1 //===-- SystemZInstrInfo.cpp - SystemZ instruction information ------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file contains the SystemZ implementation of the TargetInstrInfo class.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "SystemZInstrInfo.h"
14 #include "MCTargetDesc/SystemZMCTargetDesc.h"
15 #include "SystemZ.h"
16 #include "SystemZInstrBuilder.h"
17 #include "SystemZSubtarget.h"
18 #include "llvm/ADT/Statistic.h"
19 #include "llvm/CodeGen/LiveInterval.h"
20 #include "llvm/CodeGen/LiveIntervals.h"
21 #include "llvm/CodeGen/LiveVariables.h"
22 #include "llvm/CodeGen/MachineBasicBlock.h"
23 #include "llvm/CodeGen/MachineFrameInfo.h"
24 #include "llvm/CodeGen/MachineFunction.h"
25 #include "llvm/CodeGen/MachineInstr.h"
26 #include "llvm/CodeGen/MachineMemOperand.h"
27 #include "llvm/CodeGen/MachineOperand.h"
28 #include "llvm/CodeGen/MachineRegisterInfo.h"
29 #include "llvm/CodeGen/SlotIndexes.h"
30 #include "llvm/CodeGen/TargetInstrInfo.h"
31 #include "llvm/CodeGen/TargetSubtargetInfo.h"
32 #include "llvm/MC/MCInstrDesc.h"
33 #include "llvm/MC/MCRegisterInfo.h"
34 #include "llvm/Support/BranchProbability.h"
35 #include "llvm/Support/ErrorHandling.h"
36 #include "llvm/Support/MathExtras.h"
37 #include "llvm/Target/TargetMachine.h"
38 #include <cassert>
39 #include <cstdint>
40 #include <iterator>
41 
42 using namespace llvm;
43 
44 #define GET_INSTRINFO_CTOR_DTOR
45 #define GET_INSTRMAP_INFO
46 #include "SystemZGenInstrInfo.inc"
47 
48 #define DEBUG_TYPE "systemz-II"
49 
50 // Return a mask with Count low bits set.
51 static uint64_t allOnes(unsigned int Count) {
52   return Count == 0 ? 0 : (uint64_t(1) << (Count - 1) << 1) - 1;
53 }
54 
55 // Pin the vtable to this file.
56 void SystemZInstrInfo::anchor() {}
57 
58 SystemZInstrInfo::SystemZInstrInfo(SystemZSubtarget &sti)
59   : SystemZGenInstrInfo(SystemZ::ADJCALLSTACKDOWN, SystemZ::ADJCALLSTACKUP),
60     RI(), STI(sti) {
61 }
62 
63 // MI is a 128-bit load or store.  Split it into two 64-bit loads or stores,
64 // each having the opcode given by NewOpcode.
65 void SystemZInstrInfo::splitMove(MachineBasicBlock::iterator MI,
66                                  unsigned NewOpcode) const {
67   MachineBasicBlock *MBB = MI->getParent();
68   MachineFunction &MF = *MBB->getParent();
69 
70   // Get two load or store instructions.  Use the original instruction for one
71   // of them (arbitrarily the second here) and create a clone for the other.
72   MachineInstr *EarlierMI = MF.CloneMachineInstr(&*MI);
73   MBB->insert(MI, EarlierMI);
74 
75   // Set up the two 64-bit registers and remember super reg and its flags.
76   MachineOperand &HighRegOp = EarlierMI->getOperand(0);
77   MachineOperand &LowRegOp = MI->getOperand(0);
78   Register Reg128 = LowRegOp.getReg();
79   unsigned Reg128Killed = getKillRegState(LowRegOp.isKill());
80   unsigned Reg128Undef  = getUndefRegState(LowRegOp.isUndef());
81   HighRegOp.setReg(RI.getSubReg(HighRegOp.getReg(), SystemZ::subreg_h64));
82   LowRegOp.setReg(RI.getSubReg(LowRegOp.getReg(), SystemZ::subreg_l64));
83 
84   if (MI->mayStore()) {
85     // Add implicit uses of the super register in case one of the subregs is
86     // undefined. We could track liveness and skip storing an undefined
87     // subreg, but this is hopefully rare (discovered with llvm-stress).
88     // If Reg128 was killed, set kill flag on MI.
89     unsigned Reg128UndefImpl = (Reg128Undef | RegState::Implicit);
90     MachineInstrBuilder(MF, EarlierMI).addReg(Reg128, Reg128UndefImpl);
91     MachineInstrBuilder(MF, MI).addReg(Reg128, (Reg128UndefImpl | Reg128Killed));
92   }
93 
94   // The address in the first (high) instruction is already correct.
95   // Adjust the offset in the second (low) instruction.
96   MachineOperand &HighOffsetOp = EarlierMI->getOperand(2);
97   MachineOperand &LowOffsetOp = MI->getOperand(2);
98   LowOffsetOp.setImm(LowOffsetOp.getImm() + 8);
99 
100   // Clear the kill flags on the registers in the first instruction.
101   if (EarlierMI->getOperand(0).isReg() && EarlierMI->getOperand(0).isUse())
102     EarlierMI->getOperand(0).setIsKill(false);
103   EarlierMI->getOperand(1).setIsKill(false);
104   EarlierMI->getOperand(3).setIsKill(false);
105 
106   // Set the opcodes.
107   unsigned HighOpcode = getOpcodeForOffset(NewOpcode, HighOffsetOp.getImm());
108   unsigned LowOpcode = getOpcodeForOffset(NewOpcode, LowOffsetOp.getImm());
109   assert(HighOpcode && LowOpcode && "Both offsets should be in range");
110 
111   EarlierMI->setDesc(get(HighOpcode));
112   MI->setDesc(get(LowOpcode));
113 }
114 
115 // Split ADJDYNALLOC instruction MI.
116 void SystemZInstrInfo::splitAdjDynAlloc(MachineBasicBlock::iterator MI) const {
117   MachineBasicBlock *MBB = MI->getParent();
118   MachineFunction &MF = *MBB->getParent();
119   MachineFrameInfo &MFFrame = MF.getFrameInfo();
120   MachineOperand &OffsetMO = MI->getOperand(2);
121 
122   uint64_t Offset = (MFFrame.getMaxCallFrameSize() +
123                      SystemZMC::CallFrameSize +
124                      OffsetMO.getImm());
125   unsigned NewOpcode = getOpcodeForOffset(SystemZ::LA, Offset);
126   assert(NewOpcode && "No support for huge argument lists yet");
127   MI->setDesc(get(NewOpcode));
128   OffsetMO.setImm(Offset);
129 }
130 
131 // MI is an RI-style pseudo instruction.  Replace it with LowOpcode
132 // if the first operand is a low GR32 and HighOpcode if the first operand
133 // is a high GR32.  ConvertHigh is true if LowOpcode takes a signed operand
134 // and HighOpcode takes an unsigned 32-bit operand.  In those cases,
135 // MI has the same kind of operand as LowOpcode, so needs to be converted
136 // if HighOpcode is used.
137 void SystemZInstrInfo::expandRIPseudo(MachineInstr &MI, unsigned LowOpcode,
138                                       unsigned HighOpcode,
139                                       bool ConvertHigh) const {
140   Register Reg = MI.getOperand(0).getReg();
141   bool IsHigh = SystemZ::isHighReg(Reg);
142   MI.setDesc(get(IsHigh ? HighOpcode : LowOpcode));
143   if (IsHigh && ConvertHigh)
144     MI.getOperand(1).setImm(uint32_t(MI.getOperand(1).getImm()));
145 }
146 
147 // MI is a three-operand RIE-style pseudo instruction.  Replace it with
148 // LowOpcodeK if the registers are both low GR32s, otherwise use a move
149 // followed by HighOpcode or LowOpcode, depending on whether the target
150 // is a high or low GR32.
151 void SystemZInstrInfo::expandRIEPseudo(MachineInstr &MI, unsigned LowOpcode,
152                                        unsigned LowOpcodeK,
153                                        unsigned HighOpcode) const {
154   Register DestReg = MI.getOperand(0).getReg();
155   Register SrcReg = MI.getOperand(1).getReg();
156   bool DestIsHigh = SystemZ::isHighReg(DestReg);
157   bool SrcIsHigh = SystemZ::isHighReg(SrcReg);
158   if (!DestIsHigh && !SrcIsHigh)
159     MI.setDesc(get(LowOpcodeK));
160   else {
161     if (DestReg != SrcReg) {
162       emitGRX32Move(*MI.getParent(), MI, MI.getDebugLoc(), DestReg, SrcReg,
163                     SystemZ::LR, 32, MI.getOperand(1).isKill(),
164                     MI.getOperand(1).isUndef());
165       MI.getOperand(1).setReg(DestReg);
166     }
167     MI.setDesc(get(DestIsHigh ? HighOpcode : LowOpcode));
168     MI.tieOperands(0, 1);
169   }
170 }
171 
172 // MI is an RXY-style pseudo instruction.  Replace it with LowOpcode
173 // if the first operand is a low GR32 and HighOpcode if the first operand
174 // is a high GR32.
175 void SystemZInstrInfo::expandRXYPseudo(MachineInstr &MI, unsigned LowOpcode,
176                                        unsigned HighOpcode) const {
177   Register Reg = MI.getOperand(0).getReg();
178   unsigned Opcode = getOpcodeForOffset(
179       SystemZ::isHighReg(Reg) ? HighOpcode : LowOpcode,
180       MI.getOperand(2).getImm());
181   MI.setDesc(get(Opcode));
182 }
183 
184 // MI is a load-on-condition pseudo instruction with a single register
185 // (source or destination) operand.  Replace it with LowOpcode if the
186 // register is a low GR32 and HighOpcode if the register is a high GR32.
187 void SystemZInstrInfo::expandLOCPseudo(MachineInstr &MI, unsigned LowOpcode,
188                                        unsigned HighOpcode) const {
189   Register Reg = MI.getOperand(0).getReg();
190   unsigned Opcode = SystemZ::isHighReg(Reg) ? HighOpcode : LowOpcode;
191   MI.setDesc(get(Opcode));
192 }
193 
194 // MI is an RR-style pseudo instruction that zero-extends the low Size bits
195 // of one GRX32 into another.  Replace it with LowOpcode if both operands
196 // are low registers, otherwise use RISB[LH]G.
197 void SystemZInstrInfo::expandZExtPseudo(MachineInstr &MI, unsigned LowOpcode,
198                                         unsigned Size) const {
199   MachineInstrBuilder MIB =
200     emitGRX32Move(*MI.getParent(), MI, MI.getDebugLoc(),
201                MI.getOperand(0).getReg(), MI.getOperand(1).getReg(), LowOpcode,
202                Size, MI.getOperand(1).isKill(), MI.getOperand(1).isUndef());
203 
204   // Keep the remaining operands as-is.
