1//===-- SystemZInstrInfo.td - General SystemZ instructions ----*- tblgen-*-===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8
9def IsTargetXPLINK64      : Predicate<"Subtarget->isTargetXPLINK64()">;
10def IsTargetELF           : Predicate<"Subtarget->isTargetELF()">;
11
12//===----------------------------------------------------------------------===//
13// Stack allocation
14//===----------------------------------------------------------------------===//
15
16// The callseq_start node requires the hasSideEffects flag, even though these
17// instructions are noops on SystemZ.
18let hasNoSchedulingInfo = 1, hasSideEffects = 1 in {
19  def ADJCALLSTACKDOWN : Pseudo<(outs), (ins i64imm:$amt1, i64imm:$amt2),
20                                [(callseq_start timm:$amt1, timm:$amt2)]>;
21  def ADJCALLSTACKUP   : Pseudo<(outs), (ins i64imm:$amt1, i64imm:$amt2),
22                                [(callseq_end timm:$amt1, timm:$amt2)]>;
23}
24
25// Takes as input the value of the stack pointer after a dynamic allocation
26// has been made.  Sets the output to the address of the dynamically-
27// allocated area itself, skipping the outgoing arguments.
28//
29// This expands to an LA or LAY instruction.  We restrict the offset
30// to the range of LA and keep the LAY range in reserve for when
31// the size of the outgoing arguments is added.
32def ADJDYNALLOC : Pseudo<(outs GR64:$dst), (ins dynalloc12only:$src),
33                         [(set GR64:$dst, dynalloc12only:$src)]>;
34
35let Defs = [R15D, CC], Uses = [R15D], hasNoSchedulingInfo = 1,
36    usesCustomInserter = 1 in
37  def PROBED_ALLOCA : Pseudo<(outs GR64:$dst),
38                             (ins GR64:$oldSP, GR64:$space),
39           [(set GR64:$dst, (z_probed_alloca GR64:$oldSP, GR64:$space))]>;
40
41let Defs = [R1D, R15D, CC], Uses = [R15D], hasNoSchedulingInfo = 1,
42    hasSideEffects = 1 in
43  def PROBED_STACKALLOC : Pseudo<(outs), (ins i64imm:$stacksize), []>;
44
45let Defs = [R3D, CC], Uses = [R3D, R4D], hasNoSchedulingInfo = 1,
46    hasSideEffects = 1 in
47  def XPLINK_STACKALLOC : Pseudo<(outs), (ins), []>;
48
49//===----------------------------------------------------------------------===//
50// Branch instructions
51//===----------------------------------------------------------------------===//
52
53// Conditional branches.
54let isBranch = 1, isTerminator = 1, Uses = [CC] in {
55  // It's easier for LLVM to handle these branches in their raw BRC/BRCL form
56  // with the condition-code mask being the first operand.  It seems friendlier
57  // to use mnemonic forms like JE and JLH when writing out the assembly though.
58  let isCodeGenOnly = 1 in {
59    // An assembler extended mnemonic for BRC.
60    def BRC  : CondBranchRI <"j#",  0xA74, z_br_ccmask>;
61    // An assembler extended mnemonic for BRCL.  (The extension is "G"
62    // rather than "L" because "JL" is "Jump if Less".)
63    def BRCL : CondBranchRIL<"jg#", 0xC04>;
64    let isIndirectBranch = 1 in {
65      def BC  : CondBranchRX<"b#",  0x47>;
66      def BCR : CondBranchRR<"b#r", 0x07>;
67      def BIC : CondBranchRXY<"bi#", 0xe347>,
68                Requires<[FeatureMiscellaneousExtensions2]>;
69    }
70  }
71
72  // Allow using the raw forms directly from the assembler (and occasional
73  // special code generation needs) as well.
74  def BRCAsm  : AsmCondBranchRI <"brc",  0xA74>;
75  def BRCLAsm : AsmCondBranchRIL<"brcl", 0xC04>;
76  let isIndirectBranch = 1 in {
77    def BCAsm  : AsmCondBranchRX<"bc",  0x47>;
78    def BCRAsm : AsmCondBranchRR<"bcr", 0x07>;
79    def BICAsm : AsmCondBranchRXY<"bic", 0xe347>,
80                 Requires<[FeatureMiscellaneousExtensions2]>;
81  }
82
83  // Define AsmParser extended mnemonics for each general condition-code mask
84  // (integer or floating-point)
85  foreach V = [ "E", "NE", "H", "NH", "L", "NL", "HE", "NHE", "LE", "NLE",
86                "Z", "NZ", "P", "NP", "M", "NM", "LH", "NLH", "O", "NO" ] in {
87    def JAsm#V  : FixedCondBranchRI <CV<V>, "j#",  0xA74>;
88    def JGAsm#V : FixedCondBranchRIL<CV<V>, "j{g|l}#", 0xC04>;
89    let isIndirectBranch = 1 in {
90      def BAsm#V  : FixedCondBranchRX <CV<V>, "b#",  0x47>;
91      def BRAsm#V : FixedCondBranchRR <CV<V>, "b#r", 0x07>;
92      def BIAsm#V : FixedCondBranchRXY<CV<V>, "bi#", 0xe347>,
93                    Requires<[FeatureMiscellaneousExtensions2]>;
94    }
95  }
96}
97
98// Unconditional branches.  These are in fact simply variants of the
99// conditional branches with the condition mask set to "always".
100let isBranch = 1, isTerminator = 1, isBarrier = 1 in {
101  def J  : FixedCondBranchRI <CondAlways, "j",  0xA74, br>;
102  def JG : FixedCondBranchRIL<CondAlways, "j{g|lu}", 0xC04>;
103  let isIndirectBranch = 1 in {
104    def B  : FixedCondBranchRX<CondAlways, "b",  0x47>;
105    def BR : FixedCondBranchRR<CondAlways, "br", 0x07, brind>;
106    def BI : FixedCondBranchRXY<CondAlways, "bi", 0xe347, brind>,
107             Requires<[FeatureMiscellaneousExtensions2]>;
108  }
109}
110
111// NOPs.  These are again variants of the conditional branches, with the
112// condition mask set to "never".  NOP_bare can't be an InstAlias since it
113// would need R0D hard coded which is not part of ADDR64BitRegClass.
114def NOP  : InstAlias<"nop\t$XBD", (BCAsm 0, bdxaddr12only:$XBD), 0>;
115let isAsmParserOnly = 1, hasNoSchedulingInfo = 1, M1 = 0, XBD2 = 0 in
116  def NOP_bare  : InstRXb<0x47,(outs), (ins), "nop", []>;
117def NOPR : InstAlias<"nopr\t$R", (BCRAsm 0, GR64:$R), 0>;
118def NOPR_bare : InstAlias<"nopr", (BCRAsm 0, R0D), 0>;
119
120// An alias of BRC 0, label
121def JNOP : InstAlias<"jnop\t$RI2", (BRCAsm 0, brtarget16:$RI2), 0>;
122
123// An alias of BRCL 0, label
124// jgnop on att ; jlnop on hlasm
125def JGNOP : InstAlias<"{jgnop|jlnop}\t$RI2", (BRCLAsm 0, brtarget32:$RI2), 0>;
126
127// Fused compare-and-branch instructions.
128//
129// These instructions do not use or clobber the condition codes.
130// We nevertheless pretend that the relative compare-and-branch
131// instructions clobber CC, so that we can lower them to separate
132// comparisons and BRCLs if the branch ends up being out of range.
133let isBranch = 1, isTerminator = 1 in {
134  // As for normal branches, we handle these instructions internally in
135  // their raw CRJ-like form, but use assembly macros like CRJE when writing
136  // them out.  Using the *Pair multiclasses, we also create the raw forms.
137  let Defs = [CC] in {
138    defm CRJ   : CmpBranchRIEbPair<"crj",   0xEC76, GR32>;
139    defm CGRJ  : CmpBranchRIEbPair<"cgrj",  0xEC64, GR64>;
140    defm CIJ   : CmpBranchRIEcPair<"cij",   0xEC7E, GR32, imm32sx8>;
141    defm CGIJ  : CmpBranchRIEcPair<"cgij",  0xEC7C, GR64, imm64sx8>;
142    defm CLRJ  : CmpBranchRIEbPair<"clrj",  0xEC77, GR32>;
143    defm CLGRJ : CmpBranchRIEbPair<"clgrj", 0xEC65, GR64>;
144    defm CLIJ  : CmpBranchRIEcPair<"clij",  0xEC7F, GR32, imm32zx8>;
145    defm CLGIJ : CmpBranchRIEcPair<"clgij", 0xEC7D, GR64, imm64zx8>;
146  }
147  let isIndirectBranch = 1 in {
148    defm CRB   : CmpBranchRRSPair<"crb",   0xECF6, GR32>;
149    defm CGRB  : CmpBranchRRSPair<"cgrb",  0xECE4, GR64>;
150    defm CIB   : CmpBranchRISPair<"cib",   0xECFE, GR32, imm32sx8>;
151    defm CGIB  : CmpBranchRISPair<"cgib",  0xECFC, GR64, imm64sx8>;
152    defm CLRB  : CmpBranchRRSPair<"clrb",  0xECF7, GR32>;
153    defm CLGRB : CmpBranchRRSPair<"clgrb", 0xECE5, GR64>;
154    defm CLIB  : CmpBranchRISPair<"clib",  0xECFF, GR32, imm32zx8>;
155    defm CLGIB : CmpBranchRISPair<"clgib", 0xECFD, GR64, imm64zx8>;
156  }
157
158  // Define AsmParser mnemonics for each integer condition-code mask.
159  foreach V = [ "E", "H", "L", "HE", "LE", "LH",
160                "NE", "NH", "NL", "NHE", "NLE", "NLH" ] in {
161    let Defs = [CC] in {
162      def CRJAsm#V   : FixedCmpBranchRIEb<ICV<V>, "crj",   0xEC76, GR32>;
163      def CGRJAsm#V  : FixedCmpBranchRIEb<ICV<V>, "cgrj",  0xEC64, GR64>;
164      def CIJAsm#V   : FixedCmpBranchRIEc<ICV<V>, "cij",   0xEC7E, GR32,
165                                          imm32sx8>;
166      def CGIJAsm#V  : FixedCmpBranchRIEc<ICV<V>, "cgij",  0xEC7C, GR64,
167                                          imm64sx8>;
168      def CLRJAsm#V  : FixedCmpBranchRIEb<ICV<V>, "clrj",  0xEC77, GR32>;
169      def CLGRJAsm#V : FixedCmpBranchRIEb<ICV<V>, "clgrj", 0xEC65, GR64>;
170      def CLIJAsm#V  : FixedCmpBranchRIEc<ICV<V>, "clij",  0xEC7F, GR32,
171                                          imm32zx8>;
172      def CLGIJAsm#V : FixedCmpBranchRIEc<ICV<V>, "clgij", 0xEC7D, GR64,
173                                          imm64zx8>;
174    }
175    let isIndirectBranch = 1 in {
176      def CRBAsm#V   : FixedCmpBranchRRS<ICV<V>, "crb",   0xECF6, GR32>;
177      def CGRBAsm#V  : FixedCmpBranchRRS<ICV<V>, "cgrb",  0xECE4, GR64>;
178      def CIBAsm#V   : FixedCmpBranchRIS<ICV<V>, "cib",   0xECFE, GR32,
179                                         imm32sx8>;
180      def CGIBAsm#V  : FixedCmpBranchRIS<ICV<V>, "cgib",  0xECFC, GR64,
181                                         imm64sx8>;
182      def CLRBAsm#V  : FixedCmpBranchRRS<ICV<V>, "clrb",  0xECF7, GR32>;
183      def CLGRBAsm#V : FixedCmpBranchRRS<ICV<V>, "clgrb", 0xECE5, GR64>;
184      def CLIBAsm#V  : FixedCmpBranchRIS<ICV<V>, "clib",  0xECFF, GR32,
185                                         imm32zx8>;
186      def CLGIBAsm#V : FixedCmpBranchRIS<ICV<V>, "clgib", 0xECFD, GR64,
187                                         imm64zx8>;
188    }
189  }
190}
191
192// Decrement a register and branch if it is nonzero.  These don't clobber CC,
193// but we might need to split long relative branches into sequences that do.
194let isBranch = 1, isTerminator = 1 in {
195  let Defs = [CC] in {
196    def BRCT  : BranchUnaryRI<"brct",  0xA76, GR32>;
197    def BRCTG : BranchUnaryRI<"brctg", 0xA77, GR64>;
198  }
199  // This doesn't need to clobber CC since we never need to split it.
200  def BRCTH : BranchUnaryRIL<"brcth", 0xCC6, GRH32>,
201              Requires<[FeatureHighWord]>;
202
203  def BCT   : BranchUnaryRX<"bct",  0x46,GR32>;
204  def BCTR  : BranchUnaryRR<"bctr", 0x06, GR32>;
205  def BCTG  : BranchUnaryRXY<"bctg",  0xE346, GR64>;
206  def BCTGR : BranchUnaryRRE<"bctgr", 0xB946, GR64>;
207}
208
209let isBranch = 1, isTerminator = 1 in {
210  let Defs = [CC] in {
211    def BRXH  : BranchBinaryRSI<"brxh",  0x84, GR32>;
212    def BRXLE : BranchBinaryRSI<"brxle", 0x85, GR32>;
213    def BRXHG : BranchBinaryRIEe<"brxhg", 0xEC44, GR64>;
214    def BRXLG : BranchBinaryRIEe<"brxlg", 0xEC45, GR64>;
215  }
216  def BXH   : BranchBinaryRS<"bxh",  0x86, GR32>;
217  def BXLE  : BranchBinaryRS<"bxle", 0x87, GR32>;
218  def BXHG  : BranchBinaryRSY<"bxhg",  0xEB44, GR64>;
219  def BXLEG : BranchBinaryRSY<"bxleg", 0xEB45, GR64>;
220}
221
222//===----------------------------------------------------------------------===//
223// Trap instructions
224//===----------------------------------------------------------------------===//
225
226// Unconditional trap.
227let hasCtrlDep = 1, hasSideEffects = 1 in
228  def Trap : Alias<4, (outs), (ins), [(trap)]>;
229
230// Conditional trap.
231let hasCtrlDep = 1, Uses = [CC], hasSideEffects = 1 in
232  def CondTrap : Alias<4, (outs), (ins cond4:$valid, cond4:$R1), []>;
233
234// Fused compare-and-trap instructions.
235let hasCtrlDep = 1, hasSideEffects = 1 in {
236  // These patterns work the same way as for compare-and-branch.
237  defm CRT   : CmpBranchRRFcPair<"crt",   0xB972, GR32>;
238  defm CGRT  : CmpBranchRRFcPair<"cgrt",  0xB960, GR64>;
239  defm CLRT  : CmpBranchRRFcPair<"clrt",  0xB973, GR32>;
240  defm CLGRT : CmpBranchRRFcPair<"clgrt", 0xB961, GR64>;
241  defm CIT   : CmpBranchRIEaPair<"cit",   0xEC72, GR32, imm32sx16>;
242  defm CGIT  : CmpBranchRIEaPair<"cgit",  0xEC70, GR64, imm64sx16>;
243  defm CLFIT : CmpBranchRIEaPair<"clfit", 0xEC73, GR32, imm32zx16>;
244  defm CLGIT : CmpBranchRIEaPair<"clgit", 0xEC71, GR64, imm64zx16>;
245  let Predicates = [FeatureMiscellaneousExtensions] in {
246    defm CLT  : CmpBranchRSYbPair<"clt",  0xEB23, GR32>;
247    defm CLGT : CmpBranchRSYbPair<"clgt", 0xEB2B, GR64>;
248  }
249
250  foreach V = [ "E", "H", "L", "HE", "LE", "LH",
251                "NE", "NH", "NL", "NHE", "NLE", "NLH" ] in {
252    def CRTAsm#V   : FixedCmpBranchRRFc<ICV<V>, "crt",   0xB972, GR32>;
253    def CGRTAsm#V  : FixedCmpBranchRRFc<ICV<V>, "cgrt",  0xB960, GR64>;
254    def CLRTAsm#V  : FixedCmpBranchRRFc<ICV<V>, "clrt",  0xB973, GR32>;
255    def CLGRTAsm#V : FixedCmpBranchRRFc<ICV<V>, "clgrt", 0xB961, GR64>;
256    def CITAsm#V   : FixedCmpBranchRIEa<ICV<V>, "cit",   0xEC72, GR32,
257                                         imm32sx16>;
258    def CGITAsm#V  : FixedCmpBranchRIEa<ICV<V>, "cgit",  0xEC70, GR64,
259                                         imm64sx16>;
260    def CLFITAsm#V : FixedCmpBranchRIEa<ICV<V>, "clfit", 0xEC73, GR32,
261                                         imm32zx16>;
262    def CLGITAsm#V : FixedCmpBranchRIEa<ICV<V>, "clgit", 0xEC71, GR64,
263                                         imm64zx16>;
264    let Predicates = [FeatureMiscellaneousExtensions] in {
265      def CLTAsm#V  : FixedCmpBranchRSYb<ICV<V>, "clt",  0xEB23, GR32>;
266      def CLGTAsm#V : FixedCmpBranchRSYb<ICV<V>, "clgt", 0xEB2B, GR64>;
267    }
268  }
269}
270
271//===----------------------------------------------------------------------===//
272// Call and return instructions
273//===----------------------------------------------------------------------===//
274
275// Define the general form of the call instructions for the asm parser.
276// These instructions don't hard-code %r14 as the return address register.
277let isCall = 1, Defs = [CC] in {
278  def BRAS  : CallRI <"bras", 0xA75>;
279  def BRASL : CallRIL<"brasl", 0xC05>;
280  def BAS   : CallRX <"bas", 0x4D>;
281  def BASR  : CallRR <"basr", 0x0D>;
282}
283
284// z/OS XPLINK
285let Predicates = [IsTargetXPLINK64] in {
286  let isCall = 1, Defs = [R7D, CC], Uses = [FPC] in {
287    def CallBRASL_XPLINK64 : Alias<8, (outs), (ins pcrel32:$I2, variable_ops),
288                          [(z_call pcrel32:$I2)]>;
289    def CallBASR_XPLINK64  : Alias<4, (outs), (ins ADDR64:$R2, variable_ops),
290                          [(z_call ADDR64:$R2)]>;
291  }
292
293  let isCall = 1, Defs = [R3D, CC], Uses = [FPC] in {
294    def CallBASR_STACKEXT  : Alias<4, (outs), (ins ADDR64:$R2), []>;
295  }
296}
297
298// Regular calls.
299// z/Linux ELF
300let Predicates = [IsTargetELF] in {
301  let isCall = 1, Defs = [R14D, CC], Uses = [FPC] in {
302    def CallBRASL : Alias<6, (outs), (ins pcrel32:$I2, variable_ops),
303                          [(z_call pcrel32:$I2)]>;
304    def CallBASR  : Alias<2, (outs), (ins ADDR64:$R2, variable_ops),
305                          [(z_call ADDR64:$R2)]>;
306  }
307
308  // TLS calls.  These will be lowered into a call to __tls_get_offset,
309  // with an extra relocation specifying the TLS symbol.
