1 //===-- RISCVISelLowering.cpp - RISCV DAG Lowering Implementation  --------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines the interfaces that RISCV uses to lower LLVM code into a
10 // selection DAG.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "RISCVISelLowering.h"
15 #include "RISCV.h"
16 #include "RISCVMachineFunctionInfo.h"
17 #include "RISCVRegisterInfo.h"
18 #include "RISCVSubtarget.h"
19 #include "RISCVTargetMachine.h"
20 #include "Utils/RISCVMatInt.h"
21 #include "llvm/ADT/SmallSet.h"
22 #include "llvm/ADT/Statistic.h"
23 #include "llvm/CodeGen/CallingConvLower.h"
24 #include "llvm/CodeGen/MachineFrameInfo.h"
25 #include "llvm/CodeGen/MachineFunction.h"
26 #include "llvm/CodeGen/MachineInstrBuilder.h"
27 #include "llvm/CodeGen/MachineRegisterInfo.h"
28 #include "llvm/CodeGen/SelectionDAGISel.h"
29 #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h"
30 #include "llvm/CodeGen/ValueTypes.h"
31 #include "llvm/IR/DiagnosticInfo.h"
32 #include "llvm/IR/DiagnosticPrinter.h"
33 #include "llvm/IR/IntrinsicsRISCV.h"
34 #include "llvm/Support/Debug.h"
35 #include "llvm/Support/ErrorHandling.h"
36 #include "llvm/Support/raw_ostream.h"
37 
38 using namespace llvm;
39 
40 #define DEBUG_TYPE "riscv-lower"
41 
42 STATISTIC(NumTailCalls, "Number of tail calls");
43 
44 RISCVTargetLowering::RISCVTargetLowering(const TargetMachine &TM,
45                                          const RISCVSubtarget &STI)
46     : TargetLowering(TM), Subtarget(STI) {
47 
48   if (Subtarget.isRV32E())
49     report_fatal_error("Codegen not yet implemented for RV32E");
50 
51   RISCVABI::ABI ABI = Subtarget.getTargetABI();
52   assert(ABI != RISCVABI::ABI_Unknown && "Improperly initialised target ABI");
53 
54   if ((ABI == RISCVABI::ABI_ILP32F || ABI == RISCVABI::ABI_LP64F) &&
55       !Subtarget.hasStdExtF()) {
56     errs() << "Hard-float 'f' ABI can't be used for a target that "
57                 "doesn't support the F instruction set extension (ignoring "
58                           "target-abi)\n";
59     ABI = Subtarget.is64Bit() ? RISCVABI::ABI_LP64 : RISCVABI::ABI_ILP32;
60   } else if ((ABI == RISCVABI::ABI_ILP32D || ABI == RISCVABI::ABI_LP64D) &&
61              !Subtarget.hasStdExtD()) {
62     errs() << "Hard-float 'd' ABI can't be used for a target that "
63               "doesn't support the D instruction set extension (ignoring "
64               "target-abi)\n";
65     ABI = Subtarget.is64Bit() ? RISCVABI::ABI_LP64 : RISCVABI::ABI_ILP32;
66   }
67 
68   switch (ABI) {
69   default:
70     report_fatal_error("Don't know how to lower this ABI");
71   case RISCVABI::ABI_ILP32:
72   case RISCVABI::ABI_ILP32F:
73   case RISCVABI::ABI_ILP32D:
74   case RISCVABI::ABI_LP64:
75   case RISCVABI::ABI_LP64F:
76   case RISCVABI::ABI_LP64D:
77     break;
78   }
79 
80   MVT XLenVT = Subtarget.getXLenVT();
81 
82   // Set up the register classes.
83   addRegisterClass(XLenVT, &RISCV::GPRRegClass);
84 
85   if (Subtarget.hasStdExtF())
86     addRegisterClass(MVT::f32, &RISCV::FPR32RegClass);
87   if (Subtarget.hasStdExtD())
88     addRegisterClass(MVT::f64, &RISCV::FPR64RegClass);
89 
90   // Compute derived properties from the register classes.
91   computeRegisterProperties(STI.getRegisterInfo());
92 
93   setStackPointerRegisterToSaveRestore(RISCV::X2);
94 
95   for (auto N : {ISD::EXTLOAD, ISD::SEXTLOAD, ISD::ZEXTLOAD})
96     setLoadExtAction(N, XLenVT, MVT::i1, Promote);
97 
98   // TODO: add all necessary setOperationAction calls.
99   setOperationAction(ISD::DYNAMIC_STACKALLOC, XLenVT, Expand);
100 
101   setOperationAction(ISD::BR_JT, MVT::Other, Expand);
102   setOperationAction(ISD::BR_CC, XLenVT, Expand);
103   setOperationAction(ISD::SELECT, XLenVT, Custom);
104   setOperationAction(ISD::SELECT_CC, XLenVT, Expand);
105 
106   setOperationAction(ISD::STACKSAVE, MVT::Other, Expand);
107   setOperationAction(ISD::STACKRESTORE, MVT::Other, Expand);
108 
109   setOperationAction(ISD::VASTART, MVT::Other, Custom);
110   setOperationAction(ISD::VAARG, MVT::Other, Expand);
111   setOperationAction(ISD::VACOPY, MVT::Other, Expand);
112   setOperationAction(ISD::VAEND, MVT::Other, Expand);
113 
114   for (auto VT : {MVT::i1, MVT::i8, MVT::i16})
115     setOperationAction(ISD::SIGN_EXTEND_INREG, VT, Expand);
116 
117   if (Subtarget.is64Bit()) {
118     setOperationAction(ISD::ADD, MVT::i32, Custom);
119     setOperationAction(ISD::SUB, MVT::i32, Custom);
120     setOperationAction(ISD::SHL, MVT::i32, Custom);
121     setOperationAction(ISD::SRA, MVT::i32, Custom);
122     setOperationAction(ISD::SRL, MVT::i32, Custom);
123   }
124 
125   if (!Subtarget.hasStdExtM()) {
126     setOperationAction(ISD::MUL, XLenVT, Expand);
127     setOperationAction(ISD::MULHS, XLenVT, Expand);
128     setOperationAction(ISD::MULHU, XLenVT, Expand);
129     setOperationAction(ISD::SDIV, XLenVT, Expand);
130     setOperationAction(ISD::UDIV, XLenVT, Expand);
131     setOperationAction(ISD::SREM, XLenVT, Expand);
132     setOperationAction(ISD::UREM, XLenVT, Expand);
133   }
134 
135   if (Subtarget.is64Bit() && Subtarget.hasStdExtM()) {
136     setOperationAction(ISD::MUL, MVT::i32, Custom);
137     setOperationAction(ISD::SDIV, MVT::i32, Custom);
138     setOperationAction(ISD::UDIV, MVT::i32, Custom);
139     setOperationAction(ISD::UREM, MVT::i32, Custom);
140   }
141 
142   setOperationAction(ISD::SDIVREM, XLenVT, Expand);
143   setOperationAction(ISD::UDIVREM, XLenVT, Expand);
144   setOperationAction(ISD::SMUL_LOHI, XLenVT, Expand);
145   setOperationAction(ISD::UMUL_LOHI, XLenVT, Expand);
146 
147   setOperationAction(ISD::SHL_PARTS, XLenVT, Custom);
148   setOperationAction(ISD::SRL_PARTS, XLenVT, Custom);
149   setOperationAction(ISD::SRA_PARTS, XLenVT, Custom);
150 
151   setOperationAction(ISD::ROTL, XLenVT, Expand);
152   setOperationAction(ISD::ROTR, XLenVT, Expand);
153   setOperationAction(ISD::BSWAP, XLenVT, Expand);
154   setOperationAction(ISD::CTTZ, XLenVT, Expand);
155   setOperationAction(ISD::CTLZ, XLenVT, Expand);
156   setOperationAction(ISD::CTPOP, XLenVT, Expand);
157 
158   ISD::CondCode FPCCToExtend[] = {
159       ISD::SETOGT, ISD::SETOGE, ISD::SETONE, ISD::SETUEQ, ISD::SETUGT,
160       ISD::SETUGE, ISD::SETULT, ISD::SETULE, ISD::SETUNE, ISD::SETGT,
161       ISD::SETGE,  ISD::SETNE};
162 
163   ISD::NodeType FPOpToExtend[] = {
164       ISD::FSIN, ISD::FCOS, ISD::FSINCOS, ISD::FPOW, ISD::FREM, ISD::FP16_TO_FP,
165       ISD::FP_TO_FP16};
166 
167   if (Subtarget.hasStdExtF()) {
168     setOperationAction(ISD::FMINNUM, MVT::f32, Legal);
169     setOperationAction(ISD::FMAXNUM, MVT::f32, Legal);
170     for (auto CC : FPCCToExtend)
171       setCondCodeAction(CC, MVT::f32, Expand);
172     setOperationAction(ISD::SELECT_CC, MVT::f32, Expand);
173     setOperationAction(ISD::SELECT, MVT::f32, Custom);
174     setOperationAction(ISD::BR_CC, MVT::f32, Expand);
175     for (auto Op : FPOpToExtend)
176       setOperationAction(Op, MVT::f32, Expand);
177     setLoadExtAction(ISD::EXTLOAD, MVT::f32, MVT::f16, Expand);
178     setTruncStoreAction(MVT::f32, MVT::f16, Expand);
179   }
180 
181   if (Subtarget.hasStdExtF() && Subtarget.is64Bit())
182     setOperationAction(ISD::BITCAST, MVT::i32, Custom);
183 
184   if (Subtarget.hasStdExtD()) {
185     setOperationAction(ISD::FMINNUM, MVT::f64, Legal);
186     setOperationAction(ISD::FMAXNUM, MVT::f64, Legal);
187     for (auto CC : FPCCToExtend)
188       setCondCodeAction(CC, MVT::f64, Expand);
189     setOperationAction(ISD::SELECT_CC, MVT::f64, Expand);
190     setOperationAction(ISD::SELECT, MVT::f64, Custom);
191     setOperationAction(ISD::BR_CC, MVT::f64, Expand);
192     setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f32, Expand);
193     setTruncStoreAction(MVT::f64, MVT::f32, Expand);
194     for (auto Op : FPOpToExtend)
195       setOperationAction(Op, MVT::f64, Expand);
196     setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f16, Expand);
197     setTruncStoreAction(MVT::f64, MVT::f16, Expand);
198   }
199 
200   setOperationAction(ISD::GlobalAddress, XLenVT, Custom);
201   setOperationAction(ISD::BlockAddress, XLenVT, Custom);
202   setOperationAction(ISD::ConstantPool, XLenVT, Custom);
203 
204   setOperationAction(ISD::GlobalTLSAddress, XLenVT, Custom);
205 
206   // TODO: On M-mode only targets, the cycle[h] CSR may not be present.
207   // Unfortunately this can't be determined just from the ISA naming string.
208   setOperationAction(ISD::READCYCLECOUNTER, MVT::i64,
209                      Subtarget.is64Bit() ? Legal : Custom);
210 
211   setOperationAction(ISD::TRAP, MVT::Other, Legal);
212   setOperationAction(ISD::DEBUGTRAP, MVT::Other, Legal);
213 
214   if (Subtarget.hasStdExtA()) {
215     setMaxAtomicSizeInBitsSupported(Subtarget.getXLen());
216     setMinCmpXchgSizeInBits(32);
217   } else {
218     setMaxAtomicSizeInBitsSupported(0);
219   }
220 
221   setBooleanContents(ZeroOrOneBooleanContent);
222 
223   // Function alignments.
224   const Align FunctionAlignment(Subtarget.hasStdExtC() ? 2 : 4);
225   setMinFunctionAlignment(FunctionAlignment);
226   setPrefFunctionAlignment(FunctionAlignment);
227 
228   // Effectively disable jump table generation.
229   setMinimumJumpTableEntries(INT_MAX);
230 }
231 
232 EVT RISCVTargetLowering::getSetCCResultType(const DataLayout &DL, LLVMContext &,
233                                             EVT VT) const {
234   if (!VT.isVector())
235     return getPointerTy(DL);
236   return VT.changeVectorElementTypeToInteger();
237 }
238 
239 bool RISCVTargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info,
240                                              const CallInst &I,
241                                              MachineFunction &MF,
242                                              unsigned Intrinsic) const {
243   switch (Intrinsic) {
244   default:
245     return false;
246   case Intrinsic::riscv_masked_atomicrmw_xchg_i32:
247   case Intrinsic::riscv_masked_atomicrmw_add_i32:
248   case Intrinsic::riscv_masked_atomicrmw_sub_i32:
249   case Intrinsic::riscv_masked_atomicrmw_nand_i32:
250   case Intrinsic::riscv_masked_atomicrmw_max_i32:
251   case Intrinsic::riscv_masked_atomicrmw_min_i32:
252   case Intrinsic::riscv_masked_atomicrmw_umax_i32:
253   case Intrinsic::riscv_masked_atomicrmw_umin_i32:
254   case Intrinsic::riscv_masked_cmpxchg_i32:
255     PointerType *PtrTy = cast<PointerType>(I.getArgOperand(0)->getType());
256     Info.opc = ISD::INTRINSIC_W_CHAIN;
257     Info.memVT = MVT::getVT(PtrTy->getElementType());
258     Info.ptrVal = I.getArgOperand(0);
259     Info.offset = 0;
260     Info.align = Align(4);
261     Info.flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore |
262                  MachineMemOperand::MOVolatile;
263     return true;
264   }
265 }
266 
267 bool RISCVTargetLowering::isLegalAddressingMode(const DataLayout &DL,
268                                                 const AddrMode &AM, Type *Ty,
269                                                 unsigned AS,
270                                                 Instruction *I) const {
271   // No global is ever allowed as a base.
272   if (AM.BaseGV)
273     return false;
274 
275   // Require a 12-bit signed offset.
276   if (!isInt<12>(AM.BaseOffs))
277     return false;
278 
279   switch (AM.Scale) {
280   case 0: // "r+i" or just "i", depending on HasBaseReg.
281     break;
282   case 1:
283     if (!AM.HasBaseReg) // allow "r+i".
284       break;
285     return false; // disallow "r+r" or "r+r+i".
286   default:
287     return false;
288   }
289 
290   return true;
291 }
292 
293 bool RISCVTargetLowering::isLegalICmpImmediate(int64_t Imm) const {
294   return isInt<12>(Imm);
295 }
296 
297 bool RISCVTargetLowering::isLegalAddImmediate(int64_t Imm) const {
298   return isInt<12>(Imm);
299 }
300 
301 // On RV32, 64-bit integers are split into their high and low parts and held
302 // in two different registers, so the trunc is free since the low register can
303 // just be used.
304 bool RISCVTargetLowering::isTruncateFree(Type *SrcTy, Type *DstTy) const {
305   if (Subtarget.is64Bit() || !SrcTy->isIntegerTy() || !DstTy->isIntegerTy())
306     return false;
307   unsigned SrcBits = SrcTy->getPrimitiveSizeInBits();
308   unsigned DestBits = DstTy->getPrimitiveSizeInBits();
309   return (SrcBits == 64 && DestBits == 32);
310 }
311 
312 bool RISCVTargetLowering::isTruncateFree(EVT SrcVT, EVT DstVT) const {
313   if (Subtarget.is64Bit() || SrcVT.isVector() || DstVT.isVector() ||
314       !SrcVT.isInteger() || !DstVT.isInteger())
315     return false;
316   unsigned SrcBits = SrcVT.getSizeInBits();
317   unsigned DestBits = DstVT.getSizeInBits();
318   return (SrcBits == 64 && DestBits == 32);
319 }
320 
321 bool RISCVTargetLowering::isZExtFree(SDValue Val, EVT VT2) const {
322   // Zexts are free if they can be combined with a load.
323   if (auto *LD = dyn_cast<LoadSDNode>(Val)) {
324     EVT MemVT = LD->getMemoryVT();
325     if ((MemVT == MVT::i8 || MemVT == MVT::i16 ||
326          (Subtarget.is64Bit() && MemVT == MVT::i32)) &&
327         (LD->getExtensionType() == ISD::NON_EXTLOAD ||
328          LD->getExtensionType() == ISD::ZEXTLOAD))
329       return true;
330   }
331 
332   return TargetLowering::isZExtFree(Val, VT2);
333 }
334 
335 bool RISCVTargetLowering::isSExtCheaperThanZExt(EVT SrcVT, EVT DstVT) const {
336   return Subtarget.is64Bit() && SrcVT == MVT::i32 && DstVT == MVT::i64;
337 }
338 
339 bool RISCVTargetLowering::hasBitPreservingFPLogic(EVT VT) const {
340   return (VT == MVT::f32 && Subtarget.hasStdExtF()) ||
341          (VT == MVT::f64 && Subtarget.hasStdExtD());
342 }
343 
344 // Changes the condition code and swaps operands if necessary, so the SetCC
345 // operation matches one of the comparisons supported directly in the RISC-V
346 // ISA.
347 static void normaliseSetCC(SDValue &LHS, SDValue &RHS, ISD::CondCode &CC) {
348   switch (CC) {
349   default:
350     break;
351   case ISD::SETGT:
352   case ISD::SETLE:
353   case ISD::SETUGT:
354   case ISD::SETULE:
355     CC = ISD::getSetCCSwappedOperands(CC);
356     std::swap(LHS, RHS);
357     break;
358   }
359 }
360 
361 // Return the RISC-V branch opcode that matches the given DAG integer
362 // condition code. The CondCode must be one of those supported by the RISC-V
363 // ISA (see normaliseSetCC).
