1 //=- WebAssemblyISelLowering.cpp - WebAssembly DAG Lowering Implementation -==//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 ///
9 /// \file
10 /// This file implements the WebAssemblyTargetLowering class.
11 ///
12 //===----------------------------------------------------------------------===//
13 
14 #include "WebAssemblyISelLowering.h"
15 #include "MCTargetDesc/WebAssemblyMCTargetDesc.h"
16 #include "Utils/WebAssemblyTypeUtilities.h"
17 #include "Utils/WebAssemblyUtilities.h"
18 #include "WebAssemblyMachineFunctionInfo.h"
19 #include "WebAssemblySubtarget.h"
20 #include "WebAssemblyTargetMachine.h"
21 #include "llvm/CodeGen/CallingConvLower.h"
22 #include "llvm/CodeGen/MachineInstrBuilder.h"
23 #include "llvm/CodeGen/MachineJumpTableInfo.h"
24 #include "llvm/CodeGen/MachineModuleInfo.h"
25 #include "llvm/CodeGen/MachineRegisterInfo.h"
26 #include "llvm/CodeGen/SelectionDAG.h"
27 #include "llvm/CodeGen/SelectionDAGNodes.h"
28 #include "llvm/CodeGen/WasmEHFuncInfo.h"
29 #include "llvm/IR/DiagnosticInfo.h"
30 #include "llvm/IR/DiagnosticPrinter.h"
31 #include "llvm/IR/Function.h"
32 #include "llvm/IR/Intrinsics.h"
33 #include "llvm/IR/IntrinsicsWebAssembly.h"
34 #include "llvm/Support/Debug.h"
35 #include "llvm/Support/ErrorHandling.h"
36 #include "llvm/Support/MathExtras.h"
37 #include "llvm/Support/raw_ostream.h"
38 #include "llvm/Target/TargetOptions.h"
39 using namespace llvm;
40 
41 #define DEBUG_TYPE "wasm-lower"
42 
43 WebAssemblyTargetLowering::WebAssemblyTargetLowering(
44     const TargetMachine &TM, const WebAssemblySubtarget &STI)
45     : TargetLowering(TM), Subtarget(&STI) {
46   auto MVTPtr = Subtarget->hasAddr64() ? MVT::i64 : MVT::i32;
47 
48   // Booleans always contain 0 or 1.
49   setBooleanContents(ZeroOrOneBooleanContent);
50   // Except in SIMD vectors
51   setBooleanVectorContents(ZeroOrNegativeOneBooleanContent);
52   // We don't know the microarchitecture here, so just reduce register pressure.
53   setSchedulingPreference(Sched::RegPressure);
54   // Tell ISel that we have a stack pointer.
55   setStackPointerRegisterToSaveRestore(
56       Subtarget->hasAddr64() ? WebAssembly::SP64 : WebAssembly::SP32);
57   // Set up the register classes.
58   addRegisterClass(MVT::i32, &WebAssembly::I32RegClass);
59   addRegisterClass(MVT::i64, &WebAssembly::I64RegClass);
60   addRegisterClass(MVT::f32, &WebAssembly::F32RegClass);
61   addRegisterClass(MVT::f64, &WebAssembly::F64RegClass);
62   if (Subtarget->hasSIMD128()) {
63     addRegisterClass(MVT::v16i8, &WebAssembly::V128RegClass);
64     addRegisterClass(MVT::v8i16, &WebAssembly::V128RegClass);
65     addRegisterClass(MVT::v4i32, &WebAssembly::V128RegClass);
66     addRegisterClass(MVT::v4f32, &WebAssembly::V128RegClass);
67     addRegisterClass(MVT::v2i64, &WebAssembly::V128RegClass);
68     addRegisterClass(MVT::v2f64, &WebAssembly::V128RegClass);
69   }
70   if (Subtarget->hasReferenceTypes()) {
71     addRegisterClass(MVT::externref, &WebAssembly::EXTERNREFRegClass);
72     addRegisterClass(MVT::funcref, &WebAssembly::FUNCREFRegClass);
73   }
74   // Compute derived properties from the register classes.
75   computeRegisterProperties(Subtarget->getRegisterInfo());
76 
77   // Transform loads and stores to pointers in address space 1 to loads and
78   // stores to WebAssembly global variables, outside linear memory.
79   for (auto T : {MVT::i32, MVT::i64, MVT::f32, MVT::f64}) {
80     setOperationAction(ISD::LOAD, T, Custom);
81     setOperationAction(ISD::STORE, T, Custom);
82   }
83   if (Subtarget->hasSIMD128()) {
84     for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v4f32, MVT::v2i64,
85                    MVT::v2f64}) {
86       setOperationAction(ISD::LOAD, T, Custom);
87       setOperationAction(ISD::STORE, T, Custom);
88     }
89   }
90   if (Subtarget->hasReferenceTypes()) {
91     for (auto T : {MVT::externref, MVT::funcref}) {
92       setOperationAction(ISD::LOAD, T, Custom);
93       setOperationAction(ISD::STORE, T, Custom);
94     }
95   }
96 
97   setOperationAction(ISD::GlobalAddress, MVTPtr, Custom);
98   setOperationAction(ISD::GlobalTLSAddress, MVTPtr, Custom);
99   setOperationAction(ISD::ExternalSymbol, MVTPtr, Custom);
100   setOperationAction(ISD::JumpTable, MVTPtr, Custom);
101   setOperationAction(ISD::BlockAddress, MVTPtr, Custom);
102   setOperationAction(ISD::BRIND, MVT::Other, Custom);
103 
104   // Take the default expansion for va_arg, va_copy, and va_end. There is no
105   // default action for va_start, so we do that custom.
106   setOperationAction(ISD::VASTART, MVT::Other, Custom);
107   setOperationAction(ISD::VAARG, MVT::Other, Expand);
108   setOperationAction(ISD::VACOPY, MVT::Other, Expand);
109   setOperationAction(ISD::VAEND, MVT::Other, Expand);
110 
111   for (auto T : {MVT::f32, MVT::f64, MVT::v4f32, MVT::v2f64}) {
112     // Don't expand the floating-point types to constant pools.
113     setOperationAction(ISD::ConstantFP, T, Legal);
114     // Expand floating-point comparisons.
115     for (auto CC : {ISD::SETO, ISD::SETUO, ISD::SETUEQ, ISD::SETONE,
116                     ISD::SETULT, ISD::SETULE, ISD::SETUGT, ISD::SETUGE})
117       setCondCodeAction(CC, T, Expand);
118     // Expand floating-point library function operators.
119     for (auto Op :
120          {ISD::FSIN, ISD::FCOS, ISD::FSINCOS, ISD::FPOW, ISD::FREM, ISD::FMA})
121       setOperationAction(Op, T, Expand);
122     // Note supported floating-point library function operators that otherwise
123     // default to expand.
124     for (auto Op :
125          {ISD::FCEIL, ISD::FFLOOR, ISD::FTRUNC, ISD::FNEARBYINT, ISD::FRINT})
126       setOperationAction(Op, T, Legal);
127     // Support minimum and maximum, which otherwise default to expand.
128     setOperationAction(ISD::FMINIMUM, T, Legal);
129     setOperationAction(ISD::FMAXIMUM, T, Legal);
130     // WebAssembly currently has no builtin f16 support.
131     setOperationAction(ISD::FP16_TO_FP, T, Expand);
132     setOperationAction(ISD::FP_TO_FP16, T, Expand);
133     setLoadExtAction(ISD::EXTLOAD, T, MVT::f16, Expand);
134     setTruncStoreAction(T, MVT::f16, Expand);
135   }
136 
137   // Expand unavailable integer operations.
138   for (auto Op :
139        {ISD::BSWAP, ISD::SMUL_LOHI, ISD::UMUL_LOHI, ISD::MULHS, ISD::MULHU,
140         ISD::SDIVREM, ISD::UDIVREM, ISD::SHL_PARTS, ISD::SRA_PARTS,
141         ISD::SRL_PARTS, ISD::ADDC, ISD::ADDE, ISD::SUBC, ISD::SUBE}) {
142     for (auto T : {MVT::i32, MVT::i64})
143       setOperationAction(Op, T, Expand);
144     if (Subtarget->hasSIMD128())
145       for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v2i64})
146         setOperationAction(Op, T, Expand);
147   }
148 
149   if (Subtarget->hasNontrappingFPToInt())
150     for (auto Op : {ISD::FP_TO_SINT_SAT, ISD::FP_TO_UINT_SAT})
151       for (auto T : {MVT::i32, MVT::i64})
152         setOperationAction(Op, T, Custom);
153 
154   // SIMD-specific configuration
155   if (Subtarget->hasSIMD128()) {
156     // Hoist bitcasts out of shuffles
157     setTargetDAGCombine(ISD::VECTOR_SHUFFLE);
158 
159     // Combine extends of extract_subvectors into widening ops
160     setTargetDAGCombine(ISD::SIGN_EXTEND);
161     setTargetDAGCombine(ISD::ZERO_EXTEND);
162 
163     // Combine int_to_fp or fp_extend of extract_vectors and vice versa into
164     // conversions ops
165     setTargetDAGCombine(ISD::SINT_TO_FP);
166     setTargetDAGCombine(ISD::UINT_TO_FP);
167     setTargetDAGCombine(ISD::FP_EXTEND);
168     setTargetDAGCombine(ISD::EXTRACT_SUBVECTOR);
169 
170     // Combine fp_to_{s,u}int_sat or fp_round of concat_vectors or vice versa
171     // into conversion ops
172     setTargetDAGCombine(ISD::FP_TO_SINT_SAT);
173     setTargetDAGCombine(ISD::FP_TO_UINT_SAT);
174     setTargetDAGCombine(ISD::FP_ROUND);
175     setTargetDAGCombine(ISD::CONCAT_VECTORS);
176 
177     // Support saturating add for i8x16 and i16x8
178     for (auto Op : {ISD::SADDSAT, ISD::UADDSAT})
179       for (auto T : {MVT::v16i8, MVT::v8i16})
180         setOperationAction(Op, T, Legal);
181 
182     // Support integer abs
183     for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v2i64})
184       setOperationAction(ISD::ABS, T, Legal);
185 
186     // Custom lower BUILD_VECTORs to minimize number of replace_lanes
187     for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v4f32, MVT::v2i64,
188                    MVT::v2f64})
189       setOperationAction(ISD::BUILD_VECTOR, T, Custom);
190 
191     // We have custom shuffle lowering to expose the shuffle mask
192     for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v4f32, MVT::v2i64,
193                    MVT::v2f64})
194       setOperationAction(ISD::VECTOR_SHUFFLE, T, Custom);
195 
196     // Custom lowering since wasm shifts must have a scalar shift amount
197     for (auto Op : {ISD::SHL, ISD::SRA, ISD::SRL})
198       for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v2i64})
199         setOperationAction(Op, T, Custom);
200 
201     // Custom lower lane accesses to expand out variable indices
202     for (auto Op : {ISD::EXTRACT_VECTOR_ELT, ISD::INSERT_VECTOR_ELT})
203       for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v4f32, MVT::v2i64,
204                      MVT::v2f64})
205         setOperationAction(Op, T, Custom);
206 
207     // There is no i8x16.mul instruction
208     setOperationAction(ISD::MUL, MVT::v16i8, Expand);
209 
210     // There is no vector conditional select instruction
211     for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v4f32, MVT::v2i64,
212                    MVT::v2f64})
213       setOperationAction(ISD::SELECT_CC, T, Expand);
214 
215     // Expand integer operations supported for scalars but not SIMD
216     for (auto Op : {ISD::CTLZ, ISD::CTTZ, ISD::CTPOP, ISD::SDIV, ISD::UDIV,
217                     ISD::SREM, ISD::UREM, ISD::ROTL, ISD::ROTR})
218       for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v2i64})
219         setOperationAction(Op, T, Expand);
220 
221     // But we do have integer min and max operations
222     for (auto Op : {ISD::SMIN, ISD::SMAX, ISD::UMIN, ISD::UMAX})
223       for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32})
224         setOperationAction(Op, T, Legal);
225 
226     // And we have popcnt for i8x16
227     setOperationAction(ISD::CTPOP, MVT::v16i8, Legal);
228 
229     // Expand float operations supported for scalars but not SIMD
230     for (auto Op : {ISD::FCOPYSIGN, ISD::FLOG, ISD::FLOG2, ISD::FLOG10,
231                     ISD::FEXP, ISD::FEXP2, ISD::FRINT})
232       for (auto T : {MVT::v4f32, MVT::v2f64})
233         setOperationAction(Op, T, Expand);
234 
235     // Unsigned comparison operations are unavailable for i64x2 vectors.
236     for (auto CC : {ISD::SETUGT, ISD::SETUGE, ISD::SETULT, ISD::SETULE})
237       setCondCodeAction(CC, MVT::v2i64, Custom);
238 
239     // 64x2 conversions are not in the spec
240     for (auto Op :
241          {ISD::SINT_TO_FP, ISD::UINT_TO_FP, ISD::FP_TO_SINT, ISD::FP_TO_UINT})
242       for (auto T : {MVT::v2i64, MVT::v2f64})
243         setOperationAction(Op, T, Expand);
244 
245     // But saturating fp_to_int converstions are
246     for (auto Op : {ISD::FP_TO_SINT_SAT, ISD::FP_TO_UINT_SAT})
247       setOperationAction(Op, MVT::v4i32, Custom);
248   }
249 
250   // As a special case, these operators use the type to mean the type to
251   // sign-extend from.
252   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
253   if (!Subtarget->hasSignExt()) {
254     // Sign extends are legal only when extending a vector extract
255     auto Action = Subtarget->hasSIMD128() ? Custom : Expand;
256     for (auto T : {MVT::i8, MVT::i16, MVT::i32})
257       setOperationAction(ISD::SIGN_EXTEND_INREG, T, Action);
258   }
259   for (auto T : MVT::integer_fixedlen_vector_valuetypes())
260     setOperationAction(ISD::SIGN_EXTEND_INREG, T, Expand);
261 
262   // Dynamic stack allocation: use the default expansion.
263   setOperationAction(ISD::STACKSAVE, MVT::Other, Expand);
264   setOperationAction(ISD::STACKRESTORE, MVT::Other, Expand);
265   setOperationAction(ISD::DYNAMIC_STACKALLOC, MVTPtr, Expand);
266 
267   setOperationAction(ISD::FrameIndex, MVT::i32, Custom);
268   setOperationAction(ISD::FrameIndex, MVT::i64, Custom);
269   setOperationAction(ISD::CopyToReg, MVT::Other, Custom);
270 
271   // Expand these forms; we pattern-match the forms that we can handle in isel.
272   for (auto T : {MVT::i32, MVT::i64, MVT::f32, MVT::f64})
273     for (auto Op : {ISD::BR_CC, ISD::SELECT_CC})
274       setOperationAction(Op, T, Expand);
275 
276   // We have custom switch handling.
277   setOperationAction(ISD::BR_JT, MVT::Other, Custom);
278 
279   // WebAssembly doesn't have:
280   //  - Floating-point extending loads.
281   //  - Floating-point truncating stores.
282   //  - i1 extending loads.