310  let isCall = 1, Defs = [R14D, CC] in {
311    def TLS_GDCALL : Alias<6, (outs), (ins tlssym:$I2, variable_ops),
312                           [(z_tls_gdcall tglobaltlsaddr:$I2)]>;
313    def TLS_LDCALL : Alias<6, (outs), (ins tlssym:$I2, variable_ops),
314                           [(z_tls_ldcall tglobaltlsaddr:$I2)]>;
315  }
316}
317
318// Sibling calls. Indirect sibling calls must be via R6 for XPLink,
319// R1 used for ELF
320let isCall = 1, isTerminator = 1, isReturn = 1, isBarrier = 1 in {
321  def CallJG : Alias<6, (outs), (ins pcrel32:$I2),
322                     [(z_sibcall pcrel32:$I2)]>;
323  def CallBR : Alias<2, (outs), (ins ADDR64:$R2),
324                     [(z_sibcall ADDR64:$R2)]>;
325}
326
327// Conditional sibling calls.
328let CCMaskFirst = 1, isCall = 1, isTerminator = 1, isReturn = 1 in {
329  def CallBRCL : Alias<6, (outs), (ins cond4:$valid, cond4:$R1,
330                                   pcrel32:$I2), []>;
331  def CallBCR : Alias<2, (outs), (ins cond4:$valid, cond4:$R1,
332                                  ADDR64:$R2), []>;
333}
334
335// Fused compare and conditional sibling calls.
336let isCall = 1, isTerminator = 1, isReturn = 1 in {
337  def CRBCall : Alias<6, (outs), (ins GR32:$R1, GR32:$R2, cond4:$M3, ADDR64:$R4), []>;
338  def CGRBCall : Alias<6, (outs), (ins GR64:$R1, GR64:$R2, cond4:$M3, ADDR64:$R4), []>;
339  def CIBCall : Alias<6, (outs), (ins GR32:$R1, imm32sx8:$I2, cond4:$M3, ADDR64:$R4), []>;
340  def CGIBCall : Alias<6, (outs), (ins GR64:$R1, imm64sx8:$I2, cond4:$M3, ADDR64:$R4), []>;
341  def CLRBCall : Alias<6, (outs), (ins GR32:$R1, GR32:$R2, cond4:$M3, ADDR64:$R4), []>;
342  def CLGRBCall : Alias<6, (outs), (ins GR64:$R1, GR64:$R2, cond4:$M3, ADDR64:$R4), []>;
343  def CLIBCall : Alias<6, (outs), (ins GR32:$R1, imm32zx8:$I2, cond4:$M3, ADDR64:$R4), []>;
344  def CLGIBCall : Alias<6, (outs), (ins GR64:$R1, imm64zx8:$I2, cond4:$M3, ADDR64:$R4), []>;
345}
346
347let Predicates = [IsTargetXPLINK64] in {
348  // A return instruction (b 2(%r7)).
349  let isReturn = 1, isTerminator = 1, isBarrier = 1, hasCtrlDep = 1 in
350    def Return_XPLINK : Alias<4, (outs), (ins), [(z_retflag)]>;
351
352  // A conditional return instruction (bc <cond>, 2(%r7)).
353  let isReturn = 1, isTerminator = 1, hasCtrlDep = 1, CCMaskFirst = 1, Uses = [CC] in
354    def CondReturn_XPLINK : Alias<4, (outs), (ins cond4:$valid, cond4:$R1), []>;
355}
356
357let Predicates = [IsTargetELF] in {
358  // A return instruction (br %r14).
359  let isReturn = 1, isTerminator = 1, isBarrier = 1, hasCtrlDep = 1 in
360    def Return : Alias<2, (outs), (ins), [(z_retflag)]>;
361
362  // A conditional return instruction (bcr <cond>, %r14).
363  let isReturn = 1, isTerminator = 1, hasCtrlDep = 1, CCMaskFirst = 1, Uses = [CC] in
364    def CondReturn : Alias<2, (outs), (ins cond4:$valid, cond4:$R1), []>;
365}
366
367// Fused compare and conditional returns.
368let isReturn = 1, isTerminator = 1, hasCtrlDep = 1 in {
369  def CRBReturn : Alias<6, (outs), (ins GR32:$R1, GR32:$R2, cond4:$M3), []>;
370  def CGRBReturn : Alias<6, (outs), (ins GR64:$R1, GR64:$R2, cond4:$M3), []>;
371  def CIBReturn : Alias<6, (outs), (ins GR32:$R1, imm32sx8:$I2, cond4:$M3), []>;
372  def CGIBReturn : Alias<6, (outs), (ins GR64:$R1, imm64sx8:$I2, cond4:$M3), []>;
373  def CLRBReturn : Alias<6, (outs), (ins GR32:$R1, GR32:$R2, cond4:$M3), []>;
374  def CLGRBReturn : Alias<6, (outs), (ins GR64:$R1, GR64:$R2, cond4:$M3), []>;
375  def CLIBReturn : Alias<6, (outs), (ins GR32:$R1, imm32zx8:$I2, cond4:$M3), []>;
376  def CLGIBReturn : Alias<6, (outs), (ins GR64:$R1, imm64zx8:$I2, cond4:$M3), []>;
377}
378
379//===----------------------------------------------------------------------===//
380// Select instructions
381//===----------------------------------------------------------------------===//
382
383def Select32    : SelectWrapper<i32, GR32>,
384                  Requires<[FeatureNoLoadStoreOnCond]>;
385def Select64    : SelectWrapper<i64, GR64>,
386                  Requires<[FeatureNoLoadStoreOnCond]>;
387
388// We don't define 32-bit Mux stores if we don't have STOCFH, because the
389// low-only STOC should then always be used if possible.
390defm CondStore8Mux  : CondStores<GRX32, nonvolatile_truncstorei8,
391                                 nonvolatile_anyextloadi8, bdxaddr20only>,
392                      Requires<[FeatureHighWord]>;
393defm CondStore16Mux : CondStores<GRX32, nonvolatile_truncstorei16,
394                                 nonvolatile_anyextloadi16, bdxaddr20only>,
395                      Requires<[FeatureHighWord]>;
396defm CondStore32Mux : CondStores<GRX32, simple_store,
397                                 simple_load, bdxaddr20only>,
398                      Requires<[FeatureLoadStoreOnCond2]>;
399defm CondStore8     : CondStores<GR32, nonvolatile_truncstorei8,
400                                 nonvolatile_anyextloadi8, bdxaddr20only>;
401defm CondStore16    : CondStores<GR32, nonvolatile_truncstorei16,
402                                 nonvolatile_anyextloadi16, bdxaddr20only>;
403defm CondStore32    : CondStores<GR32, simple_store,
404                                 simple_load, bdxaddr20only>;
405
406defm : CondStores64<CondStore8, CondStore8Inv, nonvolatile_truncstorei8,
407                    nonvolatile_anyextloadi8, bdxaddr20only>;
408defm : CondStores64<CondStore16, CondStore16Inv, nonvolatile_truncstorei16,
409                    nonvolatile_anyextloadi16, bdxaddr20only>;
410defm : CondStores64<CondStore32, CondStore32Inv, nonvolatile_truncstorei32,
411                    nonvolatile_anyextloadi32, bdxaddr20only>;
412defm CondStore64 : CondStores<GR64, simple_store,
413                              simple_load, bdxaddr20only>;
414
415//===----------------------------------------------------------------------===//
416// Move instructions
417//===----------------------------------------------------------------------===//
418
419// Register moves.
420def LR  : UnaryRR <"lr",  0x18,   null_frag, GR32, GR32>;
421def LGR : UnaryRRE<"lgr", 0xB904, null_frag, GR64, GR64>;
422
423let Defs = [CC], CCValues = 0xE, CompareZeroCCMask = 0xE in {
424  def LTR  : UnaryRR <"ltr",  0x12,   null_frag, GR32, GR32>;
425  def LTGR : UnaryRRE<"ltgr", 0xB902, null_frag, GR64, GR64>;
426}
427
428let usesCustomInserter = 1, hasNoSchedulingInfo = 1 in
429  def PAIR128 : Pseudo<(outs GR128:$dst), (ins GR64:$hi, GR64:$lo), []>;
430
431// Immediate moves.
432let isAsCheapAsAMove = 1, isMoveImm = 1, isReMaterializable = 1 in {
433  // 16-bit sign-extended immediates.  LHIMux expands to LHI or IIHF,
434  // deopending on the choice of register.
435  def LHIMux : UnaryRIPseudo<bitconvert, GRX32, imm32sx16>,
436               Requires<[FeatureHighWord]>;
437  def LHI  : UnaryRI<"lhi",  0xA78, bitconvert, GR32, imm32sx16>;
438  def LGHI : UnaryRI<"lghi", 0xA79, bitconvert, GR64, imm64sx16>;
439
440  // Other 16-bit immediates.
441  def LLILL : UnaryRI<"llill", 0xA5F, bitconvert, GR64, imm64ll16>;
442  def LLILH : UnaryRI<"llilh", 0xA5E, bitconvert, GR64, imm64lh16>;
443  def LLIHL : UnaryRI<"llihl", 0xA5D, bitconvert, GR64, imm64hl16>;
444  def LLIHH : UnaryRI<"llihh", 0xA5C, bitconvert, GR64, imm64hh16>;
445
446  // 32-bit immediates.
447  def LGFI  : UnaryRIL<"lgfi",  0xC01, bitconvert, GR64, imm64sx32>;
448  def LLILF : UnaryRIL<"llilf", 0xC0F, bitconvert, GR64, imm64lf32>;
449  def LLIHF : UnaryRIL<"llihf", 0xC0E, bitconvert, GR64, imm64hf32>;
450}
451
452// Register loads.
453let canFoldAsLoad = 1, SimpleBDXLoad = 1, mayLoad = 1 in {
454  // Expands to L, LY or LFH, depending on the choice of register.
455  def LMux : UnaryRXYPseudo<"l", load, GRX32, 4>,
456             Requires<[FeatureHighWord]>;
457  defm L : UnaryRXPair<"l", 0x58, 0xE358, load, GR32, 4>;
458  def LFH : UnaryRXY<"lfh", 0xE3CA, load, GRH32, 4>,
459            Requires<[FeatureHighWord]>;
460  def LG : UnaryRXY<"lg", 0xE304, load, GR64, 8>;
461
462  // These instructions are split after register allocation, so we don't
463  // want a custom inserter.
464  let Has20BitOffset = 1, HasIndex = 1, Is128Bit = 1 in {
465    def L128 : Pseudo<(outs GR128:$dst), (ins bdxaddr20only128:$src),
466                      [(set GR128:$dst, (load bdxaddr20only128:$src))]>;
467  }
468}
469let Defs = [CC], CCValues = 0xE, CompareZeroCCMask = 0xE in {
470  def LT  : UnaryRXY<"lt",  0xE312, load, GR32, 4>;
471  def LTG : UnaryRXY<"ltg", 0xE302, load, GR64, 8>;
472}
473
474let canFoldAsLoad = 1 in {
475  def LRL  : UnaryRILPC<"lrl",  0xC4D, aligned_load, GR32>;
476  def LGRL : UnaryRILPC<"lgrl", 0xC48, aligned_load, GR64>;
477}
478
479// Load and zero rightmost byte.
480let Predicates = [FeatureLoadAndZeroRightmostByte] in {
481  def LZRF : UnaryRXY<"lzrf", 0xE33B, null_frag, GR32, 4>;
482  def LZRG : UnaryRXY<"lzrg", 0xE32A, null_frag, GR64, 8>;
483  def : Pat<(and (i32 (load bdxaddr20only:$src)), 0xffffff00),
484            (LZRF bdxaddr20only:$src)>;
485  def : Pat<(and (i64 (load bdxaddr20only:$src)), 0xffffffffffffff00),
486            (LZRG bdxaddr20only:$src)>;
487}
488
489// Load and trap.
490let Predicates = [FeatureLoadAndTrap], hasSideEffects = 1 in {
491  def LAT   : UnaryRXY<"lat",   0xE39F, null_frag, GR32, 4>;
492  def LFHAT : UnaryRXY<"lfhat", 0xE3C8, null_frag, GRH32, 4>;
493  def LGAT  : UnaryRXY<"lgat",  0xE385, null_frag, GR64, 8>;
494}
495
496// Register stores.
497let SimpleBDXStore = 1, mayStore = 1 in {
498  // Expands to ST, STY or STFH, depending on the choice of register.
499  def STMux : StoreRXYPseudo<store, GRX32, 4>,
500              Requires<[FeatureHighWord]>;
501  defm ST : StoreRXPair<"st", 0x50, 0xE350, store, GR32, 4>;
502  def STFH : StoreRXY<"stfh", 0xE3CB, store, GRH32, 4>,
503             Requires<[FeatureHighWord]>;
504  def STG : StoreRXY<"stg", 0xE324, store, GR64, 8>;
505
506  // These instructions are split after register allocation, so we don't
507  // want a custom inserter.
508  let Has20BitOffset = 1, HasIndex = 1, Is128Bit = 1 in {
509    def ST128 : Pseudo<(outs), (ins GR128:$src, bdxaddr20only128:$dst),
510                       [(store GR128:$src, bdxaddr20only128:$dst)]>;
511  }
512}
513def STRL  : StoreRILPC<"strl", 0xC4F, aligned_store, GR32>;
514def STGRL : StoreRILPC<"stgrl", 0xC4B, aligned_store, GR64>;
515
516// 8-bit immediate stores to 8-bit fields.
517defm MVI : StoreSIPair<"mvi", 0x92, 0xEB52, truncstorei8, imm32zx8trunc>;
518
519// 16-bit immediate stores to 16-, 32- or 64-bit fields.
520def MVHHI : StoreSIL<"mvhhi", 0xE544, truncstorei16, imm32sx16trunc>;
521def MVHI  : StoreSIL<"mvhi",  0xE54C, store,         imm32sx16>;
522def MVGHI : StoreSIL<"mvghi", 0xE548, store,         imm64sx16>;
523
524// Memory-to-memory moves.
525let mayLoad = 1, mayStore = 1 in
526  defm MVC : MemorySS<"mvc", 0xD2, z_mvc>;
527let mayLoad = 1, mayStore = 1, Defs = [CC] in {
528  def MVCL  : SideEffectBinaryMemMemRR<"mvcl", 0x0E, GR128, GR128>;
529  def MVCLE : SideEffectTernaryMemMemRS<"mvcle", 0xA8, GR128, GR128>;
530  def MVCLU : SideEffectTernaryMemMemRSY<"mvclu", 0xEB8E, GR128, GR128>;
531}
532
533// Memset[Length][Byte] pseudos.
534def MemsetImmImm : MemsetPseudo<imm64, imm32zx8trunc>;
535def MemsetImmReg : MemsetPseudo<imm64, GR32>;
536def MemsetRegImm : MemsetPseudo<ADDR64, imm32zx8trunc>;
537def MemsetRegReg : MemsetPseudo<ADDR64, GR32>;
538
539// Move right.
540let Predicates = [FeatureMiscellaneousExtensions3],
541    mayLoad = 1, mayStore = 1, Uses = [R0L] in
542  def MVCRL : SideEffectBinarySSE<"mvcrl", 0xE50A>;
543
544// String moves.
545let mayLoad = 1, mayStore = 1, Defs = [CC] in
546  defm MVST : StringRRE<"mvst", 0xB255, z_stpcpy>;
547
548//===----------------------------------------------------------------------===//
549// Conditional move instructions
550//===----------------------------------------------------------------------===//
551
552let Predicates = [FeatureMiscellaneousExtensions3], Uses = [CC] in {
553  // Select.
554  let isCommutable = 1 in {
555    // Expands to SELR or SELFHR or a branch-and-move sequence,
556    // depending on the choice of registers.
557    def  SELRMux : CondBinaryRRFaPseudo<"MUXselr", GRX32, GRX32, GRX32>;
558    defm SELFHR  : CondBinaryRRFaPair<"selfhr", 0xB9C0, GRH32, GRH32, GRH32>;
559    defm SELR    : CondBinaryRRFaPair<"selr",   0xB9F0, GR32, GR32, GR32>;
560    defm SELGR   : CondBinaryRRFaPair<"selgr",  0xB9E3, GR64, GR64, GR64>;
561  }
562
563  // Define AsmParser extended mnemonics for each general condition-code mask.
564  foreach V = [ "E", "NE", "H", "NH", "L", "NL", "HE", "NHE", "LE", "NLE",
565                "Z", "NZ", "P", "NP", "M", "NM", "LH", "NLH", "O", "NO" ] in {
566    def SELRAsm#V   : FixedCondBinaryRRFa<CV<V>, "selr",   0xB9F0,
567                                          GR32, GR32, GR32>;
568    def SELFHRAsm#V : FixedCondBinaryRRFa<CV<V>, "selfhr", 0xB9C0,
569                                          GRH32, GRH32, GRH32>;
570    def SELGRAsm#V  : FixedCondBinaryRRFa<CV<V>, "selgr",  0xB9E3,
571                                          GR64, GR64, GR64>;
572  }
573}
574
575let Predicates = [FeatureLoadStoreOnCond2], Uses = [CC] in {
576  // Load immediate on condition.  Matched via DAG pattern and created
577  // by the PeepholeOptimizer via FoldImmediate.
578
579  // Expands to LOCHI or LOCHHI, depending on the choice of register.
580  def LOCHIMux : CondBinaryRIEPseudo<GRX32, imm32sx16>;
581  defm LOCHHI  : CondBinaryRIEPair<"lochhi", 0xEC4E, GRH32, imm32sx16>;
582  defm LOCHI   : CondBinaryRIEPair<"lochi",  0xEC42, GR32, imm32sx16>;
583  defm LOCGHI  : CondBinaryRIEPair<"locghi", 0xEC46, GR64, imm64sx16>;
584
585  // Move register on condition.  Matched via DAG pattern and
586  // created by early if-conversion.
587  let isCommutable = 1 in {
588    // Expands to LOCR or LOCFHR or a branch-and-move sequence,
589    // depending on the choice of registers.
590    def LOCRMux : CondBinaryRRFPseudo<"MUXlocr", GRX32, GRX32>;
591    defm LOCFHR : CondBinaryRRFPair<"locfhr", 0xB9E0, GRH32, GRH32>;
592  }
593
594  // Load on condition.  Matched via DAG pattern.
595  // Expands to LOC or LOCFH, depending on the choice of register.
596  defm LOCMux : CondUnaryRSYPseudoAndMemFold<"MUXloc", simple_load, GRX32, 4>;
597  defm LOCFH : CondUnaryRSYPair<"locfh", 0xEBE0, simple_load, GRH32, 4>;
598
599  // Store on condition.  Expanded from CondStore* pseudos.
600  // Expands to STOC or STOCFH, depending on the choice of register.
601  def STOCMux : CondStoreRSYPseudo<GRX32, 4>;
602  defm STOCFH : CondStoreRSYPair<"stocfh", 0xEBE1, GRH32, 4>;
603
604  // Define AsmParser extended mnemonics for each general condition-code mask.
605  foreach V = [ "E", "NE", "H", "NH", "L", "NL", "HE", "NHE", "LE", "NLE",
606                "Z", "NZ", "P", "NP", "M", "NM", "LH", "NLH", "O", "NO" ] in {
607    def LOCHIAsm#V  : FixedCondBinaryRIE<CV<V>, "lochi",  0xEC42, GR32,
608                                         imm32sx16>;
609    def LOCGHIAsm#V : FixedCondBinaryRIE<CV<V>, "locghi", 0xEC46, GR64,
610                                         imm64sx16>;
611    def LOCHHIAsm#V : FixedCondBinaryRIE<CV<V>, "lochhi", 0xEC4E, GRH32,
612                                         imm32sx16>;
613    def LOCFHRAsm#V : FixedCondBinaryRRF<CV<V>, "locfhr", 0xB9E0, GRH32, GRH32>;
614    def LOCFHAsm#V  : FixedCondUnaryRSY<CV<V>, "locfh",  0xEBE0, GRH32, 4>;
615    def STOCFHAsm#V : FixedCondStoreRSY<CV<V>, "stocfh", 0xEBE1, GRH32, 4>;
616  }
617}
618
619let Predicates = [FeatureLoadStoreOnCond], Uses = [CC] in {
620  // Move register on condition.  Matched via DAG pattern and
621  // created by early if-conversion.
