1 //===-- PPCRegisterInfo.cpp - PowerPC Register Information ----------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file contains the PowerPC implementation of the TargetRegisterInfo
10 // class.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "PPCRegisterInfo.h"
15 #include "PPCFrameLowering.h"
16 #include "PPCInstrBuilder.h"
17 #include "PPCMachineFunctionInfo.h"
18 #include "PPCSubtarget.h"
19 #include "PPCTargetMachine.h"
20 #include "llvm/ADT/BitVector.h"
21 #include "llvm/ADT/STLExtras.h"
22 #include "llvm/ADT/Statistic.h"
23 #include "llvm/CodeGen/MachineFrameInfo.h"
24 #include "llvm/CodeGen/MachineFunction.h"
25 #include "llvm/CodeGen/MachineInstrBuilder.h"
26 #include "llvm/CodeGen/MachineModuleInfo.h"
27 #include "llvm/CodeGen/MachineRegisterInfo.h"
28 #include "llvm/CodeGen/RegisterScavenging.h"
29 #include "llvm/CodeGen/TargetFrameLowering.h"
30 #include "llvm/CodeGen/TargetInstrInfo.h"
31 #include "llvm/CodeGen/VirtRegMap.h"
32 #include "llvm/IR/CallingConv.h"
33 #include "llvm/IR/Constants.h"
34 #include "llvm/IR/Function.h"
35 #include "llvm/IR/Type.h"
36 #include "llvm/Support/CommandLine.h"
37 #include "llvm/Support/Debug.h"
38 #include "llvm/Support/ErrorHandling.h"
39 #include "llvm/Support/MathExtras.h"
40 #include "llvm/Support/raw_ostream.h"
41 #include "llvm/Target/TargetMachine.h"
42 #include "llvm/Target/TargetOptions.h"
43 #include <cstdlib>
44 
45 using namespace llvm;
46 
47 #define DEBUG_TYPE "reginfo"
48 
49 #define GET_REGINFO_TARGET_DESC
50 #include "PPCGenRegisterInfo.inc"
51 
52 STATISTIC(InflateGPRC, "Number of gprc inputs for getLargestLegalClass");
53 STATISTIC(InflateGP8RC, "Number of g8rc inputs for getLargestLegalClass");
54 
55 static cl::opt<bool>
56 EnableBasePointer("ppc-use-base-pointer", cl::Hidden, cl::init(true),
57          cl::desc("Enable use of a base pointer for complex stack frames"));
58 
59 static cl::opt<bool>
60 AlwaysBasePointer("ppc-always-use-base-pointer", cl::Hidden, cl::init(false),
61          cl::desc("Force the use of a base pointer in every function"));
62 
63 static cl::opt<bool>
64 EnableGPRToVecSpills("ppc-enable-gpr-to-vsr-spills", cl::Hidden, cl::init(false),
65          cl::desc("Enable spills from gpr to vsr rather than stack"));
66 
67 static cl::opt<bool>
68 StackPtrConst("ppc-stack-ptr-caller-preserved",
69                 cl::desc("Consider R1 caller preserved so stack saves of "
70                          "caller preserved registers can be LICM candidates"),
71                 cl::init(true), cl::Hidden);
72 
73 static cl::opt<unsigned>
74 MaxCRBitSpillDist("ppc-max-crbit-spill-dist",
75                   cl::desc("Maximum search distance for definition of CR bit "
76                            "spill on ppc"),
77                   cl::Hidden, cl::init(100));
78 
79 // Copies/moves of physical accumulators are expensive operations
80 // that should be avoided whenever possible. MMA instructions are
81 // meant to be used in performance-sensitive computational kernels.
82 // This option is provided, at least for the time being, to give the
83 // user a tool to detect this expensive operation and either rework
84 // their code or report a compiler bug if that turns out to be the
85 // cause.
86 #ifndef NDEBUG
87 static cl::opt<bool>
88 ReportAccMoves("ppc-report-acc-moves",
89                cl::desc("Emit information about accumulator register spills "
90                         "and copies"),
91                cl::Hidden, cl::init(false));
92 #endif
93 
94 extern cl::opt<bool> DisableAutoPairedVecSt;
95 
96 static unsigned offsetMinAlignForOpcode(unsigned OpC);
97 
98 PPCRegisterInfo::PPCRegisterInfo(const PPCTargetMachine &TM)
99   : PPCGenRegisterInfo(TM.isPPC64() ? PPC::LR8 : PPC::LR,
100                        TM.isPPC64() ? 0 : 1,
101                        TM.isPPC64() ? 0 : 1),
102     TM(TM) {
103   ImmToIdxMap[PPC::LD]   = PPC::LDX;    ImmToIdxMap[PPC::STD]  = PPC::STDX;
104   ImmToIdxMap[PPC::LBZ]  = PPC::LBZX;   ImmToIdxMap[PPC::STB]  = PPC::STBX;
105   ImmToIdxMap[PPC::LHZ]  = PPC::LHZX;   ImmToIdxMap[PPC::LHA]  = PPC::LHAX;
106   ImmToIdxMap[PPC::LWZ]  = PPC::LWZX;   ImmToIdxMap[PPC::LWA]  = PPC::LWAX;
107   ImmToIdxMap[PPC::LFS]  = PPC::LFSX;   ImmToIdxMap[PPC::LFD]  = PPC::LFDX;
108   ImmToIdxMap[PPC::STH]  = PPC::STHX;   ImmToIdxMap[PPC::STW]  = PPC::STWX;
109   ImmToIdxMap[PPC::STFS] = PPC::STFSX;  ImmToIdxMap[PPC::STFD] = PPC::STFDX;
110   ImmToIdxMap[PPC::ADDI] = PPC::ADD4;
111   ImmToIdxMap[PPC::LWA_32] = PPC::LWAX_32;
112 
113   // 64-bit
114   ImmToIdxMap[PPC::LHA8] = PPC::LHAX8; ImmToIdxMap[PPC::LBZ8] = PPC::LBZX8;
115   ImmToIdxMap[PPC::LHZ8] = PPC::LHZX8; ImmToIdxMap[PPC::LWZ8] = PPC::LWZX8;
116   ImmToIdxMap[PPC::STB8] = PPC::STBX8; ImmToIdxMap[PPC::STH8] = PPC::STHX8;
117   ImmToIdxMap[PPC::STW8] = PPC::STWX8; ImmToIdxMap[PPC::STDU] = PPC::STDUX;
118   ImmToIdxMap[PPC::ADDI8] = PPC::ADD8;
119   ImmToIdxMap[PPC::LQ] = PPC::LQX_PSEUDO;
120   ImmToIdxMap[PPC::STQ] = PPC::STQX_PSEUDO;
121 
122   // VSX
123   ImmToIdxMap[PPC::DFLOADf32] = PPC::LXSSPX;
124   ImmToIdxMap[PPC::DFLOADf64] = PPC::LXSDX;
125   ImmToIdxMap[PPC::SPILLTOVSR_LD] = PPC::SPILLTOVSR_LDX;
126   ImmToIdxMap[PPC::SPILLTOVSR_ST] = PPC::SPILLTOVSR_STX;
127   ImmToIdxMap[PPC::DFSTOREf32] = PPC::STXSSPX;
128   ImmToIdxMap[PPC::DFSTOREf64] = PPC::STXSDX;
129   ImmToIdxMap[PPC::LXV] = PPC::LXVX;
130   ImmToIdxMap[PPC::LXSD] = PPC::LXSDX;
131   ImmToIdxMap[PPC::LXSSP] = PPC::LXSSPX;
132   ImmToIdxMap[PPC::STXV] = PPC::STXVX;
133   ImmToIdxMap[PPC::STXSD] = PPC::STXSDX;
134   ImmToIdxMap[PPC::STXSSP] = PPC::STXSSPX;
135 
136   // SPE
137   ImmToIdxMap[PPC::EVLDD] = PPC::EVLDDX;
138   ImmToIdxMap[PPC::EVSTDD] = PPC::EVSTDDX;
139   ImmToIdxMap[PPC::SPESTW] = PPC::SPESTWX;
140   ImmToIdxMap[PPC::SPELWZ] = PPC::SPELWZX;
141 
142   // Power10
143   ImmToIdxMap[PPC::PLBZ]   = PPC::LBZX; ImmToIdxMap[PPC::PLBZ8]   = PPC::LBZX8;
144   ImmToIdxMap[PPC::PLHZ]   = PPC::LHZX; ImmToIdxMap[PPC::PLHZ8]   = PPC::LHZX8;
145   ImmToIdxMap[PPC::PLHA]   = PPC::LHAX; ImmToIdxMap[PPC::PLHA8]   = PPC::LHAX8;
146   ImmToIdxMap[PPC::PLWZ]   = PPC::LWZX; ImmToIdxMap[PPC::PLWZ8]   = PPC::LWZX8;
147   ImmToIdxMap[PPC::PLWA]   = PPC::LWAX; ImmToIdxMap[PPC::PLWA8]   = PPC::LWAX;
148   ImmToIdxMap[PPC::PLD]    = PPC::LDX;  ImmToIdxMap[PPC::PSTD]   = PPC::STDX;
149 
150   ImmToIdxMap[PPC::PSTB]   = PPC::STBX; ImmToIdxMap[PPC::PSTB8]   = PPC::STBX8;
151   ImmToIdxMap[PPC::PSTH]   = PPC::STHX; ImmToIdxMap[PPC::PSTH8]   = PPC::STHX8;
152   ImmToIdxMap[PPC::PSTW]   = PPC::STWX; ImmToIdxMap[PPC::PSTW8]   = PPC::STWX8;
153 
154   ImmToIdxMap[PPC::PLFS]   = PPC::LFSX; ImmToIdxMap[PPC::PSTFS]   = PPC::STFSX;
155   ImmToIdxMap[PPC::PLFD]   = PPC::LFDX; ImmToIdxMap[PPC::PSTFD]   = PPC::STFDX;
156   ImmToIdxMap[PPC::PLXSSP] = PPC::LXSSPX; ImmToIdxMap[PPC::PSTXSSP] = PPC::STXSSPX;
157   ImmToIdxMap[PPC::PLXSD]  = PPC::LXSDX; ImmToIdxMap[PPC::PSTXSD]  = PPC::STXSDX;
158   ImmToIdxMap[PPC::PLXV]   = PPC::LXVX; ImmToIdxMap[PPC::PSTXV]  = PPC::STXVX;
159 
160   ImmToIdxMap[PPC::LXVP]   = PPC::LXVPX;
161   ImmToIdxMap[PPC::STXVP]  = PPC::STXVPX;
162   ImmToIdxMap[PPC::PLXVP]  = PPC::LXVPX;
163   ImmToIdxMap[PPC::PSTXVP] = PPC::STXVPX;
164 }
165 
166 /// getPointerRegClass - Return the register class to use to hold pointers.
167 /// This is used for addressing modes.
168 const TargetRegisterClass *
169 PPCRegisterInfo::getPointerRegClass(const MachineFunction &MF, unsigned Kind)
170                                                                        const {
171   // Note that PPCInstrInfo::FoldImmediate also directly uses this Kind value
172   // when it checks for ZERO folding.
173   if (Kind == 1) {
174     if (TM.isPPC64())
175       return &PPC::G8RC_NOX0RegClass;
176     return &PPC::GPRC_NOR0RegClass;
177   }
178 
179   if (TM.isPPC64())
180     return &PPC::G8RCRegClass;
181   return &PPC::GPRCRegClass;
182 }
183 
184 const MCPhysReg*
185 PPCRegisterInfo::getCalleeSavedRegs(const MachineFunction *MF) const {
186   const PPCSubtarget &Subtarget = MF->getSubtarget<PPCSubtarget>();
187   if (MF->getFunction().getCallingConv() == CallingConv::AnyReg) {
188     if (!TM.isPPC64() && Subtarget.isAIXABI())
189       report_fatal_error("AnyReg unimplemented on 32-bit AIX.");
190     if (Subtarget.hasVSX()) {
191       if (Subtarget.pairedVectorMemops())
192         return CSR_64_AllRegs_VSRP_SaveList;
193       if (Subtarget.isAIXABI() && !TM.getAIXExtendedAltivecABI())
194         return CSR_64_AllRegs_AIX_Dflt_VSX_SaveList;
195       return CSR_64_AllRegs_VSX_SaveList;
196     }
197     if (Subtarget.hasAltivec()) {
198       if (Subtarget.isAIXABI() && !TM.getAIXExtendedAltivecABI())
199         return CSR_64_AllRegs_AIX_Dflt_Altivec_SaveList;
200       return CSR_64_AllRegs_Altivec_SaveList;
201     }
202     return CSR_64_AllRegs_SaveList;
203   }
204 
205   // On PPC64, we might need to save r2 (but only if it is not reserved).
206   // We do not need to treat R2 as callee-saved when using PC-Relative calls
207   // because any direct uses of R2 will cause it to be reserved. If the function
208   // is a leaf or the only uses of R2 are implicit uses for calls, the calls
209   // will use the @notoc relocation which will cause this function to set the
210   // st_other bit to 1, thereby communicating to its caller that it arbitrarily
211   // clobbers the TOC.
