1 //===-- RISCVBaseInfo.cpp - Top level definitions for RISC-V MC -----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file contains small standalone enum definitions for the RISC-V target
10 // useful for the compiler back-end and the MC libraries.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "RISCVBaseInfo.h"
15 #include "llvm/ADT/ArrayRef.h"
16 #include "llvm/MC/MCInst.h"
17 #include "llvm/MC/MCRegisterInfo.h"
18 #include "llvm/MC/MCSubtargetInfo.h"
19 #include "llvm/Support/RISCVISAInfo.h"
20 #include "llvm/Support/raw_ostream.h"
21 #include "llvm/TargetParser/TargetParser.h"
22 #include "llvm/TargetParser/Triple.h"
23 
24 namespace llvm {
25 
26 extern const SubtargetFeatureKV RISCVFeatureKV[RISCV::NumSubtargetFeatures];
27 
28 namespace RISCVSysReg {
29 #define GET_SysRegsList_IMPL
30 #define GET_SiFiveRegsList_IMPL
31 #include "RISCVGenSearchableTables.inc"
32 } // namespace RISCVSysReg
33 
34 namespace RISCVInsnOpcode {
35 #define GET_RISCVOpcodesList_IMPL
36 #include "RISCVGenSearchableTables.inc"
37 } // namespace RISCVInsnOpcode
38 
39 namespace RISCVABI {
40 ABI computeTargetABI(const Triple &TT, const FeatureBitset &FeatureBits,
41                      StringRef ABIName) {
42   auto TargetABI = getTargetABI(ABIName);
43   bool IsRV64 = TT.isArch64Bit();
44   bool IsRVE = FeatureBits[RISCV::FeatureRVE];
45 
46   if (!ABIName.empty() && TargetABI == ABI_Unknown) {
47     errs()
48         << "'" << ABIName
49         << "' is not a recognized ABI for this target (ignoring target-abi)\n";
50   } else if (ABIName.starts_with("ilp32") && IsRV64) {
51     errs() << "32-bit ABIs are not supported for 64-bit targets (ignoring "
52               "target-abi)\n";
53     TargetABI = ABI_Unknown;
54   } else if (ABIName.starts_with("lp64") && !IsRV64) {
55     errs() << "64-bit ABIs are not supported for 32-bit targets (ignoring "
56               "target-abi)\n";
57     TargetABI = ABI_Unknown;
58   } else if (!IsRV64 && IsRVE && TargetABI != ABI_ILP32E &&
59              TargetABI != ABI_Unknown) {
60     // TODO: move this checking to RISCVTargetLowering and RISCVAsmParser
61     errs()
62         << "Only the ilp32e ABI is supported for RV32E (ignoring target-abi)\n";
63     TargetABI = ABI_Unknown;
64   } else if (IsRV64 && IsRVE && TargetABI != ABI_LP64E &&
65              TargetABI != ABI_Unknown) {
66     // TODO: move this checking to RISCVTargetLowering and RISCVAsmParser
67     errs()
68         << "Only the lp64e ABI is supported for RV64E (ignoring target-abi)\n";
69     TargetABI = ABI_Unknown;
70   }
71 
72   if (TargetABI != ABI_Unknown)
73     return TargetABI;
74 
75   // If no explicit ABI is given, try to compute the default ABI.
76   auto ISAInfo = RISCVFeatures::parseFeatureBits(IsRV64, FeatureBits);
77   if (!ISAInfo)
78     report_fatal_error(ISAInfo.takeError());
79   return getTargetABI((*ISAInfo)->computeDefaultABI());
80 }
81 
82 ABI getTargetABI(StringRef ABIName) {
83   auto TargetABI = StringSwitch<ABI>(ABIName)
84                        .Case("ilp32", ABI_ILP32)
85                        .Case("ilp32f", ABI_ILP32F)
86                        .Case("ilp32d", ABI_ILP32D)
87                        .Case("ilp32e", ABI_ILP32E)
88                        .Case("lp64", ABI_LP64)
89                        .Case("lp64f", ABI_LP64F)
90                        .Case("lp64d", ABI_LP64D)
91                        .Case("lp64e", ABI_LP64E)
92                        .Default(ABI_Unknown);
93   return TargetABI;
94 }
95 
96 // To avoid the BP value clobbered by a function call, we need to choose a
97 // callee saved register to save the value. RV32E only has X8 and X9 as callee
98 // saved registers and X8 will be used as fp. So we choose X9 as bp.
99 MCRegister getBPReg() { return RISCV::X9; }
100 
101 // Returns the register holding shadow call stack pointer.
