1 //===-- SystemZInstrInfo.cpp - SystemZ instruction information ------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file contains the SystemZ implementation of the TargetInstrInfo class.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "SystemZInstrInfo.h"
14 #include "MCTargetDesc/SystemZMCTargetDesc.h"
15 #include "SystemZ.h"
16 #include "SystemZInstrBuilder.h"
17 #include "SystemZSubtarget.h"
18 #include "llvm/ADT/Statistic.h"
19 #include "llvm/CodeGen/LiveInterval.h"
20 #include "llvm/CodeGen/LiveIntervals.h"
21 #include "llvm/CodeGen/LivePhysRegs.h"
22 #include "llvm/CodeGen/LiveVariables.h"
23 #include "llvm/CodeGen/MachineBasicBlock.h"
24 #include "llvm/CodeGen/MachineFrameInfo.h"
25 #include "llvm/CodeGen/MachineFunction.h"
26 #include "llvm/CodeGen/MachineInstr.h"
27 #include "llvm/CodeGen/MachineMemOperand.h"
28 #include "llvm/CodeGen/MachineOperand.h"
29 #include "llvm/CodeGen/MachineRegisterInfo.h"
30 #include "llvm/CodeGen/SlotIndexes.h"
31 #include "llvm/CodeGen/StackMaps.h"
32 #include "llvm/CodeGen/TargetInstrInfo.h"
33 #include "llvm/CodeGen/TargetSubtargetInfo.h"
34 #include "llvm/CodeGen/VirtRegMap.h"
35 #include "llvm/MC/MCInstrDesc.h"
36 #include "llvm/MC/MCRegisterInfo.h"
37 #include "llvm/Support/BranchProbability.h"
38 #include "llvm/Support/ErrorHandling.h"
39 #include "llvm/Support/MathExtras.h"
40 #include "llvm/Target/TargetMachine.h"
41 #include <cassert>
42 #include <cstdint>
43 #include <iterator>
44 
45 using namespace llvm;
46 
47 #define GET_INSTRINFO_CTOR_DTOR
48 #define GET_INSTRMAP_INFO
49 #include "SystemZGenInstrInfo.inc"
50 
51 #define DEBUG_TYPE "systemz-II"
52 
53 // Return a mask with Count low bits set.
54 static uint64_t allOnes(unsigned int Count) {
55   return Count == 0 ? 0 : (uint64_t(1) << (Count - 1) << 1) - 1;
56 }
57 
58 // Pin the vtable to this file.
59 void SystemZInstrInfo::anchor() {}
60 
61 SystemZInstrInfo::SystemZInstrInfo(SystemZSubtarget &sti)
62     : SystemZGenInstrInfo(SystemZ::ADJCALLSTACKDOWN, SystemZ::ADJCALLSTACKUP),
63       RI(sti.getSpecialRegisters()->getReturnFunctionAddressRegister()),
64       STI(sti) {}
65 
66 // MI is a 128-bit load or store.  Split it into two 64-bit loads or stores,
67 // each having the opcode given by NewOpcode.
68 void SystemZInstrInfo::splitMove(MachineBasicBlock::iterator MI,
69                                  unsigned NewOpcode) const {
70   MachineBasicBlock *MBB = MI->getParent();
71   MachineFunction &MF = *MBB->getParent();
72 
73   // Get two load or store instructions.  Use the original instruction for one
74   // of them (arbitrarily the second here) and create a clone for the other.
75   MachineInstr *EarlierMI = MF.CloneMachineInstr(&*MI);
76   MBB->insert(MI, EarlierMI);
77 
78   // Set up the two 64-bit registers and remember super reg and its flags.
79   MachineOperand &HighRegOp = EarlierMI->getOperand(0);
80   MachineOperand &LowRegOp = MI->getOperand(0);
81   Register Reg128 = LowRegOp.getReg();
82   unsigned Reg128Killed = getKillRegState(LowRegOp.isKill());
83   unsigned Reg128Undef  = getUndefRegState(LowRegOp.isUndef());
84   HighRegOp.setReg(RI.getSubReg(HighRegOp.getReg(), SystemZ::subreg_h64));
85   LowRegOp.setReg(RI.getSubReg(LowRegOp.getReg(), SystemZ::subreg_l64));
86 
87   if (MI->mayStore()) {
88     // Add implicit uses of the super register in case one of the subregs is
89     // undefined. We could track liveness and skip storing an undefined
90     // subreg, but this is hopefully rare (discovered with llvm-stress).
91     // If Reg128 was killed, set kill flag on MI.
92     unsigned Reg128UndefImpl = (Reg128Undef | RegState::Implicit);
93     MachineInstrBuilder(MF, EarlierMI).addReg(Reg128, Reg128UndefImpl);
94     MachineInstrBuilder(MF, MI).addReg(Reg128, (Reg128UndefImpl | Reg128Killed));
95   }
96 
97   // The address in the first (high) instruction is already correct.
98   // Adjust the offset in the second (low) instruction.
99   MachineOperand &HighOffsetOp = EarlierMI->getOperand(2);
100   MachineOperand &LowOffsetOp = MI->getOperand(2);
101   LowOffsetOp.setImm(LowOffsetOp.getImm() + 8);
102 
103   // Clear the kill flags on the registers in the first instruction.
104   if (EarlierMI->getOperand(0).isReg() && EarlierMI->getOperand(0).isUse())
105     EarlierMI->getOperand(0).setIsKill(false);
106   EarlierMI->getOperand(1).setIsKill(false);
107   EarlierMI->getOperand(3).setIsKill(false);
108 
109   // Set the opcodes.
110   unsigned HighOpcode = getOpcodeForOffset(NewOpcode, HighOffsetOp.getImm());
111   unsigned LowOpcode = getOpcodeForOffset(NewOpcode, LowOffsetOp.getImm());
112   assert(HighOpcode && LowOpcode && "Both offsets should be in range");
113 
114   EarlierMI->setDesc(get(HighOpcode));
115   MI->setDesc(get(LowOpcode));
116 }
117 
118 // Split ADJDYNALLOC instruction MI.
119 void SystemZInstrInfo::splitAdjDynAlloc(MachineBasicBlock::iterator MI) const {
120   MachineBasicBlock *MBB = MI->getParent();
121   MachineFunction &MF = *MBB->getParent();
122   MachineFrameInfo &MFFrame = MF.getFrameInfo();
123   MachineOperand &OffsetMO = MI->getOperand(2);
124   SystemZCallingConventionRegisters *Regs = STI.getSpecialRegisters();
125 
126   uint64_t Offset = (MFFrame.getMaxCallFrameSize() +
127                      Regs->getCallFrameSize() +
128                      Regs->getStackPointerBias() +
129                      OffsetMO.getImm());
130   unsigned NewOpcode = getOpcodeForOffset(SystemZ::LA, Offset);
131   assert(NewOpcode && "No support for huge argument lists yet");
132   MI->setDesc(get(NewOpcode));
133   OffsetMO.setImm(Offset);
134 }
135 
136 // MI is an RI-style pseudo instruction.  Replace it with LowOpcode
137 // if the first operand is a low GR32 and HighOpcode if the first operand
138 // is a high GR32.  ConvertHigh is true if LowOpcode takes a signed operand
139 // and HighOpcode takes an unsigned 32-bit operand.  In those cases,
140 // MI has the same kind of operand as LowOpcode, so needs to be converted
141 // if HighOpcode is used.
142 void SystemZInstrInfo::expandRIPseudo(MachineInstr &MI, unsigned LowOpcode,
143                                       unsigned HighOpcode,
144                                       bool ConvertHigh) const {
145   Register Reg = MI.getOperand(0).getReg();
146   bool IsHigh = SystemZ::isHighReg(Reg);
147   MI.setDesc(get(IsHigh ? HighOpcode : LowOpcode));
148   if (IsHigh && ConvertHigh)
149     MI.getOperand(1).setImm(uint32_t(MI.getOperand(1).getImm()));
150 }
151 
152 // MI is a three-operand RIE-style pseudo instruction.  Replace it with
153 // LowOpcodeK if the registers are both low GR32s, otherwise use a move
154 // followed by HighOpcode or LowOpcode, depending on whether the target
155 // is a high or low GR32.
156 void SystemZInstrInfo::expandRIEPseudo(MachineInstr &MI, unsigned LowOpcode,
157                                        unsigned LowOpcodeK,
158                                        unsigned HighOpcode) const {
159   Register DestReg = MI.getOperand(0).getReg();
160   Register SrcReg = MI.getOperand(1).getReg();
161   bool DestIsHigh = SystemZ::isHighReg(DestReg);
162   bool SrcIsHigh = SystemZ::isHighReg(SrcReg);
163   if (!DestIsHigh && !SrcIsHigh)
164     MI.setDesc(get(LowOpcodeK));
165   else {
166     if (DestReg != SrcReg) {
167       emitGRX32Move(*MI.getParent(), MI, MI.getDebugLoc(), DestReg, SrcReg,
168                     SystemZ::LR, 32, MI.getOperand(1).isKill(),
169                     MI.getOperand(1).isUndef());
170       MI.getOperand(1).setReg(DestReg);
171     }
172     MI.setDesc(get(DestIsHigh ? HighOpcode : LowOpcode));
173     MI.tieOperands(0, 1);
174   }
175 }
176 
177 // MI is an RXY-style pseudo instruction.  Replace it with LowOpcode
178 // if the first operand is a low GR32 and HighOpcode if the first operand
179 // is a high GR32.
180 void SystemZInstrInfo::expandRXYPseudo(MachineInstr &MI, unsigned LowOpcode,
181                                        unsigned HighOpcode) const {
182   Register Reg = MI.getOperand(0).getReg();
183   unsigned Opcode = getOpcodeForOffset(
184       SystemZ::isHighReg(Reg) ? HighOpcode : LowOpcode,
185       MI.getOperand(2).getImm());
186   MI.setDesc(get(Opcode));
187 }
188 
189 // MI is a load-on-condition pseudo instruction with a single register
190 // (source or destination) operand.  Replace it with LowOpcode if the
191 // register is a low GR32 and HighOpcode if the register is a high GR32.
192 void SystemZInstrInfo::expandLOCPseudo(MachineInstr &MI, unsigned LowOpcode,
193                                        unsigned HighOpcode) const {
194   Register Reg = MI.getOperand(0).getReg();
195   unsigned Opcode = SystemZ::isHighReg(Reg) ? HighOpcode : LowOpcode;
196   MI.setDesc(get(Opcode));
197 }
198 
199 // MI is an RR-style pseudo instruction that zero-extends the low Size bits
200 // of one GRX32 into another.  Replace it with LowOpcode if both operands
201 // are low registers, otherwise use RISB[LH]G.
202 void SystemZInstrInfo::expandZExtPseudo(MachineInstr &MI, unsigned LowOpcode,
203                                         unsigned Size) const {
204   MachineInstrBuilder MIB =
205     emitGRX32Move(*MI.getParent(), MI, MI.getDebugLoc(),
206                MI.getOperand(0).getReg(), MI.getOperand(1).getReg(), LowOpcode,
207                Size, MI.getOperand(1).isKill(), MI.getOperand(1).isUndef());
208 
209   // Keep the remaining operands as-is.
210   for (const MachineOperand &MO : llvm::drop_begin(MI.operands(), 2))
211     MIB.add(MO);
212 
213   MI.eraseFromParent();
214 }
215 
216 void SystemZInstrInfo::expandLoadStackGuard(MachineInstr *MI) const {
217   MachineBasicBlock *MBB = MI->getParent();
218   MachineFunction &MF = *MBB->getParent();
219   const Register Reg64 = MI->getOperand(0).getReg();
220   const Register Reg32 = RI.getSubReg(Reg64, SystemZ::subreg_l32);
221 
222   // EAR can only load the low subregister so us a shift for %a0 to produce
223   // the GR containing %a0 and %a1.
