1 //===-- SystemZTargetMachine.cpp - Define TargetMachine for SystemZ -------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "SystemZTargetMachine.h"
10 #include "MCTargetDesc/SystemZMCTargetDesc.h"
11 #include "SystemZ.h"
12 #include "SystemZMachineFunctionInfo.h"
13 #include "SystemZMachineScheduler.h"
14 #include "SystemZTargetTransformInfo.h"
15 #include "TargetInfo/SystemZTargetInfo.h"
16 #include "llvm/ADT/StringRef.h"
17 #include "llvm/Analysis/TargetTransformInfo.h"
18 #include "llvm/CodeGen/Passes.h"
19 #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h"
20 #include "llvm/CodeGen/TargetPassConfig.h"
21 #include "llvm/IR/DataLayout.h"
22 #include "llvm/MC/TargetRegistry.h"
23 #include "llvm/Support/CodeGen.h"
24 #include "llvm/Target/TargetLoweringObjectFile.h"
25 #include "llvm/Transforms/Scalar.h"
26 #include <memory>
27 #include <optional>
28 #include <string>
29 
30 using namespace llvm;
31 
32 // NOLINTNEXTLINE(readability-identifier-naming)
LLVMInitializeSystemZTarget()33 extern "C" LLVM_EXTERNAL_VISIBILITY void LLVMInitializeSystemZTarget() {
34   // Register the target.
35   RegisterTargetMachine<SystemZTargetMachine> X(getTheSystemZTarget());
36   auto &PR = *PassRegistry::getPassRegistry();
37   initializeSystemZElimComparePass(PR);
38   initializeSystemZShortenInstPass(PR);
39   initializeSystemZLongBranchPass(PR);
40   initializeSystemZLDCleanupPass(PR);
41   initializeSystemZShortenInstPass(PR);
42   initializeSystemZPostRewritePass(PR);
43   initializeSystemZTDCPassPass(PR);
44   initializeSystemZDAGToDAGISelPass(PR);
45 }
46 
computeDataLayout(const Triple & TT)47 static std::string computeDataLayout(const Triple &TT) {
48   std::string Ret;
49 
50   // Big endian.
51   Ret += "E";
52 
53   // Data mangling.
54   Ret += DataLayout::getManglingComponent(TT);
55 
56   // Make sure that global data has at least 16 bits of alignment by
57   // default, so that we can refer to it using LARL.  We don't have any
58   // special requirements for stack variables though.
59   Ret += "-i1:8:16-i8:8:16";
60 
61   // 64-bit integers are naturally aligned.
62   Ret += "-i64:64";
63 
64   // 128-bit floats are aligned only to 64 bits.
65   Ret += "-f128:64";
66 
67   // The DataLayout string always holds a vector alignment of 64 bits, see
68   // comment in clang/lib/Basic/Targets/SystemZ.h.
69   Ret += "-v128:64";
70 
71   // We prefer 16 bits of aligned for all globals; see above.
72   Ret += "-a:8:16";
73 
74   // Integer registers are 32 or 64 bits.
75   Ret += "-n32:64";
76 
77   return Ret;
78 }
79 
createTLOF(const Triple & TT)80 static std::unique_ptr<TargetLoweringObjectFile> createTLOF(const Triple &TT) {
81   if (TT.isOSzOS())
82     return std::make_unique<TargetLoweringObjectFileGOFF>();
83 
84   // Note: Some times run with -triple s390x-unknown.
85   // In this case, default to ELF unless z/OS specifically provided.
86   return std::make_unique<TargetLoweringObjectFileELF>();
87 }
88 
getEffectiveRelocModel(std::optional<Reloc::Model> RM)89 static Reloc::Model getEffectiveRelocModel(std::optional<Reloc::Model> RM) {
90   // Static code is suitable for use in a dynamic executable; there is no
91   // separate DynamicNoPIC model.
92   if (!RM || *RM == Reloc::DynamicNoPIC)
93     return Reloc::Static;
94   return *RM;
95 }
96 
97 // For SystemZ we define the models as follows:
98 //
99 // Small:  BRASL can call any function and will use a stub if necessary.
100 //         Locally-binding symbols will always be in range of LARL.
101 //
102 // Medium: BRASL can call any function and will use a stub if necessary.
103 //         GOT slots and locally-defined text will always be in range
104 //         of LARL, but other symbols might not be.
105 //
106 // Large:  Equivalent to Medium for now.
107 //
108 // Kernel: Equivalent to Medium for now.
109 //
110 // This means that any PIC module smaller than 4GB meets the
111 // requirements of Small, so Small seems like the best default there.
112 //
113 // All symbols bind locally in a non-PIC module, so the choice is less
114 // obvious.  There are two cases:
115 //
116 // - When creating an executable, PLTs and copy relocations allow
117 //   us to treat external symbols as part of the executable.
118 //   Any executable smaller than 4GB meets the requirements of Small,
119 //   so that seems like the best default.
