1//==- SystemZRegisterInfo.td - SystemZ register definitions -*- tablegen -*-==//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8
9//===----------------------------------------------------------------------===//
10// Class definitions.
11//===----------------------------------------------------------------------===//
12
13class SystemZReg<string n> : Register<n> {
14  let Namespace = "SystemZ";
15}
16
17class SystemZRegWithSubregs<string n, list<Register> subregs>
18  : RegisterWithSubRegs<n, subregs> {
19  let Namespace = "SystemZ";
20}
21
22let Namespace = "SystemZ" in {
23def subreg_l32   : SubRegIndex<32, 0>;  // Also acts as subreg_hl32.
24def subreg_h32   : SubRegIndex<32, 32>; // Also acts as subreg_hh32.
25def subreg_l64   : SubRegIndex<64, 0>;
26def subreg_h64   : SubRegIndex<64, 64>;
27def subreg_lh32  : ComposedSubRegIndex<subreg_l64, subreg_h32>;
28def subreg_ll32  : ComposedSubRegIndex<subreg_l64, subreg_l32>;
29}
30
31// Define a register class that contains values of types TYPES and an
32// associated operand called NAME.  SIZE is the size and alignment
33// of the registers and REGLIST is the list of individual registers.
34// If the user provides an alternate order list of regs, it will be used for
35// XPLINK. Otherwise, by default, XPLINK will use the regList ordering as well
36multiclass SystemZRegClass<string name, list<ValueType> types, int size,
37                           dag regList, list<dag> altRegList = [regList], bit allocatable = 1> {
38  def AsmOperand : AsmOperandClass {
39    let Name = name;
40    let ParserMethod = "parse"#name;
41    let RenderMethod = "addRegOperands";
42  }
43  let isAllocatable = allocatable in
44    def Bit : RegisterClass<"SystemZ", types, size, regList> {
45      let Size = size;
46      let AltOrders = altRegList;
47      let AltOrderSelect = [{
48        const SystemZSubtarget &S = MF.getSubtarget<SystemZSubtarget>();
49        return S.isTargetXPLINK64();
50      }];
51    }
52  def "" : RegisterOperand<!cast<RegisterClass>(name#"Bit")> {
53    let ParserMatchClass = !cast<AsmOperandClass>(name#"AsmOperand");
54  }
55}
56
57//===----------------------------------------------------------------------===//
58// General-purpose registers
59//===----------------------------------------------------------------------===//
60
61// Lower 32 bits of one of the 16 64-bit general-purpose registers
62class GPR32<bits<16> num, string n> : SystemZReg<n> {
63  let HWEncoding = num;
64}
65
66// One of the 16 64-bit general-purpose registers.
67class GPR64<bits<16> num, string n, GPR32 low, GPR32 high>
68 : SystemZRegWithSubregs<n, [low, high]> {
69  let HWEncoding = num;
70  let SubRegIndices = [subreg_l32, subreg_h32];
71  let CoveredBySubRegs = 1;
72}
73
74// 8 even-odd pairs of GPR64s.
75class GPR128<bits<16> num, string n, GPR64 low, GPR64 high>
76 : SystemZRegWithSubregs<n, [high, low]> {
77  let HWEncoding = num;
78  let SubRegIndices = [subreg_h64, subreg_l64];
79  let CoveredBySubRegs = 1;
80}
81
82// General-purpose registers
83foreach I = 0-15 in {
84  def R#I#L : GPR32<I, "r"#I>;
85  def R#I#H : GPR32<I, "r"#I>;
86  def R#I#D : GPR64<I, "r"#I, !cast<GPR32>("R"#I#"L"), !cast<GPR32>("R"#I#"H")>,
87                    DwarfRegNum<[I]>;
88}
89
90foreach I = [0, 2, 4, 6, 8, 10, 12, 14] in {
91  def R#I#Q : GPR128<I, "r"#I, !cast<GPR64>("R"#!add(I, 1)#"D"),
92                     !cast<GPR64>("R"#I#"D")>;
93}
94
95/// zLinux: Allocate the callee-saved R6-R13 backwards. That way they can be
96/// saved together with R14 and R15 in one prolog instruction.
