1 //===- RISCVMatInt.cpp - Immediate materialisation -------------*- C++ -*--===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "RISCVMatInt.h"
10 #include "MCTargetDesc/RISCVMCTargetDesc.h"
11 #include "llvm/ADT/APInt.h"
12 #include "llvm/Support/MathExtras.h"
13 using namespace llvm;
14 
15 static int getInstSeqCost(RISCVMatInt::InstSeq &Res, bool HasRVC) {
16   if (!HasRVC)
17     return Res.size();
18 
19   int Cost = 0;
20   for (auto Instr : Res) {
21     // Assume instructions that aren't listed aren't compressible.
22     bool Compressed = false;
23     switch (Instr.getOpcode()) {
24     case RISCV::SLLI:
25     case RISCV::SRLI:
26       Compressed = true;
27       break;
28     case RISCV::ADDI:
29     case RISCV::ADDIW:
30     case RISCV::LUI:
31       Compressed = isInt<6>(Instr.getImm());
32       break;
33     }
34     // Two RVC instructions take the same space as one RVI instruction, but
35     // can take longer to execute than the single RVI instruction. Thus, we
36     // consider that two RVC instruction are slightly more costly than one
37     // RVI instruction. For longer sequences of RVC instructions the space
38     // savings can be worth it, though. The costs below try to model that.
39     if (!Compressed)
40       Cost += 100; // Baseline cost of one RVI instruction: 100%.
41     else
42       Cost += 70; // 70% cost of baseline.
43   }
44   return Cost;
45 }
46 
47 // Recursively generate a sequence for materializing an integer.
48 static void generateInstSeqImpl(int64_t Val,
49                                 const FeatureBitset &ActiveFeatures,
50                                 RISCVMatInt::InstSeq &Res) {
51   bool IsRV64 = ActiveFeatures[RISCV::Feature64Bit];
52 
53   // Use BSETI for a single bit that can't be expressed by a single LUI or ADDI.
54   if (ActiveFeatures[RISCV::FeatureStdExtZbs] && isPowerOf2_64(Val) &&
55       (!isInt<32>(Val) || Val == 0x800)) {
56     Res.emplace_back(RISCV::BSETI, Log2_64(Val));
57     return;
58   }
59 
60   if (isInt<32>(Val)) {
61     // Depending on the active bits in the immediate Value v, the following
62     // instruction sequences are emitted:
63     //
64     // v == 0                        : ADDI
65     // v[0,12) != 0 && v[12,32) == 0 : ADDI
66     // v[0,12) == 0 && v[12,32) != 0 : LUI
67     // v[0,32) != 0                  : LUI+ADDI(W)
68     int64_t Hi20 = ((Val + 0x800) >> 12) & 0xFFFFF;
69     int64_t Lo12 = SignExtend64<12>(Val);
70 
71     if (Hi20)
72       Res.emplace_back(RISCV::LUI, Hi20);
73 
74     if (Lo12 || Hi20 == 0) {
75       unsigned AddiOpc = (IsRV64 && Hi20) ? RISCV::ADDIW : RISCV::ADDI;
76       Res.emplace_back(AddiOpc, Lo12);
77     }
78     return;
79   }
80 
81   assert(IsRV64 && "Can't emit >32-bit imm for non-RV64 target");
82 
83   // In the worst case, for a full 64-bit constant, a sequence of 8 instructions
84   // (i.e., LUI+ADDIW+SLLI+ADDI+SLLI+ADDI+SLLI+ADDI) has to be emitted. Note
85   // that the first two instructions (LUI+ADDIW) can contribute up to 32 bits
86   // while the following ADDI instructions contribute up to 12 bits each.
87   //
88   // On the first glance, implementing this seems to be possible by simply
89   // emitting the most significant 32 bits (LUI+ADDIW) followed by as many left
90   // shift (SLLI) and immediate additions (ADDI) as needed. However, due to the
91   // fact that ADDI performs a sign extended addition, doing it like that would
92   // only be possible when at most 11 bits of the ADDI instructions are used.
93   // Using all 12 bits of the ADDI instructions, like done by GAS, actually
94   // requires that the constant is processed starting with the least significant
95   // bit.