622  let isCommutable = 1 in {
623    defm LOCR  : CondBinaryRRFPair<"locr",  0xB9F2, GR32, GR32>;
624    defm LOCGR : CondBinaryRRFPair<"locgr", 0xB9E2, GR64, GR64>;
625  }
626
627  // Load on condition.  Matched via DAG pattern.
628  defm LOC  : CondUnaryRSYPair<"loc",  0xEBF2, simple_load, GR32, 4>;
629  defm LOCG : CondUnaryRSYPairAndMemFold<"locg", 0xEBE2, simple_load, GR64, 8>;
630
631  // Store on condition.  Expanded from CondStore* pseudos.
632  defm STOC  : CondStoreRSYPair<"stoc",  0xEBF3, GR32, 4>;
633  defm STOCG : CondStoreRSYPair<"stocg", 0xEBE3, GR64, 8>;
634
635  // Define AsmParser extended mnemonics for each general condition-code mask.
636  foreach V = [ "E", "NE", "H", "NH", "L", "NL", "HE", "NHE", "LE", "NLE",
637                "Z", "NZ", "P", "NP", "M", "NM", "LH", "NLH", "O", "NO" ] in {
638    def LOCRAsm#V   : FixedCondBinaryRRF<CV<V>, "locr",  0xB9F2, GR32, GR32>;
639    def LOCGRAsm#V  : FixedCondBinaryRRF<CV<V>, "locgr", 0xB9E2, GR64, GR64>;
640    def LOCAsm#V    : FixedCondUnaryRSY<CV<V>, "loc",   0xEBF2, GR32, 4>;
641    def LOCGAsm#V   : FixedCondUnaryRSY<CV<V>, "locg",  0xEBE2, GR64, 8>;
642    def STOCAsm#V   : FixedCondStoreRSY<CV<V>, "stoc",  0xEBF3, GR32, 4>;
643    def STOCGAsm#V  : FixedCondStoreRSY<CV<V>, "stocg", 0xEBE3, GR64, 8>;
644  }
645}
646//===----------------------------------------------------------------------===//
647// Sign extensions
648//===----------------------------------------------------------------------===//
649//
650// Note that putting these before zero extensions mean that we will prefer
651// them for anyextload*.  There's not really much to choose between the two
652// either way, but signed-extending loads have a short LH and a long LHY,
653// while zero-extending loads have only the long LLH.
654//
655//===----------------------------------------------------------------------===//
656
657// 32-bit extensions from registers.
658def LBR : UnaryRRE<"lbr", 0xB926, sext8,  GR32, GR32>;
659def LHR : UnaryRRE<"lhr", 0xB927, sext16, GR32, GR32>;
660
661// 64-bit extensions from registers.
662def LGBR : UnaryRRE<"lgbr", 0xB906, sext8,  GR64, GR64>;
663def LGHR : UnaryRRE<"lghr", 0xB907, sext16, GR64, GR64>;
664def LGFR : UnaryRRE<"lgfr", 0xB914, sext32, GR64, GR32>;
665
666let Defs = [CC], CCValues = 0xE, CompareZeroCCMask = 0xE in
667  def LTGFR : UnaryRRE<"ltgfr", 0xB912, null_frag, GR64, GR32>;
668
669// Match 32-to-64-bit sign extensions in which the source is already
670// in a 64-bit register.
671def : Pat<(sext_inreg GR64:$src, i32),
672          (LGFR (EXTRACT_SUBREG GR64:$src, subreg_l32))>;
673
674// 32-bit extensions from 8-bit memory.  LBMux expands to LB or LBH,
675// depending on the choice of register.
676def LBMux : UnaryRXYPseudo<"lb", asextloadi8, GRX32, 1>,
677            Requires<[FeatureHighWord]>;
678def LB  : UnaryRXY<"lb", 0xE376, asextloadi8, GR32, 1>;
679def LBH : UnaryRXY<"lbh", 0xE3C0, asextloadi8, GRH32, 1>,
680          Requires<[FeatureHighWord]>;
681
682// 32-bit extensions from 16-bit memory.  LHMux expands to LH or LHH,
683// depending on the choice of register.
684def LHMux : UnaryRXYPseudo<"lh", asextloadi16, GRX32, 2>,
685            Requires<[FeatureHighWord]>;
686defm LH   : UnaryRXPair<"lh", 0x48, 0xE378, asextloadi16, GR32, 2>;
687def  LHH  : UnaryRXY<"lhh", 0xE3C4, asextloadi16, GRH32, 2>,
688            Requires<[FeatureHighWord]>;
689def  LHRL : UnaryRILPC<"lhrl", 0xC45, aligned_asextloadi16, GR32>;
690
691// 64-bit extensions from memory.
692def LGB   : UnaryRXY<"lgb", 0xE377, asextloadi8,  GR64, 1>;
693def LGH   : UnaryRXY<"lgh", 0xE315, asextloadi16, GR64, 2>;
694def LGF   : UnaryRXY<"lgf", 0xE314, asextloadi32, GR64, 4>;
695def LGHRL : UnaryRILPC<"lghrl", 0xC44, aligned_asextloadi16, GR64>;
696def LGFRL : UnaryRILPC<"lgfrl", 0xC4C, aligned_asextloadi32, GR64>;
697let Defs = [CC], CCValues = 0xE, CompareZeroCCMask = 0xE in
698  def LTGF : UnaryRXY<"ltgf", 0xE332, asextloadi32, GR64, 4>;
699
700//===----------------------------------------------------------------------===//
701// Zero extensions
702//===----------------------------------------------------------------------===//
703
704// 32-bit extensions from registers.
705
706// Expands to LLCR or RISB[LH]G, depending on the choice of registers.
707def LLCRMux : UnaryRRPseudo<"llcr", zext8, GRX32, GRX32>,
708              Requires<[FeatureHighWord]>;
709def LLCR    : UnaryRRE<"llcr", 0xB994, zext8,  GR32, GR32>;
710// Expands to LLHR or RISB[LH]G, depending on the choice of registers.
711def LLHRMux : UnaryRRPseudo<"llhr", zext16, GRX32, GRX32>,
712              Requires<[FeatureHighWord]>;
713def LLHR    : UnaryRRE<"llhr", 0xB995, zext16, GR32, GR32>;
714
715// 64-bit extensions from registers.
716def LLGCR : UnaryRRE<"llgcr", 0xB984, zext8,  GR64, GR64>;
717def LLGHR : UnaryRRE<"llghr", 0xB985, zext16, GR64, GR64>;
718def LLGFR : UnaryRRE<"llgfr", 0xB916, zext32, GR64, GR32>;
719
720// Match 32-to-64-bit zero extensions in which the source is already
721// in a 64-bit register.
722def : Pat<(and GR64:$src, 0xffffffff),
723          (LLGFR (EXTRACT_SUBREG GR64:$src, subreg_l32))>;
724
725// 32-bit extensions from 8-bit memory.  LLCMux expands to LLC or LLCH,
726// depending on the choice of register.
727def LLCMux : UnaryRXYPseudo<"llc", azextloadi8, GRX32, 1>,
728             Requires<[FeatureHighWord]>;
729def LLC  : UnaryRXY<"llc", 0xE394, azextloadi8, GR32, 1>;
730def LLCH : UnaryRXY<"llch", 0xE3C2, azextloadi8, GRH32, 1>,
731           Requires<[FeatureHighWord]>;
732
733// 32-bit extensions from 16-bit memory.  LLHMux expands to LLH or LLHH,
734// depending on the choice of register.
735def LLHMux : UnaryRXYPseudo<"llh", azextloadi16, GRX32, 2>,
736             Requires<[FeatureHighWord]>;
737def LLH   : UnaryRXY<"llh", 0xE395, azextloadi16, GR32, 2>;
738def LLHH  : UnaryRXY<"llhh", 0xE3C6, azextloadi16, GRH32, 2>,
739            Requires<[FeatureHighWord]>;
740def LLHRL : UnaryRILPC<"llhrl", 0xC42, aligned_azextloadi16, GR32>;
741
742// 64-bit extensions from memory.
743def LLGC   : UnaryRXY<"llgc", 0xE390, azextloadi8,  GR64, 1>;
744def LLGH   : UnaryRXY<"llgh", 0xE391, azextloadi16, GR64, 2>;
745def LLGF   : UnaryRXY<"llgf", 0xE316, azextloadi32, GR64, 4>;
746def LLGHRL : UnaryRILPC<"llghrl", 0xC46, aligned_azextloadi16, GR64>;
747def LLGFRL : UnaryRILPC<"llgfrl", 0xC4E, aligned_azextloadi32, GR64>;
748
749// 31-to-64-bit zero extensions.
750def LLGTR : UnaryRRE<"llgtr", 0xB917, null_frag, GR64, GR64>;
751def LLGT  : UnaryRXY<"llgt",  0xE317, null_frag, GR64, 4>;
752def : Pat<(and GR64:$src, 0x7fffffff),
753          (LLGTR GR64:$src)>;
754def : Pat<(and (i64 (azextloadi32 bdxaddr20only:$src)), 0x7fffffff),
755          (LLGT bdxaddr20only:$src)>;
756
757// Load and zero rightmost byte.
758let Predicates = [FeatureLoadAndZeroRightmostByte] in {
759  def LLZRGF : UnaryRXY<"llzrgf", 0xE33A, null_frag, GR64, 4>;
760  def : Pat<(and (i64 (azextloadi32 bdxaddr20only:$src)), 0xffffff00),
761            (LLZRGF bdxaddr20only:$src)>;
762}
763
764// Load and trap.
765let Predicates = [FeatureLoadAndTrap], hasSideEffects = 1 in {
766  def LLGFAT : UnaryRXY<"llgfat", 0xE39D, null_frag, GR64, 4>;
767  def LLGTAT : UnaryRXY<"llgtat", 0xE39C, null_frag, GR64, 4>;
768}
769
770// Extend GR64s to GR128s.
771let usesCustomInserter = 1, hasNoSchedulingInfo = 1 in
772  def ZEXT128 : Pseudo<(outs GR128:$dst), (ins GR64:$src), []>;
773
774//===----------------------------------------------------------------------===//
775// "Any" extensions
776//===----------------------------------------------------------------------===//
777
778// Use subregs to populate the "don't care" bits in a 32-bit to 64-bit anyext.
779def : Pat<(i64 (anyext GR32:$src)),
780          (INSERT_SUBREG (i64 (IMPLICIT_DEF)), GR32:$src, subreg_l32)>;
781
782// Extend GR64s to GR128s.
783let usesCustomInserter = 1, hasNoSchedulingInfo = 1 in
784  def AEXT128 : Pseudo<(outs GR128:$dst), (ins GR64:$src), []>;
785
786//===----------------------------------------------------------------------===//
787// Truncations
788//===----------------------------------------------------------------------===//
789
790// Truncations of 64-bit registers to 32-bit registers.
791def : Pat<(i32 (trunc GR64:$src)),
792          (EXTRACT_SUBREG GR64:$src, subreg_l32)>;
793
794// Truncations of 32-bit registers to 8-bit memory.  STCMux expands to
795// STC, STCY or STCH, depending on the choice of register.
796def STCMux : StoreRXYPseudo<truncstorei8, GRX32, 1>,
797             Requires<[FeatureHighWord]>;
798defm STC : StoreRXPair<"stc", 0x42, 0xE372, truncstorei8, GR32, 1>;
799def STCH : StoreRXY<"stch", 0xE3C3, truncstorei8, GRH32, 1>,
800           Requires<[FeatureHighWord]>;
801
802// Truncations of 32-bit registers to 16-bit memory.  STHMux expands to
803// STH, STHY or STHH, depending on the choice of register.
804def STHMux : StoreRXYPseudo<truncstorei16, GRX32, 1>,
805             Requires<[FeatureHighWord]>;
806defm STH : StoreRXPair<"sth", 0x40, 0xE370, truncstorei16, GR32, 2>;
807def STHH : StoreRXY<"sthh", 0xE3C7, truncstorei16, GRH32, 2>,
808           Requires<[FeatureHighWord]>;
809def STHRL : StoreRILPC<"sthrl", 0xC47, aligned_truncstorei16, GR32>;
810
811// Truncations of 64-bit registers to memory.
812defm : StoreGR64Pair<STC, STCY, truncstorei8>;
813defm : StoreGR64Pair<STH, STHY, truncstorei16>;
814def  : StoreGR64PC<STHRL, aligned_truncstorei16>;
815defm : StoreGR64Pair<ST, STY, truncstorei32>;
816def  : StoreGR64PC<STRL, aligned_truncstorei32>;
817
818// Store characters under mask -- not (yet) used for codegen.
819defm STCM : StoreBinaryRSPair<"stcm", 0xBE, 0xEB2D, GR32, 0>;
820def STCMH : StoreBinaryRSY<"stcmh", 0xEB2C, GRH32, 0>;
821
822//===----------------------------------------------------------------------===//
823// Multi-register moves
824//===----------------------------------------------------------------------===//
825
826// Multi-register loads.
827defm LM : LoadMultipleRSPair<"lm", 0x98, 0xEB98, GR32>;
828def LMG : LoadMultipleRSY<"lmg", 0xEB04, GR64>;
829def LMH : LoadMultipleRSY<"lmh", 0xEB96, GRH32>;
830def LMD : LoadMultipleSSe<"lmd", 0xEF, GR64>;
831
832// Multi-register stores.
833defm STM : StoreMultipleRSPair<"stm", 0x90, 0xEB90, GR32>;
834def STMG : StoreMultipleRSY<"stmg", 0xEB24, GR64>;
835def STMH : StoreMultipleRSY<"stmh", 0xEB26, GRH32>;
836
837//===----------------------------------------------------------------------===//
838// Byte swaps
839//===----------------------------------------------------------------------===//
840
841// Byte-swapping register moves.
842def LRVR  : UnaryRRE<"lrvr",  0xB91F, bswap, GR32, GR32>;
843def LRVGR : UnaryRRE<"lrvgr", 0xB90F, bswap, GR64, GR64>;
844
845// Byte-swapping loads.
846def LRVH : UnaryRXY<"lrvh", 0xE31F, z_loadbswap16, GR32, 2>;
847def LRV  : UnaryRXY<"lrv",  0xE31E, z_loadbswap32, GR32, 4>;
848def LRVG : UnaryRXY<"lrvg", 0xE30F, z_loadbswap64, GR64, 8>;
849
850// Byte-swapping stores.
851def STRVH : StoreRXY<"strvh", 0xE33F, z_storebswap16, GR32, 2>;
852def STRV  : StoreRXY<"strv",  0xE33E, z_storebswap32, GR32, 4>;
853def STRVG : StoreRXY<"strvg", 0xE32F, z_storebswap64, GR64, 8>;
854
855// Byte-swapping memory-to-memory moves.
856let mayLoad = 1, mayStore = 1 in
857  def MVCIN : SideEffectBinarySSa<"mvcin", 0xE8>;
858
859//===----------------------------------------------------------------------===//
860// Load address instructions
861//===----------------------------------------------------------------------===//
862
863// Load BDX-style addresses.
864let isAsCheapAsAMove = 1, isReMaterializable = 1 in
865  defm LA : LoadAddressRXPair<"la", 0x41, 0xE371, bitconvert>;
866
867// Load a PC-relative address.  There's no version of this instruction
868// with a 16-bit offset, so there's no relaxation.
869let isAsCheapAsAMove = 1, isMoveImm = 1, isReMaterializable = 1 in
870  def LARL : LoadAddressRIL<"larl", 0xC00, bitconvert>;
871
872// Load the Global Offset Table address.  This will be lowered into a
873//     larl $R1, _GLOBAL_OFFSET_TABLE_
874// instruction.
875def GOT : Alias<6, (outs GR64:$R1), (ins),
876                [(set GR64:$R1, (global_offset_table))]>;
877
878//===----------------------------------------------------------------------===//
879// Absolute and Negation
880//===----------------------------------------------------------------------===//
881
882let Defs = [CC] in {
883  let CCValues = 0xF, CompareZeroCCMask = 0x8 in {
884    def LPR  : UnaryRR <"lpr",  0x10,   abs, GR32, GR32>;
885    def LPGR : UnaryRRE<"lpgr", 0xB900, abs, GR64, GR64>;
886  }
887  let CCValues = 0xE, CompareZeroCCMask = 0xE in
888    def LPGFR : UnaryRRE<"lpgfr", 0xB910, null_frag, GR64, GR32>;
889}
890defm : SXU<abs, LPGFR>;
891
892let Defs = [CC] in {
893  let CCValues = 0xF, CompareZeroCCMask = 0x8 in {
894    def LNR  : UnaryRR <"lnr",  0x11,   z_inegabs, GR32, GR32>;
895    def LNGR : UnaryRRE<"lngr", 0xB901, z_inegabs, GR64, GR64>;
896  }
897  let CCValues = 0xE, CompareZeroCCMask = 0xE in
898    def LNGFR : UnaryRRE<"lngfr", 0xB911, null_frag, GR64, GR32>;
899}
900defm : SXU<z_inegabs, LNGFR>;
901
902let Defs = [CC] in {
903  let CCValues = 0xF, CompareZeroCCMask = 0x8 in {
904    def LCR  : UnaryRR <"lcr",  0x13,   ineg, GR32, GR32>;
905    def LCGR : UnaryRRE<"lcgr", 0xB903, ineg, GR64, GR64>;
906  }
907  let CCValues = 0xE, CompareZeroCCMask = 0xE in
908    def LCGFR : UnaryRRE<"lcgfr", 0xB913, null_frag, GR64, GR32>;
909}
910defm : SXU<ineg, LCGFR>;
911
912//===----------------------------------------------------------------------===//
913// Insertion
914//===----------------------------------------------------------------------===//
915
916let isCodeGenOnly = 1 in
917  defm IC32 : BinaryRXPair<"ic", 0x43, 0xE373, inserti8, GR32, azextloadi8, 1>;
918defm IC : BinaryRXPair<"ic", 0x43, 0xE373, inserti8, GR64, azextloadi8, 1>;
919
920defm : InsertMem<"inserti8", IC32,  GR32, azextloadi8, bdxaddr12pair>;
921defm : InsertMem<"inserti8", IC32Y, GR32, azextloadi8, bdxaddr20pair>;
922
923defm : InsertMem<"inserti8", IC,  GR64, azextloadi8, bdxaddr12pair>;
924defm : InsertMem<"inserti8", ICY, GR64, azextloadi8, bdxaddr20pair>;
925
926// Insert characters under mask -- not (yet) used for codegen.
927let Defs = [CC] in {
928  defm ICM : TernaryRSPair<"icm", 0xBF, 0xEB81, GR32, 0>;
929  def ICMH : TernaryRSY<"icmh", 0xEB80, GRH32, 0>;
930}
931
932// Insertions of a 16-bit immediate, leaving other bits unaffected.
933// We don't have or_as_insert equivalents of these operations because
934// OI is available instead.
935//
936// IIxMux expands to II[LH]x, depending on the choice of register.
