1 //===-- SystemZInstrInfo.cpp - SystemZ instruction information ------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file contains the SystemZ implementation of the TargetInstrInfo class.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "SystemZInstrInfo.h"
14 #include "MCTargetDesc/SystemZMCTargetDesc.h"
15 #include "SystemZ.h"
16 #include "SystemZInstrBuilder.h"
17 #include "SystemZSubtarget.h"
18 #include "llvm/ADT/Statistic.h"
19 #include "llvm/CodeGen/LiveInterval.h"
20 #include "llvm/CodeGen/LiveIntervals.h"
21 #include "llvm/CodeGen/LivePhysRegs.h"
22 #include "llvm/CodeGen/LiveVariables.h"
23 #include "llvm/CodeGen/MachineBasicBlock.h"
24 #include "llvm/CodeGen/MachineFrameInfo.h"
25 #include "llvm/CodeGen/MachineFunction.h"
26 #include "llvm/CodeGen/MachineInstr.h"
27 #include "llvm/CodeGen/MachineMemOperand.h"
28 #include "llvm/CodeGen/MachineOperand.h"
29 #include "llvm/CodeGen/MachineRegisterInfo.h"
30 #include "llvm/CodeGen/SlotIndexes.h"
31 #include "llvm/CodeGen/StackMaps.h"
32 #include "llvm/CodeGen/TargetInstrInfo.h"
33 #include "llvm/CodeGen/TargetSubtargetInfo.h"
34 #include "llvm/CodeGen/VirtRegMap.h"
35 #include "llvm/MC/MCInstrDesc.h"
36 #include "llvm/MC/MCRegisterInfo.h"
37 #include "llvm/Support/BranchProbability.h"
38 #include "llvm/Support/ErrorHandling.h"
39 #include "llvm/Support/MathExtras.h"
40 #include "llvm/Target/TargetMachine.h"
41 #include <cassert>
42 #include <cstdint>
43 #include <iterator>
44 
45 using namespace llvm;
46 
47 #define GET_INSTRINFO_CTOR_DTOR
48 #define GET_INSTRMAP_INFO
49 #include "SystemZGenInstrInfo.inc"
50 
51 #define DEBUG_TYPE "systemz-II"
52 
53 // Return a mask with Count low bits set.
54 static uint64_t allOnes(unsigned int Count) {
55   return Count == 0 ? 0 : (uint64_t(1) << (Count - 1) << 1) - 1;
56 }
57 
58 // Pin the vtable to this file.
59 void SystemZInstrInfo::anchor() {}
60 
61 SystemZInstrInfo::SystemZInstrInfo(SystemZSubtarget &sti)
62     : SystemZGenInstrInfo(SystemZ::ADJCALLSTACKDOWN, SystemZ::ADJCALLSTACKUP),
63       RI(sti.getSpecialRegisters()->getReturnFunctionAddressRegister()),
64       STI(sti) {}
65 
66 // MI is a 128-bit load or store.  Split it into two 64-bit loads or stores,
67 // each having the opcode given by NewOpcode.
68 void SystemZInstrInfo::splitMove(MachineBasicBlock::iterator MI,
69                                  unsigned NewOpcode) const {
70   MachineBasicBlock *MBB = MI->getParent();
71   MachineFunction &MF = *MBB->getParent();
72 
73   // Get two load or store instructions.  Use the original instruction for one
74   // of them (arbitrarily the second here) and create a clone for the other.
75   MachineInstr *EarlierMI = MF.CloneMachineInstr(&*MI);
76   MBB->insert(MI, EarlierMI);
77 
78   // Set up the two 64-bit registers and remember super reg and its flags.
79   MachineOperand &HighRegOp = EarlierMI->getOperand(0);
80   MachineOperand &LowRegOp = MI->getOperand(0);
81   Register Reg128 = LowRegOp.getReg();
82   unsigned Reg128Killed = getKillRegState(LowRegOp.isKill());
83   unsigned Reg128Undef  = getUndefRegState(LowRegOp.isUndef());
84   HighRegOp.setReg(RI.getSubReg(HighRegOp.getReg(), SystemZ::subreg_h64));
85   LowRegOp.setReg(RI.getSubReg(LowRegOp.getReg(), SystemZ::subreg_l64));
86 
87   if (MI->mayStore()) {
88     // Add implicit uses of the super register in case one of the subregs is
89     // undefined. We could track liveness and skip storing an undefined
90     // subreg, but this is hopefully rare (discovered with llvm-stress).
91     // If Reg128 was killed, set kill flag on MI.
92     unsigned Reg128UndefImpl = (Reg128Undef | RegState::Implicit);
93     MachineInstrBuilder(MF, EarlierMI).addReg(Reg128, Reg128UndefImpl);
94     MachineInstrBuilder(MF, MI).addReg(Reg128, (Reg128UndefImpl | Reg128Killed));
95   }
96 
97   // The address in the first (high) instruction is already correct.
98   // Adjust the offset in the second (low) instruction.
99   MachineOperand &HighOffsetOp = EarlierMI->getOperand(2);
100   MachineOperand &LowOffsetOp = MI->getOperand(2);
101   LowOffsetOp.setImm(LowOffsetOp.getImm() + 8);
102 
103   // Clear the kill flags on the registers in the first instruction.
104   if (EarlierMI->getOperand(0).isReg() && EarlierMI->getOperand(0).isUse())
105     EarlierMI->getOperand(0).setIsKill(false);
106   EarlierMI->getOperand(1).setIsKill(false);
107   EarlierMI->getOperand(3).setIsKill(false);
108 
109   // Set the opcodes.
110   unsigned HighOpcode = getOpcodeForOffset(NewOpcode, HighOffsetOp.getImm());
111   unsigned LowOpcode = getOpcodeForOffset(NewOpcode, LowOffsetOp.getImm());
112   assert(HighOpcode && LowOpcode && "Both offsets should be in range");
113 
114   EarlierMI->setDesc(get(HighOpcode));
115   MI->setDesc(get(LowOpcode));
116 }
117 
118 // Split ADJDYNALLOC instruction MI.
119 void SystemZInstrInfo::splitAdjDynAlloc(MachineBasicBlock::iterator MI) const {
120   MachineBasicBlock *MBB = MI->getParent();
121   MachineFunction &MF = *MBB->getParent();
122   MachineFrameInfo &MFFrame = MF.getFrameInfo();
123   MachineOperand &OffsetMO = MI->getOperand(2);
124   SystemZCallingConventionRegisters *Regs = STI.getSpecialRegisters();
125 
126   uint64_t Offset = (MFFrame.getMaxCallFrameSize() +
127                      Regs->getCallFrameSize() +
128                      Regs->getStackPointerBias() +
129                      OffsetMO.getImm());
130   unsigned NewOpcode = getOpcodeForOffset(SystemZ::LA, Offset);
131   assert(NewOpcode && "No support for huge argument lists yet");
132   MI->setDesc(get(NewOpcode));
133   OffsetMO.setImm(Offset);
134 }
135 
136 // MI is an RI-style pseudo instruction.  Replace it with LowOpcode
137 // if the first operand is a low GR32 and HighOpcode if the first operand
138 // is a high GR32.  ConvertHigh is true if LowOpcode takes a signed operand
139 // and HighOpcode takes an unsigned 32-bit operand.  In those cases,
140 // MI has the same kind of operand as LowOpcode, so needs to be converted
141 // if HighOpcode is used.
142 void SystemZInstrInfo::expandRIPseudo(MachineInstr &MI, unsigned LowOpcode,
143                                       unsigned HighOpcode,
144                                       bool ConvertHigh) const {
145   Register Reg = MI.getOperand(0).getReg();
146   bool IsHigh = SystemZ::isHighReg(Reg);
147   MI.setDesc(get(IsHigh ? HighOpcode : LowOpcode));
148   if (IsHigh && ConvertHigh)
149     MI.getOperand(1).setImm(uint32_t(MI.getOperand(1).getImm()));
150 }
151 
152 // MI is a three-operand RIE-style pseudo instruction.  Replace it with
153 // LowOpcodeK if the registers are both low GR32s, otherwise use a move
154 // followed by HighOpcode or LowOpcode, depending on whether the target
155 // is a high or low GR32.
156 void SystemZInstrInfo::expandRIEPseudo(MachineInstr &MI, unsigned LowOpcode,
157                                        unsigned LowOpcodeK,
158                                        unsigned HighOpcode) const {
159   Register DestReg = MI.getOperand(0).getReg();
160   Register SrcReg = MI.getOperand(1).getReg();
161   bool DestIsHigh = SystemZ::isHighReg(DestReg);
162   bool SrcIsHigh = SystemZ::isHighReg(SrcReg);
163   if (!DestIsHigh && !SrcIsHigh)
164     MI.setDesc(get(LowOpcodeK));
165   else {
166     if (DestReg != SrcReg) {
167       emitGRX32Move(*MI.getParent(), MI, MI.getDebugLoc(), DestReg, SrcReg,
168                     SystemZ::LR, 32, MI.getOperand(1).isKill(),
169                     MI.getOperand(1).isUndef());
170       MI.getOperand(1).setReg(DestReg);
171     }
172     MI.setDesc(get(DestIsHigh ? HighOpcode : LowOpcode));
173     MI.tieOperands(0, 1);
174   }
175 }
176 
177 // MI is an RXY-style pseudo instruction.  Replace it with LowOpcode
178 // if the first operand is a low GR32 and HighOpcode if the first operand
179 // is a high GR32.
180 void SystemZInstrInfo::expandRXYPseudo(MachineInstr &MI, unsigned LowOpcode,
181                                        unsigned HighOpcode) const {
182   Register Reg = MI.getOperand(0).getReg();
183   unsigned Opcode = getOpcodeForOffset(
184       SystemZ::isHighReg(Reg) ? HighOpcode : LowOpcode,
185       MI.getOperand(2).getImm());
186   MI.setDesc(get(Opcode));
187 }
188 
189 // MI is a load-on-condition pseudo instruction with a single register
190 // (source or destination) operand.  Replace it with LowOpcode if the
191 // register is a low GR32 and HighOpcode if the register is a high GR32.
192 void SystemZInstrInfo::expandLOCPseudo(MachineInstr &MI, unsigned LowOpcode,
193                                        unsigned HighOpcode) const {
194   Register Reg = MI.getOperand(0).getReg();
195   unsigned Opcode = SystemZ::isHighReg(Reg) ? HighOpcode : LowOpcode;
196   MI.setDesc(get(Opcode));
197 }
198 
199 // MI is an RR-style pseudo instruction that zero-extends the low Size bits
200 // of one GRX32 into another.  Replace it with LowOpcode if both operands
201 // are low registers, otherwise use RISB[LH]G.
202 void SystemZInstrInfo::expandZExtPseudo(MachineInstr &MI, unsigned LowOpcode,
203                                         unsigned Size) const {
204   MachineInstrBuilder MIB =
205     emitGRX32Move(*MI.getParent(), MI, MI.getDebugLoc(),
206                MI.getOperand(0).getReg(), MI.getOperand(1).getReg(), LowOpcode,
207                Size, MI.getOperand(1).isKill(), MI.getOperand(1).isUndef());
208 
209   // Keep the remaining operands as-is.
210   for (const MachineOperand &MO : llvm::drop_begin(MI.operands(), 2))
211     MIB.add(MO);
212 
213   MI.eraseFromParent();
214 }
215 
216 void SystemZInstrInfo::expandLoadStackGuard(MachineInstr *MI) const {
217   MachineBasicBlock *MBB = MI->getParent();
218   MachineFunction &MF = *MBB->getParent();
219   const Register Reg64 = MI->getOperand(0).getReg();
220   const Register Reg32 = RI.getSubReg(Reg64, SystemZ::subreg_l32);
221 
222   // EAR can only load the low subregister so us a shift for %a0 to produce
223   // the GR containing %a0 and %a1.