364 static unsigned getBranchOpcodeForIntCondCode(ISD::CondCode CC) {
365   switch (CC) {
366   default:
367     llvm_unreachable("Unsupported CondCode");
368   case ISD::SETEQ:
369     return RISCV::BEQ;
370   case ISD::SETNE:
371     return RISCV::BNE;
372   case ISD::SETLT:
373     return RISCV::BLT;
374   case ISD::SETGE:
375     return RISCV::BGE;
376   case ISD::SETULT:
377     return RISCV::BLTU;
378   case ISD::SETUGE:
379     return RISCV::BGEU;
380   }
381 }
382 
383 SDValue RISCVTargetLowering::LowerOperation(SDValue Op,
384                                             SelectionDAG &DAG) const {
385   switch (Op.getOpcode()) {
386   default:
387     report_fatal_error("unimplemented operand");
388   case ISD::GlobalAddress:
389     return lowerGlobalAddress(Op, DAG);
390   case ISD::BlockAddress:
391     return lowerBlockAddress(Op, DAG);
392   case ISD::ConstantPool:
393     return lowerConstantPool(Op, DAG);
394   case ISD::GlobalTLSAddress:
395     return lowerGlobalTLSAddress(Op, DAG);
396   case ISD::SELECT:
397     return lowerSELECT(Op, DAG);
398   case ISD::VASTART:
399     return lowerVASTART(Op, DAG);
400   case ISD::FRAMEADDR:
401     return lowerFRAMEADDR(Op, DAG);
402   case ISD::RETURNADDR:
403     return lowerRETURNADDR(Op, DAG);
404   case ISD::SHL_PARTS:
405     return lowerShiftLeftParts(Op, DAG);
406   case ISD::SRA_PARTS:
407     return lowerShiftRightParts(Op, DAG, true);
408   case ISD::SRL_PARTS:
409     return lowerShiftRightParts(Op, DAG, false);
410   case ISD::BITCAST: {
411     assert(Subtarget.is64Bit() && Subtarget.hasStdExtF() &&
412            "Unexpected custom legalisation");
413     SDLoc DL(Op);
414     SDValue Op0 = Op.getOperand(0);
415     if (Op.getValueType() != MVT::f32 || Op0.getValueType() != MVT::i32)
416       return SDValue();
417     SDValue NewOp0 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op0);
418     SDValue FPConv = DAG.getNode(RISCVISD::FMV_W_X_RV64, DL, MVT::f32, NewOp0);
419     return FPConv;
420   }
421   }
422 }
423 
424 static SDValue getTargetNode(GlobalAddressSDNode *N, SDLoc DL, EVT Ty,
425                              SelectionDAG &DAG, unsigned Flags) {
426   return DAG.getTargetGlobalAddress(N->getGlobal(), DL, Ty, 0, Flags);
427 }
428 
429 static SDValue getTargetNode(BlockAddressSDNode *N, SDLoc DL, EVT Ty,
430                              SelectionDAG &DAG, unsigned Flags) {
431   return DAG.getTargetBlockAddress(N->getBlockAddress(), Ty, N->getOffset(),
432                                    Flags);
433 }
434 
435 static SDValue getTargetNode(ConstantPoolSDNode *N, SDLoc DL, EVT Ty,
436                              SelectionDAG &DAG, unsigned Flags) {
437   return DAG.getTargetConstantPool(N->getConstVal(), Ty, N->getAlignment(),
438                                    N->getOffset(), Flags);
439 }
440 
441 template <class NodeTy>
442 SDValue RISCVTargetLowering::getAddr(NodeTy *N, SelectionDAG &DAG,
443                                      bool IsLocal) const {
444   SDLoc DL(N);
445   EVT Ty = getPointerTy(DAG.getDataLayout());
446 
447   if (isPositionIndependent()) {
448     SDValue Addr = getTargetNode(N, DL, Ty, DAG, 0);
449     if (IsLocal)
450       // Use PC-relative addressing to access the symbol. This generates the
451       // pattern (PseudoLLA sym), which expands to (addi (auipc %pcrel_hi(sym))
452       // %pcrel_lo(auipc)).
453       return SDValue(DAG.getMachineNode(RISCV::PseudoLLA, DL, Ty, Addr), 0);
454 
455     // Use PC-relative addressing to access the GOT for this symbol, then load
456     // the address from the GOT. This generates the pattern (PseudoLA sym),
457     // which expands to (ld (addi (auipc %got_pcrel_hi(sym)) %pcrel_lo(auipc))).
458     return SDValue(DAG.getMachineNode(RISCV::PseudoLA, DL, Ty, Addr), 0);
459   }
460 
461   switch (getTargetMachine().getCodeModel()) {
462   default:
463     report_fatal_error("Unsupported code model for lowering");
464   case CodeModel::Small: {
465     // Generate a sequence for accessing addresses within the first 2 GiB of
466     // address space. This generates the pattern (addi (lui %hi(sym)) %lo(sym)).
467     SDValue AddrHi = getTargetNode(N, DL, Ty, DAG, RISCVII::MO_HI);
468     SDValue AddrLo = getTargetNode(N, DL, Ty, DAG, RISCVII::MO_LO);
469     SDValue MNHi = SDValue(DAG.getMachineNode(RISCV::LUI, DL, Ty, AddrHi), 0);
470     return SDValue(DAG.getMachineNode(RISCV::ADDI, DL, Ty, MNHi, AddrLo), 0);
471   }
472   case CodeModel::Medium: {
473     // Generate a sequence for accessing addresses within any 2GiB range within
474     // the address space. This generates the pattern (PseudoLLA sym), which
475     // expands to (addi (auipc %pcrel_hi(sym)) %pcrel_lo(auipc)).
476     SDValue Addr = getTargetNode(N, DL, Ty, DAG, 0);
477     return SDValue(DAG.getMachineNode(RISCV::PseudoLLA, DL, Ty, Addr), 0);
478   }
479   }
480 }
481 
482 SDValue RISCVTargetLowering::lowerGlobalAddress(SDValue Op,
483                                                 SelectionDAG &DAG) const {
484   SDLoc DL(Op);
485   EVT Ty = Op.getValueType();
486   GlobalAddressSDNode *N = cast<GlobalAddressSDNode>(Op);
487   int64_t Offset = N->getOffset();
488   MVT XLenVT = Subtarget.getXLenVT();
489 
490   const GlobalValue *GV = N->getGlobal();
491   bool IsLocal = getTargetMachine().shouldAssumeDSOLocal(*GV->getParent(), GV);
492   SDValue Addr = getAddr(N, DAG, IsLocal);
493 
494   // In order to maximise the opportunity for common subexpression elimination,
495   // emit a separate ADD node for the global address offset instead of folding
496   // it in the global address node. Later peephole optimisations may choose to
497   // fold it back in when profitable.
498   if (Offset != 0)
499     return DAG.getNode(ISD::ADD, DL, Ty, Addr,
500                        DAG.getConstant(Offset, DL, XLenVT));
501   return Addr;
502 }
503 
504 SDValue RISCVTargetLowering::lowerBlockAddress(SDValue Op,
505                                                SelectionDAG &DAG) const {
506   BlockAddressSDNode *N = cast<BlockAddressSDNode>(Op);
507 
508   return getAddr(N, DAG);
509 }
510 
511 SDValue RISCVTargetLowering::lowerConstantPool(SDValue Op,
512                                                SelectionDAG &DAG) const {
513   ConstantPoolSDNode *N = cast<ConstantPoolSDNode>(Op);
514 
515   return getAddr(N, DAG);
516 }
517 
518 SDValue RISCVTargetLowering::getStaticTLSAddr(GlobalAddressSDNode *N,
519                                               SelectionDAG &DAG,
520                                               bool UseGOT) const {
521   SDLoc DL(N);
522   EVT Ty = getPointerTy(DAG.getDataLayout());
523   const GlobalValue *GV = N->getGlobal();
524   MVT XLenVT = Subtarget.getXLenVT();
525 
526   if (UseGOT) {
527     // Use PC-relative addressing to access the GOT for this TLS symbol, then
528     // load the address from the GOT and add the thread pointer. This generates
529     // the pattern (PseudoLA_TLS_IE sym), which expands to
530     // (ld (auipc %tls_ie_pcrel_hi(sym)) %pcrel_lo(auipc)).
531     SDValue Addr = DAG.getTargetGlobalAddress(GV, DL, Ty, 0, 0);
532     SDValue Load =
533         SDValue(DAG.getMachineNode(RISCV::PseudoLA_TLS_IE, DL, Ty, Addr), 0);
534 
535     // Add the thread pointer.
536     SDValue TPReg = DAG.getRegister(RISCV::X4, XLenVT);
537     return DAG.getNode(ISD::ADD, DL, Ty, Load, TPReg);
538   }
539 
540   // Generate a sequence for accessing the address relative to the thread
541   // pointer, with the appropriate adjustment for the thread pointer offset.
542   // This generates the pattern
543   // (add (add_tprel (lui %tprel_hi(sym)) tp %tprel_add(sym)) %tprel_lo(sym))
544   SDValue AddrHi =
545       DAG.getTargetGlobalAddress(GV, DL, Ty, 0, RISCVII::MO_TPREL_HI);
546   SDValue AddrAdd =
547       DAG.getTargetGlobalAddress(GV, DL, Ty, 0, RISCVII::MO_TPREL_ADD);
548   SDValue AddrLo =
549       DAG.getTargetGlobalAddress(GV, DL, Ty, 0, RISCVII::MO_TPREL_LO);
550 
551   SDValue MNHi = SDValue(DAG.getMachineNode(RISCV::LUI, DL, Ty, AddrHi), 0);
552   SDValue TPReg = DAG.getRegister(RISCV::X4, XLenVT);
553   SDValue MNAdd = SDValue(
554       DAG.getMachineNode(RISCV::PseudoAddTPRel, DL, Ty, MNHi, TPReg, AddrAdd),
555       0);
556   return SDValue(DAG.getMachineNode(RISCV::ADDI, DL, Ty, MNAdd, AddrLo), 0);
557 }
558 
559 SDValue RISCVTargetLowering::getDynamicTLSAddr(GlobalAddressSDNode *N,
560                                                SelectionDAG &DAG) const {
561   SDLoc DL(N);
562   EVT Ty = getPointerTy(DAG.getDataLayout());
563   IntegerType *CallTy = Type::getIntNTy(*DAG.getContext(), Ty.getSizeInBits());
564   const GlobalValue *GV = N->getGlobal();
565 
566   // Use a PC-relative addressing mode to access the global dynamic GOT address.
567   // This generates the pattern (PseudoLA_TLS_GD sym), which expands to
568   // (addi (auipc %tls_gd_pcrel_hi(sym)) %pcrel_lo(auipc)).
569   SDValue Addr = DAG.getTargetGlobalAddress(GV, DL, Ty, 0, 0);
570   SDValue Load =
571       SDValue(DAG.getMachineNode(RISCV::PseudoLA_TLS_GD, DL, Ty, Addr), 0);
572 
573   // Prepare argument list to generate call.
574   ArgListTy Args;
575   ArgListEntry Entry;
576   Entry.Node = Load;
577   Entry.Ty = CallTy;
578   Args.push_back(Entry);
579 
580   // Setup call to __tls_get_addr.
581   TargetLowering::CallLoweringInfo CLI(DAG);
582   CLI.setDebugLoc(DL)
583       .setChain(DAG.getEntryNode())
584       .setLibCallee(CallingConv::C, CallTy,
585                     DAG.getExternalSymbol("__tls_get_addr", Ty),
586                     std::move(Args));
587 
588   return LowerCallTo(CLI).first;
589 }
590 
591 SDValue RISCVTargetLowering::lowerGlobalTLSAddress(SDValue Op,
592                                                    SelectionDAG &DAG) const {
593   SDLoc DL(Op);
594   EVT Ty = Op.getValueType();
595   GlobalAddressSDNode *N = cast<GlobalAddressSDNode>(Op);
596   int64_t Offset = N->getOffset();
597   MVT XLenVT = Subtarget.getXLenVT();
598 
599   TLSModel::Model Model = getTargetMachine().getTLSModel(N->getGlobal());
600 
601   SDValue Addr;
602   switch (Model) {
603   case TLSModel::LocalExec:
604     Addr = getStaticTLSAddr(N, DAG, /*UseGOT=*/false);
605     break;
606   case TLSModel::InitialExec:
607     Addr = getStaticTLSAddr(N, DAG, /*UseGOT=*/true);
608     break;
609   case TLSModel::LocalDynamic:
610   case TLSModel::GeneralDynamic:
611     Addr = getDynamicTLSAddr(N, DAG);
612     break;
613   }
614 
615   // In order to maximise the opportunity for common subexpression elimination,
616   // emit a separate ADD node for the global address offset instead of folding
617   // it in the global address node. Later peephole optimisations may choose to
618   // fold it back in when profitable.
619   if (Offset != 0)
620     return DAG.getNode(ISD::ADD, DL, Ty, Addr,
621                        DAG.getConstant(Offset, DL, XLenVT));
622   return Addr;
623 }
624 
625 SDValue RISCVTargetLowering::lowerSELECT(SDValue Op, SelectionDAG &DAG) const {
626   SDValue CondV = Op.getOperand(0);
627   SDValue TrueV = Op.getOperand(1);
628   SDValue FalseV = Op.getOperand(2);
629   SDLoc DL(Op);
630   MVT XLenVT = Subtarget.getXLenVT();
631 
632   // If the result type is XLenVT and CondV is the output of a SETCC node
633   // which also operated on XLenVT inputs, then merge the SETCC node into the
634   // lowered RISCVISD::SELECT_CC to take advantage of the integer
635   // compare+branch instructions. i.e.:
636   // (select (setcc lhs, rhs, cc), truev, falsev)
637   // -> (riscvisd::select_cc lhs, rhs, cc, truev, falsev)
638   if (Op.getSimpleValueType() == XLenVT && CondV.getOpcode() == ISD::SETCC &&
639       CondV.getOperand(0).getSimpleValueType() == XLenVT) {
640     SDValue LHS = CondV.getOperand(0);
641     SDValue RHS = CondV.getOperand(1);
642     auto CC = cast<CondCodeSDNode>(CondV.getOperand(2));
643     ISD::CondCode CCVal = CC->get();
644 
645     normaliseSetCC(LHS, RHS, CCVal);
646 
647     SDValue TargetCC = DAG.getConstant(CCVal, DL, XLenVT);
648     SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::Glue);
649     SDValue Ops[] = {LHS, RHS, TargetCC, TrueV, FalseV};
650     return DAG.getNode(RISCVISD::SELECT_CC, DL, VTs, Ops);
651   }
652 
653   // Otherwise:
654   // (select condv, truev, falsev)
655   // -> (riscvisd::select_cc condv, zero, setne, truev, falsev)
656   SDValue Zero = DAG.getConstant(0, DL, XLenVT);
657   SDValue SetNE = DAG.getConstant(ISD::SETNE, DL, XLenVT);
658 
659   SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::Glue);
660   SDValue Ops[] = {CondV, Zero, SetNE, TrueV, FalseV};
661 
662   return DAG.getNode(RISCVISD::SELECT_CC, DL, VTs, Ops);
663 }
664 
665 SDValue RISCVTargetLowering::lowerVASTART(SDValue Op, SelectionDAG &DAG) const {
666   MachineFunction &MF = DAG.getMachineFunction();
667   RISCVMachineFunctionInfo *FuncInfo = MF.getInfo<RISCVMachineFunctionInfo>();
668 
669   SDLoc DL(Op);
670   SDValue FI = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(),
671                                  getPointerTy(MF.getDataLayout()));
672 
673   // vastart just stores the address of the VarArgsFrameIndex slot into the
674   // memory location argument.
675   const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
676   return DAG.getStore(Op.getOperand(0), DL, FI, Op.getOperand(1),
677                       MachinePointerInfo(SV));
678 }
679 
680 SDValue RISCVTargetLowering::lowerFRAMEADDR(SDValue Op,
681                                             SelectionDAG &DAG) const {
682   const RISCVRegisterInfo &RI = *Subtarget.getRegisterInfo();
683   MachineFunction &MF = DAG.getMachineFunction();
684   MachineFrameInfo &MFI = MF.getFrameInfo();
685   MFI.setFrameAddressIsTaken(true);
686   Register FrameReg = RI.getFrameRegister(MF);
687   int XLenInBytes = Subtarget.getXLen() / 8;
688 
689   EVT VT = Op.getValueType();
690   SDLoc DL(Op);
691   SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), DL, FrameReg, VT);
692   unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
693   while (Depth--) {
694     int Offset = -(XLenInBytes * 2);
695     SDValue Ptr = DAG.getNode(ISD::ADD, DL, VT, FrameAddr,
696                               DAG.getIntPtrConstant(Offset, DL));
697     FrameAddr =
698         DAG.getLoad(VT, DL, DAG.getEntryNode(), Ptr, MachinePointerInfo());
699   }
700   return FrameAddr;
701 }
702 
703 SDValue RISCVTargetLowering::lowerRETURNADDR(SDValue Op,
704                                              SelectionDAG &DAG) const {
705   const RISCVRegisterInfo &RI = *Subtarget.getRegisterInfo();
706   MachineFunction &MF = DAG.getMachineFunction();
707   MachineFrameInfo &MFI = MF.getFrameInfo();
708   MFI.setReturnAddressIsTaken(true);
709   MVT XLenVT = Subtarget.getXLenVT();
710   int XLenInBytes = Subtarget.getXLen() / 8;
711 
712   if (verifyReturnAddressArgumentIsConstant(Op, DAG))
713     return SDValue();
714 
715   EVT VT = Op.getValueType();
716   SDLoc DL(Op);
717   unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
718   if (Depth) {
719     int Off = -XLenInBytes;
720     SDValue FrameAddr = lowerFRAMEADDR(Op, DAG);
721     SDValue Offset = DAG.getConstant(Off, DL, VT);
722     return DAG.getLoad(VT, DL, DAG.getEntryNode(),
723                        DAG.getNode(ISD::ADD, DL, VT, FrameAddr, Offset),
724                        MachinePointerInfo());
725   }
726 
727   // Return the value of the return address register, marking it an implicit
728   // live-in.
