1//===-- SystemZInstrInfo.td - General SystemZ instructions ----*- tblgen-*-===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8
9def IsTargetXPLINK64      : Predicate<"Subtarget->isTargetXPLINK64()">;
10def IsTargetELF           : Predicate<"Subtarget->isTargetELF()">;
11
12//===----------------------------------------------------------------------===//
13// Stack allocation
14//===----------------------------------------------------------------------===//
15
16// The callseq_start node requires the hasSideEffects flag, even though these
17// instructions are noops on SystemZ.
18let hasNoSchedulingInfo = 1, hasSideEffects = 1 in {
19  def ADJCALLSTACKDOWN : Pseudo<(outs), (ins i64imm:$amt1, i64imm:$amt2),
20                                [(callseq_start timm:$amt1, timm:$amt2)]>;
21  def ADJCALLSTACKUP   : Pseudo<(outs), (ins i64imm:$amt1, i64imm:$amt2),
22                                [(callseq_end timm:$amt1, timm:$amt2)]>;
23}
24
25// Takes as input the value of the stack pointer after a dynamic allocation
26// has been made.  Sets the output to the address of the dynamically-
27// allocated area itself, skipping the outgoing arguments.
28//
29// This expands to an LA or LAY instruction.  We restrict the offset
30// to the range of LA and keep the LAY range in reserve for when
31// the size of the outgoing arguments is added.
32def ADJDYNALLOC : Pseudo<(outs GR64:$dst), (ins dynalloc12only:$src),
33                         [(set GR64:$dst, dynalloc12only:$src)]>;
34
35let Defs = [R15D, CC], Uses = [R15D], hasNoSchedulingInfo = 1,
36    usesCustomInserter = 1 in
37  def PROBED_ALLOCA : Pseudo<(outs GR64:$dst),
38                             (ins GR64:$oldSP, GR64:$space),
39           [(set GR64:$dst, (z_probed_alloca GR64:$oldSP, GR64:$space))]>;
40
41let Defs = [R1D, R15D, CC], Uses = [R15D], hasNoSchedulingInfo = 1,
42    hasSideEffects = 1 in
43  def PROBED_STACKALLOC : Pseudo<(outs), (ins i64imm:$stacksize), []>;
44
45let Defs = [R3D, CC], Uses = [R3D, R4D], hasNoSchedulingInfo = 1,
46    hasSideEffects = 1 in
47  def XPLINK_STACKALLOC : Pseudo<(outs), (ins), []>;
48
49//===----------------------------------------------------------------------===//
50// Branch instructions
51//===----------------------------------------------------------------------===//
52
53// Conditional branches.
54let isBranch = 1, isTerminator = 1, Uses = [CC] in {
55  // It's easier for LLVM to handle these branches in their raw BRC/BRCL form
56  // with the condition-code mask being the first operand.  It seems friendlier
57  // to use mnemonic forms like JE and JLH when writing out the assembly though.
58  let isCodeGenOnly = 1 in {
59    // An assembler extended mnemonic for BRC.
60    def BRC  : CondBranchRI <"j#",  0xA74, z_br_ccmask>;
61    // An assembler extended mnemonic for BRCL.  (The extension is "G"
62    // rather than "L" because "JL" is "Jump if Less".)
63    def BRCL : CondBranchRIL<"jg#", 0xC04>;
64    let isIndirectBranch = 1 in {
65      def BC  : CondBranchRX<"b#",  0x47>;
66      def BCR : CondBranchRR<"b#r", 0x07>;
67      def BIC : CondBranchRXY<"bi#", 0xe347>,
68                Requires<[FeatureMiscellaneousExtensions2]>;
69    }
70  }
71
72  // Allow using the raw forms directly from the assembler (and occasional
73  // special code generation needs) as well.
74  def BRCAsm  : AsmCondBranchRI <"brc",  0xA74>;
75  def BRCLAsm : AsmCondBranchRIL<"brcl", 0xC04>;
76  let isIndirectBranch = 1 in {
77    def BCAsm  : AsmCondBranchRX<"bc",  0x47>;
78    def BCRAsm : AsmCondBranchRR<"bcr", 0x07>;
79    def BICAsm : AsmCondBranchRXY<"bic", 0xe347>,
80                 Requires<[FeatureMiscellaneousExtensions2]>;
81  }
82
83  // Define AsmParser extended mnemonics for each general condition-code mask
84  // (integer or floating-point)
85  foreach V = [ "E", "NE", "H", "NH", "L", "NL", "HE", "NHE", "LE", "NLE",
86                "Z", "NZ", "P", "NP", "M", "NM", "LH", "NLH", "O", "NO" ] in {
87    def JAsm#V  : FixedCondBranchRI <CV<V>, "j#",  0xA74>;
88    def JGAsm#V : FixedCondBranchRIL<CV<V>, "j{g|l}#", 0xC04>;
89    let isIndirectBranch = 1 in {
90      def BAsm#V  : FixedCondBranchRX <CV<V>, "b#",  0x47>;
91      def BRAsm#V : FixedCondBranchRR <CV<V>, "b#r", 0x07>;
92      def BIAsm#V : FixedCondBranchRXY<CV<V>, "bi#", 0xe347>,
93                    Requires<[FeatureMiscellaneousExtensions2]>;
94    }
95  }
96}
97
98// Unconditional branches.  These are in fact simply variants of the
99// conditional branches with the condition mask set to "always".
100let isBranch = 1, isTerminator = 1, isBarrier = 1 in {
101  def J  : FixedCondBranchRI <CondAlways, "j",  0xA74, br>;
102  def JG : FixedCondBranchRIL<CondAlways, "j{g|lu}", 0xC04>;
103  let isIndirectBranch = 1 in {
104    def B  : FixedCondBranchRX<CondAlways, "b",  0x47>;
105    def BR : FixedCondBranchRR<CondAlways, "br", 0x07, brind>;
106    def BI : FixedCondBranchRXY<CondAlways, "bi", 0xe347, brind>,
107             Requires<[FeatureMiscellaneousExtensions2]>;
108  }
109}
110
111// NOPs.  These are again variants of the conditional branches, with the
112// condition mask set to "never".  NOP_bare can't be an InstAlias since it
113// would need R0D hard coded which is not part of ADDR64BitRegClass.
114def NOP  : InstAlias<"nop\t$XBD", (BCAsm 0, bdxaddr12only:$XBD), 0>;
115let isAsmParserOnly = 1, hasNoSchedulingInfo = 1, M1 = 0, X2 = 0, B2 = 0, D2 = 0 in
116  def NOP_bare  : InstRXb<0x47,(outs), (ins), "nop", []>;
117def NOPR : InstAlias<"nopr\t$R", (BCRAsm 0, GR64:$R), 0>;
118def NOPR_bare : InstAlias<"nopr", (BCRAsm 0, R0D), 0>;
119
120// An alias of BRC 0, label
121def JNOP : InstAlias<"jnop\t$RI2", (BRCAsm 0, brtarget16:$RI2), 0>;
122
123// An alias of BRCL 0, label
124// jgnop on att ; jlnop on hlasm
125def JGNOP : InstAlias<"{jgnop|jlnop}\t$RI2", (BRCLAsm 0, brtarget32:$RI2), 0>;
126
127// Fused compare-and-branch instructions.
128//
129// These instructions do not use or clobber the condition codes.
130// We nevertheless pretend that the relative compare-and-branch
131// instructions clobber CC, so that we can lower them to separate
132// comparisons and BRCLs if the branch ends up being out of range.
133let isBranch = 1, isTerminator = 1 in {
134  // As for normal branches, we handle these instructions internally in
135  // their raw CRJ-like form, but use assembly macros like CRJE when writing
136  // them out.  Using the *Pair multiclasses, we also create the raw forms.
137  let Defs = [CC] in {
138    defm CRJ   : CmpBranchRIEbPair<"crj",   0xEC76, GR32>;
139    defm CGRJ  : CmpBranchRIEbPair<"cgrj",  0xEC64, GR64>;
140    defm CIJ   : CmpBranchRIEcPair<"cij",   0xEC7E, GR32, imm32sx8>;
141    defm CGIJ  : CmpBranchRIEcPair<"cgij",  0xEC7C, GR64, imm64sx8>;
142    defm CLRJ  : CmpBranchRIEbPair<"clrj",  0xEC77, GR32>;
143    defm CLGRJ : CmpBranchRIEbPair<"clgrj", 0xEC65, GR64>;
144    defm CLIJ  : CmpBranchRIEcPair<"clij",  0xEC7F, GR32, imm32zx8>;
145    defm CLGIJ : CmpBranchRIEcPair<"clgij", 0xEC7D, GR64, imm64zx8>;
146  }
147  let isIndirectBranch = 1 in {
148    defm CRB   : CmpBranchRRSPair<"crb",   0xECF6, GR32>;
149    defm CGRB  : CmpBranchRRSPair<"cgrb",  0xECE4, GR64>;
150    defm CIB   : CmpBranchRISPair<"cib",   0xECFE, GR32, imm32sx8>;
151    defm CGIB  : CmpBranchRISPair<"cgib",  0xECFC, GR64, imm64sx8>;
152    defm CLRB  : CmpBranchRRSPair<"clrb",  0xECF7, GR32>;
153    defm CLGRB : CmpBranchRRSPair<"clgrb", 0xECE5, GR64>;
154    defm CLIB  : CmpBranchRISPair<"clib",  0xECFF, GR32, imm32zx8>;
155    defm CLGIB : CmpBranchRISPair<"clgib", 0xECFD, GR64, imm64zx8>;
156  }
157
158  // Define AsmParser mnemonics for each integer condition-code mask.
159  foreach V = [ "E", "H", "L", "HE", "LE", "LH",
160                "NE", "NH", "NL", "NHE", "NLE", "NLH" ] in {
161    let Defs = [CC] in {
162      def CRJAsm#V   : FixedCmpBranchRIEb<ICV<V>, "crj",   0xEC76, GR32>;
163      def CGRJAsm#V  : FixedCmpBranchRIEb<ICV<V>, "cgrj",  0xEC64, GR64>;
164      def CIJAsm#V   : FixedCmpBranchRIEc<ICV<V>, "cij",   0xEC7E, GR32,
165                                          imm32sx8>;
166      def CGIJAsm#V  : FixedCmpBranchRIEc<ICV<V>, "cgij",  0xEC7C, GR64,
167                                          imm64sx8>;
168      def CLRJAsm#V  : FixedCmpBranchRIEb<ICV<V>, "clrj",  0xEC77, GR32>;
169      def CLGRJAsm#V : FixedCmpBranchRIEb<ICV<V>, "clgrj", 0xEC65, GR64>;
170      def CLIJAsm#V  : FixedCmpBranchRIEc<ICV<V>, "clij",  0xEC7F, GR32,
171                                          imm32zx8>;
172      def CLGIJAsm#V : FixedCmpBranchRIEc<ICV<V>, "clgij", 0xEC7D, GR64,
173                                          imm64zx8>;
174    }
175    let isIndirectBranch = 1 in {
176      def CRBAsm#V   : FixedCmpBranchRRS<ICV<V>, "crb",   0xECF6, GR32>;
177      def CGRBAsm#V  : FixedCmpBranchRRS<ICV<V>, "cgrb",  0xECE4, GR64>;
178      def CIBAsm#V   : FixedCmpBranchRIS<ICV<V>, "cib",   0xECFE, GR32,
179                                         imm32sx8>;
180      def CGIBAsm#V  : FixedCmpBranchRIS<ICV<V>, "cgib",  0xECFC, GR64,
181                                         imm64sx8>;
182      def CLRBAsm#V  : FixedCmpBranchRRS<ICV<V>, "clrb",  0xECF7, GR32>;
183      def CLGRBAsm#V : FixedCmpBranchRRS<ICV<V>, "clgrb", 0xECE5, GR64>;
184      def CLIBAsm#V  : FixedCmpBranchRIS<ICV<V>, "clib",  0xECFF, GR32,
185                                         imm32zx8>;
186      def CLGIBAsm#V : FixedCmpBranchRIS<ICV<V>, "clgib", 0xECFD, GR64,
187                                         imm64zx8>;
188    }
189  }
190}
191
192// Decrement a register and branch if it is nonzero.  These don't clobber CC,
193// but we might need to split long relative branches into sequences that do.
194let isBranch = 1, isTerminator = 1 in {
195  let Defs = [CC] in {
196    def BRCT  : BranchUnaryRI<"brct",  0xA76, GR32>;
197    def BRCTG : BranchUnaryRI<"brctg", 0xA77, GR64>;
198  }
199  // This doesn't need to clobber CC since we never need to split it.
200  def BRCTH : BranchUnaryRIL<"brcth", 0xCC6, GRH32>,
201              Requires<[FeatureHighWord]>;
202
203  def BCT   : BranchUnaryRX<"bct",  0x46,GR32>;
204  def BCTR  : BranchUnaryRR<"bctr", 0x06, GR32>;
205  def BCTG  : BranchUnaryRXY<"bctg",  0xE346, GR64>;
206  def BCTGR : BranchUnaryRRE<"bctgr", 0xB946, GR64>;
207}
208
209let isBranch = 1, isTerminator = 1 in {
210  let Defs = [CC] in {
211    def BRXH  : BranchBinaryRSI<"brxh",  0x84, GR32>;
212    def BRXLE : BranchBinaryRSI<"brxle", 0x85, GR32>;
213    def BRXHG : BranchBinaryRIEe<"brxhg", 0xEC44, GR64>;
214    def BRXLG : BranchBinaryRIEe<"brxlg", 0xEC45, GR64>;
215  }
216  def BXH   : BranchBinaryRS<"bxh",  0x86, GR32>;
217  def BXLE  : BranchBinaryRS<"bxle", 0x87, GR32>;
218  def BXHG  : BranchBinaryRSY<"bxhg",  0xEB44, GR64>;
219  def BXLEG : BranchBinaryRSY<"bxleg", 0xEB45, GR64>;
220}
221
222//===----------------------------------------------------------------------===//
223// Trap instructions
224//===----------------------------------------------------------------------===//
225
226// Unconditional trap.
227let hasCtrlDep = 1, hasSideEffects = 1 in
228  def Trap : Alias<4, (outs), (ins), [(trap)]>;
229
230// Conditional trap.
231let hasCtrlDep = 1, Uses = [CC], hasSideEffects = 1 in
232  def CondTrap : Alias<4, (outs), (ins cond4:$valid, cond4:$R1), []>;
233
234// Fused compare-and-trap instructions.
235let hasCtrlDep = 1, hasSideEffects = 1 in {
236  // These patterns work the same way as for compare-and-branch.
237  defm CRT   : CmpBranchRRFcPair<"crt",   0xB972, GR32>;
238  defm CGRT  : CmpBranchRRFcPair<"cgrt",  0xB960, GR64>;
239  defm CLRT  : CmpBranchRRFcPair<"clrt",  0xB973, GR32>;
240  defm CLGRT : CmpBranchRRFcPair<"clgrt", 0xB961, GR64>;
241  defm CIT   : CmpBranchRIEaPair<"cit",   0xEC72, GR32, imm32sx16>;
242  defm CGIT  : CmpBranchRIEaPair<"cgit",  0xEC70, GR64, imm64sx16>;
243  defm CLFIT : CmpBranchRIEaPair<"clfit", 0xEC73, GR32, imm32zx16>;
244  defm CLGIT : CmpBranchRIEaPair<"clgit", 0xEC71, GR64, imm64zx16>;
245  let Predicates = [FeatureMiscellaneousExtensions] in {
246    defm CLT  : CmpBranchRSYbPair<"clt",  0xEB23, GR32>;
247    defm CLGT : CmpBranchRSYbPair<"clgt", 0xEB2B, GR64>;
248  }
249
250  foreach V = [ "E", "H", "L", "HE", "LE", "LH",
251                "NE", "NH", "NL", "NHE", "NLE", "NLH" ] in {
252    def CRTAsm#V   : FixedCmpBranchRRFc<ICV<V>, "crt",   0xB972, GR32>;
253    def CGRTAsm#V  : FixedCmpBranchRRFc<ICV<V>, "cgrt",  0xB960, GR64>;
254    def CLRTAsm#V  : FixedCmpBranchRRFc<ICV<V>, "clrt",  0xB973, GR32>;
255    def CLGRTAsm#V : FixedCmpBranchRRFc<ICV<V>, "clgrt", 0xB961, GR64>;
256    def CITAsm#V   : FixedCmpBranchRIEa<ICV<V>, "cit",   0xEC72, GR32,
257                                         imm32sx16>;
258    def CGITAsm#V  : FixedCmpBranchRIEa<ICV<V>, "cgit",  0xEC70, GR64,
259                                         imm64sx16>;
260    def CLFITAsm#V : FixedCmpBranchRIEa<ICV<V>, "clfit", 0xEC73, GR32,
261                                         imm32zx16>;
262    def CLGITAsm#V : FixedCmpBranchRIEa<ICV<V>, "clgit", 0xEC71, GR64,
263                                         imm64zx16>;
264    let Predicates = [FeatureMiscellaneousExtensions] in {
265      def CLTAsm#V  : FixedCmpBranchRSYb<ICV<V>, "clt",  0xEB23, GR32>;
266      def CLGTAsm#V : FixedCmpBranchRSYb<ICV<V>, "clgt", 0xEB2B, GR64>;
267    }
268  }
269}
270
271//===----------------------------------------------------------------------===//
272// Call and return instructions
273//===----------------------------------------------------------------------===//
274
275// Define the general form of the call instructions for the asm parser.
276// These instructions don't hard-code %r14 as the return address register.
277let isCall = 1, Defs = [CC] in {
278  def BRAS  : CallRI <"bras", 0xA75>;
279  def BRASL : CallRIL<"brasl", 0xC05>;
280  def BAS   : CallRX <"bas", 0x4D>;
281  def BASR  : CallRR <"basr", 0x0D>;
282}
283
284// A symbol in the ADA (z/OS only).
285def adasym : Operand<i64>;
286
287// z/OS XPLINK
288let Predicates = [IsTargetXPLINK64] in {
289  let isCall = 1, Defs = [R7D, CC], Uses = [FPC] in {
290    def CallBRASL_XPLINK64 : Alias<8, (outs), (ins pcrel32:$I2, variable_ops),
291                          [(z_call pcrel32:$I2)]>;
292    def CallBASR_XPLINK64  : Alias<4, (outs), (ins ADDR64:$R2, variable_ops),
293                          [(z_call ADDR64:$R2)]>;
294  }
295
296  let isCall = 1, Defs = [R3D, CC], Uses = [FPC] in {
297    def CallBASR_STACKEXT  : Alias<4, (outs), (ins ADDR64:$R2), []>;
298  }
299
300  let hasNoSchedulingInfo = 1, Defs = [CC] in {
301    def ADA_ENTRY : Alias<12, (outs GR64:$Reg), (ins adasym:$addr,
302                              ADDR64:$ADA, imm64:$Offset),
303                            [(set i64:$Reg, (z_ada_entry i64:$addr,
304                              i64:$ADA, i64:$Offset))]>;
305  }
306  let mayLoad = 1, AddedComplexity = 20, hasNoSchedulingInfo = 1, Defs = [CC] in {
307    def ADA_ENTRY_VALUE : Alias<12, (outs GR64:$Reg), (ins adasym:$addr,
308                              ADDR64:$ADA, imm64:$Offset),
309                            [(set i64:$Reg, (load (z_ada_entry
310                              iPTR:$addr, iPTR:$ADA, i64:$Offset)))]>;
311 }
312}
313
314// Regular calls.