224 
225   // ear <reg>, %a0
226   BuildMI(*MBB, MI, MI->getDebugLoc(), get(SystemZ::EAR), Reg32)
227     .addReg(SystemZ::A0)
228     .addReg(Reg64, RegState::ImplicitDefine);
229 
230   // sllg <reg>, <reg>, 32
231   BuildMI(*MBB, MI, MI->getDebugLoc(), get(SystemZ::SLLG), Reg64)
232     .addReg(Reg64)
233     .addReg(0)
234     .addImm(32);
235 
236   // ear <reg>, %a1
237   BuildMI(*MBB, MI, MI->getDebugLoc(), get(SystemZ::EAR), Reg32)
238     .addReg(SystemZ::A1);
239 
240   // lg <reg>, 40(<reg>)
241   MI->setDesc(get(SystemZ::LG));
242   MachineInstrBuilder(MF, MI).addReg(Reg64).addImm(40).addReg(0);
243 }
244 
245 // Emit a zero-extending move from 32-bit GPR SrcReg to 32-bit GPR
246 // DestReg before MBBI in MBB.  Use LowLowOpcode when both DestReg and SrcReg
247 // are low registers, otherwise use RISB[LH]G.  Size is the number of bits
248 // taken from the low end of SrcReg (8 for LLCR, 16 for LLHR and 32 for LR).
249 // KillSrc is true if this move is the last use of SrcReg.
250 MachineInstrBuilder
251 SystemZInstrInfo::emitGRX32Move(MachineBasicBlock &MBB,
252                                 MachineBasicBlock::iterator MBBI,
253                                 const DebugLoc &DL, unsigned DestReg,
254                                 unsigned SrcReg, unsigned LowLowOpcode,
255                                 unsigned Size, bool KillSrc,
256                                 bool UndefSrc) const {
257   unsigned Opcode;
258   bool DestIsHigh = SystemZ::isHighReg(DestReg);
259   bool SrcIsHigh = SystemZ::isHighReg(SrcReg);
260   if (DestIsHigh && SrcIsHigh)
261     Opcode = SystemZ::RISBHH;
262   else if (DestIsHigh && !SrcIsHigh)
263     Opcode = SystemZ::RISBHL;
264   else if (!DestIsHigh && SrcIsHigh)
265     Opcode = SystemZ::RISBLH;
266   else {
267     return BuildMI(MBB, MBBI, DL, get(LowLowOpcode), DestReg)
268       .addReg(SrcReg, getKillRegState(KillSrc) | getUndefRegState(UndefSrc));
269   }
270   unsigned Rotate = (DestIsHigh != SrcIsHigh ? 32 : 0);
271   return BuildMI(MBB, MBBI, DL, get(Opcode), DestReg)
272     .addReg(DestReg, RegState::Undef)
273     .addReg(SrcReg, getKillRegState(KillSrc) | getUndefRegState(UndefSrc))
274     .addImm(32 - Size).addImm(128 + 31).addImm(Rotate);
275 }
276 
277 MachineInstr *SystemZInstrInfo::commuteInstructionImpl(MachineInstr &MI,
278                                                        bool NewMI,
279                                                        unsigned OpIdx1,
280                                                        unsigned OpIdx2) const {
281   auto cloneIfNew = [NewMI](MachineInstr &MI) -> MachineInstr & {
282     if (NewMI)
283       return *MI.getParent()->getParent()->CloneMachineInstr(&MI);
284     return MI;
285   };
286 
287   switch (MI.getOpcode()) {
288   case SystemZ::SELRMux:
289   case SystemZ::SELFHR:
290   case SystemZ::SELR:
291   case SystemZ::SELGR:
292   case SystemZ::LOCRMux:
293   case SystemZ::LOCFHR:
294   case SystemZ::LOCR:
295   case SystemZ::LOCGR: {
296     auto &WorkingMI = cloneIfNew(MI);
297     // Invert condition.
298     unsigned CCValid = WorkingMI.getOperand(3).getImm();
299     unsigned CCMask = WorkingMI.getOperand(4).getImm();
300     WorkingMI.getOperand(4).setImm(CCMask ^ CCValid);
301     return TargetInstrInfo::commuteInstructionImpl(WorkingMI, /*NewMI=*/false,
302                                                    OpIdx1, OpIdx2);
303   }
304   default:
305     return TargetInstrInfo::commuteInstructionImpl(MI, NewMI, OpIdx1, OpIdx2);
306   }
307 }
308 
309 // If MI is a simple load or store for a frame object, return the register
310 // it loads or stores and set FrameIndex to the index of the frame object.
311 // Return 0 otherwise.
312 //
313 // Flag is SimpleBDXLoad for loads and SimpleBDXStore for stores.
314 static int isSimpleMove(const MachineInstr &MI, int &FrameIndex,
315                         unsigned Flag) {
316   const MCInstrDesc &MCID = MI.getDesc();
317   if ((MCID.TSFlags & Flag) && MI.getOperand(1).isFI() &&
318       MI.getOperand(2).getImm() == 0 && MI.getOperand(3).getReg() == 0) {
319     FrameIndex = MI.getOperand(1).getIndex();
320     return MI.getOperand(0).getReg();
321   }
322   return 0;
323 }
324 
325 unsigned SystemZInstrInfo::isLoadFromStackSlot(const MachineInstr &MI,
326                                                int &FrameIndex) const {
327   return isSimpleMove(MI, FrameIndex, SystemZII::SimpleBDXLoad);
328 }
329 
330 unsigned SystemZInstrInfo::isStoreToStackSlot(const MachineInstr &MI,
331                                               int &FrameIndex) const {
332   return isSimpleMove(MI, FrameIndex, SystemZII::SimpleBDXStore);
333 }
334 
335 bool SystemZInstrInfo::isStackSlotCopy(const MachineInstr &MI,
336                                        int &DestFrameIndex,
337                                        int &SrcFrameIndex) const {
338   // Check for MVC 0(Length,FI1),0(FI2)
339   const MachineFrameInfo &MFI = MI.getParent()->getParent()->getFrameInfo();
340   if (MI.getOpcode() != SystemZ::MVC || !MI.getOperand(0).isFI() ||
341       MI.getOperand(1).getImm() != 0 || !MI.getOperand(3).isFI() ||
342       MI.getOperand(4).getImm() != 0)
343     return false;
344 
345   // Check that Length covers the full slots.
346   int64_t Length = MI.getOperand(2).getImm();
347   unsigned FI1 = MI.getOperand(0).getIndex();
348   unsigned FI2 = MI.getOperand(3).getIndex();
349   if (MFI.getObjectSize(FI1) != Length ||
350       MFI.getObjectSize(FI2) != Length)
351     return false;
352 
353   DestFrameIndex = FI1;
354   SrcFrameIndex = FI2;
355   return true;
356 }
357 
358 bool SystemZInstrInfo::analyzeBranch(MachineBasicBlock &MBB,
359                                      MachineBasicBlock *&TBB,
360                                      MachineBasicBlock *&FBB,
361                                      SmallVectorImpl<MachineOperand> &Cond,
362                                      bool AllowModify) const {
363   // Most of the code and comments here are boilerplate.
364 
365   // Start from the bottom of the block and work up, examining the
366   // terminator instructions.
367   MachineBasicBlock::iterator I = MBB.end();
368   while (I != MBB.begin()) {
369     --I;
370     if (I->isDebugInstr())
371       continue;
372 
373     // Working from the bottom, when we see a non-terminator instruction, we're
374     // done.
375     if (!isUnpredicatedTerminator(*I))
376       break;
377 
378     // A terminator that isn't a branch can't easily be handled by this
379     // analysis.
380     if (!I->isBranch())
381       return true;
382 
383     // Can't handle indirect branches.
384     SystemZII::Branch Branch(getBranchInfo(*I));
385     if (!Branch.hasMBBTarget())
386       return true;
387 
388     // Punt on compound branches.
389     if (Branch.Type != SystemZII::BranchNormal)
390       return true;
391 
392     if (Branch.CCMask == SystemZ::CCMASK_ANY) {
393       // Handle unconditional branches.
394       if (!AllowModify) {
395         TBB = Branch.getMBBTarget();
396         continue;
397       }
398 
399       // If the block has any instructions after a JMP, delete them.
400       MBB.erase(std::next(I), MBB.end());
401 
402       Cond.clear();
403       FBB = nullptr;
404 
405       // Delete the JMP if it's equivalent to a fall-through.
406       if (MBB.isLayoutSuccessor(Branch.getMBBTarget())) {
407         TBB = nullptr;
408         I->eraseFromParent();
409         I = MBB.end();
410         continue;
411       }
412 
413       // TBB is used to indicate the unconditinal destination.
414       TBB = Branch.getMBBTarget();
415       continue;
416     }
417 
418     // Working from the bottom, handle the first conditional branch.
419     if (Cond.empty()) {
420       // FIXME: add X86-style branch swap
421       FBB = TBB;
422       TBB = Branch.getMBBTarget();
423       Cond.push_back(MachineOperand::CreateImm(Branch.CCValid));
424       Cond.push_back(MachineOperand::CreateImm(Branch.CCMask));
425       continue;
426     }
427 
428     // Handle subsequent conditional branches.
429     assert(Cond.size() == 2 && TBB && "Should have seen a conditional branch");
430 
431     // Only handle the case where all conditional branches branch to the same
432     // destination.
433     if (TBB != Branch.getMBBTarget())
434       return true;
435 
436     // If the conditions are the same, we can leave them alone.
437     unsigned OldCCValid = Cond[0].getImm();
438     unsigned OldCCMask = Cond[1].getImm();
439     if (OldCCValid == Branch.CCValid && OldCCMask == Branch.CCMask)
440       continue;
441 
442     // FIXME: Try combining conditions like X86 does.  Should be easy on Z!
443     return false;
444   }
445 
446   return false;
447 }
448 
449 unsigned SystemZInstrInfo::removeBranch(MachineBasicBlock &MBB,
450                                         int *BytesRemoved) const {
451   assert(!BytesRemoved && "code size not handled");
452 
453   // Most of the code and comments here are boilerplate.
454   MachineBasicBlock::iterator I = MBB.end();
455   unsigned Count = 0;
456 
457   while (I != MBB.begin()) {
458     --I;
459     if (I->isDebugInstr())
460       continue;
461     if (!I->isBranch())
462       break;
463     if (!getBranchInfo(*I).hasMBBTarget())
464       break;
465     // Remove the branch.
466     I->eraseFromParent();
467     I = MBB.end();
468     ++Count;
469   }
470 
471   return Count;
472 }
473 
474 bool SystemZInstrInfo::
475 reverseBranchCondition(SmallVectorImpl<MachineOperand> &Cond) const {
476   assert(Cond.size() == 2 && "Invalid condition");
477   Cond[1].setImm(Cond[1].getImm() ^ Cond[0].getImm());
478   return false;
479 }
480 
481 unsigned SystemZInstrInfo::insertBranch(MachineBasicBlock &MBB,
482                                         MachineBasicBlock *TBB,
483                                         MachineBasicBlock *FBB,
484                                         ArrayRef<MachineOperand> Cond,
485                                         const DebugLoc &DL,
486                                         int *BytesAdded) const {
487   // In this function we output 32-bit branches, which should always
488   // have enough range.  They can be shortened and relaxed by later code
489   // in the pipeline, if desired.
490 
491   // Shouldn't be a fall through.
492   assert(TBB && "insertBranch must not be told to insert a fallthrough");
493   assert((Cond.size() == 2 || Cond.size() == 0) &&
494          "SystemZ branch conditions have one component!");
495   assert(!BytesAdded && "code size not handled");
496 
497   if (Cond.empty()) {
498     // Unconditional branch?
499     assert(!FBB && "Unconditional branch with multiple successors!");
500     BuildMI(&MBB, DL, get(SystemZ::J)).addMBB(TBB);
501     return 1;
502   }
503 
504   // Conditional branch.
505   unsigned Count = 0;
506   unsigned CCValid = Cond[0].getImm();
507   unsigned CCMask = Cond[1].getImm();
508   BuildMI(&MBB, DL, get(SystemZ::BRC))
509     .addImm(CCValid).addImm(CCMask).addMBB(TBB);
510   ++Count;
511 
512   if (FBB) {
513     // Two-way Conditional branch. Insert the second branch.