729   Register Reg = MF.addLiveIn(RI.getRARegister(), getRegClassFor(XLenVT));
730   return DAG.getCopyFromReg(DAG.getEntryNode(), DL, Reg, XLenVT);
731 }
732 
733 SDValue RISCVTargetLowering::lowerShiftLeftParts(SDValue Op,
734                                                  SelectionDAG &DAG) const {
735   SDLoc DL(Op);
736   SDValue Lo = Op.getOperand(0);
737   SDValue Hi = Op.getOperand(1);
738   SDValue Shamt = Op.getOperand(2);
739   EVT VT = Lo.getValueType();
740 
741   // if Shamt-XLEN < 0: // Shamt < XLEN
742   //   Lo = Lo << Shamt
743   //   Hi = (Hi << Shamt) | ((Lo >>u 1) >>u (XLEN-1 - Shamt))
744   // else:
745   //   Lo = 0
746   //   Hi = Lo << (Shamt-XLEN)
747 
748   SDValue Zero = DAG.getConstant(0, DL, VT);
749   SDValue One = DAG.getConstant(1, DL, VT);
750   SDValue MinusXLen = DAG.getConstant(-(int)Subtarget.getXLen(), DL, VT);
751   SDValue XLenMinus1 = DAG.getConstant(Subtarget.getXLen() - 1, DL, VT);
752   SDValue ShamtMinusXLen = DAG.getNode(ISD::ADD, DL, VT, Shamt, MinusXLen);
753   SDValue XLenMinus1Shamt = DAG.getNode(ISD::SUB, DL, VT, XLenMinus1, Shamt);
754 
755   SDValue LoTrue = DAG.getNode(ISD::SHL, DL, VT, Lo, Shamt);
756   SDValue ShiftRight1Lo = DAG.getNode(ISD::SRL, DL, VT, Lo, One);
757   SDValue ShiftRightLo =
758       DAG.getNode(ISD::SRL, DL, VT, ShiftRight1Lo, XLenMinus1Shamt);
759   SDValue ShiftLeftHi = DAG.getNode(ISD::SHL, DL, VT, Hi, Shamt);
760   SDValue HiTrue = DAG.getNode(ISD::OR, DL, VT, ShiftLeftHi, ShiftRightLo);
761   SDValue HiFalse = DAG.getNode(ISD::SHL, DL, VT, Lo, ShamtMinusXLen);
762 
763   SDValue CC = DAG.getSetCC(DL, VT, ShamtMinusXLen, Zero, ISD::SETLT);
764 
765   Lo = DAG.getNode(ISD::SELECT, DL, VT, CC, LoTrue, Zero);
766   Hi = DAG.getNode(ISD::SELECT, DL, VT, CC, HiTrue, HiFalse);
767 
768   SDValue Parts[2] = {Lo, Hi};
769   return DAG.getMergeValues(Parts, DL);
770 }
771 
772 SDValue RISCVTargetLowering::lowerShiftRightParts(SDValue Op, SelectionDAG &DAG,
773                                                   bool IsSRA) const {
774   SDLoc DL(Op);
775   SDValue Lo = Op.getOperand(0);
776   SDValue Hi = Op.getOperand(1);
777   SDValue Shamt = Op.getOperand(2);
778   EVT VT = Lo.getValueType();
779 
780   // SRA expansion:
781   //   if Shamt-XLEN < 0: // Shamt < XLEN
782   //     Lo = (Lo >>u Shamt) | ((Hi << 1) << (XLEN-1 - Shamt))
783   //     Hi = Hi >>s Shamt
784   //   else:
785   //     Lo = Hi >>s (Shamt-XLEN);
786   //     Hi = Hi >>s (XLEN-1)
787   //
788   // SRL expansion:
789   //   if Shamt-XLEN < 0: // Shamt < XLEN
790   //     Lo = (Lo >>u Shamt) | ((Hi << 1) << (XLEN-1 - Shamt))
791   //     Hi = Hi >>u Shamt
792   //   else:
793   //     Lo = Hi >>u (Shamt-XLEN);
794   //     Hi = 0;
795 
796   unsigned ShiftRightOp = IsSRA ? ISD::SRA : ISD::SRL;
797 
798   SDValue Zero = DAG.getConstant(0, DL, VT);
799   SDValue One = DAG.getConstant(1, DL, VT);
800   SDValue MinusXLen = DAG.getConstant(-(int)Subtarget.getXLen(), DL, VT);
801   SDValue XLenMinus1 = DAG.getConstant(Subtarget.getXLen() - 1, DL, VT);
802   SDValue ShamtMinusXLen = DAG.getNode(ISD::ADD, DL, VT, Shamt, MinusXLen);
803   SDValue XLenMinus1Shamt = DAG.getNode(ISD::SUB, DL, VT, XLenMinus1, Shamt);
804 
805   SDValue ShiftRightLo = DAG.getNode(ISD::SRL, DL, VT, Lo, Shamt);
806   SDValue ShiftLeftHi1 = DAG.getNode(ISD::SHL, DL, VT, Hi, One);
807   SDValue ShiftLeftHi =
808       DAG.getNode(ISD::SHL, DL, VT, ShiftLeftHi1, XLenMinus1Shamt);
809   SDValue LoTrue = DAG.getNode(ISD::OR, DL, VT, ShiftRightLo, ShiftLeftHi);
810   SDValue HiTrue = DAG.getNode(ShiftRightOp, DL, VT, Hi, Shamt);
811   SDValue LoFalse = DAG.getNode(ShiftRightOp, DL, VT, Hi, ShamtMinusXLen);
812   SDValue HiFalse =
813       IsSRA ? DAG.getNode(ISD::SRA, DL, VT, Hi, XLenMinus1) : Zero;
814 
815   SDValue CC = DAG.getSetCC(DL, VT, ShamtMinusXLen, Zero, ISD::SETLT);
816 
817   Lo = DAG.getNode(ISD::SELECT, DL, VT, CC, LoTrue, LoFalse);
818   Hi = DAG.getNode(ISD::SELECT, DL, VT, CC, HiTrue, HiFalse);
819 
820   SDValue Parts[2] = {Lo, Hi};
821   return DAG.getMergeValues(Parts, DL);
822 }
823 
824 // Returns the opcode of the target-specific SDNode that implements the 32-bit
825 // form of the given Opcode.
826 static RISCVISD::NodeType getRISCVWOpcode(unsigned Opcode) {
827   switch (Opcode) {
828   default:
829     llvm_unreachable("Unexpected opcode");
830   case ISD::SHL:
831     return RISCVISD::SLLW;
832   case ISD::SRA:
833     return RISCVISD::SRAW;
834   case ISD::SRL:
835     return RISCVISD::SRLW;
836   case ISD::SDIV:
837     return RISCVISD::DIVW;
838   case ISD::UDIV:
839     return RISCVISD::DIVUW;
840   case ISD::UREM:
841     return RISCVISD::REMUW;
842   }
843 }
844 
845 // Converts the given 32-bit operation to a target-specific SelectionDAG node.
846 // Because i32 isn't a legal type for RV64, these operations would otherwise
847 // be promoted to i64, making it difficult to select the SLLW/DIVUW/.../*W
848 // later one because the fact the operation was originally of type i32 is
849 // lost.
850 static SDValue customLegalizeToWOp(SDNode *N, SelectionDAG &DAG) {
851   SDLoc DL(N);
852   RISCVISD::NodeType WOpcode = getRISCVWOpcode(N->getOpcode());
853   SDValue NewOp0 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0));
854   SDValue NewOp1 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1));
855   SDValue NewRes = DAG.getNode(WOpcode, DL, MVT::i64, NewOp0, NewOp1);
856   // ReplaceNodeResults requires we maintain the same type for the return value.
857   return DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, NewRes);
858 }
859 
860 // Converts the given 32-bit operation to a i64 operation with signed extension
861 // semantic to reduce the signed extension instructions.
862 static SDValue customLegalizeToWOpWithSExt(SDNode *N, SelectionDAG &DAG) {
863   SDLoc DL(N);
864   SDValue NewOp0 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0));
865   SDValue NewOp1 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1));
866   SDValue NewWOp = DAG.getNode(N->getOpcode(), DL, MVT::i64, NewOp0, NewOp1);
867   SDValue NewRes = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i64, NewWOp,
868                                DAG.getValueType(MVT::i32));
869   return DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, NewRes);
870 }
871 
872 void RISCVTargetLowering::ReplaceNodeResults(SDNode *N,
873                                              SmallVectorImpl<SDValue> &Results,
874                                              SelectionDAG &DAG) const {
875   SDLoc DL(N);
876   switch (N->getOpcode()) {
877   default:
878     llvm_unreachable("Don't know how to custom type legalize this operation!");
879   case ISD::READCYCLECOUNTER: {
880     assert(!Subtarget.is64Bit() &&
881            "READCYCLECOUNTER only has custom type legalization on riscv32");
882 
883     SDVTList VTs = DAG.getVTList(MVT::i32, MVT::i32, MVT::Other);
884     SDValue RCW =
885         DAG.getNode(RISCVISD::READ_CYCLE_WIDE, DL, VTs, N->getOperand(0));
886 
887     Results.push_back(RCW);
888     Results.push_back(RCW.getValue(1));
889     Results.push_back(RCW.getValue(2));
890     break;
891   }
892   case ISD::ADD:
893   case ISD::SUB:
894   case ISD::MUL:
895     assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
896            "Unexpected custom legalisation");
897     if (N->getOperand(1).getOpcode() == ISD::Constant)
898       return;
899     Results.push_back(customLegalizeToWOpWithSExt(N, DAG));
900     break;
901   case ISD::SHL:
902   case ISD::SRA:
903   case ISD::SRL:
904     assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
905            "Unexpected custom legalisation");
906     if (N->getOperand(1).getOpcode() == ISD::Constant)
907       return;
908     Results.push_back(customLegalizeToWOp(N, DAG));
909     break;
910   case ISD::SDIV:
911   case ISD::UDIV:
912   case ISD::UREM:
913     assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
914            Subtarget.hasStdExtM() && "Unexpected custom legalisation");
915     if (N->getOperand(0).getOpcode() == ISD::Constant ||
916         N->getOperand(1).getOpcode() == ISD::Constant)
917       return;
918     Results.push_back(customLegalizeToWOp(N, DAG));
919     break;
920   case ISD::BITCAST: {
921     assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
922            Subtarget.hasStdExtF() && "Unexpected custom legalisation");
923     SDLoc DL(N);
924     SDValue Op0 = N->getOperand(0);
925     if (Op0.getValueType() != MVT::f32)
926       return;
927     SDValue FPConv =
928         DAG.getNode(RISCVISD::FMV_X_ANYEXTW_RV64, DL, MVT::i64, Op0);
929     Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, FPConv));
930     break;
931   }
932   }
933 }
934 
935 SDValue RISCVTargetLowering::PerformDAGCombine(SDNode *N,
936                                                DAGCombinerInfo &DCI) const {
937   SelectionDAG &DAG = DCI.DAG;
938 
939   switch (N->getOpcode()) {
940   default:
941     break;
942   case RISCVISD::SplitF64: {
943     SDValue Op0 = N->getOperand(0);
944     // If the input to SplitF64 is just BuildPairF64 then the operation is
945     // redundant. Instead, use BuildPairF64's operands directly.
946     if (Op0->getOpcode() == RISCVISD::BuildPairF64)
947       return DCI.CombineTo(N, Op0.getOperand(0), Op0.getOperand(1));
948 
949     SDLoc DL(N);
950 
951     // It's cheaper to materialise two 32-bit integers than to load a double
952     // from the constant pool and transfer it to integer registers through the
953     // stack.
954     if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op0)) {
955       APInt V = C->getValueAPF().bitcastToAPInt();
956       SDValue Lo = DAG.getConstant(V.trunc(32), DL, MVT::i32);
957       SDValue Hi = DAG.getConstant(V.lshr(32).trunc(32), DL, MVT::i32);
958       return DCI.CombineTo(N, Lo, Hi);
959     }
960 
961     // This is a target-specific version of a DAGCombine performed in
962     // DAGCombiner::visitBITCAST. It performs the equivalent of:
963     // fold (bitconvert (fneg x)) -> (xor (bitconvert x), signbit)
964     // fold (bitconvert (fabs x)) -> (and (bitconvert x), (not signbit))
965     if (!(Op0.getOpcode() == ISD::FNEG || Op0.getOpcode() == ISD::FABS) ||
966         !Op0.getNode()->hasOneUse())
967       break;
968     SDValue NewSplitF64 =
969         DAG.getNode(RISCVISD::SplitF64, DL, DAG.getVTList(MVT::i32, MVT::i32),
970                     Op0.getOperand(0));
971     SDValue Lo = NewSplitF64.getValue(0);
972     SDValue Hi = NewSplitF64.getValue(1);
973     APInt SignBit = APInt::getSignMask(32);
974     if (Op0.getOpcode() == ISD::FNEG) {
975       SDValue NewHi = DAG.getNode(ISD::XOR, DL, MVT::i32, Hi,
976                                   DAG.getConstant(SignBit, DL, MVT::i32));
977       return DCI.CombineTo(N, Lo, NewHi);
978     }
979     assert(Op0.getOpcode() == ISD::FABS);
980     SDValue NewHi = DAG.getNode(ISD::AND, DL, MVT::i32, Hi,
981                                 DAG.getConstant(~SignBit, DL, MVT::i32));
982     return DCI.CombineTo(N, Lo, NewHi);
983   }
984   case RISCVISD::SLLW:
985   case RISCVISD::SRAW:
986   case RISCVISD::SRLW: {
987     // Only the lower 32 bits of LHS and lower 5 bits of RHS are read.
988     SDValue LHS = N->getOperand(0);
989     SDValue RHS = N->getOperand(1);
990     APInt LHSMask = APInt::getLowBitsSet(LHS.getValueSizeInBits(), 32);
991     APInt RHSMask = APInt::getLowBitsSet(RHS.getValueSizeInBits(), 5);
992     if ((SimplifyDemandedBits(N->getOperand(0), LHSMask, DCI)) ||
993         (SimplifyDemandedBits(N->getOperand(1), RHSMask, DCI)))
994       return SDValue();
995     break;
996   }
997   case RISCVISD::FMV_X_ANYEXTW_RV64: {
998     SDLoc DL(N);
999     SDValue Op0 = N->getOperand(0);
1000     // If the input to FMV_X_ANYEXTW_RV64 is just FMV_W_X_RV64 then the
1001     // conversion is unnecessary and can be replaced with an ANY_EXTEND
1002     // of the FMV_W_X_RV64 operand.
1003     if (Op0->getOpcode() == RISCVISD::FMV_W_X_RV64) {
1004       SDValue AExtOp =
1005           DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op0.getOperand(0));
1006       return DCI.CombineTo(N, AExtOp);
1007     }
1008 
1009     // This is a target-specific version of a DAGCombine performed in
1010     // DAGCombiner::visitBITCAST. It performs the equivalent of:
1011     // fold (bitconvert (fneg x)) -> (xor (bitconvert x), signbit)
1012     // fold (bitconvert (fabs x)) -> (and (bitconvert x), (not signbit))
1013     if (!(Op0.getOpcode() == ISD::FNEG || Op0.getOpcode() == ISD::FABS) ||
1014         !Op0.getNode()->hasOneUse())
1015       break;
1016     SDValue NewFMV = DAG.getNode(RISCVISD::FMV_X_ANYEXTW_RV64, DL, MVT::i64,
1017                                  Op0.getOperand(0));
1018     APInt SignBit = APInt::getSignMask(32).sext(64);
1019     if (Op0.getOpcode() == ISD::FNEG) {
1020       return DCI.CombineTo(N,
1021                            DAG.getNode(ISD::XOR, DL, MVT::i64, NewFMV,
1022                                        DAG.getConstant(SignBit, DL, MVT::i64)));
1023     }
1024     assert(Op0.getOpcode() == ISD::FABS);
1025     return DCI.CombineTo(N,
1026                          DAG.getNode(ISD::AND, DL, MVT::i64, NewFMV,
1027                                      DAG.getConstant(~SignBit, DL, MVT::i64)));
1028   }
1029   }
1030 
1031   return SDValue();
1032 }
1033 
1034 bool RISCVTargetLowering::isDesirableToCommuteWithShift(
1035     const SDNode *N, CombineLevel Level) const {
1036   // The following folds are only desirable if `(OP _, c1 << c2)` can be
1037   // materialised in fewer instructions than `(OP _, c1)`:
1038   //
1039   //   (shl (add x, c1), c2) -> (add (shl x, c2), c1 << c2)
1040   //   (shl (or x, c1), c2) -> (or (shl x, c2), c1 << c2)
1041   SDValue N0 = N->getOperand(0);
1042   EVT Ty = N0.getValueType();
1043   if (Ty.isScalarInteger() &&
1044       (N0.getOpcode() == ISD::ADD || N0.getOpcode() == ISD::OR)) {
1045     auto *C1 = dyn_cast<ConstantSDNode>(N0->getOperand(1));
1046     auto *C2 = dyn_cast<ConstantSDNode>(N->getOperand(1));
1047     if (C1 && C2) {
1048       APInt C1Int = C1->getAPIntValue();
1049       APInt ShiftedC1Int = C1Int << C2->getAPIntValue();
1050 
1051       // We can materialise `c1 << c2` into an add immediate, so it's "free",
1052       // and the combine should happen, to potentially allow further combines
1053       // later.
1054       if (ShiftedC1Int.getMinSignedBits() <= 64 &&
1055           isLegalAddImmediate(ShiftedC1Int.getSExtValue()))
1056         return true;
1057 
1058       // We can materialise `c1` in an add immediate, so it's "free", and the
1059       // combine should be prevented.
1060       if (C1Int.getMinSignedBits() <= 64 &&
1061           isLegalAddImmediate(C1Int.getSExtValue()))
1062         return false;
1063 
1064       // Neither constant will fit into an immediate, so find materialisation
1065       // costs.
1066       int C1Cost = RISCVMatInt::getIntMatCost(C1Int, Ty.getSizeInBits(),
1067                                               Subtarget.is64Bit());
1068       int ShiftedC1Cost = RISCVMatInt::getIntMatCost(
1069           ShiftedC1Int, Ty.getSizeInBits(), Subtarget.is64Bit());
1070 
1071       // Materialising `c1` is cheaper than materialising `c1 << c2`, so the
1072       // combine should be prevented.
1073       if (C1Cost < ShiftedC1Cost)
1074         return false;
1075     }
1076   }
1077   return true;
1078 }
1079 
1080 unsigned RISCVTargetLowering::ComputeNumSignBitsForTargetNode(
1081     SDValue Op, const APInt &DemandedElts, const SelectionDAG &DAG,
1082     unsigned Depth) const {
1083   switch (Op.getOpcode()) {
1084   default:
1085     break;
1086   case RISCVISD::SLLW:
1087   case RISCVISD::SRAW:
1088   case RISCVISD::SRLW:
1089   case RISCVISD::DIVW:
1090   case RISCVISD::DIVUW:
1091   case RISCVISD::REMUW:
1092     // TODO: As the result is sign-extended, this is conservatively correct. A
1093     // more precise answer could be calculated for SRAW depending on known
1094     // bits in the shift amount.
1095     return 33;
1096   }
1097 
1098   return 1;
1099 }
1100 
1101 static MachineBasicBlock *emitReadCycleWidePseudo(MachineInstr &MI,
1102                                                   MachineBasicBlock *BB) {
1103   assert(MI.getOpcode() == RISCV::ReadCycleWide && "Unexpected instruction");
1104 
1105   // To read the 64-bit cycle CSR on a 32-bit target, we read the two halves.