212   bool SaveR2 = MF->getRegInfo().isAllocatable(PPC::X2) &&
213                 !Subtarget.isUsingPCRelativeCalls();
214 
215   // Cold calling convention CSRs.
216   if (MF->getFunction().getCallingConv() == CallingConv::Cold) {
217     if (Subtarget.isAIXABI())
218       report_fatal_error("Cold calling unimplemented on AIX.");
219     if (TM.isPPC64()) {
220       if (Subtarget.pairedVectorMemops())
221         return SaveR2 ? CSR_SVR64_ColdCC_R2_VSRP_SaveList
222                       : CSR_SVR64_ColdCC_VSRP_SaveList;
223       if (Subtarget.hasAltivec())
224         return SaveR2 ? CSR_SVR64_ColdCC_R2_Altivec_SaveList
225                       : CSR_SVR64_ColdCC_Altivec_SaveList;
226       return SaveR2 ? CSR_SVR64_ColdCC_R2_SaveList
227                     : CSR_SVR64_ColdCC_SaveList;
228     }
229     // 32-bit targets.
230     if (Subtarget.pairedVectorMemops())
231       return CSR_SVR32_ColdCC_VSRP_SaveList;
232     else if (Subtarget.hasAltivec())
233       return CSR_SVR32_ColdCC_Altivec_SaveList;
234     else if (Subtarget.hasSPE())
235       return CSR_SVR32_ColdCC_SPE_SaveList;
236     return CSR_SVR32_ColdCC_SaveList;
237   }
238   // Standard calling convention CSRs.
239   if (TM.isPPC64()) {
240     if (Subtarget.pairedVectorMemops()) {
241       if (Subtarget.isAIXABI()) {
242         if (!TM.getAIXExtendedAltivecABI())
243           return SaveR2 ? CSR_PPC64_R2_SaveList : CSR_PPC64_SaveList;
244         return SaveR2 ? CSR_AIX64_R2_VSRP_SaveList : CSR_AIX64_VSRP_SaveList;
245       }
246       return SaveR2 ? CSR_SVR464_R2_VSRP_SaveList : CSR_SVR464_VSRP_SaveList;
247     }
248     if (Subtarget.hasAltivec() &&
249         (!Subtarget.isAIXABI() || TM.getAIXExtendedAltivecABI())) {
250       return SaveR2 ? CSR_PPC64_R2_Altivec_SaveList
251                     : CSR_PPC64_Altivec_SaveList;
252     }
253     return SaveR2 ? CSR_PPC64_R2_SaveList : CSR_PPC64_SaveList;
254   }
255   // 32-bit targets.
256   if (Subtarget.isAIXABI()) {
257     if (Subtarget.pairedVectorMemops())
258       return TM.getAIXExtendedAltivecABI() ? CSR_AIX32_VSRP_SaveList
259                                            : CSR_AIX32_SaveList;
260     if (Subtarget.hasAltivec())
261       return TM.getAIXExtendedAltivecABI() ? CSR_AIX32_Altivec_SaveList
262                                            : CSR_AIX32_SaveList;
263     return CSR_AIX32_SaveList;
264   }
265   if (Subtarget.pairedVectorMemops())
266     return CSR_SVR432_VSRP_SaveList;
267   if (Subtarget.hasAltivec())
268     return CSR_SVR432_Altivec_SaveList;
269   else if (Subtarget.hasSPE()) {
270     if (TM.isPositionIndependent() && !TM.isPPC64())
271       return CSR_SVR432_SPE_NO_S30_31_SaveList;
272     return CSR_SVR432_SPE_SaveList;
273    }
274   return CSR_SVR432_SaveList;
275 }
276 
277 const uint32_t *
278 PPCRegisterInfo::getCallPreservedMask(const MachineFunction &MF,
279                                       CallingConv::ID CC) const {
280   const PPCSubtarget &Subtarget = MF.getSubtarget<PPCSubtarget>();
281   if (CC == CallingConv::AnyReg) {
282     if (Subtarget.hasVSX()) {
283       if (Subtarget.pairedVectorMemops())
284         return CSR_64_AllRegs_VSRP_RegMask;
285       if (Subtarget.isAIXABI() && !TM.getAIXExtendedAltivecABI())
286         return CSR_64_AllRegs_AIX_Dflt_VSX_RegMask;
287       return CSR_64_AllRegs_VSX_RegMask;
288     }
289     if (Subtarget.hasAltivec()) {
290       if (Subtarget.isAIXABI() && !TM.getAIXExtendedAltivecABI())
291         return CSR_64_AllRegs_AIX_Dflt_Altivec_RegMask;
292       return CSR_64_AllRegs_Altivec_RegMask;
293     }
294     return CSR_64_AllRegs_RegMask;
295   }
296 
297   if (Subtarget.isAIXABI()) {
298     if (Subtarget.pairedVectorMemops()) {
299       if (!TM.getAIXExtendedAltivecABI())
300         return TM.isPPC64() ? CSR_PPC64_RegMask : CSR_AIX32_RegMask;
301       return TM.isPPC64() ? CSR_AIX64_VSRP_RegMask : CSR_AIX32_VSRP_RegMask;
302     }
303     return TM.isPPC64()
304                ? ((Subtarget.hasAltivec() && TM.getAIXExtendedAltivecABI())
305                       ? CSR_PPC64_Altivec_RegMask
306                       : CSR_PPC64_RegMask)
307                : ((Subtarget.hasAltivec() && TM.getAIXExtendedAltivecABI())
308                       ? CSR_AIX32_Altivec_RegMask
309                       : CSR_AIX32_RegMask);
310   }
311 
312   if (CC == CallingConv::Cold) {
313     if (TM.isPPC64())
314       return Subtarget.pairedVectorMemops()
315                  ? CSR_SVR64_ColdCC_VSRP_RegMask
316                  : (Subtarget.hasAltivec() ? CSR_SVR64_ColdCC_Altivec_RegMask
317                                            : CSR_SVR64_ColdCC_RegMask);
318     else
319       return Subtarget.pairedVectorMemops()
320                  ? CSR_SVR32_ColdCC_VSRP_RegMask
321                  : (Subtarget.hasAltivec()
322                         ? CSR_SVR32_ColdCC_Altivec_RegMask
323                         : (Subtarget.hasSPE() ? CSR_SVR32_ColdCC_SPE_RegMask
324                                               : CSR_SVR32_ColdCC_RegMask));
325   }
326 
327   if (TM.isPPC64())
328     return Subtarget.pairedVectorMemops()
329                ? CSR_SVR464_VSRP_RegMask
330                : (Subtarget.hasAltivec() ? CSR_PPC64_Altivec_RegMask
331                                          : CSR_PPC64_RegMask);
332   else
333     return Subtarget.pairedVectorMemops()
334                ? CSR_SVR432_VSRP_RegMask
335                : (Subtarget.hasAltivec()
336                       ? CSR_SVR432_Altivec_RegMask
337                       : (Subtarget.hasSPE()
338                              ? (TM.isPositionIndependent()
339                                      ? CSR_SVR432_SPE_NO_S30_31_RegMask
340                                      : CSR_SVR432_SPE_RegMask)
341                              : CSR_SVR432_RegMask));
342 }
343 
344 const uint32_t*
345 PPCRegisterInfo::getNoPreservedMask() const {
346   return CSR_NoRegs_RegMask;
347 }
348 
349 void PPCRegisterInfo::adjustStackMapLiveOutMask(uint32_t *Mask) const {
350   for (unsigned PseudoReg : {PPC::ZERO, PPC::ZERO8, PPC::RM})
351     Mask[PseudoReg / 32] &= ~(1u << (PseudoReg % 32));
352 }
353 
354 BitVector PPCRegisterInfo::getReservedRegs(const MachineFunction &MF) const {
355   BitVector Reserved(getNumRegs());
356   const PPCSubtarget &Subtarget = MF.getSubtarget<PPCSubtarget>();
357   const PPCFrameLowering *TFI = getFrameLowering(MF);
358 
359   // The ZERO register is not really a register, but the representation of r0
360   // when used in instructions that treat r0 as the constant 0.
361   markSuperRegs(Reserved, PPC::ZERO);
362 
363   // The FP register is also not really a register, but is the representation
364   // of the frame pointer register used by ISD::FRAMEADDR.
365   markSuperRegs(Reserved, PPC::FP);
366 
367   // The BP register is also not really a register, but is the representation
368   // of the base pointer register used by setjmp.
369   markSuperRegs(Reserved, PPC::BP);
370 
371   // The counter registers must be reserved so that counter-based loops can
372   // be correctly formed (and the mtctr instructions are not DCE'd).
373   markSuperRegs(Reserved, PPC::CTR);
374   markSuperRegs(Reserved, PPC::CTR8);
375 
376   markSuperRegs(Reserved, PPC::R1);
377   markSuperRegs(Reserved, PPC::LR);
378   markSuperRegs(Reserved, PPC::LR8);
379   markSuperRegs(Reserved, PPC::RM);
380 
381   markSuperRegs(Reserved, PPC::VRSAVE);
382 
383   // The SVR4 ABI reserves r2 and r13
384   if (Subtarget.isSVR4ABI()) {
385     // We only reserve r2 if we need to use the TOC pointer. If we have no
386     // explicit uses of the TOC pointer (meaning we're a leaf function with
387     // no constant-pool loads, etc.) and we have no potential uses inside an
388     // inline asm block, then we can treat r2 has an ordinary callee-saved
389     // register.
390     const PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
391     if (!TM.isPPC64() || FuncInfo->usesTOCBasePtr() || MF.hasInlineAsm())
392       markSuperRegs(Reserved, PPC::R2);  // System-reserved register
393     markSuperRegs(Reserved, PPC::R13); // Small Data Area pointer register
394   }
395 
396   // Always reserve r2 on AIX for now.
397   // TODO: Make r2 allocatable on AIX/XCOFF for some leaf functions.
398   if (Subtarget.isAIXABI())
399     markSuperRegs(Reserved, PPC::R2);  // System-reserved register
400 
401   // On PPC64, r13 is the thread pointer. Never allocate this register.
402   if (TM.isPPC64())
403     markSuperRegs(Reserved, PPC::R13);
404 
405   if (TFI->needsFP(MF))
406     markSuperRegs(Reserved, PPC::R31);
407 
408   bool IsPositionIndependent = TM.isPositionIndependent();
409   if (hasBasePointer(MF)) {
410     if (Subtarget.is32BitELFABI() && IsPositionIndependent)
411       markSuperRegs(Reserved, PPC::R29);
412     else
413       markSuperRegs(Reserved, PPC::R30);
414   }
415 
416   if (Subtarget.is32BitELFABI() && IsPositionIndependent)
417     markSuperRegs(Reserved, PPC::R30);
418 
419   // Reserve Altivec registers when Altivec is unavailable.
420   if (!Subtarget.hasAltivec())
421     for (MCRegister Reg : PPC::VRRCRegClass)
422       markSuperRegs(Reserved, Reg);
423 
424   if (Subtarget.isAIXABI() && Subtarget.hasAltivec() &&
425       !TM.getAIXExtendedAltivecABI()) {
426     //  In the AIX default Altivec ABI, vector registers VR20-VR31 are reserved
427     //  and cannot be used.
428     for (auto Reg : CSR_Altivec_SaveList) {
429       if (Reg == 0)
430         break;
431       markSuperRegs(Reserved, Reg);
432       for (MCRegAliasIterator AS(Reg, this, true); AS.isValid(); ++AS) {
433         Reserved.set(*AS);
434       }
435     }
436   }
437 
438   assert(checkAllSuperRegsMarked(Reserved));
439   return Reserved;
440 }
441 
442 bool PPCRegisterInfo::isAsmClobberable(const MachineFunction &MF,
443                                        MCRegister PhysReg) const {
444   // We cannot use getReservedRegs() to find the registers that are not asm
445   // clobberable because there are some reserved registers which can be
446   // clobbered by inline asm. For example, when LR is clobbered, the register is
447   // saved and restored. We will hardcode the registers that are not asm
448   // cloberable in this function.
449 
450   // The stack pointer (R1/X1) is not clobberable by inline asm
451   return PhysReg != PPC::R1 && PhysReg != PPC::X1;
452 }
453 
454 bool PPCRegisterInfo::requiresFrameIndexScavenging(const MachineFunction &MF) const {
455   const PPCSubtarget &Subtarget = MF.getSubtarget<PPCSubtarget>();
456   const PPCInstrInfo *InstrInfo =  Subtarget.getInstrInfo();
457   const MachineFrameInfo &MFI = MF.getFrameInfo();
458   const std::vector<CalleeSavedInfo> &Info = MFI.getCalleeSavedInfo();
459 
460   LLVM_DEBUG(dbgs() << "requiresFrameIndexScavenging for " << MF.getName()
461                     << ".\n");
462   // If the callee saved info is invalid we have to default to true for safety.
463   if (!MFI.isCalleeSavedInfoValid()) {
464     LLVM_DEBUG(dbgs() << "TRUE - Invalid callee saved info.\n");
465     return true;
466   }
467 
468   // We will require the use of X-Forms because the frame is larger than what
469   // can be represented in signed 16 bits that fit in the immediate of a D-Form.
