1 //===- RISCVMatInt.cpp - Immediate materialisation -------------*- C++ -*--===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "RISCVMatInt.h"
10 #include "MCTargetDesc/RISCVMCTargetDesc.h"
11 #include "llvm/ADT/APInt.h"
12 #include "llvm/Support/MathExtras.h"
13 using namespace llvm;
14 
15 static int getInstSeqCost(RISCVMatInt::InstSeq &Res, bool HasRVC) {
16   if (!HasRVC)
17     return Res.size();
18 
19   int Cost = 0;
20   for (auto Instr : Res) {
21     // Assume instructions that aren't listed aren't compressible.
22     bool Compressed = false;
23     switch (Instr.getOpcode()) {
24     case RISCV::SLLI:
25     case RISCV::SRLI:
26       Compressed = true;
27       break;
28     case RISCV::ADDI:
29     case RISCV::ADDIW:
30     case RISCV::LUI:
31       Compressed = isInt<6>(Instr.getImm());
32       break;
33     }
34     // Two RVC instructions take the same space as one RVI instruction, but
35     // can take longer to execute than the single RVI instruction. Thus, we
36     // consider that two RVC instruction are slightly more costly than one
37     // RVI instruction. For longer sequences of RVC instructions the space
38     // savings can be worth it, though. The costs below try to model that.
39     if (!Compressed)
40       Cost += 100; // Baseline cost of one RVI instruction: 100%.
41     else
42       Cost += 70; // 70% cost of baseline.
43   }
44   return Cost;
45 }
46 
47 // Recursively generate a sequence for materializing an integer.
48 static void generateInstSeqImpl(int64_t Val,
49                                 const FeatureBitset &ActiveFeatures,
50                                 RISCVMatInt::InstSeq &Res) {
51   bool IsRV64 = ActiveFeatures[RISCV::Feature64Bit];
52 
53   // Use BSETI for a single bit that can't be expressed by a single LUI or ADDI.
54   if (ActiveFeatures[RISCV::FeatureStdExtZbs] && isPowerOf2_64(Val) &&
55       (!isInt<32>(Val) || Val == 0x800)) {
56     Res.emplace_back(RISCV::BSETI, Log2_64(Val));
57     return;
58   }
59 
60   if (isInt<32>(Val)) {
61     // Depending on the active bits in the immediate Value v, the following
62     // instruction sequences are emitted:
63     //
64     // v == 0                        : ADDI
65     // v[0,12) != 0 && v[12,32) == 0 : ADDI
66     // v[0,12) == 0 && v[12,32) != 0 : LUI
67     // v[0,32) != 0                  : LUI+ADDI(W)
68     int64_t Hi20 = ((Val + 0x800) >> 12) & 0xFFFFF;
69     int64_t Lo12 = SignExtend64<12>(Val);
70 
71     if (Hi20)
72       Res.emplace_back(RISCV::LUI, Hi20);
73 
74     if (Lo12 || Hi20 == 0) {
75       unsigned AddiOpc = (IsRV64 && Hi20) ? RISCV::ADDIW : RISCV::ADDI;
76       Res.emplace_back(AddiOpc, Lo12);
77     }
78     return;
79   }
80 
81   assert(IsRV64 && "Can't emit >32-bit imm for non-RV64 target");
82 
83   // In the worst case, for a full 64-bit constant, a sequence of 8 instructions
84   // (i.e., LUI+ADDIW+SLLI+ADDI+SLLI+ADDI+SLLI+ADDI) has to be emitted. Note
85   // that the first two instructions (LUI+ADDIW) can contribute up to 32 bits
86   // while the following ADDI instructions contribute up to 12 bits each.
87   //
88   // On the first glance, implementing this seems to be possible by simply
89   // emitting the most significant 32 bits (LUI+ADDIW) followed by as many left
90   // shift (SLLI) and immediate additions (ADDI) as needed. However, due to the
91   // fact that ADDI performs a sign extended addition, doing it like that would
92   // only be possible when at most 11 bits of the ADDI instructions are used.
