1//===-- RISCVRegisterInfo.td - RISC-V Register defs --------*- tablegen -*-===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8
9//===----------------------------------------------------------------------===//
10//  Declarations that describe the RISC-V register files
11//===----------------------------------------------------------------------===//
12
13let Namespace = "RISCV" in {
14class RISCVReg<bits<5> Enc, string n, list<string> alt = []> : Register<n> {
15  let HWEncoding{4-0} = Enc;
16  let AltNames = alt;
17}
18
19class RISCVRegWithSubRegs<bits<5> Enc, string n, list<Register> subregs,
20                          list<string> alt = []>
21      : RegisterWithSubRegs<n, subregs> {
22  let HWEncoding{4-0} = Enc;
23  let AltNames = alt;
24}
25
26class RISCVReg16<bits<5> Enc, string n, list<string> alt = []> : Register<n> {
27  let HWEncoding{4-0} = Enc;
28  let AltNames = alt;
29}
30
31def sub_16 : SubRegIndex<16>;
32class RISCVReg32<RISCVReg16 subreg>
33  : RISCVRegWithSubRegs<subreg.HWEncoding{4-0}, subreg.AsmName, [subreg],
34                        subreg.AltNames> {
35  let SubRegIndices = [sub_16];
36}
37
38// Because RISCVReg64 register have AsmName and AltNames that alias with their
39// 16/32-bit sub-register, RISCVAsmParser will need to coerce a register number
40// from a RISCVReg16/RISCVReg32 to the equivalent RISCVReg64 when appropriate.
41def sub_32 : SubRegIndex<32>;
42class RISCVReg64<RISCVReg32 subreg>
43  : RISCVRegWithSubRegs<subreg.HWEncoding{4-0}, subreg.AsmName, [subreg],
44                        subreg.AltNames> {
45  let SubRegIndices = [sub_32];
46}
47
48let FallbackRegAltNameIndex = NoRegAltName in
49def ABIRegAltName : RegAltNameIndex;
50
51def sub_vrm4_0 : SubRegIndex<256>;
52def sub_vrm4_1 : SubRegIndex<256, 256>;
53def sub_vrm2_0 : SubRegIndex<128>;
54def sub_vrm2_1 : SubRegIndex<128, 128>;
55def sub_vrm2_2 : ComposedSubRegIndex<sub_vrm4_1, sub_vrm2_0>;
56def sub_vrm2_3 : ComposedSubRegIndex<sub_vrm4_1, sub_vrm2_1>;
57def sub_vrm1_0 : SubRegIndex<64>;
58def sub_vrm1_1 : SubRegIndex<64, 64>;
59def sub_vrm1_2 : ComposedSubRegIndex<sub_vrm2_1, sub_vrm1_0>;
60def sub_vrm1_3 : ComposedSubRegIndex<sub_vrm2_1, sub_vrm1_1>;
61def sub_vrm1_4 : ComposedSubRegIndex<sub_vrm2_2, sub_vrm1_0>;
62def sub_vrm1_5 : ComposedSubRegIndex<sub_vrm2_2, sub_vrm1_1>;
63def sub_vrm1_6 : ComposedSubRegIndex<sub_vrm2_3, sub_vrm1_0>;
64def sub_vrm1_7 : ComposedSubRegIndex<sub_vrm2_3, sub_vrm1_1>;
65
66def sub_32_hi  : SubRegIndex<32, 32>;
67} // Namespace = "RISCV"
68
69// Integer registers
70// CostPerUse is set higher for registers that may not be compressible as they
71// are not part of GPRC, the most restrictive register class used by the
72// compressed instruction set. This will influence the greedy register
73// allocator to reduce the use of registers that can't be encoded in 16 bit
74// instructions.
