB2, MRI);
1380       if (Cmp1Operand1 != Cmp2Operand1)
1381         continue;
1382 
1383       NewImm1 = Imm1 = (int16_t)CMPI1->getOperand(2).getImm();
1384       NewImm2 = Imm2 = (int16_t)CMPI2->getOperand(2).getImm();
1385 
1386       // If immediate are not same, we try to adjust by changing predicate;
1387       // e.g. GT imm means GE (imm+1).
1388       if (Imm1 != Imm2 && (!isEqOrNe(BI2) || !isEqOrNe(BI1))) {
1389         int Diff = Imm1 - Imm2;
1390         if (Diff < -2 || Diff > 2)
1391           continue;
1392 
1393         unsigned PredToInc1 = getPredicateToIncImm(BI1, CMPI1);
1394         unsigned PredToDec1 = getPredicateToDecImm(BI1, CMPI1);
1395         unsigned PredToInc2 = getPredicateToIncImm(BI2, CMPI2);
1396         unsigned PredToDec2 = getPredicateToDecImm(BI2, CMPI2);
1397         if (Diff == 2) {
1398           if (PredToInc2 && PredToDec1) {
1399             NewPredicate2 = PredToInc2;
1400             NewPredicate1 = PredToDec1;
1401             NewImm2++;
1402             NewImm1--;
1403           }
1404         }
1405         else if (Diff == 1) {
1406           if (PredToInc2) {
1407             NewImm2++;
1408             NewPredicate2 = PredToInc2;
1409           }
1410           else if (PredToDec1) {
1411             NewImm1--;
1412             NewPredicate1 = PredToDec1;
1413           }
1414         }
1415         else if (Diff == -1) {
1416           if (PredToDec2) {
1417             NewImm2--;
1418             NewPredicate2 = PredToDec2;
1419           }
1420           else if (PredToInc1) {
1421             NewImm1++;
1422             NewPredicate1 = PredToInc1;
1423           }
1424         }
1425         else if (Diff == -2) {
1426           if (PredToDec2 && PredToInc1) {
1427             NewPredicate2 = PredToDec2;
1428             NewPredicate1 = PredToInc1;
1429             NewImm2--;
1430             NewImm1++;
1431           }
1432         }
1433       }
1434 
1435       // We cannot merge two compares if the immediates are not same.
1436       if (NewImm2 != NewImm1)
1437         continue;
1438     }
1439 
1440     LLVM_DEBUG(dbgs() << "Optimize two pairs of compare and branch:\n");
1441     LLVM_DEBUG(CMPI1->dump());
1442     LLVM_DEBUG(BI1->dump());
1443     LLVM_DEBUG(CMPI2->dump());
1444     LLVM_DEBUG(BI2->dump());
1445 
1446     // We adjust opcode, predicates and immediate as we determined above.
1447     if (NewOpCode != 0 && NewOpCode != CMPI1->getOpcode()) {
1448       CMPI1->setDesc(TII->get(NewOpCode));
1449     }
1450     if (NewPredicate1) {
1451       BI1->getOperand(0).setImm(NewPredicate1);
1452     }
1453     if (NewPredicate2) {
1454       BI2->getOperand(0).setImm(NewPredicate2);
1455     }
1456     if (NewImm1 != Imm1) {
1457       CMPI1->getOperand(2).setImm(NewImm1);
1458     }
1459 
1460     if (IsPartiallyRedundant) {
1461       // We touch up the compare instruction in MBB2 and move it to
1462       // a previous BB to handle partially redundant case.
1463       if (SwapOperands) {
1464         Register Op1 = CMPI2->getOperand(1).getReg();
1465         Register Op2 = CMPI2->getOperand(2).getReg();
1466         CMPI2->getOperand(1).setReg(Op2);
1467         CMPI2->getOperand(2).setReg(Op1);
1468       }
1469       if (NewImm2 != Imm2)
1470         CMPI2->getOperand(2).setImm(NewImm2);
1471 
1472       for (int I = 1; I <= 2; I++) {
1473         if (CMPI2->getOperand(I).isReg()) {
1474           MachineInstr *Inst = MRI->getVRegDef(CMPI2->getOperand(I).getReg());
1475           if (Inst->getParent() != &MBB2)
1476             continue;
1477 
1478           assert(Inst->getOpcode() == PPC::PHI &&
1479                  "We cannot support if an operand comes from this BB.");
1480           unsigned SrcReg = getIncomingRegForBlock(Inst, MBBtoMoveCmp);
1481           CMPI2->getOperand(I).setReg(SrcReg);
1482         }
1483       }
1484       auto I = MachineBasicBlock::iterator(MBBtoMoveCmp->getFirstTerminator());
1485       MBBtoMoveCmp->splice(I, &MBB2, MachineBasicBlock::iterator(CMPI2));
1486 
1487       DebugLoc DL = CMPI2->getDebugLoc();
1488       Register NewVReg = MRI->createVirtualRegister(&PPC::CRRCRegClass);
1489       BuildMI(MBB2, MBB2.begin(), DL,
1490               TII->get(PPC::PHI), NewVReg)
1491         .addReg(BI1->getOperand(1).getReg()).addMBB(MBB1)
1492         .addReg(BI2->getOperand(1).getReg()).addMBB(MBBtoMoveCmp);
1493       BI2->getOperand(1).setReg(NewVReg);
1494     }
1495     else {
1496       // We finally eliminate compare instruction in MBB2.
