1 //===----------- PPCVSXSwapRemoval.cpp - Remove VSX LE Swaps -------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===---------------------------------------------------------------------===//
8 //
9 // This pass analyzes vector computations and removes unnecessary
10 // doubleword swaps (xxswapd instructions).  This pass is performed
11 // only for little-endian VSX code generation.
12 //
13 // For this specific case, loads and stores of v4i32, v4f32, v2i64,
14 // and v2f64 vectors are inefficient.  These are implemented using
15 // the lxvd2x and stxvd2x instructions, which invert the order of
16 // doublewords in a vector register.  Thus code generation inserts
17 // an xxswapd after each such load, and prior to each such store.
18 //
19 // The extra xxswapd instructions reduce performance.  The purpose
20 // of this pass is to reduce the number of xxswapd instructions
21 // required for correctness.
22 //
23 // The primary insight is that much code that operates on vectors
24 // does not care about the relative order of elements in a register,
25 // so long as the correct memory order is preserved.  If we have a
26 // computation where all input values are provided by lxvd2x/xxswapd,
27 // all outputs are stored using xxswapd/lxvd2x, and all intermediate
28 // computations are lane-insensitive (independent of element order),
29 // then all the xxswapd instructions associated with the loads and
30 // stores may be removed without changing observable semantics.
31 //
32 // This pass uses standard equivalence class infrastructure to create
33 // maximal webs of computations fitting the above description.  Each
34 // such web is then optimized by removing its unnecessary xxswapd
35 // instructions.
36 //
37 // There are some lane-sensitive operations for which we can still
38 // permit the optimization, provided we modify those operations
39 // accordingly.  Such operations are identified as using "special
40 // handling" within this module.
41 //
42 //===---------------------------------------------------------------------===//
43 
44 #include "PPC.h"
45 #include "PPCInstrBuilder.h"
46 #include "PPCInstrInfo.h"
47 #include "PPCTargetMachine.h"
48 #include "llvm/ADT/DenseMap.h"
49 #include "llvm/ADT/EquivalenceClasses.h"
50 #include "llvm/CodeGen/MachineFunctionPass.h"
51 #include "llvm/CodeGen/MachineInstrBuilder.h"
52 #include "llvm/CodeGen/MachineRegisterInfo.h"
53 #include "llvm/Config/llvm-config.h"
54 #include "llvm/Support/Debug.h"
55 #include "llvm/Support/Format.h"
56 #include "llvm/Support/raw_ostream.h"
57 
58 using namespace llvm;
59 
60 #define DEBUG_TYPE "ppc-vsx-swaps"
61 
62 namespace {
63 
64 // A PPCVSXSwapEntry is created for each machine instruction that
65 // is relevant to a vector computation.
66 struct PPCVSXSwapEntry {
67   // Pointer to the instruction.
68   MachineInstr *VSEMI;
69 
70   // Unique ID (position in the swap vector).
71   int VSEId;
72 
73   // Attributes of this node.
74   unsigned int IsLoad : 1;
75   unsigned int IsStore : 1;
76   unsigned int IsSwap : 1;
77   unsigned int MentionsPhysVR : 1;
78   unsigned int IsSwappable : 1;
79   unsigned int MentionsPartialVR : 1;
80   unsigned int SpecialHandling : 3;
81   unsigned int WebRejected : 1;
82   unsigned int WillRemove : 1;
83 };
84 
85 enum SHValues {
86   SH_NONE = 0,
87   SH_EXTRACT,
88   SH_INSERT,
89   SH_NOSWAP_LD,
90   SH_NOSWAP_ST,
91   SH_SPLAT,
92   SH_XXPERMDI,
93   SH_COPYWIDEN
94 };
95 
96 struct PPCVSXSwapRemoval : public MachineFunctionPass {
97 
98   static char ID;
99   const PPCInstrInfo *TII;
100   MachineFunction *MF;
101   MachineRegisterInfo *MRI;
102 
103   // Swap entries are allocated in a vector for better performance.
104   std::vector<PPCVSXSwapEntry> SwapVector;
105 
106   // A mapping is maintained between machine instructions and
107   // their swap entries.  The key is the address of the MI.
108   DenseMap<MachineInstr*, int> SwapMap;
109 
110   // Equivalence classes are used to gather webs of related computation.
111   // Swap entries are represented by their VSEId fields.
112   EquivalenceClasses<int> *EC;
113 
114   PPCVSXSwapRemoval() : MachineFunctionPass(ID) {
115     initializePPCVSXSwapRemovalPass(*PassRegistry::getPassRegistry());
116   }
117 
118 private:
119   // Initialize data structures.
120   void initialize(MachineFunction &MFParm);
121 
122   // Walk the machine instructions to gather vector usage information.
123   // Return true iff vector mentions are present.
124   bool gatherVectorInstructions();
125 
126   // Add an entry to the swap vector and swap map.
127   int addSwapEntry(MachineInstr *MI, PPCVSXSwapEntry &SwapEntry);
128 
129   // Hunt backwards through COPY and SUBREG_TO_REG chains for a
130   // source register.  VecIdx indicates the swap vector entry to
131   // mark as mentioning a physical register if the search leads
132   // to one.
133   unsigned lookThruCopyLike(unsigned SrcReg, unsigned VecIdx);
134 
135   // Generate equivalence classes for related computations (webs).
136   void formWebs();
137 
138   // Analyze webs and determine those that cannot be optimized.
139   void recordUnoptimizableWebs();
140 
141   // Record which swap instructions can be safely removed.
142   void markSwapsForRemoval();
143 
144   // Remove swaps and update other instructions requiring special
145   // handling.  Return true iff any changes are made.
146   bool removeSwaps();
147 
148   // Insert a swap instruction from SrcReg to DstReg at the given
149   // InsertPoint.
150   void insertSwap(MachineInstr *MI, MachineBasicBlock::iterator InsertPoint,
151                   unsigned DstReg, unsigned SrcReg);
152 
153   // Update instructions requiring special handling.
