1 //===-- SystemZTargetMachine.cpp - Define TargetMachine for SystemZ -------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "SystemZTargetMachine.h"
10 #include "MCTargetDesc/SystemZMCTargetDesc.h"
11 #include "SystemZ.h"
12 #include "SystemZMachineScheduler.h"
13 #include "SystemZTargetTransformInfo.h"
14 #include "TargetInfo/SystemZTargetInfo.h"
15 #include "llvm/ADT/Optional.h"
16 #include "llvm/ADT/STLExtras.h"
17 #include "llvm/ADT/SmallVector.h"
18 #include "llvm/ADT/StringRef.h"
19 #include "llvm/Analysis/TargetTransformInfo.h"
20 #include "llvm/CodeGen/Passes.h"
21 #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h"
22 #include "llvm/CodeGen/TargetPassConfig.h"
23 #include "llvm/IR/DataLayout.h"
24 #include "llvm/MC/TargetRegistry.h"
25 #include "llvm/Support/CodeGen.h"
26 #include "llvm/Target/TargetLoweringObjectFile.h"
27 #include "llvm/Transforms/Scalar.h"
28 #include <string>
29 
30 using namespace llvm;
31 
32 extern "C" LLVM_EXTERNAL_VISIBILITY void LLVMInitializeSystemZTarget() {
33   // Register the target.
34   RegisterTargetMachine<SystemZTargetMachine> X(getTheSystemZTarget());
35   auto &PR = *PassRegistry::getPassRegistry();
36   initializeSystemZElimComparePass(PR);
37   initializeSystemZShortenInstPass(PR);
38   initializeSystemZLongBranchPass(PR);
39   initializeSystemZLDCleanupPass(PR);
40   initializeSystemZShortenInstPass(PR);
41   initializeSystemZPostRewritePass(PR);
42   initializeSystemZTDCPassPass(PR);
43 }
44 
45 // Determine whether we use the vector ABI.
46 static bool UsesVectorABI(StringRef CPU, StringRef FS) {
47   // We use the vector ABI whenever the vector facility is avaiable.
48   // This is the case by default if CPU is z13 or later, and can be
49   // overridden via "[+-]vector" feature string elements.
50   bool VectorABI = true;
51   bool SoftFloat = false;
52   if (CPU.empty() || CPU == "generic" ||
53       CPU == "z10" || CPU == "z196" || CPU == "zEC12" ||
54       CPU == "arch8" || CPU == "arch9" || CPU == "arch10")
55     VectorABI = false;
56 
57   SmallVector<StringRef, 3> Features;
58   FS.split(Features, ',', -1, false /* KeepEmpty */);
59   for (auto &Feature : Features) {
60     if (Feature == "vector" || Feature == "+vector")
61       VectorABI = true;
62     if (Feature == "-vector")
63       VectorABI = false;
64     if (Feature == "soft-float" || Feature == "+soft-float")
65       SoftFloat = true;
66     if (Feature == "-soft-float")
67       SoftFloat = false;
68   }
69 
70   return VectorABI && !SoftFloat;
71 }
72 
73 static std::string computeDataLayout(const Triple &TT, StringRef CPU,
74                                      StringRef FS) {
75   bool VectorABI = UsesVectorABI(CPU, FS);
76   std::string Ret;
77 
78   // Big endian.
79   Ret += "E";
80 
81   // Data mangling.
82   Ret += DataLayout::getManglingComponent(TT);
83 
84   // Make sure that global data has at least 16 bits of alignment by
85   // default, so that we can refer to it using LARL.  We don't have any
86   // special requirements for stack variables though.
87   Ret += "-i1:8:16-i8:8:16";
88 
89   // 64-bit integers are naturally aligned.
90   Ret += "-i64:64";
91 
92   // 128-bit floats are aligned only to 64 bits.
93   Ret += "-f128:64";
94 
95   // When using the vector ABI on Linux, 128-bit vectors are also aligned to 64
96   // bits. On z/OS, vector types are always aligned to 64 bits.
97   if (VectorABI || TT.isOSzOS())
98     Ret += "-v128:64";
99 
100   // We prefer 16 bits of aligned for all globals; see above.
101   Ret += "-a:8:16";
102 
103   // Integer registers are 32 or 64 bits.
104   Ret += "-n32:64";
105 
106   return Ret;
107 }
108 
109 static std::unique_ptr<TargetLoweringObjectFile> createTLOF(const Triple &TT) {
110   if (TT.isOSzOS())
111     return std::make_unique<TargetLoweringObjectFileGOFF>();
112 
113   // Note: Some times run with -triple s390x-unknown.
114   // In this case, default to ELF unless z/OS specifically provided.
115   return std::make_unique<TargetLoweringObjectFileELF>();
116 }
117 
118 static Reloc::Model getEffectiveRelocModel(Optional<Reloc::Model> RM) {
119   // Static code is suitable for use in a dynamic executable; there is no
120   // separate DynamicNoPIC model.
