1 //===-- PPCRegisterInfo.cpp - PowerPC Register Information ----------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file contains the PowerPC implementation of the TargetRegisterInfo
10 // class.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "PPCRegisterInfo.h"
15 #include "PPCFrameLowering.h"
16 #include "PPCInstrBuilder.h"
17 #include "PPCMachineFunctionInfo.h"
18 #include "PPCSubtarget.h"
19 #include "PPCTargetMachine.h"
20 #include "llvm/ADT/BitVector.h"
21 #include "llvm/ADT/STLExtras.h"
22 #include "llvm/ADT/Statistic.h"
23 #include "llvm/CodeGen/MachineFrameInfo.h"
24 #include "llvm/CodeGen/MachineFunction.h"
25 #include "llvm/CodeGen/MachineInstrBuilder.h"
26 #include "llvm/CodeGen/MachineModuleInfo.h"
27 #include "llvm/CodeGen/MachineRegisterInfo.h"
28 #include "llvm/CodeGen/RegisterScavenging.h"
29 #include "llvm/CodeGen/TargetFrameLowering.h"
30 #include "llvm/CodeGen/TargetInstrInfo.h"
31 #include "llvm/IR/CallingConv.h"
32 #include "llvm/IR/Constants.h"
33 #include "llvm/IR/Function.h"
34 #include "llvm/IR/Type.h"
35 #include "llvm/Support/CommandLine.h"
36 #include "llvm/Support/Debug.h"
37 #include "llvm/Support/ErrorHandling.h"
38 #include "llvm/Support/MathExtras.h"
39 #include "llvm/Support/raw_ostream.h"
40 #include "llvm/Target/TargetMachine.h"
41 #include "llvm/Target/TargetOptions.h"
42 #include <cstdlib>
43 
44 using namespace llvm;
45 
46 #define DEBUG_TYPE "reginfo"
47 
48 #define GET_REGINFO_TARGET_DESC
49 #include "PPCGenRegisterInfo.inc"
50 
51 STATISTIC(InflateGPRC, "Number of gprc inputs for getLargestLegalClass");
52 STATISTIC(InflateGP8RC, "Number of g8rc inputs for getLargestLegalClass");
53 
54 static cl::opt<bool>
55 EnableBasePointer("ppc-use-base-pointer", cl::Hidden, cl::init(true),
56          cl::desc("Enable use of a base pointer for complex stack frames"));
57 
58 static cl::opt<bool>
59 AlwaysBasePointer("ppc-always-use-base-pointer", cl::Hidden, cl::init(false),
60          cl::desc("Force the use of a base pointer in every function"));
61 
62 static cl::opt<bool>
63 EnableGPRToVecSpills("ppc-enable-gpr-to-vsr-spills", cl::Hidden, cl::init(false),
64          cl::desc("Enable spills from gpr to vsr rather than stack"));
65 
66 static cl::opt<bool>
67 StackPtrConst("ppc-stack-ptr-caller-preserved",
68                 cl::desc("Consider R1 caller preserved so stack saves of "
69                          "caller preserved registers can be LICM candidates"),
70                 cl::init(true), cl::Hidden);
71 
72 static cl::opt<unsigned>
73 MaxCRBitSpillDist("ppc-max-crbit-spill-dist",
74                   cl::desc("Maximum search distance for definition of CR bit "
75                            "spill on ppc"),
76                   cl::Hidden, cl::init(100));
77 
78 // Copies/moves of physical accumulators are expensive operations
79 // that should be avoided whenever possible. MMA instructions are
80 // meant to be used in performance-sensitive computational kernels.
81 // This option is provided, at least for the time being, to give the
82 // user a tool to detect this expensive operation and either rework
83 // their code or report a compiler bug if that turns out to be the
84 // cause.
85 #ifndef NDEBUG
86 static cl::opt<bool>
87 ReportAccMoves("ppc-report-acc-moves",
88                cl::desc("Emit information about accumulator register spills "
89                         "and copies"),
90                cl::Hidden, cl::init(false));
91 #endif
92 
93 static unsigned offsetMinAlignForOpcode(unsigned OpC);
94 
95 PPCRegisterInfo::PPCRegisterInfo(const PPCTargetMachine &TM)
96   : PPCGenRegisterInfo(TM.isPPC64() ? PPC::LR8 : PPC::LR,
97                        TM.isPPC64() ? 0 : 1,
98                        TM.isPPC64() ? 0 : 1),
99     TM(TM) {
100   ImmToIdxMap[PPC::LD]   = PPC::LDX;    ImmToIdxMap[PPC::STD]  = PPC::STDX;
101   ImmToIdxMap[PPC::LBZ]  = PPC::LBZX;   ImmToIdxMap[PPC::STB]  = PPC::STBX;
102   ImmToIdxMap[PPC::LHZ]  = PPC::LHZX;   ImmToIdxMap[PPC::LHA]  = PPC::LHAX;
103   ImmToIdxMap[PPC::LWZ]  = PPC::LWZX;   ImmToIdxMap[PPC::LWA]  = PPC::LWAX;
104   ImmToIdxMap[PPC::LFS]  = PPC::LFSX;   ImmToIdxMap[PPC::LFD]  = PPC::LFDX;
105   ImmToIdxMap[PPC::STH]  = PPC::STHX;   ImmToIdxMap[PPC::STW]  = PPC::STWX;
106   ImmToIdxMap[PPC::STFS] = PPC::STFSX;  ImmToIdxMap[PPC::STFD] = PPC::STFDX;
107   ImmToIdxMap[PPC::ADDI] = PPC::ADD4;
108   ImmToIdxMap[PPC::LWA_32] = PPC::LWAX_32;
109 
110   // 64-bit
111   ImmToIdxMap[PPC::LHA8] = PPC::LHAX8; ImmToIdxMap[PPC::LBZ8] = PPC::LBZX8;
112   ImmToIdxMap[PPC::LHZ8] = PPC::LHZX8; ImmToIdxMap[PPC::LWZ8] = PPC::LWZX8;
113   ImmToIdxMap[PPC::STB8] = PPC::STBX8; ImmToIdxMap[PPC::STH8] = PPC::STHX8;
114   ImmToIdxMap[PPC::STW8] = PPC::STWX8; ImmToIdxMap[PPC::STDU] = PPC::STDUX;
115   ImmToIdxMap[PPC::ADDI8] = PPC::ADD8;
116 
117   // VSX
118   ImmToIdxMap[PPC::DFLOADf32] = PPC::LXSSPX;
119   ImmToIdxMap[PPC::DFLOADf64] = PPC::LXSDX;
120   ImmToIdxMap[PPC::SPILLTOVSR_LD] = PPC::SPILLTOVSR_LDX;
121   ImmToIdxMap[PPC::SPILLTOVSR_ST] = PPC::SPILLTOVSR_STX;
122   ImmToIdxMap[PPC::DFSTOREf32] = PPC::STXSSPX;
123   ImmToIdxMap[PPC::DFSTOREf64] = PPC::STXSDX;
124   ImmToIdxMap[PPC::LXV] = PPC::LXVX;
125   ImmToIdxMap[PPC::LXSD] = PPC::LXSDX;
126   ImmToIdxMap[PPC::LXSSP] = PPC::LXSSPX;
127   ImmToIdxMap[PPC::STXV] = PPC::STXVX;
128   ImmToIdxMap[PPC::STXSD] = PPC::STXSDX;
129   ImmToIdxMap[PPC::STXSSP] = PPC::STXSSPX;
130 
131   // SPE
132   ImmToIdxMap[PPC::EVLDD] = PPC::EVLDDX;
133   ImmToIdxMap[PPC::EVSTDD] = PPC::EVSTDDX;
134   ImmToIdxMap[PPC::SPESTW] = PPC::SPESTWX;
135   ImmToIdxMap[PPC::SPELWZ] = PPC::SPELWZX;
136 
137   // Power10
138   ImmToIdxMap[PPC::PLBZ]   = PPC::LBZX; ImmToIdxMap[PPC::PLBZ8]   = PPC::LBZX8;
139   ImmToIdxMap[PPC::PLHZ]   = PPC::LHZX; ImmToIdxMap[PPC::PLHZ8]   = PPC::LHZX8;
140   ImmToIdxMap[PPC::PLHA]   = PPC::LHAX; ImmToIdxMap[PPC::PLHA8]   = PPC::LHAX8;
141   ImmToIdxMap[PPC::PLWZ]   = PPC::LWZX; ImmToIdxMap[PPC::PLWZ8]   = PPC::LWZX8;
142   ImmToIdxMap[PPC::PLWA]   = PPC::LWAX; ImmToIdxMap[PPC::PLWA8]   = PPC::LWAX;
143   ImmToIdxMap[PPC::PLD]    = PPC::LDX;  ImmToIdxMap[PPC::PSTD]   = PPC::STDX;
144 
145   ImmToIdxMap[PPC::PSTB]   = PPC::STBX; ImmToIdxMap[PPC::PSTB8]   = PPC::STBX8;
146   ImmToIdxMap[PPC::PSTH]   = PPC::STHX; ImmToIdxMap[PPC::PSTH8]   = PPC::STHX8;
147   ImmToIdxMap[PPC::PSTW]   = PPC::STWX; ImmToIdxMap[PPC::PSTW8]   = PPC::STWX8;
148 
149   ImmToIdxMap[PPC::PLFS]   = PPC::LFSX; ImmToIdxMap[PPC::PSTFS]   = PPC::STFSX;
150   ImmToIdxMap[PPC::PLFD]   = PPC::LFDX; ImmToIdxMap[PPC::PSTFD]   = PPC::STFDX;
151   ImmToIdxMap[PPC::PLXSSP] = PPC::LXSSPX; ImmToIdxMap[PPC::PSTXSSP] = PPC::STXSSPX;
152   ImmToIdxMap[PPC::PLXSD]  = PPC::LXSDX; ImmToIdxMap[PPC::PSTXSD]  = PPC::STXSDX;
153   ImmToIdxMap[PPC::PLXV]   = PPC::LXVX; ImmToIdxMap[PPC::PSTXV]  = PPC::STXVX;
154 
155   ImmToIdxMap[PPC::LXVP]   = PPC::LXVPX;
156   ImmToIdxMap[PPC::STXVP]  = PPC::STXVPX;
157   ImmToIdxMap[PPC::PLXVP]  = PPC::LXVPX;
158   ImmToIdxMap[PPC::PSTXVP] = PPC::STXVPX;
159 }
160 
161 /// getPointerRegClass - Return the register class to use to hold pointers.
162 /// This is used for addressing modes.
163 const TargetRegisterClass *
164 PPCRegisterInfo::getPointerRegClass(const MachineFunction &MF, unsigned Kind)
165                                                                        const {
166   // Note that PPCInstrInfo::FoldImmediate also directly uses this Kind value
167   // when it checks for ZERO folding.