154   void handleSpecialSwappables(int EntryIdx);
155 
156   // Dump a description of the entries in the swap vector.
157   void dumpSwapVector();
158 
159   // Return true iff the given register is in the given class.
160   bool isRegInClass(unsigned Reg, const TargetRegisterClass *RC) {
161     if (Register::isVirtualRegister(Reg))
162       return RC->hasSubClassEq(MRI->getRegClass(Reg));
163     return RC->contains(Reg);
164   }
165 
166   // Return true iff the given register is a full vector register.
167   bool isVecReg(unsigned Reg) {
168     return (isRegInClass(Reg, &PPC::VSRCRegClass) ||
169             isRegInClass(Reg, &PPC::VRRCRegClass));
170   }
171 
172   // Return true iff the given register is a partial vector register.
173   bool isScalarVecReg(unsigned Reg) {
174     return (isRegInClass(Reg, &PPC::VSFRCRegClass) ||
175             isRegInClass(Reg, &PPC::VSSRCRegClass));
176   }
177 
178   // Return true iff the given register mentions all or part of a
179   // vector register.  Also sets Partial to true if the mention
180   // is for just the floating-point register overlap of the register.
181   bool isAnyVecReg(unsigned Reg, bool &Partial) {
182     if (isScalarVecReg(Reg))
183       Partial = true;
184     return isScalarVecReg(Reg) || isVecReg(Reg);
185   }
186 
187 public:
188   // Main entry point for this pass.
189   bool runOnMachineFunction(MachineFunction &MF) override {
190     if (skipFunction(MF.getFunction()))
191       return false;
192 
193     // If we don't have VSX on the subtarget, don't do anything.
194     // Also, on Power 9 the load and store ops preserve element order and so
195     // the swaps are not required.
196     const PPCSubtarget &STI = MF.getSubtarget<PPCSubtarget>();
197     if (!STI.hasVSX() || !STI.needsSwapsForVSXMemOps())
198       return false;
199 
200     bool Changed = false;
201     initialize(MF);
202 
203     if (gatherVectorInstructions()) {
204       formWebs();
205       recordUnoptimizableWebs();
206       markSwapsForRemoval();
207       Changed = removeSwaps();
208     }
209 
210     // FIXME: See the allocation of EC in initialize().
211     delete EC;
212     return Changed;
213   }
214 };
215 
216 // Initialize data structures for this pass.  In particular, clear the
217 // swap vector and allocate the equivalence class mapping before
218 // processing each function.
219 void PPCVSXSwapRemoval::initialize(MachineFunction &MFParm) {
220   MF = &MFParm;
221   MRI = &MF->getRegInfo();
222   TII = MF->getSubtarget<PPCSubtarget>().getInstrInfo();
223 
224   // An initial vector size of 256 appears to work well in practice.
225   // Small/medium functions with vector content tend not to incur a
226   // reallocation at this size.  Three of the vector tests in
227   // projects/test-suite reallocate, which seems like a reasonable rate.
228   const int InitialVectorSize(256);
229   SwapVector.clear();
230   SwapVector.reserve(InitialVectorSize);
231 
232   // FIXME: Currently we allocate EC each time because we don't have
233   // access to the set representation on which to call clear().  Should
234   // consider adding a clear() method to the EquivalenceClasses class.
235   EC = new EquivalenceClasses<int>;
236 }
237 
238 // Create an entry in the swap vector for each instruction that mentions
239 // a full vector register, recording various characteristics of the
240 // instructions there.
241 bool PPCVSXSwapRemoval::gatherVectorInstructions() {
242   bool RelevantFunction = false;
243 
244   for (MachineBasicBlock &MBB : *MF) {
245     for (MachineInstr &MI : MBB) {
246 
247       if (MI.isDebugInstr())
248         continue;
249 
250       bool RelevantInstr = false;
251       bool Partial = false;
252 
253       for (const MachineOperand &MO : MI.operands()) {
254         if (!MO.isReg())
255           continue;
256         Register Reg = MO.getReg();
257         // All operands need to be checked because there are instructions that
258         // operate on a partial register and produce a full register (such as
259         // XXPERMDIs).
260         if (isAnyVecReg(Reg, Partial))
261           RelevantInstr = true;
262       }
263 
264       if (!RelevantInstr)
265         continue;
266 
267       RelevantFunction = true;
268 
269       // Create a SwapEntry initialized to zeros, then fill in the
270       // instruction and ID fields before pushing it to the back
271       // of the swap vector.
272       PPCVSXSwapEntry SwapEntry{};
273       int VecIdx = addSwapEntry(&MI, SwapEntry);
274 
275       switch(MI.getOpcode()) {
276       default:
277         // Unless noted otherwise, an instruction is considered
278         // safe for the optimization.  There are a large number of
279         // such true-SIMD instructions (all vector math, logical,
280         // select, compare, etc.).  However, if the instruction
281         // mentions a partial vector register and does not have
282         // special handling defined, it is not swappable.
283         if (Partial)
284           SwapVector[VecIdx].MentionsPartialVR = 1;
285         else
286           SwapVector[VecIdx].IsSwappable = 1;
287         break;
288       case PPC::XXPERMDI: {
289         // This is a swap if it is of the form XXPERMDI t, s, s, 2.
290         // Unfortunately, MachineCSE ignores COPY and SUBREG_TO_REG, so we
291         // can also see XXPERMDI t, SUBREG_TO_REG(s), SUBREG_TO_REG(s), 2,
292         // for example.  We have to look through chains of COPY and
293         // SUBREG_TO_REG to find the real source value for comparison.
294         // If the real source value is a physical register, then mark the
295         // XXPERMDI as mentioning a physical register.
