1//===-- RISCVRegisterInfo.td - RISC-V Register defs --------*- tablegen -*-===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8
9//===----------------------------------------------------------------------===//
10//  Declarations that describe the RISC-V register files
11//===----------------------------------------------------------------------===//
12
13let Namespace = "RISCV" in {
14class RISCVReg<bits<5> Enc, string n, list<string> alt = []> : Register<n> {
15  let HWEncoding{4-0} = Enc;
16  let AltNames = alt;
17}
18
19class RISCVRegWithSubRegs<bits<5> Enc, string n, list<Register> subregs,
20                          list<string> alt = []>
21      : RegisterWithSubRegs<n, subregs> {
22  let HWEncoding{4-0} = Enc;
23  let AltNames = alt;
24}
25
26class RISCVReg16<bits<5> Enc, string n, list<string> alt = []> : Register<n> {
27  let HWEncoding{4-0} = Enc;
28  let AltNames = alt;
29}
30
31def sub_16 : SubRegIndex<16>;
32class RISCVReg32<RISCVReg16 subreg>
33  : RISCVRegWithSubRegs<subreg.HWEncoding{4-0}, subreg.AsmName, [subreg],
34                        subreg.AltNames> {
35  let SubRegIndices = [sub_16];
36}
37
38// Because RISCVReg64 register have AsmName and AltNames that alias with their
39// 16/32-bit sub-register, RISCVAsmParser will need to coerce a register number
40// from a RISCVReg16/RISCVReg32 to the equivalent RISCVReg64 when appropriate.
41def sub_32 : SubRegIndex<32>;
42class RISCVReg64<RISCVReg32 subreg>
43  : RISCVRegWithSubRegs<subreg.HWEncoding{4-0}, subreg.AsmName, [subreg],
44                        subreg.AltNames> {
45  let SubRegIndices = [sub_32];
46}
47
48let FallbackRegAltNameIndex = NoRegAltName in
49def ABIRegAltName : RegAltNameIndex;
50
51def sub_vrm4_0 : SubRegIndex<256>;
52def sub_vrm4_1 : SubRegIndex<256, 256>;
53def sub_vrm2_0 : SubRegIndex<128>;
54def sub_vrm2_1 : SubRegIndex<128, 128>;
55def sub_vrm2_2 : ComposedSubRegIndex<sub_vrm4_1, sub_vrm2_0>;
56def sub_vrm2_3 : ComposedSubRegIndex<sub_vrm4_1, sub_vrm2_1>;
57def sub_vrm1_0 : SubRegIndex<64>;
58def sub_vrm1_1 : SubRegIndex<64, 64>;
59def sub_vrm1_2 : ComposedSubRegIndex<sub_vrm2_1, sub_vrm1_0>;
60def sub_vrm1_3 : ComposedSubRegIndex<sub_vrm2_1, sub_vrm1_1>;
61def sub_vrm1_4 : ComposedSubRegIndex<sub_vrm2_2, sub_vrm1_0>;
62def sub_vrm1_5 : ComposedSubRegIndex<sub_vrm2_2, sub_vrm1_1>;
63def sub_vrm1_6 : ComposedSubRegIndex<sub_vrm2_3, sub_vrm1_0>;
64def sub_vrm1_7 : ComposedSubRegIndex<sub_vrm2_3, sub_vrm1_1>;
65
66def sub_32_hi  : SubRegIndex<32, 32>;
67} // Namespace = "RISCV"
68
69// Integer registers
70// CostPerUse is set higher for registers that may not be compressible as they
71// are not part of GPRC, the most restrictive register class used by the
72// compressed instruction set. This will influence the greedy register
73// allocator to reduce the use of registers that can't be encoded in 16 bit
74// instructions.