205   for (unsigned I = 2; I < MI.getNumOperands(); ++I)
206     MIB.add(MI.getOperand(I));
207 
208   MI.eraseFromParent();
209 }
210 
211 void SystemZInstrInfo::expandLoadStackGuard(MachineInstr *MI) const {
212   MachineBasicBlock *MBB = MI->getParent();
213   MachineFunction &MF = *MBB->getParent();
214   const Register Reg64 = MI->getOperand(0).getReg();
215   const Register Reg32 = RI.getSubReg(Reg64, SystemZ::subreg_l32);
216 
217   // EAR can only load the low subregister so us a shift for %a0 to produce
218   // the GR containing %a0 and %a1.
219 
220   // ear <reg>, %a0
221   BuildMI(*MBB, MI, MI->getDebugLoc(), get(SystemZ::EAR), Reg32)
222     .addReg(SystemZ::A0)
223     .addReg(Reg64, RegState::ImplicitDefine);
224 
225   // sllg <reg>, <reg>, 32
226   BuildMI(*MBB, MI, MI->getDebugLoc(), get(SystemZ::SLLG), Reg64)
227     .addReg(Reg64)
228     .addReg(0)
229     .addImm(32);
230 
231   // ear <reg>, %a1
232   BuildMI(*MBB, MI, MI->getDebugLoc(), get(SystemZ::EAR), Reg32)
233     .addReg(SystemZ::A1);
234 
235   // lg <reg>, 40(<reg>)
236   MI->setDesc(get(SystemZ::LG));
237   MachineInstrBuilder(MF, MI).addReg(Reg64).addImm(40).addReg(0);
238 }
239 
240 // Emit a zero-extending move from 32-bit GPR SrcReg to 32-bit GPR
241 // DestReg before MBBI in MBB.  Use LowLowOpcode when both DestReg and SrcReg
242 // are low registers, otherwise use RISB[LH]G.  Size is the number of bits
243 // taken from the low end of SrcReg (8 for LLCR, 16 for LLHR and 32 for LR).
244 // KillSrc is true if this move is the last use of SrcReg.
245 MachineInstrBuilder
246 SystemZInstrInfo::emitGRX32Move(MachineBasicBlock &MBB,
247                                 MachineBasicBlock::iterator MBBI,
248                                 const DebugLoc &DL, unsigned DestReg,
249                                 unsigned SrcReg, unsigned LowLowOpcode,
250                                 unsigned Size, bool KillSrc,
251                                 bool UndefSrc) const {
252   unsigned Opcode;
253   bool DestIsHigh = SystemZ::isHighReg(DestReg);
254   bool SrcIsHigh = SystemZ::isHighReg(SrcReg);
255   if (DestIsHigh && SrcIsHigh)
256     Opcode = SystemZ::RISBHH;
257   else if (DestIsHigh && !SrcIsHigh)
258     Opcode = SystemZ::RISBHL;
259   else if (!DestIsHigh && SrcIsHigh)
260     Opcode = SystemZ::RISBLH;
261   else {
262     return BuildMI(MBB, MBBI, DL, get(LowLowOpcode), DestReg)
263       .addReg(SrcReg, getKillRegState(KillSrc) | getUndefRegState(UndefSrc));
264   }
265   unsigned Rotate = (DestIsHigh != SrcIsHigh ? 32 : 0);
266   return BuildMI(MBB, MBBI, DL, get(Opcode), DestReg)
267     .addReg(DestReg, RegState::Undef)
268     .addReg(SrcReg, getKillRegState(KillSrc) | getUndefRegState(UndefSrc))
269     .addImm(32 - Size).addImm(128 + 31).addImm(Rotate);
270 }
271 
272 MachineInstr *SystemZInstrInfo::commuteInstructionImpl(MachineInstr &MI,
273                                                        bool NewMI,
274                                                        unsigned OpIdx1,
275                                                        unsigned OpIdx2) const {
276   auto cloneIfNew = [NewMI](MachineInstr &MI) -> MachineInstr & {
277     if (NewMI)
278       return *MI.getParent()->getParent()->CloneMachineInstr(&MI);
279     return MI;
280   };
281 
282   switch (MI.getOpcode()) {
283   case SystemZ::SELRMux:
284   case SystemZ::SELFHR:
285   case SystemZ::SELR:
286   case SystemZ::SELGR:
287   case SystemZ::LOCRMux:
288   case SystemZ::LOCFHR:
289   case SystemZ::LOCR:
290   case SystemZ::LOCGR: {
291     auto &WorkingMI = cloneIfNew(MI);
292     // Invert condition.
293     unsigned CCValid = WorkingMI.getOperand(3).getImm();
294     unsigned CCMask = WorkingMI.getOperand(4).getImm();
295     WorkingMI.getOperand(4).setImm(CCMask ^ CCValid);
296     return TargetInstrInfo::commuteInstructionImpl(WorkingMI, /*NewMI=*/false,
297                                                    OpIdx1, OpIdx2);
298   }
299   default:
300     return TargetInstrInfo::commuteInstructionImpl(MI, NewMI, OpIdx1, OpIdx2);
301   }
302 }
303 
304 // If MI is a simple load or store for a frame object, return the register
305 // it loads or stores and set FrameIndex to the index of the frame object.
306 // Return 0 otherwise.
307 //
308 // Flag is SimpleBDXLoad for loads and SimpleBDXStore for stores.
309 static int isSimpleMove(const MachineInstr &MI, int &FrameIndex,
310                         unsigned Flag) {
311   const MCInstrDesc &MCID = MI.getDesc();
312   if ((MCID.TSFlags & Flag) && MI.getOperand(1).isFI() &&
313       MI.getOperand(2).getImm() == 0 && MI.getOperand(3).getReg() == 0) {
314     FrameIndex = MI.getOperand(1).getIndex();
315     return MI.getOperand(0).getReg();
316   }
317   return 0;
318 }
319 
320 unsigned SystemZInstrInfo::isLoadFromStackSlot(const MachineInstr &MI,
321                                                int &FrameIndex) const {
322   return isSimpleMove(MI, FrameIndex, SystemZII::SimpleBDXLoad);
323 }
324 
325 unsigned SystemZInstrInfo::isStoreToStackSlot(const MachineInstr &MI,
326                                               int &FrameIndex) const {
327   return isSimpleMove(MI, FrameIndex, SystemZII::SimpleBDXStore);
328 }
329 
330 bool SystemZInstrInfo::isStackSlotCopy(const MachineInstr &MI,
331                                        int &DestFrameIndex,
332                                        int &SrcFrameIndex) const {
333   // Check for MVC 0(Length,FI1),0(FI2)
334   const MachineFrameInfo &MFI = MI.getParent()->getParent()->getFrameInfo();
335   if (MI.getOpcode() != SystemZ::MVC || !MI.getOperand(0).isFI() ||
336       MI.getOperand(1).getImm() != 0 || !MI.getOperand(3).isFI() ||
337       MI.getOperand(4).getImm() != 0)
338     return false;
339 
340   // Check that Length covers the full slots.
341   int64_t Length = MI.getOperand(2).getImm();
342   unsigned FI1 = MI.getOperand(0).getIndex();
343   unsigned FI2 = MI.getOperand(3).getIndex();
344   if (MFI.getObjectSize(FI1) != Length ||
345       MFI.getObjectSize(FI2) != Length)
346     return false;
347 
348   DestFrameIndex = FI1;
349   SrcFrameIndex = FI2;
350   return true;
351 }
352 
353 bool SystemZInstrInfo::analyzeBranch(MachineBasicBlock &MBB,
354                                      MachineBasicBlock *&TBB,
355                                      MachineBasicBlock *&FBB,
356                                      SmallVectorImpl<MachineOperand> &Cond,
357                                      bool AllowModify) const {
358   // Most of the code and comments here are boilerplate.
359 
360   // Start from the bottom of the block and work up, examining the
361   // terminator instructions.
362   MachineBasicBlock::iterator I = MBB.end();
363   while (I != MBB.begin()) {
364     --I;
365     if (I->isDebugInstr())
366       continue;
367 
368     // Working from the bottom, when we see a non-terminator instruction, we're
369     // done.
370     if (!isUnpredicatedTerminator(*I))
371       break;
372 
373     // A terminator that isn't a branch can't easily be handled by this
374     // analysis.
375     if (!I->isBranch())
376       return true;
377 
378     // Can't handle indirect branches.
379     SystemZII::Branch Branch(getBranchInfo(*I));
380     if (!Branch.hasMBBTarget())
381       return true;
382 
383     // Punt on compound branches.
384     if (Branch.Type != SystemZII::BranchNormal)
385       return true;
386 
387     if (Branch.CCMask == SystemZ::CCMASK_ANY) {
388       // Handle unconditional branches.
389       if (!AllowModify) {
390         TBB = Branch.getMBBTarget();
391         continue;
392       }
393 
394       // If the block has any instructions after a JMP, delete them.
395       while (std::next(I) != MBB.end())
396         std::next(I)->eraseFromParent();
397 
398       Cond.clear();
399       FBB = nullptr;
400 
401       // Delete the JMP if it's equivalent to a fall-through.
402       if (MBB.isLayoutSuccessor(Branch.getMBBTarget())) {
403         TBB = nullptr;
404         I->eraseFromParent();
405         I = MBB.end();
406         continue;
407       }
408 
409       // TBB is used to indicate the unconditinal destination.
410       TBB = Branch.getMBBTarget();
411       continue;
412     }
413 
414     // Working from the bottom, handle the first conditional branch.
415     if (Cond.empty()) {
416       // FIXME: add X86-style branch swap
417       FBB = TBB;
418       TBB = Branch.getMBBTarget();
419       Cond.push_back(MachineOperand::CreateImm(Branch.CCValid));
420       Cond.push_back(MachineOperand::CreateImm(Branch.CCMask));
421       continue;
422     }
423 
424     // Handle subsequent conditional branches.
425     assert(Cond.size() == 2 && TBB && "Should have seen a conditional branch");
426 
427     // Only handle the case where all conditional branches branch to the same
428     // destination.
429     if (TBB != Branch.getMBBTarget())
430       return true;
431 
432     // If the conditions are the same, we can leave them alone.
433     unsigned OldCCValid = Cond[0].getImm();
434     unsigned OldCCMask = Cond[1].getImm();
435     if (OldCCValid == Branch.CCValid && OldCCMask == Branch.CCMask)
436       continue;
437 
438     // FIXME: Try combining conditions like X86 does.  Should be easy on Z!