315// z/Linux ELF
316let Predicates = [IsTargetELF] in {
317  let isCall = 1, Defs = [R14D, CC], Uses = [FPC] in {
318    def CallBRASL : Alias<6, (outs), (ins pcrel32:$I2, variable_ops),
319                          [(z_call pcrel32:$I2)]>;
320    def CallBASR  : Alias<2, (outs), (ins ADDR64:$R2, variable_ops),
321                          [(z_call ADDR64:$R2)]>;
322  }
323
324  // TLS calls.  These will be lowered into a call to __tls_get_offset,
325  // with an extra relocation specifying the TLS symbol.
326  let isCall = 1, Defs = [R14D, CC] in {
327    def TLS_GDCALL : Alias<6, (outs), (ins tlssym:$I2, variable_ops),
328                           [(z_tls_gdcall tglobaltlsaddr:$I2)]>;
329    def TLS_LDCALL : Alias<6, (outs), (ins tlssym:$I2, variable_ops),
330                           [(z_tls_ldcall tglobaltlsaddr:$I2)]>;
331  }
332}
333
334// Sibling calls. Indirect sibling calls must be via R6 for XPLink,
335// R1 used for ELF
336let isCall = 1, isTerminator = 1, isReturn = 1, isBarrier = 1 in {
337  def CallJG : Alias<6, (outs), (ins pcrel32:$I2),
338                     [(z_sibcall pcrel32:$I2)]>;
339  def CallBR : Alias<2, (outs), (ins ADDR64:$R2),
340                     [(z_sibcall ADDR64:$R2)]>;
341}
342
343// Conditional sibling calls.
344let CCMaskFirst = 1, isCall = 1, isTerminator = 1, isReturn = 1 in {
345  def CallBRCL : Alias<6, (outs), (ins cond4:$valid, cond4:$R1,
346                                   pcrel32:$I2), []>;
347  def CallBCR : Alias<2, (outs), (ins cond4:$valid, cond4:$R1,
348                                  ADDR64:$R2), []>;
349}
350
351// Fused compare and conditional sibling calls.
352let isCall = 1, isTerminator = 1, isReturn = 1 in {
353  def CRBCall : Alias<6, (outs), (ins GR32:$R1, GR32:$R2, cond4:$M3, ADDR64:$R4), []>;
354  def CGRBCall : Alias<6, (outs), (ins GR64:$R1, GR64:$R2, cond4:$M3, ADDR64:$R4), []>;
355  def CIBCall : Alias<6, (outs), (ins GR32:$R1, imm32sx8:$I2, cond4:$M3, ADDR64:$R4), []>;
356  def CGIBCall : Alias<6, (outs), (ins GR64:$R1, imm64sx8:$I2, cond4:$M3, ADDR64:$R4), []>;
357  def CLRBCall : Alias<6, (outs), (ins GR32:$R1, GR32:$R2, cond4:$M3, ADDR64:$R4), []>;
358  def CLGRBCall : Alias<6, (outs), (ins GR64:$R1, GR64:$R2, cond4:$M3, ADDR64:$R4), []>;
359  def CLIBCall : Alias<6, (outs), (ins GR32:$R1, imm32zx8:$I2, cond4:$M3, ADDR64:$R4), []>;
360  def CLGIBCall : Alias<6, (outs), (ins GR64:$R1, imm64zx8:$I2, cond4:$M3, ADDR64:$R4), []>;
361}
362
363let Predicates = [IsTargetXPLINK64] in {
364  // A return instruction (b 2(%r7)).
365  let isReturn = 1, isTerminator = 1, isBarrier = 1, hasCtrlDep = 1 in
366    def Return_XPLINK : Alias<4, (outs), (ins), [(z_retglue)]>;
367
368  // A conditional return instruction (bc <cond>, 2(%r7)).
369  let isReturn = 1, isTerminator = 1, hasCtrlDep = 1, CCMaskFirst = 1, Uses = [CC] in
370    def CondReturn_XPLINK : Alias<4, (outs), (ins cond4:$valid, cond4:$R1), []>;
371}
372
373let Predicates = [IsTargetELF] in {
374  // A return instruction (br %r14).
375  let isReturn = 1, isTerminator = 1, isBarrier = 1, hasCtrlDep = 1 in
376    def Return : Alias<2, (outs), (ins), [(z_retglue)]>;
377
378  // A conditional return instruction (bcr <cond>, %r14).
379  let isReturn = 1, isTerminator = 1, hasCtrlDep = 1, CCMaskFirst = 1, Uses = [CC] in
380    def CondReturn : Alias<2, (outs), (ins cond4:$valid, cond4:$R1), []>;
381}
382
383// Fused compare and conditional returns.
384let isReturn = 1, isTerminator = 1, hasCtrlDep = 1 in {
385  def CRBReturn : Alias<6, (outs), (ins GR32:$R1, GR32:$R2, cond4:$M3), []>;
386  def CGRBReturn : Alias<6, (outs), (ins GR64:$R1, GR64:$R2, cond4:$M3), []>;
387  def CIBReturn : Alias<6, (outs), (ins GR32:$R1, imm32sx8:$I2, cond4:$M3), []>;
388  def CGIBReturn : Alias<6, (outs), (ins GR64:$R1, imm64sx8:$I2, cond4:$M3), []>;
389  def CLRBReturn : Alias<6, (outs), (ins GR32:$R1, GR32:$R2, cond4:$M3), []>;
390  def CLGRBReturn : Alias<6, (outs), (ins GR64:$R1, GR64:$R2, cond4:$M3), []>;
391  def CLIBReturn : Alias<6, (outs), (ins GR32:$R1, imm32zx8:$I2, cond4:$M3), []>;
392  def CLGIBReturn : Alias<6, (outs), (ins GR64:$R1, imm64zx8:$I2, cond4:$M3), []>;
393}
394
395//===----------------------------------------------------------------------===//
396// Select instructions
397//===----------------------------------------------------------------------===//
398
399def Select32    : SelectWrapper<i32, GR32>,
400                  Requires<[FeatureNoLoadStoreOnCond]>;
401def Select64    : SelectWrapper<i64, GR64>,
402                  Requires<[FeatureNoLoadStoreOnCond]>;
403
404// We don't define 32-bit Mux stores if we don't have STOCFH, because the
405// low-only STOC should then always be used if possible.
406defm CondStore8Mux  : CondStores<GRX32, nonvolatile_truncstorei8,
407                                 nonvolatile_anyextloadi8, bdxaddr20only>,
408                      Requires<[FeatureHighWord]>;
409defm CondStore16Mux : CondStores<GRX32, nonvolatile_truncstorei16,
410                                 nonvolatile_anyextloadi16, bdxaddr20only>,
411                      Requires<[FeatureHighWord]>;
412defm CondStore32Mux : CondStores<GRX32, simple_store,
413                                 simple_load, bdxaddr20only>,
414                      Requires<[FeatureLoadStoreOnCond2]>;
415defm CondStore8     : CondStores<GR32, nonvolatile_truncstorei8,
416                                 nonvolatile_anyextloadi8, bdxaddr20only>;
417defm CondStore16    : CondStores<GR32, nonvolatile_truncstorei16,
418                                 nonvolatile_anyextloadi16, bdxaddr20only>;
419defm CondStore32    : CondStores<GR32, simple_store,
420                                 simple_load, bdxaddr20only>;
421
422defm : CondStores64<CondStore8, CondStore8Inv, nonvolatile_truncstorei8,
423                    nonvolatile_anyextloadi8, bdxaddr20only>;
424defm : CondStores64<CondStore16, CondStore16Inv, nonvolatile_truncstorei16,
425                    nonvolatile_anyextloadi16, bdxaddr20only>;
426defm : CondStores64<CondStore32, CondStore32Inv, nonvolatile_truncstorei32,
427                    nonvolatile_anyextloadi32, bdxaddr20only>;
428defm CondStore64 : CondStores<GR64, simple_store,
429                              simple_load, bdxaddr20only>;
430
431//===----------------------------------------------------------------------===//
432// Move instructions
433//===----------------------------------------------------------------------===//
434
435// Register moves.
436def LR  : UnaryRR <"lr",  0x18,   null_frag, GR32, GR32>;
437def LGR : UnaryRRE<"lgr", 0xB904, null_frag, GR64, GR64>;
438
439let Defs = [CC], CCValues = 0xE, CompareZeroCCMask = 0xE in {
440  def LTR  : UnaryRR <"ltr",  0x12,   null_frag, GR32, GR32>;
441  def LTGR : UnaryRRE<"ltgr", 0xB902, null_frag, GR64, GR64>;
442}
443
444let usesCustomInserter = 1, hasNoSchedulingInfo = 1 in
445  def PAIR128 : Pseudo<(outs GR128:$dst), (ins GR64:$hi, GR64:$lo), []>;
446
447// Immediate moves.
448let isAsCheapAsAMove = 1, isMoveImm = 1, isReMaterializable = 1 in {
449  // 16-bit sign-extended immediates.  LHIMux expands to LHI or IIHF,
450  // deopending on the choice of register.
451  def LHIMux : UnaryRIPseudo<bitconvert, GRX32, imm32sx16>,
452               Requires<[FeatureHighWord]>;
453  def LHI  : UnaryRI<"lhi",  0xA78, bitconvert, GR32, imm32sx16>;
454  def LGHI : UnaryRI<"lghi", 0xA79, bitconvert, GR64, imm64sx16>;
455
456  // Other 16-bit immediates.
457  def LLILL : UnaryRI<"llill", 0xA5F, bitconvert, GR64, imm64ll16>;
458  def LLILH : UnaryRI<"llilh", 0xA5E, bitconvert, GR64, imm64lh16>;
459  def LLIHL : UnaryRI<"llihl", 0xA5D, bitconvert, GR64, imm64hl16>;
460  def LLIHH : UnaryRI<"llihh", 0xA5C, bitconvert, GR64, imm64hh16>;
461
462  // 32-bit immediates.
463  def LGFI  : UnaryRIL<"lgfi",  0xC01, bitconvert, GR64, imm64sx32>;
464  def LLILF : UnaryRIL<"llilf", 0xC0F, bitconvert, GR64, imm64lf32>;
465  def LLIHF : UnaryRIL<"llihf", 0xC0E, bitconvert, GR64, imm64hf32>;
466}
467
468// Register loads.
469let canFoldAsLoad = 1, SimpleBDXLoad = 1, mayLoad = 1 in {
470  // Expands to L, LY or LFH, depending on the choice of register.
471  def LMux : UnaryRXYPseudo<"l", load, GRX32, 4>,
472             Requires<[FeatureHighWord]>;
473  defm L : UnaryRXPair<"l", 0x58, 0xE358, load, GR32, 4>;
474  def LFH : UnaryRXY<"lfh", 0xE3CA, load, GRH32, 4>,
475            Requires<[FeatureHighWord]>;
476  def LG : UnaryRXY<"lg", 0xE304, load, GR64, 8>;
477
478  // These instructions are split after register allocation, so we don't
479  // want a custom inserter.
480  let Has20BitOffset = 1, HasIndex = 1, Is128Bit = 1 in {
481    def L128 : Pseudo<(outs GR128:$dst), (ins bdxaddr20only128:$src),
482                      [(set GR128:$dst, (load bdxaddr20only128:$src))]>;
483  }
484}
485let Defs = [CC], CCValues = 0xE, CompareZeroCCMask = 0xE in {
486  def LT  : UnaryRXY<"lt",  0xE312, load, GR32, 4>;
487  def LTG : UnaryRXY<"ltg", 0xE302, load, GR64, 8>;
488}
489
490let canFoldAsLoad = 1 in {
491  def LRL  : UnaryRILPC<"lrl",  0xC4D, aligned_load, GR32>;
492  def LGRL : UnaryRILPC<"lgrl", 0xC48, aligned_load, GR64>;
493}
494
495// Load and zero rightmost byte.
496let Predicates = [FeatureLoadAndZeroRightmostByte] in {
497  def LZRF : UnaryRXY<"lzrf", 0xE33B, null_frag, GR32, 4>;
498  def LZRG : UnaryRXY<"lzrg", 0xE32A, null_frag, GR64, 8>;
499  def : Pat<(and (i32 (load bdxaddr20only:$src)), 0xffffff00),
500            (LZRF bdxaddr20only:$src)>;
501  def : Pat<(and (i64 (load bdxaddr20only:$src)), 0xffffffffffffff00),
502            (LZRG bdxaddr20only:$src)>;
503}
504
505// Load and trap.
506let Predicates = [FeatureLoadAndTrap], hasSideEffects = 1 in {
507  def LAT   : UnaryRXY<"lat",   0xE39F, null_frag, GR32, 4>;
508  def LFHAT : UnaryRXY<"lfhat", 0xE3C8, null_frag, GRH32, 4>;
509  def LGAT  : UnaryRXY<"lgat",  0xE385, null_frag, GR64, 8>;
510}
511
512// Register stores.
513let SimpleBDXStore = 1, mayStore = 1 in {
514  // Expands to ST, STY or STFH, depending on the choice of register.
515  def STMux : StoreRXYPseudo<store, GRX32, 4>,
516              Requires<[FeatureHighWord]>;
517  defm ST : StoreRXPair<"st", 0x50, 0xE350, store, GR32, 4>;
518  def STFH : StoreRXY<"stfh", 0xE3CB, store, GRH32, 4>,
519             Requires<[FeatureHighWord]>;
520  def STG : StoreRXY<"stg", 0xE324, store, GR64, 8>;
521
522  // These instructions are split after register allocation, so we don't
523  // want a custom inserter.
524  let Has20BitOffset = 1, HasIndex = 1, Is128Bit = 1 in {
525    def ST128 : Pseudo<(outs), (ins GR128:$src, bdxaddr20only128:$dst),
526                       [(store GR128:$src, bdxaddr20only128:$dst)]>;
527  }
528}
529def STRL  : StoreRILPC<"strl", 0xC4F, aligned_store, GR32>;
530def STGRL : StoreRILPC<"stgrl", 0xC4B, aligned_store, GR64>;
531
532// 8-bit immediate stores to 8-bit fields.
533defm MVI : StoreSIPair<"mvi", 0x92, 0xEB52, truncstorei8, imm32zx8trunc>;
534
535// 16-bit immediate stores to 16-, 32- or 64-bit fields.
536def MVHHI : StoreSIL<"mvhhi", 0xE544, truncstorei16, imm32sx16trunc>;
537def MVHI  : StoreSIL<"mvhi",  0xE54C, store,         imm32sx16>;
538def MVGHI : StoreSIL<"mvghi", 0xE548, store,         imm64sx16>;
539
540// Memory-to-memory moves.
541let mayLoad = 1, mayStore = 1 in
542  defm MVC : MemorySS<"mvc", 0xD2, z_mvc>;
543let mayLoad = 1, mayStore = 1, Defs = [CC] in {
544  def MVCL  : SideEffectBinaryMemMemRR<"mvcl", 0x0E, GR128, GR128>;
545  def MVCLE : SideEffectTernaryMemMemRS<"mvcle", 0xA8, GR128, GR128>;
546  def MVCLU : SideEffectTernaryMemMemRSY<"mvclu", 0xEB8E, GR128, GR128>;
547}
548
549// Memset[Length][Byte] pseudos.
550def MemsetImmImm : MemsetPseudo<imm64, imm32zx8trunc>;
551def MemsetImmReg : MemsetPseudo<imm64, GR32>;
552def MemsetRegImm : MemsetPseudo<ADDR64, imm32zx8trunc>;
553def MemsetRegReg : MemsetPseudo<ADDR64, GR32>;
554
555// Move right.
556let Predicates = [FeatureMiscellaneousExtensions3],
557    mayLoad = 1, mayStore = 1, Uses = [R0L] in
558  def MVCRL : SideEffectBinarySSE<"mvcrl", 0xE50A>;
559
560// String moves.
561let mayLoad = 1, mayStore = 1, Defs = [CC] in
562  defm MVST : StringRRE<"mvst", 0xB255, z_stpcpy>;
563
564//===----------------------------------------------------------------------===//
565// Conditional move instructions
566//===----------------------------------------------------------------------===//
567
568let Predicates = [FeatureMiscellaneousExtensions3], Uses = [CC] in {
569  // Select.
570  let isCommutable = 1 in {
571    // Expands to SELR or SELFHR or a branch-and-move sequence,
572    // depending on the choice of registers.
573    def  SELRMux : CondBinaryRRFaPseudo<"MUXselr", GRX32, GRX32, GRX32>;
574    defm SELFHR  : CondBinaryRRFaPair<"selfhr", 0xB9C0, GRH32, GRH32, GRH32>;
575    defm SELR    : CondBinaryRRFaPair<"selr",   0xB9F0, GR32, GR32, GR32>;
576    defm SELGR   : CondBinaryRRFaPair<"selgr",  0xB9E3, GR64, GR64, GR64>;
577  }
578
579  // Define AsmParser extended mnemonics for each general condition-code mask.
580  foreach V = [ "E", "NE", "H", "NH", "L", "NL", "HE", "NHE", "LE", "NLE",
581                "Z", "NZ", "P", "NP", "M", "NM", "LH", "NLH", "O", "NO" ] in {
582    def SELRAsm#V   : FixedCondBinaryRRFa<CV<V>, "selr",   0xB9F0,
583                                          GR32, GR32, GR32>;
584    def SELFHRAsm#V : FixedCondBinaryRRFa<CV<V>, "selfhr", 0xB9C0,
585                                          GRH32, GRH32, GRH32>;
586    def SELGRAsm#V  : FixedCondBinaryRRFa<CV<V>, "selgr",  0xB9E3,
587                                          GR64, GR64, GR64>;
588  }
589}
590
591let Predicates = [FeatureLoadStoreOnCond2], Uses = [CC] in {
592  // Load immediate on condition.  Matched via DAG pattern and created
593  // by the PeepholeOptimizer via FoldImmediate.
594
595  // Expands to LOCHI or LOCHHI, depending on the choice of register.