514     BuildMI(&MBB, DL, get(SystemZ::J)).addMBB(FBB);
515     ++Count;
516   }
517   return Count;
518 }
519 
520 bool SystemZInstrInfo::analyzeCompare(const MachineInstr &MI, Register &SrcReg,
521                                       Register &SrcReg2, int64_t &Mask,
522                                       int64_t &Value) const {
523   assert(MI.isCompare() && "Caller should have checked for a comparison");
524 
525   if (MI.getNumExplicitOperands() == 2 && MI.getOperand(0).isReg() &&
526       MI.getOperand(1).isImm()) {
527     SrcReg = MI.getOperand(0).getReg();
528     SrcReg2 = 0;
529     Value = MI.getOperand(1).getImm();
530     Mask = ~0;
531     return true;
532   }
533 
534   return false;
535 }
536 
537 bool SystemZInstrInfo::canInsertSelect(const MachineBasicBlock &MBB,
538                                        ArrayRef<MachineOperand> Pred,
539                                        Register DstReg, Register TrueReg,
540                                        Register FalseReg, int &CondCycles,
541                                        int &TrueCycles,
542                                        int &FalseCycles) const {
543   // Not all subtargets have LOCR instructions.
544   if (!STI.hasLoadStoreOnCond())
545     return false;
546   if (Pred.size() != 2)
547     return false;
548 
549   // Check register classes.
550   const MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo();
551   const TargetRegisterClass *RC =
552     RI.getCommonSubClass(MRI.getRegClass(TrueReg), MRI.getRegClass(FalseReg));
553   if (!RC)
554     return false;
555 
556   // We have LOCR instructions for 32 and 64 bit general purpose registers.
557   if ((STI.hasLoadStoreOnCond2() &&
558        SystemZ::GRX32BitRegClass.hasSubClassEq(RC)) ||
559       SystemZ::GR32BitRegClass.hasSubClassEq(RC) ||
560       SystemZ::GR64BitRegClass.hasSubClassEq(RC)) {
561     CondCycles = 2;
562     TrueCycles = 2;
563     FalseCycles = 2;
564     return true;
565   }
566 
567   // Can't do anything else.
568   return false;
569 }
570 
571 void SystemZInstrInfo::insertSelect(MachineBasicBlock &MBB,
572                                     MachineBasicBlock::iterator I,
573                                     const DebugLoc &DL, Register DstReg,
574                                     ArrayRef<MachineOperand> Pred,
575                                     Register TrueReg,
576                                     Register FalseReg) const {
577   MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo();
578   const TargetRegisterClass *RC = MRI.getRegClass(DstReg);
579 
580   assert(Pred.size() == 2 && "Invalid condition");
581   unsigned CCValid = Pred[0].getImm();
582   unsigned CCMask = Pred[1].getImm();
583 
584   unsigned Opc;
585   if (SystemZ::GRX32BitRegClass.hasSubClassEq(RC)) {
586     if (STI.hasMiscellaneousExtensions3())
587       Opc = SystemZ::SELRMux;
588     else if (STI.hasLoadStoreOnCond2())
589       Opc = SystemZ::LOCRMux;
590     else {
591       Opc = SystemZ::LOCR;
592       MRI.constrainRegClass(DstReg, &SystemZ::GR32BitRegClass);
593       Register TReg = MRI.createVirtualRegister(&SystemZ::GR32BitRegClass);
594       Register FReg = MRI.createVirtualRegister(&SystemZ::GR32BitRegClass);
595       BuildMI(MBB, I, DL, get(TargetOpcode::COPY), TReg).addReg(TrueReg);
596       BuildMI(MBB, I, DL, get(TargetOpcode::COPY), FReg).addReg(FalseReg);
597       TrueReg = TReg;
598       FalseReg = FReg;
599     }
600   } else if (SystemZ::GR64BitRegClass.hasSubClassEq(RC)) {
601     if (STI.hasMiscellaneousExtensions3())
602       Opc = SystemZ::SELGR;
603     else
604       Opc = SystemZ::LOCGR;
605   } else
606     llvm_unreachable("Invalid register class");
607 
608   BuildMI(MBB, I, DL, get(Opc), DstReg)
609     .addReg(FalseReg).addReg(TrueReg)
610     .addImm(CCValid).addImm(CCMask);
611 }
612 
613 bool SystemZInstrInfo::FoldImmediate(MachineInstr &UseMI, MachineInstr &DefMI,
614                                      Register Reg,
615                                      MachineRegisterInfo *MRI) const {
616   unsigned DefOpc = DefMI.getOpcode();
617   if (DefOpc != SystemZ::LHIMux && DefOpc != SystemZ::LHI &&
618       DefOpc != SystemZ::LGHI)
619     return false;
620   if (DefMI.getOperand(0).getReg() != Reg)
621     return false;
622   int32_t ImmVal = (int32_t)DefMI.getOperand(1).getImm();
623 
624   unsigned UseOpc = UseMI.getOpcode();
625   unsigned NewUseOpc;
626   unsigned UseIdx;
627   int CommuteIdx = -1;
628   bool TieOps = false;
629   switch (UseOpc) {
630   case SystemZ::SELRMux:
631     TieOps = true;
632     [[fallthrough]];
633   case SystemZ::LOCRMux:
634     if (!STI.hasLoadStoreOnCond2())
635       return false;
636     NewUseOpc = SystemZ::LOCHIMux;
637     if (UseMI.getOperand(2).getReg() == Reg)
638       UseIdx = 2;
639     else if (UseMI.getOperand(1).getReg() == Reg)
640       UseIdx = 2, CommuteIdx = 1;
641     else
642       return false;
643     break;
644   case SystemZ::SELGR:
645     TieOps = true;
646     [[fallthrough]];
647   case SystemZ::LOCGR:
648     if (!STI.hasLoadStoreOnCond2())
649       return false;
650     NewUseOpc = SystemZ::LOCGHI;
651     if (UseMI.getOperand(2).getReg() == Reg)
652       UseIdx = 2;
653     else if (UseMI.getOperand(1).getReg() == Reg)
654       UseIdx = 2, CommuteIdx = 1;
655     else
656       return false;
657     break;
658   default:
659     return false;
660   }
661 
662   if (CommuteIdx != -1)
663     if (!commuteInstruction(UseMI, false, CommuteIdx, UseIdx))
664       return false;
665 
666   bool DeleteDef = MRI->hasOneNonDBGUse(Reg);
667   UseMI.setDesc(get(NewUseOpc));
668   if (TieOps)
669     UseMI.tieOperands(0, 1);
670   UseMI.getOperand(UseIdx).ChangeToImmediate(ImmVal);
671   if (DeleteDef)
672     DefMI.eraseFromParent();
673 
674   return true;
675 }
676 
677 bool SystemZInstrInfo::isPredicable(const MachineInstr &MI) const {
678   unsigned Opcode = MI.getOpcode();
679   if (Opcode == SystemZ::Return ||
680       Opcode == SystemZ::Return_XPLINK ||
681       Opcode == SystemZ::Trap ||
682       Opcode == SystemZ::CallJG ||
683       Opcode == SystemZ::CallBR)
684     return true;
685   return false;
686 }
687 
688 bool SystemZInstrInfo::
689 isProfitableToIfCvt(MachineBasicBlock &MBB,
690                     unsigned NumCycles, unsigned ExtraPredCycles,
691                     BranchProbability Probability) const {
692   // Avoid using conditional returns at the end of a loop (since then
693   // we'd need to emit an unconditional branch to the beginning anyway,
694   // making the loop body longer).  This doesn't apply for low-probability
695   // loops (eg. compare-and-swap retry), so just decide based on branch
696   // probability instead of looping structure.
697   // However, since Compare and Trap instructions cost the same as a regular
698   // Compare instruction, we should allow the if conversion to convert this
699   // into a Conditional Compare regardless of the branch probability.
700   if (MBB.getLastNonDebugInstr()->getOpcode() != SystemZ::Trap &&
701       MBB.succ_empty() && Probability < BranchProbability(1, 8))
702     return false;
703   // For now only convert single instructions.
704   return NumCycles == 1;
705 }
706 
707 bool SystemZInstrInfo::
708 isProfitableToIfCvt(MachineBasicBlock &TMBB,
709                     unsigned NumCyclesT, unsigned ExtraPredCyclesT,
710                     MachineBasicBlock &FMBB,
711                     unsigned NumCyclesF, unsigned ExtraPredCyclesF,
712                     BranchProbability Probability) const {
713   // For now avoid converting mutually-exclusive cases.
714   return false;
715 }
716 
717 bool SystemZInstrInfo::
718 isProfitableToDupForIfCvt(MachineBasicBlock &MBB, unsigned NumCycles,
719                           BranchProbability Probability) const {
720   // For now only duplicate single instructions.
721   return NumCycles == 1;
722 }
723 
724 bool SystemZInstrInfo::PredicateInstruction(
725     MachineInstr &MI, ArrayRef<MachineOperand> Pred) const {
726   assert(Pred.size() == 2 && "Invalid condition");
727   unsigned CCValid = Pred[0].getImm();
728   unsigned CCMask = Pred[1].getImm();
729   assert(CCMask > 0 && CCMask < 15 && "Invalid predicate");
730   unsigned Opcode = MI.getOpcode();
731   if (Opcode == SystemZ::Trap) {
732     MI.setDesc(get(SystemZ::CondTrap));
733     MachineInstrBuilder(*MI.getParent()->getParent(), MI)
734       .addImm(CCValid).addImm(CCMask)
735       .addReg(SystemZ::CC, RegState::Implicit);
736     return true;
737   }
738   if (Opcode == SystemZ::Return || Opcode == SystemZ::Return_XPLINK) {
739     MI.setDesc(get(Opcode == SystemZ::Return ? SystemZ::CondReturn
740                                              : SystemZ::CondReturn_XPLINK));
741     MachineInstrBuilder(*MI.getParent()->getParent(), MI)
742         .addImm(CCValid)
743         .addImm(CCMask)
744         .addReg(SystemZ::CC, RegState::Implicit);
745     return true;
746   }
747   if (Opcode == SystemZ::CallJG) {
748     MachineOperand FirstOp = MI.getOperand(0);
749     const uint32_t *RegMask = MI.getOperand(1).getRegMask();
750     MI.removeOperand(1);
751     MI.removeOperand(0);
752     MI.setDesc(get(SystemZ::CallBRCL));
753     MachineInstrBuilder(*MI.getParent()->getParent(), MI)
754         .addImm(CCValid)
755         .addImm(CCMask)
756         .add(FirstOp)
757         .addRegMask(RegMask)
758         .addReg(SystemZ::CC, RegState::Implicit);
759     return true;
760   }
761   if (Opcode == SystemZ::CallBR) {
762     MachineOperand Target = MI.getOperand(0);
763     const uint32_t *RegMask = MI.getOperand(1).getRegMask();
764     MI.removeOperand(1);
765     MI.removeOperand(0);
766     MI.setDesc(get(SystemZ::CallBCR));
767     MachineInstrBuilder(*MI.getParent()->getParent(), MI)
768       .addImm(CCValid).addImm(CCMask)
769       .add(Target)
770       .addRegMask(RegMask)
771       .addReg(SystemZ::CC, RegState::Implicit);
772     return true;
773   }
774   return false;
775 }
776 
777 void SystemZInstrInfo::copyPhysReg(MachineBasicBlock &MBB,
778                                    MachineBasicBlock::iterator MBBI,
779                                    const DebugLoc &DL, MCRegister DestReg,
780                                    MCRegister SrcReg, bool KillSrc) const {
781   // Split 128-bit GPR moves into two 64-bit moves. Add implicit uses of the
782   // super register in case one of the subregs is undefined.
783   // This handles ADDR128 too.
784   if (SystemZ::GR128BitRegClass.contains(DestReg, SrcReg)) {
785     copyPhysReg(MBB, MBBI, DL, RI.getSubReg(DestReg, SystemZ::subreg_h64),
786                 RI.getSubReg(SrcReg, SystemZ::subreg_h64), KillSrc);
787     MachineInstrBuilder(*MBB.getParent(), std::prev(MBBI))
788       .addReg(SrcReg, RegState::Implicit);
789     copyPhysReg(MBB, MBBI, DL, RI.getSubReg(DestReg, SystemZ::subreg_l64),
790                 RI.getSubReg(SrcReg, SystemZ::subreg_l64), KillSrc);
791     MachineInstrBuilder(*MBB.getParent(), std::prev(MBBI))
792       .addReg(SrcReg, (getKillRegState(KillSrc) | RegState::Implicit));
793     return;
794   }
795 
796   if (SystemZ::GRX32BitRegClass.contains(DestReg, SrcReg)) {
797     emitGRX32Move(MBB, MBBI, DL, DestReg, SrcReg, SystemZ::LR, 32, KillSrc,
798                   false);
799     return;
800   }
801 
802   // Move 128-bit floating-point values between VR128 and FP128.