439     return false;
440   }
441 
442   return false;
443 }
444 
445 unsigned SystemZInstrInfo::removeBranch(MachineBasicBlock &MBB,
446                                         int *BytesRemoved) const {
447   assert(!BytesRemoved && "code size not handled");
448 
449   // Most of the code and comments here are boilerplate.
450   MachineBasicBlock::iterator I = MBB.end();
451   unsigned Count = 0;
452 
453   while (I != MBB.begin()) {
454     --I;
455     if (I->isDebugInstr())
456       continue;
457     if (!I->isBranch())
458       break;
459     if (!getBranchInfo(*I).hasMBBTarget())
460       break;
461     // Remove the branch.
462     I->eraseFromParent();
463     I = MBB.end();
464     ++Count;
465   }
466 
467   return Count;
468 }
469 
470 bool SystemZInstrInfo::
471 reverseBranchCondition(SmallVectorImpl<MachineOperand> &Cond) const {
472   assert(Cond.size() == 2 && "Invalid condition");
473   Cond[1].setImm(Cond[1].getImm() ^ Cond[0].getImm());
474   return false;
475 }
476 
477 unsigned SystemZInstrInfo::insertBranch(MachineBasicBlock &MBB,
478                                         MachineBasicBlock *TBB,
479                                         MachineBasicBlock *FBB,
480                                         ArrayRef<MachineOperand> Cond,
481                                         const DebugLoc &DL,
482                                         int *BytesAdded) const {
483   // In this function we output 32-bit branches, which should always
484   // have enough range.  They can be shortened and relaxed by later code
485   // in the pipeline, if desired.
486 
487   // Shouldn't be a fall through.
488   assert(TBB && "insertBranch must not be told to insert a fallthrough");
489   assert((Cond.size() == 2 || Cond.size() == 0) &&
490          "SystemZ branch conditions have one component!");
491   assert(!BytesAdded && "code size not handled");
492 
493   if (Cond.empty()) {
494     // Unconditional branch?
495     assert(!FBB && "Unconditional branch with multiple successors!");
496     BuildMI(&MBB, DL, get(SystemZ::J)).addMBB(TBB);
497     return 1;
498   }
499 
500   // Conditional branch.
501   unsigned Count = 0;
502   unsigned CCValid = Cond[0].getImm();
503   unsigned CCMask = Cond[1].getImm();
504   BuildMI(&MBB, DL, get(SystemZ::BRC))
505     .addImm(CCValid).addImm(CCMask).addMBB(TBB);
506   ++Count;
507 
508   if (FBB) {
509     // Two-way Conditional branch. Insert the second branch.
510     BuildMI(&MBB, DL, get(SystemZ::J)).addMBB(FBB);
511     ++Count;
512   }
513   return Count;
514 }
515 
516 bool SystemZInstrInfo::analyzeCompare(const MachineInstr &MI, unsigned &SrcReg,
517                                       unsigned &SrcReg2, int &Mask,
518                                       int &Value) const {
519   assert(MI.isCompare() && "Caller should have checked for a comparison");
520 
521   if (MI.getNumExplicitOperands() == 2 && MI.getOperand(0).isReg() &&
522       MI.getOperand(1).isImm()) {
523     SrcReg = MI.getOperand(0).getReg();
524     SrcReg2 = 0;
525     Value = MI.getOperand(1).getImm();
526     Mask = ~0;
527     return true;
528   }
529 
530   return false;
531 }
532 
533 bool SystemZInstrInfo::canInsertSelect(const MachineBasicBlock &MBB,
534                                        ArrayRef<MachineOperand> Pred,
535                                        unsigned TrueReg, unsigned FalseReg,
536                                        int &CondCycles, int &TrueCycles,
537                                        int &FalseCycles) const {
538   // Not all subtargets have LOCR instructions.
539   if (!STI.hasLoadStoreOnCond())
540     return false;
541   if (Pred.size() != 2)
542     return false;
543 
544   // Check register classes.
545   const MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo();
546   const TargetRegisterClass *RC =
547     RI.getCommonSubClass(MRI.getRegClass(TrueReg), MRI.getRegClass(FalseReg));
548   if (!RC)
549     return false;
550 
551   // We have LOCR instructions for 32 and 64 bit general purpose registers.
552   if ((STI.hasLoadStoreOnCond2() &&
553        SystemZ::GRX32BitRegClass.hasSubClassEq(RC)) ||
554       SystemZ::GR32BitRegClass.hasSubClassEq(RC) ||
555       SystemZ::GR64BitRegClass.hasSubClassEq(RC)) {
556     CondCycles = 2;
557     TrueCycles = 2;
558     FalseCycles = 2;
559     return true;
560   }
561 
562   // Can't do anything else.
563   return false;
564 }
565 
566 void SystemZInstrInfo::insertSelect(MachineBasicBlock &MBB,
567                                     MachineBasicBlock::iterator I,
568                                     const DebugLoc &DL, unsigned DstReg,
569                                     ArrayRef<MachineOperand> Pred,
570                                     unsigned TrueReg,
571                                     unsigned FalseReg) const {
572   MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo();
573   const TargetRegisterClass *RC = MRI.getRegClass(DstReg);
574 
575   assert(Pred.size() == 2 && "Invalid condition");
576   unsigned CCValid = Pred[0].getImm();
577   unsigned CCMask = Pred[1].getImm();
578 
579   unsigned Opc;
580   if (SystemZ::GRX32BitRegClass.hasSubClassEq(RC)) {
581     if (STI.hasMiscellaneousExtensions3())
582       Opc = SystemZ::SELRMux;
583     else if (STI.hasLoadStoreOnCond2())
584       Opc = SystemZ::LOCRMux;
585     else {
586       Opc = SystemZ::LOCR;
587       MRI.constrainRegClass(DstReg, &SystemZ::GR32BitRegClass);
588       Register TReg = MRI.createVirtualRegister(&SystemZ::GR32BitRegClass);
589       Register FReg = MRI.createVirtualRegister(&SystemZ::GR32BitRegClass);
590       BuildMI(MBB, I, DL, get(TargetOpcode::COPY), TReg).addReg(TrueReg);
591       BuildMI(MBB, I, DL, get(TargetOpcode::COPY), FReg).addReg(FalseReg);
592       TrueReg = TReg;
593       FalseReg = FReg;
594     }
595   } else if (SystemZ::GR64BitRegClass.hasSubClassEq(RC)) {
596     if (STI.hasMiscellaneousExtensions3())
597       Opc = SystemZ::SELGR;
598     else
599       Opc = SystemZ::LOCGR;
600   } else
601     llvm_unreachable("Invalid register class");
602 
603   BuildMI(MBB, I, DL, get(Opc), DstReg)
604     .addReg(FalseReg).addReg(TrueReg)
605     .addImm(CCValid).addImm(CCMask);
606 }
607 
608 bool SystemZInstrInfo::FoldImmediate(MachineInstr &UseMI, MachineInstr &DefMI,
609                                      unsigned Reg,
610                                      MachineRegisterInfo *MRI) const {
611   unsigned DefOpc = DefMI.getOpcode();
612   if (DefOpc != SystemZ::LHIMux && DefOpc != SystemZ::LHI &&
613       DefOpc != SystemZ::LGHI)
614     return false;
615   if (DefMI.getOperand(0).getReg() != Reg)
616     return false;
617   int32_t ImmVal = (int32_t)DefMI.getOperand(1).getImm();
618 
619   unsigned UseOpc = UseMI.getOpcode();
620   unsigned NewUseOpc;
621   unsigned UseIdx;
622   int CommuteIdx = -1;
623   bool TieOps = false;
624   switch (UseOpc) {
625   case SystemZ::SELRMux:
626     TieOps = true;
627     LLVM_FALLTHROUGH;
628   case SystemZ::LOCRMux:
629     if (!STI.hasLoadStoreOnCond2())
630       return false;
631     NewUseOpc = SystemZ::LOCHIMux;
632     if (UseMI.getOperand(2).getReg() == Reg)
633       UseIdx = 2;
634     else if (UseMI.getOperand(1).getReg() == Reg)
635       UseIdx = 2, CommuteIdx = 1;
636     else
637       return false;
638     break;
639   case SystemZ::SELGR:
640     TieOps = true;
641     LLVM_FALLTHROUGH;
642   case SystemZ::LOCGR:
643     if (!STI.hasLoadStoreOnCond2())
644       return false;
645     NewUseOpc = SystemZ::LOCGHI;
646     if (UseMI.getOperand(2).getReg() == Reg)
647       UseIdx = 2;
648     else if (UseMI.getOperand(1).getReg() == Reg)
649       UseIdx = 2, CommuteIdx = 1;
650     else
651       return false;
652     break;
653   default:
654     return false;
655   }
656 
657   if (CommuteIdx != -1)
658     if (!commuteInstruction(UseMI, false, CommuteIdx, UseIdx))
659       return false;
660 
661   bool DeleteDef = MRI->hasOneNonDBGUse(Reg);
662   UseMI.setDesc(get(NewUseOpc));
663   if (TieOps)
664     UseMI.tieOperands(0, 1);
665   UseMI.getOperand(UseIdx).ChangeToImmediate(ImmVal);
666   if (DeleteDef)
667     DefMI.eraseFromParent();
668 
669   return true;
670 }
671 
672 bool SystemZInstrInfo::isPredicable(const MachineInstr &MI) const {
673   unsigned Opcode = MI.getOpcode();
674   if (Opcode == SystemZ::Return ||
675       Opcode == SystemZ::Trap ||
676       Opcode == SystemZ::CallJG ||
677       Opcode == SystemZ::CallBR)
678     return true;
679   return false;
680 }
681 
682 bool SystemZInstrInfo::
683 isProfitableToIfCvt(MachineBasicBlock &MBB,
684                     unsigned NumCycles, unsigned ExtraPredCycles,
685                     BranchProbability Probability) const {
686   // Avoid using conditional returns at the end of a loop (since then
687   // we'd need to emit an unconditional branch to the beginning anyway,
688   // making the loop body longer).  This doesn't apply for low-probability
689   // loops (eg. compare-and-swap retry), so just decide based on branch
690   // probability instead of looping structure.
691   // However, since Compare and Trap instructions cost the same as a regular
692   // Compare instruction, we should allow the if conversion to convert this
693   // into a Conditional Compare regardless of the branch probability.
694   if (MBB.getLastNonDebugInstr()->getOpcode() != SystemZ::Trap &&
695       MBB.succ_empty() && Probability < BranchProbability(1, 8))
696     return false;
697   // For now only convert single instructions.
698   return NumCycles == 1;
699 }
700 
701 bool SystemZInstrInfo::
702 isProfitableToIfCvt(MachineBasicBlock &TMBB,
703                     unsigned NumCyclesT, unsigned ExtraPredCyclesT,
704                     MachineBasicBlock &FMBB,
705                     unsigned NumCyclesF, unsigned ExtraPredCyclesF,
706                     BranchProbability Probability) const {
707   // For now avoid converting mutually-exclusive cases.