97/// XPLINK64: Allocate all registers in natural order
98defm GR32  : SystemZRegClass<"GR32",  [i32], 32,
99                             (add (sequence "R%uL",  0, 5),
100                                  (sequence "R%uL", 15, 6)),
101                             [(add (sequence "R%uL", 0, 15))]>;
102defm GRH32 : SystemZRegClass<"GRH32", [i32], 32,
103                             (add (sequence "R%uH",  0, 5),
104                                  (sequence "R%uH", 15, 6)),
105                             [(add (sequence "R%uH", 0, 15))]>;
106defm GR64  : SystemZRegClass<"GR64",  [i64], 64,
107                             (add (sequence "R%uD",  0, 5),
108                                  (sequence "R%uD", 15, 6)),
109                             [(add (sequence "R%uD",  0, 15))]>;
110
111// Combine the low and high GR32s into a single class.  This can only be
112// used for virtual registers if the high-word facility is available.
113/// XPLINK64: Allocate all registers in natural order
114defm GRX32 : SystemZRegClass<"GRX32", [i32], 32,
115                             (add (sequence "R%uL",  0, 5),
116                                  (sequence "R%uH",  0, 5),
117                                  R15L, R15H, R14L, R14H, R13L, R13H,
118                                  R12L, R12H, R11L, R11H, R10L, R10H,
119                                  R9L, R9H, R8L, R8H, R7L, R7H, R6L, R6H),
120                             [(add
121                               R0L, R1L, R2L, R3L, R0H, R1H, R2H, R3H,
122                               R4L, R4H, R5L, R5H, R6L, R6H, R7L, R7H,
123                               R8L, R8H, R9L, R9H, R10L,R10H,R11L,R11H,
124                               R12L,R12H,R13L,R13H,R14L,R14H,R15L,R15H)
125                             ]>;
126
127// The architecture doesn't really have any i128 support, so model the
128// register pairs as untyped instead.
129// XPLINK64: Allocate all registers in natural order
130defm GR128 : SystemZRegClass<"GR128", [untyped], 128,
131                             (add R0Q, R2Q, R4Q, R12Q, R10Q, R8Q, R6Q, R14Q),
132                             [(add R0Q, R2Q, R4Q, R6Q, R8Q, R10Q, R12Q, R14Q)]>;
133
134// Base and index registers.  Everything except R0, which in an address
135// context evaluates as 0.
136// XPLINK64: Allocate all registers in natural order
137defm ADDR32 : SystemZRegClass<"ADDR32", [i32], 32, (sub GR32Bit, R0L),
138                              [(add (sequence "R%uL",  1, 15))]>;
139defm ADDR64 : SystemZRegClass<"ADDR64", [i64], 64, (sub GR64Bit, R0D),
140                              [(add (sequence "R%uD",  1, 15))]>;
141
142// Not used directly, but needs to exist for ADDR32 and ADDR64 subregs
143// of a GR128.
144// XPLINK64: Allocate all registers in natural order
145defm ADDR128 : SystemZRegClass<"ADDR128", [untyped], 128, (sub GR128Bit, R0Q),
146                               [(add R2Q, R4Q, R6Q, R8Q, R10Q, R12Q, R14Q)]>;
147
148// Any type register. Used for .insn directives when we don't know what the
149// register types could be.
150defm AnyReg : SystemZRegClass<"AnyReg",
151                              [i64, f64, v8i8, v4i16, v2i32, v2f32], 64,
152                              (add (sequence "R%uD", 0, 15),
153                                   (sequence "F%uD", 0, 15),
154                                   (sequence "V%u", 0, 15)),
155                              [], 0/*allocatable*/>;
156
157//===----------------------------------------------------------------------===//
158// Floating-point registers
159//===----------------------------------------------------------------------===//
160
161// Maps FPR register numbers to their DWARF encoding.