96   //
97   // In the following, constants are processed from LSB to MSB but instruction
98   // emission is performed from MSB to LSB by recursively calling
99   // generateInstSeq. In each recursion, first the lowest 12 bits are removed
100   // from the constant and the optimal shift amount, which can be greater than
101   // 12 bits if the constant is sparse, is determined. Then, the shifted
102   // remaining constant is processed recursively and gets emitted as soon as it
103   // fits into 32 bits. The emission of the shifts and additions is subsequently
104   // performed when the recursion returns.
105 
106   int64_t Lo12 = SignExtend64<12>(Val);
107   Val = (uint64_t)Val - (uint64_t)Lo12;
108 
109   int ShiftAmount = 0;
110   bool Unsigned = false;
111 
112   // Val might now be valid for LUI without needing a shift.
113   if (!isInt<32>(Val)) {
114     ShiftAmount = llvm::countr_zero((uint64_t)Val);
115     Val >>= ShiftAmount;
116 
117     // If the remaining bits don't fit in 12 bits, we might be able to reduce the
118     // shift amount in order to use LUI which will zero the lower 12 bits.
119     if (ShiftAmount > 12 && !isInt<12>(Val)) {
120       if (isInt<32>((uint64_t)Val << 12)) {
121         // Reduce the shift amount and add zeros to the LSBs so it will match LUI.
122         ShiftAmount -= 12;
123         Val = (uint64_t)Val << 12;
124       } else if (isUInt<32>((uint64_t)Val << 12) &&
125                  ActiveFeatures[RISCV::FeatureStdExtZba]) {
126         // Reduce the shift amount and add zeros to the LSBs so it will match
127         // LUI, then shift left with SLLI.UW to clear the upper 32 set bits.
128         ShiftAmount -= 12;
129         Val = ((uint64_t)Val << 12) | (0xffffffffull << 32);
130         Unsigned = true;
131       }
132     }
133 
134     // Try to use SLLI_UW for Val when it is uint32 but not int32.
135     if (isUInt<32>((uint64_t)Val) && !isInt<32>((uint64_t)Val) &&
136         ActiveFeatures[RISCV::FeatureStdExtZba]) {
137       // Use LUI+ADDI or LUI to compose, then clear the upper 32 bits with
138       // SLLI_UW.
139       Val = ((uint64_t)Val) | (0xffffffffull << 32);
140       Unsigned = true;
141     }
142   }
143 
144   generateInstSeqImpl(Val, ActiveFeatures, Res);
145 
146   // Skip shift if we were able to use LUI directly.
147   if (ShiftAmount) {
148     unsigned Opc = Unsigned ? RISCV::SLLI_UW : RISCV::SLLI;
149     Res.emplace_back(Opc, ShiftAmount);
150   }
151 
152   if (Lo12)
153     Res.emplace_back(RISCV::ADDI, Lo12);
154 }
155 
156 static unsigned extractRotateInfo(int64_t Val) {
157   // for case: 0b111..1..xxxxxx1..1..
158   unsigned LeadingOnes = llvm::countl_one((uint64_t)Val);
159   unsigned TrailingOnes = llvm::countr_one((uint64_t)Val);
160   if (TrailingOnes > 0 && TrailingOnes < 64 &&
161       (LeadingOnes + TrailingOnes) > (64 - 12))
162     return 64 - TrailingOnes;
163 
164   // for case: 0bxxx1..1..1...xxx
165   unsigned UpperTrailingOnes = llvm::countr_one(Hi_32(Val));
166   unsigned LowerLeadingOnes = llvm::countl_one(Lo_32(Val));
167   if (UpperTrailingOnes < 32 &&
168       (UpperTrailingOnes + LowerLeadingOnes) > (64 - 12))
169     return 32 - UpperTrailingOnes;
170 
171   return 0;
172 }
173 
174 namespace llvm::RISCVMatInt {
175 InstSeq generateInstSeq(int64_t Val, const FeatureBitset &ActiveFeatures) {
176   RISCVMatInt::InstSeq Res;
177   generateInstSeqImpl(Val, ActiveFeatures, Res);
178 
179   // If the low 12 bits are non-zero, the first expansion may end with an ADDI
180   // or ADDIW. If there are trailing zeros, try generating a sign extended
181   // constant with no trailing zeros and use a final SLLI to restore them.