283   //  - truncating SIMD stores and most extending loads
284   setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f32, Expand);
285   setTruncStoreAction(MVT::f64, MVT::f32, Expand);
286   for (auto T : MVT::integer_valuetypes())
287     for (auto Ext : {ISD::EXTLOAD, ISD::ZEXTLOAD, ISD::SEXTLOAD})
288       setLoadExtAction(Ext, T, MVT::i1, Promote);
289   if (Subtarget->hasSIMD128()) {
290     for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v2i64, MVT::v4f32,
291                    MVT::v2f64}) {
292       for (auto MemT : MVT::fixedlen_vector_valuetypes()) {
293         if (MVT(T) != MemT) {
294           setTruncStoreAction(T, MemT, Expand);
295           for (auto Ext : {ISD::EXTLOAD, ISD::ZEXTLOAD, ISD::SEXTLOAD})
296             setLoadExtAction(Ext, T, MemT, Expand);
297         }
298       }
299     }
300     // But some vector extending loads are legal
301     for (auto Ext : {ISD::EXTLOAD, ISD::SEXTLOAD, ISD::ZEXTLOAD}) {
302       setLoadExtAction(Ext, MVT::v8i16, MVT::v8i8, Legal);
303       setLoadExtAction(Ext, MVT::v4i32, MVT::v4i16, Legal);
304       setLoadExtAction(Ext, MVT::v2i64, MVT::v2i32, Legal);
305     }
306     // And some truncating stores are legal as well
307     setTruncStoreAction(MVT::v8i16, MVT::v8i8, Legal);
308     setTruncStoreAction(MVT::v4i32, MVT::v4i16, Legal);
309   }
310 
311   // Don't do anything clever with build_pairs
312   setOperationAction(ISD::BUILD_PAIR, MVT::i64, Expand);
313 
314   // Trap lowers to wasm unreachable
315   setOperationAction(ISD::TRAP, MVT::Other, Legal);
316   setOperationAction(ISD::DEBUGTRAP, MVT::Other, Legal);
317 
318   // Exception handling intrinsics
319   setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
320   setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::Other, Custom);
321   setOperationAction(ISD::INTRINSIC_VOID, MVT::Other, Custom);
322 
323   setMaxAtomicSizeInBitsSupported(64);
324 
325   // Override the __gnu_f2h_ieee/__gnu_h2f_ieee names so that the f32 name is
326   // consistent with the f64 and f128 names.
327   setLibcallName(RTLIB::FPEXT_F16_F32, "__extendhfsf2");
328   setLibcallName(RTLIB::FPROUND_F32_F16, "__truncsfhf2");
329 
330   // Define the emscripten name for return address helper.
331   // TODO: when implementing other Wasm backends, make this generic or only do
332   // this on emscripten depending on what they end up doing.
333   setLibcallName(RTLIB::RETURN_ADDRESS, "emscripten_return_address");
334 
335   // Always convert switches to br_tables unless there is only one case, which
336   // is equivalent to a simple branch. This reduces code size for wasm, and we
337   // defer possible jump table optimizations to the VM.
338   setMinimumJumpTableEntries(2);
339 }
340 
341 TargetLowering::AtomicExpansionKind
342 WebAssemblyTargetLowering::shouldExpandAtomicRMWInIR(AtomicRMWInst *AI) const {
343   // We have wasm instructions for these
344   switch (AI->getOperation()) {
345   case AtomicRMWInst::Add:
346   case AtomicRMWInst::Sub:
347   case AtomicRMWInst::And:
348   case AtomicRMWInst::Or:
349   case AtomicRMWInst::Xor:
350   case AtomicRMWInst::Xchg:
351     return AtomicExpansionKind::None;
352   default:
353     break;
354   }
355   return AtomicExpansionKind::CmpXChg;
356 }
357 
358 bool WebAssemblyTargetLowering::shouldScalarizeBinop(SDValue VecOp) const {
359   // Implementation copied from X86TargetLowering.
360   unsigned Opc = VecOp.getOpcode();
361 
362   // Assume target opcodes can't be scalarized.
363   // TODO - do we have any exceptions?
364   if (Opc >= ISD::BUILTIN_OP_END)
365     return false;
366 
367   // If the vector op is not supported, try to convert to scalar.
368   EVT VecVT = VecOp.getValueType();
369   if (!isOperationLegalOrCustomOrPromote(Opc, VecVT))
370     return true;
371 
372   // If the vector op is supported, but the scalar op is not, the transform may
373   // not be worthwhile.
374   EVT ScalarVT = VecVT.getScalarType();
375   return isOperationLegalOrCustomOrPromote(Opc, ScalarVT);
376 }
377 
378 FastISel *WebAssemblyTargetLowering::createFastISel(
379     FunctionLoweringInfo &FuncInfo, const TargetLibraryInfo *LibInfo) const {
380   return WebAssembly::createFastISel(FuncInfo, LibInfo);
381 }
382 
383 MVT WebAssemblyTargetLowering::getScalarShiftAmountTy(const DataLayout & /*DL*/,
384                                                       EVT VT) const {
385   unsigned BitWidth = NextPowerOf2(VT.getSizeInBits() - 1);
386   if (BitWidth > 1 && BitWidth < 8)
387     BitWidth = 8;
388 
389   if (BitWidth > 64) {
390     // The shift will be lowered to a libcall, and compiler-rt libcalls expect
391     // the count to be an i32.
392     BitWidth = 32;
393     assert(BitWidth >= Log2_32_Ceil(VT.getSizeInBits()) &&
394            "32-bit shift counts ought to be enough for anyone");
395   }
396 
397   MVT Result = MVT::getIntegerVT(BitWidth);
398   assert(Result != MVT::INVALID_SIMPLE_VALUE_TYPE &&
399          "Unable to represent scalar shift amount type");
400   return Result;
401 }
402 
403 // Lower an fp-to-int conversion operator from the LLVM opcode, which has an
404 // undefined result on invalid/overflow, to the WebAssembly opcode, which
405 // traps on invalid/overflow.
406 static MachineBasicBlock *LowerFPToInt(MachineInstr &MI, DebugLoc DL,
407                                        MachineBasicBlock *BB,
408                                        const TargetInstrInfo &TII,
409                                        bool IsUnsigned, bool Int64,
410                                        bool Float64, unsigned LoweredOpcode) {
411   MachineRegisterInfo &MRI = BB->getParent()->getRegInfo();
412 
413   Register OutReg = MI.getOperand(0).getReg();
414   Register InReg = MI.getOperand(1).getReg();
415 
416   unsigned Abs = Float64 ? WebAssembly::ABS_F64 : WebAssembly::ABS_F32;
417   unsigned FConst = Float64 ? WebAssembly::CONST_F64 : WebAssembly::CONST_F32;
418   unsigned LT = Float64 ? WebAssembly::LT_F64 : WebAssembly::LT_F32;
419   unsigned GE = Float64 ? WebAssembly::GE_F64 : WebAssembly::GE_F32;
420   unsigned IConst = Int64 ? WebAssembly::CONST_I64 : WebAssembly::CONST_I32;
421   unsigned Eqz = WebAssembly::EQZ_I32;
422   unsigned And = WebAssembly::AND_I32;
423   int64_t Limit = Int64 ? INT64_MIN : INT32_MIN;
424   int64_t Substitute = IsUnsigned ? 0 : Limit;
425   double CmpVal = IsUnsigned ? -(double)Limit * 2.0 : -(double)Limit;
426   auto &Context = BB->getParent()->getFunction().getContext();
427   Type *Ty = Float64 ? Type::getDoubleTy(Context) : Type::getFloatTy(Context);
428 
429   const BasicBlock *LLVMBB = BB->getBasicBlock();
430   MachineFunction *F = BB->getParent();
431   MachineBasicBlock *TrueMBB = F->CreateMachineBasicBlock(LLVMBB);
432   MachineBasicBlock *FalseMBB = F->CreateMachineBasicBlock(LLVMBB);
433   MachineBasicBlock *DoneMBB = F->CreateMachineBasicBlock(LLVMBB);
434 
435   MachineFunction::iterator It = ++BB->getIterator();
436   F->insert(It, FalseMBB);
437   F->insert(It, TrueMBB);
438   F->insert(It, DoneMBB);
439 
440   // Transfer the remainder of BB and its successor edges to DoneMBB.
441   DoneMBB->splice(DoneMBB->begin(), BB, std::next(MI.getIterator()), BB->end());
442   DoneMBB->transferSuccessorsAndUpdatePHIs(BB);
443 
444   BB->addSuccessor(TrueMBB);
445   BB->addSuccessor(FalseMBB);
446   TrueMBB->addSuccessor(DoneMBB);
447   FalseMBB->addSuccessor(DoneMBB);
448 
449   unsigned Tmp0, Tmp1, CmpReg, EqzReg, FalseReg, TrueReg;
450   Tmp0 = MRI.createVirtualRegister(MRI.getRegClass(InReg));
451   Tmp1 = MRI.createVirtualRegister(MRI.getRegClass(InReg));
452   CmpReg = MRI.createVirtualRegister(&WebAssembly::I32RegClass);
453   EqzReg = MRI.createVirtualRegister(&WebAssembly::I32RegClass);
454   FalseReg = MRI.createVirtualRegister(MRI.getRegClass(OutReg));
455   TrueReg = MRI.createVirtualRegister(MRI.getRegClass(OutReg));
456 
457   MI.eraseFromParent();
458   // For signed numbers, we can do a single comparison to determine whether
459   // fabs(x) is within range.
460   if (IsUnsigned) {
461     Tmp0 = InReg;
462   } else {
463     BuildMI(BB, DL, TII.get(Abs), Tmp0).addReg(InReg);
464   }
465   BuildMI(BB, DL, TII.get(FConst), Tmp1)
466       .addFPImm(cast<ConstantFP>(ConstantFP::get(Ty, CmpVal)));
467   BuildMI(BB, DL, TII.get(LT), CmpReg).addReg(Tmp0).addReg(Tmp1);
468 
469   // For unsigned numbers, we have to do a separate comparison with zero.
470   if (IsUnsigned) {
471     Tmp1 = MRI.createVirtualRegister(MRI.getRegClass(InReg));
472     Register SecondCmpReg =
473         MRI.createVirtualRegister(&WebAssembly::I32RegClass);
474     Register AndReg = MRI.createVirtualRegister(&WebAssembly::I32RegClass);
475     BuildMI(BB, DL, TII.get(FConst), Tmp1)
476         .addFPImm(cast<ConstantFP>(ConstantFP::get(Ty, 0.0)));
477     BuildMI(BB, DL, TII.get(GE), SecondCmpReg).addReg(Tmp0).addReg(Tmp1);
478     BuildMI(BB, DL, TII.get(And), AndReg).addReg(CmpReg).addReg(SecondCmpReg);
479     CmpReg = AndReg;
480   }
481 
482   BuildMI(BB, DL, TII.get(Eqz), EqzReg).addReg(CmpReg);
483 
484   // Create the CFG diamond to select between doing the conversion or using
485   // the substitute value.
486   BuildMI(BB, DL, TII.get(WebAssembly::BR_IF)).addMBB(TrueMBB).addReg(EqzReg);
487   BuildMI(FalseMBB, DL, TII.get(LoweredOpcode), FalseReg).addReg(InReg);
488   BuildMI(FalseMBB, DL, TII.get(WebAssembly::BR)).addMBB(DoneMBB);
489   BuildMI(TrueMBB, DL, TII.get(IConst), TrueReg).addImm(Substitute);
490   BuildMI(*DoneMBB, DoneMBB->begin(), DL, TII.get(TargetOpcode::PHI), OutReg)
491       .addReg(FalseReg)
492       .addMBB(FalseMBB)
493       .addReg(TrueReg)
494       .addMBB(TrueMBB);
495 
496   return DoneMBB;
497 }
498 
499 static MachineBasicBlock *
500 LowerCallResults(MachineInstr &CallResults, DebugLoc DL, MachineBasicBlock *BB,
501                  const WebAssemblySubtarget *Subtarget,
502                  const TargetInstrInfo &TII) {
503   MachineInstr &CallParams = *CallResults.getPrevNode();
504   assert(CallParams.getOpcode() == WebAssembly::CALL_PARAMS);
505   assert(CallResults.getOpcode() == WebAssembly::CALL_RESULTS ||
506          CallResults.getOpcode() == WebAssembly::RET_CALL_RESULTS);
507 
508   bool IsIndirect = CallParams.getOperand(0).isReg();
509   bool IsRetCall = CallResults.getOpcode() == WebAssembly::RET_CALL_RESULTS;
510 
511   bool IsFuncrefCall = false;
512   if (IsIndirect) {
513     Register Reg = CallParams.getOperand(0).getReg();
514     const MachineFunction *MF = BB->getParent();
515     const MachineRegisterInfo &MRI = MF->getRegInfo();
516     const TargetRegisterClass *TRC = MRI.getRegClass(Reg);
517     IsFuncrefCall = (TRC == &WebAssembly::FUNCREFRegClass);
518     assert(!IsFuncrefCall || Subtarget->hasReferenceTypes());
519   }
520 
521   unsigned CallOp;
522   if (IsIndirect && IsRetCall) {
523     CallOp = WebAssembly::RET_CALL_INDIRECT;
524   } else if (IsIndirect) {
525     CallOp = WebAssembly::CALL_INDIRECT;
526   } else if (IsRetCall) {
527     CallOp = WebAssembly::RET_CALL;
528   } else {
529     CallOp = WebAssembly::CALL;
530   }
531 
532   MachineFunction &MF = *BB->getParent();
533   const MCInstrDesc &MCID = TII.get(CallOp);
534   MachineInstrBuilder MIB(MF, MF.CreateMachineInstr(MCID, DL));
535 
536   // See if we must truncate the function pointer.
537   // CALL_INDIRECT takes an i32, but in wasm64 we represent function pointers
538   // as 64-bit for uniformity with other pointer types.
539   // See also: WebAssemblyFastISel::selectCall
540   if (IsIndirect && MF.getSubtarget<WebAssemblySubtarget>().hasAddr64()) {
541     Register Reg32 =
542         MF.getRegInfo().createVirtualRegister(&WebAssembly::I32RegClass);
543     auto &FnPtr = CallParams.getOperand(0);
544     BuildMI(*BB, CallResults.getIterator(), DL,
545             TII.get(WebAssembly::I32_WRAP_I64), Reg32)
546         .addReg(FnPtr.getReg());
547     FnPtr.setReg(Reg32);
548   }
549 
550   // Move the function pointer to the end of the arguments for indirect calls
551   if (IsIndirect) {
552     auto FnPtr = CallParams.getOperand(0);
553     CallParams.RemoveOperand(0);
554     CallParams.addOperand(FnPtr);
555   }
556 
557   for (auto Def : CallResults.defs())
558     MIB.add(Def);
559 
560   if (IsIndirect) {
561     // Placeholder for the type index.
562     MIB.addImm(0);
563     // The table into which this call_indirect indexes.
564     MCSymbolWasm *Table = IsFuncrefCall
565                               ? WebAssembly::getOrCreateFuncrefCallTableSymbol(
566                                     MF.getContext(), Subtarget)
567                               : WebAssembly::getOrCreateFunctionTableSymbol(
568                                     MF.getContext(), Subtarget);
569     if (Subtarget->hasReferenceTypes()) {
570       MIB.addSym(Table);
571     } else {
572       // For the MVP there is at most one table whose number is 0, but we can't
573       // write a table symbol or issue relocations.  Instead we just ensure the
574       // table is live and write a zero.