708   return false;
709 }
710 
711 bool SystemZInstrInfo::
712 isProfitableToDupForIfCvt(MachineBasicBlock &MBB, unsigned NumCycles,
713                           BranchProbability Probability) const {
714   // For now only duplicate single instructions.
715   return NumCycles == 1;
716 }
717 
718 bool SystemZInstrInfo::PredicateInstruction(
719     MachineInstr &MI, ArrayRef<MachineOperand> Pred) const {
720   assert(Pred.size() == 2 && "Invalid condition");
721   unsigned CCValid = Pred[0].getImm();
722   unsigned CCMask = Pred[1].getImm();
723   assert(CCMask > 0 && CCMask < 15 && "Invalid predicate");
724   unsigned Opcode = MI.getOpcode();
725   if (Opcode == SystemZ::Trap) {
726     MI.setDesc(get(SystemZ::CondTrap));
727     MachineInstrBuilder(*MI.getParent()->getParent(), MI)
728       .addImm(CCValid).addImm(CCMask)
729       .addReg(SystemZ::CC, RegState::Implicit);
730     return true;
731   }
732   if (Opcode == SystemZ::Return) {
733     MI.setDesc(get(SystemZ::CondReturn));
734     MachineInstrBuilder(*MI.getParent()->getParent(), MI)
735       .addImm(CCValid).addImm(CCMask)
736       .addReg(SystemZ::CC, RegState::Implicit);
737     return true;
738   }
739   if (Opcode == SystemZ::CallJG) {
740     MachineOperand FirstOp = MI.getOperand(0);
741     const uint32_t *RegMask = MI.getOperand(1).getRegMask();
742     MI.RemoveOperand(1);
743     MI.RemoveOperand(0);
744     MI.setDesc(get(SystemZ::CallBRCL));
745     MachineInstrBuilder(*MI.getParent()->getParent(), MI)
746         .addImm(CCValid)
747         .addImm(CCMask)
748         .add(FirstOp)
749         .addRegMask(RegMask)
750         .addReg(SystemZ::CC, RegState::Implicit);
751     return true;
752   }
753   if (Opcode == SystemZ::CallBR) {
754     const uint32_t *RegMask = MI.getOperand(0).getRegMask();
755     MI.RemoveOperand(0);
756     MI.setDesc(get(SystemZ::CallBCR));
757     MachineInstrBuilder(*MI.getParent()->getParent(), MI)
758       .addImm(CCValid).addImm(CCMask)
759       .addRegMask(RegMask)
760       .addReg(SystemZ::CC, RegState::Implicit);
761     return true;
762   }
763   return false;
764 }
765 
766 void SystemZInstrInfo::copyPhysReg(MachineBasicBlock &MBB,
767                                    MachineBasicBlock::iterator MBBI,
768                                    const DebugLoc &DL, MCRegister DestReg,
769                                    MCRegister SrcReg, bool KillSrc) const {
770   // Split 128-bit GPR moves into two 64-bit moves. Add implicit uses of the
771   // super register in case one of the subregs is undefined.
772   // This handles ADDR128 too.
773   if (SystemZ::GR128BitRegClass.contains(DestReg, SrcReg)) {
774     copyPhysReg(MBB, MBBI, DL, RI.getSubReg(DestReg, SystemZ::subreg_h64),
775                 RI.getSubReg(SrcReg, SystemZ::subreg_h64), KillSrc);
776     MachineInstrBuilder(*MBB.getParent(), std::prev(MBBI))
777       .addReg(SrcReg, RegState::Implicit);
778     copyPhysReg(MBB, MBBI, DL, RI.getSubReg(DestReg, SystemZ::subreg_l64),
779                 RI.getSubReg(SrcReg, SystemZ::subreg_l64), KillSrc);
780     MachineInstrBuilder(*MBB.getParent(), std::prev(MBBI))
781       .addReg(SrcReg, (getKillRegState(KillSrc) | RegState::Implicit));
782     return;
783   }
784 
785   if (SystemZ::GRX32BitRegClass.contains(DestReg, SrcReg)) {
786     emitGRX32Move(MBB, MBBI, DL, DestReg, SrcReg, SystemZ::LR, 32, KillSrc,
787                   false);
788     return;
789   }
790 
791   // Move 128-bit floating-point values between VR128 and FP128.
792   if (SystemZ::VR128BitRegClass.contains(DestReg) &&
793       SystemZ::FP128BitRegClass.contains(SrcReg)) {
794     MCRegister SrcRegHi =
795         RI.getMatchingSuperReg(RI.getSubReg(SrcReg, SystemZ::subreg_h64),
796                                SystemZ::subreg_h64, &SystemZ::VR128BitRegClass);
797     MCRegister SrcRegLo =
798         RI.getMatchingSuperReg(RI.getSubReg(SrcReg, SystemZ::subreg_l64),
799                                SystemZ::subreg_h64, &SystemZ::VR128BitRegClass);
800 
801     BuildMI(MBB, MBBI, DL, get(SystemZ::VMRHG), DestReg)
802       .addReg(SrcRegHi, getKillRegState(KillSrc))
803       .addReg(SrcRegLo, getKillRegState(KillSrc));
804     return;
805   }
806   if (SystemZ::FP128BitRegClass.contains(DestReg) &&
807       SystemZ::VR128BitRegClass.contains(SrcReg)) {
808     MCRegister DestRegHi =
809         RI.getMatchingSuperReg(RI.getSubReg(DestReg, SystemZ::subreg_h64),
810                                SystemZ::subreg_h64, &SystemZ::VR128BitRegClass);
811     MCRegister DestRegLo =
812         RI.getMatchingSuperReg(RI.getSubReg(DestReg, SystemZ::subreg_l64),
813                                SystemZ::subreg_h64, &SystemZ::VR128BitRegClass);
814 
815     if (DestRegHi != SrcReg)
816       copyPhysReg(MBB, MBBI, DL, DestRegHi, SrcReg, false);
817     BuildMI(MBB, MBBI, DL, get(SystemZ::VREPG), DestRegLo)
818       .addReg(SrcReg, getKillRegState(KillSrc)).addImm(1);
819     return;
820   }
821 
822   // Move CC value from/to a GR32.
823   if (SrcReg == SystemZ::CC) {
824     auto MIB = BuildMI(MBB, MBBI, DL, get(SystemZ::IPM), DestReg);
825     if (KillSrc) {
826       const MachineFunction *MF = MBB.getParent();
827       const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo();
828       MIB->addRegisterKilled(SrcReg, TRI);
829     }
830     return;
831   }
832   if (DestReg == SystemZ::CC) {
833     BuildMI(MBB, MBBI, DL, get(SystemZ::TMLH))
834       .addReg(SrcReg, getKillRegState(KillSrc))
835       .addImm(3 << (SystemZ::IPM_CC - 16));
836     return;
837   }
838 
839   // Everything else needs only one instruction.
840   unsigned Opcode;
841   if (SystemZ::GR64BitRegClass.contains(DestReg, SrcReg))
842     Opcode = SystemZ::LGR;
843   else if (SystemZ::FP32BitRegClass.contains(DestReg, SrcReg))
844     // For z13 we prefer LDR over LER to avoid partial register dependencies.
845     Opcode = STI.hasVector() ? SystemZ::LDR32 : SystemZ::LER;
846   else if (SystemZ::FP64BitRegClass.contains(DestReg, SrcReg))
847     Opcode = SystemZ::LDR;
848   else if (SystemZ::FP128BitRegClass.contains(DestReg, SrcReg))
849     Opcode = SystemZ::LXR;
850   else if (SystemZ::VR32BitRegClass.contains(DestReg, SrcReg))
851     Opcode = SystemZ::VLR32;
852   else if (SystemZ::VR64BitRegClass.contains(DestReg, SrcReg))
853     Opcode = SystemZ::VLR64;
854   else if (SystemZ::VR128BitRegClass.contains(DestReg, SrcReg))
855     Opcode = SystemZ::VLR;
856   else if (SystemZ::AR32BitRegClass.contains(DestReg, SrcReg))
857     Opcode = SystemZ::CPYA;
858   else if (SystemZ::AR32BitRegClass.contains(DestReg) &&
859            SystemZ::GR32BitRegClass.contains(SrcReg))
860     Opcode = SystemZ::SAR;
861   else if (SystemZ::GR32BitRegClass.contains(DestReg) &&
862            SystemZ::AR32BitRegClass.contains(SrcReg))
863     Opcode = SystemZ::EAR;
864   else
865     llvm_unreachable("Impossible reg-to-reg copy");
866 
867   BuildMI(MBB, MBBI, DL, get(Opcode), DestReg)
868     .addReg(SrcReg, getKillRegState(KillSrc));
869 }
870 
871 void SystemZInstrInfo::storeRegToStackSlot(
872     MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI, unsigned SrcReg,
873     bool isKill, int FrameIdx, const TargetRegisterClass *RC,
874     const TargetRegisterInfo *TRI) const {
875   DebugLoc DL = MBBI != MBB.end() ? MBBI->getDebugLoc() : DebugLoc();
876 
877   // Callers may expect a single instruction, so keep 128-bit moves
878   // together for now and lower them after register allocation.
879   unsigned LoadOpcode, StoreOpcode;
880   getLoadStoreOpcodes(RC, LoadOpcode, StoreOpcode);
881   addFrameReference(BuildMI(MBB, MBBI, DL, get(StoreOpcode))
882                         .addReg(SrcReg, getKillRegState(isKill)),
883                     FrameIdx);
884 }
885 
886 void SystemZInstrInfo::loadRegFromStackSlot(
887     MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI, unsigned DestReg,
888     int FrameIdx, const TargetRegisterClass *RC,
889     const TargetRegisterInfo *TRI) const {
890   DebugLoc DL = MBBI != MBB.end() ? MBBI->getDebugLoc() : DebugLoc();
891 
892   // Callers may expect a single instruction, so keep 128-bit moves
893   // together for now and lower them after register allocation.
894   unsigned LoadOpcode, StoreOpcode;
895   getLoadStoreOpcodes(RC, LoadOpcode, StoreOpcode);
896   addFrameReference(BuildMI(MBB, MBBI, DL, get(LoadOpcode), DestReg),
897                     FrameIdx);
898 }
899 
900 // Return true if MI is a simple load or store with a 12-bit displacement
901 // and no index.  Flag is SimpleBDXLoad for loads and SimpleBDXStore for stores.