162class DwarfMapping<int id> { int Id = id; }
163
164def F0Dwarf  : DwarfMapping<16>;
165def F2Dwarf  : DwarfMapping<17>;
166def F4Dwarf  : DwarfMapping<18>;
167def F6Dwarf  : DwarfMapping<19>;
168
169def F1Dwarf  : DwarfMapping<20>;
170def F3Dwarf  : DwarfMapping<21>;
171def F5Dwarf  : DwarfMapping<22>;
172def F7Dwarf  : DwarfMapping<23>;
173
174def F8Dwarf  : DwarfMapping<24>;
175def F10Dwarf : DwarfMapping<25>;
176def F12Dwarf : DwarfMapping<26>;
177def F14Dwarf : DwarfMapping<27>;
178
179def F9Dwarf  : DwarfMapping<28>;
180def F11Dwarf : DwarfMapping<29>;
181def F13Dwarf : DwarfMapping<30>;
182def F15Dwarf : DwarfMapping<31>;
183
184def F16Dwarf : DwarfMapping<68>;
185def F18Dwarf : DwarfMapping<69>;
186def F20Dwarf : DwarfMapping<70>;
187def F22Dwarf : DwarfMapping<71>;
188
189def F17Dwarf : DwarfMapping<72>;
190def F19Dwarf : DwarfMapping<73>;
191def F21Dwarf : DwarfMapping<74>;
192def F23Dwarf : DwarfMapping<75>;
193
194def F24Dwarf : DwarfMapping<76>;
195def F26Dwarf : DwarfMapping<77>;
196def F28Dwarf : DwarfMapping<78>;
197def F30Dwarf : DwarfMapping<79>;
198
199def F25Dwarf : DwarfMapping<80>;
200def F27Dwarf : DwarfMapping<81>;
201def F29Dwarf : DwarfMapping<82>;
202def F31Dwarf : DwarfMapping<83>;
203
204// Upper 32 bits of one of the floating-point registers
205class FPR32<bits<16> num, string n> : SystemZReg<n> {
206  let HWEncoding = num;
207}
208
209// One of the floating-point registers.
210class FPR64<bits<16> num, string n, FPR32 high>
211 : SystemZRegWithSubregs<n, [high]> {
212  let HWEncoding = num;
213  let SubRegIndices = [subreg_h32];
214}
215
216// 8 pairs of FPR64s, with a one-register gap inbetween.
217class FPR128<bits<16> num, string n, FPR64 low, FPR64 high>
218 : SystemZRegWithSubregs<n, [high, low]> {
219  let HWEncoding = num;
220  let SubRegIndices = [subreg_h64, subreg_l64];
221  let CoveredBySubRegs = 1;
222}
223
224// Floating-point registers.  Registers 16-31 require the vector facility.
225foreach I = 0-15 in {
226  def F#I#S : FPR32<I, "f"#I>;
227  def F#I#D : FPR64<I, "f"#I, !cast<FPR32>("F"#I#"S")>,
228              DwarfRegNum<[!cast<DwarfMapping>("F"#I#"Dwarf").Id]>;
229}
230foreach I = 16-31 in {
231  def F#I#S : FPR32<I, "v"#I>;
232  def F#I#D : FPR64<I, "v"#I, !cast<FPR32>("F"#I#"S")>,
233              DwarfRegNum<[!cast<DwarfMapping>("F"#I#"Dwarf").Id]>;
234}
235
236foreach I = [0, 1, 4, 5, 8, 9, 12, 13] in {
237  def F#I#Q  : FPR128<I, "f"#I, !cast<FPR64>("F"#!add(I, 2)#"D"),
238                     !cast<FPR64>("F"#I#"D")>;
239}
240
241// There's no store-multiple instruction for FPRs, so we're not fussy
242// about the order in which call-saved registers are allocated.
243defm FP32  : SystemZRegClass<"FP32", [f32], 32, (sequence "F%uS", 0, 15)>;
244defm FP64  : SystemZRegClass<"FP64", [f64], 64, (sequence "F%uD", 0, 15)>;
245defm FP128 : SystemZRegClass<"FP128", [f128], 128,
246                             (add F0Q, F1Q, F4Q, F5Q, F8Q, F9Q, F12Q, F13Q)>;
247
248//===----------------------------------------------------------------------===//
249// Vector registers
250//===----------------------------------------------------------------------===//
251
252// A full 128-bit vector register, with an FPR64 as its high part.
253class VR128<bits<16> num, string n, FPR64 high>
254  : SystemZRegWithSubregs<n, [high]> {
255  let HWEncoding = num;
256  let SubRegIndices = [subreg_h64];
257}
258
259// Full vector registers.
