1//===-- RISCVInstrInfoF.td - RISC-V 'F' instructions -------*- tablegen -*-===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file describes the RISC-V instructions from the standard 'F',
10// Single-Precision Floating-Point instruction set extension.
11//
12//===----------------------------------------------------------------------===//
13
14//===----------------------------------------------------------------------===//
15// RISC-V specific DAG Nodes.
16//===----------------------------------------------------------------------===//
17
18def SDT_RISCVFMV_W_X_RV64
19    : SDTypeProfile<1, 1, [SDTCisVT<0, f32>, SDTCisVT<1, i64>]>;
20def SDT_RISCVFMV_X_ANYEXTW_RV64
21    : SDTypeProfile<1, 1, [SDTCisVT<0, i64>, SDTCisVT<1, f32>]>;
22
23def riscv_fmv_w_x_rv64
24    : SDNode<"RISCVISD::FMV_W_X_RV64", SDT_RISCVFMV_W_X_RV64>;
25def riscv_fmv_x_anyextw_rv64
26    : SDNode<"RISCVISD::FMV_X_ANYEXTW_RV64", SDT_RISCVFMV_X_ANYEXTW_RV64>;
27
28//===----------------------------------------------------------------------===//
29// Operand and SDNode transformation definitions.
30//===----------------------------------------------------------------------===//
31
32// Floating-point rounding mode
33
34def FRMArg : AsmOperandClass {
35  let Name = "FRMArg";
36  let RenderMethod = "addFRMArgOperands";
37  let DiagnosticType = "InvalidFRMArg";
38}
39
40def frmarg : Operand<XLenVT> {
41  let ParserMatchClass = FRMArg;
42  let PrintMethod = "printFRMArg";
43  let DecoderMethod = "decodeFRMArg";
44}
45
46//===----------------------------------------------------------------------===//
47// Instruction class templates
48//===----------------------------------------------------------------------===//
49
50let hasSideEffects = 0, mayLoad = 0, mayStore = 0 in
51class FPFMAS_rrr_frm<RISCVOpcode opcode, string opcodestr>
52    : RVInstR4<0b00, opcode, (outs FPR32:$rd),
53               (ins FPR32:$rs1, FPR32:$rs2, FPR32:$rs3, frmarg:$funct3),
54                opcodestr, "$rd, $rs1, $rs2, $rs3, $funct3">;
55
56class FPFMASDynFrmAlias<FPFMAS_rrr_frm Inst, string OpcodeStr>
57    : InstAlias<OpcodeStr#" $rd, $rs1, $rs2, $rs3",
58                (Inst FPR32:$rd, FPR32:$rs1, FPR32:$rs2, FPR32:$rs3, 0b111)>;
59
60let hasSideEffects = 0, mayLoad = 0, mayStore = 0 in
61class FPALUS_rr<bits<7> funct7, bits<3> funct3, string opcodestr>
62    : RVInstR<funct7, funct3, OPC_OP_FP, (outs FPR32:$rd),
63              (ins FPR32:$rs1, FPR32:$rs2), opcodestr, "$rd, $rs1, $rs2">,
64      Sched<[WriteFALU32, ReadFALU32, ReadFALU32]>;
65
66let hasSideEffects = 0, mayLoad = 0, mayStore = 0 in
67class FPALUS_rr_frm<bits<7> funct7, string opcodestr>
68    : RVInstRFrm<funct7, OPC_OP_FP, (outs FPR32:$rd),
69                 (ins FPR32:$rs1, FPR32:$rs2, frmarg:$funct3), opcodestr,
