1 //===-- RISCVInstrInfo.cpp - RISC-V Instruction Information -----*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file contains the RISC-V implementation of the TargetInstrInfo class.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "RISCVInstrInfo.h"
14 #include "MCTargetDesc/RISCVMatInt.h"
15 #include "RISCV.h"
16 #include "RISCVMachineFunctionInfo.h"
17 #include "RISCVSubtarget.h"
18 #include "RISCVTargetMachine.h"
19 #include "llvm/ADT/STLExtras.h"
20 #include "llvm/ADT/SmallVector.h"
21 #include "llvm/Analysis/MemoryLocation.h"
22 #include "llvm/Analysis/ValueTracking.h"
23 #include "llvm/CodeGen/LiveIntervals.h"
24 #include "llvm/CodeGen/LiveVariables.h"
25 #include "llvm/CodeGen/MachineCombinerPattern.h"
26 #include "llvm/CodeGen/MachineFunctionPass.h"
27 #include "llvm/CodeGen/MachineInstrBuilder.h"
28 #include "llvm/CodeGen/MachineRegisterInfo.h"
29 #include "llvm/CodeGen/MachineTraceMetrics.h"
30 #include "llvm/CodeGen/RegisterScavenging.h"
31 #include "llvm/CodeGen/StackMaps.h"
32 #include "llvm/IR/DebugInfoMetadata.h"
33 #include "llvm/MC/MCInstBuilder.h"
34 #include "llvm/MC/TargetRegistry.h"
35 #include "llvm/Support/ErrorHandling.h"
36 
37 using namespace llvm;
38 
39 #define GEN_CHECK_COMPRESS_INSTR
40 #include "RISCVGenCompressInstEmitter.inc"
41 
42 #define GET_INSTRINFO_CTOR_DTOR
43 #define GET_INSTRINFO_NAMED_OPS
44 #include "RISCVGenInstrInfo.inc"
45 
46 static cl::opt<bool> PreferWholeRegisterMove(
47     "riscv-prefer-whole-register-move", cl::init(false), cl::Hidden,
48     cl::desc("Prefer whole register move for vector registers."));
49 
50 static cl::opt<MachineTraceStrategy> ForceMachineCombinerStrategy(
51     "riscv-force-machine-combiner-strategy", cl::Hidden,
52     cl::desc("Force machine combiner to use a specific strategy for machine "
53              "trace metrics evaluation."),
54     cl::init(MachineTraceStrategy::TS_NumStrategies),
55     cl::values(clEnumValN(MachineTraceStrategy::TS_Local, "local",
56                           "Local strategy."),
57                clEnumValN(MachineTraceStrategy::TS_MinInstrCount, "min-instr",
58                           "MinInstrCount strategy.")));
59 
60 namespace llvm::RISCVVPseudosTable {
61 
62 using namespace RISCV;
63 
64 #define GET_RISCVVPseudosTable_IMPL
65 #include "RISCVGenSearchableTables.inc"
66 
67 } // namespace llvm::RISCVVPseudosTable
68 
69 RISCVInstrInfo::RISCVInstrInfo(RISCVSubtarget &STI)
70     : RISCVGenInstrInfo(RISCV::ADJCALLSTACKDOWN, RISCV::ADJCALLSTACKUP),
71       STI(STI) {}
72 
73 MCInst RISCVInstrInfo::getNop() const {
74   if (STI.hasStdExtCOrZca())
75     return MCInstBuilder(RISCV::C_NOP);
76   return MCInstBuilder(RISCV::ADDI)
77       .addReg(RISCV::X0)
78       .addReg(RISCV::X0)
79       .addImm(0);
80 }
81 
82 unsigned RISCVInstrInfo::isLoadFromStackSlot(const MachineInstr &MI,
83                                              int &FrameIndex) const {
84   unsigned Dummy;
85   return isLoadFromStackSlot(MI, FrameIndex, Dummy);
86 }
87 
88 unsigned RISCVInstrInfo::isLoadFromStackSlot(const MachineInstr &MI,
89                                              int &FrameIndex,
90                                              unsigned &MemBytes) const {
91   switch (MI.getOpcode()) {
92   default:
93     return 0;
94   case RISCV::LB:
95   case RISCV::LBU:
96     MemBytes = 1;
97     break;
98   case RISCV::LH:
99   case RISCV::LHU:
100   case RISCV::FLH:
101     MemBytes = 2;
102     break;
103   case RISCV::LW:
104   case RISCV::FLW:
105   case RISCV::LWU:
106     MemBytes = 4;
107     break;
108   case RISCV::LD:
109   case RISCV::FLD:
110     MemBytes = 8;
111     break;
112   }
113 
114   if (MI.getOperand(1).isFI() && MI.getOperand(2).isImm() &&
115       MI.getOperand(2).getImm() == 0) {
116     FrameIndex = MI.getOperand(1).getIndex();
117     return MI.getOperand(0).getReg();
118   }
119 
120   return 0;
121 }
122 
123 unsigned RISCVInstrInfo::isStoreToStackSlot(const MachineInstr &MI,
124                                             int &FrameIndex) const {
125   unsigned Dummy;
126   return isStoreToStackSlot(MI, FrameIndex, Dummy);
127 }
128 
129 unsigned RISCVInstrInfo::isStoreToStackSlot(const MachineInstr &MI,
130                                             int &FrameIndex,
131                                             unsigned &MemBytes) const {
132   switch (MI.getOpcode()) {
133   default:
134     return 0;
135   case RISCV::SB:
136     MemBytes = 1;
137     break;
138   case RISCV::SH:
139   case RISCV::FSH:
140     MemBytes = 2;
141     break;
142   case RISCV::SW:
143   case RISCV::FSW:
144     MemBytes = 4;
145     break;
146   case RISCV::SD:
147   case RISCV::FSD:
148     MemBytes = 8;
149     break;
150   }
151 
152   if (MI.getOperand(1).isFI() && MI.getOperand(2).isImm() &&
153       MI.getOperand(2).getImm() == 0) {
154     FrameIndex = MI.getOperand(1).getIndex();
155     return MI.getOperand(0).getReg();
156   }
157 
158   return 0;
159 }
160 
161 static bool forwardCopyWillClobberTuple(unsigned DstReg, unsigned SrcReg,
162                                         unsigned NumRegs) {
163   return DstReg > SrcReg && (DstReg - SrcReg) < NumRegs;
164 }
165 
166 static bool isConvertibleToVMV_V_V(const RISCVSubtarget &STI,
167                                    const MachineBasicBlock &MBB,
168                                    MachineBasicBlock::const_iterator MBBI,
169                                    MachineBasicBlock::const_iterator &DefMBBI,
170                                    RISCVII::VLMUL LMul) {
171   if (PreferWholeRegisterMove)
172     return false;
173 
174   assert(MBBI->getOpcode() == TargetOpcode::COPY &&
175          "Unexpected COPY instruction.");
176   Register SrcReg = MBBI->getOperand(1).getReg();
177   const TargetRegisterInfo *TRI = STI.getRegisterInfo();
178 
179   bool FoundDef = false;
180   bool FirstVSetVLI = false;
181   unsigned FirstSEW = 0;
182   while (MBBI != MBB.begin()) {
183     --MBBI;
184     if (MBBI->isMetaInstruction())
185       continue;
186 
187     if (MBBI->getOpcode() == RISCV::PseudoVSETVLI ||
188         MBBI->getOpcode() == RISCV::PseudoVSETVLIX0 ||
189         MBBI->getOpcode() == RISCV::PseudoVSETIVLI) {
190       // There is a vsetvli between COPY and source define instruction.
191       // vy = def_vop ...  (producing instruction)
192       // ...
193       // vsetvli
194       // ...
195       // vx = COPY vy
196       if (!FoundDef) {
197         if (!FirstVSetVLI) {
198           FirstVSetVLI = true;
199           unsigned FirstVType = MBBI->getOperand(2).getImm();
200           RISCVII::VLMUL FirstLMul = RISCVVType::getVLMUL(FirstVType);
201           FirstSEW = RISCVVType::getSEW(FirstVType);
202           // The first encountered vsetvli must have the same lmul as the
203           // register class of COPY.
204           if (FirstLMul != LMul)
205             return false;
206         }
207         // Only permit `vsetvli x0, x0, vtype` between COPY and the source
208         // define instruction.
209         if (MBBI->getOperand(0).getReg() != RISCV::X0)
210           return false;
211         if (MBBI->getOperand(1).isImm())
212           return false;
213         if (MBBI->getOperand(1).getReg() != RISCV::X0)
214           return false;
215         continue;
216       }
217 
218       // MBBI is the first vsetvli before the producing instruction.
219       unsigned VType = MBBI->getOperand(2).getImm();
220       // If there is a vsetvli between COPY and the producing instruction.
221       if (FirstVSetVLI) {
222         // If SEW is different, return false.
223         if (RISCVVType::getSEW(VType) != FirstSEW)
224           return false;
225       }
226 
227       // If the vsetvli is tail undisturbed, keep the whole register move.
228       if (!RISCVVType::isTailAgnostic(VType))
229         return false;
230 
231       // The checking is conservative. We only have register classes for
232       // LMUL = 1/2/4/8. We should be able to convert vmv1r.v to vmv.v.v
233       // for fractional LMUL operations. However, we could not use the vsetvli
234       // lmul for widening operations. The result of widening operation is
235       // 2 x LMUL.
236       return LMul == RISCVVType::getVLMUL(VType);
237     } else if (MBBI->isInlineAsm() || MBBI->isCall()) {
238       return false;
239     } else if (MBBI->getNumDefs()) {
240       // Check all the instructions which will change VL.
241       // For example, vleff has implicit def VL.
242       if (MBBI->modifiesRegister(RISCV::VL))
243         return false;
244 
245       // Only converting whole register copies to vmv.v.v when the defining
246       // value appears in the explicit operands.
247       for (const MachineOperand &MO : MBBI->explicit_operands()) {
248         if (!MO.isReg() || !MO.isDef())
249           continue;
250         if (!FoundDef && TRI->regsOverlap(MO.getReg(), SrcReg)) {
251           // We only permit the source of COPY has the same LMUL as the defined
252           // operand.
253           // There are cases we need to keep the whole register copy if the LMUL
254           // is different.
255           // For example,
256           // $x0 = PseudoVSETIVLI 4, 73   // vsetivli zero, 4, e16,m2,ta,m
257           // $v28m4 = PseudoVWADD_VV_M2 $v26m2, $v8m2
258           // # The COPY may be created by vlmul_trunc intrinsic.
259           // $v26m2 = COPY renamable $v28m2, implicit killed $v28m4
260           //
261           // After widening, the valid value will be 4 x e32 elements. If we
262           // convert the COPY to vmv.v.v, it will only copy 4 x e16 elements.
263           // FIXME: The COPY of subregister of Zvlsseg register will not be able
264           // to convert to vmv.v.[v|i] under the constraint.
265           if (MO.getReg() != SrcReg)
266             return false;
267 
268           // In widening reduction instructions with LMUL_1 input vector case,
269           // only checking the LMUL is insufficient due to reduction result is
270           // always LMUL_1.
271           // For example,
272           // $x11 = PseudoVSETIVLI 1, 64 // vsetivli a1, 1, e8, m1, ta, mu
273           // $v8m1 = PseudoVWREDSUM_VS_M1 $v26, $v27
274           // $v26 = COPY killed renamable $v8
275           // After widening, The valid value will be 1 x e16 elements. If we
276           // convert the COPY to vmv.v.v, it will only copy 1 x e8 elements.
277           uint64_t TSFlags = MBBI->getDesc().TSFlags;
278           if (RISCVII::isRVVWideningReduction(TSFlags))
279             return false;
280 
281           // If the producing instruction does not depend on vsetvli, do not
282           // convert COPY to vmv.v.v. For example, VL1R_V or PseudoVRELOAD.
283           if (!RISCVII::hasSEWOp(TSFlags) || !RISCVII::hasVLOp(TSFlags))
284             return false;
285 
286           // Found the definition.
287           FoundDef = true;
288           DefMBBI = MBBI;
289           break;
290         }
291       }
292     }
293   }
294 
295   return false;
296 }
297 
298 void RISCVInstrInfo::copyPhysRegVector(MachineBasicBlock &MBB,
299                                        MachineBasicBlock::iterator MBBI,
300                                        const DebugLoc &DL, MCRegister DstReg,
301                                        MCRegister SrcReg, bool KillSrc,
302                                        unsigned Opc, unsigned NF) const {
303   const TargetRegisterInfo *TRI = STI.getRegisterInfo();
304 
305   RISCVII::VLMUL LMul;
306   unsigned SubRegIdx;
307   unsigned VVOpc, VIOpc;
308   switch (Opc) {
309   default:
310     llvm_unreachable("Impossible LMUL for vector register copy.");
311   case RISCV::VMV1R_V:
312     LMul = RISCVII::LMUL_1;
313     SubRegIdx = RISCV::sub_vrm1_0;
314     VVOpc = RISCV::PseudoVMV_V_V_M1;
315     VIOpc = RISCV::PseudoVMV_V_I_M1;
316     break;
317   case RISCV::VMV2R_V:
318     LMul = RISCVII::LMUL_2;
319     SubRegIdx = RISCV::sub_vrm2_0;
320     VVOpc = RISCV::PseudoVMV_V_V_M2;
321     VIOpc = RISCV::PseudoVMV_V_I_M2;
322     break;
323   case RISCV::VMV4R_V:
324     LMul = RISCVII::LMUL_4;
325     SubRegIdx = RISCV::sub_vrm4_0;
326     VVOpc = RISCV::PseudoVMV_V_V_M4;
327     VIOpc = RISCV::PseudoVMV_V_I_M4;
328     break;
329   case RISCV::VMV8R_V:
330     assert(NF == 1);
331     LMul = RISCVII::LMUL_8;
332     SubRegIdx = RISCV::sub_vrm1_0; // There is no sub_vrm8_0.
333     VVOpc = RISCV::PseudoVMV_V_V_M8;
334     VIOpc = RISCV::PseudoVMV_V_I_M8;
335     break;
336   }
337 
338   bool UseVMV_V_V = false;
339   bool UseVMV_V_I = false;
340   MachineBasicBlock::const_iterator DefMBBI;
341   if (isConvertibleToVMV_V_V(STI, MBB, MBBI, DefMBBI, LMul)) {
342     UseVMV_V_V = true;
343     Opc = VVOpc;
344 
345     if (DefMBBI->getOpcode() == VIOpc) {
346       UseVMV_V_I = true;
347       Opc = VIOpc;
348     }
349   }
350 
351   if (NF == 1) {
352     auto MIB = BuildMI(MBB, MBBI, DL, get(Opc), DstReg);
353     if (UseVMV_V_V)
354       MIB.addReg(DstReg, RegState::Undef);
355     if (UseVMV_V_I)
356       MIB = MIB.add(DefMBBI->getOperand(2));
357     else
358       MIB = MIB.addReg(SrcReg, getKillRegState(KillSrc));
359     if (UseVMV_V_V) {
360       const MCInstrDesc &Desc = DefMBBI->getDesc();
361       MIB.add(DefMBBI->getOperand(RISCVII::getVLOpNum(Desc)));  // AVL
362       MIB.add(DefMBBI->getOperand(RISCVII::getSEWOpNum(Desc))); // SEW
363       MIB.addImm(0);                                            // tu, mu
364       MIB.addReg(RISCV::VL, RegState::Implicit);
365       MIB.addReg(RISCV::VTYPE, RegState::Implicit);
366     }
367     return;
368   }
369 
370   int I = 0, End = NF, Incr = 1;
371   unsigned SrcEncoding = TRI->getEncodingValue(SrcReg);
372   unsigned DstEncoding = TRI->getEncodingValue(DstReg);
373   unsigned LMulVal;
374   bool Fractional;
375   std::tie(LMulVal, Fractional) = RISCVVType::decodeVLMUL(LMul);
376   assert(!Fractional && "It is impossible be fractional lmul here.");
377   if (forwardCopyWillClobberTuple(DstEncoding, SrcEncoding, NF * LMulVal)) {
378     I = NF - 1;
379     End = -1;
380     Incr = -1;
381   }
382 
383   for (; I != End; I += Incr) {
384     auto MIB =
385         BuildMI(MBB, MBBI, DL, get(Opc), TRI->getSubReg(DstReg, SubRegIdx + I));
386     if (UseVMV_V_V)
387       MIB.addReg(TRI->getSubReg(DstReg, SubRegIdx + I), RegState::Undef);
388     if (UseVMV_V_I)
389       MIB = MIB.add(DefMBBI->getOperand(2));
390     else
391       MIB = MIB.addReg(TRI->getSubReg(SrcReg, SubRegIdx + I),
392                        getKillRegState(KillSrc));
393     if (UseVMV_V_V) {
394       const MCInstrDesc &Desc = DefMBBI->getDesc();
395       MIB.add(DefMBBI->getOperand(RISCVII::getVLOpNum(Desc)));  // AVL
396       MIB.add(DefMBBI->getOperand(RISCVII::getSEWOpNum(Desc))); // SEW
397       MIB.addImm(0);                                            // tu, mu
398       MIB.addReg(RISCV::VL, RegState::Implicit);
399       MIB.addReg(RISCV::VTYPE, RegState::Implicit);
400     }
401   }
402 }
403 
404 void RISCVInstrInfo::copyPhysReg(MachineBasicBlock &MBB,
405                                  MachineBasicBlock::iterator MBBI,
406                                  const DebugLoc &DL, MCRegister DstReg,
407                                  MCRegister SrcReg, bool KillSrc) const {
408   const TargetRegisterInfo *TRI = STI.getRegisterInfo();
409 
410   if (RISCV::GPRRegClass.contains(DstReg, SrcReg)) {
411     BuildMI(MBB, MBBI, DL, get(RISCV::ADDI), DstReg)
412         .addReg(SrcReg, getKillRegState(KillSrc))
413         .addImm(0);
414     return;
415   }
416 
417   if (RISCV::GPRPairRegClass.contains(DstReg, SrcReg)) {
418     // Emit an ADDI for both parts of GPRPair.
419     BuildMI(MBB, MBBI, DL, get(RISCV::ADDI),
420             TRI->getSubReg(DstReg, RISCV::sub_gpr_even))
421         .addReg(TRI->getSubReg(SrcReg, RISCV::sub_gpr_even),
422                 getKillRegState(KillSrc))
423         .addImm(0);
424     BuildMI(MBB, MBBI, DL, get(RISCV::ADDI),
425             TRI->getSubReg(DstReg, RISCV::sub_gpr_odd))
426         .addReg(TRI->getSubReg(SrcReg, RISCV::sub_gpr_odd),
427                 getKillRegState(KillSrc))
428         .addImm(0);
429     return;
430   }
431 
432   // Handle copy from csr
433   if (RISCV::VCSRRegClass.contains(SrcReg) &&
434       RISCV::GPRRegClass.contains(DstReg)) {
435     BuildMI(MBB, MBBI, DL, get(RISCV::CSRRS), DstReg)
436         .addImm(RISCVSysReg::lookupSysRegByName(TRI->getName(SrcReg))->Encoding)
437         .addReg(RISCV::X0);
438     return;
439   }
440 
441   if (RISCV::FPR16RegClass.contains(DstReg, SrcReg)) {
442     unsigned Opc;
443     if (STI.hasStdExtZfh()) {
444       Opc = RISCV::FSGNJ_H;
445     } else {
446       assert(STI.hasStdExtF() &&
447              (STI.hasStdExtZfhmin() || STI.hasStdExtZfbfmin()) &&
448              "Unexpected extensions");
449       // Zfhmin/Zfbfmin doesn't have FSGNJ_H, replace FSGNJ_H with FSGNJ_S.
