1 //===-- SystemZISelLowering.cpp - SystemZ DAG lowering implementation -----===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the SystemZTargetLowering class.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "SystemZISelLowering.h"
14 #include "SystemZCallingConv.h"
15 #include "SystemZConstantPoolValue.h"
16 #include "SystemZMachineFunctionInfo.h"
17 #include "SystemZTargetMachine.h"
18 #include "llvm/CodeGen/CallingConvLower.h"
19 #include "llvm/CodeGen/MachineInstrBuilder.h"
20 #include "llvm/CodeGen/MachineRegisterInfo.h"
21 #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h"
22 #include "llvm/IR/IntrinsicInst.h"
23 #include "llvm/IR/Intrinsics.h"
24 #include "llvm/IR/IntrinsicsS390.h"
25 #include "llvm/Support/CommandLine.h"
26 #include "llvm/Support/KnownBits.h"
27 #include <cctype>
28 
29 using namespace llvm;
30 
31 #define DEBUG_TYPE "systemz-lower"
32 
33 namespace {
34 // Represents information about a comparison.
35 struct Comparison {
36   Comparison(SDValue Op0In, SDValue Op1In, SDValue ChainIn)
37     : Op0(Op0In), Op1(Op1In), Chain(ChainIn),
38       Opcode(0), ICmpType(0), CCValid(0), CCMask(0) {}
39 
40   // The operands to the comparison.
41   SDValue Op0, Op1;
42 
43   // Chain if this is a strict floating-point comparison.
44   SDValue Chain;
45 
46   // The opcode that should be used to compare Op0 and Op1.
47   unsigned Opcode;
48 
49   // A SystemZICMP value.  Only used for integer comparisons.
50   unsigned ICmpType;
51 
52   // The mask of CC values that Opcode can produce.
53   unsigned CCValid;
54 
55   // The mask of CC values for which the original condition is true.
56   unsigned CCMask;
57 };
58 } // end anonymous namespace
59 
60 // Classify VT as either 32 or 64 bit.
61 static bool is32Bit(EVT VT) {
62   switch (VT.getSimpleVT().SimpleTy) {
63   case MVT::i32:
64     return true;
65   case MVT::i64:
66     return false;
67   default:
68     llvm_unreachable("Unsupported type");
69   }
70 }
71 
72 // Return a version of MachineOperand that can be safely used before the
73 // final use.
74 static MachineOperand earlyUseOperand(MachineOperand Op) {
75   if (Op.isReg())
76     Op.setIsKill(false);
77   return Op;
78 }
79 
80 SystemZTargetLowering::SystemZTargetLowering(const TargetMachine &TM,
81                                              const SystemZSubtarget &STI)
82     : TargetLowering(TM), Subtarget(STI) {
83   MVT PtrVT = MVT::getIntegerVT(TM.getPointerSizeInBits(0));
84 
85   auto *Regs = STI.getSpecialRegisters();
86 
87   // Set up the register classes.
88   if (Subtarget.hasHighWord())
89     addRegisterClass(MVT::i32, &SystemZ::GRX32BitRegClass);
90   else
91     addRegisterClass(MVT::i32, &SystemZ::GR32BitRegClass);
92   addRegisterClass(MVT::i64, &SystemZ::GR64BitRegClass);
93   if (!useSoftFloat()) {
94     if (Subtarget.hasVector()) {
95       addRegisterClass(MVT::f32, &SystemZ::VR32BitRegClass);
96       addRegisterClass(MVT::f64, &SystemZ::VR64BitRegClass);
97     } else {
98       addRegisterClass(MVT::f32, &SystemZ::FP32BitRegClass);
99       addRegisterClass(MVT::f64, &SystemZ::FP64BitRegClass);
100     }
101     if (Subtarget.hasVectorEnhancements1())
102       addRegisterClass(MVT::f128, &SystemZ::VR128BitRegClass);
103     else
104       addRegisterClass(MVT::f128, &SystemZ::FP128BitRegClass);
105 
106     if (Subtarget.hasVector()) {
107       addRegisterClass(MVT::v16i8, &SystemZ::VR128BitRegClass);
108       addRegisterClass(MVT::v8i16, &SystemZ::VR128BitRegClass);
109       addRegisterClass(MVT::v4i32, &SystemZ::VR128BitRegClass);
110       addRegisterClass(MVT::v2i64, &SystemZ::VR128BitRegClass);
111       addRegisterClass(MVT::v4f32, &SystemZ::VR128BitRegClass);
112       addRegisterClass(MVT::v2f64, &SystemZ::VR128BitRegClass);
113     }
114   }
115 
116   // Compute derived properties from the register classes
117   computeRegisterProperties(Subtarget.getRegisterInfo());
118 
119   // Set up special registers.
120   setStackPointerRegisterToSaveRestore(Regs->getStackPointerRegister());
121 
122   // TODO: It may be better to default to latency-oriented scheduling, however
123   // LLVM's current latency-oriented scheduler can't handle physreg definitions
124   // such as SystemZ has with CC, so set this to the register-pressure
125   // scheduler, because it can.
126   setSchedulingPreference(Sched::RegPressure);
127 
128   setBooleanContents(ZeroOrOneBooleanContent);
129   setBooleanVectorContents(ZeroOrNegativeOneBooleanContent);
130 
131   // Instructions are strings of 2-byte aligned 2-byte values.
132   setMinFunctionAlignment(Align(2));
133   // For performance reasons we prefer 16-byte alignment.
134   setPrefFunctionAlignment(Align(16));
135 
136   // Handle operations that are handled in a similar way for all types.
137   for (unsigned I = MVT::FIRST_INTEGER_VALUETYPE;
138        I <= MVT::LAST_FP_VALUETYPE;
139        ++I) {
140     MVT VT = MVT::SimpleValueType(I);
141     if (isTypeLegal(VT)) {
142       // Lower SET_CC into an IPM-based sequence.
143       setOperationAction(ISD::SETCC, VT, Custom);
144       setOperationAction(ISD::STRICT_FSETCC, VT, Custom);
145       setOperationAction(ISD::STRICT_FSETCCS, VT, Custom);
146 
147       // Expand SELECT(C, A, B) into SELECT_CC(X, 0, A, B, NE).
148       setOperationAction(ISD::SELECT, VT, Expand);
149 
150       // Lower SELECT_CC and BR_CC into separate comparisons and branches.
151       setOperationAction(ISD::SELECT_CC, VT, Custom);
152       setOperationAction(ISD::BR_CC,     VT, Custom);
153     }
154   }
155 
156   // Expand jump table branches as address arithmetic followed by an
157   // indirect jump.
158   setOperationAction(ISD::BR_JT, MVT::Other, Expand);
159 
160   // Expand BRCOND into a BR_CC (see above).
161   setOperationAction(ISD::BRCOND, MVT::Other, Expand);
162 
163   // Handle integer types.
164   for (unsigned I = MVT::FIRST_INTEGER_VALUETYPE;
165        I <= MVT::LAST_INTEGER_VALUETYPE;
166        ++I) {
167     MVT VT = MVT::SimpleValueType(I);
168     if (isTypeLegal(VT)) {
169       setOperationAction(ISD::ABS, VT, Legal);
170 
171       // Expand individual DIV and REMs into DIVREMs.
172       setOperationAction(ISD::SDIV, VT, Expand);
173       setOperationAction(ISD::UDIV, VT, Expand);
174       setOperationAction(ISD::SREM, VT, Expand);
175       setOperationAction(ISD::UREM, VT, Expand);
176       setOperationAction(ISD::SDIVREM, VT, Custom);
177       setOperationAction(ISD::UDIVREM, VT, Custom);
178 
179       // Support addition/subtraction with overflow.
180       setOperationAction(ISD::SADDO, VT, Custom);
181       setOperationAction(ISD::SSUBO, VT, Custom);
182 
183       // Support addition/subtraction with carry.
184       setOperationAction(ISD::UADDO, VT, Custom);
185       setOperationAction(ISD::USUBO, VT, Custom);
186 
187       // Support carry in as value rather than glue.
188       setOperationAction(ISD::ADDCARRY, VT, Custom);
189       setOperationAction(ISD::SUBCARRY, VT, Custom);
190 
191       // Lower ATOMIC_LOAD and ATOMIC_STORE into normal volatile loads and
192       // stores, putting a serialization instruction after the stores.
193       setOperationAction(ISD::ATOMIC_LOAD,  VT, Custom);
194       setOperationAction(ISD::ATOMIC_STORE, VT, Custom);
195 
196       // Lower ATOMIC_LOAD_SUB into ATOMIC_LOAD_ADD if LAA and LAAG are
197       // available, or if the operand is constant.
198       setOperationAction(ISD::ATOMIC_LOAD_SUB, VT, Custom);
199 
200       // Use POPCNT on z196 and above.
201       if (Subtarget.hasPopulationCount())
202         setOperationAction(ISD::CTPOP, VT, Custom);
203       else
204         setOperationAction(ISD::CTPOP, VT, Expand);
205 
206       // No special instructions for these.
207       setOperationAction(ISD::CTTZ,            VT, Expand);
208       setOperationAction(ISD::ROTR,            VT, Expand);
209 
210       // Use *MUL_LOHI where possible instead of MULH*.
211       setOperationAction(ISD::MULHS, VT, Expand);
212       setOperationAction(ISD::MULHU, VT, Expand);
213       setOperationAction(ISD::SMUL_LOHI, VT, Custom);
214       setOperationAction(ISD::UMUL_LOHI, VT, Custom);
215 
216       // Only z196 and above have native support for conversions to unsigned.
217       // On z10, promoting to i64 doesn't generate an inexact condition for
218       // values that are outside the i32 range but in the i64 range, so use
219       // the default expansion.
220       if (!Subtarget.hasFPExtension())
221         setOperationAction(ISD::FP_TO_UINT, VT, Expand);
222 
223       // Mirror those settings for STRICT_FP_TO_[SU]INT.  Note that these all
224       // default to Expand, so need to be modified to Legal where appropriate.
225       setOperationAction(ISD::STRICT_FP_TO_SINT, VT, Legal);
226       if (Subtarget.hasFPExtension())
227         setOperationAction(ISD::STRICT_FP_TO_UINT, VT, Legal);
228 
229       // And similarly for STRICT_[SU]INT_TO_FP.
230       setOperationAction(ISD::STRICT_SINT_TO_FP, VT, Legal);
231       if (Subtarget.hasFPExtension())
232         setOperationAction(ISD::STRICT_UINT_TO_FP, VT, Legal);
233     }
234   }
235 
236   // Type legalization will convert 8- and 16-bit atomic operations into
237   // forms that operate on i32s (but still keeping the original memory VT).
238   // Lower them into full i32 operations.
239   setOperationAction(ISD::ATOMIC_SWAP,      MVT::i32, Custom);
240   setOperationAction(ISD::ATOMIC_LOAD_ADD,  MVT::i32, Custom);
241   setOperationAction(ISD::ATOMIC_LOAD_SUB,  MVT::i32, Custom);
242   setOperationAction(ISD::ATOMIC_LOAD_AND,  MVT::i32, Custom);
243   setOperationAction(ISD::ATOMIC_LOAD_OR,   MVT::i32, Custom);
244   setOperationAction(ISD::ATOMIC_LOAD_XOR,  MVT::i32, Custom);
245   setOperationAction(ISD::ATOMIC_LOAD_NAND, MVT::i32, Custom);
246   setOperationAction(ISD::ATOMIC_LOAD_MIN,  MVT::i32, Custom);
247   setOperationAction(ISD::ATOMIC_LOAD_MAX,  MVT::i32, Custom);
248   setOperationAction(ISD::ATOMIC_LOAD_UMIN, MVT::i32, Custom);
249   setOperationAction(ISD::ATOMIC_LOAD_UMAX, MVT::i32, Custom);
250 
251   // Even though i128 is not a legal type, we still need to custom lower
252   // the atomic operations in order to exploit SystemZ instructions.
253   setOperationAction(ISD::ATOMIC_LOAD,     MVT::i128, Custom);
254   setOperationAction(ISD::ATOMIC_STORE,    MVT::i128, Custom);
255 
256   // We can use the CC result of compare-and-swap to implement
257   // the "success" result of ATOMIC_CMP_SWAP_WITH_SUCCESS.
258   setOperationAction(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, MVT::i32, Custom);
259   setOperationAction(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, MVT::i64, Custom);
260   setOperationAction(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, MVT::i128, Custom);
261 
262   setOperationAction(ISD::ATOMIC_FENCE, MVT::Other, Custom);
263 
264   // Traps are legal, as we will convert them to "j .+2".
265   setOperationAction(ISD::TRAP, MVT::Other, Legal);
266 
267   // z10 has instructions for signed but not unsigned FP conversion.
268   // Handle unsigned 32-bit types as signed 64-bit types.
269   if (!Subtarget.hasFPExtension()) {
270     setOperationAction(ISD::UINT_TO_FP, MVT::i32, Promote);
271     setOperationAction(ISD::UINT_TO_FP, MVT::i64, Expand);
272     setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::i32, Promote);
273     setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::i64, Expand);
274   }
275 
276   // We have native support for a 64-bit CTLZ, via FLOGR.
277   setOperationAction(ISD::CTLZ, MVT::i32, Promote);
278   setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i32, Promote);
279   setOperationAction(ISD::CTLZ, MVT::i64, Legal);
280 
281   // On z15 we have native support for a 64-bit CTPOP.
282   if (Subtarget.hasMiscellaneousExtensions3()) {
283     setOperationAction(ISD::CTPOP, MVT::i32, Promote);
284     setOperationAction(ISD::CTPOP, MVT::i64, Legal);
285   }
286 
287   // Give LowerOperation the chance to replace 64-bit ORs with subregs.
288   setOperationAction(ISD::OR, MVT::i64, Custom);
289 
290   // Expand 128 bit shifts without using a libcall.
291   setOperationAction(ISD::SRL_PARTS, MVT::i64, Expand);
292   setOperationAction(ISD::SHL_PARTS, MVT::i64, Expand);
293   setOperationAction(ISD::SRA_PARTS, MVT::i64, Expand);
294   setLibcallName(RTLIB::SRL_I128, nullptr);
295   setLibcallName(RTLIB::SHL_I128, nullptr);
296   setLibcallName(RTLIB::SRA_I128, nullptr);
297 
298   // Handle bitcast from fp128 to i128.
299   setOperationAction(ISD::BITCAST, MVT::i128, Custom);
300 
301   // We have native instructions for i8, i16 and i32 extensions, but not i1.
302   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
303   for (MVT VT : MVT::integer_valuetypes()) {
304     setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote);
305     setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i1, Promote);
306     setLoadExtAction(ISD::EXTLOAD,  VT, MVT::i1, Promote);
307   }
308 
309   // Handle the various types of symbolic address.
310   setOperationAction(ISD::ConstantPool,     PtrVT, Custom);
311   setOperationAction(ISD::GlobalAddress,    PtrVT, Custom);
312   setOperationAction(ISD::GlobalTLSAddress, PtrVT, Custom);
313   setOperationAction(ISD::BlockAddress,     PtrVT, Custom);
314   setOperationAction(ISD::JumpTable,        PtrVT, Custom);
315 
316   // We need to handle dynamic allocations specially because of the
317   // 160-byte area at the bottom of the stack.
318   setOperationAction(ISD::DYNAMIC_STACKALLOC, PtrVT, Custom);
319   setOperationAction(ISD::GET_DYNAMIC_AREA_OFFSET, PtrVT, Custom);
320 
321   setOperationAction(ISD::STACKSAVE,    MVT::Other, Custom);
322   setOperationAction(ISD::STACKRESTORE, MVT::Other, Custom);
323 
324   // Handle prefetches with PFD or PFDRL.
325   setOperationAction(ISD::PREFETCH, MVT::Other, Custom);
326 
327   for (MVT VT : MVT::fixedlen_vector_valuetypes()) {
328     // Assume by default that all vector operations need to be expanded.
329     for (unsigned Opcode = 0; Opcode < ISD::BUILTIN_OP_END; ++Opcode)
330       if (getOperationAction(Opcode, VT) == Legal)
331         setOperationAction(Opcode, VT, Expand);
332 
333     // Likewise all truncating stores and extending loads.
334     for (MVT InnerVT : MVT::fixedlen_vector_valuetypes()) {
335       setTruncStoreAction(VT, InnerVT, Expand);
336       setLoadExtAction(ISD::SEXTLOAD, VT, InnerVT, Expand);
337       setLoadExtAction(ISD::ZEXTLOAD, VT, InnerVT, Expand);
338       setLoadExtAction(ISD::EXTLOAD, VT, InnerVT, Expand);
339     }
340 
341     if (isTypeLegal(VT)) {
342       // These operations are legal for anything that can be stored in a
343       // vector register, even if there is no native support for the format
344       // as such.  In particular, we can do these for v4f32 even though there
345       // are no specific instructions for that format.
346       setOperationAction(ISD::LOAD, VT, Legal);
347       setOperationAction(ISD::STORE, VT, Legal);
348       setOperationAction(ISD::VSELECT, VT, Legal);
349       setOperationAction(ISD::BITCAST, VT, Legal);
350       setOperationAction(ISD::UNDEF, VT, Legal);
351 
352       // Likewise, except that we need to replace the nodes with something
353       // more specific.
354       setOperationAction(ISD::BUILD_VECTOR, VT, Custom);
355       setOperationAction(ISD::VECTOR_SHUFFLE, VT, Custom);
356     }
357   }
358 
359   // Handle integer vector types.
360   for (MVT VT : MVT::integer_fixedlen_vector_valuetypes()) {
361     if (isTypeLegal(VT)) {
362       // These operations have direct equivalents.
363       setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Legal);
364       setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Legal);
365       setOperationAction(ISD::ADD, VT, Legal);
366       setOperationAction(ISD::SUB, VT, Legal);
367       if (VT != MVT::v2i64)
368         setOperationAction(ISD::MUL, VT, Legal);
369       setOperationAction(ISD::ABS, VT, Legal);
370       setOperationAction(ISD::AND, VT, Legal);
371       setOperationAction(ISD::OR, VT, Legal);
372       setOperationAction(ISD::XOR, VT, Legal);
373       if (Subtarget.hasVectorEnhancements1())
374         setOperationAction(ISD::CTPOP, VT, Legal);
375       else
376         setOperationAction(ISD::CTPOP, VT, Custom);
377       setOperationAction(ISD::CTTZ, VT, Legal);
378       setOperationAction(ISD::CTLZ, VT, Legal);
379 
380       // Convert a GPR scalar to a vector by inserting it into element 0.
381       setOperationAction(ISD::SCALAR_TO_VECTOR, VT, Custom);
382 
383       // Use a series of unpacks for extensions.
384       setOperationAction(ISD::SIGN_EXTEND_VECTOR_INREG, VT, Custom);
385       setOperationAction(ISD::ZERO_EXTEND_VECTOR_INREG, VT, Custom);
386 
387       // Detect shifts by a scalar amount and convert them into
388       // V*_BY_SCALAR.
389       setOperationAction(ISD::SHL, VT, Custom);
390       setOperationAction(ISD::SRA, VT, Custom);
391       setOperationAction(ISD::SRL, VT, Custom);
392 
393       // At present ROTL isn't matched by DAGCombiner.  ROTR should be
394       // converted into ROTL.
395       setOperationAction(ISD::ROTL, VT, Expand);
396       setOperationAction(ISD::ROTR, VT, Expand);
397 
398       // Map SETCCs onto one of VCE, VCH or VCHL, swapping the operands
399       // and inverting the result as necessary.
400       setOperationAction(ISD::SETCC, VT, Custom);
401       setOperationAction(ISD::STRICT_FSETCC, VT, Custom);
402       if (Subtarget.hasVectorEnhancements1())
403         setOperationAction(ISD::STRICT_FSETCCS, VT, Custom);
404     }
405   }
406 
407   if (Subtarget.hasVector()) {
408     // There should be no need to check for float types other than v2f64
409     // since <2 x f32> isn't a legal type.
410     setOperationAction(ISD::FP_TO_SINT, MVT::v2i64, Legal);
411     setOperationAction(ISD::FP_TO_SINT, MVT::v2f64, Legal);
412     setOperationAction(ISD::FP_TO_UINT, MVT::v2i64, Legal);
413     setOperationAction(ISD::FP_TO_UINT, MVT::v2f64, Legal);
414     setOperationAction(ISD::SINT_TO_FP, MVT::v2i64, Legal);
415     setOperationAction(ISD::SINT_TO_FP, MVT::v2f64, Legal);
416     setOperationAction(ISD::UINT_TO_FP, MVT::v2i64, Legal);
417     setOperationAction(ISD::UINT_TO_FP, MVT::v2f64, Legal);
418 
419     setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::v2i64, Legal);
420     setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::v2f64, Legal);
421     setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::v2i64, Legal);
422     setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::v2f64, Legal);
423     setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::v2i64, Legal);
424     setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::v2f64, Legal);
425     setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::v2i64, Legal);
426     setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::v2f64, Legal);
427   }
428 
429   if (Subtarget.hasVectorEnhancements2()) {
430     setOperationAction(ISD::FP_TO_SINT, MVT::v4i32, Legal);
431     setOperationAction(ISD::FP_TO_SINT, MVT::v4f32, Legal);
432     setOperationAction(ISD::FP_TO_UINT, MVT::v4i32, Legal);
433     setOperationAction(ISD::FP_TO_UINT, MVT::v4f32, Legal);
434     setOperationAction(ISD::SINT_TO_FP, MVT::v4i32, Legal);
435     setOperationAction(ISD::SINT_TO_FP, MVT::v4f32, Legal);
436     setOperationAction(ISD::UINT_TO_FP, MVT::v4i32, Legal);
437     setOperationAction(ISD::UINT_TO_FP, MVT::v4f32, Legal);
438 
439     setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::v4i32, Legal);
440     setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::v4f32, Legal);
441     setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::v4i32, Legal);
442     setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::v4f32, Legal);
443     setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::v4i32, Legal);
444     setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::v4f32, Legal);
445     setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::v4i32, Legal);
446     setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::v4f32, Legal);
447   }
448 
449   // Handle floating-point types.
450   for (unsigned I = MVT::FIRST_FP_VALUETYPE;
451        I <= MVT::LAST_FP_VALUETYPE;
452        ++I) {
453     MVT VT = MVT::SimpleValueType(I);
454     if (isTypeLegal(VT)) {
455       // We can use FI for FRINT.
456       setOperationAction(ISD::FRINT, VT, Legal);
457 
458       // We can use the extended form of FI for other rounding operations.
459       if (Subtarget.hasFPExtension()) {
460         setOperationAction(ISD::FNEARBYINT, VT, Legal);
461         setOperationAction(ISD::FFLOOR, VT, Legal);
462         setOperationAction(ISD::FCEIL, VT, Legal);
463         setOperationAction(ISD::FTRUNC, VT, Legal);
464         setOperationAction(ISD::FROUND, VT, Legal);
465       }
466 
467       // No special instructions for these.
468       setOperationAction(ISD::FSIN, VT, Expand);
469       setOperationAction(ISD::FCOS, VT, Expand);
470       setOperationAction(ISD::FSINCOS, VT, Expand);
471       setOperationAction(ISD::FREM, VT, Expand);
472       setOperationAction(ISD::FPOW, VT, Expand);
473 
474       // Special treatment.
475       setOperationAction(ISD::IS_FPCLASS, VT, Custom);
476 
477       // Handle constrained floating-point operations.
478       setOperationAction(ISD::STRICT_FADD, VT, Legal);
479       setOperationAction(ISD::STRICT_FSUB, VT, Legal);
480       setOperationAction(ISD::STRICT_FMUL, VT, Legal);
481       setOperationAction(ISD::STRICT_FDIV, VT, Legal);
482       setOperationAction(ISD::STRICT_FMA, VT, Legal);
483       setOperationAction(ISD::STRICT_FSQRT, VT, Legal);
484       setOperationAction(ISD::STRICT_FRINT, VT, Legal);
485       setOperationAction(ISD::STRICT_FP_ROUND, VT, Legal);
486       setOperationAction(ISD::STRICT_FP_EXTEND, VT, Legal);
487       if (Subtarget.hasFPExtension()) {
488         setOperationAction(ISD::STRICT_FNEARBYINT, VT, Legal);
489         setOperationAction(ISD::STRICT_FFLOOR, VT, Legal);
490         setOperationAction(ISD::STRICT_FCEIL, VT, Legal);
491         setOperationAction(ISD::STRICT_FROUND, VT, Legal);
492         setOperationAction(ISD::STRICT_FTRUNC, VT, Legal);
493       }
494     }
495   }
496 
497   // Handle floating-point vector types.
498   if (Subtarget.hasVector()) {
499     // Scalar-to-vector conversion is just a subreg.
500     setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f32, Legal);
501     setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v2f64, Legal);
502 
503     // Some insertions and extractions can be done directly but others
504     // need to go via integers.
505     setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4f32, Custom);
506     setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v2f64, Custom);
507     setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Custom);
508     setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Custom);
509 
510     // These operations have direct equivalents.
511     setOperationAction(ISD::FADD, MVT::v2f64, Legal);
512     setOperationAction(ISD::FNEG, MVT::v2f64, Legal);
513     setOperationAction(ISD::FSUB, MVT::v2f64, Legal);
514     setOperationAction(ISD::FMUL, MVT::v2f64, Legal);
515     setOperationAction(ISD::FMA, MVT::v2f64, Legal);
516     setOperationAction(ISD::FDIV, MVT::v2f64, Legal);
517     setOperationAction(ISD::FABS, MVT::v2f64, Legal);
518     setOperationAction(ISD::FSQRT, MVT::v2f64, Legal);
519     setOperationAction(ISD::FRINT, MVT::v2f64, Legal);
520     setOperationAction(ISD::FNEARBYINT, MVT::v2f64, Legal);
521     setOperationAction(ISD::FFLOOR, MVT::v2f64, Legal);
522     setOperationAction(ISD::FCEIL, MVT::v2f64, Legal);
523     setOperationAction(ISD::FTRUNC, MVT::v2f64, Legal);
524     setOperationAction(ISD::FROUND, MVT::v2f64, Legal);
525 
526     // Handle constrained floating-point operations.
527     setOperationAction(ISD::STRICT_FADD, MVT::v2f64, Legal);
528     setOperationAction(ISD::STRICT_FSUB, MVT::v2f64, Legal);
529     setOperationAction(ISD::STRICT_FMUL, MVT::v2f64, Legal);
530     setOperationAction(ISD::STRICT_FMA, MVT::v2f64, Legal);
531     setOperationAction(ISD::STRICT_FDIV, MVT::v2f64, Legal);
532     setOperationAction(ISD::STRICT_FSQRT, MVT::v2f64, Legal);
533     setOperationAction(ISD::STRICT_FRINT, MVT::v2f64, Legal);
534     setOperationAction(ISD::STRICT_FNEARBYINT, MVT::v2f64, Legal);
535     setOperationAction(ISD::STRICT_FFLOOR, MVT::v2f64, Legal);
536     setOperationAction(ISD::STRICT_FCEIL, MVT::v2f64, Legal);
537     setOperationAction(ISD::STRICT_FTRUNC, MVT::v2f64, Legal);
538     setOperationAction(ISD::STRICT_FROUND, MVT::v2f64, Legal);
539   }
540 
541   // The vector enhancements facility 1 has instructions for these.
542   if (Subtarget.hasVectorEnhancements1()) {
543     setOperationAction(ISD::FADD, MVT::v4f32, Legal);
544     setOperationAction(ISD::FNEG, MVT::v4f32, Legal);
545     setOperationAction(ISD::FSUB, MVT::v4f32, Legal);
546     setOperationAction(ISD::FMUL, MVT::v4f32, Legal);
547     setOperationAction(ISD::FMA, MVT::v4f32, Legal);
548     setOperationAction(ISD::FDIV, MVT::v4f32, Legal);
549     setOperationAction(ISD::FABS, MVT::v4f32, Legal);
550     setOperationAction(ISD::FSQRT, MVT::v4f32, Legal);
551     setOperationAction(ISD::FRINT, MVT::v4f32, Legal);
552     setOperationAction(ISD::FNEARBYINT, MVT::v4f32, Legal);
553     setOperationAction(ISD::FFLOOR, MVT::v4f32, Legal);
554     setOperationAction(ISD::FCEIL, MVT::v4f32, Legal);
555     setOperationAction(ISD::FTRUNC, MVT::v4f32, Legal);
556     setOperationAction(ISD::FROUND, MVT::v4f32, Legal);
557 
558     setOperationAction(ISD::FMAXNUM, MVT::f64, Legal);
559     setOperationAction(ISD::FMAXIMUM, MVT::f64, Legal);
560     setOperationAction(ISD::FMINNUM, MVT::f64, Legal);
561     setOperationAction(ISD::FMINIMUM, MVT::f64, Legal);
562 
563     setOperationAction(ISD::FMAXNUM, MVT::v2f64, Legal);
564     setOperationAction(ISD::FMAXIMUM, MVT::v2f64, Legal);
565     setOperationAction(ISD::FMINNUM, MVT::v2f64, Legal);
566     setOperationAction(ISD::FMINIMUM, MVT::v2f64, Legal);
567 
568     setOperationAction(ISD::FMAXNUM, MVT::f32, Legal);
569     setOperationAction(ISD::FMAXIMUM, MVT::f32, Legal);
570     setOperationAction(ISD::FMINNUM, MVT::f32, Legal);
571     setOperationAction(ISD::FMINIMUM, MVT::f32, Legal);
572 
573     setOperationAction(ISD::FMAXNUM, MVT::v4f32, Legal);
574     setOperationAction(ISD::FMAXIMUM, MVT::v4f32, Legal);
575     setOperationAction(ISD::FMINNUM, MVT::v4f32, Legal);
576     setOperationAction(ISD::FMINIMUM, MVT::v4f32, Legal);
577 
578     setOperationAction(ISD::FMAXNUM, MVT::f128, Legal);
579     setOperationAction(ISD::FMAXIMUM, MVT::f128, Legal);
580     setOperationAction(ISD::FMINNUM, MVT::f128, Legal);
581     setOperationAction(ISD::FMINIMUM, MVT::f128, Legal);
582 
583     // Handle constrained floating-point operations.
584     setOperationAction(ISD::STRICT_FADD, MVT::v4f32, Legal);
585     setOperationAction(ISD::STRICT_FSUB, MVT::v4f32, Legal);
586     setOperationAction(ISD::STRICT_FMUL, MVT::v4f32, Legal);
587     setOperationAction(ISD::STRICT_FMA, MVT::v4f32, Legal);
588     setOperationAction(ISD::STRICT_FDIV, MVT::v4f32, Legal);
589     setOperationAction(ISD::STRICT_FSQRT, MVT::v4f32, Legal);
590     setOperationAction(ISD::STRICT_FRINT, MVT::v4f32, Legal);
591     setOperationAction(ISD::STRICT_FNEARBYINT, MVT::v4f32, Legal);
592     setOperationAction(ISD::STRICT_FFLOOR, MVT::v4f32, Legal);
593     setOperationAction(ISD::STRICT_FCEIL, MVT::v4f32, Legal);
594     setOperationAction(ISD::STRICT_FROUND, MVT::v4f32, Legal);
595     setOperationAction(ISD::STRICT_FTRUNC, MVT::v4f32, Legal);
596     for (auto VT : { MVT::f32, MVT::f64, MVT::f128,
597                      MVT::v4f32, MVT::v2f64 }) {
598       setOperationAction(ISD::STRICT_FMAXNUM, VT, Legal);
599       setOperationAction(ISD::STRICT_FMINNUM, VT, Legal);
600       setOperationAction(ISD::STRICT_FMAXIMUM, VT, Legal);
601       setOperationAction(ISD::STRICT_FMINIMUM, VT, Legal);
602     }
603   }
604 
605   // We only have fused f128 multiply-addition on vector registers.
606   if (!Subtarget.hasVectorEnhancements1()) {
607     setOperationAction(ISD::FMA, MVT::f128, Expand);
608     setOperationAction(ISD::STRICT_FMA, MVT::f128, Expand);
609   }
610 
611   // We don't have a copysign instruction on vector registers.
612   if (Subtarget.hasVectorEnhancements1())
613     setOperationAction(ISD::FCOPYSIGN, MVT::f128, Expand);
614 
615   // Needed so that we don't try to implement f128 constant loads using
616   // a load-and-extend of a f80 constant (in cases where the constant
617   // would fit in an f80).
618   for (MVT VT : MVT::fp_valuetypes())
619     setLoadExtAction(ISD::EXTLOAD, VT, MVT::f80, Expand);
620 
621   // We don't have extending load instruction on vector registers.
622   if (Subtarget.hasVectorEnhancements1()) {
623     setLoadExtAction(ISD::EXTLOAD, MVT::f128, MVT::f32, Expand);
624     setLoadExtAction(ISD::EXTLOAD, MVT::f128, MVT::f64, Expand);
625   }
626 
627   // Floating-point truncation and stores need to be done separately.
628   setTruncStoreAction(MVT::f64,  MVT::f32, Expand);
629   setTruncStoreAction(MVT::f128, MVT::f32, Expand);
630   setTruncStoreAction(MVT::f128, MVT::f64, Expand);
631 
632   // We have 64-bit FPR<->GPR moves, but need special handling for
633   // 32-bit forms.
634   if (!Subtarget.hasVector()) {
635     setOperationAction(ISD::BITCAST, MVT::i32, Custom);
636     setOperationAction(ISD::BITCAST, MVT::f32, Custom);
637   }
638 
639   // VASTART and VACOPY need to deal with the SystemZ-specific varargs
640   // structure, but VAEND is a no-op.
641   setOperationAction(ISD::VASTART, MVT::Other, Custom);
642   setOperationAction(ISD::VACOPY,  MVT::Other, Custom);
643   setOperationAction(ISD::VAEND,   MVT::Other, Expand);
644 
645   // Codes for which we want to perform some z-specific combinations.
646   setTargetDAGCombine({ISD::ZERO_EXTEND,
647                        ISD::SIGN_EXTEND,
648                        ISD::SIGN_EXTEND_INREG,
649                        ISD::LOAD,
650                        ISD::STORE,
651                        ISD::VECTOR_SHUFFLE,
652                        ISD::EXTRACT_VECTOR_ELT,
653                        ISD::FP_ROUND,
654                        ISD::STRICT_FP_ROUND,
655                        ISD::FP_EXTEND,
656                        ISD::SINT_TO_FP,
657                        ISD::UINT_TO_FP,
658                        ISD::STRICT_FP_EXTEND,
659                        ISD::BSWAP,
660                        ISD::SDIV,
661                        ISD::UDIV,
662                        ISD::SREM,
663                        ISD::UREM,
664                        ISD::INTRINSIC_VOID,
665                        ISD::INTRINSIC_W_CHAIN});
666 
667   // Handle intrinsics.
668   setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::Other, Custom);
669   setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
670 
671   // We want to use MVC in preference to even a single load/store pair.
672   MaxStoresPerMemcpy = Subtarget.hasVector() ? 2 : 0;
673   MaxStoresPerMemcpyOptSize = 0;
674 
675   // The main memset sequence is a byte store followed by an MVC.
676   // Two STC or MV..I stores win over that, but the kind of fused stores
677   // generated by target-independent code don't when the byte value is
678   // variable.  E.g.  "STC <reg>;MHI <reg>,257;STH <reg>" is not better
679   // than "STC;MVC".  Handle the choice in target-specific code instead.
680   MaxStoresPerMemset = Subtarget.hasVector() ? 2 : 0;
681   MaxStoresPerMemsetOptSize = 0;
682 
683   // Default to having -disable-strictnode-mutation on
684   IsStrictFPEnabled = true;
685 }
686 
687 bool SystemZTargetLowering::useSoftFloat() const {
688   return Subtarget.hasSoftFloat();
689 }
690 
691 EVT SystemZTargetLowering::getSetCCResultType(const DataLayout &DL,
692                                               LLVMContext &, EVT VT) const {
693   if (!VT.isVector())
694     return MVT::i32;
695   return VT.changeVectorElementTypeToInteger();
696 }
697 
698 bool SystemZTargetLowering::isFMAFasterThanFMulAndFAdd(
699     const MachineFunction &MF, EVT VT) const {
700   VT = VT.getScalarType();
701 
702   if (!VT.isSimple())
703     return false;
704 
705   switch (VT.getSimpleVT().SimpleTy) {
706   case MVT::f32:
707   case MVT::f64:
708     return true;
709   case MVT::f128:
710     return Subtarget.hasVectorEnhancements1();
711   default:
712     break;
713   }
714 
715   return false;
716 }
717 
718 // Return true if the constant can be generated with a vector instruction,
719 // such as VGM, VGMB or VREPI.
720 bool SystemZVectorConstantInfo::isVectorConstantLegal(
721     const SystemZSubtarget &Subtarget) {
722   const SystemZInstrInfo *TII = Subtarget.getInstrInfo();
723   if (!Subtarget.hasVector() ||
724       (isFP128 && !Subtarget.hasVectorEnhancements1()))
725     return false;
726 
727   // Try using VECTOR GENERATE BYTE MASK.  This is the architecturally-
728   // preferred way of creating all-zero and all-one vectors so give it
729   // priority over other methods below.
730   unsigned Mask = 0;
731   unsigned I = 0;
732   for (; I < SystemZ::VectorBytes; ++I) {
733     uint64_t Byte = IntBits.lshr(I * 8).trunc(8).getZExtValue();
734     if (Byte == 0xff)
735       Mask |= 1ULL << I;
736     else if (Byte != 0)
737       break;
738   }
739   if (I == SystemZ::VectorBytes) {
740     Opcode = SystemZISD::BYTE_MASK;
741     OpVals.push_back(Mask);
742     VecVT = MVT::getVectorVT(MVT::getIntegerVT(8), 16);
743     return true;
744   }
745 
746   if (SplatBitSize > 64)
747     return false;
748 
749   auto tryValue = [&](uint64_t Value) -> bool {
750     // Try VECTOR REPLICATE IMMEDIATE
751     int64_t SignedValue = SignExtend64(Value, SplatBitSize);
752     if (isInt<16>(SignedValue)) {
753       OpVals.push_back(((unsigned) SignedValue));
754       Opcode = SystemZISD::REPLICATE;
755       VecVT = MVT::getVectorVT(MVT::getIntegerVT(SplatBitSize),
756                                SystemZ::VectorBits / SplatBitSize);
757       return true;
758     }
759     // Try VECTOR GENERATE MASK
760     unsigned Start, End;
761     if (TII->isRxSBGMask(Value, SplatBitSize, Start, End)) {
762       // isRxSBGMask returns the bit numbers for a full 64-bit value, with 0
763       // denoting 1 << 63 and 63 denoting 1.  Convert them to bit numbers for
764       // an SplatBitSize value, so that 0 denotes 1 << (SplatBitSize-1).
765       OpVals.push_back(Start - (64 - SplatBitSize));
766       OpVals.push_back(End - (64 - SplatBitSize));
767       Opcode = SystemZISD::ROTATE_MASK;
768       VecVT = MVT::getVectorVT(MVT::getIntegerVT(SplatBitSize),
769                                SystemZ::VectorBits / SplatBitSize);
770       return true;
771     }
772     return false;
773   };
774 
775   // First try assuming that any undefined bits above the highest set bit
776   // and below the lowest set bit are 1s.  This increases the likelihood of
777   // being able to use a sign-extended element value in VECTOR REPLICATE
778   // IMMEDIATE or a wraparound mask in VECTOR GENERATE MASK.
779   uint64_t SplatBitsZ = SplatBits.getZExtValue();
780   uint64_t SplatUndefZ = SplatUndef.getZExtValue();
781   uint64_t Lower =
782       (SplatUndefZ & ((uint64_t(1) << findFirstSet(SplatBitsZ)) - 1));
783   uint64_t Upper =
784       (SplatUndefZ & ~((uint64_t(1) << findLastSet(SplatBitsZ)) - 1));
785   if (tryValue(SplatBitsZ | Upper | Lower))
786     return true;
787 
788   // Now try assuming that any undefined bits between the first and
789   // last defined set bits are set.  This increases the chances of
790   // using a non-wraparound mask.
791   uint64_t Middle = SplatUndefZ & ~Upper & ~Lower;
792   return tryValue(SplatBitsZ | Middle);
793 }
794 
795 SystemZVectorConstantInfo::SystemZVectorConstantInfo(APInt IntImm) {
796   if (IntImm.isSingleWord()) {
797     IntBits = APInt(128, IntImm.getZExtValue());
798     IntBits <<= (SystemZ::VectorBits - IntImm.getBitWidth());
799   } else
800     IntBits = IntImm;
801   assert(IntBits.getBitWidth() == 128 && "Unsupported APInt.");
802 
803   // Find the smallest splat.
804   SplatBits = IntImm;
805   unsigned Width = SplatBits.getBitWidth();
806   while (Width > 8) {
807     unsigned HalfSize = Width / 2;
808     APInt HighValue = SplatBits.lshr(HalfSize).trunc(HalfSize);
809     APInt LowValue = SplatBits.trunc(HalfSize);
810 
811     // If the two halves do not match, stop here.
812     if (HighValue != LowValue || 8 > HalfSize)
813       break;
814 
815     SplatBits = HighValue;
816     Width = HalfSize;
817   }
818   SplatUndef = 0;
819   SplatBitSize = Width;
820 }
821 
822 SystemZVectorConstantInfo::SystemZVectorConstantInfo(BuildVectorSDNode *BVN) {
823   assert(BVN->isConstant() && "Expected a constant BUILD_VECTOR");
824   bool HasAnyUndefs;
825 
826   // Get IntBits by finding the 128 bit splat.
827   BVN->isConstantSplat(IntBits, SplatUndef, SplatBitSize, HasAnyUndefs, 128,
828                        true);
829 
830   // Get SplatBits by finding the 8 bit or greater splat.
831   BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize, HasAnyUndefs, 8,
832                        true);
833 }
834 
835 bool SystemZTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT,
836                                          bool ForCodeSize) const {
837   // We can load zero using LZ?R and negative zero using LZ?R;LC?BR.
838   if (Imm.isZero() || Imm.isNegZero())
839     return true;
840 
841   return SystemZVectorConstantInfo(Imm).isVectorConstantLegal(Subtarget);
842 }
843 
844 /// Returns true if stack probing through inline assembly is requested.
845 bool SystemZTargetLowering::hasInlineStackProbe(MachineFunction &MF) const {
846   // If the function specifically requests inline stack probes, emit them.
847   if (MF.getFunction().hasFnAttribute("probe-stack"))
848     return MF.getFunction().getFnAttribute("probe-stack").getValueAsString() ==
849            "inline-asm";
850   return false;
851 }
852 
853 bool SystemZTargetLowering::isLegalICmpImmediate(int64_t Imm) const {
854   // We can use CGFI or CLGFI.
855   return isInt<32>(Imm) || isUInt<32>(Imm);
856 }
857 
858 bool SystemZTargetLowering::isLegalAddImmediate(int64_t Imm) const {
859   // We can use ALGFI or SLGFI.
860   return isUInt<32>(Imm) || isUInt<32>(-Imm);
861 }
862 
863 bool SystemZTargetLowering::allowsMisalignedMemoryAccesses(
864     EVT VT, unsigned, Align, MachineMemOperand::Flags, bool *Fast) const {
865   // Unaligned accesses should never be slower than the expanded version.
866   // We check specifically for aligned accesses in the few cases where
867   // they are required.
868   if (Fast)
869     *Fast = true;
870   return true;
871 }
872 
873 // Information about the addressing mode for a memory access.
874 struct AddressingMode {
875   // True if a long displacement is supported.
876   bool LongDisplacement;
877 
878   // True if use of index register is supported.
879   bool IndexReg;
880 
881   AddressingMode(bool LongDispl, bool IdxReg) :
882     LongDisplacement(LongDispl), IndexReg(IdxReg) {}
883 };
884 
885 // Return the desired addressing mode for a Load which has only one use (in
886 // the same block) which is a Store.
887 static AddressingMode getLoadStoreAddrMode(bool HasVector,
888                                           Type *Ty) {
889   // With vector support a Load->Store combination may be combined to either
890   // an MVC or vector operations and it seems to work best to allow the
891   // vector addressing mode.
892   if (HasVector)
893     return AddressingMode(false/*LongDispl*/, true/*IdxReg*/);
894 
895   // Otherwise only the MVC case is special.
896   bool MVC = Ty->isIntegerTy(8);
897   return AddressingMode(!MVC/*LongDispl*/, !MVC/*IdxReg*/);
898 }
899 
900 // Return the addressing mode which seems most desirable given an LLVM
901 // Instruction pointer.
902 static AddressingMode
903 supportedAddressingMode(Instruction *I, bool HasVector) {
904   if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
905     switch (II->getIntrinsicID()) {
906     default: break;
907     case Intrinsic::memset:
908     case Intrinsic::memmove:
909     case Intrinsic::memcpy:
910       return AddressingMode(false/*LongDispl*/, false/*IdxReg*/);
911     }
912   }
913 
914   if (isa<LoadInst>(I) && I->hasOneUse()) {
915     auto *SingleUser = cast<Instruction>(*I->user_begin());
916     if (SingleUser->getParent() == I->getParent()) {
917       if (isa<ICmpInst>(SingleUser)) {
918         if (auto *C = dyn_cast<ConstantInt>(SingleUser->getOperand(1)))
919           if (C->getBitWidth() <= 64 &&
920               (isInt<16>(C->getSExtValue()) || isUInt<16>(C->getZExtValue())))
921             // Comparison of memory with 16 bit signed / unsigned immediate
922             return AddressingMode(false/*LongDispl*/, false/*IdxReg*/);
923       } else if (isa<StoreInst>(SingleUser))
924         // Load->Store
925         return getLoadStoreAddrMode(HasVector, I->getType());
926     }
927   } else if (auto *StoreI = dyn_cast<StoreInst>(I)) {
928     if (auto *LoadI = dyn_cast<LoadInst>(StoreI->getValueOperand()))
929       if (LoadI->hasOneUse() && LoadI->getParent() == I->getParent())
930         // Load->Store
931         return getLoadStoreAddrMode(HasVector, LoadI->getType());
932   }
933 
934   if (HasVector && (isa<LoadInst>(I) || isa<StoreInst>(I))) {
935 
936     // * Use LDE instead of LE/LEY for z13 to avoid partial register
937     //   dependencies (LDE only supports small offsets).
938     // * Utilize the vector registers to hold floating point
939     //   values (vector load / store instructions only support small
940     //   offsets).
941 
942     Type *MemAccessTy = (isa<LoadInst>(I) ? I->getType() :
943                          I->getOperand(0)->getType());
944     bool IsFPAccess = MemAccessTy->isFloatingPointTy();
945     bool IsVectorAccess = MemAccessTy->isVectorTy();
946 
947     // A store of an extracted vector element will be combined into a VSTE type
948     // instruction.
949     if (!IsVectorAccess && isa<StoreInst>(I)) {
950       Value *DataOp = I->getOperand(0);
951       if (isa<ExtractElementInst>(DataOp))
952         IsVectorAccess = true;
953     }
954 
955     // A load which gets inserted into a vector element will be combined into a
956     // VLE type instruction.
957     if (!IsVectorAccess && isa<LoadInst>(I) && I->hasOneUse()) {
958       User *LoadUser = *I->user_begin();
959       if (isa<InsertElementInst>(LoadUser))
960         IsVectorAccess = true;
961     }
962 
963     if (IsFPAccess || IsVectorAccess)
964       return AddressingMode(false/*LongDispl*/, true/*IdxReg*/);
965   }
966 
967   return AddressingMode(true/*LongDispl*/, true/*IdxReg*/);
968 }
969 
970 bool SystemZTargetLowering::isLegalAddressingMode(const DataLayout &DL,
971        const AddrMode &AM, Type *Ty, unsigned AS, Instruction *I) const {
972   // Punt on globals for now, although they can be used in limited
973   // RELATIVE LONG cases.
974   if (AM.BaseGV)
975     return false;
976 
977   // Require a 20-bit signed offset.
978   if (!isInt<20>(AM.BaseOffs))
979     return false;
980 
981   bool RequireD12 = Subtarget.hasVector() && Ty->isVectorTy();
982   AddressingMode SupportedAM(!RequireD12, true);
983   if (I != nullptr)
984     SupportedAM = supportedAddressingMode(I, Subtarget.hasVector());
985 
986   if (!SupportedAM.LongDisplacement && !isUInt<12>(AM.BaseOffs))
987     return false;
988 
989   if (!SupportedAM.IndexReg)
990     // No indexing allowed.
991     return AM.Scale == 0;
992   else
993     // Indexing is OK but no scale factor can be applied.
994     return AM.Scale == 0 || AM.Scale == 1;
995 }
996 
997 bool SystemZTargetLowering::findOptimalMemOpLowering(
998     std::vector<EVT> &MemOps, unsigned Limit, const MemOp &Op, unsigned DstAS,
999     unsigned SrcAS, const AttributeList &FuncAttributes) const {
1000   const int MVCFastLen = 16;
1001 
1002   if (Limit != ~unsigned(0)) {
1003     // Don't expand Op into scalar loads/stores in these cases:
1004     if (Op.isMemcpy() && Op.allowOverlap() && Op.size() <= MVCFastLen)
1005       return false; // Small memcpy: Use MVC
1006     if (Op.isMemset() && Op.size() - 1 <= MVCFastLen)
1007       return false; // Small memset (first byte with STC/MVI): Use MVC
1008     if (Op.isZeroMemset())
1009       return false; // Memset zero: Use XC
1010   }
1011 
1012   return TargetLowering::findOptimalMemOpLowering(MemOps, Limit, Op, DstAS,
1013                                                   SrcAS, FuncAttributes);
1014 }
1015 
1016 EVT SystemZTargetLowering::getOptimalMemOpType(const MemOp &Op,
1017                                    const AttributeList &FuncAttributes) const {
1018   return Subtarget.hasVector() ? MVT::v2i64 : MVT::Other;
1019 }
1020 
1021 bool SystemZTargetLowering::isTruncateFree(Type *FromType, Type *ToType) const {
1022   if (!FromType->isIntegerTy() || !ToType->isIntegerTy())
1023     return false;
1024   unsigned FromBits = FromType->getPrimitiveSizeInBits().getFixedSize();
1025   unsigned ToBits = ToType->getPrimitiveSizeInBits().getFixedSize();
1026   return FromBits > ToBits;
1027 }
1028 
1029 bool SystemZTargetLowering::isTruncateFree(EVT FromVT, EVT ToVT) const {
1030   if (!FromVT.isInteger() || !ToVT.isInteger())
1031     return false;
1032   unsigned FromBits = FromVT.getFixedSizeInBits();
1033   unsigned ToBits = ToVT.getFixedSizeInBits();
1034   return FromBits > ToBits;
1035 }
1036 
1037 //===----------------------------------------------------------------------===//
1038 // Inline asm support
1039 //===----------------------------------------------------------------------===//
1040 
1041 TargetLowering::ConstraintType
1042 SystemZTargetLowering::getConstraintType(StringRef Constraint) const {
1043   if (Constraint.size() == 1) {
1044     switch (Constraint[0]) {
1045     case 'a': // Address register
1046     case 'd': // Data register (equivalent to 'r')
1047     case 'f': // Floating-point register
1048     case 'h': // High-part register
1049     case 'r': // General-purpose register
1050     case 'v': // Vector register
1051       return C_RegisterClass;
1052 
1053     case 'Q': // Memory with base and unsigned 12-bit displacement
1054     case 'R': // Likewise, plus an index
1055     case 'S': // Memory with base and signed 20-bit displacement
1056     case 'T': // Likewise, plus an index
1057     case 'm': // Equivalent to 'T'.
1058       return C_Memory;
1059 
1060     case 'I': // Unsigned 8-bit constant
1061     case 'J': // Unsigned 12-bit constant
1062     case 'K': // Signed 16-bit constant
1063     case 'L': // Signed 20-bit displacement (on all targets we support)
1064     case 'M': // 0x7fffffff
1065       return C_Immediate;
1066 
1067     default:
1068       break;
1069     }
1070   } else if (Constraint.size() == 2 && Constraint[0] == 'Z') {
1071     switch (Constraint[1]) {
1072     case 'Q': // Address with base and unsigned 12-bit displacement
1073     case 'R': // Likewise, plus an index
1074     case 'S': // Address with base and signed 20-bit displacement
1075     case 'T': // Likewise, plus an index
1076       return C_Address;
1077 
1078     default:
1079       break;
1080     }
1081   }
1082   return TargetLowering::getConstraintType(Constraint);
1083 }
1084 
1085 TargetLowering::ConstraintWeight SystemZTargetLowering::
1086 getSingleConstraintMatchWeight(AsmOperandInfo &info,
1087                                const char *constraint) const {
1088   ConstraintWeight weight = CW_Invalid;
1089   Value *CallOperandVal = info.CallOperandVal;
1090   // If we don't have a value, we can't do a match,
1091   // but allow it at the lowest weight.
1092   if (!CallOperandVal)
1093     return CW_Default;
1094   Type *type = CallOperandVal->getType();
1095   // Look at the constraint type.
1096   switch (*constraint) {
1097   default:
1098     weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint);
1099     break;
1100 
1101   case 'a': // Address register
1102   case 'd': // Data register (equivalent to 'r')
1103   case 'h': // High-part register
1104   case 'r': // General-purpose register
1105     if (CallOperandVal->getType()->isIntegerTy())
1106       weight = CW_Register;
1107     break;
1108 
1109   case 'f': // Floating-point register
1110     if (type->isFloatingPointTy())
1111       weight = CW_Register;
1112     break;
1113 
1114   case 'v': // Vector register
1115     if ((type->isVectorTy() || type->isFloatingPointTy()) &&
1116         Subtarget.hasVector())
1117       weight = CW_Register;
1118     break;
1119 
1120   case 'I': // Unsigned 8-bit constant
1121     if (auto *C = dyn_cast<ConstantInt>(CallOperandVal))
1122       if (isUInt<8>(C->getZExtValue()))
1123         weight = CW_Constant;
1124     break;
1125 
1126   case 'J': // Unsigned 12-bit constant
1127     if (auto *C = dyn_cast<ConstantInt>(CallOperandVal))
1128       if (isUInt<12>(C->getZExtValue()))
1129         weight = CW_Constant;
1130     break;
1131 
1132   case 'K': // Signed 16-bit constant
1133     if (auto *C = dyn_cast<ConstantInt>(CallOperandVal))
1134       if (isInt<16>(C->getSExtValue()))
1135         weight = CW_Constant;
1136     break;
1137 
1138   case 'L': // Signed 20-bit displacement (on all targets we support)
1139     if (auto *C = dyn_cast<ConstantInt>(CallOperandVal))
1140       if (isInt<20>(C->getSExtValue()))
1141         weight = CW_Constant;
1142     break;
1143 
1144   case 'M': // 0x7fffffff
1145     if (auto *C = dyn_cast<ConstantInt>(CallOperandVal))
1146       if (C->getZExtValue() == 0x7fffffff)
1147         weight = CW_Constant;
1148     break;
1149   }
1150   return weight;
1151 }
1152 
1153 // Parse a "{tNNN}" register constraint for which the register type "t"
1154 // has already been verified.  MC is the class associated with "t" and
1155 // Map maps 0-based register numbers to LLVM register numbers.
1156 static std::pair<unsigned, const TargetRegisterClass *>
1157 parseRegisterNumber(StringRef Constraint, const TargetRegisterClass *RC,
1158                     const unsigned *Map, unsigned Size) {
1159   assert(*(Constraint.end()-1) == '}' && "Missing '}'");
1160   if (isdigit(Constraint[2])) {
1161     unsigned Index;
1162     bool Failed =
1163         Constraint.slice(2, Constraint.size() - 1).getAsInteger(10, Index);
1164     if (!Failed && Index < Size && Map[Index])
1165       return std::make_pair(Map[Index], RC);
1166   }
1167   return std::make_pair(0U, nullptr);
1168 }
1169 
1170 std::pair<unsigned, const TargetRegisterClass *>
1171 SystemZTargetLowering::getRegForInlineAsmConstraint(
1172     const TargetRegisterInfo *TRI, StringRef Constraint, MVT VT) const {
1173   if (Constraint.size() == 1) {
1174     // GCC Constraint Letters
1175     switch (Constraint[0]) {
1176     default: break;
1177     case 'd': // Data register (equivalent to 'r')
1178     case 'r': // General-purpose register
1179       if (VT == MVT::i64)
1180         return std::make_pair(0U, &SystemZ::GR64BitRegClass);
1181       else if (VT == MVT::i128)
1182         return std::make_pair(0U, &SystemZ::GR128BitRegClass);
1183       return std::make_pair(0U, &SystemZ::GR32BitRegClass);
1184 
1185     case 'a': // Address register
1186       if (VT == MVT::i64)
1187         return std::make_pair(0U, &SystemZ::ADDR64BitRegClass);
1188       else if (VT == MVT::i128)
1189         return std::make_pair(0U, &SystemZ::ADDR128BitRegClass);
1190       return std::make_pair(0U, &SystemZ::ADDR32BitRegClass);
1191 
1192     case 'h': // High-part register (an LLVM extension)
1193       return std::make_pair(0U, &SystemZ::GRH32BitRegClass);
1194 
1195     case 'f': // Floating-point register
1196       if (!useSoftFloat()) {
1197         if (VT == MVT::f64)
1198           return std::make_pair(0U, &SystemZ::FP64BitRegClass);
1199         else if (VT == MVT::f128)
1200           return std::make_pair(0U, &SystemZ::FP128BitRegClass);
1201         return std::make_pair(0U, &SystemZ::FP32BitRegClass);
1202       }
1203       break;
1204     case 'v': // Vector register
1205       if (Subtarget.hasVector()) {
1206         if (VT == MVT::f32)
1207           return std::make_pair(0U, &SystemZ::VR32BitRegClass);
1208         if (VT == MVT::f64)
1209           return std::make_pair(0U, &SystemZ::VR64BitRegClass);
1210         return std::make_pair(0U, &SystemZ::VR128BitRegClass);
1211       }
1212       break;
1213     }
1214   }
1215   if (Constraint.size() > 0 && Constraint[0] == '{') {
1216     // We need to override the default register parsing for GPRs and FPRs
1217     // because the interpretation depends on VT.  The internal names of
1218     // the registers are also different from the external names
1219     // (F0D and F0S instead of F0, etc.).