93   // Using all 12 bits of the ADDI instructions, like done by GAS, actually
94   // requires that the constant is processed starting with the least significant
95   // bit.
96   //
97   // In the following, constants are processed from LSB to MSB but instruction
98   // emission is performed from MSB to LSB by recursively calling
99   // generateInstSeq. In each recursion, first the lowest 12 bits are removed
100   // from the constant and the optimal shift amount, which can be greater than
101   // 12 bits if the constant is sparse, is determined. Then, the shifted
102   // remaining constant is processed recursively and gets emitted as soon as it
103   // fits into 32 bits. The emission of the shifts and additions is subsequently
104   // performed when the recursion returns.
105 
106   int64_t Lo12 = SignExtend64<12>(Val);
107   Val = (uint64_t)Val - (uint64_t)Lo12;
108 
109   int ShiftAmount = 0;
110   bool Unsigned = false;
111 
112   // Val might now be valid for LUI without needing a shift.
113   if (!isInt<32>(Val)) {
114     ShiftAmount = llvm::countr_zero((uint64_t)Val);
115     Val >>= ShiftAmount;
116 
117     // If the remaining bits don't fit in 12 bits, we might be able to reduce the
118     // shift amount in order to use LUI which will zero the lower 12 bits.
119     if (ShiftAmount > 12 && !isInt<12>(Val)) {
120       if (isInt<32>((uint64_t)Val << 12)) {
121         // Reduce the shift amount and add zeros to the LSBs so it will match LUI.
122         ShiftAmount -= 12;
123         Val = (uint64_t)Val << 12;
124       } else if (isUInt<32>((uint64_t)Val << 12) &&
125                  ActiveFeatures[RISCV::FeatureStdExtZba]) {
126         // Reduce the shift amount and add zeros to the LSBs so it will match
127         // LUI, then shift left with SLLI.UW to clear the upper 32 set bits.
128         ShiftAmount -= 12;
129         Val = ((uint64_t)Val << 12) | (0xffffffffull << 32);
130         Unsigned = true;
131       }
132     }
133 
134     // Try to use SLLI_UW for Val when it is uint32 but not int32.
135     if (isUInt<32>((uint64_t)Val) && !isInt<32>((uint64_t)Val) &&
136         ActiveFeatures[RISCV::FeatureStdExtZba]) {
137       // Use LUI+ADDI or LUI to compose, then clear the upper 32 bits with
138       // SLLI_UW.
139       Val = ((uint64_t)Val) | (0xffffffffull << 32);
140       Unsigned = true;
141     }
142   }
143 
144   generateInstSeqImpl(Val, ActiveFeatures, Res);
145 
146   // Skip shift if we were able to use LUI directly.
147   if (ShiftAmount) {
148     unsigned Opc = Unsigned ? RISCV::SLLI_UW : RISCV::SLLI;
149     Res.emplace_back(Opc, ShiftAmount);
150   }
151 
152   if (Lo12)
153     Res.emplace_back(RISCV::ADDI, Lo12);
154 }
155 
156 static unsigned extractRotateInfo(int64_t Val) {
157   // for case: 0b111..1..xxxxxx1..1..
158   unsigned LeadingOnes = countLeadingOnes((uint64_t)Val);
159   unsigned TrailingOnes = countTrailingOnes((uint64_t)Val);
160   if (TrailingOnes > 0 && TrailingOnes < 64 &&
161       (LeadingOnes + TrailingOnes) > (64 - 12))
162     return 64 - TrailingOnes;
163 
164   // for case: 0bxxx1..1..1...xxx
165   unsigned UpperTrailingOnes = countTrailingOnes(Hi_32(Val));
166   unsigned LowerLeadingOnes = countLeadingOnes(Lo_32(Val));
167   if (UpperTrailingOnes < 32 &&
168       (UpperTrailingOnes + LowerLeadingOnes) > (64 - 12))
169     return 32 - UpperTrailingOnes;
170 
171   return 0;
172 }
173 
174 namespace llvm::RISCVMatInt {
175 InstSeq generateInstSeq(int64_t Val, const FeatureBitset &ActiveFeatures) {
176   RISCVMatInt::InstSeq Res;
177   generateInstSeqImpl(Val, ActiveFeatures, Res);
178 
179   // If the low 12 bits are non-zero, the first expansion may end with an ADDI
180   // or ADDIW. If there are trailing zeros, try generating a sign extended
181   // constant with no trailing zeros and use a final SLLI to restore them.
