1//===-- RISCVInstrInfoD.td - RISC-V 'D' instructions -------*- tablegen -*-===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file describes the RISC-V instructions from the standard 'D',
10// Double-Precision Floating-Point instruction set extension.
11//
12//===----------------------------------------------------------------------===//
13
14//===----------------------------------------------------------------------===//
15// RISC-V specific DAG Nodes.
16//===----------------------------------------------------------------------===//
17
18def SDT_RISCVBuildPairF64 : SDTypeProfile<1, 2, [SDTCisVT<0, f64>,
19                                                 SDTCisVT<1, i32>,
20                                                 SDTCisSameAs<1, 2>]>;
21def SDT_RISCVSplitF64     : SDTypeProfile<2, 1, [SDTCisVT<0, i32>,
22                                                 SDTCisVT<1, i32>,
23                                                 SDTCisVT<2, f64>]>;
24
25def RISCVBuildPairF64 : SDNode<"RISCVISD::BuildPairF64", SDT_RISCVBuildPairF64>;
26def RISCVSplitF64     : SDNode<"RISCVISD::SplitF64", SDT_RISCVSplitF64>;
27
28//===----------------------------------------------------------------------===//
29// Operand and SDNode transformation definitions.
30//===----------------------------------------------------------------------===//
31
32// Zdinx
33
34def GPRPF64AsFPR : AsmOperandClass {
35  let Name = "GPRPF64AsFPR";
36  let ParserMethod = "parseGPRAsFPR";
37  let RenderMethod = "addRegOperands";
38}
39
40def GPRF64AsFPR : AsmOperandClass {
41  let Name = "GPRF64AsFPR";
42  let ParserMethod = "parseGPRAsFPR";
43  let RenderMethod = "addRegOperands";
44}
45
46def FPR64INX : RegisterOperand<GPRF64> {
47  let ParserMatchClass = GPRF64AsFPR;
48  let DecoderMethod = "DecodeGPRRegisterClass";
49}
50
51def FPR64IN32X : RegisterOperand<GPRPF64> {
52  let ParserMatchClass = GPRPF64AsFPR;
53}
54
55def DExt       : ExtInfo<0, [HasStdExtD]>;
56def D64Ext     : ExtInfo<0, [HasStdExtD, IsRV64]>;
57def ZdinxExt   : ExtInfo<1, [HasStdExtZdinx, IsRV64]>;
58def Zdinx32Ext : ExtInfo<2, [HasStdExtZdinx, IsRV32]>;
59
60def D       : ExtInfo_r<DExt,       FPR64>;
61def D_INX   : ExtInfo_r<ZdinxExt,   FPR64INX>;
62def D_IN32X : ExtInfo_r<Zdinx32Ext, FPR64IN32X>;
63
64def DD       : ExtInfo_rr<DExt,       FPR64,      FPR64>;
65def DD_INX   : ExtInfo_rr<ZdinxExt,   FPR64INX,   FPR64INX>;
66def DD_IN32X : ExtInfo_rr<Zdinx32Ext, FPR64IN32X, FPR64IN32X>;
67def DF       : ExtInfo_rr<DExt,       FPR64,      FPR32>;
68def DF_INX   : ExtInfo_rr<ZdinxExt,   FPR64INX,   FPR32INX>;
69def DF_IN32X : ExtInfo_rr<Zdinx32Ext, FPR64IN32X, FPR32INX>;
70def DX       : ExtInfo_rr<DExt,       FPR64,      GPR>;
71def DX_INX   : ExtInfo_rr<ZdinxExt,   FPR64INX,   GPR>;
72def DX_IN32X : ExtInfo_rr<Zdinx32Ext, FPR64IN32X, GPR>;
73def DX_64    : ExtInfo_rr<D64Ext,     FPR64,      GPR>;
74def FD       : ExtInfo_rr<DExt,       FPR32,      FPR64>;
75def FD_INX   : ExtInfo_rr<ZdinxExt,   FPR32INX,   FPR64INX>;
76def FD_IN32X : ExtInfo_rr<Zdinx32Ext, FPR32INX,   FPR64IN32X>;
77def XD       : ExtInfo_rr<DExt,       GPR,        FPR64>;
78def XD_INX   : ExtInfo_rr<ZdinxExt,   GPR,        FPR64INX>;
79def XD_IN32X : ExtInfo_rr<Zdinx32Ext, GPR,        FPR64IN32X>;
80def XD_64    : ExtInfo_rr<D64Ext,     GPR,        FPR64>;
81
82defvar DINX    = [D,     D_INX,  D_IN32X];
83defvar DDINX   = [DD,    DD_INX, DD_IN32X];
84defvar DXINX   = [DX,    DX_INX, DX_IN32X];
85defvar DFINX   = [DF,    DF_INX, DF_IN32X];
86defvar FDINX   = [FD,    FD_INX, FD_IN32X];
87defvar XDINX   = [XD,    XD_INX, XD_IN32X];
88defvar DXIN64X = [DX_64, DX_INX];
89defvar XDIN64X = [XD_64, XD_INX];
90
91//===----------------------------------------------------------------------===//
92// Instructions
93//===----------------------------------------------------------------------===//
94
95let Predicates = [HasStdExtD] in {
96def FLD : FPLoad_r<0b011, "fld", FPR64, WriteFLD64>;
97
98// Operands for stores are in the order srcreg, base, offset rather than
99// reflecting the order these fields are specified in the instruction
100// encoding.