596  def LOCHIMux : CondBinaryRIEPseudo<GRX32, imm32sx16>;
597  defm LOCHHI  : CondBinaryRIEPair<"lochhi", 0xEC4E, GRH32, imm32sx16>;
598  defm LOCHI   : CondBinaryRIEPair<"lochi",  0xEC42, GR32, imm32sx16>;
599  defm LOCGHI  : CondBinaryRIEPair<"locghi", 0xEC46, GR64, imm64sx16>;
600
601  // Move register on condition.  Matched via DAG pattern and
602  // created by early if-conversion.
603  let isCommutable = 1 in {
604    // Expands to LOCR or LOCFHR or a branch-and-move sequence,
605    // depending on the choice of registers.
606    def LOCRMux : CondBinaryRRFPseudo<"MUXlocr", GRX32, GRX32>;
607    defm LOCFHR : CondBinaryRRFPair<"locfhr", 0xB9E0, GRH32, GRH32>;
608  }
609
610  // Load on condition.  Matched via DAG pattern.
611  // Expands to LOC or LOCFH, depending on the choice of register.
612  defm LOCMux : CondUnaryRSYPseudoAndMemFold<"MUXloc", simple_load, GRX32, 4>;
613  defm LOCFH : CondUnaryRSYPair<"locfh", 0xEBE0, simple_load, GRH32, 4>;
614
615  // Store on condition.  Expanded from CondStore* pseudos.
616  // Expands to STOC or STOCFH, depending on the choice of register.
617  def STOCMux : CondStoreRSYPseudo<GRX32, 4>;
618  defm STOCFH : CondStoreRSYPair<"stocfh", 0xEBE1, GRH32, 4>;
619
620  // Define AsmParser extended mnemonics for each general condition-code mask.
621  foreach V = [ "E", "NE", "H", "NH", "L", "NL", "HE", "NHE", "LE", "NLE",
622                "Z", "NZ", "P", "NP", "M", "NM", "LH", "NLH", "O", "NO" ] in {
623    def LOCHIAsm#V  : FixedCondBinaryRIE<CV<V>, "lochi",  0xEC42, GR32,
624                                         imm32sx16>;
625    def LOCGHIAsm#V : FixedCondBinaryRIE<CV<V>, "locghi", 0xEC46, GR64,
626                                         imm64sx16>;
627    def LOCHHIAsm#V : FixedCondBinaryRIE<CV<V>, "lochhi", 0xEC4E, GRH32,
628                                         imm32sx16>;
629    def LOCFHRAsm#V : FixedCondBinaryRRF<CV<V>, "locfhr", 0xB9E0, GRH32, GRH32>;
630    def LOCFHAsm#V  : FixedCondUnaryRSY<CV<V>, "locfh",  0xEBE0, GRH32, 4>;
631    def STOCFHAsm#V : FixedCondStoreRSY<CV<V>, "stocfh", 0xEBE1, GRH32, 4>;
632  }
633}
634
635let Predicates = [FeatureLoadStoreOnCond], Uses = [CC] in {
636  // Move register on condition.  Matched via DAG pattern and
637  // created by early if-conversion.
638  let isCommutable = 1 in {
639    defm LOCR  : CondBinaryRRFPair<"locr",  0xB9F2, GR32, GR32>;
640    defm LOCGR : CondBinaryRRFPair<"locgr", 0xB9E2, GR64, GR64>;
641  }
642
643  // Load on condition.  Matched via DAG pattern.
644  defm LOC  : CondUnaryRSYPair<"loc",  0xEBF2, simple_load, GR32, 4>;
645  defm LOCG : CondUnaryRSYPairAndMemFold<"locg", 0xEBE2, simple_load, GR64, 8>;
646
647  // Store on condition.  Expanded from CondStore* pseudos.
648  defm STOC  : CondStoreRSYPair<"stoc",  0xEBF3, GR32, 4>;
649  defm STOCG : CondStoreRSYPair<"stocg", 0xEBE3, GR64, 8>;
650
651  // Define AsmParser extended mnemonics for each general condition-code mask.
652  foreach V = [ "E", "NE", "H", "NH", "L", "NL", "HE", "NHE", "LE", "NLE",
653                "Z", "NZ", "P", "NP", "M", "NM", "LH", "NLH", "O", "NO" ] in {
654    def LOCRAsm#V   : FixedCondBinaryRRF<CV<V>, "locr",  0xB9F2, GR32, GR32>;
655    def LOCGRAsm#V  : FixedCondBinaryRRF<CV<V>, "locgr", 0xB9E2, GR64, GR64>;
656    def LOCAsm#V    : FixedCondUnaryRSY<CV<V>, "loc",   0xEBF2, GR32, 4>;
657    def LOCGAsm#V   : FixedCondUnaryRSY<CV<V>, "locg",  0xEBE2, GR64, 8>;
658    def STOCAsm#V   : FixedCondStoreRSY<CV<V>, "stoc",  0xEBF3, GR32, 4>;
659    def STOCGAsm#V  : FixedCondStoreRSY<CV<V>, "stocg", 0xEBE3, GR64, 8>;
660  }
661}
662//===----------------------------------------------------------------------===//
663// Sign extensions
664//===----------------------------------------------------------------------===//
665//
666// Note that putting these before zero extensions mean that we will prefer
667// them for anyextload*.  There's not really much to choose between the two
668// either way, but signed-extending loads have a short LH and a long LHY,
669// while zero-extending loads have only the long LLH.
670//
671//===----------------------------------------------------------------------===//
672
673// 32-bit extensions from registers.
674def LBR : UnaryRRE<"lbr", 0xB926, sext8,  GR32, GR32>;
675def LHR : UnaryRRE<"lhr", 0xB927, sext16, GR32, GR32>;
676
677// 64-bit extensions from registers.
678def LGBR : UnaryRRE<"lgbr", 0xB906, sext8,  GR64, GR64>;
679def LGHR : UnaryRRE<"lghr", 0xB907, sext16, GR64, GR64>;
680def LGFR : UnaryRRE<"lgfr", 0xB914, sext32, GR64, GR32>;
681
682let Defs = [CC], CCValues = 0xE, CompareZeroCCMask = 0xE in
683  def LTGFR : UnaryRRE<"ltgfr", 0xB912, null_frag, GR64, GR32>;
684
685// Match 32-to-64-bit sign extensions in which the source is already
686// in a 64-bit register.
687def : Pat<(sext_inreg GR64:$src, i32),
688          (LGFR (EXTRACT_SUBREG GR64:$src, subreg_l32))>;
689
690// 32-bit extensions from 8-bit memory.  LBMux expands to LB or LBH,
691// depending on the choice of register.
692def LBMux : UnaryRXYPseudo<"lb", asextloadi8, GRX32, 1>,
693            Requires<[FeatureHighWord]>;
694def LB  : UnaryRXY<"lb", 0xE376, asextloadi8, GR32, 1>;
695def LBH : UnaryRXY<"lbh", 0xE3C0, asextloadi8, GRH32, 1>,
696          Requires<[FeatureHighWord]>;
697
698// 32-bit extensions from 16-bit memory.  LHMux expands to LH or LHH,
699// depending on the choice of register.
700def LHMux : UnaryRXYPseudo<"lh", asextloadi16, GRX32, 2>,
701            Requires<[FeatureHighWord]>;
702defm LH   : UnaryRXPair<"lh", 0x48, 0xE378, asextloadi16, GR32, 2>;
703def  LHH  : UnaryRXY<"lhh", 0xE3C4, asextloadi16, GRH32, 2>,
704            Requires<[FeatureHighWord]>;
705def  LHRL : UnaryRILPC<"lhrl", 0xC45, aligned_asextloadi16, GR32>;
706
707// 64-bit extensions from memory.
708def LGB   : UnaryRXY<"lgb", 0xE377, asextloadi8,  GR64, 1>;
709def LGH   : UnaryRXY<"lgh", 0xE315, asextloadi16, GR64, 2>;
710def LGF   : UnaryRXY<"lgf", 0xE314, asextloadi32, GR64, 4>;
711def LGHRL : UnaryRILPC<"lghrl", 0xC44, aligned_asextloadi16, GR64>;
712def LGFRL : UnaryRILPC<"lgfrl", 0xC4C, aligned_asextloadi32, GR64>;
713let Defs = [CC], CCValues = 0xE, CompareZeroCCMask = 0xE in
714  def LTGF : UnaryRXY<"ltgf", 0xE332, asextloadi32, GR64, 4>;
715
716//===----------------------------------------------------------------------===//
717// Zero extensions
718//===----------------------------------------------------------------------===//
719
720// 32-bit extensions from registers.
721
722// Expands to LLCR or RISB[LH]G, depending on the choice of registers.
723def LLCRMux : UnaryRRPseudo<"llcr", zext8, GRX32, GRX32>,
724              Requires<[FeatureHighWord]>;
725def LLCR    : UnaryRRE<"llcr", 0xB994, zext8,  GR32, GR32>;
726// Expands to LLHR or RISB[LH]G, depending on the choice of registers.
727def LLHRMux : UnaryRRPseudo<"llhr", zext16, GRX32, GRX32>,
728              Requires<[FeatureHighWord]>;
729def LLHR    : UnaryRRE<"llhr", 0xB995, zext16, GR32, GR32>;
730
731// 64-bit extensions from registers.
732def LLGCR : UnaryRRE<"llgcr", 0xB984, zext8,  GR64, GR64>;
733def LLGHR : UnaryRRE<"llghr", 0xB985, zext16, GR64, GR64>;
734def LLGFR : UnaryRRE<"llgfr", 0xB916, zext32, GR64, GR32>;
735
736// Match 32-to-64-bit zero extensions in which the source is already
737// in a 64-bit register.
738def : Pat<(and GR64:$src, 0xffffffff),
739          (LLGFR (EXTRACT_SUBREG GR64:$src, subreg_l32))>;
740
741// 32-bit extensions from 8-bit memory.  LLCMux expands to LLC or LLCH,
742// depending on the choice of register.
743def LLCMux : UnaryRXYPseudo<"llc", azextloadi8, GRX32, 1>,
744             Requires<[FeatureHighWord]>;
745def LLC  : UnaryRXY<"llc", 0xE394, azextloadi8, GR32, 1>;
746def LLCH : UnaryRXY<"llch", 0xE3C2, azextloadi8, GRH32, 1>,
747           Requires<[FeatureHighWord]>;
748
749// 32-bit extensions from 16-bit memory.  LLHMux expands to LLH or LLHH,
750// depending on the choice of register.
751def LLHMux : UnaryRXYPseudo<"llh", azextloadi16, GRX32, 2>,
752             Requires<[FeatureHighWord]>;
753def LLH   : UnaryRXY<"llh", 0xE395, azextloadi16, GR32, 2>;
754def LLHH  : UnaryRXY<"llhh", 0xE3C6, azextloadi16, GRH32, 2>,
755            Requires<[FeatureHighWord]>;
756def LLHRL : UnaryRILPC<"llhrl", 0xC42, aligned_azextloadi16, GR32>;
757
758// 64-bit extensions from memory.
759def LLGC   : UnaryRXY<"llgc", 0xE390, azextloadi8,  GR64, 1>;
760def LLGH   : UnaryRXY<"llgh", 0xE391, azextloadi16, GR64, 2>;
761def LLGF   : UnaryRXY<"llgf", 0xE316, azextloadi32, GR64, 4>;
762def LLGHRL : UnaryRILPC<"llghrl", 0xC46, aligned_azextloadi16, GR64>;
763def LLGFRL : UnaryRILPC<"llgfrl", 0xC4E, aligned_azextloadi32, GR64>;
764
765// 31-to-64-bit zero extensions.
766def LLGTR : UnaryRRE<"llgtr", 0xB917, null_frag, GR64, GR64>;
767def LLGT  : UnaryRXY<"llgt",  0xE317, null_frag, GR64, 4>;
768def : Pat<(and GR64:$src, 0x7fffffff),
769          (LLGTR GR64:$src)>;
770def : Pat<(and (i64 (azextloadi32 bdxaddr20only:$src)), 0x7fffffff),
771          (LLGT bdxaddr20only:$src)>;
772
773// Load and zero rightmost byte.
774let Predicates = [FeatureLoadAndZeroRightmostByte] in {
775  def LLZRGF : UnaryRXY<"llzrgf", 0xE33A, null_frag, GR64, 4>;
776  def : Pat<(and (i64 (azextloadi32 bdxaddr20only:$src)), 0xffffff00),
777            (LLZRGF bdxaddr20only:$src)>;
778}
779
780// Load and trap.
781let Predicates = [FeatureLoadAndTrap], hasSideEffects = 1 in {
782  def LLGFAT : UnaryRXY<"llgfat", 0xE39D, null_frag, GR64, 4>;
783  def LLGTAT : UnaryRXY<"llgtat", 0xE39C, null_frag, GR64, 4>;
784}
785
786// Extend GR64s to GR128s.
787let usesCustomInserter = 1, hasNoSchedulingInfo = 1 in
788  def ZEXT128 : Pseudo<(outs GR128:$dst), (ins GR64:$src), []>;
789
790//===----------------------------------------------------------------------===//
791// "Any" extensions
792//===----------------------------------------------------------------------===//
793
794// Use subregs to populate the "don't care" bits in a 32-bit to 64-bit anyext.
795def : Pat<(i64 (anyext GR32:$src)),
796          (INSERT_SUBREG (i64 (IMPLICIT_DEF)), GR32:$src, subreg_l32)>;
797
798// Extend GR64s to GR128s.
799let usesCustomInserter = 1, hasNoSchedulingInfo = 1 in
800  def AEXT128 : Pseudo<(outs GR128:$dst), (ins GR64:$src), []>;
801
802//===----------------------------------------------------------------------===//
803// Truncations
804//===----------------------------------------------------------------------===//
805
806// Truncations of 64-bit registers to 32-bit registers.
807def : Pat<(i32 (trunc GR64:$src)),
808          (EXTRACT_SUBREG GR64:$src, subreg_l32)>;
809
810// Truncations of 32-bit registers to 8-bit memory.  STCMux expands to
811// STC, STCY or STCH, depending on the choice of register.
812def STCMux : StoreRXYPseudo<truncstorei8, GRX32, 1>,
813             Requires<[FeatureHighWord]>;
814defm STC : StoreRXPair<"stc", 0x42, 0xE372, truncstorei8, GR32, 1>;
815def STCH : StoreRXY<"stch", 0xE3C3, truncstorei8, GRH32, 1>,
816           Requires<[FeatureHighWord]>;
817
818// Truncations of 32-bit registers to 16-bit memory.  STHMux expands to
819// STH, STHY or STHH, depending on the choice of register.
820def STHMux : StoreRXYPseudo<truncstorei16, GRX32, 1>,
821             Requires<[FeatureHighWord]>;
822defm STH : StoreRXPair<"sth", 0x40, 0xE370, truncstorei16, GR32, 2>;
823def STHH : StoreRXY<"sthh", 0xE3C7, truncstorei16, GRH32, 2>,
824           Requires<[FeatureHighWord]>;
825def STHRL : StoreRILPC<"sthrl", 0xC47, aligned_truncstorei16, GR32>;
826
827// Truncations of 64-bit registers to memory.
828defm : StoreGR64Pair<STC, STCY, truncstorei8>;
829defm : StoreGR64Pair<STH, STHY, truncstorei16>;
830def  : StoreGR64PC<STHRL, aligned_truncstorei16>;
831defm : StoreGR64Pair<ST, STY, truncstorei32>;
832def  : StoreGR64PC<STRL, aligned_truncstorei32>;
833
834// Store characters under mask -- not (yet) used for codegen.
835defm STCM : StoreBinaryRSPair<"stcm", 0xBE, 0xEB2D, GR32, 0>;
836def STCMH : StoreBinaryRSY<"stcmh", 0xEB2C, GRH32, 0>;
837
838//===----------------------------------------------------------------------===//
839// Multi-register moves
840//===----------------------------------------------------------------------===//
841
842// Multi-register loads.
843defm LM : LoadMultipleRSPair<"lm", 0x98, 0xEB98, GR32>;
844def LMG : LoadMultipleRSY<"lmg", 0xEB04, GR64>;
845def LMH : LoadMultipleRSY<"lmh", 0xEB96, GRH32>;
846def LMD : LoadMultipleSSe<"lmd", 0xEF, GR64>;
847
848// Multi-register stores.
849defm STM : StoreMultipleRSPair<"stm", 0x90, 0xEB90, GR32>;
850def STMG : StoreMultipleRSY<"stmg", 0xEB24, GR64>;
851def STMH : StoreMultipleRSY<"stmh", 0xEB26, GRH32>;
852
853//===----------------------------------------------------------------------===//
854// Byte swaps
855//===----------------------------------------------------------------------===//
856
857// Byte-swapping register moves.
858def LRVR  : UnaryRRE<"lrvr",  0xB91F, bswap, GR32, GR32>;
859def LRVGR : UnaryRRE<"lrvgr", 0xB90F, bswap, GR64, GR64>;
860
861// Byte-swapping loads.
862def LRVH : UnaryRXY<"lrvh", 0xE31F, z_loadbswap16, GR32, 2>;
863def LRV  : UnaryRXY<"lrv",  0xE31E, z_loadbswap32, GR32, 4>;
864def LRVG : UnaryRXY<"lrvg", 0xE30F, z_loadbswap64, GR64, 8>;
865
866// Byte-swapping stores.
867def STRVH : StoreRXY<"strvh", 0xE33F, z_storebswap16, GR32, 2>;
868def STRV  : StoreRXY<"strv",  0xE33E, z_storebswap32, GR32, 4>;
869def STRVG : StoreRXY<"strvg", 0xE32F, z_storebswap64, GR64, 8>;
870
871// Byte-swapping memory-to-memory moves.
872let mayLoad = 1, mayStore = 1 in
873  def MVCIN : SideEffectBinarySSa<"mvcin", 0xE8>;
874
875//===----------------------------------------------------------------------===//
876// Load address instructions
877//===----------------------------------------------------------------------===//
878
879// Load BDX-style addresses.
880let isAsCheapAsAMove = 1, isReMaterializable = 1 in
881  defm LA : LoadAddressRXPair<"la", 0x41, 0xE371, bitconvert>;
882
883// Load a PC-relative address.  There's no version of this instruction
884// with a 16-bit offset, so there's no relaxation.
885let isAsCheapAsAMove = 1, isMoveImm = 1, isReMaterializable = 1 in
886  def LARL : LoadAddressRIL<"larl", 0xC00, bitconvert>;
887
888// Load the Global Offset Table address.  This will be lowered into a
889//     larl $R1, _GLOBAL_OFFSET_TABLE_
890// instruction.