1220     if (Constraint[1] == 'r') {
1221       if (VT == MVT::i32)
1222         return parseRegisterNumber(Constraint, &SystemZ::GR32BitRegClass,
1223                                    SystemZMC::GR32Regs, 16);
1224       if (VT == MVT::i128)
1225         return parseRegisterNumber(Constraint, &SystemZ::GR128BitRegClass,
1226                                    SystemZMC::GR128Regs, 16);
1227       return parseRegisterNumber(Constraint, &SystemZ::GR64BitRegClass,
1228                                  SystemZMC::GR64Regs, 16);
1229     }
1230     if (Constraint[1] == 'f') {
1231       if (useSoftFloat())
1232         return std::make_pair(
1233             0u, static_cast<const TargetRegisterClass *>(nullptr));
1234       if (VT == MVT::f32)
1235         return parseRegisterNumber(Constraint, &SystemZ::FP32BitRegClass,
1236                                    SystemZMC::FP32Regs, 16);
1237       if (VT == MVT::f128)
1238         return parseRegisterNumber(Constraint, &SystemZ::FP128BitRegClass,
1239                                    SystemZMC::FP128Regs, 16);
1240       return parseRegisterNumber(Constraint, &SystemZ::FP64BitRegClass,
1241                                  SystemZMC::FP64Regs, 16);
1242     }
1243     if (Constraint[1] == 'v') {
1244       if (!Subtarget.hasVector())
1245         return std::make_pair(
1246             0u, static_cast<const TargetRegisterClass *>(nullptr));
1247       if (VT == MVT::f32)
1248         return parseRegisterNumber(Constraint, &SystemZ::VR32BitRegClass,
1249                                    SystemZMC::VR32Regs, 32);
1250       if (VT == MVT::f64)
1251         return parseRegisterNumber(Constraint, &SystemZ::VR64BitRegClass,
1252                                    SystemZMC::VR64Regs, 32);
1253       return parseRegisterNumber(Constraint, &SystemZ::VR128BitRegClass,
1254                                  SystemZMC::VR128Regs, 32);
1255     }
1256   }
1257   return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT);
1258 }
1259 
1260 // FIXME? Maybe this could be a TableGen attribute on some registers and
1261 // this table could be generated automatically from RegInfo.
1262 Register
1263 SystemZTargetLowering::getRegisterByName(const char *RegName, LLT VT,
1264                                          const MachineFunction &MF) const {
1265   const SystemZSubtarget *Subtarget = &MF.getSubtarget<SystemZSubtarget>();
1266 
1267   Register Reg =
1268       StringSwitch<Register>(RegName)
1269           .Case("r4", Subtarget->isTargetXPLINK64() ? SystemZ::R4D : 0)
1270           .Case("r15", Subtarget->isTargetELF() ? SystemZ::R15D : 0)
1271           .Default(0);
1272 
1273   if (Reg)
1274     return Reg;
1275   report_fatal_error("Invalid register name global variable");
1276 }
1277 
1278 void SystemZTargetLowering::
1279 LowerAsmOperandForConstraint(SDValue Op, std::string &Constraint,
1280                              std::vector<SDValue> &Ops,
1281                              SelectionDAG &DAG) const {
1282   // Only support length 1 constraints for now.
1283   if (Constraint.length() == 1) {
1284     switch (Constraint[0]) {
1285     case 'I': // Unsigned 8-bit constant
1286       if (auto *C = dyn_cast<ConstantSDNode>(Op))
1287         if (isUInt<8>(C->getZExtValue()))
1288           Ops.push_back(DAG.getTargetConstant(C->getZExtValue(), SDLoc(Op),
1289                                               Op.getValueType()));
1290       return;
1291 
1292     case 'J': // Unsigned 12-bit constant
1293       if (auto *C = dyn_cast<ConstantSDNode>(Op))
1294         if (isUInt<12>(C->getZExtValue()))
1295           Ops.push_back(DAG.getTargetConstant(C->getZExtValue(), SDLoc(Op),
1296                                               Op.getValueType()));
1297       return;
1298 
1299     case 'K': // Signed 16-bit constant
1300       if (auto *C = dyn_cast<ConstantSDNode>(Op))
1301         if (isInt<16>(C->getSExtValue()))
1302           Ops.push_back(DAG.getTargetConstant(C->getSExtValue(), SDLoc(Op),
1303                                               Op.getValueType()));
1304       return;
1305 
1306     case 'L': // Signed 20-bit displacement (on all targets we support)
1307       if (auto *C = dyn_cast<ConstantSDNode>(Op))
1308         if (isInt<20>(C->getSExtValue()))
1309           Ops.push_back(DAG.getTargetConstant(C->getSExtValue(), SDLoc(Op),
1310                                               Op.getValueType()));
1311       return;
1312 
1313     case 'M': // 0x7fffffff
1314       if (auto *C = dyn_cast<ConstantSDNode>(Op))
1315         if (C->getZExtValue() == 0x7fffffff)
1316           Ops.push_back(DAG.getTargetConstant(C->getZExtValue(), SDLoc(Op),
1317                                               Op.getValueType()));
1318       return;
1319     }
1320   }
1321   TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
1322 }
1323 
1324 //===----------------------------------------------------------------------===//
1325 // Calling conventions
1326 //===----------------------------------------------------------------------===//
1327 
1328 #include "SystemZGenCallingConv.inc"
1329 
1330 const MCPhysReg *SystemZTargetLowering::getScratchRegisters(
1331   CallingConv::ID) const {
1332   static const MCPhysReg ScratchRegs[] = { SystemZ::R0D, SystemZ::R1D,
1333                                            SystemZ::R14D, 0 };
1334   return ScratchRegs;
1335 }
1336 
1337 bool SystemZTargetLowering::allowTruncateForTailCall(Type *FromType,
1338                                                      Type *ToType) const {
1339   return isTruncateFree(FromType, ToType);
1340 }
1341 
1342 bool SystemZTargetLowering::mayBeEmittedAsTailCall(const CallInst *CI) const {
1343   return CI->isTailCall();
1344 }
1345 
1346 // We do not yet support 128-bit single-element vector types.  If the user
1347 // attempts to use such types as function argument or return type, prefer
1348 // to error out instead of emitting code violating the ABI.
1349 static void VerifyVectorType(MVT VT, EVT ArgVT) {
1350   if (ArgVT.isVector() && !VT.isVector())
1351     report_fatal_error("Unsupported vector argument or return type");
1352 }
1353 
1354 static void VerifyVectorTypes(const SmallVectorImpl<ISD::InputArg> &Ins) {
1355   for (unsigned i = 0; i < Ins.size(); ++i)
1356     VerifyVectorType(Ins[i].VT, Ins[i].ArgVT);
1357 }
1358 
1359 static void VerifyVectorTypes(const SmallVectorImpl<ISD::OutputArg> &Outs) {
1360   for (unsigned i = 0; i < Outs.size(); ++i)
1361     VerifyVectorType(Outs[i].VT, Outs[i].ArgVT);
1362 }
1363 
1364 // Value is a value that has been passed to us in the location described by VA
1365 // (and so has type VA.getLocVT()).  Convert Value to VA.getValVT(), chaining
1366 // any loads onto Chain.
1367 static SDValue convertLocVTToValVT(SelectionDAG &DAG, const SDLoc &DL,
1368                                    CCValAssign &VA, SDValue Chain,
1369                                    SDValue Value) {
1370   // If the argument has been promoted from a smaller type, insert an
1371   // assertion to capture this.
1372   if (VA.getLocInfo() == CCValAssign::SExt)
1373     Value = DAG.getNode(ISD::AssertSext, DL, VA.getLocVT(), Value,
1374                         DAG.getValueType(VA.getValVT()));
1375   else if (VA.getLocInfo() == CCValAssign::ZExt)
1376     Value = DAG.getNode(ISD::AssertZext, DL, VA.getLocVT(), Value,
1377                         DAG.getValueType(VA.getValVT()));
1378 
1379   if (VA.isExtInLoc())
1380     Value = DAG.getNode(ISD::TRUNCATE, DL, VA.getValVT(), Value);
1381   else if (VA.getLocInfo() == CCValAssign::BCvt) {
1382     // If this is a short vector argument loaded from the stack,
1383     // extend from i64 to full vector size and then bitcast.
1384     assert(VA.getLocVT() == MVT::i64);
1385     assert(VA.getValVT().isVector());
1386     Value = DAG.getBuildVector(MVT::v2i64, DL, {Value, DAG.getUNDEF(MVT::i64)});
1387     Value = DAG.getNode(ISD::BITCAST, DL, VA.getValVT(), Value);
1388   } else
1389     assert(VA.getLocInfo() == CCValAssign::Full && "Unsupported getLocInfo");
1390   return Value;
1391 }
1392 
1393 // Value is a value of type VA.getValVT() that we need to copy into
1394 // the location described by VA.  Return a copy of Value converted to
1395 // VA.getValVT().  The caller is responsible for handling indirect values.
1396 static SDValue convertValVTToLocVT(SelectionDAG &DAG, const SDLoc &DL,
1397                                    CCValAssign &VA, SDValue Value) {
1398   switch (VA.getLocInfo()) {
1399   case CCValAssign::SExt:
1400     return DAG.getNode(ISD::SIGN_EXTEND, DL, VA.getLocVT(), Value);
1401   case CCValAssign::ZExt:
1402     return DAG.getNode(ISD::ZERO_EXTEND, DL, VA.getLocVT(), Value);
1403   case CCValAssign::AExt:
1404     return DAG.getNode(ISD::ANY_EXTEND, DL, VA.getLocVT(), Value);
1405   case CCValAssign::BCvt: {
1406     assert(VA.getLocVT() == MVT::i64 || VA.getLocVT() == MVT::i128);
1407     assert(VA.getValVT().isVector() || VA.getValVT() == MVT::f32 ||
1408            VA.getValVT() == MVT::f64 || VA.getValVT() == MVT::f128);
1409     // For an f32 vararg we need to first promote it to an f64 and then
1410     // bitcast it to an i64.
1411     if (VA.getValVT() == MVT::f32 && VA.getLocVT() == MVT::i64)
1412       Value = DAG.getNode(ISD::FP_EXTEND, DL, MVT::f64, Value);
1413     MVT BitCastToType = VA.getValVT().isVector() && VA.getLocVT() == MVT::i64
1414                             ? MVT::v2i64
1415                             : VA.getLocVT();
1416     Value = DAG.getNode(ISD::BITCAST, DL, BitCastToType, Value);
1417     // For ELF, this is a short vector argument to be stored to the stack,
1418     // bitcast to v2i64 and then extract first element.
1419     if (BitCastToType == MVT::v2i64)
1420       return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VA.getLocVT(), Value,
1421                          DAG.getConstant(0, DL, MVT::i32));
1422     return Value;
1423   }
1424   case CCValAssign::Full:
1425     return Value;
1426   default:
1427     llvm_unreachable("Unhandled getLocInfo()");
1428   }
1429 }
1430 
1431 static SDValue lowerI128ToGR128(SelectionDAG &DAG, SDValue In) {
1432   SDLoc DL(In);
1433   SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i64, In,
1434                            DAG.getIntPtrConstant(0, DL));
1435   SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i64, In,
1436                            DAG.getIntPtrConstant(1, DL));
1437   SDNode *Pair = DAG.getMachineNode(SystemZ::PAIR128, DL,
1438                                     MVT::Untyped, Hi, Lo);
1439   return SDValue(Pair, 0);
1440 }
1441 
1442 static SDValue lowerGR128ToI128(SelectionDAG &DAG, SDValue In) {
1443   SDLoc DL(In);
1444   SDValue Hi = DAG.getTargetExtractSubreg(SystemZ::subreg_h64,
1445                                           DL, MVT::i64, In);
1446   SDValue Lo = DAG.getTargetExtractSubreg(SystemZ::subreg_l64,
1447                                           DL, MVT::i64, In);
1448   return DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i128, Lo, Hi);
1449 }
1450 
1451 bool SystemZTargetLowering::splitValueIntoRegisterParts(
1452     SelectionDAG &DAG, const SDLoc &DL, SDValue Val, SDValue *Parts,
1453     unsigned NumParts, MVT PartVT, Optional<CallingConv::ID> CC) const {
1454   EVT ValueVT = Val.getValueType();
1455   assert((ValueVT != MVT::i128 ||
1456           ((NumParts == 1 && PartVT == MVT::Untyped) ||
1457            (NumParts == 2 && PartVT == MVT::i64))) &&
1458          "Unknown handling of i128 value.");
1459   if (ValueVT == MVT::i128 && NumParts == 1) {
1460     // Inline assembly operand.
1461     Parts[0] = lowerI128ToGR128(DAG, Val);
1462     return true;
1463   }
1464   return false;
1465 }
1466 
1467 SDValue SystemZTargetLowering::joinRegisterPartsIntoValue(
1468     SelectionDAG &DAG, const SDLoc &DL, const SDValue *Parts, unsigned NumParts,
1469     MVT PartVT, EVT ValueVT, Optional<CallingConv::ID> CC) const {
1470   assert((ValueVT != MVT::i128 ||
1471           ((NumParts == 1 && PartVT == MVT::Untyped) ||
1472            (NumParts == 2 && PartVT == MVT::i64))) &&
1473          "Unknown handling of i128 value.");
1474   if (ValueVT == MVT::i128 && NumParts == 1)
1475     // Inline assembly operand.
1476     return lowerGR128ToI128(DAG, Parts[0]);
1477   return SDValue();
1478 }
1479 
1480 SDValue SystemZTargetLowering::LowerFormalArguments(
1481     SDValue Chain, CallingConv::ID CallConv, bool IsVarArg,
1482     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL,
1483     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
1484   MachineFunction &MF = DAG.getMachineFunction();
1485   MachineFrameInfo &MFI = MF.getFrameInfo();
1486   MachineRegisterInfo &MRI = MF.getRegInfo();
1487   SystemZMachineFunctionInfo *FuncInfo =
1488       MF.getInfo<SystemZMachineFunctionInfo>();
1489   auto *TFL = Subtarget.getFrameLowering<SystemZELFFrameLowering>();
1490   EVT PtrVT = getPointerTy(DAG.getDataLayout());
1491 
1492   // Detect unsupported vector argument types.
1493   if (Subtarget.hasVector())
1494     VerifyVectorTypes(Ins);
1495 
1496   // Assign locations to all of the incoming arguments.
1497   SmallVector<CCValAssign, 16> ArgLocs;
1498   SystemZCCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext());
1499   CCInfo.AnalyzeFormalArguments(Ins, CC_SystemZ);
1500 
1501   unsigned NumFixedGPRs = 0;
1502   unsigned NumFixedFPRs = 0;
1503   for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) {
1504     SDValue ArgValue;
1505     CCValAssign &VA = ArgLocs[I];
1506     EVT LocVT = VA.getLocVT();
1507     if (VA.isRegLoc()) {
1508       // Arguments passed in registers
1509       const TargetRegisterClass *RC;
1510       switch (LocVT.getSimpleVT().SimpleTy) {
1511       default:
1512         // Integers smaller than i64 should be promoted to i64.
1513         llvm_unreachable("Unexpected argument type");
1514       case MVT::i32:
1515         NumFixedGPRs += 1;
1516         RC = &SystemZ::GR32BitRegClass;
1517         break;
1518       case MVT::i64:
1519         NumFixedGPRs += 1;
1520         RC = &SystemZ::GR64BitRegClass;
1521         break;
1522       case MVT::f32:
1523         NumFixedFPRs += 1;
1524         RC = &SystemZ::FP32BitRegClass;
1525         break;
1526       case MVT::f64:
1527         NumFixedFPRs += 1;
1528         RC = &SystemZ::FP64BitRegClass;
1529         break;
1530       case MVT::f128:
1531         NumFixedFPRs += 2;
1532         RC = &SystemZ::FP128BitRegClass;
1533         break;
1534       case MVT::v16i8:
1535       case MVT::v8i16:
1536       case MVT::v4i32:
1537       case MVT::v2i64:
1538       case MVT::v4f32:
1539       case MVT::v2f64:
1540         RC = &SystemZ::VR128BitRegClass;
1541         break;
1542       }
1543 
1544       Register VReg = MRI.createVirtualRegister(RC);
1545       MRI.addLiveIn(VA.getLocReg(), VReg);
1546       ArgValue = DAG.getCopyFromReg(Chain, DL, VReg, LocVT);
1547     } else {
1548       assert(VA.isMemLoc() && "Argument not register or memory");
1549 
1550       // Create the frame index object for this incoming parameter.
1551       // FIXME: Pre-include call frame size in the offset, should not
1552       // need to manually add it here.
1553       int64_t ArgSPOffset = VA.getLocMemOffset();
1554       if (Subtarget.isTargetXPLINK64()) {
1555         auto &XPRegs =
1556             Subtarget.getSpecialRegisters<SystemZXPLINK64Registers>();
1557         ArgSPOffset += XPRegs.getCallFrameSize();
1558       }
1559       int FI =
1560           MFI.CreateFixedObject(LocVT.getSizeInBits() / 8, ArgSPOffset, true);
1561 
1562       // Create the SelectionDAG nodes corresponding to a load
1563       // from this parameter.  Unpromoted ints and floats are
1564       // passed as right-justified 8-byte values.
1565       SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
1566       if (VA.getLocVT() == MVT::i32 || VA.getLocVT() == MVT::f32)
1567         FIN = DAG.getNode(ISD::ADD, DL, PtrVT, FIN,
1568                           DAG.getIntPtrConstant(4, DL));
1569       ArgValue = DAG.getLoad(LocVT, DL, Chain, FIN,
1570                              MachinePointerInfo::getFixedStack(MF, FI));
1571     }
1572 
1573     // Convert the value of the argument register into the value that's
1574     // being passed.
1575     if (VA.getLocInfo() == CCValAssign::Indirect) {
1576       InVals.push_back(DAG.getLoad(VA.getValVT(), DL, Chain, ArgValue,
1577                                    MachinePointerInfo()));
1578       // If the original argument was split (e.g. i128), we need
1579       // to load all parts of it here (using the same address).
1580       unsigned ArgIndex = Ins[I].OrigArgIndex;
1581       assert (Ins[I].PartOffset == 0);
1582       while (I + 1 != E && Ins[I + 1].OrigArgIndex == ArgIndex) {
1583         CCValAssign &PartVA = ArgLocs[I + 1];
1584         unsigned PartOffset = Ins[I + 1].PartOffset;
1585         SDValue Address = DAG.getNode(ISD::ADD, DL, PtrVT, ArgValue,
1586                                       DAG.getIntPtrConstant(PartOffset, DL));
1587         InVals.push_back(DAG.getLoad(PartVA.getValVT(), DL, Chain, Address,
1588                                      MachinePointerInfo()));
1589         ++I;
1590       }
1591     } else
1592       InVals.push_back(convertLocVTToValVT(DAG, DL, VA, Chain, ArgValue));
1593   }
1594 
1595   // FIXME: Add support for lowering varargs for XPLINK64 in a later patch.
1596   if (IsVarArg && Subtarget.isTargetELF()) {
1597     // Save the number of non-varargs registers for later use by va_start, etc.
1598     FuncInfo->setVarArgsFirstGPR(NumFixedGPRs);
1599     FuncInfo->setVarArgsFirstFPR(NumFixedFPRs);
1600 
1601     // Likewise the address (in the form of a frame index) of where the
1602     // first stack vararg would be.  The 1-byte size here is arbitrary.
1603     int64_t StackSize = CCInfo.getNextStackOffset();
1604     FuncInfo->setVarArgsFrameIndex(MFI.CreateFixedObject(1, StackSize, true));
1605 
1606     // ...and a similar frame index for the caller-allocated save area
1607     // that will be used to store the incoming registers.
1608     int64_t RegSaveOffset =
1609       -SystemZMC::ELFCallFrameSize + TFL->getRegSpillOffset(MF, SystemZ::R2D) - 16;
1610     unsigned RegSaveIndex = MFI.CreateFixedObject(1, RegSaveOffset, true);
1611     FuncInfo->setRegSaveFrameIndex(RegSaveIndex);
1612 
1613     // Store the FPR varargs in the reserved frame slots.  (We store the
1614     // GPRs as part of the prologue.)
1615     if (NumFixedFPRs < SystemZ::ELFNumArgFPRs && !useSoftFloat()) {
1616       SDValue MemOps[SystemZ::ELFNumArgFPRs];
1617       for (unsigned I = NumFixedFPRs; I < SystemZ::ELFNumArgFPRs; ++I) {
1618         unsigned Offset = TFL->getRegSpillOffset(MF, SystemZ::ELFArgFPRs[I]);
1619         int FI =
1620           MFI.CreateFixedObject(8, -SystemZMC::ELFCallFrameSize + Offset, true);
1621         SDValue FIN = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout()));
1622         Register VReg = MF.addLiveIn(SystemZ::ELFArgFPRs[I],
1623                                      &SystemZ::FP64BitRegClass);
1624         SDValue ArgValue = DAG.getCopyFromReg(Chain, DL, VReg, MVT::f64);
1625         MemOps[I] = DAG.getStore(ArgValue.getValue(1), DL, ArgValue, FIN,
1626                                  MachinePointerInfo::getFixedStack(MF, FI));
1627       }
1628       // Join the stores, which are independent of one another.
1629       Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other,
1630                           makeArrayRef(&MemOps[NumFixedFPRs],
1631                                        SystemZ::ELFNumArgFPRs-NumFixedFPRs));
1632     }
1633   }
1634 
1635   // FIXME: For XPLINK64, Add in support for handling incoming "ADA" special
1636   // register (R5)
1637   return Chain;
1638 }
1639 
1640 static bool canUseSiblingCall(const CCState &ArgCCInfo,
1641                               SmallVectorImpl<CCValAssign> &ArgLocs,
1642                               SmallVectorImpl<ISD::OutputArg> &Outs) {
1643   // Punt if there are any indirect or stack arguments, or if the call
1644   // needs the callee-saved argument register R6, or if the call uses
1645   // the callee-saved register arguments SwiftSelf and SwiftError.
1646   for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) {
1647     CCValAssign &VA = ArgLocs[I];
1648     if (VA.getLocInfo() == CCValAssign::Indirect)
1649       return false;
1650     if (!VA.isRegLoc())
1651       return false;
1652     Register Reg = VA.getLocReg();
1653     if (Reg == SystemZ::R6H || Reg == SystemZ::R6L || Reg == SystemZ::R6D)
1654       return false;
1655     if (Outs[I].Flags.isSwiftSelf() || Outs[I].Flags.isSwiftError())
1656       return false;
1657   }
1658   return true;
1659 }
1660 
1661 SDValue
1662 SystemZTargetLowering::LowerCall(CallLoweringInfo &CLI,
1663                                  SmallVectorImpl<SDValue> &InVals) const {
1664   SelectionDAG &DAG = CLI.DAG;
1665   SDLoc &DL = CLI.DL;
1666   SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs;
1667   SmallVectorImpl<SDValue> &OutVals = CLI.OutVals;
1668   SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins;
1669   SDValue Chain = CLI.Chain;
1670   SDValue Callee = CLI.Callee;
1671   bool &IsTailCall = CLI.IsTailCall;
1672   CallingConv::ID CallConv = CLI.CallConv;
1673   bool IsVarArg = CLI.IsVarArg;
1674   MachineFunction &MF = DAG.getMachineFunction();
1675   EVT PtrVT = getPointerTy(MF.getDataLayout());
1676   LLVMContext &Ctx = *DAG.getContext();
1677   SystemZCallingConventionRegisters *Regs = Subtarget.getSpecialRegisters();
1678 
1679   // FIXME: z/OS support to be added in later.
1680   if (Subtarget.isTargetXPLINK64())
1681     IsTailCall = false;
1682 
1683   // Detect unsupported vector argument and return types.
1684   if (Subtarget.hasVector()) {
1685     VerifyVectorTypes(Outs);
1686     VerifyVectorTypes(Ins);
1687   }
1688 
1689   // Analyze the operands of the call, assigning locations to each operand.
1690   SmallVector<CCValAssign, 16> ArgLocs;
1691   SystemZCCState ArgCCInfo(CallConv, IsVarArg, MF, ArgLocs, Ctx);
1692   ArgCCInfo.AnalyzeCallOperands(Outs, CC_SystemZ);
1693 
1694   // We don't support GuaranteedTailCallOpt, only automatically-detected
1695   // sibling calls.
1696   if (IsTailCall && !canUseSiblingCall(ArgCCInfo, ArgLocs, Outs))
1697     IsTailCall = false;
1698 
1699   // Get a count of how many bytes are to be pushed on the stack.
1700   unsigned NumBytes = ArgCCInfo.getNextStackOffset();
1701 
1702   if (Subtarget.isTargetXPLINK64())
1703     // Although the XPLINK specifications for AMODE64 state that minimum size
1704     // of the param area is minimum 32 bytes and no rounding is otherwise
1705     // specified, we round this area in 64 bytes increments to be compatible
1706     // with existing compilers.
1707     NumBytes = std::max(64U, (unsigned)alignTo(NumBytes, 64));
1708 
1709   // Mark the start of the call.
1710   if (!IsTailCall)
1711     Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, DL);
1712 
1713   // Copy argument values to their designated locations.
1714   SmallVector<std::pair<unsigned, SDValue>, 9> RegsToPass;
1715   SmallVector<SDValue, 8> MemOpChains;
1716   SDValue StackPtr;
1717   for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) {
1718     CCValAssign &VA = ArgLocs[I];
1719     SDValue ArgValue = OutVals[I];
1720 
1721     if (VA.getLocInfo() == CCValAssign::Indirect) {
1722       // Store the argument in a stack slot and pass its address.
1723       unsigned ArgIndex = Outs[I].OrigArgIndex;
1724       EVT SlotVT;
1725       if (I + 1 != E && Outs[I + 1].OrigArgIndex == ArgIndex) {
1726         // Allocate the full stack space for a promoted (and split) argument.
1727         Type *OrigArgType = CLI.Args[Outs[I].OrigArgIndex].Ty;
1728         EVT OrigArgVT = getValueType(MF.getDataLayout(), OrigArgType);
1729         MVT PartVT = getRegisterTypeForCallingConv(Ctx, CLI.CallConv, OrigArgVT);
1730         unsigned N = getNumRegistersForCallingConv(Ctx, CLI.CallConv, OrigArgVT);
1731         SlotVT = EVT::getIntegerVT(Ctx, PartVT.getSizeInBits() * N);
1732       } else {
1733         SlotVT = Outs[I].ArgVT;
1734       }
1735       SDValue SpillSlot = DAG.CreateStackTemporary(SlotVT);
1736       int FI = cast<FrameIndexSDNode>(SpillSlot)->getIndex();
1737       MemOpChains.push_back(
1738           DAG.getStore(Chain, DL, ArgValue, SpillSlot,
1739                        MachinePointerInfo::getFixedStack(MF, FI)));
1740       // If the original argument was split (e.g. i128), we need
1741       // to store all parts of it here (and pass just one address).
1742       assert (Outs[I].PartOffset == 0);
1743       while (I + 1 != E && Outs[I + 1].OrigArgIndex == ArgIndex) {
1744         SDValue PartValue = OutVals[I + 1];
1745         unsigned PartOffset = Outs[I + 1].PartOffset;
1746         SDValue Address = DAG.getNode(ISD::ADD, DL, PtrVT, SpillSlot,
1747                                       DAG.getIntPtrConstant(PartOffset, DL));
1748         MemOpChains.push_back(
1749             DAG.getStore(Chain, DL, PartValue, Address,
1750                          MachinePointerInfo::getFixedStack(MF, FI)));
1751         assert((PartOffset + PartValue.getValueType().getStoreSize() <=
1752                 SlotVT.getStoreSize()) && "Not enough space for argument part!");
1753         ++I;
1754       }
1755       ArgValue = SpillSlot;
1756     } else
1757       ArgValue = convertValVTToLocVT(DAG, DL, VA, ArgValue);
1758 
1759     if (VA.isRegLoc()) {
1760       // In XPLINK64, for the 128-bit vararg case, ArgValue is bitcasted to a
1761       // MVT::i128 type. We decompose the 128-bit type to a pair of its high
1762       // and low values.
1763       if (VA.getLocVT() == MVT::i128)
1764         ArgValue = lowerI128ToGR128(DAG, ArgValue);
1765       // Queue up the argument copies and emit them at the end.
1766       RegsToPass.push_back(std::make_pair(VA.getLocReg(), ArgValue));
1767     } else {
1768       assert(VA.isMemLoc() && "Argument not register or memory");
1769 
1770       // Work out the address of the stack slot.  Unpromoted ints and
1771       // floats are passed as right-justified 8-byte values.
1772       if (!StackPtr.getNode())
1773         StackPtr = DAG.getCopyFromReg(Chain, DL,
1774                                       Regs->getStackPointerRegister(), PtrVT);
1775       unsigned Offset = Regs->getStackPointerBias() + Regs->getCallFrameSize() +
1776                         VA.getLocMemOffset();
1777       if (VA.getLocVT() == MVT::i32 || VA.getLocVT() == MVT::f32)
1778         Offset += 4;
1779       SDValue Address = DAG.getNode(ISD::ADD, DL, PtrVT, StackPtr,
1780                                     DAG.getIntPtrConstant(Offset, DL));
1781 
1782       // Emit the store.
1783       MemOpChains.push_back(
1784           DAG.getStore(Chain, DL, ArgValue, Address, MachinePointerInfo()));
1785 
1786       // Although long doubles or vectors are passed through the stack when
1787       // they are vararg (non-fixed arguments), if a long double or vector
1788       // occupies the third and fourth slot of the argument list GPR3 should
1789       // still shadow the third slot of the argument list.
1790       if (Subtarget.isTargetXPLINK64() && VA.needsCustom()) {
1791         SDValue ShadowArgValue =
1792             DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i64, ArgValue,
1793                         DAG.getIntPtrConstant(1, DL));
1794         RegsToPass.push_back(std::make_pair(SystemZ::R3D, ShadowArgValue));
1795       }
1796     }
1797   }
1798 
1799   // Join the stores, which are independent of one another.
1800   if (!MemOpChains.empty())
1801     Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOpChains);
1802 
1803   // Accept direct calls by converting symbolic call addresses to the
1804   // associated Target* opcodes.  Force %r1 to be used for indirect
1805   // tail calls.
1806   SDValue Glue;
1807   // FIXME: Add support for XPLINK using the ADA register.
1808   if (auto *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
1809     Callee = DAG.getTargetGlobalAddress(G->getGlobal(), DL, PtrVT);
1810     Callee = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Callee);
1811   } else if (auto *E = dyn_cast<ExternalSymbolSDNode>(Callee)) {
1812     Callee = DAG.getTargetExternalSymbol(E->getSymbol(), PtrVT);
1813     Callee = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Callee);
1814   } else if (IsTailCall) {
1815     Chain = DAG.getCopyToReg(Chain, DL, SystemZ::R1D, Callee, Glue);
1816     Glue = Chain.getValue(1);
1817     Callee = DAG.getRegister(SystemZ::R1D, Callee.getValueType());
1818   }
1819 
1820   // Build a sequence of copy-to-reg nodes, chained and glued together.
1821   for (unsigned I = 0, E = RegsToPass.size(); I != E; ++I) {
1822     Chain = DAG.getCopyToReg(Chain, DL, RegsToPass[I].first,
1823                              RegsToPass[I].second, Glue);
1824     Glue = Chain.getValue(1);
1825   }
1826 
1827   // The first call operand is the chain and the second is the target address.
1828   SmallVector<SDValue, 8> Ops;
1829   Ops.push_back(Chain);
1830   Ops.push_back(Callee);
1831 
1832   // Add argument registers to the end of the list so that they are
1833   // known live into the call.
1834   for (unsigned I = 0, E = RegsToPass.size(); I != E; ++I)
1835     Ops.push_back(DAG.getRegister(RegsToPass[I].first,
1836                                   RegsToPass[I].second.getValueType()));
1837 
1838   // Add a register mask operand representing the call-preserved registers.
1839   const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo();
1840   const uint32_t *Mask = TRI->getCallPreservedMask(MF, CallConv);
1841   assert(Mask && "Missing call preserved mask for calling convention");
1842   Ops.push_back(DAG.getRegisterMask(Mask));
1843 
1844   // Glue the call to the argument copies, if any.
1845   if (Glue.getNode())
1846     Ops.push_back(Glue);
1847 
1848   // Emit the call.
1849   SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
1850   if (IsTailCall)
1851     return DAG.getNode(SystemZISD::SIBCALL, DL, NodeTys, Ops);
1852   Chain = DAG.getNode(SystemZISD::CALL, DL, NodeTys, Ops);
1853   DAG.addNoMergeSiteInfo(Chain.getNode(), CLI.NoMerge);
1854   Glue = Chain.getValue(1);
1855 
1856   // Mark the end of the call, which is glued to the call itself.
1857   Chain = DAG.getCALLSEQ_END(Chain,
1858                              DAG.getConstant(NumBytes, DL, PtrVT, true),
1859                              DAG.getConstant(0, DL, PtrVT, true),
1860                              Glue, DL);
1861   Glue = Chain.getValue(1);
1862 
1863   // Assign locations to each value returned by this call.
1864   SmallVector<CCValAssign, 16> RetLocs;
1865   CCState RetCCInfo(CallConv, IsVarArg, MF, RetLocs, Ctx);
1866   RetCCInfo.AnalyzeCallResult(Ins, RetCC_SystemZ);
1867 
1868   // Copy all of the result registers out of their specified physreg.
1869   for (unsigned I = 0, E = RetLocs.size(); I != E; ++I) {
1870     CCValAssign &VA = RetLocs[I];
1871 
1872     // Copy the value out, gluing the copy to the end of the call sequence.
1873     SDValue RetValue = DAG.getCopyFromReg(Chain, DL, VA.getLocReg(),
1874                                           VA.getLocVT(), Glue);
1875     Chain = RetValue.getValue(1);
1876     Glue = RetValue.getValue(2);
1877 
1878     // Convert the value of the return register into the value that's
1879     // being returned.
1880     InVals.push_back(convertLocVTToValVT(DAG, DL, VA, Chain, RetValue));
1881   }
1882 
1883   return Chain;
1884 }
1885 
1886 // Generate a call taking the given operands as arguments and returning a
1887 // result of type RetVT.
1888 std::pair<SDValue, SDValue> SystemZTargetLowering::makeExternalCall(
1889     SDValue Chain, SelectionDAG &DAG, const char *CalleeName, EVT RetVT,
1890     ArrayRef<SDValue> Ops, CallingConv::ID CallConv, bool IsSigned, SDLoc DL,
1891     bool DoesNotReturn, bool IsReturnValueUsed) const {
1892   TargetLowering::ArgListTy Args;
1893   Args.reserve(Ops.size());
1894 
1895   TargetLowering::ArgListEntry Entry;
1896   for (SDValue Op : Ops) {
1897     Entry.Node = Op;
1898     Entry.Ty = Entry.Node.getValueType().getTypeForEVT(*DAG.getContext());
1899     Entry.IsSExt = shouldSignExtendTypeInLibCall(Op.getValueType(), IsSigned);
1900     Entry.IsZExt = !shouldSignExtendTypeInLibCall(Op.getValueType(), IsSigned);
1901     Args.push_back(Entry);
1902   }
1903 
1904   SDValue Callee =
1905       DAG.getExternalSymbol(CalleeName, getPointerTy(DAG.getDataLayout()));
1906 
1907   Type *RetTy = RetVT.getTypeForEVT(*DAG.getContext());
1908   TargetLowering::CallLoweringInfo CLI(DAG);
1909   bool SignExtend = shouldSignExtendTypeInLibCall(RetVT, IsSigned);
1910   CLI.setDebugLoc(DL)
1911       .setChain(Chain)
1912       .setCallee(CallConv, RetTy, Callee, std::move(Args))
1913       .setNoReturn(DoesNotReturn)
1914       .setDiscardResult(!IsReturnValueUsed)
1915       .setSExtResult(SignExtend)
1916       .setZExtResult(!SignExtend);
1917   return LowerCallTo(CLI);
1918 }
1919 
1920 bool SystemZTargetLowering::
1921 CanLowerReturn(CallingConv::ID CallConv,
1922                MachineFunction &MF, bool isVarArg,
1923                const SmallVectorImpl<ISD::OutputArg> &Outs,
1924                LLVMContext &Context) const {
1925   // Detect unsupported vector return types.
1926   if (Subtarget.hasVector())
1927     VerifyVectorTypes(Outs);
1928 
1929   // Special case that we cannot easily detect in RetCC_SystemZ since
1930   // i128 is not a legal type.
1931   for (auto &Out : Outs)
1932     if (Out.ArgVT == MVT::i128)
1933       return false;
1934 
1935   SmallVector<CCValAssign, 16> RetLocs;
1936   CCState RetCCInfo(CallConv, isVarArg, MF, RetLocs, Context);
1937   return RetCCInfo.CheckReturn(Outs, RetCC_SystemZ);
1938 }
1939 
1940 SDValue
1941 SystemZTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv,
1942                                    bool IsVarArg,
1943                                    const SmallVectorImpl<ISD::OutputArg> &Outs,
1944                                    const SmallVectorImpl<SDValue> &OutVals,
1945                                    const SDLoc &DL, SelectionDAG &DAG) const {
1946   MachineFunction &MF = DAG.getMachineFunction();
1947 
1948   // Detect unsupported vector return types.
1949   if (Subtarget.hasVector())
1950     VerifyVectorTypes(Outs);
1951 
1952   // Assign locations to each returned value.
1953   SmallVector<CCValAssign, 16> RetLocs;
1954   CCState RetCCInfo(CallConv, IsVarArg, MF, RetLocs, *DAG.getContext());
1955   RetCCInfo.AnalyzeReturn(Outs, RetCC_SystemZ);
1956 
1957   // Quick exit for void returns
1958   if (RetLocs.empty())
1959     return DAG.getNode(SystemZISD::RET_FLAG, DL, MVT::Other, Chain);
1960 
1961   if (CallConv == CallingConv::GHC)
1962     report_fatal_error("GHC functions return void only");
1963 
1964   // Copy the result values into the output registers.
1965   SDValue Glue;
1966   SmallVector<SDValue, 4> RetOps;
1967   RetOps.push_back(Chain);
1968   for (unsigned I = 0, E = RetLocs.size(); I != E; ++I) {
1969     CCValAssign &VA = RetLocs[I];
1970     SDValue RetValue = OutVals[I];
1971 
1972     // Make the return register live on exit.
1973     assert(VA.isRegLoc() && "Can only return in registers!");
1974 
1975     // Promote the value as required.
1976     RetValue = convertValVTToLocVT(DAG, DL, VA, RetValue);
1977 
1978     // Chain and glue the copies together.
1979     Register Reg = VA.getLocReg();
1980     Chain = DAG.getCopyToReg(Chain, DL, Reg, RetValue, Glue);
1981     Glue = Chain.getValue(1);
1982     RetOps.push_back(DAG.getRegister(Reg, VA.getLocVT()));
1983   }
1984 
1985   // Update chain and glue.
1986   RetOps[0] = Chain;
1987   if (Glue.getNode())
1988     RetOps.push_back(Glue);
1989 
1990   return DAG.getNode(SystemZISD::RET_FLAG, DL, MVT::Other, RetOps);
1991 }
1992 
1993 // Return true if Op is an intrinsic node with chain that returns the CC value
1994 // as its only (other) argument.  Provide the associated SystemZISD opcode and
1995 // the mask of valid CC values if so.
1996 static bool isIntrinsicWithCCAndChain(SDValue Op, unsigned &Opcode,
1997                                       unsigned &CCValid) {
1998   unsigned Id = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
1999   switch (Id) {
2000   case Intrinsic::s390_tbegin:
2001     Opcode = SystemZISD::TBEGIN;
2002     CCValid = SystemZ::CCMASK_TBEGIN;
2003     return true;
2004 
2005   case Intrinsic::s390_tbegin_nofloat:
2006     Opcode = SystemZISD::TBEGIN_NOFLOAT;
2007     CCValid = SystemZ::CCMASK_TBEGIN;
2008     return true;
2009 
2010   case Intrinsic::s390_tend:
2011     Opcode = SystemZISD::TEND;
2012     CCValid = SystemZ::CCMASK_TEND;
2013     return true;
2014 
2015   default:
2016     return false;
2017   }
2018 }
2019 
2020 // Return true if Op is an intrinsic node without chain that returns the
2021 // CC value as its final argument.  Provide the associated SystemZISD
2022 // opcode and the mask of valid CC values if so.
2023 static bool isIntrinsicWithCC(SDValue Op, unsigned &Opcode, unsigned &CCValid) {
2024   unsigned Id = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
2025   switch (Id) {
2026   case Intrinsic::s390_vpkshs:
2027   case Intrinsic::s390_vpksfs:
2028   case Intrinsic::s390_vpksgs:
2029     Opcode = SystemZISD::PACKS_CC;
2030     CCValid = SystemZ::CCMASK_VCMP;
2031     return true;
2032 
2033   case Intrinsic::s390_vpklshs:
2034   case Intrinsic::s390_vpklsfs:
2035   case Intrinsic::s390_vpklsgs:
2036     Opcode = SystemZISD::PACKLS_CC;
2037     CCValid = SystemZ::CCMASK_VCMP;
2038     return true;
2039 
2040   case Intrinsic::s390_vceqbs:
2041   case Intrinsic::s390_vceqhs:
2042   case Intrinsic::s390_vceqfs:
2043   case Intrinsic::s390_vceqgs:
2044     Opcode = SystemZISD::VICMPES;
2045     CCValid = SystemZ::CCMASK_VCMP;
2046     return true;
2047 
2048   case Intrinsic::s390_vchbs:
2049   case Intrinsic::s390_vchhs:
2050   case Intrinsic::s390_vchfs:
2051   case Intrinsic::s390_vchgs:
2052     Opcode = SystemZISD::VICMPHS;
2053     CCValid = SystemZ::CCMASK_VCMP;
2054     return true;
2055 
2056   case Intrinsic::s390_vchlbs:
2057   case Intrinsic::s390_vchlhs:
2058   case Intrinsic::s390_vchlfs:
2059   case Intrinsic::s390_vchlgs:
2060     Opcode = SystemZISD::VICMPHLS;
2061     CCValid = SystemZ::CCMASK_VCMP;
2062     return true;
2063 
2064   case Intrinsic::s390_vtm:
2065     Opcode = SystemZISD::VTM;
2066     CCValid = SystemZ::CCMASK_VCMP;
2067     return true;
2068 
2069   case Intrinsic::s390_vfaebs:
2070   case Intrinsic::s390_vfaehs:
2071   case Intrinsic::s390_vfaefs:
2072     Opcode = SystemZISD::VFAE_CC;
2073     CCValid = SystemZ::CCMASK_ANY;
2074     return true;
2075 
2076   case Intrinsic::s390_vfaezbs:
2077   case Intrinsic::s390_vfaezhs:
2078   case Intrinsic::s390_vfaezfs:
2079     Opcode = SystemZISD::VFAEZ_CC;
2080     CCValid = SystemZ::CCMASK_ANY;
2081     return true;
2082 
2083   case Intrinsic::s390_vfeebs:
2084   case Intrinsic::s390_vfeehs:
2085   case Intrinsic::s390_vfeefs:
2086     Opcode = SystemZISD::VFEE_CC;
2087     CCValid = SystemZ::CCMASK_ANY;
2088     return true;
2089 
2090   case Intrinsic::s390_vfeezbs:
2091   case Intrinsic::s390_vfeezhs:
2092   case Intrinsic::s390_vfeezfs:
2093     Opcode = SystemZISD::VFEEZ_CC;
2094     CCValid = SystemZ::CCMASK_ANY;
2095     return true;
2096 
2097   case Intrinsic::s390_vfenebs:
2098   case Intrinsic::s390_vfenehs:
2099   case Intrinsic::s390_vfenefs:
2100     Opcode = SystemZISD::VFENE_CC;
2101     CCValid = SystemZ::CCMASK_ANY;
2102     return true;
2103 
2104   case Intrinsic::s390_vfenezbs:
2105   case Intrinsic::s390_vfenezhs:
2106   case Intrinsic::s390_vfenezfs:
2107     Opcode = SystemZISD::VFENEZ_CC;
2108     CCValid = SystemZ::CCMASK_ANY;
2109     return true;
2110 
2111   case Intrinsic::s390_vistrbs:
2112   case Intrinsic::s390_vistrhs:
2113   case Intrinsic::s390_vistrfs:
2114     Opcode = SystemZISD::VISTR_CC;
2115     CCValid = SystemZ::CCMASK_0 | SystemZ::CCMASK_3;
2116     return true;
2117 
2118   case Intrinsic::s390_vstrcbs:
2119   case Intrinsic::s390_vstrchs:
2120   case Intrinsic::s390_vstrcfs:
2121     Opcode = SystemZISD::VSTRC_CC;
2122     CCValid = SystemZ::CCMASK_ANY;
2123     return true;
2124 
2125   case Intrinsic::s390_vstrczbs:
2126   case Intrinsic::s390_vstrczhs:
2127   case Intrinsic::s390_vstrczfs:
2128     Opcode = SystemZISD::VSTRCZ_CC;
2129     CCValid = SystemZ::CCMASK_ANY;
2130     return true;
2131 
2132   case Intrinsic::s390_vstrsb:
2133   case Intrinsic::s390_vstrsh:
2134   case Intrinsic::s390_vstrsf:
2135     Opcode = SystemZISD::VSTRS_CC;
2136     CCValid = SystemZ::CCMASK_ANY;
2137     return true;
2138 
2139   case Intrinsic::s390_vstrszb:
2140   case Intrinsic::s390_vstrszh:
2141   case Intrinsic::s390_vstrszf:
2142     Opcode = SystemZISD::VSTRSZ_CC;
2143     CCValid = SystemZ::CCMASK_ANY;
2144     return true;
2145 
2146   case Intrinsic::s390_vfcedbs:
2147   case Intrinsic::s390_vfcesbs:
2148     Opcode = SystemZISD::VFCMPES;
2149     CCValid = SystemZ::CCMASK_VCMP;
2150     return true;
2151 
2152   case Intrinsic::s390_vfchdbs:
2153   case Intrinsic::s390_vfchsbs:
2154     Opcode = SystemZISD::VFCMPHS;
2155     CCValid = SystemZ::CCMASK_VCMP;
2156     return true;
2157 
2158   case Intrinsic::s390_vfchedbs:
2159   case Intrinsic::s390_vfchesbs:
2160     Opcode = SystemZISD::VFCMPHES;
2161     CCValid = SystemZ::CCMASK_VCMP;
2162     return true;
2163 
2164   case Intrinsic::s390_vftcidb:
2165   case Intrinsic::s390_vftcisb:
2166     Opcode = SystemZISD::VFTCI;
2167     CCValid = SystemZ::CCMASK_VCMP;
2168     return true;
2169 
2170   case Intrinsic::s390_tdc:
2171     Opcode = SystemZISD::TDC;
2172     CCValid = SystemZ::CCMASK_TDC;
2173     return true;
2174 
2175   default:
2176     return false;
2177   }
2178 }
2179 
2180 // Emit an intrinsic with chain and an explicit CC register result.
2181 static SDNode *emitIntrinsicWithCCAndChain(SelectionDAG &DAG, SDValue Op,
2182                                            unsigned Opcode) {
2183   // Copy all operands except the intrinsic ID.
2184   unsigned NumOps = Op.getNumOperands();
2185   SmallVector<SDValue, 6> Ops;
2186   Ops.reserve(NumOps - 1);
2187   Ops.push_back(Op.getOperand(0));
2188   for (unsigned I = 2; I < NumOps; ++I)
2189     Ops.push_back(Op.getOperand(I));
2190 
2191   assert(Op->getNumValues() == 2 && "Expected only CC result and chain");
2192   SDVTList RawVTs = DAG.getVTList(MVT::i32, MVT::Other);
2193   SDValue Intr = DAG.getNode(Opcode, SDLoc(Op), RawVTs, Ops);
2194   SDValue OldChain = SDValue(Op.getNode(), 1);
2195   SDValue NewChain = SDValue(Intr.getNode(), 1);
2196   DAG.ReplaceAllUsesOfValueWith(OldChain, NewChain);
2197   return Intr.getNode();
2198 }
2199 
2200 // Emit an intrinsic with an explicit CC register result.
2201 static SDNode *emitIntrinsicWithCC(SelectionDAG &DAG, SDValue Op,
2202                                    unsigned Opcode) {
2203   // Copy all operands except the intrinsic ID.
2204   unsigned NumOps = Op.getNumOperands();
2205   SmallVector<SDValue, 6> Ops;
2206   Ops.reserve(NumOps - 1);
2207   for (unsigned I = 1; I < NumOps; ++I)
2208     Ops.push_back(Op.getOperand(I));
2209 
2210   SDValue Intr = DAG.getNode(Opcode, SDLoc(Op), Op->getVTList(), Ops);
2211   return Intr.getNode();
2212 }
2213 
2214 // CC is a comparison that will be implemented using an integer or
2215 // floating-point comparison.  Return the condition code mask for
2216 // a branch on true.  In the integer case, CCMASK_CMP_UO is set for
2217 // unsigned comparisons and clear for signed ones.  In the floating-point
2218 // case, CCMASK_CMP_UO has its normal mask meaning (unordered).
2219 static unsigned CCMaskForCondCode(ISD::CondCode CC) {
2220 #define CONV(X) \
2221   case ISD::SET##X: return SystemZ::CCMASK_CMP_##X; \
2222   case ISD::SETO##X: return SystemZ::CCMASK_CMP_##X; \
2223   case ISD::SETU##X: return SystemZ::CCMASK_CMP_UO | SystemZ::CCMASK_CMP_##X
2224 
2225   switch (CC) {
2226   default:
2227     llvm_unreachable("Invalid integer condition!");
2228 
2229   CONV(EQ);
2230   CONV(NE);
2231   CONV(GT);
2232   CONV(GE);
2233   CONV(LT);
2234   CONV(LE);
2235 
2236   case ISD::SETO:  return SystemZ::CCMASK_CMP_O;
2237   case ISD::SETUO: return SystemZ::CCMASK_CMP_UO;
2238   }
2239 #undef CONV
2240 }
2241 
2242 // If C can be converted to a comparison against zero, adjust the operands
2243 // as necessary.
2244 static void adjustZeroCmp(SelectionDAG &DAG, const SDLoc &DL, Comparison &C) {
2245   if (C.ICmpType == SystemZICMP::UnsignedOnly)
2246     return;
2247 
2248   auto *ConstOp1 = dyn_cast<ConstantSDNode>(C.Op1.getNode());
2249   if (!ConstOp1)
2250     return;
2251 
2252   int64_t Value = ConstOp1->getSExtValue();
2253   if ((Value == -1 && C.CCMask == SystemZ::CCMASK_CMP_GT) ||
2254       (Value == -1 && C.CCMask == SystemZ::CCMASK_CMP_LE) ||
2255       (Value == 1 && C.CCMask == SystemZ::CCMASK_CMP_LT) ||
2256       (Value == 1 && C.CCMask == SystemZ::CCMASK_CMP_GE)) {
2257     C.CCMask ^= SystemZ::CCMASK_CMP_EQ;
2258     C.Op1 = DAG.getConstant(0, DL, C.Op1.getValueType());
2259   }
2260 }
2261 
2262 // If a comparison described by C is suitable for CLI(Y), CHHSI or CLHHSI,
2263 // adjust the operands as necessary.
2264 static void adjustSubwordCmp(SelectionDAG &DAG, const SDLoc &DL,
2265                              Comparison &C) {
2266   // For us to make any changes, it must a comparison between a single-use
2267   // load and a constant.
2268   if (!C.Op0.hasOneUse() ||
2269       C.Op0.getOpcode() != ISD::LOAD ||
2270       C.Op1.getOpcode() != ISD::Constant)
2271     return;
2272 
2273   // We must have an 8- or 16-bit load.
2274   auto *Load = cast<LoadSDNode>(C.Op0);
2275   unsigned NumBits = Load->getMemoryVT().getSizeInBits();
2276   if ((NumBits != 8 && NumBits != 16) ||
2277       NumBits != Load->getMemoryVT().getStoreSizeInBits())
2278     return;
2279 
2280   // The load must be an extending one and the constant must be within the
2281   // range of the unextended value.
2282   auto *ConstOp1 = cast<ConstantSDNode>(C.Op1);
2283   uint64_t Value = ConstOp1->getZExtValue();
2284   uint64_t Mask = (1 << NumBits) - 1;
2285   if (Load->getExtensionType() == ISD::SEXTLOAD) {
2286     // Make sure that ConstOp1 is in range of C.Op0.
2287     int64_t SignedValue = ConstOp1->getSExtValue();
2288     if (uint64_t(SignedValue) + (uint64_t(1) << (NumBits - 1)) > Mask)
2289       return;
2290     if (C.ICmpType != SystemZICMP::SignedOnly) {
2291       // Unsigned comparison between two sign-extended values is equivalent
2292       // to unsigned comparison between two zero-extended values.
2293       Value &= Mask;
2294     } else if (NumBits == 8) {
2295       // Try to treat the comparison as unsigned, so that we can use CLI.
2296       // Adjust CCMask and Value as necessary.
2297       if (Value == 0 && C.CCMask == SystemZ::CCMASK_CMP_LT)
2298         // Test whether the high bit of the byte is set.
2299         Value = 127, C.CCMask = SystemZ::CCMASK_CMP_GT;
2300       else if (Value == 0 && C.CCMask == SystemZ::CCMASK_CMP_GE)
2301         // Test whether the high bit of the byte is clear.
2302         Value = 128, C.CCMask = SystemZ::CCMASK_CMP_LT;
2303       else
2304         // No instruction exists for this combination.
2305         return;
2306       C.ICmpType = SystemZICMP::UnsignedOnly;
2307     }
2308   } else if (Load->getExtensionType() == ISD::ZEXTLOAD) {
2309     if (Value > Mask)
2310       return;
2311     // If the constant is in range, we can use any comparison.
2312     C.ICmpType = SystemZICMP::Any;
2313   } else
2314     return;
2315 
2316   // Make sure that the first operand is an i32 of the right extension type.
2317   ISD::LoadExtType ExtType = (C.ICmpType == SystemZICMP::SignedOnly ?
2318                               ISD::SEXTLOAD :
2319                               ISD::ZEXTLOAD);
2320   if (C.Op0.getValueType() != MVT::i32 ||
2321       Load->getExtensionType() != ExtType) {
2322     C.Op0 = DAG.getExtLoad(ExtType, SDLoc(Load), MVT::i32, Load->getChain(),
2323                            Load->getBasePtr(), Load->getPointerInfo(),
2324                            Load->getMemoryVT(), Load->getAlign(),
2325                            Load->getMemOperand()->getFlags());
2326     // Update the chain uses.
2327     DAG.ReplaceAllUsesOfValueWith(SDValue(Load, 1), C.Op0.getValue(1));
2328   }
2329 
2330   // Make sure that the second operand is an i32 with the right value.
2331   if (C.Op1.getValueType() != MVT::i32 ||
2332       Value != ConstOp1->getZExtValue())
2333     C.Op1 = DAG.getConstant(Value, DL, MVT::i32);
2334 }
2335 
2336 // Return true if Op is either an unextended load, or a load suitable
2337 // for integer register-memory comparisons of type ICmpType.
2338 static bool isNaturalMemoryOperand(SDValue Op, unsigned ICmpType) {
2339   auto *Load = dyn_cast<LoadSDNode>(Op.getNode());
2340   if (Load) {
2341     // There are no instructions to compare a register with a memory byte.
2342     if (Load->getMemoryVT() == MVT::i8)
2343       return false;
2344     // Otherwise decide on extension type.
2345     switch (Load->getExtensionType()) {
2346     case ISD::NON_EXTLOAD:
2347       return true;
2348     case ISD::SEXTLOAD:
2349       return ICmpType != SystemZICMP::UnsignedOnly;
2350     case ISD::ZEXTLOAD:
2351       return ICmpType != SystemZICMP::SignedOnly;
2352     default:
2353       break;
2354     }
2355   }
2356   return false;
2357 }
2358 
2359 // Return true if it is better to swap the operands of C.
2360 static bool shouldSwapCmpOperands(const Comparison &C) {
2361   // Leave f128 comparisons alone, since they have no memory forms.
2362   if (C.Op0.getValueType() == MVT::f128)
2363     return false;
2364 
2365   // Always keep a floating-point constant second, since comparisons with
2366   // zero can use LOAD TEST and comparisons with other constants make a
2367   // natural memory operand.
2368   if (isa<ConstantFPSDNode>(C.Op1))
2369     return false;
2370 
2371   // Never swap comparisons with zero since there are many ways to optimize
2372   // those later.
2373   auto *ConstOp1 = dyn_cast<ConstantSDNode>(C.Op1);
2374   if (ConstOp1 && ConstOp1->getZExtValue() == 0)
2375     return false;
2376 
2377   // Also keep natural memory operands second if the loaded value is
2378   // only used here.  Several comparisons have memory forms.
2379   if (isNaturalMemoryOperand(C.Op1, C.ICmpType) && C.Op1.hasOneUse())
2380     return false;
2381 
2382   // Look for cases where Cmp0 is a single-use load and Cmp1 isn't.
2383   // In that case we generally prefer the memory to be second.
2384   if (isNaturalMemoryOperand(C.Op0, C.ICmpType) && C.Op0.hasOneUse()) {
2385     // The only exceptions are when the second operand is a constant and
2386     // we can use things like CHHSI.
2387     if (!ConstOp1)
2388       return true;
2389     // The unsigned memory-immediate instructions can handle 16-bit
2390     // unsigned integers.
2391     if (C.ICmpType != SystemZICMP::SignedOnly &&
2392         isUInt<16>(ConstOp1->getZExtValue()))
2393       return false;
2394     // The signed memory-immediate instructions can handle 16-bit
2395     // signed integers.
2396     if (C.ICmpType != SystemZICMP::UnsignedOnly &&
2397         isInt<16>(ConstOp1->getSExtValue()))
2398       return false;
2399     return true;
2400   }
2401 
2402   // Try to promote the use of CGFR and CLGFR.
2403   unsigned Opcode0 = C.Op0.getOpcode();
2404   if (C.ICmpType != SystemZICMP::UnsignedOnly && Opcode0 == ISD::SIGN_EXTEND)
2405     return true;
2406   if (C.ICmpType != SystemZICMP::SignedOnly && Opcode0 == ISD::ZERO_EXTEND)
2407     return true;
2408   if (C.ICmpType != SystemZICMP::SignedOnly &&
2409       Opcode0 == ISD::AND &&
2410       C.Op0.getOperand(1).getOpcode() == ISD::Constant &&
2411       cast<ConstantSDNode>(C.Op0.getOperand(1))->getZExtValue() == 0xffffffff)
2412     return true;
2413 
2414   return false;
2415 }
2416 
2417 // Check whether C tests for equality between X and Y and whether X - Y
2418 // or Y - X is also computed.  In that case it's better to compare the
2419 // result of the subtraction against zero.