75
76let RegAltNameIndices = [ABIRegAltName] in {
77  let isConstant = true in
78  def X0  : RISCVReg<0, "x0", ["zero"]>, DwarfRegNum<[0]>;
79  let CostPerUse = [0, 1] in {
80  def X1  : RISCVReg<1, "x1", ["ra"]>, DwarfRegNum<[1]>;
81  def X2  : RISCVReg<2, "x2", ["sp"]>, DwarfRegNum<[2]>;
82  def X3  : RISCVReg<3, "x3", ["gp"]>, DwarfRegNum<[3]>;
83  def X4  : RISCVReg<4, "x4", ["tp"]>, DwarfRegNum<[4]>;
84  def X5  : RISCVReg<5, "x5", ["t0"]>, DwarfRegNum<[5]>;
85  def X6  : RISCVReg<6, "x6", ["t1"]>, DwarfRegNum<[6]>;
86  def X7  : RISCVReg<7, "x7", ["t2"]>, DwarfRegNum<[7]>;
87  }
88  def X8  : RISCVReg<8, "x8", ["s0", "fp"]>, DwarfRegNum<[8]>;
89  def X9  : RISCVReg<9, "x9", ["s1"]>, DwarfRegNum<[9]>;
90  def X10 : RISCVReg<10,"x10", ["a0"]>, DwarfRegNum<[10]>;
91  def X11 : RISCVReg<11,"x11", ["a1"]>, DwarfRegNum<[11]>;
92  def X12 : RISCVReg<12,"x12", ["a2"]>, DwarfRegNum<[12]>;
93  def X13 : RISCVReg<13,"x13", ["a3"]>, DwarfRegNum<[13]>;
94  def X14 : RISCVReg<14,"x14", ["a4"]>, DwarfRegNum<[14]>;
95  def X15 : RISCVReg<15,"x15", ["a5"]>, DwarfRegNum<[15]>;
96  let CostPerUse = [0, 1] in {
97  def X16 : RISCVReg<16,"x16", ["a6"]>, DwarfRegNum<[16]>;
98  def X17 : RISCVReg<17,"x17", ["a7"]>, DwarfRegNum<[17]>;
99  def X18 : RISCVReg<18,"x18", ["s2"]>, DwarfRegNum<[18]>;
100  def X19 : RISCVReg<19,"x19", ["s3"]>, DwarfRegNum<[19]>;
101  def X20 : RISCVReg<20,"x20", ["s4"]>, DwarfRegNum<[20]>;
102  def X21 : RISCVReg<21,"x21", ["s5"]>, DwarfRegNum<[21]>;
103  def X22 : RISCVReg<22,"x22", ["s6"]>, DwarfRegNum<[22]>;
104  def X23 : RISCVReg<23,"x23", ["s7"]>, DwarfRegNum<[23]>;
105  def X24 : RISCVReg<24,"x24", ["s8"]>, DwarfRegNum<[24]>;
106  def X25 : RISCVReg<25,"x25", ["s9"]>, DwarfRegNum<[25]>;
107  def X26 : RISCVReg<26,"x26", ["s10"]>, DwarfRegNum<[26]>;
108  def X27 : RISCVReg<27,"x27", ["s11"]>, DwarfRegNum<[27]>;
109  def X28 : RISCVReg<28,"x28", ["t3"]>, DwarfRegNum<[28]>;
110  def X29 : RISCVReg<29,"x29", ["t4"]>, DwarfRegNum<[29]>;
111  def X30 : RISCVReg<30,"x30", ["t5"]>, DwarfRegNum<[30]>;
112  def X31 : RISCVReg<31,"x31", ["t6"]>, DwarfRegNum<[31]>;
113  }
114}
115
116def XLenVT : ValueTypeByHwMode<[RV32, RV64],
117                               [i32,  i64]>;
118// Allow f64 in GPR for ZDINX on RV64.
119def XLenFVT : ValueTypeByHwMode<[RV64],
120                                [f64]>;
121def XLenRI : RegInfoByHwMode<
122      [RV32,              RV64],
123      [RegInfo<32,32,32>, RegInfo<64,64,64>]>;
124
125class GPRRegisterClass<dag regList>
126    : RegisterClass<"RISCV", [XLenVT, XLenFVT, i32], 32, regList> {
127  let RegInfos = XLenRI;
128}
129
130// The order of registers represents the preferred allocation sequence.
131// Registers are listed in the order caller-save, callee-save, specials.