575       Table->setNoStrip();
576       MIB.addImm(0);
577     }
578   }
579 
580   for (auto Use : CallParams.uses())
581     MIB.add(Use);
582 
583   BB->insert(CallResults.getIterator(), MIB);
584   CallParams.eraseFromParent();
585   CallResults.eraseFromParent();
586 
587   // If this is a funcref call, to avoid hidden GC roots, we need to clear the
588   // table slot with ref.null upon call_indirect return.
589   //
590   // This generates the following code, which comes right after a call_indirect
591   // of a funcref:
592   //
593   //    i32.const 0
594   //    ref.null func
595   //    table.set __funcref_call_table
596   if (IsIndirect && IsFuncrefCall) {
597     MCSymbolWasm *Table = WebAssembly::getOrCreateFuncrefCallTableSymbol(
598         MF.getContext(), Subtarget);
599     Register RegZero =
600         MF.getRegInfo().createVirtualRegister(&WebAssembly::I32RegClass);
601     MachineInstr *Const0 =
602         BuildMI(MF, DL, TII.get(WebAssembly::CONST_I32), RegZero).addImm(0);
603     BB->insertAfter(MIB.getInstr()->getIterator(), Const0);
604 
605     Register RegFuncref =
606         MF.getRegInfo().createVirtualRegister(&WebAssembly::FUNCREFRegClass);
607     MachineInstr *RefNull =
608         BuildMI(MF, DL, TII.get(WebAssembly::REF_NULL_FUNCREF), RegFuncref)
609             .addImm(static_cast<int32_t>(WebAssembly::HeapType::Funcref));
610     BB->insertAfter(Const0->getIterator(), RefNull);
611 
612     MachineInstr *TableSet =
613         BuildMI(MF, DL, TII.get(WebAssembly::TABLE_SET_FUNCREF))
614             .addSym(Table)
615             .addReg(RegZero)
616             .addReg(RegFuncref);
617     BB->insertAfter(RefNull->getIterator(), TableSet);
618   }
619 
620   return BB;
621 }
622 
623 MachineBasicBlock *WebAssemblyTargetLowering::EmitInstrWithCustomInserter(
624     MachineInstr &MI, MachineBasicBlock *BB) const {
625   const TargetInstrInfo &TII = *Subtarget->getInstrInfo();
626   DebugLoc DL = MI.getDebugLoc();
627 
628   switch (MI.getOpcode()) {
629   default:
630     llvm_unreachable("Unexpected instr type to insert");
631   case WebAssembly::FP_TO_SINT_I32_F32:
632     return LowerFPToInt(MI, DL, BB, TII, false, false, false,
633                         WebAssembly::I32_TRUNC_S_F32);
634   case WebAssembly::FP_TO_UINT_I32_F32:
635     return LowerFPToInt(MI, DL, BB, TII, true, false, false,
636                         WebAssembly::I32_TRUNC_U_F32);
637   case WebAssembly::FP_TO_SINT_I64_F32:
638     return LowerFPToInt(MI, DL, BB, TII, false, true, false,
639                         WebAssembly::I64_TRUNC_S_F32);
640   case WebAssembly::FP_TO_UINT_I64_F32:
641     return LowerFPToInt(MI, DL, BB, TII, true, true, false,
642                         WebAssembly::I64_TRUNC_U_F32);
643   case WebAssembly::FP_TO_SINT_I32_F64:
644     return LowerFPToInt(MI, DL, BB, TII, false, false, true,
645                         WebAssembly::I32_TRUNC_S_F64);
646   case WebAssembly::FP_TO_UINT_I32_F64:
647     return LowerFPToInt(MI, DL, BB, TII, true, false, true,
648                         WebAssembly::I32_TRUNC_U_F64);
649   case WebAssembly::FP_TO_SINT_I64_F64:
650     return LowerFPToInt(MI, DL, BB, TII, false, true, true,
651                         WebAssembly::I64_TRUNC_S_F64);
652   case WebAssembly::FP_TO_UINT_I64_F64:
653     return LowerFPToInt(MI, DL, BB, TII, true, true, true,
654                         WebAssembly::I64_TRUNC_U_F64);
655   case WebAssembly::CALL_RESULTS:
656   case WebAssembly::RET_CALL_RESULTS:
657     return LowerCallResults(MI, DL, BB, Subtarget, TII);
658   }
659 }
660 
661 const char *
662 WebAssemblyTargetLowering::getTargetNodeName(unsigned Opcode) const {
663   switch (static_cast<WebAssemblyISD::NodeType>(Opcode)) {
664   case WebAssemblyISD::FIRST_NUMBER:
665   case WebAssemblyISD::FIRST_MEM_OPCODE:
666     break;
667 #define HANDLE_NODETYPE(NODE)                                                  \
668   case WebAssemblyISD::NODE:                                                   \
669     return "WebAssemblyISD::" #NODE;
670 #define HANDLE_MEM_NODETYPE(NODE) HANDLE_NODETYPE(NODE)
671 #include "WebAssemblyISD.def"
672 #undef HANDLE_MEM_NODETYPE
673 #undef HANDLE_NODETYPE
674   }
675   return nullptr;
676 }
677 
678 std::pair<unsigned, const TargetRegisterClass *>
679 WebAssemblyTargetLowering::getRegForInlineAsmConstraint(
680     const TargetRegisterInfo *TRI, StringRef Constraint, MVT VT) const {
681   // First, see if this is a constraint that directly corresponds to a
682   // WebAssembly register class.
683   if (Constraint.size() == 1) {
684     switch (Constraint[0]) {
685     case 'r':
686       assert(VT != MVT::iPTR && "Pointer MVT not expected here");
687       if (Subtarget->hasSIMD128() && VT.isVector()) {
688         if (VT.getSizeInBits() == 128)
689           return std::make_pair(0U, &WebAssembly::V128RegClass);
690       }
691       if (VT.isInteger() && !VT.isVector()) {
692         if (VT.getSizeInBits() <= 32)
693           return std::make_pair(0U, &WebAssembly::I32RegClass);
694         if (VT.getSizeInBits() <= 64)
695           return std::make_pair(0U, &WebAssembly::I64RegClass);
696       }
697       if (VT.isFloatingPoint() && !VT.isVector()) {
698         switch (VT.getSizeInBits()) {
699         case 32:
700           return std::make_pair(0U, &WebAssembly::F32RegClass);
701         case 64:
702           return std::make_pair(0U, &WebAssembly::F64RegClass);
703         default:
704           break;
705         }
706       }
707       break;
708     default:
709       break;
710     }
711   }
712 
713   return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT);
714 }
715 
716 bool WebAssemblyTargetLowering::isCheapToSpeculateCttz() const {
717   // Assume ctz is a relatively cheap operation.
718   return true;
719 }
720 
721 bool WebAssemblyTargetLowering::isCheapToSpeculateCtlz() const {
722   // Assume clz is a relatively cheap operation.
723   return true;
724 }
725 
726 bool WebAssemblyTargetLowering::isLegalAddressingMode(const DataLayout &DL,
727                                                       const AddrMode &AM,
728                                                       Type *Ty, unsigned AS,
729                                                       Instruction *I) const {
730   // WebAssembly offsets are added as unsigned without wrapping. The
731   // isLegalAddressingMode gives us no way to determine if wrapping could be
732   // happening, so we approximate this by accepting only non-negative offsets.
733   if (AM.BaseOffs < 0)
734     return false;
735 
736   // WebAssembly has no scale register operands.
737   if (AM.Scale != 0)
738     return false;
739 
740   // Everything else is legal.
741   return true;
742 }
743 
744 bool WebAssemblyTargetLowering::allowsMisalignedMemoryAccesses(
745     EVT /*VT*/, unsigned /*AddrSpace*/, Align /*Align*/,
746     MachineMemOperand::Flags /*Flags*/, bool *Fast) const {
747   // WebAssembly supports unaligned accesses, though it should be declared
748   // with the p2align attribute on loads and stores which do so, and there
749   // may be a performance impact. We tell LLVM they're "fast" because
750   // for the kinds of things that LLVM uses this for (merging adjacent stores
751   // of constants, etc.), WebAssembly implementations will either want the
752   // unaligned access or they'll split anyway.
753   if (Fast)
754     *Fast = true;
755   return true;
756 }
757 
758 bool WebAssemblyTargetLowering::isIntDivCheap(EVT VT,
759                                               AttributeList Attr) const {
760   // The current thinking is that wasm engines will perform this optimization,
761   // so we can save on code size.
762   return true;
763 }
764 
765 bool WebAssemblyTargetLowering::isVectorLoadExtDesirable(SDValue ExtVal) const {
766   EVT ExtT = ExtVal.getValueType();
767   EVT MemT = cast<LoadSDNode>(ExtVal->getOperand(0))->getValueType(0);
768   return (ExtT == MVT::v8i16 && MemT == MVT::v8i8) ||
769          (ExtT == MVT::v4i32 && MemT == MVT::v4i16) ||
770          (ExtT == MVT::v2i64 && MemT == MVT::v2i32);
771 }
772 
773 EVT WebAssemblyTargetLowering::getSetCCResultType(const DataLayout &DL,
774                                                   LLVMContext &C,
775                                                   EVT VT) const {
776   if (VT.isVector())
777     return VT.changeVectorElementTypeToInteger();
778 
779   // So far, all branch instructions in Wasm take an I32 condition.
780   // The default TargetLowering::getSetCCResultType returns the pointer size,
781   // which would be useful to reduce instruction counts when testing
782   // against 64-bit pointers/values if at some point Wasm supports that.
783   return EVT::getIntegerVT(C, 32);
784 }
785 
786 bool WebAssemblyTargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info,
787                                                    const CallInst &I,
788                                                    MachineFunction &MF,
789                                                    unsigned Intrinsic) const {
790   switch (Intrinsic) {
791   case Intrinsic::wasm_memory_atomic_notify:
792     Info.opc = ISD::INTRINSIC_W_CHAIN;
793     Info.memVT = MVT::i32;
794     Info.ptrVal = I.getArgOperand(0);
795     Info.offset = 0;
796     Info.align = Align(4);
797     // atomic.notify instruction does not really load the memory specified with
798     // this argument, but MachineMemOperand should either be load or store, so
799     // we set this to a load.
800     // FIXME Volatile isn't really correct, but currently all LLVM atomic
801     // instructions are treated as volatiles in the backend, so we should be
802     // consistent. The same applies for wasm_atomic_wait intrinsics too.
803     Info.flags = MachineMemOperand::MOVolatile | MachineMemOperand::MOLoad;
804     return true;
805   case Intrinsic::wasm_memory_atomic_wait32:
806     Info.opc = ISD::INTRINSIC_W_CHAIN;
807     Info.memVT = MVT::i32;
808     Info.ptrVal = I.getArgOperand(0);
809     Info.offset = 0;
810     Info.align = Align(4);
811     Info.flags = MachineMemOperand::MOVolatile | MachineMemOperand::MOLoad;
812     return true;
813   case Intrinsic::wasm_memory_atomic_wait64:
814     Info.opc = ISD::INTRINSIC_W_CHAIN;
815     Info.memVT = MVT::i64;
816     Info.ptrVal = I.getArgOperand(0);
817     Info.offset = 0;
818     Info.align = Align(8);
819     Info.flags = MachineMemOperand::MOVolatile | MachineMemOperand::MOLoad;
820     return true;
821   default:
822     return false;
823   }
824 }
825 
826 //===----------------------------------------------------------------------===//
827 // WebAssembly Lowering private implementation.
828 //===----------------------------------------------------------------------===//
829 
830 //===----------------------------------------------------------------------===//
831 // Lowering Code
832 //===----------------------------------------------------------------------===//
833 
834 static void fail(const SDLoc &DL, SelectionDAG &DAG, const char *Msg) {
835   MachineFunction &MF = DAG.getMachineFunction();
836   DAG.getContext()->diagnose(
837       DiagnosticInfoUnsupported(MF.getFunction(), Msg, DL.getDebugLoc()));
838 }
839 
840 // Test whether the given calling convention is supported.
841 static bool callingConvSupported(CallingConv::ID CallConv) {
842   // We currently support the language-independent target-independent
843   // conventions. We don't yet have a way to annotate calls with properties like
844   // "cold", and we don't have any call-clobbered registers, so these are mostly
845   // all handled the same.
846   return CallConv == CallingConv::C || CallConv == CallingConv::Fast ||
847          CallConv == CallingConv::Cold ||
848          CallConv == CallingConv::PreserveMost ||
849          CallConv == CallingConv::PreserveAll ||
850          CallConv == CallingConv::CXX_FAST_TLS ||
851          CallConv == CallingConv::WASM_EmscriptenInvoke ||
852          CallConv == CallingConv::Swift;
853 }
854 
855 SDValue
856 WebAssemblyTargetLowering::LowerCall(CallLoweringInfo &CLI,
857                                      SmallVectorImpl<SDValue> &InVals) const {
858   SelectionDAG &DAG = CLI.DAG;
859   SDLoc DL = CLI.DL;
860   SDValue Chain = CLI.Chain;
861   SDValue Callee = CLI.Callee;
862   MachineFunction &MF = DAG.getMachineFunction();
863   auto Layout = MF.getDataLayout();
864 
865   CallingConv::ID CallConv = CLI.CallConv;
866   if (!callingConvSupported(CallConv))
867     fail(DL, DAG,
868          "WebAssembly doesn't support language-specific or target-specific "
869          "calling conventions yet");
870   if (CLI.IsPatchPoint)
871     fail(DL, DAG, "WebAssembly doesn't support patch point yet");
872 
873   if (CLI.IsTailCall) {
874     auto NoTail = [&](const char *Msg) {
875       if (CLI.CB && CLI.CB->isMustTailCall())
876         fail(DL, DAG, Msg);
877       CLI.IsTailCall = false;
878     };
879 
880     if (!Subtarget->hasTailCall())
881       NoTail("WebAssembly 'tail-call' feature not enabled");
882 
883     // Varargs calls cannot be tail calls because the buffer is on the stack
884     if (CLI.IsVarArg)
885       NoTail("WebAssembly does not support varargs tail calls");
886 
887     // Do not tail call unless caller and callee return types match
888     const Function &F = MF.getFunction();
889     const TargetMachine &TM = getTargetMachine();
890     Type *RetTy = F.getReturnType();
891     SmallVector<MVT, 4> CallerRetTys;
892     SmallVector<MVT, 4> CalleeRetTys;
893     computeLegalValueVTs(F, TM, RetTy, CallerRetTys);
894     computeLegalValueVTs(F, TM, CLI.RetTy, CalleeRetTys);
895     bool TypesMatch = CallerRetTys.size() == CalleeRetTys.size() &&
896                       std::equal(CallerRetTys.begin(), CallerRetTys.end(),
897                                  CalleeRetTys.begin());
898     if (!TypesMatch)
899       NoTail("WebAssembly tail call requires caller and callee return types to "
900              "match");
901 
902     // If pointers to local stack values are passed, we cannot tail call
903     if (CLI.CB) {
904       for (auto &Arg : CLI.CB->args()) {
905         Value *Val = Arg.get();
906         // Trace the value back through pointer operations
907         while (true) {
908           Value *Src = Val->stripPointerCastsAndAliases();
909           if (auto *GEP = dyn_cast<GetElementPtrInst>(Src))
910             Src = GEP->getPointerOperand();
911           if (Val == Src)
912             break;
913           Val = Src;
914         }
915         if (isa<AllocaInst>(Val)) {
916           NoTail(
917               "WebAssembly does not support tail calling with stack arguments");
918           break;
919         }
920       }
921     }
922   }
923 
924   SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins;
925   SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs;
926   SmallVectorImpl<SDValue> &OutVals = CLI.OutVals;
927 
928   // The generic code may have added an sret argument. If we're lowering an
929   // invoke function, the ABI requires that the function pointer be the first
930   // argument, so we may have to swap the arguments.