168   if (Kind == 1) {
169     if (TM.isPPC64())
170       return &PPC::G8RC_NOX0RegClass;
171     return &PPC::GPRC_NOR0RegClass;
172   }
173 
174   if (TM.isPPC64())
175     return &PPC::G8RCRegClass;
176   return &PPC::GPRCRegClass;
177 }
178 
179 const MCPhysReg*
180 PPCRegisterInfo::getCalleeSavedRegs(const MachineFunction *MF) const {
181   const PPCSubtarget &Subtarget = MF->getSubtarget<PPCSubtarget>();
182   if (MF->getFunction().getCallingConv() == CallingConv::AnyReg) {
183     if (!TM.isPPC64() && Subtarget.isAIXABI())
184       report_fatal_error("AnyReg unimplemented on 32-bit AIX.");
185     if (Subtarget.hasVSX()) {
186       if (Subtarget.isAIXABI() && !TM.getAIXExtendedAltivecABI())
187         return CSR_64_AllRegs_AIX_Dflt_VSX_SaveList;
188       return CSR_64_AllRegs_VSX_SaveList;
189     }
190     if (Subtarget.hasAltivec()) {
191       if (Subtarget.isAIXABI() && !TM.getAIXExtendedAltivecABI())
192         return CSR_64_AllRegs_AIX_Dflt_Altivec_SaveList;
193       return CSR_64_AllRegs_Altivec_SaveList;
194     }
195     return CSR_64_AllRegs_SaveList;
196   }
197 
198   // On PPC64, we might need to save r2 (but only if it is not reserved).
199   // We do not need to treat R2 as callee-saved when using PC-Relative calls
200   // because any direct uses of R2 will cause it to be reserved. If the function
201   // is a leaf or the only uses of R2 are implicit uses for calls, the calls
202   // will use the @notoc relocation which will cause this function to set the
203   // st_other bit to 1, thereby communicating to its caller that it arbitrarily
204   // clobbers the TOC.
205   bool SaveR2 = MF->getRegInfo().isAllocatable(PPC::X2) &&
206                 !Subtarget.isUsingPCRelativeCalls();
207 
208   // Cold calling convention CSRs.
209   if (MF->getFunction().getCallingConv() == CallingConv::Cold) {
210     if (Subtarget.isAIXABI())
211       report_fatal_error("Cold calling unimplemented on AIX.");
212     if (TM.isPPC64()) {
213       if (Subtarget.hasAltivec())
214         return SaveR2 ? CSR_SVR64_ColdCC_R2_Altivec_SaveList
215                       : CSR_SVR64_ColdCC_Altivec_SaveList;
216       return SaveR2 ? CSR_SVR64_ColdCC_R2_SaveList
217                     : CSR_SVR64_ColdCC_SaveList;
218     }
219     // 32-bit targets.
220     if (Subtarget.hasAltivec())
221       return CSR_SVR32_ColdCC_Altivec_SaveList;
222     else if (Subtarget.hasSPE())
223       return CSR_SVR32_ColdCC_SPE_SaveList;
224     return CSR_SVR32_ColdCC_SaveList;
225   }
226   // Standard calling convention CSRs.
227   if (TM.isPPC64()) {
228     if (Subtarget.hasAltivec() &&
229         (!Subtarget.isAIXABI() || TM.getAIXExtendedAltivecABI())) {
230       return SaveR2 ? CSR_PPC64_R2_Altivec_SaveList
231                     : CSR_PPC64_Altivec_SaveList;
232     }
233     return SaveR2 ? CSR_PPC64_R2_SaveList : CSR_PPC64_SaveList;
234   }
235   // 32-bit targets.
236   if (Subtarget.isAIXABI()) {
237     if (Subtarget.hasAltivec())
238       return TM.getAIXExtendedAltivecABI() ? CSR_AIX32_Altivec_SaveList
239                                            : CSR_AIX32_SaveList;
240     return CSR_AIX32_SaveList;
241   }
242   if (Subtarget.hasAltivec())
243     return CSR_SVR432_Altivec_SaveList;
244   else if (Subtarget.hasSPE())
245     return CSR_SVR432_SPE_SaveList;
246   return CSR_SVR432_SaveList;
247 }
248 
249 const uint32_t *
250 PPCRegisterInfo::getCallPreservedMask(const MachineFunction &MF,
251                                       CallingConv::ID CC) const {
252   const PPCSubtarget &Subtarget = MF.getSubtarget<PPCSubtarget>();
253   if (CC == CallingConv::AnyReg) {
254     if (Subtarget.hasVSX()) {
255       if (Subtarget.isAIXABI() && !TM.getAIXExtendedAltivecABI())
256         return CSR_64_AllRegs_AIX_Dflt_VSX_RegMask;
257       return CSR_64_AllRegs_VSX_RegMask;
258     }
259     if (Subtarget.hasAltivec()) {
260       if (Subtarget.isAIXABI() && !TM.getAIXExtendedAltivecABI())
261         return CSR_64_AllRegs_AIX_Dflt_Altivec_RegMask;
262       return CSR_64_AllRegs_Altivec_RegMask;
263     }
264     return CSR_64_AllRegs_RegMask;
265   }
266 
267   if (Subtarget.isAIXABI()) {
268     return TM.isPPC64()
269                ? ((Subtarget.hasAltivec() && TM.getAIXExtendedAltivecABI())
270                       ? CSR_PPC64_Altivec_RegMask
271                       : CSR_PPC64_RegMask)
272                : ((Subtarget.hasAltivec() && TM.getAIXExtendedAltivecABI())
273                       ? CSR_AIX32_Altivec_RegMask
274                       : CSR_AIX32_RegMask);
275   }
276 
277   if (CC == CallingConv::Cold) {
278     return TM.isPPC64() ? (Subtarget.hasAltivec() ? CSR_SVR64_ColdCC_Altivec_RegMask
279                                                   : CSR_SVR64_ColdCC_RegMask)
280                         : (Subtarget.hasAltivec() ? CSR_SVR32_ColdCC_Altivec_RegMask
281                                                   : (Subtarget.hasSPE()
282                                                   ? CSR_SVR32_ColdCC_SPE_RegMask
283                                                   : CSR_SVR32_ColdCC_RegMask));
284   }
285 
286   return TM.isPPC64() ? (Subtarget.hasAltivec() ? CSR_PPC64_Altivec_RegMask
287                                                 : CSR_PPC64_RegMask)
288                       : (Subtarget.hasAltivec()
289                              ? CSR_SVR432_Altivec_RegMask
290                              : (Subtarget.hasSPE() ? CSR_SVR432_SPE_RegMask
291                                                    : CSR_SVR432_RegMask));
292 }
293 
294 const uint32_t*
295 PPCRegisterInfo::getNoPreservedMask() const {
296   return CSR_NoRegs_RegMask;
297 }
298 
299 void PPCRegisterInfo::adjustStackMapLiveOutMask(uint32_t *Mask) const {
300   for (unsigned PseudoReg : {PPC::ZERO, PPC::ZERO8, PPC::RM})
301     Mask[PseudoReg / 32] &= ~(1u << (PseudoReg % 32));
302 }
303 
304 BitVector PPCRegisterInfo::getReservedRegs(const MachineFunction &MF) const {
305   BitVector Reserved(getNumRegs());
306   const PPCSubtarget &Subtarget = MF.getSubtarget<PPCSubtarget>();
307   const PPCFrameLowering *TFI = getFrameLowering(MF);
308 
309   // The ZERO register is not really a register, but the representation of r0
310   // when used in instructions that treat r0 as the constant 0.
311   markSuperRegs(Reserved, PPC::ZERO);
312 
313   // The FP register is also not really a register, but is the representation
314   // of the frame pointer register used by ISD::FRAMEADDR.
315   markSuperRegs(Reserved, PPC::FP);
316 
317   // The BP register is also not really a register, but is the representation
318   // of the base pointer register used by setjmp.
319   markSuperRegs(Reserved, PPC::BP);
320 
321   // The counter registers must be reserved so that counter-based loops can
322   // be correctly formed (and the mtctr instructions are not DCE'd).
323   markSuperRegs(Reserved, PPC::CTR);
324   markSuperRegs(Reserved, PPC::CTR8);
325 
326   markSuperRegs(Reserved, PPC::R1);
327   markSuperRegs(Reserved, PPC::LR);
328   markSuperRegs(Reserved, PPC::LR8);
329   markSuperRegs(Reserved, PPC::RM);
330 
331   markSuperRegs(Reserved, PPC::VRSAVE);
332 
333   // The SVR4 ABI reserves r2 and r13
334   if (Subtarget.isSVR4ABI()) {
335     // We only reserve r2 if we need to use the TOC pointer. If we have no
336     // explicit uses of the TOC pointer (meaning we're a leaf function with
337     // no constant-pool loads, etc.) and we have no potential uses inside an
338     // inline asm block, then we can treat r2 has an ordinary callee-saved
339     // register.
340     const PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
341     if (!TM.isPPC64() || FuncInfo->usesTOCBasePtr() || MF.hasInlineAsm())
342       markSuperRegs(Reserved, PPC::R2);  // System-reserved register
343     markSuperRegs(Reserved, PPC::R13); // Small Data Area pointer register
344   }
345 
346   // Always reserve r2 on AIX for now.
347   // TODO: Make r2 allocatable on AIX/XCOFF for some leaf functions.
348   if (Subtarget.isAIXABI())
349     markSuperRegs(Reserved, PPC::R2);  // System-reserved register
350 
351   // On PPC64, r13 is the thread pointer. Never allocate this register.
352   if (TM.isPPC64())
353     markSuperRegs(Reserved, PPC::R13);
354 
355   if (TFI->needsFP(MF))
356     markSuperRegs(Reserved, PPC::R31);
357 
358   bool IsPositionIndependent = TM.isPositionIndependent();
359   if (hasBasePointer(MF)) {
360     if (Subtarget.is32BitELFABI() && IsPositionIndependent)
361       markSuperRegs(Reserved, PPC::R29);
362     else
363       markSuperRegs(Reserved, PPC::R30);
364   }
365 
366   if (Subtarget.is32BitELFABI() && IsPositionIndependent)
367     markSuperRegs(Reserved, PPC::R30);
368 
369   // Reserve Altivec registers when Altivec is unavailable.
370   if (!Subtarget.hasAltivec())
371     for (TargetRegisterClass::iterator I = PPC::VRRCRegClass.begin(),
372          IE = PPC::VRRCRegClass.end(); I != IE; ++I)
373       markSuperRegs(Reserved, *I);
374 
375   if (Subtarget.isAIXABI() && Subtarget.hasAltivec() &&
376       !TM.getAIXExtendedAltivecABI()) {
377     //  In the AIX default Altivec ABI, vector registers VR20-VR31 are reserved
378     //  and cannot be used.
379     for (auto Reg : CSR_Altivec_SaveList) {
380       if (Reg == 0)
381         break;
382       markSuperRegs(Reserved, Reg);
383       for (MCRegAliasIterator AS(Reg, this, true); AS.isValid(); ++AS) {
384         Reserved.set(*AS);
385       }
386     }
387   }
388 
389   assert(checkAllSuperRegsMarked(Reserved));
390   return Reserved;
391 }
392 
393 bool PPCRegisterInfo::isAsmClobberable(const MachineFunction &MF,
394                                        MCRegister PhysReg) const {
395   // We cannot use getReservedRegs() to find the registers that are not asm
396   // clobberable because there are some reserved registers which can be
397   // clobbered by inline asm. For example, when LR is clobbered, the register is
398   // saved and restored. We will hardcode the registers that are not asm
399   // cloberable in this function.