937def IILMux : BinaryRIPseudo<insertll, GRX32, imm32ll16>,
938             Requires<[FeatureHighWord]>;
939def IIHMux : BinaryRIPseudo<insertlh, GRX32, imm32lh16>,
940             Requires<[FeatureHighWord]>;
941def IILL : BinaryRI<"iill", 0xA53, insertll, GR32, imm32ll16>;
942def IILH : BinaryRI<"iilh", 0xA52, insertlh, GR32, imm32lh16>;
943def IIHL : BinaryRI<"iihl", 0xA51, insertll, GRH32, imm32ll16>;
944def IIHH : BinaryRI<"iihh", 0xA50, insertlh, GRH32, imm32lh16>;
945def IILL64 : BinaryAliasRI<insertll, GR64, imm64ll16>;
946def IILH64 : BinaryAliasRI<insertlh, GR64, imm64lh16>;
947def IIHL64 : BinaryAliasRI<inserthl, GR64, imm64hl16>;
948def IIHH64 : BinaryAliasRI<inserthh, GR64, imm64hh16>;
949
950// ...likewise for 32-bit immediates.  For GR32s this is a general
951// full-width move.  (We use IILF rather than something like LLILF
952// for 32-bit moves because IILF leaves the upper 32 bits of the
953// GR64 unchanged.)
954let isAsCheapAsAMove = 1, isMoveImm = 1, isReMaterializable = 1 in {
955  def IIFMux : UnaryRIPseudo<bitconvert, GRX32, uimm32>,
956               Requires<[FeatureHighWord]>;
957  def IILF : UnaryRIL<"iilf", 0xC09, bitconvert, GR32, uimm32>;
958  def IIHF : UnaryRIL<"iihf", 0xC08, bitconvert, GRH32, uimm32>;
959}
960def IILF64 : BinaryAliasRIL<insertlf, GR64, imm64lf32>;
961def IIHF64 : BinaryAliasRIL<inserthf, GR64, imm64hf32>;
962
963// An alternative model of inserthf, with the first operand being
964// a zero-extended value.
965def : Pat<(or (zext32 GR32:$src), imm64hf32:$imm),
966          (IIHF64 (INSERT_SUBREG (i64 (IMPLICIT_DEF)), GR32:$src, subreg_l32),
967                  imm64hf32:$imm)>;
968
969//===----------------------------------------------------------------------===//
970// Addition
971//===----------------------------------------------------------------------===//
972
973// Addition producing a signed overflow flag.
974let Defs = [CC], CCValues = 0xF, CCIfNoSignedWrap = 1 in {
975  // Addition of a register.
976  let isCommutable = 1 in {
977    defm AR : BinaryRRAndK<"ar", 0x1A, 0xB9F8, z_sadd, GR32, GR32>;
978    defm AGR : BinaryRREAndK<"agr", 0xB908, 0xB9E8, z_sadd, GR64, GR64>;
979  }
980  def AGFR : BinaryRRE<"agfr", 0xB918, null_frag, GR64, GR32>;
981
982  // Addition to a high register.
983  def AHHHR : BinaryRRFa<"ahhhr", 0xB9C8, null_frag, GRH32, GRH32, GRH32>,
984              Requires<[FeatureHighWord]>;
985  def AHHLR : BinaryRRFa<"ahhlr", 0xB9D8, null_frag, GRH32, GRH32, GR32>,
986              Requires<[FeatureHighWord]>;
987
988  // Addition of signed 16-bit immediates.
989  defm AHIMux : BinaryRIAndKPseudo<"ahimux", z_sadd, GRX32, imm32sx16>;
990  defm AHI  : BinaryRIAndK<"ahi",  0xA7A, 0xECD8, z_sadd, GR32, imm32sx16>;
991  defm AGHI : BinaryRIAndK<"aghi", 0xA7B, 0xECD9, z_sadd, GR64, imm64sx16>;
992
993  // Addition of signed 32-bit immediates.
994  def AFIMux : BinaryRIPseudo<z_sadd, GRX32, simm32>,
995               Requires<[FeatureHighWord]>;
996  def AFI  : BinaryRIL<"afi",  0xC29, z_sadd, GR32, simm32>;
997  def AIH  : BinaryRIL<"aih",  0xCC8, z_sadd, GRH32, simm32>,
998             Requires<[FeatureHighWord]>;
999  def AGFI : BinaryRIL<"agfi", 0xC28, z_sadd, GR64, imm64sx32>;
1000
1001  // Addition of memory.
1002  defm AH  : BinaryRXPair<"ah", 0x4A, 0xE37A, z_sadd, GR32, asextloadi16, 2>;
1003  defm A   : BinaryRXPairAndPseudo<"a",  0x5A, 0xE35A, z_sadd, GR32, load, 4>;
1004  def  AGH : BinaryRXY<"agh", 0xE338, z_sadd, GR64, asextloadi16, 2>,
1005             Requires<[FeatureMiscellaneousExtensions2]>;
1006  def  AGF : BinaryRXY<"agf", 0xE318, z_sadd, GR64, asextloadi32, 4>;
1007  defm AG  : BinaryRXYAndPseudo<"ag",  0xE308, z_sadd, GR64, load, 8>;
1008
1009  // Addition to memory.
1010  def ASI  : BinarySIY<"asi",  0xEB6A, add, imm32sx8>;
1011  def AGSI : BinarySIY<"agsi", 0xEB7A, add, imm64sx8>;
1012}
1013defm : SXB<z_sadd, GR64, AGFR>;
1014
1015// Addition producing a carry.
1016let Defs = [CC], CCValues = 0xF, IsLogical = 1 in {
1017  // Addition of a register.
1018  let isCommutable = 1 in {
1019    defm ALR : BinaryRRAndK<"alr", 0x1E, 0xB9FA, z_uadd, GR32, GR32>;
1020    defm ALGR : BinaryRREAndK<"algr", 0xB90A, 0xB9EA, z_uadd, GR64, GR64>;
1021  }
1022  def ALGFR : BinaryRRE<"algfr", 0xB91A, null_frag, GR64, GR32>;
1023
1024  // Addition to a high register.
1025  def ALHHHR : BinaryRRFa<"alhhhr", 0xB9CA, null_frag, GRH32, GRH32, GRH32>,
1026               Requires<[FeatureHighWord]>;
1027  def ALHHLR : BinaryRRFa<"alhhlr", 0xB9DA, null_frag, GRH32, GRH32, GR32>,
1028               Requires<[FeatureHighWord]>;
1029
1030  // Addition of signed 16-bit immediates.
1031  def ALHSIK  : BinaryRIE<"alhsik",  0xECDA, z_uadd, GR32, imm32sx16>,
1032                Requires<[FeatureDistinctOps]>;
1033  def ALGHSIK : BinaryRIE<"alghsik", 0xECDB, z_uadd, GR64, imm64sx16>,
1034                Requires<[FeatureDistinctOps]>;
1035
1036  // Addition of unsigned 32-bit immediates.
1037  def ALFI  : BinaryRIL<"alfi",  0xC2B, z_uadd, GR32, uimm32>;
1038  def ALGFI : BinaryRIL<"algfi", 0xC2A, z_uadd, GR64, imm64zx32>;
1039
1040  // Addition of signed 32-bit immediates.
1041  def ALSIH : BinaryRIL<"alsih", 0xCCA, null_frag, GRH32, simm32>,
1042              Requires<[FeatureHighWord]>;
1043
1044  // Addition of memory.
1045  defm AL   : BinaryRXPairAndPseudo<"al", 0x5E, 0xE35E, z_uadd, GR32, load, 4>;
1046  def  ALGF : BinaryRXY<"algf", 0xE31A, z_uadd, GR64, azextloadi32, 4>;
1047  defm ALG  : BinaryRXYAndPseudo<"alg",  0xE30A, z_uadd, GR64, load, 8>;
1048
1049  // Addition to memory.
1050  def ALSI  : BinarySIY<"alsi",  0xEB6E, null_frag, imm32sx8>;
1051  def ALGSI : BinarySIY<"algsi", 0xEB7E, null_frag, imm64sx8>;
1052}
1053defm : ZXB<z_uadd, GR64, ALGFR>;
1054
1055// Addition producing and using a carry.
1056let Defs = [CC], Uses = [CC], CCValues = 0xF, IsLogical = 1 in {
1057  // Addition of a register.
1058  def ALCR  : BinaryRRE<"alcr",  0xB998, z_addcarry, GR32, GR32>;
1059  def ALCGR : BinaryRRE<"alcgr", 0xB988, z_addcarry, GR64, GR64>;
1060
1061  // Addition of memory.
1062  def ALC  : BinaryRXY<"alc",  0xE398, z_addcarry, GR32, load, 4>;
1063  def ALCG : BinaryRXY<"alcg", 0xE388, z_addcarry, GR64, load, 8>;
1064}
1065
1066// Addition that does not modify the condition code.
1067def ALSIHN : BinaryRIL<"alsihn", 0xCCB, null_frag, GRH32, simm32>,
1068             Requires<[FeatureHighWord]>;
1069
1070
1071//===----------------------------------------------------------------------===//
1072// Subtraction
1073//===----------------------------------------------------------------------===//
1074
1075// Subtraction producing a signed overflow flag.
1076let Defs = [CC], CCValues = 0xF, CompareZeroCCMask = 0x8,
1077    CCIfNoSignedWrap = 1 in {
1078  // Subtraction of a register.
1079  defm SR : BinaryRRAndK<"sr", 0x1B, 0xB9F9, z_ssub, GR32, GR32>;
1080  def SGFR : BinaryRRE<"sgfr", 0xB919, null_frag, GR64, GR32>;
1081  defm SGR : BinaryRREAndK<"sgr", 0xB909, 0xB9E9, z_ssub, GR64, GR64>;
1082
1083  // Subtraction from a high register.
1084  def SHHHR : BinaryRRFa<"shhhr", 0xB9C9, null_frag, GRH32, GRH32, GRH32>,
1085              Requires<[FeatureHighWord]>;
1086  def SHHLR : BinaryRRFa<"shhlr", 0xB9D9, null_frag, GRH32, GRH32, GR32>,
1087              Requires<[FeatureHighWord]>;
1088
1089  // Subtraction of memory.
1090  defm SH  : BinaryRXPair<"sh", 0x4B, 0xE37B, z_ssub, GR32, asextloadi16, 2>;
1091  defm S   : BinaryRXPairAndPseudo<"s", 0x5B, 0xE35B, z_ssub, GR32, load, 4>;
1092  def  SGH : BinaryRXY<"sgh", 0xE339, z_ssub, GR64, asextloadi16, 2>,
1093             Requires<[FeatureMiscellaneousExtensions2]>;
1094  def  SGF : BinaryRXY<"sgf", 0xE319, z_ssub, GR64, asextloadi32, 4>;
1095  defm SG  : BinaryRXYAndPseudo<"sg",  0xE309, z_ssub, GR64, load, 8>;
1096}
1097defm : SXB<z_ssub, GR64, SGFR>;
1098
1099// Subtracting an immediate is the same as adding the negated immediate.
1100let AddedComplexity = 1 in {
1101  def : Pat<(z_ssub GR32:$src1, imm32sx16n:$src2),
1102            (AHIMux GR32:$src1, imm32sx16n:$src2)>,
1103        Requires<[FeatureHighWord]>;
1104  def : Pat<(z_ssub GR32:$src1, simm32n:$src2),
1105            (AFIMux GR32:$src1, simm32n:$src2)>,
1106        Requires<[FeatureHighWord]>;
1107  def : Pat<(z_ssub GR32:$src1, imm32sx16n:$src2),
1108            (AHI GR32:$src1, imm32sx16n:$src2)>;
1109  def : Pat<(z_ssub GR32:$src1, simm32n:$src2),
1110            (AFI GR32:$src1, simm32n:$src2)>;
1111  def : Pat<(z_ssub GR64:$src1, imm64sx16n:$src2),
1112            (AGHI GR64:$src1, imm64sx16n:$src2)>;
1113  def : Pat<(z_ssub GR64:$src1, imm64sx32n:$src2),
1114            (AGFI GR64:$src1, imm64sx32n:$src2)>;
1115}
1116
1117// And vice versa in one special case, where we need to load a
1118// constant into a register in any case, but the negated constant
1119// requires fewer instructions to load.
1120def : Pat<(z_saddo GR64:$src1, imm64lh16n:$src2),
1121          (SGR GR64:$src1, (LLILH imm64lh16n:$src2))>;
1122def : Pat<(z_saddo GR64:$src1, imm64lf32n:$src2),
1123          (SGR GR64:$src1, (LLILF imm64lf32n:$src2))>;
1124
1125// Subtraction producing a carry.
1126let Defs = [CC], CCValues = 0x7, IsLogical = 1 in {
1127  // Subtraction of a register.
1128  defm SLR : BinaryRRAndK<"slr", 0x1F, 0xB9FB, z_usub, GR32, GR32>;
1129  def SLGFR : BinaryRRE<"slgfr", 0xB91B, null_frag, GR64, GR32>;
1130  defm SLGR : BinaryRREAndK<"slgr", 0xB90B, 0xB9EB, z_usub, GR64, GR64>;
1131
1132  // Subtraction from a high register.
1133  def SLHHHR : BinaryRRFa<"slhhhr", 0xB9CB, null_frag, GRH32, GRH32, GRH32>,
1134               Requires<[FeatureHighWord]>;
1135  def SLHHLR : BinaryRRFa<"slhhlr", 0xB9DB, null_frag, GRH32, GRH32, GR32>,
1136               Requires<[FeatureHighWord]>;
1137
1138  // Subtraction of unsigned 32-bit immediates.
1139  def SLFI  : BinaryRIL<"slfi",  0xC25, z_usub, GR32, uimm32>;
1140  def SLGFI : BinaryRIL<"slgfi", 0xC24, z_usub, GR64, imm64zx32>;
1141
1142  // Subtraction of memory.
1143  defm SL   : BinaryRXPairAndPseudo<"sl", 0x5F, 0xE35F, z_usub, GR32, load, 4>;
1144  def  SLGF : BinaryRXY<"slgf", 0xE31B, z_usub, GR64, azextloadi32, 4>;
1145  defm SLG  : BinaryRXYAndPseudo<"slg",  0xE30B, z_usub, GR64, load, 8>;
1146}
1147defm : ZXB<z_usub, GR64, SLGFR>;
1148
1149// Subtracting an immediate is the same as adding the negated immediate.
1150let AddedComplexity = 1 in {
1151  def : Pat<(z_usub GR32:$src1, imm32sx16n:$src2),
1152            (ALHSIK GR32:$src1, imm32sx16n:$src2)>,
1153        Requires<[FeatureDistinctOps]>;
1154  def : Pat<(z_usub GR64:$src1, imm64sx16n:$src2),
1155            (ALGHSIK GR64:$src1, imm64sx16n:$src2)>,
1156        Requires<[FeatureDistinctOps]>;
1157}
1158
1159// And vice versa in one special case (but we prefer addition).
1160def : Pat<(add GR64:$src1, imm64zx32n:$src2),
1161          (SLGFI GR64:$src1, imm64zx32n:$src2)>;
1162
1163// Subtraction producing and using a carry.
1164let Defs = [CC], Uses = [CC], CCValues = 0xF, IsLogical = 1 in {
1165  // Subtraction of a register.
1166  def SLBR  : BinaryRRE<"slbr",  0xB999, z_subcarry, GR32, GR32>;
1167  def SLBGR : BinaryRRE<"slbgr", 0xB989, z_subcarry, GR64, GR64>;
1168
1169  // Subtraction of memory.
1170  def SLB  : BinaryRXY<"slb",  0xE399, z_subcarry, GR32, load, 4>;
1171  def SLBG : BinaryRXY<"slbg", 0xE389, z_subcarry, GR64, load, 8>;
1172}
1173
1174
1175//===----------------------------------------------------------------------===//
1176// AND
1177//===----------------------------------------------------------------------===//
1178
1179let Defs = [CC] in {
1180  // ANDs of a register.
1181  let isCommutable = 1, CCValues = 0xC, CompareZeroCCMask = 0x8 in {
1182    defm NR : BinaryRRAndK<"nr", 0x14, 0xB9F4, and, GR32, GR32>;
1183    defm NGR : BinaryRREAndK<"ngr", 0xB980, 0xB9E4, and, GR64, GR64>;
1184  }
1185
1186  let isConvertibleToThreeAddress = 1 in {
1187    // ANDs of a 16-bit immediate, leaving other bits unaffected.
1188    // The CC result only reflects the 16-bit field, not the full register.
1189    //
1190    // NIxMux expands to NI[LH]x, depending on the choice of register.
1191    def NILMux : BinaryRIPseudo<and, GRX32, imm32ll16c>,
1192                 Requires<[FeatureHighWord]>;
1193    def NIHMux : BinaryRIPseudo<and, GRX32, imm32lh16c>,
1194                 Requires<[FeatureHighWord]>;
1195    def NILL : BinaryRI<"nill", 0xA57, and, GR32, imm32ll16c>;
1196    def NILH : BinaryRI<"nilh", 0xA56, and, GR32, imm32lh16c>;
1197    def NIHL : BinaryRI<"nihl", 0xA55, and, GRH32, imm32ll16c>;
1198    def NIHH : BinaryRI<"nihh", 0xA54, and, GRH32, imm32lh16c>;
1199    def NILL64 : BinaryAliasRI<and, GR64, imm64ll16c>;
1200    def NILH64 : BinaryAliasRI<and, GR64, imm64lh16c>;
1201    def NIHL64 : BinaryAliasRI<and, GR64, imm64hl16c>;
1202    def NIHH64 : BinaryAliasRI<and, GR64, imm64hh16c>;
1203
1204    // ANDs of a 32-bit immediate, leaving other bits unaffected.
1205    // The CC result only reflects the 32-bit field, which means we can
1206    // use it as a zero indicator for i32 operations but not otherwise.
1207    let CCValues = 0xC, CompareZeroCCMask = 0x8 in {
1208      // Expands to NILF or NIHF, depending on the choice of register.
1209      def NIFMux : BinaryRIPseudo<and, GRX32, uimm32>,
1210                   Requires<[FeatureHighWord]>;
1211      def NILF : BinaryRIL<"nilf", 0xC0B, and, GR32, uimm32>;
1212      def NIHF : BinaryRIL<"nihf", 0xC0A, and, GRH32, uimm32>;
1213    }
1214    def NILF64 : BinaryAliasRIL<and, GR64, imm64lf32c>;
1215    def NIHF64 : BinaryAliasRIL<and, GR64, imm64hf32c>;
1216  }
1217
1218  // ANDs of memory.
1219  let CCValues = 0xC, CompareZeroCCMask = 0x8 in {
1220    defm N  : BinaryRXPairAndPseudo<"n", 0x54, 0xE354, and, GR32, load, 4>;
1221    defm NG : BinaryRXYAndPseudo<"ng", 0xE380, and, GR64, load, 8>;
1222  }
1223
1224  // AND to memory
1225  defm NI : BinarySIPair<"ni", 0x94, 0xEB54, null_frag, imm32zx8>;
1226
1227  // Block AND.
1228  let mayLoad = 1, mayStore = 1 in
1229    defm NC : MemorySS<"nc", 0xD4, z_nc>;
1230}
1231defm : RMWIByte<and, bdaddr12pair, NI>;
1232defm : RMWIByte<and, bdaddr20pair, NIY>;
1233
1234//===----------------------------------------------------------------------===//
1235// OR
1236//===----------------------------------------------------------------------===//
1237
1238let Defs = [CC] in {
1239  // ORs of a register.