450       DstReg = TRI->getMatchingSuperReg(DstReg, RISCV::sub_16,
451                                         &RISCV::FPR32RegClass);
452       SrcReg = TRI->getMatchingSuperReg(SrcReg, RISCV::sub_16,
453                                         &RISCV::FPR32RegClass);
454       Opc = RISCV::FSGNJ_S;
455     }
456     BuildMI(MBB, MBBI, DL, get(Opc), DstReg)
457         .addReg(SrcReg, getKillRegState(KillSrc))
458         .addReg(SrcReg, getKillRegState(KillSrc));
459     return;
460   }
461 
462   if (RISCV::FPR32RegClass.contains(DstReg, SrcReg)) {
463     BuildMI(MBB, MBBI, DL, get(RISCV::FSGNJ_S), DstReg)
464         .addReg(SrcReg, getKillRegState(KillSrc))
465         .addReg(SrcReg, getKillRegState(KillSrc));
466     return;
467   }
468 
469   if (RISCV::FPR64RegClass.contains(DstReg, SrcReg)) {
470     BuildMI(MBB, MBBI, DL, get(RISCV::FSGNJ_D), DstReg)
471         .addReg(SrcReg, getKillRegState(KillSrc))
472         .addReg(SrcReg, getKillRegState(KillSrc));
473     return;
474   }
475 
476   if (RISCV::FPR32RegClass.contains(DstReg) &&
477       RISCV::GPRRegClass.contains(SrcReg)) {
478     BuildMI(MBB, MBBI, DL, get(RISCV::FMV_W_X), DstReg)
479         .addReg(SrcReg, getKillRegState(KillSrc));
480     return;
481   }
482 
483   if (RISCV::GPRRegClass.contains(DstReg) &&
484       RISCV::FPR32RegClass.contains(SrcReg)) {
485     BuildMI(MBB, MBBI, DL, get(RISCV::FMV_X_W), DstReg)
486         .addReg(SrcReg, getKillRegState(KillSrc));
487     return;
488   }
489 
490   if (RISCV::FPR64RegClass.contains(DstReg) &&
491       RISCV::GPRRegClass.contains(SrcReg)) {
492     assert(STI.getXLen() == 64 && "Unexpected GPR size");
493     BuildMI(MBB, MBBI, DL, get(RISCV::FMV_D_X), DstReg)
494         .addReg(SrcReg, getKillRegState(KillSrc));
495     return;
496   }
497 
498   if (RISCV::GPRRegClass.contains(DstReg) &&
499       RISCV::FPR64RegClass.contains(SrcReg)) {
500     assert(STI.getXLen() == 64 && "Unexpected GPR size");
501     BuildMI(MBB, MBBI, DL, get(RISCV::FMV_X_D), DstReg)
502         .addReg(SrcReg, getKillRegState(KillSrc));
503     return;
504   }
505 
506   // VR->VR copies.
507   if (RISCV::VRRegClass.contains(DstReg, SrcReg)) {
508     copyPhysRegVector(MBB, MBBI, DL, DstReg, SrcReg, KillSrc, RISCV::VMV1R_V);
509     return;
510   }
511 
512   if (RISCV::VRM2RegClass.contains(DstReg, SrcReg)) {
513     copyPhysRegVector(MBB, MBBI, DL, DstReg, SrcReg, KillSrc, RISCV::VMV2R_V);
514     return;
515   }
516 
517   if (RISCV::VRM4RegClass.contains(DstReg, SrcReg)) {
518     copyPhysRegVector(MBB, MBBI, DL, DstReg, SrcReg, KillSrc, RISCV::VMV4R_V);
519     return;
520   }
521 
522   if (RISCV::VRM8RegClass.contains(DstReg, SrcReg)) {
523     copyPhysRegVector(MBB, MBBI, DL, DstReg, SrcReg, KillSrc, RISCV::VMV8R_V);
524     return;
525   }
526 
527   if (RISCV::VRN2M1RegClass.contains(DstReg, SrcReg)) {
528     copyPhysRegVector(MBB, MBBI, DL, DstReg, SrcReg, KillSrc, RISCV::VMV1R_V,
529                       /*NF=*/2);
530     return;
531   }
532 
533   if (RISCV::VRN2M2RegClass.contains(DstReg, SrcReg)) {
534     copyPhysRegVector(MBB, MBBI, DL, DstReg, SrcReg, KillSrc, RISCV::VMV2R_V,
535                       /*NF=*/2);
536     return;
537   }
538 
539   if (RISCV::VRN2M4RegClass.contains(DstReg, SrcReg)) {
540     copyPhysRegVector(MBB, MBBI, DL, DstReg, SrcReg, KillSrc, RISCV::VMV4R_V,
541                       /*NF=*/2);
542     return;
543   }
544 
545   if (RISCV::VRN3M1RegClass.contains(DstReg, SrcReg)) {
546     copyPhysRegVector(MBB, MBBI, DL, DstReg, SrcReg, KillSrc, RISCV::VMV1R_V,
547                       /*NF=*/3);
548     return;
549   }
550 
551   if (RISCV::VRN3M2RegClass.contains(DstReg, SrcReg)) {
552     copyPhysRegVector(MBB, MBBI, DL, DstReg, SrcReg, KillSrc, RISCV::VMV2R_V,
553                       /*NF=*/3);
554     return;
555   }
556 
557   if (RISCV::VRN4M1RegClass.contains(DstReg, SrcReg)) {
558     copyPhysRegVector(MBB, MBBI, DL, DstReg, SrcReg, KillSrc, RISCV::VMV1R_V,
559                       /*NF=*/4);
560     return;
561   }
562 
563   if (RISCV::VRN4M2RegClass.contains(DstReg, SrcReg)) {
564     copyPhysRegVector(MBB, MBBI, DL, DstReg, SrcReg, KillSrc, RISCV::VMV2R_V,
565                       /*NF=*/4);
566     return;
567   }
568 
569   if (RISCV::VRN5M1RegClass.contains(DstReg, SrcReg)) {
570     copyPhysRegVector(MBB, MBBI, DL, DstReg, SrcReg, KillSrc, RISCV::VMV1R_V,
571                       /*NF=*/5);
572     return;
573   }
574 
575   if (RISCV::VRN6M1RegClass.contains(DstReg, SrcReg)) {
576     copyPhysRegVector(MBB, MBBI, DL, DstReg, SrcReg, KillSrc, RISCV::VMV1R_V,
577                       /*NF=*/6);
578     return;
579   }
580 
581   if (RISCV::VRN7M1RegClass.contains(DstReg, SrcReg)) {
582     copyPhysRegVector(MBB, MBBI, DL, DstReg, SrcReg, KillSrc, RISCV::VMV1R_V,
583                       /*NF=*/7);
584     return;
585   }
586 
587   if (RISCV::VRN8M1RegClass.contains(DstReg, SrcReg)) {
588     copyPhysRegVector(MBB, MBBI, DL, DstReg, SrcReg, KillSrc, RISCV::VMV1R_V,
589                       /*NF=*/8);
590     return;
591   }
592 
593   llvm_unreachable("Impossible reg-to-reg copy");
594 }
595 
596 void RISCVInstrInfo::storeRegToStackSlot(MachineBasicBlock &MBB,
597                                          MachineBasicBlock::iterator I,
598                                          Register SrcReg, bool IsKill, int FI,
599                                          const TargetRegisterClass *RC,
600                                          const TargetRegisterInfo *TRI,
601                                          Register VReg) const {
602   MachineFunction *MF = MBB.getParent();
603   MachineFrameInfo &MFI = MF->getFrameInfo();
604 
605   unsigned Opcode;
606   bool IsScalableVector = true;
607   if (RISCV::GPRRegClass.hasSubClassEq(RC)) {
608     Opcode = TRI->getRegSizeInBits(RISCV::GPRRegClass) == 32 ?
609              RISCV::SW : RISCV::SD;
610     IsScalableVector = false;
611   } else if (RISCV::GPRPairRegClass.hasSubClassEq(RC)) {
612     Opcode = RISCV::PseudoRV32ZdinxSD;
613     IsScalableVector = false;
614   } else if (RISCV::FPR16RegClass.hasSubClassEq(RC)) {
615     Opcode = RISCV::FSH;
616     IsScalableVector = false;
617   } else if (RISCV::FPR32RegClass.hasSubClassEq(RC)) {
618     Opcode = RISCV::FSW;
619     IsScalableVector = false;
620   } else if (RISCV::FPR64RegClass.hasSubClassEq(RC)) {
621     Opcode = RISCV::FSD;
622     IsScalableVector = false;
623   } else if (RISCV::VRRegClass.hasSubClassEq(RC)) {
624     Opcode = RISCV::VS1R_V;
625   } else if (RISCV::VRM2RegClass.hasSubClassEq(RC)) {
626     Opcode = RISCV::VS2R_V;
627   } else if (RISCV::VRM4RegClass.hasSubClassEq(RC)) {
628     Opcode = RISCV::VS4R_V;
629   } else if (RISCV::VRM8RegClass.hasSubClassEq(RC)) {
630     Opcode = RISCV::VS8R_V;
631   } else if (RISCV::VRN2M1RegClass.hasSubClassEq(RC))
632     Opcode = RISCV::PseudoVSPILL2_M1;
633   else if (RISCV::VRN2M2RegClass.hasSubClassEq(RC))
634     Opcode = RISCV::PseudoVSPILL2_M2;
635   else if (RISCV::VRN2M4RegClass.hasSubClassEq(RC))
636     Opcode = RISCV::PseudoVSPILL2_M4;
637   else if (RISCV::VRN3M1RegClass.hasSubClassEq(RC))
638     Opcode = RISCV::PseudoVSPILL3_M1;
639   else if (RISCV::VRN3M2RegClass.hasSubClassEq(RC))
640     Opcode = RISCV::PseudoVSPILL3_M2;
641   else if (RISCV::VRN4M1RegClass.hasSubClassEq(RC))
642     Opcode = RISCV::PseudoVSPILL4_M1;
643   else if (RISCV::VRN4M2RegClass.hasSubClassEq(RC))
644     Opcode = RISCV::PseudoVSPILL4_M2;
645   else if (RISCV::VRN5M1RegClass.hasSubClassEq(RC))
646     Opcode = RISCV::PseudoVSPILL5_M1;
647   else if (RISCV::VRN6M1RegClass.hasSubClassEq(RC))
648     Opcode = RISCV::PseudoVSPILL6_M1;
649   else if (RISCV::VRN7M1RegClass.hasSubClassEq(RC))
650     Opcode = RISCV::PseudoVSPILL7_M1;
651   else if (RISCV::VRN8M1RegClass.hasSubClassEq(RC))
652     Opcode = RISCV::PseudoVSPILL8_M1;
653   else
654     llvm_unreachable("Can't store this register to stack slot");
655 
656   if (IsScalableVector) {
657     MachineMemOperand *MMO = MF->getMachineMemOperand(
658         MachinePointerInfo::getFixedStack(*MF, FI), MachineMemOperand::MOStore,
659         MemoryLocation::UnknownSize, MFI.getObjectAlign(FI));
660 
661     MFI.setStackID(FI, TargetStackID::ScalableVector);
662     BuildMI(MBB, I, DebugLoc(), get(Opcode))
663         .addReg(SrcReg, getKillRegState(IsKill))
664         .addFrameIndex(FI)
665         .addMemOperand(MMO);
666   } else {
667     MachineMemOperand *MMO = MF->getMachineMemOperand(
668         MachinePointerInfo::getFixedStack(*MF, FI), MachineMemOperand::MOStore,
669         MFI.getObjectSize(FI), MFI.getObjectAlign(FI));
670 
671     BuildMI(MBB, I, DebugLoc(), get(Opcode))
672         .addReg(SrcReg, getKillRegState(IsKill))
673         .addFrameIndex(FI)
674         .addImm(0)
675         .addMemOperand(MMO);
676   }
677 }
678 
679 void RISCVInstrInfo::loadRegFromStackSlot(MachineBasicBlock &MBB,
680                                           MachineBasicBlock::iterator I,
681                                           Register DstReg, int FI,
682                                           const TargetRegisterClass *RC,
683                                           const TargetRegisterInfo *TRI,
684                                           Register VReg) const {
685   MachineFunction *MF = MBB.getParent();
686   MachineFrameInfo &MFI = MF->getFrameInfo();
687 
688   unsigned Opcode;
689   bool IsScalableVector = true;
690   if (RISCV::GPRRegClass.hasSubClassEq(RC)) {
691     Opcode = TRI->getRegSizeInBits(RISCV::GPRRegClass) == 32 ?
692              RISCV::LW : RISCV::LD;
693     IsScalableVector = false;
694   } else if (RISCV::GPRPairRegClass.hasSubClassEq(RC)) {
695     Opcode = RISCV::PseudoRV32ZdinxLD;
696     IsScalableVector = false;
697   } else if (RISCV::FPR16RegClass.hasSubClassEq(RC)) {
698     Opcode = RISCV::FLH;
699     IsScalableVector = false;
700   } else if (RISCV::FPR32RegClass.hasSubClassEq(RC)) {
701     Opcode = RISCV::FLW;
702     IsScalableVector = false;
703   } else if (RISCV::FPR64RegClass.hasSubClassEq(RC)) {
704     Opcode = RISCV::FLD;
705     IsScalableVector = false;
706   } else if (RISCV::VRRegClass.hasSubClassEq(RC)) {
707     Opcode = RISCV::VL1RE8_V;
708   } else if (RISCV::VRM2RegClass.hasSubClassEq(RC)) {
709     Opcode = RISCV::VL2RE8_V;
710   } else if (RISCV::VRM4RegClass.hasSubClassEq(RC)) {
711     Opcode = RISCV::VL4RE8_V;
712   } else if (RISCV::VRM8RegClass.hasSubClassEq(RC)) {
713     Opcode = RISCV::VL8RE8_V;
714   } else if (RISCV::VRN2M1RegClass.hasSubClassEq(RC))
715     Opcode = RISCV::PseudoVRELOAD2_M1;
716   else if (RISCV::VRN2M2RegClass.hasSubClassEq(RC))
717     Opcode = RISCV::PseudoVRELOAD2_M2;
718   else if (RISCV::VRN2M4RegClass.hasSubClassEq(RC))
719     Opcode = RISCV::PseudoVRELOAD2_M4;
720   else if (RISCV::VRN3M1RegClass.hasSubClassEq(RC))
721     Opcode = RISCV::PseudoVRELOAD3_M1;
722   else if (RISCV::VRN3M2RegClass.hasSubClassEq(RC))
723     Opcode = RISCV::PseudoVRELOAD3_M2;
724   else if (RISCV::VRN4M1RegClass.hasSubClassEq(RC))
725     Opcode = RISCV::PseudoVRELOAD4_M1;
726   else if (RISCV::VRN4M2RegClass.hasSubClassEq(RC))
727     Opcode = RISCV::PseudoVRELOAD4_M2;
728   else if (RISCV::VRN5M1RegClass.hasSubClassEq(RC))
729     Opcode = RISCV::PseudoVRELOAD5_M1;
730   else if (RISCV::VRN6M1RegClass.hasSubClassEq(RC))
731     Opcode = RISCV::PseudoVRELOAD6_M1;
732   else if (RISCV::VRN7M1RegClass.hasSubClassEq(RC))
733     Opcode = RISCV::PseudoVRELOAD7_M1;
734   else if (RISCV::VRN8M1RegClass.hasSubClassEq(RC))
735     Opcode = RISCV::PseudoVRELOAD8_M1;
736   else
737     llvm_unreachable("Can't load this register from stack slot");
738 
739   if (IsScalableVector) {
740     MachineMemOperand *MMO = MF->getMachineMemOperand(
741         MachinePointerInfo::getFixedStack(*MF, FI), MachineMemOperand::MOLoad,
742         MemoryLocation::UnknownSize, MFI.getObjectAlign(FI));
743 
744     MFI.setStackID(FI, TargetStackID::ScalableVector);
745     BuildMI(MBB, I, DebugLoc(), get(Opcode), DstReg)
746         .addFrameIndex(FI)
747         .addMemOperand(MMO);
748   } else {
749     MachineMemOperand *MMO = MF->getMachineMemOperand(
750         MachinePointerInfo::getFixedStack(*MF, FI), MachineMemOperand::MOLoad,
751         MFI.getObjectSize(FI), MFI.getObjectAlign(FI));
752 
753     BuildMI(MBB, I, DebugLoc(), get(Opcode), DstReg)
754         .addFrameIndex(FI)
755         .addImm(0)
756         .addMemOperand(MMO);
757   }
758 }
759 
760 MachineInstr *RISCVInstrInfo::foldMemoryOperandImpl(
761     MachineFunction &MF, MachineInstr &MI, ArrayRef<unsigned> Ops,
762     MachineBasicBlock::iterator InsertPt, int FrameIndex, LiveIntervals *LIS,
763     VirtRegMap *VRM) const {
764   const MachineFrameInfo &MFI = MF.getFrameInfo();
765 
766   // The below optimizations narrow the load so they are only valid for little
767   // endian.
768   // TODO: Support big endian by adding an offset into the frame object?
769   if (MF.getDataLayout().isBigEndian())
770     return nullptr;
771 
772   // Fold load from stack followed by sext.b/sext.h/sext.w/zext.b/zext.h/zext.w.
773   if (Ops.size() != 1 || Ops[0] != 1)
774    return nullptr;
775 
776   unsigned LoadOpc;
777   switch (MI.getOpcode()) {
778   default:
779     if (RISCV::isSEXT_W(MI)) {
780       LoadOpc = RISCV::LW;
781       break;
782     }
783     if (RISCV::isZEXT_W(MI)) {
784       LoadOpc = RISCV::LWU;
785       break;
786     }
787     if (RISCV::isZEXT_B(MI)) {
788       LoadOpc = RISCV::LBU;
789       break;
790     }
791     return nullptr;
792   case RISCV::SEXT_H:
793     LoadOpc = RISCV::LH;
794     break;
795   case RISCV::SEXT_B:
796     LoadOpc = RISCV::LB;
797     break;
798   case RISCV::ZEXT_H_RV32:
799   case RISCV::ZEXT_H_RV64:
800     LoadOpc = RISCV::LHU;
801     break;
802   }
803 
804   MachineMemOperand *MMO = MF.getMachineMemOperand(
805       MachinePointerInfo::getFixedStack(MF, FrameIndex),
806       MachineMemOperand::MOLoad, MFI.getObjectSize(FrameIndex),
807       MFI.getObjectAlign(FrameIndex));
808 
809   Register DstReg = MI.getOperand(0).getReg();
810   return BuildMI(*MI.getParent(), InsertPt, MI.getDebugLoc(), get(LoadOpc),
811                  DstReg)
812       .addFrameIndex(FrameIndex)
813       .addImm(0)
814       .addMemOperand(MMO);
815 }
816 
817 void RISCVInstrInfo::movImm(MachineBasicBlock &MBB,
818                             MachineBasicBlock::iterator MBBI,
819                             const DebugLoc &DL, Register DstReg, uint64_t Val,
820                             MachineInstr::MIFlag Flag, bool DstRenamable,
821                             bool DstIsDead) const {
822   Register SrcReg = RISCV::X0;
823 
824   if (!STI.is64Bit() && !isInt<32>(Val))
825     report_fatal_error("Should only materialize 32-bit constants for RV32");
826 
827   RISCVMatInt::InstSeq Seq = RISCVMatInt::generateInstSeq(Val, STI);
828   assert(!Seq.empty());
829 
830   bool SrcRenamable = false;
831   unsigned Num = 0;
832 
833   for (const RISCVMatInt::Inst &Inst : Seq) {
834     bool LastItem = ++Num == Seq.size();
835     unsigned DstRegState = getDeadRegState(DstIsDead && LastItem) |
836                            getRenamableRegState(DstRenamable);
837     unsigned SrcRegState = getKillRegState(SrcReg != RISCV::X0) |
838                            getRenamableRegState(SrcRenamable);
839     switch (Inst.getOpndKind()) {
840     case RISCVMatInt::Imm:
841       BuildMI(MBB, MBBI, DL, get(Inst.getOpcode()))
842           .addReg(DstReg, RegState::Define | DstRegState)
843           .addImm(Inst.getImm())
844           .setMIFlag(Flag);
845       break;
846     case RISCVMatInt::RegX0:
847       BuildMI(MBB, MBBI, DL, get(Inst.getOpcode()))
848           .addReg(DstReg, RegState::Define | DstRegState)
849           .addReg(SrcReg, SrcRegState)
850           .addReg(RISCV::X0)
851           .setMIFlag(Flag);
852       break;
853     case RISCVMatInt::RegReg:
854       BuildMI(MBB, MBBI, DL, get(Inst.getOpcode()))
855           .addReg(DstReg, RegState::Define | DstRegState)
856           .addReg(SrcReg, SrcRegState)
857           .addReg(SrcReg, SrcRegState)
858           .setMIFlag(Flag);
859       break;
860     case RISCVMatInt::RegImm:
861       BuildMI(MBB, MBBI, DL, get(Inst.getOpcode()))
862           .addReg(DstReg, RegState::Define | DstRegState)
863           .addReg(SrcReg, SrcRegState)
864           .addImm(Inst.getImm())
865           .setMIFlag(Flag);
866       break;
867     }
868 
869     // Only the first instruction has X0 as its source.
870     SrcReg = DstReg;
871     SrcRenamable = DstRenamable;
872   }
873 }
874 
875 static RISCVCC::CondCode getCondFromBranchOpc(unsigned Opc) {
876   switch (Opc) {
877   default:
878     return RISCVCC::COND_INVALID;
879   case RISCV::BEQ:
880     return RISCVCC::COND_EQ;
881   case RISCV::BNE:
882     return RISCVCC::COND_NE;
883   case RISCV::BLT:
884     return RISCVCC::COND_LT;
885   case RISCV::BGE:
886     return RISCVCC::COND_GE;
887   case RISCV::BLTU:
888     return RISCVCC::COND_LTU;
889   case RISCV::BGEU:
890     return RISCVCC::COND_GEU;
891   }
892 }
893 
894 // The contents of values added to Cond are not examined outside of
895 // RISCVInstrInfo, giving us flexibility in what to push to it. For RISCV, we
896 // push BranchOpcode, Reg1, Reg2.