400 
401   // The stack pointer (R1/X1) is not clobberable by inline asm
402   return PhysReg != PPC::R1 && PhysReg != PPC::X1;
403 }
404 
405 bool PPCRegisterInfo::requiresFrameIndexScavenging(const MachineFunction &MF) const {
406   const PPCSubtarget &Subtarget = MF.getSubtarget<PPCSubtarget>();
407   const PPCInstrInfo *InstrInfo =  Subtarget.getInstrInfo();
408   const MachineFrameInfo &MFI = MF.getFrameInfo();
409   const std::vector<CalleeSavedInfo> &Info = MFI.getCalleeSavedInfo();
410 
411   LLVM_DEBUG(dbgs() << "requiresFrameIndexScavenging for " << MF.getName()
412                     << ".\n");
413   // If the callee saved info is invalid we have to default to true for safety.
414   if (!MFI.isCalleeSavedInfoValid()) {
415     LLVM_DEBUG(dbgs() << "TRUE - Invalid callee saved info.\n");
416     return true;
417   }
418 
419   // We will require the use of X-Forms because the frame is larger than what
420   // can be represented in signed 16 bits that fit in the immediate of a D-Form.
421   // If we need an X-Form then we need a register to store the address offset.
422   unsigned FrameSize = MFI.getStackSize();
423   // Signed 16 bits means that the FrameSize cannot be more than 15 bits.
424   if (FrameSize & ~0x7FFF) {
425     LLVM_DEBUG(dbgs() << "TRUE - Frame size is too large for D-Form.\n");
426     return true;
427   }
428 
429   // The callee saved info is valid so it can be traversed.
430   // Checking for registers that need saving that do not have load or store
431   // forms where the address offset is an immediate.
432   for (unsigned i = 0; i < Info.size(); i++) {
433     // If the spill is to a register no scavenging is required.
434     if (Info[i].isSpilledToReg())
435       continue;
436 
437     int FrIdx = Info[i].getFrameIdx();
438     Register Reg = Info[i].getReg();
439 
440     const TargetRegisterClass *RC = getMinimalPhysRegClass(Reg);
441     unsigned Opcode = InstrInfo->getStoreOpcodeForSpill(RC);
442     if (!MFI.isFixedObjectIndex(FrIdx)) {
443       // This is not a fixed object. If it requires alignment then we may still
444       // need to use the XForm.
445       if (offsetMinAlignForOpcode(Opcode) > 1) {
446         LLVM_DEBUG(dbgs() << "Memory Operand: " << InstrInfo->getName(Opcode)
447                           << " for register " << printReg(Reg, this) << ".\n");
448         LLVM_DEBUG(dbgs() << "TRUE - Not fixed frame object that requires "
449                           << "alignment.\n");
450         return true;
451       }
452     }
453 
454     // This is eiher:
455     // 1) A fixed frame index object which we know are aligned so
456     // as long as we have a valid DForm/DSForm/DQForm (non XForm) we don't
457     // need to consider the alignment here.
458     // 2) A not fixed object but in that case we now know that the min required
459     // alignment is no more than 1 based on the previous check.
460     if (InstrInfo->isXFormMemOp(Opcode)) {
461       LLVM_DEBUG(dbgs() << "Memory Operand: " << InstrInfo->getName(Opcode)
462                         << " for register " << printReg(Reg, this) << ".\n");
463       LLVM_DEBUG(dbgs() << "TRUE - Memory operand is X-Form.\n");
464       return true;
465     }
466   }
467   LLVM_DEBUG(dbgs() << "FALSE - Scavenging is not required.\n");
468   return false;
469 }
470 
471 bool PPCRegisterInfo::requiresVirtualBaseRegisters(
472     const MachineFunction &MF) const {
473   const PPCSubtarget &Subtarget = MF.getSubtarget<PPCSubtarget>();
474   // Do not use virtual base registers when ROP protection is turned on.
475   // Virtual base registers break the layout of the local variable space and may
476   // push the ROP Hash location past the 512 byte range of the ROP store
477   // instruction.
478   return !Subtarget.hasROPProtect();
479 }
480 
481 bool PPCRegisterInfo::isCallerPreservedPhysReg(MCRegister PhysReg,
482                                                const MachineFunction &MF) const {
483   assert(Register::isPhysicalRegister(PhysReg));
484   const PPCSubtarget &Subtarget = MF.getSubtarget<PPCSubtarget>();
485   const MachineFrameInfo &MFI = MF.getFrameInfo();
486 
487   if (!Subtarget.is64BitELFABI() && !Subtarget.isAIXABI())
488     return false;
489   if (PhysReg == Subtarget.getTOCPointerRegister())
490     // X2/R2 is guaranteed to be preserved within a function if it is reserved.
491     // The reason it's reserved is that it's the TOC pointer (and the function
492     // uses the TOC). In functions where it isn't reserved (i.e. leaf functions
493     // with no TOC access), we can't claim that it is preserved.
494     return (getReservedRegs(MF).test(PhysReg));
495   if (StackPtrConst && PhysReg == Subtarget.getStackPointerRegister() &&
496       !MFI.hasVarSizedObjects() && !MFI.hasOpaqueSPAdjustment())
497     // The value of the stack pointer does not change within a function after
498     // the prologue and before the epilogue if there are no dynamic allocations
499     // and no inline asm which clobbers X1/R1.
500     return true;
501   return false;
502 }
503 
504 bool PPCRegisterInfo::getRegAllocationHints(Register VirtReg,
505                                             ArrayRef<MCPhysReg> Order,
506                                             SmallVectorImpl<MCPhysReg> &Hints,
507                                             const MachineFunction &MF,
508                                             const VirtRegMap *VRM,
509                                             const LiveRegMatrix *Matrix) const {
510   const MachineRegisterInfo *MRI = &MF.getRegInfo();
511 
512   // Call the base implementation first to set any hints based on the usual
513   // heuristics and decide what the return value should be. We want to return
514   // the same value returned by the base implementation. If the base
515   // implementation decides to return true and force the allocation then we
516   // will leave it as such. On the other hand if the base implementation
517   // decides to return false the following code will not force the allocation
518   // as we are just looking to provide a hint.
519   bool BaseImplRetVal = TargetRegisterInfo::getRegAllocationHints(
520       VirtReg, Order, Hints, MF, VRM, Matrix);
521   // We are interested in instructions that copy values to ACC/UACC.
522   // The copy into UACC will be simply a COPY to a subreg so we
523   // want to allocate the corresponding physical subreg for the source.
524   // The copy into ACC will be a BUILD_UACC so we want to allocate
525   // the same number UACC for the source.
526   for (MachineInstr &Use : MRI->reg_nodbg_instructions(VirtReg)) {
527     const MachineOperand *ResultOp = nullptr;
528     Register ResultReg;
529     switch (Use.getOpcode()) {
530     case TargetOpcode::COPY: {
531       ResultOp = &Use.getOperand(0);
532       ResultReg = ResultOp->getReg();
533       if (Register::isVirtualRegister(ResultReg) &&
534           MRI->getRegClass(ResultReg)->contains(PPC::UACC0) &&
535           VRM->hasPhys(ResultReg)) {
536         Register UACCPhys = VRM->getPhys(ResultReg);
537         Register HintReg = getSubReg(UACCPhys, ResultOp->getSubReg());
538         // Ensure that the hint is a VSRp register.
539         if (HintReg >= PPC::VSRp0 && HintReg <= PPC::VSRp31)
540           Hints.push_back(HintReg);
541       }
542       break;
543     }
544     case PPC::BUILD_UACC: {
545       ResultOp = &Use.getOperand(0);
546       ResultReg = ResultOp->getReg();
547       if (MRI->getRegClass(ResultReg)->contains(PPC::ACC0) &&
548           VRM->hasPhys(ResultReg)) {
549         Register ACCPhys = VRM->getPhys(ResultReg);
550         assert((ACCPhys >= PPC::ACC0 && ACCPhys <= PPC::ACC7) &&
551                "Expecting an ACC register for BUILD_UACC.");
552         Register HintReg = PPC::UACC0 + (ACCPhys - PPC::ACC0);
553         Hints.push_back(HintReg);
554       }
555       break;
556     }
557     }
558   }
559   return BaseImplRetVal;
560 }
561 
562 unsigned PPCRegisterInfo::getRegPressureLimit(const TargetRegisterClass *RC,
563                                               MachineFunction &MF) const {
564   const PPCFrameLowering *TFI = getFrameLowering(MF);
565   const unsigned DefaultSafety = 1;
566 
567   switch (RC->getID()) {
568   default:
569     return 0;
570   case PPC::G8RC_NOX0RegClassID:
571   case PPC::GPRC_NOR0RegClassID:
572   case PPC::SPERCRegClassID:
573   case PPC::G8RCRegClassID:
574   case PPC::GPRCRegClassID: {
575     unsigned FP = TFI->hasFP(MF) ? 1 : 0;
576     return 32 - FP - DefaultSafety;
577   }
578   case PPC::F4RCRegClassID:
579   case PPC::F8RCRegClassID:
580   case PPC::VSLRCRegClassID:
581     return 32 - DefaultSafety;
582   case PPC::VFRCRegClassID:
583   case PPC::VRRCRegClassID: {
584     const PPCSubtarget &Subtarget = MF.getSubtarget<PPCSubtarget>();
585     // Vector registers VR20-VR31 are reserved and cannot be used in the default
586     // Altivec ABI on AIX.
587     if (!TM.getAIXExtendedAltivecABI() && Subtarget.isAIXABI())
588       return 20 - DefaultSafety;
589   }
590     return 32 - DefaultSafety;
591   case PPC::VSFRCRegClassID:
592   case PPC::VSSRCRegClassID:
593   case PPC::VSRCRegClassID: {
594     const PPCSubtarget &Subtarget = MF.getSubtarget<PPCSubtarget>();
595     if (!TM.getAIXExtendedAltivecABI() && Subtarget.isAIXABI())
596       // Vector registers VR20-VR31 are reserved and cannot be used in the
597       // default Altivec ABI on AIX.
598       return 52 - DefaultSafety;
599   }
600     return 64 - DefaultSafety;
601   case PPC::CRRCRegClassID:
602     return 8 - DefaultSafety;
603   }
604 }
605 
606 const TargetRegisterClass *
607 PPCRegisterInfo::getLargestLegalSuperClass(const TargetRegisterClass *RC,
608                                            const MachineFunction &MF) const {
609   const PPCSubtarget &Subtarget = MF.getSubtarget<PPCSubtarget>();
610   const auto *DefaultSuperclass =
611       TargetRegisterInfo::getLargestLegalSuperClass(RC, MF);
612   if (Subtarget.hasVSX()) {
613     // With VSX, we can inflate various sub-register classes to the full VSX
614     // register set.
615 
616     // For Power9 we allow the user to enable GPR to vector spills.
617     // FIXME: Currently limited to spilling GP8RC. A follow on patch will add
618     // support to spill GPRC.
