1//===-- SparcInstrInfo.td - Target Description for Sparc Target -----------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file describes the Sparc instructions in TableGen format.
10//
11//===----------------------------------------------------------------------===//
12
13//===----------------------------------------------------------------------===//
14// Instruction format superclass
15//===----------------------------------------------------------------------===//
16
17include "SparcInstrFormats.td"
18
19//===----------------------------------------------------------------------===//
20// Feature predicates.
21//===----------------------------------------------------------------------===//
22
23// True when generating 32-bit code.
24def Is32Bit : Predicate<"!Subtarget->is64Bit()">;
25
26// True when generating 64-bit code. This also implies HasV9.
27def Is64Bit : Predicate<"Subtarget->is64Bit()">;
28
29def UseSoftMulDiv : Predicate<"Subtarget->useSoftMulDiv()">,
30              AssemblerPredicate<(all_of FeatureSoftMulDiv)>;
31
32// HasV9 - This predicate is true when the target processor supports V9
33// instructions.  Note that the machine may be running in 32-bit mode.
34def HasV9   : Predicate<"Subtarget->isV9()">,
35              AssemblerPredicate<(all_of FeatureV9)>;
36
37// HasNoV9 - This predicate is true when the target doesn't have V9
38// instructions.  Use of this is just a hack for the isel not having proper
39// costs for V8 instructions that are more expensive than their V9 ones.
40def HasNoV9 : Predicate<"!Subtarget->isV9()">;
41
42// HasVIS - This is true when the target processor has VIS extensions.
43def HasVIS : Predicate<"Subtarget->isVIS()">,
44             AssemblerPredicate<(all_of FeatureVIS)>;
45def HasVIS2 : Predicate<"Subtarget->isVIS2()">,
46             AssemblerPredicate<(all_of FeatureVIS2)>;
47def HasVIS3 : Predicate<"Subtarget->isVIS3()">,
48             AssemblerPredicate<(all_of FeatureVIS3)>;
49
50// HasHardQuad - This is true when the target processor supports quad floating
51// point instructions.
52def HasHardQuad : Predicate<"Subtarget->hasHardQuad()">;
53
54// HasLeonCASA - This is true when the target processor supports the CASA
55// instruction
56def HasLeonCASA : Predicate<"Subtarget->hasLeonCasa()">;
57
58// HasPWRPSR - This is true when the target processor supports partial
59// writes to the PSR register that only affects the ET field.
60def HasPWRPSR : Predicate<"Subtarget->hasPWRPSR()">,
61                AssemblerPredicate<(all_of FeaturePWRPSR)>;
62
63// HasUMAC_SMAC - This is true when the target processor supports the
64// UMAC and SMAC instructions
65def HasUMAC_SMAC : Predicate<"Subtarget->hasUmacSmac()">;
66
67def HasNoFdivSqrtFix : Predicate<"!Subtarget->fixAllFDIVSQRT()">;
68def HasFMULS : Predicate<"!Subtarget->hasNoFMULS()">;
69def HasFSMULD : Predicate<"!Subtarget->hasNoFSMULD()">;
70
71// UseDeprecatedInsts - This predicate is true when the target processor is a
72// V8, or when it is V9 but the V8 deprecated instructions are efficient enough
73// to use when appropriate.  In either of these cases, the instruction selector
74// will pick deprecated instructions.
75def UseDeprecatedInsts : Predicate<"Subtarget->useDeprecatedV8Instructions()">;
76
77//===----------------------------------------------------------------------===//
78// Instruction Pattern Stuff
79//===----------------------------------------------------------------------===//
80
81def simm11  : PatLeaf<(imm), [{ return isInt<11>(N->getSExtValue()); }]>;
82
83def simm13  : PatLeaf<(imm), [{ return isInt<13>(N->getSExtValue()); }]>;
84
85def LO10 : SDNodeXForm<imm, [{
86  return CurDAG->getTargetConstant((unsigned)N->getZExtValue() & 1023, SDLoc(N),
87                                   MVT::i32);
88}]>;
89
90def HI22 : SDNodeXForm<imm, [{
91  // Transformation function: shift the immediate value down into the low bits.
92  return CurDAG->getTargetConstant((unsigned)N->getZExtValue() >> 10, SDLoc(N),
93                                   MVT::i32);
94}]>;
95
96// Return the complement of a HI22 immediate value.
97def HI22_not : SDNodeXForm<imm, [{
98  return CurDAG->getTargetConstant(~(unsigned)N->getZExtValue() >> 10, SDLoc(N),
99                                   MVT::i32);
100}]>;
101
102def SETHIimm : PatLeaf<(imm), [{
103  return isShiftedUInt<22, 10>(N->getZExtValue());
104}], HI22>;
105
106// The N->hasOneUse() prevents the immediate from being instantiated in both
107// normal and complement form.
108def SETHIimm_not : PatLeaf<(i32 imm), [{
109  return N->hasOneUse() && isShiftedUInt<22, 10>(~(unsigned)N->getZExtValue());
110}], HI22_not>;
111
112// Addressing modes.
113def ADDRrr : ComplexPattern<iPTR, 2, "SelectADDRrr", [], []>;
114def ADDRri : ComplexPattern<iPTR, 2, "SelectADDRri", [frameindex], []>;
115
116// Constrained operands for the shift operations.
117class ShiftAmtImmAsmOperand<int Bits> : AsmOperandClass {
118    let Name = "ShiftAmtImm" # Bits;
119    let ParserMethod = "parseShiftAmtImm<" # Bits # ">";
120}
121def shift_imm5 : Operand<i32> {
122  let ParserMatchClass = ShiftAmtImmAsmOperand<5>;
123}
124def shift_imm6 : Operand<i32> {
125  let ParserMatchClass = ShiftAmtImmAsmOperand<6>;
126}
127
128// Address operands
129def SparcMEMrrAsmOperand : AsmOperandClass {
130  let Name = "MEMrr";
131  let ParserMethod = "parseMEMOperand";
132}
133
134def SparcMEMriAsmOperand : AsmOperandClass {
135  let Name = "MEMri";
136  let ParserMethod = "parseMEMOperand";
137}
138
139def MEMrr : Operand<iPTR> {
140  let PrintMethod = "printMemOperand";
141  let MIOperandInfo = (ops ptr_rc, ptr_rc);
142  let ParserMatchClass = SparcMEMrrAsmOperand;
143}
144def MEMri : Operand<iPTR> {
145  let PrintMethod = "printMemOperand";
146  let MIOperandInfo = (ops ptr_rc, i32imm);
147  let ParserMatchClass = SparcMEMriAsmOperand;
148}
149
150// Represents a tail relocation operand for instructions such as add, ld, call.
151class SparcTailRelocSymAsmOperand<string Kind> : AsmOperandClass {
152  let Name = "TailRelocSym" # Kind;
153  let RenderMethod = "addTailRelocSymOperands";
154  let PredicateMethod = "isTailRelocSym";
155  let ParserMethod = "parseTailRelocSym<TailRelocKind::" # Kind # ">";
156}
157
158def TailRelocSymGOTLoad : Operand<iPTR> {
159  let ParserMatchClass = SparcTailRelocSymAsmOperand<"Load_GOT">;
160}
161
162def TailRelocSymTLSAdd : Operand<iPTR> {
163  let ParserMatchClass = SparcTailRelocSymAsmOperand<"Add_TLS">;
164}
165
166def TailRelocSymTLSLoad : Operand<iPTR> {
167  let ParserMatchClass = SparcTailRelocSymAsmOperand<"Load_TLS">;
168}
169
170def TailRelocSymTLSCall : Operand<iPTR> {
171  let ParserMatchClass = SparcTailRelocSymAsmOperand<"Call_TLS">;
172}
173
174def SparcMembarTagAsmOperand : AsmOperandClass {
175  let Name = "MembarTag";
176  let ParserMethod = "parseMembarTag";
177}
178
179def MembarTag : Operand<i32> {
180  let PrintMethod = "printMembarTag";
181  let ParserMatchClass = SparcMembarTagAsmOperand;
182}
183
184// Branch targets have OtherVT type.
185def brtarget : Operand<OtherVT> {
186  let EncoderMethod = "getBranchTargetOpValue";
187}
188
189def bprtarget : Operand<OtherVT> {
190  let EncoderMethod = "getBranchPredTargetOpValue";
191}
192
193def bprtarget16 : Operand<OtherVT> {
194  let EncoderMethod = "getBranchOnRegTargetOpValue";
195}
196
197def SparcCallTargetAsmOperand : AsmOperandClass {
198  let Name = "CallTarget";
199  let ParserMethod = "parseCallTarget";
200}
201
202def calltarget : Operand<i32> {
203  let EncoderMethod = "getCallTargetOpValue";
204  let DecoderMethod = "DecodeCall";
205  let ParserMatchClass = SparcCallTargetAsmOperand;
206}
207
208def simm13Op : Operand<i32> {
209  let DecoderMethod = "DecodeSIMM13";
210  let EncoderMethod = "getSImm13OpValue";
211}
212
213// Operand for printing out a condition code.
214let PrintMethod = "printCCOperand" in
215  def CCOp : Operand<i32>;
216
217def SDTSPcmpicc :
218SDTypeProfile<0, 2, [SDTCisInt<0>, SDTCisSameAs<0, 1>]>;
219def SDTSPcmpfcc :
220SDTypeProfile<0, 2, [SDTCisFP<0>, SDTCisSameAs<0, 1>]>;
221def SDTSPbrcc :
222SDTypeProfile<0, 2, [SDTCisVT<0, OtherVT>, SDTCisVT<1, i32>]>;
223def SDTSPselectcc :
224SDTypeProfile<1, 3, [SDTCisSameAs<0, 1>, SDTCisSameAs<1, 2>, SDTCisVT<3, i32>]>;
225def SDTSPFTOI :
226SDTypeProfile<1, 1, [SDTCisVT<0, f32>, SDTCisFP<1>]>;
227def SDTSPITOF :
228SDTypeProfile<1, 1, [SDTCisFP<0>, SDTCisVT<1, f32>]>;
229def SDTSPFTOX :
230SDTypeProfile<1, 1, [SDTCisVT<0, f64>, SDTCisFP<1>]>;
231def SDTSPXTOF :
232SDTypeProfile<1, 1, [SDTCisFP<0>, SDTCisVT<1, f64>]>;
233
234def SDTSPtlsadd :
235SDTypeProfile<1, 3, [SDTCisInt<0>, SDTCisSameAs<0, 1>, SDTCisPtrTy<2>]>;
236def SDTSPtlsld :
237SDTypeProfile<1, 2, [SDTCisPtrTy<0>, SDTCisPtrTy<1>]>;
238
239def SDTSPloadgdop :
240SDTypeProfile<1, 2, [SDTCisPtrTy<0>, SDTCisPtrTy<1>]>;
241
242def SPcmpicc : SDNode<"SPISD::CMPICC", SDTSPcmpicc, [SDNPOutGlue]>;
243def SPcmpfcc : SDNode<"SPISD::CMPFCC", SDTSPcmpfcc, [SDNPOutGlue]>;
244def SPbricc : SDNode<"SPISD::BRICC", SDTSPbrcc, [SDNPHasChain, SDNPInGlue]>;
245def SPbrxcc : SDNode<"SPISD::BRXCC", SDTSPbrcc, [SDNPHasChain, SDNPInGlue]>;
246def SPbrfcc : SDNode<"SPISD::BRFCC", SDTSPbrcc, [SDNPHasChain, SDNPInGlue]>;
247
248def SPhi    : SDNode<"SPISD::Hi", SDTIntUnaryOp>;
249def SPlo    : SDNode<"SPISD::Lo", SDTIntUnaryOp>;
250
251def SPftoi  : SDNode<"SPISD::FTOI", SDTSPFTOI>;
252def SPitof  : SDNode<"SPISD::ITOF", SDTSPITOF>;
253def SPftox  : SDNode<"SPISD::FTOX", SDTSPFTOX>;
254def SPxtof  : SDNode<"SPISD::XTOF", SDTSPXTOF>;
255
256def SPselecticc : SDNode<"SPISD::SELECT_ICC", SDTSPselectcc, [SDNPInGlue]>;
257def SPselectxcc : SDNode<"SPISD::SELECT_XCC", SDTSPselectcc, [SDNPInGlue]>;
258def SPselectfcc : SDNode<"SPISD::SELECT_FCC", SDTSPselectcc, [SDNPInGlue]>;
259
260//  These are target-independent nodes, but have target-specific formats.