132def GPR : GPRRegisterClass<(add (sequence "X%u", 10, 17),
133                                (sequence "X%u", 5, 7),
134                                (sequence "X%u", 28, 31),
135                                (sequence "X%u", 8, 9),
136                                (sequence "X%u", 18, 27),
137                                (sequence "X%u", 0, 4))>;
138
139def GPRX0 : GPRRegisterClass<(add X0)>;
140
141def GPRNoX0 : GPRRegisterClass<(sub GPR, X0)>;
142
143def GPRNoX0X2 : GPRRegisterClass<(sub GPR, X0, X2)>;
144
145// Don't use X1 or X5 for JALR since that is a hint to pop the return address
146// stack on some microarchitectures. Also remove the reserved registers X0, X2,
147// X3, and X4 as it reduces the number of register classes that get synthesized
148// by tablegen.
149def GPRJALR : GPRRegisterClass<(sub GPR, (sequence "X%u", 0, 5))>;
150
151def GPRC : GPRRegisterClass<(add (sequence "X%u", 10, 15),
152                                 (sequence "X%u", 8, 9))>;
153
154// For indirect tail calls, we can't use callee-saved registers, as they are
155// restored to the saved value before the tail call, which would clobber a call
156// address. We shouldn't use x5 since that is a hint for to pop the return
157// address stack on some microarchitectures.
158def GPRTC : GPRRegisterClass<(add (sequence "X%u", 6, 7),
159                                  (sequence "X%u", 10, 17),
160                                  (sequence "X%u", 28, 31))>;
161
162def SP : GPRRegisterClass<(add X2)>;
163
164// Saved Registers from s0 to s7, for C.MVA01S07 instruction in Zcmp extension
165def SR07 : GPRRegisterClass<(add (sequence "X%u", 8, 9),
166                                 (sequence "X%u", 18, 23))>;
167
168// Registers saveable by PUSH/POP instruction in Zcmp extension
169def PGPR : RegisterClass<"RISCV", [XLenVT], 32, (add
170    (sequence "X%u", 8, 9),
171    (sequence "X%u", 18, 27),
172    X1
173  )> {
174  let RegInfos = XLenRI;
175}
176
177// Floating point registers
178let RegAltNameIndices = [ABIRegAltName] in {
179  def F0_H  : RISCVReg16<0, "f0", ["ft0"]>, DwarfRegNum<[32]>;
180  def F1_H  : RISCVReg16<1, "f1", ["ft1"]>, DwarfRegNum<[33]>;
181  def F2_H  : RISCVReg16<2, "f2", ["ft2"]>, DwarfRegNum<[34]>;
182  def F3_H  : RISCVReg16<3, "f3", ["ft3"]>, DwarfRegNum<[35]>;
183  def F4_H  : RISCVReg16<4, "f4", ["ft4"]>, DwarfRegNum<[36]>;
184  def F5_H  : RISCVReg16<5, "f5", ["ft5"]>, DwarfRegNum<[37]>;
185  def F6_H  : RISCVReg16<6, "f6", ["ft6"]>, DwarfRegNum<[38]>;
186  def F7_H  : RISCVReg16<7, "f7", ["ft7"]>, DwarfRegNum<[39]>;
187  def F8_H  : RISCVReg16<8, "f8", ["fs0"]>, DwarfRegNum<[40]>;
188  def F9_H  : RISCVReg16<9, "f9", ["fs1"]>, DwarfRegNum<[41]>;
189  def F10_H : RISCVReg16<10,"f10", ["fa0"]>, DwarfRegNum<[42]>;
190  def F11_H : RISCVReg16<11,"f11", ["fa1"]>, DwarfRegNum<[43]>;
191  def F12_H : RISCVReg16<12,"f12", ["fa2"]>, DwarfRegNum<[44]>;
192  def F13_H : RISCVReg16<13,"f13", ["fa3"]>, DwarfRegNum<[45]>;
193  def F14_H : RISCVReg16<14,"f14", ["fa4"]>, DwarfRegNum<[46]>;