619     if (TM.isELFv2ABI() || Subtarget.isAIXABI()) {
620       if (Subtarget.hasP9Vector() && EnableGPRToVecSpills &&
621           RC == &PPC::G8RCRegClass) {
622         InflateGP8RC++;
623         return &PPC::SPILLTOVSRRCRegClass;
624       }
625       if (RC == &PPC::GPRCRegClass && EnableGPRToVecSpills)
626         InflateGPRC++;
627     }
628 
629     for (const auto *I = RC->getSuperClasses(); *I; ++I) {
630       if (getRegSizeInBits(**I) != getRegSizeInBits(*RC))
631         continue;
632 
633       switch ((*I)->getID()) {
634       case PPC::VSSRCRegClassID:
635         return Subtarget.hasP8Vector() ? *I : DefaultSuperclass;
636       case PPC::VSFRCRegClassID:
637       case PPC::VSRCRegClassID:
638         return *I;
639       case PPC::VSRpRCRegClassID:
640         return Subtarget.pairedVectorMemops() ? *I : DefaultSuperclass;
641       case PPC::ACCRCRegClassID:
642       case PPC::UACCRCRegClassID:
643         return Subtarget.hasMMA() ? *I : DefaultSuperclass;
644       }
645     }
646   }
647 
648   return DefaultSuperclass;
649 }
650 
651 //===----------------------------------------------------------------------===//
652 // Stack Frame Processing methods
653 //===----------------------------------------------------------------------===//
654 
655 /// lowerDynamicAlloc - Generate the code for allocating an object in the
656 /// current frame.  The sequence of code will be in the general form
657 ///
658 ///   addi   R0, SP, \#frameSize ; get the address of the previous frame
659 ///   stwxu  R0, SP, Rnegsize   ; add and update the SP with the negated size
660 ///   addi   Rnew, SP, \#maxCalFrameSize ; get the top of the allocation
661 ///
662 void PPCRegisterInfo::lowerDynamicAlloc(MachineBasicBlock::iterator II) const {
663   // Get the instruction.
664   MachineInstr &MI = *II;
665   // Get the instruction's basic block.
666   MachineBasicBlock &MBB = *MI.getParent();
667   // Get the basic block's function.
668   MachineFunction &MF = *MBB.getParent();
669   // Get the frame info.
670   MachineFrameInfo &MFI = MF.getFrameInfo();
671   const PPCSubtarget &Subtarget = MF.getSubtarget<PPCSubtarget>();
672   // Get the instruction info.
673   const TargetInstrInfo &TII = *Subtarget.getInstrInfo();
674   // Determine whether 64-bit pointers are used.
675   bool LP64 = TM.isPPC64();
676   DebugLoc dl = MI.getDebugLoc();
677 
678   // Get the maximum call stack size.
679   unsigned maxCallFrameSize = MFI.getMaxCallFrameSize();
680   Align MaxAlign = MFI.getMaxAlign();
681   assert(isAligned(MaxAlign, maxCallFrameSize) &&
682          "Maximum call-frame size not sufficiently aligned");
683   (void)MaxAlign;
684 
685   const TargetRegisterClass *G8RC = &PPC::G8RCRegClass;
686   const TargetRegisterClass *GPRC = &PPC::GPRCRegClass;
687   Register Reg = MF.getRegInfo().createVirtualRegister(LP64 ? G8RC : GPRC);
688   bool KillNegSizeReg = MI.getOperand(1).isKill();
689   Register NegSizeReg = MI.getOperand(1).getReg();
690 
691   prepareDynamicAlloca(II, NegSizeReg, KillNegSizeReg, Reg);
692   // Grow the stack and update the stack pointer link, then determine the
693   // address of new allocated space.
694   if (LP64) {
695     BuildMI(MBB, II, dl, TII.get(PPC::STDUX), PPC::X1)
696         .addReg(Reg, RegState::Kill)
697         .addReg(PPC::X1)
698         .addReg(NegSizeReg, getKillRegState(KillNegSizeReg));
699     BuildMI(MBB, II, dl, TII.get(PPC::ADDI8), MI.getOperand(0).getReg())
700         .addReg(PPC::X1)
701         .addImm(maxCallFrameSize);
702   } else {
703     BuildMI(MBB, II, dl, TII.get(PPC::STWUX), PPC::R1)
704         .addReg(Reg, RegState::Kill)
705         .addReg(PPC::R1)
706         .addReg(NegSizeReg, getKillRegState(KillNegSizeReg));
707     BuildMI(MBB, II, dl, TII.get(PPC::ADDI), MI.getOperand(0).getReg())
708         .addReg(PPC::R1)
709         .addImm(maxCallFrameSize);
710   }
711 
712   // Discard the DYNALLOC instruction.
713   MBB.erase(II);
714 }
715 
716 /// To accomplish dynamic stack allocation, we have to calculate exact size
717 /// subtracted from the stack pointer according alignment information and get
718 /// previous frame pointer.
719 void PPCRegisterInfo::prepareDynamicAlloca(MachineBasicBlock::iterator II,
720                                            Register &NegSizeReg,
721                                            bool &KillNegSizeReg,
722                                            Register &FramePointer) const {
723   // Get the instruction.
724   MachineInstr &MI = *II;
725   // Get the instruction's basic block.
726   MachineBasicBlock &MBB = *MI.getParent();
727   // Get the basic block's function.
728   MachineFunction &MF = *MBB.getParent();
729   // Get the frame info.
730   MachineFrameInfo &MFI = MF.getFrameInfo();
731   const PPCSubtarget &Subtarget = MF.getSubtarget<PPCSubtarget>();
732   // Get the instruction info.
733   const TargetInstrInfo &TII = *Subtarget.getInstrInfo();
734   // Determine whether 64-bit pointers are used.
735   bool LP64 = TM.isPPC64();
736   DebugLoc dl = MI.getDebugLoc();
737   // Get the total frame size.
738   unsigned FrameSize = MFI.getStackSize();
739 
740   // Get stack alignments.
741   const PPCFrameLowering *TFI = getFrameLowering(MF);
742   Align TargetAlign = TFI->getStackAlign();
743   Align MaxAlign = MFI.getMaxAlign();
744 
745   // Determine the previous frame's address.  If FrameSize can't be
746   // represented as 16 bits or we need special alignment, then we load the
747   // previous frame's address from 0(SP).  Why not do an addis of the hi?
748   // Because R0 is our only safe tmp register and addi/addis treat R0 as zero.
749   // Constructing the constant and adding would take 3 instructions.
750   // Fortunately, a frame greater than 32K is rare.
751   const TargetRegisterClass *G8RC = &PPC::G8RCRegClass;
752   const TargetRegisterClass *GPRC = &PPC::GPRCRegClass;
753 
754   if (MaxAlign < TargetAlign && isInt<16>(FrameSize)) {
755     if (LP64)
756       BuildMI(MBB, II, dl, TII.get(PPC::ADDI8), FramePointer)
757           .addReg(PPC::X31)
758           .addImm(FrameSize);
759     else
760       BuildMI(MBB, II, dl, TII.get(PPC::ADDI), FramePointer)
761           .addReg(PPC::R31)
762           .addImm(FrameSize);
763   } else if (LP64) {
764     BuildMI(MBB, II, dl, TII.get(PPC::LD), FramePointer)
765         .addImm(0)
766         .addReg(PPC::X1);
767   } else {
768     BuildMI(MBB, II, dl, TII.get(PPC::LWZ), FramePointer)
769         .addImm(0)
770         .addReg(PPC::R1);
771   }
772   // Determine the actual NegSizeReg according to alignment info.
773   if (LP64) {
774     if (MaxAlign > TargetAlign) {
775       unsigned UnalNegSizeReg = NegSizeReg;
776       NegSizeReg = MF.getRegInfo().createVirtualRegister(G8RC);
777 
778       // Unfortunately, there is no andi, only andi., and we can't insert that
779       // here because we might clobber cr0 while it is live.
780       BuildMI(MBB, II, dl, TII.get(PPC::LI8), NegSizeReg)
781           .addImm(~(MaxAlign.value() - 1));
782 
783       unsigned NegSizeReg1 = NegSizeReg;
784       NegSizeReg = MF.getRegInfo().createVirtualRegister(G8RC);
785       BuildMI(MBB, II, dl, TII.get(PPC::AND8), NegSizeReg)
786           .addReg(UnalNegSizeReg, getKillRegState(KillNegSizeReg))
787           .addReg(NegSizeReg1, RegState::Kill);
788       KillNegSizeReg = true;
789     }
790   } else {
791     if (MaxAlign > TargetAlign) {
792       unsigned UnalNegSizeReg = NegSizeReg;
793       NegSizeReg = MF.getRegInfo().createVirtualRegister(GPRC);
794 
795       // Unfortunately, there is no andi, only andi., and we can't insert that
796       // here because we might clobber cr0 while it is live.
797       BuildMI(MBB, II, dl, TII.get(PPC::LI), NegSizeReg)
798           .addImm(~(MaxAlign.value() - 1));
799 
800       unsigned NegSizeReg1 = NegSizeReg;
801       NegSizeReg = MF.getRegInfo().createVirtualRegister(GPRC);
802       BuildMI(MBB, II, dl, TII.get(PPC::AND), NegSizeReg)
803           .addReg(UnalNegSizeReg, getKillRegState(KillNegSizeReg))
804           .addReg(NegSizeReg1, RegState::Kill);
805       KillNegSizeReg = true;
806     }
807   }
808 }
809 
810 void PPCRegisterInfo::lowerPrepareProbedAlloca(
811     MachineBasicBlock::iterator II) const {
812   MachineInstr &MI = *II;
813   // Get the instruction's basic block.
814   MachineBasicBlock &MBB = *MI.getParent();
815   // Get the basic block's function.
816   MachineFunction &MF = *MBB.getParent();
817   const PPCSubtarget &Subtarget = MF.getSubtarget<PPCSubtarget>();
818   // Get the instruction info.
819   const TargetInstrInfo &TII = *Subtarget.getInstrInfo();
820   // Determine whether 64-bit pointers are used.
821   bool LP64 = TM.isPPC64();
822   DebugLoc dl = MI.getDebugLoc();
823   Register FramePointer = MI.getOperand(0).getReg();
824   const Register ActualNegSizeReg = MI.getOperand(1).getReg();
825   bool KillNegSizeReg = MI.getOperand(2).isKill();
826   Register NegSizeReg = MI.getOperand(2).getReg();
827   const MCInstrDesc &CopyInst = TII.get(LP64 ? PPC::OR8 : PPC::OR);
828   // RegAllocator might allocate FramePointer and NegSizeReg in the same phyreg.
829   if (FramePointer == NegSizeReg) {
830     assert(KillNegSizeReg && "FramePointer is a def and NegSizeReg is an use, "
831                              "NegSizeReg should be killed");
832     // FramePointer is clobbered earlier than the use of NegSizeReg in
833     // prepareDynamicAlloca, save NegSizeReg in ActualNegSizeReg to avoid
834     // misuse.
835     BuildMI(MBB, II, dl, CopyInst, ActualNegSizeReg)
836         .addReg(NegSizeReg)
837         .addReg(NegSizeReg);
838     NegSizeReg = ActualNegSizeReg;
839     KillNegSizeReg = false;
840   }
841   prepareDynamicAlloca(II, NegSizeReg, KillNegSizeReg, FramePointer);
842   // NegSizeReg might be updated in prepareDynamicAlloca if MaxAlign >
843   // TargetAlign.