897 static void parseCondBranch(MachineInstr &LastInst, MachineBasicBlock *&Target,
898                             SmallVectorImpl<MachineOperand> &Cond) {
899   // Block ends with fall-through condbranch.
900   assert(LastInst.getDesc().isConditionalBranch() &&
901          "Unknown conditional branch");
902   Target = LastInst.getOperand(2).getMBB();
903   unsigned CC = getCondFromBranchOpc(LastInst.getOpcode());
904   Cond.push_back(MachineOperand::CreateImm(CC));
905   Cond.push_back(LastInst.getOperand(0));
906   Cond.push_back(LastInst.getOperand(1));
907 }
908 
909 unsigned RISCVCC::getBrCond(RISCVCC::CondCode CC) {
910   switch (CC) {
911   default:
912     llvm_unreachable("Unknown condition code!");
913   case RISCVCC::COND_EQ:
914     return RISCV::BEQ;
915   case RISCVCC::COND_NE:
916     return RISCV::BNE;
917   case RISCVCC::COND_LT:
918     return RISCV::BLT;
919   case RISCVCC::COND_GE:
920     return RISCV::BGE;
921   case RISCVCC::COND_LTU:
922     return RISCV::BLTU;
923   case RISCVCC::COND_GEU:
924     return RISCV::BGEU;
925   }
926 }
927 
928 const MCInstrDesc &RISCVInstrInfo::getBrCond(RISCVCC::CondCode CC) const {
929   return get(RISCVCC::getBrCond(CC));
930 }
931 
932 RISCVCC::CondCode RISCVCC::getOppositeBranchCondition(RISCVCC::CondCode CC) {
933   switch (CC) {
934   default:
935     llvm_unreachable("Unrecognized conditional branch");
936   case RISCVCC::COND_EQ:
937     return RISCVCC::COND_NE;
938   case RISCVCC::COND_NE:
939     return RISCVCC::COND_EQ;
940   case RISCVCC::COND_LT:
941     return RISCVCC::COND_GE;
942   case RISCVCC::COND_GE:
943     return RISCVCC::COND_LT;
944   case RISCVCC::COND_LTU:
945     return RISCVCC::COND_GEU;
946   case RISCVCC::COND_GEU:
947     return RISCVCC::COND_LTU;
948   }
949 }
950 
951 bool RISCVInstrInfo::analyzeBranch(MachineBasicBlock &MBB,
952                                    MachineBasicBlock *&TBB,
953                                    MachineBasicBlock *&FBB,
954                                    SmallVectorImpl<MachineOperand> &Cond,
955                                    bool AllowModify) const {
956   TBB = FBB = nullptr;
957   Cond.clear();
958 
959   // If the block has no terminators, it just falls into the block after it.
960   MachineBasicBlock::iterator I = MBB.getLastNonDebugInstr();
961   if (I == MBB.end() || !isUnpredicatedTerminator(*I))
962     return false;
963 
964   // Count the number of terminators and find the first unconditional or
965   // indirect branch.
966   MachineBasicBlock::iterator FirstUncondOrIndirectBr = MBB.end();
967   int NumTerminators = 0;
968   for (auto J = I.getReverse(); J != MBB.rend() && isUnpredicatedTerminator(*J);
969        J++) {
970     NumTerminators++;
971     if (J->getDesc().isUnconditionalBranch() ||
972         J->getDesc().isIndirectBranch()) {
973       FirstUncondOrIndirectBr = J.getReverse();
974     }
975   }
976 
977   // If AllowModify is true, we can erase any terminators after
978   // FirstUncondOrIndirectBR.
979   if (AllowModify && FirstUncondOrIndirectBr != MBB.end()) {
980     while (std::next(FirstUncondOrIndirectBr) != MBB.end()) {
981       std::next(FirstUncondOrIndirectBr)->eraseFromParent();
982       NumTerminators--;
983     }
984     I = FirstUncondOrIndirectBr;
985   }
986 
987   // We can't handle blocks that end in an indirect branch.
988   if (I->getDesc().isIndirectBranch())
989     return true;
990 
991   // We can't handle Generic branch opcodes from Global ISel.
992   if (I->isPreISelOpcode())
993     return true;
994 
995   // We can't handle blocks with more than 2 terminators.
996   if (NumTerminators > 2)
997     return true;
998 
999   // Handle a single unconditional branch.
1000   if (NumTerminators == 1 && I->getDesc().isUnconditionalBranch()) {
1001     TBB = getBranchDestBlock(*I);
1002     return false;
1003   }
1004 
1005   // Handle a single conditional branch.
1006   if (NumTerminators == 1 && I->getDesc().isConditionalBranch()) {
1007     parseCondBranch(*I, TBB, Cond);
1008     return false;
1009   }
1010 
1011   // Handle a conditional branch followed by an unconditional branch.
1012   if (NumTerminators == 2 && std::prev(I)->getDesc().isConditionalBranch() &&
1013       I->getDesc().isUnconditionalBranch()) {
1014     parseCondBranch(*std::prev(I), TBB, Cond);
1015     FBB = getBranchDestBlock(*I);
1016     return false;
1017   }
1018 
1019   // Otherwise, we can't handle this.
1020   return true;
1021 }
1022 
1023 unsigned RISCVInstrInfo::removeBranch(MachineBasicBlock &MBB,
1024                                       int *BytesRemoved) const {
1025   if (BytesRemoved)
1026     *BytesRemoved = 0;
1027   MachineBasicBlock::iterator I = MBB.getLastNonDebugInstr();
1028   if (I == MBB.end())
1029     return 0;
1030 
1031   if (!I->getDesc().isUnconditionalBranch() &&
1032       !I->getDesc().isConditionalBranch())
1033     return 0;
1034 
1035   // Remove the branch.
1036   if (BytesRemoved)
1037     *BytesRemoved += getInstSizeInBytes(*I);
1038   I->eraseFromParent();
1039 
1040   I = MBB.end();
1041 
1042   if (I == MBB.begin())
1043     return 1;
1044   --I;
1045   if (!I->getDesc().isConditionalBranch())
1046     return 1;
1047 
1048   // Remove the branch.
1049   if (BytesRemoved)
1050     *BytesRemoved += getInstSizeInBytes(*I);
1051   I->eraseFromParent();
1052   return 2;
1053 }
1054 
1055 // Inserts a branch into the end of the specific MachineBasicBlock, returning
1056 // the number of instructions inserted.
1057 unsigned RISCVInstrInfo::insertBranch(
1058     MachineBasicBlock &MBB, MachineBasicBlock *TBB, MachineBasicBlock *FBB,
1059     ArrayRef<MachineOperand> Cond, const DebugLoc &DL, int *BytesAdded) const {
1060   if (BytesAdded)
1061     *BytesAdded = 0;
1062 
1063   // Shouldn't be a fall through.
1064   assert(TBB && "insertBranch must not be told to insert a fallthrough");
1065   assert((Cond.size() == 3 || Cond.size() == 0) &&
1066          "RISC-V branch conditions have two components!");
1067 
1068   // Unconditional branch.
1069   if (Cond.empty()) {
1070     MachineInstr &MI = *BuildMI(&MBB, DL, get(RISCV::PseudoBR)).addMBB(TBB);
1071     if (BytesAdded)
1072       *BytesAdded += getInstSizeInBytes(MI);
1073     return 1;
1074   }
1075 
1076   // Either a one or two-way conditional branch.
1077   auto CC = static_cast<RISCVCC::CondCode>(Cond[0].getImm());
1078   MachineInstr &CondMI =
1079       *BuildMI(&MBB, DL, getBrCond(CC)).add(Cond[1]).add(Cond[2]).addMBB(TBB);
1080   if (BytesAdded)
1081     *BytesAdded += getInstSizeInBytes(CondMI);
1082 
1083   // One-way conditional branch.
1084   if (!FBB)
1085     return 1;
1086 
1087   // Two-way conditional branch.
1088   MachineInstr &MI = *BuildMI(&MBB, DL, get(RISCV::PseudoBR)).addMBB(FBB);
1089   if (BytesAdded)
1090     *BytesAdded += getInstSizeInBytes(MI);
1091   return 2;
1092 }
1093 
1094 void RISCVInstrInfo::insertIndirectBranch(MachineBasicBlock &MBB,
1095                                           MachineBasicBlock &DestBB,
1096                                           MachineBasicBlock &RestoreBB,
1097                                           const DebugLoc &DL, int64_t BrOffset,
1098                                           RegScavenger *RS) const {
1099   assert(RS && "RegScavenger required for long branching");
1100   assert(MBB.empty() &&
1101          "new block should be inserted for expanding unconditional branch");
1102   assert(MBB.pred_size() == 1);
1103   assert(RestoreBB.empty() &&
1104          "restore block should be inserted for restoring clobbered registers");
1105 
1106   MachineFunction *MF = MBB.getParent();
1107   MachineRegisterInfo &MRI = MF->getRegInfo();
1108   RISCVMachineFunctionInfo *RVFI = MF->getInfo<RISCVMachineFunctionInfo>();
1109   const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo();
1110 
1111   if (!isInt<32>(BrOffset))
1112     report_fatal_error(
1113         "Branch offsets outside of the signed 32-bit range not supported");
1114 
1115   // FIXME: A virtual register must be used initially, as the register
1116   // scavenger won't work with empty blocks (SIInstrInfo::insertIndirectBranch
1117   // uses the same workaround).
1118   Register ScratchReg = MRI.createVirtualRegister(&RISCV::GPRRegClass);
1119   auto II = MBB.end();
1120   // We may also update the jump target to RestoreBB later.
1121   MachineInstr &MI = *BuildMI(MBB, II, DL, get(RISCV::PseudoJump))
1122                           .addReg(ScratchReg, RegState::Define | RegState::Dead)
1123                           .addMBB(&DestBB, RISCVII::MO_CALL);
1124 
1125   RS->enterBasicBlockEnd(MBB);
1126   Register TmpGPR =
1127       RS->scavengeRegisterBackwards(RISCV::GPRRegClass, MI.getIterator(),
1128                                     /*RestoreAfter=*/false, /*SpAdj=*/0,
1129                                     /*AllowSpill=*/false);
1130   if (TmpGPR != RISCV::NoRegister)
1131     RS->setRegUsed(TmpGPR);
1132   else {
1133     // The case when there is no scavenged register needs special handling.
1134 
1135     // Pick s11 because it doesn't make a difference.
1136     TmpGPR = RISCV::X27;
1137 
1138     int FrameIndex = RVFI->getBranchRelaxationScratchFrameIndex();
1139     if (FrameIndex == -1)
1140       report_fatal_error("underestimated function size");
1141 
1142     storeRegToStackSlot(MBB, MI, TmpGPR, /*IsKill=*/true, FrameIndex,
1143                         &RISCV::GPRRegClass, TRI, Register());
1144     TRI->eliminateFrameIndex(std::prev(MI.getIterator()),
1145                              /*SpAdj=*/0, /*FIOperandNum=*/1);
1146 
1147     MI.getOperand(1).setMBB(&RestoreBB);
1148 
1149     loadRegFromStackSlot(RestoreBB, RestoreBB.end(), TmpGPR, FrameIndex,
1150                          &RISCV::GPRRegClass, TRI, Register());
1151     TRI->eliminateFrameIndex(RestoreBB.back(),
1152                              /*SpAdj=*/0, /*FIOperandNum=*/1);
1153   }
1154 
1155   MRI.replaceRegWith(ScratchReg, TmpGPR);
1156   MRI.clearVirtRegs();
1157 }
1158 
1159 bool RISCVInstrInfo::reverseBranchCondition(
1160     SmallVectorImpl<MachineOperand> &Cond) const {
1161   assert((Cond.size() == 3) && "Invalid branch condition!");
1162   auto CC = static_cast<RISCVCC::CondCode>(Cond[0].getImm());
1163   Cond[0].setImm(getOppositeBranchCondition(CC));
1164   return false;
1165 }
1166 
1167 bool RISCVInstrInfo::optimizeCondBranch(MachineInstr &MI) const {
1168   MachineBasicBlock *MBB = MI.getParent();
1169   MachineRegisterInfo &MRI = MBB->getParent()->getRegInfo();
1170 
1171   MachineBasicBlock *TBB, *FBB;
1172   SmallVector<MachineOperand, 3> Cond;
1173   if (analyzeBranch(*MBB, TBB, FBB, Cond, /*AllowModify=*/false))
1174     return false;
1175   (void)FBB;
1176 
1177   RISCVCC::CondCode CC = static_cast<RISCVCC::CondCode>(Cond[0].getImm());
1178   assert(CC != RISCVCC::COND_INVALID);
1179 
1180   if (CC == RISCVCC::COND_EQ || CC == RISCVCC::COND_NE)
1181     return false;
1182 
1183   // For two constants C0 and C1 from
1184   // ```
1185   // li Y, C0
1186   // li Z, C1
1187   // ```
1188   // 1. if C1 = C0 + 1
1189   // we can turn:
1190   //  (a) blt Y, X -> bge X, Z
1191   //  (b) bge Y, X -> blt X, Z
1192   //
1193   // 2. if C1 = C0 - 1
1194   // we can turn:
1195   //  (a) blt X, Y -> bge Z, X
1196   //  (b) bge X, Y -> blt Z, X
1197   //
1198   // To make sure this optimization is really beneficial, we only
1199   // optimize for cases where Y had only one use (i.e. only used by the branch).
1200 
1201   // Right now we only care about LI (i.e. ADDI x0, imm)
1202   auto isLoadImm = [](const MachineInstr *MI, int64_t &Imm) -> bool {
1203     if (MI->getOpcode() == RISCV::ADDI && MI->getOperand(1).isReg() &&
1204         MI->getOperand(1).getReg() == RISCV::X0) {
1205       Imm = MI->getOperand(2).getImm();
1206       return true;
1207     }
1208     return false;
1209   };
1210   // Either a load from immediate instruction or X0.
1211   auto isFromLoadImm = [&](const MachineOperand &Op, int64_t &Imm) -> bool {
1212     if (!Op.isReg())
1213       return false;
1214     Register Reg = Op.getReg();
1215     if (Reg == RISCV::X0) {
1216       Imm = 0;
1217       return true;
1218     }
1219     if (!Reg.isVirtual())
1220       return false;
1221     return isLoadImm(MRI.getVRegDef(Op.getReg()), Imm);
1222   };
1223 
1224   MachineOperand &LHS = MI.getOperand(0);
1225   MachineOperand &RHS = MI.getOperand(1);
1226   // Try to find the register for constant Z; return
1227   // invalid register otherwise.
1228   auto searchConst = [&](int64_t C1) -> Register {
1229     MachineBasicBlock::reverse_iterator II(&MI), E = MBB->rend();
1230     auto DefC1 = std::find_if(++II, E, [&](const MachineInstr &I) -> bool {
1231       int64_t Imm;
1232       return isLoadImm(&I, Imm) && Imm == C1 &&
1233              I.getOperand(0).getReg().isVirtual();
1234     });
1235     if (DefC1 != E)
1236       return DefC1->getOperand(0).getReg();
1237 
1238     return Register();
1239   };
1240 
1241   bool Modify = false;
1242   int64_t C0;
1243   if (isFromLoadImm(LHS, C0) && MRI.hasOneUse(LHS.getReg())) {
1244     // Might be case 1.
1245     // Signed integer overflow is UB. (UINT64_MAX is bigger so we don't need
1246     // to worry about unsigned overflow here)
1247     if (C0 < INT64_MAX)
1248       if (Register RegZ = searchConst(C0 + 1)) {
1249         reverseBranchCondition(Cond);
1250         Cond[1] = MachineOperand::CreateReg(RHS.getReg(), /*isDef=*/false);
1251         Cond[2] = MachineOperand::CreateReg(RegZ, /*isDef=*/false);
1252         // We might extend the live range of Z, clear its kill flag to
1253         // account for this.
1254         MRI.clearKillFlags(RegZ);
1255         Modify = true;
1256       }
1257   } else if (isFromLoadImm(RHS, C0) && MRI.hasOneUse(RHS.getReg())) {
1258     // Might be case 2.
1259     // For unsigned cases, we don't want C1 to wrap back to UINT64_MAX
1260     // when C0 is zero.
1261     if ((CC == RISCVCC::COND_GE || CC == RISCVCC::COND_LT) || C0)
1262       if (Register RegZ = searchConst(C0 - 1)) {
1263         reverseBranchCondition(Cond);
1264         Cond[1] = MachineOperand::CreateReg(RegZ, /*isDef=*/false);
1265         Cond[2] = MachineOperand::CreateReg(LHS.getReg(), /*isDef=*/false);
1266         // We might extend the live range of Z, clear its kill flag to
1267         // account for this.
1268         MRI.clearKillFlags(RegZ);
1269         Modify = true;
1270       }
1271   }
1272 
1273   if (!Modify)
1274     return false;
1275 
1276   // Build the new branch and remove the old one.
1277   BuildMI(*MBB, MI, MI.getDebugLoc(),
1278           getBrCond(static_cast<RISCVCC::CondCode>(Cond[0].getImm())))
1279       .add(Cond[1])
1280       .add(Cond[2])
1281       .addMBB(TBB);
1282   MI.eraseFromParent();
1283 
1284   return true;
1285 }
1286 
1287 MachineBasicBlock *
1288 RISCVInstrInfo::getBranchDestBlock(const MachineInstr &MI) const {
1289   assert(MI.getDesc().isBranch() && "Unexpected opcode!");
1290   // The branch target is always the last operand.
1291   int NumOp = MI.getNumExplicitOperands();
1292   return MI.getOperand(NumOp - 1).getMBB();
1293 }
1294 
1295 bool RISCVInstrInfo::isBranchOffsetInRange(unsigned BranchOp,
1296                                            int64_t BrOffset) const {
1297   unsigned XLen = STI.getXLen();
1298   // Ideally we could determine the supported branch offset from the
1299   // RISCVII::FormMask, but this can't be used for Pseudo instructions like
1300   // PseudoBR.
1301   switch (BranchOp) {
1302   default:
1303     llvm_unreachable("Unexpected opcode!");
1304   case RISCV::BEQ:
1305   case RISCV::BNE:
1306   case RISCV::BLT:
1307   case RISCV::BGE:
1308   case RISCV::BLTU:
1309   case RISCV::BGEU:
1310     return isIntN(13, BrOffset);
1311   case RISCV::JAL:
1312   case RISCV::PseudoBR:
1313     return isIntN(21, BrOffset);
1314   case RISCV::PseudoJump:
1315     return isIntN(32, SignExtend64(BrOffset + 0x800, XLen));
1316   }
1317 }
1318 
1319 // If the operation has a predicated pseudo instruction, return the pseudo
1320 // instruction opcode. Otherwise, return RISCV::INSTRUCTION_LIST_END.
1321 // TODO: Support more operations.
1322 unsigned getPredicatedOpcode(unsigned Opcode) {
1323   switch (Opcode) {
1324   case RISCV::ADD:   return RISCV::PseudoCCADD;   break;
1325   case RISCV::SUB:   return RISCV::PseudoCCSUB;   break;
1326   case RISCV::SLL:   return RISCV::PseudoCCSLL;   break;
1327   case RISCV::SRL:   return RISCV::PseudoCCSRL;   break;
1328   case RISCV::SRA:   return RISCV::PseudoCCSRA;   break;
1329   case RISCV::AND:   return RISCV::PseudoCCAND;   break;
1330   case RISCV::OR:    return RISCV::PseudoCCOR;    break;
1331   case RISCV::XOR:   return RISCV::PseudoCCXOR;   break;
1332 
1333   case RISCV::ADDI:  return RISCV::PseudoCCADDI;  break;
1334   case RISCV::SLLI:  return RISCV::PseudoCCSLLI;  break;
1335   case RISCV::SRLI:  return RISCV::PseudoCCSRLI;  break;
1336   case RISCV::SRAI:  return RISCV::PseudoCCSRAI;  break;
1337   case RISCV::ANDI:  return RISCV::PseudoCCANDI;  break;
1338   case RISCV::ORI:   return RISCV::PseudoCCORI;   break;
1339   case RISCV::XORI:  return RISCV::PseudoCCXORI;  break;
1340 
1341   case RISCV::ADDW:  return RISCV::PseudoCCADDW;  break;
1342   case RISCV::SUBW:  return RISCV::PseudoCCSUBW;  break;
1343   case RISCV::SLLW:  return RISCV::PseudoCCSLLW;  break;
1344   case RISCV::SRLW:  return RISCV::PseudoCCSRLW;  break;
1345   case RISCV::SRAW:  return RISCV::PseudoCCSRAW;  break;
1346 
1347   case RISCV::ADDIW: return RISCV::PseudoCCADDIW; break;
1348   case RISCV::SLLIW: return RISCV::PseudoCCSLLIW; break;
1349   case RISCV::SRLIW: return RISCV::PseudoCCSRLIW; break;
1350   case RISCV::SRAIW: return RISCV::PseudoCCSRAIW; break;
1351 
1352   case RISCV::ANDN:  return RISCV::PseudoCCANDN;  break;
1353   case RISCV::ORN:   return RISCV::PseudoCCORN;   break;
1354   case RISCV::XNOR:  return RISCV::PseudoCCXNOR;  break;
1355   }
1356 
1357   return RISCV::INSTRUCTION_LIST_END;
1358 }
1359 
1360 /// Identify instructions that can be folded into a CCMOV instruction, and
1361 /// return the defining instruction.
