1 //===-- SystemZISelLowering.cpp - SystemZ DAG lowering implementation -----===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the SystemZTargetLowering class.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "SystemZISelLowering.h"
14 #include "SystemZCallingConv.h"
15 #include "SystemZConstantPoolValue.h"
16 #include "SystemZMachineFunctionInfo.h"
17 #include "SystemZTargetMachine.h"
18 #include "llvm/CodeGen/CallingConvLower.h"
19 #include "llvm/CodeGen/MachineInstrBuilder.h"
20 #include "llvm/CodeGen/MachineRegisterInfo.h"
21 #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h"
22 #include "llvm/IR/IntrinsicInst.h"
23 #include "llvm/IR/Intrinsics.h"
24 #include "llvm/IR/IntrinsicsS390.h"
25 #include "llvm/Support/CommandLine.h"
26 #include "llvm/Support/KnownBits.h"
27 #include <cctype>
28 
29 using namespace llvm;
30 
31 #define DEBUG_TYPE "systemz-lower"
32 
33 namespace {
34 // Represents information about a comparison.
35 struct Comparison {
36   Comparison(SDValue Op0In, SDValue Op1In, SDValue ChainIn)
37     : Op0(Op0In), Op1(Op1In), Chain(ChainIn),
38       Opcode(0), ICmpType(0), CCValid(0), CCMask(0) {}
39 
40   // The operands to the comparison.
41   SDValue Op0, Op1;
42 
43   // Chain if this is a strict floating-point comparison.
44   SDValue Chain;
45 
46   // The opcode that should be used to compare Op0 and Op1.
47   unsigned Opcode;
48 
49   // A SystemZICMP value.  Only used for integer comparisons.
50   unsigned ICmpType;
51 
52   // The mask of CC values that Opcode can produce.
53   unsigned CCValid;
54 
55   // The mask of CC values for which the original condition is true.
56   unsigned CCMask;
57 };
58 } // end anonymous namespace
59 
60 // Classify VT as either 32 or 64 bit.
61 static bool is32Bit(EVT VT) {
62   switch (VT.getSimpleVT().SimpleTy) {
63   case MVT::i32:
64     return true;
65   case MVT::i64:
66     return false;
67   default:
68     llvm_unreachable("Unsupported type");
69   }
70 }
71 
72 // Return a version of MachineOperand that can be safely used before the
73 // final use.
74 static MachineOperand earlyUseOperand(MachineOperand Op) {
75   if (Op.isReg())
76     Op.setIsKill(false);
77   return Op;
78 }
79 
80 SystemZTargetLowering::SystemZTargetLowering(const TargetMachine &TM,
81                                              const SystemZSubtarget &STI)
82     : TargetLowering(TM), Subtarget(STI) {
83   MVT PtrVT = MVT::getIntegerVT(8 * TM.getPointerSize(0));
84 
85   // Set up the register classes.
86   if (Subtarget.hasHighWord())
87     addRegisterClass(MVT::i32, &SystemZ::GRX32BitRegClass);
88   else
89     addRegisterClass(MVT::i32, &SystemZ::GR32BitRegClass);
90   addRegisterClass(MVT::i64, &SystemZ::GR64BitRegClass);
91   if (Subtarget.hasVector()) {
92     addRegisterClass(MVT::f32, &SystemZ::VR32BitRegClass);
93     addRegisterClass(MVT::f64, &SystemZ::VR64BitRegClass);
94   } else {
95     addRegisterClass(MVT::f32, &SystemZ::FP32BitRegClass);
96     addRegisterClass(MVT::f64, &SystemZ::FP64BitRegClass);
97   }
98   if (Subtarget.hasVectorEnhancements1())
99     addRegisterClass(MVT::f128, &SystemZ::VR128BitRegClass);
100   else
101     addRegisterClass(MVT::f128, &SystemZ::FP128BitRegClass);
102 
103   if (Subtarget.hasVector()) {
104     addRegisterClass(MVT::v16i8, &SystemZ::VR128BitRegClass);
105     addRegisterClass(MVT::v8i16, &SystemZ::VR128BitRegClass);
106     addRegisterClass(MVT::v4i32, &SystemZ::VR128BitRegClass);
107     addRegisterClass(MVT::v2i64, &SystemZ::VR128BitRegClass);
108     addRegisterClass(MVT::v4f32, &SystemZ::VR128BitRegClass);
109     addRegisterClass(MVT::v2f64, &SystemZ::VR128BitRegClass);
110   }
111 
112   // Compute derived properties from the register classes
113   computeRegisterProperties(Subtarget.getRegisterInfo());
114 
115   // Set up special registers.
116   setStackPointerRegisterToSaveRestore(SystemZ::R15D);
117 
118   // TODO: It may be better to default to latency-oriented scheduling, however
119   // LLVM's current latency-oriented scheduler can't handle physreg definitions
120   // such as SystemZ has with CC, so set this to the register-pressure
121   // scheduler, because it can.
122   setSchedulingPreference(Sched::RegPressure);
123 
124   setBooleanContents(ZeroOrOneBooleanContent);
125   setBooleanVectorContents(ZeroOrNegativeOneBooleanContent);
126 
127   // Instructions are strings of 2-byte aligned 2-byte values.
128   setMinFunctionAlignment(Align(2));
129   // For performance reasons we prefer 16-byte alignment.
130   setPrefFunctionAlignment(Align(16));
131 
132   // Handle operations that are handled in a similar way for all types.
133   for (unsigned I = MVT::FIRST_INTEGER_VALUETYPE;
134        I <= MVT::LAST_FP_VALUETYPE;
135        ++I) {
136     MVT VT = MVT::SimpleValueType(I);
137     if (isTypeLegal(VT)) {
138       // Lower SET_CC into an IPM-based sequence.
139       setOperationAction(ISD::SETCC, VT, Custom);
140       setOperationAction(ISD::STRICT_FSETCC, VT, Custom);
141       setOperationAction(ISD::STRICT_FSETCCS, VT, Custom);
142 
143       // Expand SELECT(C, A, B) into SELECT_CC(X, 0, A, B, NE).
144       setOperationAction(ISD::SELECT, VT, Expand);
145 
146       // Lower SELECT_CC and BR_CC into separate comparisons and branches.
147       setOperationAction(ISD::SELECT_CC, VT, Custom);
148       setOperationAction(ISD::BR_CC,     VT, Custom);
149     }
150   }
151 
152   // Expand jump table branches as address arithmetic followed by an
153   // indirect jump.
154   setOperationAction(ISD::BR_JT, MVT::Other, Expand);
155 
156   // Expand BRCOND into a BR_CC (see above).
157   setOperationAction(ISD::BRCOND, MVT::Other, Expand);
158 
159   // Handle integer types.
160   for (unsigned I = MVT::FIRST_INTEGER_VALUETYPE;
161        I <= MVT::LAST_INTEGER_VALUETYPE;
162        ++I) {
163     MVT VT = MVT::SimpleValueType(I);
164     if (isTypeLegal(VT)) {
165       // Expand individual DIV and REMs into DIVREMs.
166       setOperationAction(ISD::SDIV, VT, Expand);
167       setOperationAction(ISD::UDIV, VT, Expand);
168       setOperationAction(ISD::SREM, VT, Expand);
169       setOperationAction(ISD::UREM, VT, Expand);
170       setOperationAction(ISD::SDIVREM, VT, Custom);
171       setOperationAction(ISD::UDIVREM, VT, Custom);
172 
173       // Support addition/subtraction with overflow.
174       setOperationAction(ISD::SADDO, VT, Custom);
175       setOperationAction(ISD::SSUBO, VT, Custom);
176 
177       // Support addition/subtraction with carry.
178       setOperationAction(ISD::UADDO, VT, Custom);
179       setOperationAction(ISD::USUBO, VT, Custom);
180 
181       // Support carry in as value rather than glue.
182       setOperationAction(ISD::ADDCARRY, VT, Custom);
183       setOperationAction(ISD::SUBCARRY, VT, Custom);
184 
185       // Lower ATOMIC_LOAD and ATOMIC_STORE into normal volatile loads and
186       // stores, putting a serialization instruction after the stores.
187       setOperationAction(ISD::ATOMIC_LOAD,  VT, Custom);
188       setOperationAction(ISD::ATOMIC_STORE, VT, Custom);
189 
190       // Lower ATOMIC_LOAD_SUB into ATOMIC_LOAD_ADD if LAA and LAAG are
191       // available, or if the operand is constant.
192       setOperationAction(ISD::ATOMIC_LOAD_SUB, VT, Custom);
193 
194       // Use POPCNT on z196 and above.
195       if (Subtarget.hasPopulationCount())
196         setOperationAction(ISD::CTPOP, VT, Custom);
197       else
198         setOperationAction(ISD::CTPOP, VT, Expand);
199 
200       // No special instructions for these.
201       setOperationAction(ISD::CTTZ,            VT, Expand);
202       setOperationAction(ISD::ROTR,            VT, Expand);
203 
204       // Use *MUL_LOHI where possible instead of MULH*.
205       setOperationAction(ISD::MULHS, VT, Expand);
206       setOperationAction(ISD::MULHU, VT, Expand);
207       setOperationAction(ISD::SMUL_LOHI, VT, Custom);
208       setOperationAction(ISD::UMUL_LOHI, VT, Custom);
209 
210       // Only z196 and above have native support for conversions to unsigned.
211       // On z10, promoting to i64 doesn't generate an inexact condition for
212       // values that are outside the i32 range but in the i64 range, so use
213       // the default expansion.
214       if (!Subtarget.hasFPExtension())
215         setOperationAction(ISD::FP_TO_UINT, VT, Expand);
216 
217       // Mirror those settings for STRICT_FP_TO_[SU]INT.  Note that these all
218       // default to Expand, so need to be modified to Legal where appropriate.
219       setOperationAction(ISD::STRICT_FP_TO_SINT, VT, Legal);
220       if (Subtarget.hasFPExtension())
221         setOperationAction(ISD::STRICT_FP_TO_UINT, VT, Legal);
222 
223       // And similarly for STRICT_[SU]INT_TO_FP.
224       setOperationAction(ISD::STRICT_SINT_TO_FP, VT, Legal);
225       if (Subtarget.hasFPExtension())
226         setOperationAction(ISD::STRICT_UINT_TO_FP, VT, Legal);
227     }
228   }
229 
230   // Type legalization will convert 8- and 16-bit atomic operations into
231   // forms that operate on i32s (but still keeping the original memory VT).
232   // Lower them into full i32 operations.
233   setOperationAction(ISD::ATOMIC_SWAP,      MVT::i32, Custom);
234   setOperationAction(ISD::ATOMIC_LOAD_ADD,  MVT::i32, Custom);
235   setOperationAction(ISD::ATOMIC_LOAD_SUB,  MVT::i32, Custom);
236   setOperationAction(ISD::ATOMIC_LOAD_AND,  MVT::i32, Custom);
237   setOperationAction(ISD::ATOMIC_LOAD_OR,   MVT::i32, Custom);
238   setOperationAction(ISD::ATOMIC_LOAD_XOR,  MVT::i32, Custom);
239   setOperationAction(ISD::ATOMIC_LOAD_NAND, MVT::i32, Custom);
240   setOperationAction(ISD::ATOMIC_LOAD_MIN,  MVT::i32, Custom);
241   setOperationAction(ISD::ATOMIC_LOAD_MAX,  MVT::i32, Custom);
242   setOperationAction(ISD::ATOMIC_LOAD_UMIN, MVT::i32, Custom);
243   setOperationAction(ISD::ATOMIC_LOAD_UMAX, MVT::i32, Custom);
244 
245   // Even though i128 is not a legal type, we still need to custom lower
246   // the atomic operations in order to exploit SystemZ instructions.
247   setOperationAction(ISD::ATOMIC_LOAD,     MVT::i128, Custom);
248   setOperationAction(ISD::ATOMIC_STORE,    MVT::i128, Custom);
249 
250   // We can use the CC result of compare-and-swap to implement
251   // the "success" result of ATOMIC_CMP_SWAP_WITH_SUCCESS.
252   setOperationAction(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, MVT::i32, Custom);
253   setOperationAction(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, MVT::i64, Custom);
254   setOperationAction(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, MVT::i128, Custom);
255 
256   setOperationAction(ISD::ATOMIC_FENCE, MVT::Other, Custom);
257 
258   // Traps are legal, as we will convert them to "j .+2".
259   setOperationAction(ISD::TRAP, MVT::Other, Legal);
260 
261   // z10 has instructions for signed but not unsigned FP conversion.
262   // Handle unsigned 32-bit types as signed 64-bit types.
263   if (!Subtarget.hasFPExtension()) {
264     setOperationAction(ISD::UINT_TO_FP, MVT::i32, Promote);
265     setOperationAction(ISD::UINT_TO_FP, MVT::i64, Expand);
266     setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::i32, Promote);
267     setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::i64, Expand);
268   }
269 
270   // We have native support for a 64-bit CTLZ, via FLOGR.
271   setOperationAction(ISD::CTLZ, MVT::i32, Promote);
272   setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i32, Promote);
273   setOperationAction(ISD::CTLZ, MVT::i64, Legal);
274 
275   // On z15 we have native support for a 64-bit CTPOP.
276   if (Subtarget.hasMiscellaneousExtensions3()) {
277     setOperationAction(ISD::CTPOP, MVT::i32, Promote);
278     setOperationAction(ISD::CTPOP, MVT::i64, Legal);
279   }
280 
281   // Give LowerOperation the chance to replace 64-bit ORs with subregs.
282   setOperationAction(ISD::OR, MVT::i64, Custom);
283 
284   // FIXME: Can we support these natively?
285   setOperationAction(ISD::SRL_PARTS, MVT::i64, Expand);
286   setOperationAction(ISD::SHL_PARTS, MVT::i64, Expand);
287   setOperationAction(ISD::SRA_PARTS, MVT::i64, Expand);
288 
289   // We have native instructions for i8, i16 and i32 extensions, but not i1.
290   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
291   for (MVT VT : MVT::integer_valuetypes()) {
292     setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote);
293     setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i1, Promote);
294     setLoadExtAction(ISD::EXTLOAD,  VT, MVT::i1, Promote);
295   }
296 
297   // Handle the various types of symbolic address.
298   setOperationAction(ISD::ConstantPool,     PtrVT, Custom);
299   setOperationAction(ISD::GlobalAddress,    PtrVT, Custom);
300   setOperationAction(ISD::GlobalTLSAddress, PtrVT, Custom);
301   setOperationAction(ISD::BlockAddress,     PtrVT, Custom);
302   setOperationAction(ISD::JumpTable,        PtrVT, Custom);
303 
304   // We need to handle dynamic allocations specially because of the
305   // 160-byte area at the bottom of the stack.
306   setOperationAction(ISD::DYNAMIC_STACKALLOC, PtrVT, Custom);
307   setOperationAction(ISD::GET_DYNAMIC_AREA_OFFSET, PtrVT, Custom);
308 
309   // Use custom expanders so that we can force the function to use
310   // a frame pointer.
311   setOperationAction(ISD::STACKSAVE,    MVT::Other, Custom);
312   setOperationAction(ISD::STACKRESTORE, MVT::Other, Custom);
313 
314   // Handle prefetches with PFD or PFDRL.
315   setOperationAction(ISD::PREFETCH, MVT::Other, Custom);
316 
317   for (MVT VT : MVT::fixedlen_vector_valuetypes()) {
318     // Assume by default that all vector operations need to be expanded.
319     for (unsigned Opcode = 0; Opcode < ISD::BUILTIN_OP_END; ++Opcode)
320       if (getOperationAction(Opcode, VT) == Legal)
321         setOperationAction(Opcode, VT, Expand);
322 
323     // Likewise all truncating stores and extending loads.
324     for (MVT InnerVT : MVT::fixedlen_vector_valuetypes()) {
325       setTruncStoreAction(VT, InnerVT, Expand);
326       setLoadExtAction(ISD::SEXTLOAD, VT, InnerVT, Expand);
327       setLoadExtAction(ISD::ZEXTLOAD, VT, InnerVT, Expand);
328       setLoadExtAction(ISD::EXTLOAD, VT, InnerVT, Expand);
329     }
330 
331     if (isTypeLegal(VT)) {
332       // These operations are legal for anything that can be stored in a
333       // vector register, even if there is no native support for the format
334       // as such.  In particular, we can do these for v4f32 even though there
335       // are no specific instructions for that format.
336       setOperationAction(ISD::LOAD, VT, Legal);
337       setOperationAction(ISD::STORE, VT, Legal);
338       setOperationAction(ISD::VSELECT, VT, Legal);
339       setOperationAction(ISD::BITCAST, VT, Legal);
340       setOperationAction(ISD::UNDEF, VT, Legal);
341 
342       // Likewise, except that we need to replace the nodes with something
343       // more specific.
344       setOperationAction(ISD::BUILD_VECTOR, VT, Custom);
345       setOperationAction(ISD::VECTOR_SHUFFLE, VT, Custom);
346     }
347   }
348 
349   // Handle integer vector types.
350   for (MVT VT : MVT::integer_fixedlen_vector_valuetypes()) {
351     if (isTypeLegal(VT)) {
352       // These operations have direct equivalents.
353       setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Legal);
354       setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Legal);
355       setOperationAction(ISD::ADD, VT, Legal);
356       setOperationAction(ISD::SUB, VT, Legal);
357       if (VT != MVT::v2i64)
358         setOperationAction(ISD::MUL, VT, Legal);
359       setOperationAction(ISD::AND, VT, Legal);
360       setOperationAction(ISD::OR, VT, Legal);
361       setOperationAction(ISD::XOR, VT, Legal);
362       if (Subtarget.hasVectorEnhancements1())
363         setOperationAction(ISD::CTPOP, VT, Legal);
364       else
365         setOperationAction(ISD::CTPOP, VT, Custom);
366       setOperationAction(ISD::CTTZ, VT, Legal);
367       setOperationAction(ISD::CTLZ, VT, Legal);
368 
369       // Convert a GPR scalar to a vector by inserting it into element 0.
370       setOperationAction(ISD::SCALAR_TO_VECTOR, VT, Custom);
371 
372       // Use a series of unpacks for extensions.
373       setOperationAction(ISD::SIGN_EXTEND_VECTOR_INREG, VT, Custom);
374       setOperationAction(ISD::ZERO_EXTEND_VECTOR_INREG, VT, Custom);
375 
376       // Detect shifts by a scalar amount and convert them into
377       // V*_BY_SCALAR.
378       setOperationAction(ISD::SHL, VT, Custom);
379       setOperationAction(ISD::SRA, VT, Custom);
380       setOperationAction(ISD::SRL, VT, Custom);
381 
382       // At present ROTL isn't matched by DAGCombiner.  ROTR should be
383       // converted into ROTL.
384       setOperationAction(ISD::ROTL, VT, Expand);
385       setOperationAction(ISD::ROTR, VT, Expand);
386 
387       // Map SETCCs onto one of VCE, VCH or VCHL, swapping the operands
388       // and inverting the result as necessary.
389       setOperationAction(ISD::SETCC, VT, Custom);
390       setOperationAction(ISD::STRICT_FSETCC, VT, Custom);
391       if (Subtarget.hasVectorEnhancements1())
392         setOperationAction(ISD::STRICT_FSETCCS, VT, Custom);
393     }
394   }
395 
396   if (Subtarget.hasVector()) {
397     // There should be no need to check for float types other than v2f64
398     // since <2 x f32> isn't a legal type.
399     setOperationAction(ISD::FP_TO_SINT, MVT::v2i64, Legal);
400     setOperationAction(ISD::FP_TO_SINT, MVT::v2f64, Legal);
401     setOperationAction(ISD::FP_TO_UINT, MVT::v2i64, Legal);
402     setOperationAction(ISD::FP_TO_UINT, MVT::v2f64, Legal);
403     setOperationAction(ISD::SINT_TO_FP, MVT::v2i64, Legal);
404     setOperationAction(ISD::SINT_TO_FP, MVT::v2f64, Legal);
405     setOperationAction(ISD::UINT_TO_FP, MVT::v2i64, Legal);
406     setOperationAction(ISD::UINT_TO_FP, MVT::v2f64, Legal);
407 
408     setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::v2i64, Legal);
409     setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::v2f64, Legal);
410     setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::v2i64, Legal);
411     setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::v2f64, Legal);
412     setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::v2i64, Legal);
413     setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::v2f64, Legal);
414     setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::v2i64, Legal);
415     setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::v2f64, Legal);
416   }
417 
418   if (Subtarget.hasVectorEnhancements2()) {
419     setOperationAction(ISD::FP_TO_SINT, MVT::v4i32, Legal);
420     setOperationAction(ISD::FP_TO_SINT, MVT::v4f32, Legal);
421     setOperationAction(ISD::FP_TO_UINT, MVT::v4i32, Legal);
422     setOperationAction(ISD::FP_TO_UINT, MVT::v4f32, Legal);
423     setOperationAction(ISD::SINT_TO_FP, MVT::v4i32, Legal);
424     setOperationAction(ISD::SINT_TO_FP, MVT::v4f32, Legal);
425     setOperationAction(ISD::UINT_TO_FP, MVT::v4i32, Legal);
426     setOperationAction(ISD::UINT_TO_FP, MVT::v4f32, Legal);
427 
428     setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::v4i32, Legal);
429     setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::v4f32, Legal);
430     setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::v4i32, Legal);
431     setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::v4f32, Legal);
432     setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::v4i32, Legal);
433     setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::v4f32, Legal);
434     setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::v4i32, Legal);
435     setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::v4f32, Legal);
436   }
437 
438   // Handle floating-point types.
439   for (unsigned I = MVT::FIRST_FP_VALUETYPE;
440        I <= MVT::LAST_FP_VALUETYPE;
441        ++I) {
442     MVT VT = MVT::SimpleValueType(I);
443     if (isTypeLegal(VT)) {
444       // We can use FI for FRINT.
445       setOperationAction(ISD::FRINT, VT, Legal);
446 
447       // We can use the extended form of FI for other rounding operations.
448       if (Subtarget.hasFPExtension()) {
449         setOperationAction(ISD::FNEARBYINT, VT, Legal);
450         setOperationAction(ISD::FFLOOR, VT, Legal);
451         setOperationAction(ISD::FCEIL, VT, Legal);
452         setOperationAction(ISD::FTRUNC, VT, Legal);
453         setOperationAction(ISD::FROUND, VT, Legal);
454       }
455 
456       // No special instructions for these.
457       setOperationAction(ISD::FSIN, VT, Expand);
458       setOperationAction(ISD::FCOS, VT, Expand);
459       setOperationAction(ISD::FSINCOS, VT, Expand);
460       setOperationAction(ISD::FREM, VT, Expand);
461       setOperationAction(ISD::FPOW, VT, Expand);
462 
463       // Handle constrained floating-point operations.
464       setOperationAction(ISD::STRICT_FADD, VT, Legal);
465       setOperationAction(ISD::STRICT_FSUB, VT, Legal);
466       setOperationAction(ISD::STRICT_FMUL, VT, Legal);
467       setOperationAction(ISD::STRICT_FDIV, VT, Legal);
468       setOperationAction(ISD::STRICT_FMA, VT, Legal);
469       setOperationAction(ISD::STRICT_FSQRT, VT, Legal);
470       setOperationAction(ISD::STRICT_FRINT, VT, Legal);
471       setOperationAction(ISD::STRICT_FP_ROUND, VT, Legal);
472       setOperationAction(ISD::STRICT_FP_EXTEND, VT, Legal);
473       if (Subtarget.hasFPExtension()) {
474         setOperationAction(ISD::STRICT_FNEARBYINT, VT, Legal);
475         setOperationAction(ISD::STRICT_FFLOOR, VT, Legal);
476         setOperationAction(ISD::STRICT_FCEIL, VT, Legal);
477         setOperationAction(ISD::STRICT_FROUND, VT, Legal);
478         setOperationAction(ISD::STRICT_FTRUNC, VT, Legal);
479       }
480     }
481   }
482 
483   // Handle floating-point vector types.
484   if (Subtarget.hasVector()) {
485     // Scalar-to-vector conversion is just a subreg.
486     setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f32, Legal);
487     setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v2f64, Legal);
488 
489     // Some insertions and extractions can be done directly but others
490     // need to go via integers.
491     setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4f32, Custom);
492     setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v2f64, Custom);
493     setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Custom);
494     setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Custom);
495 
496     // These operations have direct equivalents.
497     setOperationAction(ISD::FADD, MVT::v2f64, Legal);
498     setOperationAction(ISD::FNEG, MVT::v2f64, Legal);
499     setOperationAction(ISD::FSUB, MVT::v2f64, Legal);
500     setOperationAction(ISD::FMUL, MVT::v2f64, Legal);
501     setOperationAction(ISD::FMA, MVT::v2f64, Legal);
502     setOperationAction(ISD::FDIV, MVT::v2f64, Legal);
503     setOperationAction(ISD::FABS, MVT::v2f64, Legal);
504     setOperationAction(ISD::FSQRT, MVT::v2f64, Legal);
505     setOperationAction(ISD::FRINT, MVT::v2f64, Legal);
506     setOperationAction(ISD::FNEARBYINT, MVT::v2f64, Legal);
507     setOperationAction(ISD::FFLOOR, MVT::v2f64, Legal);
508     setOperationAction(ISD::FCEIL, MVT::v2f64, Legal);
509     setOperationAction(ISD::FTRUNC, MVT::v2f64, Legal);
510     setOperationAction(ISD::FROUND, MVT::v2f64, Legal);
511 
512     // Handle constrained floating-point operations.
513     setOperationAction(ISD::STRICT_FADD, MVT::v2f64, Legal);
514     setOperationAction(ISD::STRICT_FSUB, MVT::v2f64, Legal);
515     setOperationAction(ISD::STRICT_FMUL, MVT::v2f64, Legal);
516     setOperationAction(ISD::STRICT_FMA, MVT::v2f64, Legal);
517     setOperationAction(ISD::STRICT_FDIV, MVT::v2f64, Legal);
518     setOperationAction(ISD::STRICT_FSQRT, MVT::v2f64, Legal);
519     setOperationAction(ISD::STRICT_FRINT, MVT::v2f64, Legal);
520     setOperationAction(ISD::STRICT_FNEARBYINT, MVT::v2f64, Legal);
521     setOperationAction(ISD::STRICT_FFLOOR, MVT::v2f64, Legal);
522     setOperationAction(ISD::STRICT_FCEIL, MVT::v2f64, Legal);
523     setOperationAction(ISD::STRICT_FTRUNC, MVT::v2f64, Legal);
524     setOperationAction(ISD::STRICT_FROUND, MVT::v2f64, Legal);
525   }
526 
527   // The vector enhancements facility 1 has instructions for these.
528   if (Subtarget.hasVectorEnhancements1()) {
529     setOperationAction(ISD::FADD, MVT::v4f32, Legal);
530     setOperationAction(ISD::FNEG, MVT::v4f32, Legal);
531     setOperationAction(ISD::FSUB, MVT::v4f32, Legal);
532     setOperationAction(ISD::FMUL, MVT::v4f32, Legal);
533     setOperationAction(ISD::FMA, MVT::v4f32, Legal);
534     setOperationAction(ISD::FDIV, MVT::v4f32, Legal);
535     setOperationAction(ISD::FABS, MVT::v4f32, Legal);
536     setOperationAction(ISD::FSQRT, MVT::v4f32, Legal);
537     setOperationAction(ISD::FRINT, MVT::v4f32, Legal);
538     setOperationAction(ISD::FNEARBYINT, MVT::v4f32, Legal);
539     setOperationAction(ISD::FFLOOR, MVT::v4f32, Legal);
540     setOperationAction(ISD::FCEIL, MVT::v4f32, Legal);
541     setOperationAction(ISD::FTRUNC, MVT::v4f32, Legal);
542     setOperationAction(ISD::FROUND, MVT::v4f32, Legal);
543 
544     setOperationAction(ISD::FMAXNUM, MVT::f64, Legal);
545     setOperationAction(ISD::FMAXIMUM, MVT::f64, Legal);
546     setOperationAction(ISD::FMINNUM, MVT::f64, Legal);
547     setOperationAction(ISD::FMINIMUM, MVT::f64, Legal);
548 
549     setOperationAction(ISD::FMAXNUM, MVT::v2f64, Legal);
550     setOperationAction(ISD::FMAXIMUM, MVT::v2f64, Legal);
551     setOperationAction(ISD::FMINNUM, MVT::v2f64, Legal);
552     setOperationAction(ISD::FMINIMUM, MVT::v2f64, Legal);
553 
554     setOperationAction(ISD::FMAXNUM, MVT::f32, Legal);
555     setOperationAction(ISD::FMAXIMUM, MVT::f32, Legal);
556     setOperationAction(ISD::FMINNUM, MVT::f32, Legal);
557     setOperationAction(ISD::FMINIMUM, MVT::f32, Legal);
558 
559     setOperationAction(ISD::FMAXNUM, MVT::v4f32, Legal);
560     setOperationAction(ISD::FMAXIMUM, MVT::v4f32, Legal);
561     setOperationAction(ISD::FMINNUM, MVT::v4f32, Legal);
562     setOperationAction(ISD::FMINIMUM, MVT::v4f32, Legal);
563 
564     setOperationAction(ISD::FMAXNUM, MVT::f128, Legal);
565     setOperationAction(ISD::FMAXIMUM, MVT::f128, Legal);
566     setOperationAction(ISD::FMINNUM, MVT::f128, Legal);
567     setOperationAction(ISD::FMINIMUM, MVT::f128, Legal);
568 
569     // Handle constrained floating-point operations.
570     setOperationAction(ISD::STRICT_FADD, MVT::v4f32, Legal);
571     setOperationAction(ISD::STRICT_FSUB, MVT::v4f32, Legal);
572     setOperationAction(ISD::STRICT_FMUL, MVT::v4f32, Legal);
573     setOperationAction(ISD::STRICT_FMA, MVT::v4f32, Legal);
574     setOperationAction(ISD::STRICT_FDIV, MVT::v4f32, Legal);
575     setOperationAction(ISD::STRICT_FSQRT, MVT::v4f32, Legal);
576     setOperationAction(ISD::STRICT_FRINT, MVT::v4f32, Legal);
577     setOperationAction(ISD::STRICT_FNEARBYINT, MVT::v4f32, Legal);
578     setOperationAction(ISD::STRICT_FFLOOR, MVT::v4f32, Legal);
579     setOperationAction(ISD::STRICT_FCEIL, MVT::v4f32, Legal);
580     setOperationAction(ISD::STRICT_FROUND, MVT::v4f32, Legal);
581     setOperationAction(ISD::STRICT_FTRUNC, MVT::v4f32, Legal);
582     for (auto VT : { MVT::f32, MVT::f64, MVT::f128,
583                      MVT::v4f32, MVT::v2f64 }) {
584       setOperationAction(ISD::STRICT_FMAXNUM, VT, Legal);
585       setOperationAction(ISD::STRICT_FMINNUM, VT, Legal);
586       setOperationAction(ISD::STRICT_FMAXIMUM, VT, Legal);
587       setOperationAction(ISD::STRICT_FMINIMUM, VT, Legal);
588     }
589   }
590 
591   // We only have fused f128 multiply-addition on vector registers.
592   if (!Subtarget.hasVectorEnhancements1()) {
593     setOperationAction(ISD::FMA, MVT::f128, Expand);
594     setOperationAction(ISD::STRICT_FMA, MVT::f128, Expand);
595   }
596 
597   // We don't have a copysign instruction on vector registers.
598   if (Subtarget.hasVectorEnhancements1())
599     setOperationAction(ISD::FCOPYSIGN, MVT::f128, Expand);
600 
601   // Needed so that we don't try to implement f128 constant loads using
602   // a load-and-extend of a f80 constant (in cases where the constant
603   // would fit in an f80).
604   for (MVT VT : MVT::fp_valuetypes())
605     setLoadExtAction(ISD::EXTLOAD, VT, MVT::f80, Expand);
606 
607   // We don't have extending load instruction on vector registers.
608   if (Subtarget.hasVectorEnhancements1()) {
609     setLoadExtAction(ISD::EXTLOAD, MVT::f128, MVT::f32, Expand);
610     setLoadExtAction(ISD::EXTLOAD, MVT::f128, MVT::f64, Expand);
611   }
612 
613   // Floating-point truncation and stores need to be done separately.
614   setTruncStoreAction(MVT::f64,  MVT::f32, Expand);
615   setTruncStoreAction(MVT::f128, MVT::f32, Expand);
616   setTruncStoreAction(MVT::f128, MVT::f64, Expand);
617 
618   // We have 64-bit FPR<->GPR moves, but need special handling for
619   // 32-bit forms.
620   if (!Subtarget.hasVector()) {
621     setOperationAction(ISD::BITCAST, MVT::i32, Custom);
622     setOperationAction(ISD::BITCAST, MVT::f32, Custom);
623   }
624 
625   // VASTART and VACOPY need to deal with the SystemZ-specific varargs
626   // structure, but VAEND is a no-op.
627   setOperationAction(ISD::VASTART, MVT::Other, Custom);
628   setOperationAction(ISD::VACOPY,  MVT::Other, Custom);
629   setOperationAction(ISD::VAEND,   MVT::Other, Expand);
630 
631   // Codes for which we want to perform some z-specific combinations.
632   setTargetDAGCombine(ISD::ZERO_EXTEND);
633   setTargetDAGCombine(ISD::SIGN_EXTEND);
634   setTargetDAGCombine(ISD::SIGN_EXTEND_INREG);
635   setTargetDAGCombine(ISD::LOAD);
636   setTargetDAGCombine(ISD::STORE);
637   setTargetDAGCombine(ISD::VECTOR_SHUFFLE);
638   setTargetDAGCombine(ISD::EXTRACT_VECTOR_ELT);
639   setTargetDAGCombine(ISD::FP_ROUND);
640   setTargetDAGCombine(ISD::STRICT_FP_ROUND);
641   setTargetDAGCombine(ISD::FP_EXTEND);
642   setTargetDAGCombine(ISD::STRICT_FP_EXTEND);
643   setTargetDAGCombine(ISD::BSWAP);
644   setTargetDAGCombine(ISD::SDIV);
645   setTargetDAGCombine(ISD::UDIV);
646   setTargetDAGCombine(ISD::SREM);
647   setTargetDAGCombine(ISD::UREM);
648 
649   // Handle intrinsics.
650   setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::Other, Custom);
651   setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
652 
653   // We want to use MVC in preference to even a single load/store pair.
654   MaxStoresPerMemcpy = 0;
655   MaxStoresPerMemcpyOptSize = 0;
656 
657   // The main memset sequence is a byte store followed by an MVC.
658   // Two STC or MV..I stores win over that, but the kind of fused stores
659   // generated by target-independent code don't when the byte value is
660   // variable.  E.g.  "STC <reg>;MHI <reg>,257;STH <reg>" is not better
661   // than "STC;MVC".  Handle the choice in target-specific code instead.
662   MaxStoresPerMemset = 0;
663   MaxStoresPerMemsetOptSize = 0;
664 
665   // Default to having -disable-strictnode-mutation on
666   IsStrictFPEnabled = true;
667 }
668 
669 EVT SystemZTargetLowering::getSetCCResultType(const DataLayout &DL,
670                                               LLVMContext &, EVT VT) const {
671   if (!VT.isVector())
672     return MVT::i32;
673   return VT.changeVectorElementTypeToInteger();
674 }
675 
676 bool SystemZTargetLowering::isFMAFasterThanFMulAndFAdd(
677     const MachineFunction &MF, EVT VT) const {
678   VT = VT.getScalarType();
679 
680   if (!VT.isSimple())
681     return false;
682 
683   switch (VT.getSimpleVT().SimpleTy) {
684   case MVT::f32:
685   case MVT::f64:
686     return true;
687   case MVT::f128:
688     return Subtarget.hasVectorEnhancements1();
689   default:
690     break;
691   }
692 
693   return false;
694 }
695 
696 // Return true if the constant can be generated with a vector instruction,
697 // such as VGM, VGMB or VREPI.
698 bool SystemZVectorConstantInfo::isVectorConstantLegal(
699     const SystemZSubtarget &Subtarget) {
700   const SystemZInstrInfo *TII =
701       static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo());
702   if (!Subtarget.hasVector() ||
703       (isFP128 && !Subtarget.hasVectorEnhancements1()))
704     return false;
705 
706   // Try using VECTOR GENERATE BYTE MASK.  This is the architecturally-
707   // preferred way of creating all-zero and all-one vectors so give it
708   // priority over other methods below.
709   unsigned Mask = 0;
710   unsigned I = 0;
711   for (; I < SystemZ::VectorBytes; ++I) {
712     uint64_t Byte = IntBits.lshr(I * 8).trunc(8).getZExtValue();
713     if (Byte == 0xff)
714       Mask |= 1ULL << I;
715     else if (Byte != 0)
716       break;
717   }
718   if (I == SystemZ::VectorBytes) {
719     Opcode = SystemZISD::BYTE_MASK;
720     OpVals.push_back(Mask);
721     VecVT = MVT::getVectorVT(MVT::getIntegerVT(8), 16);
722     return true;
723   }
724 
725   if (SplatBitSize > 64)
726     return false;
727 
728   auto tryValue = [&](uint64_t Value) -> bool {
729     // Try VECTOR REPLICATE IMMEDIATE
730     int64_t SignedValue = SignExtend64(Value, SplatBitSize);
731     if (isInt<16>(SignedValue)) {
732       OpVals.push_back(((unsigned) SignedValue));
733       Opcode = SystemZISD::REPLICATE;
734       VecVT = MVT::getVectorVT(MVT::getIntegerVT(SplatBitSize),
735                                SystemZ::VectorBits / SplatBitSize);
736       return true;
737     }
738     // Try VECTOR GENERATE MASK
739     unsigned Start, End;
740     if (TII->isRxSBGMask(Value, SplatBitSize, Start, End)) {
741       // isRxSBGMask returns the bit numbers for a full 64-bit value, with 0
742       // denoting 1 << 63 and 63 denoting 1.  Convert them to bit numbers for
743       // an SplatBitSize value, so that 0 denotes 1 << (SplatBitSize-1).
744       OpVals.push_back(Start - (64 - SplatBitSize));
745       OpVals.push_back(End - (64 - SplatBitSize));
746       Opcode = SystemZISD::ROTATE_MASK;
747       VecVT = MVT::getVectorVT(MVT::getIntegerVT(SplatBitSize),
748                                SystemZ::VectorBits / SplatBitSize);
749       return true;
750     }
751     return false;
752   };
753 
754   // First try assuming that any undefined bits above the highest set bit
755   // and below the lowest set bit are 1s.  This increases the likelihood of
756   // being able to use a sign-extended element value in VECTOR REPLICATE
757   // IMMEDIATE or a wraparound mask in VECTOR GENERATE MASK.
758   uint64_t SplatBitsZ = SplatBits.getZExtValue();
759   uint64_t SplatUndefZ = SplatUndef.getZExtValue();
760   uint64_t Lower =
761       (SplatUndefZ & ((uint64_t(1) << findFirstSet(SplatBitsZ)) - 1));
762   uint64_t Upper =
763       (SplatUndefZ & ~((uint64_t(1) << findLastSet(SplatBitsZ)) - 1));
764   if (tryValue(SplatBitsZ | Upper | Lower))
765     return true;
766 
767   // Now try assuming that any undefined bits between the first and
768   // last defined set bits are set.  This increases the chances of
769   // using a non-wraparound mask.
770   uint64_t Middle = SplatUndefZ & ~Upper & ~Lower;
771   return tryValue(SplatBitsZ | Middle);
772 }
773 
774 SystemZVectorConstantInfo::SystemZVectorConstantInfo(APFloat FPImm) {
775   IntBits = FPImm.bitcastToAPInt().zextOrSelf(128);
776   isFP128 = (&FPImm.getSemantics() == &APFloat::IEEEquad());
777 
778   // Find the smallest splat.
779   SplatBits = FPImm.bitcastToAPInt();
780   unsigned Width = SplatBits.getBitWidth();
781   while (Width > 8) {
782     unsigned HalfSize = Width / 2;
783     APInt HighValue = SplatBits.lshr(HalfSize).trunc(HalfSize);
784     APInt LowValue = SplatBits.trunc(HalfSize);
785 
786     // If the two halves do not match, stop here.
787     if (HighValue != LowValue || 8 > HalfSize)
788       break;
789 
790     SplatBits = HighValue;
791     Width = HalfSize;
792   }
793   SplatUndef = 0;
794   SplatBitSize = Width;
795 }
796 
797 SystemZVectorConstantInfo::SystemZVectorConstantInfo(BuildVectorSDNode *BVN) {
798   assert(BVN->isConstant() && "Expected a constant BUILD_VECTOR");
799   bool HasAnyUndefs;
800 
801   // Get IntBits by finding the 128 bit splat.
802   BVN->isConstantSplat(IntBits, SplatUndef, SplatBitSize, HasAnyUndefs, 128,
803                        true);
804 
805   // Get SplatBits by finding the 8 bit or greater splat.
806   BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize, HasAnyUndefs, 8,
807                        true);
808 }
809 
810 bool SystemZTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT,
811                                          bool ForCodeSize) const {
812   // We can load zero using LZ?R and negative zero using LZ?R;LC?BR.
813   if (Imm.isZero() || Imm.isNegZero())
814     return true;
815 
816   return SystemZVectorConstantInfo(Imm).isVectorConstantLegal(Subtarget);
817 }
818 
819 bool SystemZTargetLowering::isLegalICmpImmediate(int64_t Imm) const {
820   // We can use CGFI or CLGFI.
821   return isInt<32>(Imm) || isUInt<32>(Imm);
822 }
823 
824 bool SystemZTargetLowering::isLegalAddImmediate(int64_t Imm) const {
825   // We can use ALGFI or SLGFI.
826   return isUInt<32>(Imm) || isUInt<32>(-Imm);
827 }
828 
829 bool SystemZTargetLowering::allowsMisalignedMemoryAccesses(
830     EVT VT, unsigned, unsigned, MachineMemOperand::Flags, bool *Fast) const {
831   // Unaligned accesses should never be slower than the expanded version.
832   // We check specifically for aligned accesses in the few cases where
833   // they are required.
834   if (Fast)
835     *Fast = true;
836   return true;
837 }
838 
839 // Information about the addressing mode for a memory access.
840 struct AddressingMode {
841   // True if a long displacement is supported.
842   bool LongDisplacement;
843 
844   // True if use of index register is supported.
845   bool IndexReg;
846 
847   AddressingMode(bool LongDispl, bool IdxReg) :
848     LongDisplacement(LongDispl), IndexReg(IdxReg) {}
849 };
850 
851 // Return the desired addressing mode for a Load which has only one use (in
852 // the same block) which is a Store.
853 static AddressingMode getLoadStoreAddrMode(bool HasVector,
854                                           Type *Ty) {
855   // With vector support a Load->Store combination may be combined to either
856   // an MVC or vector operations and it seems to work best to allow the
857   // vector addressing mode.
858   if (HasVector)
859     return AddressingMode(false/*LongDispl*/, true/*IdxReg*/);
860 
861   // Otherwise only the MVC case is special.
862   bool MVC = Ty->isIntegerTy(8);
863   return AddressingMode(!MVC/*LongDispl*/, !MVC/*IdxReg*/);
864 }
865 
866 // Return the addressing mode which seems most desirable given an LLVM
867 // Instruction pointer.
868 static AddressingMode
869 supportedAddressingMode(Instruction *I, bool HasVector) {
870   if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
871     switch (II->getIntrinsicID()) {
872     default: break;
873     case Intrinsic::memset:
874     case Intrinsic::memmove:
875     case Intrinsic::memcpy:
876       return AddressingMode(false/*LongDispl*/, false/*IdxReg*/);
877     }
878   }
879 
880   if (isa<LoadInst>(I) && I->hasOneUse()) {
881     auto *SingleUser = cast<Instruction>(*I->user_begin());
882     if (SingleUser->getParent() == I->getParent()) {
883       if (isa<ICmpInst>(SingleUser)) {
884         if (auto *C = dyn_cast<ConstantInt>(SingleUser->getOperand(1)))
885           if (C->getBitWidth() <= 64 &&
886               (isInt<16>(C->getSExtValue()) || isUInt<16>(C->getZExtValue())))
887             // Comparison of memory with 16 bit signed / unsigned immediate
888             return AddressingMode(false/*LongDispl*/, false/*IdxReg*/);
889       } else if (isa<StoreInst>(SingleUser))
890         // Load->Store
891         return getLoadStoreAddrMode(HasVector, I->getType());
892     }
893   } else if (auto *StoreI = dyn_cast<StoreInst>(I)) {
894     if (auto *LoadI = dyn_cast<LoadInst>(StoreI->getValueOperand()))
895       if (LoadI->hasOneUse() && LoadI->getParent() == I->getParent())
896         // Load->Store
897         return getLoadStoreAddrMode(HasVector, LoadI->getType());
898   }
899 
900   if (HasVector && (isa<LoadInst>(I) || isa<StoreInst>(I))) {
901 
902     // * Use LDE instead of LE/LEY for z13 to avoid partial register
903     //   dependencies (LDE only supports small offsets).
904     // * Utilize the vector registers to hold floating point
905     //   values (vector load / store instructions only support small
906     //   offsets).
907 
908     Type *MemAccessTy = (isa<LoadInst>(I) ? I->getType() :
909                          I->getOperand(0)->getType());
910     bool IsFPAccess = MemAccessTy->isFloatingPointTy();
911     bool IsVectorAccess = MemAccessTy->isVectorTy();
912 
913     // A store of an extracted vector element will be combined into a VSTE type
914     // instruction.
915     if (!IsVectorAccess && isa<StoreInst>(I)) {
916       Value *DataOp = I->getOperand(0);
917       if (isa<ExtractElementInst>(DataOp))
918         IsVectorAccess = true;
919     }
920 
921     // A load which gets inserted into a vector element will be combined into a
922     // VLE type instruction.
923     if (!IsVectorAccess && isa<LoadInst>(I) && I->hasOneUse()) {
924       User *LoadUser = *I->user_begin();
925       if (isa<InsertElementInst>(LoadUser))
926         IsVectorAccess = true;
927     }
928 
929     if (IsFPAccess || IsVectorAccess)
930       return AddressingMode(false/*LongDispl*/, true/*IdxReg*/);
931   }
932 
933   return AddressingMode(true/*LongDispl*/, true/*IdxReg*/);
934 }
935 
936 bool SystemZTargetLowering::isLegalAddressingMode(const DataLayout &DL,
937        const AddrMode &AM, Type *Ty, unsigned AS, Instruction *I) const {
938   // Punt on globals for now, although they can be used in limited
939   // RELATIVE LONG cases.
940   if (AM.BaseGV)
941     return false;
942 
943   // Require a 20-bit signed offset.
944   if (!isInt<20>(AM.BaseOffs))
945     return false;
946 
947   AddressingMode SupportedAM(true, true);
948   if (I != nullptr)
949     SupportedAM = supportedAddressingMode(I, Subtarget.hasVector());
950 
951   if (!SupportedAM.LongDisplacement && !isUInt<12>(AM.BaseOffs))
952     return false;
953 
954   if (!SupportedAM.IndexReg)
955     // No indexing allowed.
956     return AM.Scale == 0;
957   else
958     // Indexing is OK but no scale factor can be applied.
959     return AM.Scale == 0 || AM.Scale == 1;
960 }
961 
962 bool SystemZTargetLowering::isTruncateFree(Type *FromType, Type *ToType) const {
963   if (!FromType->isIntegerTy() || !ToType->isIntegerTy())
964     return false;
965   unsigned FromBits = FromType->getPrimitiveSizeInBits();
966   unsigned ToBits = ToType->getPrimitiveSizeInBits();
967   return FromBits > ToBits;
968 }
969 
970 bool SystemZTargetLowering::isTruncateFree(EVT FromVT, EVT ToVT) const {
971   if (!FromVT.isInteger() || !ToVT.isInteger())
972     return false;
973   unsigned FromBits = FromVT.getSizeInBits();
974   unsigned ToBits = ToVT.getSizeInBits();
975   return FromBits > ToBits;
976 }
977 
978 //===----------------------------------------------------------------------===//
979 // Inline asm support
980 //===----------------------------------------------------------------------===//
981 
982 TargetLowering::ConstraintType
983 SystemZTargetLowering::getConstraintType(StringRef Constraint) const {
984   if (Constraint.size() == 1) {
985     switch (Constraint[0]) {
986     case 'a': // Address register
987     case 'd': // Data register (equivalent to 'r')
988     case 'f': // Floating-point register
989     case 'h': // High-part register
990     case 'r': // General-purpose register
991     case 'v': // Vector register
992       return C_RegisterClass;
993 
994     case 'Q': // Memory with base and unsigned 12-bit displacement
995     case 'R': // Likewise, plus an index
996     case 'S': // Memory with base and signed 20-bit displacement
997     case 'T': // Likewise, plus an index
998     case 'm': // Equivalent to 'T'.
999       return C_Memory;
1000 
1001     case 'I': // Unsigned 8-bit constant
1002     case 'J': // Unsigned 12-bit constant
1003     case 'K': // Signed 16-bit constant
1004     case 'L': // Signed 20-bit displacement (on all targets we support)
1005     case 'M': // 0x7fffffff
1006       return C_Immediate;
1007 
1008     default:
1009       break;
1010     }
1011   }
1012   return TargetLowering::getConstraintType(Constraint);
1013 }
1014 
1015 TargetLowering::ConstraintWeight SystemZTargetLowering::
1016 getSingleConstraintMatchWeight(AsmOperandInfo &info,
1017                                const char *constraint) const {
1018   ConstraintWeight weight = CW_Invalid;
1019   Value *CallOperandVal = info.CallOperandVal;
1020   // If we don't have a value, we can't do a match,
1021   // but allow it at the lowest weight.
1022   if (!CallOperandVal)
1023     return CW_Default;
1024   Type *type = CallOperandVal->getType();
1025   // Look at the constraint type.
1026   switch (*constraint) {
1027   default:
1028     weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint);
1029     break;
1030 
1031   case 'a': // Address register
1032   case 'd': // Data register (equivalent to 'r')
1033   case 'h': // High-part register
1034   case 'r': // General-purpose register
1035     if (CallOperandVal->getType()->isIntegerTy())
1036       weight = CW_Register;
1037     break;
1038 
1039   case 'f': // Floating-point register
1040     if (type->isFloatingPointTy())
1041       weight = CW_Register;
1042     break;
1043 
1044   case 'v': // Vector register
1045     if ((type->isVectorTy() || type->isFloatingPointTy()) &&
1046         Subtarget.hasVector())
1047       weight = CW_Register;
1048     break;
1049 
1050   case 'I': // Unsigned 8-bit constant
1051     if (auto *C = dyn_cast<ConstantInt>(CallOperandVal))
1052       if (isUInt<8>(C->getZExtValue()))
1053         weight = CW_Constant;
1054     break;
1055 
1056   case 'J': // Unsigned 12-bit constant
1057     if (auto *C = dyn_cast<ConstantInt>(CallOperandVal))
1058       if (isUInt<12>(C->getZExtValue()))
1059         weight = CW_Constant;
1060     break;
1061 
1062   case 'K': // Signed 16-bit constant
1063     if (auto *C = dyn_cast<ConstantInt>(CallOperandVal))
1064       if (isInt<16>(C->getSExtValue()))
1065         weight = CW_Constant;
1066     break;
1067 
1068   case 'L': // Signed 20-bit displacement (on all targets we support)
1069     if (auto *C = dyn_cast<ConstantInt>(CallOperandVal))
1070       if (isInt<20>(C->getSExtValue()))
1071         weight = CW_Constant;
1072     break;
1073 
1074   case 'M': // 0x7fffffff
1075     if (auto *C = dyn_cast<ConstantInt>(CallOperandVal))
1076       if (C->getZExtValue() == 0x7fffffff)
1077         weight = CW_Constant;
1078     break;
1079   }
1080   return weight;
1081 }
1082 
1083 // Parse a "{tNNN}" register constraint for which the register type "t"
1084 // has already been verified.  MC is the class associated with "t" and
1085 // Map maps 0-based register numbers to LLVM register numbers.