224 
225   // ear <reg>, %a0
226   BuildMI(*MBB, MI, MI->getDebugLoc(), get(SystemZ::EAR), Reg32)
227     .addReg(SystemZ::A0)
228     .addReg(Reg64, RegState::ImplicitDefine);
229 
230   // sllg <reg>, <reg>, 32
231   BuildMI(*MBB, MI, MI->getDebugLoc(), get(SystemZ::SLLG), Reg64)
232     .addReg(Reg64)
233     .addReg(0)
234     .addImm(32);
235 
236   // ear <reg>, %a1
237   BuildMI(*MBB, MI, MI->getDebugLoc(), get(SystemZ::EAR), Reg32)
238     .addReg(SystemZ::A1);
239 
240   // lg <reg>, 40(<reg>)
241   MI->setDesc(get(SystemZ::LG));
242   MachineInstrBuilder(MF, MI).addReg(Reg64).addImm(40).addReg(0);
243 }
244 
245 // Emit a zero-extending move from 32-bit GPR SrcReg to 32-bit GPR
246 // DestReg before MBBI in MBB.  Use LowLowOpcode when both DestReg and SrcReg
247 // are low registers, otherwise use RISB[LH]G.  Size is the number of bits
248 // taken from the low end of SrcReg (8 for LLCR, 16 for LLHR and 32 for LR).
249 // KillSrc is true if this move is the last use of SrcReg.
250 MachineInstrBuilder
251 SystemZInstrInfo::emitGRX32Move(MachineBasicBlock &MBB,
252                                 MachineBasicBlock::iterator MBBI,
253                                 const DebugLoc &DL, unsigned DestReg,
254                                 unsigned SrcReg, unsigned LowLowOpcode,
255                                 unsigned Size, bool KillSrc,
256                                 bool UndefSrc) const {
257   unsigned Opcode;
258   bool DestIsHigh = SystemZ::isHighReg(DestReg);
259   bool SrcIsHigh = SystemZ::isHighReg(SrcReg);
260   if (DestIsHigh && SrcIsHigh)
261     Opcode = SystemZ::RISBHH;
262   else if (DestIsHigh && !SrcIsHigh)
263     Opcode = SystemZ::RISBHL;
264   else if (!DestIsHigh && SrcIsHigh)
265     Opcode = SystemZ::RISBLH;
266   else {
267     return BuildMI(MBB, MBBI, DL, get(LowLowOpcode), DestReg)
268       .addReg(SrcReg, getKillRegState(KillSrc) | getUndefRegState(UndefSrc));
269   }
270   unsigned Rotate = (DestIsHigh != SrcIsHigh ? 32 : 0);
271   return BuildMI(MBB, MBBI, DL, get(Opcode), DestReg)
272     .addReg(DestReg, RegState::Undef)
273     .addReg(SrcReg, getKillRegState(KillSrc) | getUndefRegState(UndefSrc))
274     .addImm(32 - Size).addImm(128 + 31).addImm(Rotate);
275 }
276 
277 MachineInstr *SystemZInstrInfo::commuteInstructionImpl(MachineInstr &MI,
278                                                        bool NewMI,
279                                                        unsigned OpIdx1,
280                                                        unsigned OpIdx2) const {
281   auto cloneIfNew = [NewMI](MachineInstr &MI) -> MachineInstr & {
282     if (NewMI)
283       return *MI.getParent()->getParent()->CloneMachineInstr(&MI);
284     return MI;
285   };
286 
287   switch (MI.getOpcode()) {
288   case SystemZ::SELRMux:
289   case SystemZ::SELFHR:
290   case SystemZ::SELR:
291   case SystemZ::SELGR:
292   case SystemZ::LOCRMux:
293   case SystemZ::LOCFHR:
294   case SystemZ::LOCR:
295   case SystemZ::LOCGR: {
296     auto &WorkingMI = cloneIfNew(MI);
297     // Invert condition.
298     unsigned CCValid = WorkingMI.getOperand(3).getImm();
299     unsigned CCMask = WorkingMI.getOperand(4).getImm();
300     WorkingMI.getOperand(4).setImm(CCMask ^ CCValid);
301     return TargetInstrInfo::commuteInstructionImpl(WorkingMI, /*NewMI=*/false,
302                                                    OpIdx1, OpIdx2);
303   }
304   default:
305     return TargetInstrInfo::commuteInstructionImpl(MI, NewMI, OpIdx1, OpIdx2);
306   }
307 }
308 
309 // If MI is a simple load or store for a frame object, return the register
310 // it loads or stores and set FrameIndex to the index of the frame object.
311 // Return 0 otherwise.
312 //
313 // Flag is SimpleBDXLoad for loads and SimpleBDXStore for stores.
314 static int isSimpleMove(const MachineInstr &MI, int &FrameIndex,
315                         unsigned Flag) {
316   const MCInstrDesc &MCID = MI.getDesc();
317   if ((MCID.TSFlags & Flag) && MI.getOperand(1).isFI() &&
318       MI.getOperand(2).getImm() == 0 && MI.getOperand(3).getReg() == 0) {
319     FrameIndex = MI.getOperand(1).getIndex();
320     return MI.getOperand(0).getReg();
321   }
322   return 0;
323 }
324 
325 unsigned SystemZInstrInfo::isLoadFromStackSlot(const MachineInstr &MI,
326                                                int &FrameIndex) const {
327   return isSimpleMove(MI, FrameIndex, SystemZII::SimpleBDXLoad);
328 }
329 
330 unsigned SystemZInstrInfo::isStoreToStackSlot(const MachineInstr &MI,
331                                               int &FrameIndex) const {
332   return isSimpleMove(MI, FrameIndex, SystemZII::SimpleBDXStore);
333 }
334 
335 bool SystemZInstrInfo::isStackSlotCopy(const MachineInstr &MI,
336                                        int &DestFrameIndex,
337                                        int &SrcFrameIndex) const {
338   // Check for MVC 0(Length,FI1),0(FI2)
339   const MachineFrameInfo &MFI = MI.getParent()->getParent()->getFrameInfo();
340   if (MI.getOpcode() != SystemZ::MVC || !MI.getOperand(0).isFI() ||
341       MI.getOperand(1).getImm() != 0 || !MI.getOperand(3).isFI() ||
342       MI.getOperand(4).getImm() != 0)
343     return false;
344 
345   // Check that Length covers the full slots.
346   int64_t Length = MI.getOperand(2).getImm();
347   unsigned FI1 = MI.getOperand(0).getIndex();
348   unsigned FI2 = MI.getOperand(3).getIndex();
349   if (MFI.getObjectSize(FI1) != Length ||
350       MFI.getObjectSize(FI2) != Length)
351     return false;
352 
353   DestFrameIndex = FI1;
354   SrcFrameIndex = FI2;
355   return true;
356 }
357 
358 bool SystemZInstrInfo::analyzeBranch(MachineBasicBlock &MBB,
359                                      MachineBasicBlock *&TBB,
360                                      MachineBasicBlock *&FBB,
361                                      SmallVectorImpl<MachineOperand> &Cond,
362                                      bool AllowModify) const {
363   // Most of the code and comments here are boilerplate.
364 
365   // Start from the bottom of the block and work up, examining the
366   // terminator instructions.
367   MachineBasicBlock::iterator I = MBB.end();
368   while (I != MBB.begin()) {
369     --I;
370     if (I->isDebugInstr())
371       continue;
372 
373     // Working from the bottom, when we see a non-terminator instruction, we're
374     // done.
375     if (!isUnpredicatedTerminator(*I))
376       break;
377 
378     // A terminator that isn't a branch can't easily be handled by this
379     // analysis.
380     if (!I->isBranch())
381       return true;
382 
383     // Can't handle indirect branches.
384     SystemZII::Branch Branch(getBranchInfo(*I));
385     if (!Branch.hasMBBTarget())
386       return true;
387 
388     // Punt on compound branches.
389     if (Branch.Type != SystemZII::BranchNormal)
390       return true;
391 
392     if (Branch.CCMask == SystemZ::CCMASK_ANY) {
393       // Handle unconditional branches.
394       if (!AllowModify) {
395         TBB = Branch.getMBBTarget();
396         continue;
397       }
398 
399       // If the block has any instructions after a JMP, delete them.
400       MBB.erase(std::next(I), MBB.end());
401 
402       Cond.clear();
403       FBB = nullptr;
404 
405       // Delete the JMP if it's equivalent to a fall-through.
406       if (MBB.isLayoutSuccessor(Branch.getMBBTarget())) {
407         TBB = nullptr;
408         I->eraseFromParent();
409         I = MBB.end();
410         continue;
411       }
412 
413       // TBB is used to indicate the unconditinal destination.
414       TBB = Branch.getMBBTarget();
415       continue;
416     }
417 
418     // Working from the bottom, handle the first conditional branch.
419     if (Cond.empty()) {
420       // FIXME: add X86-style branch swap
421       FBB = TBB;
422       TBB = Branch.getMBBTarget();
423       Cond.push_back(MachineOperand::CreateImm(Branch.CCValid));
424       Cond.push_back(MachineOperand::CreateImm(Branch.CCMask));
425       continue;
426     }
427 
428     // Handle subsequent conditional branches.
429     assert(Cond.size() == 2 && TBB && "Should have seen a conditional branch");
430 
431     // Only handle the case where all conditional branches branch to the same
432     // destination.
433     if (TBB != Branch.getMBBTarget())
434       return true;
435 
436     // If the conditions are the same, we can leave them alone.
437     unsigned OldCCValid = Cond[0].getImm();
438     unsigned OldCCMask = Cond[1].getImm();
439     if (OldCCValid == Branch.CCValid && OldCCMask == Branch.CCMask)
440       continue;
441 
442     // FIXME: Try combining conditions like X86 does.  Should be easy on Z!
443     return false;
444   }
445 
446   return false;
447 }
448 
449 unsigned SystemZInstrInfo::removeBranch(MachineBasicBlock &MBB,
450                                         int *BytesRemoved) const {
451   assert(!BytesRemoved && "code size not handled");
452 
453   // Most of the code and comments here are boilerplate.
454   MachineBasicBlock::iterator I = MBB.end();
455   unsigned Count = 0;
456 
457   while (I != MBB.begin()) {
458     --I;
459     if (I->isDebugInstr())
460       continue;
461     if (!I->isBranch())
462       break;
463     if (!getBranchInfo(*I).hasMBBTarget())
464       break;
465     // Remove the branch.
466     I->eraseFromParent();
467     I = MBB.end();
468     ++Count;
469   }
470 
471   return Count;
472 }
473 
474 bool SystemZInstrInfo::
475 reverseBranchCondition(SmallVectorImpl<MachineOperand> &Cond) const {
476   assert(Cond.size() == 2 && "Invalid condition");
477   Cond[1].setImm(Cond[1].getImm() ^ Cond[0].getImm());
478   return false;
479 }
480 
481 unsigned SystemZInstrInfo::insertBranch(MachineBasicBlock &MBB,
482                                         MachineBasicBlock *TBB,
483                                         MachineBasicBlock *FBB,
484                                         ArrayRef<MachineOperand> Cond,
485                                         const DebugLoc &DL,
486                                         int *BytesAdded) const {
487   // In this function we output 32-bit branches, which should always
488   // have enough range.  They can be shortened and relaxed by later code
489   // in the pipeline, if desired.
490 
491   // Shouldn't be a fall through.
492   assert(TBB && "insertBranch must not be told to insert a fallthrough");
493   assert((Cond.size() == 2 || Cond.size() == 0) &&
494          "SystemZ branch conditions have one component!");
495   assert(!BytesAdded && "code size not handled");
496 
497   if (Cond.empty()) {
498     // Unconditional branch?
499     assert(!FBB && "Unconditional branch with multiple successors!");
500     BuildMI(&MBB, DL, get(SystemZ::J)).addMBB(TBB);
501     return 1;
502   }
503 
504   // Conditional branch.
505   unsigned Count = 0;
506   unsigned CCValid = Cond[0].getImm();
507   unsigned CCMask = Cond[1].getImm();
508   BuildMI(&MBB, DL, get(SystemZ::BRC))
509     .addImm(CCValid).addImm(CCMask).addMBB(TBB);
510   ++Count;
511 
512   if (FBB) {
513     // Two-way Conditional branch. Insert the second branch.
