1//===-- RISCVInstrInfoD.td - RISC-V 'D' instructions -------*- tablegen -*-===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file describes the RISC-V instructions from the standard 'D',
10// Double-Precision Floating-Point instruction set extension.
11//
12//===----------------------------------------------------------------------===//
13
14//===----------------------------------------------------------------------===//
15// RISC-V specific DAG Nodes.
16//===----------------------------------------------------------------------===//
17
18def SDT_RISCVBuildPairF64 : SDTypeProfile<1, 2, [SDTCisVT<0, f64>,
19                                                 SDTCisVT<1, i32>,
20                                                 SDTCisSameAs<1, 2>]>;
21def SDT_RISCVSplitF64     : SDTypeProfile<2, 1, [SDTCisVT<0, i32>,
22                                                 SDTCisVT<1, i32>,
23                                                 SDTCisVT<2, f64>]>;
24
25def RISCVBuildPairF64 : SDNode<"RISCVISD::BuildPairF64", SDT_RISCVBuildPairF64>;
26def RISCVSplitF64     : SDNode<"RISCVISD::SplitF64", SDT_RISCVSplitF64>;
27
28//===----------------------------------------------------------------------===//
29// Instruction Class Templates
30//===----------------------------------------------------------------------===//
31
32let hasSideEffects = 0, mayLoad = 0, mayStore = 0 in
33class FPFMAD_rrr_frm<RISCVOpcode opcode, string opcodestr>
34    : RVInstR4<0b01, opcode, (outs FPR64:$rd),
35               (ins FPR64:$rs1, FPR64:$rs2, FPR64:$rs3, frmarg:$funct3),
36                opcodestr, "$rd, $rs1, $rs2, $rs3, $funct3">;
37
38class FPFMADDynFrmAlias<FPFMAD_rrr_frm Inst, string OpcodeStr>
39    : InstAlias<OpcodeStr#" $rd, $rs1, $rs2, $rs3",
40                (Inst FPR64:$rd, FPR64:$rs1, FPR64:$rs2, FPR64:$rs3, 0b111)>;
41
42let hasSideEffects = 0, mayLoad = 0, mayStore = 0 in
43class FPALUD_rr<bits<7> funct7, bits<3> funct3, string opcodestr>
44    : RVInstR<funct7, funct3, OPC_OP_FP, (outs FPR64:$rd),
45              (ins FPR64:$rs1, FPR64:$rs2), opcodestr, "$rd, $rs1, $rs2">;
46
47let hasSideEffects = 0, mayLoad = 0, mayStore = 0 in
48class FPALUD_rr_frm<bits<7> funct7, string opcodestr>
49    : RVInstRFrm<funct7, OPC_OP_FP, (outs FPR64:$rd),
50                (ins FPR64:$rs1, FPR64:$rs2, frmarg:$funct3), opcodestr,
51                 "$rd, $rs1, $rs2, $funct3">;
52
53class FPALUDDynFrmAlias<FPALUD_rr_frm Inst, string OpcodeStr>
54    : InstAlias<OpcodeStr#" $rd, $rs1, $rs2",
55                (Inst FPR64:$rd, FPR64:$rs1, FPR64:$rs2, 0b111)>;
56
57let hasSideEffects = 0, mayLoad = 0, mayStore = 0 in
58class FPCmpD_rr<bits<3> funct3, string opcodestr>
59    : RVInstR<0b1010001, funct3, OPC_OP_FP, (outs GPR:$rd),
60              (ins FPR64:$rs1, FPR64:$rs2), opcodestr, "$rd, $rs1, $rs2">,
61      Sched<[WriteFCmp64, ReadFCmp64, ReadFCmp64]>;
62
63//===----------------------------------------------------------------------===//
64// Instructions
65//===----------------------------------------------------------------------===//
66
67let Predicates = [HasStdExtD] in {
68
69let hasSideEffects = 0, mayLoad = 1, mayStore = 0 in
70def FLD : RVInstI<0b011, OPC_LOAD_FP, (outs FPR64:$rd),
71                  (ins GPR:$rs1, simm12:$imm12),
72                  "fld", "$rd, ${imm12}(${rs1})">,
73          Sched<[WriteFLD64, ReadFMemBase]>;
74
75// Operands for stores are in the order srcreg, base, offset rather than
76// reflecting the order these fields are specified in the instruction
77// encoding.