1240  let isCommutable = 1, CCValues = 0xC, CompareZeroCCMask = 0x8 in {
1241    defm OR : BinaryRRAndK<"or", 0x16, 0xB9F6, or, GR32, GR32>;
1242    defm OGR : BinaryRREAndK<"ogr", 0xB981, 0xB9E6, or, GR64, GR64>;
1243  }
1244
1245  // ORs of a 16-bit immediate, leaving other bits unaffected.
1246  // The CC result only reflects the 16-bit field, not the full register.
1247  //
1248  // OIxMux expands to OI[LH]x, depending on the choice of register.
1249  def OILMux : BinaryRIPseudo<or, GRX32, imm32ll16>,
1250               Requires<[FeatureHighWord]>;
1251  def OIHMux : BinaryRIPseudo<or, GRX32, imm32lh16>,
1252               Requires<[FeatureHighWord]>;
1253  def OILL : BinaryRI<"oill", 0xA5B, or, GR32, imm32ll16>;
1254  def OILH : BinaryRI<"oilh", 0xA5A, or, GR32, imm32lh16>;
1255  def OIHL : BinaryRI<"oihl", 0xA59, or, GRH32, imm32ll16>;
1256  def OIHH : BinaryRI<"oihh", 0xA58, or, GRH32, imm32lh16>;
1257  def OILL64 : BinaryAliasRI<or, GR64, imm64ll16>;
1258  def OILH64 : BinaryAliasRI<or, GR64, imm64lh16>;
1259  def OIHL64 : BinaryAliasRI<or, GR64, imm64hl16>;
1260  def OIHH64 : BinaryAliasRI<or, GR64, imm64hh16>;
1261
1262  // ORs of a 32-bit immediate, leaving other bits unaffected.
1263  // The CC result only reflects the 32-bit field, which means we can
1264  // use it as a zero indicator for i32 operations but not otherwise.
1265  let CCValues = 0xC, CompareZeroCCMask = 0x8 in {
1266    // Expands to OILF or OIHF, depending on the choice of register.
1267    def OIFMux : BinaryRIPseudo<or, GRX32, uimm32>,
1268                 Requires<[FeatureHighWord]>;
1269    def OILF : BinaryRIL<"oilf", 0xC0D, or, GR32, uimm32>;
1270    def OIHF : BinaryRIL<"oihf", 0xC0C, or, GRH32, uimm32>;
1271  }
1272  def OILF64 : BinaryAliasRIL<or, GR64, imm64lf32>;
1273  def OIHF64 : BinaryAliasRIL<or, GR64, imm64hf32>;
1274
1275  // ORs of memory.
1276  let CCValues = 0xC, CompareZeroCCMask = 0x8 in {
1277    defm O  : BinaryRXPairAndPseudo<"o", 0x56, 0xE356, or, GR32, load, 4>;
1278    defm OG : BinaryRXYAndPseudo<"og", 0xE381, or, GR64, load, 8>;
1279  }
1280
1281  // OR to memory
1282  defm OI : BinarySIPair<"oi", 0x96, 0xEB56, null_frag, imm32zx8>;
1283
1284  // Block OR.
1285  let mayLoad = 1, mayStore = 1 in
1286    defm OC : MemorySS<"oc", 0xD6, z_oc>;
1287}
1288defm : RMWIByte<or, bdaddr12pair, OI>;
1289defm : RMWIByte<or, bdaddr20pair, OIY>;
1290
1291//===----------------------------------------------------------------------===//
1292// XOR
1293//===----------------------------------------------------------------------===//
1294
1295let Defs = [CC] in {
1296  // XORs of a register.
1297  let isCommutable = 1, CCValues = 0xC, CompareZeroCCMask = 0x8 in {
1298    defm XR : BinaryRRAndK<"xr", 0x17, 0xB9F7, xor, GR32, GR32>;
1299    defm XGR : BinaryRREAndK<"xgr", 0xB982, 0xB9E7, xor, GR64, GR64>;
1300  }
1301
1302  // XORs of a 32-bit immediate, leaving other bits unaffected.
1303  // The CC result only reflects the 32-bit field, which means we can
1304  // use it as a zero indicator for i32 operations but not otherwise.
1305  let CCValues = 0xC, CompareZeroCCMask = 0x8 in {
1306    // Expands to XILF or XIHF, depending on the choice of register.
1307    def XIFMux : BinaryRIPseudo<xor, GRX32, uimm32>,
1308                 Requires<[FeatureHighWord]>;
1309    def XILF : BinaryRIL<"xilf", 0xC07, xor, GR32, uimm32>;
1310    def XIHF : BinaryRIL<"xihf", 0xC06, xor, GRH32, uimm32>;
1311  }
1312  def XILF64 : BinaryAliasRIL<xor, GR64, imm64lf32>;
1313  def XIHF64 : BinaryAliasRIL<xor, GR64, imm64hf32>;
1314
1315  // XORs of memory.
1316  let CCValues = 0xC, CompareZeroCCMask = 0x8 in {
1317    defm X  : BinaryRXPairAndPseudo<"x",0x57, 0xE357, xor, GR32, load, 4>;
1318    defm XG : BinaryRXYAndPseudo<"xg", 0xE382, xor, GR64, load, 8>;
1319  }
1320
1321  // XOR to memory
1322  defm XI : BinarySIPair<"xi", 0x97, 0xEB57, null_frag, imm32zx8>;
1323
1324  // Block XOR.
1325  let mayLoad = 1, mayStore = 1 in
1326    defm XC : MemorySS<"xc", 0xD7, z_xc>;
1327}
1328defm : RMWIByte<xor, bdaddr12pair, XI>;
1329defm : RMWIByte<xor, bdaddr20pair, XIY>;
1330
1331//===----------------------------------------------------------------------===//
1332// Combined logical operations
1333//===----------------------------------------------------------------------===//
1334
1335let Predicates = [FeatureMiscellaneousExtensions3],
1336    Defs = [CC] in {
1337  // AND with complement.
1338  let CCValues = 0xC, CompareZeroCCMask = 0x8 in {
1339    def NCRK : BinaryRRFa<"ncrk", 0xB9F5, andc, GR32, GR32, GR32>;
1340    def NCGRK : BinaryRRFa<"ncgrk", 0xB9E5, andc, GR64, GR64, GR64>;
1341  }
1342
1343  // OR with complement.
1344  let CCValues = 0xC, CompareZeroCCMask = 0x8 in {
1345    def OCRK : BinaryRRFa<"ocrk", 0xB975, orc, GR32, GR32, GR32>;
1346    def OCGRK : BinaryRRFa<"ocgrk", 0xB965, orc, GR64, GR64, GR64>;
1347  }
1348
1349  // NAND.
1350  let isCommutable = 1, CCValues = 0xC, CompareZeroCCMask = 0x8 in {
1351    def NNRK : BinaryRRFa<"nnrk", 0xB974, nand, GR32, GR32, GR32>;
1352    def NNGRK : BinaryRRFa<"nngrk", 0xB964, nand, GR64, GR64, GR64>;
1353  }
1354
1355  // NOR.
1356  let isCommutable = 1, CCValues = 0xC, CompareZeroCCMask = 0x8 in {
1357    def NORK : BinaryRRFa<"nork", 0xB976, nor, GR32, GR32, GR32>;
1358    def NOGRK : BinaryRRFa<"nogrk", 0xB966, nor, GR64, GR64, GR64>;
1359  }
1360
1361  // NXOR.
1362  let isCommutable = 1, CCValues = 0xC, CompareZeroCCMask = 0x8 in {
1363    def NXRK : BinaryRRFa<"nxrk", 0xB977, nxor, GR32, GR32, GR32>;
1364    def NXGRK : BinaryRRFa<"nxgrk", 0xB967, nxor, GR64, GR64, GR64>;
1365  }
1366}
1367
1368//===----------------------------------------------------------------------===//
1369// Multiplication
1370//===----------------------------------------------------------------------===//
1371
1372// Multiplication of a register, setting the condition code.  We prefer these
1373// over MS(G)R if available, even though we cannot use the condition code,
1374// since they are three-operand instructions.
1375let Predicates = [FeatureMiscellaneousExtensions2],
1376    Defs = [CC], isCommutable = 1 in {
1377  def MSRKC  : BinaryRRFa<"msrkc",  0xB9FD, mul, GR32, GR32, GR32>;
1378  def MSGRKC : BinaryRRFa<"msgrkc", 0xB9ED, mul, GR64, GR64, GR64>;
1379}
1380
1381// Multiplication of a register.
1382let isCommutable = 1 in {
1383  def MSR  : BinaryRRE<"msr",  0xB252, mul, GR32, GR32>;
1384  def MSGR : BinaryRRE<"msgr", 0xB90C, mul, GR64, GR64>;
1385}
1386def MSGFR : BinaryRRE<"msgfr", 0xB91C, null_frag, GR64, GR32>;
1387defm : SXB<mul, GR64, MSGFR>;
1388
1389// Multiplication of a signed 16-bit immediate.
1390def MHI  : BinaryRI<"mhi",  0xA7C, mul, GR32, imm32sx16>;
1391def MGHI : BinaryRI<"mghi", 0xA7D, mul, GR64, imm64sx16>;
1392
1393// Multiplication of a signed 32-bit immediate.
1394def MSFI  : BinaryRIL<"msfi",  0xC21, mul, GR32, simm32>;
1395def MSGFI : BinaryRIL<"msgfi", 0xC20, mul, GR64, imm64sx32>;
1396
1397// Multiplication of memory.
1398defm MH   : BinaryRXPair<"mh", 0x4C, 0xE37C, mul, GR32, asextloadi16, 2>;
1399defm MS   : BinaryRXPair<"ms", 0x71, 0xE351, mul, GR32, load, 4>;
1400def  MGH  : BinaryRXY<"mgh", 0xE33C, mul, GR64, asextloadi16, 2>,
1401            Requires<[FeatureMiscellaneousExtensions2]>;
1402def  MSGF : BinaryRXY<"msgf", 0xE31C, mul, GR64, asextloadi32, 4>;
1403def  MSG  : BinaryRXY<"msg",  0xE30C, mul, GR64, load, 8>;
1404
1405// Multiplication of memory, setting the condition code.
1406let Predicates = [FeatureMiscellaneousExtensions2], Defs = [CC] in {
1407  defm MSC  : BinaryRXYAndPseudo<"msc",  0xE353, null_frag, GR32, load, 4>;
1408  defm MSGC : BinaryRXYAndPseudo<"msgc", 0xE383, null_frag, GR64, load, 8>;
1409}
1410
1411// Multiplication of a register, producing two results.
1412def MR   : BinaryRR <"mr",    0x1C,   null_frag, GR128, GR32>;
1413def MGRK : BinaryRRFa<"mgrk", 0xB9EC, null_frag, GR128, GR64, GR64>,
1414           Requires<[FeatureMiscellaneousExtensions2]>;
1415def MLR  : BinaryRRE<"mlr",  0xB996, null_frag, GR128, GR32>;
1416def MLGR : BinaryRRE<"mlgr", 0xB986, null_frag, GR128, GR64>;
1417
1418def : Pat<(z_smul_lohi GR64:$src1, GR64:$src2),
1419          (MGRK GR64:$src1, GR64:$src2)>;
1420def : Pat<(z_umul_lohi GR64:$src1, GR64:$src2),
1421          (MLGR (AEXT128 GR64:$src1), GR64:$src2)>;
1422
1423// Multiplication of memory, producing two results.
1424def M   : BinaryRX <"m",   0x5C,   null_frag, GR128, load, 4>;
1425def MFY : BinaryRXY<"mfy", 0xE35C, null_frag, GR128, load, 4>;
1426def MG  : BinaryRXY<"mg",  0xE384, null_frag, GR128, load, 8>,
1427          Requires<[FeatureMiscellaneousExtensions2]>;
1428def ML  : BinaryRXY<"ml",  0xE396, null_frag, GR128, load, 4>;
1429def MLG : BinaryRXY<"mlg", 0xE386, null_frag, GR128, load, 8>;
1430
1431def : Pat<(z_smul_lohi GR64:$src1, (i64 (load bdxaddr20only:$src2))),
1432          (MG (AEXT128 GR64:$src1), bdxaddr20only:$src2)>;
1433def : Pat<(z_umul_lohi GR64:$src1, (i64 (load bdxaddr20only:$src2))),
1434          (MLG (AEXT128 GR64:$src1), bdxaddr20only:$src2)>;
1435
1436//===----------------------------------------------------------------------===//
1437// Division and remainder
1438//===----------------------------------------------------------------------===//
1439
1440let hasSideEffects = 1 in {  // Do not speculatively execute.
1441  // Division and remainder, from registers.
1442  def DR    : BinaryRR <"dr",    0x1D,   null_frag, GR128, GR32>;
1443  def DSGFR : BinaryRRE<"dsgfr", 0xB91D, null_frag, GR128, GR32>;
1444  def DSGR  : BinaryRRE<"dsgr",  0xB90D, null_frag, GR128, GR64>;
1445  def DLR   : BinaryRRE<"dlr",   0xB997, null_frag, GR128, GR32>;
1446  def DLGR  : BinaryRRE<"dlgr",  0xB987, null_frag, GR128, GR64>;
1447
1448  // Division and remainder, from memory.
1449  def D    : BinaryRX <"d",    0x5D,   null_frag, GR128, load, 4>;
1450  def DSGF : BinaryRXY<"dsgf", 0xE31D, null_frag, GR128, load, 4>;
1451  def DSG  : BinaryRXY<"dsg",  0xE30D, null_frag, GR128, load, 8>;
1452  def DL   : BinaryRXY<"dl",   0xE397, null_frag, GR128, load, 4>;
1453  def DLG  : BinaryRXY<"dlg",  0xE387, null_frag, GR128, load, 8>;
1454}
1455def : Pat<(z_sdivrem GR64:$src1, GR32:$src2),
1456          (DSGFR (AEXT128 GR64:$src1), GR32:$src2)>;
1457def : Pat<(z_sdivrem GR64:$src1, (i32 (load bdxaddr20only:$src2))),
1458          (DSGF (AEXT128 GR64:$src1), bdxaddr20only:$src2)>;
1459def : Pat<(z_sdivrem GR64:$src1, GR64:$src2),
1460          (DSGR (AEXT128 GR64:$src1), GR64:$src2)>;
1461def : Pat<(z_sdivrem GR64:$src1, (i64 (load bdxaddr20only:$src2))),
1462          (DSG (AEXT128 GR64:$src1), bdxaddr20only:$src2)>;
1463
1464def : Pat<(z_udivrem GR32:$src1, GR32:$src2),
1465          (DLR (ZEXT128 (INSERT_SUBREG (i64 (IMPLICIT_DEF)), GR32:$src1,
1466                                       subreg_l32)), GR32:$src2)>;
1467def : Pat<(z_udivrem GR32:$src1, (i32 (load bdxaddr20only:$src2))),
1468          (DL (ZEXT128 (INSERT_SUBREG (i64 (IMPLICIT_DEF)), GR32:$src1,
1469                                      subreg_l32)), bdxaddr20only:$src2)>;
1470def : Pat<(z_udivrem GR64:$src1, GR64:$src2),
1471          (DLGR (ZEXT128 GR64:$src1), GR64:$src2)>;
1472def : Pat<(z_udivrem GR64:$src1, (i64 (load bdxaddr20only:$src2))),
1473          (DLG (ZEXT128 GR64:$src1), bdxaddr20only:$src2)>;
1474
1475//===----------------------------------------------------------------------===//
1476// Shifts
1477//===----------------------------------------------------------------------===//
1478
1479// Logical shift left.
1480defm SLL : BinaryRSAndK<"sll", 0x89, 0xEBDF, shiftop<shl>, GR32>;
1481def SLLG : BinaryRSY<"sllg", 0xEB0D, shiftop<shl>, GR64>;
1482def SLDL : BinaryRS<"sldl", 0x8D, null_frag, GR128>;
1483
1484// Arithmetic shift left.
1485let Defs = [CC] in {
1486  defm SLA : BinaryRSAndK<"sla", 0x8B, 0xEBDD, null_frag, GR32>;
1487  def SLAG : BinaryRSY<"slag", 0xEB0B, null_frag, GR64>;
1488  def SLDA : BinaryRS<"slda", 0x8F, null_frag, GR128>;
1489}
1490
1491// Logical shift right.
1492defm SRL : BinaryRSAndK<"srl", 0x88, 0xEBDE, shiftop<srl>, GR32>;
1493def SRLG : BinaryRSY<"srlg", 0xEB0C, shiftop<srl>, GR64>;
1494def SRDL : BinaryRS<"srdl", 0x8C, null_frag, GR128>;
1495
1496// Arithmetic shift right.
1497let Defs = [CC], CCValues = 0xE, CompareZeroCCMask = 0xE in {
1498  defm SRA : BinaryRSAndK<"sra", 0x8A, 0xEBDC, shiftop<sra>, GR32>;
1499  def SRAG : BinaryRSY<"srag", 0xEB0A, shiftop<sra>, GR64>;
1500  def SRDA : BinaryRS<"srda", 0x8E, null_frag, GR128>;
1501}
1502
1503// Rotate left.
1504def RLL  : BinaryRSY<"rll",  0xEB1D, shiftop<rotl>, GR32>;
1505def RLLG : BinaryRSY<"rllg", 0xEB1C, shiftop<rotl>, GR64>;
1506
1507// Rotate second operand left and inserted selected bits into first operand.
1508// These can act like 32-bit operands provided that the constant start and
1509// end bits (operands 2 and 3) are in the range [32, 64).
1510let Defs = [CC] in {
1511  let isCodeGenOnly = 1 in
1512    def RISBG32 : RotateSelectRIEf<"risbg", 0xEC55, GR32, GR32>;
1513  let CCValues = 0xE, CompareZeroCCMask = 0xE in
1514    def RISBG : RotateSelectRIEf<"risbg", 0xEC55, GR64, GR64>;
1515}
1516
1517// On zEC12 we have a variant of RISBG that does not set CC.
1518let Predicates = [FeatureMiscellaneousExtensions] in
1519  def RISBGN : RotateSelectRIEf<"risbgn", 0xEC59, GR64, GR64>;
1520
1521// Forms of RISBG that only affect one word of the destination register.
1522// They do not set CC.
1523let Predicates = [FeatureHighWord] in {
1524  def RISBMux : RotateSelectRIEfPseudo<GRX32, GRX32>;
1525  def RISBLL  : RotateSelectAliasRIEf<GR32,  GR32>;
1526  def RISBLH  : RotateSelectAliasRIEf<GR32,  GRH32>;
1527  def RISBHL  : RotateSelectAliasRIEf<GRH32, GR32>;
1528  def RISBHH  : RotateSelectAliasRIEf<GRH32, GRH32>;
1529  def RISBLG  : RotateSelectRIEf<"risblg", 0xEC51, GR32, GR64>;
1530  def RISBHG  : RotateSelectRIEf<"risbhg", 0xEC5D, GRH32, GR64>;
1531}
1532
1533// Rotate second operand left and perform a logical operation with selected
1534// bits of the first operand.  The CC result only describes the selected bits,
1535// so isn't useful for a full comparison against zero.
1536let Defs = [CC] in {
1537  def RNSBG : RotateSelectRIEf<"rnsbg", 0xEC54, GR64, GR64>;
1538  def ROSBG : RotateSelectRIEf<"rosbg", 0xEC56, GR64, GR64>;
1539  def RXSBG : RotateSelectRIEf<"rxsbg", 0xEC57, GR64, GR64>;
1540}
1541
1542//===----------------------------------------------------------------------===//
1543// Comparison
1544//===----------------------------------------------------------------------===//
1545
1546// Signed comparisons.  We put these before the unsigned comparisons because
1547// some of the signed forms have COMPARE AND BRANCH equivalents whereas none
1548// of the unsigned forms do.