1106   // Should the count have wrapped while it was being read, we need to try
1107   // again.
1108   // ...
1109   // read:
1110   // rdcycleh x3 # load high word of cycle
1111   // rdcycle  x2 # load low word of cycle
1112   // rdcycleh x4 # load high word of cycle
1113   // bne x3, x4, read # check if high word reads match, otherwise try again
1114   // ...
1115 
1116   MachineFunction &MF = *BB->getParent();
1117   const BasicBlock *LLVM_BB = BB->getBasicBlock();
1118   MachineFunction::iterator It = ++BB->getIterator();
1119 
1120   MachineBasicBlock *LoopMBB = MF.CreateMachineBasicBlock(LLVM_BB);
1121   MF.insert(It, LoopMBB);
1122 
1123   MachineBasicBlock *DoneMBB = MF.CreateMachineBasicBlock(LLVM_BB);
1124   MF.insert(It, DoneMBB);
1125 
1126   // Transfer the remainder of BB and its successor edges to DoneMBB.
1127   DoneMBB->splice(DoneMBB->begin(), BB,
1128                   std::next(MachineBasicBlock::iterator(MI)), BB->end());
1129   DoneMBB->transferSuccessorsAndUpdatePHIs(BB);
1130 
1131   BB->addSuccessor(LoopMBB);
1132 
1133   MachineRegisterInfo &RegInfo = MF.getRegInfo();
1134   Register ReadAgainReg = RegInfo.createVirtualRegister(&RISCV::GPRRegClass);
1135   Register LoReg = MI.getOperand(0).getReg();
1136   Register HiReg = MI.getOperand(1).getReg();
1137   DebugLoc DL = MI.getDebugLoc();
1138 
1139   const TargetInstrInfo *TII = MF.getSubtarget().getInstrInfo();
1140   BuildMI(LoopMBB, DL, TII->get(RISCV::CSRRS), HiReg)
1141       .addImm(RISCVSysReg::lookupSysRegByName("CYCLEH")->Encoding)
1142       .addReg(RISCV::X0);
1143   BuildMI(LoopMBB, DL, TII->get(RISCV::CSRRS), LoReg)
1144       .addImm(RISCVSysReg::lookupSysRegByName("CYCLE")->Encoding)
1145       .addReg(RISCV::X0);
1146   BuildMI(LoopMBB, DL, TII->get(RISCV::CSRRS), ReadAgainReg)
1147       .addImm(RISCVSysReg::lookupSysRegByName("CYCLEH")->Encoding)
1148       .addReg(RISCV::X0);
1149 
1150   BuildMI(LoopMBB, DL, TII->get(RISCV::BNE))
1151       .addReg(HiReg)
1152       .addReg(ReadAgainReg)
1153       .addMBB(LoopMBB);
1154 
1155   LoopMBB->addSuccessor(LoopMBB);
1156   LoopMBB->addSuccessor(DoneMBB);
1157 
1158   MI.eraseFromParent();
1159 
1160   return DoneMBB;
1161 }
1162 
1163 static MachineBasicBlock *emitSplitF64Pseudo(MachineInstr &MI,
1164                                              MachineBasicBlock *BB) {
1165   assert(MI.getOpcode() == RISCV::SplitF64Pseudo && "Unexpected instruction");
1166 
1167   MachineFunction &MF = *BB->getParent();
1168   DebugLoc DL = MI.getDebugLoc();
1169   const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo();
1170   const TargetRegisterInfo *RI = MF.getSubtarget().getRegisterInfo();
1171   Register LoReg = MI.getOperand(0).getReg();
1172   Register HiReg = MI.getOperand(1).getReg();
1173   Register SrcReg = MI.getOperand(2).getReg();
1174   const TargetRegisterClass *SrcRC = &RISCV::FPR64RegClass;
1175   int FI = MF.getInfo<RISCVMachineFunctionInfo>()->getMoveF64FrameIndex();
1176 
1177   TII.storeRegToStackSlot(*BB, MI, SrcReg, MI.getOperand(2).isKill(), FI, SrcRC,
1178                           RI);
1179   MachineMemOperand *MMO =
1180       MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(MF, FI),
1181                               MachineMemOperand::MOLoad, 8, 8);
1182   BuildMI(*BB, MI, DL, TII.get(RISCV::LW), LoReg)
1183       .addFrameIndex(FI)
1184       .addImm(0)
1185       .addMemOperand(MMO);
1186   BuildMI(*BB, MI, DL, TII.get(RISCV::LW), HiReg)
1187       .addFrameIndex(FI)
1188       .addImm(4)
1189       .addMemOperand(MMO);
1190   MI.eraseFromParent(); // The pseudo instruction is gone now.
1191   return BB;
1192 }
1193 
1194 static MachineBasicBlock *emitBuildPairF64Pseudo(MachineInstr &MI,
1195                                                  MachineBasicBlock *BB) {
1196   assert(MI.getOpcode() == RISCV::BuildPairF64Pseudo &&
1197          "Unexpected instruction");
1198 
1199   MachineFunction &MF = *BB->getParent();
1200   DebugLoc DL = MI.getDebugLoc();
1201   const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo();
1202   const TargetRegisterInfo *RI = MF.getSubtarget().getRegisterInfo();
1203   Register DstReg = MI.getOperand(0).getReg();
1204   Register LoReg = MI.getOperand(1).getReg();
1205   Register HiReg = MI.getOperand(2).getReg();
1206   const TargetRegisterClass *DstRC = &RISCV::FPR64RegClass;
1207   int FI = MF.getInfo<RISCVMachineFunctionInfo>()->getMoveF64FrameIndex();
1208 
1209   MachineMemOperand *MMO =
1210       MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(MF, FI),
1211                               MachineMemOperand::MOStore, 8, 8);
1212   BuildMI(*BB, MI, DL, TII.get(RISCV::SW))
1213       .addReg(LoReg, getKillRegState(MI.getOperand(1).isKill()))
1214       .addFrameIndex(FI)
1215       .addImm(0)
1216       .addMemOperand(MMO);
1217   BuildMI(*BB, MI, DL, TII.get(RISCV::SW))
1218       .addReg(HiReg, getKillRegState(MI.getOperand(2).isKill()))
1219       .addFrameIndex(FI)
1220       .addImm(4)
1221       .addMemOperand(MMO);
1222   TII.loadRegFromStackSlot(*BB, MI, DstReg, FI, DstRC, RI);
1223   MI.eraseFromParent(); // The pseudo instruction is gone now.
1224   return BB;
1225 }
1226 
1227 static bool isSelectPseudo(MachineInstr &MI) {
1228   switch (MI.getOpcode()) {
1229   default:
1230     return false;
1231   case RISCV::Select_GPR_Using_CC_GPR:
1232   case RISCV::Select_FPR32_Using_CC_GPR:
1233   case RISCV::Select_FPR64_Using_CC_GPR:
1234     return true;
1235   }
1236 }
1237 
1238 static MachineBasicBlock *emitSelectPseudo(MachineInstr &MI,
1239                                            MachineBasicBlock *BB) {
1240   // To "insert" Select_* instructions, we actually have to insert the triangle
1241   // control-flow pattern.  The incoming instructions know the destination vreg
1242   // to set, the condition code register to branch on, the true/false values to
1243   // select between, and the condcode to use to select the appropriate branch.
1244   //
1245   // We produce the following control flow:
1246   //     HeadMBB
1247   //     |  \
1248   //     |  IfFalseMBB
1249   //     | /
1250   //    TailMBB
1251   //
1252   // When we find a sequence of selects we attempt to optimize their emission
1253   // by sharing the control flow. Currently we only handle cases where we have
1254   // multiple selects with the exact same condition (same LHS, RHS and CC).
1255   // The selects may be interleaved with other instructions if the other
1256   // instructions meet some requirements we deem safe:
1257   // - They are debug instructions. Otherwise,
1258   // - They do not have side-effects, do not access memory and their inputs do
1259   //   not depend on the results of the select pseudo-instructions.
1260   // The TrueV/FalseV operands of the selects cannot depend on the result of
1261   // previous selects in the sequence.
1262   // These conditions could be further relaxed. See the X86 target for a
1263   // related approach and more information.
1264   Register LHS = MI.getOperand(1).getReg();
1265   Register RHS = MI.getOperand(2).getReg();
1266   auto CC = static_cast<ISD::CondCode>(MI.getOperand(3).getImm());
1267 
1268   SmallVector<MachineInstr *, 4> SelectDebugValues;
1269   SmallSet<Register, 4> SelectDests;
1270   SelectDests.insert(MI.getOperand(0).getReg());
1271 
1272   MachineInstr *LastSelectPseudo = &MI;
1273 
1274   for (auto E = BB->end(), SequenceMBBI = MachineBasicBlock::iterator(MI);
1275        SequenceMBBI != E; ++SequenceMBBI) {
1276     if (SequenceMBBI->isDebugInstr())
1277       continue;
1278     else if (isSelectPseudo(*SequenceMBBI)) {
1279       if (SequenceMBBI->getOperand(1).getReg() != LHS ||
1280           SequenceMBBI->getOperand(2).getReg() != RHS ||
1281           SequenceMBBI->getOperand(3).getImm() != CC ||
1282           SelectDests.count(SequenceMBBI->getOperand(4).getReg()) ||
1283           SelectDests.count(SequenceMBBI->getOperand(5).getReg()))
1284         break;
1285       LastSelectPseudo = &*SequenceMBBI;
1286       SequenceMBBI->collectDebugValues(SelectDebugValues);
1287       SelectDests.insert(SequenceMBBI->getOperand(0).getReg());
1288     } else {
1289       if (SequenceMBBI->hasUnmodeledSideEffects() ||
1290           SequenceMBBI->mayLoadOrStore())
1291         break;
1292       if (llvm::any_of(SequenceMBBI->operands(), [&](MachineOperand &MO) {
1293             return MO.isReg() && MO.isUse() && SelectDests.count(MO.getReg());
1294           }))
1295         break;
1296     }
1297   }
1298 
1299   const TargetInstrInfo &TII = *BB->getParent()->getSubtarget().getInstrInfo();
1300   const BasicBlock *LLVM_BB = BB->getBasicBlock();
1301   DebugLoc DL = MI.getDebugLoc();
1302   MachineFunction::iterator I = ++BB->getIterator();
1303 
1304   MachineBasicBlock *HeadMBB = BB;
1305   MachineFunction *F = BB->getParent();
1306   MachineBasicBlock *TailMBB = F->CreateMachineBasicBlock(LLVM_BB);
1307   MachineBasicBlock *IfFalseMBB = F->CreateMachineBasicBlock(LLVM_BB);
1308 
1309   F->insert(I, IfFalseMBB);
1310   F->insert(I, TailMBB);
1311 
1312   // Transfer debug instructions associated with the selects to TailMBB.
1313   for (MachineInstr *DebugInstr : SelectDebugValues) {
1314     TailMBB->push_back(DebugInstr->removeFromParent());
1315   }
1316 
1317   // Move all instructions after the sequence to TailMBB.
1318   TailMBB->splice(TailMBB->end(), HeadMBB,
1319                   std::next(LastSelectPseudo->getIterator()), HeadMBB->end());
1320   // Update machine-CFG edges by transferring all successors of the current
1321   // block to the new block which will contain the Phi nodes for the selects.
1322   TailMBB->transferSuccessorsAndUpdatePHIs(HeadMBB);
1323   // Set the successors for HeadMBB.
1324   HeadMBB->addSuccessor(IfFalseMBB);
1325   HeadMBB->addSuccessor(TailMBB);
1326 
1327   // Insert appropriate branch.
1328   unsigned Opcode = getBranchOpcodeForIntCondCode(CC);
1329 
1330   BuildMI(HeadMBB, DL, TII.get(Opcode))
1331     .addReg(LHS)
1332     .addReg(RHS)
1333     .addMBB(TailMBB);
1334 
1335   // IfFalseMBB just falls through to TailMBB.
1336   IfFalseMBB->addSuccessor(TailMBB);
1337 
1338   // Create PHIs for all of the select pseudo-instructions.
1339   auto SelectMBBI = MI.getIterator();
1340   auto SelectEnd = std::next(LastSelectPseudo->getIterator());
1341   auto InsertionPoint = TailMBB->begin();
1342   while (SelectMBBI != SelectEnd) {
1343     auto Next = std::next(SelectMBBI);
1344     if (isSelectPseudo(*SelectMBBI)) {
1345       // %Result = phi [ %TrueValue, HeadMBB ], [ %FalseValue, IfFalseMBB ]
1346       BuildMI(*TailMBB, InsertionPoint, SelectMBBI->getDebugLoc(),
1347               TII.get(RISCV::PHI), SelectMBBI->getOperand(0).getReg())
1348           .addReg(SelectMBBI->getOperand(4).getReg())
1349           .addMBB(HeadMBB)
1350           .addReg(SelectMBBI->getOperand(5).getReg())
1351           .addMBB(IfFalseMBB);
1352       SelectMBBI->eraseFromParent();
1353     }
1354     SelectMBBI = Next;
1355   }
1356 
1357   F->getProperties().reset(MachineFunctionProperties::Property::NoPHIs);
1358   return TailMBB;
1359 }
1360 
1361 MachineBasicBlock *
1362 RISCVTargetLowering::EmitInstrWithCustomInserter(MachineInstr &MI,
1363                                                  MachineBasicBlock *BB) const {
1364   switch (MI.getOpcode()) {
1365   default:
1366     llvm_unreachable("Unexpected instr type to insert");
1367   case RISCV::ReadCycleWide:
1368     assert(!Subtarget.is64Bit() &&
1369            "ReadCycleWrite is only to be used on riscv32");
1370     return emitReadCycleWidePseudo(MI, BB);
1371   case RISCV::Select_GPR_Using_CC_GPR:
1372   case RISCV::Select_FPR32_Using_CC_GPR:
1373   case RISCV::Select_FPR64_Using_CC_GPR:
1374     return emitSelectPseudo(MI, BB);
1375   case RISCV::BuildPairF64Pseudo:
1376     return emitBuildPairF64Pseudo(MI, BB);
1377   case RISCV::SplitF64Pseudo:
1378     return emitSplitF64Pseudo(MI, BB);
1379   }
1380 }
1381 
1382 // Calling Convention Implementation.
1383 // The expectations for frontend ABI lowering vary from target to target.
1384 // Ideally, an LLVM frontend would be able to avoid worrying about many ABI
1385 // details, but this is a longer term goal. For now, we simply try to keep the
1386 // role of the frontend as simple and well-defined as possible. The rules can
1387 // be summarised as:
1388 // * Never split up large scalar arguments. We handle them here.
1389 // * If a hardfloat calling convention is being used, and the struct may be
1390 // passed in a pair of registers (fp+fp, int+fp), and both registers are
1391 // available, then pass as two separate arguments. If either the GPRs or FPRs
1392 // are exhausted, then pass according to the rule below.
1393 // * If a struct could never be passed in registers or directly in a stack
1394 // slot (as it is larger than 2*XLEN and the floating point rules don't
1395 // apply), then pass it using a pointer with the byval attribute.
1396 // * If a struct is less than 2*XLEN, then coerce to either a two-element
1397 // word-sized array or a 2*XLEN scalar (depending on alignment).
1398 // * The frontend can determine whether a struct is returned by reference or
1399 // not based on its size and fields. If it will be returned by reference, the
1400 // frontend must modify the prototype so a pointer with the sret annotation is
1401 // passed as the first argument. This is not necessary for large scalar
1402 // returns.
1403 // * Struct return values and varargs should be coerced to structs containing
1404 // register-size fields in the same situations they would be for fixed
1405 // arguments.
1406 
1407 static const MCPhysReg ArgGPRs[] = {
1408   RISCV::X10, RISCV::X11, RISCV::X12, RISCV::X13,
1409   RISCV::X14, RISCV::X15, RISCV::X16, RISCV::X17
1410 };
1411 static const MCPhysReg ArgFPR32s[] = {
1412   RISCV::F10_F, RISCV::F11_F, RISCV::F12_F, RISCV::F13_F,
1413   RISCV::F14_F, RISCV::F15_F, RISCV::F16_F, RISCV::F17_F
1414 };
1415 static const MCPhysReg ArgFPR64s[] = {
1416   RISCV::F10_D, RISCV::F11_D, RISCV::F12_D, RISCV::F13_D,
1417   RISCV::F14_D, RISCV::F15_D, RISCV::F16_D, RISCV::F17_D
1418 };
1419 
1420 // Pass a 2*XLEN argument that has been split into two XLEN values through
1421 // registers or the stack as necessary.
1422 static bool CC_RISCVAssign2XLen(unsigned XLen, CCState &State, CCValAssign VA1,
1423                                 ISD::ArgFlagsTy ArgFlags1, unsigned ValNo2,
1424                                 MVT ValVT2, MVT LocVT2,
1425                                 ISD::ArgFlagsTy ArgFlags2) {
1426   unsigned XLenInBytes = XLen / 8;
1427   if (Register Reg = State.AllocateReg(ArgGPRs)) {
1428     // At least one half can be passed via register.
1429     State.addLoc(CCValAssign::getReg(VA1.getValNo(), VA1.getValVT(), Reg,
1430                                      VA1.getLocVT(), CCValAssign::Full));
1431   } else {
1432     // Both halves must be passed on the stack, with proper alignment.
1433     unsigned StackAlign = std::max(XLenInBytes, ArgFlags1.getOrigAlign());
1434     State.addLoc(
1435         CCValAssign::getMem(VA1.getValNo(), VA1.getValVT(),
1436                             State.AllocateStack(XLenInBytes, StackAlign),
1437                             VA1.getLocVT(), CCValAssign::Full));
1438     State.addLoc(CCValAssign::getMem(
1439         ValNo2, ValVT2, State.AllocateStack(XLenInBytes, XLenInBytes), LocVT2,
1440         CCValAssign::Full));
1441     return false;
1442   }
1443 
1444   if (Register Reg = State.AllocateReg(ArgGPRs)) {
1445     // The second half can also be passed via register.
1446     State.addLoc(
1447         CCValAssign::getReg(ValNo2, ValVT2, Reg, LocVT2, CCValAssign::Full));
1448   } else {
1449     // The second half is passed via the stack, without additional alignment.