101def FSD : FPStore_r<0b011, "fsd", FPR64, WriteFST64>;
102} // Predicates = [HasStdExtD]
103
104let SchedRW = [WriteFMA64, ReadFMA64, ReadFMA64, ReadFMA64] in {
105defm FMADD_D  : FPFMA_rrr_frm_m<OPC_MADD,  0b01, "fmadd.d",  DINX>;
106defm FMSUB_D  : FPFMA_rrr_frm_m<OPC_MSUB,  0b01, "fmsub.d",  DINX>;
107defm FNMSUB_D : FPFMA_rrr_frm_m<OPC_NMSUB, 0b01, "fnmsub.d", DINX>;
108defm FNMADD_D : FPFMA_rrr_frm_m<OPC_NMADD, 0b01, "fnmadd.d", DINX>;
109}
110
111defm : FPFMADynFrmAlias_m<FMADD_D,  "fmadd.d",  DINX>;
112defm : FPFMADynFrmAlias_m<FMSUB_D,  "fmsub.d",  DINX>;
113defm : FPFMADynFrmAlias_m<FNMSUB_D, "fnmsub.d", DINX>;
114defm : FPFMADynFrmAlias_m<FNMADD_D, "fnmadd.d", DINX>;
115
116let SchedRW = [WriteFAdd64, ReadFAdd64, ReadFAdd64] in {
117defm FADD_D : FPALU_rr_frm_m<0b0000001, "fadd.d", DINX, /*Commutable*/1>;
118defm FSUB_D : FPALU_rr_frm_m<0b0000101, "fsub.d", DINX>;
119}
120let SchedRW = [WriteFMul64, ReadFMul64, ReadFMul64] in
121defm FMUL_D : FPALU_rr_frm_m<0b0001001, "fmul.d", DINX, /*Commutable*/1>;
122
123let SchedRW = [WriteFDiv64, ReadFDiv64, ReadFDiv64] in
124defm FDIV_D : FPALU_rr_frm_m<0b0001101, "fdiv.d", DINX>;
125
126defm : FPALUDynFrmAlias_m<FADD_D, "fadd.d", DINX>;
127defm : FPALUDynFrmAlias_m<FSUB_D, "fsub.d", DINX>;
128defm : FPALUDynFrmAlias_m<FMUL_D, "fmul.d", DINX>;
129defm : FPALUDynFrmAlias_m<FDIV_D, "fdiv.d", DINX>;
130
131defm FSQRT_D : FPUnaryOp_r_frm_m<0b0101101, 0b00000, DDINX, "fsqrt.d">,
132               Sched<[WriteFSqrt64, ReadFSqrt64]>;
133defm         : FPUnaryOpDynFrmAlias_m<FSQRT_D, "fsqrt.d", DDINX>;
134
135let SchedRW = [WriteFSGNJ64, ReadFSGNJ64, ReadFSGNJ64],
136    mayRaiseFPException = 0 in {
137defm FSGNJ_D  : FPALU_rr_m<0b0010001, 0b000, "fsgnj.d",  DINX>;
138defm FSGNJN_D : FPALU_rr_m<0b0010001, 0b001, "fsgnjn.d", DINX>;
139defm FSGNJX_D : FPALU_rr_m<0b0010001, 0b010, "fsgnjx.d", DINX>;
140}
141
142let SchedRW = [WriteFMinMax64, ReadFMinMax64, ReadFMinMax64] in {
143defm FMIN_D   : FPALU_rr_m<0b0010101, 0b000, "fmin.d", DINX, /*Commutable*/1>;
144defm FMAX_D   : FPALU_rr_m<0b0010101, 0b001, "fmax.d", DINX, /*Commutable*/1>;
145}
146
147defm FCVT_S_D : FPUnaryOp_r_frm_m<0b0100000, 0b00001, FDINX, "fcvt.s.d">,
148                Sched<[WriteFCvtF64ToF32, ReadFCvtF64ToF32]>;
149defm          : FPUnaryOpDynFrmAlias_m<FCVT_S_D, "fcvt.s.d", FDINX>;
150
151defm FCVT_D_S : FPUnaryOp_r_m<0b0100001, 0b00000, 0b000, DFINX, "fcvt.d.s">,
152                Sched<[WriteFCvtF32ToF64, ReadFCvtF32ToF64]>;
153
154let SchedRW = [WriteFCmp64, ReadFCmp64, ReadFCmp64] in {
155defm FEQ_D : FPCmp_rr_m<0b1010001, 0b010, "feq.d", DINX, /*Commutable*/1>;
156defm FLT_D : FPCmp_rr_m<0b1010001, 0b001, "flt.d", DINX>;