261def SDT_SPCallSeqStart : SDCallSeqStart<[ SDTCisVT<0, i32>,
262                                          SDTCisVT<1, i32> ]>;
263def SDT_SPCallSeqEnd   : SDCallSeqEnd<[ SDTCisVT<0, i32>,
264                                        SDTCisVT<1, i32> ]>;
265
266def callseq_start : SDNode<"ISD::CALLSEQ_START", SDT_SPCallSeqStart,
267                           [SDNPHasChain, SDNPOutGlue]>;
268def callseq_end   : SDNode<"ISD::CALLSEQ_END",   SDT_SPCallSeqEnd,
269                           [SDNPHasChain, SDNPOptInGlue, SDNPOutGlue]>;
270
271def SDT_SPCall    : SDTypeProfile<0, -1, [SDTCisVT<0, i32>]>;
272def call          : SDNode<"SPISD::CALL", SDT_SPCall,
273                           [SDNPHasChain, SDNPOptInGlue, SDNPOutGlue,
274                            SDNPVariadic]>;
275
276def tailcall      : SDNode<"SPISD::TAIL_CALL", SDT_SPCall,
277                           [SDNPHasChain, SDNPOptInGlue, SDNPOutGlue,
278                            SDNPVariadic]>;
279
280def SDT_SPRet     : SDTypeProfile<0, 1, [SDTCisVT<0, i32>]>;
281def retflag       : SDNode<"SPISD::RET_FLAG", SDT_SPRet,
282                           [SDNPHasChain, SDNPOptInGlue, SDNPVariadic]>;
283
284def flushw        : SDNode<"SPISD::FLUSHW", SDTNone,
285                           [SDNPHasChain, SDNPSideEffect, SDNPMayStore]>;
286
287def tlsadd        : SDNode<"SPISD::TLS_ADD", SDTSPtlsadd>;
288def tlsld         : SDNode<"SPISD::TLS_LD",  SDTSPtlsld>;
289def tlscall       : SDNode<"SPISD::TLS_CALL", SDT_SPCall,
290                            [SDNPHasChain, SDNPOptInGlue, SDNPOutGlue,
291                             SDNPVariadic]>;
292
293def load_gdop : SDNode<"SPISD::LOAD_GDOP",  SDTSPloadgdop>;
294
295def getPCX        : Operand<iPTR> {
296  let PrintMethod = "printGetPCX";
297}
298
299//===----------------------------------------------------------------------===//
300// SPARC Flag Conditions
301//===----------------------------------------------------------------------===//
302
303// Note that these values must be kept in sync with the CCOp::CondCode enum
304// values.
305class ICC_VAL<int N> : PatLeaf<(i32 N)>;
306def ICC_NE  : ICC_VAL< 9>;  // Not Equal
307def ICC_E   : ICC_VAL< 1>;  // Equal
308def ICC_G   : ICC_VAL<10>;  // Greater
309def ICC_LE  : ICC_VAL< 2>;  // Less or Equal
310def ICC_GE  : ICC_VAL<11>;  // Greater or Equal
311def ICC_L   : ICC_VAL< 3>;  // Less
312def ICC_GU  : ICC_VAL<12>;  // Greater Unsigned
313def ICC_LEU : ICC_VAL< 4>;  // Less or Equal Unsigned
314def ICC_CC  : ICC_VAL<13>;  // Carry Clear/Great or Equal Unsigned
315def ICC_CS  : ICC_VAL< 5>;  // Carry Set/Less Unsigned
316def ICC_POS : ICC_VAL<14>;  // Positive
317def ICC_NEG : ICC_VAL< 6>;  // Negative
318def ICC_VC  : ICC_VAL<15>;  // Overflow Clear
319def ICC_VS  : ICC_VAL< 7>;  // Overflow Set
320
321class FCC_VAL<int N> : PatLeaf<(i32 N)>;
322def FCC_U   : FCC_VAL<23>;  // Unordered
323def FCC_G   : FCC_VAL<22>;  // Greater
324def FCC_UG  : FCC_VAL<21>;  // Unordered or Greater
325def FCC_L   : FCC_VAL<20>;  // Less
326def FCC_UL  : FCC_VAL<19>;  // Unordered or Less
327def FCC_LG  : FCC_VAL<18>;  // Less or Greater
328def FCC_NE  : FCC_VAL<17>;  // Not Equal
329def FCC_E   : FCC_VAL<25>;  // Equal
330def FCC_UE  : FCC_VAL<26>;  // Unordered or Equal
331def FCC_GE  : FCC_VAL<27>;  // Greater or Equal
332def FCC_UGE : FCC_VAL<28>;  // Unordered or Greater or Equal
333def FCC_LE  : FCC_VAL<29>;  // Less or Equal
334def FCC_ULE : FCC_VAL<30>;  // Unordered or Less or Equal
335def FCC_O   : FCC_VAL<31>;  // Ordered
336
337class CPCC_VAL<int N> : PatLeaf<(i32 N)>;
338def CPCC_3   : CPCC_VAL<39>;  // 3
339def CPCC_2   : CPCC_VAL<38>;  // 2
340def CPCC_23  : CPCC_VAL<37>;  // 2 or 3
341def CPCC_1   : CPCC_VAL<36>;  // 1
342def CPCC_13  : CPCC_VAL<35>;  // 1 or 3
343def CPCC_12  : CPCC_VAL<34>;  // 1 or 2
344def CPCC_123 : CPCC_VAL<33>;  // 1 or 2 or 3
345def CPCC_0   : CPCC_VAL<41>;  // 0
346def CPCC_03  : CPCC_VAL<42>;  // 0 or 3
347def CPCC_02  : CPCC_VAL<43>;  // 0 or 2
348def CPCC_023 : CPCC_VAL<44>;  // 0 or 2 or 3
349def CPCC_01  : CPCC_VAL<45>;  // 0 or 1
350def CPCC_013 : CPCC_VAL<46>;  // 0 or 1 or 3
351def CPCC_012 : CPCC_VAL<47>;  // 0 or 1 or 2
352
353//===----------------------------------------------------------------------===//
354// Instruction Class Templates
355//===----------------------------------------------------------------------===//
356
357/// F3_12 multiclass - Define a normal F3_1/F3_2 pattern in one shot.
358multiclass F3_12<string OpcStr, bits<6> Op3Val, SDNode OpNode,
359                 RegisterClass RC, ValueType Ty, Operand immOp,
360                 InstrItinClass itin = IIC_iu_instr> {
361  def rr  : F3_1<2, Op3Val,
362                 (outs RC:$rd), (ins RC:$rs1, RC:$rs2),
363                 !strconcat(OpcStr, " $rs1, $rs2, $rd"),
364                 [(set Ty:$rd, (OpNode Ty:$rs1, Ty:$rs2))],
365                 itin>;
366  def ri  : F3_2<2, Op3Val,
367                 (outs RC:$rd), (ins RC:$rs1, immOp:$simm13),
368                 !strconcat(OpcStr, " $rs1, $simm13, $rd"),
369                 [(set Ty:$rd, (OpNode Ty:$rs1, (Ty simm13:$simm13)))],
370                 itin>;
371}
372
373/// F3_12np multiclass - Define a normal F3_1/F3_2 pattern in one shot, with no
374/// pattern.
375multiclass F3_12np<string OpcStr, bits<6> Op3Val, InstrItinClass itin = IIC_iu_instr> {
376  def rr  : F3_1<2, Op3Val,
377                 (outs IntRegs:$rd), (ins IntRegs:$rs1, IntRegs:$rs2),
378                 !strconcat(OpcStr, " $rs1, $rs2, $rd"), [],
379                 itin>;
380  def ri  : F3_2<2, Op3Val,
381                 (outs IntRegs:$rd), (ins IntRegs:$rs1, simm13Op:$simm13),
382                 !strconcat(OpcStr, " $rs1, $simm13, $rd"), [],
383                 itin>;
384}
385
386// Load multiclass - Define both Reg+Reg/Reg+Imm patterns in one shot.
387multiclass Load<string OpcStr, bits<6> Op3Val, SDPatternOperator OpNode,
388           RegisterClass RC, ValueType Ty, InstrItinClass itin = IIC_iu_instr> {
389  def rr  : F3_1<3, Op3Val,
390                 (outs RC:$dst), (ins MEMrr:$addr),
391                 !strconcat(OpcStr, " [$addr], $dst"),
392                 [(set Ty:$dst, (OpNode ADDRrr:$addr))],
393                 itin>;
394  def ri  : F3_2<3, Op3Val,
395                 (outs RC:$dst), (ins MEMri:$addr),
396                 !strconcat(OpcStr, " [$addr], $dst"),
397                 [(set Ty:$dst, (OpNode ADDRri:$addr))],
398                 itin>;
399}
400
401// TODO: Instructions of the LoadASI class are currently asm only; hooking up
402// CodeGen's address spaces to use these is a future task.
403class LoadASI<string OpcStr, bits<6> Op3Val, RegisterClass RC> :
404  F3_1_asi<3, Op3Val, (outs RC:$dst), (ins MEMrr:$addr, i8imm:$asi),
405                !strconcat(OpcStr, "a [$addr] $asi, $dst"),
406                []>;
407
408// LoadA multiclass - As above, but also define alternate address space variant
409multiclass LoadA<string OpcStr, bits<6> Op3Val, bits<6> LoadAOp3Val,
410                 SDPatternOperator OpNode, RegisterClass RC, ValueType Ty,
411                 InstrItinClass itin = NoItinerary> :
412             Load<OpcStr, Op3Val, OpNode, RC, Ty, itin> {
413  def Arr  : LoadASI<OpcStr, LoadAOp3Val, RC>;
414}
415
416// The LDSTUB instruction is supported for asm only.
417// It is unlikely that general-purpose code could make use of it.
418// CAS is preferred for sparc v9.
419def LDSTUBrr : F3_1<3, 0b001101, (outs IntRegs:$dst), (ins MEMrr:$addr),
420                    "ldstub [$addr], $dst", []>;
421def LDSTUBri : F3_2<3, 0b001101, (outs IntRegs:$dst), (ins MEMri:$addr),
422                    "ldstub [$addr], $dst", []>;
423def LDSTUBArr : F3_1_asi<3, 0b011101, (outs IntRegs:$dst),
424                         (ins MEMrr:$addr, i8imm:$asi),
425                         "ldstuba [$addr] $asi, $dst", []>;
426
427// Store multiclass - Define both Reg+Reg/Reg+Imm patterns in one shot.
428multiclass Store<string OpcStr, bits<6> Op3Val, SDPatternOperator OpNode,
429           RegisterClass RC, ValueType Ty, InstrItinClass itin = IIC_st> {
430  def rr  : F3_1<3, Op3Val,
431                 (outs), (ins MEMrr:$addr, RC:$rd),
432                 !strconcat(OpcStr, " $rd, [$addr]"),
433                 [(OpNode Ty:$rd, ADDRrr:$addr)],
434                 itin>;
435  def ri  : F3_2<3, Op3Val,
436                 (outs), (ins MEMri:$addr, RC:$rd),
437                 !strconcat(OpcStr, " $rd, [$addr]"),
438                 [(OpNode Ty:$rd, ADDRri:$addr)],
439                 itin>;
440}
441
442// TODO: Instructions of the StoreASI class are currently asm only; hooking up
443// CodeGen's address spaces to use these is a future task.
444class StoreASI<string OpcStr, bits<6> Op3Val, RegisterClass RC,
445               InstrItinClass itin = IIC_st> :
446  F3_1_asi<3, Op3Val, (outs), (ins MEMrr:$addr, RC:$rd, i8imm:$asi),
447           !strconcat(OpcStr, "a $rd, [$addr] $asi"),
448           [],
449           itin>;
450
451multiclass StoreA<string OpcStr, bits<6> Op3Val, bits<6> StoreAOp3Val,
452                  SDPatternOperator OpNode, RegisterClass RC, ValueType Ty> :
453             Store<OpcStr, Op3Val, OpNode, RC, Ty> {
454  def Arr : StoreASI<OpcStr, StoreAOp3Val, RC>;
455}
456
457//===----------------------------------------------------------------------===//
458// Instructions
459//===----------------------------------------------------------------------===//
460
461// Pseudo instructions.
462class Pseudo<dag outs, dag ins, string asmstr, list<dag> pattern>
463   : InstSP<outs, ins, asmstr, pattern> {
464  let isCodeGenOnly = 1;
465  let isPseudo = 1;
466}
467
468// GETPCX for PIC
469let Defs = [O7] in {
470  def GETPCX : Pseudo<(outs getPCX:$getpcseq), (ins), "$getpcseq", [] >;
471}
472
473let Defs = [O6], Uses = [O6] in {
474def ADJCALLSTACKDOWN : Pseudo<(outs), (ins i32imm:$amt1, i32imm:$amt2),
475                               "!ADJCALLSTACKDOWN $amt1, $amt2",
476                               [(callseq_start timm:$amt1, timm:$amt2)]>;
477def ADJCALLSTACKUP : Pseudo<(outs), (ins i32imm:$amt1, i32imm:$amt2),
478                            "!ADJCALLSTACKUP $amt1",
479                            [(callseq_end timm:$amt1, timm:$amt2)]>;
480}
481
482let hasSideEffects = 1, mayStore = 1 in {
483  let rd = 0, rs1 = 0, rs2 = 0 in
484    def FLUSHW : F3_1<0b10, 0b101011, (outs), (ins),
485                      "flushw",
486                      [(flushw)]>, Requires<[HasV9]>;
487  let rd = 8, rs1 = 0, simm13 = 3 in
488    def TA3 : F3_2<0b10, 0b111010, (outs), (ins),
489                   "ta 3",
490                   [(flushw)]>;
491}
492
493// SELECT_CC_* - Used to implement the SELECT_CC DAG operation.  Expanded after
494// instruction selection into a branch sequence.  This has to handle all
495// permutations of selection between i32/f32/f64 on ICC and FCC.