1450     State.addLoc(CCValAssign::getMem(
1451         ValNo2, ValVT2, State.AllocateStack(XLenInBytes, XLenInBytes), LocVT2,
1452         CCValAssign::Full));
1453   }
1454 
1455   return false;
1456 }
1457 
1458 // Implements the RISC-V calling convention. Returns true upon failure.
1459 static bool CC_RISCV(const DataLayout &DL, RISCVABI::ABI ABI, unsigned ValNo,
1460                      MVT ValVT, MVT LocVT, CCValAssign::LocInfo LocInfo,
1461                      ISD::ArgFlagsTy ArgFlags, CCState &State, bool IsFixed,
1462                      bool IsRet, Type *OrigTy) {
1463   unsigned XLen = DL.getLargestLegalIntTypeSizeInBits();
1464   assert(XLen == 32 || XLen == 64);
1465   MVT XLenVT = XLen == 32 ? MVT::i32 : MVT::i64;
1466 
1467   // Any return value split in to more than two values can't be returned
1468   // directly.
1469   if (IsRet && ValNo > 1)
1470     return true;
1471 
1472   // UseGPRForF32 if targeting one of the soft-float ABIs, if passing a
1473   // variadic argument, or if no F32 argument registers are available.
1474   bool UseGPRForF32 = true;
1475   // UseGPRForF64 if targeting soft-float ABIs or an FLEN=32 ABI, if passing a
1476   // variadic argument, or if no F64 argument registers are available.
1477   bool UseGPRForF64 = true;
1478 
1479   switch (ABI) {
1480   default:
1481     llvm_unreachable("Unexpected ABI");
1482   case RISCVABI::ABI_ILP32:
1483   case RISCVABI::ABI_LP64:
1484     break;
1485   case RISCVABI::ABI_ILP32F:
1486   case RISCVABI::ABI_LP64F:
1487     UseGPRForF32 = !IsFixed;
1488     break;
1489   case RISCVABI::ABI_ILP32D:
1490   case RISCVABI::ABI_LP64D:
1491     UseGPRForF32 = !IsFixed;
1492     UseGPRForF64 = !IsFixed;
1493     break;
1494   }
1495 
1496   if (State.getFirstUnallocated(ArgFPR32s) == array_lengthof(ArgFPR32s))
1497     UseGPRForF32 = true;
1498   if (State.getFirstUnallocated(ArgFPR64s) == array_lengthof(ArgFPR64s))
1499     UseGPRForF64 = true;
1500 
1501   // From this point on, rely on UseGPRForF32, UseGPRForF64 and similar local
1502   // variables rather than directly checking against the target ABI.
1503 
1504   if (UseGPRForF32 && ValVT == MVT::f32) {
1505     LocVT = XLenVT;
1506     LocInfo = CCValAssign::BCvt;
1507   } else if (UseGPRForF64 && XLen == 64 && ValVT == MVT::f64) {
1508     LocVT = MVT::i64;
1509     LocInfo = CCValAssign::BCvt;
1510   }
1511 
1512   // If this is a variadic argument, the RISC-V calling convention requires
1513   // that it is assigned an 'even' or 'aligned' register if it has 8-byte
1514   // alignment (RV32) or 16-byte alignment (RV64). An aligned register should
1515   // be used regardless of whether the original argument was split during
1516   // legalisation or not. The argument will not be passed by registers if the
1517   // original type is larger than 2*XLEN, so the register alignment rule does
1518   // not apply.
1519   unsigned TwoXLenInBytes = (2 * XLen) / 8;
1520   if (!IsFixed && ArgFlags.getOrigAlign() == TwoXLenInBytes &&
1521       DL.getTypeAllocSize(OrigTy) == TwoXLenInBytes) {
1522     unsigned RegIdx = State.getFirstUnallocated(ArgGPRs);
1523     // Skip 'odd' register if necessary.
1524     if (RegIdx != array_lengthof(ArgGPRs) && RegIdx % 2 == 1)
1525       State.AllocateReg(ArgGPRs);
1526   }
1527 
1528   SmallVectorImpl<CCValAssign> &PendingLocs = State.getPendingLocs();
1529   SmallVectorImpl<ISD::ArgFlagsTy> &PendingArgFlags =
1530       State.getPendingArgFlags();
1531 
1532   assert(PendingLocs.size() == PendingArgFlags.size() &&
1533          "PendingLocs and PendingArgFlags out of sync");
1534 
1535   // Handle passing f64 on RV32D with a soft float ABI or when floating point
1536   // registers are exhausted.
1537   if (UseGPRForF64 && XLen == 32 && ValVT == MVT::f64) {
1538     assert(!ArgFlags.isSplit() && PendingLocs.empty() &&
1539            "Can't lower f64 if it is split");
1540     // Depending on available argument GPRS, f64 may be passed in a pair of
1541     // GPRs, split between a GPR and the stack, or passed completely on the
1542     // stack. LowerCall/LowerFormalArguments/LowerReturn must recognise these
1543     // cases.
1544     Register Reg = State.AllocateReg(ArgGPRs);
1545     LocVT = MVT::i32;
1546     if (!Reg) {
1547       unsigned StackOffset = State.AllocateStack(8, 8);
1548       State.addLoc(
1549           CCValAssign::getMem(ValNo, ValVT, StackOffset, LocVT, LocInfo));
1550       return false;
1551     }
1552     if (!State.AllocateReg(ArgGPRs))
1553       State.AllocateStack(4, 4);
1554     State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
1555     return false;
1556   }
1557 
1558   // Split arguments might be passed indirectly, so keep track of the pending
1559   // values.
1560   if (ArgFlags.isSplit() || !PendingLocs.empty()) {
1561     LocVT = XLenVT;
1562     LocInfo = CCValAssign::Indirect;
1563     PendingLocs.push_back(
1564         CCValAssign::getPending(ValNo, ValVT, LocVT, LocInfo));
1565     PendingArgFlags.push_back(ArgFlags);
1566     if (!ArgFlags.isSplitEnd()) {
1567       return false;
1568     }
1569   }
1570 
1571   // If the split argument only had two elements, it should be passed directly
1572   // in registers or on the stack.
1573   if (ArgFlags.isSplitEnd() && PendingLocs.size() <= 2) {
1574     assert(PendingLocs.size() == 2 && "Unexpected PendingLocs.size()");
1575     // Apply the normal calling convention rules to the first half of the
1576     // split argument.
1577     CCValAssign VA = PendingLocs[0];
1578     ISD::ArgFlagsTy AF = PendingArgFlags[0];
1579     PendingLocs.clear();
1580     PendingArgFlags.clear();
1581     return CC_RISCVAssign2XLen(XLen, State, VA, AF, ValNo, ValVT, LocVT,
1582                                ArgFlags);
1583   }
1584 
1585   // Allocate to a register if possible, or else a stack slot.
1586   Register Reg;
1587   if (ValVT == MVT::f32 && !UseGPRForF32)
1588     Reg = State.AllocateReg(ArgFPR32s, ArgFPR64s);
1589   else if (ValVT == MVT::f64 && !UseGPRForF64)
1590     Reg = State.AllocateReg(ArgFPR64s, ArgFPR32s);
1591   else
1592     Reg = State.AllocateReg(ArgGPRs);
1593   unsigned StackOffset = Reg ? 0 : State.AllocateStack(XLen / 8, XLen / 8);
1594 
1595   // If we reach this point and PendingLocs is non-empty, we must be at the
1596   // end of a split argument that must be passed indirectly.
1597   if (!PendingLocs.empty()) {
1598     assert(ArgFlags.isSplitEnd() && "Expected ArgFlags.isSplitEnd()");
1599     assert(PendingLocs.size() > 2 && "Unexpected PendingLocs.size()");
1600 
1601     for (auto &It : PendingLocs) {
1602       if (Reg)
1603         It.convertToReg(Reg);
1604       else
1605         It.convertToMem(StackOffset);
1606       State.addLoc(It);
1607     }
1608     PendingLocs.clear();
1609     PendingArgFlags.clear();
1610     return false;
1611   }
1612 
1613   assert((!UseGPRForF32 || !UseGPRForF64 || LocVT == XLenVT) &&
1614          "Expected an XLenVT at this stage");
1615 
1616   if (Reg) {
1617     State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
1618     return false;
1619   }
1620 
1621   // When an f32 or f64 is passed on the stack, no bit-conversion is needed.
1622   if (ValVT == MVT::f32 || ValVT == MVT::f64) {
1623     LocVT = ValVT;
1624     LocInfo = CCValAssign::Full;
1625   }
1626   State.addLoc(CCValAssign::getMem(ValNo, ValVT, StackOffset, LocVT, LocInfo));
1627   return false;
1628 }
1629 
1630 void RISCVTargetLowering::analyzeInputArgs(
1631     MachineFunction &MF, CCState &CCInfo,
1632     const SmallVectorImpl<ISD::InputArg> &Ins, bool IsRet) const {
1633   unsigned NumArgs = Ins.size();
1634   FunctionType *FType = MF.getFunction().getFunctionType();
1635 
1636   for (unsigned i = 0; i != NumArgs; ++i) {
1637     MVT ArgVT = Ins[i].VT;
1638     ISD::ArgFlagsTy ArgFlags = Ins[i].Flags;
1639 
1640     Type *ArgTy = nullptr;
1641     if (IsRet)
1642       ArgTy = FType->getReturnType();
1643     else if (Ins[i].isOrigArg())
1644       ArgTy = FType->getParamType(Ins[i].getOrigArgIndex());
1645 
1646     RISCVABI::ABI ABI = MF.getSubtarget<RISCVSubtarget>().getTargetABI();
1647     if (CC_RISCV(MF.getDataLayout(), ABI, i, ArgVT, ArgVT, CCValAssign::Full,
1648                  ArgFlags, CCInfo, /*IsRet=*/true, IsRet, ArgTy)) {
1649       LLVM_DEBUG(dbgs() << "InputArg #" << i << " has unhandled type "
1650                         << EVT(ArgVT).getEVTString() << '\n');
1651       llvm_unreachable(nullptr);
1652     }
1653   }
1654 }
1655 
1656 void RISCVTargetLowering::analyzeOutputArgs(
1657     MachineFunction &MF, CCState &CCInfo,
1658     const SmallVectorImpl<ISD::OutputArg> &Outs, bool IsRet,
1659     CallLoweringInfo *CLI) const {
1660   unsigned NumArgs = Outs.size();
1661 
1662   for (unsigned i = 0; i != NumArgs; i++) {
1663     MVT ArgVT = Outs[i].VT;
1664     ISD::ArgFlagsTy ArgFlags = Outs[i].Flags;
1665     Type *OrigTy = CLI ? CLI->getArgs()[Outs[i].OrigArgIndex].Ty : nullptr;
1666 
1667     RISCVABI::ABI ABI = MF.getSubtarget<RISCVSubtarget>().getTargetABI();
1668     if (CC_RISCV(MF.getDataLayout(), ABI, i, ArgVT, ArgVT, CCValAssign::Full,
1669                  ArgFlags, CCInfo, Outs[i].IsFixed, IsRet, OrigTy)) {
1670       LLVM_DEBUG(dbgs() << "OutputArg #" << i << " has unhandled type "
1671                         << EVT(ArgVT).getEVTString() << "\n");
1672       llvm_unreachable(nullptr);
1673     }
1674   }
1675 }
1676 
1677 // Convert Val to a ValVT. Should not be called for CCValAssign::Indirect
1678 // values.
1679 static SDValue convertLocVTToValVT(SelectionDAG &DAG, SDValue Val,
1680                                    const CCValAssign &VA, const SDLoc &DL) {
1681   switch (VA.getLocInfo()) {
1682   default:
1683     llvm_unreachable("Unexpected CCValAssign::LocInfo");
1684   case CCValAssign::Full:
1685     break;
1686   case CCValAssign::BCvt:
1687     if (VA.getLocVT() == MVT::i64 && VA.getValVT() == MVT::f32) {
1688       Val = DAG.getNode(RISCVISD::FMV_W_X_RV64, DL, MVT::f32, Val);
1689       break;
1690     }
1691     Val = DAG.getNode(ISD::BITCAST, DL, VA.getValVT(), Val);
1692     break;
1693   }
1694   return Val;
1695 }
1696 
1697 // The caller is responsible for loading the full value if the argument is
1698 // passed with CCValAssign::Indirect.
1699 static SDValue unpackFromRegLoc(SelectionDAG &DAG, SDValue Chain,
1700                                 const CCValAssign &VA, const SDLoc &DL) {
1701   MachineFunction &MF = DAG.getMachineFunction();
1702   MachineRegisterInfo &RegInfo = MF.getRegInfo();
1703   EVT LocVT = VA.getLocVT();
1704   SDValue Val;
1705   const TargetRegisterClass *RC;
1706 
1707   switch (LocVT.getSimpleVT().SimpleTy) {
1708   default:
1709     llvm_unreachable("Unexpected register type");
1710   case MVT::i32:
1711   case MVT::i64:
1712     RC = &RISCV::GPRRegClass;
1713     break;
1714   case MVT::f32:
1715     RC = &RISCV::FPR32RegClass;
1716     break;
1717   case MVT::f64:
1718     RC = &RISCV::FPR64RegClass;
1719     break;
1720   }
1721 
1722   Register VReg = RegInfo.createVirtualRegister(RC);
1723   RegInfo.addLiveIn(VA.getLocReg(), VReg);
1724   Val = DAG.getCopyFromReg(Chain, DL, VReg, LocVT);
1725 
1726   if (VA.getLocInfo() == CCValAssign::Indirect)
1727     return Val;
1728 
1729   return convertLocVTToValVT(DAG, Val, VA, DL);
1730 }
1731 
1732 static SDValue convertValVTToLocVT(SelectionDAG &DAG, SDValue Val,
1733                                    const CCValAssign &VA, const SDLoc &DL) {
1734   EVT LocVT = VA.getLocVT();
1735 
1736   switch (VA.getLocInfo()) {
1737   default:
1738     llvm_unreachable("Unexpected CCValAssign::LocInfo");
1739   case CCValAssign::Full:
1740     break;
1741   case CCValAssign::BCvt:
1742     if (VA.getLocVT() == MVT::i64 && VA.getValVT() == MVT::f32) {
1743       Val = DAG.getNode(RISCVISD::FMV_X_ANYEXTW_RV64, DL, MVT::i64, Val);
1744       break;
1745     }
1746     Val = DAG.getNode(ISD::BITCAST, DL, LocVT, Val);
1747     break;
1748   }
1749   return Val;
1750 }
1751 
1752 // The caller is responsible for loading the full value if the argument is
1753 // passed with CCValAssign::Indirect.
1754 static SDValue unpackFromMemLoc(SelectionDAG &DAG, SDValue Chain,
1755                                 const CCValAssign &VA, const SDLoc &DL) {
1756   MachineFunction &MF = DAG.getMachineFunction();
1757   MachineFrameInfo &MFI = MF.getFrameInfo();
1758   EVT LocVT = VA.getLocVT();
1759   EVT ValVT = VA.getValVT();
1760   EVT PtrVT = MVT::getIntegerVT(DAG.getDataLayout().getPointerSizeInBits(0));
1761   int FI = MFI.CreateFixedObject(ValVT.getSizeInBits() / 8,
1762                                  VA.getLocMemOffset(), /*Immutable=*/true);
1763   SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
1764   SDValue Val;
1765 
1766   ISD::LoadExtType ExtType;
1767   switch (VA.getLocInfo()) {
1768   default:
1769     llvm_unreachable("Unexpected CCValAssign::LocInfo");
1770   case CCValAssign::Full:
1771   case CCValAssign::Indirect:
1772   case CCValAssign::BCvt:
1773     ExtType = ISD::NON_EXTLOAD;
1774     break;
1775   }
1776   Val = DAG.getExtLoad(
1777       ExtType, DL, LocVT, Chain, FIN,
1778       MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), ValVT);
1779   return Val;
1780 }
1781 
1782 static SDValue unpackF64OnRV32DSoftABI(SelectionDAG &DAG, SDValue Chain,
1783                                        const CCValAssign &VA, const SDLoc &DL) {
1784   assert(VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64 &&
1785          "Unexpected VA");
1786   MachineFunction &MF = DAG.getMachineFunction();
1787   MachineFrameInfo &MFI = MF.getFrameInfo();
1788   MachineRegisterInfo &RegInfo = MF.getRegInfo();
1789 
1790   if (VA.isMemLoc()) {
1791     // f64 is passed on the stack.
1792     int FI = MFI.CreateFixedObject(8, VA.getLocMemOffset(), /*Immutable=*/true);
1793     SDValue FIN = DAG.getFrameIndex(FI, MVT::i32);
1794     return DAG.getLoad(MVT::f64, DL, Chain, FIN,
1795                        MachinePointerInfo::getFixedStack(MF, FI));
1796   }
1797 
1798   assert(VA.isRegLoc() && "Expected register VA assignment");
1799 
1800   Register LoVReg = RegInfo.createVirtualRegister(&RISCV::GPRRegClass);
1801   RegInfo.addLiveIn(VA.getLocReg(), LoVReg);
1802   SDValue Lo = DAG.getCopyFromReg(Chain, DL, LoVReg, MVT::i32);
1803   SDValue Hi;
1804   if (VA.getLocReg() == RISCV::X17) {
1805     // Second half of f64 is passed on the stack.
1806     int FI = MFI.CreateFixedObject(4, 0, /*Immutable=*/true);
1807     SDValue FIN = DAG.getFrameIndex(FI, MVT::i32);
1808     Hi = DAG.getLoad(MVT::i32, DL, Chain, FIN,
1809                      MachinePointerInfo::getFixedStack(MF, FI));
1810   } else {
1811     // Second half of f64 is passed in another GPR.
1812     Register HiVReg = RegInfo.createVirtualRegister(&RISCV::GPRRegClass);
1813     RegInfo.addLiveIn(VA.getLocReg() + 1, HiVReg);
1814     Hi = DAG.getCopyFromReg(Chain, DL, HiVReg, MVT::i32);
1815   }
1816   return DAG.getNode(RISCVISD::BuildPairF64, DL, MVT::f64, Lo, Hi);
1817 }
1818 
1819 // FastCC has less than 1% performance improvement for some particular
1820 // benchmark. But theoretically, it may has benenfit for some cases.
1821 static bool CC_RISCV_FastCC(unsigned ValNo, MVT ValVT, MVT LocVT,
1822                             CCValAssign::LocInfo LocInfo,
1823                             ISD::ArgFlagsTy ArgFlags, CCState &State) {
1824 
1825   if (LocVT == MVT::i32 || LocVT == MVT::i64) {
1826     // X5 and X6 might be used for save-restore libcall.