1549let Defs = [CC], CCValues = 0xE in {
1550  // Comparison with a register.
1551  def CR   : CompareRR <"cr",   0x19,   z_scmp,    GR32, GR32>;
1552  def CGFR : CompareRRE<"cgfr", 0xB930, null_frag, GR64, GR32>;
1553  def CGR  : CompareRRE<"cgr",  0xB920, z_scmp,    GR64, GR64>;
1554
1555  // Comparison with a high register.
1556  def CHHR : CompareRRE<"chhr", 0xB9CD, null_frag, GRH32, GRH32>,
1557             Requires<[FeatureHighWord]>;
1558  def CHLR : CompareRRE<"chlr", 0xB9DD, null_frag, GRH32, GR32>,
1559             Requires<[FeatureHighWord]>;
1560
1561  // Comparison with a signed 16-bit immediate.  CHIMux expands to CHI or CIH,
1562  // depending on the choice of register.
1563  def CHIMux : CompareRIPseudo<z_scmp, GRX32, imm32sx16>,
1564               Requires<[FeatureHighWord]>;
1565  def CHI  : CompareRI<"chi",  0xA7E, z_scmp, GR32, imm32sx16>;
1566  def CGHI : CompareRI<"cghi", 0xA7F, z_scmp, GR64, imm64sx16>;
1567
1568  // Comparison with a signed 32-bit immediate.  CFIMux expands to CFI or CIH,
1569  // depending on the choice of register.
1570  def CFIMux : CompareRIPseudo<z_scmp, GRX32, simm32>,
1571               Requires<[FeatureHighWord]>;
1572  def CFI  : CompareRIL<"cfi",  0xC2D, z_scmp, GR32, simm32>;
1573  def CIH  : CompareRIL<"cih",  0xCCD, z_scmp, GRH32, simm32>,
1574             Requires<[FeatureHighWord]>;
1575  def CGFI : CompareRIL<"cgfi", 0xC2C, z_scmp, GR64, imm64sx32>;
1576
1577  // Comparison with memory.
1578  defm CH    : CompareRXPair<"ch", 0x49, 0xE379, z_scmp, GR32, asextloadi16, 2>;
1579  def  CMux  : CompareRXYPseudo<z_scmp, GRX32, load, 4>,
1580               Requires<[FeatureHighWord]>;
1581  defm C     : CompareRXPair<"c",  0x59, 0xE359, z_scmp, GR32, load, 4>;
1582  def  CHF   : CompareRXY<"chf", 0xE3CD, z_scmp, GRH32, load, 4>,
1583               Requires<[FeatureHighWord]>;
1584  def  CGH   : CompareRXY<"cgh", 0xE334, z_scmp, GR64, asextloadi16, 2>;
1585  def  CGF   : CompareRXY<"cgf", 0xE330, z_scmp, GR64, asextloadi32, 4>;
1586  def  CG    : CompareRXY<"cg",  0xE320, z_scmp, GR64, load, 8>;
1587  def  CHRL  : CompareRILPC<"chrl",  0xC65, z_scmp, GR32, aligned_asextloadi16>;
1588  def  CRL   : CompareRILPC<"crl",   0xC6D, z_scmp, GR32, aligned_load>;
1589  def  CGHRL : CompareRILPC<"cghrl", 0xC64, z_scmp, GR64, aligned_asextloadi16>;
1590  def  CGFRL : CompareRILPC<"cgfrl", 0xC6C, z_scmp, GR64, aligned_asextloadi32>;
1591  def  CGRL  : CompareRILPC<"cgrl",  0xC68, z_scmp, GR64, aligned_load>;
1592
1593  // Comparison between memory and a signed 16-bit immediate.
1594  def CHHSI : CompareSIL<"chhsi", 0xE554, z_scmp, asextloadi16, imm32sx16>;
1595  def CHSI  : CompareSIL<"chsi",  0xE55C, z_scmp, load, imm32sx16>;
1596  def CGHSI : CompareSIL<"cghsi", 0xE558, z_scmp, load, imm64sx16>;
1597}
1598defm : SXB<z_scmp, GR64, CGFR>;
1599
1600// Unsigned comparisons.
1601let Defs = [CC], CCValues = 0xE, IsLogical = 1 in {
1602  // Comparison with a register.
1603  def CLR   : CompareRR <"clr",   0x15,   z_ucmp,    GR32, GR32>;
1604  def CLGFR : CompareRRE<"clgfr", 0xB931, null_frag, GR64, GR32>;
1605  def CLGR  : CompareRRE<"clgr",  0xB921, z_ucmp,    GR64, GR64>;
1606
1607  // Comparison with a high register.
1608  def CLHHR : CompareRRE<"clhhr", 0xB9CF, null_frag, GRH32, GRH32>,
1609              Requires<[FeatureHighWord]>;
1610  def CLHLR : CompareRRE<"clhlr", 0xB9DF, null_frag, GRH32, GR32>,
1611              Requires<[FeatureHighWord]>;
1612
1613  // Comparison with an unsigned 32-bit immediate.  CLFIMux expands to CLFI
1614  // or CLIH, depending on the choice of register.
1615  def CLFIMux : CompareRIPseudo<z_ucmp, GRX32, uimm32>,
1616                Requires<[FeatureHighWord]>;
1617  def CLFI  : CompareRIL<"clfi",  0xC2F, z_ucmp, GR32, uimm32>;
1618  def CLIH  : CompareRIL<"clih",  0xCCF, z_ucmp, GRH32, uimm32>,
1619              Requires<[FeatureHighWord]>;
1620  def CLGFI : CompareRIL<"clgfi", 0xC2E, z_ucmp, GR64, imm64zx32>;
1621
1622  // Comparison with memory.
1623  def  CLMux  : CompareRXYPseudo<z_ucmp, GRX32, load, 4>,
1624                Requires<[FeatureHighWord]>;
1625  defm CL     : CompareRXPair<"cl", 0x55, 0xE355, z_ucmp, GR32, load, 4>;
1626  def  CLHF   : CompareRXY<"clhf", 0xE3CF, z_ucmp, GRH32, load, 4>,
1627                Requires<[FeatureHighWord]>;
1628  def  CLGF   : CompareRXY<"clgf", 0xE331, z_ucmp, GR64, azextloadi32, 4>;
1629  def  CLG    : CompareRXY<"clg",  0xE321, z_ucmp, GR64, load, 8>;
1630  def  CLHRL  : CompareRILPC<"clhrl",  0xC67, z_ucmp, GR32,
1631                             aligned_azextloadi16>;
1632  def  CLRL   : CompareRILPC<"clrl",   0xC6F, z_ucmp, GR32,
1633                             aligned_load>;
1634  def  CLGHRL : CompareRILPC<"clghrl", 0xC66, z_ucmp, GR64,
1635                             aligned_azextloadi16>;
1636  def  CLGFRL : CompareRILPC<"clgfrl", 0xC6E, z_ucmp, GR64,
1637                             aligned_azextloadi32>;
1638  def  CLGRL  : CompareRILPC<"clgrl",  0xC6A, z_ucmp, GR64,
1639                             aligned_load>;
1640
1641  // Comparison between memory and an unsigned 8-bit immediate.
1642  defm CLI : CompareSIPair<"cli", 0x95, 0xEB55, z_ucmp, azextloadi8, imm32zx8>;
1643
1644  // Comparison between memory and an unsigned 16-bit immediate.
1645  def CLHHSI : CompareSIL<"clhhsi", 0xE555, z_ucmp, azextloadi16, imm32zx16>;
1646  def CLFHSI : CompareSIL<"clfhsi", 0xE55D, z_ucmp, load, imm32zx16>;
1647  def CLGHSI : CompareSIL<"clghsi", 0xE559, z_ucmp, load, imm64zx16>;
1648}
1649defm : ZXB<z_ucmp, GR64, CLGFR>;
1650
1651// Memory-to-memory comparison.
1652let mayLoad = 1, Defs = [CC] in {
1653  defm CLC : CompareMemorySS<"clc", 0xD5, z_clc>;
1654  def CLCL  : SideEffectBinaryMemMemRR<"clcl", 0x0F, GR128, GR128>;
1655  def CLCLE : SideEffectTernaryMemMemRS<"clcle", 0xA9, GR128, GR128>;
1656  def CLCLU : SideEffectTernaryMemMemRSY<"clclu", 0xEB8F, GR128, GR128>;
1657}
1658
1659// String comparison.
1660let mayLoad = 1, Defs = [CC] in
1661  defm CLST : StringRRE<"clst", 0xB25D, z_strcmp>;
1662
1663// Test under mask.
1664let Defs = [CC] in {
1665  // TMxMux expands to TM[LH]x, depending on the choice of register.
1666  def TMLMux : CompareRIPseudo<z_tm_reg, GRX32, imm32ll16>,
1667               Requires<[FeatureHighWord]>;
1668  def TMHMux : CompareRIPseudo<z_tm_reg, GRX32, imm32lh16>,
1669               Requires<[FeatureHighWord]>;
1670  def TMLL : CompareRI<"tmll", 0xA71, z_tm_reg, GR32, imm32ll16>;
1671  def TMLH : CompareRI<"tmlh", 0xA70, z_tm_reg, GR32, imm32lh16>;
1672  def TMHL : CompareRI<"tmhl", 0xA73, z_tm_reg, GRH32, imm32ll16>;
1673  def TMHH : CompareRI<"tmhh", 0xA72, z_tm_reg, GRH32, imm32lh16>;
1674
1675  def TMLL64 : CompareAliasRI<z_tm_reg, GR64, imm64ll16>;
1676  def TMLH64 : CompareAliasRI<z_tm_reg, GR64, imm64lh16>;
1677  def TMHL64 : CompareAliasRI<z_tm_reg, GR64, imm64hl16>;
1678  def TMHH64 : CompareAliasRI<z_tm_reg, GR64, imm64hh16>;
1679
1680  defm TM : CompareSIPair<"tm", 0x91, 0xEB51, z_tm_mem, anyextloadi8, imm32zx8>;
1681}
1682
1683def TML : InstAlias<"tml\t$R, $I", (TMLL GR32:$R, imm32ll16:$I), 0>;
1684def TMH : InstAlias<"tmh\t$R, $I", (TMLH GR32:$R, imm32lh16:$I), 0>;
1685
1686// Compare logical characters under mask -- not (yet) used for codegen.
1687let Defs = [CC] in {
1688  defm CLM : CompareRSPair<"clm", 0xBD, 0xEB21, GR32, 0>;
1689  def CLMH : CompareRSY<"clmh", 0xEB20, GRH32, 0>;
1690}
1691
1692//===----------------------------------------------------------------------===//
1693// Prefetch and execution hint
1694//===----------------------------------------------------------------------===//
1695
1696let mayLoad = 1, mayStore = 1 in {
1697  def PFD : PrefetchRXY<"pfd", 0xE336, z_prefetch>;
1698  def PFDRL : PrefetchRILPC<"pfdrl", 0xC62, z_prefetch>;
1699}
1700
1701let Predicates = [FeatureExecutionHint], hasSideEffects = 1 in {
1702  // Branch Prediction Preload
1703  def BPP : BranchPreloadSMI<"bpp", 0xC7>;
1704  def BPRP : BranchPreloadMII<"bprp", 0xC5>;
1705
1706  // Next Instruction Access Intent
1707  def NIAI : SideEffectBinaryIE<"niai", 0xB2FA, imm32zx4, imm32zx4>;
1708}
1709
1710//===----------------------------------------------------------------------===//
1711// Atomic operations
1712//===----------------------------------------------------------------------===//
1713
1714// A serialization instruction that acts as a barrier for all memory
1715// accesses, which expands to "bcr 14, 0".
1716let hasSideEffects = 1 in
1717def Serialize : Alias<2, (outs), (ins), []>;
1718
1719// A pseudo instruction that serves as a compiler barrier.
1720let hasSideEffects = 1, hasNoSchedulingInfo = 1 in
1721def MemBarrier : Pseudo<(outs), (ins), [(z_membarrier)]>;
1722
1723let Predicates = [FeatureInterlockedAccess1], Defs = [CC] in {
1724  def LAA   : LoadAndOpRSY<"laa",   0xEBF8, atomic_load_add_32, GR32>;
1725  def LAAG  : LoadAndOpRSY<"laag",  0xEBE8, atomic_load_add_64, GR64>;
1726  def LAAL  : LoadAndOpRSY<"laal",  0xEBFA, null_frag, GR32>;
1727  def LAALG : LoadAndOpRSY<"laalg", 0xEBEA, null_frag, GR64>;
1728  def LAN   : LoadAndOpRSY<"lan",   0xEBF4, atomic_load_and_32, GR32>;
1729  def LANG  : LoadAndOpRSY<"lang",  0xEBE4, atomic_load_and_64, GR64>;
1730  def LAO   : LoadAndOpRSY<"lao",   0xEBF6, atomic_load_or_32, GR32>;
1731  def LAOG  : LoadAndOpRSY<"laog",  0xEBE6, atomic_load_or_64, GR64>;
1732  def LAX   : LoadAndOpRSY<"lax",   0xEBF7, atomic_load_xor_32, GR32>;
1733  def LAXG  : LoadAndOpRSY<"laxg",  0xEBE7, atomic_load_xor_64, GR64>;
1734}
1735
1736def ATOMIC_SWAPW   : AtomicLoadWBinaryReg<z_atomic_swapw>;
1737def ATOMIC_SWAP_32 : AtomicLoadBinaryReg32<atomic_swap_32>;
1738def ATOMIC_SWAP_64 : AtomicLoadBinaryReg64<atomic_swap_64>;
1739
1740def ATOMIC_LOADW_AR  : AtomicLoadWBinaryReg<z_atomic_loadw_add>;
1741def ATOMIC_LOADW_AFI : AtomicLoadWBinaryImm<z_atomic_loadw_add, simm32>;
1742let Predicates = [FeatureNoInterlockedAccess1] in {
1743  def ATOMIC_LOAD_AR   : AtomicLoadBinaryReg32<atomic_load_add_32>;
1744  def ATOMIC_LOAD_AHI  : AtomicLoadBinaryImm32<atomic_load_add_32, imm32sx16>;
1745  def ATOMIC_LOAD_AFI  : AtomicLoadBinaryImm32<atomic_load_add_32, simm32>;
1746  def ATOMIC_LOAD_AGR  : AtomicLoadBinaryReg64<atomic_load_add_64>;
1747  def ATOMIC_LOAD_AGHI : AtomicLoadBinaryImm64<atomic_load_add_64, imm64sx16>;
1748  def ATOMIC_LOAD_AGFI : AtomicLoadBinaryImm64<atomic_load_add_64, imm64sx32>;
1749}
1750
1751def ATOMIC_LOADW_SR : AtomicLoadWBinaryReg<z_atomic_loadw_sub>;
1752def ATOMIC_LOAD_SR  : AtomicLoadBinaryReg32<atomic_load_sub_32>;
1753def ATOMIC_LOAD_SGR : AtomicLoadBinaryReg64<atomic_load_sub_64>;
1754
1755def ATOMIC_LOADW_NR   : AtomicLoadWBinaryReg<z_atomic_loadw_and>;
1756def ATOMIC_LOADW_NILH : AtomicLoadWBinaryImm<z_atomic_loadw_and, imm32lh16c>;
1757let Predicates = [FeatureNoInterlockedAccess1] in {
1758  def ATOMIC_LOAD_NR     : AtomicLoadBinaryReg32<atomic_load_and_32>;
1759  def ATOMIC_LOAD_NILL   : AtomicLoadBinaryImm32<atomic_load_and_32,
1760                                                 imm32ll16c>;
1761  def ATOMIC_LOAD_NILH   : AtomicLoadBinaryImm32<atomic_load_and_32,
1762                                                 imm32lh16c>;
1763  def ATOMIC_LOAD_NILF   : AtomicLoadBinaryImm32<atomic_load_and_32, uimm32>;
1764  def ATOMIC_LOAD_NGR    : AtomicLoadBinaryReg64<atomic_load_and_64>;
1765  def ATOMIC_LOAD_NILL64 : AtomicLoadBinaryImm64<atomic_load_and_64,
1766                                                 imm64ll16c>;
1767  def ATOMIC_LOAD_NILH64 : AtomicLoadBinaryImm64<atomic_load_and_64,
1768                                                 imm64lh16c>;
1769  def ATOMIC_LOAD_NIHL64 : AtomicLoadBinaryImm64<atomic_load_and_64,
1770                                                 imm64hl16c>;
1771  def ATOMIC_LOAD_NIHH64 : AtomicLoadBinaryImm64<atomic_load_and_64,
1772                                                 imm64hh16c>;
1773  def ATOMIC_LOAD_NILF64 : AtomicLoadBinaryImm64<atomic_load_and_64,
1774                                                 imm64lf32c>;
1775  def ATOMIC_LOAD_NIHF64 : AtomicLoadBinaryImm64<atomic_load_and_64,
1776                                                 imm64hf32c>;
1777}
1778
1779def ATOMIC_LOADW_OR     : AtomicLoadWBinaryReg<z_atomic_loadw_or>;
1780def ATOMIC_LOADW_OILH   : AtomicLoadWBinaryImm<z_atomic_loadw_or, imm32lh16>;
1781let Predicates = [FeatureNoInterlockedAccess1] in {
1782  def ATOMIC_LOAD_OR     : AtomicLoadBinaryReg32<atomic_load_or_32>;
1783  def ATOMIC_LOAD_OILL   : AtomicLoadBinaryImm32<atomic_load_or_32, imm32ll16>;
1784  def ATOMIC_LOAD_OILH   : AtomicLoadBinaryImm32<atomic_load_or_32, imm32lh16>;
1785  def ATOMIC_LOAD_OILF   : AtomicLoadBinaryImm32<atomic_load_or_32, uimm32>;
1786  def ATOMIC_LOAD_OGR    : AtomicLoadBinaryReg64<atomic_load_or_64>;
1787  def ATOMIC_LOAD_OILL64 : AtomicLoadBinaryImm64<atomic_load_or_64, imm64ll16>;
1788  def ATOMIC_LOAD_OILH64 : AtomicLoadBinaryImm64<atomic_load_or_64, imm64lh16>;
1789  def ATOMIC_LOAD_OIHL64 : AtomicLoadBinaryImm64<atomic_load_or_64, imm64hl16>;
1790  def ATOMIC_LOAD_OIHH64 : AtomicLoadBinaryImm64<atomic_load_or_64, imm64hh16>;
1791  def ATOMIC_LOAD_OILF64 : AtomicLoadBinaryImm64<atomic_load_or_64, imm64lf32>;
1792  def ATOMIC_LOAD_OIHF64 : AtomicLoadBinaryImm64<atomic_load_or_64, imm64hf32>;
1793}
1794
1795def ATOMIC_LOADW_XR     : AtomicLoadWBinaryReg<z_atomic_loadw_xor>;
1796def ATOMIC_LOADW_XILF   : AtomicLoadWBinaryImm<z_atomic_loadw_xor, uimm32>;
1797let Predicates = [FeatureNoInterlockedAccess1] in {
1798  def ATOMIC_LOAD_XR     : AtomicLoadBinaryReg32<atomic_load_xor_32>;
1799  def ATOMIC_LOAD_XILF   : AtomicLoadBinaryImm32<atomic_load_xor_32, uimm32>;
1800  def ATOMIC_LOAD_XGR    : AtomicLoadBinaryReg64<atomic_load_xor_64>;
1801  def ATOMIC_LOAD_XILF64 : AtomicLoadBinaryImm64<atomic_load_xor_64, imm64lf32>;
1802  def ATOMIC_LOAD_XIHF64 : AtomicLoadBinaryImm64<atomic_load_xor_64, imm64hf32>;
1803}
1804
1805def ATOMIC_LOADW_NRi    : AtomicLoadWBinaryReg<z_atomic_loadw_nand>;
1806def ATOMIC_LOADW_NILHi  : AtomicLoadWBinaryImm<z_atomic_loadw_nand,
1807                                               imm32lh16c>;
1808def ATOMIC_LOAD_NRi     : AtomicLoadBinaryReg32<atomic_load_nand_32>;
1809def ATOMIC_LOAD_NILLi   : AtomicLoadBinaryImm32<atomic_load_nand_32,
1810                                                imm32ll16c>;
1811def ATOMIC_LOAD_NILHi   : AtomicLoadBinaryImm32<atomic_load_nand_32,
1812                                                imm32lh16c>;
1813def ATOMIC_LOAD_NILFi   : AtomicLoadBinaryImm32<atomic_load_nand_32, uimm32>;
1814def ATOMIC_LOAD_NGRi    : AtomicLoadBinaryReg64<atomic_load_nand_64>;
1815def ATOMIC_LOAD_NILL64i : AtomicLoadBinaryImm64<atomic_load_nand_64,
1816                                                imm64ll16c>;
1817def ATOMIC_LOAD_NILH64i : AtomicLoadBinaryImm64<atomic_load_nand_64,
1818                                                imm64lh16c>;
1819def ATOMIC_LOAD_NIHL64i : AtomicLoadBinaryImm64<atomic_load_nand_64,
1820                                                imm64hl16c>;
1821def ATOMIC_LOAD_NIHH64i : AtomicLoadBinaryImm64<atomic_load_nand_64,
1822                                                imm64hh16c>;
1823def ATOMIC_LOAD_NILF64i : AtomicLoadBinaryImm64<atomic_load_nand_64,
1824                                                imm64lf32c>;
1825def ATOMIC_LOAD_NIHF64i : AtomicLoadBinaryImm64<atomic_load_nand_64,
1826                                                imm64hf32c>;
1827
1828def ATOMIC_LOADW_MIN    : AtomicLoadWBinaryReg<z_atomic_loadw_min>;
1829def ATOMIC_LOAD_MIN_32  : AtomicLoadBinaryReg32<atomic_load_min_32>;
1830def ATOMIC_LOAD_MIN_64  : AtomicLoadBinaryReg64<atomic_load_min_64>;
1831
1832def ATOMIC_LOADW_MAX    : AtomicLoadWBinaryReg<z_atomic_loadw_max>;
1833def ATOMIC_LOAD_MAX_32  : AtomicLoadBinaryReg32<atomic_load_max_32>;
1834def ATOMIC_LOAD_MAX_64  : AtomicLoadBinaryReg64<atomic_load_max_64>;
1835
1836def ATOMIC_LOADW_UMIN   : AtomicLoadWBinaryReg<z_atomic_loadw_umin>;
1837def ATOMIC_LOAD_UMIN_32 : AtomicLoadBinaryReg32<atomic_load_umin_32>;
1838def ATOMIC_LOAD_UMIN_64 : AtomicLoadBinaryReg64<atomic_load_umin_64>;
1839
1840def ATOMIC_LOADW_UMAX   : AtomicLoadWBinaryReg<z_atomic_loadw_umax>;
1841def ATOMIC_LOAD_UMAX_32 : AtomicLoadBinaryReg32<atomic_load_umax_32>;
1842def ATOMIC_LOAD_UMAX_64 : AtomicLoadBinaryReg64<atomic_load_umax_64>;
1843
1844def ATOMIC_CMP_SWAPW
1845  : Pseudo<(outs GR32:$dst), (ins bdaddr20only:$addr, GR32:$cmp, GR32:$swap,
1846                                  ADDR32:$bitshift, ADDR32:$negbitshift,
1847                                  uimm32:$bitsize),
1848           [(set GR32:$dst,
1849                 (z_atomic_cmp_swapw bdaddr20only:$addr, GR32:$cmp, GR32:$swap,
1850                                     ADDR32:$bitshift, ADDR32:$negbitshift,
1851                                     uimm32:$bitsize))]> {
1852  let Defs = [CC];
1853  let mayLoad = 1;
1854  let mayStore = 1;
1855  let usesCustomInserter = 1;
1856  let hasNoSchedulingInfo = 1;
1857}
1858
1859// Test and set.