70                  "$rd, $rs1, $rs2, $funct3">;
71
72class FPALUSDynFrmAlias<FPALUS_rr_frm Inst, string OpcodeStr>
73    : InstAlias<OpcodeStr#" $rd, $rs1, $rs2",
74                (Inst FPR32:$rd, FPR32:$rs1, FPR32:$rs2, 0b111)>;
75
76let hasSideEffects = 0, mayLoad = 0, mayStore = 0 in
77class FPUnaryOp_r<bits<7> funct7, bits<3> funct3, RegisterClass rdty,
78                RegisterClass rs1ty, string opcodestr>
79    : RVInstR<funct7, funct3, OPC_OP_FP, (outs rdty:$rd), (ins rs1ty:$rs1),
80              opcodestr, "$rd, $rs1">;
81
82let hasSideEffects = 0, mayLoad = 0, mayStore = 0 in
83class FPUnaryOp_r_frm<bits<7> funct7, RegisterClass rdty, RegisterClass rs1ty,
84                      string opcodestr>
85    : RVInstRFrm<funct7, OPC_OP_FP, (outs rdty:$rd),
86                 (ins rs1ty:$rs1, frmarg:$funct3), opcodestr,
87                  "$rd, $rs1, $funct3">;
88
89class FPUnaryOpDynFrmAlias<FPUnaryOp_r_frm Inst, string OpcodeStr,
90                           RegisterClass rdty, RegisterClass rs1ty>
91    : InstAlias<OpcodeStr#" $rd, $rs1",
92                (Inst rdty:$rd, rs1ty:$rs1, 0b111)>;
93
94let hasSideEffects = 0, mayLoad = 0, mayStore = 0 in
95class FPCmpS_rr<bits<3> funct3, string opcodestr>
96    : RVInstR<0b1010000, funct3, OPC_OP_FP, (outs GPR:$rd),
97              (ins FPR32:$rs1, FPR32:$rs2), opcodestr, "$rd, $rs1, $rs2">,
98      Sched<[WriteFCmp32, ReadFCmp32, ReadFCmp32]>;
99
100//===----------------------------------------------------------------------===//
101// Instructions
102//===----------------------------------------------------------------------===//
103
104let Predicates = [HasStdExtF] in {
105let hasSideEffects = 0, mayLoad = 1, mayStore = 0 in
106def FLW : RVInstI<0b010, OPC_LOAD_FP, (outs FPR32:$rd),
107                  (ins GPR:$rs1, simm12:$imm12),
108                   "flw", "$rd, ${imm12}(${rs1})">,
109          Sched<[WriteFLD32, ReadMemBase]>;
110
111// Operands for stores are in the order srcreg, base, offset rather than
112// reflecting the order these fields are specified in the instruction
113// encoding.
114let hasSideEffects = 0, mayLoad = 0, mayStore = 1 in
115def FSW : RVInstS<0b010, OPC_STORE_FP, (outs),
116                  (ins FPR32:$rs2, GPR:$rs1, simm12:$imm12),
117                   "fsw", "$rs2, ${imm12}(${rs1})">,
118          Sched<[WriteFST32, ReadStoreData, ReadMemBase]>;
119
120def FMADD_S  : FPFMAS_rrr_frm<OPC_MADD, "fmadd.s">,
121               Sched<[WriteFMulAdd32, ReadFMulAdd32, ReadFMulAdd32, ReadFMulAdd32]>;
122def          : FPFMASDynFrmAlias<FMADD_S, "fmadd.s">;
123def FMSUB_S  : FPFMAS_rrr_frm<OPC_MSUB, "fmsub.s">,
124               Sched<[WriteFMulSub32, ReadFMulSub32, ReadFMulSub32, ReadFMulSub32]>;
