1//===-- RISCVRegisterInfo.td - RISC-V Register defs --------*- tablegen -*-===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8
9//===----------------------------------------------------------------------===//
10//  Declarations that describe the RISC-V register files
11//===----------------------------------------------------------------------===//
12
13let Namespace = "RISCV" in {
14class RISCVReg<bits<5> Enc, string n, list<string> alt = []> : Register<n> {
15  let HWEncoding{4-0} = Enc;
16  let AltNames = alt;
17}
18
19class RISCVReg16<bits<5> Enc, string n, list<string> alt = []> : Register<n> {
20  let HWEncoding{4-0} = Enc;
21  let AltNames = alt;
22}
23
24def sub_16 : SubRegIndex<16>;
25class RISCVReg32<RISCVReg16 subreg> : Register<""> {
26  let HWEncoding{4-0} = subreg.HWEncoding{4-0};
27  let SubRegs = [subreg];
28  let SubRegIndices = [sub_16];
29  let AsmName = subreg.AsmName;
30  let AltNames = subreg.AltNames;
31}
32
33// Because RISCVReg64 register have AsmName and AltNames that alias with their
34// 16/32-bit sub-register, RISCVAsmParser will need to coerce a register number
35// from a RISCVReg16/RISCVReg32 to the equivalent RISCVReg64 when appropriate.
36def sub_32 : SubRegIndex<32>;
37class RISCVReg64<RISCVReg32 subreg> : Register<""> {
38  let HWEncoding{4-0} = subreg.HWEncoding{4-0};
39  let SubRegs = [subreg];
40  let SubRegIndices = [sub_32];
41  let AsmName = subreg.AsmName;
42  let AltNames = subreg.AltNames;
43}
44
45class RISCVRegWithSubRegs<bits<5> Enc, string n, list<Register> subregs,
46                          list<string> alt = []>
47      : RegisterWithSubRegs<n, subregs> {
48  let HWEncoding{4-0} = Enc;
49  let AltNames = alt;
50}
51
52def ABIRegAltName : RegAltNameIndex;
53
54def sub_vrm4_0 : SubRegIndex<256>;
55def sub_vrm4_1 : SubRegIndex<256, 256>;
56def sub_vrm2_0 : SubRegIndex<128>;
57def sub_vrm2_1 : SubRegIndex<128, 128>;
58def sub_vrm2_2 : ComposedSubRegIndex<sub_vrm4_1, sub_vrm2_0>;
59def sub_vrm2_3 : ComposedSubRegIndex<sub_vrm4_1, sub_vrm2_1>;
60def sub_vrm1_0 : SubRegIndex<64>;
61def sub_vrm1_1 : SubRegIndex<64, 64>;
62def sub_vrm1_2 : ComposedSubRegIndex<sub_vrm2_1, sub_vrm1_0>;
63def sub_vrm1_3 : ComposedSubRegIndex<sub_vrm2_1, sub_vrm1_1>;
64def sub_vrm1_4 : ComposedSubRegIndex<sub_vrm2_2, sub_vrm1_0>;
65def sub_vrm1_5 : ComposedSubRegIndex<sub_vrm2_2, sub_vrm1_1>;
66def sub_vrm1_6 : ComposedSubRegIndex<sub_vrm2_3, sub_vrm1_0>;
67def sub_vrm1_7 : ComposedSubRegIndex<sub_vrm2_3, sub_vrm1_1>;
68
69def sub_32_hi  : SubRegIndex<32, 32>;
70} // Namespace = "RISCV"
71
72// Integer registers
73// CostPerUse is set higher for registers that may not be compressible as they
74// are not part of GPRC, the most restrictive register class used by the
75// compressed instruction set. This will influence the greedy register
76// allocator to reduce the use of registers that can't be encoded in 16 bit
77// instructions.