182   if ((Val & 0xfff) != 0 && (Val & 1) == 0 && Res.size() >= 2) {
183     unsigned TrailingZeros = llvm::countr_zero((uint64_t)Val);
184     int64_t ShiftedVal = Val >> TrailingZeros;
185     // If we can use C.LI+C.SLLI instead of LUI+ADDI(W) prefer that since
186     // its more compressible. But only if LUI+ADDI(W) isn't fusable.
187     // NOTE: We don't check for C extension to minimize differences in generated
188     // code.
189     bool IsShiftedCompressible =
190               isInt<6>(ShiftedVal) && !ActiveFeatures[RISCV::TuneLUIADDIFusion];
191     RISCVMatInt::InstSeq TmpSeq;
192     generateInstSeqImpl(ShiftedVal, ActiveFeatures, TmpSeq);
193 
194     // Keep the new sequence if it is an improvement.
195     if ((TmpSeq.size() + 1) < Res.size() || IsShiftedCompressible) {
196       TmpSeq.emplace_back(RISCV::SLLI, TrailingZeros);
197       Res = TmpSeq;
198     }
199   }
200 
201   // If we have a 1 or 2 instruction sequence this is the best we can do. This
202   // will always be true for RV32 and will often be true for RV64.
203   if (Res.size() <= 2)
204     return Res;
205 
206   assert(ActiveFeatures[RISCV::Feature64Bit] &&
207          "Expected RV32 to only need 2 instructions");
208 
209   // If the constant is positive we might be able to generate a shifted constant
210   // with no leading zeros and use a final SRLI to restore them.
211   if (Val > 0) {
212     assert(Res.size() > 2 && "Expected longer sequence");
213     unsigned LeadingZeros = llvm::countl_zero((uint64_t)Val);
214     uint64_t ShiftedVal = (uint64_t)Val << LeadingZeros;
215     // Fill in the bits that will be shifted out with 1s. An example where this
216     // helps is trailing one masks with 32 or more ones. This will generate
217     // ADDI -1 and an SRLI.
218     ShiftedVal |= maskTrailingOnes<uint64_t>(LeadingZeros);
219 
220     RISCVMatInt::InstSeq TmpSeq;
221     generateInstSeqImpl(ShiftedVal, ActiveFeatures, TmpSeq);
222 
223     // Keep the new sequence if it is an improvement.
224     if ((TmpSeq.size() + 1) < Res.size()) {
225       TmpSeq.emplace_back(RISCV::SRLI, LeadingZeros);
226       Res = TmpSeq;
227     }
228 
229     // Some cases can benefit from filling the lower bits with zeros instead.
230     ShiftedVal &= maskTrailingZeros<uint64_t>(LeadingZeros);
231     TmpSeq.clear();
232     generateInstSeqImpl(ShiftedVal, ActiveFeatures, TmpSeq);
233 
234     // Keep the new sequence if it is an improvement.
235     if ((TmpSeq.size() + 1) < Res.size()) {
236       TmpSeq.emplace_back(RISCV::SRLI, LeadingZeros);
237       Res = TmpSeq;
238     }
239 
240     // If we have exactly 32 leading zeros and Zba, we can try using zext.w at
241     // the end of the sequence.
242     if (LeadingZeros == 32 && ActiveFeatures[RISCV::FeatureStdExtZba]) {
243       // Try replacing upper bits with 1.
244       uint64_t LeadingOnesVal = Val | maskLeadingOnes<uint64_t>(LeadingZeros);
245       TmpSeq.clear();
246       generateInstSeqImpl(LeadingOnesVal, ActiveFeatures, TmpSeq);
247 
248       // Keep the new sequence if it is an improvement.
249       if ((TmpSeq.size() + 1) < Res.size()) {
250         TmpSeq.emplace_back(RISCV::ADD_UW, 0);
251         Res = TmpSeq;
252       }
253     }
254   }
255 
256   // If the Low and High halves are the same, use pack. The pack instruction
257   // packs the XLEN/2-bit lower halves of rs1 and rs2 into rd, with rs1 in the
258   // lower half and rs2 in the upper half.