182   if ((Val & 0xfff) != 0 && (Val & 1) == 0 && Res.size() >= 2) {
183     unsigned TrailingZeros = countTrailingZeros((uint64_t)Val);
184     int64_t ShiftedVal = Val >> TrailingZeros;
185     // If we can use C.LI+C.SLLI instead of LUI+ADDI(W) prefer that since
186     // its more compressible. But only if LUI+ADDI(W) isn't fusable.
187     // NOTE: We don't check for C extension to minimize differences in generated
188     // code.
189     bool IsShiftedCompressible =
190               isInt<6>(ShiftedVal) && !ActiveFeatures[RISCV::TuneLUIADDIFusion];
191     RISCVMatInt::InstSeq TmpSeq;
192     generateInstSeqImpl(ShiftedVal, ActiveFeatures, TmpSeq);
193     TmpSeq.emplace_back(RISCV::SLLI, TrailingZeros);
194 
195     // Keep the new sequence if it is an improvement.
196     if (TmpSeq.size() < Res.size() || IsShiftedCompressible)
197       Res = TmpSeq;
198   }
199 
200   // If the constant is positive we might be able to generate a shifted constant
201   // with no leading zeros and use a final SRLI to restore them.
202   if (Val > 0 && Res.size() > 2) {
203     assert(ActiveFeatures[RISCV::Feature64Bit] &&
204            "Expected RV32 to only need 2 instructions");
205     unsigned LeadingZeros = countLeadingZeros((uint64_t)Val);
206     uint64_t ShiftedVal = (uint64_t)Val << LeadingZeros;
207     // Fill in the bits that will be shifted out with 1s. An example where this
208     // helps is trailing one masks with 32 or more ones. This will generate
209     // ADDI -1 and an SRLI.
210     ShiftedVal |= maskTrailingOnes<uint64_t>(LeadingZeros);
211 
212     RISCVMatInt::InstSeq TmpSeq;
213     generateInstSeqImpl(ShiftedVal, ActiveFeatures, TmpSeq);
214     TmpSeq.emplace_back(RISCV::SRLI, LeadingZeros);
215 
216     // Keep the new sequence if it is an improvement.
217     if (TmpSeq.size() < Res.size())
218       Res = TmpSeq;
219 
220     // Some cases can benefit from filling the lower bits with zeros instead.
221     ShiftedVal &= maskTrailingZeros<uint64_t>(LeadingZeros);
222     TmpSeq.clear();
223     generateInstSeqImpl(ShiftedVal, ActiveFeatures, TmpSeq);
224     TmpSeq.emplace_back(RISCV::SRLI, LeadingZeros);
225 
226     // Keep the new sequence if it is an improvement.
227     if (TmpSeq.size() < Res.size())
228       Res = TmpSeq;
229 
230     // If we have exactly 32 leading zeros and Zba, we can try using zext.w at
231     // the end of the sequence.
232     if (LeadingZeros == 32 && ActiveFeatures[RISCV::FeatureStdExtZba]) {
233       // Try replacing upper bits with 1.
234       uint64_t LeadingOnesVal = Val | maskLeadingOnes<uint64_t>(LeadingZeros);
235       TmpSeq.clear();
236       generateInstSeqImpl(LeadingOnesVal, ActiveFeatures, TmpSeq);
237       TmpSeq.emplace_back(RISCV::ADD_UW, 0);
238 
239       // Keep the new sequence if it is an improvement.
240       if (TmpSeq.size() < Res.size())
241         Res = TmpSeq;
242     }
243   }
244 
245   // Perform optimization with BCLRI/BSETI in the Zbs extension.