803   if (SystemZ::VR128BitRegClass.contains(DestReg) &&
804       SystemZ::FP128BitRegClass.contains(SrcReg)) {
805     MCRegister SrcRegHi =
806         RI.getMatchingSuperReg(RI.getSubReg(SrcReg, SystemZ::subreg_h64),
807                                SystemZ::subreg_h64, &SystemZ::VR128BitRegClass);
808     MCRegister SrcRegLo =
809         RI.getMatchingSuperReg(RI.getSubReg(SrcReg, SystemZ::subreg_l64),
810                                SystemZ::subreg_h64, &SystemZ::VR128BitRegClass);
811 
812     BuildMI(MBB, MBBI, DL, get(SystemZ::VMRHG), DestReg)
813       .addReg(SrcRegHi, getKillRegState(KillSrc))
814       .addReg(SrcRegLo, getKillRegState(KillSrc));
815     return;
816   }
817   if (SystemZ::FP128BitRegClass.contains(DestReg) &&
818       SystemZ::VR128BitRegClass.contains(SrcReg)) {
819     MCRegister DestRegHi =
820         RI.getMatchingSuperReg(RI.getSubReg(DestReg, SystemZ::subreg_h64),
821                                SystemZ::subreg_h64, &SystemZ::VR128BitRegClass);
822     MCRegister DestRegLo =
823         RI.getMatchingSuperReg(RI.getSubReg(DestReg, SystemZ::subreg_l64),
824                                SystemZ::subreg_h64, &SystemZ::VR128BitRegClass);
825 
826     if (DestRegHi != SrcReg)
827       copyPhysReg(MBB, MBBI, DL, DestRegHi, SrcReg, false);
828     BuildMI(MBB, MBBI, DL, get(SystemZ::VREPG), DestRegLo)
829       .addReg(SrcReg, getKillRegState(KillSrc)).addImm(1);
830     return;
831   }
832 
833   // Move CC value from a GR32.
834   if (DestReg == SystemZ::CC) {
835     unsigned Opcode =
836       SystemZ::GR32BitRegClass.contains(SrcReg) ? SystemZ::TMLH : SystemZ::TMHH;
837     BuildMI(MBB, MBBI, DL, get(Opcode))
838       .addReg(SrcReg, getKillRegState(KillSrc))
839       .addImm(3 << (SystemZ::IPM_CC - 16));
840     return;
841   }
842 
843   // Everything else needs only one instruction.
844   unsigned Opcode;
845   if (SystemZ::GR64BitRegClass.contains(DestReg, SrcReg))
846     Opcode = SystemZ::LGR;
847   else if (SystemZ::FP32BitRegClass.contains(DestReg, SrcReg))
848     // For z13 we prefer LDR over LER to avoid partial register dependencies.
849     Opcode = STI.hasVector() ? SystemZ::LDR32 : SystemZ::LER;
850   else if (SystemZ::FP64BitRegClass.contains(DestReg, SrcReg))
851     Opcode = SystemZ::LDR;
852   else if (SystemZ::FP128BitRegClass.contains(DestReg, SrcReg))
853     Opcode = SystemZ::LXR;
854   else if (SystemZ::VR32BitRegClass.contains(DestReg, SrcReg))
855     Opcode = SystemZ::VLR32;
856   else if (SystemZ::VR64BitRegClass.contains(DestReg, SrcReg))
857     Opcode = SystemZ::VLR64;
858   else if (SystemZ::VR128BitRegClass.contains(DestReg, SrcReg))
859     Opcode = SystemZ::VLR;
860   else if (SystemZ::AR32BitRegClass.contains(DestReg, SrcReg))
861     Opcode = SystemZ::CPYA;
862   else
863     llvm_unreachable("Impossible reg-to-reg copy");
864 
865   BuildMI(MBB, MBBI, DL, get(Opcode), DestReg)
866     .addReg(SrcReg, getKillRegState(KillSrc));
867 }
868 
869 void SystemZInstrInfo::storeRegToStackSlot(
870     MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI, Register SrcReg,
871     bool isKill, int FrameIdx, const TargetRegisterClass *RC,
872     const TargetRegisterInfo *TRI, Register VReg) const {
873   DebugLoc DL = MBBI != MBB.end() ? MBBI->getDebugLoc() : DebugLoc();
874 
875   // Callers may expect a single instruction, so keep 128-bit moves
876   // together for now and lower them after register allocation.
877   unsigned LoadOpcode, StoreOpcode;
878   getLoadStoreOpcodes(RC, LoadOpcode, StoreOpcode);
879   addFrameReference(BuildMI(MBB, MBBI, DL, get(StoreOpcode))
880                         .addReg(SrcReg, getKillRegState(isKill)),
881                     FrameIdx);
882 }
883 
884 void SystemZInstrInfo::loadRegFromStackSlot(MachineBasicBlock &MBB,
885                                             MachineBasicBlock::iterator MBBI,
886                                             Register DestReg, int FrameIdx,
887                                             const TargetRegisterClass *RC,
888                                             const TargetRegisterInfo *TRI,
889                                             Register VReg) const {
890   DebugLoc DL = MBBI != MBB.end() ? MBBI->getDebugLoc() : DebugLoc();
891 
892   // Callers may expect a single instruction, so keep 128-bit moves
893   // together for now and lower them after register allocation.
894   unsigned LoadOpcode, StoreOpcode;
895   getLoadStoreOpcodes(RC, LoadOpcode, StoreOpcode);
896   addFrameReference(BuildMI(MBB, MBBI, DL, get(LoadOpcode), DestReg),
897                     FrameIdx);
898 }
899 
900 // Return true if MI is a simple load or store with a 12-bit displacement
901 // and no index.  Flag is SimpleBDXLoad for loads and SimpleBDXStore for stores.
902 static bool isSimpleBD12Move(const MachineInstr *MI, unsigned Flag) {
903   const MCInstrDesc &MCID = MI->getDesc();
904   return ((MCID.TSFlags & Flag) &&
905           isUInt<12>(MI->getOperand(2).getImm()) &&
906           MI->getOperand(3).getReg() == 0);
907 }
908 
909 namespace {
910 
911 struct LogicOp {
912   LogicOp() = default;
913   LogicOp(unsigned regSize, unsigned immLSB, unsigned immSize)
914     : RegSize(regSize), ImmLSB(immLSB), ImmSize(immSize) {}
915 
916   explicit operator bool() const { return RegSize; }
917 
918   unsigned RegSize = 0;
919   unsigned ImmLSB = 0;
920   unsigned ImmSize = 0;
921 };
922 
923 } // end anonymous namespace
924 
925 static LogicOp interpretAndImmediate(unsigned Opcode) {
926   switch (Opcode) {
927   case SystemZ::NILMux: return LogicOp(32,  0, 16);
928   case SystemZ::NIHMux: return LogicOp(32, 16, 16);
929   case SystemZ::NILL64: return LogicOp(64,  0, 16);
930   case SystemZ::NILH64: return LogicOp(64, 16, 16);
931   case SystemZ::NIHL64: return LogicOp(64, 32, 16);
932   case SystemZ::NIHH64: return LogicOp(64, 48, 16);
933   case SystemZ::NIFMux: return LogicOp(32,  0, 32);
934   case SystemZ::NILF64: return LogicOp(64,  0, 32);
935   case SystemZ::NIHF64: return LogicOp(64, 32, 32);
936   default:              return LogicOp();
937   }
938 }
939 
940 static void transferDeadCC(MachineInstr *OldMI, MachineInstr *NewMI) {
941   if (OldMI->registerDefIsDead(SystemZ::CC)) {
942     MachineOperand *CCDef = NewMI->findRegisterDefOperand(SystemZ::CC);
943     if (CCDef != nullptr)
944       CCDef->setIsDead(true);
945   }
946 }
947 
948 static void transferMIFlag(MachineInstr *OldMI, MachineInstr *NewMI,
949                            MachineInstr::MIFlag Flag) {
950   if (OldMI->getFlag(Flag))
951     NewMI->setFlag(Flag);
952 }
953 
954 MachineInstr *
955 SystemZInstrInfo::convertToThreeAddress(MachineInstr &MI, LiveVariables *LV,
956                                         LiveIntervals *LIS) const {
957   MachineBasicBlock *MBB = MI.getParent();
958 
959   // Try to convert an AND into an RISBG-type instruction.
960   // TODO: It might be beneficial to select RISBG and shorten to AND instead.
961   if (LogicOp And = interpretAndImmediate(MI.getOpcode())) {
962     uint64_t Imm = MI.getOperand(2).getImm() << And.ImmLSB;
963     // AND IMMEDIATE leaves the other bits of the register unchanged.
964     Imm |= allOnes(And.RegSize) & ~(allOnes(And.ImmSize) << And.ImmLSB);
965     unsigned Start, End;
966     if (isRxSBGMask(Imm, And.RegSize, Start, End)) {
967       unsigned NewOpcode;
968       if (And.RegSize == 64) {
969         NewOpcode = SystemZ::RISBG;
970         // Prefer RISBGN if available, since it does not clobber CC.
971         if (STI.hasMiscellaneousExtensions())
972           NewOpcode = SystemZ::RISBGN;
973       } else {
974         NewOpcode = SystemZ::RISBMux;
975         Start &= 31;
976         End &= 31;
977       }
978       MachineOperand &Dest = MI.getOperand(0);
979       MachineOperand &Src = MI.getOperand(1);
980       MachineInstrBuilder MIB =
981           BuildMI(*MBB, MI, MI.getDebugLoc(), get(NewOpcode))
982               .add(Dest)
983               .addReg(0)
984               .addReg(Src.getReg(), getKillRegState(Src.isKill()),
985                       Src.getSubReg())
986               .addImm(Start)
987               .addImm(End + 128)
988               .addImm(0);
989       if (LV) {
990         unsigned NumOps = MI.getNumOperands();
991         for (unsigned I = 1; I < NumOps; ++I) {
992           MachineOperand &Op = MI.getOperand(I);
993           if (Op.isReg() && Op.isKill())
994             LV->replaceKillInstruction(Op.getReg(), MI, *MIB);
995         }
996       }
997       if (LIS)
998         LIS->ReplaceMachineInstrInMaps(MI, *MIB);
999       transferDeadCC(&MI, MIB);
1000       return MIB;
1001     }
1002   }
1003   return nullptr;
1004 }
1005 
1006 MachineInstr *SystemZInstrInfo::foldMemoryOperandImpl(
1007     MachineFunction &MF, MachineInstr &MI, ArrayRef<unsigned> Ops,
1008     MachineBasicBlock::iterator InsertPt, int FrameIndex,
1009     LiveIntervals *LIS, VirtRegMap *VRM) const {
1010   const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
1011   MachineRegisterInfo &MRI = MF.getRegInfo();
1012   const MachineFrameInfo &MFI = MF.getFrameInfo();
1013   unsigned Size = MFI.getObjectSize(FrameIndex);
1014   unsigned Opcode = MI.getOpcode();
1015 
1016   // Check CC liveness if new instruction introduces a dead def of CC.
1017   SlotIndex MISlot = SlotIndex();
1018   LiveRange *CCLiveRange = nullptr;
1019   bool CCLiveAtMI = true;
1020   if (LIS) {
1021     MISlot = LIS->getSlotIndexes()->getInstructionIndex(MI).getRegSlot();
1022     auto CCUnits = TRI->regunits(MCRegister::from(SystemZ::CC));
1023     assert(range_size(CCUnits) == 1 && "CC only has one reg unit.");
1024     CCLiveRange = &LIS->getRegUnit(*CCUnits.begin());
1025     CCLiveAtMI = CCLiveRange->liveAt(MISlot);
1026   }
1027 
1028   if (Ops.size() == 2 && Ops[0] == 0 && Ops[1] == 1) {
1029     if (!CCLiveAtMI && (Opcode == SystemZ::LA || Opcode == SystemZ::LAY) &&
1030         isInt<8>(MI.getOperand(2).getImm()) && !MI.getOperand(3).getReg()) {
1031       // LA(Y) %reg, CONST(%reg) -> AGSI %mem, CONST
1032       MachineInstr *BuiltMI = BuildMI(*InsertPt->getParent(), InsertPt,
1033                                       MI.getDebugLoc(), get(SystemZ::AGSI))
1034         .addFrameIndex(FrameIndex)
1035         .addImm(0)
1036         .addImm(MI.getOperand(2).getImm());
1037       BuiltMI->findRegisterDefOperand(SystemZ::CC)->setIsDead(true);
1038       CCLiveRange->createDeadDef(MISlot, LIS->getVNInfoAllocator());
1039       return BuiltMI;
1040     }
1041     return nullptr;
1042   }
1043 
1044   // All other cases require a single operand.