931   if (CallConv == CallingConv::WASM_EmscriptenInvoke && Outs.size() >= 2 &&
932       Outs[0].Flags.isSRet()) {
933     std::swap(Outs[0], Outs[1]);
934     std::swap(OutVals[0], OutVals[1]);
935   }
936 
937   bool HasSwiftSelfArg = false;
938   bool HasSwiftErrorArg = false;
939   unsigned NumFixedArgs = 0;
940   for (unsigned I = 0; I < Outs.size(); ++I) {
941     const ISD::OutputArg &Out = Outs[I];
942     SDValue &OutVal = OutVals[I];
943     HasSwiftSelfArg |= Out.Flags.isSwiftSelf();
944     HasSwiftErrorArg |= Out.Flags.isSwiftError();
945     if (Out.Flags.isNest())
946       fail(DL, DAG, "WebAssembly hasn't implemented nest arguments");
947     if (Out.Flags.isInAlloca())
948       fail(DL, DAG, "WebAssembly hasn't implemented inalloca arguments");
949     if (Out.Flags.isInConsecutiveRegs())
950       fail(DL, DAG, "WebAssembly hasn't implemented cons regs arguments");
951     if (Out.Flags.isInConsecutiveRegsLast())
952       fail(DL, DAG, "WebAssembly hasn't implemented cons regs last arguments");
953     if (Out.Flags.isByVal() && Out.Flags.getByValSize() != 0) {
954       auto &MFI = MF.getFrameInfo();
955       int FI = MFI.CreateStackObject(Out.Flags.getByValSize(),
956                                      Out.Flags.getNonZeroByValAlign(),
957                                      /*isSS=*/false);
958       SDValue SizeNode =
959           DAG.getConstant(Out.Flags.getByValSize(), DL, MVT::i32);
960       SDValue FINode = DAG.getFrameIndex(FI, getPointerTy(Layout));
961       Chain = DAG.getMemcpy(
962           Chain, DL, FINode, OutVal, SizeNode, Out.Flags.getNonZeroByValAlign(),
963           /*isVolatile*/ false, /*AlwaysInline=*/false,
964           /*isTailCall*/ false, MachinePointerInfo(), MachinePointerInfo());
965       OutVal = FINode;
966     }
967     // Count the number of fixed args *after* legalization.
968     NumFixedArgs += Out.IsFixed;
969   }
970 
971   bool IsVarArg = CLI.IsVarArg;
972   auto PtrVT = getPointerTy(Layout);
973 
974   // For swiftcc, emit additional swiftself and swifterror arguments
975   // if there aren't. These additional arguments are also added for callee
976   // signature They are necessary to match callee and caller signature for
977   // indirect call.
978   if (CallConv == CallingConv::Swift) {
979     if (!HasSwiftSelfArg) {
980       NumFixedArgs++;
981       ISD::OutputArg Arg;
982       Arg.Flags.setSwiftSelf();
983       CLI.Outs.push_back(Arg);
984       SDValue ArgVal = DAG.getUNDEF(PtrVT);
985       CLI.OutVals.push_back(ArgVal);
986     }
987     if (!HasSwiftErrorArg) {
988       NumFixedArgs++;
989       ISD::OutputArg Arg;
990       Arg.Flags.setSwiftError();
991       CLI.Outs.push_back(Arg);
992       SDValue ArgVal = DAG.getUNDEF(PtrVT);
993       CLI.OutVals.push_back(ArgVal);
994     }
995   }
996 
997   // Analyze operands of the call, assigning locations to each operand.
998   SmallVector<CCValAssign, 16> ArgLocs;
999   CCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext());
1000 
1001   if (IsVarArg) {
1002     // Outgoing non-fixed arguments are placed in a buffer. First
1003     // compute their offsets and the total amount of buffer space needed.
1004     for (unsigned I = NumFixedArgs; I < Outs.size(); ++I) {
1005       const ISD::OutputArg &Out = Outs[I];
1006       SDValue &Arg = OutVals[I];
1007       EVT VT = Arg.getValueType();
1008       assert(VT != MVT::iPTR && "Legalized args should be concrete");
1009       Type *Ty = VT.getTypeForEVT(*DAG.getContext());
1010       Align Alignment =
1011           std::max(Out.Flags.getNonZeroOrigAlign(), Layout.getABITypeAlign(Ty));
1012       unsigned Offset =
1013           CCInfo.AllocateStack(Layout.getTypeAllocSize(Ty), Alignment);
1014       CCInfo.addLoc(CCValAssign::getMem(ArgLocs.size(), VT.getSimpleVT(),
1015                                         Offset, VT.getSimpleVT(),
1016                                         CCValAssign::Full));
1017     }
1018   }
1019 
1020   unsigned NumBytes = CCInfo.getAlignedCallFrameSize();
1021 
1022   SDValue FINode;
1023   if (IsVarArg && NumBytes) {
1024     // For non-fixed arguments, next emit stores to store the argument values
1025     // to the stack buffer at the offsets computed above.
1026     int FI = MF.getFrameInfo().CreateStackObject(NumBytes,
1027                                                  Layout.getStackAlignment(),
1028                                                  /*isSS=*/false);
1029     unsigned ValNo = 0;
1030     SmallVector<SDValue, 8> Chains;
1031     for (SDValue Arg : drop_begin(OutVals, NumFixedArgs)) {
1032       assert(ArgLocs[ValNo].getValNo() == ValNo &&
1033              "ArgLocs should remain in order and only hold varargs args");
1034       unsigned Offset = ArgLocs[ValNo++].getLocMemOffset();
1035       FINode = DAG.getFrameIndex(FI, getPointerTy(Layout));
1036       SDValue Add = DAG.getNode(ISD::ADD, DL, PtrVT, FINode,
1037                                 DAG.getConstant(Offset, DL, PtrVT));
1038       Chains.push_back(
1039           DAG.getStore(Chain, DL, Arg, Add,
1040                        MachinePointerInfo::getFixedStack(MF, FI, Offset)));
1041     }
1042     if (!Chains.empty())
1043       Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Chains);
1044   } else if (IsVarArg) {
1045     FINode = DAG.getIntPtrConstant(0, DL);
1046   }
1047 
1048   if (Callee->getOpcode() == ISD::GlobalAddress) {
1049     // If the callee is a GlobalAddress node (quite common, every direct call
1050     // is) turn it into a TargetGlobalAddress node so that LowerGlobalAddress
1051     // doesn't at MO_GOT which is not needed for direct calls.
1052     GlobalAddressSDNode* GA = cast<GlobalAddressSDNode>(Callee);
1053     Callee = DAG.getTargetGlobalAddress(GA->getGlobal(), DL,
1054                                         getPointerTy(DAG.getDataLayout()),
1055                                         GA->getOffset());
1056     Callee = DAG.getNode(WebAssemblyISD::Wrapper, DL,
1057                          getPointerTy(DAG.getDataLayout()), Callee);
1058   }
1059 
1060   // Compute the operands for the CALLn node.
1061   SmallVector<SDValue, 16> Ops;
1062   Ops.push_back(Chain);
1063   Ops.push_back(Callee);
1064 
1065   // Add all fixed arguments. Note that for non-varargs calls, NumFixedArgs
1066   // isn't reliable.
1067   Ops.append(OutVals.begin(),
1068              IsVarArg ? OutVals.begin() + NumFixedArgs : OutVals.end());
1069   // Add a pointer to the vararg buffer.
1070   if (IsVarArg)
1071     Ops.push_back(FINode);
1072 
1073   SmallVector<EVT, 8> InTys;
1074   for (const auto &In : Ins) {
1075     assert(!In.Flags.isByVal() && "byval is not valid for return values");
1076     assert(!In.Flags.isNest() && "nest is not valid for return values");
1077     if (In.Flags.isInAlloca())
1078       fail(DL, DAG, "WebAssembly hasn't implemented inalloca return values");
1079     if (In.Flags.isInConsecutiveRegs())
1080       fail(DL, DAG, "WebAssembly hasn't implemented cons regs return values");
1081     if (In.Flags.isInConsecutiveRegsLast())
1082       fail(DL, DAG,
1083            "WebAssembly hasn't implemented cons regs last return values");
1084     // Ignore In.getNonZeroOrigAlign() because all our arguments are passed in
1085     // registers.
1086     InTys.push_back(In.VT);
1087   }
1088 
1089   // Lastly, if this is a call to a funcref we need to add an instruction
1090   // table.set to the chain and transform the call.
1091   if (CLI.CB && isFuncrefType(CLI.CB->getCalledOperand()->getType())) {
1092     // In the absence of function references proposal where a funcref call is
1093     // lowered to call_ref, using reference types we generate a table.set to set
1094     // the funcref to a special table used solely for this purpose, followed by
1095     // a call_indirect. Here we just generate the table set, and return the
1096     // SDValue of the table.set so that LowerCall can finalize the lowering by
1097     // generating the call_indirect.
1098     SDValue Chain = Ops[0];
1099 
1100     MCSymbolWasm *Table = WebAssembly::getOrCreateFuncrefCallTableSymbol(
1101         MF.getContext(), Subtarget);
1102     SDValue Sym = DAG.getMCSymbol(Table, PtrVT);
1103     SDValue TableSlot = DAG.getConstant(0, DL, MVT::i32);
1104     SDValue TableSetOps[] = {Chain, Sym, TableSlot, Callee};
1105     SDValue TableSet = DAG.getMemIntrinsicNode(
1106         WebAssemblyISD::TABLE_SET, DL, DAG.getVTList(MVT::Other), TableSetOps,
1107         MVT::funcref,
1108         // Machine Mem Operand args
1109         MachinePointerInfo(WasmAddressSpace::FUNCREF),
1110         CLI.CB->getCalledOperand()->getPointerAlignment(DAG.getDataLayout()),
1111         MachineMemOperand::MOStore);
1112 
1113     Ops[0] = TableSet; // The new chain is the TableSet itself
1114   }
1115 
1116   if (CLI.IsTailCall) {
1117     // ret_calls do not return values to the current frame
1118     SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
1119     return DAG.getNode(WebAssemblyISD::RET_CALL, DL, NodeTys, Ops);
1120   }
1121 
1122   InTys.push_back(MVT::Other);
1123   SDVTList InTyList = DAG.getVTList(InTys);
1124   SDValue Res = DAG.getNode(WebAssemblyISD::CALL, DL, InTyList, Ops);
1125 
1126   for (size_t I = 0; I < Ins.size(); ++I)
1127     InVals.push_back(Res.getValue(I));
1128 
1129   // Return the chain
1130   return Res.getValue(Ins.size());
1131 }
1132 
1133 bool WebAssemblyTargetLowering::CanLowerReturn(
1134     CallingConv::ID /*CallConv*/, MachineFunction & /*MF*/, bool /*IsVarArg*/,
1135     const SmallVectorImpl<ISD::OutputArg> &Outs,
1136     LLVMContext & /*Context*/) const {
1137   // WebAssembly can only handle returning tuples with multivalue enabled
1138   return Subtarget->hasMultivalue() || Outs.size() <= 1;
1139 }
1140 
1141 SDValue WebAssemblyTargetLowering::LowerReturn(
1142     SDValue Chain, CallingConv::ID CallConv, bool /*IsVarArg*/,
1143     const SmallVectorImpl<ISD::OutputArg> &Outs,
1144     const SmallVectorImpl<SDValue> &OutVals, const SDLoc &DL,
1145     SelectionDAG &DAG) const {
1146   assert((Subtarget->hasMultivalue() || Outs.size() <= 1) &&
1147          "MVP WebAssembly can only return up to one value");
1148   if (!callingConvSupported(CallConv))
1149     fail(DL, DAG, "WebAssembly doesn't support non-C calling conventions");
1150 
1151   SmallVector<SDValue, 4> RetOps(1, Chain);
1152   RetOps.append(OutVals.begin(), OutVals.end());
1153   Chain = DAG.getNode(WebAssemblyISD::RETURN, DL, MVT::Other, RetOps);
1154 
1155   // Record the number and types of the return values.
1156   for (const ISD::OutputArg &Out : Outs) {
1157     assert(!Out.Flags.isByVal() && "byval is not valid for return values");
1158     assert(!Out.Flags.isNest() && "nest is not valid for return values");
1159     assert(Out.IsFixed && "non-fixed return value is not valid");
1160     if (Out.Flags.isInAlloca())
1161       fail(DL, DAG, "WebAssembly hasn't implemented inalloca results");
1162     if (Out.Flags.isInConsecutiveRegs())
1163       fail(DL, DAG, "WebAssembly hasn't implemented cons regs results");
1164     if (Out.Flags.isInConsecutiveRegsLast())
1165       fail(DL, DAG, "WebAssembly hasn't implemented cons regs last results");
1166   }
1167 
1168   return Chain;
1169 }
1170 
1171 SDValue WebAssemblyTargetLowering::LowerFormalArguments(
1172     SDValue Chain, CallingConv::ID CallConv, bool IsVarArg,
1173     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL,
1174     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
1175   if (!callingConvSupported(CallConv))
1176     fail(DL, DAG, "WebAssembly doesn't support non-C calling conventions");
1177 
1178   MachineFunction &MF = DAG.getMachineFunction();
1179   auto *MFI = MF.getInfo<WebAssemblyFunctionInfo>();
1180 
1181   // Set up the incoming ARGUMENTS value, which serves to represent the liveness
1182   // of the incoming values before they're represented by virtual registers.
1183   MF.getRegInfo().addLiveIn(WebAssembly::ARGUMENTS);
1184 
1185   bool HasSwiftErrorArg = false;
1186   bool HasSwiftSelfArg = false;
1187   for (const ISD::InputArg &In : Ins) {
1188     HasSwiftSelfArg |= In.Flags.isSwiftSelf();
1189     HasSwiftErrorArg |= In.Flags.isSwiftError();
1190     if (In.Flags.isInAlloca())
1191       fail(DL, DAG, "WebAssembly hasn't implemented inalloca arguments");
1192     if (In.Flags.isNest())
1193       fail(DL, DAG, "WebAssembly hasn't implemented nest arguments");
1194     if (In.Flags.isInConsecutiveRegs())
1195       fail(DL, DAG, "WebAssembly hasn't implemented cons regs arguments");
1196     if (In.Flags.isInConsecutiveRegsLast())
1197       fail(DL, DAG, "WebAssembly hasn't implemented cons regs last arguments");
1198     // Ignore In.getNonZeroOrigAlign() because all our arguments are passed in
1199     // registers.
1200     InVals.push_back(In.Used ? DAG.getNode(WebAssemblyISD::ARGUMENT, DL, In.VT,
1201                                            DAG.getTargetConstant(InVals.size(),
1202                                                                  DL, MVT::i32))
1203                              : DAG.getUNDEF(In.VT));
1204 
1205     // Record the number and types of arguments.