157defm FLE_D : FPCmp_rr_m<0b1010001, 0b000, "fle.d", DINX>;
158}
159
160defm FCLASS_D : FPUnaryOp_r_m<0b1110001, 0b00000, 0b001, XDINX, "fclass.d">,
161                Sched<[WriteFClass64, ReadFClass64]>;
162
163let IsSignExtendingOpW = 1 in
164defm FCVT_W_D : FPUnaryOp_r_frm_m<0b1100001, 0b00000, XDINX, "fcvt.w.d">,
165               Sched<[WriteFCvtF64ToI32, ReadFCvtF64ToI32]>;
166defm          : FPUnaryOpDynFrmAlias_m<FCVT_W_D, "fcvt.w.d", XDINX>;
167
168let IsSignExtendingOpW = 1 in
169defm FCVT_WU_D : FPUnaryOp_r_frm_m<0b1100001, 0b00001, XDINX, "fcvt.wu.d">,
170                 Sched<[WriteFCvtF64ToI32, ReadFCvtF64ToI32]>;
171defm           : FPUnaryOpDynFrmAlias_m<FCVT_WU_D, "fcvt.wu.d", XDINX>;
172
173defm FCVT_D_W : FPUnaryOp_r_m<0b1101001, 0b00000, 0b000, DXINX, "fcvt.d.w">,
174                Sched<[WriteFCvtI32ToF64, ReadFCvtI32ToF64]>;
175
176defm FCVT_D_WU : FPUnaryOp_r_m<0b1101001, 0b00001, 0b000, DXINX, "fcvt.d.wu">,
177                 Sched<[WriteFCvtI32ToF64, ReadFCvtI32ToF64]>;
178
179defm FCVT_L_D : FPUnaryOp_r_frm_m<0b1100001, 0b00010, XDIN64X, "fcvt.l.d">,
180                Sched<[WriteFCvtF64ToI64, ReadFCvtF64ToI64]>;
181defm          : FPUnaryOpDynFrmAlias_m<FCVT_L_D, "fcvt.l.d", XDIN64X>;
182
183defm FCVT_LU_D : FPUnaryOp_r_frm_m<0b1100001, 0b00011, XDIN64X, "fcvt.lu.d">,
184                 Sched<[WriteFCvtF64ToI64, ReadFCvtF64ToI64]>;
185defm           : FPUnaryOpDynFrmAlias_m<FCVT_LU_D, "fcvt.lu.d", XDIN64X>;
186
187let Predicates = [HasStdExtD, IsRV64], mayRaiseFPException = 0 in
188def FMV_X_D : FPUnaryOp_r<0b1110001, 0b00000, 0b000, GPR, FPR64, "fmv.x.d">,
189              Sched<[WriteFMovF64ToI64, ReadFMovF64ToI64]>;
190
191defm FCVT_D_L : FPUnaryOp_r_frm_m<0b1101001, 0b00010, DXIN64X, "fcvt.d.l">,
192                Sched<[WriteFCvtI64ToF64, ReadFCvtI64ToF64]>;
193defm          : FPUnaryOpDynFrmAlias_m<FCVT_D_L, "fcvt.d.l", DXIN64X>;
194
195defm FCVT_D_LU : FPUnaryOp_r_frm_m<0b1101001, 0b00011, DXIN64X, "fcvt.d.lu">,
196                 Sched<[WriteFCvtI64ToF64, ReadFCvtI64ToF64]>;
197defm           : FPUnaryOpDynFrmAlias_m<FCVT_D_LU, "fcvt.d.lu", DXIN64X>;
198
199let Predicates = [HasStdExtD, IsRV64], mayRaiseFPException = 0 in
200def FMV_D_X : FPUnaryOp_r<0b1111001, 0b00000, 0b000, FPR64, GPR, "fmv.d.x">,
201              Sched<[WriteFMovI64ToF64, ReadFMovI64ToF64]>;
202
203//===----------------------------------------------------------------------===//
204// Assembler Pseudo Instructions (User-Level ISA, Version 2.2, Chapter 20)
205//===----------------------------------------------------------------------===//
206
207let Predicates = [HasStdExtD] in {