496// Expanded after instruction selection.
497let Uses = [ICC], usesCustomInserter = 1 in {
498  def SELECT_CC_Int_ICC
499   : Pseudo<(outs IntRegs:$dst), (ins IntRegs:$T, IntRegs:$F, i32imm:$Cond),
500            "; SELECT_CC_Int_ICC PSEUDO!",
501            [(set i32:$dst, (SPselecticc i32:$T, i32:$F, imm:$Cond))]>;
502  def SELECT_CC_FP_ICC
503   : Pseudo<(outs FPRegs:$dst), (ins FPRegs:$T, FPRegs:$F, i32imm:$Cond),
504            "; SELECT_CC_FP_ICC PSEUDO!",
505            [(set f32:$dst, (SPselecticc f32:$T, f32:$F, imm:$Cond))]>;
506
507  def SELECT_CC_DFP_ICC
508   : Pseudo<(outs DFPRegs:$dst), (ins DFPRegs:$T, DFPRegs:$F, i32imm:$Cond),
509            "; SELECT_CC_DFP_ICC PSEUDO!",
510            [(set f64:$dst, (SPselecticc f64:$T, f64:$F, imm:$Cond))]>;
511
512  def SELECT_CC_QFP_ICC
513   : Pseudo<(outs QFPRegs:$dst), (ins QFPRegs:$T, QFPRegs:$F, i32imm:$Cond),
514            "; SELECT_CC_QFP_ICC PSEUDO!",
515            [(set f128:$dst, (SPselecticc f128:$T, f128:$F, imm:$Cond))]>;
516}
517
518let Uses = [ICC], usesCustomInserter = 1 in {
519  def SELECT_CC_Int_XCC
520   : Pseudo<(outs IntRegs:$dst), (ins IntRegs:$T, IntRegs:$F, i32imm:$Cond),
521            "; SELECT_CC_Int_XCC PSEUDO!",
522            [(set i32:$dst, (SPselectxcc i32:$T, i32:$F, imm:$Cond))]>;
523  def SELECT_CC_FP_XCC
524   : Pseudo<(outs FPRegs:$dst), (ins FPRegs:$T, FPRegs:$F, i32imm:$Cond),
525            "; SELECT_CC_FP_XCC PSEUDO!",
526            [(set f32:$dst, (SPselectxcc f32:$T, f32:$F, imm:$Cond))]>;
527
528  def SELECT_CC_DFP_XCC
529   : Pseudo<(outs DFPRegs:$dst), (ins DFPRegs:$T, DFPRegs:$F, i32imm:$Cond),
530            "; SELECT_CC_DFP_XCC PSEUDO!",
531            [(set f64:$dst, (SPselectxcc f64:$T, f64:$F, imm:$Cond))]>;
532
533  def SELECT_CC_QFP_XCC
534   : Pseudo<(outs QFPRegs:$dst), (ins QFPRegs:$T, QFPRegs:$F, i32imm:$Cond),
535            "; SELECT_CC_QFP_XCC PSEUDO!",
536            [(set f128:$dst, (SPselectxcc f128:$T, f128:$F, imm:$Cond))]>;
537}
538
539let usesCustomInserter = 1, Uses = [FCC0] in {
540
541  def SELECT_CC_Int_FCC
542   : Pseudo<(outs IntRegs:$dst), (ins IntRegs:$T, IntRegs:$F, i32imm:$Cond),
543            "; SELECT_CC_Int_FCC PSEUDO!",
544            [(set i32:$dst, (SPselectfcc i32:$T, i32:$F, imm:$Cond))]>;
545
546  def SELECT_CC_FP_FCC
547   : Pseudo<(outs FPRegs:$dst), (ins FPRegs:$T, FPRegs:$F, i32imm:$Cond),
548            "; SELECT_CC_FP_FCC PSEUDO!",
549            [(set f32:$dst, (SPselectfcc f32:$T, f32:$F, imm:$Cond))]>;
550  def SELECT_CC_DFP_FCC
551   : Pseudo<(outs DFPRegs:$dst), (ins DFPRegs:$T, DFPRegs:$F, i32imm:$Cond),
552            "; SELECT_CC_DFP_FCC PSEUDO!",
553            [(set f64:$dst, (SPselectfcc f64:$T, f64:$F, imm:$Cond))]>;
554  def SELECT_CC_QFP_FCC
555   : Pseudo<(outs QFPRegs:$dst), (ins QFPRegs:$T, QFPRegs:$F, i32imm:$Cond),
556            "; SELECT_CC_QFP_FCC PSEUDO!",
557            [(set f128:$dst, (SPselectfcc f128:$T, f128:$F, imm:$Cond))]>;
558}
559
560// Section B.1 - Load Integer Instructions, p. 90
561let DecoderMethod = "DecodeLoadInt" in {
562  defm LDSB : LoadA<"ldsb", 0b001001, 0b011001, sextloadi8,  IntRegs, i32>;
563  defm LDSH : LoadA<"ldsh", 0b001010, 0b011010, sextloadi16, IntRegs, i32>;
564  defm LDUB : LoadA<"ldub", 0b000001, 0b010001, zextloadi8,  IntRegs, i32>;
565  defm LDUH : LoadA<"lduh", 0b000010, 0b010010, zextloadi16, IntRegs, i32>;
566  defm LD   : LoadA<"ld",   0b000000, 0b010000, load,        IntRegs, i32>;
567}
568
569let DecoderMethod = "DecodeLoadIntPair" in
570  defm LDD : LoadA<"ldd", 0b000011, 0b010011, load, IntPair, v2i32, IIC_ldd>;
571
572// Section B.2 - Load Floating-point Instructions, p. 92
573let DecoderMethod = "DecodeLoadFP" in {
574  defm LDF   : Load<"ld",  0b100000, load,    FPRegs,  f32, IIC_iu_or_fpu_instr>;
575  def LDFArr : LoadASI<"ld",  0b110000, FPRegs>,
576                Requires<[HasV9]>;
577}
578let DecoderMethod = "DecodeLoadDFP" in {
579  defm LDDF   : Load<"ldd", 0b100011, load,    DFPRegs, f64, IIC_ldd>;
580  def LDDFArr : LoadASI<"ldd", 0b110011, DFPRegs>,
581                 Requires<[HasV9]>;
582}
583let DecoderMethod = "DecodeLoadQFP" in
584  defm LDQF  : LoadA<"ldq", 0b100010, 0b110010, load, QFPRegs, f128>,
585               Requires<[HasV9, HasHardQuad]>;
586
587let DecoderMethod = "DecodeLoadCP" in
588  defm LDC   : Load<"ld", 0b110000, load, CoprocRegs, i32>;
589let DecoderMethod = "DecodeLoadCPPair" in
590  defm LDDC   : Load<"ldd", 0b110011, load, CoprocPair, v2i32, IIC_ldd>;
591
592let DecoderMethod = "DecodeLoadCP", Defs = [CPSR] in {
593  let rd = 0 in {
594    def LDCSRrr : F3_1<3, 0b110001, (outs), (ins MEMrr:$addr),
595                       "ld [$addr], %csr", []>;
596    def LDCSRri : F3_2<3, 0b110001, (outs), (ins MEMri:$addr),
597                       "ld [$addr], %csr", []>;
598  }
599}
600
601let DecoderMethod = "DecodeLoadFP" in
602  let Defs = [FSR] in {
603    let rd = 0 in {
604      def LDFSRrr : F3_1<3, 0b100001, (outs), (ins MEMrr:$addr),
605                     "ld [$addr], %fsr", [], IIC_iu_or_fpu_instr>;
606      def LDFSRri : F3_2<3, 0b100001, (outs), (ins MEMri:$addr),
607                     "ld [$addr], %fsr", [], IIC_iu_or_fpu_instr>;
608    }
609    let rd = 1 in {
610      def LDXFSRrr : F3_1<3, 0b100001, (outs), (ins MEMrr:$addr),
611                     "ldx [$addr], %fsr", []>, Requires<[HasV9]>;
612      def LDXFSRri : F3_2<3, 0b100001, (outs), (ins MEMri:$addr),
613                     "ldx [$addr], %fsr", []>, Requires<[HasV9]>;
614    }
615  }
616
617let mayLoad = 1, isAsmParserOnly = 1 in {
618  def GDOP_LDrr : F3_1<3, 0b000000,
619                      (outs IntRegs:$dst),
620                      (ins MEMrr:$addr, TailRelocSymGOTLoad:$sym),
621                      "ld [$addr], $dst, $sym",
622                      [(set i32:$dst,
623                          (load_gdop ADDRrr:$addr, tglobaladdr:$sym))]>;
624}
625
626// Section B.4 - Store Integer Instructions, p. 95
627let DecoderMethod = "DecodeStoreInt" in {
628  defm STB   : StoreA<"stb", 0b000101, 0b010101, truncstorei8,  IntRegs, i32>;
629  defm STH   : StoreA<"sth", 0b000110, 0b010110, truncstorei16, IntRegs, i32>;
630  defm ST    : StoreA<"st",  0b000100, 0b010100, store,         IntRegs, i32>;
631}
632
633let DecoderMethod = "DecodeStoreIntPair" in
634  defm STD   : StoreA<"std", 0b000111, 0b010111, store, IntPair, v2i32>;
635
636// Section B.5 - Store Floating-point Instructions, p. 97
637let DecoderMethod = "DecodeStoreFP" in {
638  defm STF   : Store<"st",  0b100100, store,         FPRegs,  f32>;
639  def STFArr : StoreASI<"st",  0b110100, FPRegs>,
640               Requires<[HasV9]>;
641}
642let DecoderMethod = "DecodeStoreDFP" in {
643  defm STDF   : Store<"std", 0b100111, store,         DFPRegs, f64, IIC_std>;
644  def STDFArr : StoreASI<"std", 0b110111, DFPRegs>,
645                Requires<[HasV9]>;
646}
647let DecoderMethod = "DecodeStoreQFP" in
648  defm STQF  : StoreA<"stq", 0b100110, 0b110110, store, QFPRegs, f128>,
649               Requires<[HasV9, HasHardQuad]>;
650
651let DecoderMethod = "DecodeStoreCP" in
652  defm STC   : Store<"st", 0b110100, store, CoprocRegs, i32>;
653
654let DecoderMethod = "DecodeStoreCPPair" in
655  defm STDC   : Store<"std", 0b110111, store, CoprocPair, v2i32, IIC_std>;
656
657let DecoderMethod = "DecodeStoreCP", rd = 0 in {
658  let Defs = [CPSR] in {
659    def STCSRrr : F3_1<3, 0b110101, (outs MEMrr:$addr), (ins),
660                       "st %csr, [$addr]", [], IIC_st>;
661    def STCSRri : F3_2<3, 0b110101, (outs MEMri:$addr), (ins),
662                       "st %csr, [$addr]", [], IIC_st>;
663  }
664  let Defs = [CPQ] in {
665    def STDCQrr : F3_1<3, 0b110110, (outs MEMrr:$addr), (ins),
666                       "std %cq, [$addr]", [], IIC_std>;
667    def STDCQri : F3_2<3, 0b110110, (outs MEMri:$addr), (ins),
668                       "std %cq, [$addr]", [], IIC_std>;
669  }
670}
671
672let DecoderMethod = "DecodeStoreFP" in {
673  let rd = 0 in {
674    let Defs = [FSR] in {
675      def STFSRrr : F3_1<3, 0b100101, (outs MEMrr:$addr), (ins),
676                     "st %fsr, [$addr]", [], IIC_st>;
677      def STFSRri : F3_2<3, 0b100101, (outs MEMri:$addr), (ins),
678                     "st %fsr, [$addr]", [], IIC_st>;
679    }
680    let Defs = [FQ] in {
681      def STDFQrr : F3_1<3, 0b100110, (outs MEMrr:$addr), (ins),
682                     "std %fq, [$addr]", [], IIC_std>;
683      def STDFQri : F3_2<3, 0b100110, (outs MEMri:$addr), (ins),
684                     "std %fq, [$addr]", [], IIC_std>;
685    }
686  }
687  let rd = 1, Defs = [FSR] in {
688    def STXFSRrr : F3_1<3, 0b100101, (outs MEMrr:$addr), (ins),
689                   "stx %fsr, [$addr]", []>, Requires<[HasV9]>;
690    def STXFSRri : F3_2<3, 0b100101, (outs MEMri:$addr), (ins),
691                   "stx %fsr, [$addr]", []>, Requires<[HasV9]>;
692  }
693}
694
695// Section B.8 - SWAP Register with Memory Instruction
696// (Atomic swap)
697let Constraints = "$val = $dst", DecoderMethod = "DecodeSWAP" in {
698  def SWAPrr : F3_1<3, 0b001111,
699                 (outs IntRegs:$dst), (ins MEMrr:$addr, IntRegs:$val),
700                 "swap [$addr], $dst",
701                 [(set i32:$dst, (atomic_swap_32 ADDRrr:$addr, i32:$val))]>;
702  def SWAPri : F3_2<3, 0b001111,
703                 (outs IntRegs:$dst), (ins MEMri:$addr, IntRegs:$val),
704                 "swap [$addr], $dst",
705                 [(set i32:$dst, (atomic_swap_32 ADDRri:$addr, i32:$val))]>;
706  def SWAPArr : F3_1_asi<3, 0b011111,
707                 (outs IntRegs:$dst), (ins MEMrr:$addr, i8imm:$asi, IntRegs:$val),
708                 "swapa [$addr] $asi, $dst",
709                 [/*FIXME: pattern?*/]>;
710}
711
712
713// Section B.9 - SETHI Instruction, p. 104
714def SETHIi: F2_1<0b100,
715                 (outs IntRegs:$rd), (ins i32imm:$imm22),
716                 "sethi $imm22, $rd",
717                 [(set i32:$rd, SETHIimm:$imm22)],
718                 IIC_iu_instr>;
719
720// Section B.10 - NOP Instruction, p. 105
721// (It's a special case of SETHI)
722let rd = 0, imm22 = 0 in
723  def NOP : F2_1<0b100, (outs), (ins), "nop", []>;
724
725// Section B.11 - Logical Instructions, p. 106
726defm AND    : F3_12<"and", 0b000001, and, IntRegs, i32, simm13Op>;
727
728def ANDNrr  : F3_1<2, 0b000101,
729                   (outs IntRegs:$rd), (ins IntRegs:$rs1, IntRegs:$rs2),
730                   "andn $rs1, $rs2, $rd",
731                   [(set i32:$rd, (and i32:$rs1, (not i32:$rs2)))]>;
732def ANDNri  : F3_2<2, 0b000101,
733                   (outs IntRegs:$rd), (ins IntRegs:$rs1, simm13Op:$simm13),