470   // If we need an X-Form then we need a register to store the address offset.
471   unsigned FrameSize = MFI.getStackSize();
472   // Signed 16 bits means that the FrameSize cannot be more than 15 bits.
473   if (FrameSize & ~0x7FFF) {
474     LLVM_DEBUG(dbgs() << "TRUE - Frame size is too large for D-Form.\n");
475     return true;
476   }
477 
478   // The callee saved info is valid so it can be traversed.
479   // Checking for registers that need saving that do not have load or store
480   // forms where the address offset is an immediate.
481   for (const CalleeSavedInfo &CSI : Info) {
482     // If the spill is to a register no scavenging is required.
483     if (CSI.isSpilledToReg())
484       continue;
485 
486     int FrIdx = CSI.getFrameIdx();
487     Register Reg = CSI.getReg();
488 
489     const TargetRegisterClass *RC = getMinimalPhysRegClass(Reg);
490     unsigned Opcode = InstrInfo->getStoreOpcodeForSpill(RC);
491     if (!MFI.isFixedObjectIndex(FrIdx)) {
492       // This is not a fixed object. If it requires alignment then we may still
493       // need to use the XForm.
494       if (offsetMinAlignForOpcode(Opcode) > 1) {
495         LLVM_DEBUG(dbgs() << "Memory Operand: " << InstrInfo->getName(Opcode)
496                           << " for register " << printReg(Reg, this) << ".\n");
497         LLVM_DEBUG(dbgs() << "TRUE - Not fixed frame object that requires "
498                           << "alignment.\n");
499         return true;
500       }
501     }
502 
503     // This is eiher:
504     // 1) A fixed frame index object which we know are aligned so
505     // as long as we have a valid DForm/DSForm/DQForm (non XForm) we don't
506     // need to consider the alignment here.
507     // 2) A not fixed object but in that case we now know that the min required
508     // alignment is no more than 1 based on the previous check.
509     if (InstrInfo->isXFormMemOp(Opcode)) {
510       LLVM_DEBUG(dbgs() << "Memory Operand: " << InstrInfo->getName(Opcode)
511                         << " for register " << printReg(Reg, this) << ".\n");
512       LLVM_DEBUG(dbgs() << "TRUE - Memory operand is X-Form.\n");
513       return true;
514     }
515 
516     // This is a spill/restore of a quadword.
517     if ((Opcode == PPC::RESTORE_QUADWORD) || (Opcode == PPC::SPILL_QUADWORD)) {
518       LLVM_DEBUG(dbgs() << "Memory Operand: " << InstrInfo->getName(Opcode)
519                         << " for register " << printReg(Reg, this) << ".\n");
520       LLVM_DEBUG(dbgs() << "TRUE - Memory operand is a quadword.\n");
521       return true;
522     }
523   }
524   LLVM_DEBUG(dbgs() << "FALSE - Scavenging is not required.\n");
525   return false;
526 }
527 
528 bool PPCRegisterInfo::requiresVirtualBaseRegisters(
529     const MachineFunction &MF) const {
530   const PPCSubtarget &Subtarget = MF.getSubtarget<PPCSubtarget>();
531   // Do not use virtual base registers when ROP protection is turned on.
532   // Virtual base registers break the layout of the local variable space and may
533   // push the ROP Hash location past the 512 byte range of the ROP store
534   // instruction.
535   return !Subtarget.hasROPProtect();
536 }
537 
538 bool PPCRegisterInfo::isCallerPreservedPhysReg(MCRegister PhysReg,
539                                                const MachineFunction &MF) const {
540   assert(Register::isPhysicalRegister(PhysReg));
541   const PPCSubtarget &Subtarget = MF.getSubtarget<PPCSubtarget>();
542   const MachineFrameInfo &MFI = MF.getFrameInfo();
543 
544   if (!Subtarget.is64BitELFABI() && !Subtarget.isAIXABI())
545     return false;
546   if (PhysReg == Subtarget.getTOCPointerRegister())
547     // X2/R2 is guaranteed to be preserved within a function if it is reserved.
548     // The reason it's reserved is that it's the TOC pointer (and the function
549     // uses the TOC). In functions where it isn't reserved (i.e. leaf functions
550     // with no TOC access), we can't claim that it is preserved.
551     return (getReservedRegs(MF).test(PhysReg));
552   if (StackPtrConst && PhysReg == Subtarget.getStackPointerRegister() &&
553       !MFI.hasVarSizedObjects() && !MFI.hasOpaqueSPAdjustment())
554     // The value of the stack pointer does not change within a function after
555     // the prologue and before the epilogue if there are no dynamic allocations
556     // and no inline asm which clobbers X1/R1.
557     return true;
558   return false;
559 }
560 
561 bool PPCRegisterInfo::getRegAllocationHints(Register VirtReg,
562                                             ArrayRef<MCPhysReg> Order,
563                                             SmallVectorImpl<MCPhysReg> &Hints,
564                                             const MachineFunction &MF,
565                                             const VirtRegMap *VRM,
566                                             const LiveRegMatrix *Matrix) const {
567   const MachineRegisterInfo *MRI = &MF.getRegInfo();
568 
569   // Call the base implementation first to set any hints based on the usual
570   // heuristics and decide what the return value should be. We want to return
571   // the same value returned by the base implementation. If the base
572   // implementation decides to return true and force the allocation then we
573   // will leave it as such. On the other hand if the base implementation
574   // decides to return false the following code will not force the allocation
575   // as we are just looking to provide a hint.
576   bool BaseImplRetVal = TargetRegisterInfo::getRegAllocationHints(
577       VirtReg, Order, Hints, MF, VRM, Matrix);
578 
579   // Don't use the allocation hints for ISAFuture.
580   // The WACC registers used in ISAFuture are unlike the ACC registers on
581   // Power 10 and so this logic to register allocation hints does not apply.
582   if (MF.getSubtarget<PPCSubtarget>().isISAFuture())
583     return BaseImplRetVal;
584 
585   // We are interested in instructions that copy values to ACC/UACC.
586   // The copy into UACC will be simply a COPY to a subreg so we
587   // want to allocate the corresponding physical subreg for the source.
588   // The copy into ACC will be a BUILD_UACC so we want to allocate
589   // the same number UACC for the source.
590   const TargetRegisterClass *RegClass = MRI->getRegClass(VirtReg);
591   for (MachineInstr &Use : MRI->reg_nodbg_instructions(VirtReg)) {
592     const MachineOperand *ResultOp = nullptr;
593     Register ResultReg;
594     switch (Use.getOpcode()) {
595     case TargetOpcode::COPY: {
596       ResultOp = &Use.getOperand(0);
597       ResultReg = ResultOp->getReg();
598       if (ResultReg.isVirtual() &&
599           MRI->getRegClass(ResultReg)->contains(PPC::UACC0) &&
600           VRM->hasPhys(ResultReg)) {
601         Register UACCPhys = VRM->getPhys(ResultReg);
602         Register HintReg;
603         if (RegClass->contains(PPC::VSRp0)) {
604           HintReg = getSubReg(UACCPhys, ResultOp->getSubReg());
605           // Ensure that the hint is a VSRp register.
606           if (HintReg >= PPC::VSRp0 && HintReg <= PPC::VSRp31)
607             Hints.push_back(HintReg);
608         } else if (RegClass->contains(PPC::ACC0)) {
609           HintReg = PPC::ACC0 + (UACCPhys - PPC::UACC0);
610           if (HintReg >= PPC::ACC0 && HintReg <= PPC::ACC7)
611             Hints.push_back(HintReg);
612         }
613       }
614       break;
615     }
616     case PPC::BUILD_UACC: {
617       ResultOp = &Use.getOperand(0);
618       ResultReg = ResultOp->getReg();
619       if (MRI->getRegClass(ResultReg)->contains(PPC::ACC0) &&
620           VRM->hasPhys(ResultReg)) {
621         Register ACCPhys = VRM->getPhys(ResultReg);
622         assert((ACCPhys >= PPC::ACC0 && ACCPhys <= PPC::ACC7) &&
623                "Expecting an ACC register for BUILD_UACC.");
624         Register HintReg = PPC::UACC0 + (ACCPhys - PPC::ACC0);
625         Hints.push_back(HintReg);
626       }
627       break;
628     }
629     }
630   }
631   return BaseImplRetVal;
632 }
633 
634 unsigned PPCRegisterInfo::getRegPressureLimit(const TargetRegisterClass *RC,
635                                               MachineFunction &MF) const {
636   const PPCFrameLowering *TFI = getFrameLowering(MF);
637   const unsigned DefaultSafety = 1;
638 
639   switch (RC->getID()) {
640   default:
641     return 0;
642   case PPC::G8RC_NOX0RegClassID:
643   case PPC::GPRC_NOR0RegClassID:
644   case PPC::SPERCRegClassID:
645   case PPC::G8RCRegClassID:
646   case PPC::GPRCRegClassID: {
647     unsigned FP = TFI->hasFP(MF) ? 1 : 0;
648     return 32 - FP - DefaultSafety;
649   }
650   case PPC::F4RCRegClassID:
651   case PPC::F8RCRegClassID:
652   case PPC::VSLRCRegClassID:
653     return 32 - DefaultSafety;
654   case PPC::VFRCRegClassID:
655   case PPC::VRRCRegClassID: {
656     const PPCSubtarget &Subtarget = MF.getSubtarget<PPCSubtarget>();
657     // Vector registers VR20-VR31 are reserved and cannot be used in the default
658     // Altivec ABI on AIX.
659     if (!TM.getAIXExtendedAltivecABI() && Subtarget.isAIXABI())
660       return 20 - DefaultSafety;
661   }
662     return 32 - DefaultSafety;
663   case PPC::VSFRCRegClassID:
664   case PPC::VSSRCRegClassID:
665   case PPC::VSRCRegClassID: {
666     const PPCSubtarget &Subtarget = MF.getSubtarget<PPCSubtarget>();
667     if (!TM.getAIXExtendedAltivecABI() && Subtarget.isAIXABI())
668       // Vector registers VR20-VR31 are reserved and cannot be used in the
669       // default Altivec ABI on AIX.
670       return 52 - DefaultSafety;
671   }
672     return 64 - DefaultSafety;
673   case PPC::CRRCRegClassID:
674     return 8 - DefaultSafety;
675   }
676 }
677 
678 const TargetRegisterClass *
679 PPCRegisterInfo::getLargestLegalSuperClass(const TargetRegisterClass *RC,
680                                            const MachineFunction &MF) const {
681   const PPCSubtarget &Subtarget = MF.getSubtarget<PPCSubtarget>();
682   const auto *DefaultSuperclass =
683       TargetRegisterInfo::getLargestLegalSuperClass(RC, MF);
684   if (Subtarget.hasVSX()) {
685     // With VSX, we can inflate various sub-register classes to the full VSX
686     // register set.
687 
688     // For Power9 we allow the user to enable GPR to vector spills.
689     // FIXME: Currently limited to spilling GP8RC. A follow on patch will add
690     // support to spill GPRC.
691     if (TM.isELFv2ABI() || Subtarget.isAIXABI()) {
692       if (Subtarget.hasP9Vector() && EnableGPRToVecSpills &&
693           RC == &PPC::G8RCRegClass) {
694         InflateGP8RC++;
695         return &PPC::SPILLTOVSRRCRegClass;
696       }
697       if (RC == &PPC::GPRCRegClass && EnableGPRToVecSpills)
698         InflateGPRC++;
699     }
700 
701     for (const auto *I = RC->getSuperClasses(); *I; ++I) {
702       if (getRegSizeInBits(**I) != getRegSizeInBits(*RC))
703         continue;
704 
705       switch ((*I)->getID()) {
706       case PPC::VSSRCRegClassID:
707         return Subtarget.hasP8Vector() ? *I : DefaultSuperclass;
708       case PPC::VSFRCRegClassID:
709       case PPC::VSRCRegClassID:
710         return *I;
711       case PPC::VSRpRCRegClassID:
712         return Subtarget.pairedVectorMemops() ? *I : DefaultSuperclass;
713       case PPC::ACCRCRegClassID:
714       case PPC::UACCRCRegClassID:
715         return Subtarget.hasMMA() ? *I : DefaultSuperclass;
716       }
717     }
718   }
719 
720   return DefaultSuperclass;
721 }
722 
723 //===----------------------------------------------------------------------===//
724 // Stack Frame Processing methods
725 //===----------------------------------------------------------------------===//
726 
727 /// lowerDynamicAlloc - Generate the code for allocating an object in the
728 /// current frame.  The sequence of code will be in the general form
729 ///
730 ///   addi   R0, SP, \#frameSize ; get the address of the previous frame
731 ///   stwxu  R0, SP, Rnegsize   ; add and update the SP with the negated size
732 ///   addi   Rnew, SP, \#maxCalFrameSize ; get the top of the allocation
733 ///
734 void PPCRegisterInfo::lowerDynamicAlloc(MachineBasicBlock::iterator II) const {
735   // Get the instruction.
736   MachineInstr &MI = *II;
737   // Get the instruction's basic block.
738   MachineBasicBlock &MBB = *MI.getParent();
739   // Get the basic block's function.