1045   if (Ops.size() != 1)
1046     return nullptr;
1047 
1048   unsigned OpNum = Ops[0];
1049   assert(Size * 8 ==
1050            TRI->getRegSizeInBits(*MF.getRegInfo()
1051                                .getRegClass(MI.getOperand(OpNum).getReg())) &&
1052          "Invalid size combination");
1053 
1054   if ((Opcode == SystemZ::AHI || Opcode == SystemZ::AGHI) && OpNum == 0 &&
1055       isInt<8>(MI.getOperand(2).getImm())) {
1056     // A(G)HI %reg, CONST -> A(G)SI %mem, CONST
1057     Opcode = (Opcode == SystemZ::AHI ? SystemZ::ASI : SystemZ::AGSI);
1058     MachineInstr *BuiltMI =
1059         BuildMI(*InsertPt->getParent(), InsertPt, MI.getDebugLoc(), get(Opcode))
1060             .addFrameIndex(FrameIndex)
1061             .addImm(0)
1062             .addImm(MI.getOperand(2).getImm());
1063     transferDeadCC(&MI, BuiltMI);
1064     transferMIFlag(&MI, BuiltMI, MachineInstr::NoSWrap);
1065     return BuiltMI;
1066   }
1067 
1068   if ((Opcode == SystemZ::ALFI && OpNum == 0 &&
1069        isInt<8>((int32_t)MI.getOperand(2).getImm())) ||
1070       (Opcode == SystemZ::ALGFI && OpNum == 0 &&
1071        isInt<8>((int64_t)MI.getOperand(2).getImm()))) {
1072     // AL(G)FI %reg, CONST -> AL(G)SI %mem, CONST
1073     Opcode = (Opcode == SystemZ::ALFI ? SystemZ::ALSI : SystemZ::ALGSI);
1074     MachineInstr *BuiltMI =
1075         BuildMI(*InsertPt->getParent(), InsertPt, MI.getDebugLoc(), get(Opcode))
1076             .addFrameIndex(FrameIndex)
1077             .addImm(0)
1078             .addImm((int8_t)MI.getOperand(2).getImm());
1079     transferDeadCC(&MI, BuiltMI);
1080     return BuiltMI;
1081   }
1082 
1083   if ((Opcode == SystemZ::SLFI && OpNum == 0 &&
1084        isInt<8>((int32_t)-MI.getOperand(2).getImm())) ||
1085       (Opcode == SystemZ::SLGFI && OpNum == 0 &&
1086        isInt<8>((int64_t)-MI.getOperand(2).getImm()))) {
1087     // SL(G)FI %reg, CONST -> AL(G)SI %mem, -CONST
1088     Opcode = (Opcode == SystemZ::SLFI ? SystemZ::ALSI : SystemZ::ALGSI);
1089     MachineInstr *BuiltMI =
1090         BuildMI(*InsertPt->getParent(), InsertPt, MI.getDebugLoc(), get(Opcode))
1091             .addFrameIndex(FrameIndex)
1092             .addImm(0)
1093             .addImm((int8_t)-MI.getOperand(2).getImm());
1094     transferDeadCC(&MI, BuiltMI);
1095     return BuiltMI;
1096   }
1097 
1098   unsigned MemImmOpc = 0;
1099   switch (Opcode) {
1100   case SystemZ::LHIMux:
1101   case SystemZ::LHI:    MemImmOpc = SystemZ::MVHI;  break;
1102   case SystemZ::LGHI:   MemImmOpc = SystemZ::MVGHI; break;
1103   case SystemZ::CHIMux:
1104   case SystemZ::CHI:    MemImmOpc = SystemZ::CHSI;  break;
1105   case SystemZ::CGHI:   MemImmOpc = SystemZ::CGHSI; break;
1106   case SystemZ::CLFIMux:
1107   case SystemZ::CLFI:
1108     if (isUInt<16>(MI.getOperand(1).getImm()))
1109       MemImmOpc = SystemZ::CLFHSI;
1110     break;
1111   case SystemZ::CLGFI:
1112     if (isUInt<16>(MI.getOperand(1).getImm()))
1113       MemImmOpc = SystemZ::CLGHSI;
1114     break;
1115   default: break;
1116   }
1117   if (MemImmOpc)
1118     return BuildMI(*InsertPt->getParent(), InsertPt, MI.getDebugLoc(),
1119                    get(MemImmOpc))
1120                .addFrameIndex(FrameIndex)
1121                .addImm(0)
1122                .addImm(MI.getOperand(1).getImm());
1123 
1124   if (Opcode == SystemZ::LGDR || Opcode == SystemZ::LDGR) {
1125     bool Op0IsGPR = (Opcode == SystemZ::LGDR);
1126     bool Op1IsGPR = (Opcode == SystemZ::LDGR);
1127     // If we're spilling the destination of an LDGR or LGDR, store the
1128     // source register instead.
1129     if (OpNum == 0) {
1130       unsigned StoreOpcode = Op1IsGPR ? SystemZ::STG : SystemZ::STD;
1131       return BuildMI(*InsertPt->getParent(), InsertPt, MI.getDebugLoc(),
1132                      get(StoreOpcode))
1133           .add(MI.getOperand(1))
1134           .addFrameIndex(FrameIndex)
1135           .addImm(0)
1136           .addReg(0);
1137     }
1138     // If we're spilling the source of an LDGR or LGDR, load the
1139     // destination register instead.
1140     if (OpNum == 1) {
1141       unsigned LoadOpcode = Op0IsGPR ? SystemZ::LG : SystemZ::LD;
1142       return BuildMI(*InsertPt->getParent(), InsertPt, MI.getDebugLoc(),
1143                      get(LoadOpcode))
1144         .add(MI.getOperand(0))
1145         .addFrameIndex(FrameIndex)
1146         .addImm(0)
1147         .addReg(0);
1148     }
1149   }
1150 
1151   // Look for cases where the source of a simple store or the destination
1152   // of a simple load is being spilled.  Try to use MVC instead.
1153   //
1154   // Although MVC is in practice a fast choice in these cases, it is still
1155   // logically a bytewise copy.  This means that we cannot use it if the
1156   // load or store is volatile.  We also wouldn't be able to use MVC if
1157   // the two memories partially overlap, but that case cannot occur here,
1158   // because we know that one of the memories is a full frame index.
1159   //
1160   // For performance reasons, we also want to avoid using MVC if the addresses
1161   // might be equal.  We don't worry about that case here, because spill slot
1162   // coloring happens later, and because we have special code to remove
1163   // MVCs that turn out to be redundant.
1164   if (OpNum == 0 && MI.hasOneMemOperand()) {
1165     MachineMemOperand *MMO = *MI.memoperands_begin();
1166     if (MMO->getSize() == Size && !MMO->isVolatile() && !MMO->isAtomic()) {
1167       // Handle conversion of loads.
1168       if (isSimpleBD12Move(&MI, SystemZII::SimpleBDXLoad)) {
1169         return BuildMI(*InsertPt->getParent(), InsertPt, MI.getDebugLoc(),
1170                        get(SystemZ::MVC))
1171             .addFrameIndex(FrameIndex)
1172             .addImm(0)
1173             .addImm(Size)
1174             .add(MI.getOperand(1))
1175             .addImm(MI.getOperand(2).getImm())
1176             .addMemOperand(MMO);
1177       }
1178       // Handle conversion of stores.
1179       if (isSimpleBD12Move(&MI, SystemZII::SimpleBDXStore)) {
1180         return BuildMI(*InsertPt->getParent(), InsertPt, MI.getDebugLoc(),
1181                        get(SystemZ::MVC))
1182             .add(MI.getOperand(1))
1183             .addImm(MI.getOperand(2).getImm())
1184             .addImm(Size)
1185             .addFrameIndex(FrameIndex)
1186             .addImm(0)
1187             .addMemOperand(MMO);
1188       }
1189     }
1190   }
1191 
1192   // If the spilled operand is the final one or the instruction is
1193   // commutable, try to change <INSN>R into <INSN>.  Don't introduce a def of
1194   // CC if it is live and MI does not define it.
1195   unsigned NumOps = MI.getNumExplicitOperands();
1196   int MemOpcode = SystemZ::getMemOpcode(Opcode);
1197   if (MemOpcode == -1 ||
1198       (CCLiveAtMI && !MI.definesRegister(SystemZ::CC) &&
1199        get(MemOpcode).hasImplicitDefOfPhysReg(SystemZ::CC)))
1200     return nullptr;
1201 
1202   // Check if all other vregs have a usable allocation in the case of vector
1203   // to FP conversion.
1204   const MCInstrDesc &MCID = MI.getDesc();
1205   for (unsigned I = 0, E = MCID.getNumOperands(); I != E; ++I) {
1206     const MCOperandInfo &MCOI = MCID.operands()[I];
1207     if (MCOI.OperandType != MCOI::OPERAND_REGISTER || I == OpNum)
1208       continue;
1209     const TargetRegisterClass *RC = TRI->getRegClass(MCOI.RegClass);
1210     if (RC == &SystemZ::VR32BitRegClass || RC == &SystemZ::VR64BitRegClass) {
1211       Register Reg = MI.getOperand(I).getReg();
1212       Register PhysReg = Reg.isVirtual()
1213                              ? (VRM ? Register(VRM->getPhys(Reg)) : Register())
1214                              : Reg;
1215       if (!PhysReg ||
1216           !(SystemZ::FP32BitRegClass.contains(PhysReg) ||
1217             SystemZ::FP64BitRegClass.contains(PhysReg) ||
1218             SystemZ::VF128BitRegClass.contains(PhysReg)))
1219         return nullptr;
1220     }
1221   }
1222   // Fused multiply and add/sub need to have the same dst and accumulator reg.
1223   bool FusedFPOp = (Opcode == SystemZ::WFMADB || Opcode == SystemZ::WFMASB ||
1224                     Opcode == SystemZ::WFMSDB || Opcode == SystemZ::WFMSSB);
1225   if (FusedFPOp) {
1226     Register DstReg = VRM->getPhys(MI.getOperand(0).getReg());
1227     Register AccReg = VRM->getPhys(MI.getOperand(3).getReg());
1228     if (OpNum == 0 || OpNum == 3 || DstReg != AccReg)
1229       return nullptr;
1230   }
1231 
1232   // Try to swap compare operands if possible.
1233   bool NeedsCommute = false;
1234   if ((MI.getOpcode() == SystemZ::CR || MI.getOpcode() == SystemZ::CGR ||
1235        MI.getOpcode() == SystemZ::CLR || MI.getOpcode() == SystemZ::CLGR ||
1236        MI.getOpcode() == SystemZ::WFCDB || MI.getOpcode() == SystemZ::WFCSB ||
1237        MI.getOpcode() == SystemZ::WFKDB || MI.getOpcode() == SystemZ::WFKSB) &&
1238       OpNum == 0 && prepareCompareSwapOperands(MI))
1239     NeedsCommute = true;
1240 
1241   bool CCOperands = false;
1242   if (MI.getOpcode() == SystemZ::LOCRMux || MI.getOpcode() == SystemZ::LOCGR ||
1243       MI.getOpcode() == SystemZ::SELRMux || MI.getOpcode() == SystemZ::SELGR) {
1244     assert(MI.getNumOperands() == 6 && NumOps == 5 &&
1245            "LOCR/SELR instruction operands corrupt?");
1246     NumOps -= 2;
1247     CCOperands = true;
1248   }
1249 
1250   // See if this is a 3-address instruction that is convertible to 2-address
1251   // and suitable for folding below.  Only try this with virtual registers
1252   // and a provided VRM (during regalloc).