844   if (NegSizeReg != ActualNegSizeReg)
845     BuildMI(MBB, II, dl, CopyInst, ActualNegSizeReg)
846         .addReg(NegSizeReg)
847         .addReg(NegSizeReg);
848   MBB.erase(II);
849 }
850 
851 void PPCRegisterInfo::lowerDynamicAreaOffset(
852     MachineBasicBlock::iterator II) const {
853   // Get the instruction.
854   MachineInstr &MI = *II;
855   // Get the instruction's basic block.
856   MachineBasicBlock &MBB = *MI.getParent();
857   // Get the basic block's function.
858   MachineFunction &MF = *MBB.getParent();
859   // Get the frame info.
860   MachineFrameInfo &MFI = MF.getFrameInfo();
861   const PPCSubtarget &Subtarget = MF.getSubtarget<PPCSubtarget>();
862   // Get the instruction info.
863   const TargetInstrInfo &TII = *Subtarget.getInstrInfo();
864 
865   unsigned maxCallFrameSize = MFI.getMaxCallFrameSize();
866   bool is64Bit = TM.isPPC64();
867   DebugLoc dl = MI.getDebugLoc();
868   BuildMI(MBB, II, dl, TII.get(is64Bit ? PPC::LI8 : PPC::LI),
869           MI.getOperand(0).getReg())
870       .addImm(maxCallFrameSize);
871   MBB.erase(II);
872 }
873 
874 /// lowerCRSpilling - Generate the code for spilling a CR register. Instead of
875 /// reserving a whole register (R0), we scrounge for one here. This generates
876 /// code like this:
877 ///
878 ///   mfcr rA                  ; Move the conditional register into GPR rA.
879 ///   rlwinm rA, rA, SB, 0, 31 ; Shift the bits left so they are in CR0's slot.
880 ///   stw rA, FI               ; Store rA to the frame.
881 ///
882 void PPCRegisterInfo::lowerCRSpilling(MachineBasicBlock::iterator II,
883                                       unsigned FrameIndex) const {
884   // Get the instruction.
885   MachineInstr &MI = *II;       // ; SPILL_CR <SrcReg>, <offset>
886   // Get the instruction's basic block.
887   MachineBasicBlock &MBB = *MI.getParent();
888   MachineFunction &MF = *MBB.getParent();
889   const PPCSubtarget &Subtarget = MF.getSubtarget<PPCSubtarget>();
890   const TargetInstrInfo &TII = *Subtarget.getInstrInfo();
891   DebugLoc dl = MI.getDebugLoc();
892 
893   bool LP64 = TM.isPPC64();
894   const TargetRegisterClass *G8RC = &PPC::G8RCRegClass;
895   const TargetRegisterClass *GPRC = &PPC::GPRCRegClass;
896 
897   Register Reg = MF.getRegInfo().createVirtualRegister(LP64 ? G8RC : GPRC);
898   Register SrcReg = MI.getOperand(0).getReg();
899 
900   // We need to store the CR in the low 4-bits of the saved value. First, issue
901   // an MFOCRF to save all of the CRBits and, if needed, kill the SrcReg.
902   BuildMI(MBB, II, dl, TII.get(LP64 ? PPC::MFOCRF8 : PPC::MFOCRF), Reg)
903       .addReg(SrcReg, getKillRegState(MI.getOperand(0).isKill()));
904 
905   // If the saved register wasn't CR0, shift the bits left so that they are in
906   // CR0's slot.
907   if (SrcReg != PPC::CR0) {
908     Register Reg1 = Reg;
909     Reg = MF.getRegInfo().createVirtualRegister(LP64 ? G8RC : GPRC);
910 
911     // rlwinm rA, rA, ShiftBits, 0, 31.
912     BuildMI(MBB, II, dl, TII.get(LP64 ? PPC::RLWINM8 : PPC::RLWINM), Reg)
913       .addReg(Reg1, RegState::Kill)
914       .addImm(getEncodingValue(SrcReg) * 4)
915       .addImm(0)
916       .addImm(31);
917   }
918 
919   addFrameReference(BuildMI(MBB, II, dl, TII.get(LP64 ? PPC::STW8 : PPC::STW))
920                     .addReg(Reg, RegState::Kill),
921                     FrameIndex);
922 
923   // Discard the pseudo instruction.
924   MBB.erase(II);
925 }
926 
927 void PPCRegisterInfo::lowerCRRestore(MachineBasicBlock::iterator II,
928                                       unsigned FrameIndex) const {
929   // Get the instruction.
930   MachineInstr &MI = *II;       // ; <DestReg> = RESTORE_CR <offset>
931   // Get the instruction's basic block.
932   MachineBasicBlock &MBB = *MI.getParent();
933   MachineFunction &MF = *MBB.getParent();
934   const PPCSubtarget &Subtarget = MF.getSubtarget<PPCSubtarget>();
935   const TargetInstrInfo &TII = *Subtarget.getInstrInfo();
936   DebugLoc dl = MI.getDebugLoc();
937 
938   bool LP64 = TM.isPPC64();
939   const TargetRegisterClass *G8RC = &PPC::G8RCRegClass;
940   const TargetRegisterClass *GPRC = &PPC::GPRCRegClass;
941 
942   Register Reg = MF.getRegInfo().createVirtualRegister(LP64 ? G8RC : GPRC);
943   Register DestReg = MI.getOperand(0).getReg();
944   assert(MI.definesRegister(DestReg) &&
945     "RESTORE_CR does not define its destination");
946 
947   addFrameReference(BuildMI(MBB, II, dl, TII.get(LP64 ? PPC::LWZ8 : PPC::LWZ),
948                               Reg), FrameIndex);
949 
950   // If the reloaded register isn't CR0, shift the bits right so that they are
951   // in the right CR's slot.
952   if (DestReg != PPC::CR0) {
953     Register Reg1 = Reg;
954     Reg = MF.getRegInfo().createVirtualRegister(LP64 ? G8RC : GPRC);
955 
956     unsigned ShiftBits = getEncodingValue(DestReg)*4;
957     // rlwinm r11, r11, 32-ShiftBits, 0, 31.
958     BuildMI(MBB, II, dl, TII.get(LP64 ? PPC::RLWINM8 : PPC::RLWINM), Reg)
959              .addReg(Reg1, RegState::Kill).addImm(32-ShiftBits).addImm(0)
960              .addImm(31);
961   }
962 
963   BuildMI(MBB, II, dl, TII.get(LP64 ? PPC::MTOCRF8 : PPC::MTOCRF), DestReg)
964              .addReg(Reg, RegState::Kill);
965 
966   // Discard the pseudo instruction.
967   MBB.erase(II);
968 }
969 
970 void PPCRegisterInfo::lowerCRBitSpilling(MachineBasicBlock::iterator II,
971                                          unsigned FrameIndex) const {
972   // Get the instruction.
973   MachineInstr &MI = *II;       // ; SPILL_CRBIT <SrcReg>, <offset>
974   // Get the instruction's basic block.
975   MachineBasicBlock &MBB = *MI.getParent();
976   MachineFunction &MF = *MBB.getParent();
977   const PPCSubtarget &Subtarget = MF.getSubtarget<PPCSubtarget>();
978   const TargetInstrInfo &TII = *Subtarget.getInstrInfo();
979   const TargetRegisterInfo* TRI = Subtarget.getRegisterInfo();
980   DebugLoc dl = MI.getDebugLoc();
981 
982   bool LP64 = TM.isPPC64();
983   const TargetRegisterClass *G8RC = &PPC::G8RCRegClass;
984   const TargetRegisterClass *GPRC = &PPC::GPRCRegClass;
985 
986   Register Reg = MF.getRegInfo().createVirtualRegister(LP64 ? G8RC : GPRC);
987   Register SrcReg = MI.getOperand(0).getReg();
988 
989   // Search up the BB to find the definition of the CR bit.
990   MachineBasicBlock::reverse_iterator Ins = MI;
991   MachineBasicBlock::reverse_iterator Rend = MBB.rend();
992   ++Ins;
993   unsigned CRBitSpillDistance = 0;
994   bool SeenUse = false;
995   for (; Ins != Rend; ++Ins) {
996     // Definition found.
997     if (Ins->modifiesRegister(SrcReg, TRI))
998       break;
999     // Use found.
1000     if (Ins->readsRegister(SrcReg, TRI))
1001       SeenUse = true;
1002     // Unable to find CR bit definition within maximum search distance.
1003     if (CRBitSpillDistance == MaxCRBitSpillDist) {
1004       Ins = MI;
1005       break;
1006     }
1007     // Skip debug instructions when counting CR bit spill distance.
1008     if (!Ins->isDebugInstr())
1009       CRBitSpillDistance++;
1010   }
1011 
1012   // Unable to find the definition of the CR bit in the MBB.
1013   if (Ins == MBB.rend())
1014     Ins = MI;
1015 
1016   bool SpillsKnownBit = false;
1017   // There is no need to extract the CR bit if its value is already known.
1018   switch (Ins->getOpcode()) {
1019   case PPC::CRUNSET:
1020     BuildMI(MBB, II, dl, TII.get(LP64 ? PPC::LI8 : PPC::LI), Reg)
1021       .addImm(0);
1022     SpillsKnownBit = true;
1023     break;
1024   case PPC::CRSET:
1025     BuildMI(MBB, II, dl, TII.get(LP64 ? PPC::LIS8 : PPC::LIS), Reg)
1026       .addImm(-32768);
1027     SpillsKnownBit = true;
1028     break;
1029   default:
1030     // On Power10, we can use SETNBC to spill all CR bits. SETNBC will set all
1031     // bits (specifically, it produces a -1 if the CR bit is set). Ultimately,
1032     // the bit that is of importance to us is bit 32 (bit 0 of a 32-bit
1033     // register), and SETNBC will set this.
1034     if (Subtarget.isISA3_1()) {
1035       BuildMI(MBB, II, dl, TII.get(LP64 ? PPC::SETNBC8 : PPC::SETNBC), Reg)
1036           .addReg(SrcReg, RegState::Undef);
1037       break;
1038     }
1039 
1040     // On Power9, we can use SETB to extract the LT bit. This only works for
1041     // the LT bit since SETB produces -1/1/0 for LT/GT/<neither>. So the value
1042     // of the bit we care about (32-bit sign bit) will be set to the value of
1043     // the LT bit (regardless of the other bits in the CR field).
1044     if (Subtarget.isISA3_0()) {
1045       if (SrcReg == PPC::CR0LT || SrcReg == PPC::CR1LT ||
1046           SrcReg == PPC::CR2LT || SrcReg == PPC::CR3LT ||
1047           SrcReg == PPC::CR4LT || SrcReg == PPC::CR5LT ||
1048           SrcReg == PPC::CR6LT || SrcReg == PPC::CR7LT) {
1049         BuildMI(MBB, II, dl, TII.get(LP64 ? PPC::SETB8 : PPC::SETB), Reg)
1050           .addReg(getCRFromCRBit(SrcReg), RegState::Undef);
1051         break;
1052       }
1053     }
1054 
1055     // We need to move the CR field that contains the CR bit we are spilling.
1056     // The super register may not be explicitly defined (i.e. it can be defined
1057     // by a CR-logical that only defines the subreg) so we state that the CR
1058     // field is undef. Also, in order to preserve the kill flag on the CR bit,
1059     // we add it as an implicit use.