194  def F15_H : RISCVReg16<15,"f15", ["fa5"]>, DwarfRegNum<[47]>;
195  def F16_H : RISCVReg16<16,"f16", ["fa6"]>, DwarfRegNum<[48]>;
196  def F17_H : RISCVReg16<17,"f17", ["fa7"]>, DwarfRegNum<[49]>;
197  def F18_H : RISCVReg16<18,"f18", ["fs2"]>, DwarfRegNum<[50]>;
198  def F19_H : RISCVReg16<19,"f19", ["fs3"]>, DwarfRegNum<[51]>;
199  def F20_H : RISCVReg16<20,"f20", ["fs4"]>, DwarfRegNum<[52]>;
200  def F21_H : RISCVReg16<21,"f21", ["fs5"]>, DwarfRegNum<[53]>;
201  def F22_H : RISCVReg16<22,"f22", ["fs6"]>, DwarfRegNum<[54]>;
202  def F23_H : RISCVReg16<23,"f23", ["fs7"]>, DwarfRegNum<[55]>;
203  def F24_H : RISCVReg16<24,"f24", ["fs8"]>, DwarfRegNum<[56]>;
204  def F25_H : RISCVReg16<25,"f25", ["fs9"]>, DwarfRegNum<[57]>;
205  def F26_H : RISCVReg16<26,"f26", ["fs10"]>, DwarfRegNum<[58]>;
206  def F27_H : RISCVReg16<27,"f27", ["fs11"]>, DwarfRegNum<[59]>;
207  def F28_H : RISCVReg16<28,"f28", ["ft8"]>, DwarfRegNum<[60]>;
208  def F29_H : RISCVReg16<29,"f29", ["ft9"]>, DwarfRegNum<[61]>;
209  def F30_H : RISCVReg16<30,"f30", ["ft10"]>, DwarfRegNum<[62]>;
210  def F31_H : RISCVReg16<31,"f31", ["ft11"]>, DwarfRegNum<[63]>;
211
212  foreach Index = 0-31 in {
213    def F#Index#_F : RISCVReg32<!cast<RISCVReg16>("F"#Index#"_H")>,
214      DwarfRegNum<[!add(Index, 32)]>;
215  }
216
217  foreach Index = 0-31 in {
218    def F#Index#_D : RISCVReg64<!cast<RISCVReg32>("F"#Index#"_F")>,
219      DwarfRegNum<[!add(Index, 32)]>;
220  }
221}
222
223// The order of registers represents the preferred allocation sequence,
224// meaning caller-save regs are listed before callee-save.
225// We start by allocating argument registers in reverse order since they are
226// compressible.
227def FPR16 : RegisterClass<"RISCV", [f16, bf16], 16, (add
228    (sequence "F%u_H", 15, 10), // fa5-fa0
229    (sequence "F%u_H", 0, 7),   // ft0-f7
230    (sequence "F%u_H", 16, 17), // fa6-fa7
231    (sequence "F%u_H", 28, 31), // ft8-ft11
232    (sequence "F%u_H", 8, 9),   // fs0-fs1
233    (sequence "F%u_H", 18, 27)  // fs2-fs11
234)>;
235
236def FPR32 : RegisterClass<"RISCV", [f32], 32, (add
237    (sequence "F%u_F", 15, 10),
238    (sequence "F%u_F", 0, 7),
239    (sequence "F%u_F", 16, 17),
240    (sequence "F%u_F", 28, 31),
241    (sequence "F%u_F", 8, 9),
242    (sequence "F%u_F", 18, 27)
243)>;
244
245def FPR32C : RegisterClass<"RISCV", [f32], 32, (add
246  (sequence "F%u_F", 15, 10),
247  (sequence "F%u_F", 8, 9)
248)>;
249
250// The order of registers represents the preferred allocation sequence,
251// meaning caller-save regs are listed before callee-save.
252def FPR64 : RegisterClass<"RISCV", [f64], 64, (add
253    (sequence "F%u_D", 15, 10),
254    (sequence "F%u_D", 0, 7),
255    (sequence "F%u_D", 16, 17),
256    (sequence "F%u_D", 28, 31),
257    (sequence "F%u_D", 8, 9),
258    (sequence "F%u_D", 18, 27)
259)>;
260
261def FPR64C : RegisterClass<"RISCV", [f64], 64, (add
262  (sequence "F%u_D", 15, 10),
263  (sequence "F%u_D", 8, 9)
264)>;
265
266// Vector type mapping to LLVM types.
267//
268// The V vector extension requires that VLEN >= 128 and <= 65536.