75
76let RegAltNameIndices = [ABIRegAltName] in {
77  let isConstant = true in
78  def X0  : RISCVReg<0, "x0", ["zero"]>, DwarfRegNum<[0]>;
79  let CostPerUse = [0, 1] in {
80  def X1  : RISCVReg<1, "x1", ["ra"]>, DwarfRegNum<[1]>;
81  def X2  : RISCVReg<2, "x2", ["sp"]>, DwarfRegNum<[2]>;
82  def X3  : RISCVReg<3, "x3", ["gp"]>, DwarfRegNum<[3]>;
83  def X4  : RISCVReg<4, "x4", ["tp"]>, DwarfRegNum<[4]>;
84  def X5  : RISCVReg<5, "x5", ["t0"]>, DwarfRegNum<[5]>;
85  def X6  : RISCVReg<6, "x6", ["t1"]>, DwarfRegNum<[6]>;
86  def X7  : RISCVReg<7, "x7", ["t2"]>, DwarfRegNum<[7]>;
87  }
88  def X8  : RISCVReg<8, "x8", ["s0", "fp"]>, DwarfRegNum<[8]>;
89  def X9  : RISCVReg<9, "x9", ["s1"]>, DwarfRegNum<[9]>;
90  def X10 : RISCVReg<10,"x10", ["a0"]>, DwarfRegNum<[10]>;
91  def X11 : RISCVReg<11,"x11", ["a1"]>, DwarfRegNum<[11]>;
92  def X12 : RISCVReg<12,"x12", ["a2"]>, DwarfRegNum<[12]>;
93  def X13 : RISCVReg<13,"x13", ["a3"]>, DwarfRegNum<[13]>;
94  def X14 : RISCVReg<14,"x14", ["a4"]>, DwarfRegNum<[14]>;
95  def X15 : RISCVReg<15,"x15", ["a5"]>, DwarfRegNum<[15]>;
96  let CostPerUse = [0, 1] in {
97  def X16 : RISCVReg<16,"x16", ["a6"]>, DwarfRegNum<[16]>;
98  def X17 : RISCVReg<17,"x17", ["a7"]>, DwarfRegNum<[17]>;
99  def X18 : RISCVReg<18,"x18", ["s2"]>, DwarfRegNum<[18]>;
100  def X19 : RISCVReg<19,"x19", ["s3"]>, DwarfRegNum<[19]>;
101  def X20 : RISCVReg<20,"x20", ["s4"]>, DwarfRegNum<[20]>;
102  def X21 : RISCVReg<21,"x21", ["s5"]>, DwarfRegNum<[21]>;
103  def X22 : RISCVReg<22,"x22", ["s6"]>, DwarfRegNum<[22]>;
104  def X23 : RISCVReg<23,"x23", ["s7"]>, DwarfRegNum<[23]>;
105  def X24 : RISCVReg<24,"x24", ["s8"]>, DwarfRegNum<[24]>;
106  def X25 : RISCVReg<25,"x25", ["s9"]>, DwarfRegNum<[25]>;
107  def X26 : RISCVReg<26,"x26", ["s10"]>, DwarfRegNum<[26]>;
108  def X27 : RISCVReg<27,"x27", ["s11"]>, DwarfRegNum<[27]>;
109  def X28 : RISCVReg<28,"x28", ["t3"]>, DwarfRegNum<[28]>;
110  def X29 : RISCVReg<29,"x29", ["t4"]>, DwarfRegNum<[29]>;
111  def X30 : RISCVReg<30,"x30", ["t5"]>, DwarfRegNum<[30]>;
112  def X31 : RISCVReg<31,"x31", ["t6"]>, DwarfRegNum<[31]>;
113  }
114}
115
116def XLenVT : ValueTypeByHwMode<[RV32, RV64],
117                               [i32,  i64]>;
118// Allow f64 in GPR for ZDINX on RV64.
119def XLenFVT : ValueTypeByHwMode<[RV64],
120                                [f64]>;
121def XLenRI : RegInfoByHwMode<
122      [RV32,              RV64],
123      [RegInfo<32,32,32>, RegInfo<64,64,64>]>;
124
125class GPRRegisterClass<dag regList>
126    : RegisterClass<"RISCV", [XLenVT, XLenFVT, i32], 32, regList> {
127  let RegInfos = XLenRI;
128}
129
130// The order of registers represents the preferred allocation sequence.
131// Registers are listed in the order caller-save, callee-save, specials.