125def          : FPFMASDynFrmAlias<FMSUB_S, "fmsub.s">;
126def FNMSUB_S : FPFMAS_rrr_frm<OPC_NMSUB, "fnmsub.s">,
127               Sched<[WriteFMulSub32, ReadFMulSub32, ReadFMulSub32, ReadFMulSub32]>;
128def          : FPFMASDynFrmAlias<FNMSUB_S, "fnmsub.s">;
129def FNMADD_S : FPFMAS_rrr_frm<OPC_NMADD, "fnmadd.s">,
130               Sched<[WriteFMulAdd32, ReadFMulAdd32, ReadFMulAdd32, ReadFMulAdd32]>;
131def          : FPFMASDynFrmAlias<FNMADD_S, "fnmadd.s">;
132
133def FADD_S : FPALUS_rr_frm<0b0000000, "fadd.s">,
134             Sched<[WriteFALU32, ReadFALU32, ReadFALU32]>;
135def        : FPALUSDynFrmAlias<FADD_S, "fadd.s">;
136def FSUB_S : FPALUS_rr_frm<0b0000100, "fsub.s">,
137             Sched<[WriteFALU32, ReadFALU32, ReadFALU32]>;
138def        : FPALUSDynFrmAlias<FSUB_S, "fsub.s">;
139def FMUL_S : FPALUS_rr_frm<0b0001000, "fmul.s">,
140             Sched<[WriteFMul32, ReadFMul32, ReadFMul32]>;
141def        : FPALUSDynFrmAlias<FMUL_S, "fmul.s">;
142def FDIV_S : FPALUS_rr_frm<0b0001100, "fdiv.s">,
143             Sched<[WriteFDiv32, ReadFDiv32, ReadFDiv32]>;
144def        : FPALUSDynFrmAlias<FDIV_S, "fdiv.s">;
145
146def FSQRT_S : FPUnaryOp_r_frm<0b0101100, FPR32, FPR32, "fsqrt.s">,
147              Sched<[WriteFSqrt32, ReadFSqrt32]> {
148  let rs2 = 0b00000;
149}
150def         : FPUnaryOpDynFrmAlias<FSQRT_S, "fsqrt.s", FPR32, FPR32>;
151
152def FSGNJ_S  : FPALUS_rr<0b0010000, 0b000, "fsgnj.s">;
153def FSGNJN_S : FPALUS_rr<0b0010000, 0b001, "fsgnjn.s">;
154def FSGNJX_S : FPALUS_rr<0b0010000, 0b010, "fsgnjx.s">;
155def FMIN_S   : FPALUS_rr<0b0010100, 0b000, "fmin.s">;
156def FMAX_S   : FPALUS_rr<0b0010100, 0b001, "fmax.s">;
157
158def FCVT_W_S : FPUnaryOp_r_frm<0b1100000, GPR, FPR32, "fcvt.w.s">,
159               Sched<[WriteFCvtF32ToI32, ReadFCvtF32ToI32]> {
160  let rs2 = 0b00000;
161}
162def          : FPUnaryOpDynFrmAlias<FCVT_W_S, "fcvt.w.s", GPR, FPR32>;
163
164def FCVT_WU_S : FPUnaryOp_r_frm<0b1100000, GPR, FPR32, "fcvt.wu.s">,
165                Sched<[WriteFCvtF32ToI32, ReadFCvtF32ToI32]> {
166  let rs2 = 0b00001;
167}
168def           : FPUnaryOpDynFrmAlias<FCVT_WU_S, "fcvt.wu.s", GPR, FPR32>;
169
170def FMV_X_W : FPUnaryOp_r<0b1110000, 0b000, GPR, FPR32, "fmv.x.w">,
171              Sched<[WriteFMovF32ToI32, ReadFMovF32ToI32]> {
172  let rs2 = 0b00000;
173}
174
175def FEQ_S : FPCmpS_rr<0b010, "feq.s">;
176def FLT_S : FPCmpS_rr<0b001, "flt.s">;
177def FLE_S : FPCmpS_rr<0b000, "fle.s">;
178
179def FCLASS_S : FPUnaryOp_r<0b1110000, 0b001, GPR, FPR32, "fclass.s">,
180               Sched<[WriteFClass32, ReadFClass32]> {
181  let rs2 = 0b00000;
182}
183
184def FCVT_S_W : FPUnaryOp_r_frm<0b1101000, FPR32, GPR, "fcvt.s.w">,
185               Sched<[WriteFCvtI32ToF32, ReadFCvtI32ToF32]> {
186  let rs2 = 0b00000;