740   MachineFunction &MF = *MBB.getParent();
741   // Get the frame info.
742   MachineFrameInfo &MFI = MF.getFrameInfo();
743   const PPCSubtarget &Subtarget = MF.getSubtarget<PPCSubtarget>();
744   // Get the instruction info.
745   const TargetInstrInfo &TII = *Subtarget.getInstrInfo();
746   // Determine whether 64-bit pointers are used.
747   bool LP64 = TM.isPPC64();
748   DebugLoc dl = MI.getDebugLoc();
749 
750   // Get the maximum call stack size.
751   unsigned maxCallFrameSize = MFI.getMaxCallFrameSize();
752   Align MaxAlign = MFI.getMaxAlign();
753   assert(isAligned(MaxAlign, maxCallFrameSize) &&
754          "Maximum call-frame size not sufficiently aligned");
755   (void)MaxAlign;
756 
757   const TargetRegisterClass *G8RC = &PPC::G8RCRegClass;
758   const TargetRegisterClass *GPRC = &PPC::GPRCRegClass;
759   Register Reg = MF.getRegInfo().createVirtualRegister(LP64 ? G8RC : GPRC);
760   bool KillNegSizeReg = MI.getOperand(1).isKill();
761   Register NegSizeReg = MI.getOperand(1).getReg();
762 
763   prepareDynamicAlloca(II, NegSizeReg, KillNegSizeReg, Reg);
764   // Grow the stack and update the stack pointer link, then determine the
765   // address of new allocated space.
766   if (LP64) {
767     BuildMI(MBB, II, dl, TII.get(PPC::STDUX), PPC::X1)
768         .addReg(Reg, RegState::Kill)
769         .addReg(PPC::X1)
770         .addReg(NegSizeReg, getKillRegState(KillNegSizeReg));
771     BuildMI(MBB, II, dl, TII.get(PPC::ADDI8), MI.getOperand(0).getReg())
772         .addReg(PPC::X1)
773         .addImm(maxCallFrameSize);
774   } else {
775     BuildMI(MBB, II, dl, TII.get(PPC::STWUX), PPC::R1)
776         .addReg(Reg, RegState::Kill)
777         .addReg(PPC::R1)
778         .addReg(NegSizeReg, getKillRegState(KillNegSizeReg));
779     BuildMI(MBB, II, dl, TII.get(PPC::ADDI), MI.getOperand(0).getReg())
780         .addReg(PPC::R1)
781         .addImm(maxCallFrameSize);
782   }
783 
784   // Discard the DYNALLOC instruction.
785   MBB.erase(II);
786 }
787 
788 /// To accomplish dynamic stack allocation, we have to calculate exact size
789 /// subtracted from the stack pointer according alignment information and get
790 /// previous frame pointer.
791 void PPCRegisterInfo::prepareDynamicAlloca(MachineBasicBlock::iterator II,
792                                            Register &NegSizeReg,
793                                            bool &KillNegSizeReg,
794                                            Register &FramePointer) const {
795   // Get the instruction.
796   MachineInstr &MI = *II;
797   // Get the instruction's basic block.
798   MachineBasicBlock &MBB = *MI.getParent();
799   // Get the basic block's function.
800   MachineFunction &MF = *MBB.getParent();
801   // Get the frame info.
802   MachineFrameInfo &MFI = MF.getFrameInfo();
803   const PPCSubtarget &Subtarget = MF.getSubtarget<PPCSubtarget>();
804   // Get the instruction info.
805   const TargetInstrInfo &TII = *Subtarget.getInstrInfo();
806   // Determine whether 64-bit pointers are used.
807   bool LP64 = TM.isPPC64();
808   DebugLoc dl = MI.getDebugLoc();
809   // Get the total frame size.
810   unsigned FrameSize = MFI.getStackSize();
811 
812   // Get stack alignments.
813   const PPCFrameLowering *TFI = getFrameLowering(MF);
814   Align TargetAlign = TFI->getStackAlign();
815   Align MaxAlign = MFI.getMaxAlign();
816 
817   // Determine the previous frame's address.  If FrameSize can't be
818   // represented as 16 bits or we need special alignment, then we load the
819   // previous frame's address from 0(SP).  Why not do an addis of the hi?
820   // Because R0 is our only safe tmp register and addi/addis treat R0 as zero.
821   // Constructing the constant and adding would take 3 instructions.
822   // Fortunately, a frame greater than 32K is rare.
823   const TargetRegisterClass *G8RC = &PPC::G8RCRegClass;
824   const TargetRegisterClass *GPRC = &PPC::GPRCRegClass;
825 
826   if (MaxAlign < TargetAlign && isInt<16>(FrameSize)) {
827     if (LP64)
828       BuildMI(MBB, II, dl, TII.get(PPC::ADDI8), FramePointer)
829           .addReg(PPC::X31)
830           .addImm(FrameSize);
831     else
832       BuildMI(MBB, II, dl, TII.get(PPC::ADDI), FramePointer)
833           .addReg(PPC::R31)
834           .addImm(FrameSize);
835   } else if (LP64) {
836     BuildMI(MBB, II, dl, TII.get(PPC::LD), FramePointer)
837         .addImm(0)
838         .addReg(PPC::X1);
839   } else {
840     BuildMI(MBB, II, dl, TII.get(PPC::LWZ), FramePointer)
841         .addImm(0)
842         .addReg(PPC::R1);
843   }
844   // Determine the actual NegSizeReg according to alignment info.
845   if (LP64) {
846     if (MaxAlign > TargetAlign) {
847       unsigned UnalNegSizeReg = NegSizeReg;
848       NegSizeReg = MF.getRegInfo().createVirtualRegister(G8RC);
849 
850       // Unfortunately, there is no andi, only andi., and we can't insert that
851       // here because we might clobber cr0 while it is live.
852       BuildMI(MBB, II, dl, TII.get(PPC::LI8), NegSizeReg)
853           .addImm(~(MaxAlign.value() - 1));
854 
855       unsigned NegSizeReg1 = NegSizeReg;
856       NegSizeReg = MF.getRegInfo().createVirtualRegister(G8RC);
857       BuildMI(MBB, II, dl, TII.get(PPC::AND8), NegSizeReg)
858           .addReg(UnalNegSizeReg, getKillRegState(KillNegSizeReg))
859           .addReg(NegSizeReg1, RegState::Kill);
860       KillNegSizeReg = true;
861     }
862   } else {
863     if (MaxAlign > TargetAlign) {
864       unsigned UnalNegSizeReg = NegSizeReg;
865       NegSizeReg = MF.getRegInfo().createVirtualRegister(GPRC);
866 
867       // Unfortunately, there is no andi, only andi., and we can't insert that
868       // here because we might clobber cr0 while it is live.
869       BuildMI(MBB, II, dl, TII.get(PPC::LI), NegSizeReg)
870           .addImm(~(MaxAlign.value() - 1));
871 
872       unsigned NegSizeReg1 = NegSizeReg;
873       NegSizeReg = MF.getRegInfo().createVirtualRegister(GPRC);
874       BuildMI(MBB, II, dl, TII.get(PPC::AND), NegSizeReg)
875           .addReg(UnalNegSizeReg, getKillRegState(KillNegSizeReg))
876           .addReg(NegSizeReg1, RegState::Kill);
877       KillNegSizeReg = true;
878     }
879   }
880 }
881 
882 void PPCRegisterInfo::lowerPrepareProbedAlloca(
883     MachineBasicBlock::iterator II) const {
884   MachineInstr &MI = *II;
885   // Get the instruction's basic block.
886   MachineBasicBlock &MBB = *MI.getParent();
887   // Get the basic block's function.
888   MachineFunction &MF = *MBB.getParent();
889   const PPCSubtarget &Subtarget = MF.getSubtarget<PPCSubtarget>();
890   // Get the instruction info.
891   const TargetInstrInfo &TII = *Subtarget.getInstrInfo();
892   // Determine whether 64-bit pointers are used.
893   bool LP64 = TM.isPPC64();
894   DebugLoc dl = MI.getDebugLoc();
895   Register FramePointer = MI.getOperand(0).getReg();
896   const Register ActualNegSizeReg = MI.getOperand(1).getReg();
897   bool KillNegSizeReg = MI.getOperand(2).isKill();
898   Register NegSizeReg = MI.getOperand(2).getReg();
899   const MCInstrDesc &CopyInst = TII.get(LP64 ? PPC::OR8 : PPC::OR);
900   // RegAllocator might allocate FramePointer and NegSizeReg in the same phyreg.
901   if (FramePointer == NegSizeReg) {
902     assert(KillNegSizeReg && "FramePointer is a def and NegSizeReg is an use, "
903                              "NegSizeReg should be killed");
904     // FramePointer is clobbered earlier than the use of NegSizeReg in
905     // prepareDynamicAlloca, save NegSizeReg in ActualNegSizeReg to avoid
906     // misuse.
907     BuildMI(MBB, II, dl, CopyInst, ActualNegSizeReg)
908         .addReg(NegSizeReg)
909         .addReg(NegSizeReg);
910     NegSizeReg = ActualNegSizeReg;
911     KillNegSizeReg = false;
912   }
913   prepareDynamicAlloca(II, NegSizeReg, KillNegSizeReg, FramePointer);
914   // NegSizeReg might be updated in prepareDynamicAlloca if MaxAlign >
915   // TargetAlign.
916   if (NegSizeReg != ActualNegSizeReg)
917     BuildMI(MBB, II, dl, CopyInst, ActualNegSizeReg)
918         .addReg(NegSizeReg)
919         .addReg(NegSizeReg);
920   MBB.erase(II);
921 }
922 
923 void PPCRegisterInfo::lowerDynamicAreaOffset(
924     MachineBasicBlock::iterator II) const {
925   // Get the instruction.
926   MachineInstr &MI = *II;
927   // Get the instruction's basic block.
928   MachineBasicBlock &MBB = *MI.getParent();
929   // Get the basic block's function.
930   MachineFunction &MF = *MBB.getParent();
931   // Get the frame info.
932   MachineFrameInfo &MFI = MF.getFrameInfo();
933   const PPCSubtarget &Subtarget = MF.getSubtarget<PPCSubtarget>();
934   // Get the instruction info.
935   const TargetInstrInfo &TII = *Subtarget.getInstrInfo();
936 
937   unsigned maxCallFrameSize = MFI.getMaxCallFrameSize();
938   bool is64Bit = TM.isPPC64();
939   DebugLoc dl = MI.getDebugLoc();
940   BuildMI(MBB, II, dl, TII.get(is64Bit ? PPC::LI8 : PPC::LI),
941           MI.getOperand(0).getReg())
942       .addImm(maxCallFrameSize);
943   MBB.erase(II);
944 }
945 
946 /// lowerCRSpilling - Generate the code for spilling a CR register. Instead of
947 /// reserving a whole register (R0), we scrounge for one here. This generates
948 /// code like this:
949 ///
950 ///   mfcr rA                  ; Move the conditional register into GPR rA.
951 ///   rlwinm rA, rA, SB, 0, 31 ; Shift the bits left so they are in CR0's slot.
952 ///   stw rA, FI               ; Store rA to the frame.
953 ///
954 void PPCRegisterInfo::lowerCRSpilling(MachineBasicBlock::iterator II,
955                                       unsigned FrameIndex) const {
956   // Get the instruction.
957   MachineInstr &MI = *II;       // ; SPILL_CR <SrcReg>, <offset>
958   // Get the instruction's basic block.
959   MachineBasicBlock &MBB = *MI.getParent();
960   MachineFunction &MF = *MBB.getParent();
961   const PPCSubtarget &Subtarget = MF.getSubtarget<PPCSubtarget>();
962   const TargetInstrInfo &TII = *Subtarget.getInstrInfo();
963   DebugLoc dl = MI.getDebugLoc();
964 
965   bool LP64 = TM.isPPC64();
966   const TargetRegisterClass *G8RC = &PPC::G8RCRegClass;
967   const TargetRegisterClass *GPRC = &PPC::GPRCRegClass;
968 
969   Register Reg = MF.getRegInfo().createVirtualRegister(LP64 ? G8RC : GPRC);
970   Register SrcReg = MI.getOperand(0).getReg();
971 
972   // We need to store the CR in the low 4-bits of the saved value. First, issue
973   // an MFOCRF to save all of the CRBits and, if needed, kill the SrcReg.
974   BuildMI(MBB, II, dl, TII.get(LP64 ? PPC::MFOCRF8 : PPC::MFOCRF), Reg)
975       .addReg(SrcReg, getKillRegState(MI.getOperand(0).isKill()));
976 
977   // If the saved register wasn't CR0, shift the bits left so that they are in
978   // CR0's slot.
979   if (SrcReg != PPC::CR0) {
980     Register Reg1 = Reg;
981     Reg = MF.getRegInfo().createVirtualRegister(LP64 ? G8RC : GPRC);
982 
983     // rlwinm rA, rA, ShiftBits, 0, 31.