902 static bool isSimpleBD12Move(const MachineInstr *MI, unsigned Flag) {
903   const MCInstrDesc &MCID = MI->getDesc();
904   return ((MCID.TSFlags & Flag) &&
905           isUInt<12>(MI->getOperand(2).getImm()) &&
906           MI->getOperand(3).getReg() == 0);
907 }
908 
909 namespace {
910 
911 struct LogicOp {
912   LogicOp() = default;
913   LogicOp(unsigned regSize, unsigned immLSB, unsigned immSize)
914     : RegSize(regSize), ImmLSB(immLSB), ImmSize(immSize) {}
915 
916   explicit operator bool() const { return RegSize; }
917 
918   unsigned RegSize = 0;
919   unsigned ImmLSB = 0;
920   unsigned ImmSize = 0;
921 };
922 
923 } // end anonymous namespace
924 
925 static LogicOp interpretAndImmediate(unsigned Opcode) {
926   switch (Opcode) {
927   case SystemZ::NILMux: return LogicOp(32,  0, 16);
928   case SystemZ::NIHMux: return LogicOp(32, 16, 16);
929   case SystemZ::NILL64: return LogicOp(64,  0, 16);
930   case SystemZ::NILH64: return LogicOp(64, 16, 16);
931   case SystemZ::NIHL64: return LogicOp(64, 32, 16);
932   case SystemZ::NIHH64: return LogicOp(64, 48, 16);
933   case SystemZ::NIFMux: return LogicOp(32,  0, 32);
934   case SystemZ::NILF64: return LogicOp(64,  0, 32);
935   case SystemZ::NIHF64: return LogicOp(64, 32, 32);
936   default:              return LogicOp();
937   }
938 }
939 
940 static void transferDeadCC(MachineInstr *OldMI, MachineInstr *NewMI) {
941   if (OldMI->registerDefIsDead(SystemZ::CC)) {
942     MachineOperand *CCDef = NewMI->findRegisterDefOperand(SystemZ::CC);
943     if (CCDef != nullptr)
944       CCDef->setIsDead(true);
945   }
946 }
947 
948 static void transferMIFlag(MachineInstr *OldMI, MachineInstr *NewMI,
949                            MachineInstr::MIFlag Flag) {
950   if (OldMI->getFlag(Flag))
951     NewMI->setFlag(Flag);
952 }
953 
954 MachineInstr *SystemZInstrInfo::convertToThreeAddress(
955     MachineFunction::iterator &MFI, MachineInstr &MI, LiveVariables *LV) const {
956   MachineBasicBlock *MBB = MI.getParent();
957 
958   // Try to convert an AND into an RISBG-type instruction.
959   // TODO: It might be beneficial to select RISBG and shorten to AND instead.
960   if (LogicOp And = interpretAndImmediate(MI.getOpcode())) {
961     uint64_t Imm = MI.getOperand(2).getImm() << And.ImmLSB;
962     // AND IMMEDIATE leaves the other bits of the register unchanged.
963     Imm |= allOnes(And.RegSize) & ~(allOnes(And.ImmSize) << And.ImmLSB);
964     unsigned Start, End;
965     if (isRxSBGMask(Imm, And.RegSize, Start, End)) {
966       unsigned NewOpcode;
967       if (And.RegSize == 64) {
968         NewOpcode = SystemZ::RISBG;
969         // Prefer RISBGN if available, since it does not clobber CC.
970         if (STI.hasMiscellaneousExtensions())
971           NewOpcode = SystemZ::RISBGN;
972       } else {
973         NewOpcode = SystemZ::RISBMux;
974         Start &= 31;
975         End &= 31;
976       }
977       MachineOperand &Dest = MI.getOperand(0);
978       MachineOperand &Src = MI.getOperand(1);
979       MachineInstrBuilder MIB =
980           BuildMI(*MBB, MI, MI.getDebugLoc(), get(NewOpcode))
981               .add(Dest)
982               .addReg(0)
983               .addReg(Src.getReg(), getKillRegState(Src.isKill()),
984                       Src.getSubReg())
985               .addImm(Start)
986               .addImm(End + 128)
987               .addImm(0);
988       if (LV) {
989         unsigned NumOps = MI.getNumOperands();
990         for (unsigned I = 1; I < NumOps; ++I) {
991           MachineOperand &Op = MI.getOperand(I);
992           if (Op.isReg() && Op.isKill())
993             LV->replaceKillInstruction(Op.getReg(), MI, *MIB);
994         }
995       }
996       transferDeadCC(&MI, MIB);
997       return MIB;
998     }
999   }
1000   return nullptr;
1001 }
1002 
1003 MachineInstr *SystemZInstrInfo::foldMemoryOperandImpl(
1004     MachineFunction &MF, MachineInstr &MI, ArrayRef<unsigned> Ops,
1005     MachineBasicBlock::iterator InsertPt, int FrameIndex,
1006     LiveIntervals *LIS, VirtRegMap *VRM) const {
1007   const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
1008   const MachineFrameInfo &MFI = MF.getFrameInfo();
1009   unsigned Size = MFI.getObjectSize(FrameIndex);
1010   unsigned Opcode = MI.getOpcode();
1011 
1012   if (Ops.size() == 2 && Ops[0] == 0 && Ops[1] == 1) {
1013     if (LIS != nullptr && (Opcode == SystemZ::LA || Opcode == SystemZ::LAY) &&
1014         isInt<8>(MI.getOperand(2).getImm()) && !MI.getOperand(3).getReg()) {
1015 
1016       // Check CC liveness, since new instruction introduces a dead
1017       // def of CC.
1018       MCRegUnitIterator CCUnit(SystemZ::CC, TRI);
1019       LiveRange &CCLiveRange = LIS->getRegUnit(*CCUnit);
1020       ++CCUnit;
1021       assert(!CCUnit.isValid() && "CC only has one reg unit.");
1022       SlotIndex MISlot =
1023           LIS->getSlotIndexes()->getInstructionIndex(MI).getRegSlot();
1024       if (!CCLiveRange.liveAt(MISlot)) {
1025         // LA(Y) %reg, CONST(%reg) -> AGSI %mem, CONST
1026         MachineInstr *BuiltMI = BuildMI(*InsertPt->getParent(), InsertPt,
1027                                         MI.getDebugLoc(), get(SystemZ::AGSI))
1028                                     .addFrameIndex(FrameIndex)
1029                                     .addImm(0)
1030                                     .addImm(MI.getOperand(2).getImm());
1031         BuiltMI->findRegisterDefOperand(SystemZ::CC)->setIsDead(true);
1032         CCLiveRange.createDeadDef(MISlot, LIS->getVNInfoAllocator());
1033         return BuiltMI;
1034       }
1035     }
1036     return nullptr;
1037   }
1038 
1039   // All other cases require a single operand.
1040   if (Ops.size() != 1)
1041     return nullptr;
1042 
1043   unsigned OpNum = Ops[0];
1044   assert(Size * 8 ==
1045            TRI->getRegSizeInBits(*MF.getRegInfo()
1046                                .getRegClass(MI.getOperand(OpNum).getReg())) &&
1047          "Invalid size combination");
1048 
1049   if ((Opcode == SystemZ::AHI || Opcode == SystemZ::AGHI) && OpNum == 0 &&
1050       isInt<8>(MI.getOperand(2).getImm())) {
1051     // A(G)HI %reg, CONST -> A(G)SI %mem, CONST
1052     Opcode = (Opcode == SystemZ::AHI ? SystemZ::ASI : SystemZ::AGSI);
1053     MachineInstr *BuiltMI =
1054         BuildMI(*InsertPt->getParent(), InsertPt, MI.getDebugLoc(), get(Opcode))
1055             .addFrameIndex(FrameIndex)
1056             .addImm(0)
1057             .addImm(MI.getOperand(2).getImm());
1058     transferDeadCC(&MI, BuiltMI);
1059     transferMIFlag(&MI, BuiltMI, MachineInstr::NoSWrap);
1060     return BuiltMI;
1061   }
1062 
1063   if ((Opcode == SystemZ::ALFI && OpNum == 0 &&
1064        isInt<8>((int32_t)MI.getOperand(2).getImm())) ||
1065       (Opcode == SystemZ::ALGFI && OpNum == 0 &&
1066        isInt<8>((int64_t)MI.getOperand(2).getImm()))) {
1067     // AL(G)FI %reg, CONST -> AL(G)SI %mem, CONST
1068     Opcode = (Opcode == SystemZ::ALFI ? SystemZ::ALSI : SystemZ::ALGSI);
1069     MachineInstr *BuiltMI =
1070         BuildMI(*InsertPt->getParent(), InsertPt, MI.getDebugLoc(), get(Opcode))
1071             .addFrameIndex(FrameIndex)
1072             .addImm(0)
1073             .addImm((int8_t)MI.getOperand(2).getImm());
1074     transferDeadCC(&MI, BuiltMI);
1075     return BuiltMI;
1076   }
1077 
1078   if ((Opcode == SystemZ::SLFI && OpNum == 0 &&
1079        isInt<8>((int32_t)-MI.getOperand(2).getImm())) ||
1080       (Opcode == SystemZ::SLGFI && OpNum == 0 &&
1081        isInt<8>((int64_t)-MI.getOperand(2).getImm()))) {
1082     // SL(G)FI %reg, CONST -> AL(G)SI %mem, -CONST
1083     Opcode = (Opcode == SystemZ::SLFI ? SystemZ::ALSI : SystemZ::ALGSI);
1084     MachineInstr *BuiltMI =
1085         BuildMI(*InsertPt->getParent(), InsertPt, MI.getDebugLoc(), get(Opcode))
1086             .addFrameIndex(FrameIndex)
1087             .addImm(0)
1088             .addImm((int8_t)-MI.getOperand(2).getImm());
1089     transferDeadCC(&MI, BuiltMI);
1090     return BuiltMI;
1091   }
1092 
1093   if (Opcode == SystemZ::LGDR || Opcode == SystemZ::LDGR) {
1094     bool Op0IsGPR = (Opcode == SystemZ::LGDR);
1095     bool Op1IsGPR = (Opcode == SystemZ::LDGR);
1096     // If we're spilling the destination of an LDGR or LGDR, store the
1097     // source register instead.
1098     if (OpNum == 0) {
1099       unsigned StoreOpcode = Op1IsGPR ? SystemZ::STG : SystemZ::STD;
1100       return BuildMI(*InsertPt->getParent(), InsertPt, MI.getDebugLoc(),
1101                      get(StoreOpcode))
1102           .add(MI.getOperand(1))
1103           .addFrameIndex(FrameIndex)
1104           .addImm(0)
1105           .addReg(0);
1106     }
1107     // If we're spilling the source of an LDGR or LGDR, load the
1108     // destination register instead.