1362 static MachineInstr *canFoldAsPredicatedOp(Register Reg,
1363                                            const MachineRegisterInfo &MRI,
1364                                            const TargetInstrInfo *TII) {
1365   if (!Reg.isVirtual())
1366     return nullptr;
1367   if (!MRI.hasOneNonDBGUse(Reg))
1368     return nullptr;
1369   MachineInstr *MI = MRI.getVRegDef(Reg);
1370   if (!MI)
1371     return nullptr;
1372   // Check if MI can be predicated and folded into the CCMOV.
1373   if (getPredicatedOpcode(MI->getOpcode()) == RISCV::INSTRUCTION_LIST_END)
1374     return nullptr;
1375   // Don't predicate li idiom.
1376   if (MI->getOpcode() == RISCV::ADDI && MI->getOperand(1).isReg() &&
1377       MI->getOperand(1).getReg() == RISCV::X0)
1378     return nullptr;
1379   // Check if MI has any other defs or physreg uses.
1380   for (const MachineOperand &MO : llvm::drop_begin(MI->operands())) {
1381     // Reject frame index operands, PEI can't handle the predicated pseudos.
1382     if (MO.isFI() || MO.isCPI() || MO.isJTI())
1383       return nullptr;
1384     if (!MO.isReg())
1385       continue;
1386     // MI can't have any tied operands, that would conflict with predication.
1387     if (MO.isTied())
1388       return nullptr;
1389     if (MO.isDef())
1390       return nullptr;
1391     // Allow constant physregs.
1392     if (MO.getReg().isPhysical() && !MRI.isConstantPhysReg(MO.getReg()))
1393       return nullptr;
1394   }
1395   bool DontMoveAcrossStores = true;
1396   if (!MI->isSafeToMove(/* AliasAnalysis = */ nullptr, DontMoveAcrossStores))
1397     return nullptr;
1398   return MI;
1399 }
1400 
1401 bool RISCVInstrInfo::analyzeSelect(const MachineInstr &MI,
1402                                    SmallVectorImpl<MachineOperand> &Cond,
1403                                    unsigned &TrueOp, unsigned &FalseOp,
1404                                    bool &Optimizable) const {
1405   assert(MI.getOpcode() == RISCV::PseudoCCMOVGPR &&
1406          "Unknown select instruction");
1407   // CCMOV operands:
1408   // 0: Def.
1409   // 1: LHS of compare.
1410   // 2: RHS of compare.
1411   // 3: Condition code.
1412   // 4: False use.
1413   // 5: True use.
1414   TrueOp = 5;
1415   FalseOp = 4;
1416   Cond.push_back(MI.getOperand(1));
1417   Cond.push_back(MI.getOperand(2));
1418   Cond.push_back(MI.getOperand(3));
1419   // We can only fold when we support short forward branch opt.
1420   Optimizable = STI.hasShortForwardBranchOpt();
1421   return false;
1422 }
1423 
1424 MachineInstr *
1425 RISCVInstrInfo::optimizeSelect(MachineInstr &MI,
1426                                SmallPtrSetImpl<MachineInstr *> &SeenMIs,
1427                                bool PreferFalse) const {
1428   assert(MI.getOpcode() == RISCV::PseudoCCMOVGPR &&
1429          "Unknown select instruction");
1430   if (!STI.hasShortForwardBranchOpt())
1431     return nullptr;
1432 
1433   MachineRegisterInfo &MRI = MI.getParent()->getParent()->getRegInfo();
1434   MachineInstr *DefMI =
1435       canFoldAsPredicatedOp(MI.getOperand(5).getReg(), MRI, this);
1436   bool Invert = !DefMI;
1437   if (!DefMI)
1438     DefMI = canFoldAsPredicatedOp(MI.getOperand(4).getReg(), MRI, this);
1439   if (!DefMI)
1440     return nullptr;
1441 
1442   // Find new register class to use.
1443   MachineOperand FalseReg = MI.getOperand(Invert ? 5 : 4);
1444   Register DestReg = MI.getOperand(0).getReg();
1445   const TargetRegisterClass *PreviousClass = MRI.getRegClass(FalseReg.getReg());
1446   if (!MRI.constrainRegClass(DestReg, PreviousClass))
1447     return nullptr;
1448 
1449   unsigned PredOpc = getPredicatedOpcode(DefMI->getOpcode());
1450   assert(PredOpc != RISCV::INSTRUCTION_LIST_END && "Unexpected opcode!");
1451 
1452   // Create a new predicated version of DefMI.
1453   MachineInstrBuilder NewMI =
1454       BuildMI(*MI.getParent(), MI, MI.getDebugLoc(), get(PredOpc), DestReg);
1455 
1456   // Copy the condition portion.
1457   NewMI.add(MI.getOperand(1));
1458   NewMI.add(MI.getOperand(2));
1459 
1460   // Add condition code, inverting if necessary.
1461   auto CC = static_cast<RISCVCC::CondCode>(MI.getOperand(3).getImm());
1462   if (Invert)
1463     CC = RISCVCC::getOppositeBranchCondition(CC);
1464   NewMI.addImm(CC);
1465 
1466   // Copy the false register.
1467   NewMI.add(FalseReg);
1468 
1469   // Copy all the DefMI operands.
1470   const MCInstrDesc &DefDesc = DefMI->getDesc();
1471   for (unsigned i = 1, e = DefDesc.getNumOperands(); i != e; ++i)
1472     NewMI.add(DefMI->getOperand(i));
1473 
1474   // Update SeenMIs set: register newly created MI and erase removed DefMI.
1475   SeenMIs.insert(NewMI);
1476   SeenMIs.erase(DefMI);
1477 
1478   // If MI is inside a loop, and DefMI is outside the loop, then kill flags on
1479   // DefMI would be invalid when tranferred inside the loop.  Checking for a
1480   // loop is expensive, but at least remove kill flags if they are in different
1481   // BBs.
1482   if (DefMI->getParent() != MI.getParent())
1483     NewMI->clearKillInfo();
1484 
1485   // The caller will erase MI, but not DefMI.
1486   DefMI->eraseFromParent();
1487   return NewMI;
1488 }
1489 
1490 unsigned RISCVInstrInfo::getInstSizeInBytes(const MachineInstr &MI) const {
1491   if (MI.isMetaInstruction())
1492     return 0;
1493 
1494   unsigned Opcode = MI.getOpcode();
1495 
1496   if (Opcode == TargetOpcode::INLINEASM ||
1497       Opcode == TargetOpcode::INLINEASM_BR) {
1498     const MachineFunction &MF = *MI.getParent()->getParent();
1499     const auto &TM = static_cast<const RISCVTargetMachine &>(MF.getTarget());
1500     return getInlineAsmLength(MI.getOperand(0).getSymbolName(),
1501                               *TM.getMCAsmInfo());
1502   }
1503 
1504   if (!MI.memoperands_empty()) {
1505     MachineMemOperand *MMO = *(MI.memoperands_begin());
1506     const MachineFunction &MF = *MI.getParent()->getParent();
1507     const auto &ST = MF.getSubtarget<RISCVSubtarget>();
1508     if (ST.hasStdExtZihintntl() && MMO->isNonTemporal()) {
1509       if (ST.hasStdExtCOrZca() && ST.enableRVCHintInstrs()) {
1510         if (isCompressibleInst(MI, STI))
1511           return 4; // c.ntl.all + c.load/c.store
1512         return 6;   // c.ntl.all + load/store
1513       }
1514       return 8; // ntl.all + load/store
1515     }
1516   }
1517 
1518   if (Opcode == TargetOpcode::BUNDLE)
1519     return getInstBundleLength(MI);
1520 
1521   if (MI.getParent() && MI.getParent()->getParent()) {
1522     if (isCompressibleInst(MI, STI))
1523       return 2;
1524   }
1525 
1526   switch (Opcode) {
1527   case TargetOpcode::STACKMAP:
1528     // The upper bound for a stackmap intrinsic is the full length of its shadow
1529     return StackMapOpers(&MI).getNumPatchBytes();
1530   case TargetOpcode::PATCHPOINT:
1531     // The size of the patchpoint intrinsic is the number of bytes requested
1532     return PatchPointOpers(&MI).getNumPatchBytes();
1533   case TargetOpcode::STATEPOINT:
1534     // The size of the statepoint intrinsic is the number of bytes requested
1535     return StatepointOpers(&MI).getNumPatchBytes();
1536   default:
1537     return get(Opcode).getSize();
1538   }
1539 }
1540 
1541 unsigned RISCVInstrInfo::getInstBundleLength(const MachineInstr &MI) const {
1542   unsigned Size = 0;
1543   MachineBasicBlock::const_instr_iterator I = MI.getIterator();
1544   MachineBasicBlock::const_instr_iterator E = MI.getParent()->instr_end();
1545   while (++I != E && I->isInsideBundle()) {
1546     assert(!I->isBundle() && "No nested bundle!");
1547     Size += getInstSizeInBytes(*I);
1548   }
1549   return Size;
1550 }
1551 
1552 bool RISCVInstrInfo::isAsCheapAsAMove(const MachineInstr &MI) const {
1553   const unsigned Opcode = MI.getOpcode();
1554   switch (Opcode) {
1555   default:
1556     break;
1557   case RISCV::FSGNJ_D:
1558   case RISCV::FSGNJ_S:
1559   case RISCV::FSGNJ_H:
1560   case RISCV::FSGNJ_D_INX:
1561   case RISCV::FSGNJ_D_IN32X:
1562   case RISCV::FSGNJ_S_INX:
1563   case RISCV::FSGNJ_H_INX:
1564     // The canonical floating-point move is fsgnj rd, rs, rs.
1565     return MI.getOperand(1).isReg() && MI.getOperand(2).isReg() &&
1566            MI.getOperand(1).getReg() == MI.getOperand(2).getReg();
1567   case RISCV::ADDI:
1568   case RISCV::ORI:
1569   case RISCV::XORI:
1570     return (MI.getOperand(1).isReg() &&
1571             MI.getOperand(1).getReg() == RISCV::X0) ||
1572            (MI.getOperand(2).isImm() && MI.getOperand(2).getImm() == 0);
1573   }
1574   return MI.isAsCheapAsAMove();
1575 }
1576 
1577 std::optional<DestSourcePair>
1578 RISCVInstrInfo::isCopyInstrImpl(const MachineInstr &MI) const {
1579   if (MI.isMoveReg())
1580     return DestSourcePair{MI.getOperand(0), MI.getOperand(1)};
1581   switch (MI.getOpcode()) {
1582   default:
1583     break;
1584   case RISCV::ADDI:
1585     // Operand 1 can be a frameindex but callers expect registers
1586     if (MI.getOperand(1).isReg() && MI.getOperand(2).isImm() &&
1587         MI.getOperand(2).getImm() == 0)
1588       return DestSourcePair{MI.getOperand(0), MI.getOperand(1)};
1589     break;
1590   case RISCV::FSGNJ_D:
1591   case RISCV::FSGNJ_S:
1592   case RISCV::FSGNJ_H:
1593   case RISCV::FSGNJ_D_INX:
1594   case RISCV::FSGNJ_D_IN32X:
1595   case RISCV::FSGNJ_S_INX:
1596   case RISCV::FSGNJ_H_INX:
1597     // The canonical floating-point move is fsgnj rd, rs, rs.
1598     if (MI.getOperand(1).isReg() && MI.getOperand(2).isReg() &&
1599         MI.getOperand(1).getReg() == MI.getOperand(2).getReg())
1600       return DestSourcePair{MI.getOperand(0), MI.getOperand(1)};
1601     break;
1602   }
1603   return std::nullopt;
1604 }
1605 
1606 MachineTraceStrategy RISCVInstrInfo::getMachineCombinerTraceStrategy() const {
1607   if (ForceMachineCombinerStrategy.getNumOccurrences() == 0) {
1608     // The option is unused. Choose Local strategy only for in-order cores. When
1609     // scheduling model is unspecified, use MinInstrCount strategy as more
1610     // generic one.
1611     const auto &SchedModel = STI.getSchedModel();
1612     return (!SchedModel.hasInstrSchedModel() || SchedModel.isOutOfOrder())
1613                ? MachineTraceStrategy::TS_MinInstrCount
1614                : MachineTraceStrategy::TS_Local;
1615   }
1616   // The strategy was forced by the option.
1617   return ForceMachineCombinerStrategy;
1618 }
1619 
1620 void RISCVInstrInfo::finalizeInsInstrs(
1621     MachineInstr &Root, MachineCombinerPattern &P,
1622     SmallVectorImpl<MachineInstr *> &InsInstrs) const {
1623   int16_t FrmOpIdx =
1624       RISCV::getNamedOperandIdx(Root.getOpcode(), RISCV::OpName::frm);
1625   if (FrmOpIdx < 0) {
1626     assert(all_of(InsInstrs,
1627                   [](MachineInstr *MI) {
1628                     return RISCV::getNamedOperandIdx(MI->getOpcode(),
1629                                                      RISCV::OpName::frm) < 0;
1630                   }) &&
1631            "New instructions require FRM whereas the old one does not have it");
1632     return;
1633   }
1634 
1635   const MachineOperand &FRM = Root.getOperand(FrmOpIdx);
1636   MachineFunction &MF = *Root.getMF();
1637 
1638   for (auto *NewMI : InsInstrs) {
1639     assert(static_cast<unsigned>(RISCV::getNamedOperandIdx(
1640                NewMI->getOpcode(), RISCV::OpName::frm)) ==
1641                NewMI->getNumOperands() &&
1642            "Instruction has unexpected number of operands");
1643     MachineInstrBuilder MIB(MF, NewMI);
1644     MIB.add(FRM);
1645     if (FRM.getImm() == RISCVFPRndMode::DYN)
1646       MIB.addUse(RISCV::FRM, RegState::Implicit);
1647   }
1648 }
1649 
1650 static bool isFADD(unsigned Opc) {
1651   switch (Opc) {
1652   default:
1653     return false;
1654   case RISCV::FADD_H:
1655   case RISCV::FADD_S:
1656   case RISCV::FADD_D:
1657     return true;
1658   }
1659 }
1660 
1661 static bool isFSUB(unsigned Opc) {
1662   switch (Opc) {
1663   default:
1664     return false;
1665   case RISCV::FSUB_H:
1666   case RISCV::FSUB_S:
1667   case RISCV::FSUB_D:
1668     return true;
1669   }
1670 }
1671 
1672 static bool isFMUL(unsigned Opc) {
1673   switch (Opc) {
1674   default:
1675     return false;
1676   case RISCV::FMUL_H:
1677   case RISCV::FMUL_S:
1678   case RISCV::FMUL_D:
1679     return true;
1680   }
1681 }
1682 
1683 bool RISCVInstrInfo::hasReassociableSibling(const MachineInstr &Inst,
1684                                             bool &Commuted) const {
1685   if (!TargetInstrInfo::hasReassociableSibling(Inst, Commuted))
1686     return false;
1687 
1688   const MachineRegisterInfo &MRI = Inst.getMF()->getRegInfo();
1689   unsigned OperandIdx = Commuted ? 2 : 1;
1690   const MachineInstr &Sibling =
1691       *MRI.getVRegDef(Inst.getOperand(OperandIdx).getReg());
1692 
1693   int16_t InstFrmOpIdx =
1694       RISCV::getNamedOperandIdx(Inst.getOpcode(), RISCV::OpName::frm);
1695   int16_t SiblingFrmOpIdx =
1696       RISCV::getNamedOperandIdx(Sibling.getOpcode(), RISCV::OpName::frm);
1697 
1698   return (InstFrmOpIdx < 0 && SiblingFrmOpIdx < 0) ||
1699          RISCV::hasEqualFRM(Inst, Sibling);
1700 }
1701 
1702 bool RISCVInstrInfo::isAssociativeAndCommutative(const MachineInstr &Inst,
1703                                                  bool Invert) const {
1704   unsigned Opc = Inst.getOpcode();
1705   if (Invert) {
1706     auto InverseOpcode = getInverseOpcode(Opc);
1707     if (!InverseOpcode)
1708       return false;
1709     Opc = *InverseOpcode;
1710   }
1711 
1712   if (isFADD(Opc) || isFMUL(Opc))
1713     return Inst.getFlag(MachineInstr::MIFlag::FmReassoc) &&
1714            Inst.getFlag(MachineInstr::MIFlag::FmNsz);
1715 
1716   switch (Opc) {
1717   default:
1718     return false;
1719   case RISCV::ADD:
1720   case RISCV::ADDW:
1721   case RISCV::AND:
1722   case RISCV::OR:
1723   case RISCV::XOR:
1724   // From RISC-V ISA spec, if both the high and low bits of the same product
1725   // are required, then the recommended code sequence is:
1726   //
1727   // MULH[[S]U] rdh, rs1, rs2
1728   // MUL        rdl, rs1, rs2
1729   // (source register specifiers must be in same order and rdh cannot be the
1730   //  same as rs1 or rs2)
1731   //
1732   // Microarchitectures can then fuse these into a single multiply operation
1733   // instead of performing two separate multiplies.
1734   // MachineCombiner may reassociate MUL operands and lose the fusion
1735   // opportunity.
1736   case RISCV::MUL:
1737   case RISCV::MULW:
1738   case RISCV::MIN:
1739   case RISCV::MINU:
1740   case RISCV::MAX:
1741   case RISCV::MAXU:
1742   case RISCV::FMIN_H:
1743   case RISCV::FMIN_S:
1744   case RISCV::FMIN_D:
1745   case RISCV::FMAX_H:
1746   case RISCV::FMAX_S:
1747   case RISCV::FMAX_D:
1748     return true;
1749   }
1750 
1751   return false;
1752 }
1753 
1754 std::optional<unsigned>
1755 RISCVInstrInfo::getInverseOpcode(unsigned Opcode) const {
1756   switch (Opcode) {
1757   default:
1758     return std::nullopt;
1759   case RISCV::FADD_H:
1760     return RISCV::FSUB_H;
1761   case RISCV::FADD_S:
1762     return RISCV::FSUB_S;
1763   case RISCV::FADD_D:
1764     return RISCV::FSUB_D;
1765   case RISCV::FSUB_H:
1766     return RISCV::FADD_H;
1767   case RISCV::FSUB_S:
1768     return RISCV::FADD_S;
1769   case RISCV::FSUB_D:
1770     return RISCV::FADD_D;
1771   case RISCV::ADD:
1772     return RISCV::SUB;
1773   case RISCV::SUB:
1774     return RISCV::ADD;
1775   case RISCV::ADDW:
1776     return RISCV::SUBW;
1777   case RISCV::SUBW:
1778     return RISCV::ADDW;
1779   }
1780 }
1781 
1782 static bool canCombineFPFusedMultiply(const MachineInstr &Root,
1783                                       const MachineOperand &MO,
1784                                       bool DoRegPressureReduce) {
1785   if (!MO.isReg() || !MO.getReg().isVirtual())
1786     return false;
1787   const MachineRegisterInfo &MRI = Root.getMF()->getRegInfo();
1788   MachineInstr *MI = MRI.getVRegDef(MO.getReg());
1789   if (!MI || !isFMUL(MI->getOpcode()))
1790     return false;
1791 
1792   if (!Root.getFlag(MachineInstr::MIFlag::FmContract) ||
1793       !MI->getFlag(MachineInstr::MIFlag::FmContract))
1794     return false;
1795 
1796   // Try combining even if fmul has more than one use as it eliminates
1797   // dependency between fadd(fsub) and fmul. However, it can extend liveranges
1798   // for fmul operands, so reject the transformation in register pressure
1799   // reduction mode.
1800   if (DoRegPressureReduce && !MRI.hasOneNonDBGUse(MI->getOperand(0).getReg()))
1801     return false;
1802 
1803   // Do not combine instructions from different basic blocks.