78
79let RegAltNameIndices = [ABIRegAltName] in {
80  let isConstant = true in
81  def X0  : RISCVReg<0, "x0", ["zero"]>, DwarfRegNum<[0]>;
82  let CostPerUse = [0, 1] in {
83  def X1  : RISCVReg<1, "x1", ["ra"]>, DwarfRegNum<[1]>;
84  def X2  : RISCVReg<2, "x2", ["sp"]>, DwarfRegNum<[2]>;
85  def X3  : RISCVReg<3, "x3", ["gp"]>, DwarfRegNum<[3]>;
86  def X4  : RISCVReg<4, "x4", ["tp"]>, DwarfRegNum<[4]>;
87  def X5  : RISCVReg<5, "x5", ["t0"]>, DwarfRegNum<[5]>;
88  def X6  : RISCVReg<6, "x6", ["t1"]>, DwarfRegNum<[6]>;
89  def X7  : RISCVReg<7, "x7", ["t2"]>, DwarfRegNum<[7]>;
90  }
91  def X8  : RISCVReg<8, "x8", ["s0", "fp"]>, DwarfRegNum<[8]>;
92  def X9  : RISCVReg<9, "x9", ["s1"]>, DwarfRegNum<[9]>;
93  def X10 : RISCVReg<10,"x10", ["a0"]>, DwarfRegNum<[10]>;
94  def X11 : RISCVReg<11,"x11", ["a1"]>, DwarfRegNum<[11]>;
95  def X12 : RISCVReg<12,"x12", ["a2"]>, DwarfRegNum<[12]>;
96  def X13 : RISCVReg<13,"x13", ["a3"]>, DwarfRegNum<[13]>;
97  def X14 : RISCVReg<14,"x14", ["a4"]>, DwarfRegNum<[14]>;
98  def X15 : RISCVReg<15,"x15", ["a5"]>, DwarfRegNum<[15]>;
99  let CostPerUse = [0, 1] in {
100  def X16 : RISCVReg<16,"x16", ["a6"]>, DwarfRegNum<[16]>;
101  def X17 : RISCVReg<17,"x17", ["a7"]>, DwarfRegNum<[17]>;
102  def X18 : RISCVReg<18,"x18", ["s2"]>, DwarfRegNum<[18]>;
103  def X19 : RISCVReg<19,"x19", ["s3"]>, DwarfRegNum<[19]>;
104  def X20 : RISCVReg<20,"x20", ["s4"]>, DwarfRegNum<[20]>;
105  def X21 : RISCVReg<21,"x21", ["s5"]>, DwarfRegNum<[21]>;
106  def X22 : RISCVReg<22,"x22", ["s6"]>, DwarfRegNum<[22]>;
107  def X23 : RISCVReg<23,"x23", ["s7"]>, DwarfRegNum<[23]>;
108  def X24 : RISCVReg<24,"x24", ["s8"]>, DwarfRegNum<[24]>;
109  def X25 : RISCVReg<25,"x25", ["s9"]>, DwarfRegNum<[25]>;
110  def X26 : RISCVReg<26,"x26", ["s10"]>, DwarfRegNum<[26]>;
111  def X27 : RISCVReg<27,"x27", ["s11"]>, DwarfRegNum<[27]>;
112  def X28 : RISCVReg<28,"x28", ["t3"]>, DwarfRegNum<[28]>;
113  def X29 : RISCVReg<29,"x29", ["t4"]>, DwarfRegNum<[29]>;
114  def X30 : RISCVReg<30,"x30", ["t5"]>, DwarfRegNum<[30]>;
115  def X31 : RISCVReg<31,"x31", ["t6"]>, DwarfRegNum<[31]>;
116  }
117}
118
119def XLenVT : ValueTypeByHwMode<[RV32, RV64],
120                               [i32,  i64]>;
121def XLenRI : RegInfoByHwMode<
122      [RV32,              RV64],
123      [RegInfo<32,32,32>, RegInfo<64,64,64>]>;
124
125// The order of registers represents the preferred allocation sequence.
126// Registers are listed in the order caller-save, callee-save, specials.