1497       BI2->getOperand(1).setReg(BI1->getOperand(1).getReg());
1498       CMPI2->eraseFromParent();
1499     }
1500     BI2->getOperand(1).setIsKill(true);
1501     BI1->getOperand(1).setIsKill(false);
1502 
1503     LLVM_DEBUG(dbgs() << "into a compare and two branches:\n");
1504     LLVM_DEBUG(CMPI1->dump());
1505     LLVM_DEBUG(BI1->dump());
1506     LLVM_DEBUG(BI2->dump());
1507     if (IsPartiallyRedundant) {
1508       LLVM_DEBUG(dbgs() << "The following compare is moved into "
1509                         << printMBBReference(*MBBtoMoveCmp)
1510                         << " to handle partial redundancy.\n");
1511       LLVM_DEBUG(CMPI2->dump());
1512     }
1513 
1514     Simplified = true;
1515   }
1516 
1517   return Simplified;
1518 }
1519 
1520 // We miss the opportunity to emit an RLDIC when lowering jump tables
1521 // since ISEL sees only a single basic block. When selecting, the clear
1522 // and shift left will be in different blocks.
1523 bool PPCMIPeephole::emitRLDICWhenLoweringJumpTables(MachineInstr &MI) {
1524   if (MI.getOpcode() != PPC::RLDICR)
1525     return false;
1526 
1527   Register SrcReg = MI.getOperand(1).getReg();
1528   if (!Register::isVirtualRegister(SrcReg))
1529     return false;
1530 
1531   MachineInstr *SrcMI = MRI->getVRegDef(SrcReg);
1532   if (SrcMI->getOpcode() != PPC::RLDICL)
1533     return false;
1534 
1535   MachineOperand MOpSHSrc = SrcMI->getOperand(2);
1536   MachineOperand MOpMBSrc = SrcMI->getOperand(3);
1537   MachineOperand MOpSHMI = MI.getOperand(2);
1538   MachineOperand MOpMEMI = MI.getOperand(3);
1539   if (!(MOpSHSrc.isImm() && MOpMBSrc.isImm() && MOpSHMI.isImm() &&
1540         MOpMEMI.isImm()))
1541     return false;
1542 
1543   uint64_t SHSrc = MOpSHSrc.getImm();
1544   uint64_t MBSrc = MOpMBSrc.getImm();
1545   uint64_t SHMI = MOpSHMI.getImm();
1546   uint64_t MEMI = MOpMEMI.getImm();
1547   uint64_t NewSH = SHSrc + SHMI;
1548   uint64_t NewMB = MBSrc - SHMI;
1549   if (NewMB > 63 || NewSH > 63)
1550     return false;
1551 
1552   // The bits cleared with RLDICL are [0, MBSrc).
1553   // The bits cleared with RLDICR are (MEMI, 63].
1554   // After the sequence, the bits cleared are:
1555   // [0, MBSrc-SHMI) and (MEMI, 63).
1556   //
1557   // The bits cleared with RLDIC are [0, NewMB) and (63-NewSH, 63].
1558   if ((63 - NewSH) != MEMI)
1559     return false;
1560 
1561   LLVM_DEBUG(dbgs() << "Converting pair: ");
1562   LLVM_DEBUG(SrcMI->dump());
1563   LLVM_DEBUG(MI.dump());
1564 
1565   MI.setDesc(TII->get(PPC::RLDIC));
1566   MI.getOperand(1).setReg(SrcMI->getOperand(1).getReg());
1567   MI.getOperand(2).setImm(NewSH);
1568   MI.getOperand(3).setImm(NewMB);
1569   MI.getOperand(1).setIsKill(SrcMI->getOperand(1).isKill());
1570   SrcMI->getOperand(1).setIsKill(false);
1571 
1572   LLVM_DEBUG(dbgs() << "To: ");
1573   LLVM_DEBUG(MI.dump());
1574   NumRotatesCollapsed++;
1575   // If SrcReg has no non-debug use it's safe to delete its def SrcMI.