269// Additionally, the only supported ELEN values are 32 and 64,
270// thus `vscale` can be defined as VLEN/64,
271// allowing the same types with either ELEN value.
272//
273//         MF8    MF4     MF2     M1      M2      M4       M8
274// i64*    N/A    N/A     N/A     nxv1i64 nxv2i64 nxv4i64  nxv8i64
275// i32     N/A    N/A     nxv1i32 nxv2i32 nxv4i32 nxv8i32  nxv16i32
276// i16     N/A    nxv1i16 nxv2i16 nxv4i16 nxv8i16 nxv16i16 nxv32i16
277// i8      nxv1i8 nxv2i8  nxv4i8  nxv8i8  nxv16i8 nxv32i8  nxv64i8
278// double* N/A    N/A     N/A     nxv1f64 nxv2f64 nxv4f64  nxv8f64
279// float   N/A    N/A     nxv1f32 nxv2f32 nxv4f32 nxv8f32  nxv16f32
280// half    N/A    nxv1f16 nxv2f16 nxv4f16 nxv8f16 nxv16f16 nxv32f16
281// * ELEN=64
282
283defvar vint8mf8_t = nxv1i8;
284defvar vint8mf4_t = nxv2i8;
285defvar vint8mf2_t = nxv4i8;
286defvar vint8m1_t = nxv8i8;
287defvar vint8m2_t = nxv16i8;
288defvar vint8m4_t = nxv32i8;
289defvar vint8m8_t = nxv64i8;
290
291defvar vint16mf4_t = nxv1i16;
292defvar vint16mf2_t = nxv2i16;
293defvar vint16m1_t  = nxv4i16;
294defvar vint16m2_t  = nxv8i16;
295defvar vint16m4_t  = nxv16i16;
296defvar vint16m8_t  = nxv32i16;
297
298defvar vint32mf2_t = nxv1i32;
299defvar vint32m1_t  = nxv2i32;
300defvar vint32m2_t  = nxv4i32;
301defvar vint32m4_t  = nxv8i32;
302defvar vint32m8_t  = nxv16i32;
303
304defvar vint64m1_t = nxv1i64;
305defvar vint64m2_t = nxv2i64;
306defvar vint64m4_t = nxv4i64;
307defvar vint64m8_t = nxv8i64;
308
309defvar vfloat16mf4_t = nxv1f16;
310defvar vfloat16mf2_t = nxv2f16;
311defvar vfloat16m1_t  = nxv4f16;
312defvar vfloat16m2_t  = nxv8f16;
313defvar vfloat16m4_t  = nxv16f16;
314defvar vfloat16m8_t  = nxv32f16;
315
316defvar vfloat32mf2_t = nxv1f32;
317defvar vfloat32m1_t  = nxv2f32;
318defvar vfloat32m2_t  = nxv4f32;
319defvar vfloat32m4_t  = nxv8f32;
320defvar vfloat32m8_t  = nxv16f32;
321
322defvar vfloat64m1_t = nxv1f64;
323defvar vfloat64m2_t = nxv2f64;
324defvar vfloat64m4_t = nxv4f64;
325defvar vfloat64m8_t = nxv8f64;
326
327defvar vbool1_t  = nxv64i1;
328defvar vbool2_t  = nxv32i1;
329defvar vbool4_t  = nxv16i1;
330defvar vbool8_t  = nxv8i1;
331defvar vbool16_t = nxv4i1;
332defvar vbool32_t = nxv2i1;
333defvar vbool64_t = nxv1i1;
334
335// There is no need to define register classes for fractional LMUL.
336defvar LMULList = [1, 2, 4, 8];
337
338//===----------------------------------------------------------------------===//
339// Utility classes for segment load/store.
340//===----------------------------------------------------------------------===//
341// The set of legal NF for LMUL = lmul.
342// LMUL == 1, NF = 2, 3, 4, 5, 6, 7, 8
343// LMUL == 2, NF = 2, 3, 4
344// LMUL == 4, NF = 2
345class NFList<int lmul> {
346  list<int> L = !cond(!eq(lmul, 1): [2, 3, 4, 5, 6, 7, 8],
347                      !eq(lmul, 2): [2, 3, 4],
348                      !eq(lmul, 4): [2],
349                      !eq(lmul, 8): []);
350}
351
352// Generate [start, end) SubRegIndex list.