127def GPR : RegisterClass<"RISCV", [XLenVT], 32, (add
128    (sequence "X%u", 10, 17),
129    (sequence "X%u", 5, 7),
130    (sequence "X%u", 28, 31),
131    (sequence "X%u", 8, 9),
132    (sequence "X%u", 18, 27),
133    (sequence "X%u", 0, 4)
134  )> {
135  let RegInfos = XLenRI;
136}
137
138def GPRX0 : RegisterClass<"RISCV", [XLenVT], 32, (add X0)> {
139  let RegInfos = XLenRI;
140}
141
142def GPRNoX0 : RegisterClass<"RISCV", [XLenVT], 32, (sub GPR, X0)> {
143  let RegInfos = XLenRI;
144}
145
146def GPRNoX0X2 : RegisterClass<"RISCV", [XLenVT], 32, (sub GPR, X0, X2)> {
147  let RegInfos = XLenRI;
148}
149
150// Don't use X1 or X5 for JALR since that is a hint to pop the return address
151// stack on some microarchitectures. Also remove the reserved registers X0, X2,
152// X3, and X4 as it reduces the number of register classes that get synthesized
153// by tablegen.
154def GPRJALR : RegisterClass<"RISCV", [XLenVT], 32, (sub GPR, (sequence "X%u", 0, 5))> {
155  let RegInfos = XLenRI;
156}
157
158def GPRC : RegisterClass<"RISCV", [XLenVT], 32, (add
159    (sequence "X%u", 10, 15),
160    (sequence "X%u", 8, 9)
161  )> {
162  let RegInfos = XLenRI;
163}
164
165// For indirect tail calls, we can't use callee-saved registers, as they are
166// restored to the saved value before the tail call, which would clobber a call
167// address. We shouldn't use x5 since that is a hint for to pop the return
168// address stack on some microarchitectures.
169def GPRTC : RegisterClass<"RISCV", [XLenVT], 32, (add
170    (sequence "X%u", 6, 7),
171    (sequence "X%u", 10, 17),
172    (sequence "X%u", 28, 31)
173  )> {
174  let RegInfos = XLenRI;
175}
176
177def SP : RegisterClass<"RISCV", [XLenVT], 32, (add X2)> {
178  let RegInfos = XLenRI;
179}
180
181// Floating point registers
182let RegAltNameIndices = [ABIRegAltName] in {
183  def F0_H  : RISCVReg16<0, "f0", ["ft0"]>, DwarfRegNum<[32]>;
184  def F1_H  : RISCVReg16<1, "f1", ["ft1"]>, DwarfRegNum<[33]>;
185  def F2_H  : RISCVReg16<2, "f2", ["ft2"]>, DwarfRegNum<[34]>;
186  def F3_H  : RISCVReg16<3, "f3", ["ft3"]>, DwarfRegNum<[35]>;
187  def F4_H  : RISCVReg16<4, "f4", ["ft4"]>, DwarfRegNum<[36]>;
188  def F5_H  : RISCVReg16<5, "f5", ["ft5"]>, DwarfRegNum<[37]>;
189  def F6_H  : RISCVReg16<6, "f6", ["ft6"]>, DwarfRegNum<[38]>;
190  def F7_H  : RISCVReg16<7, "f7", ["ft7"]>, DwarfRegNum<[39]>;
191  def F8_H  : RISCVReg16<8, "f8", ["fs0"]>, DwarfRegNum<[40]>;
192  def F9_H  : RISCVReg16<9, "f9", ["fs1"]>, DwarfRegNum<[41]>;
193  def F10_H : RISCVReg16<10,"f10", ["fa0"]>, DwarfRegNum<[42]>;
194  def F11_H : RISCVReg16<11,"f11", ["fa1"]>, DwarfRegNum<[43]>;
195  def F12_H : RISCVReg16<12,"f12", ["fa2"]>, DwarfRegNum<[44]>;
196  def F13_H : RISCVReg16<13,"f13", ["fa3"]>, DwarfRegNum<[45]>;
197  def F14_H : RISCVReg16<14,"f14", ["fa4"]>, DwarfRegNum<[46]>;
198  def F15_H : RISCVReg16<15,"f15", ["fa5"]>, DwarfRegNum<[47]>;