78let hasSideEffects = 0, mayLoad = 0, mayStore = 1 in
79def FSD : RVInstS<0b011, OPC_STORE_FP, (outs),
80                  (ins FPR64:$rs2, GPR:$rs1, simm12:$imm12),
81                   "fsd", "$rs2, ${imm12}(${rs1})">,
82          Sched<[WriteFST64, ReadStoreData, ReadFMemBase]>;
83
84def FMADD_D  : FPFMAD_rrr_frm<OPC_MADD, "fmadd.d">,
85               Sched<[WriteFMulAdd64, ReadFMulAdd64, ReadFMulAdd64, ReadFMulAdd64]>;
86def          : FPFMADDynFrmAlias<FMADD_D, "fmadd.d">;
87def FMSUB_D  : FPFMAD_rrr_frm<OPC_MSUB, "fmsub.d">,
88               Sched<[WriteFMulSub64, ReadFMulSub64, ReadFMulSub64, ReadFMulSub64]>;
89def          : FPFMADDynFrmAlias<FMSUB_D, "fmsub.d">;
90def FNMSUB_D : FPFMAD_rrr_frm<OPC_NMSUB, "fnmsub.d">,
91               Sched<[WriteFMulSub64, ReadFMulSub64, ReadFMulSub64, ReadFMulSub64]>;
92def          : FPFMADDynFrmAlias<FNMSUB_D, "fnmsub.d">;
93def FNMADD_D : FPFMAD_rrr_frm<OPC_NMADD, "fnmadd.d">,
94               Sched<[WriteFMulAdd64, ReadFMulAdd64, ReadFMulAdd64, ReadFMulAdd64]>;
95def          : FPFMADDynFrmAlias<FNMADD_D, "fnmadd.d">;
96
97def FADD_D : FPALUD_rr_frm<0b0000001, "fadd.d">,
98             Sched<[WriteFALU64, ReadFALU64, ReadFALU64]>;
99def        : FPALUDDynFrmAlias<FADD_D, "fadd.d">;
100def FSUB_D : FPALUD_rr_frm<0b0000101, "fsub.d">,
101             Sched<[WriteFALU64, ReadFALU64, ReadFALU64]>;
102def        : FPALUDDynFrmAlias<FSUB_D, "fsub.d">;
103def FMUL_D : FPALUD_rr_frm<0b0001001, "fmul.d">,
104             Sched<[WriteFMul64, ReadFMul64, ReadFMul64]>;
105def        : FPALUDDynFrmAlias<FMUL_D, "fmul.d">;
106def FDIV_D : FPALUD_rr_frm<0b0001101, "fdiv.d">,
107             Sched<[WriteFDiv64, ReadFDiv64, ReadFDiv64]>;
108def        : FPALUDDynFrmAlias<FDIV_D, "fdiv.d">;
109
110def FSQRT_D : FPUnaryOp_r_frm<0b0101101, FPR64, FPR64, "fsqrt.d">,
111              Sched<[WriteFSqrt64, ReadFSqrt64]> {
112  let rs2 = 0b00000;
113}
114def         : FPUnaryOpDynFrmAlias<FSQRT_D, "fsqrt.d", FPR64, FPR64>;
115
116def FSGNJ_D  : FPALUD_rr<0b0010001, 0b000, "fsgnj.d">,
117               Sched<[WriteFSGNJ64, ReadFSGNJ64, ReadFSGNJ64]>;
118def FSGNJN_D : FPALUD_rr<0b0010001, 0b001, "fsgnjn.d">,
119               Sched<[WriteFSGNJ64, ReadFSGNJ64, ReadFSGNJ64]>;
120def FSGNJX_D : FPALUD_rr<0b0010001, 0b010, "fsgnjx.d">,
121               Sched<[WriteFSGNJ64, ReadFSGNJ64, ReadFSGNJ64]>;
122def FMIN_D   : FPALUD_rr<0b0010101, 0b000, "fmin.d">,
123               Sched<[WriteFMinMax64, ReadFMinMax64, ReadFMinMax64]>;
124def FMAX_D   : FPALUD_rr<0b0010101, 0b001, "fmax.d">,