2420 static void adjustForSubtraction(SelectionDAG &DAG, const SDLoc &DL,
2421                                  Comparison &C) {
2422   if (C.CCMask == SystemZ::CCMASK_CMP_EQ ||
2423       C.CCMask == SystemZ::CCMASK_CMP_NE) {
2424     for (SDNode *N : C.Op0->uses()) {
2425       if (N->getOpcode() == ISD::SUB &&
2426           ((N->getOperand(0) == C.Op0 && N->getOperand(1) == C.Op1) ||
2427            (N->getOperand(0) == C.Op1 && N->getOperand(1) == C.Op0))) {
2428         C.Op0 = SDValue(N, 0);
2429         C.Op1 = DAG.getConstant(0, DL, N->getValueType(0));
2430         return;
2431       }
2432     }
2433   }
2434 }
2435 
2436 // Check whether C compares a floating-point value with zero and if that
2437 // floating-point value is also negated.  In this case we can use the
2438 // negation to set CC, so avoiding separate LOAD AND TEST and
2439 // LOAD (NEGATIVE/COMPLEMENT) instructions.
2440 static void adjustForFNeg(Comparison &C) {
2441   // This optimization is invalid for strict comparisons, since FNEG
2442   // does not raise any exceptions.
2443   if (C.Chain)
2444     return;
2445   auto *C1 = dyn_cast<ConstantFPSDNode>(C.Op1);
2446   if (C1 && C1->isZero()) {
2447     for (SDNode *N : C.Op0->uses()) {
2448       if (N->getOpcode() == ISD::FNEG) {
2449         C.Op0 = SDValue(N, 0);
2450         C.CCMask = SystemZ::reverseCCMask(C.CCMask);
2451         return;
2452       }
2453     }
2454   }
2455 }
2456 
2457 // Check whether C compares (shl X, 32) with 0 and whether X is
2458 // also sign-extended.  In that case it is better to test the result
2459 // of the sign extension using LTGFR.
2460 //
2461 // This case is important because InstCombine transforms a comparison
2462 // with (sext (trunc X)) into a comparison with (shl X, 32).
2463 static void adjustForLTGFR(Comparison &C) {
2464   // Check for a comparison between (shl X, 32) and 0.
2465   if (C.Op0.getOpcode() == ISD::SHL &&
2466       C.Op0.getValueType() == MVT::i64 &&
2467       C.Op1.getOpcode() == ISD::Constant &&
2468       cast<ConstantSDNode>(C.Op1)->getZExtValue() == 0) {
2469     auto *C1 = dyn_cast<ConstantSDNode>(C.Op0.getOperand(1));
2470     if (C1 && C1->getZExtValue() == 32) {
2471       SDValue ShlOp0 = C.Op0.getOperand(0);
2472       // See whether X has any SIGN_EXTEND_INREG uses.
2473       for (SDNode *N : ShlOp0->uses()) {
2474         if (N->getOpcode() == ISD::SIGN_EXTEND_INREG &&
2475             cast<VTSDNode>(N->getOperand(1))->getVT() == MVT::i32) {
2476           C.Op0 = SDValue(N, 0);
2477           return;
2478         }
2479       }
2480     }
2481   }
2482 }
2483 
2484 // If C compares the truncation of an extending load, try to compare
2485 // the untruncated value instead.  This exposes more opportunities to
2486 // reuse CC.
2487 static void adjustICmpTruncate(SelectionDAG &DAG, const SDLoc &DL,
2488                                Comparison &C) {
2489   if (C.Op0.getOpcode() == ISD::TRUNCATE &&
2490       C.Op0.getOperand(0).getOpcode() == ISD::LOAD &&
2491       C.Op1.getOpcode() == ISD::Constant &&
2492       cast<ConstantSDNode>(C.Op1)->getZExtValue() == 0) {
2493     auto *L = cast<LoadSDNode>(C.Op0.getOperand(0));
2494     if (L->getMemoryVT().getStoreSizeInBits().getFixedSize() <=
2495         C.Op0.getValueSizeInBits().getFixedSize()) {
2496       unsigned Type = L->getExtensionType();
2497       if ((Type == ISD::ZEXTLOAD && C.ICmpType != SystemZICMP::SignedOnly) ||
2498           (Type == ISD::SEXTLOAD && C.ICmpType != SystemZICMP::UnsignedOnly)) {
2499         C.Op0 = C.Op0.getOperand(0);
2500         C.Op1 = DAG.getConstant(0, DL, C.Op0.getValueType());
2501       }
2502     }
2503   }
2504 }
2505 
2506 // Return true if shift operation N has an in-range constant shift value.
2507 // Store it in ShiftVal if so.
2508 static bool isSimpleShift(SDValue N, unsigned &ShiftVal) {
2509   auto *Shift = dyn_cast<ConstantSDNode>(N.getOperand(1));
2510   if (!Shift)
2511     return false;
2512 
2513   uint64_t Amount = Shift->getZExtValue();
2514   if (Amount >= N.getValueSizeInBits())
2515     return false;
2516 
2517   ShiftVal = Amount;
2518   return true;
2519 }
2520 
2521 // Check whether an AND with Mask is suitable for a TEST UNDER MASK
2522 // instruction and whether the CC value is descriptive enough to handle
2523 // a comparison of type Opcode between the AND result and CmpVal.
2524 // CCMask says which comparison result is being tested and BitSize is
2525 // the number of bits in the operands.  If TEST UNDER MASK can be used,
2526 // return the corresponding CC mask, otherwise return 0.
2527 static unsigned getTestUnderMaskCond(unsigned BitSize, unsigned CCMask,
2528                                      uint64_t Mask, uint64_t CmpVal,
2529                                      unsigned ICmpType) {
2530   assert(Mask != 0 && "ANDs with zero should have been removed by now");
2531 
2532   // Check whether the mask is suitable for TMHH, TMHL, TMLH or TMLL.
2533   if (!SystemZ::isImmLL(Mask) && !SystemZ::isImmLH(Mask) &&
2534       !SystemZ::isImmHL(Mask) && !SystemZ::isImmHH(Mask))
2535     return 0;
2536 
2537   // Work out the masks for the lowest and highest bits.
2538   unsigned HighShift = 63 - countLeadingZeros(Mask);
2539   uint64_t High = uint64_t(1) << HighShift;
2540   uint64_t Low = uint64_t(1) << countTrailingZeros(Mask);
2541 
2542   // Signed ordered comparisons are effectively unsigned if the sign
2543   // bit is dropped.
2544   bool EffectivelyUnsigned = (ICmpType != SystemZICMP::SignedOnly);
2545 
2546   // Check for equality comparisons with 0, or the equivalent.
2547   if (CmpVal == 0) {
2548     if (CCMask == SystemZ::CCMASK_CMP_EQ)
2549       return SystemZ::CCMASK_TM_ALL_0;
2550     if (CCMask == SystemZ::CCMASK_CMP_NE)
2551       return SystemZ::CCMASK_TM_SOME_1;
2552   }
2553   if (EffectivelyUnsigned && CmpVal > 0 && CmpVal <= Low) {
2554     if (CCMask == SystemZ::CCMASK_CMP_LT)
2555       return SystemZ::CCMASK_TM_ALL_0;
2556     if (CCMask == SystemZ::CCMASK_CMP_GE)
2557       return SystemZ::CCMASK_TM_SOME_1;
2558   }
2559   if (EffectivelyUnsigned && CmpVal < Low) {
2560     if (CCMask == SystemZ::CCMASK_CMP_LE)
2561       return SystemZ::CCMASK_TM_ALL_0;
2562     if (CCMask == SystemZ::CCMASK_CMP_GT)
2563       return SystemZ::CCMASK_TM_SOME_1;
2564   }
2565 
2566   // Check for equality comparisons with the mask, or the equivalent.
2567   if (CmpVal == Mask) {
2568     if (CCMask == SystemZ::CCMASK_CMP_EQ)
2569       return SystemZ::CCMASK_TM_ALL_1;
2570     if (CCMask == SystemZ::CCMASK_CMP_NE)
2571       return SystemZ::CCMASK_TM_SOME_0;
2572   }
2573   if (EffectivelyUnsigned && CmpVal >= Mask - Low && CmpVal < Mask) {
2574     if (CCMask == SystemZ::CCMASK_CMP_GT)
2575       return SystemZ::CCMASK_TM_ALL_1;
2576     if (CCMask == SystemZ::CCMASK_CMP_LE)
2577       return SystemZ::CCMASK_TM_SOME_0;
2578   }
2579   if (EffectivelyUnsigned && CmpVal > Mask - Low && CmpVal <= Mask) {
2580     if (CCMask == SystemZ::CCMASK_CMP_GE)
2581       return SystemZ::CCMASK_TM_ALL_1;
2582     if (CCMask == SystemZ::CCMASK_CMP_LT)
2583       return SystemZ::CCMASK_TM_SOME_0;
2584   }
2585 
2586   // Check for ordered comparisons with the top bit.
2587   if (EffectivelyUnsigned && CmpVal >= Mask - High && CmpVal < High) {
2588     if (CCMask == SystemZ::CCMASK_CMP_LE)
2589       return SystemZ::CCMASK_TM_MSB_0;
2590     if (CCMask == SystemZ::CCMASK_CMP_GT)
2591       return SystemZ::CCMASK_TM_MSB_1;
2592   }
2593   if (EffectivelyUnsigned && CmpVal > Mask - High && CmpVal <= High) {
2594     if (CCMask == SystemZ::CCMASK_CMP_LT)
2595       return SystemZ::CCMASK_TM_MSB_0;
2596     if (CCMask == SystemZ::CCMASK_CMP_GE)
2597       return SystemZ::CCMASK_TM_MSB_1;
2598   }
2599 
2600   // If there are just two bits, we can do equality checks for Low and High
2601   // as well.
2602   if (Mask == Low + High) {
2603     if (CCMask == SystemZ::CCMASK_CMP_EQ && CmpVal == Low)
2604       return SystemZ::CCMASK_TM_MIXED_MSB_0;
2605     if (CCMask == SystemZ::CCMASK_CMP_NE && CmpVal == Low)
2606       return SystemZ::CCMASK_TM_MIXED_MSB_0 ^ SystemZ::CCMASK_ANY;
2607     if (CCMask == SystemZ::CCMASK_CMP_EQ && CmpVal == High)
2608       return SystemZ::CCMASK_TM_MIXED_MSB_1;
2609     if (CCMask == SystemZ::CCMASK_CMP_NE && CmpVal == High)
2610       return SystemZ::CCMASK_TM_MIXED_MSB_1 ^ SystemZ::CCMASK_ANY;
2611   }
2612 
2613   // Looks like we've exhausted our options.
2614   return 0;
2615 }
2616 
2617 // See whether C can be implemented as a TEST UNDER MASK instruction.
2618 // Update the arguments with the TM version if so.
2619 static void adjustForTestUnderMask(SelectionDAG &DAG, const SDLoc &DL,
2620                                    Comparison &C) {
2621   // Check that we have a comparison with a constant.
2622   auto *ConstOp1 = dyn_cast<ConstantSDNode>(C.Op1);
2623   if (!ConstOp1)
2624     return;
2625   uint64_t CmpVal = ConstOp1->getZExtValue();
2626 
2627   // Check whether the nonconstant input is an AND with a constant mask.
2628   Comparison NewC(C);
2629   uint64_t MaskVal;
2630   ConstantSDNode *Mask = nullptr;
2631   if (C.Op0.getOpcode() == ISD::AND) {
2632     NewC.Op0 = C.Op0.getOperand(0);
2633     NewC.Op1 = C.Op0.getOperand(1);
2634     Mask = dyn_cast<ConstantSDNode>(NewC.Op1);
2635     if (!Mask)
2636       return;
2637     MaskVal = Mask->getZExtValue();
2638   } else {
2639     // There is no instruction to compare with a 64-bit immediate
2640     // so use TMHH instead if possible.  We need an unsigned ordered
2641     // comparison with an i64 immediate.
2642     if (NewC.Op0.getValueType() != MVT::i64 ||
2643         NewC.CCMask == SystemZ::CCMASK_CMP_EQ ||
2644         NewC.CCMask == SystemZ::CCMASK_CMP_NE ||
2645         NewC.ICmpType == SystemZICMP::SignedOnly)
2646       return;
2647     // Convert LE and GT comparisons into LT and GE.
2648     if (NewC.CCMask == SystemZ::CCMASK_CMP_LE ||
2649         NewC.CCMask == SystemZ::CCMASK_CMP_GT) {
2650       if (CmpVal == uint64_t(-1))
2651         return;
2652       CmpVal += 1;
2653       NewC.CCMask ^= SystemZ::CCMASK_CMP_EQ;
2654     }
2655     // If the low N bits of Op1 are zero than the low N bits of Op0 can
2656     // be masked off without changing the result.
2657     MaskVal = -(CmpVal & -CmpVal);
2658     NewC.ICmpType = SystemZICMP::UnsignedOnly;
2659   }
2660   if (!MaskVal)
2661     return;
2662 
2663   // Check whether the combination of mask, comparison value and comparison
2664   // type are suitable.
2665   unsigned BitSize = NewC.Op0.getValueSizeInBits();
2666   unsigned NewCCMask, ShiftVal;
2667   if (NewC.ICmpType != SystemZICMP::SignedOnly &&
2668       NewC.Op0.getOpcode() == ISD::SHL &&
2669       isSimpleShift(NewC.Op0, ShiftVal) &&
2670       (MaskVal >> ShiftVal != 0) &&
2671       ((CmpVal >> ShiftVal) << ShiftVal) == CmpVal &&
2672       (NewCCMask = getTestUnderMaskCond(BitSize, NewC.CCMask,
2673                                         MaskVal >> ShiftVal,
2674                                         CmpVal >> ShiftVal,
2675                                         SystemZICMP::Any))) {
2676     NewC.Op0 = NewC.Op0.getOperand(0);
2677     MaskVal >>= ShiftVal;
2678   } else if (NewC.ICmpType != SystemZICMP::SignedOnly &&
2679              NewC.Op0.getOpcode() == ISD::SRL &&
2680              isSimpleShift(NewC.Op0, ShiftVal) &&
2681              (MaskVal << ShiftVal != 0) &&
2682              ((CmpVal << ShiftVal) >> ShiftVal) == CmpVal &&
2683              (NewCCMask = getTestUnderMaskCond(BitSize, NewC.CCMask,
2684                                                MaskVal << ShiftVal,
2685                                                CmpVal << ShiftVal,
2686                                                SystemZICMP::UnsignedOnly))) {
2687     NewC.Op0 = NewC.Op0.getOperand(0);
2688     MaskVal <<= ShiftVal;
2689   } else {
2690     NewCCMask = getTestUnderMaskCond(BitSize, NewC.CCMask, MaskVal, CmpVal,
2691                                      NewC.ICmpType);
2692     if (!NewCCMask)
2693       return;
2694   }
2695 
2696   // Go ahead and make the change.
2697   C.Opcode = SystemZISD::TM;
2698   C.Op0 = NewC.Op0;
2699   if (Mask && Mask->getZExtValue() == MaskVal)
2700     C.Op1 = SDValue(Mask, 0);
2701   else
2702     C.Op1 = DAG.getConstant(MaskVal, DL, C.Op0.getValueType());
2703   C.CCValid = SystemZ::CCMASK_TM;
2704   C.CCMask = NewCCMask;
2705 }
2706 
2707 // See whether the comparison argument contains a redundant AND
2708 // and remove it if so.  This sometimes happens due to the generic
2709 // BRCOND expansion.
2710 static void adjustForRedundantAnd(SelectionDAG &DAG, const SDLoc &DL,
2711                                   Comparison &C) {
2712   if (C.Op0.getOpcode() != ISD::AND)
2713     return;
2714   auto *Mask = dyn_cast<ConstantSDNode>(C.Op0.getOperand(1));
2715   if (!Mask)
2716     return;
2717   KnownBits Known = DAG.computeKnownBits(C.Op0.getOperand(0));
2718   if ((~Known.Zero).getZExtValue() & ~Mask->getZExtValue())
2719     return;
2720 
2721   C.Op0 = C.Op0.getOperand(0);
2722 }
2723 
2724 // Return a Comparison that tests the condition-code result of intrinsic
2725 // node Call against constant integer CC using comparison code Cond.
2726 // Opcode is the opcode of the SystemZISD operation for the intrinsic
2727 // and CCValid is the set of possible condition-code results.
2728 static Comparison getIntrinsicCmp(SelectionDAG &DAG, unsigned Opcode,
2729                                   SDValue Call, unsigned CCValid, uint64_t CC,
2730                                   ISD::CondCode Cond) {
2731   Comparison C(Call, SDValue(), SDValue());
2732   C.Opcode = Opcode;
2733   C.CCValid = CCValid;
2734   if (Cond == ISD::SETEQ)
2735     // bit 3 for CC==0, bit 0 for CC==3, always false for CC>3.
2736     C.CCMask = CC < 4 ? 1 << (3 - CC) : 0;
2737   else if (Cond == ISD::SETNE)
2738     // ...and the inverse of that.
2739     C.CCMask = CC < 4 ? ~(1 << (3 - CC)) : -1;
2740   else if (Cond == ISD::SETLT || Cond == ISD::SETULT)
2741     // bits above bit 3 for CC==0 (always false), bits above bit 0 for CC==3,
2742     // always true for CC>3.
2743     C.CCMask = CC < 4 ? ~0U << (4 - CC) : -1;
2744   else if (Cond == ISD::SETGE || Cond == ISD::SETUGE)
2745     // ...and the inverse of that.
2746     C.CCMask = CC < 4 ? ~(~0U << (4 - CC)) : 0;
2747   else if (Cond == ISD::SETLE || Cond == ISD::SETULE)
2748     // bit 3 and above for CC==0, bit 0 and above for CC==3 (always true),
2749     // always true for CC>3.
2750     C.CCMask = CC < 4 ? ~0U << (3 - CC) : -1;
2751   else if (Cond == ISD::SETGT || Cond == ISD::SETUGT)
2752     // ...and the inverse of that.
2753     C.CCMask = CC < 4 ? ~(~0U << (3 - CC)) : 0;
2754   else
2755     llvm_unreachable("Unexpected integer comparison type");
2756   C.CCMask &= CCValid;
2757   return C;
2758 }
2759 
2760 // Decide how to implement a comparison of type Cond between CmpOp0 with CmpOp1.
2761 static Comparison getCmp(SelectionDAG &DAG, SDValue CmpOp0, SDValue CmpOp1,
2762                          ISD::CondCode Cond, const SDLoc &DL,
2763                          SDValue Chain = SDValue(),
2764                          bool IsSignaling = false) {
2765   if (CmpOp1.getOpcode() == ISD::Constant) {
2766     assert(!Chain);
2767     uint64_t Constant = cast<ConstantSDNode>(CmpOp1)->getZExtValue();
2768     unsigned Opcode, CCValid;
2769     if (CmpOp0.getOpcode() == ISD::INTRINSIC_W_CHAIN &&
2770         CmpOp0.getResNo() == 0 && CmpOp0->hasNUsesOfValue(1, 0) &&
2771         isIntrinsicWithCCAndChain(CmpOp0, Opcode, CCValid))
2772       return getIntrinsicCmp(DAG, Opcode, CmpOp0, CCValid, Constant, Cond);
2773     if (CmpOp0.getOpcode() == ISD::INTRINSIC_WO_CHAIN &&
2774         CmpOp0.getResNo() == CmpOp0->getNumValues() - 1 &&
2775         isIntrinsicWithCC(CmpOp0, Opcode, CCValid))
2776       return getIntrinsicCmp(DAG, Opcode, CmpOp0, CCValid, Constant, Cond);
2777   }
2778   Comparison C(CmpOp0, CmpOp1, Chain);
2779   C.CCMask = CCMaskForCondCode(Cond);
2780   if (C.Op0.getValueType().isFloatingPoint()) {
2781     C.CCValid = SystemZ::CCMASK_FCMP;
2782     if (!C.Chain)
2783       C.Opcode = SystemZISD::FCMP;
2784     else if (!IsSignaling)
2785       C.Opcode = SystemZISD::STRICT_FCMP;
2786     else
2787       C.Opcode = SystemZISD::STRICT_FCMPS;
2788     adjustForFNeg(C);
2789   } else {
2790     assert(!C.Chain);
2791     C.CCValid = SystemZ::CCMASK_ICMP;
2792     C.Opcode = SystemZISD::ICMP;
2793     // Choose the type of comparison.  Equality and inequality tests can
2794     // use either signed or unsigned comparisons.  The choice also doesn't
2795     // matter if both sign bits are known to be clear.  In those cases we
2796     // want to give the main isel code the freedom to choose whichever
2797     // form fits best.
2798     if (C.CCMask == SystemZ::CCMASK_CMP_EQ ||
2799         C.CCMask == SystemZ::CCMASK_CMP_NE ||
2800         (DAG.SignBitIsZero(C.Op0) && DAG.SignBitIsZero(C.Op1)))
2801       C.ICmpType = SystemZICMP::Any;
2802     else if (C.CCMask & SystemZ::CCMASK_CMP_UO)
2803       C.ICmpType = SystemZICMP::UnsignedOnly;
2804     else
2805       C.ICmpType = SystemZICMP::SignedOnly;
2806     C.CCMask &= ~SystemZ::CCMASK_CMP_UO;
2807     adjustForRedundantAnd(DAG, DL, C);
2808     adjustZeroCmp(DAG, DL, C);
2809     adjustSubwordCmp(DAG, DL, C);
2810     adjustForSubtraction(DAG, DL, C);
2811     adjustForLTGFR(C);
2812     adjustICmpTruncate(DAG, DL, C);
2813   }
2814 
2815   if (shouldSwapCmpOperands(C)) {
2816     std::swap(C.Op0, C.Op1);
2817     C.CCMask = SystemZ::reverseCCMask(C.CCMask);
2818   }
2819 
2820   adjustForTestUnderMask(DAG, DL, C);
2821   return C;
2822 }
2823 
2824 // Emit the comparison instruction described by C.
2825 static SDValue emitCmp(SelectionDAG &DAG, const SDLoc &DL, Comparison &C) {
2826   if (!C.Op1.getNode()) {
2827     SDNode *Node;
2828     switch (C.Op0.getOpcode()) {
2829     case ISD::INTRINSIC_W_CHAIN:
2830       Node = emitIntrinsicWithCCAndChain(DAG, C.Op0, C.Opcode);
2831       return SDValue(Node, 0);
2832     case ISD::INTRINSIC_WO_CHAIN:
2833       Node = emitIntrinsicWithCC(DAG, C.Op0, C.Opcode);
2834       return SDValue(Node, Node->getNumValues() - 1);
2835     default:
2836       llvm_unreachable("Invalid comparison operands");
2837     }
2838   }
2839   if (C.Opcode == SystemZISD::ICMP)
2840     return DAG.getNode(SystemZISD::ICMP, DL, MVT::i32, C.Op0, C.Op1,
2841                        DAG.getTargetConstant(C.ICmpType, DL, MVT::i32));
2842   if (C.Opcode == SystemZISD::TM) {
2843     bool RegisterOnly = (bool(C.CCMask & SystemZ::CCMASK_TM_MIXED_MSB_0) !=
2844                          bool(C.CCMask & SystemZ::CCMASK_TM_MIXED_MSB_1));
2845     return DAG.getNode(SystemZISD::TM, DL, MVT::i32, C.Op0, C.Op1,
2846                        DAG.getTargetConstant(RegisterOnly, DL, MVT::i32));
2847   }
2848   if (C.Chain) {
2849     SDVTList VTs = DAG.getVTList(MVT::i32, MVT::Other);
2850     return DAG.getNode(C.Opcode, DL, VTs, C.Chain, C.Op0, C.Op1);
2851   }
2852   return DAG.getNode(C.Opcode, DL, MVT::i32, C.Op0, C.Op1);
2853 }
2854 
2855 // Implement a 32-bit *MUL_LOHI operation by extending both operands to
2856 // 64 bits.  Extend is the extension type to use.  Store the high part
2857 // in Hi and the low part in Lo.
2858 static void lowerMUL_LOHI32(SelectionDAG &DAG, const SDLoc &DL, unsigned Extend,
2859                             SDValue Op0, SDValue Op1, SDValue &Hi,
2860                             SDValue &Lo) {
2861   Op0 = DAG.getNode(Extend, DL, MVT::i64, Op0);
2862   Op1 = DAG.getNode(Extend, DL, MVT::i64, Op1);
2863   SDValue Mul = DAG.getNode(ISD::MUL, DL, MVT::i64, Op0, Op1);
2864   Hi = DAG.getNode(ISD::SRL, DL, MVT::i64, Mul,
2865                    DAG.getConstant(32, DL, MVT::i64));
2866   Hi = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Hi);
2867   Lo = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Mul);
2868 }
2869 
2870 // Lower a binary operation that produces two VT results, one in each
2871 // half of a GR128 pair.  Op0 and Op1 are the VT operands to the operation,
2872 // and Opcode performs the GR128 operation.  Store the even register result
2873 // in Even and the odd register result in Odd.
2874 static void lowerGR128Binary(SelectionDAG &DAG, const SDLoc &DL, EVT VT,
2875                              unsigned Opcode, SDValue Op0, SDValue Op1,
2876                              SDValue &Even, SDValue &Odd) {
2877   SDValue Result = DAG.getNode(Opcode, DL, MVT::Untyped, Op0, Op1);
2878   bool Is32Bit = is32Bit(VT);
2879   Even = DAG.getTargetExtractSubreg(SystemZ::even128(Is32Bit), DL, VT, Result);
2880   Odd = DAG.getTargetExtractSubreg(SystemZ::odd128(Is32Bit), DL, VT, Result);
2881 }
2882 
2883 // Return an i32 value that is 1 if the CC value produced by CCReg is
2884 // in the mask CCMask and 0 otherwise.  CC is known to have a value
2885 // in CCValid, so other values can be ignored.
2886 static SDValue emitSETCC(SelectionDAG &DAG, const SDLoc &DL, SDValue CCReg,
2887                          unsigned CCValid, unsigned CCMask) {
2888   SDValue Ops[] = {DAG.getConstant(1, DL, MVT::i32),
2889                    DAG.getConstant(0, DL, MVT::i32),
2890                    DAG.getTargetConstant(CCValid, DL, MVT::i32),
2891                    DAG.getTargetConstant(CCMask, DL, MVT::i32), CCReg};
2892   return DAG.getNode(SystemZISD::SELECT_CCMASK, DL, MVT::i32, Ops);
2893 }
2894 
2895 // Return the SystemISD vector comparison operation for CC, or 0 if it cannot
2896 // be done directly.  Mode is CmpMode::Int for integer comparisons, CmpMode::FP
2897 // for regular floating-point comparisons, CmpMode::StrictFP for strict (quiet)
2898 // floating-point comparisons, and CmpMode::SignalingFP for strict signaling
2899 // floating-point comparisons.
2900 enum class CmpMode { Int, FP, StrictFP, SignalingFP };
2901 static unsigned getVectorComparison(ISD::CondCode CC, CmpMode Mode) {
2902   switch (CC) {
2903   case ISD::SETOEQ:
2904   case ISD::SETEQ:
2905     switch (Mode) {
2906     case CmpMode::Int:         return SystemZISD::VICMPE;
2907     case CmpMode::FP:          return SystemZISD::VFCMPE;
2908     case CmpMode::StrictFP:    return SystemZISD::STRICT_VFCMPE;
2909     case CmpMode::SignalingFP: return SystemZISD::STRICT_VFCMPES;
2910     }
2911     llvm_unreachable("Bad mode");
2912 
2913   case ISD::SETOGE:
2914   case ISD::SETGE:
2915     switch (Mode) {
2916     case CmpMode::Int:         return 0;
2917     case CmpMode::FP:          return SystemZISD::VFCMPHE;
2918     case CmpMode::StrictFP:    return SystemZISD::STRICT_VFCMPHE;
2919     case CmpMode::SignalingFP: return SystemZISD::STRICT_VFCMPHES;
2920     }
2921     llvm_unreachable("Bad mode");
2922 
2923   case ISD::SETOGT:
2924   case ISD::SETGT:
2925     switch (Mode) {
2926     case CmpMode::Int:         return SystemZISD::VICMPH;
2927     case CmpMode::FP:          return SystemZISD::VFCMPH;
2928     case CmpMode::StrictFP:    return SystemZISD::STRICT_VFCMPH;
2929     case CmpMode::SignalingFP: return SystemZISD::STRICT_VFCMPHS;
2930     }
2931     llvm_unreachable("Bad mode");
2932 
2933   case ISD::SETUGT:
2934     switch (Mode) {
2935     case CmpMode::Int:         return SystemZISD::VICMPHL;
2936     case CmpMode::FP:          return 0;
2937     case CmpMode::StrictFP:    return 0;
2938     case CmpMode::SignalingFP: return 0;
2939     }
2940     llvm_unreachable("Bad mode");
2941 
2942   default:
2943     return 0;
2944   }
2945 }
2946 
2947 // Return the SystemZISD vector comparison operation for CC or its inverse,
2948 // or 0 if neither can be done directly.  Indicate in Invert whether the
2949 // result is for the inverse of CC.  Mode is as above.
2950 static unsigned getVectorComparisonOrInvert(ISD::CondCode CC, CmpMode Mode,
2951                                             bool &Invert) {
2952   if (unsigned Opcode = getVectorComparison(CC, Mode)) {
2953     Invert = false;
2954     return Opcode;
2955   }
2956 
2957   CC = ISD::getSetCCInverse(CC, Mode == CmpMode::Int ? MVT::i32 : MVT::f32);
2958   if (unsigned Opcode = getVectorComparison(CC, Mode)) {
2959     Invert = true;
2960     return Opcode;
2961   }
2962 
2963   return 0;
2964 }
2965 
2966 // Return a v2f64 that contains the extended form of elements Start and Start+1
2967 // of v4f32 value Op.  If Chain is nonnull, return the strict form.
2968 static SDValue expandV4F32ToV2F64(SelectionDAG &DAG, int Start, const SDLoc &DL,
2969                                   SDValue Op, SDValue Chain) {
2970   int Mask[] = { Start, -1, Start + 1, -1 };
2971   Op = DAG.getVectorShuffle(MVT::v4f32, DL, Op, DAG.getUNDEF(MVT::v4f32), Mask);
2972   if (Chain) {
2973     SDVTList VTs = DAG.getVTList(MVT::v2f64, MVT::Other);
2974     return DAG.getNode(SystemZISD::STRICT_VEXTEND, DL, VTs, Chain, Op);
2975   }
2976   return DAG.getNode(SystemZISD::VEXTEND, DL, MVT::v2f64, Op);
2977 }
2978 
2979 // Build a comparison of vectors CmpOp0 and CmpOp1 using opcode Opcode,
2980 // producing a result of type VT.  If Chain is nonnull, return the strict form.
2981 SDValue SystemZTargetLowering::getVectorCmp(SelectionDAG &DAG, unsigned Opcode,
2982                                             const SDLoc &DL, EVT VT,
2983                                             SDValue CmpOp0,
2984                                             SDValue CmpOp1,
2985                                             SDValue Chain) const {
2986   // There is no hardware support for v4f32 (unless we have the vector
2987   // enhancements facility 1), so extend the vector into two v2f64s
2988   // and compare those.
2989   if (CmpOp0.getValueType() == MVT::v4f32 &&
2990       !Subtarget.hasVectorEnhancements1()) {
2991     SDValue H0 = expandV4F32ToV2F64(DAG, 0, DL, CmpOp0, Chain);
2992     SDValue L0 = expandV4F32ToV2F64(DAG, 2, DL, CmpOp0, Chain);
2993     SDValue H1 = expandV4F32ToV2F64(DAG, 0, DL, CmpOp1, Chain);
2994     SDValue L1 = expandV4F32ToV2F64(DAG, 2, DL, CmpOp1, Chain);
2995     if (Chain) {
2996       SDVTList VTs = DAG.getVTList(MVT::v2i64, MVT::Other);
2997       SDValue HRes = DAG.getNode(Opcode, DL, VTs, Chain, H0, H1);
2998       SDValue LRes = DAG.getNode(Opcode, DL, VTs, Chain, L0, L1);
2999       SDValue Res = DAG.getNode(SystemZISD::PACK, DL, VT, HRes, LRes);
3000       SDValue Chains[6] = { H0.getValue(1), L0.getValue(1),
3001                             H1.getValue(1), L1.getValue(1),
3002                             HRes.getValue(1), LRes.getValue(1) };
3003       SDValue NewChain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Chains);
3004       SDValue Ops[2] = { Res, NewChain };
3005       return DAG.getMergeValues(Ops, DL);
3006     }
3007     SDValue HRes = DAG.getNode(Opcode, DL, MVT::v2i64, H0, H1);
3008     SDValue LRes = DAG.getNode(Opcode, DL, MVT::v2i64, L0, L1);
3009     return DAG.getNode(SystemZISD::PACK, DL, VT, HRes, LRes);
3010   }
3011   if (Chain) {
3012     SDVTList VTs = DAG.getVTList(VT, MVT::Other);
3013     return DAG.getNode(Opcode, DL, VTs, Chain, CmpOp0, CmpOp1);
3014   }
3015   return DAG.getNode(Opcode, DL, VT, CmpOp0, CmpOp1);
3016 }
3017 
3018 // Lower a vector comparison of type CC between CmpOp0 and CmpOp1, producing
3019 // an integer mask of type VT.  If Chain is nonnull, we have a strict
3020 // floating-point comparison.  If in addition IsSignaling is true, we have
3021 // a strict signaling floating-point comparison.
3022 SDValue SystemZTargetLowering::lowerVectorSETCC(SelectionDAG &DAG,
3023                                                 const SDLoc &DL, EVT VT,
3024                                                 ISD::CondCode CC,
3025                                                 SDValue CmpOp0,
3026                                                 SDValue CmpOp1,
3027                                                 SDValue Chain,
3028                                                 bool IsSignaling) const {
3029   bool IsFP = CmpOp0.getValueType().isFloatingPoint();
3030   assert (!Chain || IsFP);
3031   assert (!IsSignaling || Chain);
3032   CmpMode Mode = IsSignaling ? CmpMode::SignalingFP :
3033                  Chain ? CmpMode::StrictFP : IsFP ? CmpMode::FP : CmpMode::Int;
3034   bool Invert = false;
3035   SDValue Cmp;
3036   switch (CC) {
3037     // Handle tests for order using (or (ogt y x) (oge x y)).
3038   case ISD::SETUO:
3039     Invert = true;
3040     LLVM_FALLTHROUGH;
3041   case ISD::SETO: {
3042     assert(IsFP && "Unexpected integer comparison");
3043     SDValue LT = getVectorCmp(DAG, getVectorComparison(ISD::SETOGT, Mode),
3044                               DL, VT, CmpOp1, CmpOp0, Chain);
3045     SDValue GE = getVectorCmp(DAG, getVectorComparison(ISD::SETOGE, Mode),
3046                               DL, VT, CmpOp0, CmpOp1, Chain);
3047     Cmp = DAG.getNode(ISD::OR, DL, VT, LT, GE);
3048     if (Chain)
3049       Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other,
3050                           LT.getValue(1), GE.getValue(1));
3051     break;
3052   }
3053 
3054     // Handle <> tests using (or (ogt y x) (ogt x y)).
3055   case ISD::SETUEQ:
3056     Invert = true;
3057     LLVM_FALLTHROUGH;
3058   case ISD::SETONE: {
3059     assert(IsFP && "Unexpected integer comparison");
3060     SDValue LT = getVectorCmp(DAG, getVectorComparison(ISD::SETOGT, Mode),
3061                               DL, VT, CmpOp1, CmpOp0, Chain);
3062     SDValue GT = getVectorCmp(DAG, getVectorComparison(ISD::SETOGT, Mode),
3063                               DL, VT, CmpOp0, CmpOp1, Chain);
3064     Cmp = DAG.getNode(ISD::OR, DL, VT, LT, GT);
3065     if (Chain)
3066       Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other,
3067                           LT.getValue(1), GT.getValue(1));
3068     break;
3069   }
3070 
3071     // Otherwise a single comparison is enough.  It doesn't really
3072     // matter whether we try the inversion or the swap first, since
3073     // there are no cases where both work.
3074   default:
3075     if (unsigned Opcode = getVectorComparisonOrInvert(CC, Mode, Invert))
3076       Cmp = getVectorCmp(DAG, Opcode, DL, VT, CmpOp0, CmpOp1, Chain);
3077     else {
3078       CC = ISD::getSetCCSwappedOperands(CC);
3079       if (unsigned Opcode = getVectorComparisonOrInvert(CC, Mode, Invert))
3080         Cmp = getVectorCmp(DAG, Opcode, DL, VT, CmpOp1, CmpOp0, Chain);
3081       else
3082         llvm_unreachable("Unhandled comparison");
3083     }
3084     if (Chain)
3085       Chain = Cmp.getValue(1);
3086     break;
3087   }
3088   if (Invert) {
3089     SDValue Mask =
3090       DAG.getSplatBuildVector(VT, DL, DAG.getConstant(-1, DL, MVT::i64));
3091     Cmp = DAG.getNode(ISD::XOR, DL, VT, Cmp, Mask);
3092   }
3093   if (Chain && Chain.getNode() != Cmp.getNode()) {
3094     SDValue Ops[2] = { Cmp, Chain };
3095     Cmp = DAG.getMergeValues(Ops, DL);
3096   }
3097   return Cmp;
3098 }
3099 
3100 SDValue SystemZTargetLowering::lowerSETCC(SDValue Op,
3101                                           SelectionDAG &DAG) const {
3102   SDValue CmpOp0   = Op.getOperand(0);
3103   SDValue CmpOp1   = Op.getOperand(1);
3104   ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
3105   SDLoc DL(Op);
3106   EVT VT = Op.getValueType();
3107   if (VT.isVector())
3108     return lowerVectorSETCC(DAG, DL, VT, CC, CmpOp0, CmpOp1);
3109 
3110   Comparison C(getCmp(DAG, CmpOp0, CmpOp1, CC, DL));
3111   SDValue CCReg = emitCmp(DAG, DL, C);
3112   return emitSETCC(DAG, DL, CCReg, C.CCValid, C.CCMask);
3113 }
3114 
3115 SDValue SystemZTargetLowering::lowerSTRICT_FSETCC(SDValue Op,
3116                                                   SelectionDAG &DAG,
3117                                                   bool IsSignaling) const {
3118   SDValue Chain    = Op.getOperand(0);
3119   SDValue CmpOp0   = Op.getOperand(1);
3120   SDValue CmpOp1   = Op.getOperand(2);
3121   ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(3))->get();
3122   SDLoc DL(Op);
3123   EVT VT = Op.getNode()->getValueType(0);
3124   if (VT.isVector()) {
3125     SDValue Res = lowerVectorSETCC(DAG, DL, VT, CC, CmpOp0, CmpOp1,
3126                                    Chain, IsSignaling);
3127     return Res.getValue(Op.getResNo());
3128   }
3129 
3130   Comparison C(getCmp(DAG, CmpOp0, CmpOp1, CC, DL, Chain, IsSignaling));
3131   SDValue CCReg = emitCmp(DAG, DL, C);
3132   CCReg->setFlags(Op->getFlags());
3133   SDValue Result = emitSETCC(DAG, DL, CCReg, C.CCValid, C.CCMask);
3134   SDValue Ops[2] = { Result, CCReg.getValue(1) };
3135   return DAG.getMergeValues(Ops, DL);
3136 }
3137 
3138 SDValue SystemZTargetLowering::lowerBR_CC(SDValue Op, SelectionDAG &DAG) const {
3139   ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(1))->get();
3140   SDValue CmpOp0   = Op.getOperand(2);
3141   SDValue CmpOp1   = Op.getOperand(3);
3142   SDValue Dest     = Op.getOperand(4);
3143   SDLoc DL(Op);
3144 
3145   Comparison C(getCmp(DAG, CmpOp0, CmpOp1, CC, DL));
3146   SDValue CCReg = emitCmp(DAG, DL, C);
3147   return DAG.getNode(
3148       SystemZISD::BR_CCMASK, DL, Op.getValueType(), Op.getOperand(0),
3149       DAG.getTargetConstant(C.CCValid, DL, MVT::i32),
3150       DAG.getTargetConstant(C.CCMask, DL, MVT::i32), Dest, CCReg);
3151 }
3152 
3153 // Return true if Pos is CmpOp and Neg is the negative of CmpOp,
3154 // allowing Pos and Neg to be wider than CmpOp.
3155 static bool isAbsolute(SDValue CmpOp, SDValue Pos, SDValue Neg) {
3156   return (Neg.getOpcode() == ISD::SUB &&
3157           Neg.getOperand(0).getOpcode() == ISD::Constant &&
3158           cast<ConstantSDNode>(Neg.getOperand(0))->getZExtValue() == 0 &&
3159           Neg.getOperand(1) == Pos &&
3160           (Pos == CmpOp ||
3161            (Pos.getOpcode() == ISD::SIGN_EXTEND &&
3162             Pos.getOperand(0) == CmpOp)));
3163 }
3164 
3165 // Return the absolute or negative absolute of Op; IsNegative decides which.
3166 static SDValue getAbsolute(SelectionDAG &DAG, const SDLoc &DL, SDValue Op,
3167                            bool IsNegative) {
3168   Op = DAG.getNode(ISD::ABS, DL, Op.getValueType(), Op);
3169   if (IsNegative)
3170     Op = DAG.getNode(ISD::SUB, DL, Op.getValueType(),
3171                      DAG.getConstant(0, DL, Op.getValueType()), Op);
3172   return Op;
3173 }
3174 
3175 SDValue SystemZTargetLowering::lowerSELECT_CC(SDValue Op,
3176                                               SelectionDAG &DAG) const {
3177   SDValue CmpOp0   = Op.getOperand(0);
3178   SDValue CmpOp1   = Op.getOperand(1);
3179   SDValue TrueOp   = Op.getOperand(2);
3180   SDValue FalseOp  = Op.getOperand(3);
3181   ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get();
3182   SDLoc DL(Op);
3183 
3184   Comparison C(getCmp(DAG, CmpOp0, CmpOp1, CC, DL));
3185 
3186   // Check for absolute and negative-absolute selections, including those
3187   // where the comparison value is sign-extended (for LPGFR and LNGFR).
3188   // This check supplements the one in DAGCombiner.
3189   if (C.Opcode == SystemZISD::ICMP &&
3190       C.CCMask != SystemZ::CCMASK_CMP_EQ &&
3191       C.CCMask != SystemZ::CCMASK_CMP_NE &&
3192       C.Op1.getOpcode() == ISD::Constant &&
3193       cast<ConstantSDNode>(C.Op1)->getZExtValue() == 0) {
3194     if (isAbsolute(C.Op0, TrueOp, FalseOp))
3195       return getAbsolute(DAG, DL, TrueOp, C.CCMask & SystemZ::CCMASK_CMP_LT);
3196     if (isAbsolute(C.Op0, FalseOp, TrueOp))
3197       return getAbsolute(DAG, DL, FalseOp, C.CCMask & SystemZ::CCMASK_CMP_GT);
3198   }
3199 
3200   SDValue CCReg = emitCmp(DAG, DL, C);
3201   SDValue Ops[] = {TrueOp, FalseOp,
3202                    DAG.getTargetConstant(C.CCValid, DL, MVT::i32),
3203                    DAG.getTargetConstant(C.CCMask, DL, MVT::i32), CCReg};
3204 
3205   return DAG.getNode(SystemZISD::SELECT_CCMASK, DL, Op.getValueType(), Ops);
3206 }
3207 
3208 SDValue SystemZTargetLowering::lowerGlobalAddress(GlobalAddressSDNode *Node,
3209                                                   SelectionDAG &DAG) const {
3210   SDLoc DL(Node);
3211   const GlobalValue *GV = Node->getGlobal();
3212   int64_t Offset = Node->getOffset();
3213   EVT PtrVT = getPointerTy(DAG.getDataLayout());
3214   CodeModel::Model CM = DAG.getTarget().getCodeModel();
3215 
3216   SDValue Result;
3217   if (Subtarget.isPC32DBLSymbol(GV, CM)) {
3218     if (isInt<32>(Offset)) {
3219       // Assign anchors at 1<<12 byte boundaries.
3220       uint64_t Anchor = Offset & ~uint64_t(0xfff);
3221       Result = DAG.getTargetGlobalAddress(GV, DL, PtrVT, Anchor);
3222       Result = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result);
3223 
3224       // The offset can be folded into the address if it is aligned to a
3225       // halfword.
3226       Offset -= Anchor;
3227       if (Offset != 0 && (Offset & 1) == 0) {
3228         SDValue Full =
3229           DAG.getTargetGlobalAddress(GV, DL, PtrVT, Anchor + Offset);
3230         Result = DAG.getNode(SystemZISD::PCREL_OFFSET, DL, PtrVT, Full, Result);
3231         Offset = 0;
3232       }
3233     } else {
3234       // Conservatively load a constant offset greater than 32 bits into a
3235       // register below.
3236       Result = DAG.getTargetGlobalAddress(GV, DL, PtrVT);
3237       Result = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result);
3238     }
3239   } else {
3240     Result = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, SystemZII::MO_GOT);
3241     Result = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result);
3242     Result = DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), Result,
3243                          MachinePointerInfo::getGOT(DAG.getMachineFunction()));
3244   }
3245 
3246   // If there was a non-zero offset that we didn't fold, create an explicit
3247   // addition for it.
3248   if (Offset != 0)
3249     Result = DAG.getNode(ISD::ADD, DL, PtrVT, Result,
3250                          DAG.getConstant(Offset, DL, PtrVT));
3251 
3252   return Result;
3253 }
3254 
3255 SDValue SystemZTargetLowering::lowerTLSGetOffset(GlobalAddressSDNode *Node,
3256                                                  SelectionDAG &DAG,
3257                                                  unsigned Opcode,
3258                                                  SDValue GOTOffset) const {
3259   SDLoc DL(Node);
3260   EVT PtrVT = getPointerTy(DAG.getDataLayout());
3261   SDValue Chain = DAG.getEntryNode();
3262   SDValue Glue;
3263 
3264   if (DAG.getMachineFunction().getFunction().getCallingConv() ==
3265       CallingConv::GHC)
3266     report_fatal_error("In GHC calling convention TLS is not supported");
3267 
3268   // __tls_get_offset takes the GOT offset in %r2 and the GOT in %r12.
3269   SDValue GOT = DAG.getGLOBAL_OFFSET_TABLE(PtrVT);
3270   Chain = DAG.getCopyToReg(Chain, DL, SystemZ::R12D, GOT, Glue);
3271   Glue = Chain.getValue(1);
3272   Chain = DAG.getCopyToReg(Chain, DL, SystemZ::R2D, GOTOffset, Glue);
3273   Glue = Chain.getValue(1);
3274 
3275   // The first call operand is the chain and the second is the TLS symbol.
3276   SmallVector<SDValue, 8> Ops;
3277   Ops.push_back(Chain);
3278   Ops.push_back(DAG.getTargetGlobalAddress(Node->getGlobal(), DL,
3279                                            Node->getValueType(0),
3280                                            0, 0));
3281 
3282   // Add argument registers to the end of the list so that they are
3283   // known live into the call.
3284   Ops.push_back(DAG.getRegister(SystemZ::R2D, PtrVT));
3285   Ops.push_back(DAG.getRegister(SystemZ::R12D, PtrVT));
3286 
3287   // Add a register mask operand representing the call-preserved registers.
3288   const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo();
3289   const uint32_t *Mask =
3290       TRI->getCallPreservedMask(DAG.getMachineFunction(), CallingConv::C);
3291   assert(Mask && "Missing call preserved mask for calling convention");
3292   Ops.push_back(DAG.getRegisterMask(Mask));
3293 
3294   // Glue the call to the argument copies.
3295   Ops.push_back(Glue);
3296 
3297   // Emit the call.
3298   SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
3299   Chain = DAG.getNode(Opcode, DL, NodeTys, Ops);
3300   Glue = Chain.getValue(1);
3301 
3302   // Copy the return value from %r2.
3303   return DAG.getCopyFromReg(Chain, DL, SystemZ::R2D, PtrVT, Glue);
3304 }
3305 
3306 SDValue SystemZTargetLowering::lowerThreadPointer(const SDLoc &DL,
3307                                                   SelectionDAG &DAG) const {
3308   SDValue Chain = DAG.getEntryNode();
3309   EVT PtrVT = getPointerTy(DAG.getDataLayout());
3310 
3311   // The high part of the thread pointer is in access register 0.
3312   SDValue TPHi = DAG.getCopyFromReg(Chain, DL, SystemZ::A0, MVT::i32);
3313   TPHi = DAG.getNode(ISD::ANY_EXTEND, DL, PtrVT, TPHi);
3314 
3315   // The low part of the thread pointer is in access register 1.
3316   SDValue TPLo = DAG.getCopyFromReg(Chain, DL, SystemZ::A1, MVT::i32);
3317   TPLo = DAG.getNode(ISD::ZERO_EXTEND, DL, PtrVT, TPLo);
3318 
3319   // Merge them into a single 64-bit address.
3320   SDValue TPHiShifted = DAG.getNode(ISD::SHL, DL, PtrVT, TPHi,
3321                                     DAG.getConstant(32, DL, PtrVT));
3322   return DAG.getNode(ISD::OR, DL, PtrVT, TPHiShifted, TPLo);
3323 }
3324 
3325 SDValue SystemZTargetLowering::lowerGlobalTLSAddress(GlobalAddressSDNode *Node,
3326                                                      SelectionDAG &DAG) const {
3327   if (DAG.getTarget().useEmulatedTLS())
3328     return LowerToTLSEmulatedModel(Node, DAG);
3329   SDLoc DL(Node);
3330   const GlobalValue *GV = Node->getGlobal();
3331   EVT PtrVT = getPointerTy(DAG.getDataLayout());
3332   TLSModel::Model model = DAG.getTarget().getTLSModel(GV);
3333 
3334   if (DAG.getMachineFunction().getFunction().getCallingConv() ==
3335       CallingConv::GHC)
3336     report_fatal_error("In GHC calling convention TLS is not supported");
3337 
3338   SDValue TP = lowerThreadPointer(DL, DAG);
3339 
3340   // Get the offset of GA from the thread pointer, based on the TLS model.
3341   SDValue Offset;
3342   switch (model) {
3343     case TLSModel::GeneralDynamic: {
3344       // Load the GOT offset of the tls_index (module ID / per-symbol offset).
3345       SystemZConstantPoolValue *CPV =
3346         SystemZConstantPoolValue::Create(GV, SystemZCP::TLSGD);
3347 
3348       Offset = DAG.getConstantPool(CPV, PtrVT, Align(8));
3349       Offset = DAG.getLoad(
3350           PtrVT, DL, DAG.getEntryNode(), Offset,
3351           MachinePointerInfo::getConstantPool(DAG.getMachineFunction()));
3352 
3353       // Call __tls_get_offset to retrieve the offset.
3354       Offset = lowerTLSGetOffset(Node, DAG, SystemZISD::TLS_GDCALL, Offset);
3355       break;
3356     }
3357 
3358     case TLSModel::LocalDynamic: {
3359       // Load the GOT offset of the module ID.
3360       SystemZConstantPoolValue *CPV =
3361         SystemZConstantPoolValue::Create(GV, SystemZCP::TLSLDM);
3362 
3363       Offset = DAG.getConstantPool(CPV, PtrVT, Align(8));
3364       Offset = DAG.getLoad(
3365           PtrVT, DL, DAG.getEntryNode(), Offset,
3366           MachinePointerInfo::getConstantPool(DAG.getMachineFunction()));
3367 
3368       // Call __tls_get_offset to retrieve the module base offset.
3369       Offset = lowerTLSGetOffset(Node, DAG, SystemZISD::TLS_LDCALL, Offset);
3370 
3371       // Note: The SystemZLDCleanupPass will remove redundant computations
3372       // of the module base offset.  Count total number of local-dynamic
3373       // accesses to trigger execution of that pass.
3374       SystemZMachineFunctionInfo* MFI =
3375         DAG.getMachineFunction().getInfo<SystemZMachineFunctionInfo>();
3376       MFI->incNumLocalDynamicTLSAccesses();
3377 
3378       // Add the per-symbol offset.
3379       CPV = SystemZConstantPoolValue::Create(GV, SystemZCP::DTPOFF);
3380 
3381       SDValue DTPOffset = DAG.getConstantPool(CPV, PtrVT, Align(8));
3382       DTPOffset = DAG.getLoad(
3383           PtrVT, DL, DAG.getEntryNode(), DTPOffset,
3384           MachinePointerInfo::getConstantPool(DAG.getMachineFunction()));
3385 
3386       Offset = DAG.getNode(ISD::ADD, DL, PtrVT, Offset, DTPOffset);
3387       break;
3388     }
3389 
3390     case TLSModel::InitialExec: {
3391       // Load the offset from the GOT.
3392       Offset = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0,
3393                                           SystemZII::MO_INDNTPOFF);
3394       Offset = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Offset);
3395       Offset =
3396           DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), Offset,
3397                       MachinePointerInfo::getGOT(DAG.getMachineFunction()));
3398       break;
3399     }
3400 
3401     case TLSModel::LocalExec: {
3402       // Force the offset into the constant pool and load it from there.
3403       SystemZConstantPoolValue *CPV =
3404         SystemZConstantPoolValue::Create(GV, SystemZCP::NTPOFF);
3405 
3406       Offset = DAG.getConstantPool(CPV, PtrVT, Align(8));
3407       Offset = DAG.getLoad(
3408           PtrVT, DL, DAG.getEntryNode(), Offset,
3409           MachinePointerInfo::getConstantPool(DAG.getMachineFunction()));
3410       break;
3411     }
3412   }
3413 
3414   // Add the base and offset together.
3415   return DAG.getNode(ISD::ADD, DL, PtrVT, TP, Offset);
3416 }
3417 
3418 SDValue SystemZTargetLowering::lowerBlockAddress(BlockAddressSDNode *Node,
3419                                                  SelectionDAG &DAG) const {
3420   SDLoc DL(Node);
3421   const BlockAddress *BA = Node->getBlockAddress();
3422   int64_t Offset = Node->getOffset();
3423   EVT PtrVT = getPointerTy(DAG.getDataLayout());
3424 
3425   SDValue Result = DAG.getTargetBlockAddress(BA, PtrVT, Offset);
3426   Result = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result);
3427   return Result;
3428 }
3429 
3430 SDValue SystemZTargetLowering::lowerJumpTable(JumpTableSDNode *JT,
3431                                               SelectionDAG &DAG) const {
3432   SDLoc DL(JT);
3433   EVT PtrVT = getPointerTy(DAG.getDataLayout());
3434   SDValue Result = DAG.getTargetJumpTable(JT->getIndex(), PtrVT);
3435 
3436   // Use LARL to load the address of the table.
3437   return DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result);
3438 }
3439 
3440 SDValue SystemZTargetLowering::lowerConstantPool(ConstantPoolSDNode *CP,
3441                                                  SelectionDAG &DAG) const {
3442   SDLoc DL(CP);
3443   EVT PtrVT = getPointerTy(DAG.getDataLayout());
3444 
3445   SDValue Result;
3446   if (CP->isMachineConstantPoolEntry())
3447     Result =
3448         DAG.getTargetConstantPool(CP->getMachineCPVal(), PtrVT, CP->getAlign());
3449   else
3450     Result = DAG.getTargetConstantPool(CP->getConstVal(), PtrVT, CP->getAlign(),
3451                                        CP->getOffset());
3452 
3453   // Use LARL to load the address of the constant pool entry.
3454   return DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result);
3455 }
3456 
3457 SDValue SystemZTargetLowering::lowerFRAMEADDR(SDValue Op,
3458                                               SelectionDAG &DAG) const {
3459   auto *TFL = Subtarget.getFrameLowering<SystemZELFFrameLowering>();
3460   MachineFunction &MF = DAG.getMachineFunction();
3461   MachineFrameInfo &MFI = MF.getFrameInfo();
3462   MFI.setFrameAddressIsTaken(true);
3463 
3464   SDLoc DL(Op);
3465   unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
3466   EVT PtrVT = getPointerTy(DAG.getDataLayout());
3467 
3468   // By definition, the frame address is the address of the back chain.  (In
3469   // the case of packed stack without backchain, return the address where the
3470   // backchain would have been stored. This will either be an unused space or
3471   // contain a saved register).
3472   int BackChainIdx = TFL->getOrCreateFramePointerSaveIndex(MF);
3473   SDValue BackChain = DAG.getFrameIndex(BackChainIdx, PtrVT);
3474 
3475   // FIXME The frontend should detect this case.
3476   if (Depth > 0) {
3477     report_fatal_error("Unsupported stack frame traversal count");
3478   }
3479 
3480   return BackChain;
3481 }
3482 
3483 SDValue SystemZTargetLowering::lowerRETURNADDR(SDValue Op,
3484                                                SelectionDAG &DAG) const {
3485   MachineFunction &MF = DAG.getMachineFunction();
3486   MachineFrameInfo &MFI = MF.getFrameInfo();
3487   MFI.setReturnAddressIsTaken(true);
3488 
3489   if (verifyReturnAddressArgumentIsConstant(Op, DAG))
3490     return SDValue();
3491 
3492   SDLoc DL(Op);
3493   unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
3494   EVT PtrVT = getPointerTy(DAG.getDataLayout());
3495 
3496   // FIXME The frontend should detect this case.
3497   if (Depth > 0) {
3498     report_fatal_error("Unsupported stack frame traversal count");
3499   }
3500 
3501   // Return R14D, which has the return address. Mark it an implicit live-in.
3502   Register LinkReg = MF.addLiveIn(SystemZ::R14D, &SystemZ::GR64BitRegClass);
3503   return DAG.getCopyFromReg(DAG.getEntryNode(), DL, LinkReg, PtrVT);
3504 }
3505 
3506 SDValue SystemZTargetLowering::lowerBITCAST(SDValue Op,
3507                                             SelectionDAG &DAG) const {
3508   SDLoc DL(Op);
3509   SDValue In = Op.getOperand(0);
3510   EVT InVT = In.getValueType();
3511   EVT ResVT = Op.getValueType();
3512 
3513   // Convert loads directly.  This is normally done by DAGCombiner,
3514   // but we need this case for bitcasts that are created during lowering
3515   // and which are then lowered themselves.
3516   if (auto *LoadN = dyn_cast<LoadSDNode>(In))
3517     if (ISD::isNormalLoad(LoadN)) {
3518       SDValue NewLoad = DAG.getLoad(ResVT, DL, LoadN->getChain(),
3519                                     LoadN->getBasePtr(), LoadN->getMemOperand());
3520       // Update the chain uses.