132def GPR : GPRRegisterClass<(add (sequence "X%u", 10, 17),
133                                (sequence "X%u", 5, 7),
134                                (sequence "X%u", 28, 31),
135                                (sequence "X%u", 8, 9),
136                                (sequence "X%u", 18, 27),
137                                (sequence "X%u", 0, 4))>;
138
139def GPRX0 : GPRRegisterClass<(add X0)>;
140
141def GPRNoX0 : GPRRegisterClass<(sub GPR, X0)>;
142
143def GPRNoX0X2 : GPRRegisterClass<(sub GPR, X0, X2)>;
144
145// Don't use X1 or X5 for JALR since that is a hint to pop the return address
146// stack on some microarchitectures. Also remove the reserved registers X0, X2,
147// X3, and X4 as it reduces the number of register classes that get synthesized
148// by tablegen.
149def GPRJALR : GPRRegisterClass<(sub GPR, (sequence "X%u", 0, 5))>;
150
151def GPRC : GPRRegisterClass<(add (sequence "X%u", 10, 15),
152                                 (sequence "X%u", 8, 9))>;
153
154// For indirect tail calls, we can't use callee-saved registers, as they are
155// restored to the saved value before the tail call, which would clobber a call
156// address. We shouldn't use x5 since that is a hint for to pop the return
157// address stack on some microarchitectures.
158def GPRTC : GPRRegisterClass<(add (sequence "X%u", 6, 7),
159                                  (sequence "X%u", 10, 17),
160                                  (sequence "X%u", 28, 31))>;
161
162def SP : GPRRegisterClass<(add X2)>;
163
164// Saved Registers from s0 to s7, for C.MVA01S07 instruction in Zcmp extension
165def SR07 : GPRRegisterClass<(add (sequence "X%u", 8, 9),
166                                 (sequence "X%u", 18, 23))>;
167
168// Floating point registers
169let RegAltNameIndices = [ABIRegAltName] in {
170  def F0_H  : RISCVReg16<0, "f0", ["ft0"]>, DwarfRegNum<[32]>;
171  def F1_H  : RISCVReg16<1, "f1", ["ft1"]>, DwarfRegNum<[33]>;
172  def F2_H  : RISCVReg16<2, "f2", ["ft2"]>, DwarfRegNum<[34]>;
173  def F3_H  : RISCVReg16<3, "f3", ["ft3"]>, DwarfRegNum<[35]>;
174  def F4_H  : RISCVReg16<4, "f4", ["ft4"]>, DwarfRegNum<[36]>;
175  def F5_H  : RISCVReg16<5, "f5", ["ft5"]>, DwarfRegNum<[37]>;
176  def F6_H  : RISCVReg16<6, "f6", ["ft6"]>, DwarfRegNum<[38]>;
177  def F7_H  : RISCVReg16<7, "f7", ["ft7"]>, DwarfRegNum<[39]>;
178  def F8_H  : RISCVReg16<8, "f8", ["fs0"]>, DwarfRegNum<[40]>;
179  def F9_H  : RISCVReg16<9, "f9", ["fs1"]>, DwarfRegNum<[41]>;
180  def F10_H : RISCVReg16<10,"f10", ["fa0"]>, DwarfRegNum<[42]>;
181  def F11_H : RISCVReg16<11,"f11", ["fa1"]>, DwarfRegNum<[43]>;
182  def F12_H : RISCVReg16<12,"f12", ["fa2"]>, DwarfRegNum<[44]>;
183  def F13_H : RISCVReg16<13,"f13", ["fa3"]>, DwarfRegNum<[45]>;
184  def F14_H : RISCVReg16<14,"f14", ["fa4"]>, DwarfRegNum<[46]>;
185  def F15_H : RISCVReg16<15,"f15", ["fa5"]>, DwarfRegNum<[47]>;
186  def F16_H : RISCVReg16<16,"f16", ["fa6"]>, DwarfRegNum<[48]>;
187  def F17_H : RISCVReg16<17,"f17", ["fa7"]>, DwarfRegNum<[49]>;