199  def F16_H : RISCVReg16<16,"f16", ["fa6"]>, DwarfRegNum<[48]>;
200  def F17_H : RISCVReg16<17,"f17", ["fa7"]>, DwarfRegNum<[49]>;
201  def F18_H : RISCVReg16<18,"f18", ["fs2"]>, DwarfRegNum<[50]>;
202  def F19_H : RISCVReg16<19,"f19", ["fs3"]>, DwarfRegNum<[51]>;
203  def F20_H : RISCVReg16<20,"f20", ["fs4"]>, DwarfRegNum<[52]>;
204  def F21_H : RISCVReg16<21,"f21", ["fs5"]>, DwarfRegNum<[53]>;
205  def F22_H : RISCVReg16<22,"f22", ["fs6"]>, DwarfRegNum<[54]>;
206  def F23_H : RISCVReg16<23,"f23", ["fs7"]>, DwarfRegNum<[55]>;
207  def F24_H : RISCVReg16<24,"f24", ["fs8"]>, DwarfRegNum<[56]>;
208  def F25_H : RISCVReg16<25,"f25", ["fs9"]>, DwarfRegNum<[57]>;
209  def F26_H : RISCVReg16<26,"f26", ["fs10"]>, DwarfRegNum<[58]>;
210  def F27_H : RISCVReg16<27,"f27", ["fs11"]>, DwarfRegNum<[59]>;
211  def F28_H : RISCVReg16<28,"f28", ["ft8"]>, DwarfRegNum<[60]>;
212  def F29_H : RISCVReg16<29,"f29", ["ft9"]>, DwarfRegNum<[61]>;
213  def F30_H : RISCVReg16<30,"f30", ["ft10"]>, DwarfRegNum<[62]>;
214  def F31_H : RISCVReg16<31,"f31", ["ft11"]>, DwarfRegNum<[63]>;
215
216  foreach Index = 0-31 in {
217    def F#Index#_F : RISCVReg32<!cast<RISCVReg16>("F"#Index#"_H")>,
218      DwarfRegNum<[!add(Index, 32)]>;
219  }
220
221  foreach Index = 0-31 in {
222    def F#Index#_D : RISCVReg64<!cast<RISCVReg32>("F"#Index#"_F")>,
223      DwarfRegNum<[!add(Index, 32)]>;
224  }
225}
226
227// The order of registers represents the preferred allocation sequence,
228// meaning caller-save regs are listed before callee-save.
229def FPR16 : RegisterClass<"RISCV", [f16], 16, (add
230    (sequence "F%u_H", 0, 7),
231    (sequence "F%u_H", 10, 17),
232    (sequence "F%u_H", 28, 31),
233    (sequence "F%u_H", 8, 9),
234    (sequence "F%u_H", 18, 27)
235)>;
236
237def FPR32 : RegisterClass<"RISCV", [f32], 32, (add
238    (sequence "F%u_F", 0, 7),
239    (sequence "F%u_F", 10, 17),
240    (sequence "F%u_F", 28, 31),
241    (sequence "F%u_F", 8, 9),
242    (sequence "F%u_F", 18, 27)
243)>;
244
245def FPR32C : RegisterClass<"RISCV", [f32], 32, (add
246  (sequence "F%u_F", 10, 15),
247  (sequence "F%u_F", 8, 9)
248)>;
249
250// The order of registers represents the preferred allocation sequence,
251// meaning caller-save regs are listed before callee-save.
252def FPR64 : RegisterClass<"RISCV", [f64], 64, (add
253    (sequence "F%u_D", 0, 7),
254    (sequence "F%u_D", 10, 17),
255    (sequence "F%u_D", 28, 31),
256    (sequence "F%u_D", 8, 9),
257    (sequence "F%u_D", 18, 27)
258)>;
259
260def FPR64C : RegisterClass<"RISCV", [f64], 64, (add
261  (sequence "F%u_D", 10, 15),
262  (sequence "F%u_D", 8, 9)
263)>;
264
265// Vector type mapping to LLVM types.
266//
267// The V vector extension requires that VLEN >= 128 and <= 65536.
268// Additionally, the only supported ELEN values are 32 and 64,
269// thus `vscale` can be defined as VLEN/64,
270// allowing the same types with either ELEN value.