1576   if (MRI->use_nodbg_empty(SrcReg)) {
1577     assert(!SrcMI->hasImplicitDef() &&
1578            "Not expecting an implicit def with this instr.");
1579     SrcMI->eraseFromParent();
1580   }
1581   return true;
1582 }
1583 
1584 // For case in LLVM IR
1585 // entry:
1586 //   %iconv = sext i32 %index to i64
1587 //   br i1 undef label %true, label %false
1588 // true:
1589 //   %ptr = getelementptr inbounds i32, i32* null, i64 %iconv
1590 // ...
1591 // PPCISelLowering::combineSHL fails to combine, because sext and shl are in
1592 // different BBs when conducting instruction selection. We can do a peephole
1593 // optimization to combine these two instructions into extswsli after
1594 // instruction selection.
1595 bool PPCMIPeephole::combineSEXTAndSHL(MachineInstr &MI,
1596                                       MachineInstr *&ToErase) {
1597   if (MI.getOpcode() != PPC::RLDICR)
1598     return false;
1599 
1600   if (!MF->getSubtarget<PPCSubtarget>().isISA3_0())
1601     return false;
1602 
1603   assert(MI.getNumOperands() == 4 && "RLDICR should have 4 operands");
1604 
1605   MachineOperand MOpSHMI = MI.getOperand(2);
1606   MachineOperand MOpMEMI = MI.getOperand(3);
1607   if (!(MOpSHMI.isImm() && MOpMEMI.isImm()))
1608     return false;
1609 
1610   uint64_t SHMI = MOpSHMI.getImm();
1611   uint64_t MEMI = MOpMEMI.getImm();
1612   if (SHMI + MEMI != 63)
1613     return false;
1614 
1615   Register SrcReg = MI.getOperand(1).getReg();
1616   if (!Register::isVirtualRegister(SrcReg))
1617     return false;
1618 
1619   MachineInstr *SrcMI = MRI->getVRegDef(SrcReg);
1620   if (SrcMI->getOpcode() != PPC::EXTSW &&
1621       SrcMI->getOpcode() != PPC::EXTSW_32_64)
1622     return false;
1623 
1624   // If the register defined by extsw has more than one use, combination is not
1625   // needed.
1626   if (!MRI->hasOneNonDBGUse(SrcReg))
1627     return false;
1628 
1629   assert(SrcMI->getNumOperands() == 2 && "EXTSW should have 2 operands");
1630   assert(SrcMI->getOperand(1).isReg() &&
1631          "EXTSW's second operand should be a register");
1632   if (!Register::isVirtualRegister(SrcMI->getOperand(1).getReg()))
1633     return false;
1634 
1635   LLVM_DEBUG(dbgs() << "Combining pair: ");
1636   LLVM_DEBUG(SrcMI->dump());
1637   LLVM_DEBUG(MI.dump());
1638 
1639   MachineInstr *NewInstr =
1640       BuildMI(*MI.getParent(), &MI, MI.getDebugLoc(),
1641               SrcMI->getOpcode() == PPC::EXTSW ? TII->get(PPC::EXTSWSLI)
1642                                                : TII->get(PPC::EXTSWSLI_32_64),
1643               MI.getOperand(0).getReg())
1644           .add(SrcMI->getOperand(1))
1645           .add(MOpSHMI);
1646   (void)NewInstr;
1647 
1648   LLVM_DEBUG(dbgs() << "TO: ");
1649   LLVM_DEBUG(NewInstr->dump());
1650   ++NumEXTSWAndSLDICombined;
1651   ToErase = &MI;
1652   // SrcMI, which is extsw, is of no use now, erase it.
1653   SrcMI->eraseFromParent();
1654   return true;
1655 }
1656 
1657 } // end default namespace
1658 
1659 INITIALIZE_PASS_BEGIN(PPCMIPeephole, DEBUG_TYPE,
1660                       "PowerPC MI Peephole Optimization", false, false)
1661 INITIALIZE_PASS_DEPENDENCY(MachineBlockFrequencyInfo)
1662 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
1663 INITIALIZE_PASS_DEPENDENCY(MachinePostDominatorTree)
1664 INITIALIZE_PASS_END(PPCMIPeephole, DEBUG_TYPE,
1665                     "PowerPC MI Peephole Optimization", false, false)
1666 
1667 char PPCMIPeephole::ID = 0;
1668 FunctionPass*
1669 llvm::createPPCMIPeepholePass() { return new PPCMIPeephole(); }
1670 
1671