984     BuildMI(MBB, II, dl, TII.get(LP64 ? PPC::RLWINM8 : PPC::RLWINM), Reg)
985       .addReg(Reg1, RegState::Kill)
986       .addImm(getEncodingValue(SrcReg) * 4)
987       .addImm(0)
988       .addImm(31);
989   }
990 
991   addFrameReference(BuildMI(MBB, II, dl, TII.get(LP64 ? PPC::STW8 : PPC::STW))
992                     .addReg(Reg, RegState::Kill),
993                     FrameIndex);
994 
995   // Discard the pseudo instruction.
996   MBB.erase(II);
997 }
998 
999 void PPCRegisterInfo::lowerCRRestore(MachineBasicBlock::iterator II,
1000                                       unsigned FrameIndex) const {
1001   // Get the instruction.
1002   MachineInstr &MI = *II;       // ; <DestReg> = RESTORE_CR <offset>
1003   // Get the instruction's basic block.
1004   MachineBasicBlock &MBB = *MI.getParent();
1005   MachineFunction &MF = *MBB.getParent();
1006   const PPCSubtarget &Subtarget = MF.getSubtarget<PPCSubtarget>();
1007   const TargetInstrInfo &TII = *Subtarget.getInstrInfo();
1008   DebugLoc dl = MI.getDebugLoc();
1009 
1010   bool LP64 = TM.isPPC64();
1011   const TargetRegisterClass *G8RC = &PPC::G8RCRegClass;
1012   const TargetRegisterClass *GPRC = &PPC::GPRCRegClass;
1013 
1014   Register Reg = MF.getRegInfo().createVirtualRegister(LP64 ? G8RC : GPRC);
1015   Register DestReg = MI.getOperand(0).getReg();
1016   assert(MI.definesRegister(DestReg) &&
1017     "RESTORE_CR does not define its destination");
1018 
1019   addFrameReference(BuildMI(MBB, II, dl, TII.get(LP64 ? PPC::LWZ8 : PPC::LWZ),
1020                               Reg), FrameIndex);
1021 
1022   // If the reloaded register isn't CR0, shift the bits right so that they are
1023   // in the right CR's slot.
1024   if (DestReg != PPC::CR0) {
1025     Register Reg1 = Reg;
1026     Reg = MF.getRegInfo().createVirtualRegister(LP64 ? G8RC : GPRC);
1027 
1028     unsigned ShiftBits = getEncodingValue(DestReg)*4;
1029     // rlwinm r11, r11, 32-ShiftBits, 0, 31.
1030     BuildMI(MBB, II, dl, TII.get(LP64 ? PPC::RLWINM8 : PPC::RLWINM), Reg)
1031              .addReg(Reg1, RegState::Kill).addImm(32-ShiftBits).addImm(0)
1032              .addImm(31);
1033   }
1034 
1035   BuildMI(MBB, II, dl, TII.get(LP64 ? PPC::MTOCRF8 : PPC::MTOCRF), DestReg)
1036              .addReg(Reg, RegState::Kill);
1037 
1038   // Discard the pseudo instruction.
1039   MBB.erase(II);
1040 }
1041 
1042 void PPCRegisterInfo::lowerCRBitSpilling(MachineBasicBlock::iterator II,
1043                                          unsigned FrameIndex) const {
1044   // Get the instruction.
1045   MachineInstr &MI = *II;       // ; SPILL_CRBIT <SrcReg>, <offset>
1046   // Get the instruction's basic block.
1047   MachineBasicBlock &MBB = *MI.getParent();
1048   MachineFunction &MF = *MBB.getParent();
1049   const PPCSubtarget &Subtarget = MF.getSubtarget<PPCSubtarget>();
1050   const TargetInstrInfo &TII = *Subtarget.getInstrInfo();
1051   const TargetRegisterInfo* TRI = Subtarget.getRegisterInfo();
1052   DebugLoc dl = MI.getDebugLoc();
1053 
1054   bool LP64 = TM.isPPC64();
1055   const TargetRegisterClass *G8RC = &PPC::G8RCRegClass;
1056   const TargetRegisterClass *GPRC = &PPC::GPRCRegClass;
1057 
1058   Register Reg = MF.getRegInfo().createVirtualRegister(LP64 ? G8RC : GPRC);
1059   Register SrcReg = MI.getOperand(0).getReg();
1060 
1061   // Search up the BB to find the definition of the CR bit.
1062   MachineBasicBlock::reverse_iterator Ins = MI;
1063   MachineBasicBlock::reverse_iterator Rend = MBB.rend();
1064   ++Ins;
1065   unsigned CRBitSpillDistance = 0;
1066   bool SeenUse = false;
1067   for (; Ins != Rend; ++Ins) {
1068     // Definition found.
1069     if (Ins->modifiesRegister(SrcReg, TRI))
1070       break;
1071     // Use found.
1072     if (Ins->readsRegister(SrcReg, TRI))
1073       SeenUse = true;
1074     // Unable to find CR bit definition within maximum search distance.
1075     if (CRBitSpillDistance == MaxCRBitSpillDist) {
1076       Ins = MI;
1077       break;
1078     }
1079     // Skip debug instructions when counting CR bit spill distance.
1080     if (!Ins->isDebugInstr())
1081       CRBitSpillDistance++;
1082   }
1083 
1084   // Unable to find the definition of the CR bit in the MBB.
1085   if (Ins == MBB.rend())
1086     Ins = MI;
1087 
1088   bool SpillsKnownBit = false;
1089   // There is no need to extract the CR bit if its value is already known.
1090   switch (Ins->getOpcode()) {
1091   case PPC::CRUNSET:
1092     BuildMI(MBB, II, dl, TII.get(LP64 ? PPC::LI8 : PPC::LI), Reg)
1093       .addImm(0);
1094     SpillsKnownBit = true;
1095     break;
1096   case PPC::CRSET:
1097     BuildMI(MBB, II, dl, TII.get(LP64 ? PPC::LIS8 : PPC::LIS), Reg)
1098       .addImm(-32768);
1099     SpillsKnownBit = true;
1100     break;
1101   default:
1102     // On Power10, we can use SETNBC to spill all CR bits. SETNBC will set all
1103     // bits (specifically, it produces a -1 if the CR bit is set). Ultimately,
1104     // the bit that is of importance to us is bit 32 (bit 0 of a 32-bit
1105     // register), and SETNBC will set this.
1106     if (Subtarget.isISA3_1()) {
1107       BuildMI(MBB, II, dl, TII.get(LP64 ? PPC::SETNBC8 : PPC::SETNBC), Reg)
1108           .addReg(SrcReg, RegState::Undef);
1109       break;
1110     }
1111 
1112     // On Power9, we can use SETB to extract the LT bit. This only works for
1113     // the LT bit since SETB produces -1/1/0 for LT/GT/<neither>. So the value
1114     // of the bit we care about (32-bit sign bit) will be set to the value of
1115     // the LT bit (regardless of the other bits in the CR field).
1116     if (Subtarget.isISA3_0()) {
1117       if (SrcReg == PPC::CR0LT || SrcReg == PPC::CR1LT ||
1118           SrcReg == PPC::CR2LT || SrcReg == PPC::CR3LT ||
1119           SrcReg == PPC::CR4LT || SrcReg == PPC::CR5LT ||
1120           SrcReg == PPC::CR6LT || SrcReg == PPC::CR7LT) {
1121         BuildMI(MBB, II, dl, TII.get(LP64 ? PPC::SETB8 : PPC::SETB), Reg)
1122           .addReg(getCRFromCRBit(SrcReg), RegState::Undef);
1123         break;
1124       }
1125     }
1126 
1127     // We need to move the CR field that contains the CR bit we are spilling.
1128     // The super register may not be explicitly defined (i.e. it can be defined
1129     // by a CR-logical that only defines the subreg) so we state that the CR
1130     // field is undef. Also, in order to preserve the kill flag on the CR bit,
1131     // we add it as an implicit use.
1132     BuildMI(MBB, II, dl, TII.get(LP64 ? PPC::MFOCRF8 : PPC::MFOCRF), Reg)
1133       .addReg(getCRFromCRBit(SrcReg), RegState::Undef)
1134       .addReg(SrcReg,
1135               RegState::Implicit | getKillRegState(MI.getOperand(0).isKill()));
1136 
1137     // If the saved register wasn't CR0LT, shift the bits left so that the bit
1138     // to store is the first one. Mask all but that bit.
1139     Register Reg1 = Reg;
1140     Reg = MF.getRegInfo().createVirtualRegister(LP64 ? G8RC : GPRC);
1141 
1142     // rlwinm rA, rA, ShiftBits, 0, 0.
1143     BuildMI(MBB, II, dl, TII.get(LP64 ? PPC::RLWINM8 : PPC::RLWINM), Reg)
1144       .addReg(Reg1, RegState::Kill)
1145       .addImm(getEncodingValue(SrcReg))
1146       .addImm(0).addImm(0);
1147   }
1148   addFrameReference(BuildMI(MBB, II, dl, TII.get(LP64 ? PPC::STW8 : PPC::STW))
1149                     .addReg(Reg, RegState::Kill),
1150                     FrameIndex);
1151 
1152   bool KillsCRBit = MI.killsRegister(SrcReg, TRI);
1153   // Discard the pseudo instruction.
1154   MBB.erase(II);
1155   if (SpillsKnownBit && KillsCRBit && !SeenUse) {
1156     Ins->setDesc(TII.get(PPC::UNENCODED_NOP));
1157     Ins->removeOperand(0);
1158   }
1159 }
1160 
1161 void PPCRegisterInfo::lowerCRBitRestore(MachineBasicBlock::iterator II,
1162                                       unsigned FrameIndex) const {
1163   // Get the instruction.
1164   MachineInstr &MI = *II;       // ; <DestReg> = RESTORE_CRBIT <offset>
1165   // Get the instruction's basic block.
1166   MachineBasicBlock &MBB = *MI.getParent();
1167   MachineFunction &MF = *MBB.getParent();
1168   const PPCSubtarget &Subtarget = MF.getSubtarget<PPCSubtarget>();
1169   const TargetInstrInfo &TII = *Subtarget.getInstrInfo();
1170   DebugLoc dl = MI.getDebugLoc();
1171 
1172   bool LP64 = TM.isPPC64();
1173   const TargetRegisterClass *G8RC = &PPC::G8RCRegClass;
1174   const TargetRegisterClass *GPRC = &PPC::GPRCRegClass;
1175 
1176   Register Reg = MF.getRegInfo().createVirtualRegister(LP64 ? G8RC : GPRC);
1177   Register DestReg = MI.getOperand(0).getReg();
1178   assert(MI.definesRegister(DestReg) &&
1179     "RESTORE_CRBIT does not define its destination");
1180 
1181   addFrameReference(BuildMI(MBB, II, dl, TII.get(LP64 ? PPC::LWZ8 : PPC::LWZ),
1182                               Reg), FrameIndex);
1183 
1184   BuildMI(MBB, II, dl, TII.get(TargetOpcode::IMPLICIT_DEF), DestReg);
1185 
1186   Register RegO = MF.getRegInfo().createVirtualRegister(LP64 ? G8RC : GPRC);
1187   BuildMI(MBB, II, dl, TII.get(LP64 ? PPC::MFOCRF8 : PPC::MFOCRF), RegO)
1188           .addReg(getCRFromCRBit(DestReg));
1189 
1190   unsigned ShiftBits = getEncodingValue(DestReg);
1191   // rlwimi r11, r10, 32-ShiftBits, ..., ...
1192   BuildMI(MBB, II, dl, TII.get(LP64 ? PPC::RLWIMI8 : PPC::RLWIMI), RegO)
1193       .addReg(RegO, RegState::Kill)
1194       .addReg(Reg, RegState::Kill)
1195       .addImm(ShiftBits ? 32 - ShiftBits : 0)
1196       .addImm(ShiftBits)
1197       .addImm(ShiftBits);
1198 
1199   BuildMI(MBB, II, dl, TII.get(LP64 ? PPC::MTOCRF8 : PPC::MTOCRF),
1200           getCRFromCRBit(DestReg))
1201       .addReg(RegO, RegState::Kill)
1202       // Make sure we have a use dependency all the way through this
1203       // sequence of instructions. We can't have the other bits in the CR
1204       // modified in between the mfocrf and the mtocrf.
1205       .addReg(getCRFromCRBit(DestReg), RegState::Implicit);
1206 
1207   // Discard the pseudo instruction.
1208   MBB.erase(II);
1209 }
1210 
1211 void PPCRegisterInfo::emitAccCopyInfo(MachineBasicBlock &MBB,
1212                                       MCRegister DestReg, MCRegister SrcReg) {
1213 #ifdef NDEBUG
1214   return;
1215 #else
1216   if (ReportAccMoves) {
1217     std::string Dest = PPC::ACCRCRegClass.contains(DestReg) ? "acc" : "uacc";
1218     std::string Src = PPC::ACCRCRegClass.contains(SrcReg) ? "acc" : "uacc";
1219     dbgs() << "Emitting copy from " << Src << " to " << Dest << ":\n";
1220     MBB.dump();
1221   }
1222 #endif
1223 }
1224 
1225 static void emitAccSpillRestoreInfo(MachineBasicBlock &MBB, bool IsPrimed,
1226                                     bool IsRestore) {
1227 #ifdef NDEBUG
1228   return;
1229 #else
1230   if (ReportAccMoves) {
1231     dbgs() << "Emitting " << (IsPrimed ? "acc" : "uacc") << " register "
1232            << (IsRestore ? "restore" : "spill") << ":\n";
1233     MBB.dump();
1234   }
1235 #endif
1236 }
1237 
1238 static void spillRegPairs(MachineBasicBlock &MBB,
1239                           MachineBasicBlock::iterator II, DebugLoc DL,
1240                           const TargetInstrInfo &TII, Register SrcReg,
1241                           unsigned FrameIndex, bool IsLittleEndian,
1242                           bool IsKilled, bool TwoPairs) {
1243   unsigned Offset = 0;
1244   // The register arithmetic in this function does not support virtual
1245   // registers.