514     BuildMI(&MBB, DL, get(SystemZ::J)).addMBB(FBB);
515     ++Count;
516   }
517   return Count;
518 }
519 
520 bool SystemZInstrInfo::analyzeCompare(const MachineInstr &MI, Register &SrcReg,
521                                       Register &SrcReg2, int64_t &Mask,
522                                       int64_t &Value) const {
523   assert(MI.isCompare() && "Caller should have checked for a comparison");
524 
525   if (MI.getNumExplicitOperands() == 2 && MI.getOperand(0).isReg() &&
526       MI.getOperand(1).isImm()) {
527     SrcReg = MI.getOperand(0).getReg();
528     SrcReg2 = 0;
529     Value = MI.getOperand(1).getImm();
530     Mask = ~0;
531     return true;
532   }
533 
534   return false;
535 }
536 
537 bool SystemZInstrInfo::canInsertSelect(const MachineBasicBlock &MBB,
538                                        ArrayRef<MachineOperand> Pred,
539                                        Register DstReg, Register TrueReg,
540                                        Register FalseReg, int &CondCycles,
541                                        int &TrueCycles,
542                                        int &FalseCycles) const {
543   // Not all subtargets have LOCR instructions.
544   if (!STI.hasLoadStoreOnCond())
545     return false;
546   if (Pred.size() != 2)
547     return false;
548 
549   // Check register classes.
550   const MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo();
551   const TargetRegisterClass *RC =
552     RI.getCommonSubClass(MRI.getRegClass(TrueReg), MRI.getRegClass(FalseReg));
553   if (!RC)
554     return false;
555 
556   // We have LOCR instructions for 32 and 64 bit general purpose registers.
557   if ((STI.hasLoadStoreOnCond2() &&
558        SystemZ::GRX32BitRegClass.hasSubClassEq(RC)) ||
559       SystemZ::GR32BitRegClass.hasSubClassEq(RC) ||
560       SystemZ::GR64BitRegClass.hasSubClassEq(RC)) {
561     CondCycles = 2;
562     TrueCycles = 2;
563     FalseCycles = 2;
564     return true;
565   }
566 
567   // Can't do anything else.
568   return false;
569 }
570 
571 void SystemZInstrInfo::insertSelect(MachineBasicBlock &MBB,
572                                     MachineBasicBlock::iterator I,
573                                     const DebugLoc &DL, Register DstReg,
574                                     ArrayRef<MachineOperand> Pred,
575                                     Register TrueReg,
576                                     Register FalseReg) const {
577   MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo();
578   const TargetRegisterClass *RC = MRI.getRegClass(DstReg);
579 
580   assert(Pred.size() == 2 && "Invalid condition");
581   unsigned CCValid = Pred[0].getImm();
582   unsigned CCMask = Pred[1].getImm();
583 
584   unsigned Opc;
585   if (SystemZ::GRX32BitRegClass.hasSubClassEq(RC)) {
586     if (STI.hasMiscellaneousExtensions3())
587       Opc = SystemZ::SELRMux;
588     else if (STI.hasLoadStoreOnCond2())
589       Opc = SystemZ::LOCRMux;
590     else {
591       Opc = SystemZ::LOCR;
592       MRI.constrainRegClass(DstReg, &SystemZ::GR32BitRegClass);
593       Register TReg = MRI.createVirtualRegister(&SystemZ::GR32BitRegClass);
594       Register FReg = MRI.createVirtualRegister(&SystemZ::GR32BitRegClass);
595       BuildMI(MBB, I, DL, get(TargetOpcode::COPY), TReg).addReg(TrueReg);
596       BuildMI(MBB, I, DL, get(TargetOpcode::COPY), FReg).addReg(FalseReg);
597       TrueReg = TReg;
598       FalseReg = FReg;
599     }
600   } else if (SystemZ::GR64BitRegClass.hasSubClassEq(RC)) {
601     if (STI.hasMiscellaneousExtensions3())
602       Opc = SystemZ::SELGR;
603     else
604       Opc = SystemZ::LOCGR;
605   } else
606     llvm_unreachable("Invalid register class");
607 
608   BuildMI(MBB, I, DL, get(Opc), DstReg)
609     .addReg(FalseReg).addReg(TrueReg)
610     .addImm(CCValid).addImm(CCMask);
611 }
612 
613 bool SystemZInstrInfo::FoldImmediate(MachineInstr &UseMI, MachineInstr &DefMI,
614                                      Register Reg,
615                                      MachineRegisterInfo *MRI) const {
616   unsigned DefOpc = DefMI.getOpcode();
617   if (DefOpc != SystemZ::LHIMux && DefOpc != SystemZ::LHI &&
618       DefOpc != SystemZ::LGHI)
619     return false;
620   if (DefMI.getOperand(0).getReg() != Reg)
621     return false;
622   int32_t ImmVal = (int32_t)DefMI.getOperand(1).getImm();
623 
624   unsigned UseOpc = UseMI.getOpcode();
625   unsigned NewUseOpc;
626   unsigned UseIdx;
627   int CommuteIdx = -1;
628   bool TieOps = false;
629   switch (UseOpc) {
630   case SystemZ::SELRMux:
631     TieOps = true;
632     LLVM_FALLTHROUGH;
633   case SystemZ::LOCRMux:
634     if (!STI.hasLoadStoreOnCond2())
635       return false;
636     NewUseOpc = SystemZ::LOCHIMux;
637     if (UseMI.getOperand(2).getReg() == Reg)
638       UseIdx = 2;
639     else if (UseMI.getOperand(1).getReg() == Reg)
640       UseIdx = 2, CommuteIdx = 1;
641     else
642       return false;
643     break;
644   case SystemZ::SELGR:
645     TieOps = true;
646     LLVM_FALLTHROUGH;
647   case SystemZ::LOCGR:
648     if (!STI.hasLoadStoreOnCond2())
649       return false;
650     NewUseOpc = SystemZ::LOCGHI;
651     if (UseMI.getOperand(2).getReg() == Reg)
652       UseIdx = 2;
653     else if (UseMI.getOperand(1).getReg() == Reg)
654       UseIdx = 2, CommuteIdx = 1;
655     else
656       return false;
657     break;
658   default:
659     return false;
660   }
661 
662   if (CommuteIdx != -1)
663     if (!commuteInstruction(UseMI, false, CommuteIdx, UseIdx))
664       return false;
665 
666   bool DeleteDef = MRI->hasOneNonDBGUse(Reg);
667   UseMI.setDesc(get(NewUseOpc));
668   if (TieOps)
669     UseMI.tieOperands(0, 1);
670   UseMI.getOperand(UseIdx).ChangeToImmediate(ImmVal);
671   if (DeleteDef)
672     DefMI.eraseFromParent();
673 
674   return true;
675 }
676 
677 bool SystemZInstrInfo::isPredicable(const MachineInstr &MI) const {
678   unsigned Opcode = MI.getOpcode();
679   if (Opcode == SystemZ::Return ||
680       Opcode == SystemZ::Return_XPLINK ||
681       Opcode == SystemZ::Trap ||
682       Opcode == SystemZ::CallJG ||
683       Opcode == SystemZ::CallBR)
684     return true;
685   return false;
686 }
687 
688 bool SystemZInstrInfo::
689 isProfitableToIfCvt(MachineBasicBlock &MBB,
690                     unsigned NumCycles, unsigned ExtraPredCycles,
691                     BranchProbability Probability) const {
692   // Avoid using conditional returns at the end of a loop (since then
693   // we'd need to emit an unconditional branch to the beginning anyway,
694   // making the loop body longer).  This doesn't apply for low-probability
695   // loops (eg. compare-and-swap retry), so just decide based on branch
696   // probability instead of looping structure.
697   // However, since Compare and Trap instructions cost the same as a regular
698   // Compare instruction, we should allow the if conversion to convert this
699   // into a Conditional Compare regardless of the branch probability.
700   if (MBB.getLastNonDebugInstr()->getOpcode() != SystemZ::Trap &&
701       MBB.succ_empty() && Probability < BranchProbability(1, 8))
702     return false;
703   // For now only convert single instructions.
704   return NumCycles == 1;
705 }
706 
707 bool SystemZInstrInfo::
708 isProfitableToIfCvt(MachineBasicBlock &TMBB,
709                     unsigned NumCyclesT, unsigned ExtraPredCyclesT,
710                     MachineBasicBlock &FMBB,
711                     unsigned NumCyclesF, unsigned ExtraPredCyclesF,
712                     BranchProbability Probability) const {
713   // For now avoid converting mutually-exclusive cases.
714   return false;
715 }
716 
717 bool SystemZInstrInfo::
718 isProfitableToDupForIfCvt(MachineBasicBlock &MBB, unsigned NumCycles,
719                           BranchProbability Probability) const {
720   // For now only duplicate single instructions.
721   return NumCycles == 1;
722 }
723 
724 bool SystemZInstrInfo::PredicateInstruction(
725     MachineInstr &MI, ArrayRef<MachineOperand> Pred) const {
726   assert(Pred.size() == 2 && "Invalid condition");
727   unsigned CCValid = Pred[0].getImm();
728   unsigned CCMask = Pred[1].getImm();
729   assert(CCMask > 0 && CCMask < 15 && "Invalid predicate");
730   unsigned Opcode = MI.getOpcode();
731   if (Opcode == SystemZ::Trap) {
732     MI.setDesc(get(SystemZ::CondTrap));
733     MachineInstrBuilder(*MI.getParent()->getParent(), MI)
734       .addImm(CCValid).addImm(CCMask)
735       .addReg(SystemZ::CC, RegState::Implicit);
736     return true;
737   }
738   if (Opcode == SystemZ::Return || Opcode == SystemZ::Return_XPLINK) {
739     MI.setDesc(get(Opcode == SystemZ::Return ? SystemZ::CondReturn
740                                              : SystemZ::CondReturn_XPLINK));
741     MachineInstrBuilder(*MI.getParent()->getParent(), MI)
742         .addImm(CCValid)
743         .addImm(CCMask)
744         .addReg(SystemZ::CC, RegState::Implicit);
745     return true;
746   }
747   if (Opcode == SystemZ::CallJG) {
748     MachineOperand FirstOp = MI.getOperand(0);
749     const uint32_t *RegMask = MI.getOperand(1).getRegMask();
750     MI.removeOperand(1);
751     MI.removeOperand(0);
752     MI.setDesc(get(SystemZ::CallBRCL));
753     MachineInstrBuilder(*MI.getParent()->getParent(), MI)
754         .addImm(CCValid)
755         .addImm(CCMask)
756         .add(FirstOp)
757         .addRegMask(RegMask)
758         .addReg(SystemZ::CC, RegState::Implicit);
759     return true;
760   }
761   if (Opcode == SystemZ::CallBR) {
762     MachineOperand Target = MI.getOperand(0);
763     const uint32_t *RegMask = MI.getOperand(1).getRegMask();
764     MI.removeOperand(1);
765     MI.removeOperand(0);
766     MI.setDesc(get(SystemZ::CallBCR));
767     MachineInstrBuilder(*MI.getParent()->getParent(), MI)
768       .addImm(CCValid).addImm(CCMask)
769       .add(Target)
770       .addRegMask(RegMask)
771       .addReg(SystemZ::CC, RegState::Implicit);
772     return true;
773   }
774   return false;
775 }
776 
777 void SystemZInstrInfo::copyPhysReg(MachineBasicBlock &MBB,
778                                    MachineBasicBlock::iterator MBBI,
779                                    const DebugLoc &DL, MCRegister DestReg,
780                                    MCRegister SrcReg, bool KillSrc) const {
781   // Split 128-bit GPR moves into two 64-bit moves. Add implicit uses of the
782   // super register in case one of the subregs is undefined.
783   // This handles ADDR128 too.
784   if (SystemZ::GR128BitRegClass.contains(DestReg, SrcReg)) {
785     copyPhysReg(MBB, MBBI, DL, RI.getSubReg(DestReg, SystemZ::subreg_h64),
786                 RI.getSubReg(SrcReg, SystemZ::subreg_h64), KillSrc);
787     MachineInstrBuilder(*MBB.getParent(), std::prev(MBBI))
788       .addReg(SrcReg, RegState::Implicit);
789     copyPhysReg(MBB, MBBI, DL, RI.getSubReg(DestReg, SystemZ::subreg_l64),
790                 RI.getSubReg(SrcReg, SystemZ::subreg_l64), KillSrc);
791     MachineInstrBuilder(*MBB.getParent(), std::prev(MBBI))
792       .addReg(SrcReg, (getKillRegState(KillSrc) | RegState::Implicit));
793     return;
794   }
795 
796   if (SystemZ::GRX32BitRegClass.contains(DestReg, SrcReg)) {
797     emitGRX32Move(MBB, MBBI, DL, DestReg, SrcReg, SystemZ::LR, 32, KillSrc,
798                   false);
799     return;
800   }
801 
802   // Move 128-bit floating-point values between VR128 and FP128.