1804   if (Root.getParent() != MI->getParent())
1805     return false;
1806   return RISCV::hasEqualFRM(Root, *MI);
1807 }
1808 
1809 static bool
1810 getFPFusedMultiplyPatterns(MachineInstr &Root,
1811                            SmallVectorImpl<MachineCombinerPattern> &Patterns,
1812                            bool DoRegPressureReduce) {
1813   unsigned Opc = Root.getOpcode();
1814   bool IsFAdd = isFADD(Opc);
1815   if (!IsFAdd && !isFSUB(Opc))
1816     return false;
1817   bool Added = false;
1818   if (canCombineFPFusedMultiply(Root, Root.getOperand(1),
1819                                 DoRegPressureReduce)) {
1820     Patterns.push_back(IsFAdd ? MachineCombinerPattern::FMADD_AX
1821                               : MachineCombinerPattern::FMSUB);
1822     Added = true;
1823   }
1824   if (canCombineFPFusedMultiply(Root, Root.getOperand(2),
1825                                 DoRegPressureReduce)) {
1826     Patterns.push_back(IsFAdd ? MachineCombinerPattern::FMADD_XA
1827                               : MachineCombinerPattern::FNMSUB);
1828     Added = true;
1829   }
1830   return Added;
1831 }
1832 
1833 static bool getFPPatterns(MachineInstr &Root,
1834                           SmallVectorImpl<MachineCombinerPattern> &Patterns,
1835                           bool DoRegPressureReduce) {
1836   return getFPFusedMultiplyPatterns(Root, Patterns, DoRegPressureReduce);
1837 }
1838 
1839 bool RISCVInstrInfo::getMachineCombinerPatterns(
1840     MachineInstr &Root, SmallVectorImpl<MachineCombinerPattern> &Patterns,
1841     bool DoRegPressureReduce) const {
1842 
1843   if (getFPPatterns(Root, Patterns, DoRegPressureReduce))
1844     return true;
1845 
1846   return TargetInstrInfo::getMachineCombinerPatterns(Root, Patterns,
1847                                                      DoRegPressureReduce);
1848 }
1849 
1850 static unsigned getFPFusedMultiplyOpcode(unsigned RootOpc,
1851                                          MachineCombinerPattern Pattern) {
1852   switch (RootOpc) {
1853   default:
1854     llvm_unreachable("Unexpected opcode");
1855   case RISCV::FADD_H:
1856     return RISCV::FMADD_H;
1857   case RISCV::FADD_S:
1858     return RISCV::FMADD_S;
1859   case RISCV::FADD_D:
1860     return RISCV::FMADD_D;
1861   case RISCV::FSUB_H:
1862     return Pattern == MachineCombinerPattern::FMSUB ? RISCV::FMSUB_H
1863                                                     : RISCV::FNMSUB_H;
1864   case RISCV::FSUB_S:
1865     return Pattern == MachineCombinerPattern::FMSUB ? RISCV::FMSUB_S
1866                                                     : RISCV::FNMSUB_S;
1867   case RISCV::FSUB_D:
1868     return Pattern == MachineCombinerPattern::FMSUB ? RISCV::FMSUB_D
1869                                                     : RISCV::FNMSUB_D;
1870   }
1871 }
1872 
1873 static unsigned getAddendOperandIdx(MachineCombinerPattern Pattern) {
1874   switch (Pattern) {
1875   default:
1876     llvm_unreachable("Unexpected pattern");
1877   case MachineCombinerPattern::FMADD_AX:
1878   case MachineCombinerPattern::FMSUB:
1879     return 2;
1880   case MachineCombinerPattern::FMADD_XA:
1881   case MachineCombinerPattern::FNMSUB:
1882     return 1;
1883   }
1884 }
1885 
1886 static void combineFPFusedMultiply(MachineInstr &Root, MachineInstr &Prev,
1887                                    MachineCombinerPattern Pattern,
1888                                    SmallVectorImpl<MachineInstr *> &InsInstrs,
1889                                    SmallVectorImpl<MachineInstr *> &DelInstrs) {
1890   MachineFunction *MF = Root.getMF();
1891   MachineRegisterInfo &MRI = MF->getRegInfo();
1892   const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo();
1893 
1894   MachineOperand &Mul1 = Prev.getOperand(1);
1895   MachineOperand &Mul2 = Prev.getOperand(2);
1896   MachineOperand &Dst = Root.getOperand(0);
1897   MachineOperand &Addend = Root.getOperand(getAddendOperandIdx(Pattern));
1898 
1899   Register DstReg = Dst.getReg();
1900   unsigned FusedOpc = getFPFusedMultiplyOpcode(Root.getOpcode(), Pattern);
1901   uint32_t IntersectedFlags = Root.getFlags() & Prev.getFlags();
1902   DebugLoc MergedLoc =
1903       DILocation::getMergedLocation(Root.getDebugLoc(), Prev.getDebugLoc());
1904 
1905   bool Mul1IsKill = Mul1.isKill();
1906   bool Mul2IsKill = Mul2.isKill();
1907   bool AddendIsKill = Addend.isKill();
1908 
1909   // We need to clear kill flags since we may be extending the live range past
1910   // a kill. If the mul had kill flags, we can preserve those since we know
1911   // where the previous range stopped.
1912   MRI.clearKillFlags(Mul1.getReg());
1913   MRI.clearKillFlags(Mul2.getReg());
1914 
1915   MachineInstrBuilder MIB =
1916       BuildMI(*MF, MergedLoc, TII->get(FusedOpc), DstReg)
1917           .addReg(Mul1.getReg(), getKillRegState(Mul1IsKill))
1918           .addReg(Mul2.getReg(), getKillRegState(Mul2IsKill))
1919           .addReg(Addend.getReg(), getKillRegState(AddendIsKill))
1920           .setMIFlags(IntersectedFlags);
1921 
1922   InsInstrs.push_back(MIB);
1923   if (MRI.hasOneNonDBGUse(Prev.getOperand(0).getReg()))
1924     DelInstrs.push_back(&Prev);
1925   DelInstrs.push_back(&Root);
1926 }
1927 
1928 void RISCVInstrInfo::genAlternativeCodeSequence(
1929     MachineInstr &Root, MachineCombinerPattern Pattern,
1930     SmallVectorImpl<MachineInstr *> &InsInstrs,
1931     SmallVectorImpl<MachineInstr *> &DelInstrs,
1932     DenseMap<unsigned, unsigned> &InstrIdxForVirtReg) const {
1933   MachineRegisterInfo &MRI = Root.getMF()->getRegInfo();
1934   switch (Pattern) {
1935   default:
1936     TargetInstrInfo::genAlternativeCodeSequence(Root, Pattern, InsInstrs,
1937                                                 DelInstrs, InstrIdxForVirtReg);
1938     return;
1939   case MachineCombinerPattern::FMADD_AX:
1940   case MachineCombinerPattern::FMSUB: {
1941     MachineInstr &Prev = *MRI.getVRegDef(Root.getOperand(1).getReg());
1942     combineFPFusedMultiply(Root, Prev, Pattern, InsInstrs, DelInstrs);
1943     return;
1944   }
1945   case MachineCombinerPattern::FMADD_XA:
1946   case MachineCombinerPattern::FNMSUB: {
1947     MachineInstr &Prev = *MRI.getVRegDef(Root.getOperand(2).getReg());
1948     combineFPFusedMultiply(Root, Prev, Pattern, InsInstrs, DelInstrs);
1949     return;
1950   }
1951   }
1952 }
1953 
1954 bool RISCVInstrInfo::verifyInstruction(const MachineInstr &MI,
1955                                        StringRef &ErrInfo) const {
1956   MCInstrDesc const &Desc = MI.getDesc();
1957 
1958   for (const auto &[Index, Operand] : enumerate(Desc.operands())) {
1959     unsigned OpType = Operand.OperandType;
1960     if (OpType >= RISCVOp::OPERAND_FIRST_RISCV_IMM &&
1961         OpType <= RISCVOp::OPERAND_LAST_RISCV_IMM) {
1962       const MachineOperand &MO = MI.getOperand(Index);
1963       if (MO.isImm()) {
1964         int64_t Imm = MO.getImm();
1965         bool Ok;
1966         switch (OpType) {
1967         default:
1968           llvm_unreachable("Unexpected operand type");
1969 
1970           // clang-format off
1971 #define CASE_OPERAND_UIMM(NUM)                                                 \
1972   case RISCVOp::OPERAND_UIMM##NUM:                                             \
1973     Ok = isUInt<NUM>(Imm);                                                     \
1974     break;
1975         CASE_OPERAND_UIMM(1)
1976         CASE_OPERAND_UIMM(2)
1977         CASE_OPERAND_UIMM(3)
1978         CASE_OPERAND_UIMM(4)
1979         CASE_OPERAND_UIMM(5)
1980         CASE_OPERAND_UIMM(6)
1981         CASE_OPERAND_UIMM(7)
1982         CASE_OPERAND_UIMM(8)
1983         CASE_OPERAND_UIMM(12)
1984         CASE_OPERAND_UIMM(20)
1985           // clang-format on
1986         case RISCVOp::OPERAND_UIMM2_LSB0:
1987           Ok = isShiftedUInt<1, 1>(Imm);
1988           break;
1989         case RISCVOp::OPERAND_UIMM7_LSB00:
1990           Ok = isShiftedUInt<5, 2>(Imm);
1991           break;
1992         case RISCVOp::OPERAND_UIMM8_LSB00:
1993           Ok = isShiftedUInt<6, 2>(Imm);
1994           break;
1995         case RISCVOp::OPERAND_UIMM8_LSB000:
1996           Ok = isShiftedUInt<5, 3>(Imm);
1997           break;
1998         case RISCVOp::OPERAND_UIMM8_GE32:
1999           Ok = isUInt<8>(Imm) && Imm >= 32;
2000           break;
2001         case RISCVOp::OPERAND_UIMM9_LSB000:
2002           Ok = isShiftedUInt<6, 3>(Imm);
2003           break;
2004         case RISCVOp::OPERAND_SIMM10_LSB0000_NONZERO:
2005           Ok = isShiftedInt<6, 4>(Imm) && (Imm != 0);
2006           break;
2007         case RISCVOp::OPERAND_UIMM10_LSB00_NONZERO:
2008           Ok = isShiftedUInt<8, 2>(Imm) && (Imm != 0);
2009           break;
2010         case RISCVOp::OPERAND_ZERO:
2011           Ok = Imm == 0;
2012           break;
2013         case RISCVOp::OPERAND_SIMM5:
2014           Ok = isInt<5>(Imm);
2015           break;
2016         case RISCVOp::OPERAND_SIMM5_PLUS1:
2017           Ok = (isInt<5>(Imm) && Imm != -16) || Imm == 16;
2018           break;
2019         case RISCVOp::OPERAND_SIMM6:
2020           Ok = isInt<6>(Imm);
2021           break;
2022         case RISCVOp::OPERAND_SIMM6_NONZERO:
2023           Ok = Imm != 0 && isInt<6>(Imm);
2024           break;
2025         case RISCVOp::OPERAND_VTYPEI10:
2026           Ok = isUInt<10>(Imm);
2027           break;
2028         case RISCVOp::OPERAND_VTYPEI11:
2029           Ok = isUInt<11>(Imm);
2030           break;
2031         case RISCVOp::OPERAND_SIMM12:
2032           Ok = isInt<12>(Imm);
2033           break;
2034         case RISCVOp::OPERAND_SIMM12_LSB00000:
2035           Ok = isShiftedInt<7, 5>(Imm);
2036           break;
2037         case RISCVOp::OPERAND_UIMMLOG2XLEN:
2038           Ok = STI.is64Bit() ? isUInt<6>(Imm) : isUInt<5>(Imm);
2039           break;
2040         case RISCVOp::OPERAND_UIMMLOG2XLEN_NONZERO:
2041           Ok = STI.is64Bit() ? isUInt<6>(Imm) : isUInt<5>(Imm);
2042           Ok = Ok && Imm != 0;
2043           break;
2044         case RISCVOp::OPERAND_CLUI_IMM:
2045           Ok = (isUInt<5>(Imm) && Imm != 0) ||
2046                (Imm >= 0xfffe0 && Imm <= 0xfffff);
2047           break;
2048         case RISCVOp::OPERAND_RVKRNUM:
2049           Ok = Imm >= 0 && Imm <= 10;
2050           break;
2051         case RISCVOp::OPERAND_RVKRNUM_0_7:
2052           Ok = Imm >= 0 && Imm <= 7;
2053           break;
2054         case RISCVOp::OPERAND_RVKRNUM_1_10:
2055           Ok = Imm >= 1 && Imm <= 10;
2056           break;
2057         case RISCVOp::OPERAND_RVKRNUM_2_14:
2058           Ok = Imm >= 2 && Imm <= 14;
2059           break;
2060         }
2061         if (!Ok) {
2062           ErrInfo = "Invalid immediate";
2063           return false;
2064         }
2065       }
2066     }
2067   }
2068 
2069   const uint64_t TSFlags = Desc.TSFlags;
2070   if (RISCVII::hasVLOp(TSFlags)) {
2071     const MachineOperand &Op = MI.getOperand(RISCVII::getVLOpNum(Desc));
2072     if (!Op.isImm() && !Op.isReg())  {
2073       ErrInfo = "Invalid operand type for VL operand";
2074       return false;
2075     }
2076     if (Op.isReg() && Op.getReg() != RISCV::NoRegister) {
2077       const MachineRegisterInfo &MRI = MI.getParent()->getParent()->getRegInfo();
2078       auto *RC = MRI.getRegClass(Op.getReg());
2079       if (!RISCV::GPRRegClass.hasSubClassEq(RC)) {
2080         ErrInfo = "Invalid register class for VL operand";
2081         return false;
2082       }
2083     }
2084     if (!RISCVII::hasSEWOp(TSFlags)) {
2085       ErrInfo = "VL operand w/o SEW operand?";
2086       return false;
2087     }
2088   }
2089   if (RISCVII::hasSEWOp(TSFlags)) {
2090     unsigned OpIdx = RISCVII::getSEWOpNum(Desc);
2091     if (!MI.getOperand(OpIdx).isImm()) {
2092       ErrInfo = "SEW value expected to be an immediate";
2093       return false;
2094     }
2095     uint64_t Log2SEW = MI.getOperand(OpIdx).getImm();
2096     if (Log2SEW > 31) {
2097       ErrInfo = "Unexpected SEW value";
2098       return false;
2099     }
2100     unsigned SEW = Log2SEW ? 1 << Log2SEW : 8;
2101     if (!RISCVVType::isValidSEW(SEW)) {
2102       ErrInfo = "Unexpected SEW value";
2103       return false;
2104     }
2105   }
2106   if (RISCVII::hasVecPolicyOp(TSFlags)) {
2107     unsigned OpIdx = RISCVII::getVecPolicyOpNum(Desc);
2108     if (!MI.getOperand(OpIdx).isImm()) {
2109       ErrInfo = "Policy operand expected to be an immediate";
2110       return false;
2111     }
2112     uint64_t Policy = MI.getOperand(OpIdx).getImm();
2113     if (Policy > (RISCVII::TAIL_AGNOSTIC | RISCVII::MASK_AGNOSTIC)) {
2114       ErrInfo = "Invalid Policy Value";
2115       return false;
2116     }
2117     if (!RISCVII::hasVLOp(TSFlags)) {
2118       ErrInfo = "policy operand w/o VL operand?";
2119       return false;
2120     }
2121 
2122     // VecPolicy operands can only exist on instructions with passthru/merge
2123     // arguments. Note that not all arguments with passthru have vec policy
2124     // operands- some instructions have implicit policies.
2125     unsigned UseOpIdx;
2126     if (!MI.isRegTiedToUseOperand(0, &UseOpIdx)) {
2127       ErrInfo = "policy operand w/o tied operand?";
2128       return false;
2129     }
2130   }
2131 
2132   return true;
2133 }
2134 
2135 bool RISCVInstrInfo::canFoldIntoAddrMode(const MachineInstr &MemI, Register Reg,
2136                                          const MachineInstr &AddrI,
2137                                          ExtAddrMode &AM) const {
2138   switch (MemI.getOpcode()) {
2139   default:
2140     return false;
2141   case RISCV::LB:
2142   case RISCV::LBU:
2143   case RISCV::LH:
2144   case RISCV::LHU:
2145   case RISCV::LW:
2146   case RISCV::LWU:
2147   case RISCV::LD:
2148   case RISCV::FLH:
2149   case RISCV::FLW:
2150   case RISCV::FLD:
2151   case RISCV::SB:
2152   case RISCV::SH:
2153   case RISCV::SW:
2154   case RISCV::SD:
2155   case RISCV::FSH:
2156   case RISCV::FSW:
2157   case RISCV::FSD:
2158     break;
2159   }
2160 
2161   if (MemI.getOperand(0).getReg() == Reg)
2162     return false;
2163 
2164   if (AddrI.getOpcode() != RISCV::ADDI || !AddrI.getOperand(1).isReg() ||
2165       !AddrI.getOperand(2).isImm())
2166     return false;
2167 
2168   int64_t OldOffset = MemI.getOperand(2).getImm();
2169   int64_t Disp = AddrI.getOperand(2).getImm();
2170   int64_t NewOffset = OldOffset + Disp;
2171   if (!STI.is64Bit())
2172     NewOffset = SignExtend64<32>(NewOffset);
2173 
2174   if (!isInt<12>(NewOffset))
2175     return false;
2176 
2177   AM.BaseReg = AddrI.getOperand(1).getReg();
2178   AM.ScaledReg = 0;
2179   AM.Scale = 0;
2180   AM.Displacement = NewOffset;
2181   AM.Form = ExtAddrMode::Formula::Basic;
2182   return true;
2183 }
2184 
2185 MachineInstr *RISCVInstrInfo::emitLdStWithAddr(MachineInstr &MemI,
2186                                                const ExtAddrMode &AM) const {
2187 
2188   const DebugLoc &DL = MemI.getDebugLoc();
2189   MachineBasicBlock &MBB = *MemI.getParent();
2190 
2191   assert(AM.ScaledReg == 0 && AM.Scale == 0 &&
2192          "Addressing mode not supported for folding");
2193 
2194   return BuildMI(MBB, MemI, DL, get(MemI.getOpcode()))
2195       .addReg(MemI.getOperand(0).getReg(),
2196               MemI.mayLoad() ? RegState::Define : 0)
2197       .addReg(AM.BaseReg)
2198       .addImm(AM.Displacement)
2199       .setMemRefs(MemI.memoperands())
2200       .setMIFlags(MemI.getFlags());
2201 }
2202 
2203 bool RISCVInstrInfo::getMemOperandsWithOffsetWidth(
2204     const MachineInstr &LdSt, SmallVectorImpl<const MachineOperand *> &BaseOps,
2205     int64_t &Offset, bool &OffsetIsScalable, unsigned &Width,
2206     const TargetRegisterInfo *TRI) const {
2207   if (!LdSt.mayLoadOrStore())
2208     return false;
2209 
2210   // Conservatively, only handle scalar loads/stores for now.
2211   switch (LdSt.getOpcode()) {
2212   case RISCV::LB:
2213   case RISCV::LBU:
2214   case RISCV::SB:
2215   case RISCV::LH:
2216   case RISCV::LHU:
2217   case RISCV::FLH:
2218   case RISCV::SH:
2219   case RISCV::FSH:
2220   case RISCV::LW:
2221   case RISCV::LWU:
2222   case RISCV::FLW:
2223   case RISCV::SW:
2224   case RISCV::FSW:
2225   case RISCV::LD:
2226   case RISCV::FLD:
2227   case RISCV::SD:
2228   case RISCV::FSD:
2229     break;
2230   default:
2231     return false;
2232   }
2233   const MachineOperand *BaseOp;
2234   OffsetIsScalable = false;
2235   if (!getMemOperandWithOffsetWidth(LdSt, BaseOp, Offset, Width, TRI))
2236     return false;
2237   BaseOps.push_back(BaseOp);
2238   return true;
2239 }
2240 
2241 // TODO: This was copied from SIInstrInfo. Could it be lifted to a common
2242 // helper?
2243 static bool memOpsHaveSameBasePtr(const MachineInstr &MI1,
2244                                   ArrayRef<const MachineOperand *> BaseOps1,
2245                                   const MachineInstr &MI2,
2246                                   ArrayRef<const MachineOperand *> BaseOps2) {
2247   // Only examine the first "base" operand of each instruction, on the
2248   // assumption that it represents the real base address of the memory access.
2249   // Other operands are typically offsets or indices from this base address.
2250   if (BaseOps1.front()->isIdenticalTo(*BaseOps2.front()))
2251     return true;
2252 
2253   if (!MI1.hasOneMemOperand() || !MI2.hasOneMemOperand())
2254     return false;
2255 
2256   auto MO1 = *MI1.memoperands_begin();
2257   auto MO2 = *MI2.memoperands_begin();
2258   if (MO1->getAddrSpace() != MO2->getAddrSpace())
2259     return false;
2260 
2261   auto Base1 = MO1->getValue();
2262   auto Base2 = MO2->getValue();
2263   if (!Base1 || !Base2)
2264     return false;
2265   Base1 = getUnderlyingObject(Base1);
2266   Base2 = getUnderlyingObject(Base2);
2267 
2268   if (isa<UndefValue>(Base1) || isa<UndefValue>(Base2))
2269     return false;
2270 
2271   return Base1 == Base2;
2272 }
2273 
2274 bool RISCVInstrInfo::shouldClusterMemOps(
2275     ArrayRef<const MachineOperand *> BaseOps1, int64_t Offset1,
2276     bool OffsetIsScalable1, ArrayRef<const MachineOperand *> BaseOps2,
2277     int64_t Offset2, bool OffsetIsScalable2, unsigned ClusterSize,
2278     unsigned NumBytes) const {
2279   // If the mem ops (to be clustered) do not have the same base ptr, then they
2280   // should not be clustered
2281   if (!BaseOps1.empty() && !BaseOps2.empty()) {
2282     const MachineInstr &FirstLdSt = *BaseOps1.front()->getParent();
2283     const MachineInstr &SecondLdSt = *BaseOps2.front()->getParent();
2284     if (!memOpsHaveSameBasePtr(FirstLdSt, BaseOps1, SecondLdSt, BaseOps2))
2285       return false;
2286   } else if (!BaseOps1.empty() || !BaseOps2.empty()) {
2287     // If only one base op is empty, they do not have the same base ptr
2288     return false;
2289   }
2290 
2291   unsigned CacheLineSize =
2292       BaseOps1.front()->getParent()->getMF()->getSubtarget().getCacheLineSize();
2293   // Assume a cache line size of 64 bytes if no size is set in RISCVSubtarget.