734                   "andn $rs1, $simm13, $rd", []>;
735
736defm OR     : F3_12<"or", 0b000010, or, IntRegs, i32, simm13Op>;
737
738def ORNrr   : F3_1<2, 0b000110,
739                   (outs IntRegs:$rd), (ins IntRegs:$rs1, IntRegs:$rs2),
740                   "orn $rs1, $rs2, $rd",
741                   [(set i32:$rd, (or i32:$rs1, (not i32:$rs2)))]>;
742def ORNri   : F3_2<2, 0b000110,
743                   (outs IntRegs:$rd), (ins IntRegs:$rs1, simm13Op:$simm13),
744                   "orn $rs1, $simm13, $rd", []>;
745defm XOR    : F3_12<"xor", 0b000011, xor, IntRegs, i32, simm13Op>;
746
747def XNORrr  : F3_1<2, 0b000111,
748                   (outs IntRegs:$rd), (ins IntRegs:$rs1, IntRegs:$rs2),
749                   "xnor $rs1, $rs2, $rd",
750                   [(set i32:$rd, (not (xor i32:$rs1, i32:$rs2)))]>;
751def XNORri  : F3_2<2, 0b000111,
752                   (outs IntRegs:$rd), (ins IntRegs:$rs1, simm13Op:$simm13),
753                   "xnor $rs1, $simm13, $rd", []>;
754
755def : Pat<(and IntRegs:$rs1, SETHIimm_not:$rs2),
756          (ANDNrr i32:$rs1, (SETHIi SETHIimm_not:$rs2))>;
757
758def : Pat<(or IntRegs:$rs1, SETHIimm_not:$rs2),
759          (ORNrr i32:$rs1,  (SETHIi SETHIimm_not:$rs2))>;
760
761let Defs = [ICC] in {
762  defm ANDCC  : F3_12np<"andcc",  0b010001>;
763  defm ANDNCC : F3_12np<"andncc", 0b010101>;
764  defm ORCC   : F3_12np<"orcc",   0b010010>;
765  defm ORNCC  : F3_12np<"orncc",  0b010110>;
766  defm XORCC  : F3_12np<"xorcc",  0b010011>;
767  defm XNORCC : F3_12np<"xnorcc", 0b010111>;
768}
769
770// Section B.12 - Shift Instructions, p. 107
771defm SLL : F3_S<"sll", 0b100101, 0, shl, i32, shift_imm5, IntRegs>;
772defm SRL : F3_S<"srl", 0b100110, 0, srl, i32, shift_imm5, IntRegs>;
773defm SRA : F3_S<"sra", 0b100111, 0, sra, i32, shift_imm5, IntRegs>;
774
775// Section B.13 - Add Instructions, p. 108
776defm ADD   : F3_12<"add", 0b000000, add, IntRegs, i32, simm13Op>;
777
778// "LEA" forms of add (patterns to make tblgen happy)
779let Predicates = [Is32Bit], isCodeGenOnly = 1 in
780  def LEA_ADDri   : F3_2<2, 0b000000,
781                     (outs IntRegs:$dst), (ins MEMri:$addr),
782                     "add ${addr:arith}, $dst",
783                     [(set iPTR:$dst, ADDRri:$addr)]>;
784
785let Defs = [ICC] in
786  defm ADDCC  : F3_12<"addcc", 0b010000, addc, IntRegs, i32, simm13Op>;
787
788let Uses = [ICC] in
789  defm ADDC   : F3_12np<"addx", 0b001000>;
790
791let Uses = [ICC], Defs = [ICC] in
792  defm ADDE  : F3_12<"addxcc", 0b011000, adde, IntRegs, i32, simm13Op>;
793
794// Section B.15 - Subtract Instructions, p. 110
795defm SUB    : F3_12  <"sub"  , 0b000100, sub, IntRegs, i32, simm13Op>;
796let Uses = [ICC], Defs = [ICC] in
797  defm SUBE   : F3_12  <"subxcc" , 0b011100, sube, IntRegs, i32, simm13Op>;
798
799let Defs = [ICC] in
800  defm SUBCC  : F3_12  <"subcc", 0b010100, subc, IntRegs, i32, simm13Op>;
801
802let Uses = [ICC] in
803  defm SUBC   : F3_12np <"subx", 0b001100>;
804
805// cmp (from Section A.3) is a specialized alias for subcc
806let Defs = [ICC], rd = 0 in {
807  def CMPrr   : F3_1<2, 0b010100,
808                     (outs), (ins IntRegs:$rs1, IntRegs:$rs2),
809                     "cmp $rs1, $rs2",
810                     [(SPcmpicc i32:$rs1, i32:$rs2)]>;
811  def CMPri   : F3_2<2, 0b010100,
812                     (outs), (ins IntRegs:$rs1, simm13Op:$simm13),
813                     "cmp $rs1, $simm13",
814                     [(SPcmpicc i32:$rs1, (i32 simm13:$simm13))]>;
815}
816
817// Section B.18 - Multiply Instructions, p. 113
818let Defs = [Y] in {
819  defm UMUL : F3_12<"umul", 0b001010, umullohi, IntRegs, i32, simm13Op, IIC_iu_umul>;
820  defm SMUL : F3_12<"smul", 0b001011, smullohi, IntRegs, i32, simm13Op, IIC_iu_smul>;
821}
822
823let Defs = [Y, ICC] in {
824  defm UMULCC : F3_12np<"umulcc", 0b011010, IIC_iu_umul>;
825  defm SMULCC : F3_12np<"smulcc", 0b011011, IIC_iu_smul>;
826}
827
828let Defs = [Y, ICC], Uses = [Y, ICC] in {
829  defm MULSCC : F3_12np<"mulscc", 0b100100>;
830}
831
832// Section B.19 - Divide Instructions, p. 115
833let Uses = [Y], Defs = [Y] in {
834  defm UDIV : F3_12np<"udiv", 0b001110, IIC_iu_div>;
835  defm SDIV : F3_12np<"sdiv", 0b001111, IIC_iu_div>;
836}
837
838let Uses = [Y], Defs = [Y, ICC] in {
839  defm UDIVCC : F3_12np<"udivcc", 0b011110, IIC_iu_div>;
840  defm SDIVCC : F3_12np<"sdivcc", 0b011111, IIC_iu_div>;
841}
842
843// Section B.20 - SAVE and RESTORE, p. 117
844defm SAVE    : F3_12np<"save"   , 0b111100>;
845defm RESTORE : F3_12np<"restore", 0b111101>;
846
847// Section B.21 - Branch on Integer Condition Codes Instructions, p. 119
848
849// unconditional branch class.
850class BranchAlways<dag ins, string asmstr, list<dag> pattern>
851  : F2_2<0b010, 0, (outs), ins, asmstr, pattern> {
852  let isBranch     = 1;
853  let isTerminator = 1;
854  let hasDelaySlot = 1;
855  let isBarrier    = 1;
856}
857
858let cond = 8 in
859  def BA : BranchAlways<(ins brtarget:$imm22), "ba $imm22", [(br bb:$imm22)]>;
860
861
862let isBranch = 1, isTerminator = 1, hasDelaySlot = 1 in {
863
864// conditional branch class:
865class BranchSP<dag ins, string asmstr, list<dag> pattern>
866 : F2_2<0b010, 0, (outs), ins, asmstr, pattern, IIC_iu_instr>;
867
868// conditional branch with annul class:
869class BranchSPA<dag ins, string asmstr, list<dag> pattern>
870 : F2_2<0b010, 1, (outs), ins, asmstr, pattern, IIC_iu_instr>;
871
872// Conditional branch class on %icc|%xcc with predication:
873multiclass IPredBranch<string regstr, list<dag> CCPattern> {
874  def CC    : F2_3<0b001, 0, 1, (outs), (ins bprtarget:$imm19, CCOp:$cond),
875                   !strconcat("b$cond ", !strconcat(regstr, ", $imm19")),
876                   CCPattern,
877                   IIC_iu_instr>;
878  def CCA   : F2_3<0b001, 1, 1, (outs), (ins bprtarget:$imm19, CCOp:$cond),
879                   !strconcat("b$cond,a ", !strconcat(regstr, ", $imm19")),
880                   [],
881                   IIC_iu_instr>;
882  def CCNT  : F2_3<0b001, 0, 0, (outs), (ins bprtarget:$imm19, CCOp:$cond),
883                   !strconcat("b$cond,pn ", !strconcat(regstr, ", $imm19")),
884                   [],
885                   IIC_iu_instr>;
886  def CCANT : F2_3<0b001, 1, 0, (outs), (ins bprtarget:$imm19, CCOp:$cond),
887                   !strconcat("b$cond,a,pn ", !strconcat(regstr, ", $imm19")),
888                   [],
889                   IIC_iu_instr>;
890}
891
892} // let isBranch = 1, isTerminator = 1, hasDelaySlot = 1
893
894
895// Indirect branch instructions.
896let isTerminator = 1, isBarrier = 1,  hasDelaySlot = 1, isBranch =1,
897     isIndirectBranch = 1, rd = 0, isCodeGenOnly = 1 in {
898  def BINDrr  : F3_1<2, 0b111000,
899                   (outs), (ins MEMrr:$ptr),
900                   "jmp $ptr",
901                   [(brind ADDRrr:$ptr)]>;
902  def BINDri  : F3_2<2, 0b111000,
903                   (outs), (ins MEMri:$ptr),
904                   "jmp $ptr",
905                   [(brind ADDRri:$ptr)]>;
906}
907
908let Uses = [ICC] in {
909  def BCOND : BranchSP<(ins brtarget:$imm22, CCOp:$cond),
910                         "b$cond $imm22",
911                        [(SPbricc bb:$imm22, imm:$cond)]>;
912  def BCONDA : BranchSPA<(ins brtarget:$imm22, CCOp:$cond),
913                         "b$cond,a $imm22", []>;
914
915  let Predicates = [HasV9], cc = 0b00 in
916    defm BPI : IPredBranch<"%icc", []>;
917}
918
919// Section B.22 - Branch on Floating-point Condition Codes Instructions, p. 121
920
921let isBranch = 1, isTerminator = 1, hasDelaySlot = 1 in {
922
923// floating-point conditional branch class:
924class FPBranchSP<dag ins, string asmstr, list<dag> pattern>
925 : F2_2<0b110, 0, (outs), ins, asmstr, pattern, IIC_fpu_normal_instr>;
926
927// floating-point conditional branch with annul class:
928class FPBranchSPA<dag ins, string asmstr, list<dag> pattern>
929 : F2_2<0b110, 1, (outs), ins, asmstr, pattern, IIC_fpu_normal_instr>;
930
931// Conditional branch class on %fcc0-%fcc3 with predication:
932multiclass FPredBranch {
933  def CC    : F2_3<0b101, 0, 1, (outs), (ins bprtarget:$imm19, CCOp:$cond,
934                                         FCCRegs:$cc),
935                  "fb$cond $cc, $imm19", [], IIC_fpu_normal_instr>;
936  def CCA   : F2_3<0b101, 1, 1, (outs), (ins bprtarget:$imm19, CCOp:$cond,
937                                         FCCRegs:$cc),
938                  "fb$cond,a $cc, $imm19", [], IIC_fpu_normal_instr>;
939  def CCNT  : F2_3<0b101, 0, 0, (outs), (ins bprtarget:$imm19, CCOp:$cond,
940                                         FCCRegs:$cc),
941                  "fb$cond,pn $cc, $imm19", [], IIC_fpu_normal_instr>;
942  def CCANT : F2_3<0b101, 1, 0, (outs), (ins bprtarget:$imm19, CCOp:$cond,
943                                         FCCRegs:$cc),
944                  "fb$cond,a,pn $cc, $imm19", [], IIC_fpu_normal_instr>;
945}
946} // let isBranch = 1, isTerminator = 1, hasDelaySlot = 1
947
948let Uses = [FCC0] in {
949  def FBCOND  : FPBranchSP<(ins brtarget:$imm22, CCOp:$cond),
950                              "fb$cond $imm22",
951                              [(SPbrfcc bb:$imm22, imm:$cond)]>;
952  def FBCONDA : FPBranchSPA<(ins brtarget:$imm22, CCOp:$cond),
953                             "fb$cond,a $imm22", []>;
954}
955
956let Predicates = [HasV9] in
957  defm BPF : FPredBranch;
958
959// Section B.22 - Branch on Co-processor Condition Codes Instructions, p. 123
960let isBranch = 1, isTerminator = 1, hasDelaySlot = 1 in {
961
962// co-processor conditional branch class:
963class CPBranchSP<dag ins, string asmstr, list<dag> pattern>
964 : F2_2<0b111, 0, (outs), ins, asmstr, pattern>;
965
966// co-processor conditional branch with annul class:
967class CPBranchSPA<dag ins, string asmstr, list<dag> pattern>
968 : F2_2<0b111, 1, (outs), ins, asmstr, pattern>;
969
970} // let isBranch = 1, isTerminator = 1, hasDelaySlot = 1
971
972def CBCOND  : CPBranchSP<(ins brtarget:$imm22, CCOp:$cond),
973                          "cb$cond $imm22",
974                          [(SPbrfcc bb:$imm22, imm:$cond)]>;
975def CBCONDA : CPBranchSPA<(ins brtarget:$imm22, CCOp:$cond),
976                           "cb$cond,a $imm22", []>;
977
978// Section B.24 - Call and Link Instruction, p. 125
979// This is the only Format 1 instruction
980let Uses = [O6],
981    hasDelaySlot = 1, isCall = 1 in {
982  def CALL : InstSP<(outs), (ins calltarget:$disp, variable_ops),
983                    "call $disp",
984                    [],
985                    IIC_jmp_or_call> {
986    bits<30> disp;
987    let op = 1;
988    let Inst{29-0} = disp;
989  }
990
991  // indirect calls: special cases of JMPL.