102 MCRegister getSCSPReg() { return RISCV::X3; }
103 
104 } // namespace RISCVABI
105 
106 namespace RISCVFeatures {
107 
108 void validate(const Triple &TT, const FeatureBitset &FeatureBits) {
109   if (TT.isArch64Bit() && !FeatureBits[RISCV::Feature64Bit])
110     report_fatal_error("RV64 target requires an RV64 CPU");
111   if (!TT.isArch64Bit() && !FeatureBits[RISCV::Feature32Bit])
112     report_fatal_error("RV32 target requires an RV32 CPU");
113   if (FeatureBits[RISCV::Feature32Bit] &&
114       FeatureBits[RISCV::Feature64Bit])
115     report_fatal_error("RV32 and RV64 can't be combined");
116 }
117 
118 llvm::Expected<std::unique_ptr<RISCVISAInfo>>
119 parseFeatureBits(bool IsRV64, const FeatureBitset &FeatureBits) {
120   unsigned XLen = IsRV64 ? 64 : 32;
121   std::vector<std::string> FeatureVector;
122   // Convert FeatureBitset to FeatureVector.
123   for (auto Feature : RISCVFeatureKV) {
124     if (FeatureBits[Feature.Value] &&
125         llvm::RISCVISAInfo::isSupportedExtensionFeature(Feature.Key))
126       FeatureVector.push_back(std::string("+") + Feature.Key);
127   }
128   return llvm::RISCVISAInfo::parseFeatures(XLen, FeatureVector);
129 }
130 
131 } // namespace RISCVFeatures
132 
133 // Encode VTYPE into the binary format used by the the VSETVLI instruction which
134 // is used by our MC layer representation.
135 //
136 // Bits | Name       | Description
137 // -----+------------+------------------------------------------------
138 // 7    | vma        | Vector mask agnostic
139 // 6    | vta        | Vector tail agnostic
140 // 5:3  | vsew[2:0]  | Standard element width (SEW) setting
141 // 2:0  | vlmul[2:0] | Vector register group multiplier (LMUL) setting
142 unsigned RISCVVType::encodeVTYPE(RISCVII::VLMUL VLMUL, unsigned SEW,
143                                  bool TailAgnostic, bool MaskAgnostic) {
144   assert(isValidSEW(SEW) && "Invalid SEW");
145   unsigned VLMULBits = static_cast<unsigned>(VLMUL);
146   unsigned VSEWBits = encodeSEW(SEW);
147   unsigned VTypeI = (VSEWBits << 3) | (VLMULBits & 0x7);
148   if (TailAgnostic)
149     VTypeI |= 0x40;
150   if (MaskAgnostic)
151     VTypeI |= 0x80;
152 
153   return VTypeI;
154 }
155 
156 std::pair<unsigned, bool> RISCVVType::decodeVLMUL(RISCVII::VLMUL VLMUL) {
157   switch (VLMUL) {
158   default:
159     llvm_unreachable("Unexpected LMUL value!");
160   case RISCVII::VLMUL::LMUL_1:
161   case RISCVII::VLMUL::LMUL_2:
162   case RISCVII::VLMUL::LMUL_4:
163   case RISCVII::VLMUL::LMUL_8:
164     return std::make_pair(1 << static_cast<unsigned>(VLMUL), false);
165   case RISCVII::VLMUL::LMUL_F2:
166   case RISCVII::VLMUL::LMUL_F4:
167   case RISCVII::VLMUL::LMUL_F8:
168     return std::make_pair(1 << (8 - static_cast<unsigned>(VLMUL)), true);
169   }
170 }
171 
172 void RISCVVType::printVType(unsigned VType, raw_ostream &OS) {
173   unsigned Sew = getSEW(VType);
174   OS << "e" << Sew;
175 
176   unsigned LMul;
177   bool Fractional;
178   std::tie(LMul, Fractional) = decodeVLMUL(getVLMUL(VType));
179 
180   if (Fractional)
181     OS << ", mf";
182   else
183     OS << ", m";
184   OS << LMul;
185 
186   if (isTailAgnostic(VType))
187     OS << ", ta";
188   else
189     OS << ", tu";
190 
191   if (isMaskAgnostic(VType))
192     OS << ", ma";
193   else
194     OS << ", mu";
195 }
196 
197 unsigned RISCVVType::getSEWLMULRatio(unsigned SEW, RISCVII::VLMUL VLMul) {
198   unsigned LMul;
199   bool Fractional;
200   std::tie(LMul, Fractional) = decodeVLMUL(VLMul);
201 
202   // Convert LMul to a fixed point value with 3 fractional bits.
203   LMul = Fractional ? (8 / LMul) : (LMul * 8);
204 
205   assert(SEW >= 8 && "Unexpected SEW value");
206   return (SEW * 8) / LMul;
207 }
208 
209 std::optional<RISCVII::VLMUL>
210 RISCVVType::getSameRatioLMUL(unsigned SEW, RISCVII::VLMUL VLMUL, unsigned EEW) {
211   unsigned Ratio = RISCVVType::getSEWLMULRatio(SEW, VLMUL);
212   unsigned EMULFixedPoint = (EEW * 8) / Ratio;
213   bool Fractional = EMULFixedPoint < 8;
214   unsigned EMUL = Fractional ? 8 / EMULFixedPoint : EMULFixedPoint / 8;
215   if (!isValidLMUL(EMUL, Fractional))
216     return std::nullopt;
217   return RISCVVType::encodeLMUL(EMUL, Fractional);
218 }
219 
220 // Include the auto-generated portion of the compress emitter.