2294   CacheLineSize = CacheLineSize ? CacheLineSize : 64;
2295   // Cluster if the memory operations are on the same or a neighbouring cache
2296   // line, but limit the maximum ClusterSize to avoid creating too much
2297   // additional register pressure.
2298   return ClusterSize <= 4 && std::abs(Offset1 - Offset2) < CacheLineSize;
2299 }
2300 
2301 // Set BaseReg (the base register operand), Offset (the byte offset being
2302 // accessed) and the access Width of the passed instruction that reads/writes
2303 // memory. Returns false if the instruction does not read/write memory or the
2304 // BaseReg/Offset/Width can't be determined. Is not guaranteed to always
2305 // recognise base operands and offsets in all cases.
2306 // TODO: Add an IsScalable bool ref argument (like the equivalent AArch64
2307 // function) and set it as appropriate.
2308 bool RISCVInstrInfo::getMemOperandWithOffsetWidth(
2309     const MachineInstr &LdSt, const MachineOperand *&BaseReg, int64_t &Offset,
2310     unsigned &Width, const TargetRegisterInfo *TRI) const {
2311   if (!LdSt.mayLoadOrStore())
2312     return false;
2313 
2314   // Here we assume the standard RISC-V ISA, which uses a base+offset
2315   // addressing mode. You'll need to relax these conditions to support custom
2316   // load/store instructions.
2317   if (LdSt.getNumExplicitOperands() != 3)
2318     return false;
2319   if ((!LdSt.getOperand(1).isReg() && !LdSt.getOperand(1).isFI()) ||
2320       !LdSt.getOperand(2).isImm())
2321     return false;
2322 
2323   if (!LdSt.hasOneMemOperand())
2324     return false;
2325 
2326   Width = (*LdSt.memoperands_begin())->getSize();
2327   BaseReg = &LdSt.getOperand(1);
2328   Offset = LdSt.getOperand(2).getImm();
2329   return true;
2330 }
2331 
2332 bool RISCVInstrInfo::areMemAccessesTriviallyDisjoint(
2333     const MachineInstr &MIa, const MachineInstr &MIb) const {
2334   assert(MIa.mayLoadOrStore() && "MIa must be a load or store.");
2335   assert(MIb.mayLoadOrStore() && "MIb must be a load or store.");
2336 
2337   if (MIa.hasUnmodeledSideEffects() || MIb.hasUnmodeledSideEffects() ||
2338       MIa.hasOrderedMemoryRef() || MIb.hasOrderedMemoryRef())
2339     return false;
2340 
2341   // Retrieve the base register, offset from the base register and width. Width
2342   // is the size of memory that is being loaded/stored (e.g. 1, 2, 4).  If
2343   // base registers are identical, and the offset of a lower memory access +
2344   // the width doesn't overlap the offset of a higher memory access,
2345   // then the memory accesses are different.
2346   const TargetRegisterInfo *TRI = STI.getRegisterInfo();
2347   const MachineOperand *BaseOpA = nullptr, *BaseOpB = nullptr;
2348   int64_t OffsetA = 0, OffsetB = 0;
2349   unsigned int WidthA = 0, WidthB = 0;
2350   if (getMemOperandWithOffsetWidth(MIa, BaseOpA, OffsetA, WidthA, TRI) &&
2351       getMemOperandWithOffsetWidth(MIb, BaseOpB, OffsetB, WidthB, TRI)) {
2352     if (BaseOpA->isIdenticalTo(*BaseOpB)) {
2353       int LowOffset = std::min(OffsetA, OffsetB);
2354       int HighOffset = std::max(OffsetA, OffsetB);
2355       int LowWidth = (LowOffset == OffsetA) ? WidthA : WidthB;
2356       if (LowOffset + LowWidth <= HighOffset)
2357         return true;
2358     }
2359   }
2360   return false;
2361 }
2362 
2363 std::pair<unsigned, unsigned>
2364 RISCVInstrInfo::decomposeMachineOperandsTargetFlags(unsigned TF) const {
2365   const unsigned Mask = RISCVII::MO_DIRECT_FLAG_MASK;
2366   return std::make_pair(TF & Mask, TF & ~Mask);
2367 }
2368 
2369 ArrayRef<std::pair<unsigned, const char *>>
2370 RISCVInstrInfo::getSerializableDirectMachineOperandTargetFlags() const {
2371   using namespace RISCVII;
2372   static const std::pair<unsigned, const char *> TargetFlags[] = {
2373       {MO_CALL, "riscv-call"},
2374       {MO_LO, "riscv-lo"},
2375       {MO_HI, "riscv-hi"},
2376       {MO_PCREL_LO, "riscv-pcrel-lo"},
2377       {MO_PCREL_HI, "riscv-pcrel-hi"},
2378       {MO_GOT_HI, "riscv-got-hi"},
2379       {MO_TPREL_LO, "riscv-tprel-lo"},
2380       {MO_TPREL_HI, "riscv-tprel-hi"},
2381       {MO_TPREL_ADD, "riscv-tprel-add"},
2382       {MO_TLS_GOT_HI, "riscv-tls-got-hi"},
2383       {MO_TLS_GD_HI, "riscv-tls-gd-hi"},
2384       {MO_TLSDESC_HI, "riscv-tlsdesc-hi"},
2385       {MO_TLSDESC_LOAD_LO, "riscv-tlsdesc-load-lo"},
2386       {MO_TLSDESC_ADD_LO, "riscv-tlsdesc-add-lo"},
2387       {MO_TLSDESC_CALL, "riscv-tlsdesc-call"}};
2388   return ArrayRef(TargetFlags);
2389 }
2390 bool RISCVInstrInfo::isFunctionSafeToOutlineFrom(
2391     MachineFunction &MF, bool OutlineFromLinkOnceODRs) const {
2392   const Function &F = MF.getFunction();
2393 
2394   // Can F be deduplicated by the linker? If it can, don't outline from it.
2395   if (!OutlineFromLinkOnceODRs && F.hasLinkOnceODRLinkage())
2396     return false;
2397 
2398   // Don't outline from functions with section markings; the program could
2399   // expect that all the code is in the named section.
2400   if (F.hasSection())
2401     return false;
2402 
2403   // It's safe to outline from MF.
2404   return true;
2405 }
2406 
2407 bool RISCVInstrInfo::isMBBSafeToOutlineFrom(MachineBasicBlock &MBB,
2408                                             unsigned &Flags) const {
2409   // More accurate safety checking is done in getOutliningCandidateInfo.
2410   return TargetInstrInfo::isMBBSafeToOutlineFrom(MBB, Flags);
2411 }
2412 
2413 // Enum values indicating how an outlined call should be constructed.
2414 enum MachineOutlinerConstructionID {
2415   MachineOutlinerDefault
2416 };
2417 
2418 bool RISCVInstrInfo::shouldOutlineFromFunctionByDefault(
2419     MachineFunction &MF) const {
2420   return MF.getFunction().hasMinSize();
2421 }
2422 
2423 std::optional<outliner::OutlinedFunction>
2424 RISCVInstrInfo::getOutliningCandidateInfo(
2425     std::vector<outliner::Candidate> &RepeatedSequenceLocs) const {
2426 
2427   // First we need to filter out candidates where the X5 register (IE t0) can't
2428   // be used to setup the function call.
2429   auto CannotInsertCall = [](outliner::Candidate &C) {
2430     const TargetRegisterInfo *TRI = C.getMF()->getSubtarget().getRegisterInfo();
2431     return !C.isAvailableAcrossAndOutOfSeq(RISCV::X5, *TRI);
2432   };
2433 
2434   llvm::erase_if(RepeatedSequenceLocs, CannotInsertCall);
2435 
2436   // If the sequence doesn't have enough candidates left, then we're done.
2437   if (RepeatedSequenceLocs.size() < 2)
2438     return std::nullopt;
2439 
2440   unsigned SequenceSize = 0;
2441 
2442   for (auto &MI : RepeatedSequenceLocs[0])
2443     SequenceSize += getInstSizeInBytes(MI);
2444 
2445   // call t0, function = 8 bytes.
2446   unsigned CallOverhead = 8;
2447   for (auto &C : RepeatedSequenceLocs)
2448     C.setCallInfo(MachineOutlinerDefault, CallOverhead);
2449 
2450   // jr t0 = 4 bytes, 2 bytes if compressed instructions are enabled.
2451   unsigned FrameOverhead = 4;
2452   if (RepeatedSequenceLocs[0]
2453           .getMF()
2454           ->getSubtarget<RISCVSubtarget>()
2455           .hasStdExtCOrZca())
2456     FrameOverhead = 2;
2457 
2458   return outliner::OutlinedFunction(RepeatedSequenceLocs, SequenceSize,
2459                                     FrameOverhead, MachineOutlinerDefault);
2460 }
2461 
2462 outliner::InstrType
2463 RISCVInstrInfo::getOutliningTypeImpl(MachineBasicBlock::iterator &MBBI,
2464                                  unsigned Flags) const {
2465   MachineInstr &MI = *MBBI;
2466   MachineBasicBlock *MBB = MI.getParent();
2467   const TargetRegisterInfo *TRI =
2468       MBB->getParent()->getSubtarget().getRegisterInfo();
2469   const auto &F = MI.getMF()->getFunction();
2470 
2471   // We can manually strip out CFI instructions later.
2472   if (MI.isCFIInstruction())
2473     // If current function has exception handling code, we can't outline &
2474     // strip these CFI instructions since it may break .eh_frame section
2475     // needed in unwinding.
2476     return F.needsUnwindTableEntry() ? outliner::InstrType::Illegal
2477                                      : outliner::InstrType::Invisible;
2478 
2479   // We need support for tail calls to outlined functions before return
2480   // statements can be allowed.
2481   if (MI.isReturn())
2482     return outliner::InstrType::Illegal;
2483 
2484   // Don't allow modifying the X5 register which we use for return addresses for
2485   // these outlined functions.
2486   if (MI.modifiesRegister(RISCV::X5, TRI) ||
2487       MI.getDesc().hasImplicitDefOfPhysReg(RISCV::X5))
2488     return outliner::InstrType::Illegal;
2489 
2490   // Make sure the operands don't reference something unsafe.
2491   for (const auto &MO : MI.operands()) {
2492 
2493     // pcrel-hi and pcrel-lo can't put in separate sections, filter that out
2494     // if any possible.
2495     if (MO.getTargetFlags() == RISCVII::MO_PCREL_LO &&
2496         (MI.getMF()->getTarget().getFunctionSections() || F.hasComdat() ||
2497          F.hasSection()))
2498       return outliner::InstrType::Illegal;
2499   }
2500 
2501   return outliner::InstrType::Legal;
2502 }
2503 
2504 void RISCVInstrInfo::buildOutlinedFrame(
2505     MachineBasicBlock &MBB, MachineFunction &MF,
2506     const outliner::OutlinedFunction &OF) const {
2507 
2508   // Strip out any CFI instructions
2509   bool Changed = true;
2510   while (Changed) {
2511     Changed = false;
2512     auto I = MBB.begin();
2513     auto E = MBB.end();
2514     for (; I != E; ++I) {
2515       if (I->isCFIInstruction()) {
2516         I->removeFromParent();
2517         Changed = true;
2518         break;
2519       }
2520     }
2521   }
2522 
2523   MBB.addLiveIn(RISCV::X5);
2524 
2525   // Add in a return instruction to the end of the outlined frame.
2526   MBB.insert(MBB.end(), BuildMI(MF, DebugLoc(), get(RISCV::JALR))
2527       .addReg(RISCV::X0, RegState::Define)
2528       .addReg(RISCV::X5)
2529       .addImm(0));
2530 }
2531 
2532 MachineBasicBlock::iterator RISCVInstrInfo::insertOutlinedCall(
2533     Module &M, MachineBasicBlock &MBB, MachineBasicBlock::iterator &It,
2534     MachineFunction &MF, outliner::Candidate &C) const {
2535 
2536   // Add in a call instruction to the outlined function at the given location.
2537   It = MBB.insert(It,
2538                   BuildMI(MF, DebugLoc(), get(RISCV::PseudoCALLReg), RISCV::X5)
2539                       .addGlobalAddress(M.getNamedValue(MF.getName()), 0,
2540                                         RISCVII::MO_CALL));
2541   return It;
2542 }
2543 
2544 std::optional<RegImmPair> RISCVInstrInfo::isAddImmediate(const MachineInstr &MI,
2545                                                          Register Reg) const {
2546   // TODO: Handle cases where Reg is a super- or sub-register of the
2547   // destination register.
2548   const MachineOperand &Op0 = MI.getOperand(0);
2549   if (!Op0.isReg() || Reg != Op0.getReg())
2550     return std::nullopt;
2551 
2552   // Don't consider ADDIW as a candidate because the caller may not be aware
2553   // of its sign extension behaviour.
2554   if (MI.getOpcode() == RISCV::ADDI && MI.getOperand(1).isReg() &&
2555       MI.getOperand(2).isImm())
2556     return RegImmPair{MI.getOperand(1).getReg(), MI.getOperand(2).getImm()};
2557 
2558   return std::nullopt;
2559 }
2560 
2561 // MIR printer helper function to annotate Operands with a comment.
2562 std::string RISCVInstrInfo::createMIROperandComment(
2563     const MachineInstr &MI, const MachineOperand &Op, unsigned OpIdx,
2564     const TargetRegisterInfo *TRI) const {
2565   // Print a generic comment for this operand if there is one.
2566   std::string GenericComment =
2567       TargetInstrInfo::createMIROperandComment(MI, Op, OpIdx, TRI);
2568   if (!GenericComment.empty())
2569     return GenericComment;
2570 
2571   // If not, we must have an immediate operand.
2572   if (!Op.isImm())
2573     return std::string();
2574 
2575   std::string Comment;
2576   raw_string_ostream OS(Comment);
2577 
2578   uint64_t TSFlags = MI.getDesc().TSFlags;
2579 
2580   // Print the full VType operand of vsetvli/vsetivli instructions, and the SEW
2581   // operand of vector codegen pseudos.
2582   if ((MI.getOpcode() == RISCV::VSETVLI || MI.getOpcode() == RISCV::VSETIVLI ||
2583        MI.getOpcode() == RISCV::PseudoVSETVLI ||
2584        MI.getOpcode() == RISCV::PseudoVSETIVLI ||
2585        MI.getOpcode() == RISCV::PseudoVSETVLIX0) &&
2586       OpIdx == 2) {
2587     unsigned Imm = MI.getOperand(OpIdx).getImm();
2588     RISCVVType::printVType(Imm, OS);
2589   } else if (RISCVII::hasSEWOp(TSFlags) &&
2590              OpIdx == RISCVII::getSEWOpNum(MI.getDesc())) {
2591     unsigned Log2SEW = MI.getOperand(OpIdx).getImm();
2592     unsigned SEW = Log2SEW ? 1 << Log2SEW : 8;
2593     assert(RISCVVType::isValidSEW(SEW) && "Unexpected SEW");
2594     OS << "e" << SEW;
2595   } else if (RISCVII::hasVecPolicyOp(TSFlags) &&
2596              OpIdx == RISCVII::getVecPolicyOpNum(MI.getDesc())) {
2597     unsigned Policy = MI.getOperand(OpIdx).getImm();
2598     assert(Policy <= (RISCVII::TAIL_AGNOSTIC | RISCVII::MASK_AGNOSTIC) &&
2599            "Invalid Policy Value");
2600     OS << (Policy & RISCVII::TAIL_AGNOSTIC ? "ta" : "tu") << ", "
2601        << (Policy & RISCVII::MASK_AGNOSTIC ? "ma" : "mu");
2602   }
2603 
2604   OS.flush();
2605   return Comment;
2606 }
2607 
2608 // clang-format off
2609 #define CASE_VFMA_OPCODE_COMMON(OP, TYPE, LMUL)                                \
2610   RISCV::PseudoV##OP##_##TYPE##_##LMUL
2611 
2612 #define CASE_VFMA_OPCODE_LMULS_M1(OP, TYPE)                                    \
2613   CASE_VFMA_OPCODE_COMMON(OP, TYPE, M1):                                       \
2614   case CASE_VFMA_OPCODE_COMMON(OP, TYPE, M2):                                  \
2615   case CASE_VFMA_OPCODE_COMMON(OP, TYPE, M4):                                  \
2616   case CASE_VFMA_OPCODE_COMMON(OP, TYPE, M8)
2617 
2618 #define CASE_VFMA_OPCODE_LMULS_MF2(OP, TYPE)                                   \
2619   CASE_VFMA_OPCODE_COMMON(OP, TYPE, MF2):                                      \
2620   case CASE_VFMA_OPCODE_LMULS_M1(OP, TYPE)
2621 
2622 #define CASE_VFMA_OPCODE_LMULS_MF4(OP, TYPE)                                   \
2623   CASE_VFMA_OPCODE_COMMON(OP, TYPE, MF4):                                      \
2624   case CASE_VFMA_OPCODE_LMULS_MF2(OP, TYPE)
2625 
2626 #define CASE_VFMA_OPCODE_LMULS(OP, TYPE)                                       \
2627   CASE_VFMA_OPCODE_COMMON(OP, TYPE, MF8):                                      \
2628   case CASE_VFMA_OPCODE_LMULS_MF4(OP, TYPE)
2629 
2630 #define CASE_VFMA_SPLATS(OP)                                                   \
2631   CASE_VFMA_OPCODE_LMULS_MF4(OP, VFPR16):                                      \
2632   case CASE_VFMA_OPCODE_LMULS_MF2(OP, VFPR32):                                 \
2633   case CASE_VFMA_OPCODE_LMULS_M1(OP, VFPR64)
2634 // clang-format on
2635 
2636 bool RISCVInstrInfo::findCommutedOpIndices(const MachineInstr &MI,
2637                                            unsigned &SrcOpIdx1,
2638                                            unsigned &SrcOpIdx2) const {
2639   const MCInstrDesc &Desc = MI.getDesc();
2640   if (!Desc.isCommutable())
2641     return false;
2642 
2643   switch (MI.getOpcode()) {
2644   case RISCV::TH_MVEQZ:
2645   case RISCV::TH_MVNEZ:
2646     // We can't commute operands if operand 2 (i.e., rs1 in
2647     // mveqz/mvnez rd,rs1,rs2) is the zero-register (as it is
2648     // not valid as the in/out-operand 1).
2649     if (MI.getOperand(2).getReg() == RISCV::X0)
2650       return false;
2651     // Operands 1 and 2 are commutable, if we switch the opcode.
2652     return fixCommutedOpIndices(SrcOpIdx1, SrcOpIdx2, 1, 2);
2653   case RISCV::TH_MULA:
2654   case RISCV::TH_MULAW:
2655   case RISCV::TH_MULAH:
2656   case RISCV::TH_MULS:
2657   case RISCV::TH_MULSW:
2658   case RISCV::TH_MULSH:
2659     // Operands 2 and 3 are commutable.
2660     return fixCommutedOpIndices(SrcOpIdx1, SrcOpIdx2, 2, 3);
2661   case RISCV::PseudoCCMOVGPRNoX0:
2662   case RISCV::PseudoCCMOVGPR:
2663     // Operands 4 and 5 are commutable.
2664     return fixCommutedOpIndices(SrcOpIdx1, SrcOpIdx2, 4, 5);
2665   case CASE_VFMA_SPLATS(FMADD):
2666   case CASE_VFMA_SPLATS(FMSUB):
2667   case CASE_VFMA_SPLATS(FMACC):
2668   case CASE_VFMA_SPLATS(FMSAC):
2669   case CASE_VFMA_SPLATS(FNMADD):
2670   case CASE_VFMA_SPLATS(FNMSUB):
2671   case CASE_VFMA_SPLATS(FNMACC):
2672   case CASE_VFMA_SPLATS(FNMSAC):
2673   case CASE_VFMA_OPCODE_LMULS_MF4(FMACC, VV):
2674   case CASE_VFMA_OPCODE_LMULS_MF4(FMSAC, VV):
2675   case CASE_VFMA_OPCODE_LMULS_MF4(FNMACC, VV):
2676   case CASE_VFMA_OPCODE_LMULS_MF4(FNMSAC, VV):
2677   case CASE_VFMA_OPCODE_LMULS(MADD, VX):
2678   case CASE_VFMA_OPCODE_LMULS(NMSUB, VX):
2679   case CASE_VFMA_OPCODE_LMULS(MACC, VX):
2680   case CASE_VFMA_OPCODE_LMULS(NMSAC, VX):
2681   case CASE_VFMA_OPCODE_LMULS(MACC, VV):
2682   case CASE_VFMA_OPCODE_LMULS(NMSAC, VV): {
2683     // If the tail policy is undisturbed we can't commute.