1086 static std::pair<unsigned, const TargetRegisterClass *>
1087 parseRegisterNumber(StringRef Constraint, const TargetRegisterClass *RC,
1088                     const unsigned *Map, unsigned Size) {
1089   assert(*(Constraint.end()-1) == '}' && "Missing '}'");
1090   if (isdigit(Constraint[2])) {
1091     unsigned Index;
1092     bool Failed =
1093         Constraint.slice(2, Constraint.size() - 1).getAsInteger(10, Index);
1094     if (!Failed && Index < Size && Map[Index])
1095       return std::make_pair(Map[Index], RC);
1096   }
1097   return std::make_pair(0U, nullptr);
1098 }
1099 
1100 std::pair<unsigned, const TargetRegisterClass *>
1101 SystemZTargetLowering::getRegForInlineAsmConstraint(
1102     const TargetRegisterInfo *TRI, StringRef Constraint, MVT VT) const {
1103   if (Constraint.size() == 1) {
1104     // GCC Constraint Letters
1105     switch (Constraint[0]) {
1106     default: break;
1107     case 'd': // Data register (equivalent to 'r')
1108     case 'r': // General-purpose register
1109       if (VT == MVT::i64)
1110         return std::make_pair(0U, &SystemZ::GR64BitRegClass);
1111       else if (VT == MVT::i128)
1112         return std::make_pair(0U, &SystemZ::GR128BitRegClass);
1113       return std::make_pair(0U, &SystemZ::GR32BitRegClass);
1114 
1115     case 'a': // Address register
1116       if (VT == MVT::i64)
1117         return std::make_pair(0U, &SystemZ::ADDR64BitRegClass);
1118       else if (VT == MVT::i128)
1119         return std::make_pair(0U, &SystemZ::ADDR128BitRegClass);
1120       return std::make_pair(0U, &SystemZ::ADDR32BitRegClass);
1121 
1122     case 'h': // High-part register (an LLVM extension)
1123       return std::make_pair(0U, &SystemZ::GRH32BitRegClass);
1124 
1125     case 'f': // Floating-point register
1126       if (VT == MVT::f64)
1127         return std::make_pair(0U, &SystemZ::FP64BitRegClass);
1128       else if (VT == MVT::f128)
1129         return std::make_pair(0U, &SystemZ::FP128BitRegClass);
1130       return std::make_pair(0U, &SystemZ::FP32BitRegClass);
1131 
1132     case 'v': // Vector register
1133       if (Subtarget.hasVector()) {
1134         if (VT == MVT::f32)
1135           return std::make_pair(0U, &SystemZ::VR32BitRegClass);
1136         if (VT == MVT::f64)
1137           return std::make_pair(0U, &SystemZ::VR64BitRegClass);
1138         return std::make_pair(0U, &SystemZ::VR128BitRegClass);
1139       }
1140       break;
1141     }
1142   }
1143   if (Constraint.size() > 0 && Constraint[0] == '{') {
1144     // We need to override the default register parsing for GPRs and FPRs
1145     // because the interpretation depends on VT.  The internal names of
1146     // the registers are also different from the external names
1147     // (F0D and F0S instead of F0, etc.).
1148     if (Constraint[1] == 'r') {
1149       if (VT == MVT::i32)
1150         return parseRegisterNumber(Constraint, &SystemZ::GR32BitRegClass,
1151                                    SystemZMC::GR32Regs, 16);
1152       if (VT == MVT::i128)
1153         return parseRegisterNumber(Constraint, &SystemZ::GR128BitRegClass,
1154                                    SystemZMC::GR128Regs, 16);
1155       return parseRegisterNumber(Constraint, &SystemZ::GR64BitRegClass,
1156                                  SystemZMC::GR64Regs, 16);
1157     }
1158     if (Constraint[1] == 'f') {
1159       if (VT == MVT::f32)
1160         return parseRegisterNumber(Constraint, &SystemZ::FP32BitRegClass,
1161                                    SystemZMC::FP32Regs, 16);
1162       if (VT == MVT::f128)
1163         return parseRegisterNumber(Constraint, &SystemZ::FP128BitRegClass,
1164                                    SystemZMC::FP128Regs, 16);
1165       return parseRegisterNumber(Constraint, &SystemZ::FP64BitRegClass,
1166                                  SystemZMC::FP64Regs, 16);
1167     }
1168     if (Constraint[1] == 'v') {
1169       if (VT == MVT::f32)
1170         return parseRegisterNumber(Constraint, &SystemZ::VR32BitRegClass,
1171                                    SystemZMC::VR32Regs, 32);
1172       if (VT == MVT::f64)
1173         return parseRegisterNumber(Constraint, &SystemZ::VR64BitRegClass,
1174                                    SystemZMC::VR64Regs, 32);
1175       return parseRegisterNumber(Constraint, &SystemZ::VR128BitRegClass,
1176                                  SystemZMC::VR128Regs, 32);
1177     }
1178   }
1179   return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT);
1180 }
1181 
1182 void SystemZTargetLowering::
1183 LowerAsmOperandForConstraint(SDValue Op, std::string &Constraint,
1184                              std::vector<SDValue> &Ops,
1185                              SelectionDAG &DAG) const {
1186   // Only support length 1 constraints for now.
1187   if (Constraint.length() == 1) {
1188     switch (Constraint[0]) {
1189     case 'I': // Unsigned 8-bit constant
1190       if (auto *C = dyn_cast<ConstantSDNode>(Op))
1191         if (isUInt<8>(C->getZExtValue()))
1192           Ops.push_back(DAG.getTargetConstant(C->getZExtValue(), SDLoc(Op),
1193                                               Op.getValueType()));
1194       return;
1195 
1196     case 'J': // Unsigned 12-bit constant
1197       if (auto *C = dyn_cast<ConstantSDNode>(Op))
1198         if (isUInt<12>(C->getZExtValue()))
1199           Ops.push_back(DAG.getTargetConstant(C->getZExtValue(), SDLoc(Op),
1200                                               Op.getValueType()));
1201       return;
1202 
1203     case 'K': // Signed 16-bit constant
1204       if (auto *C = dyn_cast<ConstantSDNode>(Op))
1205         if (isInt<16>(C->getSExtValue()))
1206           Ops.push_back(DAG.getTargetConstant(C->getSExtValue(), SDLoc(Op),
1207                                               Op.getValueType()));
1208       return;
1209 
1210     case 'L': // Signed 20-bit displacement (on all targets we support)
1211       if (auto *C = dyn_cast<ConstantSDNode>(Op))
1212         if (isInt<20>(C->getSExtValue()))
1213           Ops.push_back(DAG.getTargetConstant(C->getSExtValue(), SDLoc(Op),
1214                                               Op.getValueType()));
1215       return;
1216 
1217     case 'M': // 0x7fffffff
1218       if (auto *C = dyn_cast<ConstantSDNode>(Op))
1219         if (C->getZExtValue() == 0x7fffffff)
1220           Ops.push_back(DAG.getTargetConstant(C->getZExtValue(), SDLoc(Op),
1221                                               Op.getValueType()));
1222       return;
1223     }
1224   }
1225   TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
1226 }
1227 
1228 //===----------------------------------------------------------------------===//
1229 // Calling conventions
1230 //===----------------------------------------------------------------------===//
1231 
1232 #include "SystemZGenCallingConv.inc"
1233 
1234 const MCPhysReg *SystemZTargetLowering::getScratchRegisters(
1235   CallingConv::ID) const {
1236   static const MCPhysReg ScratchRegs[] = { SystemZ::R0D, SystemZ::R1D,
1237                                            SystemZ::R14D, 0 };
1238   return ScratchRegs;
1239 }
1240 
1241 bool SystemZTargetLowering::allowTruncateForTailCall(Type *FromType,
1242                                                      Type *ToType) const {
1243   return isTruncateFree(FromType, ToType);
1244 }
1245 
1246 bool SystemZTargetLowering::mayBeEmittedAsTailCall(const CallInst *CI) const {
1247   return CI->isTailCall();
1248 }
1249 
1250 // We do not yet support 128-bit single-element vector types.  If the user
1251 // attempts to use such types as function argument or return type, prefer
1252 // to error out instead of emitting code violating the ABI.
1253 static void VerifyVectorType(MVT VT, EVT ArgVT) {
1254   if (ArgVT.isVector() && !VT.isVector())
1255     report_fatal_error("Unsupported vector argument or return type");
1256 }
1257 
1258 static void VerifyVectorTypes(const SmallVectorImpl<ISD::InputArg> &Ins) {
1259   for (unsigned i = 0; i < Ins.size(); ++i)
1260     VerifyVectorType(Ins[i].VT, Ins[i].ArgVT);
1261 }
1262 
1263 static void VerifyVectorTypes(const SmallVectorImpl<ISD::OutputArg> &Outs) {
1264   for (unsigned i = 0; i < Outs.size(); ++i)
1265     VerifyVectorType(Outs[i].VT, Outs[i].ArgVT);
1266 }
1267 
1268 // Value is a value that has been passed to us in the location described by VA
1269 // (and so has type VA.getLocVT()).  Convert Value to VA.getValVT(), chaining
1270 // any loads onto Chain.
1271 static SDValue convertLocVTToValVT(SelectionDAG &DAG, const SDLoc &DL,
1272                                    CCValAssign &VA, SDValue Chain,
1273                                    SDValue Value) {
1274   // If the argument has been promoted from a smaller type, insert an
1275   // assertion to capture this.
1276   if (VA.getLocInfo() == CCValAssign::SExt)
1277     Value = DAG.getNode(ISD::AssertSext, DL, VA.getLocVT(), Value,
1278                         DAG.getValueType(VA.getValVT()));
1279   else if (VA.getLocInfo() == CCValAssign::ZExt)
1280     Value = DAG.getNode(ISD::AssertZext, DL, VA.getLocVT(), Value,
1281                         DAG.getValueType(VA.getValVT()));
1282 
1283   if (VA.isExtInLoc())
1284     Value = DAG.getNode(ISD::TRUNCATE, DL, VA.getValVT(), Value);
1285   else if (VA.getLocInfo() == CCValAssign::BCvt) {
1286     // If this is a short vector argument loaded from the stack,
1287     // extend from i64 to full vector size and then bitcast.
1288     assert(VA.getLocVT() == MVT::i64);
1289     assert(VA.getValVT().isVector());
1290     Value = DAG.getBuildVector(MVT::v2i64, DL, {Value, DAG.getUNDEF(MVT::i64)});
1291     Value = DAG.getNode(ISD::BITCAST, DL, VA.getValVT(), Value);
1292   } else
1293     assert(VA.getLocInfo() == CCValAssign::Full && "Unsupported getLocInfo");
1294   return Value;
1295 }
1296 
1297 // Value is a value of type VA.getValVT() that we need to copy into
1298 // the location described by VA.  Return a copy of Value converted to
1299 // VA.getValVT().  The caller is responsible for handling indirect values.
1300 static SDValue convertValVTToLocVT(SelectionDAG &DAG, const SDLoc &DL,
1301                                    CCValAssign &VA, SDValue Value) {
1302   switch (VA.getLocInfo()) {
1303   case CCValAssign::SExt:
1304     return DAG.getNode(ISD::SIGN_EXTEND, DL, VA.getLocVT(), Value);
1305   case CCValAssign::ZExt:
1306     return DAG.getNode(ISD::ZERO_EXTEND, DL, VA.getLocVT(), Value);
1307   case CCValAssign::AExt:
1308     return DAG.getNode(ISD::ANY_EXTEND, DL, VA.getLocVT(), Value);
1309   case CCValAssign::BCvt:
1310     // If this is a short vector argument to be stored to the stack,
1311     // bitcast to v2i64 and then extract first element.
1312     assert(VA.getLocVT() == MVT::i64);
1313     assert(VA.getValVT().isVector());
1314     Value = DAG.getNode(ISD::BITCAST, DL, MVT::v2i64, Value);
1315     return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VA.getLocVT(), Value,
1316                        DAG.getConstant(0, DL, MVT::i32));
1317   case CCValAssign::Full:
1318     return Value;
1319   default:
1320     llvm_unreachable("Unhandled getLocInfo()");
1321   }
1322 }
1323 
1324 SDValue SystemZTargetLowering::LowerFormalArguments(
1325     SDValue Chain, CallingConv::ID CallConv, bool IsVarArg,
1326     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL,
1327     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
1328   MachineFunction &MF = DAG.getMachineFunction();
1329   MachineFrameInfo &MFI = MF.getFrameInfo();
1330   MachineRegisterInfo &MRI = MF.getRegInfo();
1331   SystemZMachineFunctionInfo *FuncInfo =
1332       MF.getInfo<SystemZMachineFunctionInfo>();
1333   auto *TFL =
1334       static_cast<const SystemZFrameLowering *>(Subtarget.getFrameLowering());
1335   EVT PtrVT = getPointerTy(DAG.getDataLayout());
1336 
1337   // Detect unsupported vector argument types.
1338   if (Subtarget.hasVector())
1339     VerifyVectorTypes(Ins);
1340 
1341   // Assign locations to all of the incoming arguments.
1342   SmallVector<CCValAssign, 16> ArgLocs;
1343   SystemZCCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext());
1344   CCInfo.AnalyzeFormalArguments(Ins, CC_SystemZ);
1345 
1346   unsigned NumFixedGPRs = 0;
1347   unsigned NumFixedFPRs = 0;
1348   for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) {
1349     SDValue ArgValue;
1350     CCValAssign &VA = ArgLocs[I];
1351     EVT LocVT = VA.getLocVT();
1352     if (VA.isRegLoc()) {
1353       // Arguments passed in registers
1354       const TargetRegisterClass *RC;
1355       switch (LocVT.getSimpleVT().SimpleTy) {
1356       default:
1357         // Integers smaller than i64 should be promoted to i64.
1358         llvm_unreachable("Unexpected argument type");
1359       case MVT::i32:
1360         NumFixedGPRs += 1;
1361         RC = &SystemZ::GR32BitRegClass;
1362         break;
1363       case MVT::i64:
1364         NumFixedGPRs += 1;
1365         RC = &SystemZ::GR64BitRegClass;
1366         break;
1367       case MVT::f32:
1368         NumFixedFPRs += 1;
1369         RC = &SystemZ::FP32BitRegClass;
1370         break;
1371       case MVT::f64:
1372         NumFixedFPRs += 1;
1373         RC = &SystemZ::FP64BitRegClass;
1374         break;
1375       case MVT::v16i8:
1376       case MVT::v8i16:
1377       case MVT::v4i32:
1378       case MVT::v2i64:
1379       case MVT::v4f32:
1380       case MVT::v2f64:
1381         RC = &SystemZ::VR128BitRegClass;
1382         break;
1383       }
1384 
1385       Register VReg = MRI.createVirtualRegister(RC);
1386       MRI.addLiveIn(VA.getLocReg(), VReg);
1387       ArgValue = DAG.getCopyFromReg(Chain, DL, VReg, LocVT);
1388     } else {
1389       assert(VA.isMemLoc() && "Argument not register or memory");
1390 
1391       // Create the frame index object for this incoming parameter.
1392       int FI = MFI.CreateFixedObject(LocVT.getSizeInBits() / 8,
1393                                      VA.getLocMemOffset(), true);
1394 
1395       // Create the SelectionDAG nodes corresponding to a load
1396       // from this parameter.  Unpromoted ints and floats are
1397       // passed as right-justified 8-byte values.
1398       SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
1399       if (VA.getLocVT() == MVT::i32 || VA.getLocVT() == MVT::f32)
1400         FIN = DAG.getNode(ISD::ADD, DL, PtrVT, FIN,
1401                           DAG.getIntPtrConstant(4, DL));
1402       ArgValue = DAG.getLoad(LocVT, DL, Chain, FIN,
1403                              MachinePointerInfo::getFixedStack(MF, FI));
1404     }
1405 
1406     // Convert the value of the argument register into the value that's
1407     // being passed.
1408     if (VA.getLocInfo() == CCValAssign::Indirect) {
1409       InVals.push_back(DAG.getLoad(VA.getValVT(), DL, Chain, ArgValue,
1410                                    MachinePointerInfo()));
1411       // If the original argument was split (e.g. i128), we need
1412       // to load all parts of it here (using the same address).
1413       unsigned ArgIndex = Ins[I].OrigArgIndex;
1414       assert (Ins[I].PartOffset == 0);
1415       while (I + 1 != E && Ins[I + 1].OrigArgIndex == ArgIndex) {
1416         CCValAssign &PartVA = ArgLocs[I + 1];
1417         unsigned PartOffset = Ins[I + 1].PartOffset;
1418         SDValue Address = DAG.getNode(ISD::ADD, DL, PtrVT, ArgValue,
1419                                       DAG.getIntPtrConstant(PartOffset, DL));
1420         InVals.push_back(DAG.getLoad(PartVA.getValVT(), DL, Chain, Address,
1421                                      MachinePointerInfo()));
1422         ++I;
1423       }
1424     } else
1425       InVals.push_back(convertLocVTToValVT(DAG, DL, VA, Chain, ArgValue));
1426   }
1427 
1428   if (IsVarArg) {
1429     // Save the number of non-varargs registers for later use by va_start, etc.
1430     FuncInfo->setVarArgsFirstGPR(NumFixedGPRs);
1431     FuncInfo->setVarArgsFirstFPR(NumFixedFPRs);
1432 
1433     // Likewise the address (in the form of a frame index) of where the
1434     // first stack vararg would be.  The 1-byte size here is arbitrary.
1435     int64_t StackSize = CCInfo.getNextStackOffset();
1436     FuncInfo->setVarArgsFrameIndex(MFI.CreateFixedObject(1, StackSize, true));
1437 
1438     // ...and a similar frame index for the caller-allocated save area
1439     // that will be used to store the incoming registers.
1440     int64_t RegSaveOffset = -SystemZMC::CallFrameSize;
1441     unsigned RegSaveIndex = MFI.CreateFixedObject(1, RegSaveOffset, true);
1442     FuncInfo->setRegSaveFrameIndex(RegSaveIndex);
1443 
1444     // Store the FPR varargs in the reserved frame slots.  (We store the
1445     // GPRs as part of the prologue.)
1446     if (NumFixedFPRs < SystemZ::NumArgFPRs) {
1447       SDValue MemOps[SystemZ::NumArgFPRs];
1448       for (unsigned I = NumFixedFPRs; I < SystemZ::NumArgFPRs; ++I) {
1449         unsigned Offset = TFL->getRegSpillOffset(SystemZ::ArgFPRs[I]);
1450         int FI = MFI.CreateFixedObject(8, RegSaveOffset + Offset, true);
1451         SDValue FIN = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout()));
1452         unsigned VReg = MF.addLiveIn(SystemZ::ArgFPRs[I],
1453                                      &SystemZ::FP64BitRegClass);
1454         SDValue ArgValue = DAG.getCopyFromReg(Chain, DL, VReg, MVT::f64);
1455         MemOps[I] = DAG.getStore(ArgValue.getValue(1), DL, ArgValue, FIN,
1456                                  MachinePointerInfo::getFixedStack(MF, FI));
1457       }
1458       // Join the stores, which are independent of one another.
1459       Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other,
1460                           makeArrayRef(&MemOps[NumFixedFPRs],
1461                                        SystemZ::NumArgFPRs-NumFixedFPRs));
1462     }
1463   }
1464 
1465   return Chain;
1466 }
1467 
1468 static bool canUseSiblingCall(const CCState &ArgCCInfo,
1469                               SmallVectorImpl<CCValAssign> &ArgLocs,
1470                               SmallVectorImpl<ISD::OutputArg> &Outs) {
1471   // Punt if there are any indirect or stack arguments, or if the call
1472   // needs the callee-saved argument register R6, or if the call uses
1473   // the callee-saved register arguments SwiftSelf and SwiftError.
1474   for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) {
1475     CCValAssign &VA = ArgLocs[I];
1476     if (VA.getLocInfo() == CCValAssign::Indirect)
1477       return false;
1478     if (!VA.isRegLoc())
1479       return false;
1480     Register Reg = VA.getLocReg();
1481     if (Reg == SystemZ::R6H || Reg == SystemZ::R6L || Reg == SystemZ::R6D)
1482       return false;
1483     if (Outs[I].Flags.isSwiftSelf() || Outs[I].Flags.isSwiftError())
1484       return false;
1485   }
1486   return true;
1487 }
1488 
1489 SDValue
1490 SystemZTargetLowering::LowerCall(CallLoweringInfo &CLI,
1491                                  SmallVectorImpl<SDValue> &InVals) const {
1492   SelectionDAG &DAG = CLI.DAG;
1493   SDLoc &DL = CLI.DL;
1494   SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs;
1495   SmallVectorImpl<SDValue> &OutVals = CLI.OutVals;
1496   SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins;
1497   SDValue Chain = CLI.Chain;
1498   SDValue Callee = CLI.Callee;
1499   bool &IsTailCall = CLI.IsTailCall;
1500   CallingConv::ID CallConv = CLI.CallConv;
1501   bool IsVarArg = CLI.IsVarArg;
1502   MachineFunction &MF = DAG.getMachineFunction();
1503   EVT PtrVT = getPointerTy(MF.getDataLayout());
1504 
1505   // Detect unsupported vector argument and return types.
1506   if (Subtarget.hasVector()) {
1507     VerifyVectorTypes(Outs);
1508     VerifyVectorTypes(Ins);
1509   }
1510 
1511   // Analyze the operands of the call, assigning locations to each operand.
1512   SmallVector<CCValAssign, 16> ArgLocs;
1513   SystemZCCState ArgCCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext());
1514   ArgCCInfo.AnalyzeCallOperands(Outs, CC_SystemZ);
1515 
1516   // We don't support GuaranteedTailCallOpt, only automatically-detected
1517   // sibling calls.
1518   if (IsTailCall && !canUseSiblingCall(ArgCCInfo, ArgLocs, Outs))
1519     IsTailCall = false;
1520 
1521   // Get a count of how many bytes are to be pushed on the stack.
1522   unsigned NumBytes = ArgCCInfo.getNextStackOffset();
1523 
1524   // Mark the start of the call.
1525   if (!IsTailCall)
1526     Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, DL);
1527 
1528   // Copy argument values to their designated locations.
1529   SmallVector<std::pair<unsigned, SDValue>, 9> RegsToPass;
1530   SmallVector<SDValue, 8> MemOpChains;
1531   SDValue StackPtr;
1532   for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) {
1533     CCValAssign &VA = ArgLocs[I];
1534     SDValue ArgValue = OutVals[I];
1535 
1536     if (VA.getLocInfo() == CCValAssign::Indirect) {
1537       // Store the argument in a stack slot and pass its address.
1538       SDValue SpillSlot = DAG.CreateStackTemporary(Outs[I].ArgVT);
1539       int FI = cast<FrameIndexSDNode>(SpillSlot)->getIndex();
1540       MemOpChains.push_back(
1541           DAG.getStore(Chain, DL, ArgValue, SpillSlot,
1542                        MachinePointerInfo::getFixedStack(MF, FI)));
1543       // If the original argument was split (e.g. i128), we need
1544       // to store all parts of it here (and pass just one address).
1545       unsigned ArgIndex = Outs[I].OrigArgIndex;
1546       assert (Outs[I].PartOffset == 0);
1547       while (I + 1 != E && Outs[I + 1].OrigArgIndex == ArgIndex) {
1548         SDValue PartValue = OutVals[I + 1];
1549         unsigned PartOffset = Outs[I + 1].PartOffset;
1550         SDValue Address = DAG.getNode(ISD::ADD, DL, PtrVT, SpillSlot,
1551                                       DAG.getIntPtrConstant(PartOffset, DL));
1552         MemOpChains.push_back(
1553             DAG.getStore(Chain, DL, PartValue, Address,
1554                          MachinePointerInfo::getFixedStack(MF, FI)));
1555         ++I;
1556       }
1557       ArgValue = SpillSlot;
1558     } else
1559       ArgValue = convertValVTToLocVT(DAG, DL, VA, ArgValue);
1560 
1561     if (VA.isRegLoc())
1562       // Queue up the argument copies and emit them at the end.
1563       RegsToPass.push_back(std::make_pair(VA.getLocReg(), ArgValue));
1564     else {
1565       assert(VA.isMemLoc() && "Argument not register or memory");
1566 
1567       // Work out the address of the stack slot.  Unpromoted ints and
1568       // floats are passed as right-justified 8-byte values.
1569       if (!StackPtr.getNode())
1570         StackPtr = DAG.getCopyFromReg(Chain, DL, SystemZ::R15D, PtrVT);
1571       unsigned Offset = SystemZMC::CallFrameSize + VA.getLocMemOffset();
1572       if (VA.getLocVT() == MVT::i32 || VA.getLocVT() == MVT::f32)
1573         Offset += 4;
1574       SDValue Address = DAG.getNode(ISD::ADD, DL, PtrVT, StackPtr,
1575                                     DAG.getIntPtrConstant(Offset, DL));
1576 
1577       // Emit the store.
1578       MemOpChains.push_back(
1579           DAG.getStore(Chain, DL, ArgValue, Address, MachinePointerInfo()));
1580     }
1581   }
1582 
1583   // Join the stores, which are independent of one another.
1584   if (!MemOpChains.empty())
1585     Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOpChains);
1586 
1587   // Accept direct calls by converting symbolic call addresses to the
1588   // associated Target* opcodes.  Force %r1 to be used for indirect
1589   // tail calls.
1590   SDValue Glue;
1591   if (auto *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
1592     Callee = DAG.getTargetGlobalAddress(G->getGlobal(), DL, PtrVT);
1593     Callee = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Callee);
1594   } else if (auto *E = dyn_cast<ExternalSymbolSDNode>(Callee)) {
1595     Callee = DAG.getTargetExternalSymbol(E->getSymbol(), PtrVT);
1596     Callee = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Callee);
1597   } else if (IsTailCall) {
1598     Chain = DAG.getCopyToReg(Chain, DL, SystemZ::R1D, Callee, Glue);
1599     Glue = Chain.getValue(1);
1600     Callee = DAG.getRegister(SystemZ::R1D, Callee.getValueType());
1601   }
1602 
1603   // Build a sequence of copy-to-reg nodes, chained and glued together.
1604   for (unsigned I = 0, E = RegsToPass.size(); I != E; ++I) {
1605     Chain = DAG.getCopyToReg(Chain, DL, RegsToPass[I].first,
1606                              RegsToPass[I].second, Glue);
1607     Glue = Chain.getValue(1);
1608   }
1609 
1610   // The first call operand is the chain and the second is the target address.
1611   SmallVector<SDValue, 8> Ops;
1612   Ops.push_back(Chain);
1613   Ops.push_back(Callee);
1614 
1615   // Add argument registers to the end of the list so that they are
1616   // known live into the call.
1617   for (unsigned I = 0, E = RegsToPass.size(); I != E; ++I)
1618     Ops.push_back(DAG.getRegister(RegsToPass[I].first,
1619                                   RegsToPass[I].second.getValueType()));
1620 
1621   // Add a register mask operand representing the call-preserved registers.
1622   const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo();
1623   const uint32_t *Mask = TRI->getCallPreservedMask(MF, CallConv);
1624   assert(Mask && "Missing call preserved mask for calling convention");
1625   Ops.push_back(DAG.getRegisterMask(Mask));
1626 
1627   // Glue the call to the argument copies, if any.
1628   if (Glue.getNode())
1629     Ops.push_back(Glue);
1630 
1631   // Emit the call.
1632   SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
1633   if (IsTailCall)
1634     return DAG.getNode(SystemZISD::SIBCALL, DL, NodeTys, Ops);
1635   Chain = DAG.getNode(SystemZISD::CALL, DL, NodeTys, Ops);
1636   Glue = Chain.getValue(1);
1637 
1638   // Mark the end of the call, which is glued to the call itself.
1639   Chain = DAG.getCALLSEQ_END(Chain,
1640                              DAG.getConstant(NumBytes, DL, PtrVT, true),
1641                              DAG.getConstant(0, DL, PtrVT, true),
1642                              Glue, DL);
1643   Glue = Chain.getValue(1);
1644 
1645   // Assign locations to each value returned by this call.
1646   SmallVector<CCValAssign, 16> RetLocs;
1647   CCState RetCCInfo(CallConv, IsVarArg, MF, RetLocs, *DAG.getContext());
1648   RetCCInfo.AnalyzeCallResult(Ins, RetCC_SystemZ);
1649 
1650   // Copy all of the result registers out of their specified physreg.
1651   for (unsigned I = 0, E = RetLocs.size(); I != E; ++I) {
1652     CCValAssign &VA = RetLocs[I];
1653 
1654     // Copy the value out, gluing the copy to the end of the call sequence.
1655     SDValue RetValue = DAG.getCopyFromReg(Chain, DL, VA.getLocReg(),
1656                                           VA.getLocVT(), Glue);
1657     Chain = RetValue.getValue(1);
1658     Glue = RetValue.getValue(2);
1659 
1660     // Convert the value of the return register into the value that's
1661     // being returned.
1662     InVals.push_back(convertLocVTToValVT(DAG, DL, VA, Chain, RetValue));
1663   }
1664 
1665   return Chain;
1666 }
1667 
1668 bool SystemZTargetLowering::
1669 CanLowerReturn(CallingConv::ID CallConv,
1670                MachineFunction &MF, bool isVarArg,
1671                const SmallVectorImpl<ISD::OutputArg> &Outs,
1672                LLVMContext &Context) const {
1673   // Detect unsupported vector return types.
1674   if (Subtarget.hasVector())
1675     VerifyVectorTypes(Outs);
1676 
1677   // Special case that we cannot easily detect in RetCC_SystemZ since
1678   // i128 is not a legal type.
1679   for (auto &Out : Outs)
1680     if (Out.ArgVT == MVT::i128)
1681       return false;
1682 
1683   SmallVector<CCValAssign, 16> RetLocs;
1684   CCState RetCCInfo(CallConv, isVarArg, MF, RetLocs, Context);
1685   return RetCCInfo.CheckReturn(Outs, RetCC_SystemZ);
1686 }
1687 
1688 SDValue
1689 SystemZTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv,
1690                                    bool IsVarArg,
1691                                    const SmallVectorImpl<ISD::OutputArg> &Outs,
1692                                    const SmallVectorImpl<SDValue> &OutVals,
1693                                    const SDLoc &DL, SelectionDAG &DAG) const {
1694   MachineFunction &MF = DAG.getMachineFunction();
1695 
1696   // Detect unsupported vector return types.
1697   if (Subtarget.hasVector())
1698     VerifyVectorTypes(Outs);
1699 
1700   // Assign locations to each returned value.
1701   SmallVector<CCValAssign, 16> RetLocs;
1702   CCState RetCCInfo(CallConv, IsVarArg, MF, RetLocs, *DAG.getContext());
1703   RetCCInfo.AnalyzeReturn(Outs, RetCC_SystemZ);
1704 
1705   // Quick exit for void returns
1706   if (RetLocs.empty())
1707     return DAG.getNode(SystemZISD::RET_FLAG, DL, MVT::Other, Chain);
1708 
1709   if (CallConv == CallingConv::GHC)
1710     report_fatal_error("GHC functions return void only");
1711 
1712   // Copy the result values into the output registers.
1713   SDValue Glue;
1714   SmallVector<SDValue, 4> RetOps;
1715   RetOps.push_back(Chain);
1716   for (unsigned I = 0, E = RetLocs.size(); I != E; ++I) {
1717     CCValAssign &VA = RetLocs[I];
1718     SDValue RetValue = OutVals[I];
1719 
1720     // Make the return register live on exit.
1721     assert(VA.isRegLoc() && "Can only return in registers!");
1722 
1723     // Promote the value as required.
1724     RetValue = convertValVTToLocVT(DAG, DL, VA, RetValue);
1725 
1726     // Chain and glue the copies together.
1727     Register Reg = VA.getLocReg();
1728     Chain = DAG.getCopyToReg(Chain, DL, Reg, RetValue, Glue);
1729     Glue = Chain.getValue(1);
1730     RetOps.push_back(DAG.getRegister(Reg, VA.getLocVT()));
1731   }
1732 
1733   // Update chain and glue.
1734   RetOps[0] = Chain;
1735   if (Glue.getNode())
1736     RetOps.push_back(Glue);
1737 
1738   return DAG.getNode(SystemZISD::RET_FLAG, DL, MVT::Other, RetOps);
1739 }
1740 
1741 // Return true if Op is an intrinsic node with chain that returns the CC value
1742 // as its only (other) argument.  Provide the associated SystemZISD opcode and
1743 // the mask of valid CC values if so.
1744 static bool isIntrinsicWithCCAndChain(SDValue Op, unsigned &Opcode,
1745                                       unsigned &CCValid) {
1746   unsigned Id = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
1747   switch (Id) {
1748   case Intrinsic::s390_tbegin:
1749     Opcode = SystemZISD::TBEGIN;
1750     CCValid = SystemZ::CCMASK_TBEGIN;
1751     return true;
1752 
1753   case Intrinsic::s390_tbegin_nofloat:
1754     Opcode = SystemZISD::TBEGIN_NOFLOAT;
1755     CCValid = SystemZ::CCMASK_TBEGIN;
1756     return true;
1757 
1758   case Intrinsic::s390_tend:
1759     Opcode = SystemZISD::TEND;
1760     CCValid = SystemZ::CCMASK_TEND;
1761     return true;
1762 
1763   default:
1764     return false;
1765   }
1766 }
1767 
1768 // Return true if Op is an intrinsic node without chain that returns the
1769 // CC value as its final argument.  Provide the associated SystemZISD
1770 // opcode and the mask of valid CC values if so.
1771 static bool isIntrinsicWithCC(SDValue Op, unsigned &Opcode, unsigned &CCValid) {
1772   unsigned Id = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
1773   switch (Id) {
1774   case Intrinsic::s390_vpkshs:
1775   case Intrinsic::s390_vpksfs:
1776   case Intrinsic::s390_vpksgs:
1777     Opcode = SystemZISD::PACKS_CC;
1778     CCValid = SystemZ::CCMASK_VCMP;
1779     return true;
1780 
1781   case Intrinsic::s390_vpklshs:
1782   case Intrinsic::s390_vpklsfs:
1783   case Intrinsic::s390_vpklsgs:
1784     Opcode = SystemZISD::PACKLS_CC;
1785     CCValid = SystemZ::CCMASK_VCMP;
1786     return true;
1787 
1788   case Intrinsic::s390_vceqbs:
1789   case Intrinsic::s390_vceqhs:
1790   case Intrinsic::s390_vceqfs:
1791   case Intrinsic::s390_vceqgs:
1792     Opcode = SystemZISD::VICMPES;
1793     CCValid = SystemZ::CCMASK_VCMP;
1794     return true;
1795 
1796   case Intrinsic::s390_vchbs:
1797   case Intrinsic::s390_vchhs:
1798   case Intrinsic::s390_vchfs:
1799   case Intrinsic::s390_vchgs:
1800     Opcode = SystemZISD::VICMPHS;
1801     CCValid = SystemZ::CCMASK_VCMP;
1802     return true;
1803 
1804   case Intrinsic::s390_vchlbs:
1805   case Intrinsic::s390_vchlhs:
1806   case Intrinsic::s390_vchlfs:
1807   case Intrinsic::s390_vchlgs:
1808     Opcode = SystemZISD::VICMPHLS;
1809     CCValid = SystemZ::CCMASK_VCMP;
1810     return true;
1811 
1812   case Intrinsic::s390_vtm:
1813     Opcode = SystemZISD::VTM;
1814     CCValid = SystemZ::CCMASK_VCMP;
1815     return true;
1816 
1817   case Intrinsic::s390_vfaebs:
1818   case Intrinsic::s390_vfaehs:
1819   case Intrinsic::s390_vfaefs:
1820     Opcode = SystemZISD::VFAE_CC;
1821     CCValid = SystemZ::CCMASK_ANY;
1822     return true;
1823 
1824   case Intrinsic::s390_vfaezbs:
1825   case Intrinsic::s390_vfaezhs:
1826   case Intrinsic::s390_vfaezfs:
1827     Opcode = SystemZISD::VFAEZ_CC;
1828     CCValid = SystemZ::CCMASK_ANY;
1829     return true;
1830 
1831   case Intrinsic::s390_vfeebs:
1832   case Intrinsic::s390_vfeehs:
1833   case Intrinsic::s390_vfeefs:
1834     Opcode = SystemZISD::VFEE_CC;
1835     CCValid = SystemZ::CCMASK_ANY;
1836     return true;
1837 
1838   case Intrinsic::s390_vfeezbs:
1839   case Intrinsic::s390_vfeezhs:
1840   case Intrinsic::s390_vfeezfs:
1841     Opcode = SystemZISD::VFEEZ_CC;
1842     CCValid = SystemZ::CCMASK_ANY;
1843     return true;
1844 
1845   case Intrinsic::s390_vfenebs:
1846   case Intrinsic::s390_vfenehs:
1847   case Intrinsic::s390_vfenefs:
1848     Opcode = SystemZISD::VFENE_CC;
1849     CCValid = SystemZ::CCMASK_ANY;
1850     return true;
1851 
1852   case Intrinsic::s390_vfenezbs:
1853   case Intrinsic::s390_vfenezhs:
1854   case Intrinsic::s390_vfenezfs:
1855     Opcode = SystemZISD::VFENEZ_CC;
1856     CCValid = SystemZ::CCMASK_ANY;
1857     return true;
1858 
1859   case Intrinsic::s390_vistrbs:
1860   case Intrinsic::s390_vistrhs:
1861   case Intrinsic::s390_vistrfs:
1862     Opcode = SystemZISD::VISTR_CC;
1863     CCValid = SystemZ::CCMASK_0 | SystemZ::CCMASK_3;
1864     return true;
1865 
1866   case Intrinsic::s390_vstrcbs:
1867   case Intrinsic::s390_vstrchs:
1868   case Intrinsic::s390_vstrcfs:
1869     Opcode = SystemZISD::VSTRC_CC;
1870     CCValid = SystemZ::CCMASK_ANY;
1871     return true;
1872 
1873   case Intrinsic::s390_vstrczbs:
1874   case Intrinsic::s390_vstrczhs:
1875   case Intrinsic::s390_vstrczfs:
1876     Opcode = SystemZISD::VSTRCZ_CC;
1877     CCValid = SystemZ::CCMASK_ANY;
1878     return true;
1879 
1880   case Intrinsic::s390_vstrsb:
1881   case Intrinsic::s390_vstrsh:
1882   case Intrinsic::s390_vstrsf:
1883     Opcode = SystemZISD::VSTRS_CC;
1884     CCValid = SystemZ::CCMASK_ANY;
1885     return true;
1886 
1887   case Intrinsic::s390_vstrszb:
1888   case Intrinsic::s390_vstrszh:
1889   case Intrinsic::s390_vstrszf:
1890     Opcode = SystemZISD::VSTRSZ_CC;
1891     CCValid = SystemZ::CCMASK_ANY;
1892     return true;
1893 
1894   case Intrinsic::s390_vfcedbs:
1895   case Intrinsic::s390_vfcesbs:
1896     Opcode = SystemZISD::VFCMPES;
1897     CCValid = SystemZ::CCMASK_VCMP;
1898     return true;
1899 
1900   case Intrinsic::s390_vfchdbs:
1901   case Intrinsic::s390_vfchsbs:
1902     Opcode = SystemZISD::VFCMPHS;
1903     CCValid = SystemZ::CCMASK_VCMP;
1904     return true;
1905 
1906   case Intrinsic::s390_vfchedbs:
1907   case Intrinsic::s390_vfchesbs:
1908     Opcode = SystemZISD::VFCMPHES;
1909     CCValid = SystemZ::CCMASK_VCMP;
1910     return true;
1911 
1912   case Intrinsic::s390_vftcidb:
1913   case Intrinsic::s390_vftcisb:
1914     Opcode = SystemZISD::VFTCI;
1915     CCValid = SystemZ::CCMASK_VCMP;
1916     return true;
1917 
1918   case Intrinsic::s390_tdc:
1919     Opcode = SystemZISD::TDC;
1920     CCValid = SystemZ::CCMASK_TDC;
1921     return true;
1922 
1923   default:
1924     return false;
1925   }
1926 }
1927 
1928 // Emit an intrinsic with chain and an explicit CC register result.
1929 static SDNode *emitIntrinsicWithCCAndChain(SelectionDAG &DAG, SDValue Op,
1930                                            unsigned Opcode) {
1931   // Copy all operands except the intrinsic ID.
1932   unsigned NumOps = Op.getNumOperands();
1933   SmallVector<SDValue, 6> Ops;
1934   Ops.reserve(NumOps - 1);
1935   Ops.push_back(Op.getOperand(0));
1936   for (unsigned I = 2; I < NumOps; ++I)
1937     Ops.push_back(Op.getOperand(I));
1938 
1939   assert(Op->getNumValues() == 2 && "Expected only CC result and chain");
1940   SDVTList RawVTs = DAG.getVTList(MVT::i32, MVT::Other);
1941   SDValue Intr = DAG.getNode(Opcode, SDLoc(Op), RawVTs, Ops);
1942   SDValue OldChain = SDValue(Op.getNode(), 1);
1943   SDValue NewChain = SDValue(Intr.getNode(), 1);
1944   DAG.ReplaceAllUsesOfValueWith(OldChain, NewChain);
1945   return Intr.getNode();
1946 }
1947 
1948 // Emit an intrinsic with an explicit CC register result.
1949 static SDNode *emitIntrinsicWithCC(SelectionDAG &DAG, SDValue Op,
1950                                    unsigned Opcode) {
1951   // Copy all operands except the intrinsic ID.
1952   unsigned NumOps = Op.getNumOperands();
1953   SmallVector<SDValue, 6> Ops;
1954   Ops.reserve(NumOps - 1);
1955   for (unsigned I = 1; I < NumOps; ++I)
1956     Ops.push_back(Op.getOperand(I));
1957 
1958   SDValue Intr = DAG.getNode(Opcode, SDLoc(Op), Op->getVTList(), Ops);
1959   return Intr.getNode();
1960 }
1961 
1962 // CC is a comparison that will be implemented using an integer or
1963 // floating-point comparison.  Return the condition code mask for
1964 // a branch on true.  In the integer case, CCMASK_CMP_UO is set for
1965 // unsigned comparisons and clear for signed ones.  In the floating-point
1966 // case, CCMASK_CMP_UO has its normal mask meaning (unordered).
1967 static unsigned CCMaskForCondCode(ISD::CondCode CC) {
1968 #define CONV(X) \
1969   case ISD::SET##X: return SystemZ::CCMASK_CMP_##X; \
1970   case ISD::SETO##X: return SystemZ::CCMASK_CMP_##X; \
1971   case ISD::SETU##X: return SystemZ::CCMASK_CMP_UO | SystemZ::CCMASK_CMP_##X
1972 
1973   switch (CC) {
1974   default:
1975     llvm_unreachable("Invalid integer condition!");
1976 
1977   CONV(EQ);
1978   CONV(NE);
1979   CONV(GT);
1980   CONV(GE);
1981   CONV(LT);
1982   CONV(LE);
1983 
1984   case ISD::SETO:  return SystemZ::CCMASK_CMP_O;
1985   case ISD::SETUO: return SystemZ::CCMASK_CMP_UO;
1986   }
1987 #undef CONV
1988 }
1989 
1990 // If C can be converted to a comparison against zero, adjust the operands
1991 // as necessary.
1992 static void adjustZeroCmp(SelectionDAG &DAG, const SDLoc &DL, Comparison &C) {
1993   if (C.ICmpType == SystemZICMP::UnsignedOnly)
1994     return;
1995 
1996   auto *ConstOp1 = dyn_cast<ConstantSDNode>(C.Op1.getNode());
1997   if (!ConstOp1)
1998     return;
1999 
2000   int64_t Value = ConstOp1->getSExtValue();
2001   if ((Value == -1 && C.CCMask == SystemZ::CCMASK_CMP_GT) ||
2002       (Value == -1 && C.CCMask == SystemZ::CCMASK_CMP_LE) ||
2003       (Value == 1 && C.CCMask == SystemZ::CCMASK_CMP_LT) ||
2004       (Value == 1 && C.CCMask == SystemZ::CCMASK_CMP_GE)) {
2005     C.CCMask ^= SystemZ::CCMASK_CMP_EQ;
2006     C.Op1 = DAG.getConstant(0, DL, C.Op1.getValueType());
2007   }
2008 }
2009 
2010 // If a comparison described by C is suitable for CLI(Y), CHHSI or CLHHSI,
2011 // adjust the operands as necessary.
2012 static void adjustSubwordCmp(SelectionDAG &DAG, const SDLoc &DL,
2013                              Comparison &C) {
2014   // For us to make any changes, it must a comparison between a single-use
2015   // load and a constant.
2016   if (!C.Op0.hasOneUse() ||
2017       C.Op0.getOpcode() != ISD::LOAD ||
2018       C.Op1.getOpcode() != ISD::Constant)
2019     return;
2020 
2021   // We must have an 8- or 16-bit load.
2022   auto *Load = cast<LoadSDNode>(C.Op0);
2023   unsigned NumBits = Load->getMemoryVT().getStoreSizeInBits();
2024   if (NumBits != 8 && NumBits != 16)
2025     return;
2026 
2027   // The load must be an extending one and the constant must be within the
2028   // range of the unextended value.
2029   auto *ConstOp1 = cast<ConstantSDNode>(C.Op1);
2030   uint64_t Value = ConstOp1->getZExtValue();
2031   uint64_t Mask = (1 << NumBits) - 1;
2032   if (Load->getExtensionType() == ISD::SEXTLOAD) {
2033     // Make sure that ConstOp1 is in range of C.Op0.
2034     int64_t SignedValue = ConstOp1->getSExtValue();
2035     if (uint64_t(SignedValue) + (uint64_t(1) << (NumBits - 1)) > Mask)
2036       return;
2037     if (C.ICmpType != SystemZICMP::SignedOnly) {
2038       // Unsigned comparison between two sign-extended values is equivalent
2039       // to unsigned comparison between two zero-extended values.
2040       Value &= Mask;
2041     } else if (NumBits == 8) {
2042       // Try to treat the comparison as unsigned, so that we can use CLI.
2043       // Adjust CCMask and Value as necessary.
2044       if (Value == 0 && C.CCMask == SystemZ::CCMASK_CMP_LT)
2045         // Test whether the high bit of the byte is set.
2046         Value = 127, C.CCMask = SystemZ::CCMASK_CMP_GT;
2047       else if (Value == 0 && C.CCMask == SystemZ::CCMASK_CMP_GE)
2048         // Test whether the high bit of the byte is clear.
2049         Value = 128, C.CCMask = SystemZ::CCMASK_CMP_LT;
2050       else
2051         // No instruction exists for this combination.
2052         return;
2053       C.ICmpType = SystemZICMP::UnsignedOnly;
2054     }
2055   } else if (Load->getExtensionType() == ISD::ZEXTLOAD) {
2056     if (Value > Mask)
2057       return;
2058     // If the constant is in range, we can use any comparison.
2059     C.ICmpType = SystemZICMP::Any;
2060   } else
2061     return;
2062 
2063   // Make sure that the first operand is an i32 of the right extension type.
2064   ISD::LoadExtType ExtType = (C.ICmpType == SystemZICMP::SignedOnly ?
2065                               ISD::SEXTLOAD :
2066                               ISD::ZEXTLOAD);
2067   if (C.Op0.getValueType() != MVT::i32 ||
2068       Load->getExtensionType() != ExtType) {
2069     C.Op0 = DAG.getExtLoad(ExtType, SDLoc(Load), MVT::i32, Load->getChain(),
2070                            Load->getBasePtr(), Load->getPointerInfo(),
2071                            Load->getMemoryVT(), Load->getAlignment(),
2072                            Load->getMemOperand()->getFlags());
2073     // Update the chain uses.
2074     DAG.ReplaceAllUsesOfValueWith(SDValue(Load, 1), C.Op0.getValue(1));
2075   }
2076 
2077   // Make sure that the second operand is an i32 with the right value.
2078   if (C.Op1.getValueType() != MVT::i32 ||
2079       Value != ConstOp1->getZExtValue())
2080     C.Op1 = DAG.getConstant(Value, DL, MVT::i32);
2081 }
2082 
2083 // Return true if Op is either an unextended load, or a load suitable
2084 // for integer register-memory comparisons of type ICmpType.
2085 static bool isNaturalMemoryOperand(SDValue Op, unsigned ICmpType) {
2086   auto *Load = dyn_cast<LoadSDNode>(Op.getNode());
2087   if (Load) {
2088     // There are no instructions to compare a register with a memory byte.
2089     if (Load->getMemoryVT() == MVT::i8)
2090       return false;
2091     // Otherwise decide on extension type.
2092     switch (Load->getExtensionType()) {
2093     case ISD::NON_EXTLOAD:
2094       return true;
2095     case ISD::SEXTLOAD:
2096       return ICmpType != SystemZICMP::UnsignedOnly;
2097     case ISD::ZEXTLOAD:
2098       return ICmpType != SystemZICMP::SignedOnly;
2099     default:
2100       break;
2101     }
2102   }
2103   return false;
2104 }
2105 
2106 // Return true if it is better to swap the operands of C.
2107 static bool shouldSwapCmpOperands(const Comparison &C) {
2108   // Leave f128 comparisons alone, since they have no memory forms.
2109   if (C.Op0.getValueType() == MVT::f128)
2110     return false;
2111 
2112   // Always keep a floating-point constant second, since comparisons with
2113   // zero can use LOAD TEST and comparisons with other constants make a
2114   // natural memory operand.
2115   if (isa<ConstantFPSDNode>(C.Op1))
2116     return false;
2117 
2118   // Never swap comparisons with zero since there are many ways to optimize
2119   // those later.
2120   auto *ConstOp1 = dyn_cast<ConstantSDNode>(C.Op1);
2121   if (ConstOp1 && ConstOp1->getZExtValue() == 0)
2122     return false;
2123 
2124   // Also keep natural memory operands second if the loaded value is
2125   // only used here.  Several comparisons have memory forms.
2126   if (isNaturalMemoryOperand(C.Op1, C.ICmpType) && C.Op1.hasOneUse())
2127     return false;
2128 
2129   // Look for cases where Cmp0 is a single-use load and Cmp1 isn't.
2130   // In that case we generally prefer the memory to be second.
2131   if (isNaturalMemoryOperand(C.Op0, C.ICmpType) && C.Op0.hasOneUse()) {
2132     // The only exceptions are when the second operand is a constant and
2133     // we can use things like CHHSI.
2134     if (!ConstOp1)
2135       return true;
2136     // The unsigned memory-immediate instructions can handle 16-bit
2137     // unsigned integers.
2138     if (C.ICmpType != SystemZICMP::SignedOnly &&
2139         isUInt<16>(ConstOp1->getZExtValue()))
2140       return false;
2141     // The signed memory-immediate instructions can handle 16-bit
2142     // signed integers.
2143     if (C.ICmpType != SystemZICMP::UnsignedOnly &&
2144         isInt<16>(ConstOp1->getSExtValue()))
2145       return false;
2146     return true;
2147   }
2148 
2149   // Try to promote the use of CGFR and CLGFR.