1827     static const MCPhysReg GPRList[] = {
1828         RISCV::X10, RISCV::X11, RISCV::X12, RISCV::X13, RISCV::X14,
1829         RISCV::X15, RISCV::X16, RISCV::X17, RISCV::X7,  RISCV::X28,
1830         RISCV::X29, RISCV::X30, RISCV::X31};
1831     if (unsigned Reg = State.AllocateReg(GPRList)) {
1832       State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
1833       return false;
1834     }
1835   }
1836 
1837   if (LocVT == MVT::f32) {
1838     static const MCPhysReg FPR32List[] = {
1839         RISCV::F10_F, RISCV::F11_F, RISCV::F12_F, RISCV::F13_F, RISCV::F14_F,
1840         RISCV::F15_F, RISCV::F16_F, RISCV::F17_F, RISCV::F0_F,  RISCV::F1_F,
1841         RISCV::F2_F,  RISCV::F3_F,  RISCV::F4_F,  RISCV::F5_F,  RISCV::F6_F,
1842         RISCV::F7_F,  RISCV::F28_F, RISCV::F29_F, RISCV::F30_F, RISCV::F31_F};
1843     if (unsigned Reg = State.AllocateReg(FPR32List)) {
1844       State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
1845       return false;
1846     }
1847   }
1848 
1849   if (LocVT == MVT::f64) {
1850     static const MCPhysReg FPR64List[] = {
1851         RISCV::F10_D, RISCV::F11_D, RISCV::F12_D, RISCV::F13_D, RISCV::F14_D,
1852         RISCV::F15_D, RISCV::F16_D, RISCV::F17_D, RISCV::F0_D,  RISCV::F1_D,
1853         RISCV::F2_D,  RISCV::F3_D,  RISCV::F4_D,  RISCV::F5_D,  RISCV::F6_D,
1854         RISCV::F7_D,  RISCV::F28_D, RISCV::F29_D, RISCV::F30_D, RISCV::F31_D};
1855     if (unsigned Reg = State.AllocateReg(FPR64List)) {
1856       State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
1857       return false;
1858     }
1859   }
1860 
1861   if (LocVT == MVT::i32 || LocVT == MVT::f32) {
1862     unsigned Offset4 = State.AllocateStack(4, 4);
1863     State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset4, LocVT, LocInfo));
1864     return false;
1865   }
1866 
1867   if (LocVT == MVT::i64 || LocVT == MVT::f64) {
1868     unsigned Offset5 = State.AllocateStack(8, 8);
1869     State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset5, LocVT, LocInfo));
1870     return false;
1871   }
1872 
1873   return true; // CC didn't match.
1874 }
1875 
1876 // Transform physical registers into virtual registers.
1877 SDValue RISCVTargetLowering::LowerFormalArguments(
1878     SDValue Chain, CallingConv::ID CallConv, bool IsVarArg,
1879     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL,
1880     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
1881 
1882   switch (CallConv) {
1883   default:
1884     report_fatal_error("Unsupported calling convention");
1885   case CallingConv::C:
1886   case CallingConv::Fast:
1887     break;
1888   }
1889 
1890   MachineFunction &MF = DAG.getMachineFunction();
1891 
1892   const Function &Func = MF.getFunction();
1893   if (Func.hasFnAttribute("interrupt")) {
1894     if (!Func.arg_empty())
1895       report_fatal_error(
1896         "Functions with the interrupt attribute cannot have arguments!");
1897 
1898     StringRef Kind =
1899       MF.getFunction().getFnAttribute("interrupt").getValueAsString();
1900 
1901     if (!(Kind == "user" || Kind == "supervisor" || Kind == "machine"))
1902       report_fatal_error(
1903         "Function interrupt attribute argument not supported!");
1904   }
1905 
1906   EVT PtrVT = getPointerTy(DAG.getDataLayout());
1907   MVT XLenVT = Subtarget.getXLenVT();
1908   unsigned XLenInBytes = Subtarget.getXLen() / 8;
1909   // Used with vargs to acumulate store chains.
1910   std::vector<SDValue> OutChains;
1911 
1912   // Assign locations to all of the incoming arguments.
1913   SmallVector<CCValAssign, 16> ArgLocs;
1914   CCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext());
1915 
1916   if (CallConv == CallingConv::Fast)
1917     CCInfo.AnalyzeFormalArguments(Ins, CC_RISCV_FastCC);
1918   else
1919     analyzeInputArgs(MF, CCInfo, Ins, /*IsRet=*/false);
1920 
1921   for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
1922     CCValAssign &VA = ArgLocs[i];
1923     SDValue ArgValue;
1924     // Passing f64 on RV32D with a soft float ABI must be handled as a special
1925     // case.
1926     if (VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64)
1927       ArgValue = unpackF64OnRV32DSoftABI(DAG, Chain, VA, DL);
1928     else if (VA.isRegLoc())
1929       ArgValue = unpackFromRegLoc(DAG, Chain, VA, DL);
1930     else
1931       ArgValue = unpackFromMemLoc(DAG, Chain, VA, DL);
1932 
1933     if (VA.getLocInfo() == CCValAssign::Indirect) {
1934       // If the original argument was split and passed by reference (e.g. i128
1935       // on RV32), we need to load all parts of it here (using the same
1936       // address).
1937       InVals.push_back(DAG.getLoad(VA.getValVT(), DL, Chain, ArgValue,
1938                                    MachinePointerInfo()));
1939       unsigned ArgIndex = Ins[i].OrigArgIndex;
1940       assert(Ins[i].PartOffset == 0);
1941       while (i + 1 != e && Ins[i + 1].OrigArgIndex == ArgIndex) {
1942         CCValAssign &PartVA = ArgLocs[i + 1];
1943         unsigned PartOffset = Ins[i + 1].PartOffset;
1944         SDValue Address = DAG.getNode(ISD::ADD, DL, PtrVT, ArgValue,
1945                                       DAG.getIntPtrConstant(PartOffset, DL));
1946         InVals.push_back(DAG.getLoad(PartVA.getValVT(), DL, Chain, Address,
1947                                      MachinePointerInfo()));
1948         ++i;
1949       }
1950       continue;
1951     }
1952     InVals.push_back(ArgValue);
1953   }
1954 
1955   if (IsVarArg) {
1956     ArrayRef<MCPhysReg> ArgRegs = makeArrayRef(ArgGPRs);
1957     unsigned Idx = CCInfo.getFirstUnallocated(ArgRegs);
1958     const TargetRegisterClass *RC = &RISCV::GPRRegClass;
1959     MachineFrameInfo &MFI = MF.getFrameInfo();
1960     MachineRegisterInfo &RegInfo = MF.getRegInfo();
1961     RISCVMachineFunctionInfo *RVFI = MF.getInfo<RISCVMachineFunctionInfo>();
1962 
1963     // Offset of the first variable argument from stack pointer, and size of
1964     // the vararg save area. For now, the varargs save area is either zero or
1965     // large enough to hold a0-a7.
1966     int VaArgOffset, VarArgsSaveSize;
1967 
1968     // If all registers are allocated, then all varargs must be passed on the
1969     // stack and we don't need to save any argregs.
1970     if (ArgRegs.size() == Idx) {
1971       VaArgOffset = CCInfo.getNextStackOffset();
1972       VarArgsSaveSize = 0;
1973     } else {
1974       VarArgsSaveSize = XLenInBytes * (ArgRegs.size() - Idx);
1975       VaArgOffset = -VarArgsSaveSize;
1976     }
1977 
1978     // Record the frame index of the first variable argument
1979     // which is a value necessary to VASTART.
1980     int FI = MFI.CreateFixedObject(XLenInBytes, VaArgOffset, true);
1981     RVFI->setVarArgsFrameIndex(FI);
1982 
1983     // If saving an odd number of registers then create an extra stack slot to
1984     // ensure that the frame pointer is 2*XLEN-aligned, which in turn ensures
1985     // offsets to even-numbered registered remain 2*XLEN-aligned.
1986     if (Idx % 2) {
1987       MFI.CreateFixedObject(XLenInBytes, VaArgOffset - (int)XLenInBytes, true);
1988       VarArgsSaveSize += XLenInBytes;
1989     }
1990 
1991     // Copy the integer registers that may have been used for passing varargs
1992     // to the vararg save area.
1993     for (unsigned I = Idx; I < ArgRegs.size();
1994          ++I, VaArgOffset += XLenInBytes) {
1995       const Register Reg = RegInfo.createVirtualRegister(RC);
1996       RegInfo.addLiveIn(ArgRegs[I], Reg);
1997       SDValue ArgValue = DAG.getCopyFromReg(Chain, DL, Reg, XLenVT);
1998       FI = MFI.CreateFixedObject(XLenInBytes, VaArgOffset, true);
1999       SDValue PtrOff = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout()));
2000       SDValue Store = DAG.getStore(Chain, DL, ArgValue, PtrOff,
2001                                    MachinePointerInfo::getFixedStack(MF, FI));
2002       cast<StoreSDNode>(Store.getNode())
2003           ->getMemOperand()
2004           ->setValue((Value *)nullptr);
2005       OutChains.push_back(Store);
2006     }
2007     RVFI->setVarArgsSaveSize(VarArgsSaveSize);
2008   }
2009 
2010   // All stores are grouped in one node to allow the matching between
2011   // the size of Ins and InVals. This only happens for vararg functions.
2012   if (!OutChains.empty()) {
2013     OutChains.push_back(Chain);
2014     Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, OutChains);
2015   }
2016 
2017   return Chain;
2018 }
2019 
2020 /// isEligibleForTailCallOptimization - Check whether the call is eligible
2021 /// for tail call optimization.
2022 /// Note: This is modelled after ARM's IsEligibleForTailCallOptimization.
2023 bool RISCVTargetLowering::isEligibleForTailCallOptimization(
2024     CCState &CCInfo, CallLoweringInfo &CLI, MachineFunction &MF,
2025     const SmallVector<CCValAssign, 16> &ArgLocs) const {
2026 
2027   auto &Callee = CLI.Callee;
2028   auto CalleeCC = CLI.CallConv;
2029   auto &Outs = CLI.Outs;
2030   auto &Caller = MF.getFunction();
2031   auto CallerCC = Caller.getCallingConv();
2032 
2033   // Exception-handling functions need a special set of instructions to
2034   // indicate a return to the hardware. Tail-calling another function would
2035   // probably break this.
2036   // TODO: The "interrupt" attribute isn't currently defined by RISC-V. This
2037   // should be expanded as new function attributes are introduced.
2038   if (Caller.hasFnAttribute("interrupt"))
2039     return false;
2040 
2041   // Do not tail call opt if the stack is used to pass parameters.
2042   if (CCInfo.getNextStackOffset() != 0)
2043     return false;
2044 
2045   // Do not tail call opt if any parameters need to be passed indirectly.
2046   // Since long doubles (fp128) and i128 are larger than 2*XLEN, they are
2047   // passed indirectly. So the address of the value will be passed in a
2048   // register, or if not available, then the address is put on the stack. In
2049   // order to pass indirectly, space on the stack often needs to be allocated
2050   // in order to store the value. In this case the CCInfo.getNextStackOffset()
2051   // != 0 check is not enough and we need to check if any CCValAssign ArgsLocs
2052   // are passed CCValAssign::Indirect.
2053   for (auto &VA : ArgLocs)
2054     if (VA.getLocInfo() == CCValAssign::Indirect)
2055       return false;
2056 
2057   // Do not tail call opt if either caller or callee uses struct return
2058   // semantics.
2059   auto IsCallerStructRet = Caller.hasStructRetAttr();
2060   auto IsCalleeStructRet = Outs.empty() ? false : Outs[0].Flags.isSRet();
2061   if (IsCallerStructRet || IsCalleeStructRet)
2062     return false;
2063 
2064   // Externally-defined functions with weak linkage should not be
2065   // tail-called. The behaviour of branch instructions in this situation (as
2066   // used for tail calls) is implementation-defined, so we cannot rely on the
2067   // linker replacing the tail call with a return.
2068   if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
2069     const GlobalValue *GV = G->getGlobal();
2070     if (GV->hasExternalWeakLinkage())
2071       return false;
2072   }
2073 
2074   // The callee has to preserve all registers the caller needs to preserve.
2075   const RISCVRegisterInfo *TRI = Subtarget.getRegisterInfo();
2076   const uint32_t *CallerPreserved = TRI->getCallPreservedMask(MF, CallerCC);
2077   if (CalleeCC != CallerCC) {
2078     const uint32_t *CalleePreserved = TRI->getCallPreservedMask(MF, CalleeCC);
2079     if (!TRI->regmaskSubsetEqual(CallerPreserved, CalleePreserved))
2080       return false;
2081   }
2082 
2083   // Byval parameters hand the function a pointer directly into the stack area
2084   // we want to reuse during a tail call. Working around this *is* possible
2085   // but less efficient and uglier in LowerCall.
2086   for (auto &Arg : Outs)
2087     if (Arg.Flags.isByVal())
2088       return false;
2089 
2090   return true;
2091 }
2092 
2093 // Lower a call to a callseq_start + CALL + callseq_end chain, and add input
2094 // and output parameter nodes.
2095 SDValue RISCVTargetLowering::LowerCall(CallLoweringInfo &CLI,
2096                                        SmallVectorImpl<SDValue> &InVals) const {
2097   SelectionDAG &DAG = CLI.DAG;
2098   SDLoc &DL = CLI.DL;
2099   SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs;
2100   SmallVectorImpl<SDValue> &OutVals = CLI.OutVals;
2101   SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins;
2102   SDValue Chain = CLI.Chain;
2103   SDValue Callee = CLI.Callee;
2104   bool &IsTailCall = CLI.IsTailCall;
2105   CallingConv::ID CallConv = CLI.CallConv;
2106   bool IsVarArg = CLI.IsVarArg;
2107   EVT PtrVT = getPointerTy(DAG.getDataLayout());
2108   MVT XLenVT = Subtarget.getXLenVT();
2109 
2110   MachineFunction &MF = DAG.getMachineFunction();
2111 
2112   // Analyze the operands of the call, assigning locations to each operand.
2113   SmallVector<CCValAssign, 16> ArgLocs;
2114   CCState ArgCCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext());
2115 
2116   if (CallConv == CallingConv::Fast)
2117     ArgCCInfo.AnalyzeCallOperands(Outs, CC_RISCV_FastCC);
2118   else
2119     analyzeOutputArgs(MF, ArgCCInfo, Outs, /*IsRet=*/false, &CLI);
2120 
2121   // Check if it's really possible to do a tail call.
2122   if (IsTailCall)
2123     IsTailCall = isEligibleForTailCallOptimization(ArgCCInfo, CLI, MF, ArgLocs);
2124 
2125   if (IsTailCall)
2126     ++NumTailCalls;
2127   else if (CLI.CS && CLI.CS.isMustTailCall())
2128     report_fatal_error("failed to perform tail call elimination on a call "
2129                        "site marked musttail");
2130 
2131   // Get a count of how many bytes are to be pushed on the stack.
2132   unsigned NumBytes = ArgCCInfo.getNextStackOffset();
2133 
2134   // Create local copies for byval args
2135   SmallVector<SDValue, 8> ByValArgs;
2136   for (unsigned i = 0, e = Outs.size(); i != e; ++i) {
2137     ISD::ArgFlagsTy Flags = Outs[i].Flags;
2138     if (!Flags.isByVal())
2139       continue;
2140 
2141     SDValue Arg = OutVals[i];
2142     unsigned Size = Flags.getByValSize();
2143     unsigned Align = Flags.getByValAlign();
2144 
2145     int FI = MF.getFrameInfo().CreateStackObject(Size, Align, /*isSS=*/false);
2146     SDValue FIPtr = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout()));
2147     SDValue SizeNode = DAG.getConstant(Size, DL, XLenVT);
2148 
2149     Chain = DAG.getMemcpy(Chain, DL, FIPtr, Arg, SizeNode, Align,
2150                           /*IsVolatile=*/false,
2151                           /*AlwaysInline=*/false,
2152                           IsTailCall, MachinePointerInfo(),
2153                           MachinePointerInfo());
2154     ByValArgs.push_back(FIPtr);
2155   }
2156 
2157   if (!IsTailCall)
2158     Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, CLI.DL);
2159 
2160   // Copy argument values to their designated locations.
2161   SmallVector<std::pair<Register, SDValue>, 8> RegsToPass;
2162   SmallVector<SDValue, 8> MemOpChains;
2163   SDValue StackPtr;
2164   for (unsigned i = 0, j = 0, e = ArgLocs.size(); i != e; ++i) {
2165     CCValAssign &VA = ArgLocs[i];
2166     SDValue ArgValue = OutVals[i];
2167     ISD::ArgFlagsTy Flags = Outs[i].Flags;
2168 
2169     // Handle passing f64 on RV32D with a soft float ABI as a special case.
2170     bool IsF64OnRV32DSoftABI =
2171         VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64;
2172     if (IsF64OnRV32DSoftABI && VA.isRegLoc()) {
2173       SDValue SplitF64 = DAG.getNode(
2174           RISCVISD::SplitF64, DL, DAG.getVTList(MVT::i32, MVT::i32), ArgValue);
2175       SDValue Lo = SplitF64.getValue(0);
2176       SDValue Hi = SplitF64.getValue(1);
2177 
2178       Register RegLo = VA.getLocReg();
2179       RegsToPass.push_back(std::make_pair(RegLo, Lo));
2180 
2181       if (RegLo == RISCV::X17) {
2182         // Second half of f64 is passed on the stack.
2183         // Work out the address of the stack slot.
2184         if (!StackPtr.getNode())
2185           StackPtr = DAG.getCopyFromReg(Chain, DL, RISCV::X2, PtrVT);
2186         // Emit the store.
2187         MemOpChains.push_back(
2188             DAG.getStore(Chain, DL, Hi, StackPtr, MachinePointerInfo()));
2189       } else {
2190         // Second half of f64 is passed in another GPR.
2191         assert(RegLo < RISCV::X31 && "Invalid register pair");
2192         Register RegHigh = RegLo + 1;
2193         RegsToPass.push_back(std::make_pair(RegHigh, Hi));
2194       }
2195       continue;
2196     }
2197 
2198     // IsF64OnRV32DSoftABI && VA.isMemLoc() is handled below in the same way
2199     // as any other MemLoc.
2200 
2201     // Promote the value if needed.