1253   if (NumOps == 3 && SystemZ::getTargetMemOpcode(MemOpcode) != -1) {
1254     if (VRM == nullptr)
1255       return nullptr;
1256     else {
1257       Register DstReg = MI.getOperand(0).getReg();
1258       Register DstPhys =
1259           (DstReg.isVirtual() ? Register(VRM->getPhys(DstReg)) : DstReg);
1260       Register SrcReg = (OpNum == 2 ? MI.getOperand(1).getReg()
1261                                     : ((OpNum == 1 && MI.isCommutable())
1262                                            ? MI.getOperand(2).getReg()
1263                                            : Register()));
1264       if (DstPhys && !SystemZ::GRH32BitRegClass.contains(DstPhys) && SrcReg &&
1265           SrcReg.isVirtual() && DstPhys == VRM->getPhys(SrcReg))
1266         NeedsCommute = (OpNum == 1);
1267       else
1268         return nullptr;
1269     }
1270   }
1271 
1272   if ((OpNum == NumOps - 1) || NeedsCommute || FusedFPOp) {
1273     const MCInstrDesc &MemDesc = get(MemOpcode);
1274     uint64_t AccessBytes = SystemZII::getAccessSize(MemDesc.TSFlags);
1275     assert(AccessBytes != 0 && "Size of access should be known");
1276     assert(AccessBytes <= Size && "Access outside the frame index");
1277     uint64_t Offset = Size - AccessBytes;
1278     MachineInstrBuilder MIB = BuildMI(*InsertPt->getParent(), InsertPt,
1279                                       MI.getDebugLoc(), get(MemOpcode));
1280     if (MI.isCompare()) {
1281       assert(NumOps == 2 && "Expected 2 register operands for a compare.");
1282       MIB.add(MI.getOperand(NeedsCommute ? 1 : 0));
1283     }
1284     else if (FusedFPOp) {
1285       MIB.add(MI.getOperand(0));
1286       MIB.add(MI.getOperand(3));
1287       MIB.add(MI.getOperand(OpNum == 1 ? 2 : 1));
1288     }
1289     else {
1290       MIB.add(MI.getOperand(0));
1291       if (NeedsCommute)
1292         MIB.add(MI.getOperand(2));
1293       else
1294         for (unsigned I = 1; I < OpNum; ++I)
1295           MIB.add(MI.getOperand(I));
1296     }
1297     MIB.addFrameIndex(FrameIndex).addImm(Offset);
1298     if (MemDesc.TSFlags & SystemZII::HasIndex)
1299       MIB.addReg(0);
1300     if (CCOperands) {
1301       unsigned CCValid = MI.getOperand(NumOps).getImm();
1302       unsigned CCMask = MI.getOperand(NumOps + 1).getImm();
1303       MIB.addImm(CCValid);
1304       MIB.addImm(NeedsCommute ? CCMask ^ CCValid : CCMask);
1305     }
1306     if (MIB->definesRegister(SystemZ::CC) &&
1307         (!MI.definesRegister(SystemZ::CC) ||
1308          MI.registerDefIsDead(SystemZ::CC))) {
1309       MIB->addRegisterDead(SystemZ::CC, TRI);
1310       if (CCLiveRange)
1311         CCLiveRange->createDeadDef(MISlot, LIS->getVNInfoAllocator());
1312     }
1313     // Constrain the register classes if converted from a vector opcode. The
1314     // allocated regs are in an FP reg-class per previous check above.
1315     for (const MachineOperand &MO : MIB->operands())
1316       if (MO.isReg() && MO.getReg().isVirtual()) {
1317         Register Reg = MO.getReg();
1318         if (MRI.getRegClass(Reg) == &SystemZ::VR32BitRegClass)
1319           MRI.setRegClass(Reg, &SystemZ::FP32BitRegClass);
1320         else if (MRI.getRegClass(Reg) == &SystemZ::VR64BitRegClass)
1321           MRI.setRegClass(Reg, &SystemZ::FP64BitRegClass);
1322         else if (MRI.getRegClass(Reg) == &SystemZ::VR128BitRegClass)
1323           MRI.setRegClass(Reg, &SystemZ::VF128BitRegClass);
1324       }
1325 
1326     transferDeadCC(&MI, MIB);
1327     transferMIFlag(&MI, MIB, MachineInstr::NoSWrap);
1328     transferMIFlag(&MI, MIB, MachineInstr::NoFPExcept);
1329     return MIB;
1330   }
1331 
1332   return nullptr;
1333 }
1334 
1335 MachineInstr *SystemZInstrInfo::foldMemoryOperandImpl(
1336     MachineFunction &MF, MachineInstr &MI, ArrayRef<unsigned> Ops,
1337     MachineBasicBlock::iterator InsertPt, MachineInstr &LoadMI,
1338     LiveIntervals *LIS) const {
1339   return nullptr;
1340 }
1341 
1342 bool SystemZInstrInfo::expandPostRAPseudo(MachineInstr &MI) const {
1343   switch (MI.getOpcode()) {
1344   case SystemZ::L128:
1345     splitMove(MI, SystemZ::LG);
1346     return true;
1347 
1348   case SystemZ::ST128:
1349     splitMove(MI, SystemZ::STG);
1350     return true;
1351 
1352   case SystemZ::LX:
1353     splitMove(MI, SystemZ::LD);
1354     return true;
1355 
1356   case SystemZ::STX:
1357     splitMove(MI, SystemZ::STD);
1358     return true;
1359 
1360   case SystemZ::LBMux:
1361     expandRXYPseudo(MI, SystemZ::LB, SystemZ::LBH);
1362     return true;
1363 
1364   case SystemZ::LHMux:
1365     expandRXYPseudo(MI, SystemZ::LH, SystemZ::LHH);
1366     return true;
1367 
1368   case SystemZ::LLCRMux:
1369     expandZExtPseudo(MI, SystemZ::LLCR, 8);
1370     return true;
1371 
1372   case SystemZ::LLHRMux:
1373     expandZExtPseudo(MI, SystemZ::LLHR, 16);
1374     return true;
1375 
1376   case SystemZ::LLCMux:
1377     expandRXYPseudo(MI, SystemZ::LLC, SystemZ::LLCH);
1378     return true;
1379 
1380   case SystemZ::LLHMux:
1381     expandRXYPseudo(MI, SystemZ::LLH, SystemZ::LLHH);
1382     return true;
1383 
1384   case SystemZ::LMux:
1385     expandRXYPseudo(MI, SystemZ::L, SystemZ::LFH);
1386     return true;
1387 
1388   case SystemZ::LOCMux:
1389     expandLOCPseudo(MI, SystemZ::LOC, SystemZ::LOCFH);
1390     return true;
1391 
1392   case SystemZ::LOCHIMux:
1393     expandLOCPseudo(MI, SystemZ::LOCHI, SystemZ::LOCHHI);
1394     return true;
1395 
1396   case SystemZ::STCMux:
1397     expandRXYPseudo(MI, SystemZ::STC, SystemZ::STCH);
1398     return true;
1399 
1400   case SystemZ::STHMux:
1401     expandRXYPseudo(MI, SystemZ::STH, SystemZ::STHH);
1402     return true;
1403 
1404   case SystemZ::STMux:
1405     expandRXYPseudo(MI, SystemZ::ST, SystemZ::STFH);
1406     return true;
1407 
1408   case SystemZ::STOCMux:
1409     expandLOCPseudo(MI, SystemZ::STOC, SystemZ::STOCFH);
1410     return true;
1411 
1412   case SystemZ::LHIMux:
1413     expandRIPseudo(MI, SystemZ::LHI, SystemZ::IIHF, true);
1414     return true;
1415 
1416   case SystemZ::IIFMux:
1417     expandRIPseudo(MI, SystemZ::IILF, SystemZ::IIHF, false);
1418     return true;
1419 
1420   case SystemZ::IILMux:
1421     expandRIPseudo(MI, SystemZ::IILL, SystemZ::IIHL, false);
1422     return true;
1423 
1424   case SystemZ::IIHMux:
1425     expandRIPseudo(MI, SystemZ::IILH, SystemZ::IIHH, false);
1426     return true;
1427 
1428   case SystemZ::NIFMux:
1429     expandRIPseudo(MI, SystemZ::NILF, SystemZ::NIHF, false);
1430     return true;
1431 
1432   case SystemZ::NILMux:
1433     expandRIPseudo(MI, SystemZ::NILL, SystemZ::NIHL, false);
1434     return true;
1435 
1436   case SystemZ::NIHMux:
1437     expandRIPseudo(MI, SystemZ::NILH, SystemZ::NIHH, false);
1438     return true;
1439 
1440   case SystemZ::OIFMux:
1441     expandRIPseudo(MI, SystemZ::OILF, SystemZ::OIHF, false);
1442     return true;
1443 
1444   case SystemZ::OILMux:
1445     expandRIPseudo(MI, SystemZ::OILL, SystemZ::OIHL, false);
1446     return true;
1447 
1448   case SystemZ::OIHMux:
1449     expandRIPseudo(MI, SystemZ::OILH, SystemZ::OIHH, false);
1450     return true;
1451 
1452   case SystemZ::XIFMux:
1453     expandRIPseudo(MI, SystemZ::XILF, SystemZ::XIHF, false);
1454     return true;
1455 
1456   case SystemZ::TMLMux:
1457     expandRIPseudo(MI, SystemZ::TMLL, SystemZ::TMHL, false);
1458     return true;
1459 
1460   case SystemZ::TMHMux:
1461     expandRIPseudo(MI, SystemZ::TMLH, SystemZ::TMHH, false);
1462     return true;
1463 
1464   case SystemZ::AHIMux:
1465     expandRIPseudo(MI, SystemZ::AHI, SystemZ::AIH, false);
1466     return true;
1467 
1468   case SystemZ::AHIMuxK:
1469     expandRIEPseudo(MI, SystemZ::AHI, SystemZ::AHIK, SystemZ::AIH);
1470     return true;
1471 
1472   case SystemZ::AFIMux:
1473     expandRIPseudo(MI, SystemZ::AFI, SystemZ::AIH, false);
1474     return true;
1475 
1476   case SystemZ::CHIMux:
1477     expandRIPseudo(MI, SystemZ::CHI, SystemZ::CIH, false);
1478     return true;
1479 
1480   case SystemZ::CFIMux:
1481     expandRIPseudo(MI, SystemZ::CFI, SystemZ::CIH, false);
1482     return true;
1483 
1484   case SystemZ::CLFIMux:
1485     expandRIPseudo(MI, SystemZ::CLFI, SystemZ::CLIH, false);
1486     return true;
1487 
1488   case SystemZ::CMux:
1489     expandRXYPseudo(MI, SystemZ::C, SystemZ::CHF);
1490     return true;
1491 
1492   case SystemZ::CLMux:
1493     expandRXYPseudo(MI, SystemZ::CL, SystemZ::CLHF);
1494     return true;
1495 
1496   case SystemZ::RISBMux: {
1497     bool DestIsHigh = SystemZ::isHighReg(MI.getOperand(0).getReg());
1498     bool SrcIsHigh = SystemZ::isHighReg(MI.getOperand(2).getReg());
1499     if (SrcIsHigh == DestIsHigh)
1500       MI.setDesc(get(DestIsHigh ? SystemZ::RISBHH : SystemZ::RISBLL));
1501     else {
1502       MI.setDesc(get(DestIsHigh ? SystemZ::RISBHL : SystemZ::RISBLH));
1503       MI.getOperand(5).setImm(MI.getOperand(5).getImm() ^ 32);
1504     }
1505     return true;
1506   }
1507 
1508   case SystemZ::ADJDYNALLOC:
1509     splitAdjDynAlloc(MI);
1510     return true;
1511 
1512   case TargetOpcode::LOAD_STACK_GUARD:
1513     expandLoadStackGuard(&MI);
1514     return true;
1515 
1516   default:
1517     return false;
1518   }
1519 }
1520 
1521 unsigned SystemZInstrInfo::getInstSizeInBytes(const MachineInstr &MI) const {
1522   if (MI.isInlineAsm()) {
1523     const MachineFunction *MF = MI.getParent()->getParent();
1524     const char *AsmStr = MI.getOperand(0).getSymbolName();
1525     return getInlineAsmLength(AsmStr, *MF->getTarget().getMCAsmInfo());
1526   }
1527   else if (MI.getOpcode() == SystemZ::PATCHPOINT)
1528     return PatchPointOpers(&MI).getNumPatchBytes();
1529   else if (MI.getOpcode() == SystemZ::STACKMAP)
1530     return MI.getOperand(1).getImm();
1531   else if (MI.getOpcode() == SystemZ::FENTRY_CALL)
1532     return 6;
1533 
1534   return MI.getDesc().getSize();
1535 }
1536 
1537 SystemZII::Branch
1538 SystemZInstrInfo::getBranchInfo(const MachineInstr &MI) const {
1539   switch (MI.getOpcode()) {
1540   case SystemZ::BR:
1541   case SystemZ::BI:
1542   case SystemZ::J:
1543   case SystemZ::JG:
1544     return SystemZII::Branch(SystemZII::BranchNormal, SystemZ::CCMASK_ANY,
1545                              SystemZ::CCMASK_ANY, &MI.getOperand(0));
1546 
1547   case SystemZ::BRC:
1548   case SystemZ::BRCL:
1549     return SystemZII::Branch(SystemZII::BranchNormal, MI.getOperand(0).getImm(),
1550                              MI.getOperand(1).getImm(), &MI.getOperand(2));
1551 
1552   case SystemZ::BRCT:
1553   case SystemZ::BRCTH:
1554     return SystemZII::Branch(SystemZII::BranchCT, SystemZ::CCMASK_ICMP,
1555                              SystemZ::CCMASK_CMP_NE, &MI.getOperand(2));
1556 
1557   case SystemZ::BRCTG:
1558     return SystemZII::Branch(SystemZII::BranchCTG, SystemZ::CCMASK_ICMP,
1559                              SystemZ::CCMASK_CMP_NE, &MI.getOperand(2));
1560 
1561   case SystemZ::CIJ:
1562   case SystemZ::CRJ:
1563     return SystemZII::Branch(SystemZII::BranchC, SystemZ::CCMASK_ICMP,
1564                              MI.getOperand(2).getImm(), &MI.getOperand(3));
1565 
1566   case SystemZ::CLIJ:
1567   case SystemZ::CLRJ:
1568     return SystemZII::Branch(SystemZII::BranchCL, SystemZ::CCMASK_ICMP,
1569                              MI.getOperand(2).getImm(), &MI.getOperand(3));
1570 
1571   case SystemZ::CGIJ:
1572   case SystemZ::CGRJ:
1573     return SystemZII::Branch(SystemZII::BranchCG, SystemZ::CCMASK_ICMP,
1574                              MI.getOperand(2).getImm(), &MI.getOperand(3));
1575 
1576   case SystemZ::CLGIJ:
1577   case SystemZ::CLGRJ:
1578     return SystemZII::Branch(SystemZII::BranchCLG, SystemZ::CCMASK_ICMP,
1579                              MI.getOperand(2).getImm(), &MI.getOperand(3));
1580 
1581   case SystemZ::INLINEASM_BR:
1582     // Don't try to analyze asm goto, so pass nullptr as branch target argument.