3521       DAG.ReplaceAllUsesOfValueWith(SDValue(LoadN, 1), NewLoad.getValue(1));
3522       return NewLoad;
3523     }
3524 
3525   if (InVT == MVT::i32 && ResVT == MVT::f32) {
3526     SDValue In64;
3527     if (Subtarget.hasHighWord()) {
3528       SDNode *U64 = DAG.getMachineNode(TargetOpcode::IMPLICIT_DEF, DL,
3529                                        MVT::i64);
3530       In64 = DAG.getTargetInsertSubreg(SystemZ::subreg_h32, DL,
3531                                        MVT::i64, SDValue(U64, 0), In);
3532     } else {
3533       In64 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, In);
3534       In64 = DAG.getNode(ISD::SHL, DL, MVT::i64, In64,
3535                          DAG.getConstant(32, DL, MVT::i64));
3536     }
3537     SDValue Out64 = DAG.getNode(ISD::BITCAST, DL, MVT::f64, In64);
3538     return DAG.getTargetExtractSubreg(SystemZ::subreg_h32,
3539                                       DL, MVT::f32, Out64);
3540   }
3541   if (InVT == MVT::f32 && ResVT == MVT::i32) {
3542     SDNode *U64 = DAG.getMachineNode(TargetOpcode::IMPLICIT_DEF, DL, MVT::f64);
3543     SDValue In64 = DAG.getTargetInsertSubreg(SystemZ::subreg_h32, DL,
3544                                              MVT::f64, SDValue(U64, 0), In);
3545     SDValue Out64 = DAG.getNode(ISD::BITCAST, DL, MVT::i64, In64);
3546     if (Subtarget.hasHighWord())
3547       return DAG.getTargetExtractSubreg(SystemZ::subreg_h32, DL,
3548                                         MVT::i32, Out64);
3549     SDValue Shift = DAG.getNode(ISD::SRL, DL, MVT::i64, Out64,
3550                                 DAG.getConstant(32, DL, MVT::i64));
3551     return DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Shift);
3552   }
3553   llvm_unreachable("Unexpected bitcast combination");
3554 }
3555 
3556 SDValue SystemZTargetLowering::lowerVASTART(SDValue Op,
3557                                             SelectionDAG &DAG) const {
3558 
3559   if (Subtarget.isTargetXPLINK64())
3560     return lowerVASTART_XPLINK(Op, DAG);
3561   else
3562     return lowerVASTART_ELF(Op, DAG);
3563 }
3564 
3565 SDValue SystemZTargetLowering::lowerVASTART_XPLINK(SDValue Op,
3566                                                    SelectionDAG &DAG) const {
3567   MachineFunction &MF = DAG.getMachineFunction();
3568   SystemZMachineFunctionInfo *FuncInfo =
3569       MF.getInfo<SystemZMachineFunctionInfo>();
3570 
3571   SDLoc DL(Op);
3572 
3573   // vastart just stores the address of the VarArgsFrameIndex slot into the
3574   // memory location argument.
3575   EVT PtrVT = getPointerTy(DAG.getDataLayout());
3576   SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT);
3577   const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
3578   return DAG.getStore(Op.getOperand(0), DL, FR, Op.getOperand(1),
3579                       MachinePointerInfo(SV));
3580 }
3581 
3582 SDValue SystemZTargetLowering::lowerVASTART_ELF(SDValue Op,
3583                                                 SelectionDAG &DAG) const {
3584   MachineFunction &MF = DAG.getMachineFunction();
3585   SystemZMachineFunctionInfo *FuncInfo =
3586     MF.getInfo<SystemZMachineFunctionInfo>();
3587   EVT PtrVT = getPointerTy(DAG.getDataLayout());
3588 
3589   SDValue Chain   = Op.getOperand(0);
3590   SDValue Addr    = Op.getOperand(1);
3591   const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
3592   SDLoc DL(Op);
3593 
3594   // The initial values of each field.
3595   const unsigned NumFields = 4;
3596   SDValue Fields[NumFields] = {
3597     DAG.getConstant(FuncInfo->getVarArgsFirstGPR(), DL, PtrVT),
3598     DAG.getConstant(FuncInfo->getVarArgsFirstFPR(), DL, PtrVT),
3599     DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT),
3600     DAG.getFrameIndex(FuncInfo->getRegSaveFrameIndex(), PtrVT)
3601   };
3602 
3603   // Store each field into its respective slot.
3604   SDValue MemOps[NumFields];
3605   unsigned Offset = 0;
3606   for (unsigned I = 0; I < NumFields; ++I) {
3607     SDValue FieldAddr = Addr;
3608     if (Offset != 0)
3609       FieldAddr = DAG.getNode(ISD::ADD, DL, PtrVT, FieldAddr,
3610                               DAG.getIntPtrConstant(Offset, DL));
3611     MemOps[I] = DAG.getStore(Chain, DL, Fields[I], FieldAddr,
3612                              MachinePointerInfo(SV, Offset));
3613     Offset += 8;
3614   }
3615   return DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOps);
3616 }
3617 
3618 SDValue SystemZTargetLowering::lowerVACOPY(SDValue Op,
3619                                            SelectionDAG &DAG) const {
3620   SDValue Chain      = Op.getOperand(0);
3621   SDValue DstPtr     = Op.getOperand(1);
3622   SDValue SrcPtr     = Op.getOperand(2);
3623   const Value *DstSV = cast<SrcValueSDNode>(Op.getOperand(3))->getValue();
3624   const Value *SrcSV = cast<SrcValueSDNode>(Op.getOperand(4))->getValue();
3625   SDLoc DL(Op);
3626 
3627   uint32_t Sz =
3628       Subtarget.isTargetXPLINK64() ? getTargetMachine().getPointerSize(0) : 32;
3629   return DAG.getMemcpy(Chain, DL, DstPtr, SrcPtr, DAG.getIntPtrConstant(Sz, DL),
3630                        Align(8), /*isVolatile*/ false, /*AlwaysInline*/ false,
3631                        /*isTailCall*/ false, MachinePointerInfo(DstSV),
3632                        MachinePointerInfo(SrcSV));
3633 }
3634 
3635 SDValue
3636 SystemZTargetLowering::lowerDYNAMIC_STACKALLOC(SDValue Op,
3637                                                SelectionDAG &DAG) const {
3638   if (Subtarget.isTargetXPLINK64())
3639     return lowerDYNAMIC_STACKALLOC_XPLINK(Op, DAG);
3640   else
3641     return lowerDYNAMIC_STACKALLOC_ELF(Op, DAG);
3642 }
3643 
3644 SDValue
3645 SystemZTargetLowering::lowerDYNAMIC_STACKALLOC_XPLINK(SDValue Op,
3646                                                       SelectionDAG &DAG) const {
3647   const TargetFrameLowering *TFI = Subtarget.getFrameLowering();
3648   MachineFunction &MF = DAG.getMachineFunction();
3649   bool RealignOpt = !MF.getFunction().hasFnAttribute("no-realign-stack");
3650   SDValue Chain = Op.getOperand(0);
3651   SDValue Size = Op.getOperand(1);
3652   SDValue Align = Op.getOperand(2);
3653   SDLoc DL(Op);
3654 
3655   // If user has set the no alignment function attribute, ignore
3656   // alloca alignments.
3657   uint64_t AlignVal =
3658       (RealignOpt ? cast<ConstantSDNode>(Align)->getZExtValue() : 0);
3659 
3660   uint64_t StackAlign = TFI->getStackAlignment();
3661   uint64_t RequiredAlign = std::max(AlignVal, StackAlign);
3662   uint64_t ExtraAlignSpace = RequiredAlign - StackAlign;
3663 
3664   SDValue NeededSpace = Size;
3665 
3666   // Add extra space for alignment if needed.
3667   EVT PtrVT = getPointerTy(MF.getDataLayout());
3668   if (ExtraAlignSpace)
3669     NeededSpace = DAG.getNode(ISD::ADD, DL, PtrVT, NeededSpace,
3670                               DAG.getConstant(ExtraAlignSpace, DL, PtrVT));
3671 
3672   bool IsSigned = false;
3673   bool DoesNotReturn = false;
3674   bool IsReturnValueUsed = false;
3675   EVT VT = Op.getValueType();
3676   SDValue AllocaCall =
3677       makeExternalCall(Chain, DAG, "@@ALCAXP", VT, makeArrayRef(NeededSpace),
3678                        CallingConv::C, IsSigned, DL, DoesNotReturn,
3679                        IsReturnValueUsed)
3680           .first;
3681 
3682   // Perform a CopyFromReg from %GPR4 (stack pointer register). Chain and Glue
3683   // to end of call in order to ensure it isn't broken up from the call
3684   // sequence.
3685   auto &Regs = Subtarget.getSpecialRegisters<SystemZXPLINK64Registers>();
3686   Register SPReg = Regs.getStackPointerRegister();
3687   Chain = AllocaCall.getValue(1);
3688   SDValue Glue = AllocaCall.getValue(2);
3689   SDValue NewSPRegNode = DAG.getCopyFromReg(Chain, DL, SPReg, PtrVT, Glue);
3690   Chain = NewSPRegNode.getValue(1);
3691 
3692   MVT PtrMVT = getPointerMemTy(MF.getDataLayout());
3693   SDValue ArgAdjust = DAG.getNode(SystemZISD::ADJDYNALLOC, DL, PtrMVT);
3694   SDValue Result = DAG.getNode(ISD::ADD, DL, PtrMVT, NewSPRegNode, ArgAdjust);
3695 
3696   // Dynamically realign if needed.
3697   if (ExtraAlignSpace) {
3698     Result = DAG.getNode(ISD::ADD, DL, PtrVT, Result,
3699                          DAG.getConstant(ExtraAlignSpace, DL, PtrVT));
3700     Result = DAG.getNode(ISD::AND, DL, PtrVT, Result,
3701                          DAG.getConstant(~(RequiredAlign - 1), DL, PtrVT));
3702   }
3703 
3704   SDValue Ops[2] = {Result, Chain};
3705   return DAG.getMergeValues(Ops, DL);
3706 }
3707 
3708 SDValue
3709 SystemZTargetLowering::lowerDYNAMIC_STACKALLOC_ELF(SDValue Op,
3710                                                    SelectionDAG &DAG) const {
3711   const TargetFrameLowering *TFI = Subtarget.getFrameLowering();
3712   MachineFunction &MF = DAG.getMachineFunction();
3713   bool RealignOpt = !MF.getFunction().hasFnAttribute("no-realign-stack");
3714   bool StoreBackchain = MF.getFunction().hasFnAttribute("backchain");
3715 
3716   SDValue Chain = Op.getOperand(0);
3717   SDValue Size  = Op.getOperand(1);
3718   SDValue Align = Op.getOperand(2);
3719   SDLoc DL(Op);
3720 
3721   // If user has set the no alignment function attribute, ignore
3722   // alloca alignments.
3723   uint64_t AlignVal =
3724       (RealignOpt ? cast<ConstantSDNode>(Align)->getZExtValue() : 0);
3725 
3726   uint64_t StackAlign = TFI->getStackAlignment();
3727   uint64_t RequiredAlign = std::max(AlignVal, StackAlign);
3728   uint64_t ExtraAlignSpace = RequiredAlign - StackAlign;
3729 
3730   Register SPReg = getStackPointerRegisterToSaveRestore();
3731   SDValue NeededSpace = Size;
3732 
3733   // Get a reference to the stack pointer.
3734   SDValue OldSP = DAG.getCopyFromReg(Chain, DL, SPReg, MVT::i64);
3735 
3736   // If we need a backchain, save it now.
3737   SDValue Backchain;
3738   if (StoreBackchain)
3739     Backchain = DAG.getLoad(MVT::i64, DL, Chain, getBackchainAddress(OldSP, DAG),
3740                             MachinePointerInfo());
3741 
3742   // Add extra space for alignment if needed.
3743   if (ExtraAlignSpace)
3744     NeededSpace = DAG.getNode(ISD::ADD, DL, MVT::i64, NeededSpace,
3745                               DAG.getConstant(ExtraAlignSpace, DL, MVT::i64));
3746 
3747   // Get the new stack pointer value.
3748   SDValue NewSP;
3749   if (hasInlineStackProbe(MF)) {
3750     NewSP = DAG.getNode(SystemZISD::PROBED_ALLOCA, DL,
3751                 DAG.getVTList(MVT::i64, MVT::Other), Chain, OldSP, NeededSpace);
3752     Chain = NewSP.getValue(1);
3753   }
3754   else {
3755     NewSP = DAG.getNode(ISD::SUB, DL, MVT::i64, OldSP, NeededSpace);
3756     // Copy the new stack pointer back.
3757     Chain = DAG.getCopyToReg(Chain, DL, SPReg, NewSP);
3758   }
3759 
3760   // The allocated data lives above the 160 bytes allocated for the standard
3761   // frame, plus any outgoing stack arguments.  We don't know how much that
3762   // amounts to yet, so emit a special ADJDYNALLOC placeholder.
3763   SDValue ArgAdjust = DAG.getNode(SystemZISD::ADJDYNALLOC, DL, MVT::i64);
3764   SDValue Result = DAG.getNode(ISD::ADD, DL, MVT::i64, NewSP, ArgAdjust);
3765 
3766   // Dynamically realign if needed.
3767   if (RequiredAlign > StackAlign) {
3768     Result =
3769       DAG.getNode(ISD::ADD, DL, MVT::i64, Result,
3770                   DAG.getConstant(ExtraAlignSpace, DL, MVT::i64));
3771     Result =
3772       DAG.getNode(ISD::AND, DL, MVT::i64, Result,
3773                   DAG.getConstant(~(RequiredAlign - 1), DL, MVT::i64));
3774   }
3775 
3776   if (StoreBackchain)
3777     Chain = DAG.getStore(Chain, DL, Backchain, getBackchainAddress(NewSP, DAG),
3778                          MachinePointerInfo());
3779 
3780   SDValue Ops[2] = { Result, Chain };
3781   return DAG.getMergeValues(Ops, DL);
3782 }
3783 
3784 SDValue SystemZTargetLowering::lowerGET_DYNAMIC_AREA_OFFSET(
3785     SDValue Op, SelectionDAG &DAG) const {
3786   SDLoc DL(Op);
3787 
3788   return DAG.getNode(SystemZISD::ADJDYNALLOC, DL, MVT::i64);
3789 }
3790 
3791 SDValue SystemZTargetLowering::lowerSMUL_LOHI(SDValue Op,
3792                                               SelectionDAG &DAG) const {
3793   EVT VT = Op.getValueType();
3794   SDLoc DL(Op);
3795   SDValue Ops[2];
3796   if (is32Bit(VT))
3797     // Just do a normal 64-bit multiplication and extract the results.
3798     // We define this so that it can be used for constant division.
3799     lowerMUL_LOHI32(DAG, DL, ISD::SIGN_EXTEND, Op.getOperand(0),
3800                     Op.getOperand(1), Ops[1], Ops[0]);
3801   else if (Subtarget.hasMiscellaneousExtensions2())
3802     // SystemZISD::SMUL_LOHI returns the low result in the odd register and
3803     // the high result in the even register.  ISD::SMUL_LOHI is defined to
3804     // return the low half first, so the results are in reverse order.
3805     lowerGR128Binary(DAG, DL, VT, SystemZISD::SMUL_LOHI,
3806                      Op.getOperand(0), Op.getOperand(1), Ops[1], Ops[0]);
3807   else {
3808     // Do a full 128-bit multiplication based on SystemZISD::UMUL_LOHI:
3809     //
3810     //   (ll * rl) + ((lh * rl) << 64) + ((ll * rh) << 64)
3811     //
3812     // but using the fact that the upper halves are either all zeros
3813     // or all ones:
3814     //
3815     //   (ll * rl) - ((lh & rl) << 64) - ((ll & rh) << 64)
3816     //
3817     // and grouping the right terms together since they are quicker than the
3818     // multiplication:
3819     //
3820     //   (ll * rl) - (((lh & rl) + (ll & rh)) << 64)
3821     SDValue C63 = DAG.getConstant(63, DL, MVT::i64);
3822     SDValue LL = Op.getOperand(0);
3823     SDValue RL = Op.getOperand(1);
3824     SDValue LH = DAG.getNode(ISD::SRA, DL, VT, LL, C63);
3825     SDValue RH = DAG.getNode(ISD::SRA, DL, VT, RL, C63);
3826     // SystemZISD::UMUL_LOHI returns the low result in the odd register and
3827     // the high result in the even register.  ISD::SMUL_LOHI is defined to
3828     // return the low half first, so the results are in reverse order.
3829     lowerGR128Binary(DAG, DL, VT, SystemZISD::UMUL_LOHI,
3830                      LL, RL, Ops[1], Ops[0]);
3831     SDValue NegLLTimesRH = DAG.getNode(ISD::AND, DL, VT, LL, RH);
3832     SDValue NegLHTimesRL = DAG.getNode(ISD::AND, DL, VT, LH, RL);
3833     SDValue NegSum = DAG.getNode(ISD::ADD, DL, VT, NegLLTimesRH, NegLHTimesRL);
3834     Ops[1] = DAG.getNode(ISD::SUB, DL, VT, Ops[1], NegSum);
3835   }
3836   return DAG.getMergeValues(Ops, DL);
3837 }
3838 
3839 SDValue SystemZTargetLowering::lowerUMUL_LOHI(SDValue Op,
3840                                               SelectionDAG &DAG) const {
3841   EVT VT = Op.getValueType();
3842   SDLoc DL(Op);
3843   SDValue Ops[2];
3844   if (is32Bit(VT))
3845     // Just do a normal 64-bit multiplication and extract the results.
3846     // We define this so that it can be used for constant division.
3847     lowerMUL_LOHI32(DAG, DL, ISD::ZERO_EXTEND, Op.getOperand(0),
3848                     Op.getOperand(1), Ops[1], Ops[0]);
3849   else
3850     // SystemZISD::UMUL_LOHI returns the low result in the odd register and
3851     // the high result in the even register.  ISD::UMUL_LOHI is defined to
3852     // return the low half first, so the results are in reverse order.
3853     lowerGR128Binary(DAG, DL, VT, SystemZISD::UMUL_LOHI,
3854                      Op.getOperand(0), Op.getOperand(1), Ops[1], Ops[0]);
3855   return DAG.getMergeValues(Ops, DL);
3856 }
3857 
3858 SDValue SystemZTargetLowering::lowerSDIVREM(SDValue Op,
3859                                             SelectionDAG &DAG) const {
3860   SDValue Op0 = Op.getOperand(0);
3861   SDValue Op1 = Op.getOperand(1);
3862   EVT VT = Op.getValueType();
3863   SDLoc DL(Op);
3864 
3865   // We use DSGF for 32-bit division.  This means the first operand must
3866   // always be 64-bit, and the second operand should be 32-bit whenever
3867   // that is possible, to improve performance.
3868   if (is32Bit(VT))
3869     Op0 = DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, Op0);
3870   else if (DAG.ComputeNumSignBits(Op1) > 32)
3871     Op1 = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Op1);
3872 
3873   // DSG(F) returns the remainder in the even register and the
3874   // quotient in the odd register.
3875   SDValue Ops[2];
3876   lowerGR128Binary(DAG, DL, VT, SystemZISD::SDIVREM, Op0, Op1, Ops[1], Ops[0]);
3877   return DAG.getMergeValues(Ops, DL);
3878 }
3879 
3880 SDValue SystemZTargetLowering::lowerUDIVREM(SDValue Op,
3881                                             SelectionDAG &DAG) const {
3882   EVT VT = Op.getValueType();
3883   SDLoc DL(Op);
3884 
3885   // DL(G) returns the remainder in the even register and the
3886   // quotient in the odd register.
3887   SDValue Ops[2];
3888   lowerGR128Binary(DAG, DL, VT, SystemZISD::UDIVREM,
3889                    Op.getOperand(0), Op.getOperand(1), Ops[1], Ops[0]);
3890   return DAG.getMergeValues(Ops, DL);
3891 }
3892 
3893 SDValue SystemZTargetLowering::lowerOR(SDValue Op, SelectionDAG &DAG) const {
3894   assert(Op.getValueType() == MVT::i64 && "Should be 64-bit operation");
3895 
3896   // Get the known-zero masks for each operand.
3897   SDValue Ops[] = {Op.getOperand(0), Op.getOperand(1)};
3898   KnownBits Known[2] = {DAG.computeKnownBits(Ops[0]),
3899                         DAG.computeKnownBits(Ops[1])};
3900 
3901   // See if the upper 32 bits of one operand and the lower 32 bits of the
3902   // other are known zero.  They are the low and high operands respectively.
3903   uint64_t Masks[] = { Known[0].Zero.getZExtValue(),
3904                        Known[1].Zero.getZExtValue() };
3905   unsigned High, Low;
3906   if ((Masks[0] >> 32) == 0xffffffff && uint32_t(Masks[1]) == 0xffffffff)
3907     High = 1, Low = 0;
3908   else if ((Masks[1] >> 32) == 0xffffffff && uint32_t(Masks[0]) == 0xffffffff)
3909     High = 0, Low = 1;
3910   else
3911     return Op;
3912 
3913   SDValue LowOp = Ops[Low];
3914   SDValue HighOp = Ops[High];
3915 
3916   // If the high part is a constant, we're better off using IILH.
3917   if (HighOp.getOpcode() == ISD::Constant)
3918     return Op;
3919 
3920   // If the low part is a constant that is outside the range of LHI,
3921   // then we're better off using IILF.
3922   if (LowOp.getOpcode() == ISD::Constant) {
3923     int64_t Value = int32_t(cast<ConstantSDNode>(LowOp)->getZExtValue());
3924     if (!isInt<16>(Value))
3925       return Op;
3926   }
3927 
3928   // Check whether the high part is an AND that doesn't change the
3929   // high 32 bits and just masks out low bits.  We can skip it if so.
3930   if (HighOp.getOpcode() == ISD::AND &&
3931       HighOp.getOperand(1).getOpcode() == ISD::Constant) {
3932     SDValue HighOp0 = HighOp.getOperand(0);
3933     uint64_t Mask = cast<ConstantSDNode>(HighOp.getOperand(1))->getZExtValue();
3934     if (DAG.MaskedValueIsZero(HighOp0, APInt(64, ~(Mask | 0xffffffff))))
3935       HighOp = HighOp0;
3936   }
3937 
3938   // Take advantage of the fact that all GR32 operations only change the
3939   // low 32 bits by truncating Low to an i32 and inserting it directly
3940   // using a subreg.  The interesting cases are those where the truncation
3941   // can be folded.
3942   SDLoc DL(Op);
3943   SDValue Low32 = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, LowOp);
3944   return DAG.getTargetInsertSubreg(SystemZ::subreg_l32, DL,
3945                                    MVT::i64, HighOp, Low32);
3946 }
3947 
3948 // Lower SADDO/SSUBO/UADDO/USUBO nodes.
3949 SDValue SystemZTargetLowering::lowerXALUO(SDValue Op,
3950                                           SelectionDAG &DAG) const {
3951   SDNode *N = Op.getNode();
3952   SDValue LHS = N->getOperand(0);
3953   SDValue RHS = N->getOperand(1);
3954   SDLoc DL(N);
3955   unsigned BaseOp = 0;
3956   unsigned CCValid = 0;
3957   unsigned CCMask = 0;
3958 
3959   switch (Op.getOpcode()) {
3960   default: llvm_unreachable("Unknown instruction!");
3961   case ISD::SADDO:
3962     BaseOp = SystemZISD::SADDO;
3963     CCValid = SystemZ::CCMASK_ARITH;
3964     CCMask = SystemZ::CCMASK_ARITH_OVERFLOW;
3965     break;
3966   case ISD::SSUBO:
3967     BaseOp = SystemZISD::SSUBO;
3968     CCValid = SystemZ::CCMASK_ARITH;
3969     CCMask = SystemZ::CCMASK_ARITH_OVERFLOW;
3970     break;
3971   case ISD::UADDO:
3972     BaseOp = SystemZISD::UADDO;
3973     CCValid = SystemZ::CCMASK_LOGICAL;
3974     CCMask = SystemZ::CCMASK_LOGICAL_CARRY;
3975     break;
3976   case ISD::USUBO:
3977     BaseOp = SystemZISD::USUBO;
3978     CCValid = SystemZ::CCMASK_LOGICAL;
3979     CCMask = SystemZ::CCMASK_LOGICAL_BORROW;
3980     break;
3981   }
3982 
3983   SDVTList VTs = DAG.getVTList(N->getValueType(0), MVT::i32);
3984   SDValue Result = DAG.getNode(BaseOp, DL, VTs, LHS, RHS);
3985 
3986   SDValue SetCC = emitSETCC(DAG, DL, Result.getValue(1), CCValid, CCMask);
3987   if (N->getValueType(1) == MVT::i1)
3988     SetCC = DAG.getNode(ISD::TRUNCATE, DL, MVT::i1, SetCC);
3989 
3990   return DAG.getNode(ISD::MERGE_VALUES, DL, N->getVTList(), Result, SetCC);
3991 }
3992 
3993 static bool isAddCarryChain(SDValue Carry) {
3994   while (Carry.getOpcode() == ISD::ADDCARRY)
3995     Carry = Carry.getOperand(2);
3996   return Carry.getOpcode() == ISD::UADDO;
3997 }
3998 
3999 static bool isSubBorrowChain(SDValue Carry) {
4000   while (Carry.getOpcode() == ISD::SUBCARRY)
4001     Carry = Carry.getOperand(2);
4002   return Carry.getOpcode() == ISD::USUBO;
4003 }
4004 
4005 // Lower ADDCARRY/SUBCARRY nodes.
4006 SDValue SystemZTargetLowering::lowerADDSUBCARRY(SDValue Op,
4007                                                 SelectionDAG &DAG) const {
4008 
4009   SDNode *N = Op.getNode();
4010   MVT VT = N->getSimpleValueType(0);
4011 
4012   // Let legalize expand this if it isn't a legal type yet.
4013   if (!DAG.getTargetLoweringInfo().isTypeLegal(VT))
4014     return SDValue();
4015 
4016   SDValue LHS = N->getOperand(0);
4017   SDValue RHS = N->getOperand(1);
4018   SDValue Carry = Op.getOperand(2);
4019   SDLoc DL(N);
4020   unsigned BaseOp = 0;
4021   unsigned CCValid = 0;
4022   unsigned CCMask = 0;
4023 
4024   switch (Op.getOpcode()) {
4025   default: llvm_unreachable("Unknown instruction!");
4026   case ISD::ADDCARRY:
4027     if (!isAddCarryChain(Carry))
4028       return SDValue();
4029 
4030     BaseOp = SystemZISD::ADDCARRY;
4031     CCValid = SystemZ::CCMASK_LOGICAL;
4032     CCMask = SystemZ::CCMASK_LOGICAL_CARRY;
4033     break;
4034   case ISD::SUBCARRY:
4035     if (!isSubBorrowChain(Carry))
4036       return SDValue();
4037 
4038     BaseOp = SystemZISD::SUBCARRY;
4039     CCValid = SystemZ::CCMASK_LOGICAL;
4040     CCMask = SystemZ::CCMASK_LOGICAL_BORROW;
4041     break;
4042   }
4043 
4044   // Set the condition code from the carry flag.
4045   Carry = DAG.getNode(SystemZISD::GET_CCMASK, DL, MVT::i32, Carry,
4046                       DAG.getConstant(CCValid, DL, MVT::i32),
4047                       DAG.getConstant(CCMask, DL, MVT::i32));
4048 
4049   SDVTList VTs = DAG.getVTList(VT, MVT::i32);
4050   SDValue Result = DAG.getNode(BaseOp, DL, VTs, LHS, RHS, Carry);
4051 
4052   SDValue SetCC = emitSETCC(DAG, DL, Result.getValue(1), CCValid, CCMask);
4053   if (N->getValueType(1) == MVT::i1)
4054     SetCC = DAG.getNode(ISD::TRUNCATE, DL, MVT::i1, SetCC);
4055 
4056   return DAG.getNode(ISD::MERGE_VALUES, DL, N->getVTList(), Result, SetCC);
4057 }
4058 
4059 SDValue SystemZTargetLowering::lowerCTPOP(SDValue Op,
4060                                           SelectionDAG &DAG) const {
4061   EVT VT = Op.getValueType();
4062   SDLoc DL(Op);
4063   Op = Op.getOperand(0);
4064 
4065   // Handle vector types via VPOPCT.
4066   if (VT.isVector()) {
4067     Op = DAG.getNode(ISD::BITCAST, DL, MVT::v16i8, Op);
4068     Op = DAG.getNode(SystemZISD::POPCNT, DL, MVT::v16i8, Op);
4069     switch (VT.getScalarSizeInBits()) {
4070     case 8:
4071       break;
4072     case 16: {
4073       Op = DAG.getNode(ISD::BITCAST, DL, VT, Op);
4074       SDValue Shift = DAG.getConstant(8, DL, MVT::i32);
4075       SDValue Tmp = DAG.getNode(SystemZISD::VSHL_BY_SCALAR, DL, VT, Op, Shift);
4076       Op = DAG.getNode(ISD::ADD, DL, VT, Op, Tmp);
4077       Op = DAG.getNode(SystemZISD::VSRL_BY_SCALAR, DL, VT, Op, Shift);
4078       break;
4079     }
4080     case 32: {
4081       SDValue Tmp = DAG.getSplatBuildVector(MVT::v16i8, DL,
4082                                             DAG.getConstant(0, DL, MVT::i32));
4083       Op = DAG.getNode(SystemZISD::VSUM, DL, VT, Op, Tmp);
4084       break;
4085     }
4086     case 64: {
4087       SDValue Tmp = DAG.getSplatBuildVector(MVT::v16i8, DL,
4088                                             DAG.getConstant(0, DL, MVT::i32));
4089       Op = DAG.getNode(SystemZISD::VSUM, DL, MVT::v4i32, Op, Tmp);
4090       Op = DAG.getNode(SystemZISD::VSUM, DL, VT, Op, Tmp);
4091       break;
4092     }
4093     default:
4094       llvm_unreachable("Unexpected type");
4095     }
4096     return Op;
4097   }
4098 
4099   // Get the known-zero mask for the operand.
4100   KnownBits Known = DAG.computeKnownBits(Op);
4101   unsigned NumSignificantBits = Known.getMaxValue().getActiveBits();
4102   if (NumSignificantBits == 0)
4103     return DAG.getConstant(0, DL, VT);
4104 
4105   // Skip known-zero high parts of the operand.
4106   int64_t OrigBitSize = VT.getSizeInBits();
4107   int64_t BitSize = (int64_t)1 << Log2_32_Ceil(NumSignificantBits);
4108   BitSize = std::min(BitSize, OrigBitSize);
4109 
4110   // The POPCNT instruction counts the number of bits in each byte.
4111   Op = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op);
4112   Op = DAG.getNode(SystemZISD::POPCNT, DL, MVT::i64, Op);
4113   Op = DAG.getNode(ISD::TRUNCATE, DL, VT, Op);
4114 
4115   // Add up per-byte counts in a binary tree.  All bits of Op at
4116   // position larger than BitSize remain zero throughout.
4117   for (int64_t I = BitSize / 2; I >= 8; I = I / 2) {
4118     SDValue Tmp = DAG.getNode(ISD::SHL, DL, VT, Op, DAG.getConstant(I, DL, VT));
4119     if (BitSize != OrigBitSize)
4120       Tmp = DAG.getNode(ISD::AND, DL, VT, Tmp,
4121                         DAG.getConstant(((uint64_t)1 << BitSize) - 1, DL, VT));
4122     Op = DAG.getNode(ISD::ADD, DL, VT, Op, Tmp);
4123   }
4124 
4125   // Extract overall result from high byte.
4126   if (BitSize > 8)
4127     Op = DAG.getNode(ISD::SRL, DL, VT, Op,
4128                      DAG.getConstant(BitSize - 8, DL, VT));
4129 
4130   return Op;
4131 }
4132 
4133 SDValue SystemZTargetLowering::lowerATOMIC_FENCE(SDValue Op,
4134                                                  SelectionDAG &DAG) const {
4135   SDLoc DL(Op);
4136   AtomicOrdering FenceOrdering = static_cast<AtomicOrdering>(
4137     cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue());
4138   SyncScope::ID FenceSSID = static_cast<SyncScope::ID>(
4139     cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue());
4140 
4141   // The only fence that needs an instruction is a sequentially-consistent
4142   // cross-thread fence.
4143   if (FenceOrdering == AtomicOrdering::SequentiallyConsistent &&
4144       FenceSSID == SyncScope::System) {
4145     return SDValue(DAG.getMachineNode(SystemZ::Serialize, DL, MVT::Other,
4146                                       Op.getOperand(0)),
4147                    0);
4148   }
4149 
4150   // MEMBARRIER is a compiler barrier; it codegens to a no-op.
4151   return DAG.getNode(SystemZISD::MEMBARRIER, DL, MVT::Other, Op.getOperand(0));
4152 }
4153 
4154 // Op is an atomic load.  Lower it into a normal volatile load.
4155 SDValue SystemZTargetLowering::lowerATOMIC_LOAD(SDValue Op,
4156                                                 SelectionDAG &DAG) const {
4157   auto *Node = cast<AtomicSDNode>(Op.getNode());
4158   return DAG.getExtLoad(ISD::EXTLOAD, SDLoc(Op), Op.getValueType(),
4159                         Node->getChain(), Node->getBasePtr(),
4160                         Node->getMemoryVT(), Node->getMemOperand());
4161 }
4162 
4163 // Op is an atomic store.  Lower it into a normal volatile store.
4164 SDValue SystemZTargetLowering::lowerATOMIC_STORE(SDValue Op,
4165                                                  SelectionDAG &DAG) const {
4166   auto *Node = cast<AtomicSDNode>(Op.getNode());
4167   SDValue Chain = DAG.getTruncStore(Node->getChain(), SDLoc(Op), Node->getVal(),
4168                                     Node->getBasePtr(), Node->getMemoryVT(),
4169                                     Node->getMemOperand());
4170   // We have to enforce sequential consistency by performing a
4171   // serialization operation after the store.
4172   if (Node->getSuccessOrdering() == AtomicOrdering::SequentiallyConsistent)
4173     Chain = SDValue(DAG.getMachineNode(SystemZ::Serialize, SDLoc(Op),
4174                                        MVT::Other, Chain), 0);
4175   return Chain;
4176 }
4177 
4178 // Op is an 8-, 16-bit or 32-bit ATOMIC_LOAD_* operation.  Lower the first
4179 // two into the fullword ATOMIC_LOADW_* operation given by Opcode.
4180 SDValue SystemZTargetLowering::lowerATOMIC_LOAD_OP(SDValue Op,
4181                                                    SelectionDAG &DAG,
4182                                                    unsigned Opcode) const {
4183   auto *Node = cast<AtomicSDNode>(Op.getNode());
4184 
4185   // 32-bit operations need no code outside the main loop.
4186   EVT NarrowVT = Node->getMemoryVT();
4187   EVT WideVT = MVT::i32;
4188   if (NarrowVT == WideVT)
4189     return Op;
4190 
4191   int64_t BitSize = NarrowVT.getSizeInBits();
4192   SDValue ChainIn = Node->getChain();
4193   SDValue Addr = Node->getBasePtr();
4194   SDValue Src2 = Node->getVal();
4195   MachineMemOperand *MMO = Node->getMemOperand();
4196   SDLoc DL(Node);
4197   EVT PtrVT = Addr.getValueType();
4198 
4199   // Convert atomic subtracts of constants into additions.
4200   if (Opcode == SystemZISD::ATOMIC_LOADW_SUB)
4201     if (auto *Const = dyn_cast<ConstantSDNode>(Src2)) {
4202       Opcode = SystemZISD::ATOMIC_LOADW_ADD;
4203       Src2 = DAG.getConstant(-Const->getSExtValue(), DL, Src2.getValueType());
4204     }
4205 
4206   // Get the address of the containing word.
4207   SDValue AlignedAddr = DAG.getNode(ISD::AND, DL, PtrVT, Addr,
4208                                     DAG.getConstant(-4, DL, PtrVT));
4209 
4210   // Get the number of bits that the word must be rotated left in order
4211   // to bring the field to the top bits of a GR32.
4212   SDValue BitShift = DAG.getNode(ISD::SHL, DL, PtrVT, Addr,
4213                                  DAG.getConstant(3, DL, PtrVT));
4214   BitShift = DAG.getNode(ISD::TRUNCATE, DL, WideVT, BitShift);
4215 
4216   // Get the complementing shift amount, for rotating a field in the top
4217   // bits back to its proper position.
4218   SDValue NegBitShift = DAG.getNode(ISD::SUB, DL, WideVT,
4219                                     DAG.getConstant(0, DL, WideVT), BitShift);
4220 
4221   // Extend the source operand to 32 bits and prepare it for the inner loop.
4222   // ATOMIC_SWAPW uses RISBG to rotate the field left, but all other
4223   // operations require the source to be shifted in advance.  (This shift
4224   // can be folded if the source is constant.)  For AND and NAND, the lower
4225   // bits must be set, while for other opcodes they should be left clear.
4226   if (Opcode != SystemZISD::ATOMIC_SWAPW)
4227     Src2 = DAG.getNode(ISD::SHL, DL, WideVT, Src2,
4228                        DAG.getConstant(32 - BitSize, DL, WideVT));
4229   if (Opcode == SystemZISD::ATOMIC_LOADW_AND ||
4230       Opcode == SystemZISD::ATOMIC_LOADW_NAND)
4231     Src2 = DAG.getNode(ISD::OR, DL, WideVT, Src2,
4232                        DAG.getConstant(uint32_t(-1) >> BitSize, DL, WideVT));
4233 
4234   // Construct the ATOMIC_LOADW_* node.
4235   SDVTList VTList = DAG.getVTList(WideVT, MVT::Other);
4236   SDValue Ops[] = { ChainIn, AlignedAddr, Src2, BitShift, NegBitShift,
4237                     DAG.getConstant(BitSize, DL, WideVT) };
4238   SDValue AtomicOp = DAG.getMemIntrinsicNode(Opcode, DL, VTList, Ops,
4239                                              NarrowVT, MMO);
4240 
4241   // Rotate the result of the final CS so that the field is in the lower
4242   // bits of a GR32, then truncate it.
4243   SDValue ResultShift = DAG.getNode(ISD::ADD, DL, WideVT, BitShift,
4244                                     DAG.getConstant(BitSize, DL, WideVT));
4245   SDValue Result = DAG.getNode(ISD::ROTL, DL, WideVT, AtomicOp, ResultShift);
4246 
4247   SDValue RetOps[2] = { Result, AtomicOp.getValue(1) };
4248   return DAG.getMergeValues(RetOps, DL);
4249 }
4250 
4251 // Op is an ATOMIC_LOAD_SUB operation.  Lower 8- and 16-bit operations
4252 // into ATOMIC_LOADW_SUBs and decide whether to convert 32- and 64-bit
4253 // operations into additions.
4254 SDValue SystemZTargetLowering::lowerATOMIC_LOAD_SUB(SDValue Op,
4255                                                     SelectionDAG &DAG) const {
4256   auto *Node = cast<AtomicSDNode>(Op.getNode());
4257   EVT MemVT = Node->getMemoryVT();
4258   if (MemVT == MVT::i32 || MemVT == MVT::i64) {
4259     // A full-width operation.
4260     assert(Op.getValueType() == MemVT && "Mismatched VTs");
4261     SDValue Src2 = Node->getVal();
4262     SDValue NegSrc2;
4263     SDLoc DL(Src2);
4264 
4265     if (auto *Op2 = dyn_cast<ConstantSDNode>(Src2)) {
4266       // Use an addition if the operand is constant and either LAA(G) is
4267       // available or the negative value is in the range of A(G)FHI.
4268       int64_t Value = (-Op2->getAPIntValue()).getSExtValue();
4269       if (isInt<32>(Value) || Subtarget.hasInterlockedAccess1())
4270         NegSrc2 = DAG.getConstant(Value, DL, MemVT);
4271     } else if (Subtarget.hasInterlockedAccess1())
4272       // Use LAA(G) if available.
4273       NegSrc2 = DAG.getNode(ISD::SUB, DL, MemVT, DAG.getConstant(0, DL, MemVT),
4274                             Src2);
4275 
4276     if (NegSrc2.getNode())
4277       return DAG.getAtomic(ISD::ATOMIC_LOAD_ADD, DL, MemVT,
4278                            Node->getChain(), Node->getBasePtr(), NegSrc2,
4279                            Node->getMemOperand());
4280 
4281     // Use the node as-is.
4282     return Op;
4283   }
4284 
4285   return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_SUB);
4286 }
4287 
4288 // Lower 8/16/32/64-bit ATOMIC_CMP_SWAP_WITH_SUCCESS node.
4289 SDValue SystemZTargetLowering::lowerATOMIC_CMP_SWAP(SDValue Op,
4290                                                     SelectionDAG &DAG) const {
4291   auto *Node = cast<AtomicSDNode>(Op.getNode());
4292   SDValue ChainIn = Node->getOperand(0);
4293   SDValue Addr = Node->getOperand(1);
4294   SDValue CmpVal = Node->getOperand(2);
4295   SDValue SwapVal = Node->getOperand(3);
4296   MachineMemOperand *MMO = Node->getMemOperand();
4297   SDLoc DL(Node);
4298 
4299   // We have native support for 32-bit and 64-bit compare and swap, but we
4300   // still need to expand extracting the "success" result from the CC.
4301   EVT NarrowVT = Node->getMemoryVT();
4302   EVT WideVT = NarrowVT == MVT::i64 ? MVT::i64 : MVT::i32;
4303   if (NarrowVT == WideVT) {
4304     SDVTList Tys = DAG.getVTList(WideVT, MVT::i32, MVT::Other);
4305     SDValue Ops[] = { ChainIn, Addr, CmpVal, SwapVal };
4306     SDValue AtomicOp = DAG.getMemIntrinsicNode(SystemZISD::ATOMIC_CMP_SWAP,
4307                                                DL, Tys, Ops, NarrowVT, MMO);
4308     SDValue Success = emitSETCC(DAG, DL, AtomicOp.getValue(1),
4309                                 SystemZ::CCMASK_CS, SystemZ::CCMASK_CS_EQ);
4310 
4311     DAG.ReplaceAllUsesOfValueWith(Op.getValue(0), AtomicOp.getValue(0));
4312     DAG.ReplaceAllUsesOfValueWith(Op.getValue(1), Success);
4313     DAG.ReplaceAllUsesOfValueWith(Op.getValue(2), AtomicOp.getValue(2));
4314     return SDValue();
4315   }
4316 
4317   // Convert 8-bit and 16-bit compare and swap to a loop, implemented
4318   // via a fullword ATOMIC_CMP_SWAPW operation.
4319   int64_t BitSize = NarrowVT.getSizeInBits();
4320   EVT PtrVT = Addr.getValueType();
4321 
4322   // Get the address of the containing word.
4323   SDValue AlignedAddr = DAG.getNode(ISD::AND, DL, PtrVT, Addr,
4324                                     DAG.getConstant(-4, DL, PtrVT));
4325 
4326   // Get the number of bits that the word must be rotated left in order
4327   // to bring the field to the top bits of a GR32.
4328   SDValue BitShift = DAG.getNode(ISD::SHL, DL, PtrVT, Addr,
4329                                  DAG.getConstant(3, DL, PtrVT));
4330   BitShift = DAG.getNode(ISD::TRUNCATE, DL, WideVT, BitShift);
4331 
4332   // Get the complementing shift amount, for rotating a field in the top
4333   // bits back to its proper position.
4334   SDValue NegBitShift = DAG.getNode(ISD::SUB, DL, WideVT,
4335                                     DAG.getConstant(0, DL, WideVT), BitShift);
4336 
4337   // Construct the ATOMIC_CMP_SWAPW node.
4338   SDVTList VTList = DAG.getVTList(WideVT, MVT::i32, MVT::Other);
4339   SDValue Ops[] = { ChainIn, AlignedAddr, CmpVal, SwapVal, BitShift,
4340                     NegBitShift, DAG.getConstant(BitSize, DL, WideVT) };
4341   SDValue AtomicOp = DAG.getMemIntrinsicNode(SystemZISD::ATOMIC_CMP_SWAPW, DL,
4342                                              VTList, Ops, NarrowVT, MMO);
4343   SDValue Success = emitSETCC(DAG, DL, AtomicOp.getValue(1),
4344                               SystemZ::CCMASK_ICMP, SystemZ::CCMASK_CMP_EQ);
4345 
4346   // emitAtomicCmpSwapW() will zero extend the result (original value).
4347   SDValue OrigVal = DAG.getNode(ISD::AssertZext, DL, WideVT, AtomicOp.getValue(0),
4348                                 DAG.getValueType(NarrowVT));
4349   DAG.ReplaceAllUsesOfValueWith(Op.getValue(0), OrigVal);
4350   DAG.ReplaceAllUsesOfValueWith(Op.getValue(1), Success);
4351   DAG.ReplaceAllUsesOfValueWith(Op.getValue(2), AtomicOp.getValue(2));
4352   return SDValue();
4353 }
4354 
4355 MachineMemOperand::Flags
4356 SystemZTargetLowering::getTargetMMOFlags(const Instruction &I) const {
4357   // Because of how we convert atomic_load and atomic_store to normal loads and
4358   // stores in the DAG, we need to ensure that the MMOs are marked volatile
4359   // since DAGCombine hasn't been updated to account for atomic, but non
4360   // volatile loads.  (See D57601)
4361   if (auto *SI = dyn_cast<StoreInst>(&I))
4362     if (SI->isAtomic())
4363       return MachineMemOperand::MOVolatile;
4364   if (auto *LI = dyn_cast<LoadInst>(&I))
4365     if (LI->isAtomic())
4366       return MachineMemOperand::MOVolatile;
4367   if (auto *AI = dyn_cast<AtomicRMWInst>(&I))
4368     if (AI->isAtomic())
4369       return MachineMemOperand::MOVolatile;
4370   if (auto *AI = dyn_cast<AtomicCmpXchgInst>(&I))
4371     if (AI->isAtomic())
4372       return MachineMemOperand::MOVolatile;
4373   return MachineMemOperand::MONone;
4374 }
4375 
4376 SDValue SystemZTargetLowering::lowerSTACKSAVE(SDValue Op,
4377                                               SelectionDAG &DAG) const {
4378   MachineFunction &MF = DAG.getMachineFunction();
4379   const SystemZSubtarget *Subtarget = &MF.getSubtarget<SystemZSubtarget>();
4380   auto *Regs = Subtarget->getSpecialRegisters();
4381   if (MF.getFunction().getCallingConv() == CallingConv::GHC)
4382     report_fatal_error("Variable-sized stack allocations are not supported "
4383                        "in GHC calling convention");
4384   return DAG.getCopyFromReg(Op.getOperand(0), SDLoc(Op),
4385                             Regs->getStackPointerRegister(), Op.getValueType());
4386 }
4387 
4388 SDValue SystemZTargetLowering::lowerSTACKRESTORE(SDValue Op,
4389                                                  SelectionDAG &DAG) const {
4390   MachineFunction &MF = DAG.getMachineFunction();
4391   const SystemZSubtarget *Subtarget = &MF.getSubtarget<SystemZSubtarget>();
4392   auto *Regs = Subtarget->getSpecialRegisters();
4393   bool StoreBackchain = MF.getFunction().hasFnAttribute("backchain");
4394 
4395   if (MF.getFunction().getCallingConv() == CallingConv::GHC)
4396     report_fatal_error("Variable-sized stack allocations are not supported "
4397                        "in GHC calling convention");
4398 
4399   SDValue Chain = Op.getOperand(0);
4400   SDValue NewSP = Op.getOperand(1);
4401   SDValue Backchain;
4402   SDLoc DL(Op);
4403 
4404   if (StoreBackchain) {
4405     SDValue OldSP = DAG.getCopyFromReg(
4406         Chain, DL, Regs->getStackPointerRegister(), MVT::i64);
4407     Backchain = DAG.getLoad(MVT::i64, DL, Chain, getBackchainAddress(OldSP, DAG),
4408                             MachinePointerInfo());
4409   }
4410 
4411   Chain = DAG.getCopyToReg(Chain, DL, Regs->getStackPointerRegister(), NewSP);
4412 
4413   if (StoreBackchain)
4414     Chain = DAG.getStore(Chain, DL, Backchain, getBackchainAddress(NewSP, DAG),
4415                          MachinePointerInfo());
4416 
4417   return Chain;
4418 }
4419 
4420 SDValue SystemZTargetLowering::lowerPREFETCH(SDValue Op,
4421                                              SelectionDAG &DAG) const {
4422   bool IsData = cast<ConstantSDNode>(Op.getOperand(4))->getZExtValue();
4423   if (!IsData)
4424     // Just preserve the chain.
4425     return Op.getOperand(0);
4426 
4427   SDLoc DL(Op);
4428   bool IsWrite = cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue();
4429   unsigned Code = IsWrite ? SystemZ::PFD_WRITE : SystemZ::PFD_READ;
4430   auto *Node = cast<MemIntrinsicSDNode>(Op.getNode());
4431   SDValue Ops[] = {Op.getOperand(0), DAG.getTargetConstant(Code, DL, MVT::i32),
4432                    Op.getOperand(1)};
4433   return DAG.getMemIntrinsicNode(SystemZISD::PREFETCH, DL,
4434                                  Node->getVTList(), Ops,
4435                                  Node->getMemoryVT(), Node->getMemOperand());
4436 }
4437 
4438 // Convert condition code in CCReg to an i32 value.
4439 static SDValue getCCResult(SelectionDAG &DAG, SDValue CCReg) {
4440   SDLoc DL(CCReg);
4441   SDValue IPM = DAG.getNode(SystemZISD::IPM, DL, MVT::i32, CCReg);
4442   return DAG.getNode(ISD::SRL, DL, MVT::i32, IPM,
4443                      DAG.getConstant(SystemZ::IPM_CC, DL, MVT::i32));
4444 }
4445 
4446 SDValue
4447 SystemZTargetLowering::lowerINTRINSIC_W_CHAIN(SDValue Op,
4448                                               SelectionDAG &DAG) const {
4449   unsigned Opcode, CCValid;
4450   if (isIntrinsicWithCCAndChain(Op, Opcode, CCValid)) {
4451     assert(Op->getNumValues() == 2 && "Expected only CC result and chain");
4452     SDNode *Node = emitIntrinsicWithCCAndChain(DAG, Op, Opcode);
4453     SDValue CC = getCCResult(DAG, SDValue(Node, 0));
4454     DAG.ReplaceAllUsesOfValueWith(SDValue(Op.getNode(), 0), CC);
4455     return SDValue();
4456   }
4457 
4458   return SDValue();
4459 }
4460 
4461 SDValue
4462 SystemZTargetLowering::lowerINTRINSIC_WO_CHAIN(SDValue Op,
4463                                                SelectionDAG &DAG) const {
4464   unsigned Opcode, CCValid;
4465   if (isIntrinsicWithCC(Op, Opcode, CCValid)) {
4466     SDNode *Node = emitIntrinsicWithCC(DAG, Op, Opcode);
4467     if (Op->getNumValues() == 1)
4468       return getCCResult(DAG, SDValue(Node, 0));
4469     assert(Op->getNumValues() == 2 && "Expected a CC and non-CC result");
4470     return DAG.getNode(ISD::MERGE_VALUES, SDLoc(Op), Op->getVTList(),
4471                        SDValue(Node, 0), getCCResult(DAG, SDValue(Node, 1)));
4472   }
4473 
4474   unsigned Id = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
4475   switch (Id) {
4476   case Intrinsic::thread_pointer:
4477     return lowerThreadPointer(SDLoc(Op), DAG);
4478 
4479   case Intrinsic::s390_vpdi:
4480     return DAG.getNode(SystemZISD::PERMUTE_DWORDS, SDLoc(Op), Op.getValueType(),
4481                        Op.getOperand(1), Op.getOperand(2), Op.getOperand(3));
4482 
4483   case Intrinsic::s390_vperm:
4484     return DAG.getNode(SystemZISD::PERMUTE, SDLoc(Op), Op.getValueType(),
4485                        Op.getOperand(1), Op.getOperand(2), Op.getOperand(3));
4486 
4487   case Intrinsic::s390_vuphb:
4488   case Intrinsic::s390_vuphh:
4489   case Intrinsic::s390_vuphf:
4490     return DAG.getNode(SystemZISD::UNPACK_HIGH, SDLoc(Op), Op.getValueType(),
4491                        Op.getOperand(1));
4492 
4493   case Intrinsic::s390_vuplhb:
4494   case Intrinsic::s390_vuplhh:
4495   case Intrinsic::s390_vuplhf:
4496     return DAG.getNode(SystemZISD::UNPACKL_HIGH, SDLoc(Op), Op.getValueType(),
4497                        Op.getOperand(1));
4498 
4499   case Intrinsic::s390_vuplb:
4500   case Intrinsic::s390_vuplhw:
4501   case Intrinsic::s390_vuplf:
4502     return DAG.getNode(SystemZISD::UNPACK_LOW, SDLoc(Op), Op.getValueType(),
4503                        Op.getOperand(1));
4504 
4505   case Intrinsic::s390_vupllb:
4506   case Intrinsic::s390_vupllh:
4507   case Intrinsic::s390_vupllf:
4508     return DAG.getNode(SystemZISD::UNPACKL_LOW, SDLoc(Op), Op.getValueType(),
4509                        Op.getOperand(1));
4510 
4511   case Intrinsic::s390_vsumb:
4512   case Intrinsic::s390_vsumh:
4513   case Intrinsic::s390_vsumgh:
4514   case Intrinsic::s390_vsumgf:
4515   case Intrinsic::s390_vsumqf:
4516   case Intrinsic::s390_vsumqg:
4517     return DAG.getNode(SystemZISD::VSUM, SDLoc(Op), Op.getValueType(),
4518                        Op.getOperand(1), Op.getOperand(2));
4519   }
4520 
4521   return SDValue();
4522 }
4523 
4524 namespace {
4525 // Says that SystemZISD operation Opcode can be used to perform the equivalent
4526 // of a VPERM with permute vector Bytes.  If Opcode takes three operands,
4527 // Operand is the constant third operand, otherwise it is the number of
4528 // bytes in each element of the result.
4529 struct Permute {
4530   unsigned Opcode;
4531   unsigned Operand;
4532   unsigned char Bytes[SystemZ::VectorBytes];
4533 };
4534 }
4535 
4536 static const Permute PermuteForms[] = {
4537   // VMRHG
4538   { SystemZISD::MERGE_HIGH, 8,
4539     { 0, 1, 2, 3, 4, 5, 6, 7, 16, 17, 18, 19, 20, 21, 22, 23 } },
4540   // VMRHF
4541   { SystemZISD::MERGE_HIGH, 4,
4542     { 0, 1, 2, 3, 16, 17, 18, 19, 4, 5, 6, 7, 20, 21, 22, 23 } },
4543   // VMRHH
4544   { SystemZISD::MERGE_HIGH, 2,
4545     { 0, 1, 16, 17, 2, 3, 18, 19, 4, 5, 20, 21, 6, 7, 22, 23 } },
4546   // VMRHB
4547   { SystemZISD::MERGE_HIGH, 1,
4548     { 0, 16, 1, 17, 2, 18, 3, 19, 4, 20, 5, 21, 6, 22, 7, 23 } },
4549   // VMRLG
4550   { SystemZISD::MERGE_LOW, 8,
4551     { 8, 9, 10, 11, 12, 13, 14, 15, 24, 25, 26, 27, 28, 29, 30, 31 } },
4552   // VMRLF
4553   { SystemZISD::MERGE_LOW, 4,
4554     { 8, 9, 10, 11, 24, 25, 26, 27, 12, 13, 14, 15, 28, 29, 30, 31 } },
4555   // VMRLH
4556   { SystemZISD::MERGE_LOW, 2,
4557     { 8, 9, 24, 25, 10, 11, 26, 27, 12, 13, 28, 29, 14, 15, 30, 31 } },
4558   // VMRLB
4559   { SystemZISD::MERGE_LOW, 1,
4560     { 8, 24, 9, 25, 10, 26, 11, 27, 12, 28, 13, 29, 14, 30, 15, 31 } },
4561   // VPKG
4562   { SystemZISD::PACK, 4,
4563     { 4, 5, 6, 7, 12, 13, 14, 15, 20, 21, 22, 23, 28, 29, 30, 31 } },
4564   // VPKF
4565   { SystemZISD::PACK, 2,
4566     { 2, 3, 6, 7, 10, 11, 14, 15, 18, 19, 22, 23, 26, 27, 30, 31 } },
4567   // VPKH
4568   { SystemZISD::PACK, 1,
4569     { 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31 } },
4570   // VPDI V1, V2, 4  (low half of V1, high half of V2)
4571   { SystemZISD::PERMUTE_DWORDS, 4,
4572     { 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23 } },
4573   // VPDI V1, V2, 1  (high half of V1, low half of V2)
4574   { SystemZISD::PERMUTE_DWORDS, 1,
4575     { 0, 1, 2, 3, 4, 5, 6, 7, 24, 25, 26, 27, 28, 29, 30, 31 } }
4576 };
4577 
4578 // Called after matching a vector shuffle against a particular pattern.
4579 // Both the original shuffle and the pattern have two vector operands.
4580 // OpNos[0] is the operand of the original shuffle that should be used for
4581 // operand 0 of the pattern, or -1 if operand 0 of the pattern can be anything.
4582 // OpNos[1] is the same for operand 1 of the pattern.  Resolve these -1s and
4583 // set OpNo0 and OpNo1 to the shuffle operands that should actually be used
4584 // for operands 0 and 1 of the pattern.
4585 static bool chooseShuffleOpNos(int *OpNos, unsigned &OpNo0, unsigned &OpNo1) {
4586   if (OpNos[0] < 0) {
4587     if (OpNos[1] < 0)
4588       return false;
4589     OpNo0 = OpNo1 = OpNos[1];
4590   } else if (OpNos[1] < 0) {
4591     OpNo0 = OpNo1 = OpNos[0];
4592   } else {
4593     OpNo0 = OpNos[0];
4594     OpNo1 = OpNos[1];
4595   }
4596   return true;
4597 }
4598 
4599 // Bytes is a VPERM-like permute vector, except that -1 is used for
4600 // undefined bytes.  Return true if the VPERM can be implemented using P.
4601 // When returning true set OpNo0 to the VPERM operand that should be
4602 // used for operand 0 of P and likewise OpNo1 for operand 1 of P.
4603 //
4604 // For example, if swapping the VPERM operands allows P to match, OpNo0
4605 // will be 1 and OpNo1 will be 0.  If instead Bytes only refers to one
4606 // operand, but rewriting it to use two duplicated operands allows it to
4607 // match P, then OpNo0 and OpNo1 will be the same.