2202     // For now, only handle fully promoted and indirect arguments.
2203     if (VA.getLocInfo() == CCValAssign::Indirect) {
2204       // Store the argument in a stack slot and pass its address.
2205       SDValue SpillSlot = DAG.CreateStackTemporary(Outs[i].ArgVT);
2206       int FI = cast<FrameIndexSDNode>(SpillSlot)->getIndex();
2207       MemOpChains.push_back(
2208           DAG.getStore(Chain, DL, ArgValue, SpillSlot,
2209                        MachinePointerInfo::getFixedStack(MF, FI)));
2210       // If the original argument was split (e.g. i128), we need
2211       // to store all parts of it here (and pass just one address).
2212       unsigned ArgIndex = Outs[i].OrigArgIndex;
2213       assert(Outs[i].PartOffset == 0);
2214       while (i + 1 != e && Outs[i + 1].OrigArgIndex == ArgIndex) {
2215         SDValue PartValue = OutVals[i + 1];
2216         unsigned PartOffset = Outs[i + 1].PartOffset;
2217         SDValue Address = DAG.getNode(ISD::ADD, DL, PtrVT, SpillSlot,
2218                                       DAG.getIntPtrConstant(PartOffset, DL));
2219         MemOpChains.push_back(
2220             DAG.getStore(Chain, DL, PartValue, Address,
2221                          MachinePointerInfo::getFixedStack(MF, FI)));
2222         ++i;
2223       }
2224       ArgValue = SpillSlot;
2225     } else {
2226       ArgValue = convertValVTToLocVT(DAG, ArgValue, VA, DL);
2227     }
2228 
2229     // Use local copy if it is a byval arg.
2230     if (Flags.isByVal())
2231       ArgValue = ByValArgs[j++];
2232 
2233     if (VA.isRegLoc()) {
2234       // Queue up the argument copies and emit them at the end.
2235       RegsToPass.push_back(std::make_pair(VA.getLocReg(), ArgValue));
2236     } else {
2237       assert(VA.isMemLoc() && "Argument not register or memory");
2238       assert(!IsTailCall && "Tail call not allowed if stack is used "
2239                             "for passing parameters");
2240 
2241       // Work out the address of the stack slot.
2242       if (!StackPtr.getNode())
2243         StackPtr = DAG.getCopyFromReg(Chain, DL, RISCV::X2, PtrVT);
2244       SDValue Address =
2245           DAG.getNode(ISD::ADD, DL, PtrVT, StackPtr,
2246                       DAG.getIntPtrConstant(VA.getLocMemOffset(), DL));
2247 
2248       // Emit the store.
2249       MemOpChains.push_back(
2250           DAG.getStore(Chain, DL, ArgValue, Address, MachinePointerInfo()));
2251     }
2252   }
2253 
2254   // Join the stores, which are independent of one another.
2255   if (!MemOpChains.empty())
2256     Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOpChains);
2257 
2258   SDValue Glue;
2259 
2260   // Build a sequence of copy-to-reg nodes, chained and glued together.
2261   for (auto &Reg : RegsToPass) {
2262     Chain = DAG.getCopyToReg(Chain, DL, Reg.first, Reg.second, Glue);
2263     Glue = Chain.getValue(1);
2264   }
2265 
2266   // Validate that none of the argument registers have been marked as
2267   // reserved, if so report an error. Do the same for the return address if this
2268   // is not a tailcall.
2269   validateCCReservedRegs(RegsToPass, MF);
2270   if (!IsTailCall &&
2271       MF.getSubtarget<RISCVSubtarget>().isRegisterReservedByUser(RISCV::X1))
2272     MF.getFunction().getContext().diagnose(DiagnosticInfoUnsupported{
2273         MF.getFunction(),
2274         "Return address register required, but has been reserved."});
2275 
2276   // If the callee is a GlobalAddress/ExternalSymbol node, turn it into a
2277   // TargetGlobalAddress/TargetExternalSymbol node so that legalize won't
2278   // split it and then direct call can be matched by PseudoCALL.
2279   if (GlobalAddressSDNode *S = dyn_cast<GlobalAddressSDNode>(Callee)) {
2280     const GlobalValue *GV = S->getGlobal();
2281 
2282     unsigned OpFlags = RISCVII::MO_CALL;
2283     if (!getTargetMachine().shouldAssumeDSOLocal(*GV->getParent(), GV))
2284       OpFlags = RISCVII::MO_PLT;
2285 
2286     Callee = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, OpFlags);
2287   } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) {
2288     unsigned OpFlags = RISCVII::MO_CALL;
2289 
2290     if (!getTargetMachine().shouldAssumeDSOLocal(*MF.getFunction().getParent(),
2291                                                  nullptr))
2292       OpFlags = RISCVII::MO_PLT;
2293 
2294     Callee = DAG.getTargetExternalSymbol(S->getSymbol(), PtrVT, OpFlags);
2295   }
2296 
2297   // The first call operand is the chain and the second is the target address.
2298   SmallVector<SDValue, 8> Ops;
2299   Ops.push_back(Chain);
2300   Ops.push_back(Callee);
2301 
2302   // Add argument registers to the end of the list so that they are
2303   // known live into the call.
2304   for (auto &Reg : RegsToPass)
2305     Ops.push_back(DAG.getRegister(Reg.first, Reg.second.getValueType()));
2306 
2307   if (!IsTailCall) {
2308     // Add a register mask operand representing the call-preserved registers.
2309     const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo();
2310     const uint32_t *Mask = TRI->getCallPreservedMask(MF, CallConv);
2311     assert(Mask && "Missing call preserved mask for calling convention");
2312     Ops.push_back(DAG.getRegisterMask(Mask));
2313   }
2314 
2315   // Glue the call to the argument copies, if any.
2316   if (Glue.getNode())
2317     Ops.push_back(Glue);
2318 
2319   // Emit the call.
2320   SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
2321 
2322   if (IsTailCall) {
2323     MF.getFrameInfo().setHasTailCall();
2324     return DAG.getNode(RISCVISD::TAIL, DL, NodeTys, Ops);
2325   }
2326 
2327   Chain = DAG.getNode(RISCVISD::CALL, DL, NodeTys, Ops);
2328   Glue = Chain.getValue(1);
2329 
2330   // Mark the end of the call, which is glued to the call itself.
2331   Chain = DAG.getCALLSEQ_END(Chain,
2332                              DAG.getConstant(NumBytes, DL, PtrVT, true),
2333                              DAG.getConstant(0, DL, PtrVT, true),
2334                              Glue, DL);
2335   Glue = Chain.getValue(1);
2336 
2337   // Assign locations to each value returned by this call.
2338   SmallVector<CCValAssign, 16> RVLocs;
2339   CCState RetCCInfo(CallConv, IsVarArg, MF, RVLocs, *DAG.getContext());
2340   analyzeInputArgs(MF, RetCCInfo, Ins, /*IsRet=*/true);
2341 
2342   // Copy all of the result registers out of their specified physreg.
2343   for (auto &VA : RVLocs) {
2344     // Copy the value out
2345     SDValue RetValue =
2346         DAG.getCopyFromReg(Chain, DL, VA.getLocReg(), VA.getLocVT(), Glue);
2347     // Glue the RetValue to the end of the call sequence
2348     Chain = RetValue.getValue(1);
2349     Glue = RetValue.getValue(2);
2350 
2351     if (VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64) {
2352       assert(VA.getLocReg() == ArgGPRs[0] && "Unexpected reg assignment");
2353       SDValue RetValue2 =
2354           DAG.getCopyFromReg(Chain, DL, ArgGPRs[1], MVT::i32, Glue);
2355       Chain = RetValue2.getValue(1);
2356       Glue = RetValue2.getValue(2);
2357       RetValue = DAG.getNode(RISCVISD::BuildPairF64, DL, MVT::f64, RetValue,
2358                              RetValue2);
2359     }
2360 
2361     RetValue = convertLocVTToValVT(DAG, RetValue, VA, DL);
2362 
2363     InVals.push_back(RetValue);
2364   }
2365 
2366   return Chain;
2367 }
2368 
2369 bool RISCVTargetLowering::CanLowerReturn(
2370     CallingConv::ID CallConv, MachineFunction &MF, bool IsVarArg,
2371     const SmallVectorImpl<ISD::OutputArg> &Outs, LLVMContext &Context) const {
2372   SmallVector<CCValAssign, 16> RVLocs;
2373   CCState CCInfo(CallConv, IsVarArg, MF, RVLocs, Context);
2374   for (unsigned i = 0, e = Outs.size(); i != e; ++i) {
2375     MVT VT = Outs[i].VT;
2376     ISD::ArgFlagsTy ArgFlags = Outs[i].Flags;
2377     RISCVABI::ABI ABI = MF.getSubtarget<RISCVSubtarget>().getTargetABI();
2378     if (CC_RISCV(MF.getDataLayout(), ABI, i, VT, VT, CCValAssign::Full,
2379                  ArgFlags, CCInfo, /*IsFixed=*/true, /*IsRet=*/true, nullptr))
2380       return false;
2381   }
2382   return true;
2383 }
2384 
2385 SDValue
2386 RISCVTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv,
2387                                  bool IsVarArg,
2388                                  const SmallVectorImpl<ISD::OutputArg> &Outs,
2389                                  const SmallVectorImpl<SDValue> &OutVals,
2390                                  const SDLoc &DL, SelectionDAG &DAG) const {
2391   const MachineFunction &MF = DAG.getMachineFunction();
2392   const RISCVSubtarget &STI = MF.getSubtarget<RISCVSubtarget>();
2393 
2394   // Stores the assignment of the return value to a location.
2395   SmallVector<CCValAssign, 16> RVLocs;
2396 
2397   // Info about the registers and stack slot.
2398   CCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(), RVLocs,
2399                  *DAG.getContext());
2400 
2401   analyzeOutputArgs(DAG.getMachineFunction(), CCInfo, Outs, /*IsRet=*/true,
2402                     nullptr);
2403 
2404   SDValue Glue;
2405   SmallVector<SDValue, 4> RetOps(1, Chain);
2406 
2407   // Copy the result values into the output registers.
2408   for (unsigned i = 0, e = RVLocs.size(); i < e; ++i) {
2409     SDValue Val = OutVals[i];
2410     CCValAssign &VA = RVLocs[i];
2411     assert(VA.isRegLoc() && "Can only return in registers!");
2412 
2413     if (VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64) {
2414       // Handle returning f64 on RV32D with a soft float ABI.
2415       assert(VA.isRegLoc() && "Expected return via registers");
2416       SDValue SplitF64 = DAG.getNode(RISCVISD::SplitF64, DL,
2417                                      DAG.getVTList(MVT::i32, MVT::i32), Val);
2418       SDValue Lo = SplitF64.getValue(0);
2419       SDValue Hi = SplitF64.getValue(1);
2420       Register RegLo = VA.getLocReg();
2421       assert(RegLo < RISCV::X31 && "Invalid register pair");
2422       Register RegHi = RegLo + 1;
2423 
2424       if (STI.isRegisterReservedByUser(RegLo) ||
2425           STI.isRegisterReservedByUser(RegHi))
2426         MF.getFunction().getContext().diagnose(DiagnosticInfoUnsupported{
2427             MF.getFunction(),
2428             "Return value register required, but has been reserved."});
2429 
2430       Chain = DAG.getCopyToReg(Chain, DL, RegLo, Lo, Glue);
2431       Glue = Chain.getValue(1);
2432       RetOps.push_back(DAG.getRegister(RegLo, MVT::i32));
2433       Chain = DAG.getCopyToReg(Chain, DL, RegHi, Hi, Glue);
2434       Glue = Chain.getValue(1);
2435       RetOps.push_back(DAG.getRegister(RegHi, MVT::i32));
2436     } else {
2437       // Handle a 'normal' return.
2438       Val = convertValVTToLocVT(DAG, Val, VA, DL);
2439       Chain = DAG.getCopyToReg(Chain, DL, VA.getLocReg(), Val, Glue);
2440 
2441       if (STI.isRegisterReservedByUser(VA.getLocReg()))
2442         MF.getFunction().getContext().diagnose(DiagnosticInfoUnsupported{
2443             MF.getFunction(),
2444             "Return value register required, but has been reserved."});
2445 
2446       // Guarantee that all emitted copies are stuck together.
2447       Glue = Chain.getValue(1);
2448       RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
2449     }
2450   }
2451 
2452   RetOps[0] = Chain; // Update chain.
2453 
2454   // Add the glue node if we have it.
2455   if (Glue.getNode()) {
2456     RetOps.push_back(Glue);
2457   }
2458 
2459   // Interrupt service routines use different return instructions.
2460   const Function &Func = DAG.getMachineFunction().getFunction();
2461   if (Func.hasFnAttribute("interrupt")) {
2462     if (!Func.getReturnType()->isVoidTy())
2463       report_fatal_error(
2464           "Functions with the interrupt attribute must have void return type!");
2465 
2466     MachineFunction &MF = DAG.getMachineFunction();
2467     StringRef Kind =
2468       MF.getFunction().getFnAttribute("interrupt").getValueAsString();
2469 
2470     unsigned RetOpc;
2471     if (Kind == "user")
2472       RetOpc = RISCVISD::URET_FLAG;
2473     else if (Kind == "supervisor")
2474       RetOpc = RISCVISD::SRET_FLAG;
2475     else
2476       RetOpc = RISCVISD::MRET_FLAG;
2477 
2478     return DAG.getNode(RetOpc, DL, MVT::Other, RetOps);
2479   }
2480 
2481   return DAG.getNode(RISCVISD::RET_FLAG, DL, MVT::Other, RetOps);
2482 }
2483 
2484 void RISCVTargetLowering::validateCCReservedRegs(
2485     const SmallVectorImpl<std::pair<llvm::Register, llvm::SDValue>> &Regs,
2486     MachineFunction &MF) const {
2487   const Function &F = MF.getFunction();
2488   const RISCVSubtarget &STI = MF.getSubtarget<RISCVSubtarget>();
2489 
2490   if (std::any_of(std::begin(Regs), std::end(Regs), [&STI](auto Reg) {
2491         return STI.isRegisterReservedByUser(Reg.first);
2492       }))
2493     F.getContext().diagnose(DiagnosticInfoUnsupported{
2494         F, "Argument register required, but has been reserved."});
2495 }
2496 
2497 const char *RISCVTargetLowering::getTargetNodeName(unsigned Opcode) const {
2498   switch ((RISCVISD::NodeType)Opcode) {
2499   case RISCVISD::FIRST_NUMBER:
2500     break;
2501   case RISCVISD::RET_FLAG:
2502     return "RISCVISD::RET_FLAG";
2503   case RISCVISD::URET_FLAG:
2504     return "RISCVISD::URET_FLAG";
2505   case RISCVISD::SRET_FLAG:
2506     return "RISCVISD::SRET_FLAG";
2507   case RISCVISD::MRET_FLAG:
2508     return "RISCVISD::MRET_FLAG";
2509   case RISCVISD::CALL:
2510     return "RISCVISD::CALL";
2511   case RISCVISD::SELECT_CC:
2512     return "RISCVISD::SELECT_CC";
2513   case RISCVISD::BuildPairF64:
2514     return "RISCVISD::BuildPairF64";
2515   case RISCVISD::SplitF64:
2516     return "RISCVISD::SplitF64";
2517   case RISCVISD::TAIL:
2518     return "RISCVISD::TAIL";
2519   case RISCVISD::SLLW:
2520     return "RISCVISD::SLLW";
2521   case RISCVISD::SRAW:
2522     return "RISCVISD::SRAW";
2523   case RISCVISD::SRLW:
2524     return "RISCVISD::SRLW";
2525   case RISCVISD::DIVW:
2526     return "RISCVISD::DIVW";
2527   case RISCVISD::DIVUW:
2528     return "RISCVISD::DIVUW";
2529   case RISCVISD::REMUW:
2530     return "RISCVISD::REMUW";
2531   case RISCVISD::FMV_W_X_RV64:
2532     return "RISCVISD::FMV_W_X_RV64";
2533   case RISCVISD::FMV_X_ANYEXTW_RV64:
2534     return "RISCVISD::FMV_X_ANYEXTW_RV64";
2535   case RISCVISD::READ_CYCLE_WIDE:
2536     return "RISCVISD::READ_CYCLE_WIDE";
2537   }
2538   return nullptr;
2539 }
2540 
2541 /// getConstraintType - Given a constraint letter, return the type of
2542 /// constraint it is for this target.
2543 RISCVTargetLowering::ConstraintType
2544 RISCVTargetLowering::getConstraintType(StringRef Constraint) const {
2545   if (Constraint.size() == 1) {
2546     switch (Constraint[0]) {
2547     default:
2548       break;
2549     case 'f':
2550       return C_RegisterClass;
2551     case 'I':
2552     case 'J':
2553     case 'K':
2554       return C_Immediate;
2555     case 'A':
2556       return C_Memory;
2557     }
2558   }
2559   return TargetLowering::getConstraintType(Constraint);
2560 }
2561 
2562 std::pair<unsigned, const TargetRegisterClass *>
2563 RISCVTargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI,
2564                                                   StringRef Constraint,
2565                                                   MVT VT) const {
2566   // First, see if this is a constraint that directly corresponds to a
2567   // RISCV register class.
2568   if (Constraint.size() == 1) {
2569     switch (Constraint[0]) {
2570     case 'r':
2571       return std::make_pair(0U, &RISCV::GPRRegClass);
2572     case 'f':
2573       if (Subtarget.hasStdExtF() && VT == MVT::f32)
2574         return std::make_pair(0U, &RISCV::FPR32RegClass);
2575       if (Subtarget.hasStdExtD() && VT == MVT::f64)
2576         return std::make_pair(0U, &RISCV::FPR64RegClass);
2577       break;
2578     default:
2579       break;
2580     }
2581   }
2582 
2583   // Clang will correctly decode the usage of register name aliases into their
2584   // official names. However, other frontends like `rustc` do not. This allows
2585   // users of these frontends to use the ABI names for registers in LLVM-style
2586   // register constraints.