296         int immed = MI.getOperand(3).getImm();
297         if (immed == 2) {
298           unsigned trueReg1 = lookThruCopyLike(MI.getOperand(1).getReg(),
299                                                VecIdx);
300           unsigned trueReg2 = lookThruCopyLike(MI.getOperand(2).getReg(),
301                                                VecIdx);
302           if (trueReg1 == trueReg2)
303             SwapVector[VecIdx].IsSwap = 1;
304           else {
305             // We can still handle these if the two registers are not
306             // identical, by adjusting the form of the XXPERMDI.
307             SwapVector[VecIdx].IsSwappable = 1;
308             SwapVector[VecIdx].SpecialHandling = SHValues::SH_XXPERMDI;
309           }
310         // This is a doubleword splat if it is of the form
311         // XXPERMDI t, s, s, 0 or XXPERMDI t, s, s, 3.  As above we
312         // must look through chains of copy-likes to find the source
313         // register.  We turn off the marking for mention of a physical
314         // register, because splatting it is safe; the optimization
315         // will not swap the value in the physical register.  Whether
316         // or not the two input registers are identical, we can handle
317         // these by adjusting the form of the XXPERMDI.
318         } else if (immed == 0 || immed == 3) {
319 
320           SwapVector[VecIdx].IsSwappable = 1;
321           SwapVector[VecIdx].SpecialHandling = SHValues::SH_XXPERMDI;
322 
323           unsigned trueReg1 = lookThruCopyLike(MI.getOperand(1).getReg(),
324                                                VecIdx);
325           unsigned trueReg2 = lookThruCopyLike(MI.getOperand(2).getReg(),
326                                                VecIdx);
327           if (trueReg1 == trueReg2)
328             SwapVector[VecIdx].MentionsPhysVR = 0;
329 
330         } else {
331           // We can still handle these by adjusting the form of the XXPERMDI.
332           SwapVector[VecIdx].IsSwappable = 1;
333           SwapVector[VecIdx].SpecialHandling = SHValues::SH_XXPERMDI;
334         }
335         break;
336       }
337       case PPC::LVX:
338         // Non-permuting loads are currently unsafe.  We can use special
339         // handling for this in the future.  By not marking these as
340         // IsSwap, we ensure computations containing them will be rejected
341         // for now.
342         SwapVector[VecIdx].IsLoad = 1;
343         break;
344       case PPC::LXVD2X:
345       case PPC::LXVW4X:
346         // Permuting loads are marked as both load and swap, and are
347         // safe for optimization.
348         SwapVector[VecIdx].IsLoad = 1;
349         SwapVector[VecIdx].IsSwap = 1;
350         break;
351       case PPC::LXSDX:
352       case PPC::LXSSPX:
353       case PPC::XFLOADf64:
354       case PPC::XFLOADf32:
355         // A load of a floating-point value into the high-order half of
356         // a vector register is safe, provided that we introduce a swap
357         // following the load, which will be done by the SUBREG_TO_REG
358         // support.  So just mark these as safe.
359         SwapVector[VecIdx].IsLoad = 1;
360         SwapVector[VecIdx].IsSwappable = 1;
361         break;
362       case PPC::STVX:
363         // Non-permuting stores are currently unsafe.  We can use special
364         // handling for this in the future.  By not marking these as
365         // IsSwap, we ensure computations containing them will be rejected
366         // for now.
367         SwapVector[VecIdx].IsStore = 1;
368         break;
369       case PPC::STXVD2X:
370       case PPC::STXVW4X:
371         // Permuting stores are marked as both store and swap, and are
372         // safe for optimization.
373         SwapVector[VecIdx].IsStore = 1;
374         SwapVector[VecIdx].IsSwap = 1;
375         break;
376       case PPC::COPY:
377         // These are fine provided they are moving between full vector
378         // register classes.
379         if (isVecReg(MI.getOperand(0).getReg()) &&
380             isVecReg(MI.getOperand(1).getReg()))
381           SwapVector[VecIdx].IsSwappable = 1;
382         // If we have a copy from one scalar floating-point register
383         // to another, we can accept this even if it is a physical
384         // register.  The only way this gets involved is if it feeds
385         // a SUBREG_TO_REG, which is handled by introducing a swap.
386         else if (isScalarVecReg(MI.getOperand(0).getReg()) &&
387                  isScalarVecReg(MI.getOperand(1).getReg()))
388           SwapVector[VecIdx].IsSwappable = 1;
389         break;
390       case PPC::SUBREG_TO_REG: {
391         // These are fine provided they are moving between full vector
392         // register classes.  If they are moving from a scalar
393         // floating-point class to a vector class, we can handle those
394         // as well, provided we introduce a swap.  It is generally the
395         // case that we will introduce fewer swaps than we remove, but
396         // (FIXME) a cost model could be used.  However, introduced
397         // swaps could potentially be CSEd, so this is not trivial.
398         if (isVecReg(MI.getOperand(0).getReg()) &&
399             isVecReg(MI.getOperand(2).getReg()))
400           SwapVector[VecIdx].IsSwappable = 1;
401         else if (isVecReg(MI.getOperand(0).getReg()) &&
402                  isScalarVecReg(MI.getOperand(2).getReg())) {
403           SwapVector[VecIdx].IsSwappable = 1;
404           SwapVector[VecIdx].SpecialHandling = SHValues::SH_COPYWIDEN;
405         }
406         break;
407       }
408       case PPC::VSPLTB:
409       case PPC::VSPLTH:
410       case PPC::VSPLTW:
411       case PPC::XXSPLTW:
412         // Splats are lane-sensitive, but we can use special handling
413         // to adjust the source lane for the splat.
414         SwapVector[VecIdx].IsSwappable = 1;
415         SwapVector[VecIdx].SpecialHandling = SHValues::SH_SPLAT;
416         break;
417       // The presence of the following lane-sensitive operations in a
418       // web will kill the optimization, at least for now.  For these
419       // we do nothing, causing the optimization to fail.
420       // FIXME: Some of these could be permitted with special handling,
421       // and will be phased in as time permits.