4608 static bool matchPermute(const SmallVectorImpl<int> &Bytes, const Permute &P,
4609                          unsigned &OpNo0, unsigned &OpNo1) {
4610   int OpNos[] = { -1, -1 };
4611   for (unsigned I = 0; I < SystemZ::VectorBytes; ++I) {
4612     int Elt = Bytes[I];
4613     if (Elt >= 0) {
4614       // Make sure that the two permute vectors use the same suboperand
4615       // byte number.  Only the operand numbers (the high bits) are
4616       // allowed to differ.
4617       if ((Elt ^ P.Bytes[I]) & (SystemZ::VectorBytes - 1))
4618         return false;
4619       int ModelOpNo = P.Bytes[I] / SystemZ::VectorBytes;
4620       int RealOpNo = unsigned(Elt) / SystemZ::VectorBytes;
4621       // Make sure that the operand mappings are consistent with previous
4622       // elements.
4623       if (OpNos[ModelOpNo] == 1 - RealOpNo)
4624         return false;
4625       OpNos[ModelOpNo] = RealOpNo;
4626     }
4627   }
4628   return chooseShuffleOpNos(OpNos, OpNo0, OpNo1);
4629 }
4630 
4631 // As above, but search for a matching permute.
4632 static const Permute *matchPermute(const SmallVectorImpl<int> &Bytes,
4633                                    unsigned &OpNo0, unsigned &OpNo1) {
4634   for (auto &P : PermuteForms)
4635     if (matchPermute(Bytes, P, OpNo0, OpNo1))
4636       return &P;
4637   return nullptr;
4638 }
4639 
4640 // Bytes is a VPERM-like permute vector, except that -1 is used for
4641 // undefined bytes.  This permute is an operand of an outer permute.
4642 // See whether redistributing the -1 bytes gives a shuffle that can be
4643 // implemented using P.  If so, set Transform to a VPERM-like permute vector
4644 // that, when applied to the result of P, gives the original permute in Bytes.
4645 static bool matchDoublePermute(const SmallVectorImpl<int> &Bytes,
4646                                const Permute &P,
4647                                SmallVectorImpl<int> &Transform) {
4648   unsigned To = 0;
4649   for (unsigned From = 0; From < SystemZ::VectorBytes; ++From) {
4650     int Elt = Bytes[From];
4651     if (Elt < 0)
4652       // Byte number From of the result is undefined.
4653       Transform[From] = -1;
4654     else {
4655       while (P.Bytes[To] != Elt) {
4656         To += 1;
4657         if (To == SystemZ::VectorBytes)
4658           return false;
4659       }
4660       Transform[From] = To;
4661     }
4662   }
4663   return true;
4664 }
4665 
4666 // As above, but search for a matching permute.
4667 static const Permute *matchDoublePermute(const SmallVectorImpl<int> &Bytes,
4668                                          SmallVectorImpl<int> &Transform) {
4669   for (auto &P : PermuteForms)
4670     if (matchDoublePermute(Bytes, P, Transform))
4671       return &P;
4672   return nullptr;
4673 }
4674 
4675 // Convert the mask of the given shuffle op into a byte-level mask,
4676 // as if it had type vNi8.
4677 static bool getVPermMask(SDValue ShuffleOp,
4678                          SmallVectorImpl<int> &Bytes) {
4679   EVT VT = ShuffleOp.getValueType();
4680   unsigned NumElements = VT.getVectorNumElements();
4681   unsigned BytesPerElement = VT.getVectorElementType().getStoreSize();
4682 
4683   if (auto *VSN = dyn_cast<ShuffleVectorSDNode>(ShuffleOp)) {
4684     Bytes.resize(NumElements * BytesPerElement, -1);
4685     for (unsigned I = 0; I < NumElements; ++I) {
4686       int Index = VSN->getMaskElt(I);
4687       if (Index >= 0)
4688         for (unsigned J = 0; J < BytesPerElement; ++J)
4689           Bytes[I * BytesPerElement + J] = Index * BytesPerElement + J;
4690     }
4691     return true;
4692   }
4693   if (SystemZISD::SPLAT == ShuffleOp.getOpcode() &&
4694       isa<ConstantSDNode>(ShuffleOp.getOperand(1))) {
4695     unsigned Index = ShuffleOp.getConstantOperandVal(1);
4696     Bytes.resize(NumElements * BytesPerElement, -1);
4697     for (unsigned I = 0; I < NumElements; ++I)
4698       for (unsigned J = 0; J < BytesPerElement; ++J)
4699         Bytes[I * BytesPerElement + J] = Index * BytesPerElement + J;
4700     return true;
4701   }
4702   return false;
4703 }
4704 
4705 // Bytes is a VPERM-like permute vector, except that -1 is used for
4706 // undefined bytes.  See whether bytes [Start, Start + BytesPerElement) of
4707 // the result come from a contiguous sequence of bytes from one input.
4708 // Set Base to the selector for the first byte if so.
4709 static bool getShuffleInput(const SmallVectorImpl<int> &Bytes, unsigned Start,
4710                             unsigned BytesPerElement, int &Base) {
4711   Base = -1;
4712   for (unsigned I = 0; I < BytesPerElement; ++I) {
4713     if (Bytes[Start + I] >= 0) {
4714       unsigned Elem = Bytes[Start + I];
4715       if (Base < 0) {
4716         Base = Elem - I;
4717         // Make sure the bytes would come from one input operand.
4718         if (unsigned(Base) % Bytes.size() + BytesPerElement > Bytes.size())
4719           return false;
4720       } else if (unsigned(Base) != Elem - I)
4721         return false;
4722     }
4723   }
4724   return true;
4725 }
4726 
4727 // Bytes is a VPERM-like permute vector, except that -1 is used for
4728 // undefined bytes.  Return true if it can be performed using VSLDB.
4729 // When returning true, set StartIndex to the shift amount and OpNo0
4730 // and OpNo1 to the VPERM operands that should be used as the first
4731 // and second shift operand respectively.
4732 static bool isShlDoublePermute(const SmallVectorImpl<int> &Bytes,
4733                                unsigned &StartIndex, unsigned &OpNo0,
4734                                unsigned &OpNo1) {
4735   int OpNos[] = { -1, -1 };
4736   int Shift = -1;
4737   for (unsigned I = 0; I < 16; ++I) {
4738     int Index = Bytes[I];
4739     if (Index >= 0) {
4740       int ExpectedShift = (Index - I) % SystemZ::VectorBytes;
4741       int ModelOpNo = unsigned(ExpectedShift + I) / SystemZ::VectorBytes;
4742       int RealOpNo = unsigned(Index) / SystemZ::VectorBytes;
4743       if (Shift < 0)
4744         Shift = ExpectedShift;
4745       else if (Shift != ExpectedShift)
4746         return false;
4747       // Make sure that the operand mappings are consistent with previous
4748       // elements.
4749       if (OpNos[ModelOpNo] == 1 - RealOpNo)
4750         return false;
4751       OpNos[ModelOpNo] = RealOpNo;
4752     }
4753   }
4754   StartIndex = Shift;
4755   return chooseShuffleOpNos(OpNos, OpNo0, OpNo1);
4756 }
4757 
4758 // Create a node that performs P on operands Op0 and Op1, casting the
4759 // operands to the appropriate type.  The type of the result is determined by P.
4760 static SDValue getPermuteNode(SelectionDAG &DAG, const SDLoc &DL,
4761                               const Permute &P, SDValue Op0, SDValue Op1) {
4762   // VPDI (PERMUTE_DWORDS) always operates on v2i64s.  The input
4763   // elements of a PACK are twice as wide as the outputs.
4764   unsigned InBytes = (P.Opcode == SystemZISD::PERMUTE_DWORDS ? 8 :
4765                       P.Opcode == SystemZISD::PACK ? P.Operand * 2 :
4766                       P.Operand);
4767   // Cast both operands to the appropriate type.
4768   MVT InVT = MVT::getVectorVT(MVT::getIntegerVT(InBytes * 8),
4769                               SystemZ::VectorBytes / InBytes);
4770   Op0 = DAG.getNode(ISD::BITCAST, DL, InVT, Op0);
4771   Op1 = DAG.getNode(ISD::BITCAST, DL, InVT, Op1);
4772   SDValue Op;
4773   if (P.Opcode == SystemZISD::PERMUTE_DWORDS) {
4774     SDValue Op2 = DAG.getTargetConstant(P.Operand, DL, MVT::i32);
4775     Op = DAG.getNode(SystemZISD::PERMUTE_DWORDS, DL, InVT, Op0, Op1, Op2);
4776   } else if (P.Opcode == SystemZISD::PACK) {
4777     MVT OutVT = MVT::getVectorVT(MVT::getIntegerVT(P.Operand * 8),
4778                                  SystemZ::VectorBytes / P.Operand);
4779     Op = DAG.getNode(SystemZISD::PACK, DL, OutVT, Op0, Op1);
4780   } else {
4781     Op = DAG.getNode(P.Opcode, DL, InVT, Op0, Op1);
4782   }
4783   return Op;
4784 }
4785 
4786 static bool isZeroVector(SDValue N) {
4787   if (N->getOpcode() == ISD::BITCAST)
4788     N = N->getOperand(0);
4789   if (N->getOpcode() == ISD::SPLAT_VECTOR)
4790     if (auto *Op = dyn_cast<ConstantSDNode>(N->getOperand(0)))
4791       return Op->getZExtValue() == 0;
4792   return ISD::isBuildVectorAllZeros(N.getNode());
4793 }
4794 
4795 // Return the index of the zero/undef vector, or UINT32_MAX if not found.
4796 static uint32_t findZeroVectorIdx(SDValue *Ops, unsigned Num) {
4797   for (unsigned I = 0; I < Num ; I++)
4798     if (isZeroVector(Ops[I]))
4799       return I;
4800   return UINT32_MAX;
4801 }
4802 
4803 // Bytes is a VPERM-like permute vector, except that -1 is used for
4804 // undefined bytes.  Implement it on operands Ops[0] and Ops[1] using
4805 // VSLDB or VPERM.
4806 static SDValue getGeneralPermuteNode(SelectionDAG &DAG, const SDLoc &DL,
4807                                      SDValue *Ops,
4808                                      const SmallVectorImpl<int> &Bytes) {
4809   for (unsigned I = 0; I < 2; ++I)
4810     Ops[I] = DAG.getNode(ISD::BITCAST, DL, MVT::v16i8, Ops[I]);
4811 
4812   // First see whether VSLDB can be used.
4813   unsigned StartIndex, OpNo0, OpNo1;
4814   if (isShlDoublePermute(Bytes, StartIndex, OpNo0, OpNo1))
4815     return DAG.getNode(SystemZISD::SHL_DOUBLE, DL, MVT::v16i8, Ops[OpNo0],
4816                        Ops[OpNo1],
4817                        DAG.getTargetConstant(StartIndex, DL, MVT::i32));
4818 
4819   // Fall back on VPERM.  Construct an SDNode for the permute vector.  Try to
4820   // eliminate a zero vector by reusing any zero index in the permute vector.
4821   unsigned ZeroVecIdx = findZeroVectorIdx(&Ops[0], 2);
4822   if (ZeroVecIdx != UINT32_MAX) {
4823     bool MaskFirst = true;
4824     int ZeroIdx = -1;
4825     for (unsigned I = 0; I < SystemZ::VectorBytes; ++I) {
4826       unsigned OpNo = unsigned(Bytes[I]) / SystemZ::VectorBytes;
4827       unsigned Byte = unsigned(Bytes[I]) % SystemZ::VectorBytes;
4828       if (OpNo == ZeroVecIdx && I == 0) {
4829         // If the first byte is zero, use mask as first operand.
4830         ZeroIdx = 0;
4831         break;
4832       }
4833       if (OpNo != ZeroVecIdx && Byte == 0) {
4834         // If mask contains a zero, use it by placing that vector first.
4835         ZeroIdx = I + SystemZ::VectorBytes;
4836         MaskFirst = false;
4837         break;
4838       }
4839     }
4840     if (ZeroIdx != -1) {
4841       SDValue IndexNodes[SystemZ::VectorBytes];
4842       for (unsigned I = 0; I < SystemZ::VectorBytes; ++I) {
4843         if (Bytes[I] >= 0) {
4844           unsigned OpNo = unsigned(Bytes[I]) / SystemZ::VectorBytes;
4845           unsigned Byte = unsigned(Bytes[I]) % SystemZ::VectorBytes;
4846           if (OpNo == ZeroVecIdx)
4847             IndexNodes[I] = DAG.getConstant(ZeroIdx, DL, MVT::i32);
4848           else {
4849             unsigned BIdx = MaskFirst ? Byte + SystemZ::VectorBytes : Byte;
4850             IndexNodes[I] = DAG.getConstant(BIdx, DL, MVT::i32);
4851           }
4852         } else
4853           IndexNodes[I] = DAG.getUNDEF(MVT::i32);
4854       }
4855       SDValue Mask = DAG.getBuildVector(MVT::v16i8, DL, IndexNodes);
4856       SDValue Src = ZeroVecIdx == 0 ? Ops[1] : Ops[0];
4857       if (MaskFirst)
4858         return DAG.getNode(SystemZISD::PERMUTE, DL, MVT::v16i8, Mask, Src,
4859                            Mask);
4860       else
4861         return DAG.getNode(SystemZISD::PERMUTE, DL, MVT::v16i8, Src, Mask,
4862                            Mask);
4863     }
4864   }
4865 
4866   SDValue IndexNodes[SystemZ::VectorBytes];
4867   for (unsigned I = 0; I < SystemZ::VectorBytes; ++I)
4868     if (Bytes[I] >= 0)
4869       IndexNodes[I] = DAG.getConstant(Bytes[I], DL, MVT::i32);
4870     else
4871       IndexNodes[I] = DAG.getUNDEF(MVT::i32);
4872   SDValue Op2 = DAG.getBuildVector(MVT::v16i8, DL, IndexNodes);
4873   return DAG.getNode(SystemZISD::PERMUTE, DL, MVT::v16i8, Ops[0],
4874                      (!Ops[1].isUndef() ? Ops[1] : Ops[0]), Op2);
4875 }
4876 
4877 namespace {
4878 // Describes a general N-operand vector shuffle.
4879 struct GeneralShuffle {
4880   GeneralShuffle(EVT vt) : VT(vt), UnpackFromEltSize(UINT_MAX) {}
4881   void addUndef();
4882   bool add(SDValue, unsigned);
4883   SDValue getNode(SelectionDAG &, const SDLoc &);
4884   void tryPrepareForUnpack();
4885   bool unpackWasPrepared() { return UnpackFromEltSize <= 4; }
4886   SDValue insertUnpackIfPrepared(SelectionDAG &DAG, const SDLoc &DL, SDValue Op);
4887 
4888   // The operands of the shuffle.
4889   SmallVector<SDValue, SystemZ::VectorBytes> Ops;
4890 
4891   // Index I is -1 if byte I of the result is undefined.  Otherwise the
4892   // result comes from byte Bytes[I] % SystemZ::VectorBytes of operand
4893   // Bytes[I] / SystemZ::VectorBytes.
4894   SmallVector<int, SystemZ::VectorBytes> Bytes;
4895 
4896   // The type of the shuffle result.
4897   EVT VT;
4898 
4899   // Holds a value of 1, 2 or 4 if a final unpack has been prepared for.
4900   unsigned UnpackFromEltSize;
4901 };
4902 }
4903 
4904 // Add an extra undefined element to the shuffle.
4905 void GeneralShuffle::addUndef() {
4906   unsigned BytesPerElement = VT.getVectorElementType().getStoreSize();
4907   for (unsigned I = 0; I < BytesPerElement; ++I)
4908     Bytes.push_back(-1);
4909 }
4910 
4911 // Add an extra element to the shuffle, taking it from element Elem of Op.
4912 // A null Op indicates a vector input whose value will be calculated later;
4913 // there is at most one such input per shuffle and it always has the same
4914 // type as the result. Aborts and returns false if the source vector elements
4915 // of an EXTRACT_VECTOR_ELT are smaller than the destination elements. Per
4916 // LLVM they become implicitly extended, but this is rare and not optimized.
4917 bool GeneralShuffle::add(SDValue Op, unsigned Elem) {
4918   unsigned BytesPerElement = VT.getVectorElementType().getStoreSize();
4919 
4920   // The source vector can have wider elements than the result,
4921   // either through an explicit TRUNCATE or because of type legalization.
4922   // We want the least significant part.
4923   EVT FromVT = Op.getNode() ? Op.getValueType() : VT;
4924   unsigned FromBytesPerElement = FromVT.getVectorElementType().getStoreSize();
4925 
4926   // Return false if the source elements are smaller than their destination
4927   // elements.
4928   if (FromBytesPerElement < BytesPerElement)
4929     return false;
4930 
4931   unsigned Byte = ((Elem * FromBytesPerElement) % SystemZ::VectorBytes +
4932                    (FromBytesPerElement - BytesPerElement));
4933 
4934   // Look through things like shuffles and bitcasts.
4935   while (Op.getNode()) {
4936     if (Op.getOpcode() == ISD::BITCAST)
4937       Op = Op.getOperand(0);
4938     else if (Op.getOpcode() == ISD::VECTOR_SHUFFLE && Op.hasOneUse()) {
4939       // See whether the bytes we need come from a contiguous part of one
4940       // operand.
4941       SmallVector<int, SystemZ::VectorBytes> OpBytes;
4942       if (!getVPermMask(Op, OpBytes))
4943         break;
4944       int NewByte;
4945       if (!getShuffleInput(OpBytes, Byte, BytesPerElement, NewByte))
4946         break;
4947       if (NewByte < 0) {
4948         addUndef();
4949         return true;
4950       }
4951       Op = Op.getOperand(unsigned(NewByte) / SystemZ::VectorBytes);
4952       Byte = unsigned(NewByte) % SystemZ::VectorBytes;
4953     } else if (Op.isUndef()) {
4954       addUndef();
4955       return true;
4956     } else
4957       break;
4958   }
4959 
4960   // Make sure that the source of the extraction is in Ops.
4961   unsigned OpNo = 0;
4962   for (; OpNo < Ops.size(); ++OpNo)
4963     if (Ops[OpNo] == Op)
4964       break;
4965   if (OpNo == Ops.size())
4966     Ops.push_back(Op);
4967 
4968   // Add the element to Bytes.
4969   unsigned Base = OpNo * SystemZ::VectorBytes + Byte;
4970   for (unsigned I = 0; I < BytesPerElement; ++I)
4971     Bytes.push_back(Base + I);
4972 
4973   return true;
4974 }
4975 
4976 // Return SDNodes for the completed shuffle.
4977 SDValue GeneralShuffle::getNode(SelectionDAG &DAG, const SDLoc &DL) {
4978   assert(Bytes.size() == SystemZ::VectorBytes && "Incomplete vector");
4979 
4980   if (Ops.size() == 0)
4981     return DAG.getUNDEF(VT);
4982 
4983   // Use a single unpack if possible as the last operation.
4984   tryPrepareForUnpack();
4985 
4986   // Make sure that there are at least two shuffle operands.
4987   if (Ops.size() == 1)
4988     Ops.push_back(DAG.getUNDEF(MVT::v16i8));
4989 
4990   // Create a tree of shuffles, deferring root node until after the loop.
4991   // Try to redistribute the undefined elements of non-root nodes so that
4992   // the non-root shuffles match something like a pack or merge, then adjust
4993   // the parent node's permute vector to compensate for the new order.
4994   // Among other things, this copes with vectors like <2 x i16> that were
4995   // padded with undefined elements during type legalization.
4996   //
4997   // In the best case this redistribution will lead to the whole tree
4998   // using packs and merges.  It should rarely be a loss in other cases.
4999   unsigned Stride = 1;
5000   for (; Stride * 2 < Ops.size(); Stride *= 2) {
5001     for (unsigned I = 0; I < Ops.size() - Stride; I += Stride * 2) {
5002       SDValue SubOps[] = { Ops[I], Ops[I + Stride] };
5003 
5004       // Create a mask for just these two operands.
5005       SmallVector<int, SystemZ::VectorBytes> NewBytes(SystemZ::VectorBytes);
5006       for (unsigned J = 0; J < SystemZ::VectorBytes; ++J) {
5007         unsigned OpNo = unsigned(Bytes[J]) / SystemZ::VectorBytes;
5008         unsigned Byte = unsigned(Bytes[J]) % SystemZ::VectorBytes;
5009         if (OpNo == I)
5010           NewBytes[J] = Byte;
5011         else if (OpNo == I + Stride)
5012           NewBytes[J] = SystemZ::VectorBytes + Byte;
5013         else
5014           NewBytes[J] = -1;
5015       }
5016       // See if it would be better to reorganize NewMask to avoid using VPERM.
5017       SmallVector<int, SystemZ::VectorBytes> NewBytesMap(SystemZ::VectorBytes);
5018       if (const Permute *P = matchDoublePermute(NewBytes, NewBytesMap)) {
5019         Ops[I] = getPermuteNode(DAG, DL, *P, SubOps[0], SubOps[1]);
5020         // Applying NewBytesMap to Ops[I] gets back to NewBytes.
5021         for (unsigned J = 0; J < SystemZ::VectorBytes; ++J) {
5022           if (NewBytes[J] >= 0) {
5023             assert(unsigned(NewBytesMap[J]) < SystemZ::VectorBytes &&
5024                    "Invalid double permute");
5025             Bytes[J] = I * SystemZ::VectorBytes + NewBytesMap[J];
5026           } else
5027             assert(NewBytesMap[J] < 0 && "Invalid double permute");
5028         }
5029       } else {
5030         // Just use NewBytes on the operands.
5031         Ops[I] = getGeneralPermuteNode(DAG, DL, SubOps, NewBytes);
5032         for (unsigned J = 0; J < SystemZ::VectorBytes; ++J)
5033           if (NewBytes[J] >= 0)
5034             Bytes[J] = I * SystemZ::VectorBytes + J;
5035       }
5036     }
5037   }
5038 
5039   // Now we just have 2 inputs.  Put the second operand in Ops[1].
5040   if (Stride > 1) {
5041     Ops[1] = Ops[Stride];
5042     for (unsigned I = 0; I < SystemZ::VectorBytes; ++I)
5043       if (Bytes[I] >= int(SystemZ::VectorBytes))
5044         Bytes[I] -= (Stride - 1) * SystemZ::VectorBytes;
5045   }
5046 
5047   // Look for an instruction that can do the permute without resorting
5048   // to VPERM.
5049   unsigned OpNo0, OpNo1;
5050   SDValue Op;
5051   if (unpackWasPrepared() && Ops[1].isUndef())
5052     Op = Ops[0];
5053   else if (const Permute *P = matchPermute(Bytes, OpNo0, OpNo1))
5054     Op = getPermuteNode(DAG, DL, *P, Ops[OpNo0], Ops[OpNo1]);
5055   else
5056     Op = getGeneralPermuteNode(DAG, DL, &Ops[0], Bytes);
5057 
5058   Op = insertUnpackIfPrepared(DAG, DL, Op);
5059 
5060   return DAG.getNode(ISD::BITCAST, DL, VT, Op);
5061 }
5062 
5063 #ifndef NDEBUG
5064 static void dumpBytes(const SmallVectorImpl<int> &Bytes, std::string Msg) {
5065   dbgs() << Msg.c_str() << " { ";
5066   for (unsigned i = 0; i < Bytes.size(); i++)
5067     dbgs() << Bytes[i] << " ";
5068   dbgs() << "}\n";
5069 }
5070 #endif
5071 
5072 // If the Bytes vector matches an unpack operation, prepare to do the unpack
5073 // after all else by removing the zero vector and the effect of the unpack on
5074 // Bytes.
5075 void GeneralShuffle::tryPrepareForUnpack() {
5076   uint32_t ZeroVecOpNo = findZeroVectorIdx(&Ops[0], Ops.size());
5077   if (ZeroVecOpNo == UINT32_MAX || Ops.size() == 1)
5078     return;
5079 
5080   // Only do this if removing the zero vector reduces the depth, otherwise
5081   // the critical path will increase with the final unpack.
5082   if (Ops.size() > 2 &&
5083       Log2_32_Ceil(Ops.size()) == Log2_32_Ceil(Ops.size() - 1))
5084     return;
5085 
5086   // Find an unpack that would allow removing the zero vector from Ops.
5087   UnpackFromEltSize = 1;
5088   for (; UnpackFromEltSize <= 4; UnpackFromEltSize *= 2) {
5089     bool MatchUnpack = true;
5090     SmallVector<int, SystemZ::VectorBytes> SrcBytes;
5091     for (unsigned Elt = 0; Elt < SystemZ::VectorBytes; Elt++) {
5092       unsigned ToEltSize = UnpackFromEltSize * 2;
5093       bool IsZextByte = (Elt % ToEltSize) < UnpackFromEltSize;
5094       if (!IsZextByte)
5095         SrcBytes.push_back(Bytes[Elt]);
5096       if (Bytes[Elt] != -1) {
5097         unsigned OpNo = unsigned(Bytes[Elt]) / SystemZ::VectorBytes;
5098         if (IsZextByte != (OpNo == ZeroVecOpNo)) {
5099           MatchUnpack = false;
5100           break;
5101         }
5102       }
5103     }
5104     if (MatchUnpack) {
5105       if (Ops.size() == 2) {
5106         // Don't use unpack if a single source operand needs rearrangement.
5107         for (unsigned i = 0; i < SystemZ::VectorBytes / 2; i++)
5108           if (SrcBytes[i] != -1 && SrcBytes[i] % 16 != int(i)) {
5109             UnpackFromEltSize = UINT_MAX;
5110             return;
5111           }
5112       }
5113       break;
5114     }
5115   }
5116   if (UnpackFromEltSize > 4)
5117     return;
5118 
5119   LLVM_DEBUG(dbgs() << "Preparing for final unpack of element size "
5120              << UnpackFromEltSize << ". Zero vector is Op#" << ZeroVecOpNo
5121              << ".\n";
5122              dumpBytes(Bytes, "Original Bytes vector:"););
5123 
5124   // Apply the unpack in reverse to the Bytes array.
5125   unsigned B = 0;
5126   for (unsigned Elt = 0; Elt < SystemZ::VectorBytes;) {
5127     Elt += UnpackFromEltSize;
5128     for (unsigned i = 0; i < UnpackFromEltSize; i++, Elt++, B++)
5129       Bytes[B] = Bytes[Elt];
5130   }
5131   while (B < SystemZ::VectorBytes)
5132     Bytes[B++] = -1;
5133 
5134   // Remove the zero vector from Ops
5135   Ops.erase(&Ops[ZeroVecOpNo]);
5136   for (unsigned I = 0; I < SystemZ::VectorBytes; ++I)
5137     if (Bytes[I] >= 0) {
5138       unsigned OpNo = unsigned(Bytes[I]) / SystemZ::VectorBytes;
5139       if (OpNo > ZeroVecOpNo)
5140         Bytes[I] -= SystemZ::VectorBytes;
5141     }
5142 
5143   LLVM_DEBUG(dumpBytes(Bytes, "Resulting Bytes vector, zero vector removed:");
5144              dbgs() << "\n";);
5145 }
5146 
5147 SDValue GeneralShuffle::insertUnpackIfPrepared(SelectionDAG &DAG,
5148                                                const SDLoc &DL,
5149                                                SDValue Op) {
5150   if (!unpackWasPrepared())
5151     return Op;
5152   unsigned InBits = UnpackFromEltSize * 8;
5153   EVT InVT = MVT::getVectorVT(MVT::getIntegerVT(InBits),
5154                                 SystemZ::VectorBits / InBits);
5155   SDValue PackedOp = DAG.getNode(ISD::BITCAST, DL, InVT, Op);
5156   unsigned OutBits = InBits * 2;
5157   EVT OutVT = MVT::getVectorVT(MVT::getIntegerVT(OutBits),
5158                                SystemZ::VectorBits / OutBits);
5159   return DAG.getNode(SystemZISD::UNPACKL_HIGH, DL, OutVT, PackedOp);
5160 }
5161 
5162 // Return true if the given BUILD_VECTOR is a scalar-to-vector conversion.
5163 static bool isScalarToVector(SDValue Op) {
5164   for (unsigned I = 1, E = Op.getNumOperands(); I != E; ++I)
5165     if (!Op.getOperand(I).isUndef())
5166       return false;
5167   return true;
5168 }
5169 
5170 // Return a vector of type VT that contains Value in the first element.
5171 // The other elements don't matter.
5172 static SDValue buildScalarToVector(SelectionDAG &DAG, const SDLoc &DL, EVT VT,
5173                                    SDValue Value) {
5174   // If we have a constant, replicate it to all elements and let the
5175   // BUILD_VECTOR lowering take care of it.
5176   if (Value.getOpcode() == ISD::Constant ||
5177       Value.getOpcode() == ISD::ConstantFP) {
5178     SmallVector<SDValue, 16> Ops(VT.getVectorNumElements(), Value);
5179     return DAG.getBuildVector(VT, DL, Ops);
5180   }
5181   if (Value.isUndef())
5182     return DAG.getUNDEF(VT);
5183   return DAG.getNode(ISD::SCALAR_TO_VECTOR, DL, VT, Value);
5184 }
5185 
5186 // Return a vector of type VT in which Op0 is in element 0 and Op1 is in
5187 // element 1.  Used for cases in which replication is cheap.
5188 static SDValue buildMergeScalars(SelectionDAG &DAG, const SDLoc &DL, EVT VT,
5189                                  SDValue Op0, SDValue Op1) {
5190   if (Op0.isUndef()) {
5191     if (Op1.isUndef())
5192       return DAG.getUNDEF(VT);
5193     return DAG.getNode(SystemZISD::REPLICATE, DL, VT, Op1);
5194   }
5195   if (Op1.isUndef())
5196     return DAG.getNode(SystemZISD::REPLICATE, DL, VT, Op0);
5197   return DAG.getNode(SystemZISD::MERGE_HIGH, DL, VT,
5198                      buildScalarToVector(DAG, DL, VT, Op0),
5199                      buildScalarToVector(DAG, DL, VT, Op1));
5200 }
5201 
5202 // Extend GPR scalars Op0 and Op1 to doublewords and return a v2i64
5203 // vector for them.
5204 static SDValue joinDwords(SelectionDAG &DAG, const SDLoc &DL, SDValue Op0,
5205                           SDValue Op1) {
5206   if (Op0.isUndef() && Op1.isUndef())
5207     return DAG.getUNDEF(MVT::v2i64);
5208   // If one of the two inputs is undefined then replicate the other one,
5209   // in order to avoid using another register unnecessarily.
5210   if (Op0.isUndef())
5211     Op0 = Op1 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op1);
5212   else if (Op1.isUndef())
5213     Op0 = Op1 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op0);
5214   else {
5215     Op0 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op0);
5216     Op1 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op1);
5217   }
5218   return DAG.getNode(SystemZISD::JOIN_DWORDS, DL, MVT::v2i64, Op0, Op1);
5219 }
5220 
5221 // If a BUILD_VECTOR contains some EXTRACT_VECTOR_ELTs, it's usually
5222 // better to use VECTOR_SHUFFLEs on them, only using BUILD_VECTOR for
5223 // the non-EXTRACT_VECTOR_ELT elements.  See if the given BUILD_VECTOR
5224 // would benefit from this representation and return it if so.
5225 static SDValue tryBuildVectorShuffle(SelectionDAG &DAG,
5226                                      BuildVectorSDNode *BVN) {
5227   EVT VT = BVN->getValueType(0);
5228   unsigned NumElements = VT.getVectorNumElements();
5229 
5230   // Represent the BUILD_VECTOR as an N-operand VECTOR_SHUFFLE-like operation
5231   // on byte vectors.  If there are non-EXTRACT_VECTOR_ELT elements that still
5232   // need a BUILD_VECTOR, add an additional placeholder operand for that
5233   // BUILD_VECTOR and store its operands in ResidueOps.
5234   GeneralShuffle GS(VT);
5235   SmallVector<SDValue, SystemZ::VectorBytes> ResidueOps;
5236   bool FoundOne = false;
5237   for (unsigned I = 0; I < NumElements; ++I) {
5238     SDValue Op = BVN->getOperand(I);
5239     if (Op.getOpcode() == ISD::TRUNCATE)
5240       Op = Op.getOperand(0);
5241     if (Op.getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
5242         Op.getOperand(1).getOpcode() == ISD::Constant) {
5243       unsigned Elem = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
5244       if (!GS.add(Op.getOperand(0), Elem))
5245         return SDValue();
5246       FoundOne = true;
5247     } else if (Op.isUndef()) {
5248       GS.addUndef();
5249     } else {
5250       if (!GS.add(SDValue(), ResidueOps.size()))
5251         return SDValue();
5252       ResidueOps.push_back(BVN->getOperand(I));
5253     }
5254   }
5255 
5256   // Nothing to do if there are no EXTRACT_VECTOR_ELTs.
5257   if (!FoundOne)
5258     return SDValue();
5259 
5260   // Create the BUILD_VECTOR for the remaining elements, if any.
5261   if (!ResidueOps.empty()) {
5262     while (ResidueOps.size() < NumElements)
5263       ResidueOps.push_back(DAG.getUNDEF(ResidueOps[0].getValueType()));
5264     for (auto &Op : GS.Ops) {
5265       if (!Op.getNode()) {
5266         Op = DAG.getBuildVector(VT, SDLoc(BVN), ResidueOps);
5267         break;
5268       }
5269     }
5270   }
5271   return GS.getNode(DAG, SDLoc(BVN));
5272 }
5273 
5274 bool SystemZTargetLowering::isVectorElementLoad(SDValue Op) const {
5275   if (Op.getOpcode() == ISD::LOAD && cast<LoadSDNode>(Op)->isUnindexed())
5276     return true;
5277   if (Subtarget.hasVectorEnhancements2() && Op.getOpcode() == SystemZISD::LRV)
5278     return true;
5279   return false;
5280 }
5281 
5282 // Combine GPR scalar values Elems into a vector of type VT.
5283 SDValue
5284 SystemZTargetLowering::buildVector(SelectionDAG &DAG, const SDLoc &DL, EVT VT,
5285                                    SmallVectorImpl<SDValue> &Elems) const {
5286   // See whether there is a single replicated value.
5287   SDValue Single;
5288   unsigned int NumElements = Elems.size();
5289   unsigned int Count = 0;
5290   for (auto Elem : Elems) {
5291     if (!Elem.isUndef()) {
5292       if (!Single.getNode())
5293         Single = Elem;
5294       else if (Elem != Single) {
5295         Single = SDValue();
5296         break;
5297       }
5298       Count += 1;
5299     }
5300   }
5301   // There are three cases here:
5302   //
5303   // - if the only defined element is a loaded one, the best sequence
5304   //   is a replicating load.
5305   //
5306   // - otherwise, if the only defined element is an i64 value, we will
5307   //   end up with the same VLVGP sequence regardless of whether we short-cut
5308   //   for replication or fall through to the later code.
5309   //
5310   // - otherwise, if the only defined element is an i32 or smaller value,
5311   //   we would need 2 instructions to replicate it: VLVGP followed by VREPx.
5312   //   This is only a win if the single defined element is used more than once.
5313   //   In other cases we're better off using a single VLVGx.
5314   if (Single.getNode() && (Count > 1 || isVectorElementLoad(Single)))
5315     return DAG.getNode(SystemZISD::REPLICATE, DL, VT, Single);
5316 
5317   // If all elements are loads, use VLREP/VLEs (below).
5318   bool AllLoads = true;
5319   for (auto Elem : Elems)
5320     if (!isVectorElementLoad(Elem)) {
5321       AllLoads = false;
5322       break;
5323     }
5324 
5325   // The best way of building a v2i64 from two i64s is to use VLVGP.
5326   if (VT == MVT::v2i64 && !AllLoads)
5327     return joinDwords(DAG, DL, Elems[0], Elems[1]);
5328 
5329   // Use a 64-bit merge high to combine two doubles.
5330   if (VT == MVT::v2f64 && !AllLoads)
5331     return buildMergeScalars(DAG, DL, VT, Elems[0], Elems[1]);
5332 
5333   // Build v4f32 values directly from the FPRs:
5334   //
5335   //   <Axxx> <Bxxx> <Cxxxx> <Dxxx>
5336   //         V              V         VMRHF
5337   //      <ABxx>         <CDxx>
5338   //                V                 VMRHG
5339   //              <ABCD>
5340   if (VT == MVT::v4f32 && !AllLoads) {
5341     SDValue Op01 = buildMergeScalars(DAG, DL, VT, Elems[0], Elems[1]);
5342     SDValue Op23 = buildMergeScalars(DAG, DL, VT, Elems[2], Elems[3]);
5343     // Avoid unnecessary undefs by reusing the other operand.
5344     if (Op01.isUndef())
5345       Op01 = Op23;
5346     else if (Op23.isUndef())
5347       Op23 = Op01;
5348     // Merging identical replications is a no-op.
5349     if (Op01.getOpcode() == SystemZISD::REPLICATE && Op01 == Op23)
5350       return Op01;
5351     Op01 = DAG.getNode(ISD::BITCAST, DL, MVT::v2i64, Op01);
5352     Op23 = DAG.getNode(ISD::BITCAST, DL, MVT::v2i64, Op23);
5353     SDValue Op = DAG.getNode(SystemZISD::MERGE_HIGH,
5354                              DL, MVT::v2i64, Op01, Op23);
5355     return DAG.getNode(ISD::BITCAST, DL, VT, Op);
5356   }
5357 
5358   // Collect the constant terms.
5359   SmallVector<SDValue, SystemZ::VectorBytes> Constants(NumElements, SDValue());
5360   SmallVector<bool, SystemZ::VectorBytes> Done(NumElements, false);
5361 
5362   unsigned NumConstants = 0;
5363   for (unsigned I = 0; I < NumElements; ++I) {
5364     SDValue Elem = Elems[I];
5365     if (Elem.getOpcode() == ISD::Constant ||
5366         Elem.getOpcode() == ISD::ConstantFP) {
5367       NumConstants += 1;
5368       Constants[I] = Elem;
5369       Done[I] = true;
5370     }
5371   }
5372   // If there was at least one constant, fill in the other elements of
5373   // Constants with undefs to get a full vector constant and use that
5374   // as the starting point.
5375   SDValue Result;
5376   SDValue ReplicatedVal;
5377   if (NumConstants > 0) {
5378     for (unsigned I = 0; I < NumElements; ++I)
5379       if (!Constants[I].getNode())
5380         Constants[I] = DAG.getUNDEF(Elems[I].getValueType());
5381     Result = DAG.getBuildVector(VT, DL, Constants);
5382   } else {
5383     // Otherwise try to use VLREP or VLVGP to start the sequence in order to
5384     // avoid a false dependency on any previous contents of the vector
5385     // register.
5386 
5387     // Use a VLREP if at least one element is a load. Make sure to replicate
5388     // the load with the most elements having its value.
5389     std::map<const SDNode*, unsigned> UseCounts;
5390     SDNode *LoadMaxUses = nullptr;
5391     for (unsigned I = 0; I < NumElements; ++I)
5392       if (isVectorElementLoad(Elems[I])) {
5393         SDNode *Ld = Elems[I].getNode();
5394         UseCounts[Ld]++;
5395         if (LoadMaxUses == nullptr || UseCounts[LoadMaxUses] < UseCounts[Ld])
5396           LoadMaxUses = Ld;
5397       }
5398     if (LoadMaxUses != nullptr) {
5399       ReplicatedVal = SDValue(LoadMaxUses, 0);
5400       Result = DAG.getNode(SystemZISD::REPLICATE, DL, VT, ReplicatedVal);
5401     } else {
5402       // Try to use VLVGP.
5403       unsigned I1 = NumElements / 2 - 1;
5404       unsigned I2 = NumElements - 1;
5405       bool Def1 = !Elems[I1].isUndef();
5406       bool Def2 = !Elems[I2].isUndef();
5407       if (Def1 || Def2) {
5408         SDValue Elem1 = Elems[Def1 ? I1 : I2];
5409         SDValue Elem2 = Elems[Def2 ? I2 : I1];
5410         Result = DAG.getNode(ISD::BITCAST, DL, VT,
5411                              joinDwords(DAG, DL, Elem1, Elem2));
5412         Done[I1] = true;
5413         Done[I2] = true;
5414       } else
5415         Result = DAG.getUNDEF(VT);
5416     }
5417   }
5418 
5419   // Use VLVGx to insert the other elements.
5420   for (unsigned I = 0; I < NumElements; ++I)
5421     if (!Done[I] && !Elems[I].isUndef() && Elems[I] != ReplicatedVal)
5422       Result = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, VT, Result, Elems[I],
5423                            DAG.getConstant(I, DL, MVT::i32));
5424   return Result;
5425 }
5426 
5427 SDValue SystemZTargetLowering::lowerBUILD_VECTOR(SDValue Op,
5428                                                  SelectionDAG &DAG) const {
5429   auto *BVN = cast<BuildVectorSDNode>(Op.getNode());
5430   SDLoc DL(Op);
5431   EVT VT = Op.getValueType();
5432 
5433   if (BVN->isConstant()) {
5434     if (SystemZVectorConstantInfo(BVN).isVectorConstantLegal(Subtarget))
5435       return Op;
5436 
5437     // Fall back to loading it from memory.
5438     return SDValue();
5439   }
5440 
5441   // See if we should use shuffles to construct the vector from other vectors.
5442   if (SDValue Res = tryBuildVectorShuffle(DAG, BVN))
5443     return Res;
5444 
5445   // Detect SCALAR_TO_VECTOR conversions.
5446   if (isOperationLegal(ISD::SCALAR_TO_VECTOR, VT) && isScalarToVector(Op))
5447     return buildScalarToVector(DAG, DL, VT, Op.getOperand(0));
5448 
5449   // Otherwise use buildVector to build the vector up from GPRs.
5450   unsigned NumElements = Op.getNumOperands();
5451   SmallVector<SDValue, SystemZ::VectorBytes> Ops(NumElements);
5452   for (unsigned I = 0; I < NumElements; ++I)
5453     Ops[I] = Op.getOperand(I);
5454   return buildVector(DAG, DL, VT, Ops);
5455 }
5456 
5457 SDValue SystemZTargetLowering::lowerVECTOR_SHUFFLE(SDValue Op,
5458                                                    SelectionDAG &DAG) const {
5459   auto *VSN = cast<ShuffleVectorSDNode>(Op.getNode());
5460   SDLoc DL(Op);
5461   EVT VT = Op.getValueType();
5462   unsigned NumElements = VT.getVectorNumElements();
5463 
5464   if (VSN->isSplat()) {
5465     SDValue Op0 = Op.getOperand(0);
5466     unsigned Index = VSN->getSplatIndex();
5467     assert(Index < VT.getVectorNumElements() &&
5468            "Splat index should be defined and in first operand");
5469     // See whether the value we're splatting is directly available as a scalar.
5470     if ((Index == 0 && Op0.getOpcode() == ISD::SCALAR_TO_VECTOR) ||
5471         Op0.getOpcode() == ISD::BUILD_VECTOR)
5472       return DAG.getNode(SystemZISD::REPLICATE, DL, VT, Op0.getOperand(Index));
5473     // Otherwise keep it as a vector-to-vector operation.
5474     return DAG.getNode(SystemZISD::SPLAT, DL, VT, Op.getOperand(0),
5475                        DAG.getTargetConstant(Index, DL, MVT::i32));
5476   }
5477 
5478   GeneralShuffle GS(VT);
5479   for (unsigned I = 0; I < NumElements; ++I) {
5480     int Elt = VSN->getMaskElt(I);
5481     if (Elt < 0)
5482       GS.addUndef();
5483     else if (!GS.add(Op.getOperand(unsigned(Elt) / NumElements),
5484                      unsigned(Elt) % NumElements))
5485       return SDValue();
5486   }
5487   return GS.getNode(DAG, SDLoc(VSN));
5488 }
5489 
5490 SDValue SystemZTargetLowering::lowerSCALAR_TO_VECTOR(SDValue Op,
5491                                                      SelectionDAG &DAG) const {
5492   SDLoc DL(Op);
5493   // Just insert the scalar into element 0 of an undefined vector.
5494   return DAG.getNode(ISD::INSERT_VECTOR_ELT, DL,
5495                      Op.getValueType(), DAG.getUNDEF(Op.getValueType()),
5496                      Op.getOperand(0), DAG.getConstant(0, DL, MVT::i32));
5497 }
5498 
5499 SDValue SystemZTargetLowering::lowerINSERT_VECTOR_ELT(SDValue Op,
5500                                                       SelectionDAG &DAG) const {
5501   // Handle insertions of floating-point values.
5502   SDLoc DL(Op);
5503   SDValue Op0 = Op.getOperand(0);
5504   SDValue Op1 = Op.getOperand(1);
5505   SDValue Op2 = Op.getOperand(2);
5506   EVT VT = Op.getValueType();
5507 
5508   // Insertions into constant indices of a v2f64 can be done using VPDI.
5509   // However, if the inserted value is a bitcast or a constant then it's
5510   // better to use GPRs, as below.
5511   if (VT == MVT::v2f64 &&
5512       Op1.getOpcode() != ISD::BITCAST &&
5513       Op1.getOpcode() != ISD::ConstantFP &&
5514       Op2.getOpcode() == ISD::Constant) {
5515     uint64_t Index = cast<ConstantSDNode>(Op2)->getZExtValue();
5516     unsigned Mask = VT.getVectorNumElements() - 1;
5517     if (Index <= Mask)
5518       return Op;
5519   }
5520 
5521   // Otherwise bitcast to the equivalent integer form and insert via a GPR.
5522   MVT IntVT = MVT::getIntegerVT(VT.getScalarSizeInBits());
5523   MVT IntVecVT = MVT::getVectorVT(IntVT, VT.getVectorNumElements());
5524   SDValue Res = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, IntVecVT,
5525                             DAG.getNode(ISD::BITCAST, DL, IntVecVT, Op0),
5526                             DAG.getNode(ISD::BITCAST, DL, IntVT, Op1), Op2);
5527   return DAG.getNode(ISD::BITCAST, DL, VT, Res);
5528 }
5529 
5530 SDValue
5531 SystemZTargetLowering::lowerEXTRACT_VECTOR_ELT(SDValue Op,
5532                                                SelectionDAG &DAG) const {
5533   // Handle extractions of floating-point values.
5534   SDLoc DL(Op);
5535   SDValue Op0 = Op.getOperand(0);
5536   SDValue Op1 = Op.getOperand(1);
5537   EVT VT = Op.getValueType();
5538   EVT VecVT = Op0.getValueType();
5539 
5540   // Extractions of constant indices can be done directly.
5541   if (auto *CIndexN = dyn_cast<ConstantSDNode>(Op1)) {
5542     uint64_t Index = CIndexN->getZExtValue();
5543     unsigned Mask = VecVT.getVectorNumElements() - 1;
5544     if (Index <= Mask)
5545       return Op;
5546   }
5547 
5548   // Otherwise bitcast to the equivalent integer form and extract via a GPR.
5549   MVT IntVT = MVT::getIntegerVT(VT.getSizeInBits());
5550   MVT IntVecVT = MVT::getVectorVT(IntVT, VecVT.getVectorNumElements());
5551   SDValue Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, IntVT,
5552                             DAG.getNode(ISD::BITCAST, DL, IntVecVT, Op0), Op1);
5553   return DAG.getNode(ISD::BITCAST, DL, VT, Res);
5554 }
5555 
5556 SDValue SystemZTargetLowering::
5557 lowerSIGN_EXTEND_VECTOR_INREG(SDValue Op, SelectionDAG &DAG) const {
5558   SDValue PackedOp = Op.getOperand(0);
5559   EVT OutVT = Op.getValueType();
5560   EVT InVT = PackedOp.getValueType();
5561   unsigned ToBits = OutVT.getScalarSizeInBits();
5562   unsigned FromBits = InVT.getScalarSizeInBits();
5563   do {
5564     FromBits *= 2;
5565     EVT OutVT = MVT::getVectorVT(MVT::getIntegerVT(FromBits),
5566                                  SystemZ::VectorBits / FromBits);
5567     PackedOp =
5568       DAG.getNode(SystemZISD::UNPACK_HIGH, SDLoc(PackedOp), OutVT, PackedOp);
5569   } while (FromBits != ToBits);
5570   return PackedOp;
5571 }
5572 
5573 // Lower a ZERO_EXTEND_VECTOR_INREG to a vector shuffle with a zero vector.
5574 SDValue SystemZTargetLowering::
5575 lowerZERO_EXTEND_VECTOR_INREG(SDValue Op, SelectionDAG &DAG) const {
5576   SDValue PackedOp = Op.getOperand(0);
5577   SDLoc DL(Op);
5578   EVT OutVT = Op.getValueType();
5579   EVT InVT = PackedOp.getValueType();
5580   unsigned InNumElts = InVT.getVectorNumElements();
5581   unsigned OutNumElts = OutVT.getVectorNumElements();
5582   unsigned NumInPerOut = InNumElts / OutNumElts;
5583 
5584   SDValue ZeroVec =
5585     DAG.getSplatVector(InVT, DL, DAG.getConstant(0, DL, InVT.getScalarType()));
5586 
5587   SmallVector<int, 16> Mask(InNumElts);
5588   unsigned ZeroVecElt = InNumElts;
5589   for (unsigned PackedElt = 0; PackedElt < OutNumElts; PackedElt++) {
5590     unsigned MaskElt = PackedElt * NumInPerOut;
5591     unsigned End = MaskElt + NumInPerOut - 1;
5592     for (; MaskElt < End; MaskElt++)
5593       Mask[MaskElt] = ZeroVecElt++;
5594     Mask[MaskElt] = PackedElt;
5595   }
5596   SDValue Shuf = DAG.getVectorShuffle(InVT, DL, PackedOp, ZeroVec, Mask);
5597   return DAG.getNode(ISD::BITCAST, DL, OutVT, Shuf);
5598 }
5599 
5600 SDValue SystemZTargetLowering::lowerShift(SDValue Op, SelectionDAG &DAG,
5601                                           unsigned ByScalar) const {
5602   // Look for cases where a vector shift can use the *_BY_SCALAR form.
5603   SDValue Op0 = Op.getOperand(0);
5604   SDValue Op1 = Op.getOperand(1);
5605   SDLoc DL(Op);
5606   EVT VT = Op.getValueType();
5607   unsigned ElemBitSize = VT.getScalarSizeInBits();
5608 
5609   // See whether the shift vector is a splat represented as BUILD_VECTOR.
5610   if (auto *BVN = dyn_cast<BuildVectorSDNode>(Op1)) {
5611     APInt SplatBits, SplatUndef;
5612     unsigned SplatBitSize;
5613     bool HasAnyUndefs;
5614     // Check for constant splats.  Use ElemBitSize as the minimum element
5615     // width and reject splats that need wider elements.
5616     if (BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize, HasAnyUndefs,
5617                              ElemBitSize, true) &&
5618         SplatBitSize == ElemBitSize) {
5619       SDValue Shift = DAG.getConstant(SplatBits.getZExtValue() & 0xfff,
5620                                       DL, MVT::i32);
5621       return DAG.getNode(ByScalar, DL, VT, Op0, Shift);
5622     }
5623     // Check for variable splats.
5624     BitVector UndefElements;
5625     SDValue Splat = BVN->getSplatValue(&UndefElements);
5626     if (Splat) {
5627       // Since i32 is the smallest legal type, we either need a no-op
5628       // or a truncation.
5629       SDValue Shift = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Splat);
5630       return DAG.getNode(ByScalar, DL, VT, Op0, Shift);
5631     }
5632   }
5633 
5634   // See whether the shift vector is a splat represented as SHUFFLE_VECTOR,
5635   // and the shift amount is directly available in a GPR.
5636   if (auto *VSN = dyn_cast<ShuffleVectorSDNode>(Op1)) {
5637     if (VSN->isSplat()) {
5638       SDValue VSNOp0 = VSN->getOperand(0);
5639       unsigned Index = VSN->getSplatIndex();
5640       assert(Index < VT.getVectorNumElements() &&
5641              "Splat index should be defined and in first operand");
5642       if ((Index == 0 && VSNOp0.getOpcode() == ISD::SCALAR_TO_VECTOR) ||
5643           VSNOp0.getOpcode() == ISD::BUILD_VECTOR) {
5644         // Since i32 is the smallest legal type, we either need a no-op
5645         // or a truncation.
5646         SDValue Shift = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32,
5647                                     VSNOp0.getOperand(Index));
5648         return DAG.getNode(ByScalar, DL, VT, Op0, Shift);
5649       }
5650     }
5651   }
5652 
5653   // Otherwise just treat the current form as legal.
5654   return Op;
5655 }
5656 
5657 SDValue SystemZTargetLowering::lowerIS_FPCLASS(SDValue Op,
5658                                                SelectionDAG &DAG) const {
5659   SDLoc DL(Op);
5660   MVT ResultVT = Op.getSimpleValueType();
5661   SDValue Arg = Op.getOperand(0);
5662   auto CNode = cast<ConstantSDNode>(Op.getOperand(1));
5663   unsigned Check = CNode->getZExtValue();
5664 
5665   unsigned TDCMask = 0;
5666   if (Check & fcSNan)
5667     TDCMask |= SystemZ::TDCMASK_SNAN_PLUS | SystemZ::TDCMASK_SNAN_MINUS;
5668   if (Check & fcQNan)
5669     TDCMask |= SystemZ::TDCMASK_QNAN_PLUS | SystemZ::TDCMASK_QNAN_MINUS;
5670   if (Check & fcPosInf)
5671     TDCMask |= SystemZ::TDCMASK_INFINITY_PLUS;
5672   if (Check & fcNegInf)
5673     TDCMask |= SystemZ::TDCMASK_INFINITY_MINUS;
5674   if (Check & fcPosNormal)
5675     TDCMask |= SystemZ::TDCMASK_NORMAL_PLUS;
5676   if (Check & fcNegNormal)
5677     TDCMask |= SystemZ::TDCMASK_NORMAL_MINUS;
5678   if (Check & fcPosSubnormal)
5679     TDCMask |= SystemZ::TDCMASK_SUBNORMAL_PLUS;
5680   if (Check & fcNegSubnormal)
5681     TDCMask |= SystemZ::TDCMASK_SUBNORMAL_MINUS;
5682   if (Check & fcPosZero)
5683     TDCMask |= SystemZ::TDCMASK_ZERO_PLUS;
5684   if (Check & fcNegZero)
5685     TDCMask |= SystemZ::TDCMASK_ZERO_MINUS;
5686   SDValue TDCMaskV = DAG.getConstant(TDCMask, DL, MVT::i64);
5687 
5688   SDValue Intr = DAG.getNode(SystemZISD::TDC, DL, ResultVT, Arg, TDCMaskV);
5689   return getCCResult(DAG, Intr);
5690 }
5691 
5692 SDValue SystemZTargetLowering::LowerOperation(SDValue Op,
5693                                               SelectionDAG &DAG) const {
5694   switch (Op.getOpcode()) {
5695   case ISD::FRAMEADDR:
5696     return lowerFRAMEADDR(Op, DAG);
5697   case ISD::RETURNADDR:
5698     return lowerRETURNADDR(Op, DAG);
5699   case ISD::BR_CC:
5700     return lowerBR_CC(Op, DAG);
5701   case ISD::SELECT_CC:
5702     return lowerSELECT_CC(Op, DAG);
5703   case ISD::SETCC:
5704     return lowerSETCC(Op, DAG);
5705   case ISD::STRICT_FSETCC:
5706     return lowerSTRICT_FSETCC(Op, DAG, false);
5707   case ISD::STRICT_FSETCCS:
5708     return lowerSTRICT_FSETCC(Op, DAG, true);
5709   case ISD::GlobalAddress:
5710     return lowerGlobalAddress(cast<GlobalAddressSDNode>(Op), DAG);
5711   case ISD::GlobalTLSAddress:
5712     return lowerGlobalTLSAddress(cast<GlobalAddressSDNode>(Op), DAG);
5713   case ISD::BlockAddress:
5714     return lowerBlockAddress(cast<BlockAddressSDNode>(Op), DAG);
5715   case ISD::JumpTable:
5716     return lowerJumpTable(cast<JumpTableSDNode>(Op), DAG);
5717   case ISD::ConstantPool:
5718     return lowerConstantPool(cast<ConstantPoolSDNode>(Op), DAG);
5719   case ISD::BITCAST:
5720     return lowerBITCAST(Op, DAG);
5721   case ISD::VASTART:
5722     return lowerVASTART(Op, DAG);
5723   case ISD::VACOPY:
5724     return lowerVACOPY(Op, DAG);
5725   case ISD::DYNAMIC_STACKALLOC:
5726     return lowerDYNAMIC_STACKALLOC(Op, DAG);
5727   case ISD::GET_DYNAMIC_AREA_OFFSET:
5728     return lowerGET_DYNAMIC_AREA_OFFSET(Op, DAG);
5729   case ISD::SMUL_LOHI:
5730     return lowerSMUL_LOHI(Op, DAG);
5731   case ISD::UMUL_LOHI:
5732     return lowerUMUL_LOHI(Op, DAG);
5733   case ISD::SDIVREM:
5734     return lowerSDIVREM(Op, DAG);
5735   case ISD::UDIVREM:
5736     return lowerUDIVREM(Op, DAG);
5737   case ISD::SADDO:
5738   case ISD::SSUBO:
5739   case ISD::UADDO:
5740   case ISD::USUBO:
5741     return lowerXALUO(Op, DAG);
5742   case ISD::ADDCARRY:
5743   case ISD::SUBCARRY:
5744     return lowerADDSUBCARRY(Op, DAG);
5745   case ISD::OR:
5746     return lowerOR(Op, DAG);
5747   case ISD::CTPOP:
5748     return lowerCTPOP(Op, DAG);
5749   case ISD::ATOMIC_FENCE:
5750     return lowerATOMIC_FENCE(Op, DAG);
5751   case ISD::ATOMIC_SWAP:
5752     return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_SWAPW);
5753   case ISD::ATOMIC_STORE:
5754     return lowerATOMIC_STORE(Op, DAG);
5755   case ISD::ATOMIC_LOAD:
5756     return lowerATOMIC_LOAD(Op, DAG);
5757   case ISD::ATOMIC_LOAD_ADD:
5758     return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_ADD);
5759   case ISD::ATOMIC_LOAD_SUB:
5760     return lowerATOMIC_LOAD_SUB(Op, DAG);
5761   case ISD::ATOMIC_LOAD_AND:
5762     return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_AND);
5763   case ISD::ATOMIC_LOAD_OR:
5764     return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_OR);
5765   case ISD::ATOMIC_LOAD_XOR:
5766     return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_XOR);
5767   case ISD::ATOMIC_LOAD_NAND:
5768     return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_NAND);
5769   case ISD::ATOMIC_LOAD_MIN:
5770     return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_MIN);
5771   case ISD::ATOMIC_LOAD_MAX:
5772     return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_MAX);
5773   case ISD::ATOMIC_LOAD_UMIN:
5774     return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_UMIN);
5775   case ISD::ATOMIC_LOAD_UMAX:
5776     return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_UMAX);
5777   case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS:
5778     return lowerATOMIC_CMP_SWAP(Op, DAG);
5779   case ISD::STACKSAVE:
5780     return lowerSTACKSAVE(Op, DAG);
5781   case ISD::STACKRESTORE:
5782     return lowerSTACKRESTORE(Op, DAG);
5783   case ISD::PREFETCH:
5784     return lowerPREFETCH(Op, DAG);
5785   case ISD::INTRINSIC_W_CHAIN:
5786     return lowerINTRINSIC_W_CHAIN(Op, DAG);
5787   case ISD::INTRINSIC_WO_CHAIN:
5788     return lowerINTRINSIC_WO_CHAIN(Op, DAG);
5789   case ISD::BUILD_VECTOR:
5790     return lowerBUILD_VECTOR(Op, DAG);
5791   case ISD::VECTOR_SHUFFLE:
5792     return lowerVECTOR_SHUFFLE(Op, DAG);
5793   case ISD::SCALAR_TO_VECTOR:
5794     return lowerSCALAR_TO_VECTOR(Op, DAG);
5795   case ISD::INSERT_VECTOR_ELT:
5796     return lowerINSERT_VECTOR_ELT(Op, DAG);
5797   case ISD::EXTRACT_VECTOR_ELT:
5798     return lowerEXTRACT_VECTOR_ELT(Op, DAG);
5799   case ISD::SIGN_EXTEND_VECTOR_INREG:
5800     return lowerSIGN_EXTEND_VECTOR_INREG(Op, DAG);
5801   case ISD::ZERO_EXTEND_VECTOR_INREG:
5802     return lowerZERO_EXTEND_VECTOR_INREG(Op, DAG);
5803   case ISD::SHL:
5804     return lowerShift(Op, DAG, SystemZISD::VSHL_BY_SCALAR);
5805   case ISD::SRL:
5806     return lowerShift(Op, DAG, SystemZISD::VSRL_BY_SCALAR);
5807   case ISD::SRA:
5808     return lowerShift(Op, DAG, SystemZISD::VSRA_BY_SCALAR);
5809   case ISD::IS_FPCLASS:
5810     return lowerIS_FPCLASS(Op, DAG);
5811   default:
5812     llvm_unreachable("Unexpected node to lower");
5813   }
5814 }
5815 
5816 // Lower operations with invalid operand or result types (currently used
5817 // only for 128-bit integer types).