187}
188def          : FPUnaryOpDynFrmAlias<FCVT_S_W, "fcvt.s.w", FPR32, GPR>;
189
190def FCVT_S_WU : FPUnaryOp_r_frm<0b1101000, FPR32, GPR, "fcvt.s.wu">,
191                Sched<[WriteFCvtI32ToF32, ReadFCvtI32ToF32]> {
192  let rs2 = 0b00001;
193}
194def           : FPUnaryOpDynFrmAlias<FCVT_S_WU, "fcvt.s.wu", FPR32, GPR>;
195
196def FMV_W_X : FPUnaryOp_r<0b1111000, 0b000, FPR32, GPR, "fmv.w.x">,
197              Sched<[WriteFMovI32ToF32, ReadFMovI32ToF32]> {
198  let rs2 = 0b00000;
199}
200} // Predicates = [HasStdExtF]
201
202let Predicates = [HasStdExtF, IsRV64] in {
203def FCVT_L_S  : FPUnaryOp_r_frm<0b1100000, GPR, FPR32, "fcvt.l.s">,
204                Sched<[WriteFCvtF32ToI64, ReadFCvtF32ToI64]> {
205  let rs2 = 0b00010;
206}
207def           : FPUnaryOpDynFrmAlias<FCVT_L_S, "fcvt.l.s", GPR, FPR32>;
208
209def FCVT_LU_S  : FPUnaryOp_r_frm<0b1100000, GPR, FPR32, "fcvt.lu.s">,
210                 Sched<[WriteFCvtF32ToI64, ReadFCvtF32ToI64]> {
211  let rs2 = 0b00011;
212}
213def            : FPUnaryOpDynFrmAlias<FCVT_LU_S, "fcvt.lu.s", GPR, FPR32>;
214
215def FCVT_S_L : FPUnaryOp_r_frm<0b1101000, FPR32, GPR, "fcvt.s.l">,
216               Sched<[WriteFCvtI64ToF32, ReadFCvtI64ToF32]> {
217  let rs2 = 0b00010;
218}
219def          : FPUnaryOpDynFrmAlias<FCVT_S_L, "fcvt.s.l", FPR32, GPR>;
220
221def FCVT_S_LU : FPUnaryOp_r_frm<0b1101000, FPR32, GPR, "fcvt.s.lu">,
222                Sched<[WriteFCvtI64ToF32, ReadFCvtI64ToF32]> {
223  let rs2 = 0b00011;
224}
225def           : FPUnaryOpDynFrmAlias<FCVT_S_LU, "fcvt.s.lu", FPR32, GPR>;
226} // Predicates = [HasStdExtF, IsRV64]
227
228//===----------------------------------------------------------------------===//
229// Assembler Pseudo Instructions (User-Level ISA, Version 2.2, Chapter 20)
230//===----------------------------------------------------------------------===//
231
232let Predicates = [HasStdExtF] in {
233def : InstAlias<"flw $rd, (${rs1})",  (FLW FPR32:$rd,  GPR:$rs1, 0), 0>;
234def : InstAlias<"fsw $rs2, (${rs1})", (FSW FPR32:$rs2, GPR:$rs1, 0), 0>;
235
236def : InstAlias<"fmv.s $rd, $rs",  (FSGNJ_S  FPR32:$rd, FPR32:$rs, FPR32:$rs)>;
237def : InstAlias<"fabs.s $rd, $rs", (FSGNJX_S FPR32:$rd, FPR32:$rs, FPR32:$rs)>;
238def : InstAlias<"fneg.s $rd, $rs", (FSGNJN_S FPR32:$rd, FPR32:$rs, FPR32:$rs)>;
239
240// fgt.s/fge.s are recognised by the GNU assembler but the canonical
241// flt.s/fle.s forms will always be printed. Therefore, set a zero weight.
242def : InstAlias<"fgt.s $rd, $rs, $rt",
243                (FLT_S GPR:$rd, FPR32:$rt, FPR32:$rs), 0>;
244def : InstAlias<"fge.s $rd, $rs, $rt",
245                (FLE_S GPR:$rd, FPR32:$rt, FPR32:$rs), 0>;
246
247// The following csr instructions actually alias instructions from the base ISA.