188  def F18_H : RISCVReg16<18,"f18", ["fs2"]>, DwarfRegNum<[50]>;
189  def F19_H : RISCVReg16<19,"f19", ["fs3"]>, DwarfRegNum<[51]>;
190  def F20_H : RISCVReg16<20,"f20", ["fs4"]>, DwarfRegNum<[52]>;
191  def F21_H : RISCVReg16<21,"f21", ["fs5"]>, DwarfRegNum<[53]>;
192  def F22_H : RISCVReg16<22,"f22", ["fs6"]>, DwarfRegNum<[54]>;
193  def F23_H : RISCVReg16<23,"f23", ["fs7"]>, DwarfRegNum<[55]>;
194  def F24_H : RISCVReg16<24,"f24", ["fs8"]>, DwarfRegNum<[56]>;
195  def F25_H : RISCVReg16<25,"f25", ["fs9"]>, DwarfRegNum<[57]>;
196  def F26_H : RISCVReg16<26,"f26", ["fs10"]>, DwarfRegNum<[58]>;
197  def F27_H : RISCVReg16<27,"f27", ["fs11"]>, DwarfRegNum<[59]>;
198  def F28_H : RISCVReg16<28,"f28", ["ft8"]>, DwarfRegNum<[60]>;
199  def F29_H : RISCVReg16<29,"f29", ["ft9"]>, DwarfRegNum<[61]>;
200  def F30_H : RISCVReg16<30,"f30", ["ft10"]>, DwarfRegNum<[62]>;
201  def F31_H : RISCVReg16<31,"f31", ["ft11"]>, DwarfRegNum<[63]>;
202
203  foreach Index = 0-31 in {
204    def F#Index#_F : RISCVReg32<!cast<RISCVReg16>("F"#Index#"_H")>,
205      DwarfRegNum<[!add(Index, 32)]>;
206  }
207
208  foreach Index = 0-31 in {
209    def F#Index#_D : RISCVReg64<!cast<RISCVReg32>("F"#Index#"_F")>,
210      DwarfRegNum<[!add(Index, 32)]>;
211  }
212}
213
214// The order of registers represents the preferred allocation sequence,
215// meaning caller-save regs are listed before callee-save.
216// We start by allocating argument registers in reverse order since they are
217// compressible.
218def FPR16 : RegisterClass<"RISCV", [f16, bf16], 16, (add
219    (sequence "F%u_H", 15, 10), // fa5-fa0
220    (sequence "F%u_H", 0, 7),   // ft0-f7
221    (sequence "F%u_H", 16, 17), // fa6-fa7
222    (sequence "F%u_H", 28, 31), // ft8-ft11
223    (sequence "F%u_H", 8, 9),   // fs0-fs1
224    (sequence "F%u_H", 18, 27)  // fs2-fs11
225)>;
226
227def FPR32 : RegisterClass<"RISCV", [f32], 32, (add
228    (sequence "F%u_F", 15, 10),
229    (sequence "F%u_F", 0, 7),
230    (sequence "F%u_F", 16, 17),
231    (sequence "F%u_F", 28, 31),
232    (sequence "F%u_F", 8, 9),
233    (sequence "F%u_F", 18, 27)
234)>;
235
236def FPR32C : RegisterClass<"RISCV", [f32], 32, (add
237  (sequence "F%u_F", 15, 10),
238  (sequence "F%u_F", 8, 9)
239)>;
240
241// The order of registers represents the preferred allocation sequence,
242// meaning caller-save regs are listed before callee-save.
243def FPR64 : RegisterClass<"RISCV", [f64], 64, (add
244    (sequence "F%u_D", 15, 10),
245    (sequence "F%u_D", 0, 7),
246    (sequence "F%u_D", 16, 17),
247    (sequence "F%u_D", 28, 31),
248    (sequence "F%u_D", 8, 9),
249    (sequence "F%u_D", 18, 27)
250)>;
251
252def FPR64C : RegisterClass<"RISCV", [f64], 64, (add
253  (sequence "F%u_D", 15, 10),
254  (sequence "F%u_D", 8, 9)
255)>;
256
257// Vector type mapping to LLVM types.
258//
259// The V vector extension requires that VLEN >= 128 and <= 65536.
260// Additionally, the only supported ELEN values are 32 and 64,
261// thus `vscale` can be defined as VLEN/64,
262// allowing the same types with either ELEN value.