2684     assert(RISCVII::hasVecPolicyOp(MI.getDesc().TSFlags));
2685     if ((MI.getOperand(MI.getNumExplicitOperands() - 1).getImm() & 1) == 0)
2686       return false;
2687 
2688     // For these instructions we can only swap operand 1 and operand 3 by
2689     // changing the opcode.
2690     unsigned CommutableOpIdx1 = 1;
2691     unsigned CommutableOpIdx2 = 3;
2692     if (!fixCommutedOpIndices(SrcOpIdx1, SrcOpIdx2, CommutableOpIdx1,
2693                               CommutableOpIdx2))
2694       return false;
2695     return true;
2696   }
2697   case CASE_VFMA_OPCODE_LMULS_MF4(FMADD, VV):
2698   case CASE_VFMA_OPCODE_LMULS_MF4(FMSUB, VV):
2699   case CASE_VFMA_OPCODE_LMULS_MF4(FNMADD, VV):
2700   case CASE_VFMA_OPCODE_LMULS_MF4(FNMSUB, VV):
2701   case CASE_VFMA_OPCODE_LMULS(MADD, VV):
2702   case CASE_VFMA_OPCODE_LMULS(NMSUB, VV): {
2703     // If the tail policy is undisturbed we can't commute.
2704     assert(RISCVII::hasVecPolicyOp(MI.getDesc().TSFlags));
2705     if ((MI.getOperand(MI.getNumExplicitOperands() - 1).getImm() & 1) == 0)
2706       return false;
2707 
2708     // For these instructions we have more freedom. We can commute with the
2709     // other multiplicand or with the addend/subtrahend/minuend.
2710 
2711     // Any fixed operand must be from source 1, 2 or 3.
2712     if (SrcOpIdx1 != CommuteAnyOperandIndex && SrcOpIdx1 > 3)
2713       return false;
2714     if (SrcOpIdx2 != CommuteAnyOperandIndex && SrcOpIdx2 > 3)
2715       return false;
2716 
2717     // It both ops are fixed one must be the tied source.
2718     if (SrcOpIdx1 != CommuteAnyOperandIndex &&
2719         SrcOpIdx2 != CommuteAnyOperandIndex && SrcOpIdx1 != 1 && SrcOpIdx2 != 1)
2720       return false;
2721 
2722     // Look for two different register operands assumed to be commutable
2723     // regardless of the FMA opcode. The FMA opcode is adjusted later if
2724     // needed.
2725     if (SrcOpIdx1 == CommuteAnyOperandIndex ||
2726         SrcOpIdx2 == CommuteAnyOperandIndex) {
2727       // At least one of operands to be commuted is not specified and
2728       // this method is free to choose appropriate commutable operands.
2729       unsigned CommutableOpIdx1 = SrcOpIdx1;
2730       if (SrcOpIdx1 == SrcOpIdx2) {
2731         // Both of operands are not fixed. Set one of commutable
2732         // operands to the tied source.
2733         CommutableOpIdx1 = 1;
2734       } else if (SrcOpIdx1 == CommuteAnyOperandIndex) {
2735         // Only one of the operands is not fixed.
2736         CommutableOpIdx1 = SrcOpIdx2;
2737       }
2738 
2739       // CommutableOpIdx1 is well defined now. Let's choose another commutable
2740       // operand and assign its index to CommutableOpIdx2.
2741       unsigned CommutableOpIdx2;
2742       if (CommutableOpIdx1 != 1) {
2743         // If we haven't already used the tied source, we must use it now.
2744         CommutableOpIdx2 = 1;
2745       } else {
2746         Register Op1Reg = MI.getOperand(CommutableOpIdx1).getReg();
2747 
2748         // The commuted operands should have different registers.
2749         // Otherwise, the commute transformation does not change anything and
2750         // is useless. We use this as a hint to make our decision.
2751         if (Op1Reg != MI.getOperand(2).getReg())
2752           CommutableOpIdx2 = 2;
2753         else
2754           CommutableOpIdx2 = 3;
2755       }
2756 
2757       // Assign the found pair of commutable indices to SrcOpIdx1 and
2758       // SrcOpIdx2 to return those values.
2759       if (!fixCommutedOpIndices(SrcOpIdx1, SrcOpIdx2, CommutableOpIdx1,
2760                                 CommutableOpIdx2))
2761         return false;
2762     }
2763 
2764     return true;
2765   }
2766   }
2767 
2768   return TargetInstrInfo::findCommutedOpIndices(MI, SrcOpIdx1, SrcOpIdx2);
2769 }
2770 
2771 #define CASE_VFMA_CHANGE_OPCODE_COMMON(OLDOP, NEWOP, TYPE, LMUL)               \
2772   case RISCV::PseudoV##OLDOP##_##TYPE##_##LMUL:                                \
2773     Opc = RISCV::PseudoV##NEWOP##_##TYPE##_##LMUL;                             \
2774     break;
2775 
2776 #define CASE_VFMA_CHANGE_OPCODE_LMULS_M1(OLDOP, NEWOP, TYPE)                   \
2777   CASE_VFMA_CHANGE_OPCODE_COMMON(OLDOP, NEWOP, TYPE, M1)                       \
2778   CASE_VFMA_CHANGE_OPCODE_COMMON(OLDOP, NEWOP, TYPE, M2)                       \
2779   CASE_VFMA_CHANGE_OPCODE_COMMON(OLDOP, NEWOP, TYPE, M4)                       \
2780   CASE_VFMA_CHANGE_OPCODE_COMMON(OLDOP, NEWOP, TYPE, M8)
2781 
2782 #define CASE_VFMA_CHANGE_OPCODE_LMULS_MF2(OLDOP, NEWOP, TYPE)                  \
2783   CASE_VFMA_CHANGE_OPCODE_COMMON(OLDOP, NEWOP, TYPE, MF2)                      \
2784   CASE_VFMA_CHANGE_OPCODE_LMULS_M1(OLDOP, NEWOP, TYPE)
2785 
2786 #define CASE_VFMA_CHANGE_OPCODE_LMULS_MF4(OLDOP, NEWOP, TYPE)                  \
2787   CASE_VFMA_CHANGE_OPCODE_COMMON(OLDOP, NEWOP, TYPE, MF4)                      \
2788   CASE_VFMA_CHANGE_OPCODE_LMULS_MF2(OLDOP, NEWOP, TYPE)
2789 
2790 #define CASE_VFMA_CHANGE_OPCODE_LMULS(OLDOP, NEWOP, TYPE)                      \
2791   CASE_VFMA_CHANGE_OPCODE_COMMON(OLDOP, NEWOP, TYPE, MF8)                      \
2792   CASE_VFMA_CHANGE_OPCODE_LMULS_MF4(OLDOP, NEWOP, TYPE)
2793 
2794 #define CASE_VFMA_CHANGE_OPCODE_SPLATS(OLDOP, NEWOP)                           \
2795   CASE_VFMA_CHANGE_OPCODE_LMULS_MF4(OLDOP, NEWOP, VFPR16)                      \
2796   CASE_VFMA_CHANGE_OPCODE_LMULS_MF2(OLDOP, NEWOP, VFPR32)                      \
2797   CASE_VFMA_CHANGE_OPCODE_LMULS_M1(OLDOP, NEWOP, VFPR64)
2798 
2799 MachineInstr *RISCVInstrInfo::commuteInstructionImpl(MachineInstr &MI,
2800                                                      bool NewMI,
2801                                                      unsigned OpIdx1,
2802                                                      unsigned OpIdx2) const {
2803   auto cloneIfNew = [NewMI](MachineInstr &MI) -> MachineInstr & {
2804     if (NewMI)
2805       return *MI.getParent()->getParent()->CloneMachineInstr(&MI);
2806     return MI;
2807   };
2808 
2809   switch (MI.getOpcode()) {
2810   case RISCV::TH_MVEQZ:
2811   case RISCV::TH_MVNEZ: {
2812     auto &WorkingMI = cloneIfNew(MI);
2813     WorkingMI.setDesc(get(MI.getOpcode() == RISCV::TH_MVEQZ ? RISCV::TH_MVNEZ
2814                                                             : RISCV::TH_MVEQZ));
2815     return TargetInstrInfo::commuteInstructionImpl(WorkingMI, false, OpIdx1,
2816                                                    OpIdx2);
2817   }
2818   case RISCV::PseudoCCMOVGPRNoX0:
2819   case RISCV::PseudoCCMOVGPR: {
2820     // CCMOV can be commuted by inverting the condition.
2821     auto CC = static_cast<RISCVCC::CondCode>(MI.getOperand(3).getImm());
2822     CC = RISCVCC::getOppositeBranchCondition(CC);
2823     auto &WorkingMI = cloneIfNew(MI);
2824     WorkingMI.getOperand(3).setImm(CC);
2825     return TargetInstrInfo::commuteInstructionImpl(WorkingMI, /*NewMI*/ false,
2826                                                    OpIdx1, OpIdx2);
2827   }
2828   case CASE_VFMA_SPLATS(FMACC):
2829   case CASE_VFMA_SPLATS(FMADD):
2830   case CASE_VFMA_SPLATS(FMSAC):
2831   case CASE_VFMA_SPLATS(FMSUB):
2832   case CASE_VFMA_SPLATS(FNMACC):
2833   case CASE_VFMA_SPLATS(FNMADD):
2834   case CASE_VFMA_SPLATS(FNMSAC):
2835   case CASE_VFMA_SPLATS(FNMSUB):
2836   case CASE_VFMA_OPCODE_LMULS_MF4(FMACC, VV):
2837   case CASE_VFMA_OPCODE_LMULS_MF4(FMSAC, VV):
2838   case CASE_VFMA_OPCODE_LMULS_MF4(FNMACC, VV):
2839   case CASE_VFMA_OPCODE_LMULS_MF4(FNMSAC, VV):
2840   case CASE_VFMA_OPCODE_LMULS(MADD, VX):
2841   case CASE_VFMA_OPCODE_LMULS(NMSUB, VX):
2842   case CASE_VFMA_OPCODE_LMULS(MACC, VX):
2843   case CASE_VFMA_OPCODE_LMULS(NMSAC, VX):
2844   case CASE_VFMA_OPCODE_LMULS(MACC, VV):
2845   case CASE_VFMA_OPCODE_LMULS(NMSAC, VV): {
2846     // It only make sense to toggle these between clobbering the
2847     // addend/subtrahend/minuend one of the multiplicands.
2848     assert((OpIdx1 == 1 || OpIdx2 == 1) && "Unexpected opcode index");
2849     assert((OpIdx1 == 3 || OpIdx2 == 3) && "Unexpected opcode index");
2850     unsigned Opc;
2851     switch (MI.getOpcode()) {
2852       default:
2853         llvm_unreachable("Unexpected opcode");
2854       CASE_VFMA_CHANGE_OPCODE_SPLATS(FMACC, FMADD)
2855       CASE_VFMA_CHANGE_OPCODE_SPLATS(FMADD, FMACC)
2856       CASE_VFMA_CHANGE_OPCODE_SPLATS(FMSAC, FMSUB)
2857       CASE_VFMA_CHANGE_OPCODE_SPLATS(FMSUB, FMSAC)
2858       CASE_VFMA_CHANGE_OPCODE_SPLATS(FNMACC, FNMADD)
2859       CASE_VFMA_CHANGE_OPCODE_SPLATS(FNMADD, FNMACC)
2860       CASE_VFMA_CHANGE_OPCODE_SPLATS(FNMSAC, FNMSUB)
2861       CASE_VFMA_CHANGE_OPCODE_SPLATS(FNMSUB, FNMSAC)
2862       CASE_VFMA_CHANGE_OPCODE_LMULS_MF4(FMACC, FMADD, VV)
2863       CASE_VFMA_CHANGE_OPCODE_LMULS_MF4(FMSAC, FMSUB, VV)
2864       CASE_VFMA_CHANGE_OPCODE_LMULS_MF4(FNMACC, FNMADD, VV)
2865       CASE_VFMA_CHANGE_OPCODE_LMULS_MF4(FNMSAC, FNMSUB, VV)
2866       CASE_VFMA_CHANGE_OPCODE_LMULS(MACC, MADD, VX)
2867       CASE_VFMA_CHANGE_OPCODE_LMULS(MADD, MACC, VX)
2868       CASE_VFMA_CHANGE_OPCODE_LMULS(NMSAC, NMSUB, VX)
2869       CASE_VFMA_CHANGE_OPCODE_LMULS(NMSUB, NMSAC, VX)
2870       CASE_VFMA_CHANGE_OPCODE_LMULS(MACC, MADD, VV)
2871       CASE_VFMA_CHANGE_OPCODE_LMULS(NMSAC, NMSUB, VV)
2872     }
2873 
2874     auto &WorkingMI = cloneIfNew(MI);
2875     WorkingMI.setDesc(get(Opc));
2876     return TargetInstrInfo::commuteInstructionImpl(WorkingMI, /*NewMI=*/false,
2877                                                    OpIdx1, OpIdx2);
2878   }
2879   case CASE_VFMA_OPCODE_LMULS_MF4(FMADD, VV):
2880   case CASE_VFMA_OPCODE_LMULS_MF4(FMSUB, VV):
2881   case CASE_VFMA_OPCODE_LMULS_MF4(FNMADD, VV):
2882   case CASE_VFMA_OPCODE_LMULS_MF4(FNMSUB, VV):
2883   case CASE_VFMA_OPCODE_LMULS(MADD, VV):
2884   case CASE_VFMA_OPCODE_LMULS(NMSUB, VV): {
2885     assert((OpIdx1 == 1 || OpIdx2 == 1) && "Unexpected opcode index");
2886     // If one of the operands, is the addend we need to change opcode.
2887     // Otherwise we're just swapping 2 of the multiplicands.
2888     if (OpIdx1 == 3 || OpIdx2 == 3) {
2889       unsigned Opc;
2890       switch (MI.getOpcode()) {
2891         default:
2892           llvm_unreachable("Unexpected opcode");
2893         CASE_VFMA_CHANGE_OPCODE_LMULS_MF4(FMADD, FMACC, VV)
2894         CASE_VFMA_CHANGE_OPCODE_LMULS_MF4(FMSUB, FMSAC, VV)
2895         CASE_VFMA_CHANGE_OPCODE_LMULS_MF4(FNMADD, FNMACC, VV)
2896         CASE_VFMA_CHANGE_OPCODE_LMULS_MF4(FNMSUB, FNMSAC, VV)
2897         CASE_VFMA_CHANGE_OPCODE_LMULS(MADD, MACC, VV)
2898         CASE_VFMA_CHANGE_OPCODE_LMULS(NMSUB, NMSAC, VV)
2899       }
2900 
2901       auto &WorkingMI = cloneIfNew(MI);
2902       WorkingMI.setDesc(get(Opc));
2903       return TargetInstrInfo::commuteInstructionImpl(WorkingMI, /*NewMI=*/false,
2904                                                      OpIdx1, OpIdx2);
2905     }
2906     // Let the default code handle it.
2907     break;
2908   }
2909   }
2910 
2911   return TargetInstrInfo::commuteInstructionImpl(MI, NewMI, OpIdx1, OpIdx2);
2912 }
2913 
2914 #undef CASE_VFMA_CHANGE_OPCODE_SPLATS
2915 #undef CASE_VFMA_CHANGE_OPCODE_LMULS
2916 #undef CASE_VFMA_CHANGE_OPCODE_COMMON
2917 #undef CASE_VFMA_SPLATS
2918 #undef CASE_VFMA_OPCODE_LMULS
2919 #undef CASE_VFMA_OPCODE_COMMON
2920 
2921 // clang-format off
2922 #define CASE_WIDEOP_OPCODE_COMMON(OP, LMUL)                                    \
2923   RISCV::PseudoV##OP##_##LMUL##_TIED
2924 
2925 #define CASE_WIDEOP_OPCODE_LMULS_MF4(OP)                                       \
2926   CASE_WIDEOP_OPCODE_COMMON(OP, MF4):                                          \
2927   case CASE_WIDEOP_OPCODE_COMMON(OP, MF2):                                     \
2928   case CASE_WIDEOP_OPCODE_COMMON(OP, M1):                                      \
2929   case CASE_WIDEOP_OPCODE_COMMON(OP, M2):                                      \
2930   case CASE_WIDEOP_OPCODE_COMMON(OP, M4)
2931 
2932 #define CASE_WIDEOP_OPCODE_LMULS(OP)                                           \
2933   CASE_WIDEOP_OPCODE_COMMON(OP, MF8):                                          \
2934   case CASE_WIDEOP_OPCODE_LMULS_MF4(OP)
2935 // clang-format on
2936 
2937 #define CASE_WIDEOP_CHANGE_OPCODE_COMMON(OP, LMUL)                             \
2938   case RISCV::PseudoV##OP##_##LMUL##_TIED:                                     \
2939     NewOpc = RISCV::PseudoV##OP##_##LMUL;                                      \
2940     break;
2941 
2942 #define CASE_WIDEOP_CHANGE_OPCODE_LMULS_MF4(OP)                                 \
2943   CASE_WIDEOP_CHANGE_OPCODE_COMMON(OP, MF4)                                    \
2944   CASE_WIDEOP_CHANGE_OPCODE_COMMON(OP, MF2)                                    \
2945   CASE_WIDEOP_CHANGE_OPCODE_COMMON(OP, M1)                                     \
2946   CASE_WIDEOP_CHANGE_OPCODE_COMMON(OP, M2)                                     \
2947   CASE_WIDEOP_CHANGE_OPCODE_COMMON(OP, M4)
2948 
2949 #define CASE_WIDEOP_CHANGE_OPCODE_LMULS(OP)                                    \
2950   CASE_WIDEOP_CHANGE_OPCODE_COMMON(OP, MF8)                                    \
2951   CASE_WIDEOP_CHANGE_OPCODE_LMULS_MF4(OP)
2952 
2953 MachineInstr *RISCVInstrInfo::convertToThreeAddress(MachineInstr &MI,
2954                                                     LiveVariables *LV,
2955                                                     LiveIntervals *LIS) const {
2956   MachineInstrBuilder MIB;
2957   switch (MI.getOpcode()) {
2958   default:
2959     return nullptr;
2960   case CASE_WIDEOP_OPCODE_LMULS_MF4(FWADD_WV):
2961   case CASE_WIDEOP_OPCODE_LMULS_MF4(FWSUB_WV): {
2962     assert(RISCVII::hasVecPolicyOp(MI.getDesc().TSFlags) &&
2963            MI.getNumExplicitOperands() == 7 &&
2964            "Expect 7 explicit operands rd, rs2, rs1, rm, vl, sew, policy");
2965     // If the tail policy is undisturbed we can't convert.
2966     if ((MI.getOperand(RISCVII::getVecPolicyOpNum(MI.getDesc())).getImm() &
2967          1) == 0)
2968       return nullptr;
2969     // clang-format off
2970     unsigned NewOpc;
2971     switch (MI.getOpcode()) {
2972     default:
2973       llvm_unreachable("Unexpected opcode");
2974     CASE_WIDEOP_CHANGE_OPCODE_LMULS_MF4(FWADD_WV)
2975     CASE_WIDEOP_CHANGE_OPCODE_LMULS_MF4(FWSUB_WV)
2976     }
2977     // clang-format on
2978 
2979     MachineBasicBlock &MBB = *MI.getParent();
2980     MIB = BuildMI(MBB, MI, MI.getDebugLoc(), get(NewOpc))
2981               .add(MI.getOperand(0))
2982               .addReg(MI.getOperand(0).getReg(), RegState::Undef)
2983               .add(MI.getOperand(1))
2984               .add(MI.getOperand(2))
2985               .add(MI.getOperand(3))
2986               .add(MI.getOperand(4))
2987               .add(MI.getOperand(5))
2988               .add(MI.getOperand(6));
2989     break;
2990   }
2991   case CASE_WIDEOP_OPCODE_LMULS(WADD_WV):
2992   case CASE_WIDEOP_OPCODE_LMULS(WADDU_WV):
2993   case CASE_WIDEOP_OPCODE_LMULS(WSUB_WV):
2994   case CASE_WIDEOP_OPCODE_LMULS(WSUBU_WV): {
2995     // If the tail policy is undisturbed we can't convert.