422       // FIXME: There is no simple and maintainable way to express a set
423       // of opcodes having a common attribute in TableGen.  Should this
424       // change, this is a prime candidate to use such a mechanism.
425       case PPC::INLINEASM:
426       case PPC::INLINEASM_BR:
427       case PPC::EXTRACT_SUBREG:
428       case PPC::INSERT_SUBREG:
429       case PPC::COPY_TO_REGCLASS:
430       case PPC::LVEBX:
431       case PPC::LVEHX:
432       case PPC::LVEWX:
433       case PPC::LVSL:
434       case PPC::LVSR:
435       case PPC::LVXL:
436       case PPC::STVEBX:
437       case PPC::STVEHX:
438       case PPC::STVEWX:
439       case PPC::STVXL:
440         // We can handle STXSDX and STXSSPX similarly to LXSDX and LXSSPX,
441         // by adding special handling for narrowing copies as well as
442         // widening ones.  However, I've experimented with this, and in
443         // practice we currently do not appear to use STXSDX fed by
444         // a narrowing copy from a full vector register.  Since I can't
445         // generate any useful test cases, I've left this alone for now.
446       case PPC::STXSDX:
447       case PPC::STXSSPX:
448       case PPC::VCIPHER:
449       case PPC::VCIPHERLAST:
450       case PPC::VMRGHB:
451       case PPC::VMRGHH:
452       case PPC::VMRGHW:
453       case PPC::VMRGLB:
454       case PPC::VMRGLH:
455       case PPC::VMRGLW:
456       case PPC::VMULESB:
457       case PPC::VMULESH:
458       case PPC::VMULESW:
459       case PPC::VMULEUB:
460       case PPC::VMULEUH:
461       case PPC::VMULEUW:
462       case PPC::VMULOSB:
463       case PPC::VMULOSH:
464       case PPC::VMULOSW:
465       case PPC::VMULOUB:
466       case PPC::VMULOUH:
467       case PPC::VMULOUW:
468       case PPC::VNCIPHER:
469       case PPC::VNCIPHERLAST:
470       case PPC::VPERM:
471       case PPC::VPERMXOR:
472       case PPC::VPKPX:
473       case PPC::VPKSHSS:
474       case PPC::VPKSHUS:
475       case PPC::VPKSDSS:
476       case PPC::VPKSDUS:
477       case PPC::VPKSWSS:
478       case PPC::VPKSWUS:
479       case PPC::VPKUDUM:
480       case PPC::VPKUDUS:
481       case PPC::VPKUHUM:
482       case PPC::VPKUHUS:
483       case PPC::VPKUWUM:
484       case PPC::VPKUWUS:
485       case PPC::VPMSUMB:
486       case PPC::VPMSUMD:
487       case PPC::VPMSUMH:
488       case PPC::VPMSUMW:
489       case PPC::VRLB:
490       case PPC::VRLD:
491       case PPC::VRLH:
492       case PPC::VRLW:
493       case PPC::VSBOX:
494       case PPC::VSHASIGMAD:
495       case PPC::VSHASIGMAW:
496       case PPC::VSL:
497       case PPC::VSLDOI:
498       case PPC::VSLO:
499       case PPC::VSR:
500       case PPC::VSRO:
501       case PPC::VSUM2SWS:
502       case PPC::VSUM4SBS:
503       case PPC::VSUM4SHS:
504       case PPC::VSUM4UBS:
505       case PPC::VSUMSWS:
506       case PPC::VUPKHPX:
507       case PPC::VUPKHSB:
508       case PPC::VUPKHSH:
509       case PPC::VUPKHSW:
510       case PPC::VUPKLPX:
511       case PPC::VUPKLSB:
512       case PPC::VUPKLSH:
513       case PPC::VUPKLSW:
514       case PPC::XXMRGHW:
515       case PPC::XXMRGLW:
516       // XXSLDWI could be replaced by a general permute with one of three
517       // permute control vectors (for shift values 1, 2, 3).  However,
518       // VPERM has a more restrictive register class.
519       case PPC::XXSLDWI:
520       case PPC::XSCVDPSPN:
521       case PPC::XSCVSPDPN:
522       case PPC::MTVSCR:
523       case PPC::MFVSCR:
524         break;
525       }
526     }
527   }
528 
529   if (RelevantFunction) {
530     LLVM_DEBUG(dbgs() << "Swap vector when first built\n\n");
531     LLVM_DEBUG(dumpSwapVector());
532   }
533 
534   return RelevantFunction;
535 }
536 
537 // Add an entry to the swap vector and swap map, and make a
538 // singleton equivalence class for the entry.
539 int PPCVSXSwapRemoval::addSwapEntry(MachineInstr *MI,
540                                   PPCVSXSwapEntry& SwapEntry) {
541   SwapEntry.VSEMI = MI;
542   SwapEntry.VSEId = SwapVector.size();
543   SwapVector.push_back(SwapEntry);
544   EC->insert(SwapEntry.VSEId);
545   SwapMap[MI] = SwapEntry.VSEId;
546   return SwapEntry.VSEId;
547 }
548 
549 // This is used to find the "true" source register for an
550 // XXPERMDI instruction, since MachineCSE does not handle the
551 // "copy-like" operations (Copy and SubregToReg).  Returns
552 // the original SrcReg unless it is the target of a copy-like
553 // operation, in which case we chain backwards through all
554 // such operations to the ultimate source register.  If a
555 // physical register is encountered, we stop the search and
556 // flag the swap entry indicated by VecIdx (the original
557 // XXPERMDI) as mentioning a physical register.