1060     BuildMI(MBB, II, dl, TII.get(LP64 ? PPC::MFOCRF8 : PPC::MFOCRF), Reg)
1061       .addReg(getCRFromCRBit(SrcReg), RegState::Undef)
1062       .addReg(SrcReg,
1063               RegState::Implicit | getKillRegState(MI.getOperand(0).isKill()));
1064 
1065     // If the saved register wasn't CR0LT, shift the bits left so that the bit
1066     // to store is the first one. Mask all but that bit.
1067     Register Reg1 = Reg;
1068     Reg = MF.getRegInfo().createVirtualRegister(LP64 ? G8RC : GPRC);
1069 
1070     // rlwinm rA, rA, ShiftBits, 0, 0.
1071     BuildMI(MBB, II, dl, TII.get(LP64 ? PPC::RLWINM8 : PPC::RLWINM), Reg)
1072       .addReg(Reg1, RegState::Kill)
1073       .addImm(getEncodingValue(SrcReg))
1074       .addImm(0).addImm(0);
1075   }
1076   addFrameReference(BuildMI(MBB, II, dl, TII.get(LP64 ? PPC::STW8 : PPC::STW))
1077                     .addReg(Reg, RegState::Kill),
1078                     FrameIndex);
1079 
1080   bool KillsCRBit = MI.killsRegister(SrcReg, TRI);
1081   // Discard the pseudo instruction.
1082   MBB.erase(II);
1083   if (SpillsKnownBit && KillsCRBit && !SeenUse) {
1084     Ins->setDesc(TII.get(PPC::UNENCODED_NOP));
1085     Ins->RemoveOperand(0);
1086   }
1087 }
1088 
1089 void PPCRegisterInfo::lowerCRBitRestore(MachineBasicBlock::iterator II,
1090                                       unsigned FrameIndex) const {
1091   // Get the instruction.
1092   MachineInstr &MI = *II;       // ; <DestReg> = RESTORE_CRBIT <offset>
1093   // Get the instruction's basic block.
1094   MachineBasicBlock &MBB = *MI.getParent();
1095   MachineFunction &MF = *MBB.getParent();
1096   const PPCSubtarget &Subtarget = MF.getSubtarget<PPCSubtarget>();
1097   const TargetInstrInfo &TII = *Subtarget.getInstrInfo();
1098   DebugLoc dl = MI.getDebugLoc();
1099 
1100   bool LP64 = TM.isPPC64();
1101   const TargetRegisterClass *G8RC = &PPC::G8RCRegClass;
1102   const TargetRegisterClass *GPRC = &PPC::GPRCRegClass;
1103 
1104   Register Reg = MF.getRegInfo().createVirtualRegister(LP64 ? G8RC : GPRC);
1105   Register DestReg = MI.getOperand(0).getReg();
1106   assert(MI.definesRegister(DestReg) &&
1107     "RESTORE_CRBIT does not define its destination");
1108 
1109   addFrameReference(BuildMI(MBB, II, dl, TII.get(LP64 ? PPC::LWZ8 : PPC::LWZ),
1110                               Reg), FrameIndex);
1111 
1112   BuildMI(MBB, II, dl, TII.get(TargetOpcode::IMPLICIT_DEF), DestReg);
1113 
1114   Register RegO = MF.getRegInfo().createVirtualRegister(LP64 ? G8RC : GPRC);
1115   BuildMI(MBB, II, dl, TII.get(LP64 ? PPC::MFOCRF8 : PPC::MFOCRF), RegO)
1116           .addReg(getCRFromCRBit(DestReg));
1117 
1118   unsigned ShiftBits = getEncodingValue(DestReg);
1119   // rlwimi r11, r10, 32-ShiftBits, ..., ...
1120   BuildMI(MBB, II, dl, TII.get(LP64 ? PPC::RLWIMI8 : PPC::RLWIMI), RegO)
1121       .addReg(RegO, RegState::Kill)
1122       .addReg(Reg, RegState::Kill)
1123       .addImm(ShiftBits ? 32 - ShiftBits : 0)
1124       .addImm(ShiftBits)
1125       .addImm(ShiftBits);
1126 
1127   BuildMI(MBB, II, dl, TII.get(LP64 ? PPC::MTOCRF8 : PPC::MTOCRF),
1128           getCRFromCRBit(DestReg))
1129       .addReg(RegO, RegState::Kill)
1130       // Make sure we have a use dependency all the way through this
1131       // sequence of instructions. We can't have the other bits in the CR
1132       // modified in between the mfocrf and the mtocrf.
1133       .addReg(getCRFromCRBit(DestReg), RegState::Implicit);
1134 
1135   // Discard the pseudo instruction.
1136   MBB.erase(II);
1137 }
1138 
1139 void PPCRegisterInfo::emitAccCopyInfo(MachineBasicBlock &MBB,
1140                                       MCRegister DestReg, MCRegister SrcReg) {
1141 #ifdef NDEBUG
1142   return;
1143 #else
1144   if (ReportAccMoves) {
1145     std::string Dest = PPC::ACCRCRegClass.contains(DestReg) ? "acc" : "uacc";
1146     std::string Src = PPC::ACCRCRegClass.contains(SrcReg) ? "acc" : "uacc";
1147     dbgs() << "Emitting copy from " << Src << " to " << Dest << ":\n";
1148     MBB.dump();
1149   }
1150 #endif
1151 }
1152 
1153 static void emitAccSpillRestoreInfo(MachineBasicBlock &MBB, bool IsPrimed,
1154                                     bool IsRestore) {
1155 #ifdef NDEBUG
1156   return;
1157 #else
1158   if (ReportAccMoves) {
1159     dbgs() << "Emitting " << (IsPrimed ? "acc" : "uacc") << " register "
1160            << (IsRestore ? "restore" : "spill") << ":\n";
1161     MBB.dump();
1162   }
1163 #endif
1164 }
1165 
1166 /// lowerACCSpilling - Generate the code for spilling the accumulator register.
1167 /// Similarly to other spills/reloads that use pseudo-ops, we do not actually
1168 /// eliminate the FrameIndex here nor compute the stack offset. We simply
1169 /// create a real instruction with an FI and rely on eliminateFrameIndex to
1170 /// handle the FI elimination.
1171 void PPCRegisterInfo::lowerACCSpilling(MachineBasicBlock::iterator II,
1172                                        unsigned FrameIndex) const {
1173   MachineInstr &MI = *II; // SPILL_ACC <SrcReg>, <offset>
1174   MachineBasicBlock &MBB = *MI.getParent();
1175   MachineFunction &MF = *MBB.getParent();
1176   const PPCSubtarget &Subtarget = MF.getSubtarget<PPCSubtarget>();
1177   const TargetInstrInfo &TII = *Subtarget.getInstrInfo();
1178   DebugLoc DL = MI.getDebugLoc();
1179   Register SrcReg = MI.getOperand(0).getReg();
1180   bool IsKilled = MI.getOperand(0).isKill();
1181 
1182   bool IsPrimed = PPC::ACCRCRegClass.contains(SrcReg);
1183   Register Reg =
1184       PPC::VSRp0 + (SrcReg - (IsPrimed ? PPC::ACC0 : PPC::UACC0)) * 2;
1185   bool IsLittleEndian = Subtarget.isLittleEndian();
1186 
1187   emitAccSpillRestoreInfo(MBB, IsPrimed, false);
1188 
1189   // De-prime the register being spilled, create two stores for the pair
1190   // subregisters accounting for endianness and then re-prime the register if
1191   // it isn't killed.  This uses the Offset parameter to addFrameReference() to
1192   // adjust the offset of the store that is within the 64-byte stack slot.
1193   if (IsPrimed)
1194     BuildMI(MBB, II, DL, TII.get(PPC::XXMFACC), SrcReg).addReg(SrcReg);
1195   addFrameReference(BuildMI(MBB, II, DL, TII.get(PPC::STXVP))
1196                         .addReg(Reg, getKillRegState(IsKilled)),
1197                     FrameIndex, IsLittleEndian ? 32 : 0);
1198   addFrameReference(BuildMI(MBB, II, DL, TII.get(PPC::STXVP))
1199                         .addReg(Reg + 1, getKillRegState(IsKilled)),
1200                     FrameIndex, IsLittleEndian ? 0 : 32);
1201   if (IsPrimed && !IsKilled)
1202     BuildMI(MBB, II, DL, TII.get(PPC::XXMTACC), SrcReg).addReg(SrcReg);
1203 
1204   // Discard the pseudo instruction.
1205   MBB.erase(II);
1206 }
1207 
1208 /// lowerACCRestore - Generate the code to restore the accumulator register.
1209 void PPCRegisterInfo::lowerACCRestore(MachineBasicBlock::iterator II,
1210                                       unsigned FrameIndex) const {
1211   MachineInstr &MI = *II; // <DestReg> = RESTORE_ACC <offset>
1212   MachineBasicBlock &MBB = *MI.getParent();
1213   MachineFunction &MF = *MBB.getParent();
1214   const PPCSubtarget &Subtarget = MF.getSubtarget<PPCSubtarget>();
1215   const TargetInstrInfo &TII = *Subtarget.getInstrInfo();
1216   DebugLoc DL = MI.getDebugLoc();
1217 
1218   Register DestReg = MI.getOperand(0).getReg();
1219   assert(MI.definesRegister(DestReg) &&
1220          "RESTORE_ACC does not define its destination");
1221 
1222   bool IsPrimed = PPC::ACCRCRegClass.contains(DestReg);
1223   Register Reg =
1224       PPC::VSRp0 + (DestReg - (IsPrimed ? PPC::ACC0 : PPC::UACC0)) * 2;
1225   bool IsLittleEndian = Subtarget.isLittleEndian();
1226 
1227   emitAccSpillRestoreInfo(MBB, IsPrimed, true);
1228 
1229   // Create two loads for the pair subregisters accounting for endianness and
1230   // then prime the accumulator register being restored.
1231   addFrameReference(BuildMI(MBB, II, DL, TII.get(PPC::LXVP), Reg),
1232                     FrameIndex, IsLittleEndian ? 32 : 0);
1233   addFrameReference(BuildMI(MBB, II, DL, TII.get(PPC::LXVP), Reg + 1),
1234                     FrameIndex, IsLittleEndian ? 0 : 32);
1235   if (IsPrimed)
1236     BuildMI(MBB, II, DL, TII.get(PPC::XXMTACC), DestReg).addReg(DestReg);
1237 
1238   // Discard the pseudo instruction.
1239   MBB.erase(II);
1240 }
1241 
1242 /// lowerQuadwordSpilling - Generate code to spill paired general register.