803   if (SystemZ::VR128BitRegClass.contains(DestReg) &&
804       SystemZ::FP128BitRegClass.contains(SrcReg)) {
805     MCRegister SrcRegHi =
806         RI.getMatchingSuperReg(RI.getSubReg(SrcReg, SystemZ::subreg_h64),
807                                SystemZ::subreg_h64, &SystemZ::VR128BitRegClass);
808     MCRegister SrcRegLo =
809         RI.getMatchingSuperReg(RI.getSubReg(SrcReg, SystemZ::subreg_l64),
810                                SystemZ::subreg_h64, &SystemZ::VR128BitRegClass);
811 
812     BuildMI(MBB, MBBI, DL, get(SystemZ::VMRHG), DestReg)
813       .addReg(SrcRegHi, getKillRegState(KillSrc))
814       .addReg(SrcRegLo, getKillRegState(KillSrc));
815     return;
816   }
817   if (SystemZ::FP128BitRegClass.contains(DestReg) &&
818       SystemZ::VR128BitRegClass.contains(SrcReg)) {
819     MCRegister DestRegHi =
820         RI.getMatchingSuperReg(RI.getSubReg(DestReg, SystemZ::subreg_h64),
821                                SystemZ::subreg_h64, &SystemZ::VR128BitRegClass);
822     MCRegister DestRegLo =
823         RI.getMatchingSuperReg(RI.getSubReg(DestReg, SystemZ::subreg_l64),
824                                SystemZ::subreg_h64, &SystemZ::VR128BitRegClass);
825 
826     if (DestRegHi != SrcReg)
827       copyPhysReg(MBB, MBBI, DL, DestRegHi, SrcReg, false);
828     BuildMI(MBB, MBBI, DL, get(SystemZ::VREPG), DestRegLo)
829       .addReg(SrcReg, getKillRegState(KillSrc)).addImm(1);
830     return;
831   }
832 
833   // Move CC value from a GR32.
834   if (DestReg == SystemZ::CC) {
835     unsigned Opcode =
836       SystemZ::GR32BitRegClass.contains(SrcReg) ? SystemZ::TMLH : SystemZ::TMHH;
837     BuildMI(MBB, MBBI, DL, get(Opcode))
838       .addReg(SrcReg, getKillRegState(KillSrc))
839       .addImm(3 << (SystemZ::IPM_CC - 16));
840     return;
841   }
842 
843   // Everything else needs only one instruction.
844   unsigned Opcode;
845   if (SystemZ::GR64BitRegClass.contains(DestReg, SrcReg))
846     Opcode = SystemZ::LGR;
847   else if (SystemZ::FP32BitRegClass.contains(DestReg, SrcReg))
848     // For z13 we prefer LDR over LER to avoid partial register dependencies.
849     Opcode = STI.hasVector() ? SystemZ::LDR32 : SystemZ::LER;
850   else if (SystemZ::FP64BitRegClass.contains(DestReg, SrcReg))
851     Opcode = SystemZ::LDR;
852   else if (SystemZ::FP128BitRegClass.contains(DestReg, SrcReg))
853     Opcode = SystemZ::LXR;
854   else if (SystemZ::VR32BitRegClass.contains(DestReg, SrcReg))
855     Opcode = SystemZ::VLR32;
856   else if (SystemZ::VR64BitRegClass.contains(DestReg, SrcReg))
857     Opcode = SystemZ::VLR64;
858   else if (SystemZ::VR128BitRegClass.contains(DestReg, SrcReg))
859     Opcode = SystemZ::VLR;
860   else if (SystemZ::AR32BitRegClass.contains(DestReg, SrcReg))
861     Opcode = SystemZ::CPYA;
862   else
863     llvm_unreachable("Impossible reg-to-reg copy");
864 
865   BuildMI(MBB, MBBI, DL, get(Opcode), DestReg)
866     .addReg(SrcReg, getKillRegState(KillSrc));
867 }
868 
869 void SystemZInstrInfo::storeRegToStackSlot(
870     MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI, Register SrcReg,
871     bool isKill, int FrameIdx, const TargetRegisterClass *RC,
872     const TargetRegisterInfo *TRI) const {
873   DebugLoc DL = MBBI != MBB.end() ? MBBI->getDebugLoc() : DebugLoc();
874 
875   // Callers may expect a single instruction, so keep 128-bit moves
876   // together for now and lower them after register allocation.
877   unsigned LoadOpcode, StoreOpcode;
878   getLoadStoreOpcodes(RC, LoadOpcode, StoreOpcode);
879   addFrameReference(BuildMI(MBB, MBBI, DL, get(StoreOpcode))
880                         .addReg(SrcReg, getKillRegState(isKill)),
881                     FrameIdx);
882 }
883 
884 void SystemZInstrInfo::loadRegFromStackSlot(
885     MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI, Register DestReg,
886     int FrameIdx, const TargetRegisterClass *RC,
887     const TargetRegisterInfo *TRI) const {
888   DebugLoc DL = MBBI != MBB.end() ? MBBI->getDebugLoc() : DebugLoc();
889 
890   // Callers may expect a single instruction, so keep 128-bit moves
891   // together for now and lower them after register allocation.
892   unsigned LoadOpcode, StoreOpcode;
893   getLoadStoreOpcodes(RC, LoadOpcode, StoreOpcode);
894   addFrameReference(BuildMI(MBB, MBBI, DL, get(LoadOpcode), DestReg),
895                     FrameIdx);
896 }
897 
898 // Return true if MI is a simple load or store with a 12-bit displacement
899 // and no index.  Flag is SimpleBDXLoad for loads and SimpleBDXStore for stores.
900 static bool isSimpleBD12Move(const MachineInstr *MI, unsigned Flag) {
901   const MCInstrDesc &MCID = MI->getDesc();
902   return ((MCID.TSFlags & Flag) &&
903           isUInt<12>(MI->getOperand(2).getImm()) &&
904           MI->getOperand(3).getReg() == 0);
905 }
906 
907 namespace {
908 
909 struct LogicOp {
910   LogicOp() = default;
911   LogicOp(unsigned regSize, unsigned immLSB, unsigned immSize)
912     : RegSize(regSize), ImmLSB(immLSB), ImmSize(immSize) {}
913 
914   explicit operator bool() const { return RegSize; }
915 
916   unsigned RegSize = 0;
917   unsigned ImmLSB = 0;
918   unsigned ImmSize = 0;
919 };
920 
921 } // end anonymous namespace
922 
923 static LogicOp interpretAndImmediate(unsigned Opcode) {
924   switch (Opcode) {
925   case SystemZ::NILMux: return LogicOp(32,  0, 16);
926   case SystemZ::NIHMux: return LogicOp(32, 16, 16);
927   case SystemZ::NILL64: return LogicOp(64,  0, 16);
928   case SystemZ::NILH64: return LogicOp(64, 16, 16);
929   case SystemZ::NIHL64: return LogicOp(64, 32, 16);
930   case SystemZ::NIHH64: return LogicOp(64, 48, 16);
931   case SystemZ::NIFMux: return LogicOp(32,  0, 32);
932   case SystemZ::NILF64: return LogicOp(64,  0, 32);
933   case SystemZ::NIHF64: return LogicOp(64, 32, 32);
934   default:              return LogicOp();
935   }
936 }
937 
938 static void transferDeadCC(MachineInstr *OldMI, MachineInstr *NewMI) {
939   if (OldMI->registerDefIsDead(SystemZ::CC)) {
940     MachineOperand *CCDef = NewMI->findRegisterDefOperand(SystemZ::CC);
941     if (CCDef != nullptr)
942       CCDef->setIsDead(true);
943   }
944 }
945 
946 static void transferMIFlag(MachineInstr *OldMI, MachineInstr *NewMI,
947                            MachineInstr::MIFlag Flag) {
948   if (OldMI->getFlag(Flag))
949     NewMI->setFlag(Flag);
950 }
951 
952 MachineInstr *
953 SystemZInstrInfo::convertToThreeAddress(MachineInstr &MI, LiveVariables *LV,
954                                         LiveIntervals *LIS) const {
955   MachineBasicBlock *MBB = MI.getParent();
956 
957   // Try to convert an AND into an RISBG-type instruction.
958   // TODO: It might be beneficial to select RISBG and shorten to AND instead.
959   if (LogicOp And = interpretAndImmediate(MI.getOpcode())) {
960     uint64_t Imm = MI.getOperand(2).getImm() << And.ImmLSB;
961     // AND IMMEDIATE leaves the other bits of the register unchanged.
962     Imm |= allOnes(And.RegSize) & ~(allOnes(And.ImmSize) << And.ImmLSB);
963     unsigned Start, End;
964     if (isRxSBGMask(Imm, And.RegSize, Start, End)) {
965       unsigned NewOpcode;
966       if (And.RegSize == 64) {
967         NewOpcode = SystemZ::RISBG;
968         // Prefer RISBGN if available, since it does not clobber CC.
969         if (STI.hasMiscellaneousExtensions())
970           NewOpcode = SystemZ::RISBGN;
971       } else {
972         NewOpcode = SystemZ::RISBMux;
973         Start &= 31;
974         End &= 31;
975       }
976       MachineOperand &Dest = MI.getOperand(0);
977       MachineOperand &Src = MI.getOperand(1);
978       MachineInstrBuilder MIB =
979           BuildMI(*MBB, MI, MI.getDebugLoc(), get(NewOpcode))
980               .add(Dest)
981               .addReg(0)
982               .addReg(Src.getReg(), getKillRegState(Src.isKill()),
983                       Src.getSubReg())
984               .addImm(Start)
985               .addImm(End + 128)
986               .addImm(0);
987       if (LV) {
988         unsigned NumOps = MI.getNumOperands();
989         for (unsigned I = 1; I < NumOps; ++I) {
990           MachineOperand &Op = MI.getOperand(I);
991           if (Op.isReg() && Op.isKill())
992             LV->replaceKillInstruction(Op.getReg(), MI, *MIB);
993         }
994       }
995       if (LIS)
996         LIS->ReplaceMachineInstrInMaps(MI, *MIB);
997       transferDeadCC(&MI, MIB);
998       return MIB;
999     }
1000   }
1001   return nullptr;
1002 }
1003 
1004 MachineInstr *SystemZInstrInfo::foldMemoryOperandImpl(
1005     MachineFunction &MF, MachineInstr &MI, ArrayRef<unsigned> Ops,
1006     MachineBasicBlock::iterator InsertPt, int FrameIndex,
1007     LiveIntervals *LIS, VirtRegMap *VRM) const {
1008   const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
1009   MachineRegisterInfo &MRI = MF.getRegInfo();
1010   const MachineFrameInfo &MFI = MF.getFrameInfo();
1011   unsigned Size = MFI.getObjectSize(FrameIndex);
1012   unsigned Opcode = MI.getOpcode();
1013 
1014   // Check CC liveness if new instruction introduces a dead def of CC.
1015   MCRegUnitIterator CCUnit(MCRegister::from(SystemZ::CC), TRI);
1016   SlotIndex MISlot = SlotIndex();
1017   LiveRange *CCLiveRange = nullptr;
1018   bool CCLiveAtMI = true;
1019   if (LIS) {
1020     MISlot = LIS->getSlotIndexes()->getInstructionIndex(MI).getRegSlot();
1021     CCLiveRange = &LIS->getRegUnit(*CCUnit);
1022     CCLiveAtMI = CCLiveRange->liveAt(MISlot);
1023   }
1024   ++CCUnit;
1025   assert(!CCUnit.isValid() && "CC only has one reg unit.");
1026 
1027   if (Ops.size() == 2 && Ops[0] == 0 && Ops[1] == 1) {
1028     if (!CCLiveAtMI && (Opcode == SystemZ::LA || Opcode == SystemZ::LAY) &&
1029         isInt<8>(MI.getOperand(2).getImm()) && !MI.getOperand(3).getReg()) {
1030       // LA(Y) %reg, CONST(%reg) -> AGSI %mem, CONST
1031       MachineInstr *BuiltMI = BuildMI(*InsertPt->getParent(), InsertPt,
1032                                       MI.getDebugLoc(), get(SystemZ::AGSI))
1033         .addFrameIndex(FrameIndex)
1034         .addImm(0)
1035         .addImm(MI.getOperand(2).getImm());
1036       BuiltMI->findRegisterDefOperand(SystemZ::CC)->setIsDead(true);
1037       CCLiveRange->createDeadDef(MISlot, LIS->getVNInfoAllocator());
1038       return BuiltMI;
1039     }
1040     return nullptr;
1041   }
1042 
1043   // All other cases require a single operand.