891def GOT : Alias<6, (outs GR64:$R1), (ins),
892                [(set GR64:$R1, (global_offset_table))]>;
893
894//===----------------------------------------------------------------------===//
895// Absolute and Negation
896//===----------------------------------------------------------------------===//
897
898let Defs = [CC] in {
899  let CCValues = 0xF, CompareZeroCCMask = 0x8 in {
900    def LPR  : UnaryRR <"lpr",  0x10,   abs, GR32, GR32>;
901    def LPGR : UnaryRRE<"lpgr", 0xB900, abs, GR64, GR64>;
902  }
903  let CCValues = 0xE, CompareZeroCCMask = 0xE in
904    def LPGFR : UnaryRRE<"lpgfr", 0xB910, null_frag, GR64, GR32>;
905}
906defm : SXU<abs, LPGFR>;
907
908let Defs = [CC] in {
909  let CCValues = 0xF, CompareZeroCCMask = 0x8 in {
910    def LNR  : UnaryRR <"lnr",  0x11,   z_inegabs, GR32, GR32>;
911    def LNGR : UnaryRRE<"lngr", 0xB901, z_inegabs, GR64, GR64>;
912  }
913  let CCValues = 0xE, CompareZeroCCMask = 0xE in
914    def LNGFR : UnaryRRE<"lngfr", 0xB911, null_frag, GR64, GR32>;
915}
916defm : SXU<z_inegabs, LNGFR>;
917
918let Defs = [CC] in {
919  let CCValues = 0xF, CompareZeroCCMask = 0x8 in {
920    def LCR  : UnaryRR <"lcr",  0x13,   ineg, GR32, GR32>;
921    def LCGR : UnaryRRE<"lcgr", 0xB903, ineg, GR64, GR64>;
922  }
923  let CCValues = 0xE, CompareZeroCCMask = 0xE in
924    def LCGFR : UnaryRRE<"lcgfr", 0xB913, null_frag, GR64, GR32>;
925}
926defm : SXU<ineg, LCGFR>;
927
928//===----------------------------------------------------------------------===//
929// Insertion
930//===----------------------------------------------------------------------===//
931
932let isCodeGenOnly = 1 in
933  defm IC32 : BinaryRXPair<"ic", 0x43, 0xE373, inserti8, GR32, azextloadi8, 1>;
934defm IC : BinaryRXPair<"ic", 0x43, 0xE373, inserti8, GR64, azextloadi8, 1>;
935
936defm : InsertMem<"inserti8", IC32,  GR32, azextloadi8, bdxaddr12pair>;
937defm : InsertMem<"inserti8", IC32Y, GR32, azextloadi8, bdxaddr20pair>;
938
939defm : InsertMem<"inserti8", IC,  GR64, azextloadi8, bdxaddr12pair>;
940defm : InsertMem<"inserti8", ICY, GR64, azextloadi8, bdxaddr20pair>;
941
942// Insert characters under mask -- not (yet) used for codegen.
943let Defs = [CC] in {
944  defm ICM : TernaryRSPair<"icm", 0xBF, 0xEB81, GR32, 0>;
945  def ICMH : TernaryRSY<"icmh", 0xEB80, GRH32, 0>;
946}
947
948// Insertions of a 16-bit immediate, leaving other bits unaffected.
949// We don't have or_as_insert equivalents of these operations because
950// OI is available instead.
951//
952// IIxMux expands to II[LH]x, depending on the choice of register.
953def IILMux : BinaryRIPseudo<insertll, GRX32, imm32ll16>,
954             Requires<[FeatureHighWord]>;
955def IIHMux : BinaryRIPseudo<insertlh, GRX32, imm32lh16>,
956             Requires<[FeatureHighWord]>;
957def IILL : BinaryRI<"iill", 0xA53, insertll, GR32, imm32ll16>;
958def IILH : BinaryRI<"iilh", 0xA52, insertlh, GR32, imm32lh16>;
959def IIHL : BinaryRI<"iihl", 0xA51, insertll, GRH32, imm32ll16>;
960def IIHH : BinaryRI<"iihh", 0xA50, insertlh, GRH32, imm32lh16>;
961def IILL64 : BinaryAliasRI<insertll, GR64, imm64ll16>;
962def IILH64 : BinaryAliasRI<insertlh, GR64, imm64lh16>;
963def IIHL64 : BinaryAliasRI<inserthl, GR64, imm64hl16>;
964def IIHH64 : BinaryAliasRI<inserthh, GR64, imm64hh16>;
965
966// ...likewise for 32-bit immediates.  For GR32s this is a general
967// full-width move.  (We use IILF rather than something like LLILF
968// for 32-bit moves because IILF leaves the upper 32 bits of the
969// GR64 unchanged.)
970let isAsCheapAsAMove = 1, isMoveImm = 1, isReMaterializable = 1 in {
971  def IIFMux : UnaryRIPseudo<bitconvert, GRX32, uimm32>,
972               Requires<[FeatureHighWord]>;
973  def IILF : UnaryRIL<"iilf", 0xC09, bitconvert, GR32, uimm32>;
974  def IIHF : UnaryRIL<"iihf", 0xC08, bitconvert, GRH32, uimm32>;
975}
976def IILF64 : BinaryAliasRIL<insertlf, GR64, imm64lf32>;
977def IIHF64 : BinaryAliasRIL<inserthf, GR64, imm64hf32>;
978
979// An alternative model of inserthf, with the first operand being
980// a zero-extended value.
981def : Pat<(or (zext32 GR32:$src), imm64hf32:$imm),
982          (IIHF64 (INSERT_SUBREG (i64 (IMPLICIT_DEF)), GR32:$src, subreg_l32),
983                  imm64hf32:$imm)>;
984
985//===----------------------------------------------------------------------===//
986// Addition
987//===----------------------------------------------------------------------===//
988
989// Addition producing a signed overflow flag.
990let Defs = [CC], CCValues = 0xF, CCIfNoSignedWrap = 1 in {
991  // Addition of a register.
992  let isCommutable = 1 in {
993    defm AR : BinaryRRAndK<"ar", 0x1A, 0xB9F8, z_sadd, GR32, GR32>;
994    defm AGR : BinaryRREAndK<"agr", 0xB908, 0xB9E8, z_sadd, GR64, GR64>;
995  }
996  def AGFR : BinaryRRE<"agfr", 0xB918, null_frag, GR64, GR32>;
997
998  // Addition to a high register.
999  def AHHHR : BinaryRRFa<"ahhhr", 0xB9C8, null_frag, GRH32, GRH32, GRH32>,
1000              Requires<[FeatureHighWord]>;
1001  def AHHLR : BinaryRRFa<"ahhlr", 0xB9D8, null_frag, GRH32, GRH32, GR32>,
1002              Requires<[FeatureHighWord]>;
1003
1004  // Addition of signed 16-bit immediates.
1005  defm AHIMux : BinaryRIAndKPseudo<"ahimux", z_sadd, GRX32, imm32sx16>;
1006  defm AHI  : BinaryRIAndK<"ahi",  0xA7A, 0xECD8, z_sadd, GR32, imm32sx16>;
1007  defm AGHI : BinaryRIAndK<"aghi", 0xA7B, 0xECD9, z_sadd, GR64, imm64sx16>;
1008
1009  // Addition of signed 32-bit immediates.
1010  def AFIMux : BinaryRIPseudo<z_sadd, GRX32, simm32>,
1011               Requires<[FeatureHighWord]>;
1012  def AFI  : BinaryRIL<"afi",  0xC29, z_sadd, GR32, simm32>;
1013  def AIH  : BinaryRIL<"aih",  0xCC8, z_sadd, GRH32, simm32>,
1014             Requires<[FeatureHighWord]>;
1015  def AGFI : BinaryRIL<"agfi", 0xC28, z_sadd, GR64, imm64sx32>;
1016
1017  // Addition of memory.
1018  defm AH  : BinaryRXPair<"ah", 0x4A, 0xE37A, z_sadd, GR32, asextloadi16, 2>;
1019  defm A   : BinaryRXPairAndPseudo<"a",  0x5A, 0xE35A, z_sadd, GR32, load, 4>;
1020  def  AGH : BinaryRXY<"agh", 0xE338, z_sadd, GR64, asextloadi16, 2>,
1021             Requires<[FeatureMiscellaneousExtensions2]>;
1022  def  AGF : BinaryRXY<"agf", 0xE318, z_sadd, GR64, asextloadi32, 4>;
1023  defm AG  : BinaryRXYAndPseudo<"ag",  0xE308, z_sadd, GR64, load, 8>;
1024
1025  // Addition to memory.
1026  def ASI  : BinarySIY<"asi",  0xEB6A, add, imm32sx8>;
1027  def AGSI : BinarySIY<"agsi", 0xEB7A, add, imm64sx8>;
1028}
1029defm : SXB<z_sadd, GR64, AGFR>;
1030
1031// Addition producing a carry.
1032let Defs = [CC], CCValues = 0xF, IsLogical = 1 in {
1033  // Addition of a register.
1034  let isCommutable = 1 in {
1035    defm ALR : BinaryRRAndK<"alr", 0x1E, 0xB9FA, z_uadd, GR32, GR32>;
1036    defm ALGR : BinaryRREAndK<"algr", 0xB90A, 0xB9EA, z_uadd, GR64, GR64>;
1037  }
1038  def ALGFR : BinaryRRE<"algfr", 0xB91A, null_frag, GR64, GR32>;
1039
1040  // Addition to a high register.
1041  def ALHHHR : BinaryRRFa<"alhhhr", 0xB9CA, null_frag, GRH32, GRH32, GRH32>,
1042               Requires<[FeatureHighWord]>;
1043  def ALHHLR : BinaryRRFa<"alhhlr", 0xB9DA, null_frag, GRH32, GRH32, GR32>,
1044               Requires<[FeatureHighWord]>;
1045
1046  // Addition of signed 16-bit immediates.
1047  def ALHSIK  : BinaryRIE<"alhsik",  0xECDA, z_uadd, GR32, imm32sx16>,
1048                Requires<[FeatureDistinctOps]>;
1049  def ALGHSIK : BinaryRIE<"alghsik", 0xECDB, z_uadd, GR64, imm64sx16>,
1050                Requires<[FeatureDistinctOps]>;
1051
1052  // Addition of unsigned 32-bit immediates.
1053  def ALFI  : BinaryRIL<"alfi",  0xC2B, z_uadd, GR32, uimm32>;
1054  def ALGFI : BinaryRIL<"algfi", 0xC2A, z_uadd, GR64, imm64zx32>;
1055
1056  // Addition of signed 32-bit immediates.
1057  def ALSIH : BinaryRIL<"alsih", 0xCCA, null_frag, GRH32, simm32>,
1058              Requires<[FeatureHighWord]>;
1059
1060  // Addition of memory.
1061  defm AL   : BinaryRXPairAndPseudo<"al", 0x5E, 0xE35E, z_uadd, GR32, load, 4>;
1062  def  ALGF : BinaryRXY<"algf", 0xE31A, z_uadd, GR64, azextloadi32, 4>;
1063  defm ALG  : BinaryRXYAndPseudo<"alg",  0xE30A, z_uadd, GR64, load, 8>;
1064
1065  // Addition to memory.
1066  def ALSI  : BinarySIY<"alsi",  0xEB6E, null_frag, imm32sx8>;
1067  def ALGSI : BinarySIY<"algsi", 0xEB7E, null_frag, imm64sx8>;
1068}
1069defm : ZXB<z_uadd, GR64, ALGFR>;
1070
1071// Addition producing and using a carry.
1072let Defs = [CC], Uses = [CC], CCValues = 0xF, IsLogical = 1 in {
1073  // Addition of a register.
1074  def ALCR  : BinaryRRE<"alcr",  0xB998, z_addcarry, GR32, GR32>;
1075  def ALCGR : BinaryRRE<"alcgr", 0xB988, z_addcarry, GR64, GR64>;
1076
1077  // Addition of memory.
1078  def ALC  : BinaryRXY<"alc",  0xE398, z_addcarry, GR32, load, 4>;
1079  def ALCG : BinaryRXY<"alcg", 0xE388, z_addcarry, GR64, load, 8>;
1080}
1081
1082// Addition that does not modify the condition code.
1083def ALSIHN : BinaryRIL<"alsihn", 0xCCB, null_frag, GRH32, simm32>,
1084             Requires<[FeatureHighWord]>;
1085
1086
1087//===----------------------------------------------------------------------===//
1088// Subtraction
1089//===----------------------------------------------------------------------===//
1090
1091// Subtraction producing a signed overflow flag.
1092let Defs = [CC], CCValues = 0xF, CompareZeroCCMask = 0x8,
1093    CCIfNoSignedWrap = 1 in {
1094  // Subtraction of a register.
1095  defm SR : BinaryRRAndK<"sr", 0x1B, 0xB9F9, z_ssub, GR32, GR32>;
1096  def SGFR : BinaryRRE<"sgfr", 0xB919, null_frag, GR64, GR32>;
1097  defm SGR : BinaryRREAndK<"sgr", 0xB909, 0xB9E9, z_ssub, GR64, GR64>;
1098
1099  // Subtraction from a high register.
1100  def SHHHR : BinaryRRFa<"shhhr", 0xB9C9, null_frag, GRH32, GRH32, GRH32>,
1101              Requires<[FeatureHighWord]>;
1102  def SHHLR : BinaryRRFa<"shhlr", 0xB9D9, null_frag, GRH32, GRH32, GR32>,
1103              Requires<[FeatureHighWord]>;
1104
1105  // Subtraction of memory.
1106  defm SH  : BinaryRXPair<"sh", 0x4B, 0xE37B, z_ssub, GR32, asextloadi16, 2>;
1107  defm S   : BinaryRXPairAndPseudo<"s", 0x5B, 0xE35B, z_ssub, GR32, load, 4>;
1108  def  SGH : BinaryRXY<"sgh", 0xE339, z_ssub, GR64, asextloadi16, 2>,
1109             Requires<[FeatureMiscellaneousExtensions2]>;
1110  def  SGF : BinaryRXY<"sgf", 0xE319, z_ssub, GR64, asextloadi32, 4>;
1111  defm SG  : BinaryRXYAndPseudo<"sg",  0xE309, z_ssub, GR64, load, 8>;
1112}
1113defm : SXB<z_ssub, GR64, SGFR>;
1114
1115// Subtracting an immediate is the same as adding the negated immediate.
1116let AddedComplexity = 1 in {
1117  def : Pat<(z_ssub GR32:$src1, imm32sx16n:$src2),
1118            (AHIMux GR32:$src1, imm32sx16n:$src2)>,
1119        Requires<[FeatureHighWord]>;
1120  def : Pat<(z_ssub GR32:$src1, simm32n:$src2),
1121            (AFIMux GR32:$src1, simm32n:$src2)>,
1122        Requires<[FeatureHighWord]>;
1123  def : Pat<(z_ssub GR32:$src1, imm32sx16n:$src2),
1124            (AHI GR32:$src1, imm32sx16n:$src2)>;
1125  def : Pat<(z_ssub GR32:$src1, simm32n:$src2),
1126            (AFI GR32:$src1, simm32n:$src2)>;
1127  def : Pat<(z_ssub GR64:$src1, imm64sx16n:$src2),
1128            (AGHI GR64:$src1, imm64sx16n:$src2)>;
1129  def : Pat<(z_ssub GR64:$src1, imm64sx32n:$src2),
1130            (AGFI GR64:$src1, imm64sx32n:$src2)>;
1131}
1132
1133// And vice versa in one special case, where we need to load a
1134// constant into a register in any case, but the negated constant
1135// requires fewer instructions to load.
1136def : Pat<(z_saddo GR64:$src1, imm64lh16n:$src2),
1137          (SGR GR64:$src1, (LLILH imm64lh16n:$src2))>;
1138def : Pat<(z_saddo GR64:$src1, imm64lf32n:$src2),
1139          (SGR GR64:$src1, (LLILF imm64lf32n:$src2))>;
1140
1141// Subtraction producing a carry.
1142let Defs = [CC], CCValues = 0x7, IsLogical = 1 in {
1143  // Subtraction of a register.
1144  defm SLR : BinaryRRAndK<"slr", 0x1F, 0xB9FB, z_usub, GR32, GR32>;
1145  def SLGFR : BinaryRRE<"slgfr", 0xB91B, null_frag, GR64, GR32>;
1146  defm SLGR : BinaryRREAndK<"slgr", 0xB90B, 0xB9EB, z_usub, GR64, GR64>;
1147
1148  // Subtraction from a high register.
1149  def SLHHHR : BinaryRRFa<"slhhhr", 0xB9CB, null_frag, GRH32, GRH32, GRH32>,
1150               Requires<[FeatureHighWord]>;
1151  def SLHHLR : BinaryRRFa<"slhhlr", 0xB9DB, null_frag, GRH32, GRH32, GR32>,
1152               Requires<[FeatureHighWord]>;
1153
1154  // Subtraction of unsigned 32-bit immediates.
1155  def SLFI  : BinaryRIL<"slfi",  0xC25, z_usub, GR32, uimm32>;
1156  def SLGFI : BinaryRIL<"slgfi", 0xC24, z_usub, GR64, imm64zx32>;
1157
1158  // Subtraction of memory.
1159  defm SL   : BinaryRXPairAndPseudo<"sl", 0x5F, 0xE35F, z_usub, GR32, load, 4>;
1160  def  SLGF : BinaryRXY<"slgf", 0xE31B, z_usub, GR64, azextloadi32, 4>;
1161  defm SLG  : BinaryRXYAndPseudo<"slg",  0xE30B, z_usub, GR64, load, 8>;
1162}
1163defm : ZXB<z_usub, GR64, SLGFR>;
1164
1165// Subtracting an immediate is the same as adding the negated immediate.
1166let AddedComplexity = 1 in {
1167  def : Pat<(z_usub GR32:$src1, imm32sx16n:$src2),
1168            (ALHSIK GR32:$src1, imm32sx16n:$src2)>,
1169        Requires<[FeatureDistinctOps]>;
1170  def : Pat<(z_usub GR64:$src1, imm64sx16n:$src2),
1171            (ALGHSIK GR64:$src1, imm64sx16n:$src2)>,
1172        Requires<[FeatureDistinctOps]>;
1173}
1174
1175// And vice versa in one special case (but we prefer addition).
1176def : Pat<(add GR64:$src1, imm64zx32n:$src2),
1177          (SLGFI GR64:$src1, imm64zx32n:$src2)>;
1178
1179// Subtraction producing and using a carry.
1180let Defs = [CC], Uses = [CC], CCValues = 0xF, IsLogical = 1 in {
1181  // Subtraction of a register.
1182  def SLBR  : BinaryRRE<"slbr",  0xB999, z_subcarry, GR32, GR32>;
1183  def SLBGR : BinaryRRE<"slbgr", 0xB989, z_subcarry, GR64, GR64>;
1184
1185  // Subtraction of memory.