259   if (Res.size() > 2 && ActiveFeatures[RISCV::FeatureStdExtZbkb]) {
260     int64_t LoVal = SignExtend64<32>(Val);
261     int64_t HiVal = SignExtend64<32>(Val >> 32);
262     if (LoVal == HiVal) {
263       RISCVMatInt::InstSeq TmpSeq;
264       generateInstSeqImpl(LoVal, ActiveFeatures, TmpSeq);
265       if ((TmpSeq.size() + 1) < Res.size()) {
266         TmpSeq.emplace_back(RISCV::PACK, 0);
267         Res = TmpSeq;
268       }
269     }
270   }
271 
272   // Perform optimization with BCLRI/BSETI in the Zbs extension.
273   if (Res.size() > 2 && ActiveFeatures[RISCV::FeatureStdExtZbs]) {
274     // 1. For values in range 0xffffffff 7fffffff ~ 0xffffffff 00000000,
275     //    call generateInstSeqImpl with Val|0x80000000 (which is expected be
276     //    an int32), then emit (BCLRI r, 31).
277     // 2. For values in range 0x80000000 ~ 0xffffffff, call generateInstSeqImpl
278     //    with Val&~0x80000000 (which is expected to be an int32), then
279     //    emit (BSETI r, 31).
280     int64_t NewVal;
281     unsigned Opc;
282     if (Val < 0) {
283       Opc = RISCV::BCLRI;
284       NewVal = Val | 0x80000000ll;
285     } else {
286       Opc = RISCV::BSETI;
287       NewVal = Val & ~0x80000000ll;
288     }
289     if (isInt<32>(NewVal)) {
290       RISCVMatInt::InstSeq TmpSeq;
291       generateInstSeqImpl(NewVal, ActiveFeatures, TmpSeq);
292       if ((TmpSeq.size() + 1) < Res.size()) {
293         TmpSeq.emplace_back(Opc, 31);
294         Res = TmpSeq;
295       }
296     }
297 
298     // Try to use BCLRI for upper 32 bits if the original lower 32 bits are
299     // negative int32, or use BSETI for upper 32 bits if the original lower
300     // 32 bits are positive int32.
301     int32_t Lo = Lo_32(Val);
302     uint32_t Hi = Hi_32(Val);
303     Opc = 0;
304     RISCVMatInt::InstSeq TmpSeq;
305     generateInstSeqImpl(Lo, ActiveFeatures, TmpSeq);
306     // Check if it is profitable to use BCLRI/BSETI.
307     if (Lo > 0 && TmpSeq.size() + llvm::popcount(Hi) < Res.size()) {
308       Opc = RISCV::BSETI;
309     } else if (Lo < 0 && TmpSeq.size() + llvm::popcount(~Hi) < Res.size()) {
310       Opc = RISCV::BCLRI;
311       Hi = ~Hi;
312     }
313     // Search for each bit and build corresponding BCLRI/BSETI.
314     if (Opc > 0) {
315       while (Hi != 0) {
316         unsigned Bit = llvm::countr_zero(Hi);
317         TmpSeq.emplace_back(Opc, Bit + 32);
318         Hi &= (Hi - 1); // Clear lowest set bit.
319       }
320       if (TmpSeq.size() < Res.size())
321         Res = TmpSeq;
322     }
323   }
324 
325   // Perform optimization with SH*ADD in the Zba extension.
326   if (Res.size() > 2 && ActiveFeatures[RISCV::FeatureStdExtZba]) {
327     int64_t Div = 0;
328     unsigned Opc = 0;
329     RISCVMatInt::InstSeq TmpSeq;
330     // Select the opcode and divisor.
331     if ((Val % 3) == 0 && isInt<32>(Val / 3)) {
332       Div = 3;
333       Opc = RISCV::SH1ADD;
334     } else if ((Val % 5) == 0 && isInt<32>(Val / 5)) {
335       Div = 5;
336       Opc = RISCV::SH2ADD;
337     } else if ((Val % 9) == 0 && isInt<32>(Val / 9)) {
338       Div = 9;
339       Opc = RISCV::SH3ADD;
340     }
341     // Build the new instruction sequence.
342     if (Div > 0) {
343       generateInstSeqImpl(Val / Div, ActiveFeatures, TmpSeq);
344       if ((TmpSeq.size() + 1) < Res.size()) {
345         TmpSeq.emplace_back(Opc, 0);
346         Res = TmpSeq;
347       }
348     } else {
349       // Try to use LUI+SH*ADD+ADDI.