271//
272//         MF8    MF4     MF2     M1      M2      M4       M8
273// i64*    N/A    N/A     N/A     nxv1i64 nxv2i64 nxv4i64  nxv8i64
274// i32     N/A    N/A     nxv1i32 nxv2i32 nxv4i32 nxv8i32  nxv16i32
275// i16     N/A    nxv1i16 nxv2i16 nxv4i16 nxv8i16 nxv16i16 nxv32i16
276// i8      nxv1i8 nxv2i8  nxv4i8  nxv8i8  nxv16i8 nxv32i8  nxv64i8
277// double* N/A    N/A     N/A     nxv1f64 nxv2f64 nxv4f64  nxv8f64
278// float   N/A    N/A     nxv1f32 nxv2f32 nxv4f32 nxv8f32  nxv16f32
279// half    N/A    nxv1f16 nxv2f16 nxv4f16 nxv8f16 nxv16f16 nxv32f16
280// * ELEN=64
281
282defvar vint8mf8_t = nxv1i8;
283defvar vint8mf4_t = nxv2i8;
284defvar vint8mf2_t = nxv4i8;
285defvar vint8m1_t = nxv8i8;
286defvar vint8m2_t = nxv16i8;
287defvar vint8m4_t = nxv32i8;
288defvar vint8m8_t = nxv64i8;
289
290defvar vint16mf4_t = nxv1i16;
291defvar vint16mf2_t = nxv2i16;
292defvar vint16m1_t  = nxv4i16;
293defvar vint16m2_t  = nxv8i16;
294defvar vint16m4_t  = nxv16i16;
295defvar vint16m8_t  = nxv32i16;
296
297defvar vint32mf2_t = nxv1i32;
298defvar vint32m1_t  = nxv2i32;
299defvar vint32m2_t  = nxv4i32;
300defvar vint32m4_t  = nxv8i32;
301defvar vint32m8_t  = nxv16i32;
302
303defvar vint64m1_t = nxv1i64;
304defvar vint64m2_t = nxv2i64;
305defvar vint64m4_t = nxv4i64;
306defvar vint64m8_t = nxv8i64;
307
308defvar vfloat16mf4_t = nxv1f16;
309defvar vfloat16mf2_t = nxv2f16;
310defvar vfloat16m1_t  = nxv4f16;
311defvar vfloat16m2_t  = nxv8f16;
312defvar vfloat16m4_t  = nxv16f16;
313defvar vfloat16m8_t  = nxv32f16;
314
315defvar vfloat32mf2_t = nxv1f32;
316defvar vfloat32m1_t  = nxv2f32;
317defvar vfloat32m2_t  = nxv4f32;
318defvar vfloat32m4_t  = nxv8f32;
319defvar vfloat32m8_t  = nxv16f32;
320
321defvar vfloat64m1_t = nxv1f64;
322defvar vfloat64m2_t = nxv2f64;
323defvar vfloat64m4_t = nxv4f64;
324defvar vfloat64m8_t = nxv8f64;
325
326defvar vbool1_t  = nxv64i1;
327defvar vbool2_t  = nxv32i1;
328defvar vbool4_t  = nxv16i1;
329defvar vbool8_t  = nxv8i1;
330defvar vbool16_t = nxv4i1;
331defvar vbool32_t = nxv2i1;
332defvar vbool64_t = nxv1i1;
333
334// There is no need to define register classes for fractional LMUL.
335def LMULList {
336  list<int> m = [1, 2, 4, 8];
337}
338
339//===----------------------------------------------------------------------===//
340// Utility classes for segment load/store.
341//===----------------------------------------------------------------------===//
342// The set of legal NF for LMUL = lmul.
343// LMUL == 1, NF = 2, 3, 4, 5, 6, 7, 8
344// LMUL == 2, NF = 2, 3, 4
345// LMUL == 4, NF = 2
346class NFList<int lmul> {
347  list<int> L = !cond(!eq(lmul, 1): [2, 3, 4, 5, 6, 7, 8],
348                      !eq(lmul, 2): [2, 3, 4],
349                      !eq(lmul, 4): [2],
350                      !eq(lmul, 8): []);
351}
352
353// Generate [start, end) SubRegIndex list.