1206     MFI->addParam(In.VT);
1207   }
1208 
1209   // For swiftcc, emit additional swiftself and swifterror arguments
1210   // if there aren't. These additional arguments are also added for callee
1211   // signature They are necessary to match callee and caller signature for
1212   // indirect call.
1213   auto PtrVT = getPointerTy(MF.getDataLayout());
1214   if (CallConv == CallingConv::Swift) {
1215     if (!HasSwiftSelfArg) {
1216       MFI->addParam(PtrVT);
1217     }
1218     if (!HasSwiftErrorArg) {
1219       MFI->addParam(PtrVT);
1220     }
1221   }
1222   // Varargs are copied into a buffer allocated by the caller, and a pointer to
1223   // the buffer is passed as an argument.
1224   if (IsVarArg) {
1225     MVT PtrVT = getPointerTy(MF.getDataLayout());
1226     Register VarargVreg =
1227         MF.getRegInfo().createVirtualRegister(getRegClassFor(PtrVT));
1228     MFI->setVarargBufferVreg(VarargVreg);
1229     Chain = DAG.getCopyToReg(
1230         Chain, DL, VarargVreg,
1231         DAG.getNode(WebAssemblyISD::ARGUMENT, DL, PtrVT,
1232                     DAG.getTargetConstant(Ins.size(), DL, MVT::i32)));
1233     MFI->addParam(PtrVT);
1234   }
1235 
1236   // Record the number and types of arguments and results.
1237   SmallVector<MVT, 4> Params;
1238   SmallVector<MVT, 4> Results;
1239   computeSignatureVTs(MF.getFunction().getFunctionType(), &MF.getFunction(),
1240                       MF.getFunction(), DAG.getTarget(), Params, Results);
1241   for (MVT VT : Results)
1242     MFI->addResult(VT);
1243   // TODO: Use signatures in WebAssemblyMachineFunctionInfo too and unify
1244   // the param logic here with ComputeSignatureVTs
1245   assert(MFI->getParams().size() == Params.size() &&
1246          std::equal(MFI->getParams().begin(), MFI->getParams().end(),
1247                     Params.begin()));
1248 
1249   return Chain;
1250 }
1251 
1252 void WebAssemblyTargetLowering::ReplaceNodeResults(
1253     SDNode *N, SmallVectorImpl<SDValue> &Results, SelectionDAG &DAG) const {
1254   switch (N->getOpcode()) {
1255   case ISD::SIGN_EXTEND_INREG:
1256     // Do not add any results, signifying that N should not be custom lowered
1257     // after all. This happens because simd128 turns on custom lowering for
1258     // SIGN_EXTEND_INREG, but for non-vector sign extends the result might be an
1259     // illegal type.
1260     break;
1261   default:
1262     llvm_unreachable(
1263         "ReplaceNodeResults not implemented for this op for WebAssembly!");
1264   }
1265 }
1266 
1267 //===----------------------------------------------------------------------===//
1268 //  Custom lowering hooks.
1269 //===----------------------------------------------------------------------===//
1270 
1271 SDValue WebAssemblyTargetLowering::LowerOperation(SDValue Op,
1272                                                   SelectionDAG &DAG) const {
1273   SDLoc DL(Op);
1274   switch (Op.getOpcode()) {
1275   default:
1276     llvm_unreachable("unimplemented operation lowering");
1277     return SDValue();
1278   case ISD::FrameIndex:
1279     return LowerFrameIndex(Op, DAG);
1280   case ISD::GlobalAddress:
1281     return LowerGlobalAddress(Op, DAG);
1282   case ISD::GlobalTLSAddress:
1283     return LowerGlobalTLSAddress(Op, DAG);
1284   case ISD::ExternalSymbol:
1285     return LowerExternalSymbol(Op, DAG);
1286   case ISD::JumpTable:
1287     return LowerJumpTable(Op, DAG);
1288   case ISD::BR_JT:
1289     return LowerBR_JT(Op, DAG);
1290   case ISD::VASTART:
1291     return LowerVASTART(Op, DAG);
1292   case ISD::BlockAddress:
1293   case ISD::BRIND:
1294     fail(DL, DAG, "WebAssembly hasn't implemented computed gotos");
1295     return SDValue();
1296   case ISD::RETURNADDR:
1297     return LowerRETURNADDR(Op, DAG);
1298   case ISD::FRAMEADDR:
1299     return LowerFRAMEADDR(Op, DAG);
1300   case ISD::CopyToReg:
1301     return LowerCopyToReg(Op, DAG);
1302   case ISD::EXTRACT_VECTOR_ELT:
1303   case ISD::INSERT_VECTOR_ELT:
1304     return LowerAccessVectorElement(Op, DAG);
1305   case ISD::INTRINSIC_VOID:
1306   case ISD::INTRINSIC_WO_CHAIN:
1307   case ISD::INTRINSIC_W_CHAIN:
1308     return LowerIntrinsic(Op, DAG);
1309   case ISD::SIGN_EXTEND_INREG:
1310     return LowerSIGN_EXTEND_INREG(Op, DAG);
1311   case ISD::BUILD_VECTOR:
1312     return LowerBUILD_VECTOR(Op, DAG);
1313   case ISD::VECTOR_SHUFFLE:
1314     return LowerVECTOR_SHUFFLE(Op, DAG);
1315   case ISD::SETCC:
1316     return LowerSETCC(Op, DAG);
1317   case ISD::SHL:
1318   case ISD::SRA:
1319   case ISD::SRL:
1320     return LowerShift(Op, DAG);
1321   case ISD::FP_TO_SINT_SAT:
1322   case ISD::FP_TO_UINT_SAT:
1323     return LowerFP_TO_INT_SAT(Op, DAG);
1324   case ISD::LOAD:
1325     return LowerLoad(Op, DAG);
1326   case ISD::STORE:
1327     return LowerStore(Op, DAG);
1328   }
1329 }
1330 
1331 static bool IsWebAssemblyGlobal(SDValue Op) {
1332   if (const GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Op))
1333     return WebAssembly::isWasmVarAddressSpace(GA->getAddressSpace());
1334 
1335   return false;
1336 }
1337 
1338 static Optional<unsigned> IsWebAssemblyLocal(SDValue Op, SelectionDAG &DAG) {
1339   const FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Op);
1340   if (!FI)
1341     return None;
1342 
1343   auto &MF = DAG.getMachineFunction();
1344   return WebAssemblyFrameLowering::getLocalForStackObject(MF, FI->getIndex());
1345 }
1346 
1347 bool WebAssemblyTargetLowering::isFuncrefType(const Type *Ty) {
1348   return isa<PointerType>(Ty) &&
1349          Ty->getPointerAddressSpace() == WasmAddressSpace::FUNCREF;
1350 }
1351 
1352 bool WebAssemblyTargetLowering::isExternrefType(const Type *Ty) {
1353   return isa<PointerType>(Ty) &&
1354          Ty->getPointerAddressSpace() == WasmAddressSpace::EXTERNREF;
1355 }
1356 
1357 SDValue WebAssemblyTargetLowering::LowerStore(SDValue Op,
1358                                               SelectionDAG &DAG) const {
1359   SDLoc DL(Op);
1360   StoreSDNode *SN = cast<StoreSDNode>(Op.getNode());
1361   const SDValue &Value = SN->getValue();
1362   const SDValue &Base = SN->getBasePtr();
1363   const SDValue &Offset = SN->getOffset();
1364 
1365   if (IsWebAssemblyGlobal(Base)) {
1366     if (!Offset->isUndef())
1367       report_fatal_error("unexpected offset when storing to webassembly global",
1368                          false);
1369 
1370     SDVTList Tys = DAG.getVTList(MVT::Other);
1371     SDValue Ops[] = {SN->getChain(), Value, Base};
1372     return DAG.getMemIntrinsicNode(WebAssemblyISD::GLOBAL_SET, DL, Tys, Ops,
1373                                    SN->getMemoryVT(), SN->getMemOperand());
1374   }
1375 
1376   if (Optional<unsigned> Local = IsWebAssemblyLocal(Base, DAG)) {
1377     if (!Offset->isUndef())
1378       report_fatal_error("unexpected offset when storing to webassembly local",
1379                          false);
1380 
1381     SDValue Idx = DAG.getTargetConstant(*Local, Base, MVT::i32);
1382     SDVTList Tys = DAG.getVTList(MVT::Other); // The chain.
1383     SDValue Ops[] = {SN->getChain(), Idx, Value};
1384     return DAG.getNode(WebAssemblyISD::LOCAL_SET, DL, Tys, Ops);
1385   }
1386 
1387   return Op;
1388 }
1389 
1390 SDValue WebAssemblyTargetLowering::LowerLoad(SDValue Op,
1391                                              SelectionDAG &DAG) const {
1392   SDLoc DL(Op);
1393   LoadSDNode *LN = cast<LoadSDNode>(Op.getNode());
1394   const SDValue &Base = LN->getBasePtr();
1395   const SDValue &Offset = LN->getOffset();
1396 
1397   if (IsWebAssemblyGlobal(Base)) {
1398     if (!Offset->isUndef())
1399       report_fatal_error(
1400           "unexpected offset when loading from webassembly global", false);
1401 
1402     SDVTList Tys = DAG.getVTList(LN->getValueType(0), MVT::Other);
1403     SDValue Ops[] = {LN->getChain(), Base};
1404     return DAG.getMemIntrinsicNode(WebAssemblyISD::GLOBAL_GET, DL, Tys, Ops,
1405                                    LN->getMemoryVT(), LN->getMemOperand());
1406   }
1407 
1408   if (Optional<unsigned> Local = IsWebAssemblyLocal(Base, DAG)) {
1409     if (!Offset->isUndef())
1410       report_fatal_error(
1411           "unexpected offset when loading from webassembly local", false);
1412 
1413     SDValue Idx = DAG.getTargetConstant(*Local, Base, MVT::i32);
1414     EVT LocalVT = LN->getValueType(0);
1415     SDValue LocalGet = DAG.getNode(WebAssemblyISD::LOCAL_GET, DL, LocalVT,
1416                                    {LN->getChain(), Idx});
1417     SDValue Result = DAG.getMergeValues({LocalGet, LN->getChain()}, DL);
1418     assert(Result->getNumValues() == 2 && "Loads must carry a chain!");
1419     return Result;
1420   }
1421 
1422   return Op;
1423 }
1424 
1425 SDValue WebAssemblyTargetLowering::LowerCopyToReg(SDValue Op,
1426                                                   SelectionDAG &DAG) const {
1427   SDValue Src = Op.getOperand(2);
1428   if (isa<FrameIndexSDNode>(Src.getNode())) {
1429     // CopyToReg nodes don't support FrameIndex operands. Other targets select
1430     // the FI to some LEA-like instruction, but since we don't have that, we
1431     // need to insert some kind of instruction that can take an FI operand and
1432     // produces a value usable by CopyToReg (i.e. in a vreg). So insert a dummy
1433     // local.copy between Op and its FI operand.
1434     SDValue Chain = Op.getOperand(0);
1435     SDLoc DL(Op);
1436     unsigned Reg = cast<RegisterSDNode>(Op.getOperand(1))->getReg();
1437     EVT VT = Src.getValueType();
1438     SDValue Copy(DAG.getMachineNode(VT == MVT::i32 ? WebAssembly::COPY_I32
1439                                                    : WebAssembly::COPY_I64,
1440                                     DL, VT, Src),
1441                  0);
1442     return Op.getNode()->getNumValues() == 1
1443                ? DAG.getCopyToReg(Chain, DL, Reg, Copy)
1444                : DAG.getCopyToReg(Chain, DL, Reg, Copy,
1445                                   Op.getNumOperands() == 4 ? Op.getOperand(3)
1446                                                            : SDValue());
1447   }
1448   return SDValue();
1449 }
1450 
1451 SDValue WebAssemblyTargetLowering::LowerFrameIndex(SDValue Op,
1452                                                    SelectionDAG &DAG) const {
1453   int FI = cast<FrameIndexSDNode>(Op)->getIndex();
1454   return DAG.getTargetFrameIndex(FI, Op.getValueType());
1455 }
1456 
1457 SDValue WebAssemblyTargetLowering::LowerRETURNADDR(SDValue Op,
1458                                                    SelectionDAG &DAG) const {
1459   SDLoc DL(Op);
1460 
1461   if (!Subtarget->getTargetTriple().isOSEmscripten()) {
1462     fail(DL, DAG,
1463          "Non-Emscripten WebAssembly hasn't implemented "
1464          "__builtin_return_address");
1465     return SDValue();
1466   }
1467 
1468   if (verifyReturnAddressArgumentIsConstant(Op, DAG))
1469     return SDValue();
1470 
1471   unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
1472   MakeLibCallOptions CallOptions;
1473   return makeLibCall(DAG, RTLIB::RETURN_ADDRESS, Op.getValueType(),
1474                      {DAG.getConstant(Depth, DL, MVT::i32)}, CallOptions, DL)
1475       .first;
1476 }
1477 
1478 SDValue WebAssemblyTargetLowering::LowerFRAMEADDR(SDValue Op,
1479                                                   SelectionDAG &DAG) const {
1480   // Non-zero depths are not supported by WebAssembly currently. Use the
1481   // legalizer's default expansion, which is to return 0 (what this function is
1482   // documented to do).
1483   if (Op.getConstantOperandVal(0) > 0)
1484     return SDValue();
1485 
1486   DAG.getMachineFunction().getFrameInfo().setFrameAddressIsTaken(true);
1487   EVT VT = Op.getValueType();
1488   Register FP =
1489       Subtarget->getRegisterInfo()->getFrameRegister(DAG.getMachineFunction());
1490   return DAG.getCopyFromReg(DAG.getEntryNode(), SDLoc(Op), FP, VT);
1491 }
1492 
1493 SDValue
1494 WebAssemblyTargetLowering::LowerGlobalTLSAddress(SDValue Op,
1495                                                  SelectionDAG &DAG) const {
1496   SDLoc DL(Op);
1497   const auto *GA = cast<GlobalAddressSDNode>(Op);
1498   MVT PtrVT = getPointerTy(DAG.getDataLayout());
1499 
1500   MachineFunction &MF = DAG.getMachineFunction();
1501   if (!MF.getSubtarget<WebAssemblySubtarget>().hasBulkMemory())
1502     report_fatal_error("cannot use thread-local storage without bulk memory",
1503                        false);
1504 
1505   const GlobalValue *GV = GA->getGlobal();
1506 
1507   // Currently Emscripten does not support dynamic linking with threads.
1508   // Therefore, if we have thread-local storage, only the local-exec model
1509   // is possible.
1510   // TODO: remove this and implement proper TLS models once Emscripten
1511   // supports dynamic linking with threads.