1246   assert(!SrcReg.isVirtual() &&
1247          "Spilling register pairs does not support virtual registers.");
1248 
1249   if (TwoPairs)
1250     Offset = IsLittleEndian ? 48 : 0;
1251   else
1252     Offset = IsLittleEndian ? 16 : 0;
1253   Register Reg = (SrcReg > PPC::VSRp15) ? PPC::V0 + (SrcReg - PPC::VSRp16) * 2
1254                                         : PPC::VSL0 + (SrcReg - PPC::VSRp0) * 2;
1255   addFrameReference(BuildMI(MBB, II, DL, TII.get(PPC::STXV))
1256                         .addReg(Reg, getKillRegState(IsKilled)),
1257                     FrameIndex, Offset);
1258   Offset += IsLittleEndian ? -16 : 16;
1259   addFrameReference(BuildMI(MBB, II, DL, TII.get(PPC::STXV))
1260                         .addReg(Reg + 1, getKillRegState(IsKilled)),
1261                     FrameIndex, Offset);
1262   if (TwoPairs) {
1263     Offset += IsLittleEndian ? -16 : 16;
1264     addFrameReference(BuildMI(MBB, II, DL, TII.get(PPC::STXV))
1265                           .addReg(Reg + 2, getKillRegState(IsKilled)),
1266                       FrameIndex, Offset);
1267     Offset += IsLittleEndian ? -16 : 16;
1268     addFrameReference(BuildMI(MBB, II, DL, TII.get(PPC::STXV))
1269                           .addReg(Reg + 3, getKillRegState(IsKilled)),
1270                       FrameIndex, Offset);
1271   }
1272 }
1273 
1274 /// Remove any STXVP[X] instructions and split them out into a pair of
1275 /// STXV[X] instructions if --disable-auto-paired-vec-st is specified on
1276 /// the command line.
1277 void PPCRegisterInfo::lowerOctWordSpilling(MachineBasicBlock::iterator II,
1278                                            unsigned FrameIndex) const {
1279   assert(DisableAutoPairedVecSt &&
1280          "Expecting to do this only if paired vector stores are disabled.");
1281   MachineInstr &MI = *II; // STXVP <SrcReg>, <offset>
1282   MachineBasicBlock &MBB = *MI.getParent();
1283   MachineFunction &MF = *MBB.getParent();
1284   const PPCSubtarget &Subtarget = MF.getSubtarget<PPCSubtarget>();
1285   const TargetInstrInfo &TII = *Subtarget.getInstrInfo();
1286   DebugLoc DL = MI.getDebugLoc();
1287   Register SrcReg = MI.getOperand(0).getReg();
1288   bool IsLittleEndian = Subtarget.isLittleEndian();
1289   bool IsKilled = MI.getOperand(0).isKill();
1290   spillRegPairs(MBB, II, DL, TII, SrcReg, FrameIndex, IsLittleEndian, IsKilled,
1291                 /* TwoPairs */ false);
1292   // Discard the original instruction.
1293   MBB.erase(II);
1294 }
1295 
1296 static void emitWAccSpillRestoreInfo(MachineBasicBlock &MBB, bool IsRestore) {
1297 #ifdef NDEBUG
1298   return;
1299 #else
1300   if (ReportAccMoves) {
1301     dbgs() << "Emitting wacc register " << (IsRestore ? "restore" : "spill")
1302            << ":\n";
1303     MBB.dump();
1304   }
1305 #endif
1306 }
1307 
1308 /// lowerACCSpilling - Generate the code for spilling the accumulator register.
1309 /// Similarly to other spills/reloads that use pseudo-ops, we do not actually
1310 /// eliminate the FrameIndex here nor compute the stack offset. We simply
1311 /// create a real instruction with an FI and rely on eliminateFrameIndex to
1312 /// handle the FI elimination.
1313 void PPCRegisterInfo::lowerACCSpilling(MachineBasicBlock::iterator II,
1314                                        unsigned FrameIndex) const {
1315   MachineInstr &MI = *II; // SPILL_ACC <SrcReg>, <offset>
1316   MachineBasicBlock &MBB = *MI.getParent();
1317   MachineFunction &MF = *MBB.getParent();
1318   const PPCSubtarget &Subtarget = MF.getSubtarget<PPCSubtarget>();
1319   const TargetInstrInfo &TII = *Subtarget.getInstrInfo();
1320   DebugLoc DL = MI.getDebugLoc();
1321   Register SrcReg = MI.getOperand(0).getReg();
1322   bool IsKilled = MI.getOperand(0).isKill();
1323 
1324   bool IsPrimed = PPC::ACCRCRegClass.contains(SrcReg);
1325   Register Reg =
1326       PPC::VSRp0 + (SrcReg - (IsPrimed ? PPC::ACC0 : PPC::UACC0)) * 2;
1327   bool IsLittleEndian = Subtarget.isLittleEndian();
1328 
1329   emitAccSpillRestoreInfo(MBB, IsPrimed, false);
1330 
1331   // De-prime the register being spilled, create two stores for the pair
1332   // subregisters accounting for endianness and then re-prime the register if
1333   // it isn't killed.  This uses the Offset parameter to addFrameReference() to
1334   // adjust the offset of the store that is within the 64-byte stack slot.
1335   if (IsPrimed)
1336     BuildMI(MBB, II, DL, TII.get(PPC::XXMFACC), SrcReg).addReg(SrcReg);
1337   if (DisableAutoPairedVecSt)
1338     spillRegPairs(MBB, II, DL, TII, Reg, FrameIndex, IsLittleEndian, IsKilled,
1339                   /* TwoPairs */ true);
1340   else {
1341     addFrameReference(BuildMI(MBB, II, DL, TII.get(PPC::STXVP))
1342                           .addReg(Reg, getKillRegState(IsKilled)),
1343                       FrameIndex, IsLittleEndian ? 32 : 0);
1344     addFrameReference(BuildMI(MBB, II, DL, TII.get(PPC::STXVP))
1345                           .addReg(Reg + 1, getKillRegState(IsKilled)),
1346                       FrameIndex, IsLittleEndian ? 0 : 32);
1347   }
1348   if (IsPrimed && !IsKilled)
1349     BuildMI(MBB, II, DL, TII.get(PPC::XXMTACC), SrcReg).addReg(SrcReg);
1350 
1351   // Discard the pseudo instruction.
1352   MBB.erase(II);
1353 }
1354 
1355 /// lowerACCRestore - Generate the code to restore the accumulator register.
1356 void PPCRegisterInfo::lowerACCRestore(MachineBasicBlock::iterator II,
1357                                       unsigned FrameIndex) const {
1358   MachineInstr &MI = *II; // <DestReg> = RESTORE_ACC <offset>
1359   MachineBasicBlock &MBB = *MI.getParent();
1360   MachineFunction &MF = *MBB.getParent();
1361   const PPCSubtarget &Subtarget = MF.getSubtarget<PPCSubtarget>();
1362   const TargetInstrInfo &TII = *Subtarget.getInstrInfo();
1363   DebugLoc DL = MI.getDebugLoc();
1364 
1365   Register DestReg = MI.getOperand(0).getReg();
1366   assert(MI.definesRegister(DestReg) &&
1367          "RESTORE_ACC does not define its destination");
1368 
1369   bool IsPrimed = PPC::ACCRCRegClass.contains(DestReg);
1370   Register Reg =
1371       PPC::VSRp0 + (DestReg - (IsPrimed ? PPC::ACC0 : PPC::UACC0)) * 2;
1372   bool IsLittleEndian = Subtarget.isLittleEndian();
1373 
1374   emitAccSpillRestoreInfo(MBB, IsPrimed, true);
1375 
1376   // Create two loads for the pair subregisters accounting for endianness and
1377   // then prime the accumulator register being restored.
1378   addFrameReference(BuildMI(MBB, II, DL, TII.get(PPC::LXVP), Reg),
1379                     FrameIndex, IsLittleEndian ? 32 : 0);
1380   addFrameReference(BuildMI(MBB, II, DL, TII.get(PPC::LXVP), Reg + 1),
1381                     FrameIndex, IsLittleEndian ? 0 : 32);
1382   if (IsPrimed)
1383     BuildMI(MBB, II, DL, TII.get(PPC::XXMTACC), DestReg).addReg(DestReg);
1384 
1385   // Discard the pseudo instruction.
1386   MBB.erase(II);
1387 }
1388 
1389 /// lowerWACCSpilling - Generate the code for spilling the wide accumulator
1390 /// register.
1391 void PPCRegisterInfo::lowerWACCSpilling(MachineBasicBlock::iterator II,
1392                                         unsigned FrameIndex) const {
1393   MachineInstr &MI = *II; // SPILL_WACC <SrcReg>, <offset>
1394   MachineBasicBlock &MBB = *MI.getParent();
1395   MachineFunction &MF = *MBB.getParent();
1396   const PPCSubtarget &Subtarget = MF.getSubtarget<PPCSubtarget>();
1397   const TargetInstrInfo &TII = *Subtarget.getInstrInfo();
1398   DebugLoc DL = MI.getDebugLoc();
1399   bool IsLittleEndian = Subtarget.isLittleEndian();
1400 
1401   emitWAccSpillRestoreInfo(MBB, false);
1402 
1403   const TargetRegisterClass *RC = &PPC::VSRpRCRegClass;
1404   Register VSRpReg0 = MF.getRegInfo().createVirtualRegister(RC);
1405   Register VSRpReg1 = MF.getRegInfo().createVirtualRegister(RC);
1406   Register SrcReg = MI.getOperand(0).getReg();
1407 
1408   BuildMI(MBB, II, DL, TII.get(PPC::DMXXEXTFDMR512), VSRpReg0)
1409       .addDef(VSRpReg1)
1410       .addReg(SrcReg);
1411 
1412   addFrameReference(BuildMI(MBB, II, DL, TII.get(PPC::STXVP))
1413                         .addReg(VSRpReg0, RegState::Kill),
1414                     FrameIndex, IsLittleEndian ? 32 : 0);
1415   addFrameReference(BuildMI(MBB, II, DL, TII.get(PPC::STXVP))
1416                         .addReg(VSRpReg1, RegState::Kill),
1417                     FrameIndex, IsLittleEndian ? 0 : 32);
1418 
1419   // Discard the pseudo instruction.
1420   MBB.erase(II);
1421 }
1422 
1423 /// lowerWACCRestore - Generate the code to restore the wide accumulator
1424 /// register.
1425 void PPCRegisterInfo::lowerWACCRestore(MachineBasicBlock::iterator II,
1426                                        unsigned FrameIndex) const {
1427   MachineInstr &MI = *II; // <DestReg> = RESTORE_WACC <offset>
1428   MachineBasicBlock &MBB = *MI.getParent();
1429   MachineFunction &MF = *MBB.getParent();
1430   const PPCSubtarget &Subtarget = MF.getSubtarget<PPCSubtarget>();
1431   const TargetInstrInfo &TII = *Subtarget.getInstrInfo();
1432   DebugLoc DL = MI.getDebugLoc();
1433   bool IsLittleEndian = Subtarget.isLittleEndian();
1434 
1435   emitWAccSpillRestoreInfo(MBB, true);
1436 
1437   const TargetRegisterClass *RC = &PPC::VSRpRCRegClass;
1438   Register VSRpReg0 = MF.getRegInfo().createVirtualRegister(RC);
1439   Register VSRpReg1 = MF.getRegInfo().createVirtualRegister(RC);
1440   Register DestReg = MI.getOperand(0).getReg();
1441 
1442   addFrameReference(BuildMI(MBB, II, DL, TII.get(PPC::LXVP), VSRpReg0),
1443                     FrameIndex, IsLittleEndian ? 32 : 0);
1444   addFrameReference(BuildMI(MBB, II, DL, TII.get(PPC::LXVP), VSRpReg1),
1445                     FrameIndex, IsLittleEndian ? 0 : 32);
1446 
1447   // Kill VSRpReg0, VSRpReg1   (killedRegState::Killed)
1448   BuildMI(MBB, II, DL, TII.get(PPC::DMXXINSTFDMR512), DestReg)
1449       .addReg(VSRpReg0, RegState::Kill)
1450       .addReg(VSRpReg1, RegState::Kill);
1451 
1452   // Discard the pseudo instruction.
1453   MBB.erase(II);
1454 }
1455 
1456 /// lowerQuadwordSpilling - Generate code to spill paired general register.