353class SubRegSet<int nf, int lmul> {
354  list<SubRegIndex> L = !foldl([]<SubRegIndex>,
355                               [0, 1, 2, 3, 4, 5, 6, 7],
356                               AccList, i,
357                               !listconcat(AccList,
358                                 !if(!lt(i, nf),
359                                   [!cast<SubRegIndex>("sub_vrm" # lmul # "_" # i)],
360                                   [])));
361}
362
363// Collect the valid indexes into 'R' under NF and LMUL values from TUPLE_INDEX.
364// When NF = 2, the valid TUPLE_INDEX is 0 and 1.
365// For example, when LMUL = 4, the potential valid indexes is
366// [8, 12, 16, 20, 24, 28, 4]. However, not all these indexes are valid under
367// NF = 2. For example, 28 is not valid under LMUL = 4, NF = 2 and TUPLE_INDEX = 0.
368// The filter is
369//   (tuple_index + i) x lmul <= (tuple_index x lmul) + 32 - (nf x lmul)
370//
371// Use START = 0, LMUL = 4 and NF = 2 as the example,
372//   i x 4 <= 24
373// The class will return [8, 12, 16, 20, 24, 4].
374// Use START = 1, LMUL = 4 and NF = 2 as the example,
375//   (1 + i) x 4 <= 28
376// The class will return [12, 16, 20, 24, 28, 8].
377//
378class IndexSet<int tuple_index, int nf, int lmul, bit isV0 = false> {
379  list<int> R =
380    !foldl([]<int>,
381              !if(isV0, [0],
382                !cond(
383                  !eq(lmul, 1):
384                  [8, 9, 10, 11, 12, 13, 14, 15,
385                   16, 17, 18, 19, 20, 21, 22, 23,
386                   24, 25, 26, 27, 28, 29, 30, 31,
387                   1, 2, 3, 4, 5, 6, 7],
388                  !eq(lmul, 2):
389                  [4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 1, 2, 3],
390                  !eq(lmul, 4):
391                  [2, 3, 4, 5, 6, 7, 1])),
392              L, i,
393              !listconcat(L,
394                          !if(!le(!mul(!add(i, tuple_index), lmul),
395                                  !sub(!add(32, !mul(tuple_index, lmul)), !mul(nf, lmul))),
396                              [!mul(!add(i, tuple_index), lmul)], [])));
397}
398
399// This class returns a list of vector register collections.
400// For example, for NF = 2 and LMUL = 4,
401// it will return
402//   ([ V8M4, V12M4, V16M4, V20M4, V24M4, V4M4],
403//    [V12M4, V16M4, V20M4, V24M4, V28M4, V8M4])
404//
405class VRegList<list<dag> LIn, int start, int nf, int lmul, bit isV0> {
406  list<dag> L =
407    !if(!ge(start, nf),
408        LIn,
409        !listconcat(
410          [!dag(add,
411                !foreach(i, IndexSet<start, nf, lmul, isV0>.R,
412                  !cast<Register>("V" # i # !cond(!eq(lmul, 2): "M2",
413                                                  !eq(lmul, 4): "M4",
414                                                  true: ""))),
415                !listsplat("",
416                  !size(IndexSet<start, nf, lmul, isV0>.R)))],
417          VRegList<LIn, !add(start, 1), nf, lmul, isV0>.L));
418}
419
420// Vector registers
421foreach Index = 0-31 in {
422  def V#Index : RISCVReg<Index, "v"#Index>, DwarfRegNum<[!add(Index, 96)]>;
423}
424
425foreach Index = [0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22,
426                 24, 26, 28, 30] in {
427  def V#Index#M2 : RISCVRegWithSubRegs<Index, "v"#Index,