354class SubRegSet<int nf, int lmul> {
355  list<SubRegIndex> L = !foldl([]<SubRegIndex>,
356                               [0, 1, 2, 3, 4, 5, 6, 7],
357                               AccList, i,
358                               !listconcat(AccList,
359                                 !if(!lt(i, nf),
360                                   [!cast<SubRegIndex>("sub_vrm" # lmul # "_" # i)],
361                                   [])));
362}
363
364// Collect the valid indexes into 'R' under NF and LMUL values from TUPLE_INDEX.
365// When NF = 2, the valid TUPLE_INDEX is 0 and 1.
366// For example, when LMUL = 4, the potential valid indexes is
367// [8, 12, 16, 20, 24, 28, 4]. However, not all these indexes are valid under
368// NF = 2. For example, 28 is not valid under LMUL = 4, NF = 2 and TUPLE_INDEX = 0.
369// The filter is
370//   (tuple_index + i) x lmul <= (tuple_index x lmul) + 32 - (nf x lmul)
371//
372// Use START = 0, LMUL = 4 and NF = 2 as the example,
373//   i x 4 <= 24
374// The class will return [8, 12, 16, 20, 24, 4].
375// Use START = 1, LMUL = 4 and NF = 2 as the example,
376//   (1 + i) x 4 <= 28
377// The class will return [12, 16, 20, 24, 28, 8].
378//
379class IndexSet<int tuple_index, int nf, int lmul, bit isV0 = false> {
380  list<int> R =
381    !foldl([]<int>,
382              !if(isV0, [0],
383                !cond(
384                  !eq(lmul, 1):
385                  [8, 9, 10, 11, 12, 13, 14, 15,
386                   16, 17, 18, 19, 20, 21, 22, 23,
387                   24, 25, 26, 27, 28, 29, 30, 31,
388                   1, 2, 3, 4, 5, 6, 7],
389                  !eq(lmul, 2):
390                  [4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 1, 2, 3],
391                  !eq(lmul, 4):
392                  [2, 3, 4, 5, 6, 7, 1])),
393              L, i,
394              !listconcat(L,
395                          !if(!le(!mul(!add(i, tuple_index), lmul),
396                                  !sub(!add(32, !mul(tuple_index, lmul)), !mul(nf, lmul))),
397                              [!mul(!add(i, tuple_index), lmul)], [])));
398}
399
400// This class returns a list of vector register collections.
401// For example, for NF = 2 and LMUL = 4,
402// it will return
403//   ([ V8M4, V12M4, V16M4, V20M4, V24M4, V4M4],
404//    [V12M4, V16M4, V20M4, V24M4, V28M4, V8M4])
405//
406class VRegList<list<dag> LIn, int start, int nf, int lmul, bit isV0> {
407  list<dag> L =
408    !if(!ge(start, nf),
409        LIn,
410        !listconcat(
411          [!dag(add,
412                !foreach(i, IndexSet<start, nf, lmul, isV0>.R,
413                  !cast<Register>("V" # i # !cond(!eq(lmul, 2): "M2",
414                                                  !eq(lmul, 4): "M4",
415                                                  true: ""))),
416                !listsplat("",
417                  !size(IndexSet<start, nf, lmul, isV0>.R)))],
418          VRegList<LIn, !add(start, 1), nf, lmul, isV0>.L));
419}
420
421// Vector registers
422let RegAltNameIndices = [ABIRegAltName] in {
423  foreach Index = 0-31 in {
424    def V#Index : RISCVReg<Index, "v"#Index, ["v"#Index]>, DwarfRegNum<[!add(Index, 96)]>;
425  }
426
427  foreach Index = [0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22,
428                   24, 26, 28, 30] in {
429    def V#Index#M2 : RISCVRegWithSubRegs<Index, "v"#Index,