1109     if (OpNum == 1) {
1110       unsigned LoadOpcode = Op0IsGPR ? SystemZ::LG : SystemZ::LD;
1111       return BuildMI(*InsertPt->getParent(), InsertPt, MI.getDebugLoc(),
1112                      get(LoadOpcode))
1113         .add(MI.getOperand(0))
1114         .addFrameIndex(FrameIndex)
1115         .addImm(0)
1116         .addReg(0);
1117     }
1118   }
1119 
1120   // Look for cases where the source of a simple store or the destination
1121   // of a simple load is being spilled.  Try to use MVC instead.
1122   //
1123   // Although MVC is in practice a fast choice in these cases, it is still
1124   // logically a bytewise copy.  This means that we cannot use it if the
1125   // load or store is volatile.  We also wouldn't be able to use MVC if
1126   // the two memories partially overlap, but that case cannot occur here,
1127   // because we know that one of the memories is a full frame index.
1128   //
1129   // For performance reasons, we also want to avoid using MVC if the addresses
1130   // might be equal.  We don't worry about that case here, because spill slot
1131   // coloring happens later, and because we have special code to remove
1132   // MVCs that turn out to be redundant.
1133   if (OpNum == 0 && MI.hasOneMemOperand()) {
1134     MachineMemOperand *MMO = *MI.memoperands_begin();
1135     if (MMO->getSize() == Size && !MMO->isVolatile() && !MMO->isAtomic()) {
1136       // Handle conversion of loads.
1137       if (isSimpleBD12Move(&MI, SystemZII::SimpleBDXLoad)) {
1138         return BuildMI(*InsertPt->getParent(), InsertPt, MI.getDebugLoc(),
1139                        get(SystemZ::MVC))
1140             .addFrameIndex(FrameIndex)
1141             .addImm(0)
1142             .addImm(Size)
1143             .add(MI.getOperand(1))
1144             .addImm(MI.getOperand(2).getImm())
1145             .addMemOperand(MMO);
1146       }
1147       // Handle conversion of stores.
1148       if (isSimpleBD12Move(&MI, SystemZII::SimpleBDXStore)) {
1149         return BuildMI(*InsertPt->getParent(), InsertPt, MI.getDebugLoc(),
1150                        get(SystemZ::MVC))
1151             .add(MI.getOperand(1))
1152             .addImm(MI.getOperand(2).getImm())
1153             .addImm(Size)
1154             .addFrameIndex(FrameIndex)
1155             .addImm(0)
1156             .addMemOperand(MMO);
1157       }
1158     }
1159   }
1160 
1161   // If the spilled operand is the final one or the instruction is
1162   // commutable, try to change <INSN>R into <INSN>.
1163   unsigned NumOps = MI.getNumExplicitOperands();
1164   int MemOpcode = SystemZ::getMemOpcode(Opcode);
1165 
1166   // See if this is a 3-address instruction that is convertible to 2-address
1167   // and suitable for folding below.  Only try this with virtual registers
1168   // and a provided VRM (during regalloc).
1169   bool NeedsCommute = false;
1170   if (SystemZ::getTwoOperandOpcode(Opcode) != -1 && MemOpcode != -1) {
1171     if (VRM == nullptr)
1172       MemOpcode = -1;
1173     else {
1174       assert(NumOps == 3 && "Expected two source registers.");
1175       Register DstReg = MI.getOperand(0).getReg();
1176       Register DstPhys =
1177           (Register::isVirtualRegister(DstReg) ? VRM->getPhys(DstReg) : DstReg);
1178       Register SrcReg = (OpNum == 2 ? MI.getOperand(1).getReg()
1179                                     : ((OpNum == 1 && MI.isCommutable())
1180                                            ? MI.getOperand(2).getReg()
1181                                          : Register()));
1182       if (DstPhys && !SystemZ::GRH32BitRegClass.contains(DstPhys) && SrcReg &&
1183           Register::isVirtualRegister(SrcReg) &&
1184           DstPhys == VRM->getPhys(SrcReg))
1185         NeedsCommute = (OpNum == 1);
1186       else
1187         MemOpcode = -1;
1188     }
1189   }
1190 
1191   if (MemOpcode >= 0) {
1192     if ((OpNum == NumOps - 1) || NeedsCommute) {
1193       const MCInstrDesc &MemDesc = get(MemOpcode);
1194       uint64_t AccessBytes = SystemZII::getAccessSize(MemDesc.TSFlags);
1195       assert(AccessBytes != 0 && "Size of access should be known");
1196       assert(AccessBytes <= Size && "Access outside the frame index");
1197       uint64_t Offset = Size - AccessBytes;
1198       MachineInstrBuilder MIB = BuildMI(*InsertPt->getParent(), InsertPt,
1199                                         MI.getDebugLoc(), get(MemOpcode));
1200       MIB.add(MI.getOperand(0));
1201       if (NeedsCommute)
1202         MIB.add(MI.getOperand(2));
1203       else
1204         for (unsigned I = 1; I < OpNum; ++I)
1205           MIB.add(MI.getOperand(I));
1206       MIB.addFrameIndex(FrameIndex).addImm(Offset);
1207       if (MemDesc.TSFlags & SystemZII::HasIndex)
1208         MIB.addReg(0);
1209       transferDeadCC(&MI, MIB);
1210       transferMIFlag(&MI, MIB, MachineInstr::NoSWrap);
1211       return MIB;
1212     }
1213   }
1214 
1215   return nullptr;
1216 }
1217 
1218 MachineInstr *SystemZInstrInfo::foldMemoryOperandImpl(
1219     MachineFunction &MF, MachineInstr &MI, ArrayRef<unsigned> Ops,
1220     MachineBasicBlock::iterator InsertPt, MachineInstr &LoadMI,
1221     LiveIntervals *LIS) const {
1222   return nullptr;
1223 }
1224 
1225 bool SystemZInstrInfo::expandPostRAPseudo(MachineInstr &MI) const {
1226   switch (MI.getOpcode()) {
1227   case SystemZ::L128:
1228     splitMove(MI, SystemZ::LG);
1229     return true;
1230 
1231   case SystemZ::ST128:
1232     splitMove(MI, SystemZ::STG);
1233     return true;
1234 
1235   case SystemZ::LX:
1236     splitMove(MI, SystemZ::LD);
1237     return true;
1238 
1239   case SystemZ::STX:
1240     splitMove(MI, SystemZ::STD);
1241     return true;
1242 
1243   case SystemZ::LBMux:
1244     expandRXYPseudo(MI, SystemZ::LB, SystemZ::LBH);
1245     return true;
1246 
1247   case SystemZ::LHMux:
1248     expandRXYPseudo(MI, SystemZ::LH, SystemZ::LHH);
1249     return true;
1250 
1251   case SystemZ::LLCRMux:
1252     expandZExtPseudo(MI, SystemZ::LLCR, 8);
1253     return true;
1254 
1255   case SystemZ::LLHRMux:
1256     expandZExtPseudo(MI, SystemZ::LLHR, 16);
1257     return true;
1258 
1259   case SystemZ::LLCMux:
1260     expandRXYPseudo(MI, SystemZ::LLC, SystemZ::LLCH);
1261     return true;
1262 
1263   case SystemZ::LLHMux:
1264     expandRXYPseudo(MI, SystemZ::LLH, SystemZ::LLHH);
1265     return true;
1266 
1267   case SystemZ::LMux:
1268     expandRXYPseudo(MI, SystemZ::L, SystemZ::LFH);
1269     return true;
1270 
1271   case SystemZ::LOCMux:
1272     expandLOCPseudo(MI, SystemZ::LOC, SystemZ::LOCFH);
1273     return true;
1274 
1275   case SystemZ::LOCHIMux:
1276     expandLOCPseudo(MI, SystemZ::LOCHI, SystemZ::LOCHHI);
1277     return true;
1278 
1279   case SystemZ::STCMux:
1280     expandRXYPseudo(MI, SystemZ::STC, SystemZ::STCH);
1281     return true;
1282 
1283   case SystemZ::STHMux:
1284     expandRXYPseudo(MI, SystemZ::STH, SystemZ::STHH);
1285     return true;
1286 
1287   case SystemZ::STMux:
1288     expandRXYPseudo(MI, SystemZ::ST, SystemZ::STFH);
1289     return true;
1290 
1291   case SystemZ::STOCMux:
1292     expandLOCPseudo(MI, SystemZ::STOC, SystemZ::STOCFH);
1293     return true;
1294 
1295   case SystemZ::LHIMux:
1296     expandRIPseudo(MI, SystemZ::LHI, SystemZ::IIHF, true);
1297     return true;
1298 
1299   case SystemZ::IIFMux:
1300     expandRIPseudo(MI, SystemZ::IILF, SystemZ::IIHF, false);
1301     return true;
1302 
1303   case SystemZ::IILMux:
1304     expandRIPseudo(MI, SystemZ::IILL, SystemZ::IIHL, false);
1305     return true;
1306 
1307   case SystemZ::IIHMux:
1308     expandRIPseudo(MI, SystemZ::IILH, SystemZ::IIHH, false);
1309     return true;
1310 
1311   case SystemZ::NIFMux:
1312     expandRIPseudo(MI, SystemZ::NILF, SystemZ::NIHF, false);
1313     return true;
1314 
1315   case SystemZ::NILMux:
1316     expandRIPseudo(MI, SystemZ::NILL, SystemZ::NIHL, false);
1317     return true;
1318 
1319   case SystemZ::NIHMux:
1320     expandRIPseudo(MI, SystemZ::NILH, SystemZ::NIHH, false);
1321     return true;
1322 
1323   case SystemZ::OIFMux:
1324     expandRIPseudo(MI, SystemZ::OILF, SystemZ::OIHF, false);
1325     return true;
1326 
1327   case SystemZ::OILMux:
1328     expandRIPseudo(MI, SystemZ::OILL, SystemZ::OIHL, false);
1329     return true;
1330 
1331   case SystemZ::OIHMux:
1332     expandRIPseudo(MI, SystemZ::OILH, SystemZ::OIHH, false);
1333     return true;
1334 
1335   case SystemZ::XIFMux:
1336     expandRIPseudo(MI, SystemZ::XILF, SystemZ::XIHF, false);
1337     return true;
1338 
1339   case SystemZ::TMLMux:
1340     expandRIPseudo(MI, SystemZ::TMLL, SystemZ::TMHL, false);
1341     return true;