1583     return SystemZII::Branch(SystemZII::AsmGoto, 0, 0, nullptr);
1584 
1585   default:
1586     llvm_unreachable("Unrecognized branch opcode");
1587   }
1588 }
1589 
1590 void SystemZInstrInfo::getLoadStoreOpcodes(const TargetRegisterClass *RC,
1591                                            unsigned &LoadOpcode,
1592                                            unsigned &StoreOpcode) const {
1593   if (RC == &SystemZ::GR32BitRegClass || RC == &SystemZ::ADDR32BitRegClass) {
1594     LoadOpcode = SystemZ::L;
1595     StoreOpcode = SystemZ::ST;
1596   } else if (RC == &SystemZ::GRH32BitRegClass) {
1597     LoadOpcode = SystemZ::LFH;
1598     StoreOpcode = SystemZ::STFH;
1599   } else if (RC == &SystemZ::GRX32BitRegClass) {
1600     LoadOpcode = SystemZ::LMux;
1601     StoreOpcode = SystemZ::STMux;
1602   } else if (RC == &SystemZ::GR64BitRegClass ||
1603              RC == &SystemZ::ADDR64BitRegClass) {
1604     LoadOpcode = SystemZ::LG;
1605     StoreOpcode = SystemZ::STG;
1606   } else if (RC == &SystemZ::GR128BitRegClass ||
1607              RC == &SystemZ::ADDR128BitRegClass) {
1608     LoadOpcode = SystemZ::L128;
1609     StoreOpcode = SystemZ::ST128;
1610   } else if (RC == &SystemZ::FP32BitRegClass) {
1611     LoadOpcode = SystemZ::LE;
1612     StoreOpcode = SystemZ::STE;
1613   } else if (RC == &SystemZ::FP64BitRegClass) {
1614     LoadOpcode = SystemZ::LD;
1615     StoreOpcode = SystemZ::STD;
1616   } else if (RC == &SystemZ::FP128BitRegClass) {
1617     LoadOpcode = SystemZ::LX;
1618     StoreOpcode = SystemZ::STX;
1619   } else if (RC == &SystemZ::VR32BitRegClass) {
1620     LoadOpcode = SystemZ::VL32;
1621     StoreOpcode = SystemZ::VST32;
1622   } else if (RC == &SystemZ::VR64BitRegClass) {
1623     LoadOpcode = SystemZ::VL64;
1624     StoreOpcode = SystemZ::VST64;
1625   } else if (RC == &SystemZ::VF128BitRegClass ||
1626              RC == &SystemZ::VR128BitRegClass) {
1627     LoadOpcode = SystemZ::VL;
1628     StoreOpcode = SystemZ::VST;
1629   } else
1630     llvm_unreachable("Unsupported regclass to load or store");
1631 }
1632 
1633 unsigned SystemZInstrInfo::getOpcodeForOffset(unsigned Opcode,
1634                                               int64_t Offset,
1635                                               const MachineInstr *MI) const {
1636   const MCInstrDesc &MCID = get(Opcode);
1637   int64_t Offset2 = (MCID.TSFlags & SystemZII::Is128Bit ? Offset + 8 : Offset);
1638   if (isUInt<12>(Offset) && isUInt<12>(Offset2)) {
1639     // Get the instruction to use for unsigned 12-bit displacements.
1640     int Disp12Opcode = SystemZ::getDisp12Opcode(Opcode);
1641     if (Disp12Opcode >= 0)
1642       return Disp12Opcode;
1643 
1644     // All address-related instructions can use unsigned 12-bit
1645     // displacements.
1646     return Opcode;
1647   }
1648   if (isInt<20>(Offset) && isInt<20>(Offset2)) {
1649     // Get the instruction to use for signed 20-bit displacements.
1650     int Disp20Opcode = SystemZ::getDisp20Opcode(Opcode);
1651     if (Disp20Opcode >= 0)
1652       return Disp20Opcode;
1653 
1654     // Check whether Opcode allows signed 20-bit displacements.
1655     if (MCID.TSFlags & SystemZII::Has20BitOffset)
1656       return Opcode;
1657 
1658     // If a VR32/VR64 reg ended up in an FP register, use the FP opcode.
1659     if (MI && MI->getOperand(0).isReg()) {
1660       Register Reg = MI->getOperand(0).getReg();
1661       if (Reg.isPhysical() && SystemZMC::getFirstReg(Reg) < 16) {
1662         switch (Opcode) {
1663         case SystemZ::VL32:
1664           return SystemZ::LEY;
1665         case SystemZ::VST32:
1666           return SystemZ::STEY;
1667         case SystemZ::VL64:
1668           return SystemZ::LDY;
1669         case SystemZ::VST64:
1670           return SystemZ::STDY;
1671         default: break;
1672         }
1673       }
1674     }
1675   }
1676   return 0;
1677 }
1678 
1679 bool SystemZInstrInfo::hasDisplacementPairInsn(unsigned Opcode) const {
1680   const MCInstrDesc &MCID = get(Opcode);
1681   if (MCID.TSFlags & SystemZII::Has20BitOffset)
1682     return SystemZ::getDisp12Opcode(Opcode) >= 0;
1683   return SystemZ::getDisp20Opcode(Opcode) >= 0;
1684 }
1685 
1686 unsigned SystemZInstrInfo::getLoadAndTest(unsigned Opcode) const {
1687   switch (Opcode) {
1688   case SystemZ::L:      return SystemZ::LT;
1689   case SystemZ::LY:     return SystemZ::LT;
1690   case SystemZ::LG:     return SystemZ::LTG;
1691   case SystemZ::LGF:    return SystemZ::LTGF;
1692   case SystemZ::LR:     return SystemZ::LTR;
1693   case SystemZ::LGFR:   return SystemZ::LTGFR;
1694   case SystemZ::LGR:    return SystemZ::LTGR;
1695   case SystemZ::LER:    return SystemZ::LTEBR;
1696   case SystemZ::LDR:    return SystemZ::LTDBR;
1697   case SystemZ::LXR:    return SystemZ::LTXBR;
1698   case SystemZ::LCDFR:  return SystemZ::LCDBR;
1699   case SystemZ::LPDFR:  return SystemZ::LPDBR;
1700   case SystemZ::LNDFR:  return SystemZ::LNDBR;
1701   case SystemZ::LCDFR_32:  return SystemZ::LCEBR;
1702   case SystemZ::LPDFR_32:  return SystemZ::LPEBR;
1703   case SystemZ::LNDFR_32:  return SystemZ::LNEBR;
1704   // On zEC12 we prefer to use RISBGN.  But if there is a chance to
1705   // actually use the condition code, we may turn it back into RISGB.
1706   // Note that RISBG is not really a "load-and-test" instruction,
1707   // but sets the same condition code values, so is OK to use here.
1708   case SystemZ::RISBGN: return SystemZ::RISBG;
1709   default:              return 0;
1710   }
1711 }
1712 
1713 bool SystemZInstrInfo::isRxSBGMask(uint64_t Mask, unsigned BitSize,
1714                                    unsigned &Start, unsigned &End) const {
1715   // Reject trivial all-zero masks.
1716   Mask &= allOnes(BitSize);
1717   if (Mask == 0)
1718     return false;
1719 
1720   // Handle the 1+0+ or 0+1+0* cases.  Start then specifies the index of
1721   // the msb and End specifies the index of the lsb.
1722   unsigned LSB, Length;
1723   if (isShiftedMask_64(Mask, LSB, Length)) {
1724     Start = 63 - (LSB + Length - 1);
1725     End = 63 - LSB;
1726     return true;
1727   }
1728 
1729   // Handle the wrap-around 1+0+1+ cases.  Start then specifies the msb
1730   // of the low 1s and End specifies the lsb of the high 1s.