428                     [!cast<Register>("V"#Index),
429                      !cast<Register>("V"#!add(Index, 1))]>,
430                   DwarfRegAlias<!cast<Register>("V"#Index)> {
431    let SubRegIndices = [sub_vrm1_0, sub_vrm1_1];
432  }
433}
434
435foreach Index = [0, 4, 8, 12, 16, 20, 24, 28] in {
436  def V#Index#M4 : RISCVRegWithSubRegs<Index, "v"#Index,
437                     [!cast<Register>("V"#Index#"M2"),
438                      !cast<Register>("V"#!add(Index, 2)#"M2")]>,
439                   DwarfRegAlias<!cast<Register>("V"#Index)> {
440    let SubRegIndices = [sub_vrm2_0, sub_vrm2_1];
441  }
442}
443
444foreach Index = [0, 8, 16, 24] in {
445  def V#Index#M8 : RISCVRegWithSubRegs<Index, "v"#Index,
446                     [!cast<Register>("V"#Index#"M4"),
447                      !cast<Register>("V"#!add(Index, 4)#"M4")]>,
448                   DwarfRegAlias<!cast<Register>("V"#Index)> {
449    let SubRegIndices = [sub_vrm4_0, sub_vrm4_1];
450  }
451}
452
453def VTYPE  : RISCVReg<0, "vtype">;
454def VL     : RISCVReg<0, "vl">;
455def VXSAT  : RISCVReg<0, "vxsat">;
456def VXRM   : RISCVReg<0, "vxrm">;
457let isConstant = true in
458def VLENB  : RISCVReg<0, "vlenb">,
459             DwarfRegNum<[!add(4096, SysRegVLENB.Encoding)]>;
460
461def VCSR : RegisterClass<"RISCV", [XLenVT], 32,
462                          (add VTYPE, VL, VLENB)> {
463  let RegInfos = XLenRI;
464}
465
466
467foreach m = [1, 2, 4] in {
468  foreach n = NFList<m>.L in {
469    def "VN" # n # "M" # m # "NoV0": RegisterTuples<
470                                       SubRegSet<n, m>.L,
471                                       VRegList<[], 0, n, m, false>.L>;
472    def "VN" # n # "M" # m # "V0" : RegisterTuples<
473                                       SubRegSet<n, m>.L,
474                                       VRegList<[], 0, n, m, true>.L>;
475  }
476}
477
478class VReg<list<ValueType> regTypes, dag regList, int Vlmul>
479  : RegisterClass<"RISCV",
480                  regTypes,
481                  64, // The maximum supported ELEN is 64.
482                  regList> {
483  int VLMul = Vlmul;
484  int Size = !mul(Vlmul, 64);
485}
486
487defvar VMaskVTs = [vbool1_t, vbool2_t, vbool4_t, vbool8_t, vbool16_t,
488                   vbool32_t, vbool64_t];
489
490defvar VM1VTs = [vint8m1_t, vint16m1_t, vint32m1_t, vint64m1_t,
491                 vfloat16m1_t, vfloat32m1_t, vfloat64m1_t,
492                 vint8mf2_t, vint8mf4_t, vint8mf8_t,
493                 vint16mf2_t, vint16mf4_t, vint32mf2_t,
494                 vfloat16mf4_t, vfloat16mf2_t, vfloat32mf2_t];
495
496defvar VM2VTs = [vint8m2_t, vint16m2_t, vint32m2_t, vint64m2_t,
497                 vfloat16m2_t, vfloat32m2_t, vfloat64m2_t];
498
499defvar VM4VTs = [vint8m4_t, vint16m4_t, vint32m4_t, vint64m4_t,
500                 vfloat16m4_t, vfloat32m4_t, vfloat64m4_t];
501
502defvar VM8VTs = [vint8m8_t, vint16m8_t, vint32m8_t, vint64m8_t,
503                 vfloat16m8_t, vfloat32m8_t, vfloat64m8_t];
504
505def VR : VReg<!listconcat(VM1VTs, VMaskVTs),
506              (add (sequence "V%u", 8, 31),
507                   (sequence "V%u", 0, 7)), 1>;
508
509def VRNoV0 : VReg<!listconcat(VM1VTs, VMaskVTs),
510                  (add (sequence "V%u", 8, 31),
511                       (sequence "V%u", 1, 7)), 1>;
512