208def : InstAlias<"fld $rd, (${rs1})",  (FLD FPR64:$rd,  GPR:$rs1, 0), 0>;
209def : InstAlias<"fsd $rs2, (${rs1})", (FSD FPR64:$rs2, GPR:$rs1, 0), 0>;
210
211def : InstAlias<"fmv.d $rd, $rs",  (FSGNJ_D  FPR64:$rd, FPR64:$rs, FPR64:$rs)>;
212def : InstAlias<"fabs.d $rd, $rs", (FSGNJX_D FPR64:$rd, FPR64:$rs, FPR64:$rs)>;
213def : InstAlias<"fneg.d $rd, $rs", (FSGNJN_D FPR64:$rd, FPR64:$rs, FPR64:$rs)>;
214
215// fgt.d/fge.d are recognised by the GNU assembler but the canonical
216// flt.d/fle.d forms will always be printed. Therefore, set a zero weight.
217def : InstAlias<"fgt.d $rd, $rs, $rt",
218                (FLT_D GPR:$rd, FPR64:$rt, FPR64:$rs), 0>;
219def : InstAlias<"fge.d $rd, $rs, $rt",
220                (FLE_D GPR:$rd, FPR64:$rt, FPR64:$rs), 0>;
221
222def PseudoFLD  : PseudoFloatLoad<"fld", FPR64>;
223def PseudoFSD  : PseudoStore<"fsd", FPR64>;
224let usesCustomInserter = 1 in {
225def PseudoQuietFLE_D : PseudoQuietFCMP<FPR64>;
226def PseudoQuietFLT_D : PseudoQuietFCMP<FPR64>;
227}
228} // Predicates = [HasStdExtD]
229
230let Predicates = [HasStdExtZdinx, IsRV64] in {
231def : InstAlias<"fabs.d $rd, $rs", (FSGNJX_D_INX FPR64INX:$rd, FPR64INX:$rs, FPR64INX:$rs)>;
232def : InstAlias<"fneg.d $rd, $rs", (FSGNJN_D_INX FPR64INX:$rd, FPR64INX:$rs, FPR64INX:$rs)>;
233
234def : InstAlias<"fgt.d $rd, $rs, $rt",
235                (FLT_D_INX GPR:$rd, FPR64INX:$rt, FPR64INX:$rs), 0>;
236def : InstAlias<"fge.d $rd, $rs, $rt",
237                (FLE_D_INX GPR:$rd, FPR64INX:$rt, FPR64INX:$rs), 0>;
238} // Predicates = [HasStdExtZdinx, IsRV64]
239
240let Predicates = [HasStdExtZdinx, IsRV32] in {
241def : InstAlias<"fabs.d $rd, $rs", (FSGNJX_D_IN32X FPR64IN32X:$rd, FPR64IN32X:$rs, FPR64IN32X:$rs)>;
242def : InstAlias<"fneg.d $rd, $rs", (FSGNJN_D_IN32X FPR64IN32X:$rd, FPR64IN32X:$rs, FPR64IN32X:$rs)>;
243
244def : InstAlias<"fgt.d $rd, $rs, $rt",
245                (FLT_D_IN32X GPR:$rd, FPR64IN32X:$rt, FPR64IN32X:$rs), 0>;
246def : InstAlias<"fge.d $rd, $rs, $rt",
247                (FLE_D_IN32X GPR:$rd, FPR64IN32X:$rt, FPR64IN32X:$rs), 0>;
248} // Predicates = [HasStdExtZdinx, IsRV32]
249
250//===----------------------------------------------------------------------===//
251// Pseudo-instructions and codegen patterns
252//===----------------------------------------------------------------------===//
253
254let Predicates = [HasStdExtD] in {
255
256/// Float conversion operations
257
258// f64 -> f32, f32 -> f64
259def : Pat<(any_fpround FPR64:$rs1), (FCVT_S_D FPR64:$rs1, 0b111)>;
260def : Pat<(any_fpextend FPR32:$rs1), (FCVT_D_S FPR32:$rs1)>;
261
262// [u]int<->double conversion patterns must be gated on IsRV32 or IsRV64, so
263// are defined later.