2150   unsigned Opcode0 = C.Op0.getOpcode();
2151   if (C.ICmpType != SystemZICMP::UnsignedOnly && Opcode0 == ISD::SIGN_EXTEND)
2152     return true;
2153   if (C.ICmpType != SystemZICMP::SignedOnly && Opcode0 == ISD::ZERO_EXTEND)
2154     return true;
2155   if (C.ICmpType != SystemZICMP::SignedOnly &&
2156       Opcode0 == ISD::AND &&
2157       C.Op0.getOperand(1).getOpcode() == ISD::Constant &&
2158       cast<ConstantSDNode>(C.Op0.getOperand(1))->getZExtValue() == 0xffffffff)
2159     return true;
2160 
2161   return false;
2162 }
2163 
2164 // Return a version of comparison CC mask CCMask in which the LT and GT
2165 // actions are swapped.
2166 static unsigned reverseCCMask(unsigned CCMask) {
2167   return ((CCMask & SystemZ::CCMASK_CMP_EQ) |
2168           (CCMask & SystemZ::CCMASK_CMP_GT ? SystemZ::CCMASK_CMP_LT : 0) |
2169           (CCMask & SystemZ::CCMASK_CMP_LT ? SystemZ::CCMASK_CMP_GT : 0) |
2170           (CCMask & SystemZ::CCMASK_CMP_UO));
2171 }
2172 
2173 // Check whether C tests for equality between X and Y and whether X - Y
2174 // or Y - X is also computed.  In that case it's better to compare the
2175 // result of the subtraction against zero.
2176 static void adjustForSubtraction(SelectionDAG &DAG, const SDLoc &DL,
2177                                  Comparison &C) {
2178   if (C.CCMask == SystemZ::CCMASK_CMP_EQ ||
2179       C.CCMask == SystemZ::CCMASK_CMP_NE) {
2180     for (auto I = C.Op0->use_begin(), E = C.Op0->use_end(); I != E; ++I) {
2181       SDNode *N = *I;
2182       if (N->getOpcode() == ISD::SUB &&
2183           ((N->getOperand(0) == C.Op0 && N->getOperand(1) == C.Op1) ||
2184            (N->getOperand(0) == C.Op1 && N->getOperand(1) == C.Op0))) {
2185         C.Op0 = SDValue(N, 0);
2186         C.Op1 = DAG.getConstant(0, DL, N->getValueType(0));
2187         return;
2188       }
2189     }
2190   }
2191 }
2192 
2193 // Check whether C compares a floating-point value with zero and if that
2194 // floating-point value is also negated.  In this case we can use the
2195 // negation to set CC, so avoiding separate LOAD AND TEST and
2196 // LOAD (NEGATIVE/COMPLEMENT) instructions.
2197 static void adjustForFNeg(Comparison &C) {
2198   // This optimization is invalid for strict comparisons, since FNEG
2199   // does not raise any exceptions.
2200   if (C.Chain)
2201     return;
2202   auto *C1 = dyn_cast<ConstantFPSDNode>(C.Op1);
2203   if (C1 && C1->isZero()) {
2204     for (auto I = C.Op0->use_begin(), E = C.Op0->use_end(); I != E; ++I) {
2205       SDNode *N = *I;
2206       if (N->getOpcode() == ISD::FNEG) {
2207         C.Op0 = SDValue(N, 0);
2208         C.CCMask = reverseCCMask(C.CCMask);
2209         return;
2210       }
2211     }
2212   }
2213 }
2214 
2215 // Check whether C compares (shl X, 32) with 0 and whether X is
2216 // also sign-extended.  In that case it is better to test the result
2217 // of the sign extension using LTGFR.
2218 //
2219 // This case is important because InstCombine transforms a comparison
2220 // with (sext (trunc X)) into a comparison with (shl X, 32).
2221 static void adjustForLTGFR(Comparison &C) {
2222   // Check for a comparison between (shl X, 32) and 0.
2223   if (C.Op0.getOpcode() == ISD::SHL &&
2224       C.Op0.getValueType() == MVT::i64 &&
2225       C.Op1.getOpcode() == ISD::Constant &&
2226       cast<ConstantSDNode>(C.Op1)->getZExtValue() == 0) {
2227     auto *C1 = dyn_cast<ConstantSDNode>(C.Op0.getOperand(1));
2228     if (C1 && C1->getZExtValue() == 32) {
2229       SDValue ShlOp0 = C.Op0.getOperand(0);
2230       // See whether X has any SIGN_EXTEND_INREG uses.
2231       for (auto I = ShlOp0->use_begin(), E = ShlOp0->use_end(); I != E; ++I) {
2232         SDNode *N = *I;
2233         if (N->getOpcode() == ISD::SIGN_EXTEND_INREG &&
2234             cast<VTSDNode>(N->getOperand(1))->getVT() == MVT::i32) {
2235           C.Op0 = SDValue(N, 0);
2236           return;
2237         }
2238       }
2239     }
2240   }
2241 }
2242 
2243 // If C compares the truncation of an extending load, try to compare
2244 // the untruncated value instead.  This exposes more opportunities to
2245 // reuse CC.
2246 static void adjustICmpTruncate(SelectionDAG &DAG, const SDLoc &DL,
2247                                Comparison &C) {
2248   if (C.Op0.getOpcode() == ISD::TRUNCATE &&
2249       C.Op0.getOperand(0).getOpcode() == ISD::LOAD &&
2250       C.Op1.getOpcode() == ISD::Constant &&
2251       cast<ConstantSDNode>(C.Op1)->getZExtValue() == 0) {
2252     auto *L = cast<LoadSDNode>(C.Op0.getOperand(0));
2253     if (L->getMemoryVT().getStoreSizeInBits() <= C.Op0.getValueSizeInBits()) {
2254       unsigned Type = L->getExtensionType();
2255       if ((Type == ISD::ZEXTLOAD && C.ICmpType != SystemZICMP::SignedOnly) ||
2256           (Type == ISD::SEXTLOAD && C.ICmpType != SystemZICMP::UnsignedOnly)) {
2257         C.Op0 = C.Op0.getOperand(0);
2258         C.Op1 = DAG.getConstant(0, DL, C.Op0.getValueType());
2259       }
2260     }
2261   }
2262 }
2263 
2264 // Return true if shift operation N has an in-range constant shift value.
2265 // Store it in ShiftVal if so.
2266 static bool isSimpleShift(SDValue N, unsigned &ShiftVal) {
2267   auto *Shift = dyn_cast<ConstantSDNode>(N.getOperand(1));
2268   if (!Shift)
2269     return false;
2270 
2271   uint64_t Amount = Shift->getZExtValue();
2272   if (Amount >= N.getValueSizeInBits())
2273     return false;
2274 
2275   ShiftVal = Amount;
2276   return true;
2277 }
2278 
2279 // Check whether an AND with Mask is suitable for a TEST UNDER MASK
2280 // instruction and whether the CC value is descriptive enough to handle
2281 // a comparison of type Opcode between the AND result and CmpVal.
2282 // CCMask says which comparison result is being tested and BitSize is
2283 // the number of bits in the operands.  If TEST UNDER MASK can be used,
2284 // return the corresponding CC mask, otherwise return 0.
2285 static unsigned getTestUnderMaskCond(unsigned BitSize, unsigned CCMask,
2286                                      uint64_t Mask, uint64_t CmpVal,
2287                                      unsigned ICmpType) {
2288   assert(Mask != 0 && "ANDs with zero should have been removed by now");
2289 
2290   // Check whether the mask is suitable for TMHH, TMHL, TMLH or TMLL.
2291   if (!SystemZ::isImmLL(Mask) && !SystemZ::isImmLH(Mask) &&
2292       !SystemZ::isImmHL(Mask) && !SystemZ::isImmHH(Mask))
2293     return 0;
2294 
2295   // Work out the masks for the lowest and highest bits.
2296   unsigned HighShift = 63 - countLeadingZeros(Mask);
2297   uint64_t High = uint64_t(1) << HighShift;
2298   uint64_t Low = uint64_t(1) << countTrailingZeros(Mask);
2299 
2300   // Signed ordered comparisons are effectively unsigned if the sign
2301   // bit is dropped.
2302   bool EffectivelyUnsigned = (ICmpType != SystemZICMP::SignedOnly);
2303 
2304   // Check for equality comparisons with 0, or the equivalent.
2305   if (CmpVal == 0) {
2306     if (CCMask == SystemZ::CCMASK_CMP_EQ)
2307       return SystemZ::CCMASK_TM_ALL_0;
2308     if (CCMask == SystemZ::CCMASK_CMP_NE)
2309       return SystemZ::CCMASK_TM_SOME_1;
2310   }
2311   if (EffectivelyUnsigned && CmpVal > 0 && CmpVal <= Low) {
2312     if (CCMask == SystemZ::CCMASK_CMP_LT)
2313       return SystemZ::CCMASK_TM_ALL_0;
2314     if (CCMask == SystemZ::CCMASK_CMP_GE)
2315       return SystemZ::CCMASK_TM_SOME_1;
2316   }
2317   if (EffectivelyUnsigned && CmpVal < Low) {
2318     if (CCMask == SystemZ::CCMASK_CMP_LE)
2319       return SystemZ::CCMASK_TM_ALL_0;
2320     if (CCMask == SystemZ::CCMASK_CMP_GT)
2321       return SystemZ::CCMASK_TM_SOME_1;
2322   }
2323 
2324   // Check for equality comparisons with the mask, or the equivalent.
2325   if (CmpVal == Mask) {
2326     if (CCMask == SystemZ::CCMASK_CMP_EQ)
2327       return SystemZ::CCMASK_TM_ALL_1;
2328     if (CCMask == SystemZ::CCMASK_CMP_NE)
2329       return SystemZ::CCMASK_TM_SOME_0;
2330   }
2331   if (EffectivelyUnsigned && CmpVal >= Mask - Low && CmpVal < Mask) {
2332     if (CCMask == SystemZ::CCMASK_CMP_GT)
2333       return SystemZ::CCMASK_TM_ALL_1;
2334     if (CCMask == SystemZ::CCMASK_CMP_LE)
2335       return SystemZ::CCMASK_TM_SOME_0;
2336   }
2337   if (EffectivelyUnsigned && CmpVal > Mask - Low && CmpVal <= Mask) {
2338     if (CCMask == SystemZ::CCMASK_CMP_GE)
2339       return SystemZ::CCMASK_TM_ALL_1;
2340     if (CCMask == SystemZ::CCMASK_CMP_LT)
2341       return SystemZ::CCMASK_TM_SOME_0;
2342   }
2343 
2344   // Check for ordered comparisons with the top bit.
2345   if (EffectivelyUnsigned && CmpVal >= Mask - High && CmpVal < High) {
2346     if (CCMask == SystemZ::CCMASK_CMP_LE)
2347       return SystemZ::CCMASK_TM_MSB_0;
2348     if (CCMask == SystemZ::CCMASK_CMP_GT)
2349       return SystemZ::CCMASK_TM_MSB_1;
2350   }
2351   if (EffectivelyUnsigned && CmpVal > Mask - High && CmpVal <= High) {
2352     if (CCMask == SystemZ::CCMASK_CMP_LT)
2353       return SystemZ::CCMASK_TM_MSB_0;
2354     if (CCMask == SystemZ::CCMASK_CMP_GE)
2355       return SystemZ::CCMASK_TM_MSB_1;
2356   }
2357 
2358   // If there are just two bits, we can do equality checks for Low and High
2359   // as well.
2360   if (Mask == Low + High) {
2361     if (CCMask == SystemZ::CCMASK_CMP_EQ && CmpVal == Low)
2362       return SystemZ::CCMASK_TM_MIXED_MSB_0;
2363     if (CCMask == SystemZ::CCMASK_CMP_NE && CmpVal == Low)
2364       return SystemZ::CCMASK_TM_MIXED_MSB_0 ^ SystemZ::CCMASK_ANY;
2365     if (CCMask == SystemZ::CCMASK_CMP_EQ && CmpVal == High)
2366       return SystemZ::CCMASK_TM_MIXED_MSB_1;
2367     if (CCMask == SystemZ::CCMASK_CMP_NE && CmpVal == High)
2368       return SystemZ::CCMASK_TM_MIXED_MSB_1 ^ SystemZ::CCMASK_ANY;
2369   }
2370 
2371   // Looks like we've exhausted our options.
2372   return 0;
2373 }
2374 
2375 // See whether C can be implemented as a TEST UNDER MASK instruction.
2376 // Update the arguments with the TM version if so.
2377 static void adjustForTestUnderMask(SelectionDAG &DAG, const SDLoc &DL,
2378                                    Comparison &C) {
2379   // Check that we have a comparison with a constant.
2380   auto *ConstOp1 = dyn_cast<ConstantSDNode>(C.Op1);
2381   if (!ConstOp1)
2382     return;
2383   uint64_t CmpVal = ConstOp1->getZExtValue();
2384 
2385   // Check whether the nonconstant input is an AND with a constant mask.
2386   Comparison NewC(C);
2387   uint64_t MaskVal;
2388   ConstantSDNode *Mask = nullptr;
2389   if (C.Op0.getOpcode() == ISD::AND) {
2390     NewC.Op0 = C.Op0.getOperand(0);
2391     NewC.Op1 = C.Op0.getOperand(1);
2392     Mask = dyn_cast<ConstantSDNode>(NewC.Op1);
2393     if (!Mask)
2394       return;
2395     MaskVal = Mask->getZExtValue();
2396   } else {
2397     // There is no instruction to compare with a 64-bit immediate
2398     // so use TMHH instead if possible.  We need an unsigned ordered
2399     // comparison with an i64 immediate.
2400     if (NewC.Op0.getValueType() != MVT::i64 ||
2401         NewC.CCMask == SystemZ::CCMASK_CMP_EQ ||
2402         NewC.CCMask == SystemZ::CCMASK_CMP_NE ||
2403         NewC.ICmpType == SystemZICMP::SignedOnly)
2404       return;
2405     // Convert LE and GT comparisons into LT and GE.
2406     if (NewC.CCMask == SystemZ::CCMASK_CMP_LE ||
2407         NewC.CCMask == SystemZ::CCMASK_CMP_GT) {
2408       if (CmpVal == uint64_t(-1))
2409         return;
2410       CmpVal += 1;
2411       NewC.CCMask ^= SystemZ::CCMASK_CMP_EQ;
2412     }
2413     // If the low N bits of Op1 are zero than the low N bits of Op0 can
2414     // be masked off without changing the result.
2415     MaskVal = -(CmpVal & -CmpVal);
2416     NewC.ICmpType = SystemZICMP::UnsignedOnly;
2417   }
2418   if (!MaskVal)
2419     return;
2420 
2421   // Check whether the combination of mask, comparison value and comparison
2422   // type are suitable.
2423   unsigned BitSize = NewC.Op0.getValueSizeInBits();
2424   unsigned NewCCMask, ShiftVal;
2425   if (NewC.ICmpType != SystemZICMP::SignedOnly &&
2426       NewC.Op0.getOpcode() == ISD::SHL &&
2427       isSimpleShift(NewC.Op0, ShiftVal) &&
2428       (MaskVal >> ShiftVal != 0) &&
2429       ((CmpVal >> ShiftVal) << ShiftVal) == CmpVal &&
2430       (NewCCMask = getTestUnderMaskCond(BitSize, NewC.CCMask,
2431                                         MaskVal >> ShiftVal,
2432                                         CmpVal >> ShiftVal,
2433                                         SystemZICMP::Any))) {
2434     NewC.Op0 = NewC.Op0.getOperand(0);
2435     MaskVal >>= ShiftVal;
2436   } else if (NewC.ICmpType != SystemZICMP::SignedOnly &&
2437              NewC.Op0.getOpcode() == ISD::SRL &&
2438              isSimpleShift(NewC.Op0, ShiftVal) &&
2439              (MaskVal << ShiftVal != 0) &&
2440              ((CmpVal << ShiftVal) >> ShiftVal) == CmpVal &&
2441              (NewCCMask = getTestUnderMaskCond(BitSize, NewC.CCMask,
2442                                                MaskVal << ShiftVal,
2443                                                CmpVal << ShiftVal,
2444                                                SystemZICMP::UnsignedOnly))) {
2445     NewC.Op0 = NewC.Op0.getOperand(0);
2446     MaskVal <<= ShiftVal;
2447   } else {
2448     NewCCMask = getTestUnderMaskCond(BitSize, NewC.CCMask, MaskVal, CmpVal,
2449                                      NewC.ICmpType);
2450     if (!NewCCMask)
2451       return;
2452   }
2453 
2454   // Go ahead and make the change.
2455   C.Opcode = SystemZISD::TM;
2456   C.Op0 = NewC.Op0;
2457   if (Mask && Mask->getZExtValue() == MaskVal)
2458     C.Op1 = SDValue(Mask, 0);
2459   else
2460     C.Op1 = DAG.getConstant(MaskVal, DL, C.Op0.getValueType());
2461   C.CCValid = SystemZ::CCMASK_TM;
2462   C.CCMask = NewCCMask;
2463 }
2464 
2465 // See whether the comparison argument contains a redundant AND
2466 // and remove it if so.  This sometimes happens due to the generic
2467 // BRCOND expansion.
2468 static void adjustForRedundantAnd(SelectionDAG &DAG, const SDLoc &DL,
2469                                   Comparison &C) {
2470   if (C.Op0.getOpcode() != ISD::AND)
2471     return;
2472   auto *Mask = dyn_cast<ConstantSDNode>(C.Op0.getOperand(1));
2473   if (!Mask)
2474     return;
2475   KnownBits Known = DAG.computeKnownBits(C.Op0.getOperand(0));
2476   if ((~Known.Zero).getZExtValue() & ~Mask->getZExtValue())
2477     return;
2478 
2479   C.Op0 = C.Op0.getOperand(0);
2480 }
2481 
2482 // Return a Comparison that tests the condition-code result of intrinsic
2483 // node Call against constant integer CC using comparison code Cond.
2484 // Opcode is the opcode of the SystemZISD operation for the intrinsic
2485 // and CCValid is the set of possible condition-code results.
2486 static Comparison getIntrinsicCmp(SelectionDAG &DAG, unsigned Opcode,
2487                                   SDValue Call, unsigned CCValid, uint64_t CC,
2488                                   ISD::CondCode Cond) {
2489   Comparison C(Call, SDValue(), SDValue());
2490   C.Opcode = Opcode;
2491   C.CCValid = CCValid;
2492   if (Cond == ISD::SETEQ)
2493     // bit 3 for CC==0, bit 0 for CC==3, always false for CC>3.
2494     C.CCMask = CC < 4 ? 1 << (3 - CC) : 0;
2495   else if (Cond == ISD::SETNE)
2496     // ...and the inverse of that.
2497     C.CCMask = CC < 4 ? ~(1 << (3 - CC)) : -1;
2498   else if (Cond == ISD::SETLT || Cond == ISD::SETULT)
2499     // bits above bit 3 for CC==0 (always false), bits above bit 0 for CC==3,
2500     // always true for CC>3.
2501     C.CCMask = CC < 4 ? ~0U << (4 - CC) : -1;
2502   else if (Cond == ISD::SETGE || Cond == ISD::SETUGE)
2503     // ...and the inverse of that.
2504     C.CCMask = CC < 4 ? ~(~0U << (4 - CC)) : 0;
2505   else if (Cond == ISD::SETLE || Cond == ISD::SETULE)
2506     // bit 3 and above for CC==0, bit 0 and above for CC==3 (always true),
2507     // always true for CC>3.
2508     C.CCMask = CC < 4 ? ~0U << (3 - CC) : -1;
2509   else if (Cond == ISD::SETGT || Cond == ISD::SETUGT)
2510     // ...and the inverse of that.
2511     C.CCMask = CC < 4 ? ~(~0U << (3 - CC)) : 0;
2512   else
2513     llvm_unreachable("Unexpected integer comparison type");
2514   C.CCMask &= CCValid;
2515   return C;
2516 }
2517 
2518 // Decide how to implement a comparison of type Cond between CmpOp0 with CmpOp1.
2519 static Comparison getCmp(SelectionDAG &DAG, SDValue CmpOp0, SDValue CmpOp1,
2520                          ISD::CondCode Cond, const SDLoc &DL,
2521                          SDValue Chain = SDValue(),
2522                          bool IsSignaling = false) {
2523   if (CmpOp1.getOpcode() == ISD::Constant) {
2524     assert(!Chain);
2525     uint64_t Constant = cast<ConstantSDNode>(CmpOp1)->getZExtValue();
2526     unsigned Opcode, CCValid;
2527     if (CmpOp0.getOpcode() == ISD::INTRINSIC_W_CHAIN &&
2528         CmpOp0.getResNo() == 0 && CmpOp0->hasNUsesOfValue(1, 0) &&
2529         isIntrinsicWithCCAndChain(CmpOp0, Opcode, CCValid))
2530       return getIntrinsicCmp(DAG, Opcode, CmpOp0, CCValid, Constant, Cond);
2531     if (CmpOp0.getOpcode() == ISD::INTRINSIC_WO_CHAIN &&
2532         CmpOp0.getResNo() == CmpOp0->getNumValues() - 1 &&
2533         isIntrinsicWithCC(CmpOp0, Opcode, CCValid))
2534       return getIntrinsicCmp(DAG, Opcode, CmpOp0, CCValid, Constant, Cond);
2535   }
2536   Comparison C(CmpOp0, CmpOp1, Chain);
2537   C.CCMask = CCMaskForCondCode(Cond);
2538   if (C.Op0.getValueType().isFloatingPoint()) {
2539     C.CCValid = SystemZ::CCMASK_FCMP;
2540     if (!C.Chain)
2541       C.Opcode = SystemZISD::FCMP;
2542     else if (!IsSignaling)
2543       C.Opcode = SystemZISD::STRICT_FCMP;
2544     else
2545       C.Opcode = SystemZISD::STRICT_FCMPS;
2546     adjustForFNeg(C);
2547   } else {
2548     assert(!C.Chain);
2549     C.CCValid = SystemZ::CCMASK_ICMP;
2550     C.Opcode = SystemZISD::ICMP;
2551     // Choose the type of comparison.  Equality and inequality tests can
2552     // use either signed or unsigned comparisons.  The choice also doesn't
2553     // matter if both sign bits are known to be clear.  In those cases we
2554     // want to give the main isel code the freedom to choose whichever
2555     // form fits best.
2556     if (C.CCMask == SystemZ::CCMASK_CMP_EQ ||
2557         C.CCMask == SystemZ::CCMASK_CMP_NE ||
2558         (DAG.SignBitIsZero(C.Op0) && DAG.SignBitIsZero(C.Op1)))
2559       C.ICmpType = SystemZICMP::Any;
2560     else if (C.CCMask & SystemZ::CCMASK_CMP_UO)
2561       C.ICmpType = SystemZICMP::UnsignedOnly;
2562     else
2563       C.ICmpType = SystemZICMP::SignedOnly;
2564     C.CCMask &= ~SystemZ::CCMASK_CMP_UO;
2565     adjustForRedundantAnd(DAG, DL, C);
2566     adjustZeroCmp(DAG, DL, C);
2567     adjustSubwordCmp(DAG, DL, C);
2568     adjustForSubtraction(DAG, DL, C);
2569     adjustForLTGFR(C);
2570     adjustICmpTruncate(DAG, DL, C);
2571   }
2572 
2573   if (shouldSwapCmpOperands(C)) {
2574     std::swap(C.Op0, C.Op1);
2575     C.CCMask = reverseCCMask(C.CCMask);
2576   }
2577 
2578   adjustForTestUnderMask(DAG, DL, C);
2579   return C;
2580 }
2581 
2582 // Emit the comparison instruction described by C.
2583 static SDValue emitCmp(SelectionDAG &DAG, const SDLoc &DL, Comparison &C) {
2584   if (!C.Op1.getNode()) {
2585     SDNode *Node;
2586     switch (C.Op0.getOpcode()) {
2587     case ISD::INTRINSIC_W_CHAIN:
2588       Node = emitIntrinsicWithCCAndChain(DAG, C.Op0, C.Opcode);
2589       return SDValue(Node, 0);
2590     case ISD::INTRINSIC_WO_CHAIN:
2591       Node = emitIntrinsicWithCC(DAG, C.Op0, C.Opcode);
2592       return SDValue(Node, Node->getNumValues() - 1);
2593     default:
2594       llvm_unreachable("Invalid comparison operands");
2595     }
2596   }
2597   if (C.Opcode == SystemZISD::ICMP)
2598     return DAG.getNode(SystemZISD::ICMP, DL, MVT::i32, C.Op0, C.Op1,
2599                        DAG.getTargetConstant(C.ICmpType, DL, MVT::i32));
2600   if (C.Opcode == SystemZISD::TM) {
2601     bool RegisterOnly = (bool(C.CCMask & SystemZ::CCMASK_TM_MIXED_MSB_0) !=
2602                          bool(C.CCMask & SystemZ::CCMASK_TM_MIXED_MSB_1));
2603     return DAG.getNode(SystemZISD::TM, DL, MVT::i32, C.Op0, C.Op1,
2604                        DAG.getTargetConstant(RegisterOnly, DL, MVT::i32));
2605   }
2606   if (C.Chain) {
2607     SDVTList VTs = DAG.getVTList(MVT::i32, MVT::Other);
2608     return DAG.getNode(C.Opcode, DL, VTs, C.Chain, C.Op0, C.Op1);
2609   }
2610   return DAG.getNode(C.Opcode, DL, MVT::i32, C.Op0, C.Op1);
2611 }
2612 
2613 // Implement a 32-bit *MUL_LOHI operation by extending both operands to
2614 // 64 bits.  Extend is the extension type to use.  Store the high part
2615 // in Hi and the low part in Lo.
2616 static void lowerMUL_LOHI32(SelectionDAG &DAG, const SDLoc &DL, unsigned Extend,
2617                             SDValue Op0, SDValue Op1, SDValue &Hi,
2618                             SDValue &Lo) {
2619   Op0 = DAG.getNode(Extend, DL, MVT::i64, Op0);
2620   Op1 = DAG.getNode(Extend, DL, MVT::i64, Op1);
2621   SDValue Mul = DAG.getNode(ISD::MUL, DL, MVT::i64, Op0, Op1);
2622   Hi = DAG.getNode(ISD::SRL, DL, MVT::i64, Mul,
2623                    DAG.getConstant(32, DL, MVT::i64));
2624   Hi = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Hi);
2625   Lo = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Mul);
2626 }
2627 
2628 // Lower a binary operation that produces two VT results, one in each
2629 // half of a GR128 pair.  Op0 and Op1 are the VT operands to the operation,
2630 // and Opcode performs the GR128 operation.  Store the even register result
2631 // in Even and the odd register result in Odd.
2632 static void lowerGR128Binary(SelectionDAG &DAG, const SDLoc &DL, EVT VT,
2633                              unsigned Opcode, SDValue Op0, SDValue Op1,
2634                              SDValue &Even, SDValue &Odd) {
2635   SDValue Result = DAG.getNode(Opcode, DL, MVT::Untyped, Op0, Op1);
2636   bool Is32Bit = is32Bit(VT);
2637   Even = DAG.getTargetExtractSubreg(SystemZ::even128(Is32Bit), DL, VT, Result);
2638   Odd = DAG.getTargetExtractSubreg(SystemZ::odd128(Is32Bit), DL, VT, Result);
2639 }
2640 
2641 // Return an i32 value that is 1 if the CC value produced by CCReg is
2642 // in the mask CCMask and 0 otherwise.  CC is known to have a value
2643 // in CCValid, so other values can be ignored.
2644 static SDValue emitSETCC(SelectionDAG &DAG, const SDLoc &DL, SDValue CCReg,
2645                          unsigned CCValid, unsigned CCMask) {
2646   SDValue Ops[] = {DAG.getConstant(1, DL, MVT::i32),
2647                    DAG.getConstant(0, DL, MVT::i32),
2648                    DAG.getTargetConstant(CCValid, DL, MVT::i32),
2649                    DAG.getTargetConstant(CCMask, DL, MVT::i32), CCReg};
2650   return DAG.getNode(SystemZISD::SELECT_CCMASK, DL, MVT::i32, Ops);
2651 }
2652 
2653 // Return the SystemISD vector comparison operation for CC, or 0 if it cannot
2654 // be done directly.  Mode is CmpMode::Int for integer comparisons, CmpMode::FP
2655 // for regular floating-point comparisons, CmpMode::StrictFP for strict (quiet)
2656 // floating-point comparisons, and CmpMode::SignalingFP for strict signaling
2657 // floating-point comparisons.
2658 enum class CmpMode { Int, FP, StrictFP, SignalingFP };
2659 static unsigned getVectorComparison(ISD::CondCode CC, CmpMode Mode) {
2660   switch (CC) {
2661   case ISD::SETOEQ:
2662   case ISD::SETEQ:
2663     switch (Mode) {
2664     case CmpMode::Int:         return SystemZISD::VICMPE;
2665     case CmpMode::FP:          return SystemZISD::VFCMPE;
2666     case CmpMode::StrictFP:    return SystemZISD::STRICT_VFCMPE;
2667     case CmpMode::SignalingFP: return SystemZISD::STRICT_VFCMPES;
2668     }
2669     llvm_unreachable("Bad mode");
2670 
2671   case ISD::SETOGE:
2672   case ISD::SETGE:
2673     switch (Mode) {
2674     case CmpMode::Int:         return 0;
2675     case CmpMode::FP:          return SystemZISD::VFCMPHE;
2676     case CmpMode::StrictFP:    return SystemZISD::STRICT_VFCMPHE;
2677     case CmpMode::SignalingFP: return SystemZISD::STRICT_VFCMPHES;
2678     }
2679     llvm_unreachable("Bad mode");
2680 
2681   case ISD::SETOGT:
2682   case ISD::SETGT:
2683     switch (Mode) {
2684     case CmpMode::Int:         return SystemZISD::VICMPH;
2685     case CmpMode::FP:          return SystemZISD::VFCMPH;
2686     case CmpMode::StrictFP:    return SystemZISD::STRICT_VFCMPH;
2687     case CmpMode::SignalingFP: return SystemZISD::STRICT_VFCMPHS;
2688     }
2689     llvm_unreachable("Bad mode");
2690 
2691   case ISD::SETUGT:
2692     switch (Mode) {
2693     case CmpMode::Int:         return SystemZISD::VICMPHL;
2694     case CmpMode::FP:          return 0;
2695     case CmpMode::StrictFP:    return 0;
2696     case CmpMode::SignalingFP: return 0;
2697     }
2698     llvm_unreachable("Bad mode");
2699 
2700   default:
2701     return 0;
2702   }
2703 }
2704 
2705 // Return the SystemZISD vector comparison operation for CC or its inverse,
2706 // or 0 if neither can be done directly.  Indicate in Invert whether the
2707 // result is for the inverse of CC.  Mode is as above.
2708 static unsigned getVectorComparisonOrInvert(ISD::CondCode CC, CmpMode Mode,
2709                                             bool &Invert) {
2710   if (unsigned Opcode = getVectorComparison(CC, Mode)) {
2711     Invert = false;
2712     return Opcode;
2713   }
2714 
2715   CC = ISD::getSetCCInverse(CC, Mode == CmpMode::Int ? MVT::i32 : MVT::f32);
2716   if (unsigned Opcode = getVectorComparison(CC, Mode)) {
2717     Invert = true;
2718     return Opcode;
2719   }
2720 
2721   return 0;
2722 }
2723 
2724 // Return a v2f64 that contains the extended form of elements Start and Start+1
2725 // of v4f32 value Op.  If Chain is nonnull, return the strict form.
2726 static SDValue expandV4F32ToV2F64(SelectionDAG &DAG, int Start, const SDLoc &DL,
2727                                   SDValue Op, SDValue Chain) {
2728   int Mask[] = { Start, -1, Start + 1, -1 };
2729   Op = DAG.getVectorShuffle(MVT::v4f32, DL, Op, DAG.getUNDEF(MVT::v4f32), Mask);
2730   if (Chain) {
2731     SDVTList VTs = DAG.getVTList(MVT::v2f64, MVT::Other);
2732     return DAG.getNode(SystemZISD::STRICT_VEXTEND, DL, VTs, Chain, Op);
2733   }
2734   return DAG.getNode(SystemZISD::VEXTEND, DL, MVT::v2f64, Op);
2735 }
2736 
2737 // Build a comparison of vectors CmpOp0 and CmpOp1 using opcode Opcode,
2738 // producing a result of type VT.  If Chain is nonnull, return the strict form.
2739 SDValue SystemZTargetLowering::getVectorCmp(SelectionDAG &DAG, unsigned Opcode,
2740                                             const SDLoc &DL, EVT VT,
2741                                             SDValue CmpOp0,
2742                                             SDValue CmpOp1,
2743                                             SDValue Chain) const {
2744   // There is no hardware support for v4f32 (unless we have the vector
2745   // enhancements facility 1), so extend the vector into two v2f64s
2746   // and compare those.
2747   if (CmpOp0.getValueType() == MVT::v4f32 &&
2748       !Subtarget.hasVectorEnhancements1()) {
2749     SDValue H0 = expandV4F32ToV2F64(DAG, 0, DL, CmpOp0, Chain);
2750     SDValue L0 = expandV4F32ToV2F64(DAG, 2, DL, CmpOp0, Chain);
2751     SDValue H1 = expandV4F32ToV2F64(DAG, 0, DL, CmpOp1, Chain);
2752     SDValue L1 = expandV4F32ToV2F64(DAG, 2, DL, CmpOp1, Chain);
2753     if (Chain) {
2754       SDVTList VTs = DAG.getVTList(MVT::v2i64, MVT::Other);
2755       SDValue HRes = DAG.getNode(Opcode, DL, VTs, Chain, H0, H1);
2756       SDValue LRes = DAG.getNode(Opcode, DL, VTs, Chain, L0, L1);
2757       SDValue Res = DAG.getNode(SystemZISD::PACK, DL, VT, HRes, LRes);
2758       SDValue Chains[6] = { H0.getValue(1), L0.getValue(1),
2759                             H1.getValue(1), L1.getValue(1),
2760                             HRes.getValue(1), LRes.getValue(1) };
2761       SDValue NewChain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Chains);
2762       SDValue Ops[2] = { Res, NewChain };
2763       return DAG.getMergeValues(Ops, DL);
2764     }
2765     SDValue HRes = DAG.getNode(Opcode, DL, MVT::v2i64, H0, H1);
2766     SDValue LRes = DAG.getNode(Opcode, DL, MVT::v2i64, L0, L1);
2767     return DAG.getNode(SystemZISD::PACK, DL, VT, HRes, LRes);
2768   }
2769   if (Chain) {
2770     SDVTList VTs = DAG.getVTList(VT, MVT::Other);
2771     return DAG.getNode(Opcode, DL, VTs, Chain, CmpOp0, CmpOp1);
2772   }
2773   return DAG.getNode(Opcode, DL, VT, CmpOp0, CmpOp1);
2774 }
2775 
2776 // Lower a vector comparison of type CC between CmpOp0 and CmpOp1, producing
2777 // an integer mask of type VT.  If Chain is nonnull, we have a strict
2778 // floating-point comparison.  If in addition IsSignaling is true, we have
2779 // a strict signaling floating-point comparison.
2780 SDValue SystemZTargetLowering::lowerVectorSETCC(SelectionDAG &DAG,
2781                                                 const SDLoc &DL, EVT VT,
2782                                                 ISD::CondCode CC,
2783                                                 SDValue CmpOp0,
2784                                                 SDValue CmpOp1,
2785                                                 SDValue Chain,
2786                                                 bool IsSignaling) const {
2787   bool IsFP = CmpOp0.getValueType().isFloatingPoint();
2788   assert (!Chain || IsFP);
2789   assert (!IsSignaling || Chain);
2790   CmpMode Mode = IsSignaling ? CmpMode::SignalingFP :
2791                  Chain ? CmpMode::StrictFP : IsFP ? CmpMode::FP : CmpMode::Int;
2792   bool Invert = false;
2793   SDValue Cmp;
2794   switch (CC) {
2795     // Handle tests for order using (or (ogt y x) (oge x y)).
2796   case ISD::SETUO:
2797     Invert = true;
2798     LLVM_FALLTHROUGH;
2799   case ISD::SETO: {
2800     assert(IsFP && "Unexpected integer comparison");
2801     SDValue LT = getVectorCmp(DAG, getVectorComparison(ISD::SETOGT, Mode),
2802                               DL, VT, CmpOp1, CmpOp0, Chain);
2803     SDValue GE = getVectorCmp(DAG, getVectorComparison(ISD::SETOGE, Mode),
2804                               DL, VT, CmpOp0, CmpOp1, Chain);
2805     Cmp = DAG.getNode(ISD::OR, DL, VT, LT, GE);
2806     if (Chain)
2807       Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other,
2808                           LT.getValue(1), GE.getValue(1));
2809     break;
2810   }
2811 
2812     // Handle <> tests using (or (ogt y x) (ogt x y)).
2813   case ISD::SETUEQ:
2814     Invert = true;
2815     LLVM_FALLTHROUGH;
2816   case ISD::SETONE: {
2817     assert(IsFP && "Unexpected integer comparison");
2818     SDValue LT = getVectorCmp(DAG, getVectorComparison(ISD::SETOGT, Mode),
2819                               DL, VT, CmpOp1, CmpOp0, Chain);
2820     SDValue GT = getVectorCmp(DAG, getVectorComparison(ISD::SETOGT, Mode),
2821                               DL, VT, CmpOp0, CmpOp1, Chain);
2822     Cmp = DAG.getNode(ISD::OR, DL, VT, LT, GT);
2823     if (Chain)
2824       Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other,
2825                           LT.getValue(1), GT.getValue(1));
2826     break;
2827   }
2828 
2829     // Otherwise a single comparison is enough.  It doesn't really
2830     // matter whether we try the inversion or the swap first, since
2831     // there are no cases where both work.
2832   default:
2833     if (unsigned Opcode = getVectorComparisonOrInvert(CC, Mode, Invert))
2834       Cmp = getVectorCmp(DAG, Opcode, DL, VT, CmpOp0, CmpOp1, Chain);
2835     else {
2836       CC = ISD::getSetCCSwappedOperands(CC);
2837       if (unsigned Opcode = getVectorComparisonOrInvert(CC, Mode, Invert))
2838         Cmp = getVectorCmp(DAG, Opcode, DL, VT, CmpOp1, CmpOp0, Chain);
2839       else
2840         llvm_unreachable("Unhandled comparison");
2841     }
2842     if (Chain)
2843       Chain = Cmp.getValue(1);
2844     break;
2845   }
2846   if (Invert) {
2847     SDValue Mask =
2848       DAG.getSplatBuildVector(VT, DL, DAG.getConstant(-1, DL, MVT::i64));
2849     Cmp = DAG.getNode(ISD::XOR, DL, VT, Cmp, Mask);
2850   }
2851   if (Chain && Chain.getNode() != Cmp.getNode()) {
2852     SDValue Ops[2] = { Cmp, Chain };
2853     Cmp = DAG.getMergeValues(Ops, DL);
2854   }
2855   return Cmp;
2856 }
2857 
2858 SDValue SystemZTargetLowering::lowerSETCC(SDValue Op,
2859                                           SelectionDAG &DAG) const {
2860   SDValue CmpOp0   = Op.getOperand(0);
2861   SDValue CmpOp1   = Op.getOperand(1);
2862   ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
2863   SDLoc DL(Op);
2864   EVT VT = Op.getValueType();
2865   if (VT.isVector())
2866     return lowerVectorSETCC(DAG, DL, VT, CC, CmpOp0, CmpOp1);
2867 
2868   Comparison C(getCmp(DAG, CmpOp0, CmpOp1, CC, DL));
2869   SDValue CCReg = emitCmp(DAG, DL, C);
2870   return emitSETCC(DAG, DL, CCReg, C.CCValid, C.CCMask);
2871 }
2872 
2873 SDValue SystemZTargetLowering::lowerSTRICT_FSETCC(SDValue Op,
2874                                                   SelectionDAG &DAG,
2875                                                   bool IsSignaling) const {
2876   SDValue Chain    = Op.getOperand(0);
2877   SDValue CmpOp0   = Op.getOperand(1);
2878   SDValue CmpOp1   = Op.getOperand(2);
2879   ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(3))->get();
2880   SDLoc DL(Op);
2881   EVT VT = Op.getNode()->getValueType(0);
2882   if (VT.isVector()) {
2883     SDValue Res = lowerVectorSETCC(DAG, DL, VT, CC, CmpOp0, CmpOp1,
2884                                    Chain, IsSignaling);
2885     return Res.getValue(Op.getResNo());
2886   }
2887 
2888   Comparison C(getCmp(DAG, CmpOp0, CmpOp1, CC, DL, Chain, IsSignaling));
2889   SDValue CCReg = emitCmp(DAG, DL, C);
2890   CCReg->setFlags(Op->getFlags());
2891   SDValue Result = emitSETCC(DAG, DL, CCReg, C.CCValid, C.CCMask);
2892   SDValue Ops[2] = { Result, CCReg.getValue(1) };
2893   return DAG.getMergeValues(Ops, DL);
2894 }
2895 
2896 SDValue SystemZTargetLowering::lowerBR_CC(SDValue Op, SelectionDAG &DAG) const {
2897   ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(1))->get();
2898   SDValue CmpOp0   = Op.getOperand(2);
2899   SDValue CmpOp1   = Op.getOperand(3);
2900   SDValue Dest     = Op.getOperand(4);
2901   SDLoc DL(Op);
2902 
2903   Comparison C(getCmp(DAG, CmpOp0, CmpOp1, CC, DL));
2904   SDValue CCReg = emitCmp(DAG, DL, C);
2905   return DAG.getNode(
2906       SystemZISD::BR_CCMASK, DL, Op.getValueType(), Op.getOperand(0),
2907       DAG.getTargetConstant(C.CCValid, DL, MVT::i32),
2908       DAG.getTargetConstant(C.CCMask, DL, MVT::i32), Dest, CCReg);
2909 }
2910 
2911 // Return true if Pos is CmpOp and Neg is the negative of CmpOp,
2912 // allowing Pos and Neg to be wider than CmpOp.
2913 static bool isAbsolute(SDValue CmpOp, SDValue Pos, SDValue Neg) {
2914   return (Neg.getOpcode() == ISD::SUB &&
2915           Neg.getOperand(0).getOpcode() == ISD::Constant &&
2916           cast<ConstantSDNode>(Neg.getOperand(0))->getZExtValue() == 0 &&
2917           Neg.getOperand(1) == Pos &&
2918           (Pos == CmpOp ||
2919            (Pos.getOpcode() == ISD::SIGN_EXTEND &&
2920             Pos.getOperand(0) == CmpOp)));
2921 }
2922 
2923 // Return the absolute or negative absolute of Op; IsNegative decides which.
2924 static SDValue getAbsolute(SelectionDAG &DAG, const SDLoc &DL, SDValue Op,
2925                            bool IsNegative) {
2926   Op = DAG.getNode(SystemZISD::IABS, DL, Op.getValueType(), Op);
2927   if (IsNegative)
2928     Op = DAG.getNode(ISD::SUB, DL, Op.getValueType(),
2929                      DAG.getConstant(0, DL, Op.getValueType()), Op);
2930   return Op;
2931 }
2932 
2933 SDValue SystemZTargetLowering::lowerSELECT_CC(SDValue Op,
2934                                               SelectionDAG &DAG) const {
2935   SDValue CmpOp0   = Op.getOperand(0);
2936   SDValue CmpOp1   = Op.getOperand(1);
2937   SDValue TrueOp   = Op.getOperand(2);
2938   SDValue FalseOp  = Op.getOperand(3);
2939   ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get();
2940   SDLoc DL(Op);
2941 
2942   Comparison C(getCmp(DAG, CmpOp0, CmpOp1, CC, DL));
2943 
2944   // Check for absolute and negative-absolute selections, including those
2945   // where the comparison value is sign-extended (for LPGFR and LNGFR).
2946   // This check supplements the one in DAGCombiner.
2947   if (C.Opcode == SystemZISD::ICMP &&
2948       C.CCMask != SystemZ::CCMASK_CMP_EQ &&
2949       C.CCMask != SystemZ::CCMASK_CMP_NE &&
2950       C.Op1.getOpcode() == ISD::Constant &&
2951       cast<ConstantSDNode>(C.Op1)->getZExtValue() == 0) {
2952     if (isAbsolute(C.Op0, TrueOp, FalseOp))
2953       return getAbsolute(DAG, DL, TrueOp, C.CCMask & SystemZ::CCMASK_CMP_LT);
2954     if (isAbsolute(C.Op0, FalseOp, TrueOp))
2955       return getAbsolute(DAG, DL, FalseOp, C.CCMask & SystemZ::CCMASK_CMP_GT);
2956   }
2957 
2958   SDValue CCReg = emitCmp(DAG, DL, C);
2959   SDValue Ops[] = {TrueOp, FalseOp,
2960                    DAG.getTargetConstant(C.CCValid, DL, MVT::i32),
2961                    DAG.getTargetConstant(C.CCMask, DL, MVT::i32), CCReg};
2962 
2963   return DAG.getNode(SystemZISD::SELECT_CCMASK, DL, Op.getValueType(), Ops);
2964 }
2965 
2966 SDValue SystemZTargetLowering::lowerGlobalAddress(GlobalAddressSDNode *Node,
2967                                                   SelectionDAG &DAG) const {
2968   SDLoc DL(Node);
2969   const GlobalValue *GV = Node->getGlobal();
2970   int64_t Offset = Node->getOffset();
2971   EVT PtrVT = getPointerTy(DAG.getDataLayout());
2972   CodeModel::Model CM = DAG.getTarget().getCodeModel();
2973 
2974   SDValue Result;
2975   if (Subtarget.isPC32DBLSymbol(GV, CM)) {
2976     if (isInt<32>(Offset)) {
2977       // Assign anchors at 1<<12 byte boundaries.
2978       uint64_t Anchor = Offset & ~uint64_t(0xfff);
2979       Result = DAG.getTargetGlobalAddress(GV, DL, PtrVT, Anchor);
2980       Result = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result);
2981 
2982       // The offset can be folded into the address if it is aligned to a
2983       // halfword.
2984       Offset -= Anchor;
2985       if (Offset != 0 && (Offset & 1) == 0) {
2986         SDValue Full =
2987           DAG.getTargetGlobalAddress(GV, DL, PtrVT, Anchor + Offset);
2988         Result = DAG.getNode(SystemZISD::PCREL_OFFSET, DL, PtrVT, Full, Result);
2989         Offset = 0;
2990       }
2991     } else {
2992       // Conservatively load a constant offset greater than 32 bits into a
2993       // register below.
2994       Result = DAG.getTargetGlobalAddress(GV, DL, PtrVT);
2995       Result = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result);
2996     }
2997   } else {
2998     Result = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, SystemZII::MO_GOT);
2999     Result = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result);
3000     Result = DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), Result,
3001                          MachinePointerInfo::getGOT(DAG.getMachineFunction()));
3002   }
3003 
3004   // If there was a non-zero offset that we didn't fold, create an explicit
3005   // addition for it.
3006   if (Offset != 0)
3007     Result = DAG.getNode(ISD::ADD, DL, PtrVT, Result,
3008                          DAG.getConstant(Offset, DL, PtrVT));
3009 
3010   return Result;
3011 }
3012 
3013 SDValue SystemZTargetLowering::lowerTLSGetOffset(GlobalAddressSDNode *Node,
3014                                                  SelectionDAG &DAG,
3015                                                  unsigned Opcode,
3016                                                  SDValue GOTOffset) const {
3017   SDLoc DL(Node);
3018   EVT PtrVT = getPointerTy(DAG.getDataLayout());
3019   SDValue Chain = DAG.getEntryNode();
3020   SDValue Glue;
3021 
3022   if (DAG.getMachineFunction().getFunction().getCallingConv() ==
3023       CallingConv::GHC)
3024     report_fatal_error("In GHC calling convention TLS is not supported");
3025 
3026   // __tls_get_offset takes the GOT offset in %r2 and the GOT in %r12.
3027   SDValue GOT = DAG.getGLOBAL_OFFSET_TABLE(PtrVT);
3028   Chain = DAG.getCopyToReg(Chain, DL, SystemZ::R12D, GOT, Glue);
3029   Glue = Chain.getValue(1);
3030   Chain = DAG.getCopyToReg(Chain, DL, SystemZ::R2D, GOTOffset, Glue);
3031   Glue = Chain.getValue(1);
3032 
3033   // The first call operand is the chain and the second is the TLS symbol.
3034   SmallVector<SDValue, 8> Ops;
3035   Ops.push_back(Chain);
3036   Ops.push_back(DAG.getTargetGlobalAddress(Node->getGlobal(), DL,
3037                                            Node->getValueType(0),
3038                                            0, 0));
3039 
3040   // Add argument registers to the end of the list so that they are
3041   // known live into the call.
3042   Ops.push_back(DAG.getRegister(SystemZ::R2D, PtrVT));
3043   Ops.push_back(DAG.getRegister(SystemZ::R12D, PtrVT));
3044 
3045   // Add a register mask operand representing the call-preserved registers.
3046   const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo();
3047   const uint32_t *Mask =
3048       TRI->getCallPreservedMask(DAG.getMachineFunction(), CallingConv::C);
3049   assert(Mask && "Missing call preserved mask for calling convention");
3050   Ops.push_back(DAG.getRegisterMask(Mask));
3051 
3052   // Glue the call to the argument copies.
3053   Ops.push_back(Glue);
3054 
3055   // Emit the call.
3056   SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
3057   Chain = DAG.getNode(Opcode, DL, NodeTys, Ops);
3058   Glue = Chain.getValue(1);
3059 
3060   // Copy the return value from %r2.
3061   return DAG.getCopyFromReg(Chain, DL, SystemZ::R2D, PtrVT, Glue);
3062 }
3063 
3064 SDValue SystemZTargetLowering::lowerThreadPointer(const SDLoc &DL,
3065                                                   SelectionDAG &DAG) const {
3066   SDValue Chain = DAG.getEntryNode();
3067   EVT PtrVT = getPointerTy(DAG.getDataLayout());
3068 
3069   // The high part of the thread pointer is in access register 0.
3070   SDValue TPHi = DAG.getCopyFromReg(Chain, DL, SystemZ::A0, MVT::i32);
3071   TPHi = DAG.getNode(ISD::ANY_EXTEND, DL, PtrVT, TPHi);
3072 
3073   // The low part of the thread pointer is in access register 1.
3074   SDValue TPLo = DAG.getCopyFromReg(Chain, DL, SystemZ::A1, MVT::i32);
3075   TPLo = DAG.getNode(ISD::ZERO_EXTEND, DL, PtrVT, TPLo);
3076 
3077   // Merge them into a single 64-bit address.
3078   SDValue TPHiShifted = DAG.getNode(ISD::SHL, DL, PtrVT, TPHi,
3079                                     DAG.getConstant(32, DL, PtrVT));
3080   return DAG.getNode(ISD::OR, DL, PtrVT, TPHiShifted, TPLo);
3081 }
3082 
3083 SDValue SystemZTargetLowering::lowerGlobalTLSAddress(GlobalAddressSDNode *Node,
3084                                                      SelectionDAG &DAG) const {
3085   if (DAG.getTarget().useEmulatedTLS())
3086     return LowerToTLSEmulatedModel(Node, DAG);
3087   SDLoc DL(Node);
3088   const GlobalValue *GV = Node->getGlobal();
3089   EVT PtrVT = getPointerTy(DAG.getDataLayout());
3090   TLSModel::Model model = DAG.getTarget().getTLSModel(GV);
3091 
3092   if (DAG.getMachineFunction().getFunction().getCallingConv() ==
3093       CallingConv::GHC)
3094     report_fatal_error("In GHC calling convention TLS is not supported");
3095 
3096   SDValue TP = lowerThreadPointer(DL, DAG);
3097 
3098   // Get the offset of GA from the thread pointer, based on the TLS model.
3099   SDValue Offset;
3100   switch (model) {
3101     case TLSModel::GeneralDynamic: {
3102       // Load the GOT offset of the tls_index (module ID / per-symbol offset).