246   if (Res.size() > 2 && ActiveFeatures[RISCV::FeatureStdExtZbs]) {
247     assert(ActiveFeatures[RISCV::Feature64Bit] &&
248            "Expected RV32 to only need 2 instructions");
249 
250     // 1. For values in range 0xffffffff 7fffffff ~ 0xffffffff 00000000,
251     //    call generateInstSeqImpl with Val|0x80000000 (which is expected be
252     //    an int32), then emit (BCLRI r, 31).
253     // 2. For values in range 0x80000000 ~ 0xffffffff, call generateInstSeqImpl
254     //    with Val&~0x80000000 (which is expected to be an int32), then
255     //    emit (BSETI r, 31).
256     int64_t NewVal;
257     unsigned Opc;
258     if (Val < 0) {
259       Opc = RISCV::BCLRI;
260       NewVal = Val | 0x80000000ll;
261     } else {
262       Opc = RISCV::BSETI;
263       NewVal = Val & ~0x80000000ll;
264     }
265     if (isInt<32>(NewVal)) {
266       RISCVMatInt::InstSeq TmpSeq;
267       generateInstSeqImpl(NewVal, ActiveFeatures, TmpSeq);
268       TmpSeq.emplace_back(Opc, 31);
269       if (TmpSeq.size() < Res.size())
270         Res = TmpSeq;
271     }
272 
273     // Try to use BCLRI for upper 32 bits if the original lower 32 bits are
274     // negative int32, or use BSETI for upper 32 bits if the original lower
275     // 32 bits are positive int32.
276     int32_t Lo = Lo_32(Val);
277     uint32_t Hi = Hi_32(Val);
278     Opc = 0;
279     RISCVMatInt::InstSeq TmpSeq;
280     generateInstSeqImpl(Lo, ActiveFeatures, TmpSeq);
281     // Check if it is profitable to use BCLRI/BSETI.
282     if (Lo > 0 && TmpSeq.size() + llvm::popcount(Hi) < Res.size()) {
283       Opc = RISCV::BSETI;
284     } else if (Lo < 0 && TmpSeq.size() + llvm::popcount(~Hi) < Res.size()) {
285       Opc = RISCV::BCLRI;
286       Hi = ~Hi;
287     }
288     // Search for each bit and build corresponding BCLRI/BSETI.
289     if (Opc > 0) {
290       while (Hi != 0) {
291         unsigned Bit = llvm::countr_zero(Hi);
292         TmpSeq.emplace_back(Opc, Bit + 32);
293         Hi &= (Hi - 1); // Clear lowest set bit.
294       }
295       if (TmpSeq.size() < Res.size())
296         Res = TmpSeq;
297     }
298   }
299 
300   // Perform optimization with SH*ADD in the Zba extension.
301   if (Res.size() > 2 && ActiveFeatures[RISCV::FeatureStdExtZba]) {
302     assert(ActiveFeatures[RISCV::Feature64Bit] &&
303            "Expected RV32 to only need 2 instructions");
304     int64_t Div = 0;
305     unsigned Opc = 0;
306     RISCVMatInt::InstSeq TmpSeq;
307     // Select the opcode and divisor.
308     if ((Val % 3) == 0 && isInt<32>(Val / 3)) {
309       Div = 3;
310       Opc = RISCV::SH1ADD;
311     } else if ((Val % 5) == 0 && isInt<32>(Val / 5)) {
312       Div = 5;
313       Opc = RISCV::SH2ADD;
314     } else if ((Val % 9) == 0 && isInt<32>(Val / 9)) {
315       Div = 9;
316       Opc = RISCV::SH3ADD;
317     }
318     // Build the new instruction sequence.
319     if (Div > 0) {
320       generateInstSeqImpl(Val / Div, ActiveFeatures, TmpSeq);
321       TmpSeq.emplace_back(Opc, 0);
322       if (TmpSeq.size() < Res.size())
323         Res = TmpSeq;
324     } else {
325       // Try to use LUI+SH*ADD+ADDI.
