1 //===- RISCVMatInt.cpp - Immediate materialisation -------------*- C++ -*--===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "RISCVMatInt.h"
10 #include "MCTargetDesc/RISCVMCTargetDesc.h"
11 #include "llvm/ADT/APInt.h"
12 #include "llvm/Support/MathExtras.h"
13 using namespace llvm;
14 
15 static int getInstSeqCost(RISCVMatInt::InstSeq &Res, bool HasRVC) {
16   if (!HasRVC)
17     return Res.size();
18 
19   int Cost = 0;
20   for (auto Instr : Res) {
21     bool Compressed;
22     switch (Instr.Opc) {
23     default: llvm_unreachable("Unexpected opcode");
24     case RISCV::SLLI:
25     case RISCV::SRLI:
26       Compressed = true;
27       break;
28     case RISCV::ADDI:
29     case RISCV::ADDIW:
30     case RISCV::LUI:
31       Compressed = isInt<6>(Instr.Imm);
32       break;
33     case RISCV::ADDUW:
34       Compressed = false;
35       break;
36     }
37     // Two RVC instructions take the same space as one RVI instruction, but
38     // can take longer to execute than the single RVI instruction. Thus, we
39     // consider that two RVC instruction are slightly more costly than one
40     // RVI instruction. For longer sequences of RVC instructions the space
41     // savings can be worth it, though. The costs below try to model that.
42     if (!Compressed)
43       Cost += 100; // Baseline cost of one RVI instruction: 100%.
44     else
45       Cost += 70; // 70% cost of baseline.
46   }
47   return Cost;
48 }
49 
50 // Recursively generate a sequence for materializing an integer.
51 static void generateInstSeqImpl(int64_t Val,
52                                 const FeatureBitset &ActiveFeatures,
53                                 RISCVMatInt::InstSeq &Res) {
54   bool IsRV64 = ActiveFeatures[RISCV::Feature64Bit];
55 
56   if (isInt<32>(Val)) {
57     // Depending on the active bits in the immediate Value v, the following
58     // instruction sequences are emitted:
59     //
60     // v == 0                        : ADDI
61     // v[0,12) != 0 && v[12,32) == 0 : ADDI
62     // v[0,12) == 0 && v[12,32) != 0 : LUI
63     // v[0,32) != 0                  : LUI+ADDI(W)
64     int64_t Hi20 = ((Val + 0x800) >> 12) & 0xFFFFF;
65     int64_t Lo12 = SignExtend64<12>(Val);
66 
67     if (Hi20)
68       Res.push_back(RISCVMatInt::Inst(RISCV::LUI, Hi20));
69 
70     if (Lo12 || Hi20 == 0) {
71       unsigned AddiOpc = (IsRV64 && Hi20) ? RISCV::ADDIW : RISCV::ADDI;
72       Res.push_back(RISCVMatInt::Inst(AddiOpc, Lo12));
73     }
74     return;
75   }
76 
77   assert(IsRV64 && "Can't emit >32-bit imm for non-RV64 target");
78 
79   // In the worst case, for a full 64-bit constant, a sequence of 8 instructions
80   // (i.e., LUI+ADDIW+SLLI+ADDI+SLLI+ADDI+SLLI+ADDI) has to be emmitted. Note
81   // that the first two instructions (LUI+ADDIW) can contribute up to 32 bits
82   // while the following ADDI instructions contribute up to 12 bits each.
83   //
84   // On the first glance, implementing this seems to be possible by simply
85   // emitting the most significant 32 bits (LUI+ADDIW) followed by as many left
86   // shift (SLLI) and immediate additions (ADDI) as needed. However, due to the
87   // fact that ADDI performs a sign extended addition, doing it like that would
88   // only be possible when at most 11 bits of the ADDI instructions are used.
89   // Using all 12 bits of the ADDI instructions, like done by GAS, actually
90   // requires that the constant is processed starting with the least significant
91   // bit.
92   //
93   // In the following, constants are processed from LSB to MSB but instruction
94   // emission is performed from MSB to LSB by recursively calling
95   // generateInstSeq. In each recursion, first the lowest 12 bits are removed
96   // from the constant and the optimal shift amount, which can be greater than
97   // 12 bits if the constant is sparse, is determined. Then, the shifted
98   // remaining constant is processed recursively and gets emitted as soon as it
99   // fits into 32 bits. The emission of the shifts and additions is subsequently
100   // performed when the recursion returns.
101 
102   int64_t Lo12 = SignExtend64<12>(Val);
103   int64_t Hi52 = ((uint64_t)Val + 0x800ull) >> 12;
104   int ShiftAmount = 12 + findFirstSet((uint64_t)Hi52);
105   Hi52 = SignExtend64(Hi52 >> (ShiftAmount - 12), 64 - ShiftAmount);
106 
107   // If the remaining bits don't fit in 12 bits, we might be able to reduce the
108   // shift amount in order to use LUI which will zero the lower 12 bits.