5818 void
5819 SystemZTargetLowering::LowerOperationWrapper(SDNode *N,
5820                                              SmallVectorImpl<SDValue> &Results,
5821                                              SelectionDAG &DAG) const {
5822   switch (N->getOpcode()) {
5823   case ISD::ATOMIC_LOAD: {
5824     SDLoc DL(N);
5825     SDVTList Tys = DAG.getVTList(MVT::Untyped, MVT::Other);
5826     SDValue Ops[] = { N->getOperand(0), N->getOperand(1) };
5827     MachineMemOperand *MMO = cast<AtomicSDNode>(N)->getMemOperand();
5828     SDValue Res = DAG.getMemIntrinsicNode(SystemZISD::ATOMIC_LOAD_128,
5829                                           DL, Tys, Ops, MVT::i128, MMO);
5830     Results.push_back(lowerGR128ToI128(DAG, Res));
5831     Results.push_back(Res.getValue(1));
5832     break;
5833   }
5834   case ISD::ATOMIC_STORE: {
5835     SDLoc DL(N);
5836     SDVTList Tys = DAG.getVTList(MVT::Other);
5837     SDValue Ops[] = { N->getOperand(0),
5838                       lowerI128ToGR128(DAG, N->getOperand(2)),
5839                       N->getOperand(1) };
5840     MachineMemOperand *MMO = cast<AtomicSDNode>(N)->getMemOperand();
5841     SDValue Res = DAG.getMemIntrinsicNode(SystemZISD::ATOMIC_STORE_128,
5842                                           DL, Tys, Ops, MVT::i128, MMO);
5843     // We have to enforce sequential consistency by performing a
5844     // serialization operation after the store.
5845     if (cast<AtomicSDNode>(N)->getSuccessOrdering() ==
5846         AtomicOrdering::SequentiallyConsistent)
5847       Res = SDValue(DAG.getMachineNode(SystemZ::Serialize, DL,
5848                                        MVT::Other, Res), 0);
5849     Results.push_back(Res);
5850     break;
5851   }
5852   case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS: {
5853     SDLoc DL(N);
5854     SDVTList Tys = DAG.getVTList(MVT::Untyped, MVT::i32, MVT::Other);
5855     SDValue Ops[] = { N->getOperand(0), N->getOperand(1),
5856                       lowerI128ToGR128(DAG, N->getOperand(2)),
5857                       lowerI128ToGR128(DAG, N->getOperand(3)) };
5858     MachineMemOperand *MMO = cast<AtomicSDNode>(N)->getMemOperand();
5859     SDValue Res = DAG.getMemIntrinsicNode(SystemZISD::ATOMIC_CMP_SWAP_128,
5860                                           DL, Tys, Ops, MVT::i128, MMO);
5861     SDValue Success = emitSETCC(DAG, DL, Res.getValue(1),
5862                                 SystemZ::CCMASK_CS, SystemZ::CCMASK_CS_EQ);
5863     Success = DAG.getZExtOrTrunc(Success, DL, N->getValueType(1));
5864     Results.push_back(lowerGR128ToI128(DAG, Res));
5865     Results.push_back(Success);
5866     Results.push_back(Res.getValue(2));
5867     break;
5868   }
5869   case ISD::BITCAST: {
5870     SDValue Src = N->getOperand(0);
5871     if (N->getValueType(0) == MVT::i128 && Src.getValueType() == MVT::f128 &&
5872         !useSoftFloat()) {
5873       SDLoc DL(N);
5874       SDValue Lo, Hi;
5875       if (getRepRegClassFor(MVT::f128) == &SystemZ::VR128BitRegClass) {
5876         SDValue VecBC = DAG.getNode(ISD::BITCAST, DL, MVT::v2i64, Src);
5877         Lo = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i64, VecBC,
5878                          DAG.getConstant(1, DL, MVT::i32));
5879         Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i64, VecBC,
5880                          DAG.getConstant(0, DL, MVT::i32));
5881       } else {
5882         assert(getRepRegClassFor(MVT::f128) == &SystemZ::FP128BitRegClass &&
5883                "Unrecognized register class for f128.");
5884         SDValue LoFP = DAG.getTargetExtractSubreg(SystemZ::subreg_l64,
5885                                                   DL, MVT::f64, Src);
5886         SDValue HiFP = DAG.getTargetExtractSubreg(SystemZ::subreg_h64,
5887                                                   DL, MVT::f64, Src);
5888         Lo = DAG.getNode(ISD::BITCAST, DL, MVT::i64, LoFP);
5889         Hi = DAG.getNode(ISD::BITCAST, DL, MVT::i64, HiFP);
5890       }
5891       Results.push_back(DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i128, Lo, Hi));
5892     }
5893     break;
5894   }
5895   default:
5896     llvm_unreachable("Unexpected node to lower");
5897   }
5898 }
5899 
5900 void
5901 SystemZTargetLowering::ReplaceNodeResults(SDNode *N,
5902                                           SmallVectorImpl<SDValue> &Results,
5903                                           SelectionDAG &DAG) const {
5904   return LowerOperationWrapper(N, Results, DAG);
5905 }
5906 
5907 const char *SystemZTargetLowering::getTargetNodeName(unsigned Opcode) const {
5908 #define OPCODE(NAME) case SystemZISD::NAME: return "SystemZISD::" #NAME
5909   switch ((SystemZISD::NodeType)Opcode) {
5910     case SystemZISD::FIRST_NUMBER: break;
5911     OPCODE(RET_FLAG);
5912     OPCODE(CALL);
5913     OPCODE(SIBCALL);
5914     OPCODE(TLS_GDCALL);
5915     OPCODE(TLS_LDCALL);
5916     OPCODE(PCREL_WRAPPER);
5917     OPCODE(PCREL_OFFSET);
5918     OPCODE(ICMP);
5919     OPCODE(FCMP);
5920     OPCODE(STRICT_FCMP);
5921     OPCODE(STRICT_FCMPS);
5922     OPCODE(TM);
5923     OPCODE(BR_CCMASK);
5924     OPCODE(SELECT_CCMASK);
5925     OPCODE(ADJDYNALLOC);
5926     OPCODE(PROBED_ALLOCA);
5927     OPCODE(POPCNT);
5928     OPCODE(SMUL_LOHI);
5929     OPCODE(UMUL_LOHI);
5930     OPCODE(SDIVREM);
5931     OPCODE(UDIVREM);
5932     OPCODE(SADDO);
5933     OPCODE(SSUBO);
5934     OPCODE(UADDO);
5935     OPCODE(USUBO);
5936     OPCODE(ADDCARRY);
5937     OPCODE(SUBCARRY);
5938     OPCODE(GET_CCMASK);
5939     OPCODE(MVC);
5940     OPCODE(NC);
5941     OPCODE(OC);
5942     OPCODE(XC);
5943     OPCODE(CLC);
5944     OPCODE(MEMSET_MVC);
5945     OPCODE(STPCPY);
5946     OPCODE(STRCMP);
5947     OPCODE(SEARCH_STRING);
5948     OPCODE(IPM);
5949     OPCODE(MEMBARRIER);
5950     OPCODE(TBEGIN);
5951     OPCODE(TBEGIN_NOFLOAT);
5952     OPCODE(TEND);
5953     OPCODE(BYTE_MASK);
5954     OPCODE(ROTATE_MASK);
5955     OPCODE(REPLICATE);
5956     OPCODE(JOIN_DWORDS);
5957     OPCODE(SPLAT);
5958     OPCODE(MERGE_HIGH);
5959     OPCODE(MERGE_LOW);
5960     OPCODE(SHL_DOUBLE);
5961     OPCODE(PERMUTE_DWORDS);
5962     OPCODE(PERMUTE);
5963     OPCODE(PACK);
5964     OPCODE(PACKS_CC);
5965     OPCODE(PACKLS_CC);
5966     OPCODE(UNPACK_HIGH);
5967     OPCODE(UNPACKL_HIGH);
5968     OPCODE(UNPACK_LOW);
5969     OPCODE(UNPACKL_LOW);
5970     OPCODE(VSHL_BY_SCALAR);
5971     OPCODE(VSRL_BY_SCALAR);
5972     OPCODE(VSRA_BY_SCALAR);
5973     OPCODE(VSUM);
5974     OPCODE(VICMPE);
5975     OPCODE(VICMPH);
5976     OPCODE(VICMPHL);
5977     OPCODE(VICMPES);
5978     OPCODE(VICMPHS);
5979     OPCODE(VICMPHLS);
5980     OPCODE(VFCMPE);
5981     OPCODE(STRICT_VFCMPE);
5982     OPCODE(STRICT_VFCMPES);
5983     OPCODE(VFCMPH);
5984     OPCODE(STRICT_VFCMPH);
5985     OPCODE(STRICT_VFCMPHS);
5986     OPCODE(VFCMPHE);
5987     OPCODE(STRICT_VFCMPHE);
5988     OPCODE(STRICT_VFCMPHES);
5989     OPCODE(VFCMPES);
5990     OPCODE(VFCMPHS);
5991     OPCODE(VFCMPHES);
5992     OPCODE(VFTCI);
5993     OPCODE(VEXTEND);
5994     OPCODE(STRICT_VEXTEND);
5995     OPCODE(VROUND);
5996     OPCODE(STRICT_VROUND);
5997     OPCODE(VTM);
5998     OPCODE(VFAE_CC);
5999     OPCODE(VFAEZ_CC);
6000     OPCODE(VFEE_CC);
6001     OPCODE(VFEEZ_CC);
6002     OPCODE(VFENE_CC);
6003     OPCODE(VFENEZ_CC);
6004     OPCODE(VISTR_CC);
6005     OPCODE(VSTRC_CC);
6006     OPCODE(VSTRCZ_CC);
6007     OPCODE(VSTRS_CC);
6008     OPCODE(VSTRSZ_CC);
6009     OPCODE(TDC);
6010     OPCODE(ATOMIC_SWAPW);
6011     OPCODE(ATOMIC_LOADW_ADD);
6012     OPCODE(ATOMIC_LOADW_SUB);
6013     OPCODE(ATOMIC_LOADW_AND);
6014     OPCODE(ATOMIC_LOADW_OR);
6015     OPCODE(ATOMIC_LOADW_XOR);
6016     OPCODE(ATOMIC_LOADW_NAND);
6017     OPCODE(ATOMIC_LOADW_MIN);
6018     OPCODE(ATOMIC_LOADW_MAX);
6019     OPCODE(ATOMIC_LOADW_UMIN);
6020     OPCODE(ATOMIC_LOADW_UMAX);
6021     OPCODE(ATOMIC_CMP_SWAPW);
6022     OPCODE(ATOMIC_CMP_SWAP);
6023     OPCODE(ATOMIC_LOAD_128);
6024     OPCODE(ATOMIC_STORE_128);
6025     OPCODE(ATOMIC_CMP_SWAP_128);
6026     OPCODE(LRV);
6027     OPCODE(STRV);
6028     OPCODE(VLER);
6029     OPCODE(VSTER);
6030     OPCODE(PREFETCH);
6031   }
6032   return nullptr;
6033 #undef OPCODE
6034 }
6035 
6036 // Return true if VT is a vector whose elements are a whole number of bytes
6037 // in width. Also check for presence of vector support.
6038 bool SystemZTargetLowering::canTreatAsByteVector(EVT VT) const {
6039   if (!Subtarget.hasVector())
6040     return false;
6041 
6042   return VT.isVector() && VT.getScalarSizeInBits() % 8 == 0 && VT.isSimple();
6043 }
6044 
6045 // Try to simplify an EXTRACT_VECTOR_ELT from a vector of type VecVT
6046 // producing a result of type ResVT.  Op is a possibly bitcast version
6047 // of the input vector and Index is the index (based on type VecVT) that
6048 // should be extracted.  Return the new extraction if a simplification
6049 // was possible or if Force is true.
6050 SDValue SystemZTargetLowering::combineExtract(const SDLoc &DL, EVT ResVT,
6051                                               EVT VecVT, SDValue Op,
6052                                               unsigned Index,
6053                                               DAGCombinerInfo &DCI,
6054                                               bool Force) const {
6055   SelectionDAG &DAG = DCI.DAG;
6056 
6057   // The number of bytes being extracted.
6058   unsigned BytesPerElement = VecVT.getVectorElementType().getStoreSize();
6059 
6060   for (;;) {
6061     unsigned Opcode = Op.getOpcode();
6062     if (Opcode == ISD::BITCAST)
6063       // Look through bitcasts.
6064       Op = Op.getOperand(0);
6065     else if ((Opcode == ISD::VECTOR_SHUFFLE || Opcode == SystemZISD::SPLAT) &&
6066              canTreatAsByteVector(Op.getValueType())) {
6067       // Get a VPERM-like permute mask and see whether the bytes covered
6068       // by the extracted element are a contiguous sequence from one
6069       // source operand.
6070       SmallVector<int, SystemZ::VectorBytes> Bytes;
6071       if (!getVPermMask(Op, Bytes))
6072         break;
6073       int First;
6074       if (!getShuffleInput(Bytes, Index * BytesPerElement,
6075                            BytesPerElement, First))
6076         break;
6077       if (First < 0)
6078         return DAG.getUNDEF(ResVT);
6079       // Make sure the contiguous sequence starts at a multiple of the
6080       // original element size.
6081       unsigned Byte = unsigned(First) % Bytes.size();
6082       if (Byte % BytesPerElement != 0)
6083         break;
6084       // We can get the extracted value directly from an input.
6085       Index = Byte / BytesPerElement;
6086       Op = Op.getOperand(unsigned(First) / Bytes.size());
6087       Force = true;
6088     } else if (Opcode == ISD::BUILD_VECTOR &&
6089                canTreatAsByteVector(Op.getValueType())) {
6090       // We can only optimize this case if the BUILD_VECTOR elements are
6091       // at least as wide as the extracted value.
6092       EVT OpVT = Op.getValueType();
6093       unsigned OpBytesPerElement = OpVT.getVectorElementType().getStoreSize();
6094       if (OpBytesPerElement < BytesPerElement)
6095         break;
6096       // Make sure that the least-significant bit of the extracted value
6097       // is the least significant bit of an input.
6098       unsigned End = (Index + 1) * BytesPerElement;
6099       if (End % OpBytesPerElement != 0)
6100         break;
6101       // We're extracting the low part of one operand of the BUILD_VECTOR.
6102       Op = Op.getOperand(End / OpBytesPerElement - 1);
6103       if (!Op.getValueType().isInteger()) {
6104         EVT VT = MVT::getIntegerVT(Op.getValueSizeInBits());
6105         Op = DAG.getNode(ISD::BITCAST, DL, VT, Op);
6106         DCI.AddToWorklist(Op.getNode());
6107       }
6108       EVT VT = MVT::getIntegerVT(ResVT.getSizeInBits());
6109       Op = DAG.getNode(ISD::TRUNCATE, DL, VT, Op);
6110       if (VT != ResVT) {
6111         DCI.AddToWorklist(Op.getNode());
6112         Op = DAG.getNode(ISD::BITCAST, DL, ResVT, Op);
6113       }
6114       return Op;
6115     } else if ((Opcode == ISD::SIGN_EXTEND_VECTOR_INREG ||
6116                 Opcode == ISD::ZERO_EXTEND_VECTOR_INREG ||
6117                 Opcode == ISD::ANY_EXTEND_VECTOR_INREG) &&
6118                canTreatAsByteVector(Op.getValueType()) &&
6119                canTreatAsByteVector(Op.getOperand(0).getValueType())) {
6120       // Make sure that only the unextended bits are significant.
6121       EVT ExtVT = Op.getValueType();
6122       EVT OpVT = Op.getOperand(0).getValueType();
6123       unsigned ExtBytesPerElement = ExtVT.getVectorElementType().getStoreSize();
6124       unsigned OpBytesPerElement = OpVT.getVectorElementType().getStoreSize();
6125       unsigned Byte = Index * BytesPerElement;
6126       unsigned SubByte = Byte % ExtBytesPerElement;
6127       unsigned MinSubByte = ExtBytesPerElement - OpBytesPerElement;
6128       if (SubByte < MinSubByte ||
6129           SubByte + BytesPerElement > ExtBytesPerElement)
6130         break;
6131       // Get the byte offset of the unextended element
6132       Byte = Byte / ExtBytesPerElement * OpBytesPerElement;
6133       // ...then add the byte offset relative to that element.
6134       Byte += SubByte - MinSubByte;
6135       if (Byte % BytesPerElement != 0)
6136         break;
6137       Op = Op.getOperand(0);
6138       Index = Byte / BytesPerElement;
6139       Force = true;
6140     } else
6141       break;
6142   }
6143   if (Force) {
6144     if (Op.getValueType() != VecVT) {
6145       Op = DAG.getNode(ISD::BITCAST, DL, VecVT, Op);
6146       DCI.AddToWorklist(Op.getNode());
6147     }
6148     return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, ResVT, Op,
6149                        DAG.getConstant(Index, DL, MVT::i32));
6150   }
6151   return SDValue();
6152 }
6153 
6154 // Optimize vector operations in scalar value Op on the basis that Op
6155 // is truncated to TruncVT.
6156 SDValue SystemZTargetLowering::combineTruncateExtract(
6157     const SDLoc &DL, EVT TruncVT, SDValue Op, DAGCombinerInfo &DCI) const {
6158   // If we have (trunc (extract_vector_elt X, Y)), try to turn it into
6159   // (extract_vector_elt (bitcast X), Y'), where (bitcast X) has elements
6160   // of type TruncVT.
6161   if (Op.getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
6162       TruncVT.getSizeInBits() % 8 == 0) {
6163     SDValue Vec = Op.getOperand(0);
6164     EVT VecVT = Vec.getValueType();
6165     if (canTreatAsByteVector(VecVT)) {
6166       if (auto *IndexN = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
6167         unsigned BytesPerElement = VecVT.getVectorElementType().getStoreSize();
6168         unsigned TruncBytes = TruncVT.getStoreSize();
6169         if (BytesPerElement % TruncBytes == 0) {
6170           // Calculate the value of Y' in the above description.  We are
6171           // splitting the original elements into Scale equal-sized pieces
6172           // and for truncation purposes want the last (least-significant)
6173           // of these pieces for IndexN.  This is easiest to do by calculating
6174           // the start index of the following element and then subtracting 1.
6175           unsigned Scale = BytesPerElement / TruncBytes;
6176           unsigned NewIndex = (IndexN->getZExtValue() + 1) * Scale - 1;
6177 
6178           // Defer the creation of the bitcast from X to combineExtract,
6179           // which might be able to optimize the extraction.
6180           VecVT = MVT::getVectorVT(MVT::getIntegerVT(TruncBytes * 8),
6181                                    VecVT.getStoreSize() / TruncBytes);
6182           EVT ResVT = (TruncBytes < 4 ? MVT::i32 : TruncVT);
6183           return combineExtract(DL, ResVT, VecVT, Vec, NewIndex, DCI, true);
6184         }
6185       }
6186     }
6187   }
6188   return SDValue();
6189 }
6190 
6191 SDValue SystemZTargetLowering::combineZERO_EXTEND(
6192     SDNode *N, DAGCombinerInfo &DCI) const {
6193   // Convert (zext (select_ccmask C1, C2)) into (select_ccmask C1', C2')
6194   SelectionDAG &DAG = DCI.DAG;
6195   SDValue N0 = N->getOperand(0);
6196   EVT VT = N->getValueType(0);
6197   if (N0.getOpcode() == SystemZISD::SELECT_CCMASK) {
6198     auto *TrueOp = dyn_cast<ConstantSDNode>(N0.getOperand(0));
6199     auto *FalseOp = dyn_cast<ConstantSDNode>(N0.getOperand(1));
6200     if (TrueOp && FalseOp) {
6201       SDLoc DL(N0);
6202       SDValue Ops[] = { DAG.getConstant(TrueOp->getZExtValue(), DL, VT),
6203                         DAG.getConstant(FalseOp->getZExtValue(), DL, VT),
6204                         N0.getOperand(2), N0.getOperand(3), N0.getOperand(4) };
6205       SDValue NewSelect = DAG.getNode(SystemZISD::SELECT_CCMASK, DL, VT, Ops);
6206       // If N0 has multiple uses, change other uses as well.
6207       if (!N0.hasOneUse()) {
6208         SDValue TruncSelect =
6209           DAG.getNode(ISD::TRUNCATE, DL, N0.getValueType(), NewSelect);
6210         DCI.CombineTo(N0.getNode(), TruncSelect);
6211       }
6212       return NewSelect;
6213     }
6214   }
6215   return SDValue();
6216 }
6217 
6218 SDValue SystemZTargetLowering::combineSIGN_EXTEND_INREG(
6219     SDNode *N, DAGCombinerInfo &DCI) const {
6220   // Convert (sext_in_reg (setcc LHS, RHS, COND), i1)
6221   // and (sext_in_reg (any_extend (setcc LHS, RHS, COND)), i1)
6222   // into (select_cc LHS, RHS, -1, 0, COND)
6223   SelectionDAG &DAG = DCI.DAG;
6224   SDValue N0 = N->getOperand(0);
6225   EVT VT = N->getValueType(0);
6226   EVT EVT = cast<VTSDNode>(N->getOperand(1))->getVT();
6227   if (N0.hasOneUse() && N0.getOpcode() == ISD::ANY_EXTEND)
6228     N0 = N0.getOperand(0);
6229   if (EVT == MVT::i1 && N0.hasOneUse() && N0.getOpcode() == ISD::SETCC) {
6230     SDLoc DL(N0);
6231     SDValue Ops[] = { N0.getOperand(0), N0.getOperand(1),
6232                       DAG.getConstant(-1, DL, VT), DAG.getConstant(0, DL, VT),
6233                       N0.getOperand(2) };
6234     return DAG.getNode(ISD::SELECT_CC, DL, VT, Ops);
6235   }
6236   return SDValue();
6237 }
6238 
6239 SDValue SystemZTargetLowering::combineSIGN_EXTEND(
6240     SDNode *N, DAGCombinerInfo &DCI) const {
6241   // Convert (sext (ashr (shl X, C1), C2)) to
6242   // (ashr (shl (anyext X), C1'), C2')), since wider shifts are as
6243   // cheap as narrower ones.
6244   SelectionDAG &DAG = DCI.DAG;
6245   SDValue N0 = N->getOperand(0);
6246   EVT VT = N->getValueType(0);
6247   if (N0.hasOneUse() && N0.getOpcode() == ISD::SRA) {
6248     auto *SraAmt = dyn_cast<ConstantSDNode>(N0.getOperand(1));
6249     SDValue Inner = N0.getOperand(0);
6250     if (SraAmt && Inner.hasOneUse() && Inner.getOpcode() == ISD::SHL) {
6251       if (auto *ShlAmt = dyn_cast<ConstantSDNode>(Inner.getOperand(1))) {
6252         unsigned Extra = (VT.getSizeInBits() - N0.getValueSizeInBits());
6253         unsigned NewShlAmt = ShlAmt->getZExtValue() + Extra;
6254         unsigned NewSraAmt = SraAmt->getZExtValue() + Extra;
6255         EVT ShiftVT = N0.getOperand(1).getValueType();
6256         SDValue Ext = DAG.getNode(ISD::ANY_EXTEND, SDLoc(Inner), VT,
6257                                   Inner.getOperand(0));
6258         SDValue Shl = DAG.getNode(ISD::SHL, SDLoc(Inner), VT, Ext,
6259                                   DAG.getConstant(NewShlAmt, SDLoc(Inner),
6260                                                   ShiftVT));
6261         return DAG.getNode(ISD::SRA, SDLoc(N0), VT, Shl,
6262                            DAG.getConstant(NewSraAmt, SDLoc(N0), ShiftVT));
6263       }
6264     }
6265   }
6266   return SDValue();
6267 }
6268 
6269 SDValue SystemZTargetLowering::combineMERGE(
6270     SDNode *N, DAGCombinerInfo &DCI) const {
6271   SelectionDAG &DAG = DCI.DAG;
6272   unsigned Opcode = N->getOpcode();
6273   SDValue Op0 = N->getOperand(0);
6274   SDValue Op1 = N->getOperand(1);
6275   if (Op0.getOpcode() == ISD::BITCAST)
6276     Op0 = Op0.getOperand(0);
6277   if (ISD::isBuildVectorAllZeros(Op0.getNode())) {
6278     // (z_merge_* 0, 0) -> 0.  This is mostly useful for using VLLEZF
6279     // for v4f32.
6280     if (Op1 == N->getOperand(0))
6281       return Op1;
6282     // (z_merge_? 0, X) -> (z_unpackl_? 0, X).
6283     EVT VT = Op1.getValueType();
6284     unsigned ElemBytes = VT.getVectorElementType().getStoreSize();
6285     if (ElemBytes <= 4) {
6286       Opcode = (Opcode == SystemZISD::MERGE_HIGH ?
6287                 SystemZISD::UNPACKL_HIGH : SystemZISD::UNPACKL_LOW);
6288       EVT InVT = VT.changeVectorElementTypeToInteger();
6289       EVT OutVT = MVT::getVectorVT(MVT::getIntegerVT(ElemBytes * 16),
6290                                    SystemZ::VectorBytes / ElemBytes / 2);
6291       if (VT != InVT) {
6292         Op1 = DAG.getNode(ISD::BITCAST, SDLoc(N), InVT, Op1);
6293         DCI.AddToWorklist(Op1.getNode());
6294       }
6295       SDValue Op = DAG.getNode(Opcode, SDLoc(N), OutVT, Op1);
6296       DCI.AddToWorklist(Op.getNode());
6297       return DAG.getNode(ISD::BITCAST, SDLoc(N), VT, Op);
6298     }
6299   }
6300   return SDValue();
6301 }
6302 
6303 SDValue SystemZTargetLowering::combineLOAD(
6304     SDNode *N, DAGCombinerInfo &DCI) const {
6305   SelectionDAG &DAG = DCI.DAG;
6306   EVT LdVT = N->getValueType(0);
6307   if (LdVT.isVector() || LdVT.isInteger())
6308     return SDValue();
6309   // Transform a scalar load that is REPLICATEd as well as having other
6310   // use(s) to the form where the other use(s) use the first element of the
6311   // REPLICATE instead of the load. Otherwise instruction selection will not
6312   // produce a VLREP. Avoid extracting to a GPR, so only do this for floating
6313   // point loads.
6314 
6315   SDValue Replicate;
6316   SmallVector<SDNode*, 8> OtherUses;
6317   for (SDNode::use_iterator UI = N->use_begin(), UE = N->use_end();
6318        UI != UE; ++UI) {
6319     if (UI->getOpcode() == SystemZISD::REPLICATE) {
6320       if (Replicate)
6321         return SDValue(); // Should never happen
6322       Replicate = SDValue(*UI, 0);
6323     }
6324     else if (UI.getUse().getResNo() == 0)
6325       OtherUses.push_back(*UI);
6326   }
6327   if (!Replicate || OtherUses.empty())
6328     return SDValue();
6329 
6330   SDLoc DL(N);
6331   SDValue Extract0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, LdVT,
6332                               Replicate, DAG.getConstant(0, DL, MVT::i32));
6333   // Update uses of the loaded Value while preserving old chains.
6334   for (SDNode *U : OtherUses) {
6335     SmallVector<SDValue, 8> Ops;
6336     for (SDValue Op : U->ops())
6337       Ops.push_back((Op.getNode() == N && Op.getResNo() == 0) ? Extract0 : Op);
6338     DAG.UpdateNodeOperands(U, Ops);
6339   }
6340   return SDValue(N, 0);
6341 }
6342 
6343 bool SystemZTargetLowering::canLoadStoreByteSwapped(EVT VT) const {
6344   if (VT == MVT::i16 || VT == MVT::i32 || VT == MVT::i64)
6345     return true;
6346   if (Subtarget.hasVectorEnhancements2())
6347     if (VT == MVT::v8i16 || VT == MVT::v4i32 || VT == MVT::v2i64)
6348       return true;
6349   return false;
6350 }
6351 
6352 static bool isVectorElementSwap(ArrayRef<int> M, EVT VT) {
6353   if (!VT.isVector() || !VT.isSimple() ||
6354       VT.getSizeInBits() != 128 ||
6355       VT.getScalarSizeInBits() % 8 != 0)
6356     return false;
6357 
6358   unsigned NumElts = VT.getVectorNumElements();
6359   for (unsigned i = 0; i < NumElts; ++i) {
6360     if (M[i] < 0) continue; // ignore UNDEF indices
6361     if ((unsigned) M[i] != NumElts - 1 - i)
6362       return false;
6363   }
6364 
6365   return true;
6366 }
6367 
6368 static bool isOnlyUsedByStores(SDValue StoredVal, SelectionDAG &DAG) {
6369   for (auto *U : StoredVal->uses()) {
6370     if (StoreSDNode *ST = dyn_cast<StoreSDNode>(U)) {
6371       EVT CurrMemVT = ST->getMemoryVT().getScalarType();
6372       if (CurrMemVT.isRound() && CurrMemVT.getStoreSize() <= 16)
6373         continue;
6374     } else if (isa<BuildVectorSDNode>(U)) {
6375       SDValue BuildVector = SDValue(U, 0);
6376       if (DAG.isSplatValue(BuildVector, true/*AllowUndefs*/) &&
6377           isOnlyUsedByStores(BuildVector, DAG))
6378         continue;
6379     }
6380     return false;
6381   }
6382   return true;
6383 }
6384 
6385 SDValue SystemZTargetLowering::combineSTORE(
6386     SDNode *N, DAGCombinerInfo &DCI) const {
6387   SelectionDAG &DAG = DCI.DAG;
6388   auto *SN = cast<StoreSDNode>(N);
6389   auto &Op1 = N->getOperand(1);
6390   EVT MemVT = SN->getMemoryVT();
6391   // If we have (truncstoreiN (extract_vector_elt X, Y), Z) then it is better
6392   // for the extraction to be done on a vMiN value, so that we can use VSTE.
6393   // If X has wider elements then convert it to:
6394   // (truncstoreiN (extract_vector_elt (bitcast X), Y2), Z).
6395   if (MemVT.isInteger() && SN->isTruncatingStore()) {
6396     if (SDValue Value =
6397             combineTruncateExtract(SDLoc(N), MemVT, SN->getValue(), DCI)) {
6398       DCI.AddToWorklist(Value.getNode());
6399 
6400       // Rewrite the store with the new form of stored value.
6401       return DAG.getTruncStore(SN->getChain(), SDLoc(SN), Value,
6402                                SN->getBasePtr(), SN->getMemoryVT(),
6403                                SN->getMemOperand());
6404     }
6405   }
6406   // Combine STORE (BSWAP) into STRVH/STRV/STRVG/VSTBR
6407   if (!SN->isTruncatingStore() &&
6408       Op1.getOpcode() == ISD::BSWAP &&
6409       Op1.getNode()->hasOneUse() &&
6410       canLoadStoreByteSwapped(Op1.getValueType())) {
6411 
6412       SDValue BSwapOp = Op1.getOperand(0);
6413 
6414       if (BSwapOp.getValueType() == MVT::i16)
6415         BSwapOp = DAG.getNode(ISD::ANY_EXTEND, SDLoc(N), MVT::i32, BSwapOp);
6416 
6417       SDValue Ops[] = {
6418         N->getOperand(0), BSwapOp, N->getOperand(2)
6419       };
6420 
6421       return
6422         DAG.getMemIntrinsicNode(SystemZISD::STRV, SDLoc(N), DAG.getVTList(MVT::Other),
6423                                 Ops, MemVT, SN->getMemOperand());
6424     }
6425   // Combine STORE (element-swap) into VSTER
6426   if (!SN->isTruncatingStore() &&
6427       Op1.getOpcode() == ISD::VECTOR_SHUFFLE &&
6428       Op1.getNode()->hasOneUse() &&
6429       Subtarget.hasVectorEnhancements2()) {
6430     ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op1.getNode());
6431     ArrayRef<int> ShuffleMask = SVN->getMask();
6432     if (isVectorElementSwap(ShuffleMask, Op1.getValueType())) {
6433       SDValue Ops[] = {
6434         N->getOperand(0), Op1.getOperand(0), N->getOperand(2)
6435       };
6436 
6437       return DAG.getMemIntrinsicNode(SystemZISD::VSTER, SDLoc(N),
6438                                      DAG.getVTList(MVT::Other),
6439                                      Ops, MemVT, SN->getMemOperand());
6440     }
6441   }
6442 
6443   // Replicate a reg or immediate with VREP instead of scalar multiply or
6444   // immediate load. It seems best to do this during the first DAGCombine as
6445   // it is straight-forward to handle the zero-extend node in the initial
6446   // DAG, and also not worry about the keeping the new MemVT legal (e.g. when
6447   // extracting an i16 element from a v16i8 vector).
6448   if (Subtarget.hasVector() && DCI.Level == BeforeLegalizeTypes &&
6449       isOnlyUsedByStores(Op1, DAG)) {
6450     SDValue Word = SDValue();
6451     EVT WordVT;
6452 
6453     // Find a replicated immediate and return it if found in Word and its
6454     // type in WordVT.
6455     auto FindReplicatedImm = [&](ConstantSDNode *C, unsigned TotBytes) {
6456       // Some constants are better handled with a scalar store.
6457       if (C->getAPIntValue().getBitWidth() > 64 || C->isAllOnes() ||
6458           isInt<16>(C->getSExtValue()) || MemVT.getStoreSize() <= 2)
6459         return;
6460       SystemZVectorConstantInfo VCI(APInt(TotBytes * 8, C->getZExtValue()));
6461       if (VCI.isVectorConstantLegal(Subtarget) &&
6462           VCI.Opcode == SystemZISD::REPLICATE) {
6463         Word = DAG.getConstant(VCI.OpVals[0], SDLoc(SN), MVT::i32);
6464         WordVT = VCI.VecVT.getScalarType();
6465       }
6466     };
6467 
6468     // Find a replicated register and return it if found in Word and its type
6469     // in WordVT.
6470     auto FindReplicatedReg = [&](SDValue MulOp) {
6471       EVT MulVT = MulOp.getValueType();
6472       if (MulOp->getOpcode() == ISD::MUL &&
6473           (MulVT == MVT::i16 || MulVT == MVT::i32 || MulVT == MVT::i64)) {
6474         // Find a zero extended value and its type.
6475         SDValue LHS = MulOp->getOperand(0);
6476         if (LHS->getOpcode() == ISD::ZERO_EXTEND)
6477           WordVT = LHS->getOperand(0).getValueType();
6478         else if (LHS->getOpcode() == ISD::AssertZext)
6479           WordVT = cast<VTSDNode>(LHS->getOperand(1))->getVT();
6480         else
6481           return;
6482         // Find a replicating constant, e.g. 0x00010001.
6483         if (auto *C = dyn_cast<ConstantSDNode>(MulOp->getOperand(1))) {
6484           SystemZVectorConstantInfo VCI(
6485               APInt(MulVT.getSizeInBits(), C->getZExtValue()));
6486           if (VCI.isVectorConstantLegal(Subtarget) &&
6487               VCI.Opcode == SystemZISD::REPLICATE && VCI.OpVals[0] == 1 &&
6488               WordVT == VCI.VecVT.getScalarType())
6489             Word = DAG.getZExtOrTrunc(LHS->getOperand(0), SDLoc(SN), WordVT);
6490         }
6491       }
6492     };
6493 
6494     if (isa<BuildVectorSDNode>(Op1) &&
6495         DAG.isSplatValue(Op1, true/*AllowUndefs*/)) {
6496       SDValue SplatVal = Op1->getOperand(0);
6497       if (auto *C = dyn_cast<ConstantSDNode>(SplatVal))
6498         FindReplicatedImm(C, SplatVal.getValueType().getStoreSize());
6499       else
6500         FindReplicatedReg(SplatVal);
6501     } else {
6502       if (auto *C = dyn_cast<ConstantSDNode>(Op1))
6503         FindReplicatedImm(C, MemVT.getStoreSize());
6504       else
6505         FindReplicatedReg(Op1);
6506     }
6507 
6508     if (Word != SDValue()) {
6509       assert(MemVT.getSizeInBits() % WordVT.getSizeInBits() == 0 &&
6510              "Bad type handling");
6511       unsigned NumElts = MemVT.getSizeInBits() / WordVT.getSizeInBits();
6512       EVT SplatVT = EVT::getVectorVT(*DAG.getContext(), WordVT, NumElts);
6513       SDValue SplatVal = DAG.getSplatVector(SplatVT, SDLoc(SN), Word);
6514       return DAG.getStore(SN->getChain(), SDLoc(SN), SplatVal,
6515                           SN->getBasePtr(), SN->getMemOperand());
6516     }
6517   }
6518 
6519   return SDValue();
6520 }
6521 
6522 SDValue SystemZTargetLowering::combineVECTOR_SHUFFLE(
6523     SDNode *N, DAGCombinerInfo &DCI) const {
6524   SelectionDAG &DAG = DCI.DAG;
6525   // Combine element-swap (LOAD) into VLER
6526   if (ISD::isNON_EXTLoad(N->getOperand(0).getNode()) &&
6527       N->getOperand(0).hasOneUse() &&
6528       Subtarget.hasVectorEnhancements2()) {
6529     ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N);
6530     ArrayRef<int> ShuffleMask = SVN->getMask();
6531     if (isVectorElementSwap(ShuffleMask, N->getValueType(0))) {
6532       SDValue Load = N->getOperand(0);
6533       LoadSDNode *LD = cast<LoadSDNode>(Load);
6534 
6535       // Create the element-swapping load.
6536       SDValue Ops[] = {
6537         LD->getChain(),    // Chain
6538         LD->getBasePtr()   // Ptr
6539       };
6540       SDValue ESLoad =
6541         DAG.getMemIntrinsicNode(SystemZISD::VLER, SDLoc(N),
6542                                 DAG.getVTList(LD->getValueType(0), MVT::Other),
6543                                 Ops, LD->getMemoryVT(), LD->getMemOperand());
6544 
6545       // First, combine the VECTOR_SHUFFLE away.  This makes the value produced
6546       // by the load dead.
6547       DCI.CombineTo(N, ESLoad);
6548 
6549       // Next, combine the load away, we give it a bogus result value but a real
6550       // chain result.  The result value is dead because the shuffle is dead.
6551       DCI.CombineTo(Load.getNode(), ESLoad, ESLoad.getValue(1));
6552 
6553       // Return N so it doesn't get rechecked!
6554       return SDValue(N, 0);
6555     }
6556   }
6557 
6558   return SDValue();
6559 }
6560 
6561 SDValue SystemZTargetLowering::combineEXTRACT_VECTOR_ELT(
6562     SDNode *N, DAGCombinerInfo &DCI) const {
6563   SelectionDAG &DAG = DCI.DAG;
6564 
6565   if (!Subtarget.hasVector())
6566     return SDValue();
6567 
6568   // Look through bitcasts that retain the number of vector elements.
6569   SDValue Op = N->getOperand(0);
6570   if (Op.getOpcode() == ISD::BITCAST &&
6571       Op.getValueType().isVector() &&
6572       Op.getOperand(0).getValueType().isVector() &&
6573       Op.getValueType().getVectorNumElements() ==
6574       Op.getOperand(0).getValueType().getVectorNumElements())
6575     Op = Op.getOperand(0);
6576 
6577   // Pull BSWAP out of a vector extraction.
6578   if (Op.getOpcode() == ISD::BSWAP && Op.hasOneUse()) {
6579     EVT VecVT = Op.getValueType();
6580     EVT EltVT = VecVT.getVectorElementType();
6581     Op = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(N), EltVT,
6582                      Op.getOperand(0), N->getOperand(1));
6583     DCI.AddToWorklist(Op.getNode());
6584     Op = DAG.getNode(ISD::BSWAP, SDLoc(N), EltVT, Op);
6585     if (EltVT != N->getValueType(0)) {
6586       DCI.AddToWorklist(Op.getNode());
6587       Op = DAG.getNode(ISD::BITCAST, SDLoc(N), N->getValueType(0), Op);
6588     }
6589     return Op;
6590   }
6591 
6592   // Try to simplify a vector extraction.
6593   if (auto *IndexN = dyn_cast<ConstantSDNode>(N->getOperand(1))) {
6594     SDValue Op0 = N->getOperand(0);
6595     EVT VecVT = Op0.getValueType();
6596     return combineExtract(SDLoc(N), N->getValueType(0), VecVT, Op0,
6597                           IndexN->getZExtValue(), DCI, false);
6598   }
6599   return SDValue();
6600 }
6601 
6602 SDValue SystemZTargetLowering::combineJOIN_DWORDS(
6603     SDNode *N, DAGCombinerInfo &DCI) const {
6604   SelectionDAG &DAG = DCI.DAG;
6605   // (join_dwords X, X) == (replicate X)
6606   if (N->getOperand(0) == N->getOperand(1))
6607     return DAG.getNode(SystemZISD::REPLICATE, SDLoc(N), N->getValueType(0),
6608                        N->getOperand(0));
6609   return SDValue();
6610 }
6611 
6612 static SDValue MergeInputChains(SDNode *N1, SDNode *N2) {
6613   SDValue Chain1 = N1->getOperand(0);
6614   SDValue Chain2 = N2->getOperand(0);
6615 
6616   // Trivial case: both nodes take the same chain.
6617   if (Chain1 == Chain2)
6618     return Chain1;
6619 
6620   // FIXME - we could handle more complex cases via TokenFactor,
6621   // assuming we can verify that this would not create a cycle.
6622   return SDValue();
6623 }
6624 
6625 SDValue SystemZTargetLowering::combineFP_ROUND(
6626     SDNode *N, DAGCombinerInfo &DCI) const {
6627 
6628   if (!Subtarget.hasVector())
6629     return SDValue();
6630 
6631   // (fpround (extract_vector_elt X 0))
6632   // (fpround (extract_vector_elt X 1)) ->
6633   // (extract_vector_elt (VROUND X) 0)
6634   // (extract_vector_elt (VROUND X) 2)
6635   //
6636   // This is a special case since the target doesn't really support v2f32s.
6637   unsigned OpNo = N->isStrictFPOpcode() ? 1 : 0;
6638   SelectionDAG &DAG = DCI.DAG;
6639   SDValue Op0 = N->getOperand(OpNo);
6640   if (N->getValueType(0) == MVT::f32 &&
6641       Op0.hasOneUse() &&
6642       Op0.getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
6643       Op0.getOperand(0).getValueType() == MVT::v2f64 &&
6644       Op0.getOperand(1).getOpcode() == ISD::Constant &&
6645       cast<ConstantSDNode>(Op0.getOperand(1))->getZExtValue() == 0) {
6646     SDValue Vec = Op0.getOperand(0);
6647     for (auto *U : Vec->uses()) {
6648       if (U != Op0.getNode() &&
6649           U->hasOneUse() &&
6650           U->getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
6651           U->getOperand(0) == Vec &&
6652           U->getOperand(1).getOpcode() == ISD::Constant &&
6653           cast<ConstantSDNode>(U->getOperand(1))->getZExtValue() == 1) {
6654         SDValue OtherRound = SDValue(*U->use_begin(), 0);
6655         if (OtherRound.getOpcode() == N->getOpcode() &&
6656             OtherRound.getOperand(OpNo) == SDValue(U, 0) &&
6657             OtherRound.getValueType() == MVT::f32) {
6658           SDValue VRound, Chain;
6659           if (N->isStrictFPOpcode()) {
6660             Chain = MergeInputChains(N, OtherRound.getNode());
6661             if (!Chain)
6662               continue;
6663             VRound = DAG.getNode(SystemZISD::STRICT_VROUND, SDLoc(N),
6664                                  {MVT::v4f32, MVT::Other}, {Chain, Vec});
6665             Chain = VRound.getValue(1);
6666           } else
6667             VRound = DAG.getNode(SystemZISD::VROUND, SDLoc(N),
6668                                  MVT::v4f32, Vec);
6669           DCI.AddToWorklist(VRound.getNode());
6670           SDValue Extract1 =
6671             DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(U), MVT::f32,
6672                         VRound, DAG.getConstant(2, SDLoc(U), MVT::i32));
6673           DCI.AddToWorklist(Extract1.getNode());
6674           DAG.ReplaceAllUsesOfValueWith(OtherRound, Extract1);
6675           if (Chain)
6676             DAG.ReplaceAllUsesOfValueWith(OtherRound.getValue(1), Chain);
6677           SDValue Extract0 =
6678             DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(Op0), MVT::f32,
6679                         VRound, DAG.getConstant(0, SDLoc(Op0), MVT::i32));
6680           if (Chain)
6681             return DAG.getNode(ISD::MERGE_VALUES, SDLoc(Op0),
6682                                N->getVTList(), Extract0, Chain);
6683           return Extract0;
6684         }
6685       }
6686     }
6687   }
6688   return SDValue();
6689 }
6690 
6691 SDValue SystemZTargetLowering::combineFP_EXTEND(
6692     SDNode *N, DAGCombinerInfo &DCI) const {
6693 
6694   if (!Subtarget.hasVector())
6695     return SDValue();
6696 
6697   // (fpextend (extract_vector_elt X 0))
6698   // (fpextend (extract_vector_elt X 2)) ->
6699   // (extract_vector_elt (VEXTEND X) 0)
6700   // (extract_vector_elt (VEXTEND X) 1)
6701   //
6702   // This is a special case since the target doesn't really support v2f32s.
6703   unsigned OpNo = N->isStrictFPOpcode() ? 1 : 0;
6704   SelectionDAG &DAG = DCI.DAG;
6705   SDValue Op0 = N->getOperand(OpNo);
6706   if (N->getValueType(0) == MVT::f64 &&
6707       Op0.hasOneUse() &&
6708       Op0.getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
6709       Op0.getOperand(0).getValueType() == MVT::v4f32 &&
6710       Op0.getOperand(1).getOpcode() == ISD::Constant &&
6711       cast<ConstantSDNode>(Op0.getOperand(1))->getZExtValue() == 0) {
6712     SDValue Vec = Op0.getOperand(0);
6713     for (auto *U : Vec->uses()) {
6714       if (U != Op0.getNode() &&
6715           U->hasOneUse() &&
6716           U->getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
6717           U->getOperand(0) == Vec &&
6718           U->getOperand(1).getOpcode() == ISD::Constant &&
6719           cast<ConstantSDNode>(U->getOperand(1))->getZExtValue() == 2) {
6720         SDValue OtherExtend = SDValue(*U->use_begin(), 0);
6721         if (OtherExtend.getOpcode() == N->getOpcode() &&
6722             OtherExtend.getOperand(OpNo) == SDValue(U, 0) &&
6723             OtherExtend.getValueType() == MVT::f64) {
6724           SDValue VExtend, Chain;
6725           if (N->isStrictFPOpcode()) {
6726             Chain = MergeInputChains(N, OtherExtend.getNode());
6727             if (!Chain)
6728               continue;
6729             VExtend = DAG.getNode(SystemZISD::STRICT_VEXTEND, SDLoc(N),
6730                                   {MVT::v2f64, MVT::Other}, {Chain, Vec});
6731             Chain = VExtend.getValue(1);
6732           } else
6733             VExtend = DAG.getNode(SystemZISD::VEXTEND, SDLoc(N),
6734                                   MVT::v2f64, Vec);
6735           DCI.AddToWorklist(VExtend.getNode());
6736           SDValue Extract1 =
6737             DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(U), MVT::f64,
6738                         VExtend, DAG.getConstant(1, SDLoc(U), MVT::i32));
6739           DCI.AddToWorklist(Extract1.getNode());
6740           DAG.ReplaceAllUsesOfValueWith(OtherExtend, Extract1);
6741           if (Chain)
6742             DAG.ReplaceAllUsesOfValueWith(OtherExtend.getValue(1), Chain);
6743           SDValue Extract0 =
6744             DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(Op0), MVT::f64,
6745                         VExtend, DAG.getConstant(0, SDLoc(Op0), MVT::i32));
6746           if (Chain)
6747             return DAG.getNode(ISD::MERGE_VALUES, SDLoc(Op0),
6748                                N->getVTList(), Extract0, Chain);
6749           return Extract0;
6750         }
6751       }
6752     }
6753   }
6754   return SDValue();
6755 }
6756 
6757 SDValue SystemZTargetLowering::combineINT_TO_FP(
6758     SDNode *N, DAGCombinerInfo &DCI) const {
6759   if (DCI.Level != BeforeLegalizeTypes)
6760     return SDValue();
6761   SelectionDAG &DAG = DCI.DAG;
6762   LLVMContext &Ctx = *DAG.getContext();
6763   unsigned Opcode = N->getOpcode();
6764   EVT OutVT = N->getValueType(0);
6765   Type *OutLLVMTy = OutVT.getTypeForEVT(Ctx);
6766   SDValue Op = N->getOperand(0);
6767   unsigned OutScalarBits = OutLLVMTy->getScalarSizeInBits();
6768   unsigned InScalarBits = Op->getValueType(0).getScalarSizeInBits();
6769 
6770   // Insert an extension before type-legalization to avoid scalarization, e.g.:
6771   // v2f64 = uint_to_fp v2i16
6772   // =>
6773   // v2f64 = uint_to_fp (v2i64 zero_extend v2i16)
6774   if (OutLLVMTy->isVectorTy() && OutScalarBits > InScalarBits &&
6775       OutScalarBits <= 64) {
6776     unsigned NumElts = cast<FixedVectorType>(OutLLVMTy)->getNumElements();
6777     EVT ExtVT = EVT::getVectorVT(
6778         Ctx, EVT::getIntegerVT(Ctx, OutLLVMTy->getScalarSizeInBits()), NumElts);
6779     unsigned ExtOpcode =
6780         (Opcode == ISD::UINT_TO_FP ? ISD::ZERO_EXTEND : ISD::SIGN_EXTEND);
6781     SDValue ExtOp = DAG.getNode(ExtOpcode, SDLoc(N), ExtVT, Op);
6782     return DAG.getNode(Opcode, SDLoc(N), OutVT, ExtOp);
6783   }
6784   return SDValue();
6785 }
6786 
6787 SDValue SystemZTargetLowering::combineBSWAP(
6788     SDNode *N, DAGCombinerInfo &DCI) const {
6789   SelectionDAG &DAG = DCI.DAG;
6790   // Combine BSWAP (LOAD) into LRVH/LRV/LRVG/VLBR
6791   if (ISD::isNON_EXTLoad(N->getOperand(0).getNode()) &&
6792       N->getOperand(0).hasOneUse() &&
6793       canLoadStoreByteSwapped(N->getValueType(0))) {
6794       SDValue Load = N->getOperand(0);
6795       LoadSDNode *LD = cast<LoadSDNode>(Load);
6796 
6797       // Create the byte-swapping load.
6798       SDValue Ops[] = {
6799         LD->getChain(),    // Chain
6800         LD->getBasePtr()   // Ptr
6801       };
6802       EVT LoadVT = N->getValueType(0);
6803       if (LoadVT == MVT::i16)
6804         LoadVT = MVT::i32;
6805       SDValue BSLoad =
6806         DAG.getMemIntrinsicNode(SystemZISD::LRV, SDLoc(N),
6807                                 DAG.getVTList(LoadVT, MVT::Other),
6808                                 Ops, LD->getMemoryVT(), LD->getMemOperand());
6809 
6810       // If this is an i16 load, insert the truncate.
6811       SDValue ResVal = BSLoad;
6812       if (N->getValueType(0) == MVT::i16)
6813         ResVal = DAG.getNode(ISD::TRUNCATE, SDLoc(N), MVT::i16, BSLoad);
6814 
6815       // First, combine the bswap away.  This makes the value produced by the
6816       // load dead.
6817       DCI.CombineTo(N, ResVal);
6818 
6819       // Next, combine the load away, we give it a bogus result value but a real
6820       // chain result.  The result value is dead because the bswap is dead.
6821       DCI.CombineTo(Load.getNode(), ResVal, BSLoad.getValue(1));
6822 
6823       // Return N so it doesn't get rechecked!
6824       return SDValue(N, 0);
6825     }
6826 
6827   // Look through bitcasts that retain the number of vector elements.
6828   SDValue Op = N->getOperand(0);
6829   if (Op.getOpcode() == ISD::BITCAST &&
6830       Op.getValueType().isVector() &&
6831       Op.getOperand(0).getValueType().isVector() &&
6832       Op.getValueType().getVectorNumElements() ==
6833       Op.getOperand(0).getValueType().getVectorNumElements())
6834     Op = Op.getOperand(0);
6835 
6836   // Push BSWAP into a vector insertion if at least one side then simplifies.
6837   if (Op.getOpcode() == ISD::INSERT_VECTOR_ELT && Op.hasOneUse()) {
6838     SDValue Vec = Op.getOperand(0);
6839     SDValue Elt = Op.getOperand(1);
6840     SDValue Idx = Op.getOperand(2);
6841 
6842     if (DAG.isConstantIntBuildVectorOrConstantInt(Vec) ||
6843         Vec.getOpcode() == ISD::BSWAP || Vec.isUndef() ||
6844         DAG.isConstantIntBuildVectorOrConstantInt(Elt) ||
6845         Elt.getOpcode() == ISD::BSWAP || Elt.isUndef() ||
6846         (canLoadStoreByteSwapped(N->getValueType(0)) &&
6847          ISD::isNON_EXTLoad(Elt.getNode()) && Elt.hasOneUse())) {
6848       EVT VecVT = N->getValueType(0);
6849       EVT EltVT = N->getValueType(0).getVectorElementType();
6850       if (VecVT != Vec.getValueType()) {
6851         Vec = DAG.getNode(ISD::BITCAST, SDLoc(N), VecVT, Vec);
6852         DCI.AddToWorklist(Vec.getNode());
6853       }
6854       if (EltVT != Elt.getValueType()) {
6855         Elt = DAG.getNode(ISD::BITCAST, SDLoc(N), EltVT, Elt);
6856         DCI.AddToWorklist(Elt.getNode());
6857       }
6858       Vec = DAG.getNode(ISD::BSWAP, SDLoc(N), VecVT, Vec);
6859       DCI.AddToWorklist(Vec.getNode());
6860       Elt = DAG.getNode(ISD::BSWAP, SDLoc(N), EltVT, Elt);
6861       DCI.AddToWorklist(Elt.getNode());
6862       return DAG.getNode(ISD::INSERT_VECTOR_ELT, SDLoc(N), VecVT,
6863                          Vec, Elt, Idx);
6864     }
6865   }
6866 
6867   // Push BSWAP into a vector shuffle if at least one side then simplifies.
6868   ShuffleVectorSDNode *SV = dyn_cast<ShuffleVectorSDNode>(Op);
6869   if (SV && Op.hasOneUse()) {
6870     SDValue Op0 = Op.getOperand(0);
6871     SDValue Op1 = Op.getOperand(1);
6872 
6873     if (DAG.isConstantIntBuildVectorOrConstantInt(Op0) ||
6874         Op0.getOpcode() == ISD::BSWAP || Op0.isUndef() ||
6875         DAG.isConstantIntBuildVectorOrConstantInt(Op1) ||
6876         Op1.getOpcode() == ISD::BSWAP || Op1.isUndef()) {
6877       EVT VecVT = N->getValueType(0);
6878       if (VecVT != Op0.getValueType()) {
6879         Op0 = DAG.getNode(ISD::BITCAST, SDLoc(N), VecVT, Op0);
6880         DCI.AddToWorklist(Op0.getNode());
6881       }
6882       if (VecVT != Op1.getValueType()) {
6883         Op1 = DAG.getNode(ISD::BITCAST, SDLoc(N), VecVT, Op1);
6884         DCI.AddToWorklist(Op1.getNode());
6885       }
6886       Op0 = DAG.getNode(ISD::BSWAP, SDLoc(N), VecVT, Op0);
6887       DCI.AddToWorklist(Op0.getNode());
6888       Op1 = DAG.getNode(ISD::BSWAP, SDLoc(N), VecVT, Op1);
6889       DCI.AddToWorklist(Op1.getNode());
6890       return DAG.getVectorShuffle(VecVT, SDLoc(N), Op0, Op1, SV->getMask());
6891     }
6892   }
6893 
6894   return SDValue();
6895 }
6896 
6897 static bool combineCCMask(SDValue &CCReg, int &CCValid, int &CCMask) {
6898   // We have a SELECT_CCMASK or BR_CCMASK comparing the condition code
6899   // set by the CCReg instruction using the CCValid / CCMask masks,
6900   // If the CCReg instruction is itself a ICMP testing the condition
6901   // code set by some other instruction, see whether we can directly
6902   // use that condition code.