558 unsigned PPCVSXSwapRemoval::lookThruCopyLike(unsigned SrcReg,
559                                              unsigned VecIdx) {
560   MachineInstr *MI = MRI->getVRegDef(SrcReg);
561   if (!MI->isCopyLike())
562     return SrcReg;
563 
564   unsigned CopySrcReg;
565   if (MI->isCopy())
566     CopySrcReg = MI->getOperand(1).getReg();
567   else {
568     assert(MI->isSubregToReg() && "bad opcode for lookThruCopyLike");
569     CopySrcReg = MI->getOperand(2).getReg();
570   }
571 
572   if (!Register::isVirtualRegister(CopySrcReg)) {
573     if (!isScalarVecReg(CopySrcReg))
574       SwapVector[VecIdx].MentionsPhysVR = 1;
575     return CopySrcReg;
576   }
577 
578   return lookThruCopyLike(CopySrcReg, VecIdx);
579 }
580 
581 // Generate equivalence classes for related computations (webs) by
582 // def-use relationships of virtual registers.  Mention of a physical
583 // register terminates the generation of equivalence classes as this
584 // indicates a use of a parameter, definition of a return value, use
585 // of a value returned from a call, or definition of a parameter to a
586 // call.  Computations with physical register mentions are flagged
587 // as such so their containing webs will not be optimized.
588 void PPCVSXSwapRemoval::formWebs() {
589 
590   LLVM_DEBUG(dbgs() << "\n*** Forming webs for swap removal ***\n\n");
591 
592   for (unsigned EntryIdx = 0; EntryIdx < SwapVector.size(); ++EntryIdx) {
593 
594     MachineInstr *MI = SwapVector[EntryIdx].VSEMI;
595 
596     LLVM_DEBUG(dbgs() << "\n" << SwapVector[EntryIdx].VSEId << " ");
597     LLVM_DEBUG(MI->dump());
598 
599     // It's sufficient to walk vector uses and join them to their unique
600     // definitions.  In addition, check full vector register operands
601     // for physical regs.  We exclude partial-vector register operands
602     // because we can handle them if copied to a full vector.
603     for (const MachineOperand &MO : MI->operands()) {
604       if (!MO.isReg())
605         continue;
606 
607       Register Reg = MO.getReg();
608       if (!isVecReg(Reg) && !isScalarVecReg(Reg))
609         continue;
610 
611       if (!Reg.isVirtual()) {
612         if (!(MI->isCopy() && isScalarVecReg(Reg)))
613           SwapVector[EntryIdx].MentionsPhysVR = 1;
614         continue;
615       }
616 
617       if (!MO.isUse())
618         continue;
619 
620       MachineInstr* DefMI = MRI->getVRegDef(Reg);
621       assert(SwapMap.find(DefMI) != SwapMap.end() &&
622              "Inconsistency: def of vector reg not found in swap map!");
623       int DefIdx = SwapMap[DefMI];
624       (void)EC->unionSets(SwapVector[DefIdx].VSEId,
625                           SwapVector[EntryIdx].VSEId);
626 
627       LLVM_DEBUG(dbgs() << format("Unioning %d with %d\n",
628                                   SwapVector[DefIdx].VSEId,
629                                   SwapVector[EntryIdx].VSEId));
630       LLVM_DEBUG(dbgs() << "  Def: ");
631       LLVM_DEBUG(DefMI->dump());
632     }
633   }
634 }
635 
636 // Walk the swap vector entries looking for conditions that prevent their
637 // containing computations from being optimized.  When such conditions are
638 // found, mark the representative of the computation's equivalence class
639 // as rejected.
640 void PPCVSXSwapRemoval::recordUnoptimizableWebs() {
641 
642   LLVM_DEBUG(dbgs() << "\n*** Rejecting webs for swap removal ***\n\n");
643 
644   for (unsigned EntryIdx = 0; EntryIdx < SwapVector.size(); ++EntryIdx) {
645     int Repr = EC->getLeaderValue(SwapVector[EntryIdx].VSEId);
646 
647     // If representative is already rejected, don't waste further time.
648     if (SwapVector[Repr].WebRejected)
649       continue;
650 
651     // Reject webs containing mentions of physical or partial registers, or
652     // containing operations that we don't know how to handle in a lane-
653     // permuted region.
654     if (SwapVector[EntryIdx].MentionsPhysVR ||
655         SwapVector[EntryIdx].MentionsPartialVR ||
656         !(SwapVector[EntryIdx].IsSwappable || SwapVector[EntryIdx].IsSwap)) {
657 
658       SwapVector[Repr].WebRejected = 1;
659 
660       LLVM_DEBUG(
661           dbgs() << format("Web %d rejected for physreg, partial reg, or not "
662                            "swap[pable]\n",
663                            Repr));
664       LLVM_DEBUG(dbgs() << "  in " << EntryIdx << ": ");
665       LLVM_DEBUG(SwapVector[EntryIdx].VSEMI->dump());
666       LLVM_DEBUG(dbgs() << "\n");
667     }
668 
669     // Reject webs than contain swapping loads that feed something other
670     // than a swap instruction.
671     else if (SwapVector[EntryIdx].IsLoad && SwapVector[EntryIdx].IsSwap) {
672       MachineInstr *MI = SwapVector[EntryIdx].VSEMI;
673       Register DefReg = MI->getOperand(0).getReg();
674 
675       // We skip debug instructions in the analysis.  (Note that debug
676       // location information is still maintained by this optimization
677       // because it remains on the LXVD2X and STXVD2X instructions after
678       // the XXPERMDIs are removed.)
679       for (MachineInstr &UseMI : MRI->use_nodbg_instructions(DefReg)) {
680         int UseIdx = SwapMap[&UseMI];
681 
682         if (!SwapVector[UseIdx].IsSwap || SwapVector[UseIdx].IsLoad ||
683             SwapVector[UseIdx].IsStore) {
684 
685           SwapVector[Repr].WebRejected = 1;
686 
687           LLVM_DEBUG(dbgs() << format(
688                          "Web %d rejected for load not feeding swap\n", Repr));
689           LLVM_DEBUG(dbgs() << "  def " << EntryIdx << ": ");
690           LLVM_DEBUG(MI->dump());
691           LLVM_DEBUG(dbgs() << "  use " << UseIdx << ": ");
692           LLVM_DEBUG(UseMI.dump());
693           LLVM_DEBUG(dbgs() << "\n");
694         }
695 
696         // It is possible that the load feeds a swap and that swap feeds a
697         // store. In such a case, the code is actually trying to store a swapped
698         // vector. We must reject such webs.