1860let mayLoad = 1, Defs = [CC] in
1861  def TS : StoreInherentS<"ts", 0x9300, null_frag, 1>;
1862
1863// Compare and swap.
1864let Defs = [CC] in {
1865  defm CS  : CmpSwapRSPair<"cs", 0xBA, 0xEB14, z_atomic_cmp_swap, GR32>;
1866  def  CSG : CmpSwapRSY<"csg", 0xEB30, z_atomic_cmp_swap, GR64>;
1867}
1868
1869// Compare double and swap.
1870let Defs = [CC] in {
1871  defm CDS  : CmpSwapRSPair<"cds", 0xBB, 0xEB31, null_frag, GR128>;
1872  def  CDSG : CmpSwapRSY<"cdsg", 0xEB3E, z_atomic_cmp_swap_128, GR128>;
1873}
1874
1875// Compare and swap and store.
1876let Uses = [R0L, R1D], Defs = [CC], mayStore = 1, mayLoad = 1 in
1877  def CSST : SideEffectTernarySSF<"csst", 0xC82, GR64>;
1878
1879// Perform locked operation.
1880let Uses = [R0L, R1D], Defs = [CC], mayStore = 1, mayLoad =1 in
1881  def PLO : SideEffectQuaternarySSe<"plo", 0xEE, GR64>;
1882
1883// Load/store pair from/to quadword.
1884def LPQ  : UnaryRXY<"lpq", 0xE38F, z_atomic_load_128, GR128, 16>;
1885def STPQ : StoreRXY<"stpq", 0xE38E, z_atomic_store_128, GR128, 16>;
1886
1887// Load pair disjoint.
1888let Predicates = [FeatureInterlockedAccess1], Defs = [CC] in {
1889  def LPD  : BinarySSF<"lpd", 0xC84, GR128>;
1890  def LPDG : BinarySSF<"lpdg", 0xC85, GR128>;
1891}
1892
1893//===----------------------------------------------------------------------===//
1894// Translate and convert
1895//===----------------------------------------------------------------------===//
1896
1897let mayLoad = 1, mayStore = 1 in
1898  def TR : SideEffectBinarySSa<"tr", 0xDC>;
1899
1900let mayLoad = 1, Defs = [CC, R0L, R1D] in {
1901  def TRT  : SideEffectBinarySSa<"trt", 0xDD>;
1902  def TRTR : SideEffectBinarySSa<"trtr", 0xD0>;
1903}
1904
1905let mayLoad = 1, mayStore = 1, Uses = [R0L] in
1906  def TRE : SideEffectBinaryMemMemRRE<"tre", 0xB2A5, GR128, GR64>;
1907
1908let mayLoad = 1, Uses = [R1D], Defs = [CC] in {
1909  defm TRTE  : BinaryMemRRFcOpt<"trte",  0xB9BF, GR128, GR64>;
1910  defm TRTRE : BinaryMemRRFcOpt<"trtre", 0xB9BD, GR128, GR64>;
1911}
1912
1913let mayLoad = 1, mayStore = 1, Uses = [R0L, R1D], Defs = [CC] in {
1914  defm TROO : SideEffectTernaryMemMemRRFcOpt<"troo", 0xB993, GR128, GR64>;
1915  defm TROT : SideEffectTernaryMemMemRRFcOpt<"trot", 0xB992, GR128, GR64>;
1916  defm TRTO : SideEffectTernaryMemMemRRFcOpt<"trto", 0xB991, GR128, GR64>;
1917  defm TRTT : SideEffectTernaryMemMemRRFcOpt<"trtt", 0xB990, GR128, GR64>;
1918}
1919
1920let mayLoad = 1, mayStore = 1, Defs = [CC] in {
1921  defm CU12 : SideEffectTernaryMemMemRRFcOpt<"cu12", 0xB2A7, GR128, GR128>;
1922  defm CU14 : SideEffectTernaryMemMemRRFcOpt<"cu14", 0xB9B0, GR128, GR128>;
1923  defm CU21 : SideEffectTernaryMemMemRRFcOpt<"cu21", 0xB2A6, GR128, GR128>;
1924  defm CU24 : SideEffectTernaryMemMemRRFcOpt<"cu24", 0xB9B1, GR128, GR128>;
1925  def  CU41 : SideEffectBinaryMemMemRRE<"cu41", 0xB9B2, GR128, GR128>;
1926  def  CU42 : SideEffectBinaryMemMemRRE<"cu42", 0xB9B3, GR128, GR128>;
1927
1928  let isAsmParserOnly = 1 in {
1929    defm CUUTF : SideEffectTernaryMemMemRRFcOpt<"cuutf", 0xB2A6, GR128, GR128>;
1930    defm CUTFU : SideEffectTernaryMemMemRRFcOpt<"cutfu", 0xB2A7, GR128, GR128>;
1931  }
1932}
1933
1934//===----------------------------------------------------------------------===//
1935// Message-security assist
1936//===----------------------------------------------------------------------===//
1937
1938let mayLoad = 1, mayStore = 1, Uses = [R0L, R1D], Defs = [CC] in {
1939  def KM  : SideEffectBinaryMemMemRRE<"km",  0xB92E, GR128, GR128>;
1940  def KMC : SideEffectBinaryMemMemRRE<"kmc", 0xB92F, GR128, GR128>;
1941
1942  def KIMD : SideEffectBinaryMemRRE<"kimd", 0xB93E, GR64, GR128>;
1943  def KLMD : SideEffectBinaryMemRRE<"klmd", 0xB93F, GR64, GR128>;
1944  def KMAC : SideEffectBinaryMemRRE<"kmac", 0xB91E, GR64, GR128>;
1945
1946  let Predicates = [FeatureMessageSecurityAssist4] in {
1947    def KMF   : SideEffectBinaryMemMemRRE<"kmf", 0xB92A, GR128, GR128>;
1948    def KMO   : SideEffectBinaryMemMemRRE<"kmo", 0xB92B, GR128, GR128>;
1949    def KMCTR : SideEffectTernaryMemMemMemRRFb<"kmctr", 0xB92D,
1950                                               GR128, GR128, GR128>;
1951    def PCC   : SideEffectInherentRRE<"pcc", 0xB92C>;
1952  }
1953
1954  let Predicates = [FeatureMessageSecurityAssist5] in
1955    def PPNO : SideEffectBinaryMemMemRRE<"ppno", 0xB93C, GR128, GR128>;
1956  let Predicates = [FeatureMessageSecurityAssist7], isAsmParserOnly = 1 in
1957    def PRNO : SideEffectBinaryMemMemRRE<"prno", 0xB93C, GR128, GR128>;
1958
1959  let Predicates = [FeatureMessageSecurityAssist8] in
1960    def KMA : SideEffectTernaryMemMemMemRRFb<"kma", 0xB929,
1961                                              GR128, GR128, GR128>;
1962
1963  let Predicates = [FeatureMessageSecurityAssist9] in
1964    def KDSA : SideEffectBinaryMemRRE<"kdsa", 0xB93A, GR64, GR128>;
1965}
1966
1967//===----------------------------------------------------------------------===//
1968// Guarded storage
1969//===----------------------------------------------------------------------===//
1970
1971// These instructions use and/or modify the guarded storage control
1972// registers, which we do not otherwise model, so they should have
1973// hasSideEffects.
1974let Predicates = [FeatureGuardedStorage], hasSideEffects = 1 in {
1975  def LGG : UnaryRXY<"lgg", 0xE34C, null_frag, GR64, 8>;
1976  def LLGFSG : UnaryRXY<"llgfsg", 0xE348, null_frag, GR64, 4>;
1977
1978  let mayLoad = 1 in
1979    def LGSC : SideEffectBinaryRXY<"lgsc", 0xE34D, GR64>;
1980  let mayStore = 1 in
1981    def STGSC : SideEffectBinaryRXY<"stgsc", 0xE349, GR64>;
1982}
1983
1984//===----------------------------------------------------------------------===//
1985// Decimal arithmetic
1986//===----------------------------------------------------------------------===//
1987
1988defm CVB  : BinaryRXPair<"cvb",0x4F, 0xE306, null_frag, GR32, load, 4>;
1989def  CVBG : BinaryRXY<"cvbg", 0xE30E, null_frag, GR64, load, 8>;
1990
1991defm CVD  : StoreRXPair<"cvd", 0x4E, 0xE326, null_frag, GR32, 4>;
1992def  CVDG : StoreRXY<"cvdg", 0xE32E, null_frag, GR64, 8>;
1993
1994let mayLoad = 1, mayStore = 1 in {
1995  def MVN : SideEffectBinarySSa<"mvn", 0xD1>;
1996  def MVZ : SideEffectBinarySSa<"mvz", 0xD3>;
1997  def MVO : SideEffectBinarySSb<"mvo", 0xF1>;
1998
1999  def PACK : SideEffectBinarySSb<"pack", 0xF2>;
2000  def PKA  : SideEffectBinarySSf<"pka", 0xE9>;
2001  def PKU  : SideEffectBinarySSf<"pku", 0xE1>;
2002  def UNPK : SideEffectBinarySSb<"unpk", 0xF3>;
2003  let Defs = [CC] in {
2004    def UNPKA : SideEffectBinarySSa<"unpka", 0xEA>;
2005    def UNPKU : SideEffectBinarySSa<"unpku", 0xE2>;
2006  }
2007}
2008
2009let mayLoad = 1, mayStore = 1 in {
2010  let Defs = [CC] in {
2011    def AP : SideEffectBinarySSb<"ap", 0xFA>;
2012    def SP : SideEffectBinarySSb<"sp", 0xFB>;
2013    def ZAP : SideEffectBinarySSb<"zap", 0xF8>;
2014    def SRP : SideEffectTernarySSc<"srp", 0xF0>;
2015  }
2016  def MP : SideEffectBinarySSb<"mp", 0xFC>;
2017  def DP : SideEffectBinarySSb<"dp", 0xFD>;
2018  let Defs = [CC] in {
2019    def ED : SideEffectBinarySSa<"ed", 0xDE>;
2020    def EDMK : SideEffectBinarySSa<"edmk", 0xDF>;
2021  }
2022}
2023
2024let Defs = [CC] in {
2025  def CP : CompareSSb<"cp", 0xF9>;
2026  def TP : TestRSL<"tp", 0xEBC0>;
2027}
2028
2029//===----------------------------------------------------------------------===//
2030// Access registers
2031//===----------------------------------------------------------------------===//
2032
2033// Read a 32-bit access register into a GR32.  As with all GR32 operations,
2034// the upper 32 bits of the enclosing GR64 remain unchanged, which is useful
2035// when a 64-bit address is stored in a pair of access registers.
2036def EAR : UnaryRRE<"ear", 0xB24F, null_frag, GR32, AR32>;
2037
2038// Set access register.
2039def SAR : UnaryRRE<"sar", 0xB24E, null_frag, AR32, GR32>;
2040
2041// Copy access register.
2042def CPYA : UnaryRRE<"cpya", 0xB24D, null_frag, AR32, AR32>;
2043
2044// Load address extended.
2045defm LAE : LoadAddressRXPair<"lae", 0x51, 0xE375, null_frag>;
2046
2047// Load access multiple.
2048defm LAM : LoadMultipleRSPair<"lam", 0x9A, 0xEB9A, AR32>;
2049
2050// Store access multiple.
2051defm STAM : StoreMultipleRSPair<"stam", 0x9B, 0xEB9B, AR32>;
2052
2053//===----------------------------------------------------------------------===//
2054// Program mask and addressing mode
2055//===----------------------------------------------------------------------===//
2056
2057// Extract CC and program mask into a register.  CC ends up in bits 29 and 28.
2058let Uses = [CC] in
2059  def IPM : InherentRRE<"ipm", 0xB222, GR32, z_ipm>;
2060
2061// Set CC and program mask from a register.
2062let hasSideEffects = 1, Defs = [CC] in
2063  def SPM : SideEffectUnaryRR<"spm", 0x04, GR32>;
2064
2065// Branch and link - like BAS, but also extracts CC and program mask.
2066let isCall = 1, Uses = [CC], Defs = [CC] in {
2067  def BAL  : CallRX<"bal", 0x45>;
2068  def BALR : CallRR<"balr", 0x05>;
2069}
2070
2071// Test addressing mode.
2072let Defs = [CC] in
2073  def TAM : SideEffectInherentE<"tam", 0x010B>;
2074
2075// Set addressing mode.
2076let hasSideEffects = 1 in {
2077  def SAM24 : SideEffectInherentE<"sam24", 0x010C>;
2078  def SAM31 : SideEffectInherentE<"sam31", 0x010D>;
2079  def SAM64 : SideEffectInherentE<"sam64", 0x010E>;
2080}
2081
2082// Branch and set mode.  Not really a call, but also sets an output register.
2083let isBranch = 1, isTerminator = 1, isBarrier = 1 in
2084  def BSM : CallRR<"bsm", 0x0B>;
2085
2086// Branch and save and set mode.
2087let isCall = 1, Defs = [CC] in
2088  def BASSM : CallRR<"bassm", 0x0C>;
2089
2090//===----------------------------------------------------------------------===//
2091// Transactional execution
2092//===----------------------------------------------------------------------===//
2093
2094let hasSideEffects = 1, Predicates = [FeatureTransactionalExecution] in {
2095  // Transaction Begin
2096  let mayStore = 1, usesCustomInserter = 1, Defs = [CC] in {
2097    def TBEGIN : TestBinarySIL<"tbegin", 0xE560, z_tbegin, imm32zx16>;
2098    let hasNoSchedulingInfo = 1 in
2099     def TBEGIN_nofloat : TestBinarySILPseudo<z_tbegin_nofloat, imm32zx16>;
2100    def TBEGINC : SideEffectBinarySIL<"tbeginc", 0xE561,
2101                                      int_s390_tbeginc, imm32zx16>;
2102  }
2103
2104  // Transaction End
2105  let Defs = [CC] in
2106    def TEND : TestInherentS<"tend", 0xB2F8, z_tend>;
2107
2108  // Transaction Abort
2109  let isTerminator = 1, isBarrier = 1, mayStore = 1,
2110      hasSideEffects = 1 in
2111    def TABORT : SideEffectAddressS<"tabort", 0xB2FC, int_s390_tabort>;
2112
2113  // Nontransactional Store
2114  def NTSTG : StoreRXY<"ntstg", 0xE325, int_s390_ntstg, GR64, 8>;
2115
2116  // Extract Transaction Nesting Depth
2117  def ETND : InherentRRE<"etnd", 0xB2EC, GR32, int_s390_etnd>;
2118}
2119
2120//===----------------------------------------------------------------------===//
2121// Processor assist
2122//===----------------------------------------------------------------------===//
2123
2124let Predicates = [FeatureProcessorAssist] in {
2125  let hasSideEffects = 1 in
2126    def PPA : SideEffectTernaryRRFc<"ppa", 0xB2E8, GR64, GR64, imm32zx4>;
2127  def : Pat<(int_s390_ppa_txassist GR32:$src),
2128            (PPA (INSERT_SUBREG (i64 (IMPLICIT_DEF)), GR32:$src, subreg_l32),
2129                 zero_reg, 1)>;
2130}
2131
2132//===----------------------------------------------------------------------===//
2133// Miscellaneous Instructions.