263//
264//         MF8    MF4     MF2     M1      M2      M4       M8
265// i64*    N/A    N/A     N/A     nxv1i64 nxv2i64 nxv4i64  nxv8i64
266// i32     N/A    N/A     nxv1i32 nxv2i32 nxv4i32 nxv8i32  nxv16i32
267// i16     N/A    nxv1i16 nxv2i16 nxv4i16 nxv8i16 nxv16i16 nxv32i16
268// i8      nxv1i8 nxv2i8  nxv4i8  nxv8i8  nxv16i8 nxv32i8  nxv64i8
269// double* N/A    N/A     N/A     nxv1f64 nxv2f64 nxv4f64  nxv8f64
270// float   N/A    N/A     nxv1f32 nxv2f32 nxv4f32 nxv8f32  nxv16f32
271// half    N/A    nxv1f16 nxv2f16 nxv4f16 nxv8f16 nxv16f16 nxv32f16
272// * ELEN=64
273
274defvar vint8mf8_t = nxv1i8;
275defvar vint8mf4_t = nxv2i8;
276defvar vint8mf2_t = nxv4i8;
277defvar vint8m1_t = nxv8i8;
278defvar vint8m2_t = nxv16i8;
279defvar vint8m4_t = nxv32i8;
280defvar vint8m8_t = nxv64i8;
281
282defvar vint16mf4_t = nxv1i16;
283defvar vint16mf2_t = nxv2i16;
284defvar vint16m1_t  = nxv4i16;
285defvar vint16m2_t  = nxv8i16;
286defvar vint16m4_t  = nxv16i16;
287defvar vint16m8_t  = nxv32i16;
288
289defvar vint32mf2_t = nxv1i32;
290defvar vint32m1_t  = nxv2i32;
291defvar vint32m2_t  = nxv4i32;
292defvar vint32m4_t  = nxv8i32;
293defvar vint32m8_t  = nxv16i32;
294
295defvar vint64m1_t = nxv1i64;
296defvar vint64m2_t = nxv2i64;
297defvar vint64m4_t = nxv4i64;
298defvar vint64m8_t = nxv8i64;
299
300defvar vfloat16mf4_t = nxv1f16;
301defvar vfloat16mf2_t = nxv2f16;
302defvar vfloat16m1_t  = nxv4f16;
303defvar vfloat16m2_t  = nxv8f16;
304defvar vfloat16m4_t  = nxv16f16;
305defvar vfloat16m8_t  = nxv32f16;
306
307defvar vbfloat16mf4_t = nxv1bf16;
308defvar vbfloat16mf2_t = nxv2bf16;
309defvar vbfloat16m1_t  = nxv4bf16;
310defvar vbfloat16m2_t  = nxv8bf16;
311defvar vbfloat16m4_t  = nxv16bf16;
312defvar vbfloat16m8_t  = nxv32bf16;
313
314defvar vfloat32mf2_t = nxv1f32;
315defvar vfloat32m1_t  = nxv2f32;
316defvar vfloat32m2_t  = nxv4f32;
317defvar vfloat32m4_t  = nxv8f32;
318defvar vfloat32m8_t  = nxv16f32;
319
320defvar vfloat64m1_t = nxv1f64;
321defvar vfloat64m2_t = nxv2f64;
322defvar vfloat64m4_t = nxv4f64;
323defvar vfloat64m8_t = nxv8f64;
324
325defvar vbool1_t  = nxv64i1;
326defvar vbool2_t  = nxv32i1;
327defvar vbool4_t  = nxv16i1;
328defvar vbool8_t  = nxv8i1;
329defvar vbool16_t = nxv4i1;
330defvar vbool32_t = nxv2i1;
331defvar vbool64_t = nxv1i1;
332
333// There is no need to define register classes for fractional LMUL.
334defvar LMULList = [1, 2, 4, 8];
335
336//===----------------------------------------------------------------------===//
337// Utility classes for segment load/store.
338//===----------------------------------------------------------------------===//
339// The set of legal NF for LMUL = lmul.
340// LMUL <= 1, NF = 2, 3, 4, 5, 6, 7, 8
341// LMUL == 2, NF = 2, 3, 4
342// LMUL == 4, NF = 2
343// LMUL == 8, no legal NF
344class NFList<int lmul> {
345  list<int> L = !cond(!eq(lmul, 8): [],
346                      !eq(lmul, 4): [2],
347                      !eq(lmul, 2): [2, 3, 4],
348                      true: [2, 3, 4, 5, 6, 7, 8]);
349}
350
351// Generate [start, end) SubRegIndex list.