260foreach I = 0-31 in {
261  def V#I : VR128<I, "v"#I, !cast<FPR64>("F"#I#"D")>,
262            DwarfRegNum<[!cast<DwarfMapping>("F"#I#"Dwarf").Id]>;
263}
264
265// Class used to store 32-bit values in the first element of a vector
266// register.  f32 scalars are used for the WLEDB and WLDEB instructions.
267defm VR32 : SystemZRegClass<"VR32", [f32, v4i8, v2i16], 32,
268                            (add (sequence "F%uS", 0, 7),
269                                 (sequence "F%uS", 16, 31),
270                                 (sequence "F%uS", 8, 15))>;
271
272// Class used to store 64-bit values in the upper half of a vector register.
273// The vector facility also includes scalar f64 instructions that operate
274// on the full vector register set.
275defm VR64 : SystemZRegClass<"VR64", [f64, v8i8, v4i16, v2i32, v2f32], 64,
276                            (add (sequence "F%uD", 0, 7),
277                                 (sequence "F%uD", 16, 31),
278                                 (sequence "F%uD", 8, 15))>;
279
280// The subset of vector registers that can be used for floating-point
281// operations too.
282defm VF128 : SystemZRegClass<"VF128",
283                             [v16i8, v8i16, v4i32, v2i64, v4f32, v2f64], 128,
284                             (sequence "V%u", 0, 15)>;
285
286// All vector registers.
287defm VR128 : SystemZRegClass<"VR128",
288                             [v16i8, v8i16, v4i32, v2i64, v4f32, v2f64, f128],
289                             128, (add (sequence "V%u", 0, 7),
290                                       (sequence "V%u", 16, 31),
291                                       (sequence "V%u", 8, 15))>;
292
293// Attaches a ValueType to a register operand, to make the instruction
294// definitions easier.
295class TypedReg<ValueType vtin, RegisterOperand opin> {
296  ValueType vt = vtin;
297  RegisterOperand op = opin;
298}
299
300def v32f    : TypedReg<i32,     VR32>;
301def v32sb   : TypedReg<f32,     VR32>;
302def v64g    : TypedReg<i64,     VR64>;
303def v64db   : TypedReg<f64,     VR64>;
304def v128b   : TypedReg<v16i8,   VR128>;
305def v128h   : TypedReg<v8i16,   VR128>;
306def v128f   : TypedReg<v4i32,   VR128>;
307def v128g   : TypedReg<v2i64,   VR128>;
308def v128q   : TypedReg<v16i8,   VR128>;
309def v128sb  : TypedReg<v4f32,   VR128>;
310def v128db  : TypedReg<v2f64,   VR128>;
311def v128xb  : TypedReg<f128,    VR128>;
312def v128any : TypedReg<untyped, VR128>;
313
314//===----------------------------------------------------------------------===//
315// Other registers
316//===----------------------------------------------------------------------===//
317
318// The 2-bit condition code field of the PSW.  Every register named in an
319// inline asm needs a class associated with it.
320def CC : SystemZReg<"cc">;
321let isAllocatable = 0, CopyCost = -1 in
322  def CCR : RegisterClass<"SystemZ", [i32], 32, (add CC)>;
323
324// The floating-point control register.
325// Note: We only model the current rounding modes and the IEEE masks.
326// IEEE flags and DXC are not modeled here.
327def FPC : SystemZReg<"fpc">;
328let isAllocatable = 0 in
329  def FPCRegs : RegisterClass<"SystemZ", [i32], 32, (add FPC)>;
330
331// Access registers.
332class ACR32<bits<16> num, string n> : SystemZReg<n> {
333  let HWEncoding = num;
334}
335foreach I = 0-15 in {
336  def A#I : ACR32<I, "a"#I>, DwarfRegNum<[!add(I, 48)]>;
337}
338defm AR32 : SystemZRegClass<"AR32", [i32], 32,
339                            (add (sequence "A%u", 0, 15)), [], 0>;
340
341// Control registers.
342class CREG64<bits<16> num, string n> : SystemZReg<n> {
343  let HWEncoding = num;
344}
345foreach I = 0-15 in {
346  def C#I : CREG64<I, "c"#I>, DwarfRegNum<[!add(I, 32)]>;
347}
348defm CR64 : SystemZRegClass<"CR64", [i64], 64,
349                            (add (sequence "C%u", 0, 15)), [], 0>;
350