992  let isCodeGenOnly = 1, rd = 15 in {
993    def CALLrr : F3_1<2, 0b111000,
994                      (outs), (ins MEMrr:$ptr, variable_ops),
995                      "call $ptr",
996                      [(call ADDRrr:$ptr)],
997                      IIC_jmp_or_call>;
998    def CALLri : F3_2<2, 0b111000,
999                      (outs), (ins MEMri:$ptr, variable_ops),
1000                      "call $ptr",
1001                      [(call ADDRri:$ptr)],
1002                      IIC_jmp_or_call>;
1003  }
1004}
1005
1006// Section B.25 - Jump and Link Instruction
1007
1008// JMPL Instruction.
1009let isTerminator = 1, hasDelaySlot = 1, isBarrier = 1,
1010    DecoderMethod = "DecodeJMPL" in {
1011  def JMPLrr: F3_1<2, 0b111000,
1012                   (outs IntRegs:$dst), (ins MEMrr:$addr),
1013                   "jmpl $addr, $dst",
1014                   [],
1015                   IIC_jmp_or_call>;
1016  def JMPLri: F3_2<2, 0b111000,
1017                   (outs IntRegs:$dst), (ins MEMri:$addr),
1018                   "jmpl $addr, $dst",
1019                   [],
1020                   IIC_jmp_or_call>;
1021}
1022
1023// Section A.3 - Synthetic Instructions, p. 85
1024// special cases of JMPL:
1025let isReturn = 1, isTerminator = 1, hasDelaySlot = 1, isBarrier = 1,
1026    isCodeGenOnly = 1 in {
1027  let rd = 0, rs1 = 15 in
1028    def RETL: F3_2<2, 0b111000,
1029                   (outs), (ins i32imm:$val),
1030                   "jmp %o7+$val",
1031                   [(retflag simm13:$val)],
1032                   IIC_jmp_or_call>;
1033
1034  let rd = 0, rs1 = 31 in
1035    def RET: F3_2<2, 0b111000,
1036                  (outs), (ins i32imm:$val),
1037                  "jmp %i7+$val",
1038                  [],
1039                  IIC_jmp_or_call>;
1040}
1041
1042// Section B.26 - Return from Trap Instruction
1043let isReturn = 1, isTerminator = 1, hasDelaySlot = 1,
1044     isBarrier = 1, rd = 0, DecoderMethod = "DecodeReturn" in {
1045  def RETTrr : F3_1<2, 0b111001,
1046                   (outs), (ins MEMrr:$addr),
1047                   "rett $addr",
1048                   [],
1049                   IIC_jmp_or_call>;
1050  def RETTri : F3_2<2, 0b111001,
1051                    (outs), (ins MEMri:$addr),
1052                    "rett $addr",
1053                    [],
1054                    IIC_jmp_or_call>;
1055}
1056
1057
1058// Section B.27 - Trap on Integer Condition Codes Instruction
1059// conditional branch class:
1060let DecoderNamespace = "SparcV8", DecoderMethod = "DecodeTRAP", hasSideEffects = 1, Uses = [ICC], cc = 0b00 in
1061{
1062  def TRAPrr : TRAPSPrr<0b111010,
1063                        (outs), (ins IntRegs:$rs1, IntRegs:$rs2, CCOp:$cond),
1064                        "t$cond $rs1 + $rs2",
1065                        []>;
1066  def TRAPri : TRAPSPri<0b111010,
1067                        (outs), (ins IntRegs:$rs1, i32imm:$imm, CCOp:$cond),
1068                        "t$cond $rs1 + $imm",
1069                        []>;
1070}
1071
1072multiclass TRAP<string regStr> {
1073  def rr : TRAPSPrr<0b111010,
1074                    (outs), (ins IntRegs:$rs1, IntRegs:$rs2, CCOp:$cond),
1075                    !strconcat(!strconcat("t$cond ", regStr), ", $rs1 + $rs2"),
1076                    []>;
1077  def ri : TRAPSPri<0b111010,
1078                    (outs), (ins IntRegs:$rs1, i32imm:$imm, CCOp:$cond),
1079                    !strconcat(!strconcat("t$cond ", regStr), ", $rs1 + $imm"),
1080                    []>;
1081}
1082
1083let DecoderNamespace = "SparcV9", DecoderMethod = "DecodeTRAP", Predicates = [HasV9], hasSideEffects = 1, Uses = [ICC], cc = 0b00 in
1084  defm TICC : TRAP<"%icc">;
1085
1086
1087let isBarrier = 1, isTerminator = 1, rd = 0b01000, rs1 = 0, simm13 = 5 in
1088  def TA5 : F3_2<0b10, 0b111010, (outs), (ins), "ta 5", [(trap)]>;
1089
1090let hasSideEffects = 1, rd = 0b01000, rs1 = 0, simm13 = 1 in
1091  def TA1 : F3_2<0b10, 0b111010, (outs), (ins), "ta 1", [(debugtrap)]>;
1092
1093// Section B.28 - Read State Register Instructions
1094let rs2 = 0 in
1095  def RDASR : F3_1<2, 0b101000,
1096                 (outs IntRegs:$rd), (ins ASRRegs:$rs1),
1097                 "rd $rs1, $rd", []>;
1098
1099// PSR, WIM, and TBR don't exist on the SparcV9, only the V8.
1100let Predicates = [HasNoV9] in {
1101  let rs2 = 0, rs1 = 0, Uses=[PSR] in
1102    def RDPSR : F3_1<2, 0b101001,
1103		     (outs IntRegs:$rd), (ins),
1104		     "rd %psr, $rd", []>;
1105
1106  let rs2 = 0, rs1 = 0, Uses=[WIM] in
1107    def RDWIM : F3_1<2, 0b101010,
1108		     (outs IntRegs:$rd), (ins),
1109		     "rd %wim, $rd", []>;
1110
1111  let rs2 = 0, rs1 = 0, Uses=[TBR] in
1112    def RDTBR : F3_1<2, 0b101011,
1113		     (outs IntRegs:$rd), (ins),
1114		     "rd %tbr, $rd", []>;
1115}
1116
1117// PC don't exist on the SparcV8, only the V9.
1118let Predicates = [HasV9] in {
1119  let rs2 = 0, rs1 = 5 in
1120    def RDPC : F3_1<2, 0b101000,
1121		     (outs IntRegs:$rd), (ins),
1122		     "rd %pc, $rd", []>;
1123}
1124
1125// Section B.29 - Write State Register Instructions
1126def WRASRrr : F3_1<2, 0b110000,
1127                 (outs ASRRegs:$rd), (ins IntRegs:$rs1, IntRegs:$rs2),
1128                 "wr $rs1, $rs2, $rd", []>;
1129def WRASRri : F3_2<2, 0b110000,
1130                 (outs ASRRegs:$rd), (ins IntRegs:$rs1, simm13Op:$simm13),
1131                 "wr $rs1, $simm13, $rd", []>;
1132
1133// PSR, WIM, and TBR don't exist on the SparcV9, only the V8.
1134let Predicates = [HasNoV9] in {
1135  let Defs = [PSR], rd=0 in {
1136    def WRPSRrr : F3_1<2, 0b110001,
1137		     (outs), (ins IntRegs:$rs1, IntRegs:$rs2),
1138		     "wr $rs1, $rs2, %psr", []>;
1139    def WRPSRri : F3_2<2, 0b110001,
1140		     (outs), (ins IntRegs:$rs1, simm13Op:$simm13),
1141		     "wr $rs1, $simm13, %psr", []>;
1142  }
1143
1144  let Defs = [WIM], rd=0 in {
1145    def WRWIMrr : F3_1<2, 0b110010,
1146		     (outs), (ins IntRegs:$rs1, IntRegs:$rs2),
1147		     "wr $rs1, $rs2, %wim", []>;
1148    def WRWIMri : F3_2<2, 0b110010,
1149		     (outs), (ins IntRegs:$rs1, simm13Op:$simm13),
1150		     "wr $rs1, $simm13, %wim", []>;
1151  }
1152
1153  let Defs = [TBR], rd=0 in {
1154    def WRTBRrr : F3_1<2, 0b110011,
1155		     (outs), (ins IntRegs:$rs1, IntRegs:$rs2),
1156		     "wr $rs1, $rs2, %tbr", []>;
1157    def WRTBRri : F3_2<2, 0b110011,
1158		     (outs), (ins IntRegs:$rs1, simm13Op:$simm13),
1159		     "wr $rs1, $simm13, %tbr", []>;
1160  }
1161}
1162
1163// Section B.30 - STBAR Instruction
1164let hasSideEffects = 1, rd = 0, rs1 = 0b01111, rs2 = 0 in
1165  def STBAR : F3_1<2, 0b101000, (outs), (ins), "stbar", []>;
1166
1167
1168// Section B.31 - Unimplemented Instruction
1169let rd = 0 in
1170  def UNIMP : F2_1<0b000, (outs), (ins i32imm:$imm22),
1171                  "unimp $imm22", []>;
1172
1173// Section B.32 - Flush Instruction Memory
1174let rd = 0 in {
1175  def FLUSHrr : F3_1<2, 0b111011, (outs), (ins MEMrr:$addr),
1176                       "flush $addr", []>;
1177  def FLUSHri : F3_2<2, 0b111011, (outs), (ins MEMri:$addr),
1178                       "flush $addr", []>;
1179
1180  // The no-arg FLUSH is only here for the benefit of the InstAlias
1181  // "flush", which cannot seem to use FLUSHrr, due to the inability
1182  // to construct a MEMrr with fixed G0 registers.