2587   Register XRegFromAlias = StringSwitch<Register>(Constraint.lower())
2588                                .Case("{zero}", RISCV::X0)
2589                                .Case("{ra}", RISCV::X1)
2590                                .Case("{sp}", RISCV::X2)
2591                                .Case("{gp}", RISCV::X3)
2592                                .Case("{tp}", RISCV::X4)
2593                                .Case("{t0}", RISCV::X5)
2594                                .Case("{t1}", RISCV::X6)
2595                                .Case("{t2}", RISCV::X7)
2596                                .Cases("{s0}", "{fp}", RISCV::X8)
2597                                .Case("{s1}", RISCV::X9)
2598                                .Case("{a0}", RISCV::X10)
2599                                .Case("{a1}", RISCV::X11)
2600                                .Case("{a2}", RISCV::X12)
2601                                .Case("{a3}", RISCV::X13)
2602                                .Case("{a4}", RISCV::X14)
2603                                .Case("{a5}", RISCV::X15)
2604                                .Case("{a6}", RISCV::X16)
2605                                .Case("{a7}", RISCV::X17)
2606                                .Case("{s2}", RISCV::X18)
2607                                .Case("{s3}", RISCV::X19)
2608                                .Case("{s4}", RISCV::X20)
2609                                .Case("{s5}", RISCV::X21)
2610                                .Case("{s6}", RISCV::X22)
2611                                .Case("{s7}", RISCV::X23)
2612                                .Case("{s8}", RISCV::X24)
2613                                .Case("{s9}", RISCV::X25)
2614                                .Case("{s10}", RISCV::X26)
2615                                .Case("{s11}", RISCV::X27)
2616                                .Case("{t3}", RISCV::X28)
2617                                .Case("{t4}", RISCV::X29)
2618                                .Case("{t5}", RISCV::X30)
2619                                .Case("{t6}", RISCV::X31)
2620                                .Default(RISCV::NoRegister);
2621   if (XRegFromAlias != RISCV::NoRegister)
2622     return std::make_pair(XRegFromAlias, &RISCV::GPRRegClass);
2623 
2624   // Since TargetLowering::getRegForInlineAsmConstraint uses the name of the
2625   // TableGen record rather than the AsmName to choose registers for InlineAsm
2626   // constraints, plus we want to match those names to the widest floating point
2627   // register type available, manually select floating point registers here.
2628   //
2629   // The second case is the ABI name of the register, so that frontends can also
2630   // use the ABI names in register constraint lists.
2631   if (Subtarget.hasStdExtF() || Subtarget.hasStdExtD()) {
2632     std::pair<Register, Register> FReg =
2633         StringSwitch<std::pair<Register, Register>>(Constraint.lower())
2634             .Cases("{f0}", "{ft0}", {RISCV::F0_F, RISCV::F0_D})
2635             .Cases("{f1}", "{ft1}", {RISCV::F1_F, RISCV::F1_D})
2636             .Cases("{f2}", "{ft2}", {RISCV::F2_F, RISCV::F2_D})
2637             .Cases("{f3}", "{ft3}", {RISCV::F3_F, RISCV::F3_D})
2638             .Cases("{f4}", "{ft4}", {RISCV::F4_F, RISCV::F4_D})
2639             .Cases("{f5}", "{ft5}", {RISCV::F5_F, RISCV::F5_D})
2640             .Cases("{f6}", "{ft6}", {RISCV::F6_F, RISCV::F6_D})
2641             .Cases("{f7}", "{ft7}", {RISCV::F7_F, RISCV::F7_D})
2642             .Cases("{f8}", "{fs0}", {RISCV::F8_F, RISCV::F8_D})
2643             .Cases("{f9}", "{fs1}", {RISCV::F9_F, RISCV::F9_D})
2644             .Cases("{f10}", "{fa0}", {RISCV::F10_F, RISCV::F10_D})
2645             .Cases("{f11}", "{fa1}", {RISCV::F11_F, RISCV::F11_D})
2646             .Cases("{f12}", "{fa2}", {RISCV::F12_F, RISCV::F12_D})
2647             .Cases("{f13}", "{fa3}", {RISCV::F13_F, RISCV::F13_D})
2648             .Cases("{f14}", "{fa4}", {RISCV::F14_F, RISCV::F14_D})
2649             .Cases("{f15}", "{fa5}", {RISCV::F15_F, RISCV::F15_D})
2650             .Cases("{f16}", "{fa6}", {RISCV::F16_F, RISCV::F16_D})
2651             .Cases("{f17}", "{fa7}", {RISCV::F17_F, RISCV::F17_D})
2652             .Cases("{f18}", "{fs2}", {RISCV::F18_F, RISCV::F18_D})
2653             .Cases("{f19}", "{fs3}", {RISCV::F19_F, RISCV::F19_D})
2654             .Cases("{f20}", "{fs4}", {RISCV::F20_F, RISCV::F20_D})
2655             .Cases("{f21}", "{fs5}", {RISCV::F21_F, RISCV::F21_D})
2656             .Cases("{f22}", "{fs6}", {RISCV::F22_F, RISCV::F22_D})
2657             .Cases("{f23}", "{fs7}", {RISCV::F23_F, RISCV::F23_D})
2658             .Cases("{f24}", "{fs8}", {RISCV::F24_F, RISCV::F24_D})
2659             .Cases("{f25}", "{fs9}", {RISCV::F25_F, RISCV::F25_D})
2660             .Cases("{f26}", "{fs10}", {RISCV::F26_F, RISCV::F26_D})
2661             .Cases("{f27}", "{fs11}", {RISCV::F27_F, RISCV::F27_D})
2662             .Cases("{f28}", "{ft8}", {RISCV::F28_F, RISCV::F28_D})
2663             .Cases("{f29}", "{ft9}", {RISCV::F29_F, RISCV::F29_D})
2664             .Cases("{f30}", "{ft10}", {RISCV::F30_F, RISCV::F30_D})
2665             .Cases("{f31}", "{ft11}", {RISCV::F31_F, RISCV::F31_D})
2666             .Default({RISCV::NoRegister, RISCV::NoRegister});
2667     if (FReg.first != RISCV::NoRegister)
2668       return Subtarget.hasStdExtD()
2669                  ? std::make_pair(FReg.second, &RISCV::FPR64RegClass)
2670                  : std::make_pair(FReg.first, &RISCV::FPR32RegClass);
2671   }
2672 
2673   return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT);
2674 }
2675 
2676 unsigned
2677 RISCVTargetLowering::getInlineAsmMemConstraint(StringRef ConstraintCode) const {
2678   // Currently only support length 1 constraints.
2679   if (ConstraintCode.size() == 1) {
2680     switch (ConstraintCode[0]) {
2681     case 'A':
2682       return InlineAsm::Constraint_A;
2683     default:
2684       break;
2685     }
2686   }
2687 
2688   return TargetLowering::getInlineAsmMemConstraint(ConstraintCode);
2689 }
2690 
2691 void RISCVTargetLowering::LowerAsmOperandForConstraint(
2692     SDValue Op, std::string &Constraint, std::vector<SDValue> &Ops,
2693     SelectionDAG &DAG) const {
2694   // Currently only support length 1 constraints.
2695   if (Constraint.length() == 1) {
2696     switch (Constraint[0]) {
2697     case 'I':
2698       // Validate & create a 12-bit signed immediate operand.
2699       if (auto *C = dyn_cast<ConstantSDNode>(Op)) {
2700         uint64_t CVal = C->getSExtValue();
2701         if (isInt<12>(CVal))
2702           Ops.push_back(
2703               DAG.getTargetConstant(CVal, SDLoc(Op), Subtarget.getXLenVT()));
2704       }
2705       return;
2706     case 'J':
2707       // Validate & create an integer zero operand.
2708       if (auto *C = dyn_cast<ConstantSDNode>(Op))
2709         if (C->getZExtValue() == 0)
2710           Ops.push_back(
2711               DAG.getTargetConstant(0, SDLoc(Op), Subtarget.getXLenVT()));
2712       return;
2713     case 'K':
2714       // Validate & create a 5-bit unsigned immediate operand.
2715       if (auto *C = dyn_cast<ConstantSDNode>(Op)) {
2716         uint64_t CVal = C->getZExtValue();
2717         if (isUInt<5>(CVal))
2718           Ops.push_back(
2719               DAG.getTargetConstant(CVal, SDLoc(Op), Subtarget.getXLenVT()));
2720       }
2721       return;
2722     default:
2723       break;
2724     }
2725   }
2726   TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
2727 }
2728 
2729 Instruction *RISCVTargetLowering::emitLeadingFence(IRBuilder<> &Builder,
2730                                                    Instruction *Inst,
2731                                                    AtomicOrdering Ord) const {
2732   if (isa<LoadInst>(Inst) && Ord == AtomicOrdering::SequentiallyConsistent)
2733     return Builder.CreateFence(Ord);
2734   if (isa<StoreInst>(Inst) && isReleaseOrStronger(Ord))
2735     return Builder.CreateFence(AtomicOrdering::Release);
2736   return nullptr;
2737 }
2738 
2739 Instruction *RISCVTargetLowering::emitTrailingFence(IRBuilder<> &Builder,
2740                                                     Instruction *Inst,
2741                                                     AtomicOrdering Ord) const {
2742   if (isa<LoadInst>(Inst) && isAcquireOrStronger(Ord))
2743     return Builder.CreateFence(AtomicOrdering::Acquire);
2744   return nullptr;
2745 }
2746 
2747 TargetLowering::AtomicExpansionKind
2748 RISCVTargetLowering::shouldExpandAtomicRMWInIR(AtomicRMWInst *AI) const {
2749   // atomicrmw {fadd,fsub} must be expanded to use compare-exchange, as floating
2750   // point operations can't be used in an lr/sc sequence without breaking the
2751   // forward-progress guarantee.
2752   if (AI->isFloatingPointOperation())
2753     return AtomicExpansionKind::CmpXChg;
2754 
2755   unsigned Size = AI->getType()->getPrimitiveSizeInBits();
2756   if (Size == 8 || Size == 16)
2757     return AtomicExpansionKind::MaskedIntrinsic;
2758   return AtomicExpansionKind::None;
2759 }
2760 
2761 static Intrinsic::ID
2762 getIntrinsicForMaskedAtomicRMWBinOp(unsigned XLen, AtomicRMWInst::BinOp BinOp) {
2763   if (XLen == 32) {
2764     switch (BinOp) {
2765     default:
2766       llvm_unreachable("Unexpected AtomicRMW BinOp");
2767     case AtomicRMWInst::Xchg:
2768       return Intrinsic::riscv_masked_atomicrmw_xchg_i32;
2769     case AtomicRMWInst::Add:
2770       return Intrinsic::riscv_masked_atomicrmw_add_i32;
2771     case AtomicRMWInst::Sub:
2772       return Intrinsic::riscv_masked_atomicrmw_sub_i32;
2773     case AtomicRMWInst::Nand:
2774       return Intrinsic::riscv_masked_atomicrmw_nand_i32;
2775     case AtomicRMWInst::Max:
2776       return Intrinsic::riscv_masked_atomicrmw_max_i32;
2777     case AtomicRMWInst::Min:
2778       return Intrinsic::riscv_masked_atomicrmw_min_i32;
2779     case AtomicRMWInst::UMax:
2780       return Intrinsic::riscv_masked_atomicrmw_umax_i32;
2781     case AtomicRMWInst::UMin:
2782       return Intrinsic::riscv_masked_atomicrmw_umin_i32;
2783     }
2784   }
2785 
2786   if (XLen == 64) {
2787     switch (BinOp) {
2788     default:
2789       llvm_unreachable("Unexpected AtomicRMW BinOp");
2790     case AtomicRMWInst::Xchg:
2791       return Intrinsic::riscv_masked_atomicrmw_xchg_i64;
2792     case AtomicRMWInst::Add:
2793       return Intrinsic::riscv_masked_atomicrmw_add_i64;
2794     case AtomicRMWInst::Sub:
2795       return Intrinsic::riscv_masked_atomicrmw_sub_i64;
2796     case AtomicRMWInst::Nand:
2797       return Intrinsic::riscv_masked_atomicrmw_nand_i64;
2798     case AtomicRMWInst::Max:
2799       return Intrinsic::riscv_masked_atomicrmw_max_i64;
2800     case AtomicRMWInst::Min:
2801       return Intrinsic::riscv_masked_atomicrmw_min_i64;
2802     case AtomicRMWInst::UMax:
2803       return Intrinsic::riscv_masked_atomicrmw_umax_i64;
2804     case AtomicRMWInst::UMin:
2805       return Intrinsic::riscv_masked_atomicrmw_umin_i64;
2806     }
2807   }
2808 
2809   llvm_unreachable("Unexpected XLen\n");
2810 }
2811 
2812 Value *RISCVTargetLowering::emitMaskedAtomicRMWIntrinsic(
2813     IRBuilder<> &Builder, AtomicRMWInst *AI, Value *AlignedAddr, Value *Incr,
2814     Value *Mask, Value *ShiftAmt, AtomicOrdering Ord) const {
2815   unsigned XLen = Subtarget.getXLen();
2816   Value *Ordering =
2817       Builder.getIntN(XLen, static_cast<uint64_t>(AI->getOrdering()));
2818   Type *Tys[] = {AlignedAddr->getType()};
2819   Function *LrwOpScwLoop = Intrinsic::getDeclaration(
2820       AI->getModule(),
2821       getIntrinsicForMaskedAtomicRMWBinOp(XLen, AI->getOperation()), Tys);
2822 
2823   if (XLen == 64) {
2824     Incr = Builder.CreateSExt(Incr, Builder.getInt64Ty());
2825     Mask = Builder.CreateSExt(Mask, Builder.getInt64Ty());
2826     ShiftAmt = Builder.CreateSExt(ShiftAmt, Builder.getInt64Ty());
2827   }
2828 
2829   Value *Result;
2830 
2831   // Must pass the shift amount needed to sign extend the loaded value prior
2832   // to performing a signed comparison for min/max. ShiftAmt is the number of
2833   // bits to shift the value into position. Pass XLen-ShiftAmt-ValWidth, which
2834   // is the number of bits to left+right shift the value in order to
2835   // sign-extend.
2836   if (AI->getOperation() == AtomicRMWInst::Min ||
2837       AI->getOperation() == AtomicRMWInst::Max) {
2838     const DataLayout &DL = AI->getModule()->getDataLayout();
2839     unsigned ValWidth =
2840         DL.getTypeStoreSizeInBits(AI->getValOperand()->getType());
2841     Value *SextShamt =
2842         Builder.CreateSub(Builder.getIntN(XLen, XLen - ValWidth), ShiftAmt);
2843     Result = Builder.CreateCall(LrwOpScwLoop,
2844                                 {AlignedAddr, Incr, Mask, SextShamt, Ordering});
2845   } else {
2846     Result =
2847         Builder.CreateCall(LrwOpScwLoop, {AlignedAddr, Incr, Mask, Ordering});
2848   }
2849 
2850   if (XLen == 64)
2851     Result = Builder.CreateTrunc(Result, Builder.getInt32Ty());
2852   return Result;
2853 }
2854 
2855 TargetLowering::AtomicExpansionKind
2856 RISCVTargetLowering::shouldExpandAtomicCmpXchgInIR(
2857     AtomicCmpXchgInst *CI) const {
2858   unsigned Size = CI->getCompareOperand()->getType()->getPrimitiveSizeInBits();
2859   if (Size == 8 || Size == 16)
2860     return AtomicExpansionKind::MaskedIntrinsic;
2861   return AtomicExpansionKind::None;
2862 }
2863 
2864 Value *RISCVTargetLowering::emitMaskedAtomicCmpXchgIntrinsic(
2865     IRBuilder<> &Builder, AtomicCmpXchgInst *CI, Value *AlignedAddr,
2866     Value *CmpVal, Value *NewVal, Value *Mask, AtomicOrdering Ord) const {
2867   unsigned XLen = Subtarget.getXLen();
2868   Value *Ordering = Builder.getIntN(XLen, static_cast<uint64_t>(Ord));
2869   Intrinsic::ID CmpXchgIntrID = Intrinsic::riscv_masked_cmpxchg_i32;
2870   if (XLen == 64) {
2871     CmpVal = Builder.CreateSExt(CmpVal, Builder.getInt64Ty());
2872     NewVal = Builder.CreateSExt(NewVal, Builder.getInt64Ty());
2873     Mask = Builder.CreateSExt(Mask, Builder.getInt64Ty());
2874     CmpXchgIntrID = Intrinsic::riscv_masked_cmpxchg_i64;
2875   }
2876   Type *Tys[] = {AlignedAddr->getType()};
2877   Function *MaskedCmpXchg =
2878       Intrinsic::getDeclaration(CI->getModule(), CmpXchgIntrID, Tys);
2879   Value *Result = Builder.CreateCall(
2880       MaskedCmpXchg, {AlignedAddr, CmpVal, NewVal, Mask, Ordering});
2881   if (XLen == 64)
2882     Result = Builder.CreateTrunc(Result, Builder.getInt32Ty());
2883   return Result;
2884 }
2885 
2886 unsigned RISCVTargetLowering::getExceptionPointerRegister(
2887     const Constant *PersonalityFn) const {
2888   return RISCV::X10;
2889 }
2890 
2891 unsigned RISCVTargetLowering::getExceptionSelectorRegister(
2892     const Constant *PersonalityFn) const {
2893   return RISCV::X11;
2894 }
2895 
2896 bool RISCVTargetLowering::shouldExtendTypeInLibCall(EVT Type) const {
2897   // Return false to suppress the unnecessary extensions if the LibCall
2898   // arguments or return value is f32 type for LP64 ABI.
2899   RISCVABI::ABI ABI = Subtarget.getTargetABI();
2900   if (ABI == RISCVABI::ABI_LP64 && (Type == MVT::f32))
2901     return false;
2902 
2903   return true;
2904 }
2905 
2906 #define GET_REGISTER_MATCHER
2907 #include "RISCVGenAsmMatcher.inc"
2908 
2909 Register
2910 RISCVTargetLowering::getRegisterByName(const char *RegName, LLT VT,
2911                                        const MachineFunction &MF) const {
2912   Register Reg = MatchRegisterAltName(RegName);
2913   if (Reg == RISCV::NoRegister)
2914     Reg = MatchRegisterName(RegName);
2915   if (Reg == RISCV::NoRegister)
2916     report_fatal_error(
2917         Twine("Invalid register name \"" + StringRef(RegName) + "\"."));
2918   BitVector ReservedRegs = Subtarget.getRegisterInfo()->getReservedRegs(MF);
2919   if (!ReservedRegs.test(Reg) && !Subtarget.isRegisterReservedByUser(Reg))
2920     report_fatal_error(Twine("Trying to obtain non-reserved register \"" +
2921                              StringRef(RegName) + "\"."));
2922   return Reg;
2923 }
2924