125               Sched<[WriteFMinMax64, ReadFMinMax64, ReadFMinMax64]>;
126
127def FCVT_S_D : FPUnaryOp_r_frm<0b0100000, FPR32, FPR64, "fcvt.s.d">,
128               Sched<[WriteFCvtF64ToF32, ReadFCvtF64ToF32]> {
129  let rs2 = 0b00001;
130}
131def          : FPUnaryOpDynFrmAlias<FCVT_S_D, "fcvt.s.d", FPR32, FPR64>;
132
133def FCVT_D_S : FPUnaryOp_r<0b0100001, 0b000, FPR64, FPR32, "fcvt.d.s">,
134               Sched<[WriteFCvtF32ToF64, ReadFCvtF32ToF64]> {
135  let rs2 = 0b00000;
136}
137
138def FEQ_D : FPCmpD_rr<0b010, "feq.d">;
139def FLT_D : FPCmpD_rr<0b001, "flt.d">;
140def FLE_D : FPCmpD_rr<0b000, "fle.d">;
141
142def FCLASS_D : FPUnaryOp_r<0b1110001, 0b001, GPR, FPR64, "fclass.d">,
143               Sched<[WriteFClass64, ReadFClass64]> {
144  let rs2 = 0b00000;
145}
146
147def FCVT_W_D : FPUnaryOp_r_frm<0b1100001, GPR, FPR64, "fcvt.w.d">,
148               Sched<[WriteFCvtF64ToI32, ReadFCvtF64ToI32]> {
149  let rs2 = 0b00000;
150}
151def          : FPUnaryOpDynFrmAlias<FCVT_W_D, "fcvt.w.d", GPR, FPR64>;
152
153def FCVT_WU_D : FPUnaryOp_r_frm<0b1100001, GPR, FPR64, "fcvt.wu.d">,
154                Sched<[WriteFCvtF64ToI32, ReadFCvtF64ToI32]> {
155  let rs2 = 0b00001;
156}
157def           : FPUnaryOpDynFrmAlias<FCVT_WU_D, "fcvt.wu.d", GPR, FPR64>;
158
159def FCVT_D_W : FPUnaryOp_r<0b1101001, 0b000, FPR64, GPR, "fcvt.d.w">,
160               Sched<[WriteFCvtI32ToF64, ReadFCvtI32ToF64]> {
161  let rs2 = 0b00000;
162}
163
164def FCVT_D_WU : FPUnaryOp_r<0b1101001, 0b000, FPR64, GPR, "fcvt.d.wu">,
165                Sched<[WriteFCvtI32ToF64, ReadFCvtI32ToF64]> {
166  let rs2 = 0b00001;
167}
168} // Predicates = [HasStdExtD]
169
170let Predicates = [HasStdExtD, IsRV64] in {
171def FCVT_L_D : FPUnaryOp_r_frm<0b1100001, GPR, FPR64, "fcvt.l.d">,
172               Sched<[WriteFCvtF64ToI64, ReadFCvtF64ToI64]> {
173  let rs2 = 0b00010;
174}
175def          : FPUnaryOpDynFrmAlias<FCVT_L_D, "fcvt.l.d", GPR, FPR64>;
176
177def FCVT_LU_D : FPUnaryOp_r_frm<0b1100001, GPR, FPR64, "fcvt.lu.d">,
178                Sched<[WriteFCvtF64ToI64, ReadFCvtF64ToI64]> {
179  let rs2 = 0b00011;
180}
181def           : FPUnaryOpDynFrmAlias<FCVT_LU_D, "fcvt.lu.d", GPR, FPR64>;
182
183def FMV_X_D : FPUnaryOp_r<0b1110001, 0b000, GPR, FPR64, "fmv.x.d">,
184              Sched<[WriteFMovF64ToI64, ReadFMovF64ToI64]> {
185  let rs2 = 0b00000;
186}
187
188def FCVT_D_L : FPUnaryOp_r_frm<0b1101001, FPR64, GPR, "fcvt.d.l">,
189               Sched<[WriteFCvtI64ToF64, ReadFCvtI64ToF64]> {
190  let rs2 = 0b00010;
191}