264
265/// Float arithmetic operations
266
267def : PatFprFprDynFrm<any_fadd, FADD_D, FPR64>;
268def : PatFprFprDynFrm<any_fsub, FSUB_D, FPR64>;
269def : PatFprFprDynFrm<any_fmul, FMUL_D, FPR64>;
270def : PatFprFprDynFrm<any_fdiv, FDIV_D, FPR64>;
271
272def : Pat<(any_fsqrt FPR64:$rs1), (FSQRT_D FPR64:$rs1, 0b111)>;
273
274def : Pat<(fneg FPR64:$rs1), (FSGNJN_D $rs1, $rs1)>;
275def : Pat<(fabs FPR64:$rs1), (FSGNJX_D $rs1, $rs1)>;
276
277def : PatFprFpr<fcopysign, FSGNJ_D, FPR64>;
278def : Pat<(fcopysign FPR64:$rs1, (fneg FPR64:$rs2)), (FSGNJN_D $rs1, $rs2)>;
279def : Pat<(fcopysign FPR64:$rs1, FPR32:$rs2), (FSGNJ_D $rs1, (FCVT_D_S $rs2))>;
280def : Pat<(fcopysign FPR32:$rs1, FPR64:$rs2), (FSGNJ_S $rs1, (FCVT_S_D $rs2,
281                                                              0b111))>;
282
283// fmadd: rs1 * rs2 + rs3
284def : Pat<(any_fma FPR64:$rs1, FPR64:$rs2, FPR64:$rs3),
285          (FMADD_D $rs1, $rs2, $rs3, 0b111)>;
286
287// fmsub: rs1 * rs2 - rs3
288def : Pat<(any_fma FPR64:$rs1, FPR64:$rs2, (fneg FPR64:$rs3)),
289          (FMSUB_D FPR64:$rs1, FPR64:$rs2, FPR64:$rs3, 0b111)>;
290
291// fnmsub: -rs1 * rs2 + rs3
292def : Pat<(any_fma (fneg FPR64:$rs1), FPR64:$rs2, FPR64:$rs3),
293          (FNMSUB_D FPR64:$rs1, FPR64:$rs2, FPR64:$rs3, 0b111)>;
294
295// fnmadd: -rs1 * rs2 - rs3
296def : Pat<(any_fma (fneg FPR64:$rs1), FPR64:$rs2, (fneg FPR64:$rs3)),
297          (FNMADD_D FPR64:$rs1, FPR64:$rs2, FPR64:$rs3, 0b111)>;
298
299// fnmadd: -(rs1 * rs2 + rs3) (the nsz flag on the FMA)
300def : Pat<(fneg (any_fma_nsz FPR64:$rs1, FPR64:$rs2, FPR64:$rs3)),
301          (FNMADD_D FPR64:$rs1, FPR64:$rs2, FPR64:$rs3, 0b111)>;
302
303// The ratified 20191213 ISA spec defines fmin and fmax in a way that matches
304// LLVM's fminnum and fmaxnum.