1044   if (Ops.size() != 1)
1045     return nullptr;
1046 
1047   unsigned OpNum = Ops[0];
1048   assert(Size * 8 ==
1049            TRI->getRegSizeInBits(*MF.getRegInfo()
1050                                .getRegClass(MI.getOperand(OpNum).getReg())) &&
1051          "Invalid size combination");
1052 
1053   if ((Opcode == SystemZ::AHI || Opcode == SystemZ::AGHI) && OpNum == 0 &&
1054       isInt<8>(MI.getOperand(2).getImm())) {
1055     // A(G)HI %reg, CONST -> A(G)SI %mem, CONST
1056     Opcode = (Opcode == SystemZ::AHI ? SystemZ::ASI : SystemZ::AGSI);
1057     MachineInstr *BuiltMI =
1058         BuildMI(*InsertPt->getParent(), InsertPt, MI.getDebugLoc(), get(Opcode))
1059             .addFrameIndex(FrameIndex)
1060             .addImm(0)
1061             .addImm(MI.getOperand(2).getImm());
1062     transferDeadCC(&MI, BuiltMI);
1063     transferMIFlag(&MI, BuiltMI, MachineInstr::NoSWrap);
1064     return BuiltMI;
1065   }
1066 
1067   if ((Opcode == SystemZ::ALFI && OpNum == 0 &&
1068        isInt<8>((int32_t)MI.getOperand(2).getImm())) ||
1069       (Opcode == SystemZ::ALGFI && OpNum == 0 &&
1070        isInt<8>((int64_t)MI.getOperand(2).getImm()))) {
1071     // AL(G)FI %reg, CONST -> AL(G)SI %mem, CONST
1072     Opcode = (Opcode == SystemZ::ALFI ? SystemZ::ALSI : SystemZ::ALGSI);
1073     MachineInstr *BuiltMI =
1074         BuildMI(*InsertPt->getParent(), InsertPt, MI.getDebugLoc(), get(Opcode))
1075             .addFrameIndex(FrameIndex)
1076             .addImm(0)
1077             .addImm((int8_t)MI.getOperand(2).getImm());
1078     transferDeadCC(&MI, BuiltMI);
1079     return BuiltMI;
1080   }
1081 
1082   if ((Opcode == SystemZ::SLFI && OpNum == 0 &&
1083        isInt<8>((int32_t)-MI.getOperand(2).getImm())) ||
1084       (Opcode == SystemZ::SLGFI && OpNum == 0 &&
1085        isInt<8>((int64_t)-MI.getOperand(2).getImm()))) {
1086     // SL(G)FI %reg, CONST -> AL(G)SI %mem, -CONST
1087     Opcode = (Opcode == SystemZ::SLFI ? SystemZ::ALSI : SystemZ::ALGSI);
1088     MachineInstr *BuiltMI =
1089         BuildMI(*InsertPt->getParent(), InsertPt, MI.getDebugLoc(), get(Opcode))
1090             .addFrameIndex(FrameIndex)
1091             .addImm(0)
1092             .addImm((int8_t)-MI.getOperand(2).getImm());
1093     transferDeadCC(&MI, BuiltMI);
1094     return BuiltMI;
1095   }
1096 
1097   unsigned MemImmOpc = 0;
1098   switch (Opcode) {
1099   case SystemZ::LHIMux:
1100   case SystemZ::LHI:    MemImmOpc = SystemZ::MVHI;  break;
1101   case SystemZ::LGHI:   MemImmOpc = SystemZ::MVGHI; break;
1102   case SystemZ::CHIMux:
1103   case SystemZ::CHI:    MemImmOpc = SystemZ::CHSI;  break;
1104   case SystemZ::CGHI:   MemImmOpc = SystemZ::CGHSI; break;
1105   case SystemZ::CLFIMux:
1106   case SystemZ::CLFI:
1107     if (isUInt<16>(MI.getOperand(1).getImm()))
1108       MemImmOpc = SystemZ::CLFHSI;
1109     break;
1110   case SystemZ::CLGFI:
1111     if (isUInt<16>(MI.getOperand(1).getImm()))
1112       MemImmOpc = SystemZ::CLGHSI;
1113     break;
1114   default: break;
1115   }
1116   if (MemImmOpc)
1117     return BuildMI(*InsertPt->getParent(), InsertPt, MI.getDebugLoc(),
1118                    get(MemImmOpc))
1119                .addFrameIndex(FrameIndex)
1120                .addImm(0)
1121                .addImm(MI.getOperand(1).getImm());
1122 
1123   if (Opcode == SystemZ::LGDR || Opcode == SystemZ::LDGR) {
1124     bool Op0IsGPR = (Opcode == SystemZ::LGDR);
1125     bool Op1IsGPR = (Opcode == SystemZ::LDGR);
1126     // If we're spilling the destination of an LDGR or LGDR, store the
1127     // source register instead.
1128     if (OpNum == 0) {
1129       unsigned StoreOpcode = Op1IsGPR ? SystemZ::STG : SystemZ::STD;
1130       return BuildMI(*InsertPt->getParent(), InsertPt, MI.getDebugLoc(),
1131                      get(StoreOpcode))
1132           .add(MI.getOperand(1))
1133           .addFrameIndex(FrameIndex)
1134           .addImm(0)
1135           .addReg(0);
1136     }
1137     // If we're spilling the source of an LDGR or LGDR, load the
1138     // destination register instead.
1139     if (OpNum == 1) {
1140       unsigned LoadOpcode = Op0IsGPR ? SystemZ::LG : SystemZ::LD;
1141       return BuildMI(*InsertPt->getParent(), InsertPt, MI.getDebugLoc(),
1142                      get(LoadOpcode))
1143         .add(MI.getOperand(0))
1144         .addFrameIndex(FrameIndex)
1145         .addImm(0)
1146         .addReg(0);
1147     }
1148   }
1149 
1150   // Look for cases where the source of a simple store or the destination
1151   // of a simple load is being spilled.  Try to use MVC instead.
1152   //
1153   // Although MVC is in practice a fast choice in these cases, it is still
1154   // logically a bytewise copy.  This means that we cannot use it if the
1155   // load or store is volatile.  We also wouldn't be able to use MVC if
1156   // the two memories partially overlap, but that case cannot occur here,
1157   // because we know that one of the memories is a full frame index.
1158   //
1159   // For performance reasons, we also want to avoid using MVC if the addresses
1160   // might be equal.  We don't worry about that case here, because spill slot
1161   // coloring happens later, and because we have special code to remove
1162   // MVCs that turn out to be redundant.
1163   if (OpNum == 0 && MI.hasOneMemOperand()) {
1164     MachineMemOperand *MMO = *MI.memoperands_begin();
1165     if (MMO->getSize() == Size && !MMO->isVolatile() && !MMO->isAtomic()) {
1166       // Handle conversion of loads.
1167       if (isSimpleBD12Move(&MI, SystemZII::SimpleBDXLoad)) {
1168         return BuildMI(*InsertPt->getParent(), InsertPt, MI.getDebugLoc(),
1169                        get(SystemZ::MVC))
1170             .addFrameIndex(FrameIndex)
1171             .addImm(0)
1172             .addImm(Size)
1173             .add(MI.getOperand(1))
1174             .addImm(MI.getOperand(2).getImm())
1175             .addMemOperand(MMO);
1176       }
1177       // Handle conversion of stores.
1178       if (isSimpleBD12Move(&MI, SystemZII::SimpleBDXStore)) {
1179         return BuildMI(*InsertPt->getParent(), InsertPt, MI.getDebugLoc(),
1180                        get(SystemZ::MVC))
1181             .add(MI.getOperand(1))
1182             .addImm(MI.getOperand(2).getImm())
1183             .addImm(Size)
1184             .addFrameIndex(FrameIndex)
1185             .addImm(0)
1186             .addMemOperand(MMO);
1187       }
1188     }
1189   }
1190 
1191   // If the spilled operand is the final one or the instruction is
1192   // commutable, try to change <INSN>R into <INSN>.  Don't introduce a def of
1193   // CC if it is live and MI does not define it.
1194   unsigned NumOps = MI.getNumExplicitOperands();
1195   int MemOpcode = SystemZ::getMemOpcode(Opcode);
1196   if (MemOpcode == -1 ||
1197       (CCLiveAtMI && !MI.definesRegister(SystemZ::CC) &&
1198        get(MemOpcode).hasImplicitDefOfPhysReg(SystemZ::CC)))
1199     return nullptr;
1200 
1201   // Check if all other vregs have a usable allocation in the case of vector
1202   // to FP conversion.
1203   const MCInstrDesc &MCID = MI.getDesc();
1204   for (unsigned I = 0, E = MCID.getNumOperands(); I != E; ++I) {
1205     const MCOperandInfo &MCOI = MCID.OpInfo[I];
1206     if (MCOI.OperandType != MCOI::OPERAND_REGISTER || I == OpNum)
1207       continue;
1208     const TargetRegisterClass *RC = TRI->getRegClass(MCOI.RegClass);
1209     if (RC == &SystemZ::VR32BitRegClass || RC == &SystemZ::VR64BitRegClass) {
1210       Register Reg = MI.getOperand(I).getReg();
1211       Register PhysReg = Register::isVirtualRegister(Reg)
1212                              ? (VRM ? Register(VRM->getPhys(Reg)) : Register())
1213                              : Reg;
1214       if (!PhysReg ||
1215           !(SystemZ::FP32BitRegClass.contains(PhysReg) ||
1216             SystemZ::FP64BitRegClass.contains(PhysReg) ||
1217             SystemZ::VF128BitRegClass.contains(PhysReg)))
1218         return nullptr;
1219     }
1220   }
1221   // Fused multiply and add/sub need to have the same dst and accumulator reg.
1222   bool FusedFPOp = (Opcode == SystemZ::WFMADB || Opcode == SystemZ::WFMASB ||
1223                     Opcode == SystemZ::WFMSDB || Opcode == SystemZ::WFMSSB);
1224   if (FusedFPOp) {
1225     Register DstReg = VRM->getPhys(MI.getOperand(0).getReg());
1226     Register AccReg = VRM->getPhys(MI.getOperand(3).getReg());
1227     if (OpNum == 0 || OpNum == 3 || DstReg != AccReg)
1228       return nullptr;
1229   }
1230 
1231   // Try to swap compare operands if possible.
1232   bool NeedsCommute = false;
1233   if ((MI.getOpcode() == SystemZ::CR || MI.getOpcode() == SystemZ::CGR ||
1234        MI.getOpcode() == SystemZ::CLR || MI.getOpcode() == SystemZ::CLGR ||
1235        MI.getOpcode() == SystemZ::WFCDB || MI.getOpcode() == SystemZ::WFCSB ||
1236        MI.getOpcode() == SystemZ::WFKDB || MI.getOpcode() == SystemZ::WFKSB) &&
1237       OpNum == 0 && prepareCompareSwapOperands(MI))
1238     NeedsCommute = true;
1239 
1240   bool CCOperands = false;
1241   if (MI.getOpcode() == SystemZ::LOCRMux || MI.getOpcode() == SystemZ::LOCGR ||
1242       MI.getOpcode() == SystemZ::SELRMux || MI.getOpcode() == SystemZ::SELGR) {
1243     assert(MI.getNumOperands() == 6 && NumOps == 5 &&
1244            "LOCR/SELR instruction operands corrupt?");
1245     NumOps -= 2;
1246     CCOperands = true;
1247   }
1248 
1249   // See if this is a 3-address instruction that is convertible to 2-address
1250   // and suitable for folding below.  Only try this with virtual registers
1251   // and a provided VRM (during regalloc).