1512   if (GV->getThreadLocalMode() != GlobalValue::LocalExecTLSModel &&
1513       !Subtarget->getTargetTriple().isOSEmscripten()) {
1514     report_fatal_error("only -ftls-model=local-exec is supported for now on "
1515                        "non-Emscripten OSes: variable " +
1516                            GV->getName(),
1517                        false);
1518   }
1519 
1520   auto GlobalGet = PtrVT == MVT::i64 ? WebAssembly::GLOBAL_GET_I64
1521                                      : WebAssembly::GLOBAL_GET_I32;
1522   const char *BaseName = MF.createExternalSymbolName("__tls_base");
1523 
1524   SDValue BaseAddr(
1525       DAG.getMachineNode(GlobalGet, DL, PtrVT,
1526                          DAG.getTargetExternalSymbol(BaseName, PtrVT)),
1527       0);
1528 
1529   SDValue TLSOffset = DAG.getTargetGlobalAddress(
1530       GV, DL, PtrVT, GA->getOffset(), WebAssemblyII::MO_TLS_BASE_REL);
1531   SDValue SymAddr = DAG.getNode(WebAssemblyISD::Wrapper, DL, PtrVT, TLSOffset);
1532 
1533   return DAG.getNode(ISD::ADD, DL, PtrVT, BaseAddr, SymAddr);
1534 }
1535 
1536 SDValue WebAssemblyTargetLowering::LowerGlobalAddress(SDValue Op,
1537                                                       SelectionDAG &DAG) const {
1538   SDLoc DL(Op);
1539   const auto *GA = cast<GlobalAddressSDNode>(Op);
1540   EVT VT = Op.getValueType();
1541   assert(GA->getTargetFlags() == 0 &&
1542          "Unexpected target flags on generic GlobalAddressSDNode");
1543   if (!WebAssembly::isValidAddressSpace(GA->getAddressSpace()))
1544     fail(DL, DAG, "Invalid address space for WebAssembly target");
1545 
1546   unsigned OperandFlags = 0;
1547   if (isPositionIndependent()) {
1548     const GlobalValue *GV = GA->getGlobal();
1549     if (getTargetMachine().shouldAssumeDSOLocal(*GV->getParent(), GV)) {
1550       MachineFunction &MF = DAG.getMachineFunction();
1551       MVT PtrVT = getPointerTy(MF.getDataLayout());
1552       const char *BaseName;
1553       if (GV->getValueType()->isFunctionTy()) {
1554         BaseName = MF.createExternalSymbolName("__table_base");
1555         OperandFlags = WebAssemblyII::MO_TABLE_BASE_REL;
1556       }
1557       else {
1558         BaseName = MF.createExternalSymbolName("__memory_base");
1559         OperandFlags = WebAssemblyII::MO_MEMORY_BASE_REL;
1560       }
1561       SDValue BaseAddr =
1562           DAG.getNode(WebAssemblyISD::Wrapper, DL, PtrVT,
1563                       DAG.getTargetExternalSymbol(BaseName, PtrVT));
1564 
1565       SDValue SymAddr = DAG.getNode(
1566           WebAssemblyISD::WrapperPIC, DL, VT,
1567           DAG.getTargetGlobalAddress(GA->getGlobal(), DL, VT, GA->getOffset(),
1568                                      OperandFlags));
1569 
1570       return DAG.getNode(ISD::ADD, DL, VT, BaseAddr, SymAddr);
1571     } else {
1572       OperandFlags = WebAssemblyII::MO_GOT;
1573     }
1574   }
1575 
1576   return DAG.getNode(WebAssemblyISD::Wrapper, DL, VT,
1577                      DAG.getTargetGlobalAddress(GA->getGlobal(), DL, VT,
1578                                                 GA->getOffset(), OperandFlags));
1579 }
1580 
1581 SDValue
1582 WebAssemblyTargetLowering::LowerExternalSymbol(SDValue Op,
1583                                                SelectionDAG &DAG) const {
1584   SDLoc DL(Op);
1585   const auto *ES = cast<ExternalSymbolSDNode>(Op);
1586   EVT VT = Op.getValueType();
1587   assert(ES->getTargetFlags() == 0 &&
1588          "Unexpected target flags on generic ExternalSymbolSDNode");
1589   return DAG.getNode(WebAssemblyISD::Wrapper, DL, VT,
1590                      DAG.getTargetExternalSymbol(ES->getSymbol(), VT));
1591 }
1592 
1593 SDValue WebAssemblyTargetLowering::LowerJumpTable(SDValue Op,
1594                                                   SelectionDAG &DAG) const {
1595   // There's no need for a Wrapper node because we always incorporate a jump
1596   // table operand into a BR_TABLE instruction, rather than ever
1597   // materializing it in a register.
1598   const JumpTableSDNode *JT = cast<JumpTableSDNode>(Op);
1599   return DAG.getTargetJumpTable(JT->getIndex(), Op.getValueType(),
1600                                 JT->getTargetFlags());
1601 }
1602 
1603 SDValue WebAssemblyTargetLowering::LowerBR_JT(SDValue Op,
1604                                               SelectionDAG &DAG) const {
1605   SDLoc DL(Op);
1606   SDValue Chain = Op.getOperand(0);
1607   const auto *JT = cast<JumpTableSDNode>(Op.getOperand(1));
1608   SDValue Index = Op.getOperand(2);
1609   assert(JT->getTargetFlags() == 0 && "WebAssembly doesn't set target flags");
1610 
1611   SmallVector<SDValue, 8> Ops;
1612   Ops.push_back(Chain);
1613   Ops.push_back(Index);
1614 
1615   MachineJumpTableInfo *MJTI = DAG.getMachineFunction().getJumpTableInfo();
1616   const auto &MBBs = MJTI->getJumpTables()[JT->getIndex()].MBBs;
1617 
1618   // Add an operand for each case.
1619   for (auto MBB : MBBs)
1620     Ops.push_back(DAG.getBasicBlock(MBB));
1621 
1622   // Add the first MBB as a dummy default target for now. This will be replaced
1623   // with the proper default target (and the preceding range check eliminated)
1624   // if possible by WebAssemblyFixBrTableDefaults.
1625   Ops.push_back(DAG.getBasicBlock(*MBBs.begin()));
1626   return DAG.getNode(WebAssemblyISD::BR_TABLE, DL, MVT::Other, Ops);
1627 }
1628 
1629 SDValue WebAssemblyTargetLowering::LowerVASTART(SDValue Op,
1630                                                 SelectionDAG &DAG) const {
1631   SDLoc DL(Op);
1632   EVT PtrVT = getPointerTy(DAG.getMachineFunction().getDataLayout());
1633 
1634   auto *MFI = DAG.getMachineFunction().getInfo<WebAssemblyFunctionInfo>();
1635   const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
1636 
1637   SDValue ArgN = DAG.getCopyFromReg(DAG.getEntryNode(), DL,
1638                                     MFI->getVarargBufferVreg(), PtrVT);
1639   return DAG.getStore(Op.getOperand(0), DL, ArgN, Op.getOperand(1),
1640                       MachinePointerInfo(SV));
1641 }
1642 
1643 static SDValue getCppExceptionSymNode(SDValue Op, unsigned TagIndex,
1644                                       SelectionDAG &DAG) {
1645   // We only support C++ exceptions for now
1646   int Tag =
1647       cast<ConstantSDNode>(Op.getOperand(TagIndex).getNode())->getZExtValue();
1648   if (Tag != WebAssembly::CPP_EXCEPTION)
1649     llvm_unreachable("Invalid tag: We only support C++ exceptions for now");
1650   auto &MF = DAG.getMachineFunction();
1651   const auto &TLI = DAG.getTargetLoweringInfo();
1652   MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout());
1653   const char *SymName = MF.createExternalSymbolName("__cpp_exception");
1654   return DAG.getNode(WebAssemblyISD::Wrapper, SDLoc(Op), PtrVT,
1655                      DAG.getTargetExternalSymbol(SymName, PtrVT));
1656 }
1657 
1658 SDValue WebAssemblyTargetLowering::LowerIntrinsic(SDValue Op,
1659                                                   SelectionDAG &DAG) const {
1660   MachineFunction &MF = DAG.getMachineFunction();
1661   unsigned IntNo;
1662   switch (Op.getOpcode()) {
1663   case ISD::INTRINSIC_VOID:
1664   case ISD::INTRINSIC_W_CHAIN:
1665     IntNo = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
1666     break;
1667   case ISD::INTRINSIC_WO_CHAIN:
1668     IntNo = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
1669     break;
1670   default:
1671     llvm_unreachable("Invalid intrinsic");
1672   }
1673   SDLoc DL(Op);
1674 
1675   switch (IntNo) {
1676   default:
1677     return SDValue(); // Don't custom lower most intrinsics.
1678 
1679   case Intrinsic::wasm_lsda: {
1680     EVT VT = Op.getValueType();
1681     const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1682     MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout());
1683     auto &Context = MF.getMMI().getContext();
1684     MCSymbol *S = Context.getOrCreateSymbol(Twine("GCC_except_table") +
1685                                             Twine(MF.getFunctionNumber()));
1686     return DAG.getNode(WebAssemblyISD::Wrapper, DL, VT,
1687                        DAG.getMCSymbol(S, PtrVT));
1688   }
1689 
1690   case Intrinsic::wasm_throw: {
1691     SDValue SymNode = getCppExceptionSymNode(Op, 2, DAG);
1692     return DAG.getNode(WebAssemblyISD::THROW, DL,
1693                        MVT::Other, // outchain type
1694                        {
1695                            Op.getOperand(0), // inchain
1696                            SymNode,          // exception symbol
1697                            Op.getOperand(3)  // thrown value
1698                        });
1699   }
1700 
1701   case Intrinsic::wasm_catch: {
1702     SDValue SymNode = getCppExceptionSymNode(Op, 2, DAG);
1703     return DAG.getNode(WebAssemblyISD::CATCH, DL,
1704                        {
1705                            MVT::i32,  // outchain type
1706                            MVT::Other // return value
1707                        },
1708                        {
1709                            Op.getOperand(0), // inchain
1710                            SymNode           // exception symbol
1711                        });
1712   }
1713 
1714   case Intrinsic::wasm_shuffle: {
1715     // Drop in-chain and replace undefs, but otherwise pass through unchanged
1716     SDValue Ops[18];
1717     size_t OpIdx = 0;
1718     Ops[OpIdx++] = Op.getOperand(1);
1719     Ops[OpIdx++] = Op.getOperand(2);
1720     while (OpIdx < 18) {
1721       const SDValue &MaskIdx = Op.getOperand(OpIdx + 1);
1722       if (MaskIdx.isUndef() ||
1723           cast<ConstantSDNode>(MaskIdx.getNode())->getZExtValue() >= 32) {
1724         Ops[OpIdx++] = DAG.getConstant(0, DL, MVT::i32);
1725       } else {
1726         Ops[OpIdx++] = MaskIdx;
1727       }
1728     }
1729     return DAG.getNode(WebAssemblyISD::SHUFFLE, DL, Op.getValueType(), Ops);
1730   }
1731   }
1732 }
1733 
1734 SDValue
1735 WebAssemblyTargetLowering::LowerSIGN_EXTEND_INREG(SDValue Op,
1736                                                   SelectionDAG &DAG) const {
1737   SDLoc DL(Op);
1738   // If sign extension operations are disabled, allow sext_inreg only if operand
1739   // is a vector extract of an i8 or i16 lane. SIMD does not depend on sign
1740   // extension operations, but allowing sext_inreg in this context lets us have
1741   // simple patterns to select extract_lane_s instructions. Expanding sext_inreg
1742   // everywhere would be simpler in this file, but would necessitate large and
1743   // brittle patterns to undo the expansion and select extract_lane_s
1744   // instructions.
1745   assert(!Subtarget->hasSignExt() && Subtarget->hasSIMD128());
1746   if (Op.getOperand(0).getOpcode() != ISD::EXTRACT_VECTOR_ELT)
1747     return SDValue();
1748 
1749   const SDValue &Extract = Op.getOperand(0);
1750   MVT VecT = Extract.getOperand(0).getSimpleValueType();
1751   if (VecT.getVectorElementType().getSizeInBits() > 32)
1752     return SDValue();
1753   MVT ExtractedLaneT =
1754       cast<VTSDNode>(Op.getOperand(1).getNode())->getVT().getSimpleVT();
1755   MVT ExtractedVecT =
1756       MVT::getVectorVT(ExtractedLaneT, 128 / ExtractedLaneT.getSizeInBits());
1757   if (ExtractedVecT == VecT)
1758     return Op;
1759 
1760   // Bitcast vector to appropriate type to ensure ISel pattern coverage
1761   const SDNode *Index = Extract.getOperand(1).getNode();
1762   if (!isa<ConstantSDNode>(Index))
1763     return SDValue();
1764   unsigned IndexVal = cast<ConstantSDNode>(Index)->getZExtValue();
1765   unsigned Scale =
1766       ExtractedVecT.getVectorNumElements() / VecT.getVectorNumElements();
1767   assert(Scale > 1);
1768   SDValue NewIndex =
1769       DAG.getConstant(IndexVal * Scale, DL, Index->getValueType(0));
1770   SDValue NewExtract = DAG.getNode(
1771       ISD::EXTRACT_VECTOR_ELT, DL, Extract.getValueType(),
1772       DAG.getBitcast(ExtractedVecT, Extract.getOperand(0)), NewIndex);
1773   return DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, Op.getValueType(), NewExtract,
1774                      Op.getOperand(1));
1775 }
1776 
1777 SDValue WebAssemblyTargetLowering::LowerBUILD_VECTOR(SDValue Op,
1778                                                      SelectionDAG &DAG) const {
1779   SDLoc DL(Op);
1780   const EVT VecT = Op.getValueType();
1781   const EVT LaneT = Op.getOperand(0).getValueType();
1782   const size_t Lanes = Op.getNumOperands();
1783   bool CanSwizzle = VecT == MVT::v16i8;
1784 
1785   // BUILD_VECTORs are lowered to the instruction that initializes the highest
1786   // possible number of lanes at once followed by a sequence of replace_lane
1787   // instructions to individually initialize any remaining lanes.
1788 
1789   // TODO: Tune this. For example, lanewise swizzling is very expensive, so
1790   // swizzled lanes should be given greater weight.
1791 
1792   // TODO: Investigate looping rather than always extracting/replacing specific
1793   // lanes to fill gaps.
1794 
1795   auto IsConstant = [](const SDValue &V) {
1796     return V.getOpcode() == ISD::Constant || V.getOpcode() == ISD::ConstantFP;
1797   };
1798 
1799   // Returns the source vector and index vector pair if they exist. Checks for:
1800   //   (extract_vector_elt
1801   //     $src,
1802   //     (sign_extend_inreg (extract_vector_elt $indices, $i))
1803   //   )
1804   auto GetSwizzleSrcs = [](size_t I, const SDValue &Lane) {
1805     auto Bail = std::make_pair(SDValue(), SDValue());
1806     if (Lane->getOpcode() != ISD::EXTRACT_VECTOR_ELT)
1807       return Bail;
1808     const SDValue &SwizzleSrc = Lane->getOperand(0);
1809     const SDValue &IndexExt = Lane->getOperand(1);
1810     if (IndexExt->getOpcode() != ISD::SIGN_EXTEND_INREG)
1811       return Bail;
1812     const SDValue &Index = IndexExt->getOperand(0);
1813     if (Index->getOpcode() != ISD::EXTRACT_VECTOR_ELT)
1814       return Bail;
1815     const SDValue &SwizzleIndices = Index->getOperand(0);
1816     if (SwizzleSrc.getValueType() != MVT::v16i8 ||
1817         SwizzleIndices.getValueType() != MVT::v16i8 ||
1818         Index->getOperand(1)->getOpcode() != ISD::Constant ||
1819         Index->getConstantOperandVal(1) != I)
1820       return Bail;
1821     return std::make_pair(SwizzleSrc, SwizzleIndices);
1822   };
1823 
1824   // If the lane is extracted from another vector at a constant index, return
1825   // that vector. The source vector must not have more lanes than the dest
1826   // because the shufflevector indices are in terms of the destination lanes and
1827   // would not be able to address the smaller individual source lanes.