192def          : FPUnaryOpDynFrmAlias<FCVT_D_L, "fcvt.d.l", FPR64, GPR>;
193
194def FCVT_D_LU : FPUnaryOp_r_frm<0b1101001, FPR64, GPR, "fcvt.d.lu">,
195                Sched<[WriteFCvtI64ToF64, ReadFCvtI64ToF64]> {
196  let rs2 = 0b00011;
197}
198def           : FPUnaryOpDynFrmAlias<FCVT_D_LU, "fcvt.d.lu", FPR64, GPR>;
199
200def FMV_D_X : FPUnaryOp_r<0b1111001, 0b000, FPR64, GPR, "fmv.d.x">,
201              Sched<[WriteFMovI64ToF64, ReadFMovI64ToF64]> {
202  let rs2 = 0b00000;
203}
204} // Predicates = [HasStdExtD, IsRV64]
205
206//===----------------------------------------------------------------------===//
207// Assembler Pseudo Instructions (User-Level ISA, Version 2.2, Chapter 20)
208//===----------------------------------------------------------------------===//
209
210let Predicates = [HasStdExtD] in {
211def : InstAlias<"fld $rd, (${rs1})",  (FLD FPR64:$rd,  GPR:$rs1, 0), 0>;
212def : InstAlias<"fsd $rs2, (${rs1})", (FSD FPR64:$rs2, GPR:$rs1, 0), 0>;
213
214def : InstAlias<"fmv.d $rd, $rs",  (FSGNJ_D  FPR64:$rd, FPR64:$rs, FPR64:$rs)>;
215def : InstAlias<"fabs.d $rd, $rs", (FSGNJX_D FPR64:$rd, FPR64:$rs, FPR64:$rs)>;
216def : InstAlias<"fneg.d $rd, $rs", (FSGNJN_D FPR64:$rd, FPR64:$rs, FPR64:$rs)>;
217
218// fgt.d/fge.d are recognised by the GNU assembler but the canonical
219// flt.d/fle.d forms will always be printed. Therefore, set a zero weight.
220def : InstAlias<"fgt.d $rd, $rs, $rt",
221                (FLT_D GPR:$rd, FPR64:$rt, FPR64:$rs), 0>;
222def : InstAlias<"fge.d $rd, $rs, $rt",
223                (FLE_D GPR:$rd, FPR64:$rt, FPR64:$rs), 0>;
224
225def PseudoFLD  : PseudoFloatLoad<"fld", FPR64>;
226def PseudoFSD  : PseudoStore<"fsd", FPR64>;
227} // Predicates = [HasStdExtD]
228
229//===----------------------------------------------------------------------===//
230// Pseudo-instructions and codegen patterns
231//===----------------------------------------------------------------------===//
232
233class PatFpr64Fpr64<SDPatternOperator OpNode, RVInstR Inst>
234    : Pat<(OpNode FPR64:$rs1, FPR64:$rs2), (Inst $rs1, $rs2)>;
235
236class PatFpr64Fpr64DynFrm<SDPatternOperator OpNode, RVInstRFrm Inst>
237    : Pat<(OpNode FPR64:$rs1, FPR64:$rs2), (Inst $rs1, $rs2, 0b111)>;
238
239let Predicates = [HasStdExtD] in {
240
241/// Float conversion operations
242
243// f64 -> f32, f32 -> f64
244def : Pat<(fpround FPR64:$rs1), (FCVT_S_D FPR64:$rs1, 0b111)>;
245def : Pat<(fpextend FPR32:$rs1), (FCVT_D_S FPR32:$rs1)>;
246
247// [u]int<->double conversion patterns must be gated on IsRV32 or IsRV64, so
248// are defined later.