6903 
6904   // Verify that we have an ICMP against some constant.
6905   if (CCValid != SystemZ::CCMASK_ICMP)
6906     return false;
6907   auto *ICmp = CCReg.getNode();
6908   if (ICmp->getOpcode() != SystemZISD::ICMP)
6909     return false;
6910   auto *CompareLHS = ICmp->getOperand(0).getNode();
6911   auto *CompareRHS = dyn_cast<ConstantSDNode>(ICmp->getOperand(1));
6912   if (!CompareRHS)
6913     return false;
6914 
6915   // Optimize the case where CompareLHS is a SELECT_CCMASK.
6916   if (CompareLHS->getOpcode() == SystemZISD::SELECT_CCMASK) {
6917     // Verify that we have an appropriate mask for a EQ or NE comparison.
6918     bool Invert = false;
6919     if (CCMask == SystemZ::CCMASK_CMP_NE)
6920       Invert = !Invert;
6921     else if (CCMask != SystemZ::CCMASK_CMP_EQ)
6922       return false;
6923 
6924     // Verify that the ICMP compares against one of select values.
6925     auto *TrueVal = dyn_cast<ConstantSDNode>(CompareLHS->getOperand(0));
6926     if (!TrueVal)
6927       return false;
6928     auto *FalseVal = dyn_cast<ConstantSDNode>(CompareLHS->getOperand(1));
6929     if (!FalseVal)
6930       return false;
6931     if (CompareRHS->getZExtValue() == FalseVal->getZExtValue())
6932       Invert = !Invert;
6933     else if (CompareRHS->getZExtValue() != TrueVal->getZExtValue())
6934       return false;
6935 
6936     // Compute the effective CC mask for the new branch or select.
6937     auto *NewCCValid = dyn_cast<ConstantSDNode>(CompareLHS->getOperand(2));
6938     auto *NewCCMask = dyn_cast<ConstantSDNode>(CompareLHS->getOperand(3));
6939     if (!NewCCValid || !NewCCMask)
6940       return false;
6941     CCValid = NewCCValid->getZExtValue();
6942     CCMask = NewCCMask->getZExtValue();
6943     if (Invert)
6944       CCMask ^= CCValid;
6945 
6946     // Return the updated CCReg link.
6947     CCReg = CompareLHS->getOperand(4);
6948     return true;
6949   }
6950 
6951   // Optimize the case where CompareRHS is (SRA (SHL (IPM))).
6952   if (CompareLHS->getOpcode() == ISD::SRA) {
6953     auto *SRACount = dyn_cast<ConstantSDNode>(CompareLHS->getOperand(1));
6954     if (!SRACount || SRACount->getZExtValue() != 30)
6955       return false;
6956     auto *SHL = CompareLHS->getOperand(0).getNode();
6957     if (SHL->getOpcode() != ISD::SHL)
6958       return false;
6959     auto *SHLCount = dyn_cast<ConstantSDNode>(SHL->getOperand(1));
6960     if (!SHLCount || SHLCount->getZExtValue() != 30 - SystemZ::IPM_CC)
6961       return false;
6962     auto *IPM = SHL->getOperand(0).getNode();
6963     if (IPM->getOpcode() != SystemZISD::IPM)
6964       return false;
6965 
6966     // Avoid introducing CC spills (because SRA would clobber CC).
6967     if (!CompareLHS->hasOneUse())
6968       return false;
6969     // Verify that the ICMP compares against zero.
6970     if (CompareRHS->getZExtValue() != 0)
6971       return false;
6972 
6973     // Compute the effective CC mask for the new branch or select.
6974     CCMask = SystemZ::reverseCCMask(CCMask);
6975 
6976     // Return the updated CCReg link.
6977     CCReg = IPM->getOperand(0);
6978     return true;
6979   }
6980 
6981   return false;
6982 }
6983 
6984 SDValue SystemZTargetLowering::combineBR_CCMASK(
6985     SDNode *N, DAGCombinerInfo &DCI) const {
6986   SelectionDAG &DAG = DCI.DAG;
6987 
6988   // Combine BR_CCMASK (ICMP (SELECT_CCMASK)) into a single BR_CCMASK.
6989   auto *CCValid = dyn_cast<ConstantSDNode>(N->getOperand(1));
6990   auto *CCMask = dyn_cast<ConstantSDNode>(N->getOperand(2));
6991   if (!CCValid || !CCMask)
6992     return SDValue();
6993 
6994   int CCValidVal = CCValid->getZExtValue();
6995   int CCMaskVal = CCMask->getZExtValue();
6996   SDValue Chain = N->getOperand(0);
6997   SDValue CCReg = N->getOperand(4);
6998 
6999   if (combineCCMask(CCReg, CCValidVal, CCMaskVal))
7000     return DAG.getNode(SystemZISD::BR_CCMASK, SDLoc(N), N->getValueType(0),
7001                        Chain,
7002                        DAG.getTargetConstant(CCValidVal, SDLoc(N), MVT::i32),
7003                        DAG.getTargetConstant(CCMaskVal, SDLoc(N), MVT::i32),
7004                        N->getOperand(3), CCReg);
7005   return SDValue();
7006 }
7007 
7008 SDValue SystemZTargetLowering::combineSELECT_CCMASK(
7009     SDNode *N, DAGCombinerInfo &DCI) const {
7010   SelectionDAG &DAG = DCI.DAG;
7011 
7012   // Combine SELECT_CCMASK (ICMP (SELECT_CCMASK)) into a single SELECT_CCMASK.
7013   auto *CCValid = dyn_cast<ConstantSDNode>(N->getOperand(2));
7014   auto *CCMask = dyn_cast<ConstantSDNode>(N->getOperand(3));
7015   if (!CCValid || !CCMask)
7016     return SDValue();
7017 
7018   int CCValidVal = CCValid->getZExtValue();
7019   int CCMaskVal = CCMask->getZExtValue();
7020   SDValue CCReg = N->getOperand(4);
7021 
7022   if (combineCCMask(CCReg, CCValidVal, CCMaskVal))
7023     return DAG.getNode(SystemZISD::SELECT_CCMASK, SDLoc(N), N->getValueType(0),
7024                        N->getOperand(0), N->getOperand(1),
7025                        DAG.getTargetConstant(CCValidVal, SDLoc(N), MVT::i32),
7026                        DAG.getTargetConstant(CCMaskVal, SDLoc(N), MVT::i32),
7027                        CCReg);
7028   return SDValue();
7029 }
7030 
7031 
7032 SDValue SystemZTargetLowering::combineGET_CCMASK(
7033     SDNode *N, DAGCombinerInfo &DCI) const {
7034 
7035   // Optimize away GET_CCMASK (SELECT_CCMASK) if the CC masks are compatible
7036   auto *CCValid = dyn_cast<ConstantSDNode>(N->getOperand(1));
7037   auto *CCMask = dyn_cast<ConstantSDNode>(N->getOperand(2));
7038   if (!CCValid || !CCMask)
7039     return SDValue();
7040   int CCValidVal = CCValid->getZExtValue();
7041   int CCMaskVal = CCMask->getZExtValue();
7042 
7043   SDValue Select = N->getOperand(0);
7044   if (Select->getOpcode() != SystemZISD::SELECT_CCMASK)
7045     return SDValue();
7046 
7047   auto *SelectCCValid = dyn_cast<ConstantSDNode>(Select->getOperand(2));
7048   auto *SelectCCMask = dyn_cast<ConstantSDNode>(Select->getOperand(3));
7049   if (!SelectCCValid || !SelectCCMask)
7050     return SDValue();
7051   int SelectCCValidVal = SelectCCValid->getZExtValue();
7052   int SelectCCMaskVal = SelectCCMask->getZExtValue();
7053 
7054   auto *TrueVal = dyn_cast<ConstantSDNode>(Select->getOperand(0));
7055   auto *FalseVal = dyn_cast<ConstantSDNode>(Select->getOperand(1));
7056   if (!TrueVal || !FalseVal)
7057     return SDValue();
7058   if (TrueVal->getZExtValue() != 0 && FalseVal->getZExtValue() == 0)
7059     ;
7060   else if (TrueVal->getZExtValue() == 0 && FalseVal->getZExtValue() != 0)
7061     SelectCCMaskVal ^= SelectCCValidVal;
7062   else
7063     return SDValue();
7064 
7065   if (SelectCCValidVal & ~CCValidVal)
7066     return SDValue();
7067   if (SelectCCMaskVal != (CCMaskVal & SelectCCValidVal))
7068     return SDValue();
7069 
7070   return Select->getOperand(4);
7071 }
7072 
7073 SDValue SystemZTargetLowering::combineIntDIVREM(
7074     SDNode *N, DAGCombinerInfo &DCI) const {
7075   SelectionDAG &DAG = DCI.DAG;
7076   EVT VT = N->getValueType(0);
7077   // In the case where the divisor is a vector of constants a cheaper
7078   // sequence of instructions can replace the divide. BuildSDIV is called to
7079   // do this during DAG combining, but it only succeeds when it can build a
7080   // multiplication node. The only option for SystemZ is ISD::SMUL_LOHI, and
7081   // since it is not Legal but Custom it can only happen before
7082   // legalization. Therefore we must scalarize this early before Combine
7083   // 1. For widened vectors, this is already the result of type legalization.
7084   if (DCI.Level == BeforeLegalizeTypes && VT.isVector() && isTypeLegal(VT) &&
7085       DAG.isConstantIntBuildVectorOrConstantInt(N->getOperand(1)))
7086     return DAG.UnrollVectorOp(N);
7087   return SDValue();
7088 }
7089 
7090 SDValue SystemZTargetLowering::combineINTRINSIC(
7091     SDNode *N, DAGCombinerInfo &DCI) const {
7092   SelectionDAG &DAG = DCI.DAG;
7093 
7094   unsigned Id = cast<ConstantSDNode>(N->getOperand(1))->getZExtValue();
7095   switch (Id) {
7096   // VECTOR LOAD (RIGHTMOST) WITH LENGTH with a length operand of 15
7097   // or larger is simply a vector load.
7098   case Intrinsic::s390_vll:
7099   case Intrinsic::s390_vlrl:
7100     if (auto *C = dyn_cast<ConstantSDNode>(N->getOperand(2)))
7101       if (C->getZExtValue() >= 15)
7102         return DAG.getLoad(N->getValueType(0), SDLoc(N), N->getOperand(0),
7103                            N->getOperand(3), MachinePointerInfo());
7104     break;
7105   // Likewise for VECTOR STORE (RIGHTMOST) WITH LENGTH.
7106   case Intrinsic::s390_vstl:
7107   case Intrinsic::s390_vstrl:
7108     if (auto *C = dyn_cast<ConstantSDNode>(N->getOperand(3)))
7109       if (C->getZExtValue() >= 15)
7110         return DAG.getStore(N->getOperand(0), SDLoc(N), N->getOperand(2),
7111                             N->getOperand(4), MachinePointerInfo());
7112     break;
7113   }
7114 
7115   return SDValue();
7116 }
7117 
7118 SDValue SystemZTargetLowering::unwrapAddress(SDValue N) const {
7119   if (N->getOpcode() == SystemZISD::PCREL_WRAPPER)
7120     return N->getOperand(0);
7121   return N;
7122 }
7123 
7124 SDValue SystemZTargetLowering::PerformDAGCombine(SDNode *N,
7125                                                  DAGCombinerInfo &DCI) const {
7126   switch(N->getOpcode()) {
7127   default: break;
7128   case ISD::ZERO_EXTEND:        return combineZERO_EXTEND(N, DCI);
7129   case ISD::SIGN_EXTEND:        return combineSIGN_EXTEND(N, DCI);
7130   case ISD::SIGN_EXTEND_INREG:  return combineSIGN_EXTEND_INREG(N, DCI);
7131   case SystemZISD::MERGE_HIGH:
7132   case SystemZISD::MERGE_LOW:   return combineMERGE(N, DCI);
7133   case ISD::LOAD:               return combineLOAD(N, DCI);
7134   case ISD::STORE:              return combineSTORE(N, DCI);
7135   case ISD::VECTOR_SHUFFLE:     return combineVECTOR_SHUFFLE(N, DCI);
7136   case ISD::EXTRACT_VECTOR_ELT: return combineEXTRACT_VECTOR_ELT(N, DCI);
7137   case SystemZISD::JOIN_DWORDS: return combineJOIN_DWORDS(N, DCI);
7138   case ISD::STRICT_FP_ROUND:
7139   case ISD::FP_ROUND:           return combineFP_ROUND(N, DCI);
7140   case ISD::STRICT_FP_EXTEND:
7141   case ISD::FP_EXTEND:          return combineFP_EXTEND(N, DCI);
7142   case ISD::SINT_TO_FP:
7143   case ISD::UINT_TO_FP:         return combineINT_TO_FP(N, DCI);
7144   case ISD::BSWAP:              return combineBSWAP(N, DCI);
7145   case SystemZISD::BR_CCMASK:   return combineBR_CCMASK(N, DCI);
7146   case SystemZISD::SELECT_CCMASK: return combineSELECT_CCMASK(N, DCI);
7147   case SystemZISD::GET_CCMASK:  return combineGET_CCMASK(N, DCI);
7148   case ISD::SDIV:
7149   case ISD::UDIV:
7150   case ISD::SREM:
7151   case ISD::UREM:               return combineIntDIVREM(N, DCI);
7152   case ISD::INTRINSIC_W_CHAIN:
7153   case ISD::INTRINSIC_VOID:     return combineINTRINSIC(N, DCI);
7154   }
7155 
7156   return SDValue();
7157 }
7158 
7159 // Return the demanded elements for the OpNo source operand of Op. DemandedElts
7160 // are for Op.
7161 static APInt getDemandedSrcElements(SDValue Op, const APInt &DemandedElts,
7162                                     unsigned OpNo) {
7163   EVT VT = Op.getValueType();
7164   unsigned NumElts = (VT.isVector() ? VT.getVectorNumElements() : 1);
7165   APInt SrcDemE;
7166   unsigned Opcode = Op.getOpcode();
7167   if (Opcode == ISD::INTRINSIC_WO_CHAIN) {
7168     unsigned Id = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
7169     switch (Id) {
7170     case Intrinsic::s390_vpksh:   // PACKS
7171     case Intrinsic::s390_vpksf:
7172     case Intrinsic::s390_vpksg:
7173     case Intrinsic::s390_vpkshs:  // PACKS_CC
7174     case Intrinsic::s390_vpksfs:
7175     case Intrinsic::s390_vpksgs:
7176     case Intrinsic::s390_vpklsh:  // PACKLS
7177     case Intrinsic::s390_vpklsf:
7178     case Intrinsic::s390_vpklsg:
7179     case Intrinsic::s390_vpklshs: // PACKLS_CC
7180     case Intrinsic::s390_vpklsfs:
7181     case Intrinsic::s390_vpklsgs:
7182       // VECTOR PACK truncates the elements of two source vectors into one.
7183       SrcDemE = DemandedElts;
7184       if (OpNo == 2)
7185         SrcDemE.lshrInPlace(NumElts / 2);
7186       SrcDemE = SrcDemE.trunc(NumElts / 2);
7187       break;
7188       // VECTOR UNPACK extends half the elements of the source vector.
7189     case Intrinsic::s390_vuphb:  // VECTOR UNPACK HIGH
7190     case Intrinsic::s390_vuphh:
7191     case Intrinsic::s390_vuphf:
7192     case Intrinsic::s390_vuplhb: // VECTOR UNPACK LOGICAL HIGH
7193     case Intrinsic::s390_vuplhh:
7194     case Intrinsic::s390_vuplhf:
7195       SrcDemE = APInt(NumElts * 2, 0);
7196       SrcDemE.insertBits(DemandedElts, 0);
7197       break;
7198     case Intrinsic::s390_vuplb:  // VECTOR UNPACK LOW
7199     case Intrinsic::s390_vuplhw:
7200     case Intrinsic::s390_vuplf:
7201     case Intrinsic::s390_vupllb: // VECTOR UNPACK LOGICAL LOW
7202     case Intrinsic::s390_vupllh:
7203     case Intrinsic::s390_vupllf:
7204       SrcDemE = APInt(NumElts * 2, 0);
7205       SrcDemE.insertBits(DemandedElts, NumElts);
7206       break;
7207     case Intrinsic::s390_vpdi: {
7208       // VECTOR PERMUTE DWORD IMMEDIATE selects one element from each source.
7209       SrcDemE = APInt(NumElts, 0);
7210       if (!DemandedElts[OpNo - 1])
7211         break;
7212       unsigned Mask = cast<ConstantSDNode>(Op.getOperand(3))->getZExtValue();
7213       unsigned MaskBit = ((OpNo - 1) ? 1 : 4);
7214       // Demand input element 0 or 1, given by the mask bit value.
7215       SrcDemE.setBit((Mask & MaskBit)? 1 : 0);
7216       break;
7217     }
7218     case Intrinsic::s390_vsldb: {
7219       // VECTOR SHIFT LEFT DOUBLE BY BYTE
7220       assert(VT == MVT::v16i8 && "Unexpected type.");
7221       unsigned FirstIdx = cast<ConstantSDNode>(Op.getOperand(3))->getZExtValue();
7222       assert (FirstIdx > 0 && FirstIdx < 16 && "Unused operand.");
7223       unsigned NumSrc0Els = 16 - FirstIdx;
7224       SrcDemE = APInt(NumElts, 0);
7225       if (OpNo == 1) {
7226         APInt DemEls = DemandedElts.trunc(NumSrc0Els);
7227         SrcDemE.insertBits(DemEls, FirstIdx);
7228       } else {
7229         APInt DemEls = DemandedElts.lshr(NumSrc0Els);
7230         SrcDemE.insertBits(DemEls, 0);
7231       }
7232       break;
7233     }
7234     case Intrinsic::s390_vperm:
7235       SrcDemE = APInt(NumElts, 1);
7236       break;
7237     default:
7238       llvm_unreachable("Unhandled intrinsic.");
7239       break;
7240     }
7241   } else {
7242     switch (Opcode) {
7243     case SystemZISD::JOIN_DWORDS:
7244       // Scalar operand.
7245       SrcDemE = APInt(1, 1);
7246       break;
7247     case SystemZISD::SELECT_CCMASK:
7248       SrcDemE = DemandedElts;
7249       break;
7250     default:
7251       llvm_unreachable("Unhandled opcode.");
7252       break;
7253     }
7254   }
7255   return SrcDemE;
7256 }
7257 
7258 static void computeKnownBitsBinOp(const SDValue Op, KnownBits &Known,
7259                                   const APInt &DemandedElts,
7260                                   const SelectionDAG &DAG, unsigned Depth,
7261                                   unsigned OpNo) {
7262   APInt Src0DemE = getDemandedSrcElements(Op, DemandedElts, OpNo);
7263   APInt Src1DemE = getDemandedSrcElements(Op, DemandedElts, OpNo + 1);
7264   KnownBits LHSKnown =
7265       DAG.computeKnownBits(Op.getOperand(OpNo), Src0DemE, Depth + 1);
7266   KnownBits RHSKnown =
7267       DAG.computeKnownBits(Op.getOperand(OpNo + 1), Src1DemE, Depth + 1);
7268   Known = KnownBits::commonBits(LHSKnown, RHSKnown);
7269 }
7270 
7271 void
7272 SystemZTargetLowering::computeKnownBitsForTargetNode(const SDValue Op,
7273                                                      KnownBits &Known,
7274                                                      const APInt &DemandedElts,
7275                                                      const SelectionDAG &DAG,
7276                                                      unsigned Depth) const {
7277   Known.resetAll();
7278 
7279   // Intrinsic CC result is returned in the two low bits.
7280   unsigned tmp0, tmp1; // not used
7281   if (Op.getResNo() == 1 && isIntrinsicWithCC(Op, tmp0, tmp1)) {
7282     Known.Zero.setBitsFrom(2);
7283     return;
7284   }
7285   EVT VT = Op.getValueType();
7286   if (Op.getResNo() != 0 || VT == MVT::Untyped)
7287     return;
7288   assert (Known.getBitWidth() == VT.getScalarSizeInBits() &&
7289           "KnownBits does not match VT in bitwidth");
7290   assert ((!VT.isVector() ||
7291            (DemandedElts.getBitWidth() == VT.getVectorNumElements())) &&
7292           "DemandedElts does not match VT number of elements");
7293   unsigned BitWidth = Known.getBitWidth();
7294   unsigned Opcode = Op.getOpcode();
7295   if (Opcode == ISD::INTRINSIC_WO_CHAIN) {
7296     bool IsLogical = false;
7297     unsigned Id = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
7298     switch (Id) {
7299     case Intrinsic::s390_vpksh:   // PACKS
7300     case Intrinsic::s390_vpksf:
7301     case Intrinsic::s390_vpksg:
7302     case Intrinsic::s390_vpkshs:  // PACKS_CC
7303     case Intrinsic::s390_vpksfs:
7304     case Intrinsic::s390_vpksgs:
7305     case Intrinsic::s390_vpklsh:  // PACKLS
7306     case Intrinsic::s390_vpklsf:
7307     case Intrinsic::s390_vpklsg:
7308     case Intrinsic::s390_vpklshs: // PACKLS_CC
7309     case Intrinsic::s390_vpklsfs:
7310     case Intrinsic::s390_vpklsgs:
7311     case Intrinsic::s390_vpdi:
7312     case Intrinsic::s390_vsldb:
7313     case Intrinsic::s390_vperm:
7314       computeKnownBitsBinOp(Op, Known, DemandedElts, DAG, Depth, 1);
7315       break;
7316     case Intrinsic::s390_vuplhb: // VECTOR UNPACK LOGICAL HIGH
7317     case Intrinsic::s390_vuplhh:
7318     case Intrinsic::s390_vuplhf:
7319     case Intrinsic::s390_vupllb: // VECTOR UNPACK LOGICAL LOW
7320     case Intrinsic::s390_vupllh:
7321     case Intrinsic::s390_vupllf:
7322       IsLogical = true;
7323       LLVM_FALLTHROUGH;
7324     case Intrinsic::s390_vuphb:  // VECTOR UNPACK HIGH
7325     case Intrinsic::s390_vuphh:
7326     case Intrinsic::s390_vuphf:
7327     case Intrinsic::s390_vuplb:  // VECTOR UNPACK LOW
7328     case Intrinsic::s390_vuplhw:
7329     case Intrinsic::s390_vuplf: {
7330       SDValue SrcOp = Op.getOperand(1);
7331       APInt SrcDemE = getDemandedSrcElements(Op, DemandedElts, 0);
7332       Known = DAG.computeKnownBits(SrcOp, SrcDemE, Depth + 1);
7333       if (IsLogical) {
7334         Known = Known.zext(BitWidth);
7335       } else
7336         Known = Known.sext(BitWidth);
7337       break;
7338     }
7339     default:
7340       break;
7341     }
7342   } else {
7343     switch (Opcode) {
7344     case SystemZISD::JOIN_DWORDS:
7345     case SystemZISD::SELECT_CCMASK:
7346       computeKnownBitsBinOp(Op, Known, DemandedElts, DAG, Depth, 0);
7347       break;
7348     case SystemZISD::REPLICATE: {
7349       SDValue SrcOp = Op.getOperand(0);
7350       Known = DAG.computeKnownBits(SrcOp, Depth + 1);
7351       if (Known.getBitWidth() < BitWidth && isa<ConstantSDNode>(SrcOp))
7352         Known = Known.sext(BitWidth); // VREPI sign extends the immedate.
7353       break;
7354     }
7355     default:
7356       break;
7357     }
7358   }
7359 
7360   // Known has the width of the source operand(s). Adjust if needed to match
7361   // the passed bitwidth.
7362   if (Known.getBitWidth() != BitWidth)
7363     Known = Known.anyextOrTrunc(BitWidth);
7364 }
7365 
7366 static unsigned computeNumSignBitsBinOp(SDValue Op, const APInt &DemandedElts,
7367                                         const SelectionDAG &DAG, unsigned Depth,
7368                                         unsigned OpNo) {
7369   APInt Src0DemE = getDemandedSrcElements(Op, DemandedElts, OpNo);
7370   unsigned LHS = DAG.ComputeNumSignBits(Op.getOperand(OpNo), Src0DemE, Depth + 1);
7371   if (LHS == 1) return 1; // Early out.
7372   APInt Src1DemE = getDemandedSrcElements(Op, DemandedElts, OpNo + 1);
7373   unsigned RHS = DAG.ComputeNumSignBits(Op.getOperand(OpNo + 1), Src1DemE, Depth + 1);
7374   if (RHS == 1) return 1; // Early out.
7375   unsigned Common = std::min(LHS, RHS);
7376   unsigned SrcBitWidth = Op.getOperand(OpNo).getScalarValueSizeInBits();
7377   EVT VT = Op.getValueType();
7378   unsigned VTBits = VT.getScalarSizeInBits();
7379   if (SrcBitWidth > VTBits) { // PACK
7380     unsigned SrcExtraBits = SrcBitWidth - VTBits;
7381     if (Common > SrcExtraBits)
7382       return (Common - SrcExtraBits);
7383     return 1;
7384   }
7385   assert (SrcBitWidth == VTBits && "Expected operands of same bitwidth.");
7386   return Common;
7387 }
7388 
7389 unsigned
7390 SystemZTargetLowering::ComputeNumSignBitsForTargetNode(
7391     SDValue Op, const APInt &DemandedElts, const SelectionDAG &DAG,
7392     unsigned Depth) const {
7393   if (Op.getResNo() != 0)
7394     return 1;
7395   unsigned Opcode = Op.getOpcode();
7396   if (Opcode == ISD::INTRINSIC_WO_CHAIN) {
7397     unsigned Id = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
7398     switch (Id) {
7399     case Intrinsic::s390_vpksh:   // PACKS
7400     case Intrinsic::s390_vpksf:
7401     case Intrinsic::s390_vpksg:
7402     case Intrinsic::s390_vpkshs:  // PACKS_CC
7403     case Intrinsic::s390_vpksfs:
7404     case Intrinsic::s390_vpksgs:
7405     case Intrinsic::s390_vpklsh:  // PACKLS
7406     case Intrinsic::s390_vpklsf:
7407     case Intrinsic::s390_vpklsg:
7408     case Intrinsic::s390_vpklshs: // PACKLS_CC
7409     case Intrinsic::s390_vpklsfs:
7410     case Intrinsic::s390_vpklsgs:
7411     case Intrinsic::s390_vpdi:
7412     case Intrinsic::s390_vsldb:
7413     case Intrinsic::s390_vperm:
7414       return computeNumSignBitsBinOp(Op, DemandedElts, DAG, Depth, 1);
7415     case Intrinsic::s390_vuphb:  // VECTOR UNPACK HIGH
7416     case Intrinsic::s390_vuphh:
7417     case Intrinsic::s390_vuphf:
7418     case Intrinsic::s390_vuplb:  // VECTOR UNPACK LOW
7419     case Intrinsic::s390_vuplhw:
7420     case Intrinsic::s390_vuplf: {
7421       SDValue PackedOp = Op.getOperand(1);
7422       APInt SrcDemE = getDemandedSrcElements(Op, DemandedElts, 1);
7423       unsigned Tmp = DAG.ComputeNumSignBits(PackedOp, SrcDemE, Depth + 1);
7424       EVT VT = Op.getValueType();
7425       unsigned VTBits = VT.getScalarSizeInBits();
7426       Tmp += VTBits - PackedOp.getScalarValueSizeInBits();
7427       return Tmp;
7428     }
7429     default:
7430       break;
7431     }
7432   } else {
7433     switch (Opcode) {
7434     case SystemZISD::SELECT_CCMASK:
7435       return computeNumSignBitsBinOp(Op, DemandedElts, DAG, Depth, 0);
7436     default:
7437       break;
7438     }
7439   }
7440 
7441   return 1;
7442 }
7443 
7444 unsigned
7445 SystemZTargetLowering::getStackProbeSize(MachineFunction &MF) const {
7446   const TargetFrameLowering *TFI = Subtarget.getFrameLowering();
7447   unsigned StackAlign = TFI->getStackAlignment();
7448   assert(StackAlign >=1 && isPowerOf2_32(StackAlign) &&
7449          "Unexpected stack alignment");
7450   // The default stack probe size is 4096 if the function has no
7451   // stack-probe-size attribute.
7452   unsigned StackProbeSize = 4096;
7453   const Function &Fn = MF.getFunction();
7454   if (Fn.hasFnAttribute("stack-probe-size"))
7455     Fn.getFnAttribute("stack-probe-size")
7456         .getValueAsString()
7457         .getAsInteger(0, StackProbeSize);
7458   // Round down to the stack alignment.
7459   StackProbeSize &= ~(StackAlign - 1);
7460   return StackProbeSize ? StackProbeSize : StackAlign;
7461 }
7462 
7463 //===----------------------------------------------------------------------===//
7464 // Custom insertion
7465 //===----------------------------------------------------------------------===//
7466 
7467 // Force base value Base into a register before MI.  Return the register.
7468 static Register forceReg(MachineInstr &MI, MachineOperand &Base,
7469                          const SystemZInstrInfo *TII) {
7470   MachineBasicBlock *MBB = MI.getParent();
7471   MachineFunction &MF = *MBB->getParent();
7472   MachineRegisterInfo &MRI = MF.getRegInfo();
7473 
7474   if (Base.isReg()) {
7475     // Copy Base into a new virtual register to help register coalescing in
7476     // cases with multiple uses.
7477     Register Reg = MRI.createVirtualRegister(&SystemZ::ADDR64BitRegClass);
7478     BuildMI(*MBB, MI, MI.getDebugLoc(), TII->get(SystemZ::COPY), Reg)
7479       .add(Base);
7480     return Reg;
7481   }
7482 
7483   Register Reg = MRI.createVirtualRegister(&SystemZ::ADDR64BitRegClass);
7484   BuildMI(*MBB, MI, MI.getDebugLoc(), TII->get(SystemZ::LA), Reg)
7485       .add(Base)
7486       .addImm(0)
7487       .addReg(0);
7488   return Reg;
7489 }
7490 
7491 // The CC operand of MI might be missing a kill marker because there
7492 // were multiple uses of CC, and ISel didn't know which to mark.
7493 // Figure out whether MI should have had a kill marker.
7494 static bool checkCCKill(MachineInstr &MI, MachineBasicBlock *MBB) {
7495   // Scan forward through BB for a use/def of CC.
7496   MachineBasicBlock::iterator miI(std::next(MachineBasicBlock::iterator(MI)));
7497   for (MachineBasicBlock::iterator miE = MBB->end(); miI != miE; ++miI) {
7498     const MachineInstr& mi = *miI;
7499     if (mi.readsRegister(SystemZ::CC))
7500       return false;
7501     if (mi.definesRegister(SystemZ::CC))
7502       break; // Should have kill-flag - update below.
7503   }
7504 
7505   // If we hit the end of the block, check whether CC is live into a
7506   // successor.
7507   if (miI == MBB->end()) {
7508     for (const MachineBasicBlock *Succ : MBB->successors())
7509       if (Succ->isLiveIn(SystemZ::CC))
7510         return false;
7511   }
7512 
7513   return true;
7514 }
7515 
7516 // Return true if it is OK for this Select pseudo-opcode to be cascaded
7517 // together with other Select pseudo-opcodes into a single basic-block with
7518 // a conditional jump around it.
7519 static bool isSelectPseudo(MachineInstr &MI) {
7520   switch (MI.getOpcode()) {
7521   case SystemZ::Select32:
7522   case SystemZ::Select64:
7523   case SystemZ::SelectF32:
7524   case SystemZ::SelectF64:
7525   case SystemZ::SelectF128:
7526   case SystemZ::SelectVR32:
7527   case SystemZ::SelectVR64:
7528   case SystemZ::SelectVR128:
7529     return true;
7530 
7531   default:
7532     return false;
7533   }
7534 }
7535 
7536 // Helper function, which inserts PHI functions into SinkMBB:
7537 //   %Result(i) = phi [ %FalseValue(i), FalseMBB ], [ %TrueValue(i), TrueMBB ],
7538 // where %FalseValue(i) and %TrueValue(i) are taken from Selects.
7539 static void createPHIsForSelects(SmallVector<MachineInstr*, 8> &Selects,
7540                                  MachineBasicBlock *TrueMBB,
7541                                  MachineBasicBlock *FalseMBB,
7542                                  MachineBasicBlock *SinkMBB) {
7543   MachineFunction *MF = TrueMBB->getParent();
7544   const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo();
7545 
7546   MachineInstr *FirstMI = Selects.front();
7547   unsigned CCValid = FirstMI->getOperand(3).getImm();
7548   unsigned CCMask = FirstMI->getOperand(4).getImm();
7549 
7550   MachineBasicBlock::iterator SinkInsertionPoint = SinkMBB->begin();
7551 
7552   // As we are creating the PHIs, we have to be careful if there is more than
7553   // one.  Later Selects may reference the results of earlier Selects, but later
7554   // PHIs have to reference the individual true/false inputs from earlier PHIs.
7555   // That also means that PHI construction must work forward from earlier to
7556   // later, and that the code must maintain a mapping from earlier PHI's
7557   // destination registers, and the registers that went into the PHI.
7558   DenseMap<unsigned, std::pair<unsigned, unsigned>> RegRewriteTable;
7559 
7560   for (auto MI : Selects) {
7561     Register DestReg = MI->getOperand(0).getReg();
7562     Register TrueReg = MI->getOperand(1).getReg();
7563     Register FalseReg = MI->getOperand(2).getReg();
7564 
7565     // If this Select we are generating is the opposite condition from
7566     // the jump we generated, then we have to swap the operands for the
7567     // PHI that is going to be generated.
7568     if (MI->getOperand(4).getImm() == (CCValid ^ CCMask))
7569       std::swap(TrueReg, FalseReg);
7570 
7571     if (RegRewriteTable.find(TrueReg) != RegRewriteTable.end())
7572       TrueReg = RegRewriteTable[TrueReg].first;
7573 
7574     if (RegRewriteTable.find(FalseReg) != RegRewriteTable.end())
7575       FalseReg = RegRewriteTable[FalseReg].second;
7576 
7577     DebugLoc DL = MI->getDebugLoc();
7578     BuildMI(*SinkMBB, SinkInsertionPoint, DL, TII->get(SystemZ::PHI), DestReg)
7579       .addReg(TrueReg).addMBB(TrueMBB)
7580       .addReg(FalseReg).addMBB(FalseMBB);
7581 
7582     // Add this PHI to the rewrite table.
7583     RegRewriteTable[DestReg] = std::make_pair(TrueReg, FalseReg);
7584   }
7585 
7586   MF->getProperties().reset(MachineFunctionProperties::Property::NoPHIs);
7587 }
7588 
7589 // Implement EmitInstrWithCustomInserter for pseudo Select* instruction MI.
7590 MachineBasicBlock *
7591 SystemZTargetLowering::emitSelect(MachineInstr &MI,
7592                                   MachineBasicBlock *MBB) const {
7593   assert(isSelectPseudo(MI) && "Bad call to emitSelect()");
7594   const SystemZInstrInfo *TII = Subtarget.getInstrInfo();
7595 
7596   unsigned CCValid = MI.getOperand(3).getImm();
7597   unsigned CCMask = MI.getOperand(4).getImm();
7598 
7599   // If we have a sequence of Select* pseudo instructions using the
7600   // same condition code value, we want to expand all of them into
7601   // a single pair of basic blocks using the same condition.
7602   SmallVector<MachineInstr*, 8> Selects;
7603   SmallVector<MachineInstr*, 8> DbgValues;
7604   Selects.push_back(&MI);
7605   unsigned Count = 0;
7606   for (MachineBasicBlock::iterator NextMIIt =
7607          std::next(MachineBasicBlock::iterator(MI));
7608        NextMIIt != MBB->end(); ++NextMIIt) {
7609     if (isSelectPseudo(*NextMIIt)) {
7610       assert(NextMIIt->getOperand(3).getImm() == CCValid &&
7611              "Bad CCValid operands since CC was not redefined.");
7612       if (NextMIIt->getOperand(4).getImm() == CCMask ||
7613           NextMIIt->getOperand(4).getImm() == (CCValid ^ CCMask)) {
7614         Selects.push_back(&*NextMIIt);
7615         continue;
7616       }
7617       break;
7618     }
7619     if (NextMIIt->definesRegister(SystemZ::CC) ||
7620         NextMIIt->usesCustomInsertionHook())
7621       break;
7622     bool User = false;
7623     for (auto SelMI : Selects)
7624       if (NextMIIt->readsVirtualRegister(SelMI->getOperand(0).getReg())) {
7625         User = true;
7626         break;
7627       }
7628     if (NextMIIt->isDebugInstr()) {
7629       if (User) {
7630         assert(NextMIIt->isDebugValue() && "Unhandled debug opcode.");
7631         DbgValues.push_back(&*NextMIIt);
7632       }
7633     }
7634     else if (User || ++Count > 20)
7635       break;
7636   }
7637 
7638   MachineInstr *LastMI = Selects.back();
7639   bool CCKilled =
7640       (LastMI->killsRegister(SystemZ::CC) || checkCCKill(*LastMI, MBB));
7641   MachineBasicBlock *StartMBB = MBB;
7642   MachineBasicBlock *JoinMBB  = SystemZ::splitBlockAfter(LastMI, MBB);
7643   MachineBasicBlock *FalseMBB = SystemZ::emitBlockAfter(StartMBB);
7644 
7645   // Unless CC was killed in the last Select instruction, mark it as
7646   // live-in to both FalseMBB and JoinMBB.
7647   if (!CCKilled) {
7648     FalseMBB->addLiveIn(SystemZ::CC);
7649     JoinMBB->addLiveIn(SystemZ::CC);
7650   }
7651 
7652   //  StartMBB:
7653   //   BRC CCMask, JoinMBB
7654   //   # fallthrough to FalseMBB
7655   MBB = StartMBB;
7656   BuildMI(MBB, MI.getDebugLoc(), TII->get(SystemZ::BRC))
7657     .addImm(CCValid).addImm(CCMask).addMBB(JoinMBB);
7658   MBB->addSuccessor(JoinMBB);
7659   MBB->addSuccessor(FalseMBB);
7660 
7661   //  FalseMBB:
7662   //   # fallthrough to JoinMBB
7663   MBB = FalseMBB;
7664   MBB->addSuccessor(JoinMBB);
7665 
7666   //  JoinMBB:
7667   //   %Result = phi [ %FalseReg, FalseMBB ], [ %TrueReg, StartMBB ]
7668   //  ...
7669   MBB = JoinMBB;
7670   createPHIsForSelects(Selects, StartMBB, FalseMBB, MBB);
7671   for (auto SelMI : Selects)
7672     SelMI->eraseFromParent();
7673 
7674   MachineBasicBlock::iterator InsertPos = MBB->getFirstNonPHI();
7675   for (auto DbgMI : DbgValues)
7676     MBB->splice(InsertPos, StartMBB, DbgMI);
7677 
7678   return JoinMBB;
7679 }
7680 
7681 // Implement EmitInstrWithCustomInserter for pseudo CondStore* instruction MI.
7682 // StoreOpcode is the store to use and Invert says whether the store should
7683 // happen when the condition is false rather than true.  If a STORE ON
7684 // CONDITION is available, STOCOpcode is its opcode, otherwise it is 0.
7685 MachineBasicBlock *SystemZTargetLowering::emitCondStore(MachineInstr &MI,
7686                                                         MachineBasicBlock *MBB,
7687                                                         unsigned StoreOpcode,
7688                                                         unsigned STOCOpcode,
7689                                                         bool Invert) const {
7690   const SystemZInstrInfo *TII = Subtarget.getInstrInfo();
7691 
7692   Register SrcReg = MI.getOperand(0).getReg();
7693   MachineOperand Base = MI.getOperand(1);
7694   int64_t Disp = MI.getOperand(2).getImm();
7695   Register IndexReg = MI.getOperand(3).getReg();
7696   unsigned CCValid = MI.getOperand(4).getImm();
7697   unsigned CCMask = MI.getOperand(5).getImm();
7698   DebugLoc DL = MI.getDebugLoc();
7699 
7700   StoreOpcode = TII->getOpcodeForOffset(StoreOpcode, Disp);
7701 
7702   // ISel pattern matching also adds a load memory operand of the same
7703   // address, so take special care to find the storing memory operand.
7704   MachineMemOperand *MMO = nullptr;
7705   for (auto *I : MI.memoperands())
7706     if (I->isStore()) {
7707       MMO = I;
7708       break;
7709     }
7710 
7711   // Use STOCOpcode if possible.  We could use different store patterns in
7712   // order to avoid matching the index register, but the performance trade-offs
7713   // might be more complicated in that case.
7714   if (STOCOpcode && !IndexReg && Subtarget.hasLoadStoreOnCond()) {
7715     if (Invert)
7716       CCMask ^= CCValid;
7717 
7718     BuildMI(*MBB, MI, DL, TII->get(STOCOpcode))
7719       .addReg(SrcReg)
7720       .add(Base)
7721       .addImm(Disp)
7722       .addImm(CCValid)
7723       .addImm(CCMask)
7724       .addMemOperand(MMO);
7725 
7726     MI.eraseFromParent();
7727     return MBB;
7728   }
7729 
7730   // Get the condition needed to branch around the store.
7731   if (!Invert)
7732     CCMask ^= CCValid;
7733 
7734   MachineBasicBlock *StartMBB = MBB;
7735   MachineBasicBlock *JoinMBB  = SystemZ::splitBlockBefore(MI, MBB);
7736   MachineBasicBlock *FalseMBB = SystemZ::emitBlockAfter(StartMBB);
7737 
7738   // Unless CC was killed in the CondStore instruction, mark it as
7739   // live-in to both FalseMBB and JoinMBB.
7740   if (!MI.killsRegister(SystemZ::CC) && !checkCCKill(MI, JoinMBB)) {
7741     FalseMBB->addLiveIn(SystemZ::CC);
7742     JoinMBB->addLiveIn(SystemZ::CC);
7743   }
7744 
7745   //  StartMBB:
7746   //   BRC CCMask, JoinMBB
7747   //   # fallthrough to FalseMBB
7748   MBB = StartMBB;
7749   BuildMI(MBB, DL, TII->get(SystemZ::BRC))
7750     .addImm(CCValid).addImm(CCMask).addMBB(JoinMBB);
7751   MBB->addSuccessor(JoinMBB);
7752   MBB->addSuccessor(FalseMBB);
7753 
7754   //  FalseMBB:
7755   //   store %SrcReg, %Disp(%Index,%Base)
7756   //   # fallthrough to JoinMBB
7757   MBB = FalseMBB;
7758   BuildMI(MBB, DL, TII->get(StoreOpcode))
7759       .addReg(SrcReg)
7760       .add(Base)
7761       .addImm(Disp)
7762       .addReg(IndexReg)
7763       .addMemOperand(MMO);
7764   MBB->addSuccessor(JoinMBB);
7765 
7766   MI.eraseFromParent();
7767   return JoinMBB;
7768 }
7769 
7770 // Implement EmitInstrWithCustomInserter for pseudo ATOMIC_LOAD{,W}_*
7771 // or ATOMIC_SWAP{,W} instruction MI.  BinOpcode is the instruction that
7772 // performs the binary operation elided by "*", or 0 for ATOMIC_SWAP{,W}.
7773 // BitSize is the width of the field in bits, or 0 if this is a partword
7774 // ATOMIC_LOADW_* or ATOMIC_SWAPW instruction, in which case the bitsize
7775 // is one of the operands.  Invert says whether the field should be
7776 // inverted after performing BinOpcode (e.g. for NAND).
7777 MachineBasicBlock *SystemZTargetLowering::emitAtomicLoadBinary(
7778     MachineInstr &MI, MachineBasicBlock *MBB, unsigned BinOpcode,
7779     unsigned BitSize, bool Invert) const {
7780   MachineFunction &MF = *MBB->getParent();
7781   const SystemZInstrInfo *TII = Subtarget.getInstrInfo();
7782   MachineRegisterInfo &MRI = MF.getRegInfo();
7783   bool IsSubWord = (BitSize < 32);
7784 
7785   // Extract the operands.  Base can be a register or a frame index.
7786   // Src2 can be a register or immediate.
7787   Register Dest = MI.getOperand(0).getReg();
7788   MachineOperand Base = earlyUseOperand(MI.getOperand(1));
7789   int64_t Disp = MI.getOperand(2).getImm();
7790   MachineOperand Src2 = earlyUseOperand(MI.getOperand(3));
7791   Register BitShift = IsSubWord ? MI.getOperand(4).getReg() : Register();
7792   Register NegBitShift = IsSubWord ? MI.getOperand(5).getReg() : Register();
7793   DebugLoc DL = MI.getDebugLoc();
7794   if (IsSubWord)
7795     BitSize = MI.getOperand(6).getImm();
7796 
7797   // Subword operations use 32-bit registers.
7798   const TargetRegisterClass *RC = (BitSize <= 32 ?
7799                                    &SystemZ::GR32BitRegClass :
7800                                    &SystemZ::GR64BitRegClass);
7801   unsigned LOpcode  = BitSize <= 32 ? SystemZ::L  : SystemZ::LG;
7802   unsigned CSOpcode = BitSize <= 32 ? SystemZ::CS : SystemZ::CSG;
7803 
7804   // Get the right opcodes for the displacement.
7805   LOpcode  = TII->getOpcodeForOffset(LOpcode,  Disp);
7806   CSOpcode = TII->getOpcodeForOffset(CSOpcode, Disp);
7807   assert(LOpcode && CSOpcode && "Displacement out of range");
7808 
7809   // Create virtual registers for temporary results.
7810   Register OrigVal       = MRI.createVirtualRegister(RC);
7811   Register OldVal        = MRI.createVirtualRegister(RC);
7812   Register NewVal        = (BinOpcode || IsSubWord ?
7813                             MRI.createVirtualRegister(RC) : Src2.getReg());
7814   Register RotatedOldVal = (IsSubWord ? MRI.createVirtualRegister(RC) : OldVal);
7815   Register RotatedNewVal = (IsSubWord ? MRI.createVirtualRegister(RC) : NewVal);
7816 
7817   // Insert a basic block for the main loop.
7818   MachineBasicBlock *StartMBB = MBB;
7819   MachineBasicBlock *DoneMBB  = SystemZ::splitBlockBefore(MI, MBB);
7820   MachineBasicBlock *LoopMBB  = SystemZ::emitBlockAfter(StartMBB);
7821 
7822   //  StartMBB:
7823   //   ...
7824   //   %OrigVal = L Disp(%Base)
7825   //   # fall through to LoopMBB
7826   MBB = StartMBB;
7827   BuildMI(MBB, DL, TII->get(LOpcode), OrigVal).add(Base).addImm(Disp).addReg(0);
7828   MBB->addSuccessor(LoopMBB);
7829 
7830   //  LoopMBB:
7831   //   %OldVal        = phi [ %OrigVal, StartMBB ], [ %Dest, LoopMBB ]
7832   //   %RotatedOldVal = RLL %OldVal, 0(%BitShift)
7833   //   %RotatedNewVal = OP %RotatedOldVal, %Src2
7834   //   %NewVal        = RLL %RotatedNewVal, 0(%NegBitShift)
7835   //   %Dest          = CS %OldVal, %NewVal, Disp(%Base)
7836   //   JNE LoopMBB
7837   //   # fall through to DoneMBB
7838   MBB = LoopMBB;
7839   BuildMI(MBB, DL, TII->get(SystemZ::PHI), OldVal)
7840     .addReg(OrigVal).addMBB(StartMBB)
7841     .addReg(Dest).addMBB(LoopMBB);
7842   if (IsSubWord)
7843     BuildMI(MBB, DL, TII->get(SystemZ::RLL), RotatedOldVal)
7844       .addReg(OldVal).addReg(BitShift).addImm(0);
7845   if (Invert) {
7846     // Perform the operation normally and then invert every bit of the field.
7847     Register Tmp = MRI.createVirtualRegister(RC);
7848     BuildMI(MBB, DL, TII->get(BinOpcode), Tmp).addReg(RotatedOldVal).add(Src2);
7849     if (BitSize <= 32)
7850       // XILF with the upper BitSize bits set.
7851       BuildMI(MBB, DL, TII->get(SystemZ::XILF), RotatedNewVal)
7852         .addReg(Tmp).addImm(-1U << (32 - BitSize));
7853     else {
7854       // Use LCGR and add -1 to the result, which is more compact than
7855       // an XILF, XILH pair.
7856       Register Tmp2 = MRI.createVirtualRegister(RC);
7857       BuildMI(MBB, DL, TII->get(SystemZ::LCGR), Tmp2).addReg(Tmp);
7858       BuildMI(MBB, DL, TII->get(SystemZ::AGHI), RotatedNewVal)
7859         .addReg(Tmp2).addImm(-1);
7860     }
7861   } else if (BinOpcode)
7862     // A simply binary operation.
7863     BuildMI(MBB, DL, TII->get(BinOpcode), RotatedNewVal)
7864         .addReg(RotatedOldVal)
7865         .add(Src2);
7866   else if (IsSubWord)
7867     // Use RISBG to rotate Src2 into position and use it to replace the
7868     // field in RotatedOldVal.
7869     BuildMI(MBB, DL, TII->get(SystemZ::RISBG32), RotatedNewVal)
7870       .addReg(RotatedOldVal).addReg(Src2.getReg())
7871       .addImm(32).addImm(31 + BitSize).addImm(32 - BitSize);
7872   if (IsSubWord)
7873     BuildMI(MBB, DL, TII->get(SystemZ::RLL), NewVal)
7874       .addReg(RotatedNewVal).addReg(NegBitShift).addImm(0);
7875   BuildMI(MBB, DL, TII->get(CSOpcode), Dest)
7876       .addReg(OldVal)
7877       .addReg(NewVal)
7878       .add(Base)
7879       .addImm(Disp);
7880   BuildMI(MBB, DL, TII->get(SystemZ::BRC))
7881     .addImm(SystemZ::CCMASK_CS).addImm(SystemZ::CCMASK_CS_NE).addMBB(LoopMBB);
7882   MBB->addSuccessor(LoopMBB);
7883   MBB->addSuccessor(DoneMBB);
7884 
7885   MI.eraseFromParent();
7886   return DoneMBB;
7887 }
7888 
7889 // Implement EmitInstrWithCustomInserter for pseudo
7890 // ATOMIC_LOAD{,W}_{,U}{MIN,MAX} instruction MI.  CompareOpcode is the
7891 // instruction that should be used to compare the current field with the
7892 // minimum or maximum value.  KeepOldMask is the BRC condition-code mask
7893 // for when the current field should be kept.  BitSize is the width of
7894 // the field in bits, or 0 if this is a partword ATOMIC_LOADW_* instruction.
7895 MachineBasicBlock *SystemZTargetLowering::emitAtomicLoadMinMax(
7896     MachineInstr &MI, MachineBasicBlock *MBB, unsigned CompareOpcode,
7897     unsigned KeepOldMask, unsigned BitSize) const {
7898   MachineFunction &MF = *MBB->getParent();
7899   const SystemZInstrInfo *TII = Subtarget.getInstrInfo();
7900   MachineRegisterInfo &MRI = MF.getRegInfo();
7901   bool IsSubWord = (BitSize < 32);
7902 
7903   // Extract the operands.  Base can be a register or a frame index.
7904   Register Dest = MI.getOperand(0).getReg();
7905   MachineOperand Base = earlyUseOperand(MI.getOperand(1));
7906   int64_t Disp = MI.getOperand(2).getImm();
7907   Register Src2 = MI.getOperand(3).getReg();
7908   Register BitShift = (IsSubWord ? MI.getOperand(4).getReg() : Register());
7909   Register NegBitShift = (IsSubWord ? MI.getOperand(5).getReg() : Register());
7910   DebugLoc DL = MI.getDebugLoc();
7911   if (IsSubWord)
7912     BitSize = MI.getOperand(6).getImm();
7913 
7914   // Subword operations use 32-bit registers.
7915   const TargetRegisterClass *RC = (BitSize <= 32 ?
7916                                    &SystemZ::GR32BitRegClass :
7917                                    &SystemZ::GR64BitRegClass);
7918   unsigned LOpcode  = BitSize <= 32 ? SystemZ::L  : SystemZ::LG;
7919   unsigned CSOpcode = BitSize <= 32 ? SystemZ::CS : SystemZ::CSG;
7920 
7921   // Get the right opcodes for the displacement.
7922   LOpcode  = TII->getOpcodeForOffset(LOpcode,  Disp);
7923   CSOpcode = TII->getOpcodeForOffset(CSOpcode, Disp);
7924   assert(LOpcode && CSOpcode && "Displacement out of range");
7925 
7926   // Create virtual registers for temporary results.
7927   Register OrigVal       = MRI.createVirtualRegister(RC);
7928   Register OldVal        = MRI.createVirtualRegister(RC);
7929   Register NewVal        = MRI.createVirtualRegister(RC);
7930   Register RotatedOldVal = (IsSubWord ? MRI.createVirtualRegister(RC) : OldVal);
7931   Register RotatedAltVal = (IsSubWord ? MRI.createVirtualRegister(RC) : Src2);
7932   Register RotatedNewVal = (IsSubWord ? MRI.createVirtualRegister(RC) : NewVal);
7933 
7934   // Insert 3 basic blocks for the loop.
7935   MachineBasicBlock *StartMBB  = MBB;
7936   MachineBasicBlock *DoneMBB   = SystemZ::splitBlockBefore(MI, MBB);
7937   MachineBasicBlock *LoopMBB   = SystemZ::emitBlockAfter(StartMBB);
7938   MachineBasicBlock *UseAltMBB = SystemZ::emitBlockAfter(LoopMBB);
7939   MachineBasicBlock *UpdateMBB = SystemZ::emitBlockAfter(UseAltMBB);
7940 
7941   //  StartMBB:
7942   //   ...
7943   //   %OrigVal     = L Disp(%Base)
7944   //   # fall through to LoopMBB
7945   MBB = StartMBB;
7946   BuildMI(MBB, DL, TII->get(LOpcode), OrigVal).add(Base).addImm(Disp).addReg(0);
7947   MBB->addSuccessor(LoopMBB);
7948 
7949   //  LoopMBB:
7950   //   %OldVal        = phi [ %OrigVal, StartMBB ], [ %Dest, UpdateMBB ]
7951   //   %RotatedOldVal = RLL %OldVal, 0(%BitShift)
7952   //   CompareOpcode %RotatedOldVal, %Src2
7953   //   BRC KeepOldMask, UpdateMBB
7954   MBB = LoopMBB;
7955   BuildMI(MBB, DL, TII->get(SystemZ::PHI), OldVal)
7956     .addReg(OrigVal).addMBB(StartMBB)
7957     .addReg(Dest).addMBB(UpdateMBB);
7958   if (IsSubWord)
7959     BuildMI(MBB, DL, TII->get(SystemZ::RLL), RotatedOldVal)
7960       .addReg(OldVal).addReg(BitShift).addImm(0);
7961   BuildMI(MBB, DL, TII->get(CompareOpcode))
7962     .addReg(RotatedOldVal).addReg(Src2);
7963   BuildMI(MBB, DL, TII->get(SystemZ::BRC))
7964     .addImm(SystemZ::CCMASK_ICMP).addImm(KeepOldMask).addMBB(UpdateMBB);
7965   MBB->addSuccessor(UpdateMBB);
7966   MBB->addSuccessor(UseAltMBB);
7967 
7968   //  UseAltMBB:
7969   //   %RotatedAltVal = RISBG %RotatedOldVal, %Src2, 32, 31 + BitSize, 0
7970   //   # fall through to UpdateMBB
7971   MBB = UseAltMBB;
7972   if (IsSubWord)
7973     BuildMI(MBB, DL, TII->get(SystemZ::RISBG32), RotatedAltVal)
7974       .addReg(RotatedOldVal).addReg(Src2)
7975       .addImm(32).addImm(31 + BitSize).addImm(0);
7976   MBB->addSuccessor(UpdateMBB);
7977 
7978   //  UpdateMBB:
7979   //   %RotatedNewVal = PHI [ %RotatedOldVal, LoopMBB ],
7980   //                        [ %RotatedAltVal, UseAltMBB ]
7981   //   %NewVal        = RLL %RotatedNewVal, 0(%NegBitShift)
7982   //   %Dest          = CS %OldVal, %NewVal, Disp(%Base)
7983   //   JNE LoopMBB
7984   //   # fall through to DoneMBB
7985   MBB = UpdateMBB;
7986   BuildMI(MBB, DL, TII->get(SystemZ::PHI), RotatedNewVal)
7987     .addReg(RotatedOldVal).addMBB(LoopMBB)
7988     .addReg(RotatedAltVal).addMBB(UseAltMBB);
7989   if (IsSubWord)
7990     BuildMI(MBB, DL, TII->get(SystemZ::RLL), NewVal)
7991       .addReg(RotatedNewVal).addReg(NegBitShift).addImm(0);
7992   BuildMI(MBB, DL, TII->get(CSOpcode), Dest)
7993       .addReg(OldVal)
7994       .addReg(NewVal)
7995       .add(Base)
7996       .addImm(Disp);
7997   BuildMI(MBB, DL, TII->get(SystemZ::BRC))
7998     .addImm(SystemZ::CCMASK_CS).addImm(SystemZ::CCMASK_CS_NE).addMBB(LoopMBB);
7999   MBB->addSuccessor(LoopMBB);
8000   MBB->addSuccessor(DoneMBB);
8001 
8002   MI.eraseFromParent();
8003   return DoneMBB;
8004 }
8005 
8006 // Implement EmitInstrWithCustomInserter for pseudo ATOMIC_CMP_SWAPW
8007 // instruction MI.
8008 MachineBasicBlock *
8009 SystemZTargetLowering::emitAtomicCmpSwapW(MachineInstr &MI,
8010                                           MachineBasicBlock *MBB) const {
8011   MachineFunction &MF = *MBB->getParent();
8012   const SystemZInstrInfo *TII = Subtarget.getInstrInfo();
8013   MachineRegisterInfo &MRI = MF.getRegInfo();
8014 
8015   // Extract the operands.  Base can be a register or a frame index.