120 //
121 // - When creating JIT code, stubs will be in range of BRASL if the
122 //   image is less than 4GB in size.  GOT entries will likewise be
123 //   in range of LARL.  However, the JIT environment has no equivalent
124 //   of copy relocs, so locally-binding data symbols might not be in
125 //   the range of LARL.  We need the Medium model in that case.
126 static CodeModel::Model
getEffectiveSystemZCodeModel(std::optional<CodeModel::Model> CM,Reloc::Model RM,bool JIT)127 getEffectiveSystemZCodeModel(std::optional<CodeModel::Model> CM,
128                              Reloc::Model RM, bool JIT) {
129   if (CM) {
130     if (*CM == CodeModel::Tiny)
131       report_fatal_error("Target does not support the tiny CodeModel", false);
132     if (*CM == CodeModel::Kernel)
133       report_fatal_error("Target does not support the kernel CodeModel", false);
134     return *CM;
135   }
136   if (JIT)
137     return RM == Reloc::PIC_ ? CodeModel::Small : CodeModel::Medium;
138   return CodeModel::Small;
139 }
140 
SystemZTargetMachine(const Target & T,const Triple & TT,StringRef CPU,StringRef FS,const TargetOptions & Options,std::optional<Reloc::Model> RM,std::optional<CodeModel::Model> CM,CodeGenOptLevel OL,bool JIT)141 SystemZTargetMachine::SystemZTargetMachine(const Target &T, const Triple &TT,
142                                            StringRef CPU, StringRef FS,
143                                            const TargetOptions &Options,
144                                            std::optional<Reloc::Model> RM,
145                                            std::optional<CodeModel::Model> CM,
146                                            CodeGenOptLevel OL, bool JIT)
147     : LLVMTargetMachine(
148           T, computeDataLayout(TT), TT, CPU, FS, Options,
149           getEffectiveRelocModel(RM),
150           getEffectiveSystemZCodeModel(CM, getEffectiveRelocModel(RM), JIT),
151           OL),
152       TLOF(createTLOF(getTargetTriple())) {
153   initAsmInfo();
154 }
155 
156 SystemZTargetMachine::~SystemZTargetMachine() = default;
157 
158 const SystemZSubtarget *
getSubtargetImpl(const Function & F) const159 SystemZTargetMachine::getSubtargetImpl(const Function &F) const {
160   Attribute CPUAttr = F.getFnAttribute("target-cpu");
161   Attribute TuneAttr = F.getFnAttribute("tune-cpu");
162   Attribute FSAttr = F.getFnAttribute("target-features");
163 
164   std::string CPU =
165       CPUAttr.isValid() ? CPUAttr.getValueAsString().str() : TargetCPU;
166   std::string TuneCPU =
167       TuneAttr.isValid() ? TuneAttr.getValueAsString().str() : CPU;
168   std::string FS =
169       FSAttr.isValid() ? FSAttr.getValueAsString().str() : TargetFS;
170 
171   // FIXME: This is related to the code below to reset the target options,
172   // we need to know whether the soft float and backchain flags are set on the
173   // function, so we can enable them as subtarget features.
174   bool SoftFloat = F.getFnAttribute("use-soft-float").getValueAsBool();
175   if (SoftFloat)
176     FS += FS.empty() ? "+soft-float" : ",+soft-float";
177   bool BackChain = F.hasFnAttribute("backchain");
178   if (BackChain)
179     FS += FS.empty() ? "+backchain" : ",+backchain";
180 
181   auto &I = SubtargetMap[CPU + TuneCPU + FS];
182   if (!I) {
183     // This needs to be done before we create a new subtarget since any
184     // creation will depend on the TM and the code generation flags on the
185     // function that reside in TargetOptions.
186     resetTargetOptions(F);
187     I = std::make_unique<SystemZSubtarget>(TargetTriple, CPU, TuneCPU, FS,
188                                            *this);
189   }
190 
191   return I.get();
192 }
193 
194 namespace {
195 
196 /// SystemZ Code Generator Pass Configuration Options.