1186  def SLB  : BinaryRXY<"slb",  0xE399, z_subcarry, GR32, load, 4>;
1187  def SLBG : BinaryRXY<"slbg", 0xE389, z_subcarry, GR64, load, 8>;
1188}
1189
1190
1191//===----------------------------------------------------------------------===//
1192// AND
1193//===----------------------------------------------------------------------===//
1194
1195let Defs = [CC] in {
1196  // ANDs of a register.
1197  let isCommutable = 1, CCValues = 0xC, CompareZeroCCMask = 0x8 in {
1198    defm NR : BinaryRRAndK<"nr", 0x14, 0xB9F4, and, GR32, GR32>;
1199    defm NGR : BinaryRREAndK<"ngr", 0xB980, 0xB9E4, and, GR64, GR64>;
1200  }
1201
1202  let isConvertibleToThreeAddress = 1 in {
1203    // ANDs of a 16-bit immediate, leaving other bits unaffected.
1204    // The CC result only reflects the 16-bit field, not the full register.
1205    //
1206    // NIxMux expands to NI[LH]x, depending on the choice of register.
1207    def NILMux : BinaryRIPseudo<and, GRX32, imm32ll16c>,
1208                 Requires<[FeatureHighWord]>;
1209    def NIHMux : BinaryRIPseudo<and, GRX32, imm32lh16c>,
1210                 Requires<[FeatureHighWord]>;
1211    def NILL : BinaryRI<"nill", 0xA57, and, GR32, imm32ll16c>;
1212    def NILH : BinaryRI<"nilh", 0xA56, and, GR32, imm32lh16c>;
1213    def NIHL : BinaryRI<"nihl", 0xA55, and, GRH32, imm32ll16c>;
1214    def NIHH : BinaryRI<"nihh", 0xA54, and, GRH32, imm32lh16c>;
1215    def NILL64 : BinaryAliasRI<and, GR64, imm64ll16c>;
1216    def NILH64 : BinaryAliasRI<and, GR64, imm64lh16c>;
1217    def NIHL64 : BinaryAliasRI<and, GR64, imm64hl16c>;
1218    def NIHH64 : BinaryAliasRI<and, GR64, imm64hh16c>;
1219
1220    // ANDs of a 32-bit immediate, leaving other bits unaffected.
1221    // The CC result only reflects the 32-bit field, which means we can
1222    // use it as a zero indicator for i32 operations but not otherwise.
1223    let CCValues = 0xC, CompareZeroCCMask = 0x8 in {
1224      // Expands to NILF or NIHF, depending on the choice of register.
1225      def NIFMux : BinaryRIPseudo<and, GRX32, uimm32>,
1226                   Requires<[FeatureHighWord]>;
1227      def NILF : BinaryRIL<"nilf", 0xC0B, and, GR32, uimm32>;
1228      def NIHF : BinaryRIL<"nihf", 0xC0A, and, GRH32, uimm32>;
1229    }
1230    def NILF64 : BinaryAliasRIL<and, GR64, imm64lf32c>;
1231    def NIHF64 : BinaryAliasRIL<and, GR64, imm64hf32c>;
1232  }
1233
1234  // ANDs of memory.
1235  let CCValues = 0xC, CompareZeroCCMask = 0x8 in {
1236    defm N  : BinaryRXPairAndPseudo<"n", 0x54, 0xE354, and, GR32, load, 4>;
1237    defm NG : BinaryRXYAndPseudo<"ng", 0xE380, and, GR64, load, 8>;
1238  }
1239
1240  // AND to memory
1241  defm NI : BinarySIPair<"ni", 0x94, 0xEB54, null_frag, imm32zx8>;
1242
1243  // Block AND.
1244  let mayLoad = 1, mayStore = 1 in
1245    defm NC : MemorySS<"nc", 0xD4, z_nc>;
1246}
1247defm : RMWIByte<and, bdaddr12pair, NI>;
1248defm : RMWIByte<and, bdaddr20pair, NIY>;
1249
1250//===----------------------------------------------------------------------===//
1251// OR
1252//===----------------------------------------------------------------------===//
1253
1254let Defs = [CC] in {
1255  // ORs of a register.
1256  let isCommutable = 1, CCValues = 0xC, CompareZeroCCMask = 0x8 in {
1257    defm OR : BinaryRRAndK<"or", 0x16, 0xB9F6, or, GR32, GR32>;
1258    defm OGR : BinaryRREAndK<"ogr", 0xB981, 0xB9E6, or, GR64, GR64>;
1259  }
1260
1261  // ORs of a 16-bit immediate, leaving other bits unaffected.
1262  // The CC result only reflects the 16-bit field, not the full register.
1263  //
1264  // OIxMux expands to OI[LH]x, depending on the choice of register.
1265  def OILMux : BinaryRIPseudo<or, GRX32, imm32ll16>,
1266               Requires<[FeatureHighWord]>;
1267  def OIHMux : BinaryRIPseudo<or, GRX32, imm32lh16>,
1268               Requires<[FeatureHighWord]>;
1269  def OILL : BinaryRI<"oill", 0xA5B, or, GR32, imm32ll16>;
1270  def OILH : BinaryRI<"oilh", 0xA5A, or, GR32, imm32lh16>;
1271  def OIHL : BinaryRI<"oihl", 0xA59, or, GRH32, imm32ll16>;
1272  def OIHH : BinaryRI<"oihh", 0xA58, or, GRH32, imm32lh16>;
1273  def OILL64 : BinaryAliasRI<or, GR64, imm64ll16>;
1274  def OILH64 : BinaryAliasRI<or, GR64, imm64lh16>;
1275  def OIHL64 : BinaryAliasRI<or, GR64, imm64hl16>;
1276  def OIHH64 : BinaryAliasRI<or, GR64, imm64hh16>;
1277
1278  // ORs of a 32-bit immediate, leaving other bits unaffected.
1279  // The CC result only reflects the 32-bit field, which means we can
1280  // use it as a zero indicator for i32 operations but not otherwise.
1281  let CCValues = 0xC, CompareZeroCCMask = 0x8 in {
1282    // Expands to OILF or OIHF, depending on the choice of register.
1283    def OIFMux : BinaryRIPseudo<or, GRX32, uimm32>,
1284                 Requires<[FeatureHighWord]>;
1285    def OILF : BinaryRIL<"oilf", 0xC0D, or, GR32, uimm32>;
1286    def OIHF : BinaryRIL<"oihf", 0xC0C, or, GRH32, uimm32>;
1287  }
1288  def OILF64 : BinaryAliasRIL<or, GR64, imm64lf32>;
1289  def OIHF64 : BinaryAliasRIL<or, GR64, imm64hf32>;
1290
1291  // ORs of memory.
1292  let CCValues = 0xC, CompareZeroCCMask = 0x8 in {
1293    defm O  : BinaryRXPairAndPseudo<"o", 0x56, 0xE356, or, GR32, load, 4>;
1294    defm OG : BinaryRXYAndPseudo<"og", 0xE381, or, GR64, load, 8>;
1295  }
1296
1297  // OR to memory
1298  defm OI : BinarySIPair<"oi", 0x96, 0xEB56, null_frag, imm32zx8>;
1299
1300  // Block OR.
1301  let mayLoad = 1, mayStore = 1 in
1302    defm OC : MemorySS<"oc", 0xD6, z_oc>;
1303}
1304defm : RMWIByte<or, bdaddr12pair, OI>;
1305defm : RMWIByte<or, bdaddr20pair, OIY>;
1306
1307//===----------------------------------------------------------------------===//
1308// XOR
1309//===----------------------------------------------------------------------===//
1310
1311let Defs = [CC] in {
1312  // XORs of a register.
1313  let isCommutable = 1, CCValues = 0xC, CompareZeroCCMask = 0x8 in {
1314    defm XR : BinaryRRAndK<"xr", 0x17, 0xB9F7, xor, GR32, GR32>;
1315    defm XGR : BinaryRREAndK<"xgr", 0xB982, 0xB9E7, xor, GR64, GR64>;
1316  }
1317
1318  // XORs of a 32-bit immediate, leaving other bits unaffected.
1319  // The CC result only reflects the 32-bit field, which means we can
1320  // use it as a zero indicator for i32 operations but not otherwise.
1321  let CCValues = 0xC, CompareZeroCCMask = 0x8 in {
1322    // Expands to XILF or XIHF, depending on the choice of register.
1323    def XIFMux : BinaryRIPseudo<xor, GRX32, uimm32>,
1324                 Requires<[FeatureHighWord]>;
1325    def XILF : BinaryRIL<"xilf", 0xC07, xor, GR32, uimm32>;
1326    def XIHF : BinaryRIL<"xihf", 0xC06, xor, GRH32, uimm32>;
1327  }
1328  def XILF64 : BinaryAliasRIL<xor, GR64, imm64lf32>;
1329  def XIHF64 : BinaryAliasRIL<xor, GR64, imm64hf32>;
1330
1331  // XORs of memory.
1332  let CCValues = 0xC, CompareZeroCCMask = 0x8 in {
1333    defm X  : BinaryRXPairAndPseudo<"x",0x57, 0xE357, xor, GR32, load, 4>;
1334    defm XG : BinaryRXYAndPseudo<"xg", 0xE382, xor, GR64, load, 8>;
1335  }
1336
1337  // XOR to memory
1338  defm XI : BinarySIPair<"xi", 0x97, 0xEB57, null_frag, imm32zx8>;
1339
1340  // Block XOR.
1341  let mayLoad = 1, mayStore = 1 in
1342    defm XC : MemorySS<"xc", 0xD7, z_xc>;
1343}
1344defm : RMWIByte<xor, bdaddr12pair, XI>;
1345defm : RMWIByte<xor, bdaddr20pair, XIY>;
1346
1347//===----------------------------------------------------------------------===//
1348// Combined logical operations
1349//===----------------------------------------------------------------------===//
1350
1351let Predicates = [FeatureMiscellaneousExtensions3],
1352    Defs = [CC] in {
1353  // AND with complement.
1354  let CCValues = 0xC, CompareZeroCCMask = 0x8 in {
1355    def NCRK : BinaryRRFa<"ncrk", 0xB9F5, andc, GR32, GR32, GR32>;
1356    def NCGRK : BinaryRRFa<"ncgrk", 0xB9E5, andc, GR64, GR64, GR64>;
1357  }
1358
1359  // OR with complement.
1360  let CCValues = 0xC, CompareZeroCCMask = 0x8 in {
1361    def OCRK : BinaryRRFa<"ocrk", 0xB975, orc, GR32, GR32, GR32>;
1362    def OCGRK : BinaryRRFa<"ocgrk", 0xB965, orc, GR64, GR64, GR64>;
1363  }
1364
1365  // NAND.
1366  let isCommutable = 1, CCValues = 0xC, CompareZeroCCMask = 0x8 in {
1367    def NNRK : BinaryRRFa<"nnrk", 0xB974, nand, GR32, GR32, GR32>;
1368    def NNGRK : BinaryRRFa<"nngrk", 0xB964, nand, GR64, GR64, GR64>;
1369  }
1370
1371  // NOR.
1372  let isCommutable = 1, CCValues = 0xC, CompareZeroCCMask = 0x8 in {
1373    def NORK : BinaryRRFa<"nork", 0xB976, nor, GR32, GR32, GR32>;
1374    def NOGRK : BinaryRRFa<"nogrk", 0xB966, nor, GR64, GR64, GR64>;
1375  }
1376
1377  // NXOR.
1378  let isCommutable = 1, CCValues = 0xC, CompareZeroCCMask = 0x8 in {
1379    def NXRK : BinaryRRFa<"nxrk", 0xB977, nxor, GR32, GR32, GR32>;
1380    def NXGRK : BinaryRRFa<"nxgrk", 0xB967, nxor, GR64, GR64, GR64>;
1381  }
1382}
1383
1384//===----------------------------------------------------------------------===//
1385// Multiplication
1386//===----------------------------------------------------------------------===//
1387
1388// Multiplication of a register, setting the condition code.  We prefer these
1389// over MS(G)R if available, even though we cannot use the condition code,
1390// since they are three-operand instructions.
1391let Predicates = [FeatureMiscellaneousExtensions2],
1392    Defs = [CC], isCommutable = 1 in {
1393  def MSRKC  : BinaryRRFa<"msrkc",  0xB9FD, mul, GR32, GR32, GR32>;
1394  def MSGRKC : BinaryRRFa<"msgrkc", 0xB9ED, mul, GR64, GR64, GR64>;
1395}
1396
1397// Multiplication of a register.
1398let isCommutable = 1 in {
1399  def MSR  : BinaryRRE<"msr",  0xB252, mul, GR32, GR32>;
1400  def MSGR : BinaryRRE<"msgr", 0xB90C, mul, GR64, GR64>;
1401}
1402def MSGFR : BinaryRRE<"msgfr", 0xB91C, null_frag, GR64, GR32>;
1403defm : SXB<mul, GR64, MSGFR>;
1404
1405// Multiplication of a signed 16-bit immediate.
1406def MHI  : BinaryRI<"mhi",  0xA7C, mul, GR32, imm32sx16>;
1407def MGHI : BinaryRI<"mghi", 0xA7D, mul, GR64, imm64sx16>;
1408
1409// Multiplication of a signed 32-bit immediate.
1410def MSFI  : BinaryRIL<"msfi",  0xC21, mul, GR32, simm32>;
1411def MSGFI : BinaryRIL<"msgfi", 0xC20, mul, GR64, imm64sx32>;
1412
1413// Multiplication of memory.
1414defm MH   : BinaryRXPair<"mh", 0x4C, 0xE37C, mul, GR32, asextloadi16, 2>;
1415defm MS   : BinaryRXPair<"ms", 0x71, 0xE351, mul, GR32, load, 4>;
1416def  MGH  : BinaryRXY<"mgh", 0xE33C, mul, GR64, asextloadi16, 2>,
1417            Requires<[FeatureMiscellaneousExtensions2]>;
1418def  MSGF : BinaryRXY<"msgf", 0xE31C, mul, GR64, asextloadi32, 4>;
1419def  MSG  : BinaryRXY<"msg",  0xE30C, mul, GR64, load, 8>;
1420
1421// Multiplication of memory, setting the condition code.
1422let Predicates = [FeatureMiscellaneousExtensions2], Defs = [CC] in {
1423  defm MSC  : BinaryRXYAndPseudo<"msc",  0xE353, null_frag, GR32, load, 4>;
1424  defm MSGC : BinaryRXYAndPseudo<"msgc", 0xE383, null_frag, GR64, load, 8>;
1425}
1426
1427// Multiplication of a register, producing two results.
1428def MR   : BinaryRR <"mr",    0x1C,   null_frag, GR128, GR32>;
1429def MGRK : BinaryRRFa<"mgrk", 0xB9EC, null_frag, GR128, GR64, GR64>,
1430           Requires<[FeatureMiscellaneousExtensions2]>;
1431def MLR  : BinaryRRE<"mlr",  0xB996, null_frag, GR128, GR32>;
1432def MLGR : BinaryRRE<"mlgr", 0xB986, null_frag, GR128, GR64>;
1433
1434def : Pat<(z_smul_lohi GR64:$src1, GR64:$src2),
1435          (MGRK GR64:$src1, GR64:$src2)>;
1436def : Pat<(z_umul_lohi GR64:$src1, GR64:$src2),
1437          (MLGR (AEXT128 GR64:$src1), GR64:$src2)>;
1438
1439// Multiplication of memory, producing two results.
1440def M   : BinaryRX <"m",   0x5C,   null_frag, GR128, load, 4>;
1441def MFY : BinaryRXY<"mfy", 0xE35C, null_frag, GR128, load, 4>;
1442def MG  : BinaryRXY<"mg",  0xE384, null_frag, GR128, load, 8>,
1443          Requires<[FeatureMiscellaneousExtensions2]>;
1444def ML  : BinaryRXY<"ml",  0xE396, null_frag, GR128, load, 4>;
1445def MLG : BinaryRXY<"mlg", 0xE386, null_frag, GR128, load, 8>;
1446
1447def : Pat<(z_smul_lohi GR64:$src1, (i64 (load bdxaddr20only:$src2))),
1448          (MG (AEXT128 GR64:$src1), bdxaddr20only:$src2)>;
1449def : Pat<(z_umul_lohi GR64:$src1, (i64 (load bdxaddr20only:$src2))),
1450          (MLG (AEXT128 GR64:$src1), bdxaddr20only:$src2)>;
1451
1452//===----------------------------------------------------------------------===//
1453// Division and remainder
1454//===----------------------------------------------------------------------===//
1455
1456let hasSideEffects = 1 in {  // Do not speculatively execute.
1457  // Division and remainder, from registers.
1458  def DR    : BinaryRR <"dr",    0x1D,   null_frag, GR128, GR32>;
1459  def DSGFR : BinaryRRE<"dsgfr", 0xB91D, null_frag, GR128, GR32>;
1460  def DSGR  : BinaryRRE<"dsgr",  0xB90D, null_frag, GR128, GR64>;
1461  def DLR   : BinaryRRE<"dlr",   0xB997, null_frag, GR128, GR32>;
1462  def DLGR  : BinaryRRE<"dlgr",  0xB987, null_frag, GR128, GR64>;
1463
1464  // Division and remainder, from memory.
1465  def D    : BinaryRX <"d",    0x5D,   null_frag, GR128, load, 4>;
1466  def DSGF : BinaryRXY<"dsgf", 0xE31D, null_frag, GR128, load, 4>;
1467  def DSG  : BinaryRXY<"dsg",  0xE30D, null_frag, GR128, load, 8>;
1468  def DL   : BinaryRXY<"dl",   0xE397, null_frag, GR128, load, 4>;
1469  def DLG  : BinaryRXY<"dlg",  0xE387, null_frag, GR128, load, 8>;
1470}
1471def : Pat<(z_sdivrem GR64:$src1, GR32:$src2),
1472          (DSGFR (AEXT128 GR64:$src1), GR32:$src2)>;
1473def : Pat<(z_sdivrem GR64:$src1, (i32 (load bdxaddr20only:$src2))),
1474          (DSGF (AEXT128 GR64:$src1), bdxaddr20only:$src2)>;
1475def : Pat<(z_sdivrem GR64:$src1, GR64:$src2),
1476          (DSGR (AEXT128 GR64:$src1), GR64:$src2)>;
1477def : Pat<(z_sdivrem GR64:$src1, (i64 (load bdxaddr20only:$src2))),
1478          (DSG (AEXT128 GR64:$src1), bdxaddr20only:$src2)>;
1479
1480def : Pat<(z_udivrem GR32:$src1, GR32:$src2),
1481          (DLR (ZEXT128 (INSERT_SUBREG (i64 (IMPLICIT_DEF)), GR32:$src1,
1482                                       subreg_l32)), GR32:$src2)>;
1483def : Pat<(z_udivrem GR32:$src1, (i32 (load bdxaddr20only:$src2))),
1484          (DL (ZEXT128 (INSERT_SUBREG (i64 (IMPLICIT_DEF)), GR32:$src1,
1485                                      subreg_l32)), bdxaddr20only:$src2)>;
1486def : Pat<(z_udivrem GR64:$src1, GR64:$src2),
1487          (DLGR (ZEXT128 GR64:$src1), GR64:$src2)>;
1488def : Pat<(z_udivrem GR64:$src1, (i64 (load bdxaddr20only:$src2))),
1489          (DLG (ZEXT128 GR64:$src1), bdxaddr20only:$src2)>;
1490
1491//===----------------------------------------------------------------------===//
1492// Shifts
1493//===----------------------------------------------------------------------===//
1494
1495// Logical shift left.