1342 
1343   case SystemZ::TMHMux:
1344     expandRIPseudo(MI, SystemZ::TMLH, SystemZ::TMHH, false);
1345     return true;
1346 
1347   case SystemZ::AHIMux:
1348     expandRIPseudo(MI, SystemZ::AHI, SystemZ::AIH, false);
1349     return true;
1350 
1351   case SystemZ::AHIMuxK:
1352     expandRIEPseudo(MI, SystemZ::AHI, SystemZ::AHIK, SystemZ::AIH);
1353     return true;
1354 
1355   case SystemZ::AFIMux:
1356     expandRIPseudo(MI, SystemZ::AFI, SystemZ::AIH, false);
1357     return true;
1358 
1359   case SystemZ::CHIMux:
1360     expandRIPseudo(MI, SystemZ::CHI, SystemZ::CIH, false);
1361     return true;
1362 
1363   case SystemZ::CFIMux:
1364     expandRIPseudo(MI, SystemZ::CFI, SystemZ::CIH, false);
1365     return true;
1366 
1367   case SystemZ::CLFIMux:
1368     expandRIPseudo(MI, SystemZ::CLFI, SystemZ::CLIH, false);
1369     return true;
1370 
1371   case SystemZ::CMux:
1372     expandRXYPseudo(MI, SystemZ::C, SystemZ::CHF);
1373     return true;
1374 
1375   case SystemZ::CLMux:
1376     expandRXYPseudo(MI, SystemZ::CL, SystemZ::CLHF);
1377     return true;
1378 
1379   case SystemZ::RISBMux: {
1380     bool DestIsHigh = SystemZ::isHighReg(MI.getOperand(0).getReg());
1381     bool SrcIsHigh = SystemZ::isHighReg(MI.getOperand(2).getReg());
1382     if (SrcIsHigh == DestIsHigh)
1383       MI.setDesc(get(DestIsHigh ? SystemZ::RISBHH : SystemZ::RISBLL));
1384     else {
1385       MI.setDesc(get(DestIsHigh ? SystemZ::RISBHL : SystemZ::RISBLH));
1386       MI.getOperand(5).setImm(MI.getOperand(5).getImm() ^ 32);
1387     }
1388     return true;
1389   }
1390 
1391   case SystemZ::ADJDYNALLOC:
1392     splitAdjDynAlloc(MI);
1393     return true;
1394 
1395   case TargetOpcode::LOAD_STACK_GUARD:
1396     expandLoadStackGuard(&MI);
1397     return true;
1398 
1399   default:
1400     return false;
1401   }
1402 }
1403 
1404 unsigned SystemZInstrInfo::getInstSizeInBytes(const MachineInstr &MI) const {
1405   if (MI.isInlineAsm()) {
1406     const MachineFunction *MF = MI.getParent()->getParent();
1407     const char *AsmStr = MI.getOperand(0).getSymbolName();
1408     return getInlineAsmLength(AsmStr, *MF->getTarget().getMCAsmInfo());
1409   }
1410   return MI.getDesc().getSize();
1411 }
1412 
1413 SystemZII::Branch
1414 SystemZInstrInfo::getBranchInfo(const MachineInstr &MI) const {
1415   switch (MI.getOpcode()) {
1416   case SystemZ::BR:
1417   case SystemZ::BI:
1418   case SystemZ::J:
1419   case SystemZ::JG:
1420     return SystemZII::Branch(SystemZII::BranchNormal, SystemZ::CCMASK_ANY,
1421                              SystemZ::CCMASK_ANY, &MI.getOperand(0));
1422 
1423   case SystemZ::BRC:
1424   case SystemZ::BRCL:
1425     return SystemZII::Branch(SystemZII::BranchNormal, MI.getOperand(0).getImm(),
1426                              MI.getOperand(1).getImm(), &MI.getOperand(2));
1427 
1428   case SystemZ::BRCT:
1429   case SystemZ::BRCTH:
1430     return SystemZII::Branch(SystemZII::BranchCT, SystemZ::CCMASK_ICMP,
1431                              SystemZ::CCMASK_CMP_NE, &MI.getOperand(2));
1432 
1433   case SystemZ::BRCTG:
1434     return SystemZII::Branch(SystemZII::BranchCTG, SystemZ::CCMASK_ICMP,
1435                              SystemZ::CCMASK_CMP_NE, &MI.getOperand(2));
1436 
1437   case SystemZ::CIJ:
1438   case SystemZ::CRJ:
1439     return SystemZII::Branch(SystemZII::BranchC, SystemZ::CCMASK_ICMP,
1440                              MI.getOperand(2).getImm(), &MI.getOperand(3));
1441 
1442   case SystemZ::CLIJ:
1443   case SystemZ::CLRJ:
1444     return SystemZII::Branch(SystemZII::BranchCL, SystemZ::CCMASK_ICMP,
1445                              MI.getOperand(2).getImm(), &MI.getOperand(3));
1446 
1447   case SystemZ::CGIJ:
1448   case SystemZ::CGRJ:
1449     return SystemZII::Branch(SystemZII::BranchCG, SystemZ::CCMASK_ICMP,
1450                              MI.getOperand(2).getImm(), &MI.getOperand(3));
1451 
1452   case SystemZ::CLGIJ:
1453   case SystemZ::CLGRJ:
1454     return SystemZII::Branch(SystemZII::BranchCLG, SystemZ::CCMASK_ICMP,
1455                              MI.getOperand(2).getImm(), &MI.getOperand(3));
1456 
1457   case SystemZ::INLINEASM_BR:
1458     // Don't try to analyze asm goto, so pass nullptr as branch target argument.
1459     return SystemZII::Branch(SystemZII::AsmGoto, 0, 0, nullptr);
1460 
1461   default:
1462     llvm_unreachable("Unrecognized branch opcode");
1463   }
1464 }
1465 
1466 void SystemZInstrInfo::getLoadStoreOpcodes(const TargetRegisterClass *RC,
1467                                            unsigned &LoadOpcode,
1468                                            unsigned &StoreOpcode) const {
1469   if (RC == &SystemZ::GR32BitRegClass || RC == &SystemZ::ADDR32BitRegClass) {
1470     LoadOpcode = SystemZ::L;
1471     StoreOpcode = SystemZ::ST;
1472   } else if (RC == &SystemZ::GRH32BitRegClass) {
1473     LoadOpcode = SystemZ::LFH;
1474     StoreOpcode = SystemZ::STFH;
1475   } else if (RC == &SystemZ::GRX32BitRegClass) {
1476     LoadOpcode = SystemZ::LMux;
1477     StoreOpcode = SystemZ::STMux;
1478   } else if (RC == &SystemZ::GR64BitRegClass ||
1479              RC == &SystemZ::ADDR64BitRegClass) {
1480     LoadOpcode = SystemZ::LG;
1481     StoreOpcode = SystemZ::STG;
1482   } else if (RC == &SystemZ::GR128BitRegClass ||
1483              RC == &SystemZ::ADDR128BitRegClass) {
1484     LoadOpcode = SystemZ::L128;
1485     StoreOpcode = SystemZ::ST128;
1486   } else if (RC == &SystemZ::FP32BitRegClass) {
1487     LoadOpcode = SystemZ::LE;
1488     StoreOpcode = SystemZ::STE;
1489   } else if (RC == &SystemZ::FP64BitRegClass) {
1490     LoadOpcode = SystemZ::LD;
1491     StoreOpcode = SystemZ::STD;
1492   } else if (RC == &SystemZ::FP128BitRegClass) {
1493     LoadOpcode = SystemZ::LX;
1494     StoreOpcode = SystemZ::STX;
1495   } else if (RC == &SystemZ::VR32BitRegClass) {
1496     LoadOpcode = SystemZ::VL32;
1497     StoreOpcode = SystemZ::VST32;
1498   } else if (RC == &SystemZ::VR64BitRegClass) {
1499     LoadOpcode = SystemZ::VL64;
1500     StoreOpcode = SystemZ::VST64;
1501   } else if (RC == &SystemZ::VF128BitRegClass ||
1502              RC == &SystemZ::VR128BitRegClass) {
1503     LoadOpcode = SystemZ::VL;
1504     StoreOpcode = SystemZ::VST;
1505   } else
1506     llvm_unreachable("Unsupported regclass to load or store");
1507 }
1508 
1509 unsigned SystemZInstrInfo::getOpcodeForOffset(unsigned Opcode,
1510                                               int64_t Offset) const {
1511   const MCInstrDesc &MCID = get(Opcode);
1512   int64_t Offset2 = (MCID.TSFlags & SystemZII::Is128Bit ? Offset + 8 : Offset);
1513   if (isUInt<12>(Offset) && isUInt<12>(Offset2)) {
1514     // Get the instruction to use for unsigned 12-bit displacements.
1515     int Disp12Opcode = SystemZ::getDisp12Opcode(Opcode);
1516     if (Disp12Opcode >= 0)
1517       return Disp12Opcode;
1518 
1519     // All address-related instructions can use unsigned 12-bit
1520     // displacements.
1521     return Opcode;
1522   }
1523   if (isInt<20>(Offset) && isInt<20>(Offset2)) {
1524     // Get the instruction to use for signed 20-bit displacements.
1525     int Disp20Opcode = SystemZ::getDisp20Opcode(Opcode);
1526     if (Disp20Opcode >= 0)
1527       return Disp20Opcode;
1528 
1529     // Check whether Opcode allows signed 20-bit displacements.
1530     if (MCID.TSFlags & SystemZII::Has20BitOffset)
1531       return Opcode;
1532   }
1533   return 0;
1534 }
1535 
1536 unsigned SystemZInstrInfo::getLoadAndTest(unsigned Opcode) const {
1537   switch (Opcode) {
1538   case SystemZ::L:      return SystemZ::LT;
1539   case SystemZ::LY:     return SystemZ::LT;
1540   case SystemZ::LG:     return SystemZ::LTG;
1541   case SystemZ::LGF:    return SystemZ::LTGF;
1542   case SystemZ::LR:     return SystemZ::LTR;
1543   case SystemZ::LGFR:   return SystemZ::LTGFR;
1544   case SystemZ::LGR:    return SystemZ::LTGR;
1545   case SystemZ::LER:    return SystemZ::LTEBR;
1546   case SystemZ::LDR:    return SystemZ::LTDBR;
1547   case SystemZ::LXR:    return SystemZ::LTXBR;
1548   case SystemZ::LCDFR:  return SystemZ::LCDBR;
1549   case SystemZ::LPDFR:  return SystemZ::LPDBR;
1550   case SystemZ::LNDFR:  return SystemZ::LNDBR;
1551   case SystemZ::LCDFR_32:  return SystemZ::LCEBR;
1552   case SystemZ::LPDFR_32:  return SystemZ::LPEBR;
1553   case SystemZ::LNDFR_32:  return SystemZ::LNEBR;
1554   // On zEC12 we prefer to use RISBGN.  But if there is a chance to
1555   // actually use the condition code, we may turn it back into RISGB.
1556   // Note that RISBG is not really a "load-and-test" instruction,
1557   // but sets the same condition code values, so is OK to use here.