2134//===----------------------------------------------------------------------===//
2135
2136// Find leftmost one, AKA count leading zeros.  The instruction actually
2137// returns a pair of GR64s, the first giving the number of leading zeros
2138// and the second giving a copy of the source with the leftmost one bit
2139// cleared.  We only use the first result here.
2140let Defs = [CC] in
2141  def FLOGR : UnaryRRE<"flogr", 0xB983, null_frag, GR128, GR64>;
2142def : Pat<(i64 (ctlz GR64:$src)),
2143          (EXTRACT_SUBREG (FLOGR GR64:$src), subreg_h64)>;
2144
2145// Population count.  Counts bits set per byte or doubleword.
2146let Predicates = [FeatureMiscellaneousExtensions3] in {
2147  let Defs = [CC] in
2148    def POPCNTOpt : BinaryRRFc<"popcnt", 0xB9E1, GR64, GR64>;
2149  def : Pat<(ctpop GR64:$src), (POPCNTOpt GR64:$src, 8)>;
2150}
2151let Predicates = [FeaturePopulationCount], Defs = [CC] in
2152  def POPCNT : UnaryRRE<"popcnt", 0xB9E1, z_popcnt, GR64, GR64>;
2153
2154// Search a block of memory for a character.
2155let mayLoad = 1, Defs = [CC] in
2156  defm SRST : StringRRE<"srst", 0xB25E, z_search_string>;
2157let mayLoad = 1, Defs = [CC], Uses = [R0L] in
2158  def SRSTU : SideEffectBinaryMemMemRRE<"srstu", 0xB9BE, GR64, GR64>;
2159
2160// Compare until substring equal.
2161let mayLoad = 1, Defs = [CC], Uses = [R0L, R1L] in
2162  def CUSE : SideEffectBinaryMemMemRRE<"cuse", 0xB257, GR128, GR128>;
2163
2164// Compare and form codeword.
2165let mayLoad = 1, Defs = [CC, R1D, R2D, R3D], Uses = [R1D, R2D, R3D] in
2166  def CFC : SideEffectAddressS<"cfc", 0xB21A, null_frag>;
2167
2168// Update tree.
2169let mayLoad = 1, mayStore = 1, Defs = [CC, R0D, R1D, R2D, R3D, R5D],
2170    Uses = [R0D, R1D, R2D, R3D, R4D, R5D] in
2171  def UPT : SideEffectInherentE<"upt", 0x0102>;
2172
2173// Checksum.
2174let mayLoad = 1, Defs = [CC] in
2175  def CKSM : SideEffectBinaryMemMemRRE<"cksm", 0xB241, GR64, GR128>;
2176
2177// Compression call.
2178let mayLoad = 1, mayStore = 1, Defs = [CC, R1D], Uses = [R0L, R1D] in
2179  def CMPSC : SideEffectBinaryMemMemRRE<"cmpsc", 0xB263, GR128, GR128>;
2180
2181// Sort lists.
2182let Predicates = [FeatureEnhancedSort],
2183    mayLoad = 1, mayStore = 1, Defs = [CC], Uses = [R0L, R1D] in
2184  def SORTL : SideEffectBinaryMemMemRRE<"sortl", 0xB938, GR128, GR128>;
2185
2186// Deflate conversion call.
2187let Predicates = [FeatureDeflateConversion],
2188    mayLoad = 1, mayStore = 1, Defs = [CC], Uses = [R0L, R1D] in
2189  def DFLTCC : SideEffectTernaryMemMemRRFa<"dfltcc", 0xB939,
2190                                           GR128, GR128, GR64>;
2191
2192// NNPA.
2193let Predicates = [FeatureNNPAssist],
2194    mayLoad = 1, mayStore = 1, Defs = [R0D, CC], Uses = [R0D, R1D] in
2195  def NNPA : SideEffectInherentRRE<"nnpa", 0xB93B>;
2196
2197// Execute.
2198let hasSideEffects = 1 in {
2199  def EX   : SideEffectBinaryRX<"ex", 0x44, ADDR64>;
2200  def EXRL : SideEffectBinaryRILPC<"exrl", 0xC60, ADDR64>;
2201  let hasNoSchedulingInfo = 1 in
2202    def EXRL_Pseudo : Alias<6, (outs), (ins i64imm:$TargetOpc, ADDR64:$lenMinus1,
2203                                          bdaddr12only:$bdl1, bdaddr12only:$bd2),
2204                                          []>;
2205}
2206
2207//===----------------------------------------------------------------------===//
2208// .insn directive instructions
2209//===----------------------------------------------------------------------===//
2210
2211let isCodeGenOnly = 1, hasSideEffects = 1 in {
2212  def InsnE   : DirectiveInsnE<(outs), (ins imm64zx16:$enc), ".insn e,$enc", []>;
2213  def InsnRI  : DirectiveInsnRI<(outs), (ins imm64zx32:$enc, AnyReg:$R1,
2214                                             imm32sx16:$I2),
2215                                ".insn ri,$enc,$R1,$I2", []>;
2216  def InsnRIE : DirectiveInsnRIE<(outs), (ins imm64zx48:$enc, AnyReg:$R1,
2217                                              AnyReg:$R3, brtarget16:$I2),
2218                                 ".insn rie,$enc,$R1,$R3,$I2", []>;
2219  def InsnRIL : DirectiveInsnRIL<(outs), (ins imm64zx48:$enc, AnyReg:$R1,
2220                                              brtarget32:$I2),
2221                                 ".insn ril,$enc,$R1,$I2", []>;
2222  def InsnRILU : DirectiveInsnRIL<(outs), (ins imm64zx48:$enc, AnyReg:$R1,
2223                                               uimm32:$I2),
2224                                  ".insn rilu,$enc,$R1,$I2", []>;
2225  def InsnRIS : DirectiveInsnRIS<(outs),
2226                                 (ins imm64zx48:$enc, AnyReg:$R1,
2227                                      imm32sx8:$I2, imm32zx4:$M3,
2228                                      bdaddr12only:$BD4),
2229                                 ".insn ris,$enc,$R1,$I2,$M3,$BD4", []>;
2230  def InsnRR : DirectiveInsnRR<(outs),
2231                               (ins imm64zx16:$enc, AnyReg:$R1, AnyReg:$R2),
2232                               ".insn rr,$enc,$R1,$R2", []>;
2233  def InsnRRE : DirectiveInsnRRE<(outs), (ins imm64zx32:$enc,
2234                                              AnyReg:$R1, AnyReg:$R2),
2235                                 ".insn rre,$enc,$R1,$R2", []>;
2236  def InsnRRF : DirectiveInsnRRF<(outs),
2237                                 (ins imm64zx32:$enc, AnyReg:$R1, AnyReg:$R2,
2238                                      AnyReg:$R3, imm32zx4:$M4),
2239                                 ".insn rrf,$enc,$R1,$R2,$R3,$M4", []>;
2240  def InsnRRS : DirectiveInsnRRS<(outs),
2241                                 (ins imm64zx48:$enc, AnyReg:$R1,
2242                                      AnyReg:$R2, imm32zx4:$M3,
2243                                      bdaddr12only:$BD4),
2244                                 ".insn rrs,$enc,$R1,$R2,$M3,$BD4", []>;
2245  def InsnRS  : DirectiveInsnRS<(outs),
2246                                (ins imm64zx32:$enc, AnyReg:$R1,
2247                                     AnyReg:$R3, bdaddr12only:$BD2),
2248                                ".insn rs,$enc,$R1,$R3,$BD2", []>;
2249  def InsnRSE : DirectiveInsnRSE<(outs),
2250                                 (ins imm64zx48:$enc, AnyReg:$R1,
2251                                      AnyReg:$R3, bdaddr12only:$BD2),
2252                                 ".insn rse,$enc,$R1,$R3,$BD2", []>;
2253  def InsnRSI : DirectiveInsnRSI<(outs),
2254                                 (ins imm64zx48:$enc, AnyReg:$R1,
2255                                      AnyReg:$R3, brtarget16:$RI2),
2256                                 ".insn rsi,$enc,$R1,$R3,$RI2", []>;
2257  def InsnRSY : DirectiveInsnRSY<(outs),
2258                                 (ins imm64zx48:$enc, AnyReg:$R1,
2259                                      AnyReg:$R3, bdaddr20only:$BD2),
2260                                 ".insn rsy,$enc,$R1,$R3,$BD2", []>;
2261  def InsnRX  : DirectiveInsnRX<(outs), (ins imm64zx32:$enc, AnyReg:$R1,
2262                                             bdxaddr12only:$XBD2),
2263                                ".insn rx,$enc,$R1,$XBD2", []>;
2264  def InsnRXE : DirectiveInsnRXE<(outs), (ins imm64zx48:$enc, AnyReg:$R1,
2265                                              bdxaddr12only:$XBD2),
2266                                 ".insn rxe,$enc,$R1,$XBD2", []>;
2267  def InsnRXF : DirectiveInsnRXF<(outs),
2268                                 (ins imm64zx48:$enc, AnyReg:$R1,
2269                                      AnyReg:$R3, bdxaddr12only:$XBD2),
2270                                 ".insn rxf,$enc,$R1,$R3,$XBD2", []>;
2271  def InsnRXY : DirectiveInsnRXY<(outs), (ins imm64zx48:$enc, AnyReg:$R1,
2272                                              bdxaddr20only:$XBD2),
2273                                 ".insn rxy,$enc,$R1,$XBD2", []>;
2274  def InsnS : DirectiveInsnS<(outs),
2275                             (ins imm64zx32:$enc, bdaddr12only:$BD2),
2276                             ".insn s,$enc,$BD2", []>;
2277  def InsnSI : DirectiveInsnSI<(outs),
2278                               (ins imm64zx32:$enc, bdaddr12only:$BD1,
2279                                    imm32sx8:$I2),
2280                               ".insn si,$enc,$BD1,$I2", []>;
2281  def InsnSIY : DirectiveInsnSIY<(outs),
2282                                 (ins imm64zx48:$enc,
2283                                      bdaddr20only:$BD1, imm32zx8:$I2),
2284                                 ".insn siy,$enc,$BD1,$I2", []>;
2285  def InsnSIL : DirectiveInsnSIL<(outs),
2286                                 (ins imm64zx48:$enc, bdaddr12only:$BD1,
2287                                      imm32zx16:$I2),
2288                                 ".insn sil,$enc,$BD1,$I2", []>;
2289  def InsnSS : DirectiveInsnSS<(outs),
2290                               (ins imm64zx48:$enc, bdraddr12only:$RBD1,
2291                                    bdaddr12only:$BD2, AnyReg:$R3),
2292                               ".insn ss,$enc,$RBD1,$BD2,$R3", []>;
2293  def InsnSSE : DirectiveInsnSSE<(outs),
2294                                 (ins imm64zx48:$enc,
2295                                      bdaddr12only:$BD1,bdaddr12only:$BD2),
2296                                 ".insn sse,$enc,$BD1,$BD2", []>;
2297  def InsnSSF : DirectiveInsnSSF<(outs),
2298                                 (ins imm64zx48:$enc, bdaddr12only:$BD1,
2299                                      bdaddr12only:$BD2, AnyReg:$R3),
2300                                 ".insn ssf,$enc,$BD1,$BD2,$R3", []>;
2301  def InsnVRI : DirectiveInsnVRI<(outs),
2302                                 (ins imm64zx48:$enc, VR128:$V1, VR128:$V2,
2303                                  imm32zx12:$I3, imm32zx4:$M4, imm32zx4:$M5),
2304                                 ".insn vri,$enc,$V1,$V2,$I3,$M4,$M5", []>;
2305  def InsnVRR : DirectiveInsnVRR<(outs),
2306                                 (ins imm64zx48:$enc, VR128:$V1, VR128:$V2,
2307                                  VR128:$V3, imm32zx4:$M4, imm32zx4:$M5,
2308                                  imm32zx4:$M6),
2309                                  ".insn vrr,$enc,$V1,$V2,$V3,$M4,$M5,$M6", []>;
2310  def InsnVRS : DirectiveInsnVRS<(outs),
2311                                 (ins imm64zx48:$enc, AnyReg:$R1, VR128:$V3,
2312                                  bdaddr12only:$BD2, imm32zx4:$M4),
2313                                 ".insn vrs,$enc,$BD2,$M4", []>;
2314  def InsnVRV : DirectiveInsnVRV<(outs),
2315                                 (ins imm64zx48:$enc, VR128:$V1,
2316                                      bdvaddr12only:$VBD2, imm32zx4:$M3),
2317                                 ".insn vrv,$enc,$V1,$VBD2,$M3", []>;
2318  def InsnVRX : DirectiveInsnVRX<(outs),
2319                                 (ins imm64zx48:$enc, VR128:$V1,
2320                                  bdxaddr12only:$XBD2, imm32zx4:$M3),
2321                                 ".insn vrx,$enc,$V1,$XBD2,$M3", []>;
2322  def InsnVSI : DirectiveInsnVSI<(outs),
2323                                 (ins imm64zx48:$enc, VR128:$V1,
2324                                  bdaddr12only:$BD2, imm32zx8:$I3),
2325                                  ".insn vsi,$enc,$V1,$BD2,$I3", []>;
2326}
2327
2328//===----------------------------------------------------------------------===//
2329// Peepholes.
2330//===----------------------------------------------------------------------===//
2331
2332// Avoid generating 2 XOR instructions. (xor (and x, y), y) is
2333// equivalent to (and (xor x, -1), y)
2334def : Pat<(and (xor GR64:$x, (i64 -1)), GR64:$y),
2335                          (XGR GR64:$y, (NGR GR64:$y, GR64:$x))>;
2336
2337// Shift/rotate instructions only use the last 6 bits of the second operand
2338// register, so we can safely use NILL (16 fewer bits than NILF) to only AND the
2339// last 16 bits.
2340// Complexity is added so that we match this before we match NILF on the AND
2341// operation alone.
2342let AddedComplexity = 4 in {
2343  def : Pat<(shl GR32:$val, (and GR32:$shift, imm32zx16trunc:$imm)),
2344            (SLL GR32:$val, (NILL GR32:$shift, imm32zx16trunc:$imm), 0)>;
2345
2346  def : Pat<(sra GR32:$val, (and GR32:$shift, imm32zx16trunc:$imm)),
2347            (SRA GR32:$val, (NILL GR32:$shift, imm32zx16trunc:$imm), 0)>;
2348
2349  def : Pat<(srl GR32:$val, (and GR32:$shift, imm32zx16trunc:$imm)),
2350            (SRL GR32:$val, (NILL GR32:$shift, imm32zx16trunc:$imm), 0)>;
2351
2352  def : Pat<(shl GR64:$val, (and GR32:$shift, imm32zx16trunc:$imm)),
2353            (SLLG GR64:$val, (NILL GR32:$shift, imm32zx16trunc:$imm), 0)>;
2354
2355  def : Pat<(sra GR64:$val, (and GR32:$shift, imm32zx16trunc:$imm)),
2356            (SRAG GR64:$val, (NILL GR32:$shift, imm32zx16trunc:$imm), 0)>;
2357
2358  def : Pat<(srl GR64:$val, (and GR32:$shift, imm32zx16trunc:$imm)),
2359            (SRLG GR64:$val, (NILL GR32:$shift, imm32zx16trunc:$imm), 0)>;
2360
2361  def : Pat<(rotl GR32:$val, (and GR32:$shift, imm32zx16trunc:$imm)),
2362            (RLL GR32:$val, (NILL GR32:$shift, imm32zx16trunc:$imm), 0)>;
2363
2364  def : Pat<(rotl GR64:$val, (and GR32:$shift, imm32zx16trunc:$imm)),
2365            (RLLG GR64:$val, (NILL GR32:$shift, imm32zx16trunc:$imm), 0)>;
2366}
2367
2368// Substitute (x*64-s) with (-s), since shift/rotate instructions only
2369// use the last 6 bits of the second operand register (making it modulo 64).
2370let AddedComplexity = 4 in {
2371  def : Pat<(shl GR64:$val, (sub imm32mod64,  GR32:$shift)),
2372            (SLLG GR64:$val, (LCR GR32:$shift), 0)>;
2373
2374  def : Pat<(sra GR64:$val, (sub imm32mod64,  GR32:$shift)),
2375            (SRAG GR64:$val, (LCR GR32:$shift), 0)>;
2376
2377  def : Pat<(srl GR64:$val, (sub imm32mod64,  GR32:$shift)),
2378            (SRLG GR64:$val, (LCR GR32:$shift), 0)>;
2379
2380  def : Pat<(rotl GR64:$val, (sub imm32mod64,  GR32:$shift)),
2381            (RLLG GR64:$val, (LCR GR32:$shift), 0)>;
2382}
2383
2384// Peepholes for turning scalar operations into block operations.  The length
2385// is given as one less for these pseudos.
2386defm : BlockLoadStore<anyextloadi8, i32, MVCImm, NCImm, OCImm, XCImm, 0>;
2387defm : BlockLoadStore<anyextloadi16, i32, MVCImm, NCImm, OCImm, XCImm, 1>;
2388defm : BlockLoadStore<load, i32, MVCImm, NCImm, OCImm, XCImm, 3>;
2389defm : BlockLoadStore<anyextloadi8, i64, MVCImm, NCImm, OCImm, XCImm, 0>;
2390defm : BlockLoadStore<anyextloadi16, i64, MVCImm, NCImm, OCImm, XCImm, 1>;
2391defm : BlockLoadStore<anyextloadi32, i64, MVCImm, NCImm, OCImm, XCImm, 3>;
2392defm : BlockLoadStore<load, i64, MVCImm, NCImm, OCImm, XCImm, 7>;
2393
2394//===----------------------------------------------------------------------===//
2395// Mnemonic Aliases
2396//===----------------------------------------------------------------------===//
2397
2398def JCT   : MnemonicAlias<"jct", "brct">;
2399def JCTG  : MnemonicAlias<"jctg", "brctg">;
2400def JAS   : MnemonicAlias<"jas", "bras">;
2401def JASL  : MnemonicAlias<"jasl", "brasl">;
2402def JXH   : MnemonicAlias<"jxh", "brxh">;
2403def JXLE  : MnemonicAlias<"jxle", "brxle">;
2404def JXHG  : MnemonicAlias<"jxhg", "brxhg">;
2405def JXLEG : MnemonicAlias<"jxleg", "brxlg">;
2406
2407def BRU   : MnemonicAlias<"bru", "j">;
2408def BRUL  : MnemonicAlias<"brul", "jg", "att">;
2409def BRUL_HLASM  : MnemonicAlias<"brul", "jlu", "hlasm">;
2410
2411foreach V = [ "E", "NE", "H", "NH", "L", "NL", "HE", "NHE", "LE", "NLE",
2412              "Z", "NZ", "P", "NP", "M", "NM", "LH", "NLH", "O", "NO" ] in {
2413  defm BRUAsm#V  : MnemonicCondBranchAlias <CV<V>, "br#", "j#">;
2414  defm BRULAsm#V : MnemonicCondBranchAlias <CV<V>, "br#l", "jg#", "att">;
2415  defm BRUL_HLASMAsm#V : MnemonicCondBranchAlias <CV<V>, "br#l", "jl#", "hlasm">;
2416}
2417