1496defm SLL : BinaryRSAndK<"sll", 0x89, 0xEBDF, shiftop<shl>, GR32>;
1497def SLLG : BinaryRSY<"sllg", 0xEB0D, shiftop<shl>, GR64>;
1498def SLDL : BinaryRS<"sldl", 0x8D, null_frag, GR128>;
1499
1500// Arithmetic shift left.
1501let Defs = [CC] in {
1502  defm SLA : BinaryRSAndK<"sla", 0x8B, 0xEBDD, null_frag, GR32>;
1503  def SLAG : BinaryRSY<"slag", 0xEB0B, null_frag, GR64>;
1504  def SLDA : BinaryRS<"slda", 0x8F, null_frag, GR128>;
1505}
1506
1507// Logical shift right.
1508defm SRL : BinaryRSAndK<"srl", 0x88, 0xEBDE, shiftop<srl>, GR32>;
1509def SRLG : BinaryRSY<"srlg", 0xEB0C, shiftop<srl>, GR64>;
1510def SRDL : BinaryRS<"srdl", 0x8C, null_frag, GR128>;
1511
1512// Arithmetic shift right.
1513let Defs = [CC], CCValues = 0xE, CompareZeroCCMask = 0xE in {
1514  defm SRA : BinaryRSAndK<"sra", 0x8A, 0xEBDC, shiftop<sra>, GR32>;
1515  def SRAG : BinaryRSY<"srag", 0xEB0A, shiftop<sra>, GR64>;
1516  def SRDA : BinaryRS<"srda", 0x8E, null_frag, GR128>;
1517}
1518
1519// Rotate left.
1520def RLL  : BinaryRSY<"rll",  0xEB1D, shiftop<rotl>, GR32>;
1521def RLLG : BinaryRSY<"rllg", 0xEB1C, shiftop<rotl>, GR64>;
1522
1523// Rotate second operand left and inserted selected bits into first operand.
1524// These can act like 32-bit operands provided that the constant start and
1525// end bits (operands 2 and 3) are in the range [32, 64).
1526let Defs = [CC] in {
1527  let isCodeGenOnly = 1 in
1528    def RISBG32 : RotateSelectRIEf<"risbg", 0xEC55, GR32, GR32>;
1529  let CCValues = 0xE, CompareZeroCCMask = 0xE in
1530    def RISBG : RotateSelectRIEf<"risbg", 0xEC55, GR64, GR64>;
1531}
1532
1533// On zEC12 we have a variant of RISBG that does not set CC.
1534let Predicates = [FeatureMiscellaneousExtensions] in
1535  def RISBGN : RotateSelectRIEf<"risbgn", 0xEC59, GR64, GR64>;
1536
1537// Forms of RISBG that only affect one word of the destination register.
1538// They do not set CC.
1539let Predicates = [FeatureHighWord] in {
1540  def RISBMux : RotateSelectRIEfPseudo<GRX32, GRX32>;
1541  def RISBLL  : RotateSelectAliasRIEf<GR32,  GR32>;
1542  def RISBLH  : RotateSelectAliasRIEf<GR32,  GRH32>;
1543  def RISBHL  : RotateSelectAliasRIEf<GRH32, GR32>;
1544  def RISBHH  : RotateSelectAliasRIEf<GRH32, GRH32>;
1545  def RISBLG  : RotateSelectRIEf<"risblg", 0xEC51, GR32, GR64>;
1546  def RISBHG  : RotateSelectRIEf<"risbhg", 0xEC5D, GRH32, GR64>;
1547}
1548
1549// Rotate second operand left and perform a logical operation with selected
1550// bits of the first operand.  The CC result only describes the selected bits,
1551// so isn't useful for a full comparison against zero.
1552let Defs = [CC] in {
1553  def RNSBG : RotateSelectRIEf<"rnsbg", 0xEC54, GR64, GR64>;
1554  def ROSBG : RotateSelectRIEf<"rosbg", 0xEC56, GR64, GR64>;
1555  def RXSBG : RotateSelectRIEf<"rxsbg", 0xEC57, GR64, GR64>;
1556}
1557
1558//===----------------------------------------------------------------------===//
1559// Comparison
1560//===----------------------------------------------------------------------===//
1561
1562// Signed comparisons.  We put these before the unsigned comparisons because
1563// some of the signed forms have COMPARE AND BRANCH equivalents whereas none
1564// of the unsigned forms do.
1565let Defs = [CC], CCValues = 0xE in {
1566  // Comparison with a register.
1567  def CR   : CompareRR <"cr",   0x19,   z_scmp,    GR32, GR32>;
1568  def CGFR : CompareRRE<"cgfr", 0xB930, null_frag, GR64, GR32>;
1569  def CGR  : CompareRRE<"cgr",  0xB920, z_scmp,    GR64, GR64>;
1570
1571  // Comparison with a high register.
1572  def CHHR : CompareRRE<"chhr", 0xB9CD, null_frag, GRH32, GRH32>,
1573             Requires<[FeatureHighWord]>;
1574  def CHLR : CompareRRE<"chlr", 0xB9DD, null_frag, GRH32, GR32>,
1575             Requires<[FeatureHighWord]>;
1576
1577  // Comparison with a signed 16-bit immediate.  CHIMux expands to CHI or CIH,
1578  // depending on the choice of register.
1579  def CHIMux : CompareRIPseudo<z_scmp, GRX32, imm32sx16>,
1580               Requires<[FeatureHighWord]>;
1581  def CHI  : CompareRI<"chi",  0xA7E, z_scmp, GR32, imm32sx16>;
1582  def CGHI : CompareRI<"cghi", 0xA7F, z_scmp, GR64, imm64sx16>;
1583
1584  // Comparison with a signed 32-bit immediate.  CFIMux expands to CFI or CIH,
1585  // depending on the choice of register.
1586  def CFIMux : CompareRIPseudo<z_scmp, GRX32, simm32>,
1587               Requires<[FeatureHighWord]>;
1588  def CFI  : CompareRIL<"cfi",  0xC2D, z_scmp, GR32, simm32>;
1589  def CIH  : CompareRIL<"cih",  0xCCD, z_scmp, GRH32, simm32>,
1590             Requires<[FeatureHighWord]>;
1591  def CGFI : CompareRIL<"cgfi", 0xC2C, z_scmp, GR64, imm64sx32>;
1592
1593  // Comparison with memory.
1594  defm CH    : CompareRXPair<"ch", 0x49, 0xE379, z_scmp, GR32, asextloadi16, 2>;
1595  def  CMux  : CompareRXYPseudo<z_scmp, GRX32, load, 4>,
1596               Requires<[FeatureHighWord]>;
1597  defm C     : CompareRXPair<"c",  0x59, 0xE359, z_scmp, GR32, load, 4>;
1598  def  CHF   : CompareRXY<"chf", 0xE3CD, z_scmp, GRH32, load, 4>,
1599               Requires<[FeatureHighWord]>;
1600  def  CGH   : CompareRXY<"cgh", 0xE334, z_scmp, GR64, asextloadi16, 2>;
1601  def  CGF   : CompareRXY<"cgf", 0xE330, z_scmp, GR64, asextloadi32, 4>;
1602  def  CG    : CompareRXY<"cg",  0xE320, z_scmp, GR64, load, 8>;
1603  def  CHRL  : CompareRILPC<"chrl",  0xC65, z_scmp, GR32, aligned_asextloadi16>;
1604  def  CRL   : CompareRILPC<"crl",   0xC6D, z_scmp, GR32, aligned_load>;
1605  def  CGHRL : CompareRILPC<"cghrl", 0xC64, z_scmp, GR64, aligned_asextloadi16>;
1606  def  CGFRL : CompareRILPC<"cgfrl", 0xC6C, z_scmp, GR64, aligned_asextloadi32>;
1607  def  CGRL  : CompareRILPC<"cgrl",  0xC68, z_scmp, GR64, aligned_load>;
1608
1609  // Comparison between memory and a signed 16-bit immediate.
1610  def CHHSI : CompareSIL<"chhsi", 0xE554, z_scmp, asextloadi16, imm32sx16>;
1611  def CHSI  : CompareSIL<"chsi",  0xE55C, z_scmp, load, imm32sx16>;
1612  def CGHSI : CompareSIL<"cghsi", 0xE558, z_scmp, load, imm64sx16>;
1613}
1614defm : SXB<z_scmp, GR64, CGFR>;
1615
1616// Unsigned comparisons.
1617let Defs = [CC], CCValues = 0xE, IsLogical = 1 in {
1618  // Comparison with a register.
1619  def CLR   : CompareRR <"clr",   0x15,   z_ucmp,    GR32, GR32>;
1620  def CLGFR : CompareRRE<"clgfr", 0xB931, null_frag, GR64, GR32>;
1621  def CLGR  : CompareRRE<"clgr",  0xB921, z_ucmp,    GR64, GR64>;
1622
1623  // Comparison with a high register.
1624  def CLHHR : CompareRRE<"clhhr", 0xB9CF, null_frag, GRH32, GRH32>,
1625              Requires<[FeatureHighWord]>;
1626  def CLHLR : CompareRRE<"clhlr", 0xB9DF, null_frag, GRH32, GR32>,
1627              Requires<[FeatureHighWord]>;
1628
1629  // Comparison with an unsigned 32-bit immediate.  CLFIMux expands to CLFI
1630  // or CLIH, depending on the choice of register.
1631  def CLFIMux : CompareRIPseudo<z_ucmp, GRX32, uimm32>,
1632                Requires<[FeatureHighWord]>;
1633  def CLFI  : CompareRIL<"clfi",  0xC2F, z_ucmp, GR32, uimm32>;
1634  def CLIH  : CompareRIL<"clih",  0xCCF, z_ucmp, GRH32, uimm32>,
1635              Requires<[FeatureHighWord]>;
1636  def CLGFI : CompareRIL<"clgfi", 0xC2E, z_ucmp, GR64, imm64zx32>;
1637
1638  // Comparison with memory.
1639  def  CLMux  : CompareRXYPseudo<z_ucmp, GRX32, load, 4>,
1640                Requires<[FeatureHighWord]>;
1641  defm CL     : CompareRXPair<"cl", 0x55, 0xE355, z_ucmp, GR32, load, 4>;
1642  def  CLHF   : CompareRXY<"clhf", 0xE3CF, z_ucmp, GRH32, load, 4>,
1643                Requires<[FeatureHighWord]>;
1644  def  CLGF   : CompareRXY<"clgf", 0xE331, z_ucmp, GR64, azextloadi32, 4>;
1645  def  CLG    : CompareRXY<"clg",  0xE321, z_ucmp, GR64, load, 8>;
1646  def  CLHRL  : CompareRILPC<"clhrl",  0xC67, z_ucmp, GR32,
1647                             aligned_azextloadi16>;
1648  def  CLRL   : CompareRILPC<"clrl",   0xC6F, z_ucmp, GR32,
1649                             aligned_load>;
1650  def  CLGHRL : CompareRILPC<"clghrl", 0xC66, z_ucmp, GR64,
1651                             aligned_azextloadi16>;
1652  def  CLGFRL : CompareRILPC<"clgfrl", 0xC6E, z_ucmp, GR64,
1653                             aligned_azextloadi32>;
1654  def  CLGRL  : CompareRILPC<"clgrl",  0xC6A, z_ucmp, GR64,
1655                             aligned_load>;
1656
1657  // Comparison between memory and an unsigned 8-bit immediate.
1658  defm CLI : CompareSIPair<"cli", 0x95, 0xEB55, z_ucmp, azextloadi8, imm32zx8>;
1659
1660  // Comparison between memory and an unsigned 16-bit immediate.
1661  def CLHHSI : CompareSIL<"clhhsi", 0xE555, z_ucmp, azextloadi16, imm32zx16>;
1662  def CLFHSI : CompareSIL<"clfhsi", 0xE55D, z_ucmp, load, imm32zx16>;
1663  def CLGHSI : CompareSIL<"clghsi", 0xE559, z_ucmp, load, imm64zx16>;
1664}
1665defm : ZXB<z_ucmp, GR64, CLGFR>;
1666
1667// Memory-to-memory comparison.
1668let mayLoad = 1, Defs = [CC] in {
1669  defm CLC : CompareMemorySS<"clc", 0xD5, z_clc>;
1670  def CLCL  : SideEffectBinaryMemMemRR<"clcl", 0x0F, GR128, GR128>;
1671  def CLCLE : SideEffectTernaryMemMemRS<"clcle", 0xA9, GR128, GR128>;
1672  def CLCLU : SideEffectTernaryMemMemRSY<"clclu", 0xEB8F, GR128, GR128>;
1673}
1674
1675// String comparison.
1676let mayLoad = 1, Defs = [CC] in
1677  defm CLST : StringRRE<"clst", 0xB25D, z_strcmp>;
1678
1679// Test under mask.
1680let Defs = [CC] in {
1681  // TMxMux expands to TM[LH]x, depending on the choice of register.
1682  def TMLMux : CompareRIPseudo<z_tm_reg, GRX32, imm32ll16>,
1683               Requires<[FeatureHighWord]>;
1684  def TMHMux : CompareRIPseudo<z_tm_reg, GRX32, imm32lh16>,
1685               Requires<[FeatureHighWord]>;
1686  def TMLL : CompareRI<"tmll", 0xA71, z_tm_reg, GR32, imm32ll16>;
1687  def TMLH : CompareRI<"tmlh", 0xA70, z_tm_reg, GR32, imm32lh16>;
1688  def TMHL : CompareRI<"tmhl", 0xA73, z_tm_reg, GRH32, imm32ll16>;
1689  def TMHH : CompareRI<"tmhh", 0xA72, z_tm_reg, GRH32, imm32lh16>;
1690
1691  def TMLL64 : CompareAliasRI<z_tm_reg, GR64, imm64ll16>;
1692  def TMLH64 : CompareAliasRI<z_tm_reg, GR64, imm64lh16>;
1693  def TMHL64 : CompareAliasRI<z_tm_reg, GR64, imm64hl16>;
1694  def TMHH64 : CompareAliasRI<z_tm_reg, GR64, imm64hh16>;
1695
1696  defm TM : CompareSIPair<"tm", 0x91, 0xEB51, z_tm_mem, anyextloadi8, imm32zx8>;
1697}
1698
1699def TML : InstAlias<"tml\t$R, $I", (TMLL GR32:$R, imm32ll16:$I), 0>;
1700def TMH : InstAlias<"tmh\t$R, $I", (TMLH GR32:$R, imm32lh16:$I), 0>;
1701
1702// Compare logical characters under mask -- not (yet) used for codegen.
1703let Defs = [CC] in {
1704  defm CLM : CompareRSPair<"clm", 0xBD, 0xEB21, GR32, 0>;
1705  def CLMH : CompareRSY<"clmh", 0xEB20, GRH32, 0>;
1706}
1707
1708//===----------------------------------------------------------------------===//
1709// Prefetch and execution hint
1710//===----------------------------------------------------------------------===//
1711
1712let mayLoad = 1, mayStore = 1 in {
1713  def PFD : PrefetchRXY<"pfd", 0xE336, z_prefetch>;
1714  def PFDRL : PrefetchRILPC<"pfdrl", 0xC62, z_prefetch>;
1715}
1716
1717let Predicates = [FeatureExecutionHint], hasSideEffects = 1 in {
1718  // Branch Prediction Preload
1719  def BPP : BranchPreloadSMI<"bpp", 0xC7>;
1720  def BPRP : BranchPreloadMII<"bprp", 0xC5>;
1721
1722  // Next Instruction Access Intent
1723  def NIAI : SideEffectBinaryIE<"niai", 0xB2FA, imm32zx4, imm32zx4>;
1724}
1725
1726//===----------------------------------------------------------------------===//
1727// Atomic operations
1728//===----------------------------------------------------------------------===//
1729
1730// A serialization instruction that acts as a barrier for all memory
1731// accesses, which expands to "bcr 14, 0".