249
250/// Float arithmetic operations
251
252def : PatFpr64Fpr64DynFrm<fadd, FADD_D>;
253def : PatFpr64Fpr64DynFrm<fsub, FSUB_D>;
254def : PatFpr64Fpr64DynFrm<fmul, FMUL_D>;
255def : PatFpr64Fpr64DynFrm<fdiv, FDIV_D>;
256
257def : Pat<(fsqrt FPR64:$rs1), (FSQRT_D FPR64:$rs1, 0b111)>;
258
259def : Pat<(fneg FPR64:$rs1), (FSGNJN_D $rs1, $rs1)>;
260def : Pat<(fabs FPR64:$rs1), (FSGNJX_D $rs1, $rs1)>;
261
262def : PatFpr64Fpr64<fcopysign, FSGNJ_D>;
263def : Pat<(fcopysign FPR64:$rs1, (fneg FPR64:$rs2)), (FSGNJN_D $rs1, $rs2)>;
264def : Pat<(fcopysign FPR64:$rs1, FPR32:$rs2), (FSGNJ_D $rs1, (FCVT_D_S $rs2))>;
265def : Pat<(fcopysign FPR32:$rs1, FPR64:$rs2), (FSGNJ_S $rs1, (FCVT_S_D $rs2,
266                                                              0b111))>;
267
268// fmadd: rs1 * rs2 + rs3
269def : Pat<(fma FPR64:$rs1, FPR64:$rs2, FPR64:$rs3),
270          (FMADD_D $rs1, $rs2, $rs3, 0b111)>;
271
272// fmsub: rs1 * rs2 - rs3
273def : Pat<(fma FPR64:$rs1, FPR64:$rs2, (fneg FPR64:$rs3)),
274          (FMSUB_D FPR64:$rs1, FPR64:$rs2, FPR64:$rs3, 0b111)>;
275
276// fnmsub: -rs1 * rs2 + rs3
277def : Pat<(fma (fneg FPR64:$rs1), FPR64:$rs2, FPR64:$rs3),
278          (FNMSUB_D FPR64:$rs1, FPR64:$rs2, FPR64:$rs3, 0b111)>;
279
280// fnmadd: -rs1 * rs2 - rs3
281def : Pat<(fma (fneg FPR64:$rs1), FPR64:$rs2, (fneg FPR64:$rs3)),
282          (FNMADD_D FPR64:$rs1, FPR64:$rs2, FPR64:$rs3, 0b111)>;
283
284// The RISC-V 2.2 user-level ISA spec defines fmin and fmax as returning the
285// canonical NaN when giving a signaling NaN. This doesn't match the LLVM
286// behaviour (see https://bugs.llvm.org/show_bug.cgi?id=27363). However, the
287// draft 2.3 ISA spec changes the definition of fmin and fmax in a way that
288// matches LLVM's fminnum and fmaxnum
289// <https://github.com/riscv/riscv-isa-manual/commit/cd20cee7efd9bac7c5aa127ec3b451749d2b3cce>.