699         if (SwapVector[UseIdx].IsSwap && !SwapVector[UseIdx].IsLoad &&
700             !SwapVector[UseIdx].IsStore) {
701           Register SwapDefReg = UseMI.getOperand(0).getReg();
702           for (MachineInstr &UseOfUseMI :
703                MRI->use_nodbg_instructions(SwapDefReg)) {
704             int UseOfUseIdx = SwapMap[&UseOfUseMI];
705             if (SwapVector[UseOfUseIdx].IsStore) {
706               SwapVector[Repr].WebRejected = 1;
707               LLVM_DEBUG(
708                   dbgs() << format(
709                       "Web %d rejected for load/swap feeding a store\n", Repr));
710               LLVM_DEBUG(dbgs() << "  def " << EntryIdx << ": ");
711               LLVM_DEBUG(MI->dump());
712               LLVM_DEBUG(dbgs() << "  use " << UseIdx << ": ");
713               LLVM_DEBUG(UseMI.dump());
714               LLVM_DEBUG(dbgs() << "\n");
715             }
716           }
717         }
718       }
719 
720     // Reject webs that contain swapping stores that are fed by something
721     // other than a swap instruction.
722     } else if (SwapVector[EntryIdx].IsStore && SwapVector[EntryIdx].IsSwap) {
723       MachineInstr *MI = SwapVector[EntryIdx].VSEMI;
724       Register UseReg = MI->getOperand(0).getReg();
725       MachineInstr *DefMI = MRI->getVRegDef(UseReg);
726       Register DefReg = DefMI->getOperand(0).getReg();
727       int DefIdx = SwapMap[DefMI];
728 
729       if (!SwapVector[DefIdx].IsSwap || SwapVector[DefIdx].IsLoad ||
730           SwapVector[DefIdx].IsStore) {
731 
732         SwapVector[Repr].WebRejected = 1;
733 
734         LLVM_DEBUG(dbgs() << format(
735                        "Web %d rejected for store not fed by swap\n", Repr));
736         LLVM_DEBUG(dbgs() << "  def " << DefIdx << ": ");
737         LLVM_DEBUG(DefMI->dump());
738         LLVM_DEBUG(dbgs() << "  use " << EntryIdx << ": ");
739         LLVM_DEBUG(MI->dump());
740         LLVM_DEBUG(dbgs() << "\n");
741       }
742 
743       // Ensure all uses of the register defined by DefMI feed store
744       // instructions
745       for (MachineInstr &UseMI : MRI->use_nodbg_instructions(DefReg)) {
746         int UseIdx = SwapMap[&UseMI];
747 
748         if (SwapVector[UseIdx].VSEMI->getOpcode() != MI->getOpcode()) {
749           SwapVector[Repr].WebRejected = 1;
750 
751           LLVM_DEBUG(
752               dbgs() << format(
753                   "Web %d rejected for swap not feeding only stores\n", Repr));
754           LLVM_DEBUG(dbgs() << "  def "
755                             << " : ");
756           LLVM_DEBUG(DefMI->dump());
757           LLVM_DEBUG(dbgs() << "  use " << UseIdx << ": ");
758           LLVM_DEBUG(SwapVector[UseIdx].VSEMI->dump());
759           LLVM_DEBUG(dbgs() << "\n");
760         }
761       }
762     }
763   }
764 
765   LLVM_DEBUG(dbgs() << "Swap vector after web analysis:\n\n");
766   LLVM_DEBUG(dumpSwapVector());
767 }
768 
769 // Walk the swap vector entries looking for swaps fed by permuting loads
770 // and swaps that feed permuting stores.  If the containing computation
771 // has not been marked rejected, mark each such swap for removal.
772 // (Removal is delayed in case optimization has disturbed the pattern,
773 // such that multiple loads feed the same swap, etc.)
774 void PPCVSXSwapRemoval::markSwapsForRemoval() {
775 
776   LLVM_DEBUG(dbgs() << "\n*** Marking swaps for removal ***\n\n");
777 
778   for (unsigned EntryIdx = 0; EntryIdx < SwapVector.size(); ++EntryIdx) {
779 
780     if (SwapVector[EntryIdx].IsLoad && SwapVector[EntryIdx].IsSwap) {
781       int Repr = EC->getLeaderValue(SwapVector[EntryIdx].VSEId);
782 
783       if (!SwapVector[Repr].WebRejected) {
784         MachineInstr *MI = SwapVector[EntryIdx].VSEMI;
785         Register DefReg = MI->getOperand(0).getReg();
786 
787         for (MachineInstr &UseMI : MRI->use_nodbg_instructions(DefReg)) {
788           int UseIdx = SwapMap[&UseMI];
789           SwapVector[UseIdx].WillRemove = 1;
790 
791           LLVM_DEBUG(dbgs() << "Marking swap fed by load for removal: ");
792           LLVM_DEBUG(UseMI.dump());
793         }
794       }
795 
796     } else if (SwapVector[EntryIdx].IsStore && SwapVector[EntryIdx].IsSwap) {
797       int Repr = EC->getLeaderValue(SwapVector[EntryIdx].VSEId);
798 
799       if (!SwapVector[Repr].WebRejected) {
800         MachineInstr *MI = SwapVector[EntryIdx].VSEMI;
801         Register UseReg = MI->getOperand(0).getReg();
802         MachineInstr *DefMI = MRI->getVRegDef(UseReg);
803         int DefIdx = SwapMap[DefMI];
804         SwapVector[DefIdx].WillRemove = 1;
805 
806         LLVM_DEBUG(dbgs() << "Marking swap feeding store for removal: ");
807         LLVM_DEBUG(DefMI->dump());
808       }
809 
810     } else if (SwapVector[EntryIdx].IsSwappable &&
811                SwapVector[EntryIdx].SpecialHandling != 0) {
812       int Repr = EC->getLeaderValue(SwapVector[EntryIdx].VSEId);
813 
814       if (!SwapVector[Repr].WebRejected)
815         handleSpecialSwappables(EntryIdx);
816     }
817   }
818 }
819 
820 // Create an xxswapd instruction and insert it prior to the given point.