2996     assert(RISCVII::hasVecPolicyOp(MI.getDesc().TSFlags) &&
2997            MI.getNumExplicitOperands() == 6);
2998     if ((MI.getOperand(5).getImm() & 1) == 0)
2999       return nullptr;
3000 
3001     // clang-format off
3002     unsigned NewOpc;
3003     switch (MI.getOpcode()) {
3004     default:
3005       llvm_unreachable("Unexpected opcode");
3006     CASE_WIDEOP_CHANGE_OPCODE_LMULS(WADD_WV)
3007     CASE_WIDEOP_CHANGE_OPCODE_LMULS(WADDU_WV)
3008     CASE_WIDEOP_CHANGE_OPCODE_LMULS(WSUB_WV)
3009     CASE_WIDEOP_CHANGE_OPCODE_LMULS(WSUBU_WV)
3010     }
3011     // clang-format on
3012 
3013     MachineBasicBlock &MBB = *MI.getParent();
3014     MIB = BuildMI(MBB, MI, MI.getDebugLoc(), get(NewOpc))
3015               .add(MI.getOperand(0))
3016               .addReg(MI.getOperand(0).getReg(), RegState::Undef)
3017               .add(MI.getOperand(1))
3018               .add(MI.getOperand(2))
3019               .add(MI.getOperand(3))
3020               .add(MI.getOperand(4))
3021               .add(MI.getOperand(5));
3022     break;
3023   }
3024   }
3025   MIB.copyImplicitOps(MI);
3026 
3027   if (LV) {
3028     unsigned NumOps = MI.getNumOperands();
3029     for (unsigned I = 1; I < NumOps; ++I) {
3030       MachineOperand &Op = MI.getOperand(I);
3031       if (Op.isReg() && Op.isKill())
3032         LV->replaceKillInstruction(Op.getReg(), MI, *MIB);
3033     }
3034   }
3035 
3036   if (LIS) {
3037     SlotIndex Idx = LIS->ReplaceMachineInstrInMaps(MI, *MIB);
3038 
3039     if (MI.getOperand(0).isEarlyClobber()) {
3040       // Use operand 1 was tied to early-clobber def operand 0, so its live
3041       // interval could have ended at an early-clobber slot. Now they are not
3042       // tied we need to update it to the normal register slot.
3043       LiveInterval &LI = LIS->getInterval(MI.getOperand(1).getReg());
3044       LiveRange::Segment *S = LI.getSegmentContaining(Idx);
3045       if (S->end == Idx.getRegSlot(true))
3046         S->end = Idx.getRegSlot();
3047     }
3048   }
3049 
3050   return MIB;
3051 }
3052 
3053 #undef CASE_WIDEOP_CHANGE_OPCODE_LMULS
3054 #undef CASE_WIDEOP_CHANGE_OPCODE_COMMON
3055 #undef CASE_WIDEOP_OPCODE_LMULS
3056 #undef CASE_WIDEOP_OPCODE_COMMON
3057 
3058 void RISCVInstrInfo::getVLENFactoredAmount(MachineFunction &MF,
3059                                            MachineBasicBlock &MBB,
3060                                            MachineBasicBlock::iterator II,
3061                                            const DebugLoc &DL, Register DestReg,
3062                                            int64_t Amount,
3063                                            MachineInstr::MIFlag Flag) const {
3064   assert(Amount > 0 && "There is no need to get VLEN scaled value.");
3065   assert(Amount % 8 == 0 &&
3066          "Reserve the stack by the multiple of one vector size.");
3067 
3068   MachineRegisterInfo &MRI = MF.getRegInfo();
3069   int64_t NumOfVReg = Amount / 8;
3070 
3071   BuildMI(MBB, II, DL, get(RISCV::PseudoReadVLENB), DestReg).setMIFlag(Flag);
3072   assert(isInt<32>(NumOfVReg) &&
3073          "Expect the number of vector registers within 32-bits.");
3074   if (llvm::has_single_bit<uint32_t>(NumOfVReg)) {
3075     uint32_t ShiftAmount = Log2_32(NumOfVReg);
3076     if (ShiftAmount == 0)
3077       return;
3078     BuildMI(MBB, II, DL, get(RISCV::SLLI), DestReg)
3079         .addReg(DestReg, RegState::Kill)
3080         .addImm(ShiftAmount)
3081         .setMIFlag(Flag);
3082   } else if (STI.hasStdExtZba() &&
3083              ((NumOfVReg % 3 == 0 && isPowerOf2_64(NumOfVReg / 3)) ||
3084               (NumOfVReg % 5 == 0 && isPowerOf2_64(NumOfVReg / 5)) ||
3085               (NumOfVReg % 9 == 0 && isPowerOf2_64(NumOfVReg / 9)))) {
3086     // We can use Zba SHXADD+SLLI instructions for multiply in some cases.
3087     unsigned Opc;
3088     uint32_t ShiftAmount;
3089     if (NumOfVReg % 9 == 0) {
3090       Opc = RISCV::SH3ADD;
3091       ShiftAmount = Log2_64(NumOfVReg / 9);
3092     } else if (NumOfVReg % 5 == 0) {
3093       Opc = RISCV::SH2ADD;
3094       ShiftAmount = Log2_64(NumOfVReg / 5);
3095     } else if (NumOfVReg % 3 == 0) {
3096       Opc = RISCV::SH1ADD;
3097       ShiftAmount = Log2_64(NumOfVReg / 3);
3098     } else {
3099       llvm_unreachable("Unexpected number of vregs");
3100     }
3101     if (ShiftAmount)
3102       BuildMI(MBB, II, DL, get(RISCV::SLLI), DestReg)
3103           .addReg(DestReg, RegState::Kill)
3104           .addImm(ShiftAmount)
3105           .setMIFlag(Flag);
3106     BuildMI(MBB, II, DL, get(Opc), DestReg)
3107         .addReg(DestReg, RegState::Kill)
3108         .addReg(DestReg)
3109         .setMIFlag(Flag);
3110   } else if (llvm::has_single_bit<uint32_t>(NumOfVReg - 1)) {
3111     Register ScaledRegister = MRI.createVirtualRegister(&RISCV::GPRRegClass);
3112     uint32_t ShiftAmount = Log2_32(NumOfVReg - 1);
3113     BuildMI(MBB, II, DL, get(RISCV::SLLI), ScaledRegister)
3114         .addReg(DestReg)
3115         .addImm(ShiftAmount)
3116         .setMIFlag(Flag);
3117     BuildMI(MBB, II, DL, get(RISCV::ADD), DestReg)
3118         .addReg(ScaledRegister, RegState::Kill)
3119         .addReg(DestReg, RegState::Kill)
3120         .setMIFlag(Flag);
3121   } else if (llvm::has_single_bit<uint32_t>(NumOfVReg + 1)) {
3122     Register ScaledRegister = MRI.createVirtualRegister(&RISCV::GPRRegClass);
3123     uint32_t ShiftAmount = Log2_32(NumOfVReg + 1);
3124     BuildMI(MBB, II, DL, get(RISCV::SLLI), ScaledRegister)
3125         .addReg(DestReg)
3126         .addImm(ShiftAmount)
3127         .setMIFlag(Flag);
3128     BuildMI(MBB, II, DL, get(RISCV::SUB), DestReg)
3129         .addReg(ScaledRegister, RegState::Kill)
3130         .addReg(DestReg, RegState::Kill)
3131         .setMIFlag(Flag);
3132   } else if (STI.hasStdExtM() || STI.hasStdExtZmmul()) {
3133     Register N = MRI.createVirtualRegister(&RISCV::GPRRegClass);
3134     movImm(MBB, II, DL, N, NumOfVReg, Flag);
3135     BuildMI(MBB, II, DL, get(RISCV::MUL), DestReg)
3136         .addReg(DestReg, RegState::Kill)
3137         .addReg(N, RegState::Kill)
3138         .setMIFlag(Flag);
3139   } else {
3140     Register Acc = MRI.createVirtualRegister(&RISCV::GPRRegClass);
3141     BuildMI(MBB, II, DL, get(RISCV::ADDI), Acc)
3142         .addReg(RISCV::X0)
3143         .addImm(0)
3144         .setMIFlag(Flag);
3145     uint32_t PrevShiftAmount = 0;
3146     for (uint32_t ShiftAmount = 0; NumOfVReg >> ShiftAmount; ShiftAmount++) {
3147       if (NumOfVReg & (1LL << ShiftAmount)) {
3148         if (ShiftAmount)
3149           BuildMI(MBB, II, DL, get(RISCV::SLLI), DestReg)
3150               .addReg(DestReg, RegState::Kill)
3151               .addImm(ShiftAmount - PrevShiftAmount)
3152               .setMIFlag(Flag);
3153         if (NumOfVReg >> (ShiftAmount + 1))
3154           BuildMI(MBB, II, DL, get(RISCV::ADD), Acc)
3155               .addReg(Acc, RegState::Kill)
3156               .addReg(DestReg)
3157               .setMIFlag(Flag);
3158         PrevShiftAmount = ShiftAmount;
3159       }
3160     }
3161     BuildMI(MBB, II, DL, get(RISCV::ADD), DestReg)
3162         .addReg(DestReg, RegState::Kill)
3163         .addReg(Acc)
3164         .setMIFlag(Flag);
3165   }
3166 }
3167 
3168 ArrayRef<std::pair<MachineMemOperand::Flags, const char *>>
3169 RISCVInstrInfo::getSerializableMachineMemOperandTargetFlags() const {
3170   static const std::pair<MachineMemOperand::Flags, const char *> TargetFlags[] =
3171       {{MONontemporalBit0, "riscv-nontemporal-domain-bit-0"},
3172        {MONontemporalBit1, "riscv-nontemporal-domain-bit-1"}};
3173   return ArrayRef(TargetFlags);
3174 }
3175 
3176 // Returns true if this is the sext.w pattern, addiw rd, rs1, 0.
3177 bool RISCV::isSEXT_W(const MachineInstr &MI) {
3178   return MI.getOpcode() == RISCV::ADDIW && MI.getOperand(1).isReg() &&
3179          MI.getOperand(2).isImm() && MI.getOperand(2).getImm() == 0;
3180 }
3181 
3182 // Returns true if this is the zext.w pattern, adduw rd, rs1, x0.
3183 bool RISCV::isZEXT_W(const MachineInstr &MI) {
3184   return MI.getOpcode() == RISCV::ADD_UW && MI.getOperand(1).isReg() &&
3185          MI.getOperand(2).isReg() && MI.getOperand(2).getReg() == RISCV::X0;
3186 }
3187 
3188 // Returns true if this is the zext.b pattern, andi rd, rs1, 255.
3189 bool RISCV::isZEXT_B(const MachineInstr &MI) {
3190   return MI.getOpcode() == RISCV::ANDI && MI.getOperand(1).isReg() &&
3191          MI.getOperand(2).isImm() && MI.getOperand(2).getImm() == 255;
3192 }
3193 
3194 static bool isRVVWholeLoadStore(unsigned Opcode) {
3195   switch (Opcode) {
3196   default:
3197     return false;
3198   case RISCV::VS1R_V:
3199   case RISCV::VS2R_V:
3200   case RISCV::VS4R_V:
3201   case RISCV::VS8R_V:
3202   case RISCV::VL1RE8_V:
3203   case RISCV::VL2RE8_V:
3204   case RISCV::VL4RE8_V:
3205   case RISCV::VL8RE8_V:
3206   case RISCV::VL1RE16_V:
3207   case RISCV::VL2RE16_V:
3208   case RISCV::VL4RE16_V:
3209   case RISCV::VL8RE16_V:
3210   case RISCV::VL1RE32_V:
3211   case RISCV::VL2RE32_V:
3212   case RISCV::VL4RE32_V:
3213   case RISCV::VL8RE32_V:
3214   case RISCV::VL1RE64_V:
3215   case RISCV::VL2RE64_V:
3216   case RISCV::VL4RE64_V:
3217   case RISCV::VL8RE64_V:
3218     return true;
3219   }
3220 }
3221 
3222 bool RISCV::isRVVSpill(const MachineInstr &MI) {
3223   // RVV lacks any support for immediate addressing for stack addresses, so be
3224   // conservative.
3225   unsigned Opcode = MI.getOpcode();
3226   if (!RISCVVPseudosTable::getPseudoInfo(Opcode) &&
3227       !isRVVWholeLoadStore(Opcode) && !isRVVSpillForZvlsseg(Opcode))
3228     return false;
3229   return true;
3230 }
3231 
3232 std::optional<std::pair<unsigned, unsigned>>
3233 RISCV::isRVVSpillForZvlsseg(unsigned Opcode) {
3234   switch (Opcode) {
3235   default:
3236     return std::nullopt;
3237   case RISCV::PseudoVSPILL2_M1:
3238   case RISCV::PseudoVRELOAD2_M1:
3239     return std::make_pair(2u, 1u);
3240   case RISCV::PseudoVSPILL2_M2:
3241   case RISCV::PseudoVRELOAD2_M2:
3242     return std::make_pair(2u, 2u);
3243   case RISCV::PseudoVSPILL2_M4:
3244   case RISCV::PseudoVRELOAD2_M4:
3245     return std::make_pair(2u, 4u);
3246   case RISCV::PseudoVSPILL3_M1:
3247   case RISCV::PseudoVRELOAD3_M1:
3248     return std::make_pair(3u, 1u);
3249   case RISCV::PseudoVSPILL3_M2:
3250   case RISCV::PseudoVRELOAD3_M2:
3251     return std::make_pair(3u, 2u);
3252   case RISCV::PseudoVSPILL4_M1:
3253   case RISCV::PseudoVRELOAD4_M1:
3254     return std::make_pair(4u, 1u);
3255   case RISCV::PseudoVSPILL4_M2:
3256   case RISCV::PseudoVRELOAD4_M2:
3257     return std::make_pair(4u, 2u);
3258   case RISCV::PseudoVSPILL5_M1:
3259   case RISCV::PseudoVRELOAD5_M1:
3260     return std::make_pair(5u, 1u);
3261   case RISCV::PseudoVSPILL6_M1:
3262   case RISCV::PseudoVRELOAD6_M1:
3263     return std::make_pair(6u, 1u);
3264   case RISCV::PseudoVSPILL7_M1:
3265   case RISCV::PseudoVRELOAD7_M1:
3266     return std::make_pair(7u, 1u);
3267   case RISCV::PseudoVSPILL8_M1:
3268   case RISCV::PseudoVRELOAD8_M1:
3269     return std::make_pair(8u, 1u);
3270   }
3271 }
3272 
3273 bool RISCV::isFaultFirstLoad(const MachineInstr &MI) {
3274   return MI.getNumExplicitDefs() == 2 && MI.modifiesRegister(RISCV::VL) &&
3275          !MI.isInlineAsm();
3276 }
3277 
3278 bool RISCV::hasEqualFRM(const MachineInstr &MI1, const MachineInstr &MI2) {
3279   int16_t MI1FrmOpIdx =
3280       RISCV::getNamedOperandIdx(MI1.getOpcode(), RISCV::OpName::frm);
3281   int16_t MI2FrmOpIdx =
3282       RISCV::getNamedOperandIdx(MI2.getOpcode(), RISCV::OpName::frm);
3283   if (MI1FrmOpIdx < 0 || MI2FrmOpIdx < 0)
3284     return false;
3285   MachineOperand FrmOp1 = MI1.getOperand(MI1FrmOpIdx);
3286   MachineOperand FrmOp2 = MI2.getOperand(MI2FrmOpIdx);
3287   return FrmOp1.getImm() == FrmOp2.getImm();
3288 }
3289 
3290 std::optional<unsigned>
3291 RISCV::getVectorLowDemandedScalarBits(uint16_t Opcode, unsigned Log2SEW) {
3292   // TODO: Handle Zvbb instructions
3293   switch (Opcode) {
3294   default:
3295     return std::nullopt;
3296 
3297   // 11.6. Vector Single-Width Shift Instructions
3298   case RISCV::VSLL_VX:
3299   case RISCV::VSRL_VX:
3300   case RISCV::VSRA_VX:
3301   // 12.4. Vector Single-Width Scaling Shift Instructions
3302   case RISCV::VSSRL_VX:
3303   case RISCV::VSSRA_VX:
3304     // Only the low lg2(SEW) bits of the shift-amount value are used.
3305     return Log2SEW;
3306 
3307   // 11.7 Vector Narrowing Integer Right Shift Instructions
3308   case RISCV::VNSRL_WX:
3309   case RISCV::VNSRA_WX:
3310   // 12.5. Vector Narrowing Fixed-Point Clip Instructions
3311   case RISCV::VNCLIPU_WX:
3312   case RISCV::VNCLIP_WX:
3313     // Only the low lg2(2*SEW) bits of the shift-amount value are used.
3314     return Log2SEW + 1;
3315 
3316   // 11.1. Vector Single-Width Integer Add and Subtract
3317   case RISCV::VADD_VX:
3318   case RISCV::VSUB_VX:
3319   case RISCV::VRSUB_VX:
3320   // 11.2. Vector Widening Integer Add/Subtract
3321   case RISCV::VWADDU_VX:
3322   case RISCV::VWSUBU_VX:
3323   case RISCV::VWADD_VX:
3324   case RISCV::VWSUB_VX:
3325   case RISCV::VWADDU_WX:
3326   case RISCV::VWSUBU_WX:
3327   case RISCV::VWADD_WX:
3328   case RISCV::VWSUB_WX:
3329   // 11.4. Vector Integer Add-with-Carry / Subtract-with-Borrow Instructions
3330   case RISCV::VADC_VXM:
3331   case RISCV::VADC_VIM:
3332   case RISCV::VMADC_VXM:
3333   case RISCV::VMADC_VIM:
3334   case RISCV::VMADC_VX:
3335   case RISCV::VSBC_VXM:
3336   case RISCV::VMSBC_VXM:
3337   case RISCV::VMSBC_VX:
3338   // 11.5 Vector Bitwise Logical Instructions
3339   case RISCV::VAND_VX:
3340   case RISCV::VOR_VX:
3341   case RISCV::VXOR_VX:
3342   // 11.8. Vector Integer Compare Instructions
3343   case RISCV::VMSEQ_VX:
3344   case RISCV::VMSNE_VX:
3345   case RISCV::VMSLTU_VX:
3346   case RISCV::VMSLT_VX:
3347   case RISCV::VMSLEU_VX:
3348   case RISCV::VMSLE_VX:
3349   case RISCV::VMSGTU_VX:
3350   case RISCV::VMSGT_VX:
3351   // 11.9. Vector Integer Min/Max Instructions
3352   case RISCV::VMINU_VX:
3353   case RISCV::VMIN_VX:
3354   case RISCV::VMAXU_VX:
3355   case RISCV::VMAX_VX:
3356   // 11.10. Vector Single-Width Integer Multiply Instructions
3357   case RISCV::VMUL_VX:
3358   case RISCV::VMULH_VX:
3359   case RISCV::VMULHU_VX:
3360   case RISCV::VMULHSU_VX:
3361   // 11.11. Vector Integer Divide Instructions
3362   case RISCV::VDIVU_VX:
3363   case RISCV::VDIV_VX:
3364   case RISCV::VREMU_VX:
3365   case RISCV::VREM_VX:
3366   // 11.12. Vector Widening Integer Multiply Instructions
3367   case RISCV::VWMUL_VX:
3368   case RISCV::VWMULU_VX:
3369   case RISCV::VWMULSU_VX:
3370   // 11.13. Vector Single-Width Integer Multiply-Add Instructions
3371   case RISCV::VMACC_VX:
3372   case RISCV::VNMSAC_VX:
3373   case RISCV::VMADD_VX:
3374   case RISCV::VNMSUB_VX:
3375   // 11.14. Vector Widening Integer Multiply-Add Instructions
3376   case RISCV::VWMACCU_VX:
3377   case RISCV::VWMACC_VX:
3378   case RISCV::VWMACCSU_VX:
3379   case RISCV::VWMACCUS_VX:
3380   // 11.15. Vector Integer Merge Instructions
3381   case RISCV::VMERGE_VXM:
3382   // 11.16. Vector Integer Move Instructions
3383   case RISCV::VMV_V_X:
3384   // 12.1. Vector Single-Width Saturating Add and Subtract
3385   case RISCV::VSADDU_VX:
3386   case RISCV::VSADD_VX:
3387   case RISCV::VSSUBU_VX:
3388   case RISCV::VSSUB_VX:
3389   // 12.2. Vector Single-Width Averaging Add and Subtract
3390   case RISCV::VAADDU_VX:
3391   case RISCV::VAADD_VX:
3392   case RISCV::VASUBU_VX:
3393   case RISCV::VASUB_VX:
3394   // 12.3. Vector Single-Width Fractional Multiply with Rounding and Saturation
3395   case RISCV::VSMUL_VX:
3396   // 16.1. Integer Scalar Move Instructions
3397   case RISCV::VMV_S_X:
3398     return 1U << Log2SEW;
3399   }
3400 }
3401 
3402 unsigned RISCV::getRVVMCOpcode(unsigned RVVPseudoOpcode) {
3403   const RISCVVPseudosTable::PseudoInfo *RVV =
3404       RISCVVPseudosTable::getPseudoInfo(RVVPseudoOpcode);
3405   if (!RVV)
3406     return 0;
3407   return RVV->BaseInstr;
3408 }
3409