1558   case SystemZ::RISBGN: return SystemZ::RISBG;
1559   default:              return 0;
1560   }
1561 }
1562 
1563 // Return true if Mask matches the regexp 0*1+0*, given that zero masks
1564 // have already been filtered out.  Store the first set bit in LSB and
1565 // the number of set bits in Length if so.
1566 static bool isStringOfOnes(uint64_t Mask, unsigned &LSB, unsigned &Length) {
1567   unsigned First = findFirstSet(Mask);
1568   uint64_t Top = (Mask >> First) + 1;
1569   if ((Top & -Top) == Top) {
1570     LSB = First;
1571     Length = findFirstSet(Top);
1572     return true;
1573   }
1574   return false;
1575 }
1576 
1577 bool SystemZInstrInfo::isRxSBGMask(uint64_t Mask, unsigned BitSize,
1578                                    unsigned &Start, unsigned &End) const {
1579   // Reject trivial all-zero masks.
1580   Mask &= allOnes(BitSize);
1581   if (Mask == 0)
1582     return false;
1583 
1584   // Handle the 1+0+ or 0+1+0* cases.  Start then specifies the index of
1585   // the msb and End specifies the index of the lsb.
1586   unsigned LSB, Length;
1587   if (isStringOfOnes(Mask, LSB, Length)) {
1588     Start = 63 - (LSB + Length - 1);
1589     End = 63 - LSB;
1590     return true;
1591   }
1592 
1593   // Handle the wrap-around 1+0+1+ cases.  Start then specifies the msb
1594   // of the low 1s and End specifies the lsb of the high 1s.
1595   if (isStringOfOnes(Mask ^ allOnes(BitSize), LSB, Length)) {
1596     assert(LSB > 0 && "Bottom bit must be set");
1597     assert(LSB + Length < BitSize && "Top bit must be set");
1598     Start = 63 - (LSB - 1);
1599     End = 63 - (LSB + Length);
1600     return true;
1601   }
1602 
1603   return false;
1604 }
1605 
1606 unsigned SystemZInstrInfo::getFusedCompare(unsigned Opcode,
1607                                            SystemZII::FusedCompareType Type,
1608                                            const MachineInstr *MI) const {
1609   switch (Opcode) {
1610   case SystemZ::CHI:
1611   case SystemZ::CGHI:
1612     if (!(MI && isInt<8>(MI->getOperand(1).getImm())))
1613       return 0;
1614     break;
1615   case SystemZ::CLFI:
1616   case SystemZ::CLGFI:
1617     if (!(MI && isUInt<8>(MI->getOperand(1).getImm())))
1618       return 0;
1619     break;
1620   case SystemZ::CL:
1621   case SystemZ::CLG:
1622     if (!STI.hasMiscellaneousExtensions())
1623       return 0;
1624     if (!(MI && MI->getOperand(3).getReg() == 0))
1625       return 0;
1626     break;
1627   }
1628   switch (Type) {
1629   case SystemZII::CompareAndBranch:
1630     switch (Opcode) {
1631     case SystemZ::CR:
1632       return SystemZ::CRJ;
1633     case SystemZ::CGR:
1634       return SystemZ::CGRJ;
1635     case SystemZ::CHI:
1636       return SystemZ::CIJ;
1637     case SystemZ::CGHI:
1638       return SystemZ::CGIJ;
1639     case SystemZ::CLR:
1640       return SystemZ::CLRJ;
1641     case SystemZ::CLGR:
1642       return SystemZ::CLGRJ;
1643     case SystemZ::CLFI:
1644       return SystemZ::CLIJ;
1645     case SystemZ::CLGFI:
1646       return SystemZ::CLGIJ;
1647     default:
1648       return 0;
1649     }
1650   case SystemZII::CompareAndReturn:
1651     switch (Opcode) {
1652     case SystemZ::CR:
1653       return SystemZ::CRBReturn;
1654     case SystemZ::CGR:
1655       return SystemZ::CGRBReturn;
1656     case SystemZ::CHI:
1657       return SystemZ::CIBReturn;
1658     case SystemZ::CGHI:
1659       return SystemZ::CGIBReturn;
1660     case SystemZ::CLR:
1661       return SystemZ::CLRBReturn;
1662     case SystemZ::CLGR:
1663       return SystemZ::CLGRBReturn;
1664     case SystemZ::CLFI:
1665       return SystemZ::CLIBReturn;
1666     case SystemZ::CLGFI:
1667       return SystemZ::CLGIBReturn;
1668     default:
1669       return 0;
1670     }
1671   case SystemZII::CompareAndSibcall:
1672     switch (Opcode) {
1673     case SystemZ::CR:
1674       return SystemZ::CRBCall;
1675     case SystemZ::CGR:
1676       return SystemZ::CGRBCall;
1677     case SystemZ::CHI:
1678       return SystemZ::CIBCall;
1679     case SystemZ::CGHI:
1680       return SystemZ::CGIBCall;
1681     case SystemZ::CLR:
1682       return SystemZ::CLRBCall;
1683     case SystemZ::CLGR:
1684       return SystemZ::CLGRBCall;
1685     case SystemZ::CLFI:
1686       return SystemZ::CLIBCall;
1687     case SystemZ::CLGFI:
1688       return SystemZ::CLGIBCall;
1689     default:
1690       return 0;
1691     }
1692   case SystemZII::CompareAndTrap:
1693     switch (Opcode) {
1694     case SystemZ::CR:
1695       return SystemZ::CRT;
1696     case SystemZ::CGR:
1697       return SystemZ::CGRT;
1698     case SystemZ::CHI:
1699       return SystemZ::CIT;
1700     case SystemZ::CGHI:
1701       return SystemZ::CGIT;
1702     case SystemZ::CLR:
1703       return SystemZ::CLRT;
1704     case SystemZ::CLGR:
1705       return SystemZ::CLGRT;
1706     case SystemZ::CLFI:
1707       return SystemZ::CLFIT;
1708     case SystemZ::CLGFI:
1709       return SystemZ::CLGIT;
1710     case SystemZ::CL:
1711       return SystemZ::CLT;
1712     case SystemZ::CLG:
1713       return SystemZ::CLGT;
1714     default:
1715       return 0;
1716     }
1717   }
1718   return 0;
1719 }
1720 
1721 unsigned SystemZInstrInfo::getLoadAndTrap(unsigned Opcode) const {
1722   if (!STI.hasLoadAndTrap())
1723     return 0;
1724   switch (Opcode) {
1725   case SystemZ::L:
1726   case SystemZ::LY:
1727     return SystemZ::LAT;
1728   case SystemZ::LG:
1729     return SystemZ::LGAT;
1730   case SystemZ::LFH:
1731     return SystemZ::LFHAT;
1732   case SystemZ::LLGF:
1733     return SystemZ::LLGFAT;
1734   case SystemZ::LLGT:
1735     return SystemZ::LLGTAT;
1736   }
1737   return 0;
1738 }
1739 
1740 void SystemZInstrInfo::loadImmediate(MachineBasicBlock &MBB,
1741                                      MachineBasicBlock::iterator MBBI,
1742                                      unsigned Reg, uint64_t Value) const {
1743   DebugLoc DL = MBBI != MBB.end() ? MBBI->getDebugLoc() : DebugLoc();
1744   unsigned Opcode;
1745   if (isInt<16>(Value))
1746     Opcode = SystemZ::LGHI;
1747   else if (SystemZ::isImmLL(Value))
1748     Opcode = SystemZ::LLILL;
1749   else if (SystemZ::isImmLH(Value)) {
1750     Opcode = SystemZ::LLILH;
1751     Value >>= 16;
1752   } else {
1753     assert(isInt<32>(Value) && "Huge values not handled yet");
1754     Opcode = SystemZ::LGFI;
1755   }
1756   BuildMI(MBB, MBBI, DL, get(Opcode), Reg).addImm(Value);
1757 }
1758 
1759 bool SystemZInstrInfo::verifyInstruction(const MachineInstr &MI,
1760                                          StringRef &ErrInfo) const {
1761   const MCInstrDesc &MCID = MI.getDesc();
1762   for (unsigned I = 0, E = MI.getNumOperands(); I != E; ++I) {
1763     if (I >= MCID.getNumOperands())
1764       break;
1765     const MachineOperand &Op = MI.getOperand(I);
1766     const MCOperandInfo &MCOI = MCID.OpInfo[I];
1767     // Addressing modes have register and immediate operands. Op should be a
1768     // register (or frame index) operand if MCOI.RegClass contains a valid
1769     // register class, or an immediate otherwise.
1770     if (MCOI.OperandType == MCOI::OPERAND_MEMORY &&
1771         ((MCOI.RegClass != -1 && !Op.isReg() && !Op.isFI()) ||
1772          (MCOI.RegClass == -1 && !Op.isImm()))) {
1773       ErrInfo = "Addressing mode operands corrupt!";
1774       return false;
1775     }
1776   }
1777 
1778   return true;
1779 }
1780 
1781 bool SystemZInstrInfo::
1782 areMemAccessesTriviallyDisjoint(const MachineInstr &MIa,
1783                                 const MachineInstr &MIb) const {
1784 
1785   if (!MIa.hasOneMemOperand() || !MIb.hasOneMemOperand())
1786     return false;
1787 
1788   // If mem-operands show that the same address Value is used by both
1789   // instructions, check for non-overlapping offsets and widths. Not
1790   // sure if a register based analysis would be an improvement...
1791 
1792   MachineMemOperand *MMOa = *MIa.memoperands_begin();
1793   MachineMemOperand *MMOb = *MIb.memoperands_begin();
1794   const Value *VALa = MMOa->getValue();
1795   const Value *VALb = MMOb->getValue();
1796   bool SameVal = (VALa && VALb && (VALa == VALb));
1797   if (!SameVal) {
1798     const PseudoSourceValue *PSVa = MMOa->getPseudoValue();
1799     const PseudoSourceValue *PSVb = MMOb->getPseudoValue();
1800     if (PSVa && PSVb && (PSVa == PSVb))
1801       SameVal = true;
1802   }
1803   if (SameVal) {
1804     int OffsetA = MMOa->getOffset(), OffsetB = MMOb->getOffset();
1805     int WidthA = MMOa->getSize(), WidthB = MMOb->getSize();
1806     int LowOffset = OffsetA < OffsetB ? OffsetA : OffsetB;
1807     int HighOffset = OffsetA < OffsetB ? OffsetB : OffsetA;
1808     int LowWidth = (LowOffset == OffsetA) ? WidthA : WidthB;
1809     if (LowOffset + LowWidth <= HighOffset)
1810       return true;
1811   }
1812 
1813   return false;
1814 }
1815