1183  let rs1 = 0, rs2 = 0 in
1184    def FLUSH   : F3_1<2, 0b111011, (outs), (ins), "flush %g0", []>;
1185}
1186
1187// Section B.33 - Floating-point Operate (FPop) Instructions
1188
1189// Convert Integer to Floating-point Instructions, p. 141
1190def FITOS : F3_3u<2, 0b110100, 0b011000100,
1191                 (outs FPRegs:$rd), (ins FPRegs:$rs2),
1192                 "fitos $rs2, $rd",
1193                 [(set FPRegs:$rd, (SPitof FPRegs:$rs2))],
1194                 IIC_fpu_fast_instr>;
1195def FITOD : F3_3u<2, 0b110100, 0b011001000,
1196                 (outs DFPRegs:$rd), (ins FPRegs:$rs2),
1197                 "fitod $rs2, $rd",
1198                 [(set DFPRegs:$rd, (SPitof FPRegs:$rs2))],
1199                 IIC_fpu_fast_instr>;
1200def FITOQ : F3_3u<2, 0b110100, 0b011001100,
1201                 (outs QFPRegs:$rd), (ins FPRegs:$rs2),
1202                 "fitoq $rs2, $rd",
1203                 [(set QFPRegs:$rd, (SPitof FPRegs:$rs2))]>,
1204                 Requires<[HasHardQuad]>;
1205
1206// Convert Floating-point to Integer Instructions, p. 142
1207def FSTOI : F3_3u<2, 0b110100, 0b011010001,
1208                 (outs FPRegs:$rd), (ins FPRegs:$rs2),
1209                 "fstoi $rs2, $rd",
1210                 [(set FPRegs:$rd, (SPftoi FPRegs:$rs2))],
1211                 IIC_fpu_fast_instr>;
1212def FDTOI : F3_3u<2, 0b110100, 0b011010010,
1213                 (outs FPRegs:$rd), (ins DFPRegs:$rs2),
1214                 "fdtoi $rs2, $rd",
1215                 [(set FPRegs:$rd, (SPftoi DFPRegs:$rs2))],
1216                 IIC_fpu_fast_instr>;
1217def FQTOI : F3_3u<2, 0b110100, 0b011010011,
1218                 (outs FPRegs:$rd), (ins QFPRegs:$rs2),
1219                 "fqtoi $rs2, $rd",
1220                 [(set FPRegs:$rd, (SPftoi QFPRegs:$rs2))]>,
1221                 Requires<[HasHardQuad]>;
1222
1223// Convert between Floating-point Formats Instructions, p. 143
1224def FSTOD : F3_3u<2, 0b110100, 0b011001001,
1225                 (outs DFPRegs:$rd), (ins FPRegs:$rs2),
1226                 "fstod $rs2, $rd",
1227                 [(set f64:$rd, (fpextend f32:$rs2))],
1228                 IIC_fpu_stod>;
1229def FSTOQ : F3_3u<2, 0b110100, 0b011001101,
1230                 (outs QFPRegs:$rd), (ins FPRegs:$rs2),
1231                 "fstoq $rs2, $rd",
1232                 [(set f128:$rd, (fpextend f32:$rs2))]>,
1233                 Requires<[HasHardQuad]>;
1234def FDTOS : F3_3u<2, 0b110100, 0b011000110,
1235                 (outs FPRegs:$rd), (ins DFPRegs:$rs2),
1236                 "fdtos $rs2, $rd",
1237                 [(set f32:$rd, (fpround f64:$rs2))],
1238                 IIC_fpu_fast_instr>;
1239def FDTOQ : F3_3u<2, 0b110100, 0b011001110,
1240                 (outs QFPRegs:$rd), (ins DFPRegs:$rs2),
1241                 "fdtoq $rs2, $rd",
1242                 [(set f128:$rd, (fpextend f64:$rs2))]>,
1243                 Requires<[HasHardQuad]>;
1244def FQTOS : F3_3u<2, 0b110100, 0b011000111,
1245                 (outs FPRegs:$rd), (ins QFPRegs:$rs2),
1246                 "fqtos $rs2, $rd",
1247                 [(set f32:$rd, (fpround f128:$rs2))]>,
1248                 Requires<[HasHardQuad]>;
1249def FQTOD : F3_3u<2, 0b110100, 0b011001011,
1250                 (outs DFPRegs:$rd), (ins QFPRegs:$rs2),
1251                 "fqtod $rs2, $rd",
1252                 [(set f64:$rd, (fpround f128:$rs2))]>,
1253                 Requires<[HasHardQuad]>;
1254
1255// Floating-point Move Instructions, p. 144
1256def FMOVS : F3_3u<2, 0b110100, 0b000000001,
1257                 (outs FPRegs:$rd), (ins FPRegs:$rs2),
1258                 "fmovs $rs2, $rd", []>;
1259def FNEGS : F3_3u<2, 0b110100, 0b000000101,
1260                 (outs FPRegs:$rd), (ins FPRegs:$rs2),
1261                 "fnegs $rs2, $rd",
1262                 [(set f32:$rd, (fneg f32:$rs2))],
1263                 IIC_fpu_negs>;
1264def FABSS : F3_3u<2, 0b110100, 0b000001001,
1265                 (outs FPRegs:$rd), (ins FPRegs:$rs2),
1266                 "fabss $rs2, $rd",
1267                 [(set f32:$rd, (fabs f32:$rs2))],
1268                 IIC_fpu_abs>;
1269
1270
1271// Floating-point Square Root Instructions, p.145
1272// FSQRTS generates an erratum on LEON processors, so by disabling this instruction
1273// this will be promoted to use FSQRTD with doubles instead.
1274let Predicates = [HasNoFdivSqrtFix] in
1275def FSQRTS : F3_3u<2, 0b110100, 0b000101001,
1276                  (outs FPRegs:$rd), (ins FPRegs:$rs2),
1277                  "fsqrts $rs2, $rd",
1278                  [(set f32:$rd, (fsqrt f32:$rs2))],
1279                  IIC_fpu_sqrts>;
1280def FSQRTD : F3_3u<2, 0b110100, 0b000101010,
1281                  (outs DFPRegs:$rd), (ins DFPRegs:$rs2),
1282                  "fsqrtd $rs2, $rd",
1283                  [(set f64:$rd, (fsqrt f64:$rs2))],
1284                  IIC_fpu_sqrtd>;
1285def FSQRTQ : F3_3u<2, 0b110100, 0b000101011,
1286                  (outs QFPRegs:$rd), (ins QFPRegs:$rs2),
1287                  "fsqrtq $rs2, $rd",
1288                  [(set f128:$rd, (fsqrt f128:$rs2))]>,
1289                  Requires<[HasHardQuad]>;
1290
1291
1292
1293// Floating-point Add and Subtract Instructions, p. 146
1294def FADDS  : F3_3<2, 0b110100, 0b001000001,
1295                  (outs FPRegs:$rd), (ins FPRegs:$rs1, FPRegs:$rs2),
1296                  "fadds $rs1, $rs2, $rd",
1297                  [(set f32:$rd, (fadd f32:$rs1, f32:$rs2))],
1298                  IIC_fpu_fast_instr>;
1299def FADDD  : F3_3<2, 0b110100, 0b001000010,
1300                  (outs DFPRegs:$rd), (ins DFPRegs:$rs1, DFPRegs:$rs2),
1301                  "faddd $rs1, $rs2, $rd",
1302                  [(set f64:$rd, (fadd f64:$rs1, f64:$rs2))],
1303                  IIC_fpu_fast_instr>;
1304def FADDQ  : F3_3<2, 0b110100, 0b001000011,
1305                  (outs QFPRegs:$rd), (ins QFPRegs:$rs1, QFPRegs:$rs2),
1306                  "faddq $rs1, $rs2, $rd",
1307                  [(set f128:$rd, (fadd f128:$rs1, f128:$rs2))]>,
1308                  Requires<[HasHardQuad]>;
1309
1310def FSUBS  : F3_3<2, 0b110100, 0b001000101,
1311                  (outs FPRegs:$rd), (ins FPRegs:$rs1, FPRegs:$rs2),
1312                  "fsubs $rs1, $rs2, $rd",
1313                  [(set f32:$rd, (fsub f32:$rs1, f32:$rs2))],
1314                  IIC_fpu_fast_instr>;
1315def FSUBD  : F3_3<2, 0b110100, 0b001000110,
1316                  (outs DFPRegs:$rd), (ins DFPRegs:$rs1, DFPRegs:$rs2),
1317                  "fsubd $rs1, $rs2, $rd",
1318                  [(set f64:$rd, (fsub f64:$rs1, f64:$rs2))],
1319                  IIC_fpu_fast_instr>;
1320def FSUBQ  : F3_3<2, 0b110100, 0b001000111,
1321                  (outs QFPRegs:$rd), (ins QFPRegs:$rs1, QFPRegs:$rs2),
1322                  "fsubq $rs1, $rs2, $rd",
1323                  [(set f128:$rd, (fsub f128:$rs1, f128:$rs2))]>,
1324                  Requires<[HasHardQuad]>;
1325
1326
1327// Floating-point Multiply and Divide Instructions, p. 147
1328def FMULS  : F3_3<2, 0b110100, 0b001001001,
1329                  (outs FPRegs:$rd), (ins FPRegs:$rs1, FPRegs:$rs2),
1330                  "fmuls $rs1, $rs2, $rd",
1331                  [(set f32:$rd, (fmul f32:$rs1, f32:$rs2))],
1332                  IIC_fpu_muls>,
1333		  Requires<[HasFMULS]>;
1334def FMULD  : F3_3<2, 0b110100, 0b001001010,
1335                  (outs DFPRegs:$rd), (ins DFPRegs:$rs1, DFPRegs:$rs2),
1336                  "fmuld $rs1, $rs2, $rd",
1337                  [(set f64:$rd, (fmul f64:$rs1, f64:$rs2))],
1338                  IIC_fpu_muld>;
1339def FMULQ  : F3_3<2, 0b110100, 0b001001011,
1340                  (outs QFPRegs:$rd), (ins QFPRegs:$rs1, QFPRegs:$rs2),
1341                  "fmulq $rs1, $rs2, $rd",
1342                  [(set f128:$rd, (fmul f128:$rs1, f128:$rs2))]>,
1343                  Requires<[HasHardQuad]>;
1344
1345def FSMULD : F3_3<2, 0b110100, 0b001101001,
1346                  (outs DFPRegs:$rd), (ins FPRegs:$rs1, FPRegs:$rs2),
1347                  "fsmuld $rs1, $rs2, $rd",
1348                  [(set f64:$rd, (fmul (fpextend f32:$rs1),
1349                                        (fpextend f32:$rs2)))],
1350                  IIC_fpu_muld>,
1351		  Requires<[HasFSMULD]>;
1352def FDMULQ : F3_3<2, 0b110100, 0b001101110,
1353                  (outs QFPRegs:$rd), (ins DFPRegs:$rs1, DFPRegs:$rs2),
1354                  "fdmulq $rs1, $rs2, $rd",
1355                  [(set f128:$rd, (fmul (fpextend f64:$rs1),
1356                                         (fpextend f64:$rs2)))]>,
1357                  Requires<[HasHardQuad]>;
1358
1359// FDIVS generates an erratum on LEON processors, so by disabling this instruction
1360// this will be promoted to use FDIVD with doubles instead.
1361def FDIVS  : F3_3<2, 0b110100, 0b001001101,
1362                 (outs FPRegs:$rd), (ins FPRegs:$rs1, FPRegs:$rs2),
1363                 "fdivs $rs1, $rs2, $rd",
1364                 [(set f32:$rd, (fdiv f32:$rs1, f32:$rs2))],
1365                 IIC_fpu_divs>;
1366def FDIVD  : F3_3<2, 0b110100, 0b001001110,
1367                 (outs DFPRegs:$rd), (ins DFPRegs:$rs1, DFPRegs:$rs2),
1368                 "fdivd $rs1, $rs2, $rd",
1369                 [(set f64:$rd, (fdiv f64:$rs1, f64:$rs2))],
1370                 IIC_fpu_divd>;
1371def FDIVQ  : F3_3<2, 0b110100, 0b001001111,
1372                 (outs QFPRegs:$rd), (ins QFPRegs:$rs1, QFPRegs:$rs2),
1373                 "fdivq $rs1, $rs2, $rd",
1374                 [(set f128:$rd, (fdiv f128:$rs1, f128:$rs2))]>,
1375                 Requires<[HasHardQuad]>;
1376
1377// Floating-point Compare Instructions, p. 148
1378// Note: the 2nd template arg is different for these guys.
1379// Note 2: the result of a FCMP is not available until the 2nd cycle
1380// after the instr is retired, but there is no interlock in Sparc V8.
1381// This behavior is modeled with a forced noop after the instruction in
1382// DelaySlotFiller.
1383
1384let Defs = [FCC0], rd = 0, isCodeGenOnly = 1 in {
1385  def FCMPS  : F3_3c<2, 0b110101, 0b001010001,
1386                   (outs), (ins FPRegs:$rs1, FPRegs:$rs2),
1387                   "fcmps $rs1, $rs2",
1388                   [(SPcmpfcc f32:$rs1, f32:$rs2)],
1389                   IIC_fpu_fast_instr>;
1390  def FCMPD  : F3_3c<2, 0b110101, 0b001010010,
1391                   (outs), (ins DFPRegs:$rs1, DFPRegs:$rs2),
1392                   "fcmpd $rs1, $rs2",
1393                   [(SPcmpfcc f64:$rs1, f64:$rs2)],
1394                   IIC_fpu_fast_instr>;
1395  def FCMPQ  : F3_3c<2, 0b110101, 0b001010011,
1396                   (outs), (ins QFPRegs:$rs1, QFPRegs:$rs2),
1397                   "fcmpq $rs1, $rs2",
1398                   [(SPcmpfcc f128:$rs1, f128:$rs2)]>,
1399                   Requires<[HasHardQuad]>;
1400}
1401
1402//===----------------------------------------------------------------------===//
1403// Instructions for Thread Local Storage(TLS).