3103       SystemZConstantPoolValue *CPV =
3104         SystemZConstantPoolValue::Create(GV, SystemZCP::TLSGD);
3105 
3106       Offset = DAG.getConstantPool(CPV, PtrVT, 8);
3107       Offset = DAG.getLoad(
3108           PtrVT, DL, DAG.getEntryNode(), Offset,
3109           MachinePointerInfo::getConstantPool(DAG.getMachineFunction()));
3110 
3111       // Call __tls_get_offset to retrieve the offset.
3112       Offset = lowerTLSGetOffset(Node, DAG, SystemZISD::TLS_GDCALL, Offset);
3113       break;
3114     }
3115 
3116     case TLSModel::LocalDynamic: {
3117       // Load the GOT offset of the module ID.
3118       SystemZConstantPoolValue *CPV =
3119         SystemZConstantPoolValue::Create(GV, SystemZCP::TLSLDM);
3120 
3121       Offset = DAG.getConstantPool(CPV, PtrVT, 8);
3122       Offset = DAG.getLoad(
3123           PtrVT, DL, DAG.getEntryNode(), Offset,
3124           MachinePointerInfo::getConstantPool(DAG.getMachineFunction()));
3125 
3126       // Call __tls_get_offset to retrieve the module base offset.
3127       Offset = lowerTLSGetOffset(Node, DAG, SystemZISD::TLS_LDCALL, Offset);
3128 
3129       // Note: The SystemZLDCleanupPass will remove redundant computations
3130       // of the module base offset.  Count total number of local-dynamic
3131       // accesses to trigger execution of that pass.
3132       SystemZMachineFunctionInfo* MFI =
3133         DAG.getMachineFunction().getInfo<SystemZMachineFunctionInfo>();
3134       MFI->incNumLocalDynamicTLSAccesses();
3135 
3136       // Add the per-symbol offset.
3137       CPV = SystemZConstantPoolValue::Create(GV, SystemZCP::DTPOFF);
3138 
3139       SDValue DTPOffset = DAG.getConstantPool(CPV, PtrVT, 8);
3140       DTPOffset = DAG.getLoad(
3141           PtrVT, DL, DAG.getEntryNode(), DTPOffset,
3142           MachinePointerInfo::getConstantPool(DAG.getMachineFunction()));
3143 
3144       Offset = DAG.getNode(ISD::ADD, DL, PtrVT, Offset, DTPOffset);
3145       break;
3146     }
3147 
3148     case TLSModel::InitialExec: {
3149       // Load the offset from the GOT.
3150       Offset = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0,
3151                                           SystemZII::MO_INDNTPOFF);
3152       Offset = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Offset);
3153       Offset =
3154           DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), Offset,
3155                       MachinePointerInfo::getGOT(DAG.getMachineFunction()));
3156       break;
3157     }
3158 
3159     case TLSModel::LocalExec: {
3160       // Force the offset into the constant pool and load it from there.
3161       SystemZConstantPoolValue *CPV =
3162         SystemZConstantPoolValue::Create(GV, SystemZCP::NTPOFF);
3163 
3164       Offset = DAG.getConstantPool(CPV, PtrVT, 8);
3165       Offset = DAG.getLoad(
3166           PtrVT, DL, DAG.getEntryNode(), Offset,
3167           MachinePointerInfo::getConstantPool(DAG.getMachineFunction()));
3168       break;
3169     }
3170   }
3171 
3172   // Add the base and offset together.
3173   return DAG.getNode(ISD::ADD, DL, PtrVT, TP, Offset);
3174 }
3175 
3176 SDValue SystemZTargetLowering::lowerBlockAddress(BlockAddressSDNode *Node,
3177                                                  SelectionDAG &DAG) const {
3178   SDLoc DL(Node);
3179   const BlockAddress *BA = Node->getBlockAddress();
3180   int64_t Offset = Node->getOffset();
3181   EVT PtrVT = getPointerTy(DAG.getDataLayout());
3182 
3183   SDValue Result = DAG.getTargetBlockAddress(BA, PtrVT, Offset);
3184   Result = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result);
3185   return Result;
3186 }
3187 
3188 SDValue SystemZTargetLowering::lowerJumpTable(JumpTableSDNode *JT,
3189                                               SelectionDAG &DAG) const {
3190   SDLoc DL(JT);
3191   EVT PtrVT = getPointerTy(DAG.getDataLayout());
3192   SDValue Result = DAG.getTargetJumpTable(JT->getIndex(), PtrVT);
3193 
3194   // Use LARL to load the address of the table.
3195   return DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result);
3196 }
3197 
3198 SDValue SystemZTargetLowering::lowerConstantPool(ConstantPoolSDNode *CP,
3199                                                  SelectionDAG &DAG) const {
3200   SDLoc DL(CP);
3201   EVT PtrVT = getPointerTy(DAG.getDataLayout());
3202 
3203   SDValue Result;
3204   if (CP->isMachineConstantPoolEntry())
3205     Result = DAG.getTargetConstantPool(CP->getMachineCPVal(), PtrVT,
3206                                        CP->getAlignment());
3207   else
3208     Result = DAG.getTargetConstantPool(CP->getConstVal(), PtrVT,
3209                                        CP->getAlignment(), CP->getOffset());
3210 
3211   // Use LARL to load the address of the constant pool entry.
3212   return DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result);
3213 }
3214 
3215 SDValue SystemZTargetLowering::lowerFRAMEADDR(SDValue Op,
3216                                               SelectionDAG &DAG) const {
3217   MachineFunction &MF = DAG.getMachineFunction();
3218   MachineFrameInfo &MFI = MF.getFrameInfo();
3219   MFI.setFrameAddressIsTaken(true);
3220 
3221   SDLoc DL(Op);
3222   unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
3223   EVT PtrVT = getPointerTy(DAG.getDataLayout());
3224 
3225   // By definition, the frame address is the address of the back chain.
3226   auto *TFL =
3227       static_cast<const SystemZFrameLowering *>(Subtarget.getFrameLowering());
3228   int BackChainIdx = TFL->getOrCreateFramePointerSaveIndex(MF);
3229   SDValue BackChain = DAG.getFrameIndex(BackChainIdx, PtrVT);
3230 
3231   // FIXME The frontend should detect this case.
3232   if (Depth > 0) {
3233     report_fatal_error("Unsupported stack frame traversal count");
3234   }
3235 
3236   return BackChain;
3237 }
3238 
3239 SDValue SystemZTargetLowering::lowerRETURNADDR(SDValue Op,
3240                                                SelectionDAG &DAG) const {
3241   MachineFunction &MF = DAG.getMachineFunction();
3242   MachineFrameInfo &MFI = MF.getFrameInfo();
3243   MFI.setReturnAddressIsTaken(true);
3244 
3245   if (verifyReturnAddressArgumentIsConstant(Op, DAG))
3246     return SDValue();
3247 
3248   SDLoc DL(Op);
3249   unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
3250   EVT PtrVT = getPointerTy(DAG.getDataLayout());
3251 
3252   // FIXME The frontend should detect this case.
3253   if (Depth > 0) {
3254     report_fatal_error("Unsupported stack frame traversal count");
3255   }
3256 
3257   // Return R14D, which has the return address. Mark it an implicit live-in.
3258   unsigned LinkReg = MF.addLiveIn(SystemZ::R14D, &SystemZ::GR64BitRegClass);
3259   return DAG.getCopyFromReg(DAG.getEntryNode(), DL, LinkReg, PtrVT);
3260 }
3261 
3262 SDValue SystemZTargetLowering::lowerBITCAST(SDValue Op,
3263                                             SelectionDAG &DAG) const {
3264   SDLoc DL(Op);
3265   SDValue In = Op.getOperand(0);
3266   EVT InVT = In.getValueType();
3267   EVT ResVT = Op.getValueType();
3268 
3269   // Convert loads directly.  This is normally done by DAGCombiner,
3270   // but we need this case for bitcasts that are created during lowering
3271   // and which are then lowered themselves.
3272   if (auto *LoadN = dyn_cast<LoadSDNode>(In))
3273     if (ISD::isNormalLoad(LoadN)) {
3274       SDValue NewLoad = DAG.getLoad(ResVT, DL, LoadN->getChain(),
3275                                     LoadN->getBasePtr(), LoadN->getMemOperand());
3276       // Update the chain uses.
3277       DAG.ReplaceAllUsesOfValueWith(SDValue(LoadN, 1), NewLoad.getValue(1));
3278       return NewLoad;
3279     }
3280 
3281   if (InVT == MVT::i32 && ResVT == MVT::f32) {
3282     SDValue In64;
3283     if (Subtarget.hasHighWord()) {
3284       SDNode *U64 = DAG.getMachineNode(TargetOpcode::IMPLICIT_DEF, DL,
3285                                        MVT::i64);
3286       In64 = DAG.getTargetInsertSubreg(SystemZ::subreg_h32, DL,
3287                                        MVT::i64, SDValue(U64, 0), In);
3288     } else {
3289       In64 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, In);
3290       In64 = DAG.getNode(ISD::SHL, DL, MVT::i64, In64,
3291                          DAG.getConstant(32, DL, MVT::i64));
3292     }
3293     SDValue Out64 = DAG.getNode(ISD::BITCAST, DL, MVT::f64, In64);
3294     return DAG.getTargetExtractSubreg(SystemZ::subreg_h32,
3295                                       DL, MVT::f32, Out64);
3296   }
3297   if (InVT == MVT::f32 && ResVT == MVT::i32) {
3298     SDNode *U64 = DAG.getMachineNode(TargetOpcode::IMPLICIT_DEF, DL, MVT::f64);
3299     SDValue In64 = DAG.getTargetInsertSubreg(SystemZ::subreg_h32, DL,
3300                                              MVT::f64, SDValue(U64, 0), In);
3301     SDValue Out64 = DAG.getNode(ISD::BITCAST, DL, MVT::i64, In64);
3302     if (Subtarget.hasHighWord())
3303       return DAG.getTargetExtractSubreg(SystemZ::subreg_h32, DL,
3304                                         MVT::i32, Out64);
3305     SDValue Shift = DAG.getNode(ISD::SRL, DL, MVT::i64, Out64,
3306                                 DAG.getConstant(32, DL, MVT::i64));
3307     return DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Shift);
3308   }
3309   llvm_unreachable("Unexpected bitcast combination");
3310 }
3311 
3312 SDValue SystemZTargetLowering::lowerVASTART(SDValue Op,
3313                                             SelectionDAG &DAG) const {
3314   MachineFunction &MF = DAG.getMachineFunction();
3315   SystemZMachineFunctionInfo *FuncInfo =
3316     MF.getInfo<SystemZMachineFunctionInfo>();
3317   EVT PtrVT = getPointerTy(DAG.getDataLayout());
3318 
3319   SDValue Chain   = Op.getOperand(0);
3320   SDValue Addr    = Op.getOperand(1);
3321   const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
3322   SDLoc DL(Op);
3323 
3324   // The initial values of each field.
3325   const unsigned NumFields = 4;
3326   SDValue Fields[NumFields] = {
3327     DAG.getConstant(FuncInfo->getVarArgsFirstGPR(), DL, PtrVT),
3328     DAG.getConstant(FuncInfo->getVarArgsFirstFPR(), DL, PtrVT),
3329     DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT),
3330     DAG.getFrameIndex(FuncInfo->getRegSaveFrameIndex(), PtrVT)
3331   };
3332 
3333   // Store each field into its respective slot.
3334   SDValue MemOps[NumFields];
3335   unsigned Offset = 0;
3336   for (unsigned I = 0; I < NumFields; ++I) {
3337     SDValue FieldAddr = Addr;
3338     if (Offset != 0)
3339       FieldAddr = DAG.getNode(ISD::ADD, DL, PtrVT, FieldAddr,
3340                               DAG.getIntPtrConstant(Offset, DL));
3341     MemOps[I] = DAG.getStore(Chain, DL, Fields[I], FieldAddr,
3342                              MachinePointerInfo(SV, Offset));
3343     Offset += 8;
3344   }
3345   return DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOps);
3346 }
3347 
3348 SDValue SystemZTargetLowering::lowerVACOPY(SDValue Op,
3349                                            SelectionDAG &DAG) const {
3350   SDValue Chain      = Op.getOperand(0);
3351   SDValue DstPtr     = Op.getOperand(1);
3352   SDValue SrcPtr     = Op.getOperand(2);
3353   const Value *DstSV = cast<SrcValueSDNode>(Op.getOperand(3))->getValue();
3354   const Value *SrcSV = cast<SrcValueSDNode>(Op.getOperand(4))->getValue();
3355   SDLoc DL(Op);
3356 
3357   return DAG.getMemcpy(Chain, DL, DstPtr, SrcPtr, DAG.getIntPtrConstant(32, DL),
3358                        /*Align*/8, /*isVolatile*/false, /*AlwaysInline*/false,
3359                        /*isTailCall*/false,
3360                        MachinePointerInfo(DstSV), MachinePointerInfo(SrcSV));
3361 }
3362 
3363 SDValue SystemZTargetLowering::
3364 lowerDYNAMIC_STACKALLOC(SDValue Op, SelectionDAG &DAG) const {
3365   const TargetFrameLowering *TFI = Subtarget.getFrameLowering();
3366   MachineFunction &MF = DAG.getMachineFunction();
3367   bool RealignOpt = !MF.getFunction().hasFnAttribute("no-realign-stack");
3368   bool StoreBackchain = MF.getFunction().hasFnAttribute("backchain");
3369 
3370   SDValue Chain = Op.getOperand(0);
3371   SDValue Size  = Op.getOperand(1);
3372   SDValue Align = Op.getOperand(2);
3373   SDLoc DL(Op);
3374 
3375   // If user has set the no alignment function attribute, ignore
3376   // alloca alignments.
3377   uint64_t AlignVal = (RealignOpt ?
3378                        dyn_cast<ConstantSDNode>(Align)->getZExtValue() : 0);
3379 
3380   uint64_t StackAlign = TFI->getStackAlignment();
3381   uint64_t RequiredAlign = std::max(AlignVal, StackAlign);
3382   uint64_t ExtraAlignSpace = RequiredAlign - StackAlign;
3383 
3384   unsigned SPReg = getStackPointerRegisterToSaveRestore();
3385   SDValue NeededSpace = Size;
3386 
3387   // Get a reference to the stack pointer.
3388   SDValue OldSP = DAG.getCopyFromReg(Chain, DL, SPReg, MVT::i64);
3389 
3390   // If we need a backchain, save it now.
3391   SDValue Backchain;
3392   if (StoreBackchain)
3393     Backchain = DAG.getLoad(MVT::i64, DL, Chain, OldSP, MachinePointerInfo());
3394 
3395   // Add extra space for alignment if needed.
3396   if (ExtraAlignSpace)
3397     NeededSpace = DAG.getNode(ISD::ADD, DL, MVT::i64, NeededSpace,
3398                               DAG.getConstant(ExtraAlignSpace, DL, MVT::i64));
3399 
3400   // Get the new stack pointer value.
3401   SDValue NewSP = DAG.getNode(ISD::SUB, DL, MVT::i64, OldSP, NeededSpace);
3402 
3403   // Copy the new stack pointer back.
3404   Chain = DAG.getCopyToReg(Chain, DL, SPReg, NewSP);
3405 
3406   // The allocated data lives above the 160 bytes allocated for the standard
3407   // frame, plus any outgoing stack arguments.  We don't know how much that
3408   // amounts to yet, so emit a special ADJDYNALLOC placeholder.
3409   SDValue ArgAdjust = DAG.getNode(SystemZISD::ADJDYNALLOC, DL, MVT::i64);
3410   SDValue Result = DAG.getNode(ISD::ADD, DL, MVT::i64, NewSP, ArgAdjust);
3411 
3412   // Dynamically realign if needed.
3413   if (RequiredAlign > StackAlign) {
3414     Result =
3415       DAG.getNode(ISD::ADD, DL, MVT::i64, Result,
3416                   DAG.getConstant(ExtraAlignSpace, DL, MVT::i64));
3417     Result =
3418       DAG.getNode(ISD::AND, DL, MVT::i64, Result,
3419                   DAG.getConstant(~(RequiredAlign - 1), DL, MVT::i64));
3420   }
3421 
3422   if (StoreBackchain)
3423     Chain = DAG.getStore(Chain, DL, Backchain, NewSP, MachinePointerInfo());
3424 
3425   SDValue Ops[2] = { Result, Chain };
3426   return DAG.getMergeValues(Ops, DL);
3427 }
3428 
3429 SDValue SystemZTargetLowering::lowerGET_DYNAMIC_AREA_OFFSET(
3430     SDValue Op, SelectionDAG &DAG) const {
3431   SDLoc DL(Op);
3432 
3433   return DAG.getNode(SystemZISD::ADJDYNALLOC, DL, MVT::i64);
3434 }
3435 
3436 SDValue SystemZTargetLowering::lowerSMUL_LOHI(SDValue Op,
3437                                               SelectionDAG &DAG) const {
3438   EVT VT = Op.getValueType();
3439   SDLoc DL(Op);
3440   SDValue Ops[2];
3441   if (is32Bit(VT))
3442     // Just do a normal 64-bit multiplication and extract the results.
3443     // We define this so that it can be used for constant division.
3444     lowerMUL_LOHI32(DAG, DL, ISD::SIGN_EXTEND, Op.getOperand(0),
3445                     Op.getOperand(1), Ops[1], Ops[0]);
3446   else if (Subtarget.hasMiscellaneousExtensions2())
3447     // SystemZISD::SMUL_LOHI returns the low result in the odd register and
3448     // the high result in the even register.  ISD::SMUL_LOHI is defined to
3449     // return the low half first, so the results are in reverse order.
3450     lowerGR128Binary(DAG, DL, VT, SystemZISD::SMUL_LOHI,
3451                      Op.getOperand(0), Op.getOperand(1), Ops[1], Ops[0]);
3452   else {
3453     // Do a full 128-bit multiplication based on SystemZISD::UMUL_LOHI:
3454     //
3455     //   (ll * rl) + ((lh * rl) << 64) + ((ll * rh) << 64)
3456     //
3457     // but using the fact that the upper halves are either all zeros
3458     // or all ones:
3459     //
3460     //   (ll * rl) - ((lh & rl) << 64) - ((ll & rh) << 64)
3461     //
3462     // and grouping the right terms together since they are quicker than the
3463     // multiplication:
3464     //
3465     //   (ll * rl) - (((lh & rl) + (ll & rh)) << 64)
3466     SDValue C63 = DAG.getConstant(63, DL, MVT::i64);
3467     SDValue LL = Op.getOperand(0);
3468     SDValue RL = Op.getOperand(1);
3469     SDValue LH = DAG.getNode(ISD::SRA, DL, VT, LL, C63);
3470     SDValue RH = DAG.getNode(ISD::SRA, DL, VT, RL, C63);
3471     // SystemZISD::UMUL_LOHI returns the low result in the odd register and
3472     // the high result in the even register.  ISD::SMUL_LOHI is defined to
3473     // return the low half first, so the results are in reverse order.
3474     lowerGR128Binary(DAG, DL, VT, SystemZISD::UMUL_LOHI,
3475                      LL, RL, Ops[1], Ops[0]);
3476     SDValue NegLLTimesRH = DAG.getNode(ISD::AND, DL, VT, LL, RH);
3477     SDValue NegLHTimesRL = DAG.getNode(ISD::AND, DL, VT, LH, RL);
3478     SDValue NegSum = DAG.getNode(ISD::ADD, DL, VT, NegLLTimesRH, NegLHTimesRL);
3479     Ops[1] = DAG.getNode(ISD::SUB, DL, VT, Ops[1], NegSum);
3480   }
3481   return DAG.getMergeValues(Ops, DL);
3482 }
3483 
3484 SDValue SystemZTargetLowering::lowerUMUL_LOHI(SDValue Op,
3485                                               SelectionDAG &DAG) const {
3486   EVT VT = Op.getValueType();
3487   SDLoc DL(Op);
3488   SDValue Ops[2];
3489   if (is32Bit(VT))
3490     // Just do a normal 64-bit multiplication and extract the results.
3491     // We define this so that it can be used for constant division.
3492     lowerMUL_LOHI32(DAG, DL, ISD::ZERO_EXTEND, Op.getOperand(0),
3493                     Op.getOperand(1), Ops[1], Ops[0]);
3494   else
3495     // SystemZISD::UMUL_LOHI returns the low result in the odd register and
3496     // the high result in the even register.  ISD::UMUL_LOHI is defined to
3497     // return the low half first, so the results are in reverse order.
3498     lowerGR128Binary(DAG, DL, VT, SystemZISD::UMUL_LOHI,
3499                      Op.getOperand(0), Op.getOperand(1), Ops[1], Ops[0]);
3500   return DAG.getMergeValues(Ops, DL);
3501 }
3502 
3503 SDValue SystemZTargetLowering::lowerSDIVREM(SDValue Op,
3504                                             SelectionDAG &DAG) const {
3505   SDValue Op0 = Op.getOperand(0);
3506   SDValue Op1 = Op.getOperand(1);
3507   EVT VT = Op.getValueType();
3508   SDLoc DL(Op);
3509 
3510   // We use DSGF for 32-bit division.  This means the first operand must
3511   // always be 64-bit, and the second operand should be 32-bit whenever
3512   // that is possible, to improve performance.
3513   if (is32Bit(VT))
3514     Op0 = DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, Op0);
3515   else if (DAG.ComputeNumSignBits(Op1) > 32)
3516     Op1 = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Op1);
3517 
3518   // DSG(F) returns the remainder in the even register and the
3519   // quotient in the odd register.
3520   SDValue Ops[2];
3521   lowerGR128Binary(DAG, DL, VT, SystemZISD::SDIVREM, Op0, Op1, Ops[1], Ops[0]);
3522   return DAG.getMergeValues(Ops, DL);
3523 }
3524 
3525 SDValue SystemZTargetLowering::lowerUDIVREM(SDValue Op,
3526                                             SelectionDAG &DAG) const {
3527   EVT VT = Op.getValueType();
3528   SDLoc DL(Op);
3529 
3530   // DL(G) returns the remainder in the even register and the
3531   // quotient in the odd register.
3532   SDValue Ops[2];
3533   lowerGR128Binary(DAG, DL, VT, SystemZISD::UDIVREM,
3534                    Op.getOperand(0), Op.getOperand(1), Ops[1], Ops[0]);
3535   return DAG.getMergeValues(Ops, DL);
3536 }
3537 
3538 SDValue SystemZTargetLowering::lowerOR(SDValue Op, SelectionDAG &DAG) const {
3539   assert(Op.getValueType() == MVT::i64 && "Should be 64-bit operation");
3540 
3541   // Get the known-zero masks for each operand.
3542   SDValue Ops[] = {Op.getOperand(0), Op.getOperand(1)};
3543   KnownBits Known[2] = {DAG.computeKnownBits(Ops[0]),
3544                         DAG.computeKnownBits(Ops[1])};
3545 
3546   // See if the upper 32 bits of one operand and the lower 32 bits of the
3547   // other are known zero.  They are the low and high operands respectively.
3548   uint64_t Masks[] = { Known[0].Zero.getZExtValue(),
3549                        Known[1].Zero.getZExtValue() };
3550   unsigned High, Low;
3551   if ((Masks[0] >> 32) == 0xffffffff && uint32_t(Masks[1]) == 0xffffffff)
3552     High = 1, Low = 0;
3553   else if ((Masks[1] >> 32) == 0xffffffff && uint32_t(Masks[0]) == 0xffffffff)
3554     High = 0, Low = 1;
3555   else
3556     return Op;
3557 
3558   SDValue LowOp = Ops[Low];
3559   SDValue HighOp = Ops[High];
3560 
3561   // If the high part is a constant, we're better off using IILH.
3562   if (HighOp.getOpcode() == ISD::Constant)
3563     return Op;
3564 
3565   // If the low part is a constant that is outside the range of LHI,
3566   // then we're better off using IILF.
3567   if (LowOp.getOpcode() == ISD::Constant) {
3568     int64_t Value = int32_t(cast<ConstantSDNode>(LowOp)->getZExtValue());
3569     if (!isInt<16>(Value))
3570       return Op;
3571   }
3572 
3573   // Check whether the high part is an AND that doesn't change the
3574   // high 32 bits and just masks out low bits.  We can skip it if so.
3575   if (HighOp.getOpcode() == ISD::AND &&
3576       HighOp.getOperand(1).getOpcode() == ISD::Constant) {
3577     SDValue HighOp0 = HighOp.getOperand(0);
3578     uint64_t Mask = cast<ConstantSDNode>(HighOp.getOperand(1))->getZExtValue();
3579     if (DAG.MaskedValueIsZero(HighOp0, APInt(64, ~(Mask | 0xffffffff))))
3580       HighOp = HighOp0;
3581   }
3582 
3583   // Take advantage of the fact that all GR32 operations only change the
3584   // low 32 bits by truncating Low to an i32 and inserting it directly
3585   // using a subreg.  The interesting cases are those where the truncation
3586   // can be folded.
3587   SDLoc DL(Op);
3588   SDValue Low32 = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, LowOp);
3589   return DAG.getTargetInsertSubreg(SystemZ::subreg_l32, DL,
3590                                    MVT::i64, HighOp, Low32);
3591 }
3592 
3593 // Lower SADDO/SSUBO/UADDO/USUBO nodes.
3594 SDValue SystemZTargetLowering::lowerXALUO(SDValue Op,
3595                                           SelectionDAG &DAG) const {
3596   SDNode *N = Op.getNode();
3597   SDValue LHS = N->getOperand(0);
3598   SDValue RHS = N->getOperand(1);
3599   SDLoc DL(N);
3600   unsigned BaseOp = 0;
3601   unsigned CCValid = 0;
3602   unsigned CCMask = 0;
3603 
3604   switch (Op.getOpcode()) {
3605   default: llvm_unreachable("Unknown instruction!");
3606   case ISD::SADDO:
3607     BaseOp = SystemZISD::SADDO;
3608     CCValid = SystemZ::CCMASK_ARITH;
3609     CCMask = SystemZ::CCMASK_ARITH_OVERFLOW;
3610     break;
3611   case ISD::SSUBO:
3612     BaseOp = SystemZISD::SSUBO;
3613     CCValid = SystemZ::CCMASK_ARITH;
3614     CCMask = SystemZ::CCMASK_ARITH_OVERFLOW;
3615     break;
3616   case ISD::UADDO:
3617     BaseOp = SystemZISD::UADDO;
3618     CCValid = SystemZ::CCMASK_LOGICAL;
3619     CCMask = SystemZ::CCMASK_LOGICAL_CARRY;
3620     break;
3621   case ISD::USUBO:
3622     BaseOp = SystemZISD::USUBO;
3623     CCValid = SystemZ::CCMASK_LOGICAL;
3624     CCMask = SystemZ::CCMASK_LOGICAL_BORROW;
3625     break;
3626   }
3627 
3628   SDVTList VTs = DAG.getVTList(N->getValueType(0), MVT::i32);
3629   SDValue Result = DAG.getNode(BaseOp, DL, VTs, LHS, RHS);
3630 
3631   SDValue SetCC = emitSETCC(DAG, DL, Result.getValue(1), CCValid, CCMask);
3632   if (N->getValueType(1) == MVT::i1)
3633     SetCC = DAG.getNode(ISD::TRUNCATE, DL, MVT::i1, SetCC);
3634 
3635   return DAG.getNode(ISD::MERGE_VALUES, DL, N->getVTList(), Result, SetCC);
3636 }
3637 
3638 static bool isAddCarryChain(SDValue Carry) {
3639   while (Carry.getOpcode() == ISD::ADDCARRY)
3640     Carry = Carry.getOperand(2);
3641   return Carry.getOpcode() == ISD::UADDO;
3642 }
3643 
3644 static bool isSubBorrowChain(SDValue Carry) {
3645   while (Carry.getOpcode() == ISD::SUBCARRY)
3646     Carry = Carry.getOperand(2);
3647   return Carry.getOpcode() == ISD::USUBO;
3648 }
3649 
3650 // Lower ADDCARRY/SUBCARRY nodes.
3651 SDValue SystemZTargetLowering::lowerADDSUBCARRY(SDValue Op,
3652                                                 SelectionDAG &DAG) const {
3653 
3654   SDNode *N = Op.getNode();
3655   MVT VT = N->getSimpleValueType(0);
3656 
3657   // Let legalize expand this if it isn't a legal type yet.
3658   if (!DAG.getTargetLoweringInfo().isTypeLegal(VT))
3659     return SDValue();
3660 
3661   SDValue LHS = N->getOperand(0);
3662   SDValue RHS = N->getOperand(1);
3663   SDValue Carry = Op.getOperand(2);
3664   SDLoc DL(N);
3665   unsigned BaseOp = 0;
3666   unsigned CCValid = 0;
3667   unsigned CCMask = 0;
3668 
3669   switch (Op.getOpcode()) {
3670   default: llvm_unreachable("Unknown instruction!");
3671   case ISD::ADDCARRY:
3672     if (!isAddCarryChain(Carry))
3673       return SDValue();
3674 
3675     BaseOp = SystemZISD::ADDCARRY;
3676     CCValid = SystemZ::CCMASK_LOGICAL;
3677     CCMask = SystemZ::CCMASK_LOGICAL_CARRY;
3678     break;
3679   case ISD::SUBCARRY:
3680     if (!isSubBorrowChain(Carry))
3681       return SDValue();
3682 
3683     BaseOp = SystemZISD::SUBCARRY;
3684     CCValid = SystemZ::CCMASK_LOGICAL;
3685     CCMask = SystemZ::CCMASK_LOGICAL_BORROW;
3686     break;
3687   }
3688 
3689   // Set the condition code from the carry flag.
3690   Carry = DAG.getNode(SystemZISD::GET_CCMASK, DL, MVT::i32, Carry,
3691                       DAG.getConstant(CCValid, DL, MVT::i32),
3692                       DAG.getConstant(CCMask, DL, MVT::i32));
3693 
3694   SDVTList VTs = DAG.getVTList(VT, MVT::i32);
3695   SDValue Result = DAG.getNode(BaseOp, DL, VTs, LHS, RHS, Carry);
3696 
3697   SDValue SetCC = emitSETCC(DAG, DL, Result.getValue(1), CCValid, CCMask);
3698   if (N->getValueType(1) == MVT::i1)
3699     SetCC = DAG.getNode(ISD::TRUNCATE, DL, MVT::i1, SetCC);
3700 
3701   return DAG.getNode(ISD::MERGE_VALUES, DL, N->getVTList(), Result, SetCC);
3702 }
3703 
3704 SDValue SystemZTargetLowering::lowerCTPOP(SDValue Op,
3705                                           SelectionDAG &DAG) const {
3706   EVT VT = Op.getValueType();
3707   SDLoc DL(Op);
3708   Op = Op.getOperand(0);
3709 
3710   // Handle vector types via VPOPCT.
3711   if (VT.isVector()) {
3712     Op = DAG.getNode(ISD::BITCAST, DL, MVT::v16i8, Op);
3713     Op = DAG.getNode(SystemZISD::POPCNT, DL, MVT::v16i8, Op);
3714     switch (VT.getScalarSizeInBits()) {
3715     case 8:
3716       break;
3717     case 16: {
3718       Op = DAG.getNode(ISD::BITCAST, DL, VT, Op);
3719       SDValue Shift = DAG.getConstant(8, DL, MVT::i32);
3720       SDValue Tmp = DAG.getNode(SystemZISD::VSHL_BY_SCALAR, DL, VT, Op, Shift);
3721       Op = DAG.getNode(ISD::ADD, DL, VT, Op, Tmp);
3722       Op = DAG.getNode(SystemZISD::VSRL_BY_SCALAR, DL, VT, Op, Shift);
3723       break;
3724     }
3725     case 32: {
3726       SDValue Tmp = DAG.getSplatBuildVector(MVT::v16i8, DL,
3727                                             DAG.getConstant(0, DL, MVT::i32));
3728       Op = DAG.getNode(SystemZISD::VSUM, DL, VT, Op, Tmp);
3729       break;
3730     }
3731     case 64: {
3732       SDValue Tmp = DAG.getSplatBuildVector(MVT::v16i8, DL,
3733                                             DAG.getConstant(0, DL, MVT::i32));
3734       Op = DAG.getNode(SystemZISD::VSUM, DL, MVT::v4i32, Op, Tmp);
3735       Op = DAG.getNode(SystemZISD::VSUM, DL, VT, Op, Tmp);
3736       break;
3737     }
3738     default:
3739       llvm_unreachable("Unexpected type");
3740     }
3741     return Op;
3742   }
3743 
3744   // Get the known-zero mask for the operand.
3745   KnownBits Known = DAG.computeKnownBits(Op);
3746   unsigned NumSignificantBits = Known.getMaxValue().getActiveBits();
3747   if (NumSignificantBits == 0)
3748     return DAG.getConstant(0, DL, VT);
3749 
3750   // Skip known-zero high parts of the operand.
3751   int64_t OrigBitSize = VT.getSizeInBits();
3752   int64_t BitSize = (int64_t)1 << Log2_32_Ceil(NumSignificantBits);
3753   BitSize = std::min(BitSize, OrigBitSize);
3754 
3755   // The POPCNT instruction counts the number of bits in each byte.
3756   Op = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op);
3757   Op = DAG.getNode(SystemZISD::POPCNT, DL, MVT::i64, Op);
3758   Op = DAG.getNode(ISD::TRUNCATE, DL, VT, Op);
3759 
3760   // Add up per-byte counts in a binary tree.  All bits of Op at
3761   // position larger than BitSize remain zero throughout.
3762   for (int64_t I = BitSize / 2; I >= 8; I = I / 2) {
3763     SDValue Tmp = DAG.getNode(ISD::SHL, DL, VT, Op, DAG.getConstant(I, DL, VT));
3764     if (BitSize != OrigBitSize)
3765       Tmp = DAG.getNode(ISD::AND, DL, VT, Tmp,
3766                         DAG.getConstant(((uint64_t)1 << BitSize) - 1, DL, VT));
3767     Op = DAG.getNode(ISD::ADD, DL, VT, Op, Tmp);
3768   }
3769 
3770   // Extract overall result from high byte.
3771   if (BitSize > 8)
3772     Op = DAG.getNode(ISD::SRL, DL, VT, Op,
3773                      DAG.getConstant(BitSize - 8, DL, VT));
3774 
3775   return Op;
3776 }
3777 
3778 SDValue SystemZTargetLowering::lowerATOMIC_FENCE(SDValue Op,
3779                                                  SelectionDAG &DAG) const {
3780   SDLoc DL(Op);
3781   AtomicOrdering FenceOrdering = static_cast<AtomicOrdering>(
3782     cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue());
3783   SyncScope::ID FenceSSID = static_cast<SyncScope::ID>(
3784     cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue());
3785 
3786   // The only fence that needs an instruction is a sequentially-consistent
3787   // cross-thread fence.
3788   if (FenceOrdering == AtomicOrdering::SequentiallyConsistent &&
3789       FenceSSID == SyncScope::System) {
3790     return SDValue(DAG.getMachineNode(SystemZ::Serialize, DL, MVT::Other,
3791                                       Op.getOperand(0)),
3792                    0);
3793   }
3794 
3795   // MEMBARRIER is a compiler barrier; it codegens to a no-op.
3796   return DAG.getNode(SystemZISD::MEMBARRIER, DL, MVT::Other, Op.getOperand(0));
3797 }
3798 
3799 // Op is an atomic load.  Lower it into a normal volatile load.
3800 SDValue SystemZTargetLowering::lowerATOMIC_LOAD(SDValue Op,
3801                                                 SelectionDAG &DAG) const {
3802   auto *Node = cast<AtomicSDNode>(Op.getNode());
3803   return DAG.getExtLoad(ISD::EXTLOAD, SDLoc(Op), Op.getValueType(),
3804                         Node->getChain(), Node->getBasePtr(),
3805                         Node->getMemoryVT(), Node->getMemOperand());
3806 }
3807 
3808 // Op is an atomic store.  Lower it into a normal volatile store.
3809 SDValue SystemZTargetLowering::lowerATOMIC_STORE(SDValue Op,
3810                                                  SelectionDAG &DAG) const {
3811   auto *Node = cast<AtomicSDNode>(Op.getNode());
3812   SDValue Chain = DAG.getTruncStore(Node->getChain(), SDLoc(Op), Node->getVal(),
3813                                     Node->getBasePtr(), Node->getMemoryVT(),
3814                                     Node->getMemOperand());
3815   // We have to enforce sequential consistency by performing a
3816   // serialization operation after the store.
3817   if (Node->getOrdering() == AtomicOrdering::SequentiallyConsistent)
3818     Chain = SDValue(DAG.getMachineNode(SystemZ::Serialize, SDLoc(Op),
3819                                        MVT::Other, Chain), 0);
3820   return Chain;
3821 }
3822 
3823 // Op is an 8-, 16-bit or 32-bit ATOMIC_LOAD_* operation.  Lower the first
3824 // two into the fullword ATOMIC_LOADW_* operation given by Opcode.
3825 SDValue SystemZTargetLowering::lowerATOMIC_LOAD_OP(SDValue Op,
3826                                                    SelectionDAG &DAG,
3827                                                    unsigned Opcode) const {
3828   auto *Node = cast<AtomicSDNode>(Op.getNode());
3829 
3830   // 32-bit operations need no code outside the main loop.
3831   EVT NarrowVT = Node->getMemoryVT();
3832   EVT WideVT = MVT::i32;
3833   if (NarrowVT == WideVT)
3834     return Op;
3835 
3836   int64_t BitSize = NarrowVT.getSizeInBits();
3837   SDValue ChainIn = Node->getChain();
3838   SDValue Addr = Node->getBasePtr();
3839   SDValue Src2 = Node->getVal();
3840   MachineMemOperand *MMO = Node->getMemOperand();
3841   SDLoc DL(Node);
3842   EVT PtrVT = Addr.getValueType();
3843 
3844   // Convert atomic subtracts of constants into additions.
3845   if (Opcode == SystemZISD::ATOMIC_LOADW_SUB)
3846     if (auto *Const = dyn_cast<ConstantSDNode>(Src2)) {
3847       Opcode = SystemZISD::ATOMIC_LOADW_ADD;
3848       Src2 = DAG.getConstant(-Const->getSExtValue(), DL, Src2.getValueType());
3849     }
3850 
3851   // Get the address of the containing word.
3852   SDValue AlignedAddr = DAG.getNode(ISD::AND, DL, PtrVT, Addr,
3853                                     DAG.getConstant(-4, DL, PtrVT));
3854 
3855   // Get the number of bits that the word must be rotated left in order
3856   // to bring the field to the top bits of a GR32.
3857   SDValue BitShift = DAG.getNode(ISD::SHL, DL, PtrVT, Addr,
3858                                  DAG.getConstant(3, DL, PtrVT));
3859   BitShift = DAG.getNode(ISD::TRUNCATE, DL, WideVT, BitShift);
3860 
3861   // Get the complementing shift amount, for rotating a field in the top
3862   // bits back to its proper position.
3863   SDValue NegBitShift = DAG.getNode(ISD::SUB, DL, WideVT,
3864                                     DAG.getConstant(0, DL, WideVT), BitShift);
3865 
3866   // Extend the source operand to 32 bits and prepare it for the inner loop.
3867   // ATOMIC_SWAPW uses RISBG to rotate the field left, but all other
3868   // operations require the source to be shifted in advance.  (This shift
3869   // can be folded if the source is constant.)  For AND and NAND, the lower
3870   // bits must be set, while for other opcodes they should be left clear.
3871   if (Opcode != SystemZISD::ATOMIC_SWAPW)
3872     Src2 = DAG.getNode(ISD::SHL, DL, WideVT, Src2,
3873                        DAG.getConstant(32 - BitSize, DL, WideVT));
3874   if (Opcode == SystemZISD::ATOMIC_LOADW_AND ||
3875       Opcode == SystemZISD::ATOMIC_LOADW_NAND)
3876     Src2 = DAG.getNode(ISD::OR, DL, WideVT, Src2,
3877                        DAG.getConstant(uint32_t(-1) >> BitSize, DL, WideVT));
3878 
3879   // Construct the ATOMIC_LOADW_* node.
3880   SDVTList VTList = DAG.getVTList(WideVT, MVT::Other);
3881   SDValue Ops[] = { ChainIn, AlignedAddr, Src2, BitShift, NegBitShift,
3882                     DAG.getConstant(BitSize, DL, WideVT) };
3883   SDValue AtomicOp = DAG.getMemIntrinsicNode(Opcode, DL, VTList, Ops,
3884                                              NarrowVT, MMO);
3885 
3886   // Rotate the result of the final CS so that the field is in the lower
3887   // bits of a GR32, then truncate it.
3888   SDValue ResultShift = DAG.getNode(ISD::ADD, DL, WideVT, BitShift,
3889                                     DAG.getConstant(BitSize, DL, WideVT));
3890   SDValue Result = DAG.getNode(ISD::ROTL, DL, WideVT, AtomicOp, ResultShift);
3891 
3892   SDValue RetOps[2] = { Result, AtomicOp.getValue(1) };
3893   return DAG.getMergeValues(RetOps, DL);
3894 }
3895 
3896 // Op is an ATOMIC_LOAD_SUB operation.  Lower 8- and 16-bit operations
3897 // into ATOMIC_LOADW_SUBs and decide whether to convert 32- and 64-bit
3898 // operations into additions.
3899 SDValue SystemZTargetLowering::lowerATOMIC_LOAD_SUB(SDValue Op,
3900                                                     SelectionDAG &DAG) const {
3901   auto *Node = cast<AtomicSDNode>(Op.getNode());
3902   EVT MemVT = Node->getMemoryVT();
3903   if (MemVT == MVT::i32 || MemVT == MVT::i64) {
3904     // A full-width operation.
3905     assert(Op.getValueType() == MemVT && "Mismatched VTs");
3906     SDValue Src2 = Node->getVal();
3907     SDValue NegSrc2;
3908     SDLoc DL(Src2);
3909 
3910     if (auto *Op2 = dyn_cast<ConstantSDNode>(Src2)) {
3911       // Use an addition if the operand is constant and either LAA(G) is
3912       // available or the negative value is in the range of A(G)FHI.
3913       int64_t Value = (-Op2->getAPIntValue()).getSExtValue();
3914       if (isInt<32>(Value) || Subtarget.hasInterlockedAccess1())
3915         NegSrc2 = DAG.getConstant(Value, DL, MemVT);
3916     } else if (Subtarget.hasInterlockedAccess1())
3917       // Use LAA(G) if available.
3918       NegSrc2 = DAG.getNode(ISD::SUB, DL, MemVT, DAG.getConstant(0, DL, MemVT),
3919                             Src2);
3920 
3921     if (NegSrc2.getNode())
3922       return DAG.getAtomic(ISD::ATOMIC_LOAD_ADD, DL, MemVT,
3923                            Node->getChain(), Node->getBasePtr(), NegSrc2,
3924                            Node->getMemOperand());
3925 
3926     // Use the node as-is.
3927     return Op;
3928   }
3929 
3930   return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_SUB);
3931 }
3932 
3933 // Lower 8/16/32/64-bit ATOMIC_CMP_SWAP_WITH_SUCCESS node.
3934 SDValue SystemZTargetLowering::lowerATOMIC_CMP_SWAP(SDValue Op,
3935                                                     SelectionDAG &DAG) const {
3936   auto *Node = cast<AtomicSDNode>(Op.getNode());
3937   SDValue ChainIn = Node->getOperand(0);
3938   SDValue Addr = Node->getOperand(1);
3939   SDValue CmpVal = Node->getOperand(2);
3940   SDValue SwapVal = Node->getOperand(3);
3941   MachineMemOperand *MMO = Node->getMemOperand();
3942   SDLoc DL(Node);
3943 
3944   // We have native support for 32-bit and 64-bit compare and swap, but we
3945   // still need to expand extracting the "success" result from the CC.
3946   EVT NarrowVT = Node->getMemoryVT();
3947   EVT WideVT = NarrowVT == MVT::i64 ? MVT::i64 : MVT::i32;
3948   if (NarrowVT == WideVT) {
3949     SDVTList Tys = DAG.getVTList(WideVT, MVT::i32, MVT::Other);
3950     SDValue Ops[] = { ChainIn, Addr, CmpVal, SwapVal };
3951     SDValue AtomicOp = DAG.getMemIntrinsicNode(SystemZISD::ATOMIC_CMP_SWAP,
3952                                                DL, Tys, Ops, NarrowVT, MMO);
3953     SDValue Success = emitSETCC(DAG, DL, AtomicOp.getValue(1),
3954                                 SystemZ::CCMASK_CS, SystemZ::CCMASK_CS_EQ);
3955 
3956     DAG.ReplaceAllUsesOfValueWith(Op.getValue(0), AtomicOp.getValue(0));
3957     DAG.ReplaceAllUsesOfValueWith(Op.getValue(1), Success);
3958     DAG.ReplaceAllUsesOfValueWith(Op.getValue(2), AtomicOp.getValue(2));
3959     return SDValue();
3960   }
3961 
3962   // Convert 8-bit and 16-bit compare and swap to a loop, implemented
3963   // via a fullword ATOMIC_CMP_SWAPW operation.
3964   int64_t BitSize = NarrowVT.getSizeInBits();
3965   EVT PtrVT = Addr.getValueType();
3966 
3967   // Get the address of the containing word.
3968   SDValue AlignedAddr = DAG.getNode(ISD::AND, DL, PtrVT, Addr,
3969                                     DAG.getConstant(-4, DL, PtrVT));
3970 
3971   // Get the number of bits that the word must be rotated left in order
3972   // to bring the field to the top bits of a GR32.
3973   SDValue BitShift = DAG.getNode(ISD::SHL, DL, PtrVT, Addr,
3974                                  DAG.getConstant(3, DL, PtrVT));
3975   BitShift = DAG.getNode(ISD::TRUNCATE, DL, WideVT, BitShift);
3976 
3977   // Get the complementing shift amount, for rotating a field in the top
3978   // bits back to its proper position.
3979   SDValue NegBitShift = DAG.getNode(ISD::SUB, DL, WideVT,
3980                                     DAG.getConstant(0, DL, WideVT), BitShift);
3981 
3982   // Construct the ATOMIC_CMP_SWAPW node.
3983   SDVTList VTList = DAG.getVTList(WideVT, MVT::i32, MVT::Other);
3984   SDValue Ops[] = { ChainIn, AlignedAddr, CmpVal, SwapVal, BitShift,
3985                     NegBitShift, DAG.getConstant(BitSize, DL, WideVT) };
3986   SDValue AtomicOp = DAG.getMemIntrinsicNode(SystemZISD::ATOMIC_CMP_SWAPW, DL,
3987                                              VTList, Ops, NarrowVT, MMO);
3988   SDValue Success = emitSETCC(DAG, DL, AtomicOp.getValue(1),
3989                               SystemZ::CCMASK_ICMP, SystemZ::CCMASK_CMP_EQ);
3990 
3991   DAG.ReplaceAllUsesOfValueWith(Op.getValue(0), AtomicOp.getValue(0));
3992   DAG.ReplaceAllUsesOfValueWith(Op.getValue(1), Success);
3993   DAG.ReplaceAllUsesOfValueWith(Op.getValue(2), AtomicOp.getValue(2));
3994   return SDValue();
3995 }
3996 
3997 MachineMemOperand::Flags
3998 SystemZTargetLowering::getMMOFlags(const Instruction &I) const {
3999   // Because of how we convert atomic_load and atomic_store to normal loads and
4000   // stores in the DAG, we need to ensure that the MMOs are marked volatile
4001   // since DAGCombine hasn't been updated to account for atomic, but non
4002   // volatile loads.  (See D57601)
4003   if (auto *SI = dyn_cast<StoreInst>(&I))
4004     if (SI->isAtomic())
4005       return MachineMemOperand::MOVolatile;
4006   if (auto *LI = dyn_cast<LoadInst>(&I))
4007     if (LI->isAtomic())
4008       return MachineMemOperand::MOVolatile;
4009   if (auto *AI = dyn_cast<AtomicRMWInst>(&I))
4010     if (AI->isAtomic())
4011       return MachineMemOperand::MOVolatile;
4012   if (auto *AI = dyn_cast<AtomicCmpXchgInst>(&I))
4013     if (AI->isAtomic())
4014       return MachineMemOperand::MOVolatile;
4015   return MachineMemOperand::MONone;
4016 }
4017 
4018 SDValue SystemZTargetLowering::lowerSTACKSAVE(SDValue Op,
4019                                               SelectionDAG &DAG) const {
4020   MachineFunction &MF = DAG.getMachineFunction();
4021   MF.getInfo<SystemZMachineFunctionInfo>()->setManipulatesSP(true);
4022   if (MF.getFunction().getCallingConv() == CallingConv::GHC)
4023     report_fatal_error("Variable-sized stack allocations are not supported "
4024                        "in GHC calling convention");
4025   return DAG.getCopyFromReg(Op.getOperand(0), SDLoc(Op),
4026                             SystemZ::R15D, Op.getValueType());
4027 }
4028 
4029 SDValue SystemZTargetLowering::lowerSTACKRESTORE(SDValue Op,
4030                                                  SelectionDAG &DAG) const {
4031   MachineFunction &MF = DAG.getMachineFunction();
4032   MF.getInfo<SystemZMachineFunctionInfo>()->setManipulatesSP(true);
4033   bool StoreBackchain = MF.getFunction().hasFnAttribute("backchain");
4034 
4035   if (MF.getFunction().getCallingConv() == CallingConv::GHC)
4036     report_fatal_error("Variable-sized stack allocations are not supported "
4037                        "in GHC calling convention");
4038 
4039   SDValue Chain = Op.getOperand(0);
4040   SDValue NewSP = Op.getOperand(1);
4041   SDValue Backchain;
4042   SDLoc DL(Op);
4043 
4044   if (StoreBackchain) {
4045     SDValue OldSP = DAG.getCopyFromReg(Chain, DL, SystemZ::R15D, MVT::i64);
4046     Backchain = DAG.getLoad(MVT::i64, DL, Chain, OldSP, MachinePointerInfo());
4047   }
4048 
4049   Chain = DAG.getCopyToReg(Chain, DL, SystemZ::R15D, NewSP);
4050 
4051   if (StoreBackchain)
4052     Chain = DAG.getStore(Chain, DL, Backchain, NewSP, MachinePointerInfo());
4053 
4054   return Chain;
4055 }
4056 
4057 SDValue SystemZTargetLowering::lowerPREFETCH(SDValue Op,
4058                                              SelectionDAG &DAG) const {
4059   bool IsData = cast<ConstantSDNode>(Op.getOperand(4))->getZExtValue();
4060   if (!IsData)
4061     // Just preserve the chain.
4062     return Op.getOperand(0);
4063 
4064   SDLoc DL(Op);
4065   bool IsWrite = cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue();
4066   unsigned Code = IsWrite ? SystemZ::PFD_WRITE : SystemZ::PFD_READ;
4067   auto *Node = cast<MemIntrinsicSDNode>(Op.getNode());
4068   SDValue Ops[] = {Op.getOperand(0), DAG.getTargetConstant(Code, DL, MVT::i32),
4069                    Op.getOperand(1)};
4070   return DAG.getMemIntrinsicNode(SystemZISD::PREFETCH, DL,
4071                                  Node->getVTList(), Ops,
4072                                  Node->getMemoryVT(), Node->getMemOperand());
4073 }
4074 
4075 // Convert condition code in CCReg to an i32 value.