1828   auto GetShuffleSrc = [&](const SDValue &Lane) {
1829     if (Lane->getOpcode() != ISD::EXTRACT_VECTOR_ELT)
1830       return SDValue();
1831     if (!isa<ConstantSDNode>(Lane->getOperand(1).getNode()))
1832       return SDValue();
1833     if (Lane->getOperand(0).getValueType().getVectorNumElements() >
1834         VecT.getVectorNumElements())
1835       return SDValue();
1836     return Lane->getOperand(0);
1837   };
1838 
1839   using ValueEntry = std::pair<SDValue, size_t>;
1840   SmallVector<ValueEntry, 16> SplatValueCounts;
1841 
1842   using SwizzleEntry = std::pair<std::pair<SDValue, SDValue>, size_t>;
1843   SmallVector<SwizzleEntry, 16> SwizzleCounts;
1844 
1845   using ShuffleEntry = std::pair<SDValue, size_t>;
1846   SmallVector<ShuffleEntry, 16> ShuffleCounts;
1847 
1848   auto AddCount = [](auto &Counts, const auto &Val) {
1849     auto CountIt =
1850         llvm::find_if(Counts, [&Val](auto E) { return E.first == Val; });
1851     if (CountIt == Counts.end()) {
1852       Counts.emplace_back(Val, 1);
1853     } else {
1854       CountIt->second++;
1855     }
1856   };
1857 
1858   auto GetMostCommon = [](auto &Counts) {
1859     auto CommonIt =
1860         std::max_element(Counts.begin(), Counts.end(),
1861                          [](auto A, auto B) { return A.second < B.second; });
1862     assert(CommonIt != Counts.end() && "Unexpected all-undef build_vector");
1863     return *CommonIt;
1864   };
1865 
1866   size_t NumConstantLanes = 0;
1867 
1868   // Count eligible lanes for each type of vector creation op
1869   for (size_t I = 0; I < Lanes; ++I) {
1870     const SDValue &Lane = Op->getOperand(I);
1871     if (Lane.isUndef())
1872       continue;
1873 
1874     AddCount(SplatValueCounts, Lane);
1875 
1876     if (IsConstant(Lane))
1877       NumConstantLanes++;
1878     if (auto ShuffleSrc = GetShuffleSrc(Lane))
1879       AddCount(ShuffleCounts, ShuffleSrc);
1880     if (CanSwizzle) {
1881       auto SwizzleSrcs = GetSwizzleSrcs(I, Lane);
1882       if (SwizzleSrcs.first)
1883         AddCount(SwizzleCounts, SwizzleSrcs);
1884     }
1885   }
1886 
1887   SDValue SplatValue;
1888   size_t NumSplatLanes;
1889   std::tie(SplatValue, NumSplatLanes) = GetMostCommon(SplatValueCounts);
1890 
1891   SDValue SwizzleSrc;
1892   SDValue SwizzleIndices;
1893   size_t NumSwizzleLanes = 0;
1894   if (SwizzleCounts.size())
1895     std::forward_as_tuple(std::tie(SwizzleSrc, SwizzleIndices),
1896                           NumSwizzleLanes) = GetMostCommon(SwizzleCounts);
1897 
1898   // Shuffles can draw from up to two vectors, so find the two most common
1899   // sources.
1900   SDValue ShuffleSrc1, ShuffleSrc2;
1901   size_t NumShuffleLanes = 0;
1902   if (ShuffleCounts.size()) {
1903     std::tie(ShuffleSrc1, NumShuffleLanes) = GetMostCommon(ShuffleCounts);
1904     ShuffleCounts.erase(std::remove_if(ShuffleCounts.begin(),
1905                                        ShuffleCounts.end(),
1906                                        [&](const auto &Pair) {
1907                                          return Pair.first == ShuffleSrc1;
1908                                        }),
1909                         ShuffleCounts.end());
1910   }
1911   if (ShuffleCounts.size()) {
1912     size_t AdditionalShuffleLanes;
1913     std::tie(ShuffleSrc2, AdditionalShuffleLanes) =
1914         GetMostCommon(ShuffleCounts);
1915     NumShuffleLanes += AdditionalShuffleLanes;
1916   }
1917 
1918   // Predicate returning true if the lane is properly initialized by the
1919   // original instruction
1920   std::function<bool(size_t, const SDValue &)> IsLaneConstructed;
1921   SDValue Result;
1922   // Prefer swizzles over shuffles over vector consts over splats
1923   if (NumSwizzleLanes >= NumShuffleLanes &&
1924       NumSwizzleLanes >= NumConstantLanes && NumSwizzleLanes >= NumSplatLanes) {
1925     Result = DAG.getNode(WebAssemblyISD::SWIZZLE, DL, VecT, SwizzleSrc,
1926                          SwizzleIndices);
1927     auto Swizzled = std::make_pair(SwizzleSrc, SwizzleIndices);
1928     IsLaneConstructed = [&, Swizzled](size_t I, const SDValue &Lane) {
1929       return Swizzled == GetSwizzleSrcs(I, Lane);
1930     };
1931   } else if (NumShuffleLanes >= NumConstantLanes &&
1932              NumShuffleLanes >= NumSplatLanes) {
1933     size_t DestLaneSize = VecT.getVectorElementType().getFixedSizeInBits() / 8;
1934     size_t DestLaneCount = VecT.getVectorNumElements();
1935     size_t Scale1 = 1;
1936     size_t Scale2 = 1;
1937     SDValue Src1 = ShuffleSrc1;
1938     SDValue Src2 = ShuffleSrc2 ? ShuffleSrc2 : DAG.getUNDEF(VecT);
1939     if (Src1.getValueType() != VecT) {
1940       size_t LaneSize =
1941           Src1.getValueType().getVectorElementType().getFixedSizeInBits() / 8;
1942       assert(LaneSize > DestLaneSize);
1943       Scale1 = LaneSize / DestLaneSize;
1944       Src1 = DAG.getBitcast(VecT, Src1);
1945     }
1946     if (Src2.getValueType() != VecT) {
1947       size_t LaneSize =
1948           Src2.getValueType().getVectorElementType().getFixedSizeInBits() / 8;
1949       assert(LaneSize > DestLaneSize);
1950       Scale2 = LaneSize / DestLaneSize;
1951       Src2 = DAG.getBitcast(VecT, Src2);
1952     }
1953 
1954     int Mask[16];
1955     assert(DestLaneCount <= 16);
1956     for (size_t I = 0; I < DestLaneCount; ++I) {
1957       const SDValue &Lane = Op->getOperand(I);
1958       SDValue Src = GetShuffleSrc(Lane);
1959       if (Src == ShuffleSrc1) {
1960         Mask[I] = Lane->getConstantOperandVal(1) * Scale1;
1961       } else if (Src && Src == ShuffleSrc2) {
1962         Mask[I] = DestLaneCount + Lane->getConstantOperandVal(1) * Scale2;
1963       } else {
1964         Mask[I] = -1;
1965       }
1966     }
1967     ArrayRef<int> MaskRef(Mask, DestLaneCount);
1968     Result = DAG.getVectorShuffle(VecT, DL, Src1, Src2, MaskRef);
1969     IsLaneConstructed = [&](size_t, const SDValue &Lane) {
1970       auto Src = GetShuffleSrc(Lane);
1971       return Src == ShuffleSrc1 || (Src && Src == ShuffleSrc2);
1972     };
1973   } else if (NumConstantLanes >= NumSplatLanes) {
1974     SmallVector<SDValue, 16> ConstLanes;
1975     for (const SDValue &Lane : Op->op_values()) {
1976       if (IsConstant(Lane)) {
1977         ConstLanes.push_back(Lane);
1978       } else if (LaneT.isFloatingPoint()) {
1979         ConstLanes.push_back(DAG.getConstantFP(0, DL, LaneT));
1980       } else {
1981         ConstLanes.push_back(DAG.getConstant(0, DL, LaneT));
1982       }
1983     }
1984     Result = DAG.getBuildVector(VecT, DL, ConstLanes);
1985     IsLaneConstructed = [&IsConstant](size_t _, const SDValue &Lane) {
1986       return IsConstant(Lane);
1987     };
1988   } else {
1989     // Use a splat, but possibly a load_splat
1990     LoadSDNode *SplattedLoad;
1991     if ((SplattedLoad = dyn_cast<LoadSDNode>(SplatValue)) &&
1992         SplattedLoad->getMemoryVT() == VecT.getVectorElementType()) {
1993       Result = DAG.getMemIntrinsicNode(
1994           WebAssemblyISD::LOAD_SPLAT, DL, DAG.getVTList(VecT),
1995           {SplattedLoad->getChain(), SplattedLoad->getBasePtr(),
1996            SplattedLoad->getOffset()},
1997           SplattedLoad->getMemoryVT(), SplattedLoad->getMemOperand());
1998     } else {
1999       Result = DAG.getSplatBuildVector(VecT, DL, SplatValue);
2000     }
2001     IsLaneConstructed = [&SplatValue](size_t _, const SDValue &Lane) {
2002       return Lane == SplatValue;
2003     };
2004   }
2005 
2006   assert(Result);
2007   assert(IsLaneConstructed);
2008 
2009   // Add replace_lane instructions for any unhandled values
2010   for (size_t I = 0; I < Lanes; ++I) {
2011     const SDValue &Lane = Op->getOperand(I);
2012     if (!Lane.isUndef() && !IsLaneConstructed(I, Lane))
2013       Result = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, VecT, Result, Lane,
2014                            DAG.getConstant(I, DL, MVT::i32));
2015   }
2016 
2017   return Result;
2018 }
2019 
2020 SDValue
2021 WebAssemblyTargetLowering::LowerVECTOR_SHUFFLE(SDValue Op,
2022                                                SelectionDAG &DAG) const {
2023   SDLoc DL(Op);
2024   ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(Op.getNode())->getMask();
2025   MVT VecType = Op.getOperand(0).getSimpleValueType();
2026   assert(VecType.is128BitVector() && "Unexpected shuffle vector type");
2027   size_t LaneBytes = VecType.getVectorElementType().getSizeInBits() / 8;
2028 
2029   // Space for two vector args and sixteen mask indices
2030   SDValue Ops[18];
2031   size_t OpIdx = 0;
2032   Ops[OpIdx++] = Op.getOperand(0);
2033   Ops[OpIdx++] = Op.getOperand(1);
2034 
2035   // Expand mask indices to byte indices and materialize them as operands
2036   for (int M : Mask) {
2037     for (size_t J = 0; J < LaneBytes; ++J) {
2038       // Lower undefs (represented by -1 in mask) to zero
2039       uint64_t ByteIndex = M == -1 ? 0 : (uint64_t)M * LaneBytes + J;
2040       Ops[OpIdx++] = DAG.getConstant(ByteIndex, DL, MVT::i32);
2041     }
2042   }
2043 
2044   return DAG.getNode(WebAssemblyISD::SHUFFLE, DL, Op.getValueType(), Ops);
2045 }
2046 
2047 SDValue WebAssemblyTargetLowering::LowerSETCC(SDValue Op,
2048                                               SelectionDAG &DAG) const {
2049   SDLoc DL(Op);
2050   // The legalizer does not know how to expand the unsupported comparison modes
2051   // of i64x2 vectors, so we manually unroll them here.
2052   assert(Op->getOperand(0)->getSimpleValueType(0) == MVT::v2i64);
2053   SmallVector<SDValue, 2> LHS, RHS;
2054   DAG.ExtractVectorElements(Op->getOperand(0), LHS);
2055   DAG.ExtractVectorElements(Op->getOperand(1), RHS);
2056   const SDValue &CC = Op->getOperand(2);
2057   auto MakeLane = [&](unsigned I) {
2058     return DAG.getNode(ISD::SELECT_CC, DL, MVT::i64, LHS[I], RHS[I],
2059                        DAG.getConstant(uint64_t(-1), DL, MVT::i64),
2060                        DAG.getConstant(uint64_t(0), DL, MVT::i64), CC);
2061   };
2062   return DAG.getBuildVector(Op->getValueType(0), DL,
2063                             {MakeLane(0), MakeLane(1)});
2064 }
2065 
2066 SDValue
2067 WebAssemblyTargetLowering::LowerAccessVectorElement(SDValue Op,
2068                                                     SelectionDAG &DAG) const {
2069   // Allow constant lane indices, expand variable lane indices
2070   SDNode *IdxNode = Op.getOperand(Op.getNumOperands() - 1).getNode();
2071   if (isa<ConstantSDNode>(IdxNode) || IdxNode->isUndef())
2072     return Op;
2073   else
2074     // Perform default expansion
2075     return SDValue();
2076 }
2077 
2078 static SDValue unrollVectorShift(SDValue Op, SelectionDAG &DAG) {
2079   EVT LaneT = Op.getSimpleValueType().getVectorElementType();
2080   // 32-bit and 64-bit unrolled shifts will have proper semantics
2081   if (LaneT.bitsGE(MVT::i32))
2082     return DAG.UnrollVectorOp(Op.getNode());
2083   // Otherwise mask the shift value to get proper semantics from 32-bit shift
2084   SDLoc DL(Op);
2085   size_t NumLanes = Op.getSimpleValueType().getVectorNumElements();
2086   SDValue Mask = DAG.getConstant(LaneT.getSizeInBits() - 1, DL, MVT::i32);
2087   unsigned ShiftOpcode = Op.getOpcode();
2088   SmallVector<SDValue, 16> ShiftedElements;
2089   DAG.ExtractVectorElements(Op.getOperand(0), ShiftedElements, 0, 0, MVT::i32);
2090   SmallVector<SDValue, 16> ShiftElements;
2091   DAG.ExtractVectorElements(Op.getOperand(1), ShiftElements, 0, 0, MVT::i32);
2092   SmallVector<SDValue, 16> UnrolledOps;
2093   for (size_t i = 0; i < NumLanes; ++i) {
2094     SDValue MaskedShiftValue =
2095         DAG.getNode(ISD::AND, DL, MVT::i32, ShiftElements[i], Mask);
2096     SDValue ShiftedValue = ShiftedElements[i];
2097     if (ShiftOpcode == ISD::SRA)
2098       ShiftedValue = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i32,
2099                                  ShiftedValue, DAG.getValueType(LaneT));
2100     UnrolledOps.push_back(
2101         DAG.getNode(ShiftOpcode, DL, MVT::i32, ShiftedValue, MaskedShiftValue));
2102   }
2103   return DAG.getBuildVector(Op.getValueType(), DL, UnrolledOps);
2104 }
2105 
2106 SDValue WebAssemblyTargetLowering::LowerShift(SDValue Op,
2107                                               SelectionDAG &DAG) const {
2108   SDLoc DL(Op);
2109 
2110   // Only manually lower vector shifts
2111   assert(Op.getSimpleValueType().isVector());
2112 
2113   auto ShiftVal = DAG.getSplatValue(Op.getOperand(1));
2114   if (!ShiftVal)
2115     return unrollVectorShift(Op, DAG);
2116 
2117   // Use anyext because none of the high bits can affect the shift
2118   ShiftVal = DAG.getAnyExtOrTrunc(ShiftVal, DL, MVT::i32);
2119 
2120   unsigned Opcode;
2121   switch (Op.getOpcode()) {
2122   case ISD::SHL:
2123     Opcode = WebAssemblyISD::VEC_SHL;
2124     break;
2125   case ISD::SRA:
2126     Opcode = WebAssemblyISD::VEC_SHR_S;
2127     break;
2128   case ISD::SRL:
2129     Opcode = WebAssemblyISD::VEC_SHR_U;
2130     break;
2131   default:
2132     llvm_unreachable("unexpected opcode");
2133   }
2134 
2135   return DAG.getNode(Opcode, DL, Op.getValueType(), Op.getOperand(0), ShiftVal);
2136 }
2137 
2138 SDValue WebAssemblyTargetLowering::LowerFP_TO_INT_SAT(SDValue Op,
2139                                                       SelectionDAG &DAG) const {
2140   SDLoc DL(Op);
2141   EVT ResT = Op.getValueType();
2142   EVT SatVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
2143 
2144   if ((ResT == MVT::i32 || ResT == MVT::i64) &&
2145       (SatVT == MVT::i32 || SatVT == MVT::i64))
2146     return Op;
2147 
2148   if (ResT == MVT::v4i32 && SatVT == MVT::i32)
2149     return Op;
2150 
2151   return SDValue();
2152 }
2153 
2154 //===----------------------------------------------------------------------===//
2155 //   Custom DAG combine hooks
2156 //===----------------------------------------------------------------------===//
2157 static SDValue
2158 performVECTOR_SHUFFLECombine(SDNode *N, TargetLowering::DAGCombinerInfo &DCI) {
2159   auto &DAG = DCI.DAG;
2160   auto Shuffle = cast<ShuffleVectorSDNode>(N);
2161 
2162   // Hoist vector bitcasts that don't change the number of lanes out of unary
2163   // shuffles, where they are less likely to get in the way of other combines.