1404//===----------------------------------------------------------------------===//
1405let isAsmParserOnly = 1 in {
1406def TLS_ADDrr : F3_1<2, 0b000000,
1407                    (outs IntRegs:$rd),
1408                    (ins IntRegs:$rs1, IntRegs:$rs2, TailRelocSymTLSAdd:$sym),
1409                    "add $rs1, $rs2, $rd, $sym",
1410                    [(set i32:$rd,
1411                        (tlsadd i32:$rs1, i32:$rs2, tglobaltlsaddr:$sym))]>;
1412
1413let mayLoad = 1 in {
1414  def TLS_LDrr : F3_1<3, 0b000000,
1415                      (outs IntRegs:$dst),
1416                      (ins MEMrr:$addr, TailRelocSymTLSLoad:$sym),
1417                      "ld [$addr], $dst, $sym",
1418                      [(set i32:$dst,
1419                          (tlsld ADDRrr:$addr, tglobaltlsaddr:$sym))]>;
1420}
1421
1422let Uses = [O6], isCall = 1, hasDelaySlot = 1 in
1423  def TLS_CALL : InstSP<(outs),
1424                        (ins calltarget:$disp, TailRelocSymTLSCall:$sym,
1425                         variable_ops),
1426                        "call $disp, $sym",
1427                        [(tlscall texternalsym:$disp, tglobaltlsaddr:$sym)],
1428                        IIC_jmp_or_call> {
1429  bits<30> disp;
1430  let op = 1;
1431  let Inst{29-0} = disp;
1432}
1433}
1434
1435//===----------------------------------------------------------------------===//
1436// Instructions for tail calls.
1437//===----------------------------------------------------------------------===//
1438let isCodeGenOnly = 1, isReturn = 1,  hasDelaySlot = 1,
1439    isTerminator = 1, isBarrier = 1 in {
1440  def TAIL_CALL : InstSP<(outs), (ins calltarget:$disp, variable_ops),
1441                         "call $disp",
1442                         [(tailcall tglobaladdr:$disp)]> {
1443  bits<30> disp;
1444  let op = 1;
1445  let Inst{29-0} = disp;
1446  }
1447}
1448
1449def : Pat<(tailcall (iPTR texternalsym:$dst)),
1450          (TAIL_CALL texternalsym:$dst)>;
1451
1452let isCodeGenOnly = 1, isReturn = 1,  hasDelaySlot = 1,  isTerminator = 1,
1453    isBarrier = 1, rd = 0 in {
1454  def TAIL_CALLri : F3_2<2, 0b111000,
1455                         (outs), (ins MEMri:$ptr, variable_ops),
1456                         "jmp $ptr",
1457                         [(tailcall ADDRri:$ptr)]>;
1458}
1459
1460//===----------------------------------------------------------------------===//
1461// V9 Instructions
1462//===----------------------------------------------------------------------===//
1463
1464// V9 Conditional Moves.
1465let Predicates = [HasV9], Constraints = "$f = $rd" in {
1466  // Move Integer Register on Condition (MOVcc) p. 194 of the V9 manual.
1467  let Uses = [ICC], intcc = 1, cc = 0b00 in {
1468    def MOVICCrr
1469      : F4_1<0b101100, (outs IntRegs:$rd),
1470             (ins IntRegs:$rs2, IntRegs:$f, CCOp:$cond),
1471             "mov$cond %icc, $rs2, $rd",
1472             [(set i32:$rd, (SPselecticc i32:$rs2, i32:$f, imm:$cond))]>;
1473
1474    def MOVICCri
1475      : F4_2<0b101100, (outs IntRegs:$rd),
1476             (ins i32imm:$simm11, IntRegs:$f, CCOp:$cond),
1477             "mov$cond %icc, $simm11, $rd",
1478             [(set i32:$rd,
1479                    (SPselecticc simm11:$simm11, i32:$f, imm:$cond))]>;
1480  }
1481
1482  let Uses = [FCC0], intcc = 0, cc = 0b00 in {
1483    def MOVFCCrr
1484      : F4_1<0b101100, (outs IntRegs:$rd),
1485             (ins IntRegs:$rs2, IntRegs:$f, CCOp:$cond),
1486             "mov$cond %fcc0, $rs2, $rd",
1487             [(set i32:$rd, (SPselectfcc i32:$rs2, i32:$f, imm:$cond))]>;
1488    def MOVFCCri
1489      : F4_2<0b101100, (outs IntRegs:$rd),
1490             (ins i32imm:$simm11, IntRegs:$f, CCOp:$cond),
1491             "mov$cond %fcc0, $simm11, $rd",
1492             [(set i32:$rd,
1493                    (SPselectfcc simm11:$simm11, i32:$f, imm:$cond))]>;
1494  }
1495
1496  let Uses = [ICC], intcc = 1, opf_cc = 0b00 in {
1497    def FMOVS_ICC
1498      : F4_3<0b110101, 0b000001, (outs FPRegs:$rd),
1499             (ins FPRegs:$rs2, FPRegs:$f, CCOp:$cond),
1500             "fmovs$cond %icc, $rs2, $rd",
1501             [(set f32:$rd, (SPselecticc f32:$rs2, f32:$f, imm:$cond))]>;
1502    def FMOVD_ICC
1503      : F4_3<0b110101, 0b000010, (outs DFPRegs:$rd),
1504               (ins DFPRegs:$rs2, DFPRegs:$f, CCOp:$cond),
1505               "fmovd$cond %icc, $rs2, $rd",
1506               [(set f64:$rd, (SPselecticc f64:$rs2, f64:$f, imm:$cond))]>;
1507    let Predicates = [HasV9, HasHardQuad] in
1508    def FMOVQ_ICC
1509      : F4_3<0b110101, 0b000011, (outs QFPRegs:$rd),
1510               (ins QFPRegs:$rs2, QFPRegs:$f, CCOp:$cond),
1511               "fmovq$cond %icc, $rs2, $rd",
1512               [(set f128:$rd, (SPselecticc f128:$rs2, f128:$f, imm:$cond))]>;
1513  }
1514
1515  let Uses = [FCC0], intcc = 0, opf_cc = 0b00 in {
1516    def FMOVS_FCC
1517      : F4_3<0b110101, 0b000001, (outs FPRegs:$rd),
1518             (ins FPRegs:$rs2, FPRegs:$f, CCOp:$cond),
1519             "fmovs$cond %fcc0, $rs2, $rd",
1520             [(set f32:$rd, (SPselectfcc f32:$rs2, f32:$f, imm:$cond))]>;
1521    def FMOVD_FCC
1522      : F4_3<0b110101, 0b000010, (outs DFPRegs:$rd),
1523             (ins DFPRegs:$rs2, DFPRegs:$f, CCOp:$cond),
1524             "fmovd$cond %fcc0, $rs2, $rd",
1525             [(set f64:$rd, (SPselectfcc f64:$rs2, f64:$f, imm:$cond))]>;
1526    let Predicates = [HasV9, HasHardQuad] in
1527    def FMOVQ_FCC
1528      : F4_3<0b110101, 0b000011, (outs QFPRegs:$rd),
1529             (ins QFPRegs:$rs2, QFPRegs:$f, CCOp:$cond),
1530             "fmovq$cond %fcc0, $rs2, $rd",
1531             [(set f128:$rd, (SPselectfcc f128:$rs2, f128:$f, imm:$cond))]>;
1532  }
1533
1534}
1535
1536// Floating-Point Move Instructions, p. 164 of the V9 manual.
1537let Predicates = [HasV9] in {
1538  def FMOVD : F3_3u<2, 0b110100, 0b000000010,
1539                   (outs DFPRegs:$rd), (ins DFPRegs:$rs2),
1540                   "fmovd $rs2, $rd", []>;
1541  let Predicates = [HasV9, HasHardQuad] in
1542  def FMOVQ : F3_3u<2, 0b110100, 0b000000011,
1543                   (outs QFPRegs:$rd), (ins QFPRegs:$rs2),
1544                   "fmovq $rs2, $rd", []>;
1545  def FNEGD : F3_3u<2, 0b110100, 0b000000110,
1546                   (outs DFPRegs:$rd), (ins DFPRegs:$rs2),
1547                   "fnegd $rs2, $rd",
1548                   [(set f64:$rd, (fneg f64:$rs2))]>;
1549  let Predicates = [HasV9, HasHardQuad] in
1550  def FNEGQ : F3_3u<2, 0b110100, 0b000000111,
1551                   (outs QFPRegs:$rd), (ins QFPRegs:$rs2),
1552                   "fnegq $rs2, $rd",
1553                   [(set f128:$rd, (fneg f128:$rs2))]>;
1554  def FABSD : F3_3u<2, 0b110100, 0b000001010,
1555                   (outs DFPRegs:$rd), (ins DFPRegs:$rs2),
1556                   "fabsd $rs2, $rd",
1557                   [(set f64:$rd, (fabs f64:$rs2))]>;
1558  let Predicates = [HasV9, HasHardQuad] in
1559  def FABSQ : F3_3u<2, 0b110100, 0b000001011,
1560                   (outs QFPRegs:$rd), (ins QFPRegs:$rs2),
1561                   "fabsq $rs2, $rd",
1562                   [(set f128:$rd, (fabs f128:$rs2))]>;
1563}
1564
1565// Floating-point compare instruction with %fcc0-%fcc3.
1566def V9FCMPS  : F3_3c<2, 0b110101, 0b001010001,
1567               (outs FCCRegs:$rd), (ins FPRegs:$rs1, FPRegs:$rs2),
1568               "fcmps $rd, $rs1, $rs2", []>;
1569def V9FCMPD  : F3_3c<2, 0b110101, 0b001010010,
1570                (outs FCCRegs:$rd), (ins DFPRegs:$rs1, DFPRegs:$rs2),
1571                "fcmpd $rd, $rs1, $rs2", []>;
1572def V9FCMPQ  : F3_3c<2, 0b110101, 0b001010011,
1573                (outs FCCRegs:$rd), (ins QFPRegs:$rs1, QFPRegs:$rs2),
1574                "fcmpq $rd, $rs1, $rs2", []>,
1575                 Requires<[HasHardQuad]>;
1576
1577let hasSideEffects = 1 in {
1578  def V9FCMPES  : F3_3c<2, 0b110101, 0b001010101,
1579                   (outs FCCRegs:$rd), (ins FPRegs:$rs1, FPRegs:$rs2),
1580                   "fcmpes $rd, $rs1, $rs2", []>;
1581  def V9FCMPED  : F3_3c<2, 0b110101, 0b001010110,
1582                   (outs FCCRegs:$rd), (ins DFPRegs:$rs1, DFPRegs:$rs2),
1583                   "fcmped $rd, $rs1, $rs2", []>;
1584  def V9FCMPEQ  : F3_3c<2, 0b110101, 0b001010111,
1585                   (outs FCCRegs:$rd), (ins QFPRegs:$rs1, QFPRegs:$rs2),
1586                   "fcmpeq $rd, $rs1, $rs2", []>,
1587                   Requires<[HasHardQuad]>;
1588}
1589
1590// Floating point conditional move instrucitons with %fcc0-%fcc3.
1591let Predicates = [HasV9] in {
1592  let Constraints = "$f = $rd", intcc = 0 in {
1593    def V9MOVFCCrr
1594      : F4_1<0b101100, (outs IntRegs:$rd),
1595             (ins FCCRegs:$cc, IntRegs:$rs2, IntRegs:$f, CCOp:$cond),
1596             "mov$cond $cc, $rs2, $rd", []>;
1597    def V9MOVFCCri
1598      : F4_2<0b101100, (outs IntRegs:$rd),
1599             (ins FCCRegs:$cc, i32imm:$simm11, IntRegs:$f, CCOp:$cond),
1600             "mov$cond $cc, $simm11, $rd", []>;
1601    def V9FMOVS_FCC
1602      : F4_3<0b110101, 0b000001, (outs FPRegs:$rd),
1603             (ins FCCRegs:$opf_cc, FPRegs:$rs2, FPRegs:$f, CCOp:$cond),
1604             "fmovs$cond $opf_cc, $rs2, $rd", []>;
1605    def V9FMOVD_FCC
1606      : F4_3<0b110101, 0b000010, (outs DFPRegs:$rd),
1607             (ins FCCRegs:$opf_cc, DFPRegs:$rs2, DFPRegs:$f, CCOp:$cond),
1608             "fmovd$cond $opf_cc, $rs2, $rd", []>;
1609    let Predicates = [HasV9, HasHardQuad] in
1610    def V9FMOVQ_FCC
1611      : F4_3<0b110101, 0b000011, (outs QFPRegs:$rd),
1612             (ins FCCRegs:$opf_cc, QFPRegs:$rs2, QFPRegs:$f, CCOp:$cond),
1613             "fmovq$cond $opf_cc, $rs2, $rd", []>;
1614  } // Constraints = "$f = $rd", ...
1615} // let Predicates = [hasV9]
1616
1617
1618// POPCrr - This does a ctpop of a 64-bit register.  As such, we have to clear
1619// the top 32-bits before using it.  To do this clearing, we use a SRLri X,0.
1620let rs1 = 0 in
1621  def POPCrr : F3_1<2, 0b101110,
1622                    (outs IntRegs:$rd), (ins IntRegs:$rs2),
1623                    "popc $rs2, $rd", []>, Requires<[HasV9]>;
1624def : Pat<(i32 (ctpop i32:$src)),
1625          (POPCrr (SRLri $src, 0))>;
1626
1627let Predicates = [HasV9], hasSideEffects = 1, rd = 0, rs1 = 0b01111 in
1628 def MEMBARi : F3_2<2, 0b101000, (outs), (ins MembarTag:$simm13),
1629                    "membar $simm13", []>;
1630
1631let Predicates = [HasV9], rd = 15, rs1 = 0b00000 in
1632  def SIR: F3_2<2, 0b110000, (outs),
1633                (ins simm13Op:$simm13),
1634                 "sir $simm13", []>;
1635
1636// The CAS instruction, unlike other instructions, only comes in a
1637// form which requires an ASI be provided. The ASI value hardcoded
1638// here is ASI_PRIMARY, the default unprivileged ASI for SparcV9.