197 class SystemZPassConfig : public TargetPassConfig {
198 public:
SystemZPassConfig(SystemZTargetMachine & TM,PassManagerBase & PM)199   SystemZPassConfig(SystemZTargetMachine &TM, PassManagerBase &PM)
200     : TargetPassConfig(TM, PM) {}
201 
getSystemZTargetMachine() const202   SystemZTargetMachine &getSystemZTargetMachine() const {
203     return getTM<SystemZTargetMachine>();
204   }
205 
206   ScheduleDAGInstrs *
createPostMachineScheduler(MachineSchedContext * C) const207   createPostMachineScheduler(MachineSchedContext *C) const override {
208     return new ScheduleDAGMI(C,
209                              std::make_unique<SystemZPostRASchedStrategy>(C),
210                              /*RemoveKillFlags=*/true);
211   }
212 
213   void addIRPasses() override;
214   bool addInstSelector() override;
215   bool addILPOpts() override;
216   void addPreRegAlloc() override;
217   void addPostRewrite() override;
218   void addPostRegAlloc() override;
219   void addPreSched2() override;
220   void addPreEmitPass() override;
221 };
222 
223 } // end anonymous namespace
224 
addIRPasses()225 void SystemZPassConfig::addIRPasses() {
226   if (getOptLevel() != CodeGenOptLevel::None) {
227     addPass(createSystemZTDCPass());
228     addPass(createLoopDataPrefetchPass());
229   }
230 
231   addPass(createAtomicExpandPass());
232 
233   TargetPassConfig::addIRPasses();
234 }
235 
addInstSelector()236 bool SystemZPassConfig::addInstSelector() {
237   addPass(createSystemZISelDag(getSystemZTargetMachine(), getOptLevel()));
238 
239   if (getOptLevel() != CodeGenOptLevel::None)
240     addPass(createSystemZLDCleanupPass(getSystemZTargetMachine()));
241 
242   return false;
243 }
244 
addILPOpts()245 bool SystemZPassConfig::addILPOpts() {
246   addPass(&EarlyIfConverterID);
247   return true;
248 }
249 
addPreRegAlloc()250 void SystemZPassConfig::addPreRegAlloc() {
251   addPass(createSystemZCopyPhysRegsPass(getSystemZTargetMachine()));
252 }
253 
addPostRewrite()254 void SystemZPassConfig::addPostRewrite() {
255   addPass(createSystemZPostRewritePass(getSystemZTargetMachine()));
256 }
257 
addPostRegAlloc()258 void SystemZPassConfig::addPostRegAlloc() {
259   // PostRewrite needs to be run at -O0 also (in which case addPostRewrite()
260   // is not called).
261   if (getOptLevel() == CodeGenOptLevel::None)
262     addPass(createSystemZPostRewritePass(getSystemZTargetMachine()));
263 }
264 
addPreSched2()265 void SystemZPassConfig::addPreSched2() {
266   if (getOptLevel() != CodeGenOptLevel::None)
267     addPass(&IfConverterID);
268 }
269 
addPreEmitPass()270 void SystemZPassConfig::addPreEmitPass() {
271   // Do instruction shortening before compare elimination because some
272   // vector instructions will be shortened into opcodes that compare
273   // elimination recognizes.
274   if (getOptLevel() != CodeGenOptLevel::None)
275     addPass(createSystemZShortenInstPass(getSystemZTargetMachine()));
276 
277   // We eliminate comparisons here rather than earlier because some
278   // transformations can change the set of available CC values and we
279   // generally want those transformations to have priority.  This is
280   // especially true in the commonest case where the result of the comparison
281   // is used by a single in-range branch instruction, since we will then
282   // be able to fuse the compare and the branch instead.
283   //
284   // For example, two-address NILF can sometimes be converted into
285   // three-address RISBLG.  NILF produces a CC value that indicates whether
286   // the low word is zero, but RISBLG does not modify CC at all.  On the
287   // other hand, 64-bit ANDs like NILL can sometimes be converted to RISBG.
288   // The CC value produced by NILL isn't useful for our purposes, but the
289   // value produced by RISBG can be used for any comparison with zero
290   // (not just equality).  So there are some transformations that lose
291   // CC values (while still being worthwhile) and others that happen to make
292   // the CC result more useful than it was originally.
293   //
294   // Another reason is that we only want to use BRANCH ON COUNT in cases
295   // where we know that the count register is not going to be spilled.
296   //
297   // Doing it so late makes it more likely that a register will be reused
298   // between the comparison and the branch, but it isn't clear whether
299   // preventing that would be a win or not.
300   if (getOptLevel() != CodeGenOptLevel::None)
301     addPass(createSystemZElimComparePass(getSystemZTargetMachine()));
302   addPass(createSystemZLongBranchPass(getSystemZTargetMachine()));
303 
304   // Do final scheduling after all other optimizations, to get an
305   // optimal input for the decoder (branch relaxation must happen
306   // after block placement).
307   if (getOptLevel() != CodeGenOptLevel::None)
308     addPass(&PostMachineSchedulerID);
309 }
310 
createPassConfig(PassManagerBase & PM)311 TargetPassConfig *SystemZTargetMachine::createPassConfig(PassManagerBase &PM) {
312   return new SystemZPassConfig(*this, PM);
313 }
314 
315 TargetTransformInfo
getTargetTransformInfo(const Function & F) const316 SystemZTargetMachine::getTargetTransformInfo(const Function &F) const {
317   return TargetTransformInfo(SystemZTTIImpl(this, F));
318 }
319 
createMachineFunctionInfo(BumpPtrAllocator & Allocator,const Function & F,const TargetSubtargetInfo * STI) const320 MachineFunctionInfo *SystemZTargetMachine::createMachineFunctionInfo(
321     BumpPtrAllocator &Allocator, const Function &F,
322     const TargetSubtargetInfo *STI) const {
323   return SystemZMachineFunctionInfo::create<SystemZMachineFunctionInfo>(
324       Allocator, F, STI);
325 }
326