305// <https://github.com/riscv/riscv-isa-manual/commit/cd20cee7efd9bac7c5aa127ec3b451749d2b3cce>.
306def : PatFprFpr<fminnum, FMIN_D, FPR64>;
307def : PatFprFpr<fmaxnum, FMAX_D, FPR64>;
308
309/// Setcc
310// FIXME: SETEQ/SETLT/SETLE imply nonans, can we pick better instructions for
311// strict versions of those.
312
313// Match non-signaling FEQ_D
314def : PatSetCC<FPR64, any_fsetcc, SETEQ, FEQ_D>;
315def : PatSetCC<FPR64, any_fsetcc, SETOEQ, FEQ_D>;
316def : PatSetCC<FPR64, strict_fsetcc, SETLT, PseudoQuietFLT_D>;
317def : PatSetCC<FPR64, strict_fsetcc, SETOLT, PseudoQuietFLT_D>;
318def : PatSetCC<FPR64, strict_fsetcc, SETLE, PseudoQuietFLE_D>;
319def : PatSetCC<FPR64, strict_fsetcc, SETOLE, PseudoQuietFLE_D>;
320
321// Match signaling FEQ_D
322def : Pat<(strict_fsetccs FPR64:$rs1, FPR64:$rs2, SETEQ),
323          (AND (FLE_D $rs1, $rs2),
324               (FLE_D $rs2, $rs1))>;
325def : Pat<(strict_fsetccs FPR64:$rs1, FPR64:$rs2, SETOEQ),
326          (AND (FLE_D $rs1, $rs2),
327               (FLE_D $rs2, $rs1))>;
328// If both operands are the same, use a single FLE.
329def : Pat<(strict_fsetccs FPR64:$rs1, FPR64:$rs1, SETEQ),
330          (FLE_D $rs1, $rs1)>;
331def : Pat<(strict_fsetccs FPR64:$rs1, FPR64:$rs1, SETOEQ),
332          (FLE_D $rs1, $rs1)>;
333
334def : PatSetCC<FPR64, any_fsetccs, SETLT, FLT_D>;
335def : PatSetCC<FPR64, any_fsetccs, SETOLT, FLT_D>;
336def : PatSetCC<FPR64, any_fsetccs, SETLE, FLE_D>;
337def : PatSetCC<FPR64, any_fsetccs, SETOLE, FLE_D>;
338
339defm Select_FPR64 : SelectCC_GPR_rrirr<FPR64>;
340
341def PseudoFROUND_D : PseudoFROUND<FPR64>;
342
343/// Loads
344
345defm : LdPat<load, FLD, f64>;
346
347/// Stores
348
349defm : StPat<store, FSD, FPR64, f64>;
350
351/// Pseudo-instructions needed for the soft-float ABI with RV32D
352
353// Moves two GPRs to an FPR.
354let usesCustomInserter = 1 in
355def BuildPairF64Pseudo
356    : Pseudo<(outs FPR64:$dst), (ins GPR:$src1, GPR:$src2),
357             [(set FPR64:$dst, (RISCVBuildPairF64 GPR:$src1, GPR:$src2))]>;
358
359// Moves an FPR to two GPRs.
360let usesCustomInserter = 1 in
361def SplitF64Pseudo
362    : Pseudo<(outs GPR:$dst1, GPR:$dst2), (ins FPR64:$src),
363             [(set GPR:$dst1, GPR:$dst2, (RISCVSplitF64 FPR64:$src))]>;
364
365} // Predicates = [HasStdExtD]
366
367let Predicates = [HasStdExtD, IsRV32] in {
368
369/// Float constants
370def : Pat<(f64 (fpimm0)), (FCVT_D_W (i32 X0))>;
371def : Pat<(f64 (fpimmneg0)), (FSGNJN_D (FCVT_D_W (i32 X0)),
372                                       (FCVT_D_W (i32 X0)))>;
373
374// double->[u]int. Round-to-zero must be used.
375def : Pat<(i32 (any_fp_to_sint FPR64:$rs1)), (FCVT_W_D FPR64:$rs1, 0b001)>;
376def : Pat<(i32 (any_fp_to_uint FPR64:$rs1)), (FCVT_WU_D FPR64:$rs1, 0b001)>;
377
378// Saturating double->[u]int32.