1457 void PPCRegisterInfo::lowerQuadwordSpilling(MachineBasicBlock::iterator II,
1458                                             unsigned FrameIndex) const {
1459   MachineInstr &MI = *II;
1460   MachineBasicBlock &MBB = *MI.getParent();
1461   MachineFunction &MF = *MBB.getParent();
1462   const PPCSubtarget &Subtarget = MF.getSubtarget<PPCSubtarget>();
1463   const TargetInstrInfo &TII = *Subtarget.getInstrInfo();
1464   DebugLoc DL = MI.getDebugLoc();
1465 
1466   Register SrcReg = MI.getOperand(0).getReg();
1467   bool IsKilled = MI.getOperand(0).isKill();
1468 
1469   Register Reg = PPC::X0 + (SrcReg - PPC::G8p0) * 2;
1470   bool IsLittleEndian = Subtarget.isLittleEndian();
1471 
1472   addFrameReference(BuildMI(MBB, II, DL, TII.get(PPC::STD))
1473                         .addReg(Reg, getKillRegState(IsKilled)),
1474                     FrameIndex, IsLittleEndian ? 8 : 0);
1475   addFrameReference(BuildMI(MBB, II, DL, TII.get(PPC::STD))
1476                         .addReg(Reg + 1, getKillRegState(IsKilled)),
1477                     FrameIndex, IsLittleEndian ? 0 : 8);
1478 
1479   // Discard the pseudo instruction.
1480   MBB.erase(II);
1481 }
1482 
1483 /// lowerQuadwordRestore - Generate code to restore paired general register.
1484 void PPCRegisterInfo::lowerQuadwordRestore(MachineBasicBlock::iterator II,
1485                                            unsigned FrameIndex) const {
1486   MachineInstr &MI = *II;
1487   MachineBasicBlock &MBB = *MI.getParent();
1488   MachineFunction &MF = *MBB.getParent();
1489   const PPCSubtarget &Subtarget = MF.getSubtarget<PPCSubtarget>();
1490   const TargetInstrInfo &TII = *Subtarget.getInstrInfo();
1491   DebugLoc DL = MI.getDebugLoc();
1492 
1493   Register DestReg = MI.getOperand(0).getReg();
1494   assert(MI.definesRegister(DestReg) &&
1495          "RESTORE_QUADWORD does not define its destination");
1496 
1497   Register Reg = PPC::X0 + (DestReg - PPC::G8p0) * 2;
1498   bool IsLittleEndian = Subtarget.isLittleEndian();
1499 
1500   addFrameReference(BuildMI(MBB, II, DL, TII.get(PPC::LD), Reg), FrameIndex,
1501                     IsLittleEndian ? 8 : 0);
1502   addFrameReference(BuildMI(MBB, II, DL, TII.get(PPC::LD), Reg + 1), FrameIndex,
1503                     IsLittleEndian ? 0 : 8);
1504 
1505   // Discard the pseudo instruction.
1506   MBB.erase(II);
1507 }
1508 
1509 bool PPCRegisterInfo::hasReservedSpillSlot(const MachineFunction &MF,
1510                                            Register Reg, int &FrameIdx) const {
1511   // For the nonvolatile condition registers (CR2, CR3, CR4) return true to
1512   // prevent allocating an additional frame slot.
1513   // For 64-bit ELF and AIX, the CR save area is in the linkage area at SP+8,
1514   // for 32-bit AIX the CR save area is in the linkage area at SP+4.
1515   // We have created a FrameIndex to that spill slot to keep the CalleSaveInfos
1516   // valid.
1517   // For 32-bit ELF, we have previously created the stack slot if needed, so
1518   // return its FrameIdx.
1519   if (PPC::CR2 <= Reg && Reg <= PPC::CR4) {
1520     FrameIdx = MF.getInfo<PPCFunctionInfo>()->getCRSpillFrameIndex();
1521     return true;
1522   }
1523   return false;
1524 }
1525 
1526 // If the offset must be a multiple of some value, return what that value is.
1527 static unsigned offsetMinAlignForOpcode(unsigned OpC) {
1528   switch (OpC) {
1529   default:
1530     return 1;
1531   case PPC::LWA:
1532   case PPC::LWA_32:
1533   case PPC::LD:
1534   case PPC::LDU:
1535   case PPC::STD:
1536   case PPC::STDU:
1537   case PPC::DFLOADf32:
1538   case PPC::DFLOADf64:
1539   case PPC::DFSTOREf32:
1540   case PPC::DFSTOREf64:
1541   case PPC::LXSD:
1542   case PPC::LXSSP:
1543   case PPC::STXSD:
1544   case PPC::STXSSP:
1545   case PPC::STQ:
1546     return 4;
1547   case PPC::EVLDD:
1548   case PPC::EVSTDD:
1549     return 8;
1550   case PPC::LXV:
1551   case PPC::STXV:
1552   case PPC::LQ:
1553   case PPC::LXVP:
1554   case PPC::STXVP:
1555     return 16;
1556   }
1557 }
1558 
1559 // If the offset must be a multiple of some value, return what that value is.
1560 static unsigned offsetMinAlign(const MachineInstr &MI) {
1561   unsigned OpC = MI.getOpcode();
1562   return offsetMinAlignForOpcode(OpC);
1563 }
1564 
1565 // Return the OffsetOperandNo given the FIOperandNum (and the instruction).
1566 static unsigned getOffsetONFromFION(const MachineInstr &MI,
1567                                     unsigned FIOperandNum) {
1568   // Take into account whether it's an add or mem instruction
1569   unsigned OffsetOperandNo = (FIOperandNum == 2) ? 1 : 2;
1570   if (MI.isInlineAsm())
1571     OffsetOperandNo = FIOperandNum - 1;
1572   else if (MI.getOpcode() == TargetOpcode::STACKMAP ||
1573            MI.getOpcode() == TargetOpcode::PATCHPOINT)
1574     OffsetOperandNo = FIOperandNum + 1;
1575 
1576   return OffsetOperandNo;
1577 }
1578 
1579 bool
1580 PPCRegisterInfo::eliminateFrameIndex(MachineBasicBlock::iterator II,
1581                                      int SPAdj, unsigned FIOperandNum,
1582                                      RegScavenger *RS) const {
1583   assert(SPAdj == 0 && "Unexpected");
1584 
1585   // Get the instruction.
1586   MachineInstr &MI = *II;
1587   // Get the instruction's basic block.
1588   MachineBasicBlock &MBB = *MI.getParent();
1589   // Get the basic block's function.
1590   MachineFunction &MF = *MBB.getParent();
1591   const PPCSubtarget &Subtarget = MF.getSubtarget<PPCSubtarget>();
1592   // Get the instruction info.
1593   const PPCInstrInfo &TII = *Subtarget.getInstrInfo();
1594   // Get the frame info.
1595   MachineFrameInfo &MFI = MF.getFrameInfo();
1596   DebugLoc dl = MI.getDebugLoc();
1597 
1598   unsigned OffsetOperandNo = getOffsetONFromFION(MI, FIOperandNum);
1599 
1600   // Get the frame index.
1601   int FrameIndex = MI.getOperand(FIOperandNum).getIndex();
1602 
1603   // Get the frame pointer save index.  Users of this index are primarily
1604   // DYNALLOC instructions.
1605   PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>();
1606   int FPSI = FI->getFramePointerSaveIndex();
1607   // Get the instruction opcode.
1608   unsigned OpC = MI.getOpcode();
1609 
1610   if ((OpC == PPC::DYNAREAOFFSET || OpC == PPC::DYNAREAOFFSET8)) {
1611     lowerDynamicAreaOffset(II);
1612     // lowerDynamicAreaOffset erases II
1613     return true;
1614   }
1615 
1616   // Special case for dynamic alloca.
1617   if (FPSI && FrameIndex == FPSI &&
1618       (OpC == PPC::DYNALLOC || OpC == PPC::DYNALLOC8)) {
1619     lowerDynamicAlloc(II);
1620     // lowerDynamicAlloc erases II
1621     return true;
1622   }
1623 
1624   if (FPSI && FrameIndex == FPSI &&
1625       (OpC == PPC::PREPARE_PROBED_ALLOCA_64 ||
1626        OpC == PPC::PREPARE_PROBED_ALLOCA_32 ||
1627        OpC == PPC::PREPARE_PROBED_ALLOCA_NEGSIZE_SAME_REG_64 ||
1628        OpC == PPC::PREPARE_PROBED_ALLOCA_NEGSIZE_SAME_REG_32)) {
1629     lowerPrepareProbedAlloca(II);
1630     // lowerPrepareProbedAlloca erases II
1631     return true;
1632   }
1633 
1634   // Special case for pseudo-ops SPILL_CR and RESTORE_CR, etc.
1635   if (OpC == PPC::SPILL_CR) {
1636     lowerCRSpilling(II, FrameIndex);
1637     return true;
1638   } else if (OpC == PPC::RESTORE_CR) {
1639     lowerCRRestore(II, FrameIndex);
1640     return true;
1641   } else if (OpC == PPC::SPILL_CRBIT) {
1642     lowerCRBitSpilling(II, FrameIndex);
1643     return true;
1644   } else if (OpC == PPC::RESTORE_CRBIT) {
1645     lowerCRBitRestore(II, FrameIndex);
1646     return true;
1647   } else if (OpC == PPC::SPILL_ACC || OpC == PPC::SPILL_UACC) {
1648     lowerACCSpilling(II, FrameIndex);
1649     return true;
1650   } else if (OpC == PPC::RESTORE_ACC || OpC == PPC::RESTORE_UACC) {
1651     lowerACCRestore(II, FrameIndex);
1652     return true;
1653   } else if (OpC == PPC::STXVP && DisableAutoPairedVecSt) {
1654     lowerOctWordSpilling(II, FrameIndex);
1655     return true;
1656   } else if (OpC == PPC::SPILL_WACC) {
1657     lowerWACCSpilling(II, FrameIndex);
1658     return true;
1659   } else if (OpC == PPC::RESTORE_WACC) {
1660     lowerWACCRestore(II, FrameIndex);
1661     return true;
1662   } else if (OpC == PPC::SPILL_QUADWORD) {
1663     lowerQuadwordSpilling(II, FrameIndex);
1664     return true;
1665   } else if (OpC == PPC::RESTORE_QUADWORD) {
1666     lowerQuadwordRestore(II, FrameIndex);
1667     return true;
1668   }
1669 
1670   // Replace the FrameIndex with base register with GPR1 (SP) or GPR31 (FP).
1671   MI.getOperand(FIOperandNum).ChangeToRegister(
1672     FrameIndex < 0 ? getBaseRegister(MF) : getFrameRegister(MF), false);
1673 
1674   // If the instruction is not present in ImmToIdxMap, then it has no immediate
1675   // form (and must be r+r).
1676   bool noImmForm = !MI.isInlineAsm() && OpC != TargetOpcode::STACKMAP &&
1677                    OpC != TargetOpcode::PATCHPOINT && !ImmToIdxMap.count(OpC);
1678 
1679   // Now add the frame object offset to the offset from r1.
1680   int64_t Offset = MFI.getObjectOffset(FrameIndex);
1681   Offset += MI.getOperand(OffsetOperandNo).getImm();
1682 
1683   // If we're not using a Frame Pointer that has been set to the value of the
1684   // SP before having the stack size subtracted from it, then add the stack size
1685   // to Offset to get the correct offset.
1686   // Naked functions have stack size 0, although getStackSize may not reflect
1687   // that because we didn't call all the pieces that compute it for naked
1688   // functions.
1689   if (!MF.getFunction().hasFnAttribute(Attribute::Naked)) {
1690     if (!(hasBasePointer(MF) && FrameIndex < 0))
1691       Offset += MFI.getStackSize();
1692   }
1693 
1694   // If we encounter an LXVP/STXVP with an offset that doesn't fit, we can
1695   // transform it to the prefixed version so we don't have to use the XForm.
1696   if ((OpC == PPC::LXVP || OpC == PPC::STXVP) &&
1697       (!isInt<16>(Offset) || (Offset % offsetMinAlign(MI)) != 0) &&
1698       Subtarget.hasPrefixInstrs()) {
1699     unsigned NewOpc = OpC == PPC::LXVP ? PPC::PLXVP : PPC::PSTXVP;
1700     MI.setDesc(TII.get(NewOpc));
1701     OpC = NewOpc;
1702   }
1703 
1704   // If we can, encode the offset directly into the instruction.  If this is a
1705   // normal PPC "ri" instruction, any 16-bit value can be safely encoded.  If
1706   // this is a PPC64 "ix" instruction, only a 16-bit value with the low two bits
1707   // clear can be encoded.  This is extremely uncommon, because normally you
1708   // only "std" to a stack slot that is at least 4-byte aligned, but it can
1709   // happen in invalid code.
1710   assert(OpC != PPC::DBG_VALUE &&
1711          "This should be handled in a target-independent way");
1712   // FIXME: This should be factored out to a separate function as prefixed
1713   // instructions add a number of opcodes for which we can use 34-bit imm.
1714   bool OffsetFitsMnemonic = (OpC == PPC::EVSTDD || OpC == PPC::EVLDD) ?