352class SubRegSet<int nf, int lmul> {
353  list<SubRegIndex> L = !foldl([]<SubRegIndex>,
354                               !range(0, 8),
355                               AccList, i,
356                               !listconcat(AccList,
357                                 !if(!lt(i, nf),
358                                   [!cast<SubRegIndex>("sub_vrm" # lmul # "_" # i)],
359                                   [])));
360}
361
362// Collect the valid indexes into 'R' under NF and LMUL values from TUPLE_INDEX.
363// When NF = 2, the valid TUPLE_INDEX is 0 and 1.
364// For example, when LMUL = 4, the potential valid indexes is
365// [8, 12, 16, 20, 24, 28, 4]. However, not all these indexes are valid under
366// NF = 2. For example, 28 is not valid under LMUL = 4, NF = 2 and TUPLE_INDEX = 0.
367// The filter is
368//   (tuple_index + i) x lmul <= (tuple_index x lmul) + 32 - (nf x lmul)
369//
370// Use START = 0, LMUL = 4 and NF = 2 as the example,
371//   i x 4 <= 24
372// The class will return [8, 12, 16, 20, 24, 4].
373// Use START = 1, LMUL = 4 and NF = 2 as the example,
374//   (1 + i) x 4 <= 28
375// The class will return [12, 16, 20, 24, 28, 8].
376//
377class IndexSet<int tuple_index, int nf, int lmul, bit isV0 = false> {
378  list<int> R =
379    !foldl([]<int>,
380              !if(isV0, [0],
381                !cond(
382                  !eq(lmul, 1): !listconcat(!range(8, 32), !range(1, 8)),
383                  !eq(lmul, 2): !listconcat(!range(4, 16), !range(1, 4)),
384                  !eq(lmul, 4): !listconcat(!range(2, 8), !range(1, 2)))),
385              L, i,
386              !listconcat(L,
387                          !if(!le(!mul(!add(i, tuple_index), lmul),
388                                  !sub(!add(32, !mul(tuple_index, lmul)), !mul(nf, lmul))),
389                              [!mul(!add(i, tuple_index), lmul)], [])));
390}
391
392// This class returns a list of vector register collections.
393// For example, for NF = 2 and LMUL = 4,
394// it will return
395//   ([ V8M4, V12M4, V16M4, V20M4, V24M4, V4M4],
396//    [V12M4, V16M4, V20M4, V24M4, V28M4, V8M4])
397//
398class VRegList<list<dag> LIn, int start, int nf, int lmul, bit isV0> {
399  list<dag> L =
400    !if(!ge(start, nf),
401        LIn,
402        !listconcat(
403          [!dag(add,
404                !foreach(i, IndexSet<start, nf, lmul, isV0>.R,
405                  !cast<Register>("V" # i # !cond(!eq(lmul, 2): "M2",
406                                                  !eq(lmul, 4): "M4",
407                                                  true: ""))),
408                !listsplat("",
409                  !size(IndexSet<start, nf, lmul, isV0>.R)))],
410          VRegList<LIn, !add(start, 1), nf, lmul, isV0>.L));
411}
412
413// Vector registers
414foreach Index = !range(0, 32, 1) in {
415  def V#Index : RISCVReg<Index, "v"#Index>, DwarfRegNum<[!add(Index, 96)]>;
416}
417
418foreach Index = !range(0, 32, 2) in {
419  def V#Index#M2 : RISCVRegWithSubRegs<Index, "v"#Index,
420                     [!cast<Register>("V"#Index),
421                      !cast<Register>("V"#!add(Index, 1))]>,
422                   DwarfRegAlias<!cast<Register>("V"#Index)> {
423    let SubRegIndices = [sub_vrm1_0, sub_vrm1_1];
424  }
425}
426