326       int64_t Hi52 = ((uint64_t)Val + 0x800ull) & ~0xfffull;
327       int64_t Lo12 = SignExtend64<12>(Val);
328       Div = 0;
329       if (isInt<32>(Hi52 / 3) && (Hi52 % 3) == 0) {
330         Div = 3;
331         Opc = RISCV::SH1ADD;
332       } else if (isInt<32>(Hi52 / 5) && (Hi52 % 5) == 0) {
333         Div = 5;
334         Opc = RISCV::SH2ADD;
335       } else if (isInt<32>(Hi52 / 9) && (Hi52 % 9) == 0) {
336         Div = 9;
337         Opc = RISCV::SH3ADD;
338       }
339       // Build the new instruction sequence.
340       if (Div > 0) {
341         // For Val that has zero Lo12 (implies Val equals to Hi52) should has
342         // already been processed to LUI+SH*ADD by previous optimization.
343         assert(Lo12 != 0 &&
344                "unexpected instruction sequence for immediate materialisation");
345         assert(TmpSeq.empty() && "Expected empty TmpSeq");
346         generateInstSeqImpl(Hi52 / Div, ActiveFeatures, TmpSeq);
347         TmpSeq.emplace_back(Opc, 0);
348         TmpSeq.emplace_back(RISCV::ADDI, Lo12);
349         if (TmpSeq.size() < Res.size())
350           Res = TmpSeq;
351       }
352     }
353   }
354 
355   // Perform optimization with rori in the Zbb extension.
356   if (Res.size() > 2 && ActiveFeatures[RISCV::FeatureStdExtZbb]) {
357     if (unsigned Rotate = extractRotateInfo(Val)) {
358       RISCVMatInt::InstSeq TmpSeq;
359       uint64_t NegImm12 =
360           ((uint64_t)Val >> (64 - Rotate)) | ((uint64_t)Val << Rotate);
361       assert(isInt<12>(NegImm12));
362       TmpSeq.emplace_back(RISCV::ADDI, NegImm12);
363       TmpSeq.emplace_back(RISCV::RORI, Rotate);
364       Res = TmpSeq;
365     }
366   }
367   return Res;
368 }
369 
370 int getIntMatCost(const APInt &Val, unsigned Size,
371                   const FeatureBitset &ActiveFeatures, bool CompressionCost) {
372   bool IsRV64 = ActiveFeatures[RISCV::Feature64Bit];
373   bool HasRVC = CompressionCost && (ActiveFeatures[RISCV::FeatureStdExtC] ||
374                                     ActiveFeatures[RISCV::FeatureExtZca]);
375   int PlatRegSize = IsRV64 ? 64 : 32;
376 
377   // Split the constant into platform register sized chunks, and calculate cost
378   // of each chunk.
379   int Cost = 0;
380   for (unsigned ShiftVal = 0; ShiftVal < Size; ShiftVal += PlatRegSize) {
381     APInt Chunk = Val.ashr(ShiftVal).sextOrTrunc(PlatRegSize);
382     InstSeq MatSeq = generateInstSeq(Chunk.getSExtValue(), ActiveFeatures);
383     Cost += getInstSeqCost(MatSeq, HasRVC);
384   }
385   return std::max(1, Cost);
386 }
387 
388 OpndKind Inst::getOpndKind() const {
389   switch (Opc) {
390   default:
391     llvm_unreachable("Unexpected opcode!");
392   case RISCV::LUI:
393     return RISCVMatInt::Imm;
394   case RISCV::ADD_UW:
395     return RISCVMatInt::RegX0;
396   case RISCV::SH1ADD:
397   case RISCV::SH2ADD:
398   case RISCV::SH3ADD:
399     return RISCVMatInt::RegReg;
400   case RISCV::ADDI:
401   case RISCV::ADDIW:
402   case RISCV::SLLI:
403   case RISCV::SRLI:
404   case RISCV::SLLI_UW:
405   case RISCV::RORI:
406   case RISCV::BSETI:
407   case RISCV::BCLRI:
408     return RISCVMatInt::RegImm;
409   }
410 }
411 
412 } // namespace llvm::RISCVMatInt
413