1252   if (NumOps == 3 && SystemZ::getTargetMemOpcode(MemOpcode) != -1) {
1253     if (VRM == nullptr)
1254       return nullptr;
1255     else {
1256       Register DstReg = MI.getOperand(0).getReg();
1257       Register DstPhys =
1258           (Register::isVirtualRegister(DstReg) ? Register(VRM->getPhys(DstReg))
1259                                                : DstReg);
1260       Register SrcReg = (OpNum == 2 ? MI.getOperand(1).getReg()
1261                                     : ((OpNum == 1 && MI.isCommutable())
1262                                            ? MI.getOperand(2).getReg()
1263                                            : Register()));
1264       if (DstPhys && !SystemZ::GRH32BitRegClass.contains(DstPhys) && SrcReg &&
1265           Register::isVirtualRegister(SrcReg) &&
1266           DstPhys == VRM->getPhys(SrcReg))
1267         NeedsCommute = (OpNum == 1);
1268       else
1269         return nullptr;
1270     }
1271   }
1272 
1273   if ((OpNum == NumOps - 1) || NeedsCommute || FusedFPOp) {
1274     const MCInstrDesc &MemDesc = get(MemOpcode);
1275     uint64_t AccessBytes = SystemZII::getAccessSize(MemDesc.TSFlags);
1276     assert(AccessBytes != 0 && "Size of access should be known");
1277     assert(AccessBytes <= Size && "Access outside the frame index");
1278     uint64_t Offset = Size - AccessBytes;
1279     MachineInstrBuilder MIB = BuildMI(*InsertPt->getParent(), InsertPt,
1280                                       MI.getDebugLoc(), get(MemOpcode));
1281     if (MI.isCompare()) {
1282       assert(NumOps == 2 && "Expected 2 register operands for a compare.");
1283       MIB.add(MI.getOperand(NeedsCommute ? 1 : 0));
1284     }
1285     else if (FusedFPOp) {
1286       MIB.add(MI.getOperand(0));
1287       MIB.add(MI.getOperand(3));
1288       MIB.add(MI.getOperand(OpNum == 1 ? 2 : 1));
1289     }
1290     else {
1291       MIB.add(MI.getOperand(0));
1292       if (NeedsCommute)
1293         MIB.add(MI.getOperand(2));
1294       else
1295         for (unsigned I = 1; I < OpNum; ++I)
1296           MIB.add(MI.getOperand(I));
1297     }
1298     MIB.addFrameIndex(FrameIndex).addImm(Offset);
1299     if (MemDesc.TSFlags & SystemZII::HasIndex)
1300       MIB.addReg(0);
1301     if (CCOperands) {
1302       unsigned CCValid = MI.getOperand(NumOps).getImm();
1303       unsigned CCMask = MI.getOperand(NumOps + 1).getImm();
1304       MIB.addImm(CCValid);
1305       MIB.addImm(NeedsCommute ? CCMask ^ CCValid : CCMask);
1306     }
1307     if (MIB->definesRegister(SystemZ::CC) &&
1308         (!MI.definesRegister(SystemZ::CC) ||
1309          MI.registerDefIsDead(SystemZ::CC))) {
1310       MIB->addRegisterDead(SystemZ::CC, TRI);
1311       if (CCLiveRange)
1312         CCLiveRange->createDeadDef(MISlot, LIS->getVNInfoAllocator());
1313     }
1314     // Constrain the register classes if converted from a vector opcode. The
1315     // allocated regs are in an FP reg-class per previous check above.
1316     for (const MachineOperand &MO : MIB->operands())
1317       if (MO.isReg() && Register::isVirtualRegister(MO.getReg())) {
1318         Register Reg = MO.getReg();
1319         if (MRI.getRegClass(Reg) == &SystemZ::VR32BitRegClass)
1320           MRI.setRegClass(Reg, &SystemZ::FP32BitRegClass);
1321         else if (MRI.getRegClass(Reg) == &SystemZ::VR64BitRegClass)
1322           MRI.setRegClass(Reg, &SystemZ::FP64BitRegClass);
1323         else if (MRI.getRegClass(Reg) == &SystemZ::VR128BitRegClass)
1324           MRI.setRegClass(Reg, &SystemZ::VF128BitRegClass);
1325       }
1326 
1327     transferDeadCC(&MI, MIB);
1328     transferMIFlag(&MI, MIB, MachineInstr::NoSWrap);
1329     transferMIFlag(&MI, MIB, MachineInstr::NoFPExcept);
1330     return MIB;
1331   }
1332 
1333   return nullptr;
1334 }
1335 
1336 MachineInstr *SystemZInstrInfo::foldMemoryOperandImpl(
1337     MachineFunction &MF, MachineInstr &MI, ArrayRef<unsigned> Ops,
1338     MachineBasicBlock::iterator InsertPt, MachineInstr &LoadMI,
1339     LiveIntervals *LIS) const {
1340   return nullptr;
1341 }
1342 
1343 bool SystemZInstrInfo::expandPostRAPseudo(MachineInstr &MI) const {
1344   switch (MI.getOpcode()) {
1345   case SystemZ::L128:
1346     splitMove(MI, SystemZ::LG);
1347     return true;
1348 
1349   case SystemZ::ST128:
1350     splitMove(MI, SystemZ::STG);
1351     return true;
1352 
1353   case SystemZ::LX:
1354     splitMove(MI, SystemZ::LD);
1355     return true;
1356 
1357   case SystemZ::STX:
1358     splitMove(MI, SystemZ::STD);
1359     return true;
1360 
1361   case SystemZ::LBMux:
1362     expandRXYPseudo(MI, SystemZ::LB, SystemZ::LBH);
1363     return true;
1364 
1365   case SystemZ::LHMux:
1366     expandRXYPseudo(MI, SystemZ::LH, SystemZ::LHH);
1367     return true;
1368 
1369   case SystemZ::LLCRMux:
1370     expandZExtPseudo(MI, SystemZ::LLCR, 8);
1371     return true;
1372 
1373   case SystemZ::LLHRMux:
1374     expandZExtPseudo(MI, SystemZ::LLHR, 16);
1375     return true;
1376 
1377   case SystemZ::LLCMux:
1378     expandRXYPseudo(MI, SystemZ::LLC, SystemZ::LLCH);
1379     return true;
1380 
1381   case SystemZ::LLHMux:
1382     expandRXYPseudo(MI, SystemZ::LLH, SystemZ::LLHH);
1383     return true;
1384 
1385   case SystemZ::LMux:
1386     expandRXYPseudo(MI, SystemZ::L, SystemZ::LFH);
1387     return true;
1388 
1389   case SystemZ::LOCMux:
1390     expandLOCPseudo(MI, SystemZ::LOC, SystemZ::LOCFH);
1391     return true;
1392 
1393   case SystemZ::LOCHIMux:
1394     expandLOCPseudo(MI, SystemZ::LOCHI, SystemZ::LOCHHI);
1395     return true;
1396 
1397   case SystemZ::STCMux:
1398     expandRXYPseudo(MI, SystemZ::STC, SystemZ::STCH);
1399     return true;
1400 
1401   case SystemZ::STHMux:
1402     expandRXYPseudo(MI, SystemZ::STH, SystemZ::STHH);
1403     return true;
1404 
1405   case SystemZ::STMux:
1406     expandRXYPseudo(MI, SystemZ::ST, SystemZ::STFH);
1407     return true;
1408 
1409   case SystemZ::STOCMux:
1410     expandLOCPseudo(MI, SystemZ::STOC, SystemZ::STOCFH);
1411     return true;
1412 
1413   case SystemZ::LHIMux:
1414     expandRIPseudo(MI, SystemZ::LHI, SystemZ::IIHF, true);
1415     return true;
1416 
1417   case SystemZ::IIFMux:
1418     expandRIPseudo(MI, SystemZ::IILF, SystemZ::IIHF, false);
1419     return true;
1420 
1421   case SystemZ::IILMux:
1422     expandRIPseudo(MI, SystemZ::IILL, SystemZ::IIHL, false);
1423     return true;
1424 
1425   case SystemZ::IIHMux:
1426     expandRIPseudo(MI, SystemZ::IILH, SystemZ::IIHH, false);
1427     return true;
1428 
1429   case SystemZ::NIFMux:
1430     expandRIPseudo(MI, SystemZ::NILF, SystemZ::NIHF, false);
1431     return true;
1432 
1433   case SystemZ::NILMux:
1434     expandRIPseudo(MI, SystemZ::NILL, SystemZ::NIHL, false);
1435     return true;
1436 
1437   case SystemZ::NIHMux:
1438     expandRIPseudo(MI, SystemZ::NILH, SystemZ::NIHH, false);
1439     return true;
1440 
1441   case SystemZ::OIFMux:
1442     expandRIPseudo(MI, SystemZ::OILF, SystemZ::OIHF, false);
1443     return true;
1444 
1445   case SystemZ::OILMux:
1446     expandRIPseudo(MI, SystemZ::OILL, SystemZ::OIHL, false);
1447     return true;
1448 
1449   case SystemZ::OIHMux:
1450     expandRIPseudo(MI, SystemZ::OILH, SystemZ::OIHH, false);
1451     return true;
1452 
1453   case SystemZ::XIFMux:
1454     expandRIPseudo(MI, SystemZ::XILF, SystemZ::XIHF, false);
1455     return true;
1456 
1457   case SystemZ::TMLMux:
1458     expandRIPseudo(MI, SystemZ::TMLL, SystemZ::TMHL, false);
1459     return true;
1460 
1461   case SystemZ::TMHMux:
1462     expandRIPseudo(MI, SystemZ::TMLH, SystemZ::TMHH, false);
1463     return true;
1464 
1465   case SystemZ::AHIMux:
1466     expandRIPseudo(MI, SystemZ::AHI, SystemZ::AIH, false);
1467     return true;
1468 
1469   case SystemZ::AHIMuxK:
1470     expandRIEPseudo(MI, SystemZ::AHI, SystemZ::AHIK, SystemZ::AIH);
1471     return true;
1472 
1473   case SystemZ::AFIMux:
1474     expandRIPseudo(MI, SystemZ::AFI, SystemZ::AIH, false);
1475     return true;
1476 
1477   case SystemZ::CHIMux:
1478     expandRIPseudo(MI, SystemZ::CHI, SystemZ::CIH, false);
1479     return true;
1480 
1481   case SystemZ::CFIMux:
1482     expandRIPseudo(MI, SystemZ::CFI, SystemZ::CIH, false);
1483     return true;
1484 
1485   case SystemZ::CLFIMux:
1486     expandRIPseudo(MI, SystemZ::CLFI, SystemZ::CLIH, false);
1487     return true;
1488 
1489   case SystemZ::CMux:
1490     expandRXYPseudo(MI, SystemZ::C, SystemZ::CHF);
1491     return true;
1492 
1493   case SystemZ::CLMux:
1494     expandRXYPseudo(MI, SystemZ::CL, SystemZ::CLHF);
1495     return true;
1496 
1497   case SystemZ::RISBMux: {
1498     bool DestIsHigh = SystemZ::isHighReg(MI.getOperand(0).getReg());
1499     bool SrcIsHigh = SystemZ::isHighReg(MI.getOperand(2).getReg());
1500     if (SrcIsHigh == DestIsHigh)
1501       MI.setDesc(get(DestIsHigh ? SystemZ::RISBHH : SystemZ::RISBLL));
1502     else {
1503       MI.setDesc(get(DestIsHigh ? SystemZ::RISBHL : SystemZ::RISBLH));
1504       MI.getOperand(5).setImm(MI.getOperand(5).getImm() ^ 32);
1505     }
1506     return true;
1507   }
1508 
1509   case SystemZ::ADJDYNALLOC:
1510     splitAdjDynAlloc(MI);
1511     return true;
1512 
1513   case TargetOpcode::LOAD_STACK_GUARD:
1514     expandLoadStackGuard(&MI);
1515     return true;
1516 
1517   default:
1518     return false;
1519   }
1520 }
1521 
1522 unsigned SystemZInstrInfo::getInstSizeInBytes(const MachineInstr &MI) const {
1523   if (MI.isInlineAsm()) {
1524     const MachineFunction *MF = MI.getParent()->getParent();
1525     const char *AsmStr = MI.getOperand(0).getSymbolName();
1526     return getInlineAsmLength(AsmStr, *MF->getTarget().getMCAsmInfo());
1527   }
1528   else if (MI.getOpcode() == SystemZ::PATCHPOINT)
1529     return PatchPointOpers(&MI).getNumPatchBytes();
1530   else if (MI.getOpcode() == SystemZ::STACKMAP)
1531     return MI.getOperand(1).getImm();
1532   else if (MI.getOpcode() == SystemZ::FENTRY_CALL)
1533     return 6;
1534 
1535   return MI.getDesc().getSize();
1536 }
1537 
1538 SystemZII::Branch
1539 SystemZInstrInfo::getBranchInfo(const MachineInstr &MI) const {
1540   switch (MI.getOpcode()) {
1541   case SystemZ::BR:
1542   case SystemZ::BI:
1543   case SystemZ::J:
1544   case SystemZ::JG:
1545     return SystemZII::Branch(SystemZII::BranchNormal, SystemZ::CCMASK_ANY,
1546                              SystemZ::CCMASK_ANY, &MI.getOperand(0));
1547 
1548   case SystemZ::BRC:
1549   case SystemZ::BRCL:
1550     return SystemZII::Branch(SystemZII::BranchNormal, MI.getOperand(0).getImm(),
1551                              MI.getOperand(1).getImm(), &MI.getOperand(2));
1552 
1553   case SystemZ::BRCT:
1554   case SystemZ::BRCTH:
1555     return SystemZII::Branch(SystemZII::BranchCT, SystemZ::CCMASK_ICMP,
1556                              SystemZ::CCMASK_CMP_NE, &MI.getOperand(2));
1557 
1558   case SystemZ::BRCTG:
1559     return SystemZII::Branch(SystemZII::BranchCTG, SystemZ::CCMASK_ICMP,
1560                              SystemZ::CCMASK_CMP_NE, &MI.getOperand(2));
1561 
1562   case SystemZ::CIJ:
1563   case SystemZ::CRJ:
1564     return SystemZII::Branch(SystemZII::BranchC, SystemZ::CCMASK_ICMP,
1565                              MI.getOperand(2).getImm(), &MI.getOperand(3));
1566 
1567   case SystemZ::CLIJ:
1568   case SystemZ::CLRJ:
1569     return SystemZII::Branch(SystemZII::BranchCL, SystemZ::CCMASK_ICMP,
1570                              MI.getOperand(2).getImm(), &MI.getOperand(3));
1571 
1572   case SystemZ::CGIJ:
1573   case SystemZ::CGRJ:
1574     return SystemZII::Branch(SystemZII::BranchCG, SystemZ::CCMASK_ICMP,
1575                              MI.getOperand(2).getImm(), &MI.getOperand(3));
1576 
1577   case SystemZ::CLGIJ:
1578   case SystemZ::CLGRJ:
1579     return SystemZII::Branch(SystemZII::BranchCLG, SystemZ::CCMASK_ICMP,
1580                              MI.getOperand(2).getImm(), &MI.getOperand(3));
1581 
1582   case SystemZ::INLINEASM_BR:
1583     // Don't try to analyze asm goto, so pass nullptr as branch target argument.