427foreach Index = !range(0, 32, 4) in {
428  def V#Index#M4 : RISCVRegWithSubRegs<Index, "v"#Index,
429                     [!cast<Register>("V"#Index#"M2"),
430                      !cast<Register>("V"#!add(Index, 2)#"M2")]>,
431                   DwarfRegAlias<!cast<Register>("V"#Index)> {
432    let SubRegIndices = [sub_vrm2_0, sub_vrm2_1];
433  }
434}
435
436foreach Index = !range(0, 32, 8) in {
437  def V#Index#M8 : RISCVRegWithSubRegs<Index, "v"#Index,
438                     [!cast<Register>("V"#Index#"M4"),
439                      !cast<Register>("V"#!add(Index, 4)#"M4")]>,
440                   DwarfRegAlias<!cast<Register>("V"#Index)> {
441    let SubRegIndices = [sub_vrm4_0, sub_vrm4_1];
442  }
443}
444
445def VTYPE  : RISCVReg<0, "vtype">;
446def VL     : RISCVReg<0, "vl">;
447def VXSAT  : RISCVReg<0, "vxsat">;
448def VXRM   : RISCVReg<0, "vxrm">;
449let isConstant = true in
450def VLENB  : RISCVReg<0, "vlenb">,
451             DwarfRegNum<[!add(4096, SysRegVLENB.Encoding)]>;
452
453def VCSR : RegisterClass<"RISCV", [XLenVT], 32,
454                          (add VTYPE, VL, VLENB)> {
455  let RegInfos = XLenRI;
456  let isAllocatable = 0;
457}
458
459
460foreach m = [1, 2, 4] in {
461  foreach n = NFList<m>.L in {
462    def "VN" # n # "M" # m # "NoV0": RegisterTuples<
463                                       SubRegSet<n, m>.L,
464                                       VRegList<[], 0, n, m, false>.L>;
465    def "VN" # n # "M" # m # "V0" : RegisterTuples<
466                                       SubRegSet<n, m>.L,
467                                       VRegList<[], 0, n, m, true>.L>;
468  }
469}
470
471class VReg<list<ValueType> regTypes, dag regList, int Vlmul>
472  : RegisterClass<"RISCV",
473                  regTypes,
474                  64, // The maximum supported ELEN is 64.
475                  regList> {
476  int VLMul = Vlmul;
477  int Size = !mul(Vlmul, 64);
478}
479
480defvar VMaskVTs = [vbool1_t, vbool2_t, vbool4_t, vbool8_t, vbool16_t,
481                   vbool32_t, vbool64_t];
482
483defvar VM1VTs = [vint8m1_t, vint16m1_t, vint32m1_t, vint64m1_t,
484                 vbfloat16m1_t, vfloat16m1_t, vfloat32m1_t,
485                 vfloat64m1_t, vint8mf2_t, vint8mf4_t, vint8mf8_t,
486	               vint16mf2_t, vint16mf4_t, vint32mf2_t,
487                 vfloat16mf4_t, vfloat16mf2_t, vbfloat16mf4_t,
488                 vbfloat16mf2_t, vfloat32mf2_t];
489
490defvar VM2VTs = [vint8m2_t, vint16m2_t, vint32m2_t, vint64m2_t,
491                 vfloat16m2_t, vbfloat16m2_t,
492                 vfloat32m2_t, vfloat64m2_t];
493
494defvar VM4VTs = [vint8m4_t, vint16m4_t, vint32m4_t, vint64m4_t,
495                 vfloat16m4_t, vbfloat16m4_t,
496                 vfloat32m4_t, vfloat64m4_t];
497
498defvar VM8VTs = [vint8m8_t, vint16m8_t, vint32m8_t, vint64m8_t,
499                 vfloat16m8_t, vbfloat16m8_t,
500                 vfloat32m8_t, vfloat64m8_t];
501
502def VR : VReg<!listconcat(VM1VTs, VMaskVTs),
503              (add (sequence "V%u", 8, 31),
504                   (sequence "V%u", 0, 7)), 1>;
505
506def VRNoV0 : VReg<!listconcat(VM1VTs, VMaskVTs),
507                  (add (sequence "V%u", 8, 31),
508                       (sequence "V%u", 1, 7)), 1>;
509
510def VRM2 : VReg<VM2VTs, (add (sequence "V%uM2", 8, 31, 2),