1731   if (isShiftedMask_64(Mask ^ allOnes(BitSize), LSB, Length)) {
1732     assert(LSB > 0 && "Bottom bit must be set");
1733     assert(LSB + Length < BitSize && "Top bit must be set");
1734     Start = 63 - (LSB - 1);
1735     End = 63 - (LSB + Length);
1736     return true;
1737   }
1738 
1739   return false;
1740 }
1741 
1742 unsigned SystemZInstrInfo::getFusedCompare(unsigned Opcode,
1743                                            SystemZII::FusedCompareType Type,
1744                                            const MachineInstr *MI) const {
1745   switch (Opcode) {
1746   case SystemZ::CHI:
1747   case SystemZ::CGHI:
1748     if (!(MI && isInt<8>(MI->getOperand(1).getImm())))
1749       return 0;
1750     break;
1751   case SystemZ::CLFI:
1752   case SystemZ::CLGFI:
1753     if (!(MI && isUInt<8>(MI->getOperand(1).getImm())))
1754       return 0;
1755     break;
1756   case SystemZ::CL:
1757   case SystemZ::CLG:
1758     if (!STI.hasMiscellaneousExtensions())
1759       return 0;
1760     if (!(MI && MI->getOperand(3).getReg() == 0))
1761       return 0;
1762     break;
1763   }
1764   switch (Type) {
1765   case SystemZII::CompareAndBranch:
1766     switch (Opcode) {
1767     case SystemZ::CR:
1768       return SystemZ::CRJ;
1769     case SystemZ::CGR:
1770       return SystemZ::CGRJ;
1771     case SystemZ::CHI:
1772       return SystemZ::CIJ;
1773     case SystemZ::CGHI:
1774       return SystemZ::CGIJ;
1775     case SystemZ::CLR:
1776       return SystemZ::CLRJ;
1777     case SystemZ::CLGR:
1778       return SystemZ::CLGRJ;
1779     case SystemZ::CLFI:
1780       return SystemZ::CLIJ;
1781     case SystemZ::CLGFI:
1782       return SystemZ::CLGIJ;
1783     default:
1784       return 0;
1785     }
1786   case SystemZII::CompareAndReturn:
1787     switch (Opcode) {
1788     case SystemZ::CR:
1789       return SystemZ::CRBReturn;
1790     case SystemZ::CGR:
1791       return SystemZ::CGRBReturn;
1792     case SystemZ::CHI:
1793       return SystemZ::CIBReturn;
1794     case SystemZ::CGHI:
1795       return SystemZ::CGIBReturn;
1796     case SystemZ::CLR:
1797       return SystemZ::CLRBReturn;
1798     case SystemZ::CLGR:
1799       return SystemZ::CLGRBReturn;
1800     case SystemZ::CLFI:
1801       return SystemZ::CLIBReturn;
1802     case SystemZ::CLGFI:
1803       return SystemZ::CLGIBReturn;
1804     default:
1805       return 0;
1806     }
1807   case SystemZII::CompareAndSibcall:
1808     switch (Opcode) {
1809     case SystemZ::CR:
1810       return SystemZ::CRBCall;
1811     case SystemZ::CGR:
1812       return SystemZ::CGRBCall;
1813     case SystemZ::CHI:
1814       return SystemZ::CIBCall;
1815     case SystemZ::CGHI:
1816       return SystemZ::CGIBCall;
1817     case SystemZ::CLR:
1818       return SystemZ::CLRBCall;
1819     case SystemZ::CLGR:
1820       return SystemZ::CLGRBCall;
1821     case SystemZ::CLFI:
1822       return SystemZ::CLIBCall;
1823     case SystemZ::CLGFI:
1824       return SystemZ::CLGIBCall;
1825     default:
1826       return 0;
1827     }
1828   case SystemZII::CompareAndTrap:
1829     switch (Opcode) {
1830     case SystemZ::CR:
1831       return SystemZ::CRT;
1832     case SystemZ::CGR:
1833       return SystemZ::CGRT;
1834     case SystemZ::CHI:
1835       return SystemZ::CIT;
1836     case SystemZ::CGHI:
1837       return SystemZ::CGIT;
1838     case SystemZ::CLR:
1839       return SystemZ::CLRT;
1840     case SystemZ::CLGR:
1841       return SystemZ::CLGRT;
1842     case SystemZ::CLFI:
1843       return SystemZ::CLFIT;
1844     case SystemZ::CLGFI:
1845       return SystemZ::CLGIT;
1846     case SystemZ::CL:
1847       return SystemZ::CLT;
1848     case SystemZ::CLG:
1849       return SystemZ::CLGT;
1850     default:
1851       return 0;
1852     }
1853   }
1854   return 0;
1855 }
1856 
1857 bool SystemZInstrInfo::
1858 prepareCompareSwapOperands(MachineBasicBlock::iterator const MBBI) const {
1859   assert(MBBI->isCompare() && MBBI->getOperand(0).isReg() &&
1860          MBBI->getOperand(1).isReg() && !MBBI->mayLoad() &&
1861          "Not a compare reg/reg.");
1862 
1863   MachineBasicBlock *MBB = MBBI->getParent();
1864   bool CCLive = true;
1865   SmallVector<MachineInstr *, 4> CCUsers;
1866   for (MachineInstr &MI : llvm::make_range(std::next(MBBI), MBB->end())) {
1867     if (MI.readsRegister(SystemZ::CC)) {
1868       unsigned Flags = MI.getDesc().TSFlags;
1869       if ((Flags & SystemZII::CCMaskFirst) || (Flags & SystemZII::CCMaskLast))
1870         CCUsers.push_back(&MI);
1871       else
1872         return false;
1873     }
1874     if (MI.definesRegister(SystemZ::CC)) {
1875       CCLive = false;
1876       break;
1877     }
1878   }
1879   if (CCLive) {
1880     LivePhysRegs LiveRegs(*MBB->getParent()->getSubtarget().getRegisterInfo());
1881     LiveRegs.addLiveOuts(*MBB);
1882     if (LiveRegs.contains(SystemZ::CC))
1883       return false;
1884   }
1885 
1886   // Update all CC users.
1887   for (unsigned Idx = 0; Idx < CCUsers.size(); ++Idx) {
1888     unsigned Flags = CCUsers[Idx]->getDesc().TSFlags;
1889     unsigned FirstOpNum = ((Flags & SystemZII::CCMaskFirst) ?
1890                            0 : CCUsers[Idx]->getNumExplicitOperands() - 2);
1891     MachineOperand &CCMaskMO = CCUsers[Idx]->getOperand(FirstOpNum + 1);
1892     unsigned NewCCMask = SystemZ::reverseCCMask(CCMaskMO.getImm());
1893     CCMaskMO.setImm(NewCCMask);
1894   }
1895 
1896   return true;
1897 }
1898 
1899 unsigned SystemZ::reverseCCMask(unsigned CCMask) {
1900   return ((CCMask & SystemZ::CCMASK_CMP_EQ) |
1901           (CCMask & SystemZ::CCMASK_CMP_GT ? SystemZ::CCMASK_CMP_LT : 0) |
1902           (CCMask & SystemZ::CCMASK_CMP_LT ? SystemZ::CCMASK_CMP_GT : 0) |
1903           (CCMask & SystemZ::CCMASK_CMP_UO));
1904 }
1905 
1906 MachineBasicBlock *SystemZ::emitBlockAfter(MachineBasicBlock *MBB) {
1907   MachineFunction &MF = *MBB->getParent();
1908   MachineBasicBlock *NewMBB = MF.CreateMachineBasicBlock(MBB->getBasicBlock());
1909   MF.insert(std::next(MachineFunction::iterator(MBB)), NewMBB);
1910   return NewMBB;
1911 }
1912 
1913 MachineBasicBlock *SystemZ::splitBlockAfter(MachineBasicBlock::iterator MI,
1914                                             MachineBasicBlock *MBB) {
1915   MachineBasicBlock *NewMBB = emitBlockAfter(MBB);
1916   NewMBB->splice(NewMBB->begin(), MBB,
1917                  std::next(MachineBasicBlock::iterator(MI)), MBB->end());
1918   NewMBB->transferSuccessorsAndUpdatePHIs(MBB);
1919   return NewMBB;
1920 }
1921 
1922 MachineBasicBlock *SystemZ::splitBlockBefore(MachineBasicBlock::iterator MI,
1923                                              MachineBasicBlock *MBB) {
1924   MachineBasicBlock *NewMBB = emitBlockAfter(MBB);
1925   NewMBB->splice(NewMBB->begin(), MBB, MI, MBB->end());
1926   NewMBB->transferSuccessorsAndUpdatePHIs(MBB);
1927   return NewMBB;
1928 }
1929 
1930 unsigned SystemZInstrInfo::getLoadAndTrap(unsigned Opcode) const {
1931   if (!STI.hasLoadAndTrap())
1932     return 0;
1933   switch (Opcode) {
1934   case SystemZ::L:
1935   case SystemZ::LY:
1936     return SystemZ::LAT;
1937   case SystemZ::LG:
1938     return SystemZ::LGAT;
1939   case SystemZ::LFH:
1940     return SystemZ::LFHAT;
1941   case SystemZ::LLGF:
1942     return SystemZ::LLGFAT;
1943   case SystemZ::LLGT:
1944     return SystemZ::LLGTAT;
1945   }
1946   return 0;
1947 }
1948 
1949 void SystemZInstrInfo::loadImmediate(MachineBasicBlock &MBB,
1950                                      MachineBasicBlock::iterator MBBI,
1951                                      unsigned Reg, uint64_t Value) const {
1952   DebugLoc DL = MBBI != MBB.end() ? MBBI->getDebugLoc() : DebugLoc();
1953   unsigned Opcode = 0;
1954   if (isInt<16>(Value))
1955     Opcode = SystemZ::LGHI;
1956   else if (SystemZ::isImmLL(Value))
1957     Opcode = SystemZ::LLILL;
1958   else if (SystemZ::isImmLH(Value)) {
1959     Opcode = SystemZ::LLILH;
1960     Value >>= 16;
1961   }
1962   else if (isInt<32>(Value))
1963     Opcode = SystemZ::LGFI;
1964   if (Opcode) {
1965     BuildMI(MBB, MBBI, DL, get(Opcode), Reg).addImm(Value);
1966     return;
1967   }
1968 
1969   MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo();
1970   assert (MRI.isSSA() &&  "Huge values only handled before reg-alloc .");
1971   Register Reg0 = MRI.createVirtualRegister(&SystemZ::GR64BitRegClass);
1972   Register Reg1 = MRI.createVirtualRegister(&SystemZ::GR64BitRegClass);
1973   BuildMI(MBB, MBBI, DL, get(SystemZ::IMPLICIT_DEF), Reg0);
1974   BuildMI(MBB, MBBI, DL, get(SystemZ::IIHF64), Reg1)
1975     .addReg(Reg0).addImm(Value >> 32);
1976   BuildMI(MBB, MBBI, DL, get(SystemZ::IILF64), Reg)
1977     .addReg(Reg1).addImm(Value & ((uint64_t(1) << 32) - 1));
1978 }
1979 
1980 bool SystemZInstrInfo::verifyInstruction(const MachineInstr &MI,
1981                                          StringRef &ErrInfo) const {
1982   const MCInstrDesc &MCID = MI.getDesc();
1983   for (unsigned I = 0, E = MI.getNumOperands(); I != E; ++I) {
1984     if (I >= MCID.getNumOperands())
1985       break;
1986     const MachineOperand &Op = MI.getOperand(I);
1987     const MCOperandInfo &MCOI = MCID.operands()[I];
1988     // Addressing modes have register and immediate operands. Op should be a
1989     // register (or frame index) operand if MCOI.RegClass contains a valid
1990     // register class, or an immediate otherwise.
1991     if (MCOI.OperandType == MCOI::OPERAND_MEMORY &&
1992         ((MCOI.RegClass != -1 && !Op.isReg() && !Op.isFI()) ||
1993          (MCOI.RegClass == -1 && !Op.isImm()))) {
1994       ErrInfo = "Addressing mode operands corrupt!";
1995       return false;
1996     }
1997   }
1998 
1999   return true;
2000 }
2001 
2002 bool SystemZInstrInfo::
2003 areMemAccessesTriviallyDisjoint(const MachineInstr &MIa,
2004                                 const MachineInstr &MIb) const {
2005 
2006   if (!MIa.hasOneMemOperand() || !MIb.hasOneMemOperand())
2007     return false;
2008 
2009   // If mem-operands show that the same address Value is used by both
2010   // instructions, check for non-overlapping offsets and widths. Not
2011   // sure if a register based analysis would be an improvement...
2012 
2013   MachineMemOperand *MMOa = *MIa.memoperands_begin();
2014   MachineMemOperand *MMOb = *MIb.memoperands_begin();
2015   const Value *VALa = MMOa->getValue();
2016   const Value *VALb = MMOb->getValue();
2017   bool SameVal = (VALa && VALb && (VALa == VALb));
2018   if (!SameVal) {
2019     const PseudoSourceValue *PSVa = MMOa->getPseudoValue();
2020     const PseudoSourceValue *PSVb = MMOb->getPseudoValue();
2021     if (PSVa && PSVb && (PSVa == PSVb))
2022       SameVal = true;
2023   }
2024   if (SameVal) {
2025     int OffsetA = MMOa->getOffset(), OffsetB = MMOb->getOffset();
2026     int WidthA = MMOa->getSize(), WidthB = MMOb->getSize();
2027     int LowOffset = OffsetA < OffsetB ? OffsetA : OffsetB;
2028     int HighOffset = OffsetA < OffsetB ? OffsetB : OffsetA;
2029     int LowWidth = (LowOffset == OffsetA) ? WidthA : WidthB;
2030     if (LowOffset + LowWidth <= HighOffset)
2031       return true;
2032   }
2033 
2034   return false;
2035 }
2036