1584     return SystemZII::Branch(SystemZII::AsmGoto, 0, 0, nullptr);
1585 
1586   default:
1587     llvm_unreachable("Unrecognized branch opcode");
1588   }
1589 }
1590 
1591 void SystemZInstrInfo::getLoadStoreOpcodes(const TargetRegisterClass *RC,
1592                                            unsigned &LoadOpcode,
1593                                            unsigned &StoreOpcode) const {
1594   if (RC == &SystemZ::GR32BitRegClass || RC == &SystemZ::ADDR32BitRegClass) {
1595     LoadOpcode = SystemZ::L;
1596     StoreOpcode = SystemZ::ST;
1597   } else if (RC == &SystemZ::GRH32BitRegClass) {
1598     LoadOpcode = SystemZ::LFH;
1599     StoreOpcode = SystemZ::STFH;
1600   } else if (RC == &SystemZ::GRX32BitRegClass) {
1601     LoadOpcode = SystemZ::LMux;
1602     StoreOpcode = SystemZ::STMux;
1603   } else if (RC == &SystemZ::GR64BitRegClass ||
1604              RC == &SystemZ::ADDR64BitRegClass) {
1605     LoadOpcode = SystemZ::LG;
1606     StoreOpcode = SystemZ::STG;
1607   } else if (RC == &SystemZ::GR128BitRegClass ||
1608              RC == &SystemZ::ADDR128BitRegClass) {
1609     LoadOpcode = SystemZ::L128;
1610     StoreOpcode = SystemZ::ST128;
1611   } else if (RC == &SystemZ::FP32BitRegClass) {
1612     LoadOpcode = SystemZ::LE;
1613     StoreOpcode = SystemZ::STE;
1614   } else if (RC == &SystemZ::FP64BitRegClass) {
1615     LoadOpcode = SystemZ::LD;
1616     StoreOpcode = SystemZ::STD;
1617   } else if (RC == &SystemZ::FP128BitRegClass) {
1618     LoadOpcode = SystemZ::LX;
1619     StoreOpcode = SystemZ::STX;
1620   } else if (RC == &SystemZ::VR32BitRegClass) {
1621     LoadOpcode = SystemZ::VL32;
1622     StoreOpcode = SystemZ::VST32;
1623   } else if (RC == &SystemZ::VR64BitRegClass) {
1624     LoadOpcode = SystemZ::VL64;
1625     StoreOpcode = SystemZ::VST64;
1626   } else if (RC == &SystemZ::VF128BitRegClass ||
1627              RC == &SystemZ::VR128BitRegClass) {
1628     LoadOpcode = SystemZ::VL;
1629     StoreOpcode = SystemZ::VST;
1630   } else
1631     llvm_unreachable("Unsupported regclass to load or store");
1632 }
1633 
1634 unsigned SystemZInstrInfo::getOpcodeForOffset(unsigned Opcode,
1635                                               int64_t Offset,
1636                                               const MachineInstr *MI) const {
1637   const MCInstrDesc &MCID = get(Opcode);
1638   int64_t Offset2 = (MCID.TSFlags & SystemZII::Is128Bit ? Offset + 8 : Offset);
1639   if (isUInt<12>(Offset) && isUInt<12>(Offset2)) {
1640     // Get the instruction to use for unsigned 12-bit displacements.
1641     int Disp12Opcode = SystemZ::getDisp12Opcode(Opcode);
1642     if (Disp12Opcode >= 0)
1643       return Disp12Opcode;
1644 
1645     // All address-related instructions can use unsigned 12-bit
1646     // displacements.
1647     return Opcode;
1648   }
1649   if (isInt<20>(Offset) && isInt<20>(Offset2)) {
1650     // Get the instruction to use for signed 20-bit displacements.
1651     int Disp20Opcode = SystemZ::getDisp20Opcode(Opcode);
1652     if (Disp20Opcode >= 0)
1653       return Disp20Opcode;
1654 
1655     // Check whether Opcode allows signed 20-bit displacements.
1656     if (MCID.TSFlags & SystemZII::Has20BitOffset)
1657       return Opcode;
1658 
1659     // If a VR32/VR64 reg ended up in an FP register, use the FP opcode.
1660     if (MI && MI->getOperand(0).isReg()) {
1661       Register Reg = MI->getOperand(0).getReg();
1662       if (Reg.isPhysical() && SystemZMC::getFirstReg(Reg) < 16) {
1663         switch (Opcode) {
1664         case SystemZ::VL32:
1665           return SystemZ::LEY;
1666         case SystemZ::VST32:
1667           return SystemZ::STEY;
1668         case SystemZ::VL64:
1669           return SystemZ::LDY;
1670         case SystemZ::VST64:
1671           return SystemZ::STDY;
1672         default: break;
1673         }
1674       }
1675     }
1676   }
1677   return 0;
1678 }
1679 
1680 bool SystemZInstrInfo::hasDisplacementPairInsn(unsigned Opcode) const {
1681   const MCInstrDesc &MCID = get(Opcode);
1682   if (MCID.TSFlags & SystemZII::Has20BitOffset)
1683     return SystemZ::getDisp12Opcode(Opcode) >= 0;
1684   return SystemZ::getDisp20Opcode(Opcode) >= 0;
1685 }
1686 
1687 unsigned SystemZInstrInfo::getLoadAndTest(unsigned Opcode) const {
1688   switch (Opcode) {
1689   case SystemZ::L:      return SystemZ::LT;
1690   case SystemZ::LY:     return SystemZ::LT;
1691   case SystemZ::LG:     return SystemZ::LTG;
1692   case SystemZ::LGF:    return SystemZ::LTGF;
1693   case SystemZ::LR:     return SystemZ::LTR;
1694   case SystemZ::LGFR:   return SystemZ::LTGFR;
1695   case SystemZ::LGR:    return SystemZ::LTGR;
1696   case SystemZ::LER:    return SystemZ::LTEBR;
1697   case SystemZ::LDR:    return SystemZ::LTDBR;
1698   case SystemZ::LXR:    return SystemZ::LTXBR;
1699   case SystemZ::LCDFR:  return SystemZ::LCDBR;
1700   case SystemZ::LPDFR:  return SystemZ::LPDBR;
1701   case SystemZ::LNDFR:  return SystemZ::LNDBR;
1702   case SystemZ::LCDFR_32:  return SystemZ::LCEBR;
1703   case SystemZ::LPDFR_32:  return SystemZ::LPEBR;
1704   case SystemZ::LNDFR_32:  return SystemZ::LNEBR;
1705   // On zEC12 we prefer to use RISBGN.  But if there is a chance to
1706   // actually use the condition code, we may turn it back into RISGB.
1707   // Note that RISBG is not really a "load-and-test" instruction,
1708   // but sets the same condition code values, so is OK to use here.
1709   case SystemZ::RISBGN: return SystemZ::RISBG;
1710   default:              return 0;
1711   }
1712 }
1713 
1714 // Return true if Mask matches the regexp 0*1+0*, given that zero masks
1715 // have already been filtered out.  Store the first set bit in LSB and
1716 // the number of set bits in Length if so.
1717 static bool isStringOfOnes(uint64_t Mask, unsigned &LSB, unsigned &Length) {
1718   unsigned First = findFirstSet(Mask);
1719   uint64_t Top = (Mask >> First) + 1;
1720   if ((Top & -Top) == Top) {
1721     LSB = First;
1722     Length = findFirstSet(Top);
1723     return true;
1724   }
1725   return false;
1726 }
1727 
1728 bool SystemZInstrInfo::isRxSBGMask(uint64_t Mask, unsigned BitSize,
1729                                    unsigned &Start, unsigned &End) const {
1730   // Reject trivial all-zero masks.
1731   Mask &= allOnes(BitSize);
1732   if (Mask == 0)
1733     return false;
1734 
1735   // Handle the 1+0+ or 0+1+0* cases.  Start then specifies the index of
1736   // the msb and End specifies the index of the lsb.
1737   unsigned LSB, Length;
1738   if (isStringOfOnes(Mask, LSB, Length)) {
1739     Start = 63 - (LSB + Length - 1);
1740     End = 63 - LSB;
1741     return true;
1742   }
1743 
1744   // Handle the wrap-around 1+0+1+ cases.  Start then specifies the msb
1745   // of the low 1s and End specifies the lsb of the high 1s.