248// However, it only makes sense to support them when the F extension is enabled.
249// NOTE: "frcsr", "frrm", and "frflags" are more specialized version of "csrr".
250def : InstAlias<"frcsr $rd",      (CSRRS GPR:$rd, FCSR.Encoding, X0), 2>;
251def : InstAlias<"fscsr $rd, $rs", (CSRRW GPR:$rd, FCSR.Encoding, GPR:$rs)>;
252def : InstAlias<"fscsr $rs",      (CSRRW      X0, FCSR.Encoding, GPR:$rs), 2>;
253
254// frsr, fssr are obsolete aliases replaced by frcsr, fscsr, so give them
255// zero weight.
256def : InstAlias<"frsr $rd",       (CSRRS GPR:$rd, FCSR.Encoding, X0), 0>;
257def : InstAlias<"fssr $rd, $rs",  (CSRRW GPR:$rd, FCSR.Encoding, GPR:$rs), 0>;
258def : InstAlias<"fssr $rs",       (CSRRW      X0, FCSR.Encoding, GPR:$rs), 0>;
259
260def : InstAlias<"frrm $rd",        (CSRRS  GPR:$rd, FRM.Encoding, X0), 2>;
261def : InstAlias<"fsrm $rd, $rs",   (CSRRW  GPR:$rd, FRM.Encoding, GPR:$rs)>;
262def : InstAlias<"fsrm $rs",        (CSRRW       X0, FRM.Encoding, GPR:$rs), 2>;
263def : InstAlias<"fsrmi $rd, $imm", (CSRRWI GPR:$rd, FRM.Encoding, uimm5:$imm)>;
264def : InstAlias<"fsrmi $imm",      (CSRRWI      X0, FRM.Encoding, uimm5:$imm), 2>;
265
266def : InstAlias<"frflags $rd",        (CSRRS  GPR:$rd, FFLAGS.Encoding, X0), 2>;
267def : InstAlias<"fsflags $rd, $rs",   (CSRRW  GPR:$rd, FFLAGS.Encoding, GPR:$rs)>;
268def : InstAlias<"fsflags $rs",        (CSRRW       X0, FFLAGS.Encoding, GPR:$rs), 2>;
269def : InstAlias<"fsflagsi $rd, $imm", (CSRRWI GPR:$rd, FFLAGS.Encoding, uimm5:$imm)>;
270def : InstAlias<"fsflagsi $imm",      (CSRRWI      X0, FFLAGS.Encoding, uimm5:$imm), 2>;
271
272// fmv.w.x and fmv.x.w were previously known as fmv.s.x and fmv.x.s. Both
273// spellings should be supported by standard tools.
274def : MnemonicAlias<"fmv.s.x", "fmv.w.x">;
275def : MnemonicAlias<"fmv.x.s", "fmv.x.w">;
276
277def PseudoFLW  : PseudoFloatLoad<"flw", FPR32>;
278def PseudoFSW  : PseudoStore<"fsw", FPR32>;
279} // Predicates = [HasStdExtF]
280
281//===----------------------------------------------------------------------===//
282// Pseudo-instructions and codegen patterns
283//===----------------------------------------------------------------------===//
284
285/// Generic pattern classes
286class PatFpr32Fpr32<SDPatternOperator OpNode, RVInstR Inst>
287    : Pat<(OpNode FPR32:$rs1, FPR32:$rs2), (Inst $rs1, $rs2)>;
288
289class PatFpr32Fpr32DynFrm<SDPatternOperator OpNode, RVInstRFrm Inst>
290    : Pat<(OpNode FPR32:$rs1, FPR32:$rs2), (Inst $rs1, $rs2, 0b111)>;
291
292let Predicates = [HasStdExtF] in {
293
294/// Float conversion operations
295
296// Moves (no conversion)
297def : Pat<(bitconvert GPR:$rs1), (FMV_W_X GPR:$rs1)>;
298def : Pat<(bitconvert FPR32:$rs1), (FMV_X_W FPR32:$rs1)>;
299
300// [u]int32<->float conversion patterns must be gated on IsRV32 or IsRV64, so
301// are defined later.