1243 void PPCRegisterInfo::lowerQuadwordSpilling(MachineBasicBlock::iterator II,
1244                                             unsigned FrameIndex) const {
1245   MachineInstr &MI = *II;
1246   MachineBasicBlock &MBB = *MI.getParent();
1247   MachineFunction &MF = *MBB.getParent();
1248   const PPCSubtarget &Subtarget = MF.getSubtarget<PPCSubtarget>();
1249   const TargetInstrInfo &TII = *Subtarget.getInstrInfo();
1250   DebugLoc DL = MI.getDebugLoc();
1251 
1252   Register SrcReg = MI.getOperand(0).getReg();
1253   bool IsKilled = MI.getOperand(0).isKill();
1254 
1255   Register Reg = PPC::X0 + (SrcReg - PPC::G8p0) * 2;
1256   bool IsLittleEndian = Subtarget.isLittleEndian();
1257 
1258   addFrameReference(BuildMI(MBB, II, DL, TII.get(PPC::STD))
1259                         .addReg(Reg, getKillRegState(IsKilled)),
1260                     FrameIndex, IsLittleEndian ? 8 : 0);
1261   addFrameReference(BuildMI(MBB, II, DL, TII.get(PPC::STD))
1262                         .addReg(Reg + 1, getKillRegState(IsKilled)),
1263                     FrameIndex, IsLittleEndian ? 0 : 8);
1264 
1265   // Discard the pseudo instruction.
1266   MBB.erase(II);
1267 }
1268 
1269 /// lowerQuadwordRestore - Generate code to restore paired general register.
1270 void PPCRegisterInfo::lowerQuadwordRestore(MachineBasicBlock::iterator II,
1271                                            unsigned FrameIndex) const {
1272   MachineInstr &MI = *II;
1273   MachineBasicBlock &MBB = *MI.getParent();
1274   MachineFunction &MF = *MBB.getParent();
1275   const PPCSubtarget &Subtarget = MF.getSubtarget<PPCSubtarget>();
1276   const TargetInstrInfo &TII = *Subtarget.getInstrInfo();
1277   DebugLoc DL = MI.getDebugLoc();
1278 
1279   Register DestReg = MI.getOperand(0).getReg();
1280   assert(MI.definesRegister(DestReg) &&
1281          "RESTORE_QUADWORD does not define its destination");
1282 
1283   Register Reg = PPC::X0 + (DestReg - PPC::G8p0) * 2;
1284   bool IsLittleEndian = Subtarget.isLittleEndian();
1285 
1286   addFrameReference(BuildMI(MBB, II, DL, TII.get(PPC::LD), Reg), FrameIndex,
1287                     IsLittleEndian ? 8 : 0);
1288   addFrameReference(BuildMI(MBB, II, DL, TII.get(PPC::LD), Reg + 1), FrameIndex,
1289                     IsLittleEndian ? 0 : 8);
1290 
1291   // Discard the pseudo instruction.
1292   MBB.erase(II);
1293 }
1294 
1295 bool PPCRegisterInfo::hasReservedSpillSlot(const MachineFunction &MF,
1296                                            Register Reg, int &FrameIdx) const {
1297   // For the nonvolatile condition registers (CR2, CR3, CR4) return true to
1298   // prevent allocating an additional frame slot.
1299   // For 64-bit ELF and AIX, the CR save area is in the linkage area at SP+8,
1300   // for 32-bit AIX the CR save area is in the linkage area at SP+4.
1301   // We have created a FrameIndex to that spill slot to keep the CalleSaveInfos
1302   // valid.
1303   // For 32-bit ELF, we have previously created the stack slot if needed, so
1304   // return its FrameIdx.
1305   if (PPC::CR2 <= Reg && Reg <= PPC::CR4) {
1306     FrameIdx = MF.getInfo<PPCFunctionInfo>()->getCRSpillFrameIndex();
1307     return true;
1308   }
1309   return false;
1310 }
1311 
1312 // If the offset must be a multiple of some value, return what that value is.
1313 static unsigned offsetMinAlignForOpcode(unsigned OpC) {
1314   switch (OpC) {
1315   default:
1316     return 1;
1317   case PPC::LWA:
1318   case PPC::LWA_32:
1319   case PPC::LD:
1320   case PPC::LDU:
1321   case PPC::STD:
1322   case PPC::STDU:
1323   case PPC::DFLOADf32:
1324   case PPC::DFLOADf64:
1325   case PPC::DFSTOREf32:
1326   case PPC::DFSTOREf64:
1327   case PPC::LXSD:
1328   case PPC::LXSSP:
1329   case PPC::STXSD:
1330   case PPC::STXSSP:
1331   case PPC::STQ:
1332     return 4;
1333   case PPC::EVLDD:
1334   case PPC::EVSTDD:
1335     return 8;
1336   case PPC::LXV:
1337   case PPC::STXV:
1338   case PPC::LQ:
1339   case PPC::LXVP:
1340   case PPC::STXVP:
1341     return 16;
1342   }
1343 }
1344 
1345 // If the offset must be a multiple of some value, return what that value is.
1346 static unsigned offsetMinAlign(const MachineInstr &MI) {
1347   unsigned OpC = MI.getOpcode();
1348   return offsetMinAlignForOpcode(OpC);
1349 }
1350 
1351 // Return the OffsetOperandNo given the FIOperandNum (and the instruction).
1352 static unsigned getOffsetONFromFION(const MachineInstr &MI,
1353                                     unsigned FIOperandNum) {
1354   // Take into account whether it's an add or mem instruction
1355   unsigned OffsetOperandNo = (FIOperandNum == 2) ? 1 : 2;
1356   if (MI.isInlineAsm())
1357     OffsetOperandNo = FIOperandNum - 1;
1358   else if (MI.getOpcode() == TargetOpcode::STACKMAP ||
1359            MI.getOpcode() == TargetOpcode::PATCHPOINT)
1360     OffsetOperandNo = FIOperandNum + 1;
1361 
1362   return OffsetOperandNo;
1363 }
1364 
1365 void
1366 PPCRegisterInfo::eliminateFrameIndex(MachineBasicBlock::iterator II,
1367                                      int SPAdj, unsigned FIOperandNum,
1368                                      RegScavenger *RS) const {
1369   assert(SPAdj == 0 && "Unexpected");
1370 
1371   // Get the instruction.
1372   MachineInstr &MI = *II;
1373   // Get the instruction's basic block.
1374   MachineBasicBlock &MBB = *MI.getParent();
1375   // Get the basic block's function.
1376   MachineFunction &MF = *MBB.getParent();
1377   const PPCSubtarget &Subtarget = MF.getSubtarget<PPCSubtarget>();
1378   // Get the instruction info.
1379   const PPCInstrInfo &TII = *Subtarget.getInstrInfo();
1380   // Get the frame info.
1381   MachineFrameInfo &MFI = MF.getFrameInfo();
1382   DebugLoc dl = MI.getDebugLoc();
1383 
1384   unsigned OffsetOperandNo = getOffsetONFromFION(MI, FIOperandNum);
1385 
1386   // Get the frame index.
1387   int FrameIndex = MI.getOperand(FIOperandNum).getIndex();
1388 
1389   // Get the frame pointer save index.  Users of this index are primarily
1390   // DYNALLOC instructions.
1391   PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>();
1392   int FPSI = FI->getFramePointerSaveIndex();
1393   // Get the instruction opcode.
1394   unsigned OpC = MI.getOpcode();
1395 
1396   if ((OpC == PPC::DYNAREAOFFSET || OpC == PPC::DYNAREAOFFSET8)) {
1397     lowerDynamicAreaOffset(II);
1398     return;
1399   }
1400 
1401   // Special case for dynamic alloca.
1402   if (FPSI && FrameIndex == FPSI &&
1403       (OpC == PPC::DYNALLOC || OpC == PPC::DYNALLOC8)) {
1404     lowerDynamicAlloc(II);
1405     return;
1406   }
1407 
1408   if (FPSI && FrameIndex == FPSI &&
1409       (OpC == PPC::PREPARE_PROBED_ALLOCA_64 ||
1410        OpC == PPC::PREPARE_PROBED_ALLOCA_32 ||
1411        OpC == PPC::PREPARE_PROBED_ALLOCA_NEGSIZE_SAME_REG_64 ||
1412        OpC == PPC::PREPARE_PROBED_ALLOCA_NEGSIZE_SAME_REG_32)) {
1413     lowerPrepareProbedAlloca(II);
1414     return;
1415   }
1416 
1417   // Special case for pseudo-ops SPILL_CR and RESTORE_CR, etc.
1418   if (OpC == PPC::SPILL_CR) {
1419     lowerCRSpilling(II, FrameIndex);
1420     return;
1421   } else if (OpC == PPC::RESTORE_CR) {
1422     lowerCRRestore(II, FrameIndex);
1423     return;
1424   } else if (OpC == PPC::SPILL_CRBIT) {
1425     lowerCRBitSpilling(II, FrameIndex);
1426     return;
1427   } else if (OpC == PPC::RESTORE_CRBIT) {
1428     lowerCRBitRestore(II, FrameIndex);
1429     return;
1430   } else if (OpC == PPC::SPILL_ACC || OpC == PPC::SPILL_UACC) {
1431     lowerACCSpilling(II, FrameIndex);
1432     return;
1433   } else if (OpC == PPC::RESTORE_ACC || OpC == PPC::RESTORE_UACC) {
1434     lowerACCRestore(II, FrameIndex);
1435     return;
1436   } else if (OpC == PPC::SPILL_QUADWORD) {
1437     lowerQuadwordSpilling(II, FrameIndex);
1438     return;
1439   } else if (OpC == PPC::RESTORE_QUADWORD) {
1440     lowerQuadwordRestore(II, FrameIndex);
1441     return;
1442   }
1443 
1444   // Replace the FrameIndex with base register with GPR1 (SP) or GPR31 (FP).
1445   MI.getOperand(FIOperandNum).ChangeToRegister(
1446     FrameIndex < 0 ? getBaseRegister(MF) : getFrameRegister(MF), false);
1447 
1448   // If the instruction is not present in ImmToIdxMap, then it has no immediate
1449   // form (and must be r+r).
1450   bool noImmForm = !MI.isInlineAsm() && OpC != TargetOpcode::STACKMAP &&
1451                    OpC != TargetOpcode::PATCHPOINT && !ImmToIdxMap.count(OpC);
1452 
1453   // Now add the frame object offset to the offset from r1.
1454   int Offset = MFI.getObjectOffset(FrameIndex);
1455   Offset += MI.getOperand(OffsetOperandNo).getImm();
1456 
1457   // If we're not using a Frame Pointer that has been set to the value of the
1458   // SP before having the stack size subtracted from it, then add the stack size
1459   // to Offset to get the correct offset.
1460   // Naked functions have stack size 0, although getStackSize may not reflect
1461   // that because we didn't call all the pieces that compute it for naked
1462   // functions.
1463   if (!MF.getFunction().hasFnAttribute(Attribute::Naked)) {
1464     if (!(hasBasePointer(MF) && FrameIndex < 0))
1465       Offset += MFI.getStackSize();
1466   }
1467 
1468   // If we encounter an LXVP/STXVP with an offset that doesn't fit, we can
1469   // transform it to the prefixed version so we don't have to use the XForm.
1470   if ((OpC == PPC::LXVP || OpC == PPC::STXVP) &&
1471       (!isInt<16>(Offset) || (Offset % offsetMinAlign(MI)) != 0) &&
1472       Subtarget.hasPrefixInstrs()) {
1473     unsigned NewOpc = OpC == PPC::LXVP ? PPC::PLXVP : PPC::PSTXVP;
1474     MI.setDesc(TII.get(NewOpc));
1475     OpC = NewOpc;
1476   }
1477 
1478   // If we can, encode the offset directly into the instruction.  If this is a
1479   // normal PPC "ri" instruction, any 16-bit value can be safely encoded.  If
1480   // this is a PPC64 "ix" instruction, only a 16-bit value with the low two bits
1481   // clear can be encoded.  This is extremely uncommon, because normally you
1482   // only "std" to a stack slot that is at least 4-byte aligned, but it can
1483   // happen in invalid code.