4076 static SDValue getCCResult(SelectionDAG &DAG, SDValue CCReg) {
4077   SDLoc DL(CCReg);
4078   SDValue IPM = DAG.getNode(SystemZISD::IPM, DL, MVT::i32, CCReg);
4079   return DAG.getNode(ISD::SRL, DL, MVT::i32, IPM,
4080                      DAG.getConstant(SystemZ::IPM_CC, DL, MVT::i32));
4081 }
4082 
4083 SDValue
4084 SystemZTargetLowering::lowerINTRINSIC_W_CHAIN(SDValue Op,
4085                                               SelectionDAG &DAG) const {
4086   unsigned Opcode, CCValid;
4087   if (isIntrinsicWithCCAndChain(Op, Opcode, CCValid)) {
4088     assert(Op->getNumValues() == 2 && "Expected only CC result and chain");
4089     SDNode *Node = emitIntrinsicWithCCAndChain(DAG, Op, Opcode);
4090     SDValue CC = getCCResult(DAG, SDValue(Node, 0));
4091     DAG.ReplaceAllUsesOfValueWith(SDValue(Op.getNode(), 0), CC);
4092     return SDValue();
4093   }
4094 
4095   return SDValue();
4096 }
4097 
4098 SDValue
4099 SystemZTargetLowering::lowerINTRINSIC_WO_CHAIN(SDValue Op,
4100                                                SelectionDAG &DAG) const {
4101   unsigned Opcode, CCValid;
4102   if (isIntrinsicWithCC(Op, Opcode, CCValid)) {
4103     SDNode *Node = emitIntrinsicWithCC(DAG, Op, Opcode);
4104     if (Op->getNumValues() == 1)
4105       return getCCResult(DAG, SDValue(Node, 0));
4106     assert(Op->getNumValues() == 2 && "Expected a CC and non-CC result");
4107     return DAG.getNode(ISD::MERGE_VALUES, SDLoc(Op), Op->getVTList(),
4108                        SDValue(Node, 0), getCCResult(DAG, SDValue(Node, 1)));
4109   }
4110 
4111   unsigned Id = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
4112   switch (Id) {
4113   case Intrinsic::thread_pointer:
4114     return lowerThreadPointer(SDLoc(Op), DAG);
4115 
4116   case Intrinsic::s390_vpdi:
4117     return DAG.getNode(SystemZISD::PERMUTE_DWORDS, SDLoc(Op), Op.getValueType(),
4118                        Op.getOperand(1), Op.getOperand(2), Op.getOperand(3));
4119 
4120   case Intrinsic::s390_vperm:
4121     return DAG.getNode(SystemZISD::PERMUTE, SDLoc(Op), Op.getValueType(),
4122                        Op.getOperand(1), Op.getOperand(2), Op.getOperand(3));
4123 
4124   case Intrinsic::s390_vuphb:
4125   case Intrinsic::s390_vuphh:
4126   case Intrinsic::s390_vuphf:
4127     return DAG.getNode(SystemZISD::UNPACK_HIGH, SDLoc(Op), Op.getValueType(),
4128                        Op.getOperand(1));
4129 
4130   case Intrinsic::s390_vuplhb:
4131   case Intrinsic::s390_vuplhh:
4132   case Intrinsic::s390_vuplhf:
4133     return DAG.getNode(SystemZISD::UNPACKL_HIGH, SDLoc(Op), Op.getValueType(),
4134                        Op.getOperand(1));
4135 
4136   case Intrinsic::s390_vuplb:
4137   case Intrinsic::s390_vuplhw:
4138   case Intrinsic::s390_vuplf:
4139     return DAG.getNode(SystemZISD::UNPACK_LOW, SDLoc(Op), Op.getValueType(),
4140                        Op.getOperand(1));
4141 
4142   case Intrinsic::s390_vupllb:
4143   case Intrinsic::s390_vupllh:
4144   case Intrinsic::s390_vupllf:
4145     return DAG.getNode(SystemZISD::UNPACKL_LOW, SDLoc(Op), Op.getValueType(),
4146                        Op.getOperand(1));
4147 
4148   case Intrinsic::s390_vsumb:
4149   case Intrinsic::s390_vsumh:
4150   case Intrinsic::s390_vsumgh:
4151   case Intrinsic::s390_vsumgf:
4152   case Intrinsic::s390_vsumqf:
4153   case Intrinsic::s390_vsumqg:
4154     return DAG.getNode(SystemZISD::VSUM, SDLoc(Op), Op.getValueType(),
4155                        Op.getOperand(1), Op.getOperand(2));
4156   }
4157 
4158   return SDValue();
4159 }
4160 
4161 namespace {
4162 // Says that SystemZISD operation Opcode can be used to perform the equivalent
4163 // of a VPERM with permute vector Bytes.  If Opcode takes three operands,
4164 // Operand is the constant third operand, otherwise it is the number of
4165 // bytes in each element of the result.
4166 struct Permute {
4167   unsigned Opcode;
4168   unsigned Operand;
4169   unsigned char Bytes[SystemZ::VectorBytes];
4170 };
4171 }
4172 
4173 static const Permute PermuteForms[] = {
4174   // VMRHG
4175   { SystemZISD::MERGE_HIGH, 8,
4176     { 0, 1, 2, 3, 4, 5, 6, 7, 16, 17, 18, 19, 20, 21, 22, 23 } },
4177   // VMRHF
4178   { SystemZISD::MERGE_HIGH, 4,
4179     { 0, 1, 2, 3, 16, 17, 18, 19, 4, 5, 6, 7, 20, 21, 22, 23 } },
4180   // VMRHH
4181   { SystemZISD::MERGE_HIGH, 2,
4182     { 0, 1, 16, 17, 2, 3, 18, 19, 4, 5, 20, 21, 6, 7, 22, 23 } },
4183   // VMRHB
4184   { SystemZISD::MERGE_HIGH, 1,
4185     { 0, 16, 1, 17, 2, 18, 3, 19, 4, 20, 5, 21, 6, 22, 7, 23 } },
4186   // VMRLG
4187   { SystemZISD::MERGE_LOW, 8,
4188     { 8, 9, 10, 11, 12, 13, 14, 15, 24, 25, 26, 27, 28, 29, 30, 31 } },
4189   // VMRLF
4190   { SystemZISD::MERGE_LOW, 4,
4191     { 8, 9, 10, 11, 24, 25, 26, 27, 12, 13, 14, 15, 28, 29, 30, 31 } },
4192   // VMRLH
4193   { SystemZISD::MERGE_LOW, 2,
4194     { 8, 9, 24, 25, 10, 11, 26, 27, 12, 13, 28, 29, 14, 15, 30, 31 } },
4195   // VMRLB
4196   { SystemZISD::MERGE_LOW, 1,
4197     { 8, 24, 9, 25, 10, 26, 11, 27, 12, 28, 13, 29, 14, 30, 15, 31 } },
4198   // VPKG
4199   { SystemZISD::PACK, 4,
4200     { 4, 5, 6, 7, 12, 13, 14, 15, 20, 21, 22, 23, 28, 29, 30, 31 } },
4201   // VPKF
4202   { SystemZISD::PACK, 2,
4203     { 2, 3, 6, 7, 10, 11, 14, 15, 18, 19, 22, 23, 26, 27, 30, 31 } },
4204   // VPKH
4205   { SystemZISD::PACK, 1,
4206     { 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31 } },
4207   // VPDI V1, V2, 4  (low half of V1, high half of V2)
4208   { SystemZISD::PERMUTE_DWORDS, 4,
4209     { 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23 } },
4210   // VPDI V1, V2, 1  (high half of V1, low half of V2)
4211   { SystemZISD::PERMUTE_DWORDS, 1,
4212     { 0, 1, 2, 3, 4, 5, 6, 7, 24, 25, 26, 27, 28, 29, 30, 31 } }
4213 };
4214 
4215 // Called after matching a vector shuffle against a particular pattern.
4216 // Both the original shuffle and the pattern have two vector operands.
4217 // OpNos[0] is the operand of the original shuffle that should be used for
4218 // operand 0 of the pattern, or -1 if operand 0 of the pattern can be anything.
4219 // OpNos[1] is the same for operand 1 of the pattern.  Resolve these -1s and
4220 // set OpNo0 and OpNo1 to the shuffle operands that should actually be used
4221 // for operands 0 and 1 of the pattern.
4222 static bool chooseShuffleOpNos(int *OpNos, unsigned &OpNo0, unsigned &OpNo1) {
4223   if (OpNos[0] < 0) {
4224     if (OpNos[1] < 0)
4225       return false;
4226     OpNo0 = OpNo1 = OpNos[1];
4227   } else if (OpNos[1] < 0) {
4228     OpNo0 = OpNo1 = OpNos[0];
4229   } else {
4230     OpNo0 = OpNos[0];
4231     OpNo1 = OpNos[1];
4232   }
4233   return true;
4234 }
4235 
4236 // Bytes is a VPERM-like permute vector, except that -1 is used for
4237 // undefined bytes.  Return true if the VPERM can be implemented using P.
4238 // When returning true set OpNo0 to the VPERM operand that should be
4239 // used for operand 0 of P and likewise OpNo1 for operand 1 of P.
4240 //
4241 // For example, if swapping the VPERM operands allows P to match, OpNo0
4242 // will be 1 and OpNo1 will be 0.  If instead Bytes only refers to one
4243 // operand, but rewriting it to use two duplicated operands allows it to
4244 // match P, then OpNo0 and OpNo1 will be the same.
4245 static bool matchPermute(const SmallVectorImpl<int> &Bytes, const Permute &P,
4246                          unsigned &OpNo0, unsigned &OpNo1) {
4247   int OpNos[] = { -1, -1 };
4248   for (unsigned I = 0; I < SystemZ::VectorBytes; ++I) {
4249     int Elt = Bytes[I];
4250     if (Elt >= 0) {
4251       // Make sure that the two permute vectors use the same suboperand
4252       // byte number.  Only the operand numbers (the high bits) are
4253       // allowed to differ.
4254       if ((Elt ^ P.Bytes[I]) & (SystemZ::VectorBytes - 1))
4255         return false;
4256       int ModelOpNo = P.Bytes[I] / SystemZ::VectorBytes;
4257       int RealOpNo = unsigned(Elt) / SystemZ::VectorBytes;
4258       // Make sure that the operand mappings are consistent with previous
4259       // elements.
4260       if (OpNos[ModelOpNo] == 1 - RealOpNo)
4261         return false;
4262       OpNos[ModelOpNo] = RealOpNo;
4263     }
4264   }
4265   return chooseShuffleOpNos(OpNos, OpNo0, OpNo1);
4266 }
4267 
4268 // As above, but search for a matching permute.
4269 static const Permute *matchPermute(const SmallVectorImpl<int> &Bytes,
4270                                    unsigned &OpNo0, unsigned &OpNo1) {
4271   for (auto &P : PermuteForms)
4272     if (matchPermute(Bytes, P, OpNo0, OpNo1))
4273       return &P;
4274   return nullptr;
4275 }
4276 
4277 // Bytes is a VPERM-like permute vector, except that -1 is used for
4278 // undefined bytes.  This permute is an operand of an outer permute.
4279 // See whether redistributing the -1 bytes gives a shuffle that can be
4280 // implemented using P.  If so, set Transform to a VPERM-like permute vector
4281 // that, when applied to the result of P, gives the original permute in Bytes.
4282 static bool matchDoublePermute(const SmallVectorImpl<int> &Bytes,
4283                                const Permute &P,
4284                                SmallVectorImpl<int> &Transform) {
4285   unsigned To = 0;
4286   for (unsigned From = 0; From < SystemZ::VectorBytes; ++From) {
4287     int Elt = Bytes[From];
4288     if (Elt < 0)
4289       // Byte number From of the result is undefined.
4290       Transform[From] = -1;
4291     else {
4292       while (P.Bytes[To] != Elt) {
4293         To += 1;
4294         if (To == SystemZ::VectorBytes)
4295           return false;
4296       }
4297       Transform[From] = To;
4298     }
4299   }
4300   return true;
4301 }
4302 
4303 // As above, but search for a matching permute.
4304 static const Permute *matchDoublePermute(const SmallVectorImpl<int> &Bytes,
4305                                          SmallVectorImpl<int> &Transform) {
4306   for (auto &P : PermuteForms)
4307     if (matchDoublePermute(Bytes, P, Transform))
4308       return &P;
4309   return nullptr;
4310 }
4311 
4312 // Convert the mask of the given shuffle op into a byte-level mask,
4313 // as if it had type vNi8.
4314 static bool getVPermMask(SDValue ShuffleOp,
4315                          SmallVectorImpl<int> &Bytes) {
4316   EVT VT = ShuffleOp.getValueType();
4317   unsigned NumElements = VT.getVectorNumElements();
4318   unsigned BytesPerElement = VT.getVectorElementType().getStoreSize();
4319 
4320   if (auto *VSN = dyn_cast<ShuffleVectorSDNode>(ShuffleOp)) {
4321     Bytes.resize(NumElements * BytesPerElement, -1);
4322     for (unsigned I = 0; I < NumElements; ++I) {
4323       int Index = VSN->getMaskElt(I);
4324       if (Index >= 0)
4325         for (unsigned J = 0; J < BytesPerElement; ++J)
4326           Bytes[I * BytesPerElement + J] = Index * BytesPerElement + J;
4327     }
4328     return true;
4329   }
4330   if (SystemZISD::SPLAT == ShuffleOp.getOpcode() &&
4331       isa<ConstantSDNode>(ShuffleOp.getOperand(1))) {
4332     unsigned Index = ShuffleOp.getConstantOperandVal(1);
4333     Bytes.resize(NumElements * BytesPerElement, -1);
4334     for (unsigned I = 0; I < NumElements; ++I)
4335       for (unsigned J = 0; J < BytesPerElement; ++J)
4336         Bytes[I * BytesPerElement + J] = Index * BytesPerElement + J;
4337     return true;
4338   }
4339   return false;
4340 }
4341 
4342 // Bytes is a VPERM-like permute vector, except that -1 is used for
4343 // undefined bytes.  See whether bytes [Start, Start + BytesPerElement) of
4344 // the result come from a contiguous sequence of bytes from one input.
4345 // Set Base to the selector for the first byte if so.
4346 static bool getShuffleInput(const SmallVectorImpl<int> &Bytes, unsigned Start,
4347                             unsigned BytesPerElement, int &Base) {
4348   Base = -1;
4349   for (unsigned I = 0; I < BytesPerElement; ++I) {
4350     if (Bytes[Start + I] >= 0) {
4351       unsigned Elem = Bytes[Start + I];
4352       if (Base < 0) {
4353         Base = Elem - I;
4354         // Make sure the bytes would come from one input operand.
4355         if (unsigned(Base) % Bytes.size() + BytesPerElement > Bytes.size())
4356           return false;
4357       } else if (unsigned(Base) != Elem - I)
4358         return false;
4359     }
4360   }
4361   return true;
4362 }
4363 
4364 // Bytes is a VPERM-like permute vector, except that -1 is used for
4365 // undefined bytes.  Return true if it can be performed using VSLDI.
4366 // When returning true, set StartIndex to the shift amount and OpNo0
4367 // and OpNo1 to the VPERM operands that should be used as the first
4368 // and second shift operand respectively.
4369 static bool isShlDoublePermute(const SmallVectorImpl<int> &Bytes,
4370                                unsigned &StartIndex, unsigned &OpNo0,
4371                                unsigned &OpNo1) {
4372   int OpNos[] = { -1, -1 };
4373   int Shift = -1;
4374   for (unsigned I = 0; I < 16; ++I) {
4375     int Index = Bytes[I];
4376     if (Index >= 0) {
4377       int ExpectedShift = (Index - I) % SystemZ::VectorBytes;
4378       int ModelOpNo = unsigned(ExpectedShift + I) / SystemZ::VectorBytes;
4379       int RealOpNo = unsigned(Index) / SystemZ::VectorBytes;
4380       if (Shift < 0)
4381         Shift = ExpectedShift;
4382       else if (Shift != ExpectedShift)
4383         return false;
4384       // Make sure that the operand mappings are consistent with previous
4385       // elements.
4386       if (OpNos[ModelOpNo] == 1 - RealOpNo)
4387         return false;
4388       OpNos[ModelOpNo] = RealOpNo;
4389     }
4390   }
4391   StartIndex = Shift;
4392   return chooseShuffleOpNos(OpNos, OpNo0, OpNo1);
4393 }
4394 
4395 // Create a node that performs P on operands Op0 and Op1, casting the
4396 // operands to the appropriate type.  The type of the result is determined by P.
4397 static SDValue getPermuteNode(SelectionDAG &DAG, const SDLoc &DL,
4398                               const Permute &P, SDValue Op0, SDValue Op1) {
4399   // VPDI (PERMUTE_DWORDS) always operates on v2i64s.  The input
4400   // elements of a PACK are twice as wide as the outputs.
4401   unsigned InBytes = (P.Opcode == SystemZISD::PERMUTE_DWORDS ? 8 :
4402                       P.Opcode == SystemZISD::PACK ? P.Operand * 2 :
4403                       P.Operand);
4404   // Cast both operands to the appropriate type.
4405   MVT InVT = MVT::getVectorVT(MVT::getIntegerVT(InBytes * 8),
4406                               SystemZ::VectorBytes / InBytes);
4407   Op0 = DAG.getNode(ISD::BITCAST, DL, InVT, Op0);
4408   Op1 = DAG.getNode(ISD::BITCAST, DL, InVT, Op1);
4409   SDValue Op;
4410   if (P.Opcode == SystemZISD::PERMUTE_DWORDS) {
4411     SDValue Op2 = DAG.getTargetConstant(P.Operand, DL, MVT::i32);
4412     Op = DAG.getNode(SystemZISD::PERMUTE_DWORDS, DL, InVT, Op0, Op1, Op2);
4413   } else if (P.Opcode == SystemZISD::PACK) {
4414     MVT OutVT = MVT::getVectorVT(MVT::getIntegerVT(P.Operand * 8),
4415                                  SystemZ::VectorBytes / P.Operand);
4416     Op = DAG.getNode(SystemZISD::PACK, DL, OutVT, Op0, Op1);
4417   } else {
4418     Op = DAG.getNode(P.Opcode, DL, InVT, Op0, Op1);
4419   }
4420   return Op;
4421 }
4422 
4423 // Bytes is a VPERM-like permute vector, except that -1 is used for
4424 // undefined bytes.  Implement it on operands Ops[0] and Ops[1] using
4425 // VSLDI or VPERM.
4426 static SDValue getGeneralPermuteNode(SelectionDAG &DAG, const SDLoc &DL,
4427                                      SDValue *Ops,
4428                                      const SmallVectorImpl<int> &Bytes) {
4429   for (unsigned I = 0; I < 2; ++I)
4430     Ops[I] = DAG.getNode(ISD::BITCAST, DL, MVT::v16i8, Ops[I]);
4431 
4432   // First see whether VSLDI can be used.
4433   unsigned StartIndex, OpNo0, OpNo1;
4434   if (isShlDoublePermute(Bytes, StartIndex, OpNo0, OpNo1))
4435     return DAG.getNode(SystemZISD::SHL_DOUBLE, DL, MVT::v16i8, Ops[OpNo0],
4436                        Ops[OpNo1],
4437                        DAG.getTargetConstant(StartIndex, DL, MVT::i32));
4438 
4439   // Fall back on VPERM.  Construct an SDNode for the permute vector.
4440   SDValue IndexNodes[SystemZ::VectorBytes];
4441   for (unsigned I = 0; I < SystemZ::VectorBytes; ++I)
4442     if (Bytes[I] >= 0)
4443       IndexNodes[I] = DAG.getConstant(Bytes[I], DL, MVT::i32);
4444     else
4445       IndexNodes[I] = DAG.getUNDEF(MVT::i32);
4446   SDValue Op2 = DAG.getBuildVector(MVT::v16i8, DL, IndexNodes);
4447   return DAG.getNode(SystemZISD::PERMUTE, DL, MVT::v16i8, Ops[0], Ops[1], Op2);
4448 }
4449 
4450 namespace {
4451 // Describes a general N-operand vector shuffle.
4452 struct GeneralShuffle {
4453   GeneralShuffle(EVT vt) : VT(vt) {}
4454   void addUndef();
4455   bool add(SDValue, unsigned);
4456   SDValue getNode(SelectionDAG &, const SDLoc &);
4457 
4458   // The operands of the shuffle.
4459   SmallVector<SDValue, SystemZ::VectorBytes> Ops;
4460 
4461   // Index I is -1 if byte I of the result is undefined.  Otherwise the
4462   // result comes from byte Bytes[I] % SystemZ::VectorBytes of operand
4463   // Bytes[I] / SystemZ::VectorBytes.
4464   SmallVector<int, SystemZ::VectorBytes> Bytes;
4465 
4466   // The type of the shuffle result.
4467   EVT VT;
4468 };
4469 }
4470 
4471 // Add an extra undefined element to the shuffle.
4472 void GeneralShuffle::addUndef() {
4473   unsigned BytesPerElement = VT.getVectorElementType().getStoreSize();
4474   for (unsigned I = 0; I < BytesPerElement; ++I)
4475     Bytes.push_back(-1);
4476 }
4477 
4478 // Add an extra element to the shuffle, taking it from element Elem of Op.
4479 // A null Op indicates a vector input whose value will be calculated later;
4480 // there is at most one such input per shuffle and it always has the same
4481 // type as the result. Aborts and returns false if the source vector elements
4482 // of an EXTRACT_VECTOR_ELT are smaller than the destination elements. Per
4483 // LLVM they become implicitly extended, but this is rare and not optimized.
4484 bool GeneralShuffle::add(SDValue Op, unsigned Elem) {
4485   unsigned BytesPerElement = VT.getVectorElementType().getStoreSize();
4486 
4487   // The source vector can have wider elements than the result,
4488   // either through an explicit TRUNCATE or because of type legalization.
4489   // We want the least significant part.
4490   EVT FromVT = Op.getNode() ? Op.getValueType() : VT;
4491   unsigned FromBytesPerElement = FromVT.getVectorElementType().getStoreSize();
4492 
4493   // Return false if the source elements are smaller than their destination
4494   // elements.
4495   if (FromBytesPerElement < BytesPerElement)
4496     return false;
4497 
4498   unsigned Byte = ((Elem * FromBytesPerElement) % SystemZ::VectorBytes +
4499                    (FromBytesPerElement - BytesPerElement));
4500 
4501   // Look through things like shuffles and bitcasts.
4502   while (Op.getNode()) {
4503     if (Op.getOpcode() == ISD::BITCAST)
4504       Op = Op.getOperand(0);
4505     else if (Op.getOpcode() == ISD::VECTOR_SHUFFLE && Op.hasOneUse()) {
4506       // See whether the bytes we need come from a contiguous part of one
4507       // operand.
4508       SmallVector<int, SystemZ::VectorBytes> OpBytes;
4509       if (!getVPermMask(Op, OpBytes))
4510         break;
4511       int NewByte;
4512       if (!getShuffleInput(OpBytes, Byte, BytesPerElement, NewByte))
4513         break;
4514       if (NewByte < 0) {
4515         addUndef();
4516         return true;
4517       }
4518       Op = Op.getOperand(unsigned(NewByte) / SystemZ::VectorBytes);
4519       Byte = unsigned(NewByte) % SystemZ::VectorBytes;
4520     } else if (Op.isUndef()) {
4521       addUndef();
4522       return true;
4523     } else
4524       break;
4525   }
4526 
4527   // Make sure that the source of the extraction is in Ops.
4528   unsigned OpNo = 0;
4529   for (; OpNo < Ops.size(); ++OpNo)
4530     if (Ops[OpNo] == Op)
4531       break;
4532   if (OpNo == Ops.size())
4533     Ops.push_back(Op);
4534 
4535   // Add the element to Bytes.
4536   unsigned Base = OpNo * SystemZ::VectorBytes + Byte;
4537   for (unsigned I = 0; I < BytesPerElement; ++I)
4538     Bytes.push_back(Base + I);
4539 
4540   return true;
4541 }
4542 
4543 // Return SDNodes for the completed shuffle.
4544 SDValue GeneralShuffle::getNode(SelectionDAG &DAG, const SDLoc &DL) {
4545   assert(Bytes.size() == SystemZ::VectorBytes && "Incomplete vector");
4546 
4547   if (Ops.size() == 0)
4548     return DAG.getUNDEF(VT);
4549 
4550   // Make sure that there are at least two shuffle operands.
4551   if (Ops.size() == 1)
4552     Ops.push_back(DAG.getUNDEF(MVT::v16i8));
4553 
4554   // Create a tree of shuffles, deferring root node until after the loop.
4555   // Try to redistribute the undefined elements of non-root nodes so that
4556   // the non-root shuffles match something like a pack or merge, then adjust
4557   // the parent node's permute vector to compensate for the new order.
4558   // Among other things, this copes with vectors like <2 x i16> that were
4559   // padded with undefined elements during type legalization.
4560   //
4561   // In the best case this redistribution will lead to the whole tree
4562   // using packs and merges.  It should rarely be a loss in other cases.
4563   unsigned Stride = 1;
4564   for (; Stride * 2 < Ops.size(); Stride *= 2) {
4565     for (unsigned I = 0; I < Ops.size() - Stride; I += Stride * 2) {
4566       SDValue SubOps[] = { Ops[I], Ops[I + Stride] };
4567 
4568       // Create a mask for just these two operands.
4569       SmallVector<int, SystemZ::VectorBytes> NewBytes(SystemZ::VectorBytes);
4570       for (unsigned J = 0; J < SystemZ::VectorBytes; ++J) {
4571         unsigned OpNo = unsigned(Bytes[J]) / SystemZ::VectorBytes;
4572         unsigned Byte = unsigned(Bytes[J]) % SystemZ::VectorBytes;
4573         if (OpNo == I)
4574           NewBytes[J] = Byte;
4575         else if (OpNo == I + Stride)
4576           NewBytes[J] = SystemZ::VectorBytes + Byte;
4577         else
4578           NewBytes[J] = -1;
4579       }
4580       // See if it would be better to reorganize NewMask to avoid using VPERM.
4581       SmallVector<int, SystemZ::VectorBytes> NewBytesMap(SystemZ::VectorBytes);
4582       if (const Permute *P = matchDoublePermute(NewBytes, NewBytesMap)) {
4583         Ops[I] = getPermuteNode(DAG, DL, *P, SubOps[0], SubOps[1]);
4584         // Applying NewBytesMap to Ops[I] gets back to NewBytes.
4585         for (unsigned J = 0; J < SystemZ::VectorBytes; ++J) {
4586           if (NewBytes[J] >= 0) {
4587             assert(unsigned(NewBytesMap[J]) < SystemZ::VectorBytes &&
4588                    "Invalid double permute");
4589             Bytes[J] = I * SystemZ::VectorBytes + NewBytesMap[J];
4590           } else
4591             assert(NewBytesMap[J] < 0 && "Invalid double permute");
4592         }
4593       } else {
4594         // Just use NewBytes on the operands.
4595         Ops[I] = getGeneralPermuteNode(DAG, DL, SubOps, NewBytes);
4596         for (unsigned J = 0; J < SystemZ::VectorBytes; ++J)
4597           if (NewBytes[J] >= 0)
4598             Bytes[J] = I * SystemZ::VectorBytes + J;
4599       }
4600     }
4601   }
4602 
4603   // Now we just have 2 inputs.  Put the second operand in Ops[1].
4604   if (Stride > 1) {
4605     Ops[1] = Ops[Stride];
4606     for (unsigned I = 0; I < SystemZ::VectorBytes; ++I)
4607       if (Bytes[I] >= int(SystemZ::VectorBytes))
4608         Bytes[I] -= (Stride - 1) * SystemZ::VectorBytes;
4609   }
4610 
4611   // Look for an instruction that can do the permute without resorting
4612   // to VPERM.
4613   unsigned OpNo0, OpNo1;
4614   SDValue Op;
4615   if (const Permute *P = matchPermute(Bytes, OpNo0, OpNo1))
4616     Op = getPermuteNode(DAG, DL, *P, Ops[OpNo0], Ops[OpNo1]);
4617   else
4618     Op = getGeneralPermuteNode(DAG, DL, &Ops[0], Bytes);
4619   return DAG.getNode(ISD::BITCAST, DL, VT, Op);
4620 }
4621 
4622 // Return true if the given BUILD_VECTOR is a scalar-to-vector conversion.
4623 static bool isScalarToVector(SDValue Op) {
4624   for (unsigned I = 1, E = Op.getNumOperands(); I != E; ++I)
4625     if (!Op.getOperand(I).isUndef())
4626       return false;
4627   return true;
4628 }
4629 
4630 // Return a vector of type VT that contains Value in the first element.
4631 // The other elements don't matter.
4632 static SDValue buildScalarToVector(SelectionDAG &DAG, const SDLoc &DL, EVT VT,
4633                                    SDValue Value) {
4634   // If we have a constant, replicate it to all elements and let the
4635   // BUILD_VECTOR lowering take care of it.
4636   if (Value.getOpcode() == ISD::Constant ||
4637       Value.getOpcode() == ISD::ConstantFP) {
4638     SmallVector<SDValue, 16> Ops(VT.getVectorNumElements(), Value);
4639     return DAG.getBuildVector(VT, DL, Ops);
4640   }
4641   if (Value.isUndef())
4642     return DAG.getUNDEF(VT);
4643   return DAG.getNode(ISD::SCALAR_TO_VECTOR, DL, VT, Value);
4644 }
4645 
4646 // Return a vector of type VT in which Op0 is in element 0 and Op1 is in
4647 // element 1.  Used for cases in which replication is cheap.
4648 static SDValue buildMergeScalars(SelectionDAG &DAG, const SDLoc &DL, EVT VT,
4649                                  SDValue Op0, SDValue Op1) {
4650   if (Op0.isUndef()) {
4651     if (Op1.isUndef())
4652       return DAG.getUNDEF(VT);
4653     return DAG.getNode(SystemZISD::REPLICATE, DL, VT, Op1);
4654   }
4655   if (Op1.isUndef())
4656     return DAG.getNode(SystemZISD::REPLICATE, DL, VT, Op0);
4657   return DAG.getNode(SystemZISD::MERGE_HIGH, DL, VT,
4658                      buildScalarToVector(DAG, DL, VT, Op0),
4659                      buildScalarToVector(DAG, DL, VT, Op1));
4660 }
4661 
4662 // Extend GPR scalars Op0 and Op1 to doublewords and return a v2i64
4663 // vector for them.
4664 static SDValue joinDwords(SelectionDAG &DAG, const SDLoc &DL, SDValue Op0,
4665                           SDValue Op1) {
4666   if (Op0.isUndef() && Op1.isUndef())
4667     return DAG.getUNDEF(MVT::v2i64);
4668   // If one of the two inputs is undefined then replicate the other one,
4669   // in order to avoid using another register unnecessarily.
4670   if (Op0.isUndef())
4671     Op0 = Op1 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op1);
4672   else if (Op1.isUndef())
4673     Op0 = Op1 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op0);
4674   else {
4675     Op0 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op0);
4676     Op1 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op1);
4677   }
4678   return DAG.getNode(SystemZISD::JOIN_DWORDS, DL, MVT::v2i64, Op0, Op1);
4679 }
4680 
4681 // If a BUILD_VECTOR contains some EXTRACT_VECTOR_ELTs, it's usually
4682 // better to use VECTOR_SHUFFLEs on them, only using BUILD_VECTOR for
4683 // the non-EXTRACT_VECTOR_ELT elements.  See if the given BUILD_VECTOR
4684 // would benefit from this representation and return it if so.
4685 static SDValue tryBuildVectorShuffle(SelectionDAG &DAG,
4686                                      BuildVectorSDNode *BVN) {
4687   EVT VT = BVN->getValueType(0);
4688   unsigned NumElements = VT.getVectorNumElements();
4689 
4690   // Represent the BUILD_VECTOR as an N-operand VECTOR_SHUFFLE-like operation
4691   // on byte vectors.  If there are non-EXTRACT_VECTOR_ELT elements that still
4692   // need a BUILD_VECTOR, add an additional placeholder operand for that
4693   // BUILD_VECTOR and store its operands in ResidueOps.
4694   GeneralShuffle GS(VT);
4695   SmallVector<SDValue, SystemZ::VectorBytes> ResidueOps;
4696   bool FoundOne = false;
4697   for (unsigned I = 0; I < NumElements; ++I) {
4698     SDValue Op = BVN->getOperand(I);
4699     if (Op.getOpcode() == ISD::TRUNCATE)
4700       Op = Op.getOperand(0);
4701     if (Op.getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
4702         Op.getOperand(1).getOpcode() == ISD::Constant) {
4703       unsigned Elem = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
4704       if (!GS.add(Op.getOperand(0), Elem))
4705         return SDValue();
4706       FoundOne = true;
4707     } else if (Op.isUndef()) {
4708       GS.addUndef();
4709     } else {
4710       if (!GS.add(SDValue(), ResidueOps.size()))
4711         return SDValue();
4712       ResidueOps.push_back(BVN->getOperand(I));
4713     }
4714   }
4715 
4716   // Nothing to do if there are no EXTRACT_VECTOR_ELTs.
4717   if (!FoundOne)
4718     return SDValue();
4719 
4720   // Create the BUILD_VECTOR for the remaining elements, if any.
4721   if (!ResidueOps.empty()) {
4722     while (ResidueOps.size() < NumElements)
4723       ResidueOps.push_back(DAG.getUNDEF(ResidueOps[0].getValueType()));
4724     for (auto &Op : GS.Ops) {
4725       if (!Op.getNode()) {
4726         Op = DAG.getBuildVector(VT, SDLoc(BVN), ResidueOps);
4727         break;
4728       }
4729     }
4730   }
4731   return GS.getNode(DAG, SDLoc(BVN));
4732 }
4733 
4734 bool SystemZTargetLowering::isVectorElementLoad(SDValue Op) const {
4735   if (Op.getOpcode() == ISD::LOAD && cast<LoadSDNode>(Op)->isUnindexed())
4736     return true;
4737   if (Subtarget.hasVectorEnhancements2() && Op.getOpcode() == SystemZISD::LRV)
4738     return true;
4739   return false;
4740 }
4741 
4742 // Combine GPR scalar values Elems into a vector of type VT.
4743 SDValue
4744 SystemZTargetLowering::buildVector(SelectionDAG &DAG, const SDLoc &DL, EVT VT,
4745                                    SmallVectorImpl<SDValue> &Elems) const {
4746   // See whether there is a single replicated value.
4747   SDValue Single;
4748   unsigned int NumElements = Elems.size();
4749   unsigned int Count = 0;
4750   for (auto Elem : Elems) {
4751     if (!Elem.isUndef()) {
4752       if (!Single.getNode())
4753         Single = Elem;
4754       else if (Elem != Single) {
4755         Single = SDValue();
4756         break;
4757       }
4758       Count += 1;
4759     }
4760   }
4761   // There are three cases here:
4762   //
4763   // - if the only defined element is a loaded one, the best sequence
4764   //   is a replicating load.
4765   //
4766   // - otherwise, if the only defined element is an i64 value, we will
4767   //   end up with the same VLVGP sequence regardless of whether we short-cut
4768   //   for replication or fall through to the later code.
4769   //
4770   // - otherwise, if the only defined element is an i32 or smaller value,
4771   //   we would need 2 instructions to replicate it: VLVGP followed by VREPx.
4772   //   This is only a win if the single defined element is used more than once.
4773   //   In other cases we're better off using a single VLVGx.
4774   if (Single.getNode() && (Count > 1 || isVectorElementLoad(Single)))
4775     return DAG.getNode(SystemZISD::REPLICATE, DL, VT, Single);
4776 
4777   // If all elements are loads, use VLREP/VLEs (below).
4778   bool AllLoads = true;
4779   for (auto Elem : Elems)
4780     if (!isVectorElementLoad(Elem)) {
4781       AllLoads = false;
4782       break;
4783     }
4784 
4785   // The best way of building a v2i64 from two i64s is to use VLVGP.
4786   if (VT == MVT::v2i64 && !AllLoads)
4787     return joinDwords(DAG, DL, Elems[0], Elems[1]);
4788 
4789   // Use a 64-bit merge high to combine two doubles.
4790   if (VT == MVT::v2f64 && !AllLoads)
4791     return buildMergeScalars(DAG, DL, VT, Elems[0], Elems[1]);
4792 
4793   // Build v4f32 values directly from the FPRs:
4794   //
4795   //   <Axxx> <Bxxx> <Cxxxx> <Dxxx>
4796   //         V              V         VMRHF
4797   //      <ABxx>         <CDxx>
4798   //                V                 VMRHG
4799   //              <ABCD>
4800   if (VT == MVT::v4f32 && !AllLoads) {
4801     SDValue Op01 = buildMergeScalars(DAG, DL, VT, Elems[0], Elems[1]);
4802     SDValue Op23 = buildMergeScalars(DAG, DL, VT, Elems[2], Elems[3]);
4803     // Avoid unnecessary undefs by reusing the other operand.
4804     if (Op01.isUndef())
4805       Op01 = Op23;
4806     else if (Op23.isUndef())
4807       Op23 = Op01;
4808     // Merging identical replications is a no-op.
4809     if (Op01.getOpcode() == SystemZISD::REPLICATE && Op01 == Op23)
4810       return Op01;
4811     Op01 = DAG.getNode(ISD::BITCAST, DL, MVT::v2i64, Op01);
4812     Op23 = DAG.getNode(ISD::BITCAST, DL, MVT::v2i64, Op23);
4813     SDValue Op = DAG.getNode(SystemZISD::MERGE_HIGH,
4814                              DL, MVT::v2i64, Op01, Op23);
4815     return DAG.getNode(ISD::BITCAST, DL, VT, Op);
4816   }
4817 
4818   // Collect the constant terms.
4819   SmallVector<SDValue, SystemZ::VectorBytes> Constants(NumElements, SDValue());
4820   SmallVector<bool, SystemZ::VectorBytes> Done(NumElements, false);
4821 
4822   unsigned NumConstants = 0;
4823   for (unsigned I = 0; I < NumElements; ++I) {
4824     SDValue Elem = Elems[I];
4825     if (Elem.getOpcode() == ISD::Constant ||
4826         Elem.getOpcode() == ISD::ConstantFP) {
4827       NumConstants += 1;
4828       Constants[I] = Elem;
4829       Done[I] = true;
4830     }
4831   }
4832   // If there was at least one constant, fill in the other elements of
4833   // Constants with undefs to get a full vector constant and use that
4834   // as the starting point.
4835   SDValue Result;
4836   SDValue ReplicatedVal;
4837   if (NumConstants > 0) {
4838     for (unsigned I = 0; I < NumElements; ++I)
4839       if (!Constants[I].getNode())
4840         Constants[I] = DAG.getUNDEF(Elems[I].getValueType());
4841     Result = DAG.getBuildVector(VT, DL, Constants);
4842   } else {
4843     // Otherwise try to use VLREP or VLVGP to start the sequence in order to
4844     // avoid a false dependency on any previous contents of the vector
4845     // register.
4846 
4847     // Use a VLREP if at least one element is a load. Make sure to replicate
4848     // the load with the most elements having its value.
4849     std::map<const SDNode*, unsigned> UseCounts;
4850     SDNode *LoadMaxUses = nullptr;
4851     for (unsigned I = 0; I < NumElements; ++I)
4852       if (isVectorElementLoad(Elems[I])) {
4853         SDNode *Ld = Elems[I].getNode();
4854         UseCounts[Ld]++;
4855         if (LoadMaxUses == nullptr || UseCounts[LoadMaxUses] < UseCounts[Ld])
4856           LoadMaxUses = Ld;
4857       }
4858     if (LoadMaxUses != nullptr) {
4859       ReplicatedVal = SDValue(LoadMaxUses, 0);
4860       Result = DAG.getNode(SystemZISD::REPLICATE, DL, VT, ReplicatedVal);
4861     } else {
4862       // Try to use VLVGP.
4863       unsigned I1 = NumElements / 2 - 1;
4864       unsigned I2 = NumElements - 1;
4865       bool Def1 = !Elems[I1].isUndef();
4866       bool Def2 = !Elems[I2].isUndef();
4867       if (Def1 || Def2) {
4868         SDValue Elem1 = Elems[Def1 ? I1 : I2];
4869         SDValue Elem2 = Elems[Def2 ? I2 : I1];
4870         Result = DAG.getNode(ISD::BITCAST, DL, VT,
4871                              joinDwords(DAG, DL, Elem1, Elem2));
4872         Done[I1] = true;
4873         Done[I2] = true;
4874       } else
4875         Result = DAG.getUNDEF(VT);
4876     }
4877   }
4878 
4879   // Use VLVGx to insert the other elements.
4880   for (unsigned I = 0; I < NumElements; ++I)
4881     if (!Done[I] && !Elems[I].isUndef() && Elems[I] != ReplicatedVal)
4882       Result = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, VT, Result, Elems[I],
4883                            DAG.getConstant(I, DL, MVT::i32));
4884   return Result;
4885 }
4886 
4887 SDValue SystemZTargetLowering::lowerBUILD_VECTOR(SDValue Op,
4888                                                  SelectionDAG &DAG) const {
4889   auto *BVN = cast<BuildVectorSDNode>(Op.getNode());
4890   SDLoc DL(Op);
4891   EVT VT = Op.getValueType();
4892 
4893   if (BVN->isConstant()) {
4894     if (SystemZVectorConstantInfo(BVN).isVectorConstantLegal(Subtarget))
4895       return Op;
4896 
4897     // Fall back to loading it from memory.
4898     return SDValue();
4899   }
4900 
4901   // See if we should use shuffles to construct the vector from other vectors.
4902   if (SDValue Res = tryBuildVectorShuffle(DAG, BVN))
4903     return Res;
4904 
4905   // Detect SCALAR_TO_VECTOR conversions.
4906   if (isOperationLegal(ISD::SCALAR_TO_VECTOR, VT) && isScalarToVector(Op))
4907     return buildScalarToVector(DAG, DL, VT, Op.getOperand(0));
4908 
4909   // Otherwise use buildVector to build the vector up from GPRs.
4910   unsigned NumElements = Op.getNumOperands();
4911   SmallVector<SDValue, SystemZ::VectorBytes> Ops(NumElements);
4912   for (unsigned I = 0; I < NumElements; ++I)
4913     Ops[I] = Op.getOperand(I);
4914   return buildVector(DAG, DL, VT, Ops);
4915 }
4916 
4917 SDValue SystemZTargetLowering::lowerVECTOR_SHUFFLE(SDValue Op,
4918                                                    SelectionDAG &DAG) const {
4919   auto *VSN = cast<ShuffleVectorSDNode>(Op.getNode());
4920   SDLoc DL(Op);
4921   EVT VT = Op.getValueType();
4922   unsigned NumElements = VT.getVectorNumElements();
4923 
4924   if (VSN->isSplat()) {
4925     SDValue Op0 = Op.getOperand(0);
4926     unsigned Index = VSN->getSplatIndex();
4927     assert(Index < VT.getVectorNumElements() &&
4928            "Splat index should be defined and in first operand");
4929     // See whether the value we're splatting is directly available as a scalar.
4930     if ((Index == 0 && Op0.getOpcode() == ISD::SCALAR_TO_VECTOR) ||
4931         Op0.getOpcode() == ISD::BUILD_VECTOR)
4932       return DAG.getNode(SystemZISD::REPLICATE, DL, VT, Op0.getOperand(Index));
4933     // Otherwise keep it as a vector-to-vector operation.
4934     return DAG.getNode(SystemZISD::SPLAT, DL, VT, Op.getOperand(0),
4935                        DAG.getTargetConstant(Index, DL, MVT::i32));
4936   }
4937 
4938   GeneralShuffle GS(VT);
4939   for (unsigned I = 0; I < NumElements; ++I) {
4940     int Elt = VSN->getMaskElt(I);
4941     if (Elt < 0)
4942       GS.addUndef();
4943     else if (!GS.add(Op.getOperand(unsigned(Elt) / NumElements),
4944                      unsigned(Elt) % NumElements))
4945       return SDValue();
4946   }
4947   return GS.getNode(DAG, SDLoc(VSN));
4948 }
4949 
4950 SDValue SystemZTargetLowering::lowerSCALAR_TO_VECTOR(SDValue Op,
4951                                                      SelectionDAG &DAG) const {
4952   SDLoc DL(Op);
4953   // Just insert the scalar into element 0 of an undefined vector.
4954   return DAG.getNode(ISD::INSERT_VECTOR_ELT, DL,
4955                      Op.getValueType(), DAG.getUNDEF(Op.getValueType()),
4956                      Op.getOperand(0), DAG.getConstant(0, DL, MVT::i32));
4957 }
4958 
4959 SDValue SystemZTargetLowering::lowerINSERT_VECTOR_ELT(SDValue Op,
4960                                                       SelectionDAG &DAG) const {
4961   // Handle insertions of floating-point values.
4962   SDLoc DL(Op);
4963   SDValue Op0 = Op.getOperand(0);
4964   SDValue Op1 = Op.getOperand(1);
4965   SDValue Op2 = Op.getOperand(2);
4966   EVT VT = Op.getValueType();
4967 
4968   // Insertions into constant indices of a v2f64 can be done using VPDI.
4969   // However, if the inserted value is a bitcast or a constant then it's
4970   // better to use GPRs, as below.
4971   if (VT == MVT::v2f64 &&
4972       Op1.getOpcode() != ISD::BITCAST &&
4973       Op1.getOpcode() != ISD::ConstantFP &&
4974       Op2.getOpcode() == ISD::Constant) {
4975     uint64_t Index = cast<ConstantSDNode>(Op2)->getZExtValue();
4976     unsigned Mask = VT.getVectorNumElements() - 1;
4977     if (Index <= Mask)
4978       return Op;
4979   }
4980 
4981   // Otherwise bitcast to the equivalent integer form and insert via a GPR.
4982   MVT IntVT = MVT::getIntegerVT(VT.getScalarSizeInBits());
4983   MVT IntVecVT = MVT::getVectorVT(IntVT, VT.getVectorNumElements());
4984   SDValue Res = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, IntVecVT,
4985                             DAG.getNode(ISD::BITCAST, DL, IntVecVT, Op0),
4986                             DAG.getNode(ISD::BITCAST, DL, IntVT, Op1), Op2);
4987   return DAG.getNode(ISD::BITCAST, DL, VT, Res);
4988 }
4989 
4990 SDValue
4991 SystemZTargetLowering::lowerEXTRACT_VECTOR_ELT(SDValue Op,
4992                                                SelectionDAG &DAG) const {
4993   // Handle extractions of floating-point values.
4994   SDLoc DL(Op);
4995   SDValue Op0 = Op.getOperand(0);
4996   SDValue Op1 = Op.getOperand(1);
4997   EVT VT = Op.getValueType();
4998   EVT VecVT = Op0.getValueType();
4999 
5000   // Extractions of constant indices can be done directly.
5001   if (auto *CIndexN = dyn_cast<ConstantSDNode>(Op1)) {
5002     uint64_t Index = CIndexN->getZExtValue();
5003     unsigned Mask = VecVT.getVectorNumElements() - 1;
5004     if (Index <= Mask)
5005       return Op;
5006   }
5007 
5008   // Otherwise bitcast to the equivalent integer form and extract via a GPR.
5009   MVT IntVT = MVT::getIntegerVT(VT.getSizeInBits());
5010   MVT IntVecVT = MVT::getVectorVT(IntVT, VecVT.getVectorNumElements());
5011   SDValue Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, IntVT,
5012                             DAG.getNode(ISD::BITCAST, DL, IntVecVT, Op0), Op1);
5013   return DAG.getNode(ISD::BITCAST, DL, VT, Res);
5014 }
5015 
5016 SDValue
5017 SystemZTargetLowering::lowerExtendVectorInreg(SDValue Op, SelectionDAG &DAG,
5018                                               unsigned UnpackHigh) const {
5019   SDValue PackedOp = Op.getOperand(0);
5020   EVT OutVT = Op.getValueType();
5021   EVT InVT = PackedOp.getValueType();
5022   unsigned ToBits = OutVT.getScalarSizeInBits();
5023   unsigned FromBits = InVT.getScalarSizeInBits();
5024   do {
5025     FromBits *= 2;
5026     EVT OutVT = MVT::getVectorVT(MVT::getIntegerVT(FromBits),
5027                                  SystemZ::VectorBits / FromBits);
5028     PackedOp = DAG.getNode(UnpackHigh, SDLoc(PackedOp), OutVT, PackedOp);
5029   } while (FromBits != ToBits);
5030   return PackedOp;
5031 }
5032 
5033 SDValue SystemZTargetLowering::lowerShift(SDValue Op, SelectionDAG &DAG,
5034                                           unsigned ByScalar) const {
5035   // Look for cases where a vector shift can use the *_BY_SCALAR form.
5036   SDValue Op0 = Op.getOperand(0);
5037   SDValue Op1 = Op.getOperand(1);
5038   SDLoc DL(Op);
5039   EVT VT = Op.getValueType();
5040   unsigned ElemBitSize = VT.getScalarSizeInBits();
5041 
5042   // See whether the shift vector is a splat represented as BUILD_VECTOR.
5043   if (auto *BVN = dyn_cast<BuildVectorSDNode>(Op1)) {
5044     APInt SplatBits, SplatUndef;
5045     unsigned SplatBitSize;
5046     bool HasAnyUndefs;
5047     // Check for constant splats.  Use ElemBitSize as the minimum element
5048     // width and reject splats that need wider elements.
5049     if (BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize, HasAnyUndefs,
5050                              ElemBitSize, true) &&
5051         SplatBitSize == ElemBitSize) {
5052       SDValue Shift = DAG.getConstant(SplatBits.getZExtValue() & 0xfff,
5053                                       DL, MVT::i32);
5054       return DAG.getNode(ByScalar, DL, VT, Op0, Shift);
5055     }
5056     // Check for variable splats.
5057     BitVector UndefElements;
5058     SDValue Splat = BVN->getSplatValue(&UndefElements);
5059     if (Splat) {
5060       // Since i32 is the smallest legal type, we either need a no-op
5061       // or a truncation.
5062       SDValue Shift = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Splat);
5063       return DAG.getNode(ByScalar, DL, VT, Op0, Shift);
5064     }
5065   }
5066 
5067   // See whether the shift vector is a splat represented as SHUFFLE_VECTOR,
5068   // and the shift amount is directly available in a GPR.
5069   if (auto *VSN = dyn_cast<ShuffleVectorSDNode>(Op1)) {
5070     if (VSN->isSplat()) {
5071       SDValue VSNOp0 = VSN->getOperand(0);
5072       unsigned Index = VSN->getSplatIndex();
5073       assert(Index < VT.getVectorNumElements() &&
5074              "Splat index should be defined and in first operand");
5075       if ((Index == 0 && VSNOp0.getOpcode() == ISD::SCALAR_TO_VECTOR) ||
5076           VSNOp0.getOpcode() == ISD::BUILD_VECTOR) {
5077         // Since i32 is the smallest legal type, we either need a no-op
5078         // or a truncation.
5079         SDValue Shift = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32,
5080                                     VSNOp0.getOperand(Index));
5081         return DAG.getNode(ByScalar, DL, VT, Op0, Shift);
5082       }
5083     }
5084   }
5085 
5086   // Otherwise just treat the current form as legal.