1746   if (isStringOfOnes(Mask ^ allOnes(BitSize), LSB, Length)) {
1747     assert(LSB > 0 && "Bottom bit must be set");
1748     assert(LSB + Length < BitSize && "Top bit must be set");
1749     Start = 63 - (LSB - 1);
1750     End = 63 - (LSB + Length);
1751     return true;
1752   }
1753 
1754   return false;
1755 }
1756 
1757 unsigned SystemZInstrInfo::getFusedCompare(unsigned Opcode,
1758                                            SystemZII::FusedCompareType Type,
1759                                            const MachineInstr *MI) const {
1760   switch (Opcode) {
1761   case SystemZ::CHI:
1762   case SystemZ::CGHI:
1763     if (!(MI && isInt<8>(MI->getOperand(1).getImm())))
1764       return 0;
1765     break;
1766   case SystemZ::CLFI:
1767   case SystemZ::CLGFI:
1768     if (!(MI && isUInt<8>(MI->getOperand(1).getImm())))
1769       return 0;
1770     break;
1771   case SystemZ::CL:
1772   case SystemZ::CLG:
1773     if (!STI.hasMiscellaneousExtensions())
1774       return 0;
1775     if (!(MI && MI->getOperand(3).getReg() == 0))
1776       return 0;
1777     break;
1778   }
1779   switch (Type) {
1780   case SystemZII::CompareAndBranch:
1781     switch (Opcode) {
1782     case SystemZ::CR:
1783       return SystemZ::CRJ;
1784     case SystemZ::CGR:
1785       return SystemZ::CGRJ;
1786     case SystemZ::CHI:
1787       return SystemZ::CIJ;
1788     case SystemZ::CGHI:
1789       return SystemZ::CGIJ;
1790     case SystemZ::CLR:
1791       return SystemZ::CLRJ;
1792     case SystemZ::CLGR:
1793       return SystemZ::CLGRJ;
1794     case SystemZ::CLFI:
1795       return SystemZ::CLIJ;
1796     case SystemZ::CLGFI:
1797       return SystemZ::CLGIJ;
1798     default:
1799       return 0;
1800     }
1801   case SystemZII::CompareAndReturn:
1802     switch (Opcode) {
1803     case SystemZ::CR:
1804       return SystemZ::CRBReturn;
1805     case SystemZ::CGR:
1806       return SystemZ::CGRBReturn;
1807     case SystemZ::CHI:
1808       return SystemZ::CIBReturn;
1809     case SystemZ::CGHI:
1810       return SystemZ::CGIBReturn;
1811     case SystemZ::CLR:
1812       return SystemZ::CLRBReturn;
1813     case SystemZ::CLGR:
1814       return SystemZ::CLGRBReturn;
1815     case SystemZ::CLFI:
1816       return SystemZ::CLIBReturn;
1817     case SystemZ::CLGFI:
1818       return SystemZ::CLGIBReturn;
1819     default:
1820       return 0;
1821     }
1822   case SystemZII::CompareAndSibcall:
1823     switch (Opcode) {
1824     case SystemZ::CR:
1825       return SystemZ::CRBCall;
1826     case SystemZ::CGR:
1827       return SystemZ::CGRBCall;
1828     case SystemZ::CHI:
1829       return SystemZ::CIBCall;
1830     case SystemZ::CGHI:
1831       return SystemZ::CGIBCall;
1832     case SystemZ::CLR:
1833       return SystemZ::CLRBCall;
1834     case SystemZ::CLGR:
1835       return SystemZ::CLGRBCall;
1836     case SystemZ::CLFI:
1837       return SystemZ::CLIBCall;
1838     case SystemZ::CLGFI:
1839       return SystemZ::CLGIBCall;
1840     default:
1841       return 0;
1842     }
1843   case SystemZII::CompareAndTrap:
1844     switch (Opcode) {
1845     case SystemZ::CR:
1846       return SystemZ::CRT;
1847     case SystemZ::CGR:
1848       return SystemZ::CGRT;
1849     case SystemZ::CHI:
1850       return SystemZ::CIT;
1851     case SystemZ::CGHI:
1852       return SystemZ::CGIT;
1853     case SystemZ::CLR:
1854       return SystemZ::CLRT;
1855     case SystemZ::CLGR:
1856       return SystemZ::CLGRT;
1857     case SystemZ::CLFI:
1858       return SystemZ::CLFIT;
1859     case SystemZ::CLGFI:
1860       return SystemZ::CLGIT;
1861     case SystemZ::CL:
1862       return SystemZ::CLT;
1863     case SystemZ::CLG:
1864       return SystemZ::CLGT;
1865     default:
1866       return 0;
1867     }
1868   }
1869   return 0;
1870 }
1871 
1872 bool SystemZInstrInfo::
1873 prepareCompareSwapOperands(MachineBasicBlock::iterator const MBBI) const {
1874   assert(MBBI->isCompare() && MBBI->getOperand(0).isReg() &&
1875          MBBI->getOperand(1).isReg() && !MBBI->mayLoad() &&
1876          "Not a compare reg/reg.");
1877 
1878   MachineBasicBlock *MBB = MBBI->getParent();
1879   bool CCLive = true;
1880   SmallVector<MachineInstr *, 4> CCUsers;
1881   for (MachineBasicBlock::iterator Itr = std::next(MBBI);
1882        Itr != MBB->end(); ++Itr) {
1883     if (Itr->readsRegister(SystemZ::CC)) {
1884       unsigned Flags = Itr->getDesc().TSFlags;
1885       if ((Flags & SystemZII::CCMaskFirst) || (Flags & SystemZII::CCMaskLast))
1886         CCUsers.push_back(&*Itr);
1887       else
1888         return false;
1889     }
1890     if (Itr->definesRegister(SystemZ::CC)) {
1891       CCLive = false;
1892       break;
1893     }
1894   }
1895   if (CCLive) {
1896     LivePhysRegs LiveRegs(*MBB->getParent()->getSubtarget().getRegisterInfo());
1897     LiveRegs.addLiveOuts(*MBB);
1898     if (LiveRegs.contains(SystemZ::CC))
1899       return false;
1900   }
1901 
1902   // Update all CC users.
1903   for (unsigned Idx = 0; Idx < CCUsers.size(); ++Idx) {
1904     unsigned Flags = CCUsers[Idx]->getDesc().TSFlags;
1905     unsigned FirstOpNum = ((Flags & SystemZII::CCMaskFirst) ?
1906                            0 : CCUsers[Idx]->getNumExplicitOperands() - 2);
1907     MachineOperand &CCMaskMO = CCUsers[Idx]->getOperand(FirstOpNum + 1);
1908     unsigned NewCCMask = SystemZ::reverseCCMask(CCMaskMO.getImm());
1909     CCMaskMO.setImm(NewCCMask);
1910   }
1911 
1912   return true;
1913 }
1914 
1915 unsigned SystemZ::reverseCCMask(unsigned CCMask) {
1916   return ((CCMask & SystemZ::CCMASK_CMP_EQ) |
1917           (CCMask & SystemZ::CCMASK_CMP_GT ? SystemZ::CCMASK_CMP_LT : 0) |
1918           (CCMask & SystemZ::CCMASK_CMP_LT ? SystemZ::CCMASK_CMP_GT : 0) |
1919           (CCMask & SystemZ::CCMASK_CMP_UO));
1920 }
1921 
1922 MachineBasicBlock *SystemZ::emitBlockAfter(MachineBasicBlock *MBB) {
1923   MachineFunction &MF = *MBB->getParent();
1924   MachineBasicBlock *NewMBB = MF.CreateMachineBasicBlock(MBB->getBasicBlock());
1925   MF.insert(std::next(MachineFunction::iterator(MBB)), NewMBB);
1926   return NewMBB;
1927 }
1928 
1929 MachineBasicBlock *SystemZ::splitBlockAfter(MachineBasicBlock::iterator MI,
1930                                             MachineBasicBlock *MBB) {
1931   MachineBasicBlock *NewMBB = emitBlockAfter(MBB);
1932   NewMBB->splice(NewMBB->begin(), MBB,
1933                  std::next(MachineBasicBlock::iterator(MI)), MBB->end());
1934   NewMBB->transferSuccessorsAndUpdatePHIs(MBB);
1935   return NewMBB;
1936 }
1937 
1938 MachineBasicBlock *SystemZ::splitBlockBefore(MachineBasicBlock::iterator MI,
1939                                              MachineBasicBlock *MBB) {
1940   MachineBasicBlock *NewMBB = emitBlockAfter(MBB);
1941   NewMBB->splice(NewMBB->begin(), MBB, MI, MBB->end());
1942   NewMBB->transferSuccessorsAndUpdatePHIs(MBB);
1943   return NewMBB;
1944 }
1945 
1946 unsigned SystemZInstrInfo::getLoadAndTrap(unsigned Opcode) const {
1947   if (!STI.hasLoadAndTrap())
1948     return 0;
1949   switch (Opcode) {
1950   case SystemZ::L:
1951   case SystemZ::LY:
1952     return SystemZ::LAT;
1953   case SystemZ::LG:
1954     return SystemZ::LGAT;
1955   case SystemZ::LFH:
1956     return SystemZ::LFHAT;
1957   case SystemZ::LLGF:
1958     return SystemZ::LLGFAT;
1959   case SystemZ::LLGT:
1960     return SystemZ::LLGTAT;
1961   }
1962   return 0;
1963 }
1964 
1965 void SystemZInstrInfo::loadImmediate(MachineBasicBlock &MBB,
1966                                      MachineBasicBlock::iterator MBBI,
1967                                      unsigned Reg, uint64_t Value) const {
1968   DebugLoc DL = MBBI != MBB.end() ? MBBI->getDebugLoc() : DebugLoc();
1969   unsigned Opcode = 0;
1970   if (isInt<16>(Value))
1971     Opcode = SystemZ::LGHI;
1972   else if (SystemZ::isImmLL(Value))
1973     Opcode = SystemZ::LLILL;
1974   else if (SystemZ::isImmLH(Value)) {
1975     Opcode = SystemZ::LLILH;
1976     Value >>= 16;
1977   }
1978   else if (isInt<32>(Value))
1979     Opcode = SystemZ::LGFI;
1980   if (Opcode) {
1981     BuildMI(MBB, MBBI, DL, get(Opcode), Reg).addImm(Value);
1982     return;
1983   }
1984 
1985   MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo();
1986   assert (MRI.isSSA() &&  "Huge values only handled before reg-alloc .");
1987   Register Reg0 = MRI.createVirtualRegister(&SystemZ::GR64BitRegClass);
1988   Register Reg1 = MRI.createVirtualRegister(&SystemZ::GR64BitRegClass);
1989   BuildMI(MBB, MBBI, DL, get(SystemZ::IMPLICIT_DEF), Reg0);
1990   BuildMI(MBB, MBBI, DL, get(SystemZ::IIHF64), Reg1)
1991     .addReg(Reg0).addImm(Value >> 32);
1992   BuildMI(MBB, MBBI, DL, get(SystemZ::IILF64), Reg)
1993     .addReg(Reg1).addImm(Value & ((uint64_t(1) << 32) - 1));
1994 }
1995 
1996 bool SystemZInstrInfo::verifyInstruction(const MachineInstr &MI,
1997                                          StringRef &ErrInfo) const {
1998   const MCInstrDesc &MCID = MI.getDesc();
1999   for (unsigned I = 0, E = MI.getNumOperands(); I != E; ++I) {
2000     if (I >= MCID.getNumOperands())
2001       break;
2002     const MachineOperand &Op = MI.getOperand(I);
2003     const MCOperandInfo &MCOI = MCID.OpInfo[I];
2004     // Addressing modes have register and immediate operands. Op should be a
2005     // register (or frame index) operand if MCOI.RegClass contains a valid
2006     // register class, or an immediate otherwise.
2007     if (MCOI.OperandType == MCOI::OPERAND_MEMORY &&
2008         ((MCOI.RegClass != -1 && !Op.isReg() && !Op.isFI()) ||
2009          (MCOI.RegClass == -1 && !Op.isImm()))) {
2010       ErrInfo = "Addressing mode operands corrupt!";
2011       return false;
2012     }
2013   }
2014 
2015   return true;
2016 }
2017 
2018 bool SystemZInstrInfo::
2019 areMemAccessesTriviallyDisjoint(const MachineInstr &MIa,
2020                                 const MachineInstr &MIb) const {
2021 
2022   if (!MIa.hasOneMemOperand() || !MIb.hasOneMemOperand())
2023     return false;
2024 
2025   // If mem-operands show that the same address Value is used by both
2026   // instructions, check for non-overlapping offsets and widths. Not
2027   // sure if a register based analysis would be an improvement...
2028 
2029   MachineMemOperand *MMOa = *MIa.memoperands_begin();
2030   MachineMemOperand *MMOb = *MIb.memoperands_begin();
2031   const Value *VALa = MMOa->getValue();
2032   const Value *VALb = MMOb->getValue();
2033   bool SameVal = (VALa && VALb && (VALa == VALb));
2034   if (!SameVal) {
2035     const PseudoSourceValue *PSVa = MMOa->getPseudoValue();
2036     const PseudoSourceValue *PSVb = MMOb->getPseudoValue();
2037     if (PSVa && PSVb && (PSVa == PSVb))
2038       SameVal = true;
2039   }
2040   if (SameVal) {
2041     int OffsetA = MMOa->getOffset(), OffsetB = MMOb->getOffset();
2042     int WidthA = MMOa->getSize(), WidthB = MMOb->getSize();
2043     int LowOffset = OffsetA < OffsetB ? OffsetA : OffsetB;
2044     int HighOffset = OffsetA < OffsetB ? OffsetB : OffsetA;
2045     int LowWidth = (LowOffset == OffsetA) ? WidthA : WidthB;
2046     if (LowOffset + LowWidth <= HighOffset)
2047       return true;
2048   }
2049 
2050   return false;
2051 }
2052