1715                             isUInt<8>(Offset) :
1716                             isInt<16>(Offset);
1717   if (TII.isPrefixed(MI.getOpcode()))
1718     OffsetFitsMnemonic = isInt<34>(Offset);
1719   if (!noImmForm && ((OffsetFitsMnemonic &&
1720                       ((Offset % offsetMinAlign(MI)) == 0)) ||
1721                      OpC == TargetOpcode::STACKMAP ||
1722                      OpC == TargetOpcode::PATCHPOINT)) {
1723     MI.getOperand(OffsetOperandNo).ChangeToImmediate(Offset);
1724     return false;
1725   }
1726 
1727   // The offset doesn't fit into a single register, scavenge one to build the
1728   // offset in.
1729 
1730   bool is64Bit = TM.isPPC64();
1731   const TargetRegisterClass *G8RC = &PPC::G8RCRegClass;
1732   const TargetRegisterClass *GPRC = &PPC::GPRCRegClass;
1733   const TargetRegisterClass *RC = is64Bit ? G8RC : GPRC;
1734   unsigned NewOpcode = 0u;
1735   bool ScavengingFailed = RS && RS->getRegsAvailable(RC).none() &&
1736                           RS->getRegsAvailable(&PPC::VSFRCRegClass).any();
1737   Register SRegHi, SReg, VSReg;
1738 
1739   // The register scavenger is unable to get a GPR but can get a VSR. We
1740   // need to stash a GPR into a VSR so that we can free one up.
1741   if (ScavengingFailed && Subtarget.hasDirectMove()) {
1742     // Pick a volatile register and if we are spilling/restoring that
1743     // particular one, pick the next one.
1744     SRegHi = SReg = is64Bit ? PPC::X4 : PPC::R4;
1745     if (MI.getOperand(0).getReg() == SReg)
1746       SRegHi = SReg = SReg + 1;
1747     VSReg = MF.getRegInfo().createVirtualRegister(&PPC::VSFRCRegClass);
1748     BuildMI(MBB, II, dl, TII.get(is64Bit ? PPC::MTVSRD : PPC::MTVSRWZ), VSReg)
1749         .addReg(SReg);
1750   } else {
1751     SRegHi = MF.getRegInfo().createVirtualRegister(RC);
1752     SReg = MF.getRegInfo().createVirtualRegister(RC);
1753   }
1754 
1755   // Insert a set of rA with the full offset value before the ld, st, or add
1756   if (isInt<16>(Offset))
1757     BuildMI(MBB, II, dl, TII.get(is64Bit ? PPC::LI8 : PPC::LI), SReg)
1758         .addImm(Offset);
1759   else if (isInt<32>(Offset)) {
1760     BuildMI(MBB, II, dl, TII.get(is64Bit ? PPC::LIS8 : PPC::LIS), SRegHi)
1761         .addImm(Offset >> 16);
1762     BuildMI(MBB, II, dl, TII.get(is64Bit ? PPC::ORI8 : PPC::ORI), SReg)
1763         .addReg(SRegHi, RegState::Kill)
1764         .addImm(Offset);
1765   } else {
1766     assert(is64Bit && "Huge stack is only supported on PPC64");
1767     TII.materializeImmPostRA(MBB, II, dl, SReg, Offset);
1768   }
1769 
1770   // Convert into indexed form of the instruction:
1771   //
1772   //   sth 0:rA, 1:imm 2:(rB) ==> sthx 0:rA, 2:rB, 1:r0
1773   //   addi 0:rA 1:rB, 2, imm ==> add 0:rA, 1:rB, 2:r0
1774   unsigned OperandBase;
1775 
1776   if (noImmForm)
1777     OperandBase = 1;
1778   else if (OpC != TargetOpcode::INLINEASM &&
1779            OpC != TargetOpcode::INLINEASM_BR) {
1780     assert(ImmToIdxMap.count(OpC) &&
1781            "No indexed form of load or store available!");
1782     NewOpcode = ImmToIdxMap.find(OpC)->second;
1783     MI.setDesc(TII.get(NewOpcode));
1784     OperandBase = 1;
1785   } else {
1786     OperandBase = OffsetOperandNo;
1787   }
1788 
1789   Register StackReg = MI.getOperand(FIOperandNum).getReg();
1790   MI.getOperand(OperandBase).ChangeToRegister(StackReg, false);
1791   MI.getOperand(OperandBase + 1).ChangeToRegister(SReg, false, false, true);
1792 
1793   // If we stashed a value from a GPR into a VSR, we need to get it back after
1794   // spilling the register.
1795   if (ScavengingFailed && Subtarget.hasDirectMove())
1796     BuildMI(MBB, ++II, dl, TII.get(is64Bit ? PPC::MFVSRD : PPC::MFVSRWZ), SReg)
1797         .addReg(VSReg);
1798 
1799   // Since these are not real X-Form instructions, we must
1800   // add the registers and access 0(NewReg) rather than
1801   // emitting the X-Form pseudo.
1802   if (NewOpcode == PPC::LQX_PSEUDO || NewOpcode == PPC::STQX_PSEUDO) {
1803     assert(is64Bit && "Quadword loads/stores only supported in 64-bit mode");
1804     Register NewReg = MF.getRegInfo().createVirtualRegister(&PPC::G8RCRegClass);
1805     BuildMI(MBB, II, dl, TII.get(PPC::ADD8), NewReg)
1806         .addReg(SReg, RegState::Kill)
1807         .addReg(StackReg);
1808     MI.setDesc(TII.get(NewOpcode == PPC::LQX_PSEUDO ? PPC::LQ : PPC::STQ));
1809     MI.getOperand(OperandBase + 1).ChangeToRegister(NewReg, false);
1810     MI.getOperand(OperandBase).ChangeToImmediate(0);
1811   }
1812   return false;
1813 }
1814 
1815 Register PPCRegisterInfo::getFrameRegister(const MachineFunction &MF) const {
1816   const PPCFrameLowering *TFI = getFrameLowering(MF);
1817 
1818   if (!TM.isPPC64())
1819     return TFI->hasFP(MF) ? PPC::R31 : PPC::R1;
1820   else
1821     return TFI->hasFP(MF) ? PPC::X31 : PPC::X1;
1822 }
1823 
1824 Register PPCRegisterInfo::getBaseRegister(const MachineFunction &MF) const {
1825   const PPCSubtarget &Subtarget = MF.getSubtarget<PPCSubtarget>();
1826   if (!hasBasePointer(MF))
1827     return getFrameRegister(MF);
1828 
1829   if (TM.isPPC64())
1830     return PPC::X30;
1831 
1832   if (Subtarget.isSVR4ABI() && TM.isPositionIndependent())
1833     return PPC::R29;
1834 
1835   return PPC::R30;
1836 }
1837 
1838 bool PPCRegisterInfo::hasBasePointer(const MachineFunction &MF) const {
1839   if (!EnableBasePointer)
1840     return false;
1841   if (AlwaysBasePointer)
1842     return true;
1843 
1844   // If we need to realign the stack, then the stack pointer can no longer
1845   // serve as an offset into the caller's stack space. As a result, we need a
1846   // base pointer.
1847   return hasStackRealignment(MF);
1848 }
1849 
1850 /// Returns true if the instruction's frame index
1851 /// reference would be better served by a base register other than FP
1852 /// or SP. Used by LocalStackFrameAllocation to determine which frame index
1853 /// references it should create new base registers for.
1854 bool PPCRegisterInfo::
1855 needsFrameBaseReg(MachineInstr *MI, int64_t Offset) const {
1856   assert(Offset < 0 && "Local offset must be negative");
1857 
1858   // It's the load/store FI references that cause issues, as it can be difficult
1859   // to materialize the offset if it won't fit in the literal field. Estimate
1860   // based on the size of the local frame and some conservative assumptions
1861   // about the rest of the stack frame (note, this is pre-regalloc, so
1862   // we don't know everything for certain yet) whether this offset is likely
1863   // to be out of range of the immediate. Return true if so.
1864 
1865   // We only generate virtual base registers for loads and stores that have
1866   // an r+i form. Return false for everything else.
1867   unsigned OpC = MI->getOpcode();
1868   if (!ImmToIdxMap.count(OpC))
1869     return false;
1870 
1871   // Don't generate a new virtual base register just to add zero to it.
1872   if ((OpC == PPC::ADDI || OpC == PPC::ADDI8) &&
1873       MI->getOperand(2).getImm() == 0)
1874     return false;
1875 
1876   MachineBasicBlock &MBB = *MI->getParent();
1877   MachineFunction &MF = *MBB.getParent();
1878   const PPCFrameLowering *TFI = getFrameLowering(MF);
1879   unsigned StackEst = TFI->determineFrameLayout(MF, true);
1880 
1881   // If we likely don't need a stack frame, then we probably don't need a
1882   // virtual base register either.
1883   if (!StackEst)
1884     return false;
1885 
1886   // Estimate an offset from the stack pointer.
1887   // The incoming offset is relating to the SP at the start of the function,
1888   // but when we access the local it'll be relative to the SP after local
1889   // allocation, so adjust our SP-relative offset by that allocation size.
1890   Offset += StackEst;
1891 
1892   // The frame pointer will point to the end of the stack, so estimate the
1893   // offset as the difference between the object offset and the FP location.
1894   return !isFrameOffsetLegal(MI, getBaseRegister(MF), Offset);
1895 }
1896 
1897 /// Insert defining instruction(s) for BaseReg to
1898 /// be a pointer to FrameIdx at the beginning of the basic block.
1899 Register PPCRegisterInfo::materializeFrameBaseRegister(MachineBasicBlock *MBB,
1900                                                        int FrameIdx,
1901                                                        int64_t Offset) const {
1902   unsigned ADDriOpc = TM.isPPC64() ? PPC::ADDI8 : PPC::ADDI;
1903 
1904   MachineBasicBlock::iterator Ins = MBB->begin();
1905   DebugLoc DL;                  // Defaults to "unknown"
1906   if (Ins != MBB->end())
1907     DL = Ins->getDebugLoc();
1908 
1909   const MachineFunction &MF = *MBB->getParent();
1910   const PPCSubtarget &Subtarget = MF.getSubtarget<PPCSubtarget>();
1911   const TargetInstrInfo &TII = *Subtarget.getInstrInfo();
1912   const MCInstrDesc &MCID = TII.get(ADDriOpc);
1913   MachineRegisterInfo &MRI = MBB->getParent()->getRegInfo();
1914   const TargetRegisterClass *RC = getPointerRegClass(MF);
1915   Register BaseReg = MRI.createVirtualRegister(RC);
1916   MRI.constrainRegClass(BaseReg, TII.getRegClass(MCID, 0, this, MF));
1917 
1918   BuildMI(*MBB, Ins, DL, MCID, BaseReg)
1919     .addFrameIndex(FrameIdx).addImm(Offset);
1920 
1921   return BaseReg;
1922 }
1923 
1924 void PPCRegisterInfo::resolveFrameIndex(MachineInstr &MI, Register BaseReg,
1925                                         int64_t Offset) const {
1926   unsigned FIOperandNum = 0;
1927   while (!MI.getOperand(FIOperandNum).isFI()) {
1928     ++FIOperandNum;
1929     assert(FIOperandNum < MI.getNumOperands() &&
1930            "Instr doesn't have FrameIndex operand!");
1931   }
1932 
1933   MI.getOperand(FIOperandNum).ChangeToRegister(BaseReg, false);
1934   unsigned OffsetOperandNo = getOffsetONFromFION(MI, FIOperandNum);
1935   Offset += MI.getOperand(OffsetOperandNo).getImm();
1936   MI.getOperand(OffsetOperandNo).ChangeToImmediate(Offset);
1937 
1938   MachineBasicBlock &MBB = *MI.getParent();
1939   MachineFunction &MF = *MBB.getParent();
1940   const PPCSubtarget &Subtarget = MF.getSubtarget<PPCSubtarget>();
1941   const TargetInstrInfo &TII = *Subtarget.getInstrInfo();
1942   const MCInstrDesc &MCID = MI.getDesc();
1943   MachineRegisterInfo &MRI = MF.getRegInfo();
1944   MRI.constrainRegClass(BaseReg,
1945                         TII.getRegClass(MCID, FIOperandNum, this, MF));
1946 }
1947 
1948 bool PPCRegisterInfo::isFrameOffsetLegal(const MachineInstr *MI,
1949                                          Register BaseReg,
1950                                          int64_t Offset) const {
1951   unsigned FIOperandNum = 0;
1952   while (!MI->getOperand(FIOperandNum).isFI()) {
1953     ++FIOperandNum;
1954     assert(FIOperandNum < MI->getNumOperands() &&
1955            "Instr doesn't have FrameIndex operand!");
1956   }
1957 
1958   unsigned OffsetOperandNo = getOffsetONFromFION(*MI, FIOperandNum);
1959   Offset += MI->getOperand(OffsetOperandNo).getImm();
1960 
1961   return MI->getOpcode() == PPC::DBG_VALUE || // DBG_VALUE is always Reg+Imm
1962          MI->getOpcode() == TargetOpcode::STACKMAP ||
1963          MI->getOpcode() == TargetOpcode::PATCHPOINT ||
1964          (isInt<16>(Offset) && (Offset % offsetMinAlign(*MI)) == 0);
1965 }
1966