5087   return Op;
5088 }
5089 
5090 SDValue SystemZTargetLowering::LowerOperation(SDValue Op,
5091                                               SelectionDAG &DAG) const {
5092   switch (Op.getOpcode()) {
5093   case ISD::FRAMEADDR:
5094     return lowerFRAMEADDR(Op, DAG);
5095   case ISD::RETURNADDR:
5096     return lowerRETURNADDR(Op, DAG);
5097   case ISD::BR_CC:
5098     return lowerBR_CC(Op, DAG);
5099   case ISD::SELECT_CC:
5100     return lowerSELECT_CC(Op, DAG);
5101   case ISD::SETCC:
5102     return lowerSETCC(Op, DAG);
5103   case ISD::STRICT_FSETCC:
5104     return lowerSTRICT_FSETCC(Op, DAG, false);
5105   case ISD::STRICT_FSETCCS:
5106     return lowerSTRICT_FSETCC(Op, DAG, true);
5107   case ISD::GlobalAddress:
5108     return lowerGlobalAddress(cast<GlobalAddressSDNode>(Op), DAG);
5109   case ISD::GlobalTLSAddress:
5110     return lowerGlobalTLSAddress(cast<GlobalAddressSDNode>(Op), DAG);
5111   case ISD::BlockAddress:
5112     return lowerBlockAddress(cast<BlockAddressSDNode>(Op), DAG);
5113   case ISD::JumpTable:
5114     return lowerJumpTable(cast<JumpTableSDNode>(Op), DAG);
5115   case ISD::ConstantPool:
5116     return lowerConstantPool(cast<ConstantPoolSDNode>(Op), DAG);
5117   case ISD::BITCAST:
5118     return lowerBITCAST(Op, DAG);
5119   case ISD::VASTART:
5120     return lowerVASTART(Op, DAG);
5121   case ISD::VACOPY:
5122     return lowerVACOPY(Op, DAG);
5123   case ISD::DYNAMIC_STACKALLOC:
5124     return lowerDYNAMIC_STACKALLOC(Op, DAG);
5125   case ISD::GET_DYNAMIC_AREA_OFFSET:
5126     return lowerGET_DYNAMIC_AREA_OFFSET(Op, DAG);
5127   case ISD::SMUL_LOHI:
5128     return lowerSMUL_LOHI(Op, DAG);
5129   case ISD::UMUL_LOHI:
5130     return lowerUMUL_LOHI(Op, DAG);
5131   case ISD::SDIVREM:
5132     return lowerSDIVREM(Op, DAG);
5133   case ISD::UDIVREM:
5134     return lowerUDIVREM(Op, DAG);
5135   case ISD::SADDO:
5136   case ISD::SSUBO:
5137   case ISD::UADDO:
5138   case ISD::USUBO:
5139     return lowerXALUO(Op, DAG);
5140   case ISD::ADDCARRY:
5141   case ISD::SUBCARRY:
5142     return lowerADDSUBCARRY(Op, DAG);
5143   case ISD::OR:
5144     return lowerOR(Op, DAG);
5145   case ISD::CTPOP:
5146     return lowerCTPOP(Op, DAG);
5147   case ISD::ATOMIC_FENCE:
5148     return lowerATOMIC_FENCE(Op, DAG);
5149   case ISD::ATOMIC_SWAP:
5150     return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_SWAPW);
5151   case ISD::ATOMIC_STORE:
5152     return lowerATOMIC_STORE(Op, DAG);
5153   case ISD::ATOMIC_LOAD:
5154     return lowerATOMIC_LOAD(Op, DAG);
5155   case ISD::ATOMIC_LOAD_ADD:
5156     return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_ADD);
5157   case ISD::ATOMIC_LOAD_SUB:
5158     return lowerATOMIC_LOAD_SUB(Op, DAG);
5159   case ISD::ATOMIC_LOAD_AND:
5160     return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_AND);
5161   case ISD::ATOMIC_LOAD_OR:
5162     return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_OR);
5163   case ISD::ATOMIC_LOAD_XOR:
5164     return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_XOR);
5165   case ISD::ATOMIC_LOAD_NAND:
5166     return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_NAND);
5167   case ISD::ATOMIC_LOAD_MIN:
5168     return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_MIN);
5169   case ISD::ATOMIC_LOAD_MAX:
5170     return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_MAX);
5171   case ISD::ATOMIC_LOAD_UMIN:
5172     return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_UMIN);
5173   case ISD::ATOMIC_LOAD_UMAX:
5174     return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_UMAX);
5175   case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS:
5176     return lowerATOMIC_CMP_SWAP(Op, DAG);
5177   case ISD::STACKSAVE:
5178     return lowerSTACKSAVE(Op, DAG);
5179   case ISD::STACKRESTORE:
5180     return lowerSTACKRESTORE(Op, DAG);
5181   case ISD::PREFETCH:
5182     return lowerPREFETCH(Op, DAG);
5183   case ISD::INTRINSIC_W_CHAIN:
5184     return lowerINTRINSIC_W_CHAIN(Op, DAG);
5185   case ISD::INTRINSIC_WO_CHAIN:
5186     return lowerINTRINSIC_WO_CHAIN(Op, DAG);
5187   case ISD::BUILD_VECTOR:
5188     return lowerBUILD_VECTOR(Op, DAG);
5189   case ISD::VECTOR_SHUFFLE:
5190     return lowerVECTOR_SHUFFLE(Op, DAG);
5191   case ISD::SCALAR_TO_VECTOR:
5192     return lowerSCALAR_TO_VECTOR(Op, DAG);
5193   case ISD::INSERT_VECTOR_ELT:
5194     return lowerINSERT_VECTOR_ELT(Op, DAG);
5195   case ISD::EXTRACT_VECTOR_ELT:
5196     return lowerEXTRACT_VECTOR_ELT(Op, DAG);
5197   case ISD::SIGN_EXTEND_VECTOR_INREG:
5198     return lowerExtendVectorInreg(Op, DAG, SystemZISD::UNPACK_HIGH);
5199   case ISD::ZERO_EXTEND_VECTOR_INREG:
5200     return lowerExtendVectorInreg(Op, DAG, SystemZISD::UNPACKL_HIGH);
5201   case ISD::SHL:
5202     return lowerShift(Op, DAG, SystemZISD::VSHL_BY_SCALAR);
5203   case ISD::SRL:
5204     return lowerShift(Op, DAG, SystemZISD::VSRL_BY_SCALAR);
5205   case ISD::SRA:
5206     return lowerShift(Op, DAG, SystemZISD::VSRA_BY_SCALAR);
5207   default:
5208     llvm_unreachable("Unexpected node to lower");
5209   }
5210 }
5211 
5212 // Lower operations with invalid operand or result types (currently used
5213 // only for 128-bit integer types).
5214 
5215 static SDValue lowerI128ToGR128(SelectionDAG &DAG, SDValue In) {
5216   SDLoc DL(In);
5217   SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i64, In,
5218                            DAG.getIntPtrConstant(0, DL));
5219   SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i64, In,
5220                            DAG.getIntPtrConstant(1, DL));
5221   SDNode *Pair = DAG.getMachineNode(SystemZ::PAIR128, DL,
5222                                     MVT::Untyped, Hi, Lo);
5223   return SDValue(Pair, 0);
5224 }
5225 
5226 static SDValue lowerGR128ToI128(SelectionDAG &DAG, SDValue In) {
5227   SDLoc DL(In);
5228   SDValue Hi = DAG.getTargetExtractSubreg(SystemZ::subreg_h64,
5229                                           DL, MVT::i64, In);
5230   SDValue Lo = DAG.getTargetExtractSubreg(SystemZ::subreg_l64,
5231                                           DL, MVT::i64, In);
5232   return DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i128, Lo, Hi);
5233 }
5234 
5235 void
5236 SystemZTargetLowering::LowerOperationWrapper(SDNode *N,
5237                                              SmallVectorImpl<SDValue> &Results,
5238                                              SelectionDAG &DAG) const {
5239   switch (N->getOpcode()) {
5240   case ISD::ATOMIC_LOAD: {
5241     SDLoc DL(N);
5242     SDVTList Tys = DAG.getVTList(MVT::Untyped, MVT::Other);
5243     SDValue Ops[] = { N->getOperand(0), N->getOperand(1) };
5244     MachineMemOperand *MMO = cast<AtomicSDNode>(N)->getMemOperand();
5245     SDValue Res = DAG.getMemIntrinsicNode(SystemZISD::ATOMIC_LOAD_128,
5246                                           DL, Tys, Ops, MVT::i128, MMO);
5247     Results.push_back(lowerGR128ToI128(DAG, Res));
5248     Results.push_back(Res.getValue(1));
5249     break;
5250   }
5251   case ISD::ATOMIC_STORE: {
5252     SDLoc DL(N);
5253     SDVTList Tys = DAG.getVTList(MVT::Other);
5254     SDValue Ops[] = { N->getOperand(0),
5255                       lowerI128ToGR128(DAG, N->getOperand(2)),
5256                       N->getOperand(1) };
5257     MachineMemOperand *MMO = cast<AtomicSDNode>(N)->getMemOperand();
5258     SDValue Res = DAG.getMemIntrinsicNode(SystemZISD::ATOMIC_STORE_128,
5259                                           DL, Tys, Ops, MVT::i128, MMO);
5260     // We have to enforce sequential consistency by performing a
5261     // serialization operation after the store.
5262     if (cast<AtomicSDNode>(N)->getOrdering() ==
5263         AtomicOrdering::SequentiallyConsistent)
5264       Res = SDValue(DAG.getMachineNode(SystemZ::Serialize, DL,
5265                                        MVT::Other, Res), 0);
5266     Results.push_back(Res);
5267     break;
5268   }
5269   case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS: {
5270     SDLoc DL(N);
5271     SDVTList Tys = DAG.getVTList(MVT::Untyped, MVT::i32, MVT::Other);
5272     SDValue Ops[] = { N->getOperand(0), N->getOperand(1),
5273                       lowerI128ToGR128(DAG, N->getOperand(2)),
5274                       lowerI128ToGR128(DAG, N->getOperand(3)) };
5275     MachineMemOperand *MMO = cast<AtomicSDNode>(N)->getMemOperand();
5276     SDValue Res = DAG.getMemIntrinsicNode(SystemZISD::ATOMIC_CMP_SWAP_128,
5277                                           DL, Tys, Ops, MVT::i128, MMO);
5278     SDValue Success = emitSETCC(DAG, DL, Res.getValue(1),
5279                                 SystemZ::CCMASK_CS, SystemZ::CCMASK_CS_EQ);
5280     Success = DAG.getZExtOrTrunc(Success, DL, N->getValueType(1));
5281     Results.push_back(lowerGR128ToI128(DAG, Res));
5282     Results.push_back(Success);
5283     Results.push_back(Res.getValue(2));
5284     break;
5285   }
5286   default:
5287     llvm_unreachable("Unexpected node to lower");
5288   }
5289 }
5290 
5291 void
5292 SystemZTargetLowering::ReplaceNodeResults(SDNode *N,
5293                                           SmallVectorImpl<SDValue> &Results,
5294                                           SelectionDAG &DAG) const {
5295   return LowerOperationWrapper(N, Results, DAG);
5296 }
5297 
5298 const char *SystemZTargetLowering::getTargetNodeName(unsigned Opcode) const {
5299 #define OPCODE(NAME) case SystemZISD::NAME: return "SystemZISD::" #NAME
5300   switch ((SystemZISD::NodeType)Opcode) {
5301     case SystemZISD::FIRST_NUMBER: break;
5302     OPCODE(RET_FLAG);
5303     OPCODE(CALL);
5304     OPCODE(SIBCALL);
5305     OPCODE(TLS_GDCALL);
5306     OPCODE(TLS_LDCALL);
5307     OPCODE(PCREL_WRAPPER);
5308     OPCODE(PCREL_OFFSET);
5309     OPCODE(IABS);
5310     OPCODE(ICMP);
5311     OPCODE(FCMP);
5312     OPCODE(STRICT_FCMP);
5313     OPCODE(STRICT_FCMPS);
5314     OPCODE(TM);
5315     OPCODE(BR_CCMASK);
5316     OPCODE(SELECT_CCMASK);
5317     OPCODE(ADJDYNALLOC);
5318     OPCODE(POPCNT);
5319     OPCODE(SMUL_LOHI);
5320     OPCODE(UMUL_LOHI);
5321     OPCODE(SDIVREM);
5322     OPCODE(UDIVREM);
5323     OPCODE(SADDO);
5324     OPCODE(SSUBO);
5325     OPCODE(UADDO);
5326     OPCODE(USUBO);
5327     OPCODE(ADDCARRY);
5328     OPCODE(SUBCARRY);
5329     OPCODE(GET_CCMASK);
5330     OPCODE(MVC);
5331     OPCODE(MVC_LOOP);
5332     OPCODE(NC);
5333     OPCODE(NC_LOOP);
5334     OPCODE(OC);
5335     OPCODE(OC_LOOP);
5336     OPCODE(XC);
5337     OPCODE(XC_LOOP);
5338     OPCODE(CLC);
5339     OPCODE(CLC_LOOP);
5340     OPCODE(STPCPY);
5341     OPCODE(STRCMP);
5342     OPCODE(SEARCH_STRING);
5343     OPCODE(IPM);
5344     OPCODE(MEMBARRIER);
5345     OPCODE(TBEGIN);
5346     OPCODE(TBEGIN_NOFLOAT);
5347     OPCODE(TEND);
5348     OPCODE(BYTE_MASK);
5349     OPCODE(ROTATE_MASK);
5350     OPCODE(REPLICATE);
5351     OPCODE(JOIN_DWORDS);
5352     OPCODE(SPLAT);
5353     OPCODE(MERGE_HIGH);
5354     OPCODE(MERGE_LOW);
5355     OPCODE(SHL_DOUBLE);
5356     OPCODE(PERMUTE_DWORDS);
5357     OPCODE(PERMUTE);
5358     OPCODE(PACK);
5359     OPCODE(PACKS_CC);
5360     OPCODE(PACKLS_CC);
5361     OPCODE(UNPACK_HIGH);
5362     OPCODE(UNPACKL_HIGH);
5363     OPCODE(UNPACK_LOW);
5364     OPCODE(UNPACKL_LOW);
5365     OPCODE(VSHL_BY_SCALAR);
5366     OPCODE(VSRL_BY_SCALAR);
5367     OPCODE(VSRA_BY_SCALAR);
5368     OPCODE(VSUM);
5369     OPCODE(VICMPE);
5370     OPCODE(VICMPH);
5371     OPCODE(VICMPHL);
5372     OPCODE(VICMPES);
5373     OPCODE(VICMPHS);
5374     OPCODE(VICMPHLS);
5375     OPCODE(VFCMPE);
5376     OPCODE(STRICT_VFCMPE);
5377     OPCODE(STRICT_VFCMPES);
5378     OPCODE(VFCMPH);
5379     OPCODE(STRICT_VFCMPH);
5380     OPCODE(STRICT_VFCMPHS);
5381     OPCODE(VFCMPHE);
5382     OPCODE(STRICT_VFCMPHE);
5383     OPCODE(STRICT_VFCMPHES);
5384     OPCODE(VFCMPES);
5385     OPCODE(VFCMPHS);
5386     OPCODE(VFCMPHES);
5387     OPCODE(VFTCI);
5388     OPCODE(VEXTEND);
5389     OPCODE(STRICT_VEXTEND);
5390     OPCODE(VROUND);
5391     OPCODE(STRICT_VROUND);
5392     OPCODE(VTM);
5393     OPCODE(VFAE_CC);
5394     OPCODE(VFAEZ_CC);
5395     OPCODE(VFEE_CC);
5396     OPCODE(VFEEZ_CC);
5397     OPCODE(VFENE_CC);
5398     OPCODE(VFENEZ_CC);
5399     OPCODE(VISTR_CC);
5400     OPCODE(VSTRC_CC);
5401     OPCODE(VSTRCZ_CC);
5402     OPCODE(VSTRS_CC);
5403     OPCODE(VSTRSZ_CC);
5404     OPCODE(TDC);
5405     OPCODE(ATOMIC_SWAPW);
5406     OPCODE(ATOMIC_LOADW_ADD);
5407     OPCODE(ATOMIC_LOADW_SUB);
5408     OPCODE(ATOMIC_LOADW_AND);
5409     OPCODE(ATOMIC_LOADW_OR);
5410     OPCODE(ATOMIC_LOADW_XOR);
5411     OPCODE(ATOMIC_LOADW_NAND);
5412     OPCODE(ATOMIC_LOADW_MIN);
5413     OPCODE(ATOMIC_LOADW_MAX);
5414     OPCODE(ATOMIC_LOADW_UMIN);
5415     OPCODE(ATOMIC_LOADW_UMAX);
5416     OPCODE(ATOMIC_CMP_SWAPW);
5417     OPCODE(ATOMIC_CMP_SWAP);
5418     OPCODE(ATOMIC_LOAD_128);
5419     OPCODE(ATOMIC_STORE_128);
5420     OPCODE(ATOMIC_CMP_SWAP_128);
5421     OPCODE(LRV);
5422     OPCODE(STRV);
5423     OPCODE(VLER);
5424     OPCODE(VSTER);
5425     OPCODE(PREFETCH);
5426   }
5427   return nullptr;
5428 #undef OPCODE
5429 }
5430 
5431 // Return true if VT is a vector whose elements are a whole number of bytes
5432 // in width. Also check for presence of vector support.
5433 bool SystemZTargetLowering::canTreatAsByteVector(EVT VT) const {
5434   if (!Subtarget.hasVector())
5435     return false;
5436 
5437   return VT.isVector() && VT.getScalarSizeInBits() % 8 == 0 && VT.isSimple();
5438 }
5439 
5440 // Try to simplify an EXTRACT_VECTOR_ELT from a vector of type VecVT
5441 // producing a result of type ResVT.  Op is a possibly bitcast version
5442 // of the input vector and Index is the index (based on type VecVT) that
5443 // should be extracted.  Return the new extraction if a simplification
5444 // was possible or if Force is true.
5445 SDValue SystemZTargetLowering::combineExtract(const SDLoc &DL, EVT ResVT,
5446                                               EVT VecVT, SDValue Op,
5447                                               unsigned Index,
5448                                               DAGCombinerInfo &DCI,
5449                                               bool Force) const {
5450   SelectionDAG &DAG = DCI.DAG;
5451 
5452   // The number of bytes being extracted.
5453   unsigned BytesPerElement = VecVT.getVectorElementType().getStoreSize();
5454 
5455   for (;;) {
5456     unsigned Opcode = Op.getOpcode();
5457     if (Opcode == ISD::BITCAST)
5458       // Look through bitcasts.
5459       Op = Op.getOperand(0);
5460     else if ((Opcode == ISD::VECTOR_SHUFFLE || Opcode == SystemZISD::SPLAT) &&
5461              canTreatAsByteVector(Op.getValueType())) {
5462       // Get a VPERM-like permute mask and see whether the bytes covered
5463       // by the extracted element are a contiguous sequence from one
5464       // source operand.
5465       SmallVector<int, SystemZ::VectorBytes> Bytes;
5466       if (!getVPermMask(Op, Bytes))
5467         break;
5468       int First;
5469       if (!getShuffleInput(Bytes, Index * BytesPerElement,
5470                            BytesPerElement, First))
5471         break;
5472       if (First < 0)
5473         return DAG.getUNDEF(ResVT);
5474       // Make sure the contiguous sequence starts at a multiple of the
5475       // original element size.
5476       unsigned Byte = unsigned(First) % Bytes.size();
5477       if (Byte % BytesPerElement != 0)
5478         break;
5479       // We can get the extracted value directly from an input.
5480       Index = Byte / BytesPerElement;
5481       Op = Op.getOperand(unsigned(First) / Bytes.size());
5482       Force = true;
5483     } else if (Opcode == ISD::BUILD_VECTOR &&
5484                canTreatAsByteVector(Op.getValueType())) {
5485       // We can only optimize this case if the BUILD_VECTOR elements are
5486       // at least as wide as the extracted value.
5487       EVT OpVT = Op.getValueType();
5488       unsigned OpBytesPerElement = OpVT.getVectorElementType().getStoreSize();
5489       if (OpBytesPerElement < BytesPerElement)
5490         break;
5491       // Make sure that the least-significant bit of the extracted value
5492       // is the least significant bit of an input.
5493       unsigned End = (Index + 1) * BytesPerElement;
5494       if (End % OpBytesPerElement != 0)
5495         break;
5496       // We're extracting the low part of one operand of the BUILD_VECTOR.
5497       Op = Op.getOperand(End / OpBytesPerElement - 1);
5498       if (!Op.getValueType().isInteger()) {
5499         EVT VT = MVT::getIntegerVT(Op.getValueSizeInBits());
5500         Op = DAG.getNode(ISD::BITCAST, DL, VT, Op);
5501         DCI.AddToWorklist(Op.getNode());
5502       }
5503       EVT VT = MVT::getIntegerVT(ResVT.getSizeInBits());
5504       Op = DAG.getNode(ISD::TRUNCATE, DL, VT, Op);
5505       if (VT != ResVT) {
5506         DCI.AddToWorklist(Op.getNode());
5507         Op = DAG.getNode(ISD::BITCAST, DL, ResVT, Op);
5508       }
5509       return Op;
5510     } else if ((Opcode == ISD::SIGN_EXTEND_VECTOR_INREG ||
5511                 Opcode == ISD::ZERO_EXTEND_VECTOR_INREG ||
5512                 Opcode == ISD::ANY_EXTEND_VECTOR_INREG) &&
5513                canTreatAsByteVector(Op.getValueType()) &&
5514                canTreatAsByteVector(Op.getOperand(0).getValueType())) {
5515       // Make sure that only the unextended bits are significant.
5516       EVT ExtVT = Op.getValueType();
5517       EVT OpVT = Op.getOperand(0).getValueType();
5518       unsigned ExtBytesPerElement = ExtVT.getVectorElementType().getStoreSize();
5519       unsigned OpBytesPerElement = OpVT.getVectorElementType().getStoreSize();
5520       unsigned Byte = Index * BytesPerElement;
5521       unsigned SubByte = Byte % ExtBytesPerElement;
5522       unsigned MinSubByte = ExtBytesPerElement - OpBytesPerElement;
5523       if (SubByte < MinSubByte ||
5524           SubByte + BytesPerElement > ExtBytesPerElement)
5525         break;
5526       // Get the byte offset of the unextended element
5527       Byte = Byte / ExtBytesPerElement * OpBytesPerElement;
5528       // ...then add the byte offset relative to that element.
5529       Byte += SubByte - MinSubByte;
5530       if (Byte % BytesPerElement != 0)
5531         break;
5532       Op = Op.getOperand(0);
5533       Index = Byte / BytesPerElement;
5534       Force = true;
5535     } else
5536       break;
5537   }
5538   if (Force) {
5539     if (Op.getValueType() != VecVT) {
5540       Op = DAG.getNode(ISD::BITCAST, DL, VecVT, Op);
5541       DCI.AddToWorklist(Op.getNode());
5542     }
5543     return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, ResVT, Op,
5544                        DAG.getConstant(Index, DL, MVT::i32));
5545   }
5546   return SDValue();
5547 }
5548 
5549 // Optimize vector operations in scalar value Op on the basis that Op
5550 // is truncated to TruncVT.
5551 SDValue SystemZTargetLowering::combineTruncateExtract(
5552     const SDLoc &DL, EVT TruncVT, SDValue Op, DAGCombinerInfo &DCI) const {
5553   // If we have (trunc (extract_vector_elt X, Y)), try to turn it into
5554   // (extract_vector_elt (bitcast X), Y'), where (bitcast X) has elements
5555   // of type TruncVT.
5556   if (Op.getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
5557       TruncVT.getSizeInBits() % 8 == 0) {
5558     SDValue Vec = Op.getOperand(0);
5559     EVT VecVT = Vec.getValueType();
5560     if (canTreatAsByteVector(VecVT)) {
5561       if (auto *IndexN = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
5562         unsigned BytesPerElement = VecVT.getVectorElementType().getStoreSize();
5563         unsigned TruncBytes = TruncVT.getStoreSize();
5564         if (BytesPerElement % TruncBytes == 0) {
5565           // Calculate the value of Y' in the above description.  We are
5566           // splitting the original elements into Scale equal-sized pieces
5567           // and for truncation purposes want the last (least-significant)
5568           // of these pieces for IndexN.  This is easiest to do by calculating
5569           // the start index of the following element and then subtracting 1.
5570           unsigned Scale = BytesPerElement / TruncBytes;
5571           unsigned NewIndex = (IndexN->getZExtValue() + 1) * Scale - 1;
5572 
5573           // Defer the creation of the bitcast from X to combineExtract,
5574           // which might be able to optimize the extraction.
5575           VecVT = MVT::getVectorVT(MVT::getIntegerVT(TruncBytes * 8),
5576                                    VecVT.getStoreSize() / TruncBytes);
5577           EVT ResVT = (TruncBytes < 4 ? MVT::i32 : TruncVT);
5578           return combineExtract(DL, ResVT, VecVT, Vec, NewIndex, DCI, true);
5579         }
5580       }
5581     }
5582   }
5583   return SDValue();
5584 }
5585 
5586 SDValue SystemZTargetLowering::combineZERO_EXTEND(
5587     SDNode *N, DAGCombinerInfo &DCI) const {
5588   // Convert (zext (select_ccmask C1, C2)) into (select_ccmask C1', C2')
5589   SelectionDAG &DAG = DCI.DAG;
5590   SDValue N0 = N->getOperand(0);
5591   EVT VT = N->getValueType(0);
5592   if (N0.getOpcode() == SystemZISD::SELECT_CCMASK) {
5593     auto *TrueOp = dyn_cast<ConstantSDNode>(N0.getOperand(0));
5594     auto *FalseOp = dyn_cast<ConstantSDNode>(N0.getOperand(1));
5595     if (TrueOp && FalseOp) {
5596       SDLoc DL(N0);
5597       SDValue Ops[] = { DAG.getConstant(TrueOp->getZExtValue(), DL, VT),
5598                         DAG.getConstant(FalseOp->getZExtValue(), DL, VT),
5599                         N0.getOperand(2), N0.getOperand(3), N0.getOperand(4) };
5600       SDValue NewSelect = DAG.getNode(SystemZISD::SELECT_CCMASK, DL, VT, Ops);
5601       // If N0 has multiple uses, change other uses as well.
5602       if (!N0.hasOneUse()) {
5603         SDValue TruncSelect =
5604           DAG.getNode(ISD::TRUNCATE, DL, N0.getValueType(), NewSelect);
5605         DCI.CombineTo(N0.getNode(), TruncSelect);
5606       }
5607       return NewSelect;
5608     }
5609   }
5610   return SDValue();
5611 }
5612 
5613 SDValue SystemZTargetLowering::combineSIGN_EXTEND_INREG(
5614     SDNode *N, DAGCombinerInfo &DCI) const {
5615   // Convert (sext_in_reg (setcc LHS, RHS, COND), i1)
5616   // and (sext_in_reg (any_extend (setcc LHS, RHS, COND)), i1)
5617   // into (select_cc LHS, RHS, -1, 0, COND)
5618   SelectionDAG &DAG = DCI.DAG;
5619   SDValue N0 = N->getOperand(0);
5620   EVT VT = N->getValueType(0);
5621   EVT EVT = cast<VTSDNode>(N->getOperand(1))->getVT();
5622   if (N0.hasOneUse() && N0.getOpcode() == ISD::ANY_EXTEND)
5623     N0 = N0.getOperand(0);
5624   if (EVT == MVT::i1 && N0.hasOneUse() && N0.getOpcode() == ISD::SETCC) {
5625     SDLoc DL(N0);
5626     SDValue Ops[] = { N0.getOperand(0), N0.getOperand(1),
5627                       DAG.getConstant(-1, DL, VT), DAG.getConstant(0, DL, VT),
5628                       N0.getOperand(2) };
5629     return DAG.getNode(ISD::SELECT_CC, DL, VT, Ops);
5630   }
5631   return SDValue();
5632 }
5633 
5634 SDValue SystemZTargetLowering::combineSIGN_EXTEND(
5635     SDNode *N, DAGCombinerInfo &DCI) const {
5636   // Convert (sext (ashr (shl X, C1), C2)) to
5637   // (ashr (shl (anyext X), C1'), C2')), since wider shifts are as
5638   // cheap as narrower ones.
5639   SelectionDAG &DAG = DCI.DAG;
5640   SDValue N0 = N->getOperand(0);
5641   EVT VT = N->getValueType(0);
5642   if (N0.hasOneUse() && N0.getOpcode() == ISD::SRA) {
5643     auto *SraAmt = dyn_cast<ConstantSDNode>(N0.getOperand(1));
5644     SDValue Inner = N0.getOperand(0);
5645     if (SraAmt && Inner.hasOneUse() && Inner.getOpcode() == ISD::SHL) {
5646       if (auto *ShlAmt = dyn_cast<ConstantSDNode>(Inner.getOperand(1))) {
5647         unsigned Extra = (VT.getSizeInBits() - N0.getValueSizeInBits());
5648         unsigned NewShlAmt = ShlAmt->getZExtValue() + Extra;
5649         unsigned NewSraAmt = SraAmt->getZExtValue() + Extra;
5650         EVT ShiftVT = N0.getOperand(1).getValueType();
5651         SDValue Ext = DAG.getNode(ISD::ANY_EXTEND, SDLoc(Inner), VT,
5652                                   Inner.getOperand(0));
5653         SDValue Shl = DAG.getNode(ISD::SHL, SDLoc(Inner), VT, Ext,
5654                                   DAG.getConstant(NewShlAmt, SDLoc(Inner),
5655                                                   ShiftVT));
5656         return DAG.getNode(ISD::SRA, SDLoc(N0), VT, Shl,
5657                            DAG.getConstant(NewSraAmt, SDLoc(N0), ShiftVT));
5658       }
5659     }
5660   }
5661   return SDValue();
5662 }
5663 
5664 SDValue SystemZTargetLowering::combineMERGE(
5665     SDNode *N, DAGCombinerInfo &DCI) const {
5666   SelectionDAG &DAG = DCI.DAG;
5667   unsigned Opcode = N->getOpcode();
5668   SDValue Op0 = N->getOperand(0);
5669   SDValue Op1 = N->getOperand(1);
5670   if (Op0.getOpcode() == ISD::BITCAST)
5671     Op0 = Op0.getOperand(0);
5672   if (ISD::isBuildVectorAllZeros(Op0.getNode())) {
5673     // (z_merge_* 0, 0) -> 0.  This is mostly useful for using VLLEZF
5674     // for v4f32.
5675     if (Op1 == N->getOperand(0))
5676       return Op1;
5677     // (z_merge_? 0, X) -> (z_unpackl_? 0, X).
5678     EVT VT = Op1.getValueType();
5679     unsigned ElemBytes = VT.getVectorElementType().getStoreSize();
5680     if (ElemBytes <= 4) {
5681       Opcode = (Opcode == SystemZISD::MERGE_HIGH ?
5682                 SystemZISD::UNPACKL_HIGH : SystemZISD::UNPACKL_LOW);
5683       EVT InVT = VT.changeVectorElementTypeToInteger();
5684       EVT OutVT = MVT::getVectorVT(MVT::getIntegerVT(ElemBytes * 16),
5685                                    SystemZ::VectorBytes / ElemBytes / 2);
5686       if (VT != InVT) {
5687         Op1 = DAG.getNode(ISD::BITCAST, SDLoc(N), InVT, Op1);
5688         DCI.AddToWorklist(Op1.getNode());
5689       }
5690       SDValue Op = DAG.getNode(Opcode, SDLoc(N), OutVT, Op1);
5691       DCI.AddToWorklist(Op.getNode());
5692       return DAG.getNode(ISD::BITCAST, SDLoc(N), VT, Op);
5693     }
5694   }
5695   return SDValue();
5696 }
5697 
5698 SDValue SystemZTargetLowering::combineLOAD(
5699     SDNode *N, DAGCombinerInfo &DCI) const {
5700   SelectionDAG &DAG = DCI.DAG;
5701   EVT LdVT = N->getValueType(0);
5702   if (LdVT.isVector() || LdVT.isInteger())
5703     return SDValue();
5704   // Transform a scalar load that is REPLICATEd as well as having other
5705   // use(s) to the form where the other use(s) use the first element of the
5706   // REPLICATE instead of the load. Otherwise instruction selection will not
5707   // produce a VLREP. Avoid extracting to a GPR, so only do this for floating
5708   // point loads.
5709 
5710   SDValue Replicate;
5711   SmallVector<SDNode*, 8> OtherUses;
5712   for (SDNode::use_iterator UI = N->use_begin(), UE = N->use_end();
5713        UI != UE; ++UI) {
5714     if (UI->getOpcode() == SystemZISD::REPLICATE) {
5715       if (Replicate)
5716         return SDValue(); // Should never happen
5717       Replicate = SDValue(*UI, 0);
5718     }
5719     else if (UI.getUse().getResNo() == 0)
5720       OtherUses.push_back(*UI);
5721   }
5722   if (!Replicate || OtherUses.empty())
5723     return SDValue();
5724 
5725   SDLoc DL(N);
5726   SDValue Extract0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, LdVT,
5727                               Replicate, DAG.getConstant(0, DL, MVT::i32));
5728   // Update uses of the loaded Value while preserving old chains.
5729   for (SDNode *U : OtherUses) {
5730     SmallVector<SDValue, 8> Ops;
5731     for (SDValue Op : U->ops())
5732       Ops.push_back((Op.getNode() == N && Op.getResNo() == 0) ? Extract0 : Op);
5733     DAG.UpdateNodeOperands(U, Ops);
5734   }
5735   return SDValue(N, 0);
5736 }
5737 
5738 bool SystemZTargetLowering::canLoadStoreByteSwapped(EVT VT) const {
5739   if (VT == MVT::i16 || VT == MVT::i32 || VT == MVT::i64)
5740     return true;
5741   if (Subtarget.hasVectorEnhancements2())
5742     if (VT == MVT::v8i16 || VT == MVT::v4i32 || VT == MVT::v2i64)
5743       return true;
5744   return false;
5745 }
5746 
5747 static bool isVectorElementSwap(ArrayRef<int> M, EVT VT) {
5748   if (!VT.isVector() || !VT.isSimple() ||
5749       VT.getSizeInBits() != 128 ||
5750       VT.getScalarSizeInBits() % 8 != 0)
5751     return false;
5752 
5753   unsigned NumElts = VT.getVectorNumElements();
5754   for (unsigned i = 0; i < NumElts; ++i) {
5755     if (M[i] < 0) continue; // ignore UNDEF indices
5756     if ((unsigned) M[i] != NumElts - 1 - i)
5757       return false;
5758   }
5759 
5760   return true;
5761 }
5762 
5763 SDValue SystemZTargetLowering::combineSTORE(
5764     SDNode *N, DAGCombinerInfo &DCI) const {
5765   SelectionDAG &DAG = DCI.DAG;
5766   auto *SN = cast<StoreSDNode>(N);
5767   auto &Op1 = N->getOperand(1);
5768   EVT MemVT = SN->getMemoryVT();
5769   // If we have (truncstoreiN (extract_vector_elt X, Y), Z) then it is better
5770   // for the extraction to be done on a vMiN value, so that we can use VSTE.
5771   // If X has wider elements then convert it to:
5772   // (truncstoreiN (extract_vector_elt (bitcast X), Y2), Z).
5773   if (MemVT.isInteger() && SN->isTruncatingStore()) {
5774     if (SDValue Value =
5775             combineTruncateExtract(SDLoc(N), MemVT, SN->getValue(), DCI)) {
5776       DCI.AddToWorklist(Value.getNode());
5777 
5778       // Rewrite the store with the new form of stored value.
5779       return DAG.getTruncStore(SN->getChain(), SDLoc(SN), Value,
5780                                SN->getBasePtr(), SN->getMemoryVT(),
5781                                SN->getMemOperand());
5782     }
5783   }
5784   // Combine STORE (BSWAP) into STRVH/STRV/STRVG/VSTBR
5785   if (!SN->isTruncatingStore() &&
5786       Op1.getOpcode() == ISD::BSWAP &&
5787       Op1.getNode()->hasOneUse() &&
5788       canLoadStoreByteSwapped(Op1.getValueType())) {
5789 
5790       SDValue BSwapOp = Op1.getOperand(0);
5791 
5792       if (BSwapOp.getValueType() == MVT::i16)
5793         BSwapOp = DAG.getNode(ISD::ANY_EXTEND, SDLoc(N), MVT::i32, BSwapOp);
5794 
5795       SDValue Ops[] = {
5796         N->getOperand(0), BSwapOp, N->getOperand(2)
5797       };
5798 
5799       return
5800         DAG.getMemIntrinsicNode(SystemZISD::STRV, SDLoc(N), DAG.getVTList(MVT::Other),
5801                                 Ops, MemVT, SN->getMemOperand());
5802     }
5803   // Combine STORE (element-swap) into VSTER
5804   if (!SN->isTruncatingStore() &&
5805       Op1.getOpcode() == ISD::VECTOR_SHUFFLE &&
5806       Op1.getNode()->hasOneUse() &&
5807       Subtarget.hasVectorEnhancements2()) {
5808     ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op1.getNode());
5809     ArrayRef<int> ShuffleMask = SVN->getMask();
5810     if (isVectorElementSwap(ShuffleMask, Op1.getValueType())) {
5811       SDValue Ops[] = {
5812         N->getOperand(0), Op1.getOperand(0), N->getOperand(2)
5813       };
5814 
5815       return DAG.getMemIntrinsicNode(SystemZISD::VSTER, SDLoc(N),
5816                                      DAG.getVTList(MVT::Other),
5817                                      Ops, MemVT, SN->getMemOperand());
5818     }
5819   }
5820 
5821   return SDValue();
5822 }
5823 
5824 SDValue SystemZTargetLowering::combineVECTOR_SHUFFLE(
5825     SDNode *N, DAGCombinerInfo &DCI) const {
5826   SelectionDAG &DAG = DCI.DAG;
5827   // Combine element-swap (LOAD) into VLER
5828   if (ISD::isNON_EXTLoad(N->getOperand(0).getNode()) &&
5829       N->getOperand(0).hasOneUse() &&
5830       Subtarget.hasVectorEnhancements2()) {
5831     ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N);
5832     ArrayRef<int> ShuffleMask = SVN->getMask();
5833     if (isVectorElementSwap(ShuffleMask, N->getValueType(0))) {
5834       SDValue Load = N->getOperand(0);
5835       LoadSDNode *LD = cast<LoadSDNode>(Load);
5836 
5837       // Create the element-swapping load.
5838       SDValue Ops[] = {
5839         LD->getChain(),    // Chain
5840         LD->getBasePtr()   // Ptr
5841       };
5842       SDValue ESLoad =
5843         DAG.getMemIntrinsicNode(SystemZISD::VLER, SDLoc(N),
5844                                 DAG.getVTList(LD->getValueType(0), MVT::Other),
5845                                 Ops, LD->getMemoryVT(), LD->getMemOperand());
5846 
5847       // First, combine the VECTOR_SHUFFLE away.  This makes the value produced
5848       // by the load dead.
5849       DCI.CombineTo(N, ESLoad);
5850 
5851       // Next, combine the load away, we give it a bogus result value but a real
5852       // chain result.  The result value is dead because the shuffle is dead.
5853       DCI.CombineTo(Load.getNode(), ESLoad, ESLoad.getValue(1));
5854 
5855       // Return N so it doesn't get rechecked!
5856       return SDValue(N, 0);
5857     }
5858   }
5859 
5860   return SDValue();
5861 }
5862 
5863 SDValue SystemZTargetLowering::combineEXTRACT_VECTOR_ELT(
5864     SDNode *N, DAGCombinerInfo &DCI) const {
5865   SelectionDAG &DAG = DCI.DAG;
5866 
5867   if (!Subtarget.hasVector())
5868     return SDValue();
5869 
5870   // Look through bitcasts that retain the number of vector elements.
5871   SDValue Op = N->getOperand(0);
5872   if (Op.getOpcode() == ISD::BITCAST &&
5873       Op.getValueType().isVector() &&
5874       Op.getOperand(0).getValueType().isVector() &&
5875       Op.getValueType().getVectorNumElements() ==
5876       Op.getOperand(0).getValueType().getVectorNumElements())
5877     Op = Op.getOperand(0);
5878 
5879   // Pull BSWAP out of a vector extraction.
5880   if (Op.getOpcode() == ISD::BSWAP && Op.hasOneUse()) {
5881     EVT VecVT = Op.getValueType();
5882     EVT EltVT = VecVT.getVectorElementType();
5883     Op = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(N), EltVT,
5884                      Op.getOperand(0), N->getOperand(1));
5885     DCI.AddToWorklist(Op.getNode());
5886     Op = DAG.getNode(ISD::BSWAP, SDLoc(N), EltVT, Op);
5887     if (EltVT != N->getValueType(0)) {
5888       DCI.AddToWorklist(Op.getNode());
5889       Op = DAG.getNode(ISD::BITCAST, SDLoc(N), N->getValueType(0), Op);
5890     }
5891     return Op;
5892   }
5893 
5894   // Try to simplify a vector extraction.
5895   if (auto *IndexN = dyn_cast<ConstantSDNode>(N->getOperand(1))) {
5896     SDValue Op0 = N->getOperand(0);
5897     EVT VecVT = Op0.getValueType();
5898     return combineExtract(SDLoc(N), N->getValueType(0), VecVT, Op0,
5899                           IndexN->getZExtValue(), DCI, false);
5900   }
5901   return SDValue();
5902 }
5903 
5904 SDValue SystemZTargetLowering::combineJOIN_DWORDS(
5905     SDNode *N, DAGCombinerInfo &DCI) const {
5906   SelectionDAG &DAG = DCI.DAG;
5907   // (join_dwords X, X) == (replicate X)
5908   if (N->getOperand(0) == N->getOperand(1))
5909     return DAG.getNode(SystemZISD::REPLICATE, SDLoc(N), N->getValueType(0),
5910                        N->getOperand(0));
5911   return SDValue();
5912 }
5913 
5914 static SDValue MergeInputChains(SDNode *N1, SDNode *N2) {
5915   SDValue Chain1 = N1->getOperand(0);
5916   SDValue Chain2 = N2->getOperand(0);
5917 
5918   // Trivial case: both nodes take the same chain.
5919   if (Chain1 == Chain2)
5920     return Chain1;
5921 
5922   // FIXME - we could handle more complex cases via TokenFactor,
5923   // assuming we can verify that this would not create a cycle.
5924   return SDValue();
5925 }
5926 
5927 SDValue SystemZTargetLowering::combineFP_ROUND(
5928     SDNode *N, DAGCombinerInfo &DCI) const {
5929 
5930   if (!Subtarget.hasVector())
5931     return SDValue();
5932 
5933   // (fpround (extract_vector_elt X 0))
5934   // (fpround (extract_vector_elt X 1)) ->
5935   // (extract_vector_elt (VROUND X) 0)
5936   // (extract_vector_elt (VROUND X) 2)
5937   //
5938   // This is a special case since the target doesn't really support v2f32s.
5939   unsigned OpNo = N->isStrictFPOpcode() ? 1 : 0;
5940   SelectionDAG &DAG = DCI.DAG;
5941   SDValue Op0 = N->getOperand(OpNo);
5942   if (N->getValueType(0) == MVT::f32 &&
5943       Op0.hasOneUse() &&
5944       Op0.getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
5945       Op0.getOperand(0).getValueType() == MVT::v2f64 &&
5946       Op0.getOperand(1).getOpcode() == ISD::Constant &&
5947       cast<ConstantSDNode>(Op0.getOperand(1))->getZExtValue() == 0) {
5948     SDValue Vec = Op0.getOperand(0);
5949     for (auto *U : Vec->uses()) {
5950       if (U != Op0.getNode() &&
5951           U->hasOneUse() &&
5952           U->getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
5953           U->getOperand(0) == Vec &&
5954           U->getOperand(1).getOpcode() == ISD::Constant &&
5955           cast<ConstantSDNode>(U->getOperand(1))->getZExtValue() == 1) {
5956         SDValue OtherRound = SDValue(*U->use_begin(), 0);
5957         if (OtherRound.getOpcode() == N->getOpcode() &&
5958             OtherRound.getOperand(OpNo) == SDValue(U, 0) &&
5959             OtherRound.getValueType() == MVT::f32) {
5960           SDValue VRound, Chain;
5961           if (N->isStrictFPOpcode()) {
5962             Chain = MergeInputChains(N, OtherRound.getNode());
5963             if (!Chain)
5964               continue;
5965             VRound = DAG.getNode(SystemZISD::STRICT_VROUND, SDLoc(N),
5966                                  {MVT::v4f32, MVT::Other}, {Chain, Vec});
5967             Chain = VRound.getValue(1);
5968           } else
5969             VRound = DAG.getNode(SystemZISD::VROUND, SDLoc(N),
5970                                  MVT::v4f32, Vec);
5971           DCI.AddToWorklist(VRound.getNode());
5972           SDValue Extract1 =
5973             DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(U), MVT::f32,
5974                         VRound, DAG.getConstant(2, SDLoc(U), MVT::i32));
5975           DCI.AddToWorklist(Extract1.getNode());
5976           DAG.ReplaceAllUsesOfValueWith(OtherRound, Extract1);
5977           if (Chain)
5978             DAG.ReplaceAllUsesOfValueWith(OtherRound.getValue(1), Chain);
5979           SDValue Extract0 =
5980             DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(Op0), MVT::f32,
5981                         VRound, DAG.getConstant(0, SDLoc(Op0), MVT::i32));
5982           if (Chain)
5983             return DAG.getNode(ISD::MERGE_VALUES, SDLoc(Op0),
5984                                N->getVTList(), Extract0, Chain);
5985           return Extract0;
5986         }
5987       }
5988     }
5989   }
5990   return SDValue();
5991 }
5992 
5993 SDValue SystemZTargetLowering::combineFP_EXTEND(
5994     SDNode *N, DAGCombinerInfo &DCI) const {
5995 
5996   if (!Subtarget.hasVector())
5997     return SDValue();
5998 
5999   // (fpextend (extract_vector_elt X 0))
6000   // (fpextend (extract_vector_elt X 2)) ->
6001   // (extract_vector_elt (VEXTEND X) 0)
6002   // (extract_vector_elt (VEXTEND X) 1)
6003   //
6004   // This is a special case since the target doesn't really support v2f32s.
6005   unsigned OpNo = N->isStrictFPOpcode() ? 1 : 0;
6006   SelectionDAG &DAG = DCI.DAG;
6007   SDValue Op0 = N->getOperand(OpNo);
6008   if (N->getValueType(0) == MVT::f64 &&
6009       Op0.hasOneUse() &&
6010       Op0.getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
6011       Op0.getOperand(0).getValueType() == MVT::v4f32 &&
6012       Op0.getOperand(1).getOpcode() == ISD::Constant &&
6013       cast<ConstantSDNode>(Op0.getOperand(1))->getZExtValue() == 0) {
6014     SDValue Vec = Op0.getOperand(0);
6015     for (auto *U : Vec->uses()) {
6016       if (U != Op0.getNode() &&
6017           U->hasOneUse() &&
6018           U->getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
6019           U->getOperand(0) == Vec &&
6020           U->getOperand(1).getOpcode() == ISD::Constant &&
6021           cast<ConstantSDNode>(U->getOperand(1))->getZExtValue() == 2) {
6022         SDValue OtherExtend = SDValue(*U->use_begin(), 0);
6023         if (OtherExtend.getOpcode() == N->getOpcode() &&
6024             OtherExtend.getOperand(OpNo) == SDValue(U, 0) &&
6025             OtherExtend.getValueType() == MVT::f64) {
6026           SDValue VExtend, Chain;
6027           if (N->isStrictFPOpcode()) {
6028             Chain = MergeInputChains(N, OtherExtend.getNode());
6029             if (!Chain)
6030               continue;
6031             VExtend = DAG.getNode(SystemZISD::STRICT_VEXTEND, SDLoc(N),
6032                                   {MVT::v2f64, MVT::Other}, {Chain, Vec});
6033             Chain = VExtend.getValue(1);
6034           } else
6035             VExtend = DAG.getNode(SystemZISD::VEXTEND, SDLoc(N),
6036                                   MVT::v2f64, Vec);
6037           DCI.AddToWorklist(VExtend.getNode());
6038           SDValue Extract1 =
6039             DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(U), MVT::f64,
6040                         VExtend, DAG.getConstant(1, SDLoc(U), MVT::i32));
6041           DCI.AddToWorklist(Extract1.getNode());
6042           DAG.ReplaceAllUsesOfValueWith(OtherExtend, Extract1);
6043           if (Chain)
6044             DAG.ReplaceAllUsesOfValueWith(OtherExtend.getValue(1), Chain);
6045           SDValue Extract0 =
6046             DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(Op0), MVT::f64,
6047                         VExtend, DAG.getConstant(0, SDLoc(Op0), MVT::i32));
6048           if (Chain)
6049             return DAG.getNode(ISD::MERGE_VALUES, SDLoc(Op0),
6050                                N->getVTList(), Extract0, Chain);
6051           return Extract0;
6052         }
6053       }
6054     }
6055   }
6056   return SDValue();
6057 }
6058 
6059 SDValue SystemZTargetLowering::combineBSWAP(
6060     SDNode *N, DAGCombinerInfo &DCI) const {
6061   SelectionDAG &DAG = DCI.DAG;
6062   // Combine BSWAP (LOAD) into LRVH/LRV/LRVG/VLBR
6063   if (ISD::isNON_EXTLoad(N->getOperand(0).getNode()) &&
6064       N->getOperand(0).hasOneUse() &&
6065       canLoadStoreByteSwapped(N->getValueType(0))) {
6066       SDValue Load = N->getOperand(0);
6067       LoadSDNode *LD = cast<LoadSDNode>(Load);
6068 
6069       // Create the byte-swapping load.
6070       SDValue Ops[] = {
6071         LD->getChain(),    // Chain
6072         LD->getBasePtr()   // Ptr
6073       };
6074       EVT LoadVT = N->getValueType(0);
6075       if (LoadVT == MVT::i16)
6076         LoadVT = MVT::i32;
6077       SDValue BSLoad =
6078         DAG.getMemIntrinsicNode(SystemZISD::LRV, SDLoc(N),
6079                                 DAG.getVTList(LoadVT, MVT::Other),
6080                                 Ops, LD->getMemoryVT(), LD->getMemOperand());
6081 
6082       // If this is an i16 load, insert the truncate.
6083       SDValue ResVal = BSLoad;
6084       if (N->getValueType(0) == MVT::i16)
6085         ResVal = DAG.getNode(ISD::TRUNCATE, SDLoc(N), MVT::i16, BSLoad);
6086 
6087       // First, combine the bswap away.  This makes the value produced by the
6088       // load dead.
6089       DCI.CombineTo(N, ResVal);
6090 
6091       // Next, combine the load away, we give it a bogus result value but a real
6092       // chain result.  The result value is dead because the bswap is dead.
6093       DCI.CombineTo(Load.getNode(), ResVal, BSLoad.getValue(1));
6094 
6095       // Return N so it doesn't get rechecked!
6096       return SDValue(N, 0);
6097     }
6098 
6099   // Look through bitcasts that retain the number of vector elements.
6100   SDValue Op = N->getOperand(0);
6101   if (Op.getOpcode() == ISD::BITCAST &&
6102       Op.getValueType().isVector() &&
6103       Op.getOperand(0).getValueType().isVector() &&
6104       Op.getValueType().getVectorNumElements() ==
6105       Op.getOperand(0).getValueType().getVectorNumElements())
6106     Op = Op.getOperand(0);
6107 
6108   // Push BSWAP into a vector insertion if at least one side then simplifies.