290def : PatFpr64Fpr64<fminnum, FMIN_D>;
291def : PatFpr64Fpr64<fmaxnum, FMAX_D>;
292
293/// Setcc
294
295def : PatFpr64Fpr64<seteq, FEQ_D>;
296def : PatFpr64Fpr64<setoeq, FEQ_D>;
297def : PatFpr64Fpr64<setlt, FLT_D>;
298def : PatFpr64Fpr64<setolt, FLT_D>;
299def : PatFpr64Fpr64<setle, FLE_D>;
300def : PatFpr64Fpr64<setole, FLE_D>;
301
302def Select_FPR64_Using_CC_GPR : SelectCC_rrirr<FPR64, GPR>;
303
304/// Loads
305
306defm : LdPat<load, FLD>;
307
308/// Stores
309
310defm : StPat<store, FSD, FPR64>;
311
312/// Pseudo-instructions needed for the soft-float ABI with RV32D
313
314// Moves two GPRs to an FPR.
315let usesCustomInserter = 1 in
316def BuildPairF64Pseudo
317    : Pseudo<(outs FPR64:$dst), (ins GPR:$src1, GPR:$src2),
318             [(set FPR64:$dst, (RISCVBuildPairF64 GPR:$src1, GPR:$src2))]>;
319
320// Moves an FPR to two GPRs.
321let usesCustomInserter = 1 in
322def SplitF64Pseudo
323    : Pseudo<(outs GPR:$dst1, GPR:$dst2), (ins FPR64:$src),
324             [(set GPR:$dst1, GPR:$dst2, (RISCVSplitF64 FPR64:$src))]>;
325
326} // Predicates = [HasStdExtD]
327
328let Predicates = [HasStdExtD, IsRV32] in {
329
330/// Float constants
331def : Pat<(f64 (fpimm0)), (FCVT_D_W X0)>;
332
333// double->[u]int. Round-to-zero must be used.
334def : Pat<(fp_to_sint FPR64:$rs1), (FCVT_W_D FPR64:$rs1, 0b001)>;
335def : Pat<(fp_to_uint FPR64:$rs1), (FCVT_WU_D FPR64:$rs1, 0b001)>;
336
337// [u]int->double.
338def : Pat<(sint_to_fp GPR:$rs1), (FCVT_D_W GPR:$rs1)>;
339def : Pat<(uint_to_fp GPR:$rs1), (FCVT_D_WU GPR:$rs1)>;
340} // Predicates = [HasStdExtD, IsRV32]
341
342let Predicates = [HasStdExtD, IsRV64] in {
343
344/// Float constants
345def : Pat<(f64 (fpimm0)), (FMV_D_X X0)>;
346
347// Moves (no conversion)
348def : Pat<(bitconvert GPR:$rs1), (FMV_D_X GPR:$rs1)>;
349def : Pat<(bitconvert FPR64:$rs1), (FMV_X_D FPR64:$rs1)>;
350
351// FP->[u]int32 is mostly handled by the FP->[u]int64 patterns. This is safe
352// because fpto[u|s]i produce poison if the value can't fit into the target.
353// We match the single case below because fcvt.wu.d sign-extends its result so
354// is cheaper than fcvt.lu.d+sext.w.
355def : Pat<(sext_inreg (assertzexti32 (fp_to_uint FPR64:$rs1)), i32),
356          (FCVT_WU_D $rs1, 0b001)>;
357
358// [u]int32->fp
359def : Pat<(sint_to_fp (sexti32 GPR:$rs1)), (FCVT_D_W $rs1)>;
360def : Pat<(uint_to_fp (zexti32 GPR:$rs1)), (FCVT_D_WU $rs1)>;
361
362def : Pat<(fp_to_sint FPR64:$rs1), (FCVT_L_D FPR64:$rs1, 0b001)>;
363def : Pat<(fp_to_uint FPR64:$rs1), (FCVT_LU_D FPR64:$rs1, 0b001)>;
364
365// [u]int64->fp. Match GCC and default to using dynamic rounding mode.
366def : Pat<(sint_to_fp GPR:$rs1), (FCVT_D_L GPR:$rs1, 0b111)>;
367def : Pat<(uint_to_fp GPR:$rs1), (FCVT_D_LU GPR:$rs1, 0b111)>;
368} // Predicates = [HasStdExtD, IsRV64]
369