1732let hasSideEffects = 1 in
1733def Serialize : Alias<2, (outs), (ins), []>;
1734
1735let Predicates = [FeatureInterlockedAccess1], Defs = [CC] in {
1736  def LAA   : LoadAndOpRSY<"laa",   0xEBF8, atomic_load_add_32, GR32>;
1737  def LAAG  : LoadAndOpRSY<"laag",  0xEBE8, atomic_load_add_64, GR64>;
1738  def LAAL  : LoadAndOpRSY<"laal",  0xEBFA, null_frag, GR32>;
1739  def LAALG : LoadAndOpRSY<"laalg", 0xEBEA, null_frag, GR64>;
1740  def LAN   : LoadAndOpRSY<"lan",   0xEBF4, atomic_load_and_32, GR32>;
1741  def LANG  : LoadAndOpRSY<"lang",  0xEBE4, atomic_load_and_64, GR64>;
1742  def LAO   : LoadAndOpRSY<"lao",   0xEBF6, atomic_load_or_32, GR32>;
1743  def LAOG  : LoadAndOpRSY<"laog",  0xEBE6, atomic_load_or_64, GR64>;
1744  def LAX   : LoadAndOpRSY<"lax",   0xEBF7, atomic_load_xor_32, GR32>;
1745  def LAXG  : LoadAndOpRSY<"laxg",  0xEBE7, atomic_load_xor_64, GR64>;
1746}
1747
1748def ATOMIC_SWAPW   : AtomicLoadWBinaryReg<z_atomic_swapw>;
1749
1750def ATOMIC_LOADW_AR  : AtomicLoadWBinaryReg<z_atomic_loadw_add>;
1751def ATOMIC_LOADW_AFI : AtomicLoadWBinaryImm<z_atomic_loadw_add, simm32>;
1752
1753def ATOMIC_LOADW_SR : AtomicLoadWBinaryReg<z_atomic_loadw_sub>;
1754
1755def ATOMIC_LOADW_NR   : AtomicLoadWBinaryReg<z_atomic_loadw_and>;
1756def ATOMIC_LOADW_NILH : AtomicLoadWBinaryImm<z_atomic_loadw_and, imm32lh16c>;
1757
1758def ATOMIC_LOADW_OR     : AtomicLoadWBinaryReg<z_atomic_loadw_or>;
1759def ATOMIC_LOADW_OILH   : AtomicLoadWBinaryImm<z_atomic_loadw_or, imm32lh16>;
1760
1761def ATOMIC_LOADW_XR     : AtomicLoadWBinaryReg<z_atomic_loadw_xor>;
1762def ATOMIC_LOADW_XILF   : AtomicLoadWBinaryImm<z_atomic_loadw_xor, uimm32>;
1763
1764def ATOMIC_LOADW_NRi    : AtomicLoadWBinaryReg<z_atomic_loadw_nand>;
1765def ATOMIC_LOADW_NILHi  : AtomicLoadWBinaryImm<z_atomic_loadw_nand,
1766                                               imm32lh16c>;
1767
1768def ATOMIC_LOADW_MIN    : AtomicLoadWBinaryReg<z_atomic_loadw_min>;
1769def ATOMIC_LOADW_MAX    : AtomicLoadWBinaryReg<z_atomic_loadw_max>;
1770def ATOMIC_LOADW_UMIN   : AtomicLoadWBinaryReg<z_atomic_loadw_umin>;
1771def ATOMIC_LOADW_UMAX   : AtomicLoadWBinaryReg<z_atomic_loadw_umax>;
1772
1773def ATOMIC_CMP_SWAPW
1774  : Pseudo<(outs GR32:$dst), (ins bdaddr20only:$addr, GR32:$cmp, GR32:$swap,
1775                                  ADDR32:$bitshift, ADDR32:$negbitshift,
1776                                  uimm32:$bitsize),
1777           [(set GR32:$dst,
1778                 (z_atomic_cmp_swapw bdaddr20only:$addr, GR32:$cmp, GR32:$swap,
1779                                     ADDR32:$bitshift, ADDR32:$negbitshift,
1780                                     uimm32:$bitsize))]> {
1781  let Defs = [CC];
1782  let mayLoad = 1;
1783  let mayStore = 1;
1784  let usesCustomInserter = 1;
1785  let hasNoSchedulingInfo = 1;
1786}
1787
1788// Test and set.
1789let mayLoad = 1, Defs = [CC] in
1790  def TS : StoreInherentS<"ts", 0x9300, null_frag, 1>;
1791
1792// Compare and swap.
1793let Defs = [CC] in {
1794  defm CS  : CmpSwapRSPair<"cs", 0xBA, 0xEB14, z_atomic_cmp_swap, GR32>;
1795  def  CSG : CmpSwapRSY<"csg", 0xEB30, z_atomic_cmp_swap, GR64>;
1796}
1797
1798// Compare double and swap.
1799let Defs = [CC] in {
1800  defm CDS  : CmpSwapRSPair<"cds", 0xBB, 0xEB31, null_frag, GR128>;
1801  def  CDSG : CmpSwapRSY<"cdsg", 0xEB3E, z_atomic_cmp_swap_128, GR128>;
1802}
1803
1804// Compare and swap and store.
1805let Uses = [R0L, R1D], Defs = [CC], mayStore = 1, mayLoad = 1 in
1806  def CSST : SideEffectTernarySSF<"csst", 0xC82, GR64>;
1807
1808// Perform locked operation.
1809let Uses = [R0L, R1D], Defs = [CC], mayStore = 1, mayLoad =1 in
1810  def PLO : SideEffectQuaternarySSe<"plo", 0xEE, GR64>;
1811
1812// Load/store pair from/to quadword.
1813def LPQ  : UnaryRXY<"lpq", 0xE38F, z_atomic_load_128, GR128, 16>;
1814def STPQ : StoreRXY<"stpq", 0xE38E, z_atomic_store_128, GR128, 16>;
1815
1816// Load pair disjoint.
1817let Predicates = [FeatureInterlockedAccess1], Defs = [CC] in {
1818  def LPD  : BinarySSF<"lpd", 0xC84, GR128>;
1819  def LPDG : BinarySSF<"lpdg", 0xC85, GR128>;
1820}
1821
1822//===----------------------------------------------------------------------===//
1823// Translate and convert
1824//===----------------------------------------------------------------------===//
1825
1826let mayLoad = 1, mayStore = 1 in
1827  def TR : SideEffectBinarySSa<"tr", 0xDC>;
1828
1829let mayLoad = 1, Defs = [CC, R0L, R1D] in {
1830  def TRT  : SideEffectBinarySSa<"trt", 0xDD>;
1831  def TRTR : SideEffectBinarySSa<"trtr", 0xD0>;
1832}
1833
1834let mayLoad = 1, mayStore = 1, Uses = [R0L] in
1835  def TRE : SideEffectBinaryMemMemRRE<"tre", 0xB2A5, GR128, GR64>;
1836
1837let mayLoad = 1, Uses = [R1D], Defs = [CC] in {
1838  defm TRTE  : BinaryMemRRFcOpt<"trte",  0xB9BF, GR128, GR64>;
1839  defm TRTRE : BinaryMemRRFcOpt<"trtre", 0xB9BD, GR128, GR64>;
1840}
1841
1842let mayLoad = 1, mayStore = 1, Uses = [R0L, R1D], Defs = [CC] in {
1843  defm TROO : SideEffectTernaryMemMemRRFcOpt<"troo", 0xB993, GR128, GR64>;
1844  defm TROT : SideEffectTernaryMemMemRRFcOpt<"trot", 0xB992, GR128, GR64>;
1845  defm TRTO : SideEffectTernaryMemMemRRFcOpt<"trto", 0xB991, GR128, GR64>;
1846  defm TRTT : SideEffectTernaryMemMemRRFcOpt<"trtt", 0xB990, GR128, GR64>;
1847}
1848
1849let mayLoad = 1, mayStore = 1, Defs = [CC] in {
1850  defm CU12 : SideEffectTernaryMemMemRRFcOpt<"cu12", 0xB2A7, GR128, GR128>;
1851  defm CU14 : SideEffectTernaryMemMemRRFcOpt<"cu14", 0xB9B0, GR128, GR128>;
1852  defm CU21 : SideEffectTernaryMemMemRRFcOpt<"cu21", 0xB2A6, GR128, GR128>;
1853  defm CU24 : SideEffectTernaryMemMemRRFcOpt<"cu24", 0xB9B1, GR128, GR128>;
1854  def  CU41 : SideEffectBinaryMemMemRRE<"cu41", 0xB9B2, GR128, GR128>;
1855  def  CU42 : SideEffectBinaryMemMemRRE<"cu42", 0xB9B3, GR128, GR128>;
1856
1857  let isAsmParserOnly = 1 in {
1858    defm CUUTF : SideEffectTernaryMemMemRRFcOpt<"cuutf", 0xB2A6, GR128, GR128>;
1859    defm CUTFU : SideEffectTernaryMemMemRRFcOpt<"cutfu", 0xB2A7, GR128, GR128>;
1860  }
1861}
1862
1863//===----------------------------------------------------------------------===//
1864// Message-security assist
1865//===----------------------------------------------------------------------===//
1866
1867let mayLoad = 1, mayStore = 1, Uses = [R0L, R1D], Defs = [CC] in {
1868  def KM  : SideEffectBinaryMemMemRRE<"km",  0xB92E, GR128, GR128>;
1869  def KMC : SideEffectBinaryMemMemRRE<"kmc", 0xB92F, GR128, GR128>;
1870
1871  def KIMD : SideEffectBinaryMemRRE<"kimd", 0xB93E, GR64, GR128>;
1872  def KLMD : SideEffectBinaryMemRRE<"klmd", 0xB93F, GR64, GR128>;
1873  def KMAC : SideEffectBinaryMemRRE<"kmac", 0xB91E, GR64, GR128>;
1874
1875  let Predicates = [FeatureMessageSecurityAssist4] in {
1876    def KMF   : SideEffectBinaryMemMemRRE<"kmf", 0xB92A, GR128, GR128>;
1877    def KMO   : SideEffectBinaryMemMemRRE<"kmo", 0xB92B, GR128, GR128>;
1878    def KMCTR : SideEffectTernaryMemMemMemRRFb<"kmctr", 0xB92D,
1879                                               GR128, GR128, GR128>;
1880    def PCC   : SideEffectInherentRRE<"pcc", 0xB92C>;
1881  }
1882
1883  let Predicates = [FeatureMessageSecurityAssist5] in
1884    def PPNO : SideEffectBinaryMemMemRRE<"ppno", 0xB93C, GR128, GR128>;
1885  let Predicates = [FeatureMessageSecurityAssist7], isAsmParserOnly = 1 in
1886    def PRNO : SideEffectBinaryMemMemRRE<"prno", 0xB93C, GR128, GR128>;
1887
1888  let Predicates = [FeatureMessageSecurityAssist8] in
1889    def KMA : SideEffectTernaryMemMemMemRRFb<"kma", 0xB929,
1890                                              GR128, GR128, GR128>;
1891
1892  let Predicates = [FeatureMessageSecurityAssist9] in
1893    def KDSA : SideEffectBinaryMemRRE<"kdsa", 0xB93A, GR64, GR128>;
1894}
1895
1896//===----------------------------------------------------------------------===//
1897// Guarded storage
1898//===----------------------------------------------------------------------===//
1899
1900// These instructions use and/or modify the guarded storage control
1901// registers, which we do not otherwise model, so they should have
1902// hasSideEffects.
1903let Predicates = [FeatureGuardedStorage], hasSideEffects = 1 in {
1904  def LGG : UnaryRXY<"lgg", 0xE34C, null_frag, GR64, 8>;
1905  def LLGFSG : UnaryRXY<"llgfsg", 0xE348, null_frag, GR64, 4>;
1906
1907  let mayLoad = 1 in
1908    def LGSC : SideEffectBinaryRXY<"lgsc", 0xE34D, GR64>;
1909  let mayStore = 1 in
1910    def STGSC : SideEffectBinaryRXY<"stgsc", 0xE349, GR64>;
1911}
1912
1913//===----------------------------------------------------------------------===//
1914// Decimal arithmetic
1915//===----------------------------------------------------------------------===//
1916
1917defm CVB  : BinaryRXPair<"cvb",0x4F, 0xE306, null_frag, GR32, load, 4>;
1918def  CVBG : BinaryRXY<"cvbg", 0xE30E, null_frag, GR64, load, 8>;
1919
1920defm CVD  : StoreRXPair<"cvd", 0x4E, 0xE326, null_frag, GR32, 4>;
1921def  CVDG : StoreRXY<"cvdg", 0xE32E, null_frag, GR64, 8>;
1922
1923let mayLoad = 1, mayStore = 1 in {
1924  def MVN : SideEffectBinarySSa<"mvn", 0xD1>;
1925  def MVZ : SideEffectBinarySSa<"mvz", 0xD3>;
1926  def MVO : SideEffectBinarySSb<"mvo", 0xF1>;
1927
1928  def PACK : SideEffectBinarySSb<"pack", 0xF2>;
1929  def PKA  : SideEffectBinarySSf<"pka", 0xE9>;
1930  def PKU  : SideEffectBinarySSf<"pku", 0xE1>;
1931  def UNPK : SideEffectBinarySSb<"unpk", 0xF3>;
1932  let Defs = [CC] in {
1933    def UNPKA : SideEffectBinarySSa<"unpka", 0xEA>;
1934    def UNPKU : SideEffectBinarySSa<"unpku", 0xE2>;
1935  }
1936}
1937
1938let mayLoad = 1, mayStore = 1 in {
1939  let Defs = [CC] in {
1940    def AP : SideEffectBinarySSb<"ap", 0xFA>;
1941    def SP : SideEffectBinarySSb<"sp", 0xFB>;
1942    def ZAP : SideEffectBinarySSb<"zap", 0xF8>;
1943    def SRP : SideEffectTernarySSc<"srp", 0xF0>;
1944  }
1945  def MP : SideEffectBinarySSb<"mp", 0xFC>;
1946  def DP : SideEffectBinarySSb<"dp", 0xFD>;
1947  let Defs = [CC] in {
1948    def ED : SideEffectBinarySSa<"ed", 0xDE>;
1949    def EDMK : SideEffectBinarySSa<"edmk", 0xDF>;
1950  }
1951}
1952
1953let Defs = [CC] in {
1954  def CP : CompareSSb<"cp", 0xF9>;
1955  def TP : TestRSL<"tp", 0xEBC0>;
1956}
1957
1958//===----------------------------------------------------------------------===//
1959// Access registers
1960//===----------------------------------------------------------------------===//
1961
1962// Read a 32-bit access register into a GR32.  As with all GR32 operations,
1963// the upper 32 bits of the enclosing GR64 remain unchanged, which is useful
1964// when a 64-bit address is stored in a pair of access registers.
1965def EAR : UnaryRRE<"ear", 0xB24F, null_frag, GR32, AR32>;
1966
1967// Set access register.
1968def SAR : UnaryRRE<"sar", 0xB24E, null_frag, AR32, GR32>;
1969
1970// Copy access register.
1971def CPYA : UnaryRRE<"cpya", 0xB24D, null_frag, AR32, AR32>;
1972
1973// Load address extended.
1974defm LAE : LoadAddressRXPair<"lae", 0x51, 0xE375, null_frag>;
1975
1976// Load access multiple.
1977defm LAM : LoadMultipleRSPair<"lam", 0x9A, 0xEB9A, AR32>;
1978
1979// Store access multiple.
1980defm STAM : StoreMultipleRSPair<"stam", 0x9B, 0xEB9B, AR32>;
1981
1982//===----------------------------------------------------------------------===//
1983// Program mask and addressing mode
1984//===----------------------------------------------------------------------===//
1985
1986// Extract CC and program mask into a register.  CC ends up in bits 29 and 28.
1987let Uses = [CC] in
1988  def IPM : InherentRRE<"ipm", 0xB222, GR32, z_ipm>;
1989
1990// Set CC and program mask from a register.
1991let hasSideEffects = 1, Defs = [CC] in
1992  def SPM : SideEffectUnaryRR<"spm", 0x04, GR32>;
1993
1994// Branch and link - like BAS, but also extracts CC and program mask.
1995let isCall = 1, Uses = [CC], Defs = [CC] in {
1996  def BAL  : CallRX<"bal", 0x45>;
1997  def BALR : CallRR<"balr", 0x05>;
1998}
1999
2000// Test addressing mode.
2001let Defs = [CC] in
2002  def TAM : SideEffectInherentE<"tam", 0x010B>;
2003
2004// Set addressing mode.
2005let hasSideEffects = 1 in {
2006  def SAM24 : SideEffectInherentE<"sam24", 0x010C>;
2007  def SAM31 : SideEffectInherentE<"sam31", 0x010D>;
2008  def SAM64 : SideEffectInherentE<"sam64", 0x010E>;
2009}
2010
2011// Branch and set mode.  Not really a call, but also sets an output register.
2012let isBranch = 1, isTerminator = 1, isBarrier = 1 in
2013  def BSM : CallRR<"bsm", 0x0B>;
2014
2015// Branch and save and set mode.
2016let isCall = 1, Defs = [CC] in
2017  def BASSM : CallRR<"bassm", 0x0C>;
2018
2019//===----------------------------------------------------------------------===//
2020// Transactional execution
2021//===----------------------------------------------------------------------===//
2022
2023let hasSideEffects = 1, Predicates = [FeatureTransactionalExecution] in {
2024  // Transaction Begin
2025  let mayStore = 1, usesCustomInserter = 1, Defs = [CC] in {
2026    def TBEGIN : TestBinarySIL<"tbegin", 0xE560, z_tbegin, imm32zx16>;
2027    let hasNoSchedulingInfo = 1 in
2028     def TBEGIN_nofloat : TestBinarySILPseudo<z_tbegin_nofloat, imm32zx16>;
2029    def TBEGINC : SideEffectBinarySIL<"tbeginc", 0xE561,
2030                                      int_s390_tbeginc, imm32zx16>;
2031  }
2032
2033  // Transaction End
2034  let Defs = [CC] in
2035    def TEND : TestInherentS<"tend", 0xB2F8, z_tend>;
2036
2037  // Transaction Abort
2038  let isTerminator = 1, isBarrier = 1, mayStore = 1,
2039      hasSideEffects = 1 in
2040    def TABORT : SideEffectAddressS<"tabort", 0xB2FC, int_s390_tabort>;
2041
2042  // Nontransactional Store
2043  def NTSTG : StoreRXY<"ntstg", 0xE325, int_s390_ntstg, GR64, 8>;
2044
2045  // Extract Transaction Nesting Depth
2046  def ETND : InherentRRE<"etnd", 0xB2EC, GR32, int_s390_etnd>;
2047}
2048
2049//===----------------------------------------------------------------------===//
2050// Processor assist
2051//===----------------------------------------------------------------------===//
2052
2053let Predicates = [FeatureProcessorAssist] in {
2054  let hasSideEffects = 1 in
2055    def PPA : SideEffectTernaryRRFc<"ppa", 0xB2E8, GR64, GR64, imm32zx4>;
2056  def : Pat<(int_s390_ppa_txassist GR32:$src),
2057            (PPA (INSERT_SUBREG (i64 (IMPLICIT_DEF)), GR32:$src, subreg_l32),
2058                 zero_reg, 1)>;
2059}
2060
2061//===----------------------------------------------------------------------===//
2062// Miscellaneous Instructions.
2063//===----------------------------------------------------------------------===//
2064
2065// Find leftmost one, AKA count leading zeros.  The instruction actually
2066// returns a pair of GR64s, the first giving the number of leading zeros
2067// and the second giving a copy of the source with the leftmost one bit
2068// cleared.  We only use the first result here.
2069let Defs = [CC] in
2070  def FLOGR : UnaryRRE<"flogr", 0xB983, null_frag, GR128, GR64>;
2071def : Pat<(i64 (ctlz GR64:$src)),
2072          (EXTRACT_SUBREG (FLOGR GR64:$src), subreg_h64)>;
2073
2074// Population count.  Counts bits set per byte or doubleword.
2075let Predicates = [FeatureMiscellaneousExtensions3] in {
2076  let Defs = [CC] in
2077    def POPCNTOpt : BinaryRRFc<"popcnt", 0xB9E1, GR64, GR64>;
2078  def : Pat<(ctpop GR64:$src), (POPCNTOpt GR64:$src, 8)>;
2079}
2080let Predicates = [FeaturePopulationCount], Defs = [CC] in
2081  def POPCNT : UnaryRRE<"popcnt", 0xB9E1, z_popcnt, GR64, GR64>;
2082
2083// Search a block of memory for a character.