6109   if (Op.getOpcode() == ISD::INSERT_VECTOR_ELT && Op.hasOneUse()) {
6110     SDValue Vec = Op.getOperand(0);
6111     SDValue Elt = Op.getOperand(1);
6112     SDValue Idx = Op.getOperand(2);
6113 
6114     if (DAG.isConstantIntBuildVectorOrConstantInt(Vec) ||
6115         Vec.getOpcode() == ISD::BSWAP || Vec.isUndef() ||
6116         DAG.isConstantIntBuildVectorOrConstantInt(Elt) ||
6117         Elt.getOpcode() == ISD::BSWAP || Elt.isUndef() ||
6118         (canLoadStoreByteSwapped(N->getValueType(0)) &&
6119          ISD::isNON_EXTLoad(Elt.getNode()) && Elt.hasOneUse())) {
6120       EVT VecVT = N->getValueType(0);
6121       EVT EltVT = N->getValueType(0).getVectorElementType();
6122       if (VecVT != Vec.getValueType()) {
6123         Vec = DAG.getNode(ISD::BITCAST, SDLoc(N), VecVT, Vec);
6124         DCI.AddToWorklist(Vec.getNode());
6125       }
6126       if (EltVT != Elt.getValueType()) {
6127         Elt = DAG.getNode(ISD::BITCAST, SDLoc(N), EltVT, Elt);
6128         DCI.AddToWorklist(Elt.getNode());
6129       }
6130       Vec = DAG.getNode(ISD::BSWAP, SDLoc(N), VecVT, Vec);
6131       DCI.AddToWorklist(Vec.getNode());
6132       Elt = DAG.getNode(ISD::BSWAP, SDLoc(N), EltVT, Elt);
6133       DCI.AddToWorklist(Elt.getNode());
6134       return DAG.getNode(ISD::INSERT_VECTOR_ELT, SDLoc(N), VecVT,
6135                          Vec, Elt, Idx);
6136     }
6137   }
6138 
6139   // Push BSWAP into a vector shuffle if at least one side then simplifies.
6140   ShuffleVectorSDNode *SV = dyn_cast<ShuffleVectorSDNode>(Op);
6141   if (SV && Op.hasOneUse()) {
6142     SDValue Op0 = Op.getOperand(0);
6143     SDValue Op1 = Op.getOperand(1);
6144 
6145     if (DAG.isConstantIntBuildVectorOrConstantInt(Op0) ||
6146         Op0.getOpcode() == ISD::BSWAP || Op0.isUndef() ||
6147         DAG.isConstantIntBuildVectorOrConstantInt(Op1) ||
6148         Op1.getOpcode() == ISD::BSWAP || Op1.isUndef()) {
6149       EVT VecVT = N->getValueType(0);
6150       if (VecVT != Op0.getValueType()) {
6151         Op0 = DAG.getNode(ISD::BITCAST, SDLoc(N), VecVT, Op0);
6152         DCI.AddToWorklist(Op0.getNode());
6153       }
6154       if (VecVT != Op1.getValueType()) {
6155         Op1 = DAG.getNode(ISD::BITCAST, SDLoc(N), VecVT, Op1);
6156         DCI.AddToWorklist(Op1.getNode());
6157       }
6158       Op0 = DAG.getNode(ISD::BSWAP, SDLoc(N), VecVT, Op0);
6159       DCI.AddToWorklist(Op0.getNode());
6160       Op1 = DAG.getNode(ISD::BSWAP, SDLoc(N), VecVT, Op1);
6161       DCI.AddToWorklist(Op1.getNode());
6162       return DAG.getVectorShuffle(VecVT, SDLoc(N), Op0, Op1, SV->getMask());
6163     }
6164   }
6165 
6166   return SDValue();
6167 }
6168 
6169 static bool combineCCMask(SDValue &CCReg, int &CCValid, int &CCMask) {
6170   // We have a SELECT_CCMASK or BR_CCMASK comparing the condition code
6171   // set by the CCReg instruction using the CCValid / CCMask masks,
6172   // If the CCReg instruction is itself a ICMP testing the condition
6173   // code set by some other instruction, see whether we can directly
6174   // use that condition code.
6175 
6176   // Verify that we have an ICMP against some constant.
6177   if (CCValid != SystemZ::CCMASK_ICMP)
6178     return false;
6179   auto *ICmp = CCReg.getNode();
6180   if (ICmp->getOpcode() != SystemZISD::ICMP)
6181     return false;
6182   auto *CompareLHS = ICmp->getOperand(0).getNode();
6183   auto *CompareRHS = dyn_cast<ConstantSDNode>(ICmp->getOperand(1));
6184   if (!CompareRHS)
6185     return false;
6186 
6187   // Optimize the case where CompareLHS is a SELECT_CCMASK.
6188   if (CompareLHS->getOpcode() == SystemZISD::SELECT_CCMASK) {
6189     // Verify that we have an appropriate mask for a EQ or NE comparison.
6190     bool Invert = false;
6191     if (CCMask == SystemZ::CCMASK_CMP_NE)
6192       Invert = !Invert;
6193     else if (CCMask != SystemZ::CCMASK_CMP_EQ)
6194       return false;
6195 
6196     // Verify that the ICMP compares against one of select values.
6197     auto *TrueVal = dyn_cast<ConstantSDNode>(CompareLHS->getOperand(0));
6198     if (!TrueVal)
6199       return false;
6200     auto *FalseVal = dyn_cast<ConstantSDNode>(CompareLHS->getOperand(1));
6201     if (!FalseVal)
6202       return false;
6203     if (CompareRHS->getZExtValue() == FalseVal->getZExtValue())
6204       Invert = !Invert;
6205     else if (CompareRHS->getZExtValue() != TrueVal->getZExtValue())
6206       return false;
6207 
6208     // Compute the effective CC mask for the new branch or select.
6209     auto *NewCCValid = dyn_cast<ConstantSDNode>(CompareLHS->getOperand(2));
6210     auto *NewCCMask = dyn_cast<ConstantSDNode>(CompareLHS->getOperand(3));
6211     if (!NewCCValid || !NewCCMask)
6212       return false;
6213     CCValid = NewCCValid->getZExtValue();
6214     CCMask = NewCCMask->getZExtValue();
6215     if (Invert)
6216       CCMask ^= CCValid;
6217 
6218     // Return the updated CCReg link.
6219     CCReg = CompareLHS->getOperand(4);
6220     return true;
6221   }
6222 
6223   // Optimize the case where CompareRHS is (SRA (SHL (IPM))).
6224   if (CompareLHS->getOpcode() == ISD::SRA) {
6225     auto *SRACount = dyn_cast<ConstantSDNode>(CompareLHS->getOperand(1));
6226     if (!SRACount || SRACount->getZExtValue() != 30)
6227       return false;
6228     auto *SHL = CompareLHS->getOperand(0).getNode();
6229     if (SHL->getOpcode() != ISD::SHL)
6230       return false;
6231     auto *SHLCount = dyn_cast<ConstantSDNode>(SHL->getOperand(1));
6232     if (!SHLCount || SHLCount->getZExtValue() != 30 - SystemZ::IPM_CC)
6233       return false;
6234     auto *IPM = SHL->getOperand(0).getNode();
6235     if (IPM->getOpcode() != SystemZISD::IPM)
6236       return false;
6237 
6238     // Avoid introducing CC spills (because SRA would clobber CC).
6239     if (!CompareLHS->hasOneUse())
6240       return false;
6241     // Verify that the ICMP compares against zero.
6242     if (CompareRHS->getZExtValue() != 0)
6243       return false;
6244 
6245     // Compute the effective CC mask for the new branch or select.
6246     switch (CCMask) {
6247     case SystemZ::CCMASK_CMP_EQ: break;
6248     case SystemZ::CCMASK_CMP_NE: break;
6249     case SystemZ::CCMASK_CMP_LT: CCMask = SystemZ::CCMASK_CMP_GT; break;
6250     case SystemZ::CCMASK_CMP_GT: CCMask = SystemZ::CCMASK_CMP_LT; break;
6251     case SystemZ::CCMASK_CMP_LE: CCMask = SystemZ::CCMASK_CMP_GE; break;
6252     case SystemZ::CCMASK_CMP_GE: CCMask = SystemZ::CCMASK_CMP_LE; break;
6253     default: return false;
6254     }
6255 
6256     // Return the updated CCReg link.
6257     CCReg = IPM->getOperand(0);
6258     return true;
6259   }
6260 
6261   return false;
6262 }
6263 
6264 SDValue SystemZTargetLowering::combineBR_CCMASK(
6265     SDNode *N, DAGCombinerInfo &DCI) const {
6266   SelectionDAG &DAG = DCI.DAG;
6267 
6268   // Combine BR_CCMASK (ICMP (SELECT_CCMASK)) into a single BR_CCMASK.
6269   auto *CCValid = dyn_cast<ConstantSDNode>(N->getOperand(1));
6270   auto *CCMask = dyn_cast<ConstantSDNode>(N->getOperand(2));
6271   if (!CCValid || !CCMask)
6272     return SDValue();
6273 
6274   int CCValidVal = CCValid->getZExtValue();
6275   int CCMaskVal = CCMask->getZExtValue();
6276   SDValue Chain = N->getOperand(0);
6277   SDValue CCReg = N->getOperand(4);
6278 
6279   if (combineCCMask(CCReg, CCValidVal, CCMaskVal))
6280     return DAG.getNode(SystemZISD::BR_CCMASK, SDLoc(N), N->getValueType(0),
6281                        Chain,
6282                        DAG.getTargetConstant(CCValidVal, SDLoc(N), MVT::i32),
6283                        DAG.getTargetConstant(CCMaskVal, SDLoc(N), MVT::i32),
6284                        N->getOperand(3), CCReg);
6285   return SDValue();
6286 }
6287 
6288 SDValue SystemZTargetLowering::combineSELECT_CCMASK(
6289     SDNode *N, DAGCombinerInfo &DCI) const {
6290   SelectionDAG &DAG = DCI.DAG;
6291 
6292   // Combine SELECT_CCMASK (ICMP (SELECT_CCMASK)) into a single SELECT_CCMASK.
6293   auto *CCValid = dyn_cast<ConstantSDNode>(N->getOperand(2));
6294   auto *CCMask = dyn_cast<ConstantSDNode>(N->getOperand(3));
6295   if (!CCValid || !CCMask)
6296     return SDValue();
6297 
6298   int CCValidVal = CCValid->getZExtValue();
6299   int CCMaskVal = CCMask->getZExtValue();
6300   SDValue CCReg = N->getOperand(4);
6301 
6302   if (combineCCMask(CCReg, CCValidVal, CCMaskVal))
6303     return DAG.getNode(SystemZISD::SELECT_CCMASK, SDLoc(N), N->getValueType(0),
6304                        N->getOperand(0), N->getOperand(1),
6305                        DAG.getTargetConstant(CCValidVal, SDLoc(N), MVT::i32),
6306                        DAG.getTargetConstant(CCMaskVal, SDLoc(N), MVT::i32),
6307                        CCReg);
6308   return SDValue();
6309 }
6310 
6311 
6312 SDValue SystemZTargetLowering::combineGET_CCMASK(
6313     SDNode *N, DAGCombinerInfo &DCI) const {
6314 
6315   // Optimize away GET_CCMASK (SELECT_CCMASK) if the CC masks are compatible
6316   auto *CCValid = dyn_cast<ConstantSDNode>(N->getOperand(1));
6317   auto *CCMask = dyn_cast<ConstantSDNode>(N->getOperand(2));
6318   if (!CCValid || !CCMask)
6319     return SDValue();
6320   int CCValidVal = CCValid->getZExtValue();
6321   int CCMaskVal = CCMask->getZExtValue();
6322 
6323   SDValue Select = N->getOperand(0);
6324   if (Select->getOpcode() != SystemZISD::SELECT_CCMASK)
6325     return SDValue();
6326 
6327   auto *SelectCCValid = dyn_cast<ConstantSDNode>(Select->getOperand(2));
6328   auto *SelectCCMask = dyn_cast<ConstantSDNode>(Select->getOperand(3));
6329   if (!SelectCCValid || !SelectCCMask)
6330     return SDValue();
6331   int SelectCCValidVal = SelectCCValid->getZExtValue();
6332   int SelectCCMaskVal = SelectCCMask->getZExtValue();
6333 
6334   auto *TrueVal = dyn_cast<ConstantSDNode>(Select->getOperand(0));
6335   auto *FalseVal = dyn_cast<ConstantSDNode>(Select->getOperand(1));
6336   if (!TrueVal || !FalseVal)
6337     return SDValue();
6338   if (TrueVal->getZExtValue() != 0 && FalseVal->getZExtValue() == 0)
6339     ;
6340   else if (TrueVal->getZExtValue() == 0 && FalseVal->getZExtValue() != 0)
6341     SelectCCMaskVal ^= SelectCCValidVal;
6342   else
6343     return SDValue();
6344 
6345   if (SelectCCValidVal & ~CCValidVal)
6346     return SDValue();
6347   if (SelectCCMaskVal != (CCMaskVal & SelectCCValidVal))
6348     return SDValue();
6349 
6350   return Select->getOperand(4);
6351 }
6352 
6353 SDValue SystemZTargetLowering::combineIntDIVREM(
6354     SDNode *N, DAGCombinerInfo &DCI) const {
6355   SelectionDAG &DAG = DCI.DAG;
6356   EVT VT = N->getValueType(0);
6357   // In the case where the divisor is a vector of constants a cheaper
6358   // sequence of instructions can replace the divide. BuildSDIV is called to
6359   // do this during DAG combining, but it only succeeds when it can build a
6360   // multiplication node. The only option for SystemZ is ISD::SMUL_LOHI, and
6361   // since it is not Legal but Custom it can only happen before
6362   // legalization. Therefore we must scalarize this early before Combine
6363   // 1. For widened vectors, this is already the result of type legalization.
6364   if (DCI.Level == BeforeLegalizeTypes && VT.isVector() && isTypeLegal(VT) &&
6365       DAG.isConstantIntBuildVectorOrConstantInt(N->getOperand(1)))
6366     return DAG.UnrollVectorOp(N);
6367   return SDValue();
6368 }
6369 
6370 SDValue SystemZTargetLowering::unwrapAddress(SDValue N) const {
6371   if (N->getOpcode() == SystemZISD::PCREL_WRAPPER)
6372     return N->getOperand(0);
6373   return N;
6374 }
6375 
6376 SDValue SystemZTargetLowering::PerformDAGCombine(SDNode *N,
6377                                                  DAGCombinerInfo &DCI) const {
6378   switch(N->getOpcode()) {
6379   default: break;
6380   case ISD::ZERO_EXTEND:        return combineZERO_EXTEND(N, DCI);
6381   case ISD::SIGN_EXTEND:        return combineSIGN_EXTEND(N, DCI);
6382   case ISD::SIGN_EXTEND_INREG:  return combineSIGN_EXTEND_INREG(N, DCI);
6383   case SystemZISD::MERGE_HIGH:
6384   case SystemZISD::MERGE_LOW:   return combineMERGE(N, DCI);
6385   case ISD::LOAD:               return combineLOAD(N, DCI);
6386   case ISD::STORE:              return combineSTORE(N, DCI);
6387   case ISD::VECTOR_SHUFFLE:     return combineVECTOR_SHUFFLE(N, DCI);
6388   case ISD::EXTRACT_VECTOR_ELT: return combineEXTRACT_VECTOR_ELT(N, DCI);
6389   case SystemZISD::JOIN_DWORDS: return combineJOIN_DWORDS(N, DCI);
6390   case ISD::STRICT_FP_ROUND:
6391   case ISD::FP_ROUND:           return combineFP_ROUND(N, DCI);
6392   case ISD::STRICT_FP_EXTEND:
6393   case ISD::FP_EXTEND:          return combineFP_EXTEND(N, DCI);
6394   case ISD::BSWAP:              return combineBSWAP(N, DCI);
6395   case SystemZISD::BR_CCMASK:   return combineBR_CCMASK(N, DCI);
6396   case SystemZISD::SELECT_CCMASK: return combineSELECT_CCMASK(N, DCI);
6397   case SystemZISD::GET_CCMASK:  return combineGET_CCMASK(N, DCI);
6398   case ISD::SDIV:
6399   case ISD::UDIV:
6400   case ISD::SREM:
6401   case ISD::UREM:               return combineIntDIVREM(N, DCI);
6402   }
6403 
6404   return SDValue();
6405 }
6406 
6407 // Return the demanded elements for the OpNo source operand of Op. DemandedElts
6408 // are for Op.
6409 static APInt getDemandedSrcElements(SDValue Op, const APInt &DemandedElts,
6410                                     unsigned OpNo) {
6411   EVT VT = Op.getValueType();
6412   unsigned NumElts = (VT.isVector() ? VT.getVectorNumElements() : 1);
6413   APInt SrcDemE;
6414   unsigned Opcode = Op.getOpcode();
6415   if (Opcode == ISD::INTRINSIC_WO_CHAIN) {
6416     unsigned Id = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
6417     switch (Id) {
6418     case Intrinsic::s390_vpksh:   // PACKS
6419     case Intrinsic::s390_vpksf:
6420     case Intrinsic::s390_vpksg:
6421     case Intrinsic::s390_vpkshs:  // PACKS_CC
6422     case Intrinsic::s390_vpksfs:
6423     case Intrinsic::s390_vpksgs:
6424     case Intrinsic::s390_vpklsh:  // PACKLS
6425     case Intrinsic::s390_vpklsf:
6426     case Intrinsic::s390_vpklsg:
6427     case Intrinsic::s390_vpklshs: // PACKLS_CC
6428     case Intrinsic::s390_vpklsfs:
6429     case Intrinsic::s390_vpklsgs:
6430       // VECTOR PACK truncates the elements of two source vectors into one.
6431       SrcDemE = DemandedElts;
6432       if (OpNo == 2)
6433         SrcDemE.lshrInPlace(NumElts / 2);
6434       SrcDemE = SrcDemE.trunc(NumElts / 2);
6435       break;
6436       // VECTOR UNPACK extends half the elements of the source vector.
6437     case Intrinsic::s390_vuphb:  // VECTOR UNPACK HIGH
6438     case Intrinsic::s390_vuphh:
6439     case Intrinsic::s390_vuphf:
6440     case Intrinsic::s390_vuplhb: // VECTOR UNPACK LOGICAL HIGH
6441     case Intrinsic::s390_vuplhh:
6442     case Intrinsic::s390_vuplhf:
6443       SrcDemE = APInt(NumElts * 2, 0);
6444       SrcDemE.insertBits(DemandedElts, 0);
6445       break;
6446     case Intrinsic::s390_vuplb:  // VECTOR UNPACK LOW
6447     case Intrinsic::s390_vuplhw:
6448     case Intrinsic::s390_vuplf:
6449     case Intrinsic::s390_vupllb: // VECTOR UNPACK LOGICAL LOW
6450     case Intrinsic::s390_vupllh:
6451     case Intrinsic::s390_vupllf:
6452       SrcDemE = APInt(NumElts * 2, 0);
6453       SrcDemE.insertBits(DemandedElts, NumElts);
6454       break;
6455     case Intrinsic::s390_vpdi: {
6456       // VECTOR PERMUTE DWORD IMMEDIATE selects one element from each source.
6457       SrcDemE = APInt(NumElts, 0);
6458       if (!DemandedElts[OpNo - 1])
6459         break;
6460       unsigned Mask = cast<ConstantSDNode>(Op.getOperand(3))->getZExtValue();
6461       unsigned MaskBit = ((OpNo - 1) ? 1 : 4);
6462       // Demand input element 0 or 1, given by the mask bit value.
6463       SrcDemE.setBit((Mask & MaskBit)? 1 : 0);
6464       break;
6465     }
6466     case Intrinsic::s390_vsldb: {
6467       // VECTOR SHIFT LEFT DOUBLE BY BYTE
6468       assert(VT == MVT::v16i8 && "Unexpected type.");
6469       unsigned FirstIdx = cast<ConstantSDNode>(Op.getOperand(3))->getZExtValue();
6470       assert (FirstIdx > 0 && FirstIdx < 16 && "Unused operand.");
6471       unsigned NumSrc0Els = 16 - FirstIdx;
6472       SrcDemE = APInt(NumElts, 0);
6473       if (OpNo == 1) {
6474         APInt DemEls = DemandedElts.trunc(NumSrc0Els);
6475         SrcDemE.insertBits(DemEls, FirstIdx);
6476       } else {
6477         APInt DemEls = DemandedElts.lshr(NumSrc0Els);
6478         SrcDemE.insertBits(DemEls, 0);
6479       }
6480       break;
6481     }
6482     case Intrinsic::s390_vperm:
6483       SrcDemE = APInt(NumElts, 1);
6484       break;
6485     default:
6486       llvm_unreachable("Unhandled intrinsic.");
6487       break;
6488     }
6489   } else {
6490     switch (Opcode) {
6491     case SystemZISD::JOIN_DWORDS:
6492       // Scalar operand.
6493       SrcDemE = APInt(1, 1);
6494       break;
6495     case SystemZISD::SELECT_CCMASK:
6496       SrcDemE = DemandedElts;
6497       break;
6498     default:
6499       llvm_unreachable("Unhandled opcode.");
6500       break;
6501     }
6502   }
6503   return SrcDemE;
6504 }
6505 
6506 static void computeKnownBitsBinOp(const SDValue Op, KnownBits &Known,
6507                                   const APInt &DemandedElts,
6508                                   const SelectionDAG &DAG, unsigned Depth,
6509                                   unsigned OpNo) {
6510   APInt Src0DemE = getDemandedSrcElements(Op, DemandedElts, OpNo);
6511   APInt Src1DemE = getDemandedSrcElements(Op, DemandedElts, OpNo + 1);
6512   KnownBits LHSKnown =
6513       DAG.computeKnownBits(Op.getOperand(OpNo), Src0DemE, Depth + 1);
6514   KnownBits RHSKnown =
6515       DAG.computeKnownBits(Op.getOperand(OpNo + 1), Src1DemE, Depth + 1);
6516   Known.Zero = LHSKnown.Zero & RHSKnown.Zero;
6517   Known.One = LHSKnown.One & RHSKnown.One;
6518 }
6519 
6520 void
6521 SystemZTargetLowering::computeKnownBitsForTargetNode(const SDValue Op,
6522                                                      KnownBits &Known,
6523                                                      const APInt &DemandedElts,
6524                                                      const SelectionDAG &DAG,
6525                                                      unsigned Depth) const {
6526   Known.resetAll();
6527 
6528   // Intrinsic CC result is returned in the two low bits.
6529   unsigned tmp0, tmp1; // not used
6530   if (Op.getResNo() == 1 && isIntrinsicWithCC(Op, tmp0, tmp1)) {
6531     Known.Zero.setBitsFrom(2);
6532     return;
6533   }
6534   EVT VT = Op.getValueType();
6535   if (Op.getResNo() != 0 || VT == MVT::Untyped)
6536     return;
6537   assert (Known.getBitWidth() == VT.getScalarSizeInBits() &&
6538           "KnownBits does not match VT in bitwidth");
6539   assert ((!VT.isVector() ||
6540            (DemandedElts.getBitWidth() == VT.getVectorNumElements())) &&
6541           "DemandedElts does not match VT number of elements");
6542   unsigned BitWidth = Known.getBitWidth();
6543   unsigned Opcode = Op.getOpcode();
6544   if (Opcode == ISD::INTRINSIC_WO_CHAIN) {
6545     bool IsLogical = false;
6546     unsigned Id = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
6547     switch (Id) {
6548     case Intrinsic::s390_vpksh:   // PACKS
6549     case Intrinsic::s390_vpksf:
6550     case Intrinsic::s390_vpksg:
6551     case Intrinsic::s390_vpkshs:  // PACKS_CC
6552     case Intrinsic::s390_vpksfs:
6553     case Intrinsic::s390_vpksgs:
6554     case Intrinsic::s390_vpklsh:  // PACKLS
6555     case Intrinsic::s390_vpklsf:
6556     case Intrinsic::s390_vpklsg:
6557     case Intrinsic::s390_vpklshs: // PACKLS_CC
6558     case Intrinsic::s390_vpklsfs:
6559     case Intrinsic::s390_vpklsgs:
6560     case Intrinsic::s390_vpdi:
6561     case Intrinsic::s390_vsldb:
6562     case Intrinsic::s390_vperm:
6563       computeKnownBitsBinOp(Op, Known, DemandedElts, DAG, Depth, 1);
6564       break;
6565     case Intrinsic::s390_vuplhb: // VECTOR UNPACK LOGICAL HIGH
6566     case Intrinsic::s390_vuplhh:
6567     case Intrinsic::s390_vuplhf:
6568     case Intrinsic::s390_vupllb: // VECTOR UNPACK LOGICAL LOW
6569     case Intrinsic::s390_vupllh:
6570     case Intrinsic::s390_vupllf:
6571       IsLogical = true;
6572       LLVM_FALLTHROUGH;
6573     case Intrinsic::s390_vuphb:  // VECTOR UNPACK HIGH
6574     case Intrinsic::s390_vuphh:
6575     case Intrinsic::s390_vuphf:
6576     case Intrinsic::s390_vuplb:  // VECTOR UNPACK LOW
6577     case Intrinsic::s390_vuplhw:
6578     case Intrinsic::s390_vuplf: {
6579       SDValue SrcOp = Op.getOperand(1);
6580       APInt SrcDemE = getDemandedSrcElements(Op, DemandedElts, 0);
6581       Known = DAG.computeKnownBits(SrcOp, SrcDemE, Depth + 1);
6582       if (IsLogical) {
6583         Known = Known.zext(BitWidth, true);
6584       } else
6585         Known = Known.sext(BitWidth);
6586       break;
6587     }
6588     default:
6589       break;
6590     }
6591   } else {
6592     switch (Opcode) {
6593     case SystemZISD::JOIN_DWORDS:
6594     case SystemZISD::SELECT_CCMASK:
6595       computeKnownBitsBinOp(Op, Known, DemandedElts, DAG, Depth, 0);
6596       break;
6597     case SystemZISD::REPLICATE: {
6598       SDValue SrcOp = Op.getOperand(0);
6599       Known = DAG.computeKnownBits(SrcOp, Depth + 1);
6600       if (Known.getBitWidth() < BitWidth && isa<ConstantSDNode>(SrcOp))
6601         Known = Known.sext(BitWidth); // VREPI sign extends the immedate.
6602       break;
6603     }
6604     default:
6605       break;
6606     }
6607   }
6608 
6609   // Known has the width of the source operand(s). Adjust if needed to match
6610   // the passed bitwidth.
6611   if (Known.getBitWidth() != BitWidth)
6612     Known = Known.zextOrTrunc(BitWidth, false);
6613 }
6614 
6615 static unsigned computeNumSignBitsBinOp(SDValue Op, const APInt &DemandedElts,
6616                                         const SelectionDAG &DAG, unsigned Depth,
6617                                         unsigned OpNo) {
6618   APInt Src0DemE = getDemandedSrcElements(Op, DemandedElts, OpNo);
6619   unsigned LHS = DAG.ComputeNumSignBits(Op.getOperand(OpNo), Src0DemE, Depth + 1);
6620   if (LHS == 1) return 1; // Early out.
6621   APInt Src1DemE = getDemandedSrcElements(Op, DemandedElts, OpNo + 1);
6622   unsigned RHS = DAG.ComputeNumSignBits(Op.getOperand(OpNo + 1), Src1DemE, Depth + 1);
6623   if (RHS == 1) return 1; // Early out.
6624   unsigned Common = std::min(LHS, RHS);
6625   unsigned SrcBitWidth = Op.getOperand(OpNo).getScalarValueSizeInBits();
6626   EVT VT = Op.getValueType();
6627   unsigned VTBits = VT.getScalarSizeInBits();
6628   if (SrcBitWidth > VTBits) { // PACK
6629     unsigned SrcExtraBits = SrcBitWidth - VTBits;
6630     if (Common > SrcExtraBits)
6631       return (Common - SrcExtraBits);
6632     return 1;
6633   }
6634   assert (SrcBitWidth == VTBits && "Expected operands of same bitwidth.");
6635   return Common;
6636 }
6637 
6638 unsigned
6639 SystemZTargetLowering::ComputeNumSignBitsForTargetNode(
6640     SDValue Op, const APInt &DemandedElts, const SelectionDAG &DAG,
6641     unsigned Depth) const {
6642   if (Op.getResNo() != 0)
6643     return 1;
6644   unsigned Opcode = Op.getOpcode();
6645   if (Opcode == ISD::INTRINSIC_WO_CHAIN) {
6646     unsigned Id = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
6647     switch (Id) {
6648     case Intrinsic::s390_vpksh:   // PACKS
6649     case Intrinsic::s390_vpksf:
6650     case Intrinsic::s390_vpksg:
6651     case Intrinsic::s390_vpkshs:  // PACKS_CC
6652     case Intrinsic::s390_vpksfs:
6653     case Intrinsic::s390_vpksgs:
6654     case Intrinsic::s390_vpklsh:  // PACKLS
6655     case Intrinsic::s390_vpklsf:
6656     case Intrinsic::s390_vpklsg:
6657     case Intrinsic::s390_vpklshs: // PACKLS_CC
6658     case Intrinsic::s390_vpklsfs:
6659     case Intrinsic::s390_vpklsgs:
6660     case Intrinsic::s390_vpdi:
6661     case Intrinsic::s390_vsldb:
6662     case Intrinsic::s390_vperm:
6663       return computeNumSignBitsBinOp(Op, DemandedElts, DAG, Depth, 1);
6664     case Intrinsic::s390_vuphb:  // VECTOR UNPACK HIGH
6665     case Intrinsic::s390_vuphh:
6666     case Intrinsic::s390_vuphf:
6667     case Intrinsic::s390_vuplb:  // VECTOR UNPACK LOW
6668     case Intrinsic::s390_vuplhw:
6669     case Intrinsic::s390_vuplf: {
6670       SDValue PackedOp = Op.getOperand(1);
6671       APInt SrcDemE = getDemandedSrcElements(Op, DemandedElts, 1);
6672       unsigned Tmp = DAG.ComputeNumSignBits(PackedOp, SrcDemE, Depth + 1);
6673       EVT VT = Op.getValueType();
6674       unsigned VTBits = VT.getScalarSizeInBits();
6675       Tmp += VTBits - PackedOp.getScalarValueSizeInBits();
6676       return Tmp;
6677     }
6678     default:
6679       break;
6680     }
6681   } else {
6682     switch (Opcode) {
6683     case SystemZISD::SELECT_CCMASK:
6684       return computeNumSignBitsBinOp(Op, DemandedElts, DAG, Depth, 0);
6685     default:
6686       break;
6687     }
6688   }
6689 
6690   return 1;
6691 }
6692 
6693 //===----------------------------------------------------------------------===//
6694 // Custom insertion
6695 //===----------------------------------------------------------------------===//
6696 
6697 // Create a new basic block after MBB.
6698 static MachineBasicBlock *emitBlockAfter(MachineBasicBlock *MBB) {
6699   MachineFunction &MF = *MBB->getParent();
6700   MachineBasicBlock *NewMBB = MF.CreateMachineBasicBlock(MBB->getBasicBlock());
6701   MF.insert(std::next(MachineFunction::iterator(MBB)), NewMBB);
6702   return NewMBB;
6703 }
6704 
6705 // Split MBB after MI and return the new block (the one that contains
6706 // instructions after MI).
6707 static MachineBasicBlock *splitBlockAfter(MachineBasicBlock::iterator MI,
6708                                           MachineBasicBlock *MBB) {
6709   MachineBasicBlock *NewMBB = emitBlockAfter(MBB);
6710   NewMBB->splice(NewMBB->begin(), MBB,
6711                  std::next(MachineBasicBlock::iterator(MI)), MBB->end());
6712   NewMBB->transferSuccessorsAndUpdatePHIs(MBB);
6713   return NewMBB;
6714 }
6715 
6716 // Split MBB before MI and return the new block (the one that contains MI).
6717 static MachineBasicBlock *splitBlockBefore(MachineBasicBlock::iterator MI,
6718                                            MachineBasicBlock *MBB) {
6719   MachineBasicBlock *NewMBB = emitBlockAfter(MBB);
6720   NewMBB->splice(NewMBB->begin(), MBB, MI, MBB->end());
6721   NewMBB->transferSuccessorsAndUpdatePHIs(MBB);
6722   return NewMBB;
6723 }
6724 
6725 // Force base value Base into a register before MI.  Return the register.
6726 static Register forceReg(MachineInstr &MI, MachineOperand &Base,
6727                          const SystemZInstrInfo *TII) {
6728   if (Base.isReg())
6729     return Base.getReg();
6730 
6731   MachineBasicBlock *MBB = MI.getParent();
6732   MachineFunction &MF = *MBB->getParent();
6733   MachineRegisterInfo &MRI = MF.getRegInfo();
6734 
6735   Register Reg = MRI.createVirtualRegister(&SystemZ::ADDR64BitRegClass);
6736   BuildMI(*MBB, MI, MI.getDebugLoc(), TII->get(SystemZ::LA), Reg)
6737       .add(Base)
6738       .addImm(0)
6739       .addReg(0);
6740   return Reg;
6741 }
6742 
6743 // The CC operand of MI might be missing a kill marker because there
6744 // were multiple uses of CC, and ISel didn't know which to mark.
6745 // Figure out whether MI should have had a kill marker.
6746 static bool checkCCKill(MachineInstr &MI, MachineBasicBlock *MBB) {
6747   // Scan forward through BB for a use/def of CC.
6748   MachineBasicBlock::iterator miI(std::next(MachineBasicBlock::iterator(MI)));
6749   for (MachineBasicBlock::iterator miE = MBB->end(); miI != miE; ++miI) {
6750     const MachineInstr& mi = *miI;
6751     if (mi.readsRegister(SystemZ::CC))
6752       return false;
6753     if (mi.definesRegister(SystemZ::CC))
6754       break; // Should have kill-flag - update below.
6755   }
6756 
6757   // If we hit the end of the block, check whether CC is live into a
6758   // successor.
6759   if (miI == MBB->end()) {
6760     for (auto SI = MBB->succ_begin(), SE = MBB->succ_end(); SI != SE; ++SI)
6761       if ((*SI)->isLiveIn(SystemZ::CC))
6762         return false;
6763   }
6764 
6765   return true;
6766 }
6767 
6768 // Return true if it is OK for this Select pseudo-opcode to be cascaded
6769 // together with other Select pseudo-opcodes into a single basic-block with
6770 // a conditional jump around it.
6771 static bool isSelectPseudo(MachineInstr &MI) {
6772   switch (MI.getOpcode()) {
6773   case SystemZ::Select32:
6774   case SystemZ::Select64:
6775   case SystemZ::SelectF32:
6776   case SystemZ::SelectF64:
6777   case SystemZ::SelectF128:
6778   case SystemZ::SelectVR32:
6779   case SystemZ::SelectVR64:
6780   case SystemZ::SelectVR128:
6781     return true;
6782 
6783   default:
6784     return false;
6785   }
6786 }
6787 
6788 // Helper function, which inserts PHI functions into SinkMBB:
6789 //   %Result(i) = phi [ %FalseValue(i), FalseMBB ], [ %TrueValue(i), TrueMBB ],
6790 // where %FalseValue(i) and %TrueValue(i) are taken from Selects.
6791 static void createPHIsForSelects(SmallVector<MachineInstr*, 8> &Selects,
6792                                  MachineBasicBlock *TrueMBB,
6793                                  MachineBasicBlock *FalseMBB,
6794                                  MachineBasicBlock *SinkMBB) {
6795   MachineFunction *MF = TrueMBB->getParent();
6796   const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo();
6797 
6798   MachineInstr *FirstMI = Selects.front();
6799   unsigned CCValid = FirstMI->getOperand(3).getImm();
6800   unsigned CCMask = FirstMI->getOperand(4).getImm();
6801 
6802   MachineBasicBlock::iterator SinkInsertionPoint = SinkMBB->begin();
6803 
6804   // As we are creating the PHIs, we have to be careful if there is more than
6805   // one.  Later Selects may reference the results of earlier Selects, but later
6806   // PHIs have to reference the individual true/false inputs from earlier PHIs.
6807   // That also means that PHI construction must work forward from earlier to
6808   // later, and that the code must maintain a mapping from earlier PHI's
6809   // destination registers, and the registers that went into the PHI.
6810   DenseMap<unsigned, std::pair<unsigned, unsigned>> RegRewriteTable;
6811 
6812   for (auto MI : Selects) {
6813     Register DestReg = MI->getOperand(0).getReg();
6814     Register TrueReg = MI->getOperand(1).getReg();
6815     Register FalseReg = MI->getOperand(2).getReg();
6816 
6817     // If this Select we are generating is the opposite condition from
6818     // the jump we generated, then we have to swap the operands for the
6819     // PHI that is going to be generated.
6820     if (MI->getOperand(4).getImm() == (CCValid ^ CCMask))
6821       std::swap(TrueReg, FalseReg);
6822 
6823     if (RegRewriteTable.find(TrueReg) != RegRewriteTable.end())
6824       TrueReg = RegRewriteTable[TrueReg].first;
6825 
6826     if (RegRewriteTable.find(FalseReg) != RegRewriteTable.end())
6827       FalseReg = RegRewriteTable[FalseReg].second;
6828 
6829     DebugLoc DL = MI->getDebugLoc();
6830     BuildMI(*SinkMBB, SinkInsertionPoint, DL, TII->get(SystemZ::PHI), DestReg)
6831       .addReg(TrueReg).addMBB(TrueMBB)
6832       .addReg(FalseReg).addMBB(FalseMBB);
6833 
6834     // Add this PHI to the rewrite table.
6835     RegRewriteTable[DestReg] = std::make_pair(TrueReg, FalseReg);
6836   }
6837 
6838   MF->getProperties().reset(MachineFunctionProperties::Property::NoPHIs);
6839 }
6840 
6841 // Implement EmitInstrWithCustomInserter for pseudo Select* instruction MI.
6842 MachineBasicBlock *
6843 SystemZTargetLowering::emitSelect(MachineInstr &MI,
6844                                   MachineBasicBlock *MBB) const {
6845   assert(isSelectPseudo(MI) && "Bad call to emitSelect()");
6846   const SystemZInstrInfo *TII =
6847       static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo());
6848 
6849   unsigned CCValid = MI.getOperand(3).getImm();
6850   unsigned CCMask = MI.getOperand(4).getImm();
6851 
6852   // If we have a sequence of Select* pseudo instructions using the
6853   // same condition code value, we want to expand all of them into
6854   // a single pair of basic blocks using the same condition.
6855   SmallVector<MachineInstr*, 8> Selects;
6856   SmallVector<MachineInstr*, 8> DbgValues;
6857   Selects.push_back(&MI);
6858   unsigned Count = 0;
6859   for (MachineBasicBlock::iterator NextMIIt =
6860          std::next(MachineBasicBlock::iterator(MI));
6861        NextMIIt != MBB->end(); ++NextMIIt) {
6862     if (isSelectPseudo(*NextMIIt)) {
6863       assert(NextMIIt->getOperand(3).getImm() == CCValid &&
6864              "Bad CCValid operands since CC was not redefined.");
6865       if (NextMIIt->getOperand(4).getImm() == CCMask ||
6866           NextMIIt->getOperand(4).getImm() == (CCValid ^ CCMask)) {
6867         Selects.push_back(&*NextMIIt);
6868         continue;
6869       }
6870       break;
6871     }
6872     if (NextMIIt->definesRegister(SystemZ::CC) ||
6873         NextMIIt->usesCustomInsertionHook())
6874       break;
6875     bool User = false;
6876     for (auto SelMI : Selects)
6877       if (NextMIIt->readsVirtualRegister(SelMI->getOperand(0).getReg())) {
6878         User = true;
6879         break;
6880       }
6881     if (NextMIIt->isDebugInstr()) {
6882       if (User) {
6883         assert(NextMIIt->isDebugValue() && "Unhandled debug opcode.");
6884         DbgValues.push_back(&*NextMIIt);
6885       }
6886     }
6887     else if (User || ++Count > 20)
6888       break;
6889   }
6890 
6891   MachineInstr *LastMI = Selects.back();
6892   bool CCKilled =
6893       (LastMI->killsRegister(SystemZ::CC) || checkCCKill(*LastMI, MBB));
6894   MachineBasicBlock *StartMBB = MBB;
6895   MachineBasicBlock *JoinMBB  = splitBlockAfter(LastMI, MBB);
6896   MachineBasicBlock *FalseMBB = emitBlockAfter(StartMBB);
6897 
6898   // Unless CC was killed in the last Select instruction, mark it as
6899   // live-in to both FalseMBB and JoinMBB.
6900   if (!CCKilled) {
6901     FalseMBB->addLiveIn(SystemZ::CC);
6902     JoinMBB->addLiveIn(SystemZ::CC);
6903   }
6904 
6905   //  StartMBB:
6906   //   BRC CCMask, JoinMBB
6907   //   # fallthrough to FalseMBB
6908   MBB = StartMBB;
6909   BuildMI(MBB, MI.getDebugLoc(), TII->get(SystemZ::BRC))
6910     .addImm(CCValid).addImm(CCMask).addMBB(JoinMBB);
6911   MBB->addSuccessor(JoinMBB);
6912   MBB->addSuccessor(FalseMBB);
6913 
6914   //  FalseMBB:
6915   //   # fallthrough to JoinMBB
6916   MBB = FalseMBB;
6917   MBB->addSuccessor(JoinMBB);
6918 
6919   //  JoinMBB:
6920   //   %Result = phi [ %FalseReg, FalseMBB ], [ %TrueReg, StartMBB ]
6921   //  ...
6922   MBB = JoinMBB;
6923   createPHIsForSelects(Selects, StartMBB, FalseMBB, MBB);
6924   for (auto SelMI : Selects)
6925     SelMI->eraseFromParent();
6926 
6927   MachineBasicBlock::iterator InsertPos = MBB->getFirstNonPHI();
6928   for (auto DbgMI : DbgValues)
6929     MBB->splice(InsertPos, StartMBB, DbgMI);
6930 
6931   return JoinMBB;
6932 }
6933 
6934 // Implement EmitInstrWithCustomInserter for pseudo CondStore* instruction MI.
6935 // StoreOpcode is the store to use and Invert says whether the store should
6936 // happen when the condition is false rather than true.  If a STORE ON
6937 // CONDITION is available, STOCOpcode is its opcode, otherwise it is 0.
6938 MachineBasicBlock *SystemZTargetLowering::emitCondStore(MachineInstr &MI,
6939                                                         MachineBasicBlock *MBB,
6940                                                         unsigned StoreOpcode,
6941                                                         unsigned STOCOpcode,
6942                                                         bool Invert) const {
6943   const SystemZInstrInfo *TII =
6944       static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo());
6945 
6946   Register SrcReg = MI.getOperand(0).getReg();
6947   MachineOperand Base = MI.getOperand(1);
6948   int64_t Disp = MI.getOperand(2).getImm();
6949   Register IndexReg = MI.getOperand(3).getReg();
6950   unsigned CCValid = MI.getOperand(4).getImm();
6951   unsigned CCMask = MI.getOperand(5).getImm();
6952   DebugLoc DL = MI.getDebugLoc();
6953 
6954   StoreOpcode = TII->getOpcodeForOffset(StoreOpcode, Disp);
6955 
6956   // Use STOCOpcode if possible.  We could use different store patterns in
6957   // order to avoid matching the index register, but the performance trade-offs
6958   // might be more complicated in that case.
6959   if (STOCOpcode && !IndexReg && Subtarget.hasLoadStoreOnCond()) {
6960     if (Invert)
6961       CCMask ^= CCValid;
6962 
6963     // ISel pattern matching also adds a load memory operand of the same
6964     // address, so take special care to find the storing memory operand.
6965     MachineMemOperand *MMO = nullptr;
6966     for (auto *I : MI.memoperands())
6967       if (I->isStore()) {
6968           MMO = I;
6969           break;
6970         }
6971 
6972     BuildMI(*MBB, MI, DL, TII->get(STOCOpcode))
6973       .addReg(SrcReg)
6974       .add(Base)
6975       .addImm(Disp)
6976       .addImm(CCValid)
6977       .addImm(CCMask)
6978       .addMemOperand(MMO);
6979 
6980     MI.eraseFromParent();
6981     return MBB;
6982   }
6983 
6984   // Get the condition needed to branch around the store.
6985   if (!Invert)
6986     CCMask ^= CCValid;
6987 
6988   MachineBasicBlock *StartMBB = MBB;
6989   MachineBasicBlock *JoinMBB  = splitBlockBefore(MI, MBB);
6990   MachineBasicBlock *FalseMBB = emitBlockAfter(StartMBB);
6991 
6992   // Unless CC was killed in the CondStore instruction, mark it as
6993   // live-in to both FalseMBB and JoinMBB.
6994   if (!MI.killsRegister(SystemZ::CC) && !checkCCKill(MI, JoinMBB)) {
6995     FalseMBB->addLiveIn(SystemZ::CC);
6996     JoinMBB->addLiveIn(SystemZ::CC);
6997   }
6998 
6999   //  StartMBB:
7000   //   BRC CCMask, JoinMBB
7001   //   # fallthrough to FalseMBB
7002   MBB = StartMBB;
7003   BuildMI(MBB, DL, TII->get(SystemZ::BRC))
7004     .addImm(CCValid).addImm(CCMask).addMBB(JoinMBB);
7005   MBB->addSuccessor(JoinMBB);
7006   MBB->addSuccessor(FalseMBB);
7007 
7008   //  FalseMBB:
7009   //   store %SrcReg, %Disp(%Index,%Base)
7010   //   # fallthrough to JoinMBB
7011   MBB = FalseMBB;
7012   BuildMI(MBB, DL, TII->get(StoreOpcode))
7013       .addReg(SrcReg)
7014       .add(Base)
7015       .addImm(Disp)
7016       .addReg(IndexReg);
7017   MBB->addSuccessor(JoinMBB);
7018 
7019   MI.eraseFromParent();
7020   return JoinMBB;
7021 }
7022 
7023 // Implement EmitInstrWithCustomInserter for pseudo ATOMIC_LOAD{,W}_*
7024 // or ATOMIC_SWAP{,W} instruction MI.  BinOpcode is the instruction that
7025 // performs the binary operation elided by "*", or 0 for ATOMIC_SWAP{,W}.
7026 // BitSize is the width of the field in bits, or 0 if this is a partword
7027 // ATOMIC_LOADW_* or ATOMIC_SWAPW instruction, in which case the bitsize
7028 // is one of the operands.  Invert says whether the field should be
7029 // inverted after performing BinOpcode (e.g. for NAND).
7030 MachineBasicBlock *SystemZTargetLowering::emitAtomicLoadBinary(
7031     MachineInstr &MI, MachineBasicBlock *MBB, unsigned BinOpcode,
7032     unsigned BitSize, bool Invert) const {
7033   MachineFunction &MF = *MBB->getParent();
7034   const SystemZInstrInfo *TII =
7035       static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo());
7036   MachineRegisterInfo &MRI = MF.getRegInfo();
7037   bool IsSubWord = (BitSize < 32);
7038 
7039   // Extract the operands.  Base can be a register or a frame index.
7040   // Src2 can be a register or immediate.
7041   Register Dest = MI.getOperand(0).getReg();
7042   MachineOperand Base = earlyUseOperand(MI.getOperand(1));
7043   int64_t Disp = MI.getOperand(2).getImm();
7044   MachineOperand Src2 = earlyUseOperand(MI.getOperand(3));
7045   Register BitShift = IsSubWord ? MI.getOperand(4).getReg() : Register();
7046   Register NegBitShift = IsSubWord ? MI.getOperand(5).getReg() : Register();
7047   DebugLoc DL = MI.getDebugLoc();
7048   if (IsSubWord)
7049     BitSize = MI.getOperand(6).getImm();
7050 
7051   // Subword operations use 32-bit registers.
7052   const TargetRegisterClass *RC = (BitSize <= 32 ?
7053                                    &SystemZ::GR32BitRegClass :
7054                                    &SystemZ::GR64BitRegClass);
7055   unsigned LOpcode  = BitSize <= 32 ? SystemZ::L  : SystemZ::LG;
7056   unsigned CSOpcode = BitSize <= 32 ? SystemZ::CS : SystemZ::CSG;
7057 
7058   // Get the right opcodes for the displacement.
7059   LOpcode  = TII->getOpcodeForOffset(LOpcode,  Disp);
7060   CSOpcode = TII->getOpcodeForOffset(CSOpcode, Disp);
7061   assert(LOpcode && CSOpcode && "Displacement out of range");
7062 
7063   // Create virtual registers for temporary results.
7064   Register OrigVal       = MRI.createVirtualRegister(RC);
7065   Register OldVal        = MRI.createVirtualRegister(RC);
7066   Register NewVal        = (BinOpcode || IsSubWord ?
7067                             MRI.createVirtualRegister(RC) : Src2.getReg());
7068   Register RotatedOldVal = (IsSubWord ? MRI.createVirtualRegister(RC) : OldVal);
7069   Register RotatedNewVal = (IsSubWord ? MRI.createVirtualRegister(RC) : NewVal);
7070 
7071   // Insert a basic block for the main loop.
7072   MachineBasicBlock *StartMBB = MBB;
7073   MachineBasicBlock *DoneMBB  = splitBlockBefore(MI, MBB);
7074   MachineBasicBlock *LoopMBB  = emitBlockAfter(StartMBB);
7075 
7076   //  StartMBB:
7077   //   ...
7078   //   %OrigVal = L Disp(%Base)
7079   //   # fall through to LoopMMB
7080   MBB = StartMBB;
7081   BuildMI(MBB, DL, TII->get(LOpcode), OrigVal).add(Base).addImm(Disp).addReg(0);
7082   MBB->addSuccessor(LoopMBB);
7083 
7084   //  LoopMBB:
7085   //   %OldVal        = phi [ %OrigVal, StartMBB ], [ %Dest, LoopMBB ]
7086   //   %RotatedOldVal = RLL %OldVal, 0(%BitShift)
7087   //   %RotatedNewVal = OP %RotatedOldVal, %Src2
7088   //   %NewVal        = RLL %RotatedNewVal, 0(%NegBitShift)
7089   //   %Dest          = CS %OldVal, %NewVal, Disp(%Base)
7090   //   JNE LoopMBB
7091   //   # fall through to DoneMMB
7092   MBB = LoopMBB;
7093   BuildMI(MBB, DL, TII->get(SystemZ::PHI), OldVal)
7094     .addReg(OrigVal).addMBB(StartMBB)
7095     .addReg(Dest).addMBB(LoopMBB);
7096   if (IsSubWord)
7097     BuildMI(MBB, DL, TII->get(SystemZ::RLL), RotatedOldVal)
7098       .addReg(OldVal).addReg(BitShift).addImm(0);
7099   if (Invert) {
7100     // Perform the operation normally and then invert every bit of the field.
7101     Register Tmp = MRI.createVirtualRegister(RC);
7102     BuildMI(MBB, DL, TII->get(BinOpcode), Tmp).addReg(RotatedOldVal).add(Src2);
7103     if (BitSize <= 32)
7104       // XILF with the upper BitSize bits set.
7105       BuildMI(MBB, DL, TII->get(SystemZ::XILF), RotatedNewVal)
7106         .addReg(Tmp).addImm(-1U << (32 - BitSize));
7107     else {
7108       // Use LCGR and add -1 to the result, which is more compact than
7109       // an XILF, XILH pair.
7110       Register Tmp2 = MRI.createVirtualRegister(RC);
7111       BuildMI(MBB, DL, TII->get(SystemZ::LCGR), Tmp2).addReg(Tmp);
7112       BuildMI(MBB, DL, TII->get(SystemZ::AGHI), RotatedNewVal)
7113         .addReg(Tmp2).addImm(-1);
7114     }
7115   } else if (BinOpcode)
7116     // A simply binary operation.
7117     BuildMI(MBB, DL, TII->get(BinOpcode), RotatedNewVal)
7118         .addReg(RotatedOldVal)
7119         .add(Src2);
7120   else if (IsSubWord)
7121     // Use RISBG to rotate Src2 into position and use it to replace the
7122     // field in RotatedOldVal.