430                       [!cast<Register>("V"#Index),
431                        !cast<Register>("V"#!add(Index, 1))],
432                       ["v"#Index]>,
433                     DwarfRegAlias<!cast<Register>("V"#Index)> {
434      let SubRegIndices = [sub_vrm1_0, sub_vrm1_1];
435    }
436  }
437
438  foreach Index = [0, 4, 8, 12, 16, 20, 24, 28] in {
439    def V#Index#M4 : RISCVRegWithSubRegs<Index, "v"#Index,
440                       [!cast<Register>("V"#Index#"M2"),
441                        !cast<Register>("V"#!add(Index, 2)#"M2")],
442                       ["v"#Index]>,
443                     DwarfRegAlias<!cast<Register>("V"#Index)> {
444      let SubRegIndices = [sub_vrm2_0, sub_vrm2_1];
445    }
446  }
447
448  foreach Index = [0, 8, 16, 24] in {
449    def V#Index#M8 : RISCVRegWithSubRegs<Index, "v"#Index,
450                       [!cast<Register>("V"#Index#"M4"),
451                        !cast<Register>("V"#!add(Index, 4)#"M4")],
452                       ["v"#Index]>,
453                     DwarfRegAlias<!cast<Register>("V"#Index)> {
454      let SubRegIndices = [sub_vrm4_0, sub_vrm4_1];
455    }
456  }
457
458  def VTYPE  : RISCVReg<0, "vtype", ["vtype"]>;
459  def VL     : RISCVReg<0, "vl", ["vl"]>;
460  def VXSAT  : RISCVReg<0, "vxsat", ["vxsat"]>;
461  def VXRM   : RISCVReg<0, "vxrm", ["vxrm"]>;
462  let isConstant = true in
463  def VLENB  : RISCVReg<0, "vlenb", ["vlenb"]>,
464               DwarfRegNum<[!add(4096, SysRegVLENB.Encoding)]>;
465}
466
467def VCSR : RegisterClass<"RISCV", [XLenVT], 32,
468                          (add VTYPE, VL, VLENB)> {
469  let RegInfos = XLenRI;
470}
471
472
473foreach m = [1, 2, 4] in {
474  foreach n = NFList<m>.L in {
475    def "VN" # n # "M" # m # "NoV0": RegisterTuples<
476                                       SubRegSet<n, m>.L,
477                                       VRegList<[], 0, n, m, false>.L>;
478    def "VN" # n # "M" # m # "V0" : RegisterTuples<
479                                       SubRegSet<n, m>.L,
480                                       VRegList<[], 0, n, m, true>.L>;
481  }
482}
483
484class VReg<list<ValueType> regTypes, dag regList, int Vlmul>
485  : RegisterClass<"RISCV",
486                  regTypes,
487                  64, // The maximum supported ELEN is 64.
488                  regList> {
489  int VLMul = Vlmul;
490  int Size = !mul(Vlmul, 64);
491}
492
493defvar VMaskVTs = [vbool1_t, vbool2_t, vbool4_t, vbool8_t, vbool16_t,
494                   vbool32_t, vbool64_t];
495
496defvar VM1VTs = [vint8m1_t, vint16m1_t, vint32m1_t, vint64m1_t,
497                 vfloat16m1_t, vfloat32m1_t, vfloat64m1_t,
498                 vint8mf2_t, vint8mf4_t, vint8mf8_t,
499                 vint16mf2_t, vint16mf4_t, vint32mf2_t,
500                 vfloat16mf4_t, vfloat16mf2_t, vfloat32mf2_t];
501
502defvar VM2VTs = [vint8m2_t, vint16m2_t, vint32m2_t, vint64m2_t,
503                 vfloat16m2_t, vfloat32m2_t, vfloat64m2_t];
504
505defvar VM4VTs = [vint8m4_t, vint16m4_t, vint32m4_t, vint64m4_t,
506                 vfloat16m4_t, vfloat32m4_t, vfloat64m4_t];
507
508defvar VM8VTs = [vint8m8_t, vint16m8_t, vint32m8_t, vint64m8_t,
509                 vfloat16m8_t, vfloat32m8_t, vfloat64m8_t];
510
511def VR : VReg<!listconcat(VM1VTs, VMaskVTs),
512              (add (sequence "V%u", 8, 31),
513                   (sequence "V%u", 0, 7)), 1>;
514
515def VRNoV0 : VReg<!listconcat(VM1VTs, VMaskVTs),