109   if (ShiftAmount > 12 && !isInt<12>(Hi52) && isInt<32>((uint64_t)Hi52 << 12)) {
110     // Reduce the shift amount and add zeros to the LSBs so it will match LUI.
111     ShiftAmount -= 12;
112     Hi52 = (uint64_t)Hi52 << 12;
113   }
114 
115   generateInstSeqImpl(Hi52, ActiveFeatures, Res);
116 
117   Res.push_back(RISCVMatInt::Inst(RISCV::SLLI, ShiftAmount));
118   if (Lo12)
119     Res.push_back(RISCVMatInt::Inst(RISCV::ADDI, Lo12));
120 }
121 
122 namespace llvm {
123 namespace RISCVMatInt {
124 InstSeq generateInstSeq(int64_t Val, const FeatureBitset &ActiveFeatures) {
125   RISCVMatInt::InstSeq Res;
126   generateInstSeqImpl(Val, ActiveFeatures, Res);
127 
128   // If the constant is positive we might be able to generate a shifted constant
129   // with no leading zeros and use a final SRLI to restore them.
130   if (Val > 0 && Res.size() > 2) {
131     assert(ActiveFeatures[RISCV::Feature64Bit] &&
132            "Expected RV32 to only need 2 instructions");
133     unsigned LeadingZeros = countLeadingZeros((uint64_t)Val);
134     uint64_t ShiftedVal = (uint64_t)Val << LeadingZeros;
135     // Fill in the bits that will be shifted out with 1s. An example where this
136     // helps is trailing one masks with 32 or more ones. This will generate
137     // ADDI -1 and an SRLI.
138     ShiftedVal |= maskTrailingOnes<uint64_t>(LeadingZeros);
139 
140     RISCVMatInt::InstSeq TmpSeq;
141     generateInstSeqImpl(ShiftedVal, ActiveFeatures, TmpSeq);
142     TmpSeq.push_back(RISCVMatInt::Inst(RISCV::SRLI, LeadingZeros));
143 
144     // Keep the new sequence if it is an improvement.
145     if (TmpSeq.size() < Res.size()) {
146       Res = TmpSeq;
147       // A 2 instruction sequence is the best we can do.
148       if (Res.size() <= 2)
149         return Res;
150     }
151 
152     // Some cases can benefit from filling the lower bits with zeros instead.
153     ShiftedVal &= maskTrailingZeros<uint64_t>(LeadingZeros);
154     TmpSeq.clear();
155     generateInstSeqImpl(ShiftedVal, ActiveFeatures, TmpSeq);
156     TmpSeq.push_back(RISCVMatInt::Inst(RISCV::SRLI, LeadingZeros));
157 
158     // Keep the new sequence if it is an improvement.
159     if (TmpSeq.size() < Res.size()) {
160       Res = TmpSeq;
161       // A 2 instruction sequence is the best we can do.
162       if (Res.size() <= 2)
163         return Res;
164     }
165 
166     // If we have exactly 32 leading zeros and Zba, we can try using zext.w at
167     // the end of the sequence.
168     if (LeadingZeros == 32 && ActiveFeatures[RISCV::FeatureExtZba]) {
169       // Try replacing upper bits with 1.
170       uint64_t LeadingOnesVal = Val | maskLeadingOnes<uint64_t>(LeadingZeros);
171       TmpSeq.clear();
172       generateInstSeqImpl(LeadingOnesVal, ActiveFeatures, TmpSeq);
173       TmpSeq.push_back(RISCVMatInt::Inst(RISCV::ADDUW, 0));
174 
175       // Keep the new sequence if it is an improvement.
176       if (TmpSeq.size() < Res.size()) {
177         Res = TmpSeq;
178         // A 2 instruction sequence is the best we can do.
179         if (Res.size() <= 2)
180           return Res;
181       }
182     }
183   }
184 
185   return Res;
186 }
187 
188 int getIntMatCost(const APInt &Val, unsigned Size,
189                   const FeatureBitset &ActiveFeatures,
190                   bool CompressionCost) {
191   bool IsRV64 = ActiveFeatures[RISCV::Feature64Bit];
192   bool HasRVC = CompressionCost && ActiveFeatures[RISCV::FeatureStdExtC];
193   int PlatRegSize = IsRV64 ? 64 : 32;
194 
195   // Split the constant into platform register sized chunks, and calculate cost
196   // of each chunk.
197   int Cost = 0;
198   for (unsigned ShiftVal = 0; ShiftVal < Size; ShiftVal += PlatRegSize) {
199     APInt Chunk = Val.ashr(ShiftVal).sextOrTrunc(PlatRegSize);
200     InstSeq MatSeq = generateInstSeq(Chunk.getSExtValue(), ActiveFeatures);
201     Cost += getInstSeqCost(MatSeq, HasRVC);
202   }
203   return std::max(1, Cost);
204 }
205 } // namespace RISCVMatInt
206 } // namespace llvm
207