1639let Predicates = [HasV9], Constraints = "$swap = $rd", asi = 0b10000000 in
1640  def CASrr: F3_1_asi<3, 0b111100,
1641                (outs IntRegs:$rd), (ins IntRegs:$rs1, IntRegs:$rs2,
1642                                     IntRegs:$swap),
1643                 "cas [$rs1], $rs2, $rd",
1644                 [(set i32:$rd,
1645                     (atomic_cmp_swap_32 iPTR:$rs1, i32:$rs2, i32:$swap))]>;
1646
1647
1648// CASA is supported as an instruction on some LEON3 and all LEON4 processors.
1649// This version can be automatically lowered from C code, selecting ASI 10
1650let Predicates = [HasLeonCASA], Constraints = "$swap = $rd", asi = 0b00001010 in
1651  def CASAasi10: F3_1_asi<3, 0b111100,
1652                (outs IntRegs:$rd), (ins IntRegs:$rs1, IntRegs:$rs2,
1653                                     IntRegs:$swap),
1654                 "casa [$rs1] 10, $rs2, $rd",
1655                 [(set i32:$rd,
1656                     (atomic_cmp_swap_32 iPTR:$rs1, i32:$rs2, i32:$swap))]>;
1657
1658// CASA supported on some LEON3 and all LEON4 processors. Same pattern as
1659// CASrr, above, but with a different ASI. This version is supported for
1660// inline assembly lowering only.
1661let Predicates = [HasLeonCASA], Constraints = "$swap = $rd" in
1662  def CASArr: F3_1_asi<3, 0b111100,
1663                (outs IntRegs:$rd), (ins IntRegs:$rs1, IntRegs:$rs2,
1664                                     IntRegs:$swap, i8imm:$asi),
1665                 "casa [$rs1] $asi, $rs2, $rd", []>;
1666
1667// TODO: Add DAG sequence to lower these instructions. Currently, only provided
1668// as inline assembler-supported instructions.
1669let Predicates = [HasUMAC_SMAC], Defs = [Y, ASR18], Uses = [Y, ASR18] in {
1670  def SMACrr :  F3_1<2, 0b111111,
1671                   (outs IntRegs:$rd), (ins IntRegs:$rs1, IntRegs:$rs2, ASRRegs:$asr18),
1672                   "smac $rs1, $rs2, $rd",
1673                   [], IIC_smac_umac>;
1674
1675  def SMACri :  F3_2<2, 0b111111,
1676                  (outs IntRegs:$rd), (ins IntRegs:$rs1, simm13Op:$simm13, ASRRegs:$asr18),
1677                   "smac $rs1, $simm13, $rd",
1678                   [], IIC_smac_umac>;
1679
1680  def UMACrr :  F3_1<2, 0b111110,
1681                  (outs IntRegs:$rd), (ins IntRegs:$rs1, IntRegs:$rs2, ASRRegs:$asr18),
1682                   "umac $rs1, $rs2, $rd",
1683                   [], IIC_smac_umac>;
1684
1685  def UMACri :  F3_2<2, 0b111110,
1686                  (outs IntRegs:$rd), (ins IntRegs:$rs1, simm13Op:$simm13, ASRRegs:$asr18),
1687                   "umac $rs1, $simm13, $rd",
1688                   [], IIC_smac_umac>;
1689}
1690
1691// The partial write WRPSR instruction has a non-zero destination
1692// register value to separate it from the standard instruction.
1693let Predicates = [HasPWRPSR], Defs = [PSR], rd=1 in {
1694  def PWRPSRrr : F3_1<2, 0b110001,
1695     (outs), (ins IntRegs:$rs1, IntRegs:$rs2),
1696     "pwr $rs1, $rs2, %psr", []>;
1697  def PWRPSRri : F3_2<2, 0b110001,
1698     (outs), (ins IntRegs:$rs1, simm13Op:$simm13),
1699     "pwr $rs1, $simm13, %psr", []>;
1700}
1701
1702let Defs = [ICC] in {
1703defm TADDCC   : F3_12np<"taddcc",   0b100000>;
1704defm TSUBCC   : F3_12np<"tsubcc",   0b100001>;
1705
1706let hasSideEffects = 1 in {
1707  defm TADDCCTV : F3_12np<"taddcctv", 0b100010>;
1708  defm TSUBCCTV : F3_12np<"tsubcctv", 0b100011>;
1709}
1710}
1711
1712// Section A.42 - Prefetch Data
1713let Predicates = [HasV9] in {
1714  def PREFETCHr : F3_1<3, 0b101101,
1715                   (outs), (ins MEMrr:$addr, shift_imm5:$rd),
1716                   "prefetch [$addr], $rd", []>;
1717  def PREFETCHi : F3_2<3, 0b101101,
1718                   (outs), (ins MEMri:$addr, shift_imm5:$rd),
1719                   "prefetch [$addr], $rd", []>;
1720}
1721
1722
1723
1724// Section A.43 - Read Privileged Register Instructions
1725let Predicates = [HasV9] in {
1726let rs2 = 0 in
1727  def RDPR : F3_1<2, 0b101010,
1728                 (outs IntRegs:$rd), (ins PRRegs:$rs1),
1729                 "rdpr $rs1, $rd", []>;
1730}
1731
1732// Section A.62 - Write Privileged Register Instructions
1733let Predicates = [HasV9] in {
1734  def WRPRrr : F3_1<2, 0b110010,
1735                   (outs PRRegs:$rd), (ins IntRegs:$rs1, IntRegs:$rs2),
1736                   "wrpr $rs1, $rs2, $rd", []>;
1737  def WRPRri : F3_2<2, 0b110010,
1738                   (outs PRRegs:$rd), (ins IntRegs:$rs1, simm13Op:$simm13),
1739                   "wrpr $rs1, $simm13, $rd", []>;
1740}
1741
1742//===----------------------------------------------------------------------===//
1743// Non-Instruction Patterns
1744//===----------------------------------------------------------------------===//
1745
1746// Zero immediate.
1747def : Pat<(i32 0),
1748          (ORrr (i32 G0), (i32 G0))>;
1749// Small immediates.
1750def : Pat<(i32 simm13:$val),
1751          (ORri (i32 G0), imm:$val)>;
1752// Arbitrary immediates.
1753def : Pat<(i32 imm:$val),
1754          (ORri (SETHIi (HI22 imm:$val)), (LO10 imm:$val))>;
1755
1756
1757// Global addresses, constant pool entries
1758let Predicates = [Is32Bit] in {
1759
1760def : Pat<(SPhi tglobaladdr:$in), (SETHIi tglobaladdr:$in)>;
1761def : Pat<(SPlo tglobaladdr:$in), (ORri (i32 G0), tglobaladdr:$in)>;
1762def : Pat<(SPhi tconstpool:$in), (SETHIi tconstpool:$in)>;
1763def : Pat<(SPlo tconstpool:$in), (ORri (i32 G0), tconstpool:$in)>;
1764
1765// GlobalTLS addresses
1766def : Pat<(SPhi tglobaltlsaddr:$in), (SETHIi tglobaltlsaddr:$in)>;
1767def : Pat<(SPlo tglobaltlsaddr:$in), (ORri (i32 G0), tglobaltlsaddr:$in)>;
1768def : Pat<(add (SPhi tglobaltlsaddr:$in1), (SPlo tglobaltlsaddr:$in2)),
1769          (ADDri (SETHIi tglobaltlsaddr:$in1), (tglobaltlsaddr:$in2))>;
1770def : Pat<(xor (SPhi tglobaltlsaddr:$in1), (SPlo tglobaltlsaddr:$in2)),
1771          (XORri (SETHIi tglobaltlsaddr:$in1), (tglobaltlsaddr:$in2))>;
1772
1773// Blockaddress
1774def : Pat<(SPhi tblockaddress:$in), (SETHIi tblockaddress:$in)>;
1775def : Pat<(SPlo tblockaddress:$in), (ORri (i32 G0), tblockaddress:$in)>;
1776
1777// Add reg, lo.  This is used when taking the addr of a global/constpool entry.
1778def : Pat<(add iPTR:$r, (SPlo tglobaladdr:$in)), (ADDri $r, tglobaladdr:$in)>;
1779def : Pat<(add iPTR:$r, (SPlo tconstpool:$in)),  (ADDri $r, tconstpool:$in)>;
1780def : Pat<(add iPTR:$r, (SPlo tblockaddress:$in)),
1781                        (ADDri $r, tblockaddress:$in)>;
1782}
1783
1784// Calls:
1785def : Pat<(call tglobaladdr:$dst),
1786          (CALL tglobaladdr:$dst)>;
1787def : Pat<(call texternalsym:$dst),
1788          (CALL texternalsym:$dst)>;
1789
1790// Map integer extload's to zextloads.
1791def : Pat<(i32 (extloadi1 ADDRrr:$src)), (LDUBrr ADDRrr:$src)>;
1792def : Pat<(i32 (extloadi1 ADDRri:$src)), (LDUBri ADDRri:$src)>;
1793def : Pat<(i32 (extloadi8 ADDRrr:$src)), (LDUBrr ADDRrr:$src)>;
1794def : Pat<(i32 (extloadi8 ADDRri:$src)), (LDUBri ADDRri:$src)>;
1795def : Pat<(i32 (extloadi16 ADDRrr:$src)), (LDUHrr ADDRrr:$src)>;
1796def : Pat<(i32 (extloadi16 ADDRri:$src)), (LDUHri ADDRri:$src)>;
1797
1798// zextload bool -> zextload byte
1799def : Pat<(i32 (zextloadi1 ADDRrr:$src)), (LDUBrr ADDRrr:$src)>;
1800def : Pat<(i32 (zextloadi1 ADDRri:$src)), (LDUBri ADDRri:$src)>;
1801
1802// store 0, addr -> store %g0, addr
1803def : Pat<(store (i32 0), ADDRrr:$dst), (STrr ADDRrr:$dst, (i32 G0))>;
1804def : Pat<(store (i32 0), ADDRri:$dst), (STri ADDRri:$dst, (i32 G0))>;
1805
1806// store bar for all atomic_fence in V8.
1807let Predicates = [HasNoV9] in
1808  def : Pat<(atomic_fence timm, timm), (STBAR)>;
1809
1810let Predicates = [HasV9] in
1811  def : Pat<(atomic_fence timm, timm), (MEMBARi 0xf)>;
1812
1813// atomic_load addr -> load addr
1814def : Pat<(i32 (atomic_load_8 ADDRrr:$src)), (LDUBrr ADDRrr:$src)>;
1815def : Pat<(i32 (atomic_load_8 ADDRri:$src)), (LDUBri ADDRri:$src)>;
1816def : Pat<(i32 (atomic_load_16 ADDRrr:$src)), (LDUHrr ADDRrr:$src)>;
1817def : Pat<(i32 (atomic_load_16 ADDRri:$src)), (LDUHri ADDRri:$src)>;
1818def : Pat<(i32 (atomic_load_32 ADDRrr:$src)), (LDrr ADDRrr:$src)>;
1819def : Pat<(i32 (atomic_load_32 ADDRri:$src)), (LDri ADDRri:$src)>;
1820
1821// atomic_store val, addr -> store val, addr
1822def : Pat<(atomic_store_8 ADDRrr:$dst, i32:$val), (STBrr ADDRrr:$dst, $val)>;
1823def : Pat<(atomic_store_8 ADDRri:$dst, i32:$val), (STBri ADDRri:$dst, $val)>;
1824def : Pat<(atomic_store_16 ADDRrr:$dst, i32:$val), (STHrr ADDRrr:$dst, $val)>;
1825def : Pat<(atomic_store_16 ADDRri:$dst, i32:$val), (STHri ADDRri:$dst, $val)>;
1826def : Pat<(atomic_store_32 ADDRrr:$dst, i32:$val), (STrr ADDRrr:$dst, $val)>;
1827def : Pat<(atomic_store_32 ADDRri:$dst, i32:$val), (STri ADDRri:$dst, $val)>;
1828
1829// extract_vector
1830def : Pat<(extractelt (v2i32 IntPair:$Rn), 0),
1831          (i32 (EXTRACT_SUBREG IntPair:$Rn, sub_even))>;
1832def : Pat<(extractelt (v2i32 IntPair:$Rn), 1),
1833          (i32 (EXTRACT_SUBREG IntPair:$Rn, sub_odd))>;
1834
1835// build_vector
1836def : Pat<(build_vector (i32 IntRegs:$a1), (i32 IntRegs:$a2)),
1837          (INSERT_SUBREG
1838	    (INSERT_SUBREG (v2i32 (IMPLICIT_DEF)), (i32 IntRegs:$a1), sub_even),
1839            (i32 IntRegs:$a2), sub_odd)>;
1840
1841
1842include "SparcInstr64Bit.td"
1843include "SparcInstrVIS.td"
1844include "SparcInstrAliases.td"
1845