821 // MI is used to determine basic block and debug loc information.
822 // FIXME: When inserting a swap, we should check whether SrcReg is
823 // defined by another swap:  SrcReg = XXPERMDI Reg, Reg, 2;  If so,
824 // then instead we should generate a copy from Reg to DstReg.
825 void PPCVSXSwapRemoval::insertSwap(MachineInstr *MI,
826                                    MachineBasicBlock::iterator InsertPoint,
827                                    unsigned DstReg, unsigned SrcReg) {
828   BuildMI(*MI->getParent(), InsertPoint, MI->getDebugLoc(),
829           TII->get(PPC::XXPERMDI), DstReg)
830     .addReg(SrcReg)
831     .addReg(SrcReg)
832     .addImm(2);
833 }
834 
835 // The identified swap entry requires special handling to allow its
836 // containing computation to be optimized.  Perform that handling
837 // here.
838 // FIXME: Additional opportunities will be phased in with subsequent
839 // patches.
840 void PPCVSXSwapRemoval::handleSpecialSwappables(int EntryIdx) {
841   switch (SwapVector[EntryIdx].SpecialHandling) {
842 
843   default:
844     llvm_unreachable("Unexpected special handling type");
845 
846   // For splats based on an index into a vector, add N/2 modulo N
847   // to the index, where N is the number of vector elements.
848   case SHValues::SH_SPLAT: {
849     MachineInstr *MI = SwapVector[EntryIdx].VSEMI;
850     unsigned NElts;
851 
852     LLVM_DEBUG(dbgs() << "Changing splat: ");
853     LLVM_DEBUG(MI->dump());
854 
855     switch (MI->getOpcode()) {
856     default:
857       llvm_unreachable("Unexpected splat opcode");
858     case PPC::VSPLTB: NElts = 16; break;
859     case PPC::VSPLTH: NElts = 8;  break;
860     case PPC::VSPLTW:
861     case PPC::XXSPLTW: NElts = 4;  break;
862     }
863 
864     unsigned EltNo;
865     if (MI->getOpcode() == PPC::XXSPLTW)
866       EltNo = MI->getOperand(2).getImm();
867     else
868       EltNo = MI->getOperand(1).getImm();
869 
870     EltNo = (EltNo + NElts / 2) % NElts;
871     if (MI->getOpcode() == PPC::XXSPLTW)
872       MI->getOperand(2).setImm(EltNo);
873     else
874       MI->getOperand(1).setImm(EltNo);
875 
876     LLVM_DEBUG(dbgs() << "  Into: ");
877     LLVM_DEBUG(MI->dump());
878     break;
879   }
880 
881   // For an XXPERMDI that isn't handled otherwise, we need to
882   // reverse the order of the operands.  If the selector operand
883   // has a value of 0 or 3, we need to change it to 3 or 0,
884   // respectively.  Otherwise we should leave it alone.  (This
885   // is equivalent to reversing the two bits of the selector
886   // operand and complementing the result.)
887   case SHValues::SH_XXPERMDI: {
888     MachineInstr *MI = SwapVector[EntryIdx].VSEMI;
889 
890     LLVM_DEBUG(dbgs() << "Changing XXPERMDI: ");
891     LLVM_DEBUG(MI->dump());
892 
893     unsigned Selector = MI->getOperand(3).getImm();
894     if (Selector == 0 || Selector == 3)
895       Selector = 3 - Selector;
896     MI->getOperand(3).setImm(Selector);
897 
898     Register Reg1 = MI->getOperand(1).getReg();
899     Register Reg2 = MI->getOperand(2).getReg();
900     MI->getOperand(1).setReg(Reg2);
901     MI->getOperand(2).setReg(Reg1);
902 
903     // We also need to swap kill flag associated with the register.
904     bool IsKill1 = MI->getOperand(1).isKill();
905     bool IsKill2 = MI->getOperand(2).isKill();
906     MI->getOperand(1).setIsKill(IsKill2);
907     MI->getOperand(2).setIsKill(IsKill1);
908 
909     LLVM_DEBUG(dbgs() << "  Into: ");
910     LLVM_DEBUG(MI->dump());
911     break;
912   }
913 
914   // For a copy from a scalar floating-point register to a vector
915   // register, removing swaps will leave the copied value in the
916   // wrong lane.  Insert a swap following the copy to fix this.
917   case SHValues::SH_COPYWIDEN: {
918     MachineInstr *MI = SwapVector[EntryIdx].VSEMI;
919 
920     LLVM_DEBUG(dbgs() << "Changing SUBREG_TO_REG: ");
921     LLVM_DEBUG(MI->dump());
922 
923     Register DstReg = MI->getOperand(0).getReg();
924     const TargetRegisterClass *DstRC = MRI->getRegClass(DstReg);
925     Register NewVReg = MRI->createVirtualRegister(DstRC);
926 
927     MI->getOperand(0).setReg(NewVReg);
928     LLVM_DEBUG(dbgs() << "  Into: ");
929     LLVM_DEBUG(MI->dump());
930 
931     auto InsertPoint = ++MachineBasicBlock::iterator(MI);
932 
933     // Note that an XXPERMDI requires a VSRC, so if the SUBREG_TO_REG
934     // is copying to a VRRC, we need to be careful to avoid a register
935     // assignment problem.  In this case we must copy from VRRC to VSRC
936     // prior to the swap, and from VSRC to VRRC following the swap.