2084let mayLoad = 1, Defs = [CC] in
2085  defm SRST : StringRRE<"srst", 0xB25E, z_search_string>;
2086let mayLoad = 1, Defs = [CC], Uses = [R0L] in
2087  def SRSTU : SideEffectBinaryMemMemRRE<"srstu", 0xB9BE, GR64, GR64>;
2088
2089// Compare until substring equal.
2090let mayLoad = 1, Defs = [CC], Uses = [R0L, R1L] in
2091  def CUSE : SideEffectBinaryMemMemRRE<"cuse", 0xB257, GR128, GR128>;
2092
2093// Compare and form codeword.
2094let mayLoad = 1, Defs = [CC, R1D, R2D, R3D], Uses = [R1D, R2D, R3D] in
2095  def CFC : SideEffectAddressS<"cfc", 0xB21A, null_frag>;
2096
2097// Update tree.
2098let mayLoad = 1, mayStore = 1, Defs = [CC, R0D, R1D, R2D, R3D, R5D],
2099    Uses = [R0D, R1D, R2D, R3D, R4D, R5D] in
2100  def UPT : SideEffectInherentE<"upt", 0x0102>;
2101
2102// Checksum.
2103let mayLoad = 1, Defs = [CC] in
2104  def CKSM : SideEffectBinaryMemMemRRE<"cksm", 0xB241, GR64, GR128>;
2105
2106// Compression call.
2107let mayLoad = 1, mayStore = 1, Defs = [CC, R1D], Uses = [R0L, R1D] in
2108  def CMPSC : SideEffectBinaryMemMemRRE<"cmpsc", 0xB263, GR128, GR128>;
2109
2110// Sort lists.
2111let Predicates = [FeatureEnhancedSort],
2112    mayLoad = 1, mayStore = 1, Defs = [CC], Uses = [R0L, R1D] in
2113  def SORTL : SideEffectBinaryMemMemRRE<"sortl", 0xB938, GR128, GR128>;
2114
2115// Deflate conversion call.
2116let Predicates = [FeatureDeflateConversion],
2117    mayLoad = 1, mayStore = 1, Defs = [CC], Uses = [R0L, R1D] in
2118  def DFLTCC : SideEffectTernaryMemMemRRFa<"dfltcc", 0xB939,
2119                                           GR128, GR128, GR64>;
2120
2121// NNPA.
2122let Predicates = [FeatureNNPAssist],
2123    mayLoad = 1, mayStore = 1, Defs = [R0D, CC], Uses = [R0D, R1D] in
2124  def NNPA : SideEffectInherentRRE<"nnpa", 0xB93B>;
2125
2126// Execute.
2127let hasSideEffects = 1 in {
2128  def EX   : SideEffectBinaryRX<"ex", 0x44, ADDR64>;
2129  def EXRL : SideEffectBinaryRILPC<"exrl", 0xC60, ADDR64>;
2130  let hasNoSchedulingInfo = 1 in
2131    def EXRL_Pseudo : Alias<6, (outs), (ins i64imm:$TargetOpc, ADDR64:$lenMinus1,
2132                                          bdaddr12only:$bdl1, bdaddr12only:$bd2),
2133                                          []>;
2134}
2135
2136//===----------------------------------------------------------------------===//
2137// .insn directive instructions
2138//===----------------------------------------------------------------------===//
2139
2140let isCodeGenOnly = 1, hasSideEffects = 1 in {
2141  def InsnE   : DirectiveInsnE<(outs), (ins imm64zx16:$enc), ".insn e,$enc", []>;
2142  def InsnRI  : DirectiveInsnRI<(outs), (ins imm64zx32:$enc, AnyReg:$R1,
2143                                             imm32sx16:$I2),
2144                                ".insn ri,$enc,$R1,$I2", []>;
2145  def InsnRIE : DirectiveInsnRIE<(outs), (ins imm64zx48:$enc, AnyReg:$R1,
2146                                              AnyReg:$R3, brtarget16:$I2),
2147                                 ".insn rie,$enc,$R1,$R3,$I2", []>;
2148  def InsnRIL : DirectiveInsnRIL<(outs), (ins imm64zx48:$enc, AnyReg:$R1,
2149                                              brtarget32:$I2),
2150                                 ".insn ril,$enc,$R1,$I2", []>;
2151  def InsnRILU : DirectiveInsnRIL<(outs), (ins imm64zx48:$enc, AnyReg:$R1,
2152                                               uimm32:$I2),
2153                                  ".insn rilu,$enc,$R1,$I2", []>;
2154  def InsnRIS : DirectiveInsnRIS<(outs),
2155                                 (ins imm64zx48:$enc, AnyReg:$R1,
2156                                      imm32sx8:$I2, imm32zx4:$M3,
2157                                      (bdaddr12only $B4, $D4):$BD4),
2158                                 ".insn ris,$enc,$R1,$I2,$M3,$BD4", []>;
2159  def InsnRR : DirectiveInsnRR<(outs),
2160                               (ins imm64zx16:$enc, AnyReg:$R1, AnyReg:$R2),
2161                               ".insn rr,$enc,$R1,$R2", []>;
2162  def InsnRRE : DirectiveInsnRRE<(outs), (ins imm64zx32:$enc,
2163                                              AnyReg:$R1, AnyReg:$R2),
2164                                 ".insn rre,$enc,$R1,$R2", []>;
2165  def InsnRRF : DirectiveInsnRRF<(outs),
2166                                 (ins imm64zx32:$enc, AnyReg:$R1, AnyReg:$R2,
2167                                      AnyReg:$R3, imm32zx4:$M4),
2168                                 ".insn rrf,$enc,$R1,$R2,$R3,$M4", []>;
2169  def InsnRRS : DirectiveInsnRRS<(outs),
2170                                 (ins imm64zx48:$enc, AnyReg:$R1,
2171                                      AnyReg:$R2, imm32zx4:$M3,
2172                                      (bdaddr12only $B4, $D4):$BD4),
2173                                 ".insn rrs,$enc,$R1,$R2,$M3,$BD4", []>;
2174  def InsnRS  : DirectiveInsnRS<(outs),
2175                                (ins imm64zx32:$enc, AnyReg:$R1,
2176                                     AnyReg:$R3, (bdaddr12only $B2, $D2):$BD2),
2177                                ".insn rs,$enc,$R1,$R3,$BD2", []>;
2178  def InsnRSE : DirectiveInsnRSE<(outs),
2179                                 (ins imm64zx48:$enc, AnyReg:$R1,
2180                                      AnyReg:$R3, (bdaddr12only $B2, $D2):$BD2),
2181                                 ".insn rse,$enc,$R1,$R3,$BD2", []>;
2182  def InsnRSI : DirectiveInsnRSI<(outs),
2183                                 (ins imm64zx48:$enc, AnyReg:$R1,
2184                                      AnyReg:$R3, brtarget16:$RI2),
2185                                 ".insn rsi,$enc,$R1,$R3,$RI2", []>;
2186  def InsnRSY : DirectiveInsnRSY<(outs),
2187                                 (ins imm64zx48:$enc, AnyReg:$R1,
2188                                      AnyReg:$R3, (bdaddr20only $B2, $D2):$BD2),
2189                                 ".insn rsy,$enc,$R1,$R3,$BD2", []>;
2190  def InsnRX  : DirectiveInsnRX<(outs), (ins imm64zx32:$enc, AnyReg:$R1,
2191                                             (bdxaddr12only $B2, $D2, $X2):$XBD2),
2192                                ".insn rx,$enc,$R1,$XBD2", []>;
2193  def InsnRXE : DirectiveInsnRXE<(outs), (ins imm64zx48:$enc, AnyReg:$R1,
2194                                              (bdxaddr12only $B2, $D2, $X2):$XBD2),
2195                                 ".insn rxe,$enc,$R1,$XBD2", []>;
2196  def InsnRXF : DirectiveInsnRXF<(outs),
2197                                 (ins imm64zx48:$enc, AnyReg:$R1,
2198                                      AnyReg:$R3, (bdxaddr12only $B2, $D2, $X2):$XBD2),
2199                                 ".insn rxf,$enc,$R1,$R3,$XBD2", []>;
2200  def InsnRXY : DirectiveInsnRXY<(outs), (ins imm64zx48:$enc, AnyReg:$R1,
2201                                              (bdxaddr20only $B2, $D2, $X2):$XBD2),
2202                                 ".insn rxy,$enc,$R1,$XBD2", []>;
2203  def InsnS : DirectiveInsnS<(outs),
2204                             (ins imm64zx32:$enc, (bdaddr12only $B2, $D2):$BD2),
2205                             ".insn s,$enc,$BD2", []>;
2206  def InsnSI : DirectiveInsnSI<(outs),
2207                               (ins imm64zx32:$enc, (bdaddr12only $B1, $D1):$BD1,
2208                                    imm32sx8:$I2),
2209                               ".insn si,$enc,$BD1,$I2", []>;
2210  def InsnSIY : DirectiveInsnSIY<(outs),
2211                                 (ins imm64zx48:$enc,
2212                                      (bdaddr20only $B1, $D1):$BD1, imm32zx8:$I2),
2213                                 ".insn siy,$enc,$BD1,$I2", []>;
2214  def InsnSIL : DirectiveInsnSIL<(outs),
2215                                 (ins imm64zx48:$enc, (bdaddr12only $B1, $D1):$BD1,
2216                                      imm32zx16:$I2),
2217                                 ".insn sil,$enc,$BD1,$I2", []>;
2218  def InsnSS : DirectiveInsnSS<(outs),
2219                               (ins imm64zx48:$enc, (bdraddr12only $B1, $D1, $R1):$RBD1,
2220                                    (bdaddr12only $B2, $D2):$BD2, AnyReg:$R3),
2221                               ".insn ss,$enc,$RBD1,$BD2,$R3", []>;
2222  def InsnSSE : DirectiveInsnSSE<(outs),
2223                                 (ins imm64zx48:$enc,
2224                                      (bdaddr12only $B1, $D1):$BD1,(bdaddr12only $B2, $D2):$BD2),
2225                                 ".insn sse,$enc,$BD1,$BD2", []>;
2226  def InsnSSF : DirectiveInsnSSF<(outs),
2227                                 (ins imm64zx48:$enc, (bdaddr12only $B1, $D1):$BD1,
2228                                      (bdaddr12only $B2, $D2):$BD2, AnyReg:$R3),
2229                                 ".insn ssf,$enc,$BD1,$BD2,$R3", []>;
2230  def InsnVRI : DirectiveInsnVRI<(outs),
2231                                 (ins imm64zx48:$enc, VR128:$V1, VR128:$V2,
2232                                  imm32zx12:$I3, imm32zx4:$M4, imm32zx4:$M5),
2233                                 ".insn vri,$enc,$V1,$V2,$I3,$M4,$M5", []>;
2234  def InsnVRR : DirectiveInsnVRR<(outs),
2235                                 (ins imm64zx48:$enc, VR128:$V1, VR128:$V2,
2236                                  VR128:$V3, imm32zx4:$M4, imm32zx4:$M5,
2237                                  imm32zx4:$M6),
2238                                  ".insn vrr,$enc,$V1,$V2,$V3,$M4,$M5,$M6", []>;
2239  def InsnVRS : DirectiveInsnVRS<(outs),
2240                                 (ins imm64zx48:$enc, AnyReg:$R1, VR128:$V3,
2241                                  (bdaddr12only $B2, $D2):$BD2, imm32zx4:$M4),
2242                                 ".insn vrs,$enc,$BD2,$M4", []>;
2243  def InsnVRV : DirectiveInsnVRV<(outs),
2244                                 (ins imm64zx48:$enc, VR128:$V1,
2245                                      (bdvaddr12only $B2, $D2, $V2):$VBD2, imm32zx4:$M3),
2246                                 ".insn vrv,$enc,$V1,$VBD2,$M3", []>;
2247  def InsnVRX : DirectiveInsnVRX<(outs),
2248                                 (ins imm64zx48:$enc, VR128:$V1,
2249                                  (bdxaddr12only $B2, $D2, $X2):$XBD2, imm32zx4:$M3),
2250                                 ".insn vrx,$enc,$V1,$XBD2,$M3", []>;
2251  def InsnVSI : DirectiveInsnVSI<(outs),
2252                                 (ins imm64zx48:$enc, VR128:$V1,
2253                                  (bdaddr12only $B2, $D2):$BD2, imm32zx8:$I3),
2254                                  ".insn vsi,$enc,$V1,$BD2,$I3", []>;
2255}
2256
2257//===----------------------------------------------------------------------===//
2258// Peepholes.
2259//===----------------------------------------------------------------------===//
2260
2261// Avoid generating 2 XOR instructions. (xor (and x, y), y) is
2262// equivalent to (and (xor x, -1), y)
2263def : Pat<(and (xor GR64:$x, (i64 -1)), GR64:$y),
2264                          (XGR GR64:$y, (NGR GR64:$y, GR64:$x))>;
2265
2266// Use LCGR/AGHI for i64 xor with -1.
2267def : Pat<(xor GR64:$x, (i64 -1)),
2268          (AGHI (LCGR GR64:$x), (i64 -1))>;
2269
2270// Shift/rotate instructions only use the last 6 bits of the second operand
2271// register, so we can safely use NILL (16 fewer bits than NILF) to only AND the
2272// last 16 bits.
2273// Complexity is added so that we match this before we match NILF on the AND
2274// operation alone.
2275let AddedComplexity = 4 in {
2276  def : Pat<(shl GR32:$val, (and GR32:$shift, imm32zx16trunc:$imm)),
2277            (SLL GR32:$val, (NILL GR32:$shift, imm32zx16trunc:$imm), 0)>;
2278
2279  def : Pat<(sra GR32:$val, (and GR32:$shift, imm32zx16trunc:$imm)),
2280            (SRA GR32:$val, (NILL GR32:$shift, imm32zx16trunc:$imm), 0)>;
2281
2282  def : Pat<(srl GR32:$val, (and GR32:$shift, imm32zx16trunc:$imm)),
2283            (SRL GR32:$val, (NILL GR32:$shift, imm32zx16trunc:$imm), 0)>;
2284
2285  def : Pat<(shl GR64:$val, (and GR32:$shift, imm32zx16trunc:$imm)),
2286            (SLLG GR64:$val, (NILL GR32:$shift, imm32zx16trunc:$imm), 0)>;
2287
2288  def : Pat<(sra GR64:$val, (and GR32:$shift, imm32zx16trunc:$imm)),
2289            (SRAG GR64:$val, (NILL GR32:$shift, imm32zx16trunc:$imm), 0)>;
2290
2291  def : Pat<(srl GR64:$val, (and GR32:$shift, imm32zx16trunc:$imm)),
2292            (SRLG GR64:$val, (NILL GR32:$shift, imm32zx16trunc:$imm), 0)>;
2293
2294  def : Pat<(rotl GR32:$val, (and GR32:$shift, imm32zx16trunc:$imm)),
2295            (RLL GR32:$val, (NILL GR32:$shift, imm32zx16trunc:$imm), 0)>;
2296
2297  def : Pat<(rotl GR64:$val, (and GR32:$shift, imm32zx16trunc:$imm)),
2298            (RLLG GR64:$val, (NILL GR32:$shift, imm32zx16trunc:$imm), 0)>;
2299}
2300
2301// Substitute (x*64-s) with (-s), since shift/rotate instructions only
2302// use the last 6 bits of the second operand register (making it modulo 64).
2303let AddedComplexity = 4 in {
2304  def : Pat<(shl GR64:$val, (sub imm32mod64,  GR32:$shift)),
2305            (SLLG GR64:$val, (LCR GR32:$shift), 0)>;
2306
2307  def : Pat<(sra GR64:$val, (sub imm32mod64,  GR32:$shift)),
2308            (SRAG GR64:$val, (LCR GR32:$shift), 0)>;
2309
2310  def : Pat<(srl GR64:$val, (sub imm32mod64,  GR32:$shift)),
2311            (SRLG GR64:$val, (LCR GR32:$shift), 0)>;
2312
2313  def : Pat<(rotl GR64:$val, (sub imm32mod64,  GR32:$shift)),
2314            (RLLG GR64:$val, (LCR GR32:$shift), 0)>;
2315}
2316
2317// Peepholes for turning scalar operations into block operations.  The length
2318// is given as one less for these pseudos.
2319defm : BlockLoadStore<anyextloadi8, i32, MVCImm, NCImm, OCImm, XCImm, 0>;
2320defm : BlockLoadStore<anyextloadi16, i32, MVCImm, NCImm, OCImm, XCImm, 1>;
2321defm : BlockLoadStore<load, i32, MVCImm, NCImm, OCImm, XCImm, 3>;
2322defm : BlockLoadStore<anyextloadi8, i64, MVCImm, NCImm, OCImm, XCImm, 0>;
2323defm : BlockLoadStore<anyextloadi16, i64, MVCImm, NCImm, OCImm, XCImm, 1>;
2324defm : BlockLoadStore<anyextloadi32, i64, MVCImm, NCImm, OCImm, XCImm, 3>;
2325defm : BlockLoadStore<load, i64, MVCImm, NCImm, OCImm, XCImm, 7>;
2326
2327//===----------------------------------------------------------------------===//
2328// Mnemonic Aliases
2329//===----------------------------------------------------------------------===//
2330
2331def JCT   : MnemonicAlias<"jct", "brct">;
2332def JCTG  : MnemonicAlias<"jctg", "brctg">;
2333def JAS   : MnemonicAlias<"jas", "bras">;
2334def JASL  : MnemonicAlias<"jasl", "brasl">;
2335def JXH   : MnemonicAlias<"jxh", "brxh">;
2336def JXLE  : MnemonicAlias<"jxle", "brxle">;
2337def JXHG  : MnemonicAlias<"jxhg", "brxhg">;
2338def JXLEG : MnemonicAlias<"jxleg", "brxlg">;
2339
2340def BRU   : MnemonicAlias<"bru", "j">;
2341def BRUL  : MnemonicAlias<"brul", "jg", "att">;
2342def BRUL_HLASM  : MnemonicAlias<"brul", "jlu", "hlasm">;
2343
2344foreach V = [ "E", "NE", "H", "NH", "L", "NL", "HE", "NHE", "LE", "NLE",
2345              "Z", "NZ", "P", "NP", "M", "NM", "LH", "NLH", "O", "NO" ] in {
2346  defm BRUAsm#V  : MnemonicCondBranchAlias <CV<V>, "br#", "j#">;
2347  defm BRULAsm#V : MnemonicCondBranchAlias <CV<V>, "br#l", "jg#", "att">;
2348  defm BRUL_HLASMAsm#V : MnemonicCondBranchAlias <CV<V>, "br#l", "jl#", "hlasm">;
2349}
2350