513def VRM2 : VReg<VM2VTs, (add (sequence "V%uM2", 8, 31, 2),
514                             (sequence "V%uM2", 0, 7, 2)), 2>;
515
516def VRM2NoV0 : VReg<VM2VTs, (add (sequence "V%uM2", 8, 31, 2),
517                                 (sequence "V%uM2", 2, 7, 2)), 2>;
518
519def VRM4 : VReg<VM4VTs,
520             (add V8M4, V12M4, V16M4, V20M4, V24M4, V28M4, V0M4, V4M4), 4>;
521
522def VRM4NoV0 : VReg<VM4VTs,
523             (add V8M4, V12M4, V16M4, V20M4, V24M4, V28M4, V4M4), 4>;
524
525def VRM8 : VReg<VM8VTs, (add V8M8, V16M8, V24M8, V0M8), 8>;
526
527def VRM8NoV0 : VReg<VM8VTs, (add V8M8, V16M8, V24M8), 8>;
528
529def VMV0 : RegisterClass<"RISCV", VMaskVTs, 64, (add V0)> {
530  let Size = 64;
531}
532
533let RegInfos = XLenRI in {
534def GPRF16  : RegisterClass<"RISCV", [f16], 16, (add GPR)>;
535def GPRF32  : RegisterClass<"RISCV", [f32], 32, (add GPR)>;
536} // RegInfos = XLenRI
537
538// Dummy zero register for use in the register pair containing X0 (as X1 is
539// not read to or written when the X0 register pair is used).
540def DUMMY_REG_PAIR_WITH_X0 : RISCVReg<0, "0">;
541
542// Must add DUMMY_REG_PAIR_WITH_X0 to a separate register class to prevent the
543// register's existence from changing codegen (due to the regPressureSetLimit
544// for the GPR register class being altered).
545def GPRAll : GPRRegisterClass<(add GPR, DUMMY_REG_PAIR_WITH_X0)>;
546
547let RegAltNameIndices = [ABIRegAltName] in {
548  def X0_PD : RISCVRegWithSubRegs<0, X0.AsmName,
549                                     [X0, DUMMY_REG_PAIR_WITH_X0],
550                                     X0.AltNames> {
551    let SubRegIndices = [sub_32, sub_32_hi];
552    let CoveredBySubRegs = 1;
553  }
554  foreach I = 1-15 in {
555    defvar Index = !shl(I, 1);
556    defvar Reg = !cast<Register>("X"#Index);
557    defvar RegP1 = !cast<Register>("X"#!add(Index,1));
558    def X#Index#_PD : RISCVRegWithSubRegs<Index, Reg.AsmName,
559                                          [Reg, RegP1],
560                                          Reg.AltNames> {
561      let SubRegIndices = [sub_32, sub_32_hi];
562      let CoveredBySubRegs = 1;
563    }
564  }
565}
566
567let RegInfos = RegInfoByHwMode<[RV64], [RegInfo<64, 64, 64>]> in
568def GPRPF64 : RegisterClass<"RISCV", [f64], 64, (add
569    X10_PD, X12_PD, X14_PD, X16_PD,
570    X6_PD,
571    X28_PD, X30_PD,
572    X8_PD,
573    X18_PD, X20_PD, X22_PD, X24_PD, X26_PD,
574    X0_PD, X2_PD, X4_PD
575)>;
576
577// The register class is added for inline assembly for vector mask types.
578def VM : VReg<VMaskVTs,
579           (add (sequence "V%u", 8, 31),
580                (sequence "V%u", 0, 7)), 1>;
581
582foreach m = LMULList in {
583  foreach nf = NFList<m>.L in {
584    def "VRN" # nf # "M" # m # "NoV0": VReg<[untyped],
585                               (add !cast<RegisterTuples>("VN" # nf # "M" # m # "NoV0")),
586                                    !mul(nf, m)>;
587    def "VRN" # nf # "M" # m: VReg<[untyped],
588                               (add !cast<RegisterTuples>("VN" # nf # "M" # m # "NoV0"),
589                                    !cast<RegisterTuples>("VN" # nf # "M" # m # "V0")),
590                                    !mul(nf, m)>;
591  }
592}
593
594// Special registers
595def FFLAGS : RISCVReg<0, "fflags">;
596def FRM    : RISCVReg<0, "frm">;
597