121   if (!RM || *RM == Reloc::DynamicNoPIC)
122     return Reloc::Static;
123   return *RM;
124 }
125 
126 // For SystemZ we define the models as follows:
127 //
128 // Small:  BRASL can call any function and will use a stub if necessary.
129 //         Locally-binding symbols will always be in range of LARL.
130 //
131 // Medium: BRASL can call any function and will use a stub if necessary.
132 //         GOT slots and locally-defined text will always be in range
133 //         of LARL, but other symbols might not be.
134 //
135 // Large:  Equivalent to Medium for now.
136 //
137 // Kernel: Equivalent to Medium for now.
138 //
139 // This means that any PIC module smaller than 4GB meets the
140 // requirements of Small, so Small seems like the best default there.
141 //
142 // All symbols bind locally in a non-PIC module, so the choice is less
143 // obvious.  There are two cases:
144 //
145 // - When creating an executable, PLTs and copy relocations allow
146 //   us to treat external symbols as part of the executable.
147 //   Any executable smaller than 4GB meets the requirements of Small,
148 //   so that seems like the best default.
149 //
150 // - When creating JIT code, stubs will be in range of BRASL if the
151 //   image is less than 4GB in size.  GOT entries will likewise be
152 //   in range of LARL.  However, the JIT environment has no equivalent
153 //   of copy relocs, so locally-binding data symbols might not be in
154 //   the range of LARL.  We need the Medium model in that case.
155 static CodeModel::Model
156 getEffectiveSystemZCodeModel(Optional<CodeModel::Model> CM, Reloc::Model RM,
157                              bool JIT) {
158   if (CM) {
159     if (*CM == CodeModel::Tiny)
160       report_fatal_error("Target does not support the tiny CodeModel", false);
161     if (*CM == CodeModel::Kernel)
162       report_fatal_error("Target does not support the kernel CodeModel", false);
163     return *CM;
164   }
165   if (JIT)
166     return RM == Reloc::PIC_ ? CodeModel::Small : CodeModel::Medium;
167   return CodeModel::Small;
168 }
169 
170 SystemZTargetMachine::SystemZTargetMachine(const Target &T, const Triple &TT,
171                                            StringRef CPU, StringRef FS,
172                                            const TargetOptions &Options,
173                                            Optional<Reloc::Model> RM,
174                                            Optional<CodeModel::Model> CM,
175                                            CodeGenOpt::Level OL, bool JIT)
176     : LLVMTargetMachine(
177           T, computeDataLayout(TT, CPU, FS), TT, CPU, FS, Options,
178           getEffectiveRelocModel(RM),
179           getEffectiveSystemZCodeModel(CM, getEffectiveRelocModel(RM), JIT),
180           OL),
181       TLOF(createTLOF(getTargetTriple())) {
182   initAsmInfo();
183 }
184 
185 SystemZTargetMachine::~SystemZTargetMachine() = default;
186 
187 const SystemZSubtarget *
188 SystemZTargetMachine::getSubtargetImpl(const Function &F) const {
189   Attribute CPUAttr = F.getFnAttribute("target-cpu");
190   Attribute TuneAttr = F.getFnAttribute("tune-cpu");
191   Attribute FSAttr = F.getFnAttribute("target-features");
192 
193   std::string CPU =
194       CPUAttr.isValid() ? CPUAttr.getValueAsString().str() : TargetCPU;
195   std::string TuneCPU =
196       TuneAttr.isValid() ? TuneAttr.getValueAsString().str() : CPU;
197   std::string FS =
198       FSAttr.isValid() ? FSAttr.getValueAsString().str() : TargetFS;
199 
200   // FIXME: This is related to the code below to reset the target options,
201   // we need to know whether or not the soft float flag is set on the
202   // function, so we can enable it as a subtarget feature.
203   bool softFloat = F.getFnAttribute("use-soft-float").getValueAsBool();
204 
205   if (softFloat)
206     FS += FS.empty() ? "+soft-float" : ",+soft-float";
207 
208   auto &I = SubtargetMap[CPU + TuneCPU + FS];
209   if (!I) {
210     // This needs to be done before we create a new subtarget since any
211     // creation will depend on the TM and the code generation flags on the
212     // function that reside in TargetOptions.
213     resetTargetOptions(F);
214     I = std::make_unique<SystemZSubtarget>(TargetTriple, CPU, TuneCPU, FS,
215                                            *this);
216   }
217 
218   return I.get();
219 }
220 
221 namespace {
222 
223 /// SystemZ Code Generator Pass Configuration Options.