221 #define GEN_UNCOMPRESS_INSTR
222 #define GEN_COMPRESS_INSTR
223 #include "RISCVGenCompressInstEmitter.inc"
224 
225 bool RISCVRVC::compress(MCInst &OutInst, const MCInst &MI,
226                         const MCSubtargetInfo &STI) {
227   return compressInst(OutInst, MI, STI);
228 }
229 
230 bool RISCVRVC::uncompress(MCInst &OutInst, const MCInst &MI,
231                           const MCSubtargetInfo &STI) {
232   return uncompressInst(OutInst, MI, STI);
233 }
234 
235 // Lookup table for fli.s for entries 2-31.
236 static constexpr std::pair<uint8_t, uint8_t> LoadFP32ImmArr[] = {
237     {0b01101111, 0b00}, {0b01110000, 0b00}, {0b01110111, 0b00},
238     {0b01111000, 0b00}, {0b01111011, 0b00}, {0b01111100, 0b00},
239     {0b01111101, 0b00}, {0b01111101, 0b01}, {0b01111101, 0b10},
240     {0b01111101, 0b11}, {0b01111110, 0b00}, {0b01111110, 0b01},
241     {0b01111110, 0b10}, {0b01111110, 0b11}, {0b01111111, 0b00},
242     {0b01111111, 0b01}, {0b01111111, 0b10}, {0b01111111, 0b11},
243     {0b10000000, 0b00}, {0b10000000, 0b01}, {0b10000000, 0b10},
244     {0b10000001, 0b00}, {0b10000010, 0b00}, {0b10000011, 0b00},
245     {0b10000110, 0b00}, {0b10000111, 0b00}, {0b10001110, 0b00},
246     {0b10001111, 0b00}, {0b11111111, 0b00}, {0b11111111, 0b10},
247 };
248 
249 int RISCVLoadFPImm::getLoadFPImm(APFloat FPImm) {
250   assert((&FPImm.getSemantics() == &APFloat::IEEEsingle() ||
251           &FPImm.getSemantics() == &APFloat::IEEEdouble() ||
252           &FPImm.getSemantics() == &APFloat::IEEEhalf()) &&
253          "Unexpected semantics");
254 
255   // Handle the minimum normalized value which is different for each type.
256   if (FPImm.isSmallestNormalized() && !FPImm.isNegative())
257     return 1;
258 
259   // Convert to single precision to use its lookup table.
260   bool LosesInfo;
261   APFloat::opStatus Status = FPImm.convert(
262       APFloat::IEEEsingle(), APFloat::rmNearestTiesToEven, &LosesInfo);
263   if (Status != APFloat::opOK || LosesInfo)
264     return -1;
265 
266   APInt Imm = FPImm.bitcastToAPInt();
267 
268   if (Imm.extractBitsAsZExtValue(21, 0) != 0)
269     return -1;
270 
271   bool Sign = Imm.extractBitsAsZExtValue(1, 31);
272   uint8_t Mantissa = Imm.extractBitsAsZExtValue(2, 21);
273   uint8_t Exp = Imm.extractBitsAsZExtValue(8, 23);
274 
275   auto EMI = llvm::lower_bound(LoadFP32ImmArr, std::make_pair(Exp, Mantissa));
276   if (EMI == std::end(LoadFP32ImmArr) || EMI->first != Exp ||
277       EMI->second != Mantissa)
278     return -1;
279 
280   // Table doesn't have entry 0 or 1.
281   int Entry = std::distance(std::begin(LoadFP32ImmArr), EMI) + 2;
282 
283   // The only legal negative value is -1.0(entry 0). 1.0 is entry 16.
284   if (Sign) {
285     if (Entry == 16)
286       return 0;
287     return -1;
288   }
289 
290   return Entry;
291 }
292 
293 float RISCVLoadFPImm::getFPImm(unsigned Imm) {
294   assert(Imm != 1 && Imm != 30 && Imm != 31 && "Unsupported immediate");
295 
296   // Entry 0 is -1.0, the only negative value. Entry 16 is 1.0.
297   uint32_t Sign = 0;
298   if (Imm == 0) {
299     Sign = 0b1;
300     Imm = 16;
301   }
302 
303   uint32_t Exp = LoadFP32ImmArr[Imm - 2].first;
304   uint32_t Mantissa = LoadFP32ImmArr[Imm - 2].second;
305 
306   uint32_t I = Sign << 31 | Exp << 23 | Mantissa << 21;
307   return bit_cast<float>(I);
308 }
309 
310 void RISCVZC::printRlist(unsigned SlistEncode, raw_ostream &OS) {
311   OS << "{ra";
312   if (SlistEncode > 4) {
313     OS << ", s0";
314     if (SlistEncode == 15)
315       OS << "-s11";
316     else if (SlistEncode > 5 && SlistEncode <= 14)
317       OS << "-s" << (SlistEncode - 5);
318   }
319   OS << "}";
320 }
321 
322 void RISCVZC::printSpimm(int64_t Spimm, raw_ostream &OS) { OS << Spimm; }
323 
324 } // namespace llvm
325