7123     BuildMI(MBB, DL, TII->get(SystemZ::RISBG32), RotatedNewVal)
7124       .addReg(RotatedOldVal).addReg(Src2.getReg())
7125       .addImm(32).addImm(31 + BitSize).addImm(32 - BitSize);
7126   if (IsSubWord)
7127     BuildMI(MBB, DL, TII->get(SystemZ::RLL), NewVal)
7128       .addReg(RotatedNewVal).addReg(NegBitShift).addImm(0);
7129   BuildMI(MBB, DL, TII->get(CSOpcode), Dest)
7130       .addReg(OldVal)
7131       .addReg(NewVal)
7132       .add(Base)
7133       .addImm(Disp);
7134   BuildMI(MBB, DL, TII->get(SystemZ::BRC))
7135     .addImm(SystemZ::CCMASK_CS).addImm(SystemZ::CCMASK_CS_NE).addMBB(LoopMBB);
7136   MBB->addSuccessor(LoopMBB);
7137   MBB->addSuccessor(DoneMBB);
7138 
7139   MI.eraseFromParent();
7140   return DoneMBB;
7141 }
7142 
7143 // Implement EmitInstrWithCustomInserter for pseudo
7144 // ATOMIC_LOAD{,W}_{,U}{MIN,MAX} instruction MI.  CompareOpcode is the
7145 // instruction that should be used to compare the current field with the
7146 // minimum or maximum value.  KeepOldMask is the BRC condition-code mask
7147 // for when the current field should be kept.  BitSize is the width of
7148 // the field in bits, or 0 if this is a partword ATOMIC_LOADW_* instruction.
7149 MachineBasicBlock *SystemZTargetLowering::emitAtomicLoadMinMax(
7150     MachineInstr &MI, MachineBasicBlock *MBB, unsigned CompareOpcode,
7151     unsigned KeepOldMask, unsigned BitSize) const {
7152   MachineFunction &MF = *MBB->getParent();
7153   const SystemZInstrInfo *TII =
7154       static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo());
7155   MachineRegisterInfo &MRI = MF.getRegInfo();
7156   bool IsSubWord = (BitSize < 32);
7157 
7158   // Extract the operands.  Base can be a register or a frame index.
7159   Register Dest = MI.getOperand(0).getReg();
7160   MachineOperand Base = earlyUseOperand(MI.getOperand(1));
7161   int64_t Disp = MI.getOperand(2).getImm();
7162   Register Src2 = MI.getOperand(3).getReg();
7163   Register BitShift = (IsSubWord ? MI.getOperand(4).getReg() : Register());
7164   Register NegBitShift = (IsSubWord ? MI.getOperand(5).getReg() : Register());
7165   DebugLoc DL = MI.getDebugLoc();
7166   if (IsSubWord)
7167     BitSize = MI.getOperand(6).getImm();
7168 
7169   // Subword operations use 32-bit registers.
7170   const TargetRegisterClass *RC = (BitSize <= 32 ?
7171                                    &SystemZ::GR32BitRegClass :
7172                                    &SystemZ::GR64BitRegClass);
7173   unsigned LOpcode  = BitSize <= 32 ? SystemZ::L  : SystemZ::LG;
7174   unsigned CSOpcode = BitSize <= 32 ? SystemZ::CS : SystemZ::CSG;
7175 
7176   // Get the right opcodes for the displacement.
7177   LOpcode  = TII->getOpcodeForOffset(LOpcode,  Disp);
7178   CSOpcode = TII->getOpcodeForOffset(CSOpcode, Disp);
7179   assert(LOpcode && CSOpcode && "Displacement out of range");
7180 
7181   // Create virtual registers for temporary results.
7182   Register OrigVal       = MRI.createVirtualRegister(RC);
7183   Register OldVal        = MRI.createVirtualRegister(RC);
7184   Register NewVal        = MRI.createVirtualRegister(RC);
7185   Register RotatedOldVal = (IsSubWord ? MRI.createVirtualRegister(RC) : OldVal);
7186   Register RotatedAltVal = (IsSubWord ? MRI.createVirtualRegister(RC) : Src2);
7187   Register RotatedNewVal = (IsSubWord ? MRI.createVirtualRegister(RC) : NewVal);
7188 
7189   // Insert 3 basic blocks for the loop.
7190   MachineBasicBlock *StartMBB  = MBB;
7191   MachineBasicBlock *DoneMBB   = splitBlockBefore(MI, MBB);
7192   MachineBasicBlock *LoopMBB   = emitBlockAfter(StartMBB);
7193   MachineBasicBlock *UseAltMBB = emitBlockAfter(LoopMBB);
7194   MachineBasicBlock *UpdateMBB = emitBlockAfter(UseAltMBB);
7195 
7196   //  StartMBB:
7197   //   ...
7198   //   %OrigVal     = L Disp(%Base)
7199   //   # fall through to LoopMMB
7200   MBB = StartMBB;
7201   BuildMI(MBB, DL, TII->get(LOpcode), OrigVal).add(Base).addImm(Disp).addReg(0);
7202   MBB->addSuccessor(LoopMBB);
7203 
7204   //  LoopMBB:
7205   //   %OldVal        = phi [ %OrigVal, StartMBB ], [ %Dest, UpdateMBB ]
7206   //   %RotatedOldVal = RLL %OldVal, 0(%BitShift)
7207   //   CompareOpcode %RotatedOldVal, %Src2
7208   //   BRC KeepOldMask, UpdateMBB
7209   MBB = LoopMBB;
7210   BuildMI(MBB, DL, TII->get(SystemZ::PHI), OldVal)
7211     .addReg(OrigVal).addMBB(StartMBB)
7212     .addReg(Dest).addMBB(UpdateMBB);
7213   if (IsSubWord)
7214     BuildMI(MBB, DL, TII->get(SystemZ::RLL), RotatedOldVal)
7215       .addReg(OldVal).addReg(BitShift).addImm(0);
7216   BuildMI(MBB, DL, TII->get(CompareOpcode))
7217     .addReg(RotatedOldVal).addReg(Src2);
7218   BuildMI(MBB, DL, TII->get(SystemZ::BRC))
7219     .addImm(SystemZ::CCMASK_ICMP).addImm(KeepOldMask).addMBB(UpdateMBB);
7220   MBB->addSuccessor(UpdateMBB);
7221   MBB->addSuccessor(UseAltMBB);
7222 
7223   //  UseAltMBB:
7224   //   %RotatedAltVal = RISBG %RotatedOldVal, %Src2, 32, 31 + BitSize, 0
7225   //   # fall through to UpdateMMB
7226   MBB = UseAltMBB;
7227   if (IsSubWord)
7228     BuildMI(MBB, DL, TII->get(SystemZ::RISBG32), RotatedAltVal)
7229       .addReg(RotatedOldVal).addReg(Src2)
7230       .addImm(32).addImm(31 + BitSize).addImm(0);
7231   MBB->addSuccessor(UpdateMBB);
7232 
7233   //  UpdateMBB:
7234   //   %RotatedNewVal = PHI [ %RotatedOldVal, LoopMBB ],
7235   //                        [ %RotatedAltVal, UseAltMBB ]
7236   //   %NewVal        = RLL %RotatedNewVal, 0(%NegBitShift)
7237   //   %Dest          = CS %OldVal, %NewVal, Disp(%Base)
7238   //   JNE LoopMBB
7239   //   # fall through to DoneMMB
7240   MBB = UpdateMBB;
7241   BuildMI(MBB, DL, TII->get(SystemZ::PHI), RotatedNewVal)
7242     .addReg(RotatedOldVal).addMBB(LoopMBB)
7243     .addReg(RotatedAltVal).addMBB(UseAltMBB);
7244   if (IsSubWord)
7245     BuildMI(MBB, DL, TII->get(SystemZ::RLL), NewVal)
7246       .addReg(RotatedNewVal).addReg(NegBitShift).addImm(0);
7247   BuildMI(MBB, DL, TII->get(CSOpcode), Dest)
7248       .addReg(OldVal)
7249       .addReg(NewVal)
7250       .add(Base)
7251       .addImm(Disp);
7252   BuildMI(MBB, DL, TII->get(SystemZ::BRC))
7253     .addImm(SystemZ::CCMASK_CS).addImm(SystemZ::CCMASK_CS_NE).addMBB(LoopMBB);
7254   MBB->addSuccessor(LoopMBB);
7255   MBB->addSuccessor(DoneMBB);
7256 
7257   MI.eraseFromParent();
7258   return DoneMBB;
7259 }
7260 
7261 // Implement EmitInstrWithCustomInserter for pseudo ATOMIC_CMP_SWAPW
7262 // instruction MI.
7263 MachineBasicBlock *
7264 SystemZTargetLowering::emitAtomicCmpSwapW(MachineInstr &MI,
7265                                           MachineBasicBlock *MBB) const {
7266 
7267   MachineFunction &MF = *MBB->getParent();
7268   const SystemZInstrInfo *TII =
7269       static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo());
7270   MachineRegisterInfo &MRI = MF.getRegInfo();
7271 
7272   // Extract the operands.  Base can be a register or a frame index.
7273   Register Dest = MI.getOperand(0).getReg();
7274   MachineOperand Base = earlyUseOperand(MI.getOperand(1));
7275   int64_t Disp = MI.getOperand(2).getImm();
7276   Register OrigCmpVal = MI.getOperand(3).getReg();
7277   Register OrigSwapVal = MI.getOperand(4).getReg();
7278   Register BitShift = MI.getOperand(5).getReg();
7279   Register NegBitShift = MI.getOperand(6).getReg();
7280   int64_t BitSize = MI.getOperand(7).getImm();
7281   DebugLoc DL = MI.getDebugLoc();
7282 
7283   const TargetRegisterClass *RC = &SystemZ::GR32BitRegClass;
7284 
7285   // Get the right opcodes for the displacement.
7286   unsigned LOpcode  = TII->getOpcodeForOffset(SystemZ::L,  Disp);
7287   unsigned CSOpcode = TII->getOpcodeForOffset(SystemZ::CS, Disp);
7288   assert(LOpcode && CSOpcode && "Displacement out of range");
7289 
7290   // Create virtual registers for temporary results.
7291   Register OrigOldVal = MRI.createVirtualRegister(RC);
7292   Register OldVal = MRI.createVirtualRegister(RC);
7293   Register CmpVal = MRI.createVirtualRegister(RC);
7294   Register SwapVal = MRI.createVirtualRegister(RC);
7295   Register StoreVal = MRI.createVirtualRegister(RC);
7296   Register RetryOldVal = MRI.createVirtualRegister(RC);
7297   Register RetryCmpVal = MRI.createVirtualRegister(RC);
7298   Register RetrySwapVal = MRI.createVirtualRegister(RC);
7299 
7300   // Insert 2 basic blocks for the loop.
7301   MachineBasicBlock *StartMBB = MBB;
7302   MachineBasicBlock *DoneMBB  = splitBlockBefore(MI, MBB);
7303   MachineBasicBlock *LoopMBB  = emitBlockAfter(StartMBB);
7304   MachineBasicBlock *SetMBB   = emitBlockAfter(LoopMBB);
7305 
7306   //  StartMBB:
7307   //   ...
7308   //   %OrigOldVal     = L Disp(%Base)
7309   //   # fall through to LoopMMB
7310   MBB = StartMBB;
7311   BuildMI(MBB, DL, TII->get(LOpcode), OrigOldVal)
7312       .add(Base)
7313       .addImm(Disp)
7314       .addReg(0);
7315   MBB->addSuccessor(LoopMBB);
7316 
7317   //  LoopMBB:
7318   //   %OldVal        = phi [ %OrigOldVal, EntryBB ], [ %RetryOldVal, SetMBB ]
7319   //   %CmpVal        = phi [ %OrigCmpVal, EntryBB ], [ %RetryCmpVal, SetMBB ]
7320   //   %SwapVal       = phi [ %OrigSwapVal, EntryBB ], [ %RetrySwapVal, SetMBB ]
7321   //   %Dest          = RLL %OldVal, BitSize(%BitShift)
7322   //                      ^^ The low BitSize bits contain the field
7323   //                         of interest.
7324   //   %RetryCmpVal   = RISBG32 %CmpVal, %Dest, 32, 63-BitSize, 0
7325   //                      ^^ Replace the upper 32-BitSize bits of the
7326   //                         comparison value with those that we loaded,
7327   //                         so that we can use a full word comparison.
7328   //   CR %Dest, %RetryCmpVal
7329   //   JNE DoneMBB
7330   //   # Fall through to SetMBB
7331   MBB = LoopMBB;
7332   BuildMI(MBB, DL, TII->get(SystemZ::PHI), OldVal)
7333     .addReg(OrigOldVal).addMBB(StartMBB)
7334     .addReg(RetryOldVal).addMBB(SetMBB);
7335   BuildMI(MBB, DL, TII->get(SystemZ::PHI), CmpVal)
7336     .addReg(OrigCmpVal).addMBB(StartMBB)
7337     .addReg(RetryCmpVal).addMBB(SetMBB);
7338   BuildMI(MBB, DL, TII->get(SystemZ::PHI), SwapVal)
7339     .addReg(OrigSwapVal).addMBB(StartMBB)
7340     .addReg(RetrySwapVal).addMBB(SetMBB);
7341   BuildMI(MBB, DL, TII->get(SystemZ::RLL), Dest)
7342     .addReg(OldVal).addReg(BitShift).addImm(BitSize);
7343   BuildMI(MBB, DL, TII->get(SystemZ::RISBG32), RetryCmpVal)
7344     .addReg(CmpVal).addReg(Dest).addImm(32).addImm(63 - BitSize).addImm(0);
7345   BuildMI(MBB, DL, TII->get(SystemZ::CR))
7346     .addReg(Dest).addReg(RetryCmpVal);
7347   BuildMI(MBB, DL, TII->get(SystemZ::BRC))
7348     .addImm(SystemZ::CCMASK_ICMP)
7349     .addImm(SystemZ::CCMASK_CMP_NE).addMBB(DoneMBB);
7350   MBB->addSuccessor(DoneMBB);
7351   MBB->addSuccessor(SetMBB);
7352 
7353   //  SetMBB:
7354   //   %RetrySwapVal = RISBG32 %SwapVal, %Dest, 32, 63-BitSize, 0
7355   //                      ^^ Replace the upper 32-BitSize bits of the new
7356   //                         value with those that we loaded.
7357   //   %StoreVal    = RLL %RetrySwapVal, -BitSize(%NegBitShift)
7358   //                      ^^ Rotate the new field to its proper position.
7359   //   %RetryOldVal = CS %Dest, %StoreVal, Disp(%Base)
7360   //   JNE LoopMBB
7361   //   # fall through to ExitMMB
7362   MBB = SetMBB;
7363   BuildMI(MBB, DL, TII->get(SystemZ::RISBG32), RetrySwapVal)
7364     .addReg(SwapVal).addReg(Dest).addImm(32).addImm(63 - BitSize).addImm(0);
7365   BuildMI(MBB, DL, TII->get(SystemZ::RLL), StoreVal)
7366     .addReg(RetrySwapVal).addReg(NegBitShift).addImm(-BitSize);
7367   BuildMI(MBB, DL, TII->get(CSOpcode), RetryOldVal)
7368       .addReg(OldVal)
7369       .addReg(StoreVal)
7370       .add(Base)
7371       .addImm(Disp);
7372   BuildMI(MBB, DL, TII->get(SystemZ::BRC))
7373     .addImm(SystemZ::CCMASK_CS).addImm(SystemZ::CCMASK_CS_NE).addMBB(LoopMBB);
7374   MBB->addSuccessor(LoopMBB);
7375   MBB->addSuccessor(DoneMBB);
7376 
7377   // If the CC def wasn't dead in the ATOMIC_CMP_SWAPW, mark CC as live-in
7378   // to the block after the loop.  At this point, CC may have been defined
7379   // either by the CR in LoopMBB or by the CS in SetMBB.
7380   if (!MI.registerDefIsDead(SystemZ::CC))
7381     DoneMBB->addLiveIn(SystemZ::CC);
7382 
7383   MI.eraseFromParent();
7384   return DoneMBB;
7385 }
7386 
7387 // Emit a move from two GR64s to a GR128.
7388 MachineBasicBlock *
7389 SystemZTargetLowering::emitPair128(MachineInstr &MI,
7390                                    MachineBasicBlock *MBB) const {
7391   MachineFunction &MF = *MBB->getParent();
7392   const SystemZInstrInfo *TII =
7393       static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo());
7394   MachineRegisterInfo &MRI = MF.getRegInfo();
7395   DebugLoc DL = MI.getDebugLoc();
7396 
7397   Register Dest = MI.getOperand(0).getReg();
7398   Register Hi = MI.getOperand(1).getReg();
7399   Register Lo = MI.getOperand(2).getReg();
7400   Register Tmp1 = MRI.createVirtualRegister(&SystemZ::GR128BitRegClass);
7401   Register Tmp2 = MRI.createVirtualRegister(&SystemZ::GR128BitRegClass);
7402 
7403   BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::IMPLICIT_DEF), Tmp1);
7404   BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::INSERT_SUBREG), Tmp2)
7405     .addReg(Tmp1).addReg(Hi).addImm(SystemZ::subreg_h64);
7406   BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::INSERT_SUBREG), Dest)
7407     .addReg(Tmp2).addReg(Lo).addImm(SystemZ::subreg_l64);
7408 
7409   MI.eraseFromParent();
7410   return MBB;
7411 }
7412 
7413 // Emit an extension from a GR64 to a GR128.  ClearEven is true
7414 // if the high register of the GR128 value must be cleared or false if
7415 // it's "don't care".
7416 MachineBasicBlock *SystemZTargetLowering::emitExt128(MachineInstr &MI,
7417                                                      MachineBasicBlock *MBB,
7418                                                      bool ClearEven) const {
7419   MachineFunction &MF = *MBB->getParent();
7420   const SystemZInstrInfo *TII =
7421       static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo());
7422   MachineRegisterInfo &MRI = MF.getRegInfo();
7423   DebugLoc DL = MI.getDebugLoc();
7424 
7425   Register Dest = MI.getOperand(0).getReg();
7426   Register Src = MI.getOperand(1).getReg();
7427   Register In128 = MRI.createVirtualRegister(&SystemZ::GR128BitRegClass);
7428 
7429   BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::IMPLICIT_DEF), In128);
7430   if (ClearEven) {
7431     Register NewIn128 = MRI.createVirtualRegister(&SystemZ::GR128BitRegClass);
7432     Register Zero64 = MRI.createVirtualRegister(&SystemZ::GR64BitRegClass);
7433 
7434     BuildMI(*MBB, MI, DL, TII->get(SystemZ::LLILL), Zero64)
7435       .addImm(0);
7436     BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::INSERT_SUBREG), NewIn128)
7437       .addReg(In128).addReg(Zero64).addImm(SystemZ::subreg_h64);
7438     In128 = NewIn128;
7439   }
7440   BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::INSERT_SUBREG), Dest)
7441     .addReg(In128).addReg(Src).addImm(SystemZ::subreg_l64);
7442 
7443   MI.eraseFromParent();
7444   return MBB;
7445 }
7446 
7447 MachineBasicBlock *SystemZTargetLowering::emitMemMemWrapper(
7448     MachineInstr &MI, MachineBasicBlock *MBB, unsigned Opcode) const {
7449   MachineFunction &MF = *MBB->getParent();
7450   const SystemZInstrInfo *TII =
7451       static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo());
7452   MachineRegisterInfo &MRI = MF.getRegInfo();
7453   DebugLoc DL = MI.getDebugLoc();
7454 
7455   MachineOperand DestBase = earlyUseOperand(MI.getOperand(0));
7456   uint64_t DestDisp = MI.getOperand(1).getImm();
7457   MachineOperand SrcBase = earlyUseOperand(MI.getOperand(2));
7458   uint64_t SrcDisp = MI.getOperand(3).getImm();
7459   uint64_t Length = MI.getOperand(4).getImm();
7460 
7461   // When generating more than one CLC, all but the last will need to
7462   // branch to the end when a difference is found.
7463   MachineBasicBlock *EndMBB = (Length > 256 && Opcode == SystemZ::CLC ?
7464                                splitBlockAfter(MI, MBB) : nullptr);
7465 
7466   // Check for the loop form, in which operand 5 is the trip count.
7467   if (MI.getNumExplicitOperands() > 5) {
7468     bool HaveSingleBase = DestBase.isIdenticalTo(SrcBase);
7469 
7470     Register StartCountReg = MI.getOperand(5).getReg();
7471     Register StartSrcReg   = forceReg(MI, SrcBase, TII);
7472     Register StartDestReg  = (HaveSingleBase ? StartSrcReg :
7473                               forceReg(MI, DestBase, TII));
7474 
7475     const TargetRegisterClass *RC = &SystemZ::ADDR64BitRegClass;
7476     Register ThisSrcReg  = MRI.createVirtualRegister(RC);
7477     Register ThisDestReg = (HaveSingleBase ? ThisSrcReg :
7478                             MRI.createVirtualRegister(RC));
7479     Register NextSrcReg  = MRI.createVirtualRegister(RC);
7480     Register NextDestReg = (HaveSingleBase ? NextSrcReg :
7481                             MRI.createVirtualRegister(RC));
7482 
7483     RC = &SystemZ::GR64BitRegClass;
7484     Register ThisCountReg = MRI.createVirtualRegister(RC);
7485     Register NextCountReg = MRI.createVirtualRegister(RC);
7486 
7487     MachineBasicBlock *StartMBB = MBB;
7488     MachineBasicBlock *DoneMBB = splitBlockBefore(MI, MBB);
7489     MachineBasicBlock *LoopMBB = emitBlockAfter(StartMBB);
7490     MachineBasicBlock *NextMBB = (EndMBB ? emitBlockAfter(LoopMBB) : LoopMBB);
7491 
7492     //  StartMBB:
7493     //   # fall through to LoopMMB
7494     MBB->addSuccessor(LoopMBB);
7495 
7496     //  LoopMBB:
7497     //   %ThisDestReg = phi [ %StartDestReg, StartMBB ],
7498     //                      [ %NextDestReg, NextMBB ]
7499     //   %ThisSrcReg = phi [ %StartSrcReg, StartMBB ],
7500     //                     [ %NextSrcReg, NextMBB ]
7501     //   %ThisCountReg = phi [ %StartCountReg, StartMBB ],
7502     //                       [ %NextCountReg, NextMBB ]
7503     //   ( PFD 2, 768+DestDisp(%ThisDestReg) )
7504     //   Opcode DestDisp(256,%ThisDestReg), SrcDisp(%ThisSrcReg)
7505     //   ( JLH EndMBB )
7506     //
7507     // The prefetch is used only for MVC.  The JLH is used only for CLC.
7508     MBB = LoopMBB;
7509 
7510     BuildMI(MBB, DL, TII->get(SystemZ::PHI), ThisDestReg)
7511       .addReg(StartDestReg).addMBB(StartMBB)
7512       .addReg(NextDestReg).addMBB(NextMBB);
7513     if (!HaveSingleBase)
7514       BuildMI(MBB, DL, TII->get(SystemZ::PHI), ThisSrcReg)
7515         .addReg(StartSrcReg).addMBB(StartMBB)
7516         .addReg(NextSrcReg).addMBB(NextMBB);
7517     BuildMI(MBB, DL, TII->get(SystemZ::PHI), ThisCountReg)
7518       .addReg(StartCountReg).addMBB(StartMBB)
7519       .addReg(NextCountReg).addMBB(NextMBB);
7520     if (Opcode == SystemZ::MVC)
7521       BuildMI(MBB, DL, TII->get(SystemZ::PFD))
7522         .addImm(SystemZ::PFD_WRITE)
7523         .addReg(ThisDestReg).addImm(DestDisp + 768).addReg(0);
7524     BuildMI(MBB, DL, TII->get(Opcode))
7525       .addReg(ThisDestReg).addImm(DestDisp).addImm(256)
7526       .addReg(ThisSrcReg).addImm(SrcDisp);
7527     if (EndMBB) {
7528       BuildMI(MBB, DL, TII->get(SystemZ::BRC))
7529         .addImm(SystemZ::CCMASK_ICMP).addImm(SystemZ::CCMASK_CMP_NE)
7530         .addMBB(EndMBB);
7531       MBB->addSuccessor(EndMBB);
7532       MBB->addSuccessor(NextMBB);
7533     }
7534 
7535     // NextMBB:
7536     //   %NextDestReg = LA 256(%ThisDestReg)
7537     //   %NextSrcReg = LA 256(%ThisSrcReg)
7538     //   %NextCountReg = AGHI %ThisCountReg, -1
7539     //   CGHI %NextCountReg, 0
7540     //   JLH LoopMBB
7541     //   # fall through to DoneMMB
7542     //
7543     // The AGHI, CGHI and JLH should be converted to BRCTG by later passes.
7544     MBB = NextMBB;
7545 
7546     BuildMI(MBB, DL, TII->get(SystemZ::LA), NextDestReg)
7547       .addReg(ThisDestReg).addImm(256).addReg(0);
7548     if (!HaveSingleBase)
7549       BuildMI(MBB, DL, TII->get(SystemZ::LA), NextSrcReg)
7550         .addReg(ThisSrcReg).addImm(256).addReg(0);
7551     BuildMI(MBB, DL, TII->get(SystemZ::AGHI), NextCountReg)
7552       .addReg(ThisCountReg).addImm(-1);
7553     BuildMI(MBB, DL, TII->get(SystemZ::CGHI))
7554       .addReg(NextCountReg).addImm(0);
7555     BuildMI(MBB, DL, TII->get(SystemZ::BRC))
7556       .addImm(SystemZ::CCMASK_ICMP).addImm(SystemZ::CCMASK_CMP_NE)
7557       .addMBB(LoopMBB);
7558     MBB->addSuccessor(LoopMBB);
7559     MBB->addSuccessor(DoneMBB);
7560 
7561     DestBase = MachineOperand::CreateReg(NextDestReg, false);
7562     SrcBase = MachineOperand::CreateReg(NextSrcReg, false);
7563     Length &= 255;
7564     if (EndMBB && !Length)
7565       // If the loop handled the whole CLC range, DoneMBB will be empty with
7566       // CC live-through into EndMBB, so add it as live-in.
7567       DoneMBB->addLiveIn(SystemZ::CC);
7568     MBB = DoneMBB;
7569   }
7570   // Handle any remaining bytes with straight-line code.
7571   while (Length > 0) {
7572     uint64_t ThisLength = std::min(Length, uint64_t(256));
7573     // The previous iteration might have created out-of-range displacements.
7574     // Apply them using LAY if so.
7575     if (!isUInt<12>(DestDisp)) {
7576       Register Reg = MRI.createVirtualRegister(&SystemZ::ADDR64BitRegClass);
7577       BuildMI(*MBB, MI, MI.getDebugLoc(), TII->get(SystemZ::LAY), Reg)
7578           .add(DestBase)
7579           .addImm(DestDisp)
7580           .addReg(0);
7581       DestBase = MachineOperand::CreateReg(Reg, false);
7582       DestDisp = 0;
7583     }
7584     if (!isUInt<12>(SrcDisp)) {
7585       Register Reg = MRI.createVirtualRegister(&SystemZ::ADDR64BitRegClass);
7586       BuildMI(*MBB, MI, MI.getDebugLoc(), TII->get(SystemZ::LAY), Reg)
7587           .add(SrcBase)
7588           .addImm(SrcDisp)
7589           .addReg(0);
7590       SrcBase = MachineOperand::CreateReg(Reg, false);
7591       SrcDisp = 0;
7592     }
7593     BuildMI(*MBB, MI, DL, TII->get(Opcode))
7594         .add(DestBase)
7595         .addImm(DestDisp)
7596         .addImm(ThisLength)
7597         .add(SrcBase)
7598         .addImm(SrcDisp)
7599         .setMemRefs(MI.memoperands());
7600     DestDisp += ThisLength;
7601     SrcDisp += ThisLength;
7602     Length -= ThisLength;
7603     // If there's another CLC to go, branch to the end if a difference
7604     // was found.
7605     if (EndMBB && Length > 0) {
7606       MachineBasicBlock *NextMBB = splitBlockBefore(MI, MBB);
7607       BuildMI(MBB, DL, TII->get(SystemZ::BRC))
7608         .addImm(SystemZ::CCMASK_ICMP).addImm(SystemZ::CCMASK_CMP_NE)
7609         .addMBB(EndMBB);
7610       MBB->addSuccessor(EndMBB);
7611       MBB->addSuccessor(NextMBB);
7612       MBB = NextMBB;
7613     }
7614   }
7615   if (EndMBB) {
7616     MBB->addSuccessor(EndMBB);
7617     MBB = EndMBB;
7618     MBB->addLiveIn(SystemZ::CC);
7619   }
7620 
7621   MI.eraseFromParent();
7622   return MBB;
7623 }
7624 
7625 // Decompose string pseudo-instruction MI into a loop that continually performs
7626 // Opcode until CC != 3.
7627 MachineBasicBlock *SystemZTargetLowering::emitStringWrapper(
7628     MachineInstr &MI, MachineBasicBlock *MBB, unsigned Opcode) const {
7629   MachineFunction &MF = *MBB->getParent();
7630   const SystemZInstrInfo *TII =
7631       static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo());
7632   MachineRegisterInfo &MRI = MF.getRegInfo();
7633   DebugLoc DL = MI.getDebugLoc();
7634 
7635   uint64_t End1Reg = MI.getOperand(0).getReg();
7636   uint64_t Start1Reg = MI.getOperand(1).getReg();
7637   uint64_t Start2Reg = MI.getOperand(2).getReg();
7638   uint64_t CharReg = MI.getOperand(3).getReg();
7639 
7640   const TargetRegisterClass *RC = &SystemZ::GR64BitRegClass;
7641   uint64_t This1Reg = MRI.createVirtualRegister(RC);
7642   uint64_t This2Reg = MRI.createVirtualRegister(RC);
7643   uint64_t End2Reg  = MRI.createVirtualRegister(RC);
7644 
7645   MachineBasicBlock *StartMBB = MBB;
7646   MachineBasicBlock *DoneMBB = splitBlockBefore(MI, MBB);
7647   MachineBasicBlock *LoopMBB = emitBlockAfter(StartMBB);
7648 
7649   //  StartMBB:
7650   //   # fall through to LoopMMB
7651   MBB->addSuccessor(LoopMBB);
7652 
7653   //  LoopMBB:
7654   //   %This1Reg = phi [ %Start1Reg, StartMBB ], [ %End1Reg, LoopMBB ]
7655   //   %This2Reg = phi [ %Start2Reg, StartMBB ], [ %End2Reg, LoopMBB ]
7656   //   R0L = %CharReg
7657   //   %End1Reg, %End2Reg = CLST %This1Reg, %This2Reg -- uses R0L
7658   //   JO LoopMBB
7659   //   # fall through to DoneMMB
7660   //
7661   // The load of R0L can be hoisted by post-RA LICM.
7662   MBB = LoopMBB;
7663 
7664   BuildMI(MBB, DL, TII->get(SystemZ::PHI), This1Reg)
7665     .addReg(Start1Reg).addMBB(StartMBB)
7666     .addReg(End1Reg).addMBB(LoopMBB);
7667   BuildMI(MBB, DL, TII->get(SystemZ::PHI), This2Reg)
7668     .addReg(Start2Reg).addMBB(StartMBB)
7669     .addReg(End2Reg).addMBB(LoopMBB);
7670   BuildMI(MBB, DL, TII->get(TargetOpcode::COPY), SystemZ::R0L).addReg(CharReg);
7671   BuildMI(MBB, DL, TII->get(Opcode))
7672     .addReg(End1Reg, RegState::Define).addReg(End2Reg, RegState::Define)
7673     .addReg(This1Reg).addReg(This2Reg);
7674   BuildMI(MBB, DL, TII->get(SystemZ::BRC))
7675     .addImm(SystemZ::CCMASK_ANY).addImm(SystemZ::CCMASK_3).addMBB(LoopMBB);
7676   MBB->addSuccessor(LoopMBB);
7677   MBB->addSuccessor(DoneMBB);
7678 
7679   DoneMBB->addLiveIn(SystemZ::CC);
7680 
7681   MI.eraseFromParent();
7682   return DoneMBB;
7683 }
7684 
7685 // Update TBEGIN instruction with final opcode and register clobbers.
7686 MachineBasicBlock *SystemZTargetLowering::emitTransactionBegin(
7687     MachineInstr &MI, MachineBasicBlock *MBB, unsigned Opcode,
7688     bool NoFloat) const {
7689   MachineFunction &MF = *MBB->getParent();
7690   const TargetFrameLowering *TFI = Subtarget.getFrameLowering();
7691   const SystemZInstrInfo *TII = Subtarget.getInstrInfo();
7692 
7693   // Update opcode.
7694   MI.setDesc(TII->get(Opcode));
7695 
7696   // We cannot handle a TBEGIN that clobbers the stack or frame pointer.
7697   // Make sure to add the corresponding GRSM bits if they are missing.
7698   uint64_t Control = MI.getOperand(2).getImm();
7699   static const unsigned GPRControlBit[16] = {
7700     0x8000, 0x8000, 0x4000, 0x4000, 0x2000, 0x2000, 0x1000, 0x1000,
7701     0x0800, 0x0800, 0x0400, 0x0400, 0x0200, 0x0200, 0x0100, 0x0100
7702   };
7703   Control |= GPRControlBit[15];
7704   if (TFI->hasFP(MF))
7705     Control |= GPRControlBit[11];
7706   MI.getOperand(2).setImm(Control);
7707 
7708   // Add GPR clobbers.
7709   for (int I = 0; I < 16; I++) {
7710     if ((Control & GPRControlBit[I]) == 0) {
7711       unsigned Reg = SystemZMC::GR64Regs[I];
7712       MI.addOperand(MachineOperand::CreateReg(Reg, true, true));
7713     }
7714   }
7715 
7716   // Add FPR/VR clobbers.
7717   if (!NoFloat && (Control & 4) != 0) {
7718     if (Subtarget.hasVector()) {
7719       for (int I = 0; I < 32; I++) {
7720         unsigned Reg = SystemZMC::VR128Regs[I];
7721         MI.addOperand(MachineOperand::CreateReg(Reg, true, true));
7722       }
7723     } else {
7724       for (int I = 0; I < 16; I++) {
7725         unsigned Reg = SystemZMC::FP64Regs[I];
7726         MI.addOperand(MachineOperand::CreateReg(Reg, true, true));
7727       }
7728     }
7729   }
7730 
7731   return MBB;
7732 }
7733 
7734 MachineBasicBlock *SystemZTargetLowering::emitLoadAndTestCmp0(
7735     MachineInstr &MI, MachineBasicBlock *MBB, unsigned Opcode) const {
7736   MachineFunction &MF = *MBB->getParent();
7737   MachineRegisterInfo *MRI = &MF.getRegInfo();
7738   const SystemZInstrInfo *TII =
7739       static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo());
7740   DebugLoc DL = MI.getDebugLoc();
7741 
7742   Register SrcReg = MI.getOperand(0).getReg();
7743 
7744   // Create new virtual register of the same class as source.
7745   const TargetRegisterClass *RC = MRI->getRegClass(SrcReg);
7746   Register DstReg = MRI->createVirtualRegister(RC);
7747 
7748   // Replace pseudo with a normal load-and-test that models the def as
7749   // well.
7750   BuildMI(*MBB, MI, DL, TII->get(Opcode), DstReg)
7751     .addReg(SrcReg)
7752     .setMIFlags(MI.getFlags());
7753   MI.eraseFromParent();
7754 
7755   return MBB;
7756 }
7757 
7758 MachineBasicBlock *SystemZTargetLowering::EmitInstrWithCustomInserter(
7759     MachineInstr &MI, MachineBasicBlock *MBB) const {
7760   switch (MI.getOpcode()) {
7761   case SystemZ::Select32:
7762   case SystemZ::Select64:
7763   case SystemZ::SelectF32:
7764   case SystemZ::SelectF64:
7765   case SystemZ::SelectF128:
7766   case SystemZ::SelectVR32:
7767   case SystemZ::SelectVR64:
7768   case SystemZ::SelectVR128:
7769     return emitSelect(MI, MBB);
7770 
7771   case SystemZ::CondStore8Mux:
7772     return emitCondStore(MI, MBB, SystemZ::STCMux, 0, false);
7773   case SystemZ::CondStore8MuxInv:
7774     return emitCondStore(MI, MBB, SystemZ::STCMux, 0, true);
7775   case SystemZ::CondStore16Mux:
7776     return emitCondStore(MI, MBB, SystemZ::STHMux, 0, false);
7777   case SystemZ::CondStore16MuxInv:
7778     return emitCondStore(MI, MBB, SystemZ::STHMux, 0, true);
7779   case SystemZ::CondStore32Mux:
7780     return emitCondStore(MI, MBB, SystemZ::STMux, SystemZ::STOCMux, false);
7781   case SystemZ::CondStore32MuxInv:
7782     return emitCondStore(MI, MBB, SystemZ::STMux, SystemZ::STOCMux, true);
7783   case SystemZ::CondStore8:
7784     return emitCondStore(MI, MBB, SystemZ::STC, 0, false);
7785   case SystemZ::CondStore8Inv:
7786     return emitCondStore(MI, MBB, SystemZ::STC, 0, true);
7787   case SystemZ::CondStore16:
7788     return emitCondStore(MI, MBB, SystemZ::STH, 0, false);
7789   case SystemZ::CondStore16Inv:
7790     return emitCondStore(MI, MBB, SystemZ::STH, 0, true);
7791   case SystemZ::CondStore32:
7792     return emitCondStore(MI, MBB, SystemZ::ST, SystemZ::STOC, false);
7793   case SystemZ::CondStore32Inv:
7794     return emitCondStore(MI, MBB, SystemZ::ST, SystemZ::STOC, true);
7795   case SystemZ::CondStore64:
7796     return emitCondStore(MI, MBB, SystemZ::STG, SystemZ::STOCG, false);
7797   case SystemZ::CondStore64Inv:
7798     return emitCondStore(MI, MBB, SystemZ::STG, SystemZ::STOCG, true);
7799   case SystemZ::CondStoreF32:
7800     return emitCondStore(MI, MBB, SystemZ::STE, 0, false);
7801   case SystemZ::CondStoreF32Inv:
7802     return emitCondStore(MI, MBB, SystemZ::STE, 0, true);
7803   case SystemZ::CondStoreF64:
7804     return emitCondStore(MI, MBB, SystemZ::STD, 0, false);
7805   case SystemZ::CondStoreF64Inv:
7806     return emitCondStore(MI, MBB, SystemZ::STD, 0, true);
7807 
7808   case SystemZ::PAIR128:
7809     return emitPair128(MI, MBB);
7810   case SystemZ::AEXT128:
7811     return emitExt128(MI, MBB, false);
7812   case SystemZ::ZEXT128:
7813     return emitExt128(MI, MBB, true);
7814 
7815   case SystemZ::ATOMIC_SWAPW:
7816     return emitAtomicLoadBinary(MI, MBB, 0, 0);
7817   case SystemZ::ATOMIC_SWAP_32:
7818     return emitAtomicLoadBinary(MI, MBB, 0, 32);
7819   case SystemZ::ATOMIC_SWAP_64:
7820     return emitAtomicLoadBinary(MI, MBB, 0, 64);
7821 
7822   case SystemZ::ATOMIC_LOADW_AR:
7823     return emitAtomicLoadBinary(MI, MBB, SystemZ::AR, 0);
7824   case SystemZ::ATOMIC_LOADW_AFI:
7825     return emitAtomicLoadBinary(MI, MBB, SystemZ::AFI, 0);
7826   case SystemZ::ATOMIC_LOAD_AR:
7827     return emitAtomicLoadBinary(MI, MBB, SystemZ::AR, 32);
7828   case SystemZ::ATOMIC_LOAD_AHI:
7829     return emitAtomicLoadBinary(MI, MBB, SystemZ::AHI, 32);
7830   case SystemZ::ATOMIC_LOAD_AFI:
7831     return emitAtomicLoadBinary(MI, MBB, SystemZ::AFI, 32);
7832   case SystemZ::ATOMIC_LOAD_AGR:
7833     return emitAtomicLoadBinary(MI, MBB, SystemZ::AGR, 64);
7834   case SystemZ::ATOMIC_LOAD_AGHI:
7835     return emitAtomicLoadBinary(MI, MBB, SystemZ::AGHI, 64);
7836   case SystemZ::ATOMIC_LOAD_AGFI:
7837     return emitAtomicLoadBinary(MI, MBB, SystemZ::AGFI, 64);
7838 
7839   case SystemZ::ATOMIC_LOADW_SR:
7840     return emitAtomicLoadBinary(MI, MBB, SystemZ::SR, 0);
7841   case SystemZ::ATOMIC_LOAD_SR:
7842     return emitAtomicLoadBinary(MI, MBB, SystemZ::SR, 32);
7843   case SystemZ::ATOMIC_LOAD_SGR:
7844     return emitAtomicLoadBinary(MI, MBB, SystemZ::SGR, 64);
7845 
7846   case SystemZ::ATOMIC_LOADW_NR:
7847     return emitAtomicLoadBinary(MI, MBB, SystemZ::NR, 0);
7848   case SystemZ::ATOMIC_LOADW_NILH:
7849     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH, 0);
7850   case SystemZ::ATOMIC_LOAD_NR:
7851     return emitAtomicLoadBinary(MI, MBB, SystemZ::NR, 32);
7852   case SystemZ::ATOMIC_LOAD_NILL:
7853     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILL, 32);
7854   case SystemZ::ATOMIC_LOAD_NILH:
7855     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH, 32);
7856   case SystemZ::ATOMIC_LOAD_NILF:
7857     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILF, 32);
7858   case SystemZ::ATOMIC_LOAD_NGR:
7859     return emitAtomicLoadBinary(MI, MBB, SystemZ::NGR, 64);
7860   case SystemZ::ATOMIC_LOAD_NILL64:
7861     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILL64, 64);
7862   case SystemZ::ATOMIC_LOAD_NILH64:
7863     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH64, 64);
7864   case SystemZ::ATOMIC_LOAD_NIHL64:
7865     return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHL64, 64);
7866   case SystemZ::ATOMIC_LOAD_NIHH64:
7867     return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHH64, 64);
7868   case SystemZ::ATOMIC_LOAD_NILF64:
7869     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILF64, 64);
7870   case SystemZ::ATOMIC_LOAD_NIHF64:
7871     return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHF64, 64);
7872 
7873   case SystemZ::ATOMIC_LOADW_OR:
7874     return emitAtomicLoadBinary(MI, MBB, SystemZ::OR, 0);
7875   case SystemZ::ATOMIC_LOADW_OILH:
7876     return emitAtomicLoadBinary(MI, MBB, SystemZ::OILH, 0);
7877   case SystemZ::ATOMIC_LOAD_OR:
7878     return emitAtomicLoadBinary(MI, MBB, SystemZ::OR, 32);
7879   case SystemZ::ATOMIC_LOAD_OILL:
7880     return emitAtomicLoadBinary(MI, MBB, SystemZ::OILL, 32);
7881   case SystemZ::ATOMIC_LOAD_OILH:
7882     return emitAtomicLoadBinary(MI, MBB, SystemZ::OILH, 32);
7883   case SystemZ::ATOMIC_LOAD_OILF:
7884     return emitAtomicLoadBinary(MI, MBB, SystemZ::OILF, 32);
7885   case SystemZ::ATOMIC_LOAD_OGR:
7886     return emitAtomicLoadBinary(MI, MBB, SystemZ::OGR, 64);
7887   case SystemZ::ATOMIC_LOAD_OILL64:
7888     return emitAtomicLoadBinary(MI, MBB, SystemZ::OILL64, 64);
7889   case SystemZ::ATOMIC_LOAD_OILH64:
7890     return emitAtomicLoadBinary(MI, MBB, SystemZ::OILH64, 64);
7891   case SystemZ::ATOMIC_LOAD_OIHL64:
7892     return emitAtomicLoadBinary(MI, MBB, SystemZ::OIHL64, 64);
7893   case SystemZ::ATOMIC_LOAD_OIHH64:
7894     return emitAtomicLoadBinary(MI, MBB, SystemZ::OIHH64, 64);
7895   case SystemZ::ATOMIC_LOAD_OILF64:
7896     return emitAtomicLoadBinary(MI, MBB, SystemZ::OILF64, 64);
7897   case SystemZ::ATOMIC_LOAD_OIHF64:
7898     return emitAtomicLoadBinary(MI, MBB, SystemZ::OIHF64, 64);
7899 
7900   case SystemZ::ATOMIC_LOADW_XR:
7901     return emitAtomicLoadBinary(MI, MBB, SystemZ::XR, 0);
7902   case SystemZ::ATOMIC_LOADW_XILF:
7903     return emitAtomicLoadBinary(MI, MBB, SystemZ::XILF, 0);
7904   case SystemZ::ATOMIC_LOAD_XR:
7905     return emitAtomicLoadBinary(MI, MBB, SystemZ::XR, 32);
7906   case SystemZ::ATOMIC_LOAD_XILF:
7907     return emitAtomicLoadBinary(MI, MBB, SystemZ::XILF, 32);
7908   case SystemZ::ATOMIC_LOAD_XGR:
7909     return emitAtomicLoadBinary(MI, MBB, SystemZ::XGR, 64);
7910   case SystemZ::ATOMIC_LOAD_XILF64:
7911     return emitAtomicLoadBinary(MI, MBB, SystemZ::XILF64, 64);
7912   case SystemZ::ATOMIC_LOAD_XIHF64:
7913     return emitAtomicLoadBinary(MI, MBB, SystemZ::XIHF64, 64);
7914 
7915   case SystemZ::ATOMIC_LOADW_NRi:
7916     return emitAtomicLoadBinary(MI, MBB, SystemZ::NR, 0, true);
7917   case SystemZ::ATOMIC_LOADW_NILHi:
7918     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH, 0, true);
7919   case SystemZ::ATOMIC_LOAD_NRi:
7920     return emitAtomicLoadBinary(MI, MBB, SystemZ::NR, 32, true);
7921   case SystemZ::ATOMIC_LOAD_NILLi:
7922     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILL, 32, true);
7923   case SystemZ::ATOMIC_LOAD_NILHi:
7924     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH, 32, true);
7925   case SystemZ::ATOMIC_LOAD_NILFi:
7926     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILF, 32, true);
7927   case SystemZ::ATOMIC_LOAD_NGRi:
7928     return emitAtomicLoadBinary(MI, MBB, SystemZ::NGR, 64, true);
7929   case SystemZ::ATOMIC_LOAD_NILL64i:
7930     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILL64, 64, true);
7931   case SystemZ::ATOMIC_LOAD_NILH64i:
7932     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH64, 64, true);
7933   case SystemZ::ATOMIC_LOAD_NIHL64i:
7934     return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHL64, 64, true);
7935   case SystemZ::ATOMIC_LOAD_NIHH64i:
7936     return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHH64, 64, true);
7937   case SystemZ::ATOMIC_LOAD_NILF64i:
7938     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILF64, 64, true);
7939   case SystemZ::ATOMIC_LOAD_NIHF64i:
7940     return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHF64, 64, true);
7941 
7942   case SystemZ::ATOMIC_LOADW_MIN:
7943     return emitAtomicLoadMinMax(MI, MBB, SystemZ::CR,
7944                                 SystemZ::CCMASK_CMP_LE, 0);
7945   case SystemZ::ATOMIC_LOAD_MIN_32:
7946     return emitAtomicLoadMinMax(MI, MBB, SystemZ::CR,
7947                                 SystemZ::CCMASK_CMP_LE, 32);
7948   case SystemZ::ATOMIC_LOAD_MIN_64:
7949     return emitAtomicLoadMinMax(MI, MBB, SystemZ::CGR,
7950                                 SystemZ::CCMASK_CMP_LE, 64);
7951 
7952   case SystemZ::ATOMIC_LOADW_MAX:
7953     return emitAtomicLoadMinMax(MI, MBB, SystemZ::CR,
7954                                 SystemZ::CCMASK_CMP_GE, 0);
7955   case SystemZ::ATOMIC_LOAD_MAX_32:
7956     return emitAtomicLoadMinMax(MI, MBB, SystemZ::CR,
7957                                 SystemZ::CCMASK_CMP_GE, 32);
7958   case SystemZ::ATOMIC_LOAD_MAX_64:
7959     return emitAtomicLoadMinMax(MI, MBB, SystemZ::CGR,
7960                                 SystemZ::CCMASK_CMP_GE, 64);
7961 
7962   case SystemZ::ATOMIC_LOADW_UMIN:
7963     return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLR,
7964                                 SystemZ::CCMASK_CMP_LE, 0);
7965   case SystemZ::ATOMIC_LOAD_UMIN_32:
7966     return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLR,
7967                                 SystemZ::CCMASK_CMP_LE, 32);
7968   case SystemZ::ATOMIC_LOAD_UMIN_64:
7969     return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLGR,
7970                                 SystemZ::CCMASK_CMP_LE, 64);
7971 
7972   case SystemZ::ATOMIC_LOADW_UMAX:
7973     return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLR,
7974                                 SystemZ::CCMASK_CMP_GE, 0);
7975   case SystemZ::ATOMIC_LOAD_UMAX_32:
7976     return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLR,
7977                                 SystemZ::CCMASK_CMP_GE, 32);
7978   case SystemZ::ATOMIC_LOAD_UMAX_64:
7979     return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLGR,
7980                                 SystemZ::CCMASK_CMP_GE, 64);
7981 
7982   case SystemZ::ATOMIC_CMP_SWAPW:
7983     return emitAtomicCmpSwapW(MI, MBB);
7984   case SystemZ::MVCSequence:
7985   case SystemZ::MVCLoop:
7986     return emitMemMemWrapper(MI, MBB, SystemZ::MVC);
7987   case SystemZ::NCSequence:
7988   case SystemZ::NCLoop:
7989     return emitMemMemWrapper(MI, MBB, SystemZ::NC);
7990   case SystemZ::OCSequence:
7991   case SystemZ::OCLoop:
7992     return emitMemMemWrapper(MI, MBB, SystemZ::OC);
7993   case SystemZ::XCSequence:
7994   case SystemZ::XCLoop:
7995     return emitMemMemWrapper(MI, MBB, SystemZ::XC);
7996   case SystemZ::CLCSequence:
7997   case SystemZ::CLCLoop:
7998     return emitMemMemWrapper(MI, MBB, SystemZ::CLC);
7999   case SystemZ::CLSTLoop:
8000     return emitStringWrapper(MI, MBB, SystemZ::CLST);
8001   case SystemZ::MVSTLoop:
8002     return emitStringWrapper(MI, MBB, SystemZ::MVST);
8003   case SystemZ::SRSTLoop:
8004     return emitStringWrapper(MI, MBB, SystemZ::SRST);
8005   case SystemZ::TBEGIN:
8006     return emitTransactionBegin(MI, MBB, SystemZ::TBEGIN, false);
8007   case SystemZ::TBEGIN_nofloat:
8008     return emitTransactionBegin(MI, MBB, SystemZ::TBEGIN, true);
8009   case SystemZ::TBEGINC:
8010     return emitTransactionBegin(MI, MBB, SystemZ::TBEGINC, true);
8011   case SystemZ::LTEBRCompare_VecPseudo:
8012     return emitLoadAndTestCmp0(MI, MBB, SystemZ::LTEBR);
8013   case SystemZ::LTDBRCompare_VecPseudo:
8014     return emitLoadAndTestCmp0(MI, MBB, SystemZ::LTDBR);
8015   case SystemZ::LTXBRCompare_VecPseudo:
8016     return emitLoadAndTestCmp0(MI, MBB, SystemZ::LTXBR);
8017 
8018   case TargetOpcode::STACKMAP:
8019   case TargetOpcode::PATCHPOINT:
8020     return emitPatchPoint(MI, MBB);
8021 
8022   default:
8023     llvm_unreachable("Unexpected instr type to insert");
8024   }
8025 }
8026 
8027 // This is only used by the isel schedulers, and is needed only to prevent
8028 // compiler from crashing when list-ilp is used.
8029 const TargetRegisterClass *
8030 SystemZTargetLowering::getRepRegClassFor(MVT VT) const {
8031   if (VT == MVT::Untyped)
8032     return &SystemZ::ADDR128BitRegClass;
8033   return TargetLowering::getRepRegClassFor(VT);
8034 }
8035