516                  (add (sequence "V%u", 8, 31),
517                       (sequence "V%u", 1, 7)), 1>;
518
519def VRM2 : VReg<VM2VTs, (add (sequence "V%uM2", 8, 31, 2),
520                             (sequence "V%uM2", 0, 7, 2)), 2>;
521
522def VRM2NoV0 : VReg<VM2VTs, (add (sequence "V%uM2", 8, 31, 2),
523                                 (sequence "V%uM2", 2, 7, 2)), 2>;
524
525def VRM4 : VReg<VM4VTs,
526             (add V8M4, V12M4, V16M4, V20M4, V24M4, V28M4, V0M4, V4M4), 4>;
527
528def VRM4NoV0 : VReg<VM4VTs,
529             (add V8M4, V12M4, V16M4, V20M4, V24M4, V28M4, V4M4), 4>;
530
531def VRM8 : VReg<VM8VTs, (add V8M8, V16M8, V24M8, V0M8), 8>;
532
533def VRM8NoV0 : VReg<VM8VTs, (add V8M8, V16M8, V24M8), 8>;
534
535def VMV0 : RegisterClass<"RISCV", VMaskVTs, 64, (add V0)> {
536  let Size = 64;
537}
538
539let RegInfos = XLenRI in {
540def GPRF16  : RegisterClass<"RISCV", [f16], 16, (add GPR)>;
541def GPRF32  : RegisterClass<"RISCV", [f32], 32, (add GPR)>;
542def GPRF64  : RegisterClass<"RISCV", [f64], 64, (add GPR)>;
543} // RegInfos = XLenRI
544
545let RegAltNameIndices = [ABIRegAltName] in {
546  foreach Index = [0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22,
547                   24, 26, 28, 30] in {
548    defvar Reg = !cast<Register>("X"#Index);
549    def X#Index#_PD : RISCVRegWithSubRegs<Index, Reg.AsmName,
550                                          [!cast<Register>("X"#Index),
551                                           !cast<Register>("X"#!add(Index, 1))],
552                                           Reg.AltNames> {
553      let SubRegIndices = [sub_32, sub_32_hi];
554    }
555  }
556}
557
558let RegInfos = RegInfoByHwMode<[RV64], [RegInfo<64, 64, 64>]> in
559def GPRPF64 : RegisterClass<"RISCV", [f64], 64, (add
560    X10_PD, X12_PD, X14_PD, X16_PD,
561    X6_PD,
562    X28_PD, X30_PD,
563    X8_PD,
564    X18_PD, X20_PD, X22_PD, X24_PD, X26_PD,
565    X0_PD, X2_PD, X4_PD
566)>;
567
568// The register class is added for inline assembly for vector mask types.
569def VM : VReg<VMaskVTs,
570           (add (sequence "V%u", 8, 31),
571                (sequence "V%u", 0, 7)), 1>;
572
573foreach m = LMULList.m in {
574  foreach nf = NFList<m>.L in {
575    def "VRN" # nf # "M" # m # "NoV0": VReg<[untyped],
576                               (add !cast<RegisterTuples>("VN" # nf # "M" # m # "NoV0")),
577                                    !mul(nf, m)>;
578    def "VRN" # nf # "M" # m: VReg<[untyped],
579                               (add !cast<RegisterTuples>("VN" # nf # "M" # m # "NoV0"),
580                                    !cast<RegisterTuples>("VN" # nf # "M" # m # "V0")),
581                                    !mul(nf, m)>;
582  }
583}
584
585// Special registers
586def FFLAGS : RISCVReg<0, "fflags">;
587def FRM    : RISCVReg<0, "frm">;
588
589// Any type register. Used for .insn directives when we don't know what the
590// register types could be.
591// NOTE: The alignment and size are bogus values. The Size needs to be non-zero
592// or tablegen will use "untyped" to determine the size which will assert.
593let isAllocatable = 0 in
594def AnyReg : RegisterClass<"RISCV", [untyped], 32,
595                           (add (sequence "X%u", 0, 31),
596                                (sequence "F%u_D", 0, 31),
597                                (sequence "V%u", 0, 31))> {
598  let Size = 32;
599}
600