937     // Coalescing will usually remove all this mess.
938     if (DstRC == &PPC::VRRCRegClass) {
939       Register VSRCTmp1 = MRI->createVirtualRegister(&PPC::VSRCRegClass);
940       Register VSRCTmp2 = MRI->createVirtualRegister(&PPC::VSRCRegClass);
941 
942       BuildMI(*MI->getParent(), InsertPoint, MI->getDebugLoc(),
943               TII->get(PPC::COPY), VSRCTmp1)
944         .addReg(NewVReg);
945       LLVM_DEBUG(std::prev(InsertPoint)->dump());
946 
947       insertSwap(MI, InsertPoint, VSRCTmp2, VSRCTmp1);
948       LLVM_DEBUG(std::prev(InsertPoint)->dump());
949 
950       BuildMI(*MI->getParent(), InsertPoint, MI->getDebugLoc(),
951               TII->get(PPC::COPY), DstReg)
952         .addReg(VSRCTmp2);
953       LLVM_DEBUG(std::prev(InsertPoint)->dump());
954 
955     } else {
956       insertSwap(MI, InsertPoint, DstReg, NewVReg);
957       LLVM_DEBUG(std::prev(InsertPoint)->dump());
958     }
959     break;
960   }
961   }
962 }
963 
964 // Walk the swap vector and replace each entry marked for removal with
965 // a copy operation.
966 bool PPCVSXSwapRemoval::removeSwaps() {
967 
968   LLVM_DEBUG(dbgs() << "\n*** Removing swaps ***\n\n");
969 
970   bool Changed = false;
971 
972   for (unsigned EntryIdx = 0; EntryIdx < SwapVector.size(); ++EntryIdx) {
973     if (SwapVector[EntryIdx].WillRemove) {
974       Changed = true;
975       MachineInstr *MI = SwapVector[EntryIdx].VSEMI;
976       MachineBasicBlock *MBB = MI->getParent();
977       BuildMI(*MBB, MI, MI->getDebugLoc(), TII->get(TargetOpcode::COPY),
978               MI->getOperand(0).getReg())
979           .add(MI->getOperand(1));
980 
981       LLVM_DEBUG(dbgs() << format("Replaced %d with copy: ",
982                                   SwapVector[EntryIdx].VSEId));
983       LLVM_DEBUG(MI->dump());
984 
985       MI->eraseFromParent();
986     }
987   }
988 
989   return Changed;
990 }
991 
992 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
993 // For debug purposes, dump the contents of the swap vector.
994 LLVM_DUMP_METHOD void PPCVSXSwapRemoval::dumpSwapVector() {
995 
996   for (unsigned EntryIdx = 0; EntryIdx < SwapVector.size(); ++EntryIdx) {
997 
998     MachineInstr *MI = SwapVector[EntryIdx].VSEMI;
999     int ID = SwapVector[EntryIdx].VSEId;
1000 
1001     dbgs() << format("%6d", ID);
1002     dbgs() << format("%6d", EC->getLeaderValue(ID));
1003     dbgs() << format(" %bb.%3d", MI->getParent()->getNumber());
1004     dbgs() << format("  %14s  ", TII->getName(MI->getOpcode()).str().c_str());
1005 
1006     if (SwapVector[EntryIdx].IsLoad)
1007       dbgs() << "load ";
1008     if (SwapVector[EntryIdx].IsStore)
1009       dbgs() << "store ";
1010     if (SwapVector[EntryIdx].IsSwap)
1011       dbgs() << "swap ";
1012     if (SwapVector[EntryIdx].MentionsPhysVR)
1013       dbgs() << "physreg ";
1014     if (SwapVector[EntryIdx].MentionsPartialVR)
1015       dbgs() << "partialreg ";
1016 
1017     if (SwapVector[EntryIdx].IsSwappable) {
1018       dbgs() << "swappable ";
1019       switch(SwapVector[EntryIdx].SpecialHandling) {
1020       default:
1021         dbgs() << "special:**unknown**";
1022         break;
1023       case SH_NONE:
1024         break;
1025       case SH_EXTRACT:
1026         dbgs() << "special:extract ";
1027         break;
1028       case SH_INSERT:
1029         dbgs() << "special:insert ";
1030         break;
1031       case SH_NOSWAP_LD:
1032         dbgs() << "special:load ";
1033         break;
1034       case SH_NOSWAP_ST:
1035         dbgs() << "special:store ";
1036         break;
1037       case SH_SPLAT:
1038         dbgs() << "special:splat ";
1039         break;
1040       case SH_XXPERMDI:
1041         dbgs() << "special:xxpermdi ";
1042         break;
1043       case SH_COPYWIDEN:
1044         dbgs() << "special:copywiden ";
1045         break;
1046       }
1047     }
1048 
1049     if (SwapVector[EntryIdx].WebRejected)
1050       dbgs() << "rejected ";
1051     if (SwapVector[EntryIdx].WillRemove)
1052       dbgs() << "remove ";
1053 
1054     dbgs() << "\n";
1055 
1056     // For no-asserts builds.
1057     (void)MI;
1058     (void)ID;
1059   }
1060 
1061   dbgs() << "\n";
1062 }
1063 #endif
1064 
1065 } // end default namespace
1066 
1067 INITIALIZE_PASS_BEGIN(PPCVSXSwapRemoval, DEBUG_TYPE,
1068                       "PowerPC VSX Swap Removal", false, false)
1069 INITIALIZE_PASS_END(PPCVSXSwapRemoval, DEBUG_TYPE,
1070                     "PowerPC VSX Swap Removal", false, false)
1071 
1072 char PPCVSXSwapRemoval::ID = 0;
1073 FunctionPass*
1074 llvm::createPPCVSXSwapRemovalPass() { return new PPCVSXSwapRemoval(); }
1075