224 class SystemZPassConfig : public TargetPassConfig {
225 public:
226   SystemZPassConfig(SystemZTargetMachine &TM, PassManagerBase &PM)
227     : TargetPassConfig(TM, PM) {}
228 
229   SystemZTargetMachine &getSystemZTargetMachine() const {
230     return getTM<SystemZTargetMachine>();
231   }
232 
233   ScheduleDAGInstrs *
234   createPostMachineScheduler(MachineSchedContext *C) const override {
235     return new ScheduleDAGMI(C,
236                              std::make_unique<SystemZPostRASchedStrategy>(C),
237                              /*RemoveKillFlags=*/true);
238   }
239 
240   void addIRPasses() override;
241   bool addInstSelector() override;
242   bool addILPOpts() override;
243   void addPreRegAlloc() override;
244   void addPostRewrite() override;
245   void addPostRegAlloc() override;
246   void addPreSched2() override;
247   void addPreEmitPass() override;
248 };
249 
250 } // end anonymous namespace
251 
252 void SystemZPassConfig::addIRPasses() {
253   if (getOptLevel() != CodeGenOpt::None) {
254     addPass(createSystemZTDCPass());
255     addPass(createLoopDataPrefetchPass());
256   }
257 
258   TargetPassConfig::addIRPasses();
259 }
260 
261 bool SystemZPassConfig::addInstSelector() {
262   addPass(createSystemZISelDag(getSystemZTargetMachine(), getOptLevel()));
263 
264  if (getOptLevel() != CodeGenOpt::None)
265     addPass(createSystemZLDCleanupPass(getSystemZTargetMachine()));
266 
267   return false;
268 }
269 
270 bool SystemZPassConfig::addILPOpts() {
271   addPass(&EarlyIfConverterID);
272   return true;
273 }
274 
275 void SystemZPassConfig::addPreRegAlloc() {
276   addPass(createSystemZCopyPhysRegsPass(getSystemZTargetMachine()));
277 }
278 
279 void SystemZPassConfig::addPostRewrite() {
280   addPass(createSystemZPostRewritePass(getSystemZTargetMachine()));
281 }
282 
283 void SystemZPassConfig::addPostRegAlloc() {
284   // PostRewrite needs to be run at -O0 also (in which case addPostRewrite()
285   // is not called).
286   if (getOptLevel() == CodeGenOpt::None)
287     addPass(createSystemZPostRewritePass(getSystemZTargetMachine()));
288 }
289 
290 void SystemZPassConfig::addPreSched2() {
291   if (getOptLevel() != CodeGenOpt::None)
292     addPass(&IfConverterID);
293 }
294 
295 void SystemZPassConfig::addPreEmitPass() {
296   // Do instruction shortening before compare elimination because some
297   // vector instructions will be shortened into opcodes that compare
298   // elimination recognizes.
299   if (getOptLevel() != CodeGenOpt::None)
300     addPass(createSystemZShortenInstPass(getSystemZTargetMachine()));
301 
302   // We eliminate comparisons here rather than earlier because some
303   // transformations can change the set of available CC values and we
304   // generally want those transformations to have priority.  This is
305   // especially true in the commonest case where the result of the comparison
306   // is used by a single in-range branch instruction, since we will then
307   // be able to fuse the compare and the branch instead.
308   //
309   // For example, two-address NILF can sometimes be converted into
310   // three-address RISBLG.  NILF produces a CC value that indicates whether
311   // the low word is zero, but RISBLG does not modify CC at all.  On the
312   // other hand, 64-bit ANDs like NILL can sometimes be converted to RISBG.
313   // The CC value produced by NILL isn't useful for our purposes, but the
314   // value produced by RISBG can be used for any comparison with zero
315   // (not just equality).  So there are some transformations that lose
316   // CC values (while still being worthwhile) and others that happen to make
317   // the CC result more useful than it was originally.
318   //
319   // Another reason is that we only want to use BRANCH ON COUNT in cases
320   // where we know that the count register is not going to be spilled.
321   //
322   // Doing it so late makes it more likely that a register will be reused
323   // between the comparison and the branch, but it isn't clear whether
324   // preventing that would be a win or not.
325   if (getOptLevel() != CodeGenOpt::None)
326     addPass(createSystemZElimComparePass(getSystemZTargetMachine()));
327   addPass(createSystemZLongBranchPass(getSystemZTargetMachine()));
328 
329   // Do final scheduling after all other optimizations, to get an
330   // optimal input for the decoder (branch relaxation must happen
331   // after block placement).
332   if (getOptLevel() != CodeGenOpt::None)
333     addPass(&PostMachineSchedulerID);
334 }
335 
336 TargetPassConfig *SystemZTargetMachine::createPassConfig(PassManagerBase &PM) {
337   return new SystemZPassConfig(*this, PM);
338 }
339 
340 TargetTransformInfo
341 SystemZTargetMachine::getTargetTransformInfo(const Function &F) const {
342   return TargetTransformInfo(SystemZTTIImpl(this, F));
343 }
344