8016   Register Dest = MI.getOperand(0).getReg();
8017   MachineOperand Base = earlyUseOperand(MI.getOperand(1));
8018   int64_t Disp = MI.getOperand(2).getImm();
8019   Register CmpVal = MI.getOperand(3).getReg();
8020   Register OrigSwapVal = MI.getOperand(4).getReg();
8021   Register BitShift = MI.getOperand(5).getReg();
8022   Register NegBitShift = MI.getOperand(6).getReg();
8023   int64_t BitSize = MI.getOperand(7).getImm();
8024   DebugLoc DL = MI.getDebugLoc();
8025 
8026   const TargetRegisterClass *RC = &SystemZ::GR32BitRegClass;
8027 
8028   // Get the right opcodes for the displacement and zero-extension.
8029   unsigned LOpcode  = TII->getOpcodeForOffset(SystemZ::L,  Disp);
8030   unsigned CSOpcode = TII->getOpcodeForOffset(SystemZ::CS, Disp);
8031   unsigned ZExtOpcode  = BitSize == 8 ? SystemZ::LLCR : SystemZ::LLHR;
8032   assert(LOpcode && CSOpcode && "Displacement out of range");
8033 
8034   // Create virtual registers for temporary results.
8035   Register OrigOldVal = MRI.createVirtualRegister(RC);
8036   Register OldVal = MRI.createVirtualRegister(RC);
8037   Register SwapVal = MRI.createVirtualRegister(RC);
8038   Register StoreVal = MRI.createVirtualRegister(RC);
8039   Register OldValRot = MRI.createVirtualRegister(RC);
8040   Register RetryOldVal = MRI.createVirtualRegister(RC);
8041   Register RetrySwapVal = MRI.createVirtualRegister(RC);
8042 
8043   // Insert 2 basic blocks for the loop.
8044   MachineBasicBlock *StartMBB = MBB;
8045   MachineBasicBlock *DoneMBB  = SystemZ::splitBlockBefore(MI, MBB);
8046   MachineBasicBlock *LoopMBB  = SystemZ::emitBlockAfter(StartMBB);
8047   MachineBasicBlock *SetMBB   = SystemZ::emitBlockAfter(LoopMBB);
8048 
8049   //  StartMBB:
8050   //   ...
8051   //   %OrigOldVal     = L Disp(%Base)
8052   //   # fall through to LoopMBB
8053   MBB = StartMBB;
8054   BuildMI(MBB, DL, TII->get(LOpcode), OrigOldVal)
8055       .add(Base)
8056       .addImm(Disp)
8057       .addReg(0);
8058   MBB->addSuccessor(LoopMBB);
8059 
8060   //  LoopMBB:
8061   //   %OldVal        = phi [ %OrigOldVal, EntryBB ], [ %RetryOldVal, SetMBB ]
8062   //   %SwapVal       = phi [ %OrigSwapVal, EntryBB ], [ %RetrySwapVal, SetMBB ]
8063   //   %OldValRot     = RLL %OldVal, BitSize(%BitShift)
8064   //                      ^^ The low BitSize bits contain the field
8065   //                         of interest.
8066   //   %RetrySwapVal = RISBG32 %SwapVal, %OldValRot, 32, 63-BitSize, 0
8067   //                      ^^ Replace the upper 32-BitSize bits of the
8068   //                         swap value with those that we loaded and rotated.
8069   //   %Dest = LL[CH] %OldValRot
8070   //   CR %Dest, %CmpVal
8071   //   JNE DoneMBB
8072   //   # Fall through to SetMBB
8073   MBB = LoopMBB;
8074   BuildMI(MBB, DL, TII->get(SystemZ::PHI), OldVal)
8075     .addReg(OrigOldVal).addMBB(StartMBB)
8076     .addReg(RetryOldVal).addMBB(SetMBB);
8077   BuildMI(MBB, DL, TII->get(SystemZ::PHI), SwapVal)
8078     .addReg(OrigSwapVal).addMBB(StartMBB)
8079     .addReg(RetrySwapVal).addMBB(SetMBB);
8080   BuildMI(MBB, DL, TII->get(SystemZ::RLL), OldValRot)
8081     .addReg(OldVal).addReg(BitShift).addImm(BitSize);
8082   BuildMI(MBB, DL, TII->get(SystemZ::RISBG32), RetrySwapVal)
8083     .addReg(SwapVal).addReg(OldValRot).addImm(32).addImm(63 - BitSize).addImm(0);
8084   BuildMI(MBB, DL, TII->get(ZExtOpcode), Dest)
8085     .addReg(OldValRot);
8086   BuildMI(MBB, DL, TII->get(SystemZ::CR))
8087     .addReg(Dest).addReg(CmpVal);
8088   BuildMI(MBB, DL, TII->get(SystemZ::BRC))
8089     .addImm(SystemZ::CCMASK_ICMP)
8090     .addImm(SystemZ::CCMASK_CMP_NE).addMBB(DoneMBB);
8091   MBB->addSuccessor(DoneMBB);
8092   MBB->addSuccessor(SetMBB);
8093 
8094   //  SetMBB:
8095   //   %StoreVal     = RLL %RetrySwapVal, -BitSize(%NegBitShift)
8096   //                      ^^ Rotate the new field to its proper position.
8097   //   %RetryOldVal  = CS %OldVal, %StoreVal, Disp(%Base)
8098   //   JNE LoopMBB
8099   //   # fall through to ExitMBB
8100   MBB = SetMBB;
8101   BuildMI(MBB, DL, TII->get(SystemZ::RLL), StoreVal)
8102     .addReg(RetrySwapVal).addReg(NegBitShift).addImm(-BitSize);
8103   BuildMI(MBB, DL, TII->get(CSOpcode), RetryOldVal)
8104       .addReg(OldVal)
8105       .addReg(StoreVal)
8106       .add(Base)
8107       .addImm(Disp);
8108   BuildMI(MBB, DL, TII->get(SystemZ::BRC))
8109     .addImm(SystemZ::CCMASK_CS).addImm(SystemZ::CCMASK_CS_NE).addMBB(LoopMBB);
8110   MBB->addSuccessor(LoopMBB);
8111   MBB->addSuccessor(DoneMBB);
8112 
8113   // If the CC def wasn't dead in the ATOMIC_CMP_SWAPW, mark CC as live-in
8114   // to the block after the loop.  At this point, CC may have been defined
8115   // either by the CR in LoopMBB or by the CS in SetMBB.
8116   if (!MI.registerDefIsDead(SystemZ::CC))
8117     DoneMBB->addLiveIn(SystemZ::CC);
8118 
8119   MI.eraseFromParent();
8120   return DoneMBB;
8121 }
8122 
8123 // Emit a move from two GR64s to a GR128.
8124 MachineBasicBlock *
8125 SystemZTargetLowering::emitPair128(MachineInstr &MI,
8126                                    MachineBasicBlock *MBB) const {
8127   MachineFunction &MF = *MBB->getParent();
8128   const SystemZInstrInfo *TII = Subtarget.getInstrInfo();
8129   MachineRegisterInfo &MRI = MF.getRegInfo();
8130   DebugLoc DL = MI.getDebugLoc();
8131 
8132   Register Dest = MI.getOperand(0).getReg();
8133   Register Hi = MI.getOperand(1).getReg();
8134   Register Lo = MI.getOperand(2).getReg();
8135   Register Tmp1 = MRI.createVirtualRegister(&SystemZ::GR128BitRegClass);
8136   Register Tmp2 = MRI.createVirtualRegister(&SystemZ::GR128BitRegClass);
8137 
8138   BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::IMPLICIT_DEF), Tmp1);
8139   BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::INSERT_SUBREG), Tmp2)
8140     .addReg(Tmp1).addReg(Hi).addImm(SystemZ::subreg_h64);
8141   BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::INSERT_SUBREG), Dest)
8142     .addReg(Tmp2).addReg(Lo).addImm(SystemZ::subreg_l64);
8143 
8144   MI.eraseFromParent();
8145   return MBB;
8146 }
8147 
8148 // Emit an extension from a GR64 to a GR128.  ClearEven is true
8149 // if the high register of the GR128 value must be cleared or false if
8150 // it's "don't care".
8151 MachineBasicBlock *SystemZTargetLowering::emitExt128(MachineInstr &MI,
8152                                                      MachineBasicBlock *MBB,
8153                                                      bool ClearEven) const {
8154   MachineFunction &MF = *MBB->getParent();
8155   const SystemZInstrInfo *TII = Subtarget.getInstrInfo();
8156   MachineRegisterInfo &MRI = MF.getRegInfo();
8157   DebugLoc DL = MI.getDebugLoc();
8158 
8159   Register Dest = MI.getOperand(0).getReg();
8160   Register Src = MI.getOperand(1).getReg();
8161   Register In128 = MRI.createVirtualRegister(&SystemZ::GR128BitRegClass);
8162 
8163   BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::IMPLICIT_DEF), In128);
8164   if (ClearEven) {
8165     Register NewIn128 = MRI.createVirtualRegister(&SystemZ::GR128BitRegClass);
8166     Register Zero64 = MRI.createVirtualRegister(&SystemZ::GR64BitRegClass);
8167 
8168     BuildMI(*MBB, MI, DL, TII->get(SystemZ::LLILL), Zero64)
8169       .addImm(0);
8170     BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::INSERT_SUBREG), NewIn128)
8171       .addReg(In128).addReg(Zero64).addImm(SystemZ::subreg_h64);
8172     In128 = NewIn128;
8173   }
8174   BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::INSERT_SUBREG), Dest)
8175     .addReg(In128).addReg(Src).addImm(SystemZ::subreg_l64);
8176 
8177   MI.eraseFromParent();
8178   return MBB;
8179 }
8180 
8181 MachineBasicBlock *
8182 SystemZTargetLowering::emitMemMemWrapper(MachineInstr &MI,
8183                                          MachineBasicBlock *MBB,
8184                                          unsigned Opcode, bool IsMemset) const {
8185   MachineFunction &MF = *MBB->getParent();
8186   const SystemZInstrInfo *TII = Subtarget.getInstrInfo();
8187   MachineRegisterInfo &MRI = MF.getRegInfo();
8188   DebugLoc DL = MI.getDebugLoc();
8189 
8190   MachineOperand DestBase = earlyUseOperand(MI.getOperand(0));
8191   uint64_t DestDisp = MI.getOperand(1).getImm();
8192   MachineOperand SrcBase = MachineOperand::CreateReg(0U, false);
8193   uint64_t SrcDisp;
8194 
8195   // Fold the displacement Disp if it is out of range.
8196   auto foldDisplIfNeeded = [&](MachineOperand &Base, uint64_t &Disp) -> void {
8197     if (!isUInt<12>(Disp)) {
8198       Register Reg = MRI.createVirtualRegister(&SystemZ::ADDR64BitRegClass);
8199       unsigned Opcode = TII->getOpcodeForOffset(SystemZ::LA, Disp);
8200       BuildMI(*MI.getParent(), MI, MI.getDebugLoc(), TII->get(Opcode), Reg)
8201         .add(Base).addImm(Disp).addReg(0);
8202       Base = MachineOperand::CreateReg(Reg, false);
8203       Disp = 0;
8204     }
8205   };
8206 
8207   if (!IsMemset) {
8208     SrcBase = earlyUseOperand(MI.getOperand(2));
8209     SrcDisp = MI.getOperand(3).getImm();
8210   } else {
8211     SrcBase = DestBase;
8212     SrcDisp = DestDisp++;
8213     foldDisplIfNeeded(DestBase, DestDisp);
8214   }
8215 
8216   MachineOperand &LengthMO = MI.getOperand(IsMemset ? 2 : 4);
8217   bool IsImmForm = LengthMO.isImm();
8218   bool IsRegForm = !IsImmForm;
8219 
8220   // Build and insert one Opcode of Length, with special treatment for memset.
8221   auto insertMemMemOp = [&](MachineBasicBlock *InsMBB,
8222                             MachineBasicBlock::iterator InsPos,
8223                             MachineOperand DBase, uint64_t DDisp,
8224                             MachineOperand SBase, uint64_t SDisp,
8225                             unsigned Length) -> void {
8226     assert(Length > 0 && Length <= 256 && "Building memory op with bad length.");
8227     if (IsMemset) {
8228       MachineOperand ByteMO = earlyUseOperand(MI.getOperand(3));
8229       if (ByteMO.isImm())
8230         BuildMI(*InsMBB, InsPos, DL, TII->get(SystemZ::MVI))
8231           .add(SBase).addImm(SDisp).add(ByteMO);
8232       else
8233         BuildMI(*InsMBB, InsPos, DL, TII->get(SystemZ::STC))
8234           .add(ByteMO).add(SBase).addImm(SDisp).addReg(0);
8235       if (--Length == 0)
8236         return;
8237     }
8238     BuildMI(*MBB, InsPos, DL, TII->get(Opcode))
8239       .add(DBase).addImm(DDisp).addImm(Length)
8240       .add(SBase).addImm(SDisp)
8241       .setMemRefs(MI.memoperands());
8242   };
8243 
8244   bool NeedsLoop = false;
8245   uint64_t ImmLength = 0;
8246   Register LenAdjReg = SystemZ::NoRegister;
8247   if (IsImmForm) {
8248     ImmLength = LengthMO.getImm();
8249     ImmLength += IsMemset ? 2 : 1; // Add back the subtracted adjustment.
8250     if (ImmLength == 0) {
8251       MI.eraseFromParent();
8252       return MBB;
8253     }
8254     if (Opcode == SystemZ::CLC) {
8255       if (ImmLength > 3 * 256)
8256         // A two-CLC sequence is a clear win over a loop, not least because
8257         // it needs only one branch.  A three-CLC sequence needs the same
8258         // number of branches as a loop (i.e. 2), but is shorter.  That
8259         // brings us to lengths greater than 768 bytes.  It seems relatively
8260         // likely that a difference will be found within the first 768 bytes,
8261         // so we just optimize for the smallest number of branch
8262         // instructions, in order to avoid polluting the prediction buffer
8263         // too much.
8264         NeedsLoop = true;
8265     } else if (ImmLength > 6 * 256)
8266       // The heuristic we use is to prefer loops for anything that would
8267       // require 7 or more MVCs.  With these kinds of sizes there isn't much
8268       // to choose between straight-line code and looping code, since the
8269       // time will be dominated by the MVCs themselves.
8270       NeedsLoop = true;
8271   } else {
8272     NeedsLoop = true;
8273     LenAdjReg = LengthMO.getReg();
8274   }
8275 
8276   // When generating more than one CLC, all but the last will need to
8277   // branch to the end when a difference is found.
8278   MachineBasicBlock *EndMBB =
8279       (Opcode == SystemZ::CLC && (ImmLength > 256 || NeedsLoop)
8280            ? SystemZ::splitBlockAfter(MI, MBB)
8281            : nullptr);
8282 
8283   if (NeedsLoop) {
8284     Register StartCountReg =
8285       MRI.createVirtualRegister(&SystemZ::GR64BitRegClass);
8286     if (IsImmForm) {
8287       TII->loadImmediate(*MBB, MI, StartCountReg, ImmLength / 256);
8288       ImmLength &= 255;
8289     } else {
8290       BuildMI(*MBB, MI, DL, TII->get(SystemZ::SRLG), StartCountReg)
8291         .addReg(LenAdjReg)
8292         .addReg(0)
8293         .addImm(8);
8294     }
8295 
8296     bool HaveSingleBase = DestBase.isIdenticalTo(SrcBase);
8297     auto loadZeroAddress = [&]() -> MachineOperand {
8298       Register Reg = MRI.createVirtualRegister(&SystemZ::ADDR64BitRegClass);
8299       BuildMI(*MBB, MI, DL, TII->get(SystemZ::LGHI), Reg).addImm(0);
8300       return MachineOperand::CreateReg(Reg, false);
8301     };
8302     if (DestBase.isReg() && DestBase.getReg() == SystemZ::NoRegister)
8303       DestBase = loadZeroAddress();
8304     if (SrcBase.isReg() && SrcBase.getReg() == SystemZ::NoRegister)
8305       SrcBase = HaveSingleBase ? DestBase : loadZeroAddress();
8306 
8307     MachineBasicBlock *StartMBB = nullptr;
8308     MachineBasicBlock *LoopMBB = nullptr;
8309     MachineBasicBlock *NextMBB = nullptr;
8310     MachineBasicBlock *DoneMBB = nullptr;
8311     MachineBasicBlock *AllDoneMBB = nullptr;
8312 
8313     Register StartSrcReg = forceReg(MI, SrcBase, TII);
8314     Register StartDestReg =
8315         (HaveSingleBase ? StartSrcReg : forceReg(MI, DestBase, TII));
8316 
8317     const TargetRegisterClass *RC = &SystemZ::ADDR64BitRegClass;
8318     Register ThisSrcReg  = MRI.createVirtualRegister(RC);
8319     Register ThisDestReg =
8320         (HaveSingleBase ? ThisSrcReg : MRI.createVirtualRegister(RC));
8321     Register NextSrcReg  = MRI.createVirtualRegister(RC);
8322     Register NextDestReg =
8323         (HaveSingleBase ? NextSrcReg : MRI.createVirtualRegister(RC));
8324     RC = &SystemZ::GR64BitRegClass;
8325     Register ThisCountReg = MRI.createVirtualRegister(RC);
8326     Register NextCountReg = MRI.createVirtualRegister(RC);
8327 
8328     if (IsRegForm) {
8329       AllDoneMBB = SystemZ::splitBlockBefore(MI, MBB);
8330       StartMBB = SystemZ::emitBlockAfter(MBB);
8331       LoopMBB = SystemZ::emitBlockAfter(StartMBB);
8332       NextMBB = (EndMBB ? SystemZ::emitBlockAfter(LoopMBB) : LoopMBB);
8333       DoneMBB = SystemZ::emitBlockAfter(NextMBB);
8334 
8335       //  MBB:
8336       //   # Jump to AllDoneMBB if LenAdjReg means 0, or fall thru to StartMBB.
8337       BuildMI(MBB, DL, TII->get(SystemZ::CGHI))
8338         .addReg(LenAdjReg).addImm(IsMemset ? -2 : -1);
8339       BuildMI(MBB, DL, TII->get(SystemZ::BRC))
8340         .addImm(SystemZ::CCMASK_ICMP).addImm(SystemZ::CCMASK_CMP_EQ)
8341         .addMBB(AllDoneMBB);
8342       MBB->addSuccessor(AllDoneMBB);
8343       if (!IsMemset)
8344         MBB->addSuccessor(StartMBB);
8345       else {
8346         // MemsetOneCheckMBB:
8347         // # Jump to MemsetOneMBB for a memset of length 1, or
8348         // # fall thru to StartMBB.
8349         MachineBasicBlock *MemsetOneCheckMBB = SystemZ::emitBlockAfter(MBB);
8350         MachineBasicBlock *MemsetOneMBB = SystemZ::emitBlockAfter(&*MF.rbegin());
8351         MBB->addSuccessor(MemsetOneCheckMBB);
8352         MBB = MemsetOneCheckMBB;
8353         BuildMI(MBB, DL, TII->get(SystemZ::CGHI))
8354           .addReg(LenAdjReg).addImm(-1);
8355         BuildMI(MBB, DL, TII->get(SystemZ::BRC))
8356           .addImm(SystemZ::CCMASK_ICMP).addImm(SystemZ::CCMASK_CMP_EQ)
8357           .addMBB(MemsetOneMBB);
8358         MBB->addSuccessor(MemsetOneMBB, {10, 100});
8359         MBB->addSuccessor(StartMBB, {90, 100});
8360 
8361         // MemsetOneMBB:
8362         // # Jump back to AllDoneMBB after a single MVI or STC.
8363         MBB = MemsetOneMBB;
8364         insertMemMemOp(MBB, MBB->end(),
8365                        MachineOperand::CreateReg(StartDestReg, false), DestDisp,
8366                        MachineOperand::CreateReg(StartSrcReg, false), SrcDisp,
8367                        1);
8368         BuildMI(MBB, DL, TII->get(SystemZ::J)).addMBB(AllDoneMBB);
8369         MBB->addSuccessor(AllDoneMBB);
8370       }
8371 
8372       // StartMBB:
8373       // # Jump to DoneMBB if %StartCountReg is zero, or fall through to LoopMBB.
8374       MBB = StartMBB;
8375       BuildMI(MBB, DL, TII->get(SystemZ::CGHI))
8376         .addReg(StartCountReg).addImm(0);
8377       BuildMI(MBB, DL, TII->get(SystemZ::BRC))
8378         .addImm(SystemZ::CCMASK_ICMP).addImm(SystemZ::CCMASK_CMP_EQ)
8379         .addMBB(DoneMBB);
8380       MBB->addSuccessor(DoneMBB);
8381       MBB->addSuccessor(LoopMBB);
8382     }
8383     else {
8384       StartMBB = MBB;
8385       DoneMBB = SystemZ::splitBlockBefore(MI, MBB);
8386       LoopMBB = SystemZ::emitBlockAfter(StartMBB);
8387       NextMBB = (EndMBB ? SystemZ::emitBlockAfter(LoopMBB) : LoopMBB);
8388 
8389       //  StartMBB:
8390       //   # fall through to LoopMBB
8391       MBB->addSuccessor(LoopMBB);
8392 
8393       DestBase = MachineOperand::CreateReg(NextDestReg, false);
8394       SrcBase = MachineOperand::CreateReg(NextSrcReg, false);
8395       if (EndMBB && !ImmLength)
8396         // If the loop handled the whole CLC range, DoneMBB will be empty with
8397         // CC live-through into EndMBB, so add it as live-in.
8398         DoneMBB->addLiveIn(SystemZ::CC);
8399     }
8400 
8401     //  LoopMBB:
8402     //   %ThisDestReg = phi [ %StartDestReg, StartMBB ],
8403     //                      [ %NextDestReg, NextMBB ]
8404     //   %ThisSrcReg = phi [ %StartSrcReg, StartMBB ],
8405     //                     [ %NextSrcReg, NextMBB ]
8406     //   %ThisCountReg = phi [ %StartCountReg, StartMBB ],
8407     //                       [ %NextCountReg, NextMBB ]
8408     //   ( PFD 2, 768+DestDisp(%ThisDestReg) )
8409     //   Opcode DestDisp(256,%ThisDestReg), SrcDisp(%ThisSrcReg)
8410     //   ( JLH EndMBB )
8411     //
8412     // The prefetch is used only for MVC.  The JLH is used only for CLC.
8413     MBB = LoopMBB;
8414     BuildMI(MBB, DL, TII->get(SystemZ::PHI), ThisDestReg)
8415       .addReg(StartDestReg).addMBB(StartMBB)
8416       .addReg(NextDestReg).addMBB(NextMBB);
8417     if (!HaveSingleBase)
8418       BuildMI(MBB, DL, TII->get(SystemZ::PHI), ThisSrcReg)
8419         .addReg(StartSrcReg).addMBB(StartMBB)
8420         .addReg(NextSrcReg).addMBB(NextMBB);
8421     BuildMI(MBB, DL, TII->get(SystemZ::PHI), ThisCountReg)
8422       .addReg(StartCountReg).addMBB(StartMBB)
8423       .addReg(NextCountReg).addMBB(NextMBB);
8424     if (Opcode == SystemZ::MVC)
8425       BuildMI(MBB, DL, TII->get(SystemZ::PFD))
8426         .addImm(SystemZ::PFD_WRITE)
8427         .addReg(ThisDestReg).addImm(DestDisp - IsMemset + 768).addReg(0);
8428     insertMemMemOp(MBB, MBB->end(),
8429                    MachineOperand::CreateReg(ThisDestReg, false), DestDisp,
8430                    MachineOperand::CreateReg(ThisSrcReg, false), SrcDisp, 256);
8431     if (EndMBB) {
8432       BuildMI(MBB, DL, TII->get(SystemZ::BRC))
8433         .addImm(SystemZ::CCMASK_ICMP).addImm(SystemZ::CCMASK_CMP_NE)
8434         .addMBB(EndMBB);
8435       MBB->addSuccessor(EndMBB);
8436       MBB->addSuccessor(NextMBB);
8437     }
8438 
8439     // NextMBB:
8440     //   %NextDestReg = LA 256(%ThisDestReg)
8441     //   %NextSrcReg = LA 256(%ThisSrcReg)
8442     //   %NextCountReg = AGHI %ThisCountReg, -1
8443     //   CGHI %NextCountReg, 0
8444     //   JLH LoopMBB
8445     //   # fall through to DoneMBB
8446     //
8447     // The AGHI, CGHI and JLH should be converted to BRCTG by later passes.
8448     MBB = NextMBB;
8449     BuildMI(MBB, DL, TII->get(SystemZ::LA), NextDestReg)
8450       .addReg(ThisDestReg).addImm(256).addReg(0);
8451     if (!HaveSingleBase)
8452       BuildMI(MBB, DL, TII->get(SystemZ::LA), NextSrcReg)
8453         .addReg(ThisSrcReg).addImm(256).addReg(0);
8454     BuildMI(MBB, DL, TII->get(SystemZ::AGHI), NextCountReg)
8455       .addReg(ThisCountReg).addImm(-1);
8456     BuildMI(MBB, DL, TII->get(SystemZ::CGHI))
8457       .addReg(NextCountReg).addImm(0);
8458     BuildMI(MBB, DL, TII->get(SystemZ::BRC))
8459       .addImm(SystemZ::CCMASK_ICMP).addImm(SystemZ::CCMASK_CMP_NE)
8460       .addMBB(LoopMBB);
8461     MBB->addSuccessor(LoopMBB);
8462     MBB->addSuccessor(DoneMBB);
8463 
8464     MBB = DoneMBB;
8465     if (IsRegForm) {
8466       // DoneMBB:
8467       // # Make PHIs for RemDestReg/RemSrcReg as the loop may or may not run.
8468       // # Use EXecute Relative Long for the remainder of the bytes. The target
8469       //   instruction of the EXRL will have a length field of 1 since 0 is an
8470       //   illegal value. The number of bytes processed becomes (%LenAdjReg &
8471       //   0xff) + 1.
8472       // # Fall through to AllDoneMBB.
8473       Register RemSrcReg  = MRI.createVirtualRegister(&SystemZ::ADDR64BitRegClass);
8474       Register RemDestReg = HaveSingleBase ? RemSrcReg
8475         : MRI.createVirtualRegister(&SystemZ::ADDR64BitRegClass);
8476       BuildMI(MBB, DL, TII->get(SystemZ::PHI), RemDestReg)
8477         .addReg(StartDestReg).addMBB(StartMBB)
8478         .addReg(NextDestReg).addMBB(NextMBB);
8479       if (!HaveSingleBase)
8480         BuildMI(MBB, DL, TII->get(SystemZ::PHI), RemSrcReg)
8481           .addReg(StartSrcReg).addMBB(StartMBB)
8482           .addReg(NextSrcReg).addMBB(NextMBB);
8483       if (IsMemset)
8484         insertMemMemOp(MBB, MBB->end(),
8485                        MachineOperand::CreateReg(RemDestReg, false), DestDisp,
8486                        MachineOperand::CreateReg(RemSrcReg, false), SrcDisp, 1);
8487       MachineInstrBuilder EXRL_MIB =
8488         BuildMI(MBB, DL, TII->get(SystemZ::EXRL_Pseudo))
8489           .addImm(Opcode)
8490           .addReg(LenAdjReg)
8491           .addReg(RemDestReg).addImm(DestDisp)
8492           .addReg(RemSrcReg).addImm(SrcDisp);
8493       MBB->addSuccessor(AllDoneMBB);
8494       MBB = AllDoneMBB;
8495       if (EndMBB) {
8496         EXRL_MIB.addReg(SystemZ::CC, RegState::ImplicitDefine);
8497         MBB->addLiveIn(SystemZ::CC);
8498       }
8499     }
8500   }
8501 
8502   // Handle any remaining bytes with straight-line code.
8503   while (ImmLength > 0) {
8504     uint64_t ThisLength = std::min(ImmLength, uint64_t(256));
8505     // The previous iteration might have created out-of-range displacements.
8506     // Apply them using LA/LAY if so.
8507     foldDisplIfNeeded(DestBase, DestDisp);
8508     foldDisplIfNeeded(SrcBase, SrcDisp);
8509     insertMemMemOp(MBB, MI, DestBase, DestDisp, SrcBase, SrcDisp, ThisLength);
8510     DestDisp += ThisLength;
8511     SrcDisp += ThisLength;
8512     ImmLength -= ThisLength;
8513     // If there's another CLC to go, branch to the end if a difference
8514     // was found.
8515     if (EndMBB && ImmLength > 0) {
8516       MachineBasicBlock *NextMBB = SystemZ::splitBlockBefore(MI, MBB);
8517       BuildMI(MBB, DL, TII->get(SystemZ::BRC))
8518         .addImm(SystemZ::CCMASK_ICMP).addImm(SystemZ::CCMASK_CMP_NE)
8519         .addMBB(EndMBB);
8520       MBB->addSuccessor(EndMBB);
8521       MBB->addSuccessor(NextMBB);
8522       MBB = NextMBB;
8523     }
8524   }
8525   if (EndMBB) {
8526     MBB->addSuccessor(EndMBB);
8527     MBB = EndMBB;
8528     MBB->addLiveIn(SystemZ::CC);
8529   }
8530 
8531   MI.eraseFromParent();
8532   return MBB;
8533 }
8534 
8535 // Decompose string pseudo-instruction MI into a loop that continually performs
8536 // Opcode until CC != 3.
8537 MachineBasicBlock *SystemZTargetLowering::emitStringWrapper(
8538     MachineInstr &MI, MachineBasicBlock *MBB, unsigned Opcode) const {
8539   MachineFunction &MF = *MBB->getParent();
8540   const SystemZInstrInfo *TII = Subtarget.getInstrInfo();
8541   MachineRegisterInfo &MRI = MF.getRegInfo();
8542   DebugLoc DL = MI.getDebugLoc();
8543 
8544   uint64_t End1Reg = MI.getOperand(0).getReg();
8545   uint64_t Start1Reg = MI.getOperand(1).getReg();
8546   uint64_t Start2Reg = MI.getOperand(2).getReg();
8547   uint64_t CharReg = MI.getOperand(3).getReg();
8548 
8549   const TargetRegisterClass *RC = &SystemZ::GR64BitRegClass;
8550   uint64_t This1Reg = MRI.createVirtualRegister(RC);
8551   uint64_t This2Reg = MRI.createVirtualRegister(RC);
8552   uint64_t End2Reg  = MRI.createVirtualRegister(RC);
8553 
8554   MachineBasicBlock *StartMBB = MBB;
8555   MachineBasicBlock *DoneMBB = SystemZ::splitBlockBefore(MI, MBB);
8556   MachineBasicBlock *LoopMBB = SystemZ::emitBlockAfter(StartMBB);
8557 
8558   //  StartMBB:
8559   //   # fall through to LoopMBB
8560   MBB->addSuccessor(LoopMBB);
8561 
8562   //  LoopMBB:
8563   //   %This1Reg = phi [ %Start1Reg, StartMBB ], [ %End1Reg, LoopMBB ]
8564   //   %This2Reg = phi [ %Start2Reg, StartMBB ], [ %End2Reg, LoopMBB ]
8565   //   R0L = %CharReg
8566   //   %End1Reg, %End2Reg = CLST %This1Reg, %This2Reg -- uses R0L
8567   //   JO LoopMBB
8568   //   # fall through to DoneMBB
8569   //
8570   // The load of R0L can be hoisted by post-RA LICM.
8571   MBB = LoopMBB;
8572 
8573   BuildMI(MBB, DL, TII->get(SystemZ::PHI), This1Reg)
8574     .addReg(Start1Reg).addMBB(StartMBB)
8575     .addReg(End1Reg).addMBB(LoopMBB);
8576   BuildMI(MBB, DL, TII->get(SystemZ::PHI), This2Reg)
8577     .addReg(Start2Reg).addMBB(StartMBB)
8578     .addReg(End2Reg).addMBB(LoopMBB);
8579   BuildMI(MBB, DL, TII->get(TargetOpcode::COPY), SystemZ::R0L).addReg(CharReg);
8580   BuildMI(MBB, DL, TII->get(Opcode))
8581     .addReg(End1Reg, RegState::Define).addReg(End2Reg, RegState::Define)
8582     .addReg(This1Reg).addReg(This2Reg);
8583   BuildMI(MBB, DL, TII->get(SystemZ::BRC))
8584     .addImm(SystemZ::CCMASK_ANY).addImm(SystemZ::CCMASK_3).addMBB(LoopMBB);
8585   MBB->addSuccessor(LoopMBB);
8586   MBB->addSuccessor(DoneMBB);
8587 
8588   DoneMBB->addLiveIn(SystemZ::CC);
8589 
8590   MI.eraseFromParent();
8591   return DoneMBB;
8592 }
8593 
8594 // Update TBEGIN instruction with final opcode and register clobbers.
8595 MachineBasicBlock *SystemZTargetLowering::emitTransactionBegin(
8596     MachineInstr &MI, MachineBasicBlock *MBB, unsigned Opcode,
8597     bool NoFloat) const {
8598   MachineFunction &MF = *MBB->getParent();
8599   const TargetFrameLowering *TFI = Subtarget.getFrameLowering();
8600   const SystemZInstrInfo *TII = Subtarget.getInstrInfo();
8601 
8602   // Update opcode.
8603   MI.setDesc(TII->get(Opcode));
8604 
8605   // We cannot handle a TBEGIN that clobbers the stack or frame pointer.
8606   // Make sure to add the corresponding GRSM bits if they are missing.
8607   uint64_t Control = MI.getOperand(2).getImm();
8608   static const unsigned GPRControlBit[16] = {
8609     0x8000, 0x8000, 0x4000, 0x4000, 0x2000, 0x2000, 0x1000, 0x1000,
8610     0x0800, 0x0800, 0x0400, 0x0400, 0x0200, 0x0200, 0x0100, 0x0100
8611   };
8612   Control |= GPRControlBit[15];
8613   if (TFI->hasFP(MF))
8614     Control |= GPRControlBit[11];
8615   MI.getOperand(2).setImm(Control);
8616 
8617   // Add GPR clobbers.
8618   for (int I = 0; I < 16; I++) {
8619     if ((Control & GPRControlBit[I]) == 0) {
8620       unsigned Reg = SystemZMC::GR64Regs[I];
8621       MI.addOperand(MachineOperand::CreateReg(Reg, true, true));
8622     }
8623   }
8624 
8625   // Add FPR/VR clobbers.
8626   if (!NoFloat && (Control & 4) != 0) {
8627     if (Subtarget.hasVector()) {
8628       for (unsigned Reg : SystemZMC::VR128Regs) {
8629         MI.addOperand(MachineOperand::CreateReg(Reg, true, true));
8630       }
8631     } else {
8632       for (unsigned Reg : SystemZMC::FP64Regs) {
8633         MI.addOperand(MachineOperand::CreateReg(Reg, true, true));
8634       }
8635     }
8636   }
8637 
8638   return MBB;
8639 }
8640 
8641 MachineBasicBlock *SystemZTargetLowering::emitLoadAndTestCmp0(
8642     MachineInstr &MI, MachineBasicBlock *MBB, unsigned Opcode) const {
8643   MachineFunction &MF = *MBB->getParent();
8644   MachineRegisterInfo *MRI = &MF.getRegInfo();
8645   const SystemZInstrInfo *TII = Subtarget.getInstrInfo();
8646   DebugLoc DL = MI.getDebugLoc();
8647 
8648   Register SrcReg = MI.getOperand(0).getReg();
8649 
8650   // Create new virtual register of the same class as source.
8651   const TargetRegisterClass *RC = MRI->getRegClass(SrcReg);
8652   Register DstReg = MRI->createVirtualRegister(RC);
8653 
8654   // Replace pseudo with a normal load-and-test that models the def as
8655   // well.
8656   BuildMI(*MBB, MI, DL, TII->get(Opcode), DstReg)
8657     .addReg(SrcReg)
8658     .setMIFlags(MI.getFlags());
8659   MI.eraseFromParent();
8660 
8661   return MBB;
8662 }
8663 
8664 MachineBasicBlock *SystemZTargetLowering::emitProbedAlloca(
8665     MachineInstr &MI, MachineBasicBlock *MBB) const {
8666   MachineFunction &MF = *MBB->getParent();
8667   MachineRegisterInfo *MRI = &MF.getRegInfo();
8668   const SystemZInstrInfo *TII = Subtarget.getInstrInfo();
8669   DebugLoc DL = MI.getDebugLoc();
8670   const unsigned ProbeSize = getStackProbeSize(MF);
8671   Register DstReg = MI.getOperand(0).getReg();
8672   Register SizeReg = MI.getOperand(2).getReg();
8673 
8674   MachineBasicBlock *StartMBB = MBB;
8675   MachineBasicBlock *DoneMBB  = SystemZ::splitBlockAfter(MI, MBB);
8676   MachineBasicBlock *LoopTestMBB  = SystemZ::emitBlockAfter(StartMBB);
8677   MachineBasicBlock *LoopBodyMBB = SystemZ::emitBlockAfter(LoopTestMBB);
8678   MachineBasicBlock *TailTestMBB = SystemZ::emitBlockAfter(LoopBodyMBB);
8679   MachineBasicBlock *TailMBB = SystemZ::emitBlockAfter(TailTestMBB);
8680 
8681   MachineMemOperand *VolLdMMO = MF.getMachineMemOperand(MachinePointerInfo(),
8682     MachineMemOperand::MOVolatile | MachineMemOperand::MOLoad, 8, Align(1));
8683 
8684   Register PHIReg = MRI->createVirtualRegister(&SystemZ::ADDR64BitRegClass);
8685   Register IncReg = MRI->createVirtualRegister(&SystemZ::ADDR64BitRegClass);
8686 
8687   //  LoopTestMBB
8688   //  BRC TailTestMBB
8689   //  # fallthrough to LoopBodyMBB
8690   StartMBB->addSuccessor(LoopTestMBB);
8691   MBB = LoopTestMBB;
8692   BuildMI(MBB, DL, TII->get(SystemZ::PHI), PHIReg)
8693     .addReg(SizeReg)
8694     .addMBB(StartMBB)
8695     .addReg(IncReg)
8696     .addMBB(LoopBodyMBB);
8697   BuildMI(MBB, DL, TII->get(SystemZ::CLGFI))
8698     .addReg(PHIReg)
8699     .addImm(ProbeSize);
8700   BuildMI(MBB, DL, TII->get(SystemZ::BRC))
8701     .addImm(SystemZ::CCMASK_ICMP).addImm(SystemZ::CCMASK_CMP_LT)
8702     .addMBB(TailTestMBB);
8703   MBB->addSuccessor(LoopBodyMBB);
8704   MBB->addSuccessor(TailTestMBB);
8705 
8706   //  LoopBodyMBB: Allocate and probe by means of a volatile compare.
8707   //  J LoopTestMBB
8708   MBB = LoopBodyMBB;
8709   BuildMI(MBB, DL, TII->get(SystemZ::SLGFI), IncReg)
8710     .addReg(PHIReg)
8711     .addImm(ProbeSize);
8712   BuildMI(MBB, DL, TII->get(SystemZ::SLGFI), SystemZ::R15D)
8713     .addReg(SystemZ::R15D)
8714     .addImm(ProbeSize);
8715   BuildMI(MBB, DL, TII->get(SystemZ::CG)).addReg(SystemZ::R15D)
8716     .addReg(SystemZ::R15D).addImm(ProbeSize - 8).addReg(0)
8717     .setMemRefs(VolLdMMO);
8718   BuildMI(MBB, DL, TII->get(SystemZ::J)).addMBB(LoopTestMBB);
8719   MBB->addSuccessor(LoopTestMBB);
8720 
8721   //  TailTestMBB
8722   //  BRC DoneMBB
8723   //  # fallthrough to TailMBB
8724   MBB = TailTestMBB;
8725   BuildMI(MBB, DL, TII->get(SystemZ::CGHI))
8726     .addReg(PHIReg)
8727     .addImm(0);
8728   BuildMI(MBB, DL, TII->get(SystemZ::BRC))
8729     .addImm(SystemZ::CCMASK_ICMP).addImm(SystemZ::CCMASK_CMP_EQ)
8730     .addMBB(DoneMBB);
8731   MBB->addSuccessor(TailMBB);
8732   MBB->addSuccessor(DoneMBB);
8733 
8734   //  TailMBB
8735   //  # fallthrough to DoneMBB
8736   MBB = TailMBB;
8737   BuildMI(MBB, DL, TII->get(SystemZ::SLGR), SystemZ::R15D)
8738     .addReg(SystemZ::R15D)
8739     .addReg(PHIReg);
8740   BuildMI(MBB, DL, TII->get(SystemZ::CG)).addReg(SystemZ::R15D)
8741     .addReg(SystemZ::R15D).addImm(-8).addReg(PHIReg)
8742     .setMemRefs(VolLdMMO);
8743   MBB->addSuccessor(DoneMBB);
8744 
8745   //  DoneMBB
8746   MBB = DoneMBB;
8747   BuildMI(*MBB, MBB->begin(), DL, TII->get(TargetOpcode::COPY), DstReg)
8748     .addReg(SystemZ::R15D);
8749 
8750   MI.eraseFromParent();
8751   return DoneMBB;
8752 }
8753 
8754 SDValue SystemZTargetLowering::
8755 getBackchainAddress(SDValue SP, SelectionDAG &DAG) const {
8756   MachineFunction &MF = DAG.getMachineFunction();
8757   auto *TFL = Subtarget.getFrameLowering<SystemZELFFrameLowering>();
8758   SDLoc DL(SP);
8759   return DAG.getNode(ISD::ADD, DL, MVT::i64, SP,
8760                      DAG.getIntPtrConstant(TFL->getBackchainOffset(MF), DL));
8761 }
8762 
8763 MachineBasicBlock *SystemZTargetLowering::EmitInstrWithCustomInserter(
8764     MachineInstr &MI, MachineBasicBlock *MBB) const {
8765   switch (MI.getOpcode()) {
8766   case SystemZ::Select32:
8767   case SystemZ::Select64:
8768   case SystemZ::SelectF32:
8769   case SystemZ::SelectF64:
8770   case SystemZ::SelectF128:
8771   case SystemZ::SelectVR32:
8772   case SystemZ::SelectVR64:
8773   case SystemZ::SelectVR128:
8774     return emitSelect(MI, MBB);
8775 
8776   case SystemZ::CondStore8Mux:
8777     return emitCondStore(MI, MBB, SystemZ::STCMux, 0, false);
8778   case SystemZ::CondStore8MuxInv:
8779     return emitCondStore(MI, MBB, SystemZ::STCMux, 0, true);
8780   case SystemZ::CondStore16Mux:
8781     return emitCondStore(MI, MBB, SystemZ::STHMux, 0, false);
8782   case SystemZ::CondStore16MuxInv:
8783     return emitCondStore(MI, MBB, SystemZ::STHMux, 0, true);
8784   case SystemZ::CondStore32Mux:
8785     return emitCondStore(MI, MBB, SystemZ::STMux, SystemZ::STOCMux, false);
8786   case SystemZ::CondStore32MuxInv:
8787     return emitCondStore(MI, MBB, SystemZ::STMux, SystemZ::STOCMux, true);
8788   case SystemZ::CondStore8:
8789     return emitCondStore(MI, MBB, SystemZ::STC, 0, false);
8790   case SystemZ::CondStore8Inv:
8791     return emitCondStore(MI, MBB, SystemZ::STC, 0, true);
8792   case SystemZ::CondStore16:
8793     return emitCondStore(MI, MBB, SystemZ::STH, 0, false);
8794   case SystemZ::CondStore16Inv:
8795     return emitCondStore(MI, MBB, SystemZ::STH, 0, true);
8796   case SystemZ::CondStore32:
8797     return emitCondStore(MI, MBB, SystemZ::ST, SystemZ::STOC, false);
8798   case SystemZ::CondStore32Inv:
8799     return emitCondStore(MI, MBB, SystemZ::ST, SystemZ::STOC, true);
8800   case SystemZ::CondStore64:
8801     return emitCondStore(MI, MBB, SystemZ::STG, SystemZ::STOCG, false);
8802   case SystemZ::CondStore64Inv:
8803     return emitCondStore(MI, MBB, SystemZ::STG, SystemZ::STOCG, true);
8804   case SystemZ::CondStoreF32:
8805     return emitCondStore(MI, MBB, SystemZ::STE, 0, false);
8806   case SystemZ::CondStoreF32Inv:
8807     return emitCondStore(MI, MBB, SystemZ::STE, 0, true);
8808   case SystemZ::CondStoreF64:
8809     return emitCondStore(MI, MBB, SystemZ::STD, 0, false);
8810   case SystemZ::CondStoreF64Inv:
8811     return emitCondStore(MI, MBB, SystemZ::STD, 0, true);
8812 
8813   case SystemZ::PAIR128:
8814     return emitPair128(MI, MBB);
8815   case SystemZ::AEXT128:
8816     return emitExt128(MI, MBB, false);
8817   case SystemZ::ZEXT128:
8818     return emitExt128(MI, MBB, true);
8819 
8820   case SystemZ::ATOMIC_SWAPW:
8821     return emitAtomicLoadBinary(MI, MBB, 0, 0);
8822   case SystemZ::ATOMIC_SWAP_32:
8823     return emitAtomicLoadBinary(MI, MBB, 0, 32);
8824   case SystemZ::ATOMIC_SWAP_64:
8825     return emitAtomicLoadBinary(MI, MBB, 0, 64);
8826 
8827   case SystemZ::ATOMIC_LOADW_AR:
8828     return emitAtomicLoadBinary(MI, MBB, SystemZ::AR, 0);
8829   case SystemZ::ATOMIC_LOADW_AFI:
8830     return emitAtomicLoadBinary(MI, MBB, SystemZ::AFI, 0);
8831   case SystemZ::ATOMIC_LOAD_AR:
8832     return emitAtomicLoadBinary(MI, MBB, SystemZ::AR, 32);
8833   case SystemZ::ATOMIC_LOAD_AHI:
8834     return emitAtomicLoadBinary(MI, MBB, SystemZ::AHI, 32);
8835   case SystemZ::ATOMIC_LOAD_AFI:
8836     return emitAtomicLoadBinary(MI, MBB, SystemZ::AFI, 32);
8837   case SystemZ::ATOMIC_LOAD_AGR:
8838     return emitAtomicLoadBinary(MI, MBB, SystemZ::AGR, 64);
8839   case SystemZ::ATOMIC_LOAD_AGHI:
8840     return emitAtomicLoadBinary(MI, MBB, SystemZ::AGHI, 64);
8841   case SystemZ::ATOMIC_LOAD_AGFI:
8842     return emitAtomicLoadBinary(MI, MBB, SystemZ::AGFI, 64);
8843 
8844   case SystemZ::ATOMIC_LOADW_SR:
8845     return emitAtomicLoadBinary(MI, MBB, SystemZ::SR, 0);
8846   case SystemZ::ATOMIC_LOAD_SR:
8847     return emitAtomicLoadBinary(MI, MBB, SystemZ::SR, 32);
8848   case SystemZ::ATOMIC_LOAD_SGR:
8849     return emitAtomicLoadBinary(MI, MBB, SystemZ::SGR, 64);
8850 
8851   case SystemZ::ATOMIC_LOADW_NR:
8852     return emitAtomicLoadBinary(MI, MBB, SystemZ::NR, 0);
8853   case SystemZ::ATOMIC_LOADW_NILH:
8854     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH, 0);
8855   case SystemZ::ATOMIC_LOAD_NR:
8856     return emitAtomicLoadBinary(MI, MBB, SystemZ::NR, 32);
8857   case SystemZ::ATOMIC_LOAD_NILL:
8858     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILL, 32);
8859   case SystemZ::ATOMIC_LOAD_NILH:
8860     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH, 32);
8861   case SystemZ::ATOMIC_LOAD_NILF:
8862     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILF, 32);
8863   case SystemZ::ATOMIC_LOAD_NGR:
8864     return emitAtomicLoadBinary(MI, MBB, SystemZ::NGR, 64);
8865   case SystemZ::ATOMIC_LOAD_NILL64:
8866     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILL64, 64);
8867   case SystemZ::ATOMIC_LOAD_NILH64:
8868     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH64, 64);
8869   case SystemZ::ATOMIC_LOAD_NIHL64:
8870     return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHL64, 64);
8871   case SystemZ::ATOMIC_LOAD_NIHH64:
8872     return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHH64, 64);
8873   case SystemZ::ATOMIC_LOAD_NILF64:
8874     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILF64, 64);
8875   case SystemZ::ATOMIC_LOAD_NIHF64:
8876     return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHF64, 64);
8877 
8878   case SystemZ::ATOMIC_LOADW_OR:
8879     return emitAtomicLoadBinary(MI, MBB, SystemZ::OR, 0);
8880   case SystemZ::ATOMIC_LOADW_OILH:
8881     return emitAtomicLoadBinary(MI, MBB, SystemZ::OILH, 0);
8882   case SystemZ::ATOMIC_LOAD_OR:
8883     return emitAtomicLoadBinary(MI, MBB, SystemZ::OR, 32);
8884   case SystemZ::ATOMIC_LOAD_OILL:
8885     return emitAtomicLoadBinary(MI, MBB, SystemZ::OILL, 32);
8886   case SystemZ::ATOMIC_LOAD_OILH:
8887     return emitAtomicLoadBinary(MI, MBB, SystemZ::OILH, 32);
8888   case SystemZ::ATOMIC_LOAD_OILF:
8889     return emitAtomicLoadBinary(MI, MBB, SystemZ::OILF, 32);
8890   case SystemZ::ATOMIC_LOAD_OGR:
8891     return emitAtomicLoadBinary(MI, MBB, SystemZ::OGR, 64);
8892   case SystemZ::ATOMIC_LOAD_OILL64:
8893     return emitAtomicLoadBinary(MI, MBB, SystemZ::OILL64, 64);
8894   case SystemZ::ATOMIC_LOAD_OILH64:
8895     return emitAtomicLoadBinary(MI, MBB, SystemZ::OILH64, 64);
8896   case SystemZ::ATOMIC_LOAD_OIHL64:
8897     return emitAtomicLoadBinary(MI, MBB, SystemZ::OIHL64, 64);
8898   case SystemZ::ATOMIC_LOAD_OIHH64:
8899     return emitAtomicLoadBinary(MI, MBB, SystemZ::OIHH64, 64);
8900   case SystemZ::ATOMIC_LOAD_OILF64:
8901     return emitAtomicLoadBinary(MI, MBB, SystemZ::OILF64, 64);
8902   case SystemZ::ATOMIC_LOAD_OIHF64:
8903     return emitAtomicLoadBinary(MI, MBB, SystemZ::OIHF64, 64);
8904 
8905   case SystemZ::ATOMIC_LOADW_XR:
8906     return emitAtomicLoadBinary(MI, MBB, SystemZ::XR, 0);
8907   case SystemZ::ATOMIC_LOADW_XILF:
8908     return emitAtomicLoadBinary(MI, MBB, SystemZ::XILF, 0);
8909   case SystemZ::ATOMIC_LOAD_XR:
8910     return emitAtomicLoadBinary(MI, MBB, SystemZ::XR, 32);
8911   case SystemZ::ATOMIC_LOAD_XILF:
8912     return emitAtomicLoadBinary(MI, MBB, SystemZ::XILF, 32);
8913   case SystemZ::ATOMIC_LOAD_XGR:
8914     return emitAtomicLoadBinary(MI, MBB, SystemZ::XGR, 64);
8915   case SystemZ::ATOMIC_LOAD_XILF64:
8916     return emitAtomicLoadBinary(MI, MBB, SystemZ::XILF64, 64);
8917   case SystemZ::ATOMIC_LOAD_XIHF64:
8918     return emitAtomicLoadBinary(MI, MBB, SystemZ::XIHF64, 64);
8919 
8920   case SystemZ::ATOMIC_LOADW_NRi:
8921     return emitAtomicLoadBinary(MI, MBB, SystemZ::NR, 0, true);
8922   case SystemZ::ATOMIC_LOADW_NILHi:
8923     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH, 0, true);
8924   case SystemZ::ATOMIC_LOAD_NRi:
8925     return emitAtomicLoadBinary(MI, MBB, SystemZ::NR, 32, true);
8926   case SystemZ::ATOMIC_LOAD_NILLi:
8927     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILL, 32, true);
8928   case SystemZ::ATOMIC_LOAD_NILHi:
8929     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH, 32, true);
8930   case SystemZ::ATOMIC_LOAD_NILFi:
8931     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILF, 32, true);
8932   case SystemZ::ATOMIC_LOAD_NGRi:
8933     return emitAtomicLoadBinary(MI, MBB, SystemZ::NGR, 64, true);
8934   case SystemZ::ATOMIC_LOAD_NILL64i:
8935     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILL64, 64, true);
8936   case SystemZ::ATOMIC_LOAD_NILH64i:
8937     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH64, 64, true);
8938   case SystemZ::ATOMIC_LOAD_NIHL64i:
8939     return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHL64, 64, true);
8940   case SystemZ::ATOMIC_LOAD_NIHH64i:
8941     return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHH64, 64, true);
8942   case SystemZ::ATOMIC_LOAD_NILF64i:
8943     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILF64, 64, true);
8944   case SystemZ::ATOMIC_LOAD_NIHF64i:
8945     return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHF64, 64, true);
8946 
8947   case SystemZ::ATOMIC_LOADW_MIN:
8948     return emitAtomicLoadMinMax(MI, MBB, SystemZ::CR,
8949                                 SystemZ::CCMASK_CMP_LE, 0);
8950   case SystemZ::ATOMIC_LOAD_MIN_32:
8951     return emitAtomicLoadMinMax(MI, MBB, SystemZ::CR,
8952                                 SystemZ::CCMASK_CMP_LE, 32);
8953   case SystemZ::ATOMIC_LOAD_MIN_64:
8954     return emitAtomicLoadMinMax(MI, MBB, SystemZ::CGR,
8955                                 SystemZ::CCMASK_CMP_LE, 64);
8956 
8957   case SystemZ::ATOMIC_LOADW_MAX:
8958     return emitAtomicLoadMinMax(MI, MBB, SystemZ::CR,
8959                                 SystemZ::CCMASK_CMP_GE, 0);
8960   case SystemZ::ATOMIC_LOAD_MAX_32:
8961     return emitAtomicLoadMinMax(MI, MBB, SystemZ::CR,
8962                                 SystemZ::CCMASK_CMP_GE, 32);
8963   case SystemZ::ATOMIC_LOAD_MAX_64:
8964     return emitAtomicLoadMinMax(MI, MBB, SystemZ::CGR,
8965                                 SystemZ::CCMASK_CMP_GE, 64);
8966 
8967   case SystemZ::ATOMIC_LOADW_UMIN:
8968     return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLR,
8969                                 SystemZ::CCMASK_CMP_LE, 0);
8970   case SystemZ::ATOMIC_LOAD_UMIN_32:
8971     return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLR,
8972                                 SystemZ::CCMASK_CMP_LE, 32);
8973   case SystemZ::ATOMIC_LOAD_UMIN_64:
8974     return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLGR,
8975                                 SystemZ::CCMASK_CMP_LE, 64);
8976 
8977   case SystemZ::ATOMIC_LOADW_UMAX:
8978     return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLR,
8979                                 SystemZ::CCMASK_CMP_GE, 0);
8980   case SystemZ::ATOMIC_LOAD_UMAX_32:
8981     return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLR,
8982                                 SystemZ::CCMASK_CMP_GE, 32);
8983   case SystemZ::ATOMIC_LOAD_UMAX_64:
8984     return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLGR,
8985                                 SystemZ::CCMASK_CMP_GE, 64);
8986 
8987   case SystemZ::ATOMIC_CMP_SWAPW:
8988     return emitAtomicCmpSwapW(MI, MBB);
8989   case SystemZ::MVCImm:
8990   case SystemZ::MVCReg:
8991     return emitMemMemWrapper(MI, MBB, SystemZ::MVC);
8992   case SystemZ::NCImm:
8993     return emitMemMemWrapper(MI, MBB, SystemZ::NC);
8994   case SystemZ::OCImm:
8995     return emitMemMemWrapper(MI, MBB, SystemZ::OC);
8996   case SystemZ::XCImm:
8997   case SystemZ::XCReg:
8998     return emitMemMemWrapper(MI, MBB, SystemZ::XC);
8999   case SystemZ::CLCImm:
9000   case SystemZ::CLCReg:
9001     return emitMemMemWrapper(MI, MBB, SystemZ::CLC);
9002   case SystemZ::MemsetImmImm:
9003   case SystemZ::MemsetImmReg:
9004   case SystemZ::MemsetRegImm:
9005   case SystemZ::MemsetRegReg:
9006     return emitMemMemWrapper(MI, MBB, SystemZ::MVC, true/*IsMemset*/);
9007   case SystemZ::CLSTLoop:
9008     return emitStringWrapper(MI, MBB, SystemZ::CLST);
9009   case SystemZ::MVSTLoop:
9010     return emitStringWrapper(MI, MBB, SystemZ::MVST);
9011   case SystemZ::SRSTLoop:
9012     return emitStringWrapper(MI, MBB, SystemZ::SRST);
9013   case SystemZ::TBEGIN:
9014     return emitTransactionBegin(MI, MBB, SystemZ::TBEGIN, false);
9015   case SystemZ::TBEGIN_nofloat:
9016     return emitTransactionBegin(MI, MBB, SystemZ::TBEGIN, true);
9017   case SystemZ::TBEGINC:
9018     return emitTransactionBegin(MI, MBB, SystemZ::TBEGINC, true);
9019   case SystemZ::LTEBRCompare_VecPseudo:
9020     return emitLoadAndTestCmp0(MI, MBB, SystemZ::LTEBR);
9021   case SystemZ::LTDBRCompare_VecPseudo:
9022     return emitLoadAndTestCmp0(MI, MBB, SystemZ::LTDBR);
9023   case SystemZ::LTXBRCompare_VecPseudo:
9024     return emitLoadAndTestCmp0(MI, MBB, SystemZ::LTXBR);
9025 
9026   case SystemZ::PROBED_ALLOCA:
9027     return emitProbedAlloca(MI, MBB);
9028 
9029   case TargetOpcode::STACKMAP:
9030   case TargetOpcode::PATCHPOINT:
9031     return emitPatchPoint(MI, MBB);
9032 
9033   default:
9034     llvm_unreachable("Unexpected instr type to insert");
9035   }
9036 }
9037 
9038 // This is only used by the isel schedulers, and is needed only to prevent
9039 // compiler from crashing when list-ilp is used.
9040 const TargetRegisterClass *
9041 SystemZTargetLowering::getRepRegClassFor(MVT VT) const {
9042   if (VT == MVT::Untyped)
9043     return &SystemZ::ADDR128BitRegClass;
9044   return TargetLowering::getRepRegClassFor(VT);
9045 }
9046