1484   assert(OpC != PPC::DBG_VALUE &&
1485          "This should be handled in a target-independent way");
1486   // FIXME: This should be factored out to a separate function as prefixed
1487   // instructions add a number of opcodes for which we can use 34-bit imm.
1488   bool OffsetFitsMnemonic = (OpC == PPC::EVSTDD || OpC == PPC::EVLDD) ?
1489                             isUInt<8>(Offset) :
1490                             isInt<16>(Offset);
1491   if (TII.isPrefixed(MI.getOpcode()))
1492     OffsetFitsMnemonic = isInt<34>(Offset);
1493   if (!noImmForm && ((OffsetFitsMnemonic &&
1494                       ((Offset % offsetMinAlign(MI)) == 0)) ||
1495                      OpC == TargetOpcode::STACKMAP ||
1496                      OpC == TargetOpcode::PATCHPOINT)) {
1497     MI.getOperand(OffsetOperandNo).ChangeToImmediate(Offset);
1498     return;
1499   }
1500 
1501   // The offset doesn't fit into a single register, scavenge one to build the
1502   // offset in.
1503 
1504   bool is64Bit = TM.isPPC64();
1505   const TargetRegisterClass *G8RC = &PPC::G8RCRegClass;
1506   const TargetRegisterClass *GPRC = &PPC::GPRCRegClass;
1507   const TargetRegisterClass *RC = is64Bit ? G8RC : GPRC;
1508   Register SRegHi = MF.getRegInfo().createVirtualRegister(RC),
1509            SReg = MF.getRegInfo().createVirtualRegister(RC);
1510 
1511   // Insert a set of rA with the full offset value before the ld, st, or add
1512   if (isInt<16>(Offset))
1513     BuildMI(MBB, II, dl, TII.get(is64Bit ? PPC::LI8 : PPC::LI), SReg)
1514       .addImm(Offset);
1515   else {
1516     BuildMI(MBB, II, dl, TII.get(is64Bit ? PPC::LIS8 : PPC::LIS), SRegHi)
1517       .addImm(Offset >> 16);
1518     BuildMI(MBB, II, dl, TII.get(is64Bit ? PPC::ORI8 : PPC::ORI), SReg)
1519       .addReg(SRegHi, RegState::Kill)
1520       .addImm(Offset);
1521   }
1522 
1523   // Convert into indexed form of the instruction:
1524   //
1525   //   sth 0:rA, 1:imm 2:(rB) ==> sthx 0:rA, 2:rB, 1:r0
1526   //   addi 0:rA 1:rB, 2, imm ==> add 0:rA, 1:rB, 2:r0
1527   unsigned OperandBase;
1528 
1529   if (noImmForm)
1530     OperandBase = 1;
1531   else if (OpC != TargetOpcode::INLINEASM &&
1532            OpC != TargetOpcode::INLINEASM_BR) {
1533     assert(ImmToIdxMap.count(OpC) &&
1534            "No indexed form of load or store available!");
1535     unsigned NewOpcode = ImmToIdxMap.find(OpC)->second;
1536     MI.setDesc(TII.get(NewOpcode));
1537     OperandBase = 1;
1538   } else {
1539     OperandBase = OffsetOperandNo;
1540   }
1541 
1542   Register StackReg = MI.getOperand(FIOperandNum).getReg();
1543   MI.getOperand(OperandBase).ChangeToRegister(StackReg, false);
1544   MI.getOperand(OperandBase + 1).ChangeToRegister(SReg, false, false, true);
1545 }
1546 
1547 Register PPCRegisterInfo::getFrameRegister(const MachineFunction &MF) const {
1548   const PPCFrameLowering *TFI = getFrameLowering(MF);
1549 
1550   if (!TM.isPPC64())
1551     return TFI->hasFP(MF) ? PPC::R31 : PPC::R1;
1552   else
1553     return TFI->hasFP(MF) ? PPC::X31 : PPC::X1;
1554 }
1555 
1556 Register PPCRegisterInfo::getBaseRegister(const MachineFunction &MF) const {
1557   const PPCSubtarget &Subtarget = MF.getSubtarget<PPCSubtarget>();
1558   if (!hasBasePointer(MF))
1559     return getFrameRegister(MF);
1560 
1561   if (TM.isPPC64())
1562     return PPC::X30;
1563 
1564   if (Subtarget.isSVR4ABI() && TM.isPositionIndependent())
1565     return PPC::R29;
1566 
1567   return PPC::R30;
1568 }
1569 
1570 bool PPCRegisterInfo::hasBasePointer(const MachineFunction &MF) const {
1571   if (!EnableBasePointer)
1572     return false;
1573   if (AlwaysBasePointer)
1574     return true;
1575 
1576   // If we need to realign the stack, then the stack pointer can no longer
1577   // serve as an offset into the caller's stack space. As a result, we need a
1578   // base pointer.
1579   return hasStackRealignment(MF);
1580 }
1581 
1582 /// Returns true if the instruction's frame index
1583 /// reference would be better served by a base register other than FP
1584 /// or SP. Used by LocalStackFrameAllocation to determine which frame index
1585 /// references it should create new base registers for.
1586 bool PPCRegisterInfo::
1587 needsFrameBaseReg(MachineInstr *MI, int64_t Offset) const {
1588   assert(Offset < 0 && "Local offset must be negative");
1589 
1590   // It's the load/store FI references that cause issues, as it can be difficult
1591   // to materialize the offset if it won't fit in the literal field. Estimate
1592   // based on the size of the local frame and some conservative assumptions
1593   // about the rest of the stack frame (note, this is pre-regalloc, so
1594   // we don't know everything for certain yet) whether this offset is likely
1595   // to be out of range of the immediate. Return true if so.
1596 
1597   // We only generate virtual base registers for loads and stores that have
1598   // an r+i form. Return false for everything else.
1599   unsigned OpC = MI->getOpcode();
1600   if (!ImmToIdxMap.count(OpC))
1601     return false;
1602 
1603   // Don't generate a new virtual base register just to add zero to it.
1604   if ((OpC == PPC::ADDI || OpC == PPC::ADDI8) &&
1605       MI->getOperand(2).getImm() == 0)
1606     return false;
1607 
1608   MachineBasicBlock &MBB = *MI->getParent();
1609   MachineFunction &MF = *MBB.getParent();
1610   const PPCFrameLowering *TFI = getFrameLowering(MF);
1611   unsigned StackEst = TFI->determineFrameLayout(MF, true);
1612 
1613   // If we likely don't need a stack frame, then we probably don't need a
1614   // virtual base register either.
1615   if (!StackEst)
1616     return false;
1617 
1618   // Estimate an offset from the stack pointer.
1619   // The incoming offset is relating to the SP at the start of the function,
1620   // but when we access the local it'll be relative to the SP after local
1621   // allocation, so adjust our SP-relative offset by that allocation size.
1622   Offset += StackEst;
1623 
1624   // The frame pointer will point to the end of the stack, so estimate the
1625   // offset as the difference between the object offset and the FP location.
1626   return !isFrameOffsetLegal(MI, getBaseRegister(MF), Offset);
1627 }
1628 
1629 /// Insert defining instruction(s) for BaseReg to
1630 /// be a pointer to FrameIdx at the beginning of the basic block.
1631 Register PPCRegisterInfo::materializeFrameBaseRegister(MachineBasicBlock *MBB,
1632                                                        int FrameIdx,
1633                                                        int64_t Offset) const {
1634   unsigned ADDriOpc = TM.isPPC64() ? PPC::ADDI8 : PPC::ADDI;
1635 
1636   MachineBasicBlock::iterator Ins = MBB->begin();
1637   DebugLoc DL;                  // Defaults to "unknown"
1638   if (Ins != MBB->end())
1639     DL = Ins->getDebugLoc();
1640 
1641   const MachineFunction &MF = *MBB->getParent();
1642   const PPCSubtarget &Subtarget = MF.getSubtarget<PPCSubtarget>();
1643   const TargetInstrInfo &TII = *Subtarget.getInstrInfo();
1644   const MCInstrDesc &MCID = TII.get(ADDriOpc);
1645   MachineRegisterInfo &MRI = MBB->getParent()->getRegInfo();
1646   const TargetRegisterClass *RC = getPointerRegClass(MF);
1647   Register BaseReg = MRI.createVirtualRegister(RC);
1648   MRI.constrainRegClass(BaseReg, TII.getRegClass(MCID, 0, this, MF));
1649 
1650   BuildMI(*MBB, Ins, DL, MCID, BaseReg)
1651     .addFrameIndex(FrameIdx).addImm(Offset);
1652 
1653   return BaseReg;
1654 }
1655 
1656 void PPCRegisterInfo::resolveFrameIndex(MachineInstr &MI, Register BaseReg,
1657                                         int64_t Offset) const {
1658   unsigned FIOperandNum = 0;
1659   while (!MI.getOperand(FIOperandNum).isFI()) {
1660     ++FIOperandNum;
1661     assert(FIOperandNum < MI.getNumOperands() &&
1662            "Instr doesn't have FrameIndex operand!");
1663   }
1664 
1665   MI.getOperand(FIOperandNum).ChangeToRegister(BaseReg, false);
1666   unsigned OffsetOperandNo = getOffsetONFromFION(MI, FIOperandNum);
1667   Offset += MI.getOperand(OffsetOperandNo).getImm();
1668   MI.getOperand(OffsetOperandNo).ChangeToImmediate(Offset);
1669 
1670   MachineBasicBlock &MBB = *MI.getParent();
1671   MachineFunction &MF = *MBB.getParent();
1672   const PPCSubtarget &Subtarget = MF.getSubtarget<PPCSubtarget>();
1673   const TargetInstrInfo &TII = *Subtarget.getInstrInfo();
1674   const MCInstrDesc &MCID = MI.getDesc();
1675   MachineRegisterInfo &MRI = MF.getRegInfo();
1676   MRI.constrainRegClass(BaseReg,
1677                         TII.getRegClass(MCID, FIOperandNum, this, MF));
1678 }
1679 
1680 bool PPCRegisterInfo::isFrameOffsetLegal(const MachineInstr *MI,
1681                                          Register BaseReg,
1682                                          int64_t Offset) const {
1683   unsigned FIOperandNum = 0;
1684   while (!MI->getOperand(FIOperandNum).isFI()) {
1685     ++FIOperandNum;
1686     assert(FIOperandNum < MI->getNumOperands() &&
1687            "Instr doesn't have FrameIndex operand!");
1688   }
1689 
1690   unsigned OffsetOperandNo = getOffsetONFromFION(*MI, FIOperandNum);
1691   Offset += MI->getOperand(OffsetOperandNo).getImm();
1692 
1693   return MI->getOpcode() == PPC::DBG_VALUE || // DBG_VALUE is always Reg+Imm
1694          MI->getOpcode() == TargetOpcode::STACKMAP ||
1695          MI->getOpcode() == TargetOpcode::PATCHPOINT ||
1696          (isInt<16>(Offset) && (Offset % offsetMinAlign(*MI)) == 0);
1697 }
1698