379def : Pat<(i32 (riscv_fcvt_x FPR64:$rs1, timm:$frm)), (FCVT_W_D $rs1, timm:$frm)>;
380def : Pat<(i32 (riscv_fcvt_xu FPR64:$rs1, timm:$frm)), (FCVT_WU_D $rs1, timm:$frm)>;
381
382// float->int32 with current rounding mode.
383def : Pat<(i32 (any_lrint FPR64:$rs1)), (FCVT_W_D $rs1, 0b111)>;
384
385// float->int32 rounded to nearest with ties rounded away from zero.
386def : Pat<(i32 (any_lround FPR64:$rs1)), (FCVT_W_D $rs1, 0b100)>;
387
388// [u]int->double.
389def : Pat<(any_sint_to_fp (i32 GPR:$rs1)), (FCVT_D_W GPR:$rs1)>;
390def : Pat<(any_uint_to_fp (i32 GPR:$rs1)), (FCVT_D_WU GPR:$rs1)>;
391} // Predicates = [HasStdExtD, IsRV32]
392
393let Predicates = [HasStdExtD, IsRV64] in {
394
395/// Float constants
396def : Pat<(f64 (fpimm0)), (FMV_D_X (i64 X0))>;
397def : Pat<(f64 (fpimmneg0)), (FSGNJN_D (FMV_D_X (i64 X0)),
398                                       (FMV_D_X (i64 X0)))>;
399
400// Moves (no conversion)
401def : Pat<(bitconvert (i64 GPR:$rs1)), (FMV_D_X GPR:$rs1)>;
402def : Pat<(i64 (bitconvert FPR64:$rs1)), (FMV_X_D FPR64:$rs1)>;
403
404// Use target specific isd nodes to help us remember the result is sign
405// extended. Matching sext_inreg+fptoui/fptosi may cause the conversion to be
406// duplicated if it has another user that didn't need the sign_extend.
407def : Pat<(riscv_any_fcvt_w_rv64 FPR64:$rs1, timm:$frm),  (FCVT_W_D $rs1, timm:$frm)>;
408def : Pat<(riscv_any_fcvt_wu_rv64 FPR64:$rs1, timm:$frm), (FCVT_WU_D $rs1, timm:$frm)>;
409
410// [u]int32->fp
411def : Pat<(any_sint_to_fp (i64 (sexti32 (i64 GPR:$rs1)))), (FCVT_D_W $rs1)>;
412def : Pat<(any_uint_to_fp (i64 (zexti32 (i64 GPR:$rs1)))), (FCVT_D_WU $rs1)>;
413
414// Saturating double->[u]int64.
415def : Pat<(i64 (riscv_fcvt_x FPR64:$rs1, timm:$frm)), (FCVT_L_D $rs1, timm:$frm)>;
416def : Pat<(i64 (riscv_fcvt_xu FPR64:$rs1, timm:$frm)), (FCVT_LU_D $rs1, timm:$frm)>;
417
418// double->[u]int64. Round-to-zero must be used.
419def : Pat<(i64 (any_fp_to_sint FPR64:$rs1)), (FCVT_L_D FPR64:$rs1, 0b001)>;
420def : Pat<(i64 (any_fp_to_uint FPR64:$rs1)), (FCVT_LU_D FPR64:$rs1, 0b001)>;
421
422// double->int64 with current rounding mode.
423def : Pat<(i64 (any_lrint FPR64:$rs1)), (FCVT_L_D $rs1, 0b111)>;
424def : Pat<(i64 (any_llrint FPR64:$rs1)), (FCVT_L_D $rs1, 0b111)>;
425
426// double->int64 rounded to nearest with ties rounded away from zero.
427def : Pat<(i64 (any_lround FPR64:$rs1)), (FCVT_L_D $rs1, 0b100)>;
428def : Pat<(i64 (any_llround FPR64:$rs1)), (FCVT_L_D $rs1, 0b100)>;
429
430// [u]int64->fp. Match GCC and default to using dynamic rounding mode.
431def : Pat<(any_sint_to_fp (i64 GPR:$rs1)), (FCVT_D_L GPR:$rs1, 0b111)>;
432def : Pat<(any_uint_to_fp (i64 GPR:$rs1)), (FCVT_D_LU GPR:$rs1, 0b111)>;
433} // Predicates = [HasStdExtD, IsRV64]
434