302
303/// Float arithmetic operations
304
305def : PatFpr32Fpr32DynFrm<fadd, FADD_S>;
306def : PatFpr32Fpr32DynFrm<fsub, FSUB_S>;
307def : PatFpr32Fpr32DynFrm<fmul, FMUL_S>;
308def : PatFpr32Fpr32DynFrm<fdiv, FDIV_S>;
309
310def : Pat<(fsqrt FPR32:$rs1), (FSQRT_S FPR32:$rs1, 0b111)>;
311
312def : Pat<(fneg FPR32:$rs1), (FSGNJN_S $rs1, $rs1)>;
313def : Pat<(fabs FPR32:$rs1), (FSGNJX_S $rs1, $rs1)>;
314
315def : PatFpr32Fpr32<fcopysign, FSGNJ_S>;
316def : Pat<(fcopysign FPR32:$rs1, (fneg FPR32:$rs2)), (FSGNJN_S $rs1, $rs2)>;
317
318// fmadd: rs1 * rs2 + rs3
319def : Pat<(fma FPR32:$rs1, FPR32:$rs2, FPR32:$rs3),
320          (FMADD_S $rs1, $rs2, $rs3, 0b111)>;
321
322// fmsub: rs1 * rs2 - rs3
323def : Pat<(fma FPR32:$rs1, FPR32:$rs2, (fneg FPR32:$rs3)),
324          (FMSUB_S FPR32:$rs1, FPR32:$rs2, FPR32:$rs3, 0b111)>;
325
326// fnmsub: -rs1 * rs2 + rs3
327def : Pat<(fma (fneg FPR32:$rs1), FPR32:$rs2, FPR32:$rs3),
328          (FNMSUB_S FPR32:$rs1, FPR32:$rs2, FPR32:$rs3, 0b111)>;
329
330// fnmadd: -rs1 * rs2 - rs3
331def : Pat<(fma (fneg FPR32:$rs1), FPR32:$rs2, (fneg FPR32:$rs3)),
332          (FNMADD_S FPR32:$rs1, FPR32:$rs2, FPR32:$rs3, 0b111)>;
333
334// The RISC-V 2.2 user-level ISA spec defines fmin and fmax as returning the
335// canonical NaN when given a signaling NaN. This doesn't match the LLVM
336// behaviour (see https://bugs.llvm.org/show_bug.cgi?id=27363). However, the
337// draft 2.3 ISA spec changes the definition of fmin and fmax in a way that
338// matches LLVM's fminnum and fmaxnum
339// <https://github.com/riscv/riscv-isa-manual/commit/cd20cee7efd9bac7c5aa127ec3b451749d2b3cce>.
340def : PatFpr32Fpr32<fminnum, FMIN_S>;
341def : PatFpr32Fpr32<fmaxnum, FMAX_S>;
342
343/// Setcc
344
345def : PatFpr32Fpr32<seteq, FEQ_S>;
346def : PatFpr32Fpr32<setoeq, FEQ_S>;
347def : PatFpr32Fpr32<setlt, FLT_S>;
348def : PatFpr32Fpr32<setolt, FLT_S>;
349def : PatFpr32Fpr32<setle, FLE_S>;
350def : PatFpr32Fpr32<setole, FLE_S>;
351
352// Define pattern expansions for setcc operations which aren't directly
353// handled by a RISC-V instruction and aren't expanded in the SelectionDAG
354// Legalizer.