350       int64_t Hi52 = ((uint64_t)Val + 0x800ull) & ~0xfffull;
351       int64_t Lo12 = SignExtend64<12>(Val);
352       Div = 0;
353       if (isInt<32>(Hi52 / 3) && (Hi52 % 3) == 0) {
354         Div = 3;
355         Opc = RISCV::SH1ADD;
356       } else if (isInt<32>(Hi52 / 5) && (Hi52 % 5) == 0) {
357         Div = 5;
358         Opc = RISCV::SH2ADD;
359       } else if (isInt<32>(Hi52 / 9) && (Hi52 % 9) == 0) {
360         Div = 9;
361         Opc = RISCV::SH3ADD;
362       }
363       // Build the new instruction sequence.
364       if (Div > 0) {
365         // For Val that has zero Lo12 (implies Val equals to Hi52) should has
366         // already been processed to LUI+SH*ADD by previous optimization.
367         assert(Lo12 != 0 &&
368                "unexpected instruction sequence for immediate materialisation");
369         assert(TmpSeq.empty() && "Expected empty TmpSeq");
370         generateInstSeqImpl(Hi52 / Div, ActiveFeatures, TmpSeq);
371         if ((TmpSeq.size() + 2) < Res.size()) {
372           TmpSeq.emplace_back(Opc, 0);
373           TmpSeq.emplace_back(RISCV::ADDI, Lo12);
374           Res = TmpSeq;
375         }
376       }
377     }
378   }
379 
380   // Perform optimization with rori in the Zbb and th.srri in the XTheadBb
381   // extension.
382   if (Res.size() > 2 && (ActiveFeatures[RISCV::FeatureStdExtZbb] ||
383                          ActiveFeatures[RISCV::FeatureVendorXTHeadBb])) {
384     if (unsigned Rotate = extractRotateInfo(Val)) {
385       RISCVMatInt::InstSeq TmpSeq;
386       uint64_t NegImm12 = llvm::rotl<uint64_t>(Val, Rotate);
387       assert(isInt<12>(NegImm12));
388       TmpSeq.emplace_back(RISCV::ADDI, NegImm12);
389       TmpSeq.emplace_back(ActiveFeatures[RISCV::FeatureStdExtZbb]
390                               ? RISCV::RORI
391                               : RISCV::TH_SRRI,
392                           Rotate);
393       Res = TmpSeq;
394     }
395   }
396   return Res;
397 }
398 
399 int getIntMatCost(const APInt &Val, unsigned Size,
400                   const FeatureBitset &ActiveFeatures, bool CompressionCost) {
401   bool IsRV64 = ActiveFeatures[RISCV::Feature64Bit];
402   bool HasRVC = CompressionCost && (ActiveFeatures[RISCV::FeatureStdExtC] ||
403                                     ActiveFeatures[RISCV::FeatureStdExtZca]);
404   int PlatRegSize = IsRV64 ? 64 : 32;
405 
406   // Split the constant into platform register sized chunks, and calculate cost
407   // of each chunk.
408   int Cost = 0;
409   for (unsigned ShiftVal = 0; ShiftVal < Size; ShiftVal += PlatRegSize) {
410     APInt Chunk = Val.ashr(ShiftVal).sextOrTrunc(PlatRegSize);
411     InstSeq MatSeq = generateInstSeq(Chunk.getSExtValue(), ActiveFeatures);
412     Cost += getInstSeqCost(MatSeq, HasRVC);
413   }
414   return std::max(1, Cost);
415 }
416 
417 OpndKind Inst::getOpndKind() const {
418   switch (Opc) {
419   default:
420     llvm_unreachable("Unexpected opcode!");
421   case RISCV::LUI:
422     return RISCVMatInt::Imm;
423   case RISCV::ADD_UW:
424     return RISCVMatInt::RegX0;
425   case RISCV::SH1ADD:
426   case RISCV::SH2ADD:
427   case RISCV::SH3ADD:
428   case RISCV::PACK:
429     return RISCVMatInt::RegReg;
430   case RISCV::ADDI:
431   case RISCV::ADDIW:
432   case RISCV::SLLI:
433   case RISCV::SRLI:
434   case RISCV::SLLI_UW:
435   case RISCV::RORI:
436   case RISCV::BSETI:
437   case RISCV::BCLRI:
438   case RISCV::TH_SRRI:
439     return RISCVMatInt::RegImm;
440   }
441 }
442 
443 } // namespace llvm::RISCVMatInt
444