511                             (sequence "V%uM2", 0, 7, 2)), 2>;
512
513def VRM2NoV0 : VReg<VM2VTs, (add (sequence "V%uM2", 8, 31, 2),
514                                 (sequence "V%uM2", 2, 7, 2)), 2>;
515
516def VRM4 : VReg<VM4VTs,
517             (add V8M4, V12M4, V16M4, V20M4, V24M4, V28M4, V0M4, V4M4), 4>;
518
519def VRM4NoV0 : VReg<VM4VTs,
520             (add V8M4, V12M4, V16M4, V20M4, V24M4, V28M4, V4M4), 4>;
521
522def VRM8 : VReg<VM8VTs, (add V8M8, V16M8, V24M8, V0M8), 8>;
523
524def VRM8NoV0 : VReg<VM8VTs, (add V8M8, V16M8, V24M8), 8>;
525
526def VMV0 : RegisterClass<"RISCV", VMaskVTs, 64, (add V0)> {
527  let Size = 64;
528}
529
530let RegInfos = XLenRI in {
531def GPRF16  : RegisterClass<"RISCV", [f16], 16, (add GPR)>;
532def GPRF32  : RegisterClass<"RISCV", [f32], 32, (add GPR)>;
533} // RegInfos = XLenRI
534
535// Dummy zero register for use in the register pair containing X0 (as X1 is
536// not read to or written when the X0 register pair is used).
537def DUMMY_REG_PAIR_WITH_X0 : RISCVReg<0, "0">;
538
539// Must add DUMMY_REG_PAIR_WITH_X0 to a separate register class to prevent the
540// register's existence from changing codegen (due to the regPressureSetLimit
541// for the GPR register class being altered).
542def GPRAll : GPRRegisterClass<(add GPR, DUMMY_REG_PAIR_WITH_X0)>;
543
544let RegAltNameIndices = [ABIRegAltName] in {
545  def X0_PD : RISCVRegWithSubRegs<0, X0.AsmName,
546                                     [X0, DUMMY_REG_PAIR_WITH_X0],
547                                     X0.AltNames> {
548    let SubRegIndices = [sub_32, sub_32_hi];
549    let CoveredBySubRegs = 1;
550  }
551  foreach I = 1-15 in {
552    defvar Index = !shl(I, 1);
553    defvar Reg = !cast<Register>("X"#Index);
554    defvar RegP1 = !cast<Register>("X"#!add(Index,1));
555    def X#Index#_PD : RISCVRegWithSubRegs<Index, Reg.AsmName,
556                                          [Reg, RegP1],
557                                          Reg.AltNames> {
558      let SubRegIndices = [sub_32, sub_32_hi];
559      let CoveredBySubRegs = 1;
560    }
561  }
562}
563
564let RegInfos = RegInfoByHwMode<[RV64], [RegInfo<64, 64, 64>]> in
565def GPRPF64 : RegisterClass<"RISCV", [f64], 64, (add
566    X10_PD, X12_PD, X14_PD, X16_PD,
567    X6_PD,
568    X28_PD, X30_PD,
569    X8_PD,
570    X18_PD, X20_PD, X22_PD, X24_PD, X26_PD,
571    X0_PD, X2_PD, X4_PD
572)>;
573
574// The register class is added for inline assembly for vector mask types.
575def VM : VReg<VMaskVTs,
576           (add (sequence "V%u", 8, 31),
577                (sequence "V%u", 0, 7)), 1>;
578
579foreach m = LMULList in {
580  foreach nf = NFList<m>.L in {
581    def "VRN" # nf # "M" # m # "NoV0": VReg<[untyped],
582                               (add !cast<RegisterTuples>("VN" # nf # "M" # m # "NoV0")),
583                                    !mul(nf, m)>;
584    def "VRN" # nf # "M" # m: VReg<[untyped],
585                               (add !cast<RegisterTuples>("VN" # nf # "M" # m # "NoV0"),
586                                    !cast<RegisterTuples>("VN" # nf # "M" # m # "V0")),
587                                    !mul(nf, m)>;
588  }
589}
590
591// Special registers
592def FFLAGS : RISCVReg<0, "fflags">;
593def FRM    : RISCVReg<0, "frm">;
594