355
356def : Pat<(seto FPR32:$rs1, FPR32:$rs2),
357          (AND (FEQ_S FPR32:$rs1, FPR32:$rs1),
358               (FEQ_S FPR32:$rs2, FPR32:$rs2))>;
359
360def : Pat<(setuo FPR32:$rs1, FPR32:$rs2),
361          (SLTIU (AND (FEQ_S FPR32:$rs1, FPR32:$rs1),
362                      (FEQ_S FPR32:$rs2, FPR32:$rs2)),
363                 1)>;
364
365def Select_FPR32_Using_CC_GPR : SelectCC_rrirr<FPR32, GPR>;
366
367/// Loads
368
369defm : LdPat<load, FLW>;
370
371/// Stores
372
373defm : StPat<store, FSW, FPR32>;
374
375} // Predicates = [HasStdExtF]
376
377let Predicates = [HasStdExtF, IsRV32] in {
378// float->[u]int. Round-to-zero must be used.
379def : Pat<(fp_to_sint FPR32:$rs1), (FCVT_W_S $rs1, 0b001)>;
380def : Pat<(fp_to_uint FPR32:$rs1), (FCVT_WU_S $rs1, 0b001)>;
381
382// [u]int->float. Match GCC and default to using dynamic rounding mode.
383def : Pat<(sint_to_fp GPR:$rs1), (FCVT_S_W $rs1, 0b111)>;
384def : Pat<(uint_to_fp GPR:$rs1), (FCVT_S_WU $rs1, 0b111)>;
385} // Predicates = [HasStdExtF, IsRV32]
386
387let Predicates = [HasStdExtF, IsRV32] in {
388// FP->[u]int. Round-to-zero must be used
389def : Pat<(fp_to_sint FPR32:$rs1), (FCVT_W_S $rs1, 0b001)>;
390def : Pat<(fp_to_uint FPR32:$rs1), (FCVT_WU_S $rs1, 0b001)>;
391
392// [u]int->fp. Match GCC and default to using dynamic rounding mode.
393def : Pat<(sint_to_fp GPR:$rs1), (FCVT_S_W $rs1, 0b111)>;
394def : Pat<(uint_to_fp GPR:$rs1), (FCVT_S_WU $rs1, 0b111)>;
395} // Predicates = [HasStdExtF, IsRV32]
396
397let Predicates = [HasStdExtF, IsRV64] in {
398def : Pat<(riscv_fmv_w_x_rv64 GPR:$src), (FMV_W_X GPR:$src)>;
399def : Pat<(riscv_fmv_x_anyextw_rv64 FPR32:$src), (FMV_X_W FPR32:$src)>;
400def : Pat<(sexti32 (riscv_fmv_x_anyextw_rv64 FPR32:$src)),
401          (FMV_X_W FPR32:$src)>;
402
403// FP->[u]int32 is mostly handled by the FP->[u]int64 patterns. This is safe
404// because fpto[u|s]i produces poison if the value can't fit into the target.
405// We match the single case below because fcvt.wu.s sign-extends its result so
406// is cheaper than fcvt.lu.s+sext.w.
407def : Pat<(sext_inreg (assertzexti32 (fp_to_uint FPR32:$rs1)), i32),
408          (FCVT_WU_S $rs1, 0b001)>;
409
410// FP->[u]int64
411def : Pat<(fp_to_sint FPR32:$rs1), (FCVT_L_S $rs1, 0b001)>;
412def : Pat<(fp_to_uint FPR32:$rs1), (FCVT_LU_S $rs1, 0b001)>;
413
414// [u]int->fp. Match GCC and default to using dynamic rounding mode.
415def : Pat<(sint_to_fp (sext_inreg GPR:$rs1, i32)), (FCVT_S_W $rs1, 0b111)>;
416def : Pat<(uint_to_fp (zexti32 GPR:$rs1)), (FCVT_S_WU $rs1, 0b111)>;
417def : Pat<(sint_to_fp GPR:$rs1), (FCVT_S_L $rs1, 0b111)>;
418def : Pat<(uint_to_fp GPR:$rs1), (FCVT_S_LU $rs1, 0b111)>;
419} // Predicates = [HasStdExtF, IsRV64]
420