2164   // (shuffle (vNxT1 (bitcast (vNxT0 x))), undef, mask) ->
2165   //  (vNxT1 (bitcast (vNxT0 (shuffle x, undef, mask))))
2166   SDValue Bitcast = N->getOperand(0);
2167   if (Bitcast.getOpcode() != ISD::BITCAST)
2168     return SDValue();
2169   if (!N->getOperand(1).isUndef())
2170     return SDValue();
2171   SDValue CastOp = Bitcast.getOperand(0);
2172   MVT SrcType = CastOp.getSimpleValueType();
2173   MVT DstType = Bitcast.getSimpleValueType();
2174   if (!SrcType.is128BitVector() ||
2175       SrcType.getVectorNumElements() != DstType.getVectorNumElements())
2176     return SDValue();
2177   SDValue NewShuffle = DAG.getVectorShuffle(
2178       SrcType, SDLoc(N), CastOp, DAG.getUNDEF(SrcType), Shuffle->getMask());
2179   return DAG.getBitcast(DstType, NewShuffle);
2180 }
2181 
2182 static SDValue
2183 performVectorExtendCombine(SDNode *N, TargetLowering::DAGCombinerInfo &DCI) {
2184   auto &DAG = DCI.DAG;
2185   assert(N->getOpcode() == ISD::SIGN_EXTEND ||
2186          N->getOpcode() == ISD::ZERO_EXTEND);
2187 
2188   // Combine ({s,z}ext (extract_subvector src, i)) into a widening operation if
2189   // possible before the extract_subvector can be expanded.
2190   auto Extract = N->getOperand(0);
2191   if (Extract.getOpcode() != ISD::EXTRACT_SUBVECTOR)
2192     return SDValue();
2193   auto Source = Extract.getOperand(0);
2194   auto *IndexNode = dyn_cast<ConstantSDNode>(Extract.getOperand(1));
2195   if (IndexNode == nullptr)
2196     return SDValue();
2197   auto Index = IndexNode->getZExtValue();
2198 
2199   // Only v8i8, v4i16, and v2i32 extracts can be widened, and only if the
2200   // extracted subvector is the low or high half of its source.
2201   EVT ResVT = N->getValueType(0);
2202   if (ResVT == MVT::v8i16) {
2203     if (Extract.getValueType() != MVT::v8i8 ||
2204         Source.getValueType() != MVT::v16i8 || (Index != 0 && Index != 8))
2205       return SDValue();
2206   } else if (ResVT == MVT::v4i32) {
2207     if (Extract.getValueType() != MVT::v4i16 ||
2208         Source.getValueType() != MVT::v8i16 || (Index != 0 && Index != 4))
2209       return SDValue();
2210   } else if (ResVT == MVT::v2i64) {
2211     if (Extract.getValueType() != MVT::v2i32 ||
2212         Source.getValueType() != MVT::v4i32 || (Index != 0 && Index != 2))
2213       return SDValue();
2214   } else {
2215     return SDValue();
2216   }
2217 
2218   bool IsSext = N->getOpcode() == ISD::SIGN_EXTEND;
2219   bool IsLow = Index == 0;
2220 
2221   unsigned Op = IsSext ? (IsLow ? WebAssemblyISD::EXTEND_LOW_S
2222                                 : WebAssemblyISD::EXTEND_HIGH_S)
2223                        : (IsLow ? WebAssemblyISD::EXTEND_LOW_U
2224                                 : WebAssemblyISD::EXTEND_HIGH_U);
2225 
2226   return DAG.getNode(Op, SDLoc(N), ResVT, Source);
2227 }
2228 
2229 static SDValue
2230 performVectorConvertLowCombine(SDNode *N,
2231                                TargetLowering::DAGCombinerInfo &DCI) {
2232   auto &DAG = DCI.DAG;
2233 
2234   EVT ResVT = N->getValueType(0);
2235   if (ResVT != MVT::v2f64)
2236     return SDValue();
2237 
2238   auto GetWasmConversionOp = [](unsigned Op) {
2239     switch (Op) {
2240     case ISD::SINT_TO_FP:
2241       return WebAssemblyISD::CONVERT_LOW_S;
2242     case ISD::UINT_TO_FP:
2243       return WebAssemblyISD::CONVERT_LOW_U;
2244     case ISD::FP_EXTEND:
2245       return WebAssemblyISD::PROMOTE_LOW;
2246     }
2247     llvm_unreachable("unexpected op");
2248   };
2249 
2250   if (N->getOpcode() == ISD::EXTRACT_SUBVECTOR) {
2251     // Combine this:
2252     //
2253     //   (v2f64 (extract_subvector
2254     //     (v4f64 ({s,u}int_to_fp (v4i32 $x))), 0))
2255     //
2256     // into (f64x2.convert_low_i32x4_{s,u} $x).
2257     //
2258     // Or this:
2259     //
2260     //  (v2f64 (extract_subvector
2261     //    (v4f64 (fp_extend (v4f32 $x))), 0))
2262     //
2263     // into (f64x2.promote_low_f32x4 $x).
2264     auto Conversion = N->getOperand(0);
2265     auto ConversionOp = Conversion.getOpcode();
2266     MVT ExpectedSourceType;
2267     switch (ConversionOp) {
2268     case ISD::SINT_TO_FP:
2269     case ISD::UINT_TO_FP:
2270       ExpectedSourceType = MVT::v4i32;
2271       break;
2272     case ISD::FP_EXTEND:
2273       ExpectedSourceType = MVT::v4f32;
2274       break;
2275     default:
2276       return SDValue();
2277     }
2278 
2279     if (Conversion.getValueType() != MVT::v4f64)
2280       return SDValue();
2281 
2282     auto Source = Conversion.getOperand(0);
2283     if (Source.getValueType() != ExpectedSourceType)
2284       return SDValue();
2285 
2286     auto IndexNode = dyn_cast<ConstantSDNode>(N->getOperand(1));
2287     if (IndexNode == nullptr || IndexNode->getZExtValue() != 0)
2288       return SDValue();
2289 
2290     auto Op = GetWasmConversionOp(ConversionOp);
2291     return DAG.getNode(Op, SDLoc(N), ResVT, Source);
2292   }
2293 
2294   // Combine this:
2295   //
2296   //   (v2f64 ({s,u}int_to_fp
2297   //     (v2i32 (extract_subvector (v4i32 $x), 0))))
2298   //
2299   // into (f64x2.convert_low_i32x4_{s,u} $x).
2300   //
2301   // Or this:
2302   //
2303   //   (v2f64 (fp_extend
2304   //     (v2f32 (extract_subvector (v4f32 $x), 0))))
2305   //
2306   // into (f64x2.promote_low_f32x4 $x).
2307   auto ConversionOp = N->getOpcode();
2308   MVT ExpectedExtractType;
2309   MVT ExpectedSourceType;
2310   switch (ConversionOp) {
2311   case ISD::SINT_TO_FP:
2312   case ISD::UINT_TO_FP:
2313     ExpectedExtractType = MVT::v2i32;
2314     ExpectedSourceType = MVT::v4i32;
2315     break;
2316   case ISD::FP_EXTEND:
2317     ExpectedExtractType = MVT::v2f32;
2318     ExpectedSourceType = MVT::v4f32;
2319     break;
2320   default:
2321     llvm_unreachable("unexpected opcode");
2322   }
2323 
2324   auto Extract = N->getOperand(0);
2325   if (Extract.getOpcode() != ISD::EXTRACT_SUBVECTOR)
2326     return SDValue();
2327 
2328   if (Extract.getValueType() != ExpectedExtractType)
2329     return SDValue();
2330 
2331   auto Source = Extract.getOperand(0);
2332   if (Source.getValueType() != ExpectedSourceType)
2333     return SDValue();
2334 
2335   auto *IndexNode = dyn_cast<ConstantSDNode>(Extract.getOperand(1));
2336   if (IndexNode == nullptr || IndexNode->getZExtValue() != 0)
2337     return SDValue();
2338 
2339   unsigned Op = GetWasmConversionOp(ConversionOp);
2340   return DAG.getNode(Op, SDLoc(N), ResVT, Source);
2341 }
2342 
2343 static SDValue
2344 performVectorTruncZeroCombine(SDNode *N, TargetLowering::DAGCombinerInfo &DCI) {
2345   auto &DAG = DCI.DAG;
2346 
2347   auto GetWasmConversionOp = [](unsigned Op) {
2348     switch (Op) {
2349     case ISD::FP_TO_SINT_SAT:
2350       return WebAssemblyISD::TRUNC_SAT_ZERO_S;
2351     case ISD::FP_TO_UINT_SAT:
2352       return WebAssemblyISD::TRUNC_SAT_ZERO_U;
2353     case ISD::FP_ROUND:
2354       return WebAssemblyISD::DEMOTE_ZERO;
2355     }
2356     llvm_unreachable("unexpected op");
2357   };
2358 
2359   auto IsZeroSplat = [](SDValue SplatVal) {
2360     auto *Splat = dyn_cast<BuildVectorSDNode>(SplatVal.getNode());
2361     APInt SplatValue, SplatUndef;
2362     unsigned SplatBitSize;
2363     bool HasAnyUndefs;
2364     return Splat &&
2365            Splat->isConstantSplat(SplatValue, SplatUndef, SplatBitSize,
2366                                   HasAnyUndefs) &&
2367            SplatValue == 0;
2368   };
2369 
2370   if (N->getOpcode() == ISD::CONCAT_VECTORS) {
2371     // Combine this:
2372     //
2373     //   (concat_vectors (v2i32 (fp_to_{s,u}int_sat $x, 32)), (v2i32 (splat 0)))
2374     //
2375     // into (i32x4.trunc_sat_f64x2_zero_{s,u} $x).
2376     //
2377     // Or this:
2378     //
2379     //   (concat_vectors (v2f32 (fp_round (v2f64 $x))), (v2f32 (splat 0)))
2380     //
2381     // into (f32x4.demote_zero_f64x2 $x).
2382     EVT ResVT;
2383     EVT ExpectedConversionType;
2384     auto Conversion = N->getOperand(0);
2385     auto ConversionOp = Conversion.getOpcode();
2386     switch (ConversionOp) {
2387     case ISD::FP_TO_SINT_SAT:
2388     case ISD::FP_TO_UINT_SAT:
2389       ResVT = MVT::v4i32;
2390       ExpectedConversionType = MVT::v2i32;
2391       break;
2392     case ISD::FP_ROUND:
2393       ResVT = MVT::v4f32;
2394       ExpectedConversionType = MVT::v2f32;
2395       break;
2396     default:
2397       return SDValue();
2398     }
2399 
2400     if (N->getValueType(0) != ResVT)
2401       return SDValue();
2402 
2403     if (Conversion.getValueType() != ExpectedConversionType)
2404       return SDValue();
2405 
2406     auto Source = Conversion.getOperand(0);
2407     if (Source.getValueType() != MVT::v2f64)
2408       return SDValue();
2409 
2410     if (!IsZeroSplat(N->getOperand(1)) ||
2411         N->getOperand(1).getValueType() != ExpectedConversionType)
2412       return SDValue();
2413 
2414     unsigned Op = GetWasmConversionOp(ConversionOp);
2415     return DAG.getNode(Op, SDLoc(N), ResVT, Source);
2416   }
2417 
2418   // Combine this:
2419   //
2420   //   (fp_to_{s,u}int_sat (concat_vectors $x, (v2f64 (splat 0))), 32)
2421   //
2422   // into (i32x4.trunc_sat_f64x2_zero_{s,u} $x).
2423   //
2424   // Or this:
2425   //
2426   //   (v4f32 (fp_round (concat_vectors $x, (v2f64 (splat 0)))))
2427   //
2428   // into (f32x4.demote_zero_f64x2 $x).
2429   EVT ResVT;
2430   auto ConversionOp = N->getOpcode();
2431   switch (ConversionOp) {
2432   case ISD::FP_TO_SINT_SAT:
2433   case ISD::FP_TO_UINT_SAT:
2434     ResVT = MVT::v4i32;
2435     break;
2436   case ISD::FP_ROUND:
2437     ResVT = MVT::v4f32;
2438     break;
2439   default:
2440     llvm_unreachable("unexpected op");
2441   }
2442 
2443   if (N->getValueType(0) != ResVT)
2444     return SDValue();
2445 
2446   auto Concat = N->getOperand(0);
2447   if (Concat.getValueType() != MVT::v4f64)
2448     return SDValue();
2449 
2450   auto Source = Concat.getOperand(0);
2451   if (Source.getValueType() != MVT::v2f64)
2452     return SDValue();
2453 
2454   if (!IsZeroSplat(Concat.getOperand(1)) ||
2455       Concat.getOperand(1).getValueType() != MVT::v2f64)
2456     return SDValue();
2457 
2458   unsigned Op = GetWasmConversionOp(ConversionOp);
2459   return DAG.getNode(Op, SDLoc(N), ResVT, Source);
2460 }
2461 
2462 SDValue
2463 WebAssemblyTargetLowering::PerformDAGCombine(SDNode *N,
2464                                              DAGCombinerInfo &DCI) const {
2465   switch (N->getOpcode()) {
2466   default:
2467     return SDValue();
2468   case ISD::VECTOR_SHUFFLE:
2469     return performVECTOR_SHUFFLECombine(N, DCI);
2470   case ISD::SIGN_EXTEND:
2471   case ISD::ZERO_EXTEND:
2472     return performVectorExtendCombine(N, DCI);
2473   case ISD::SINT_TO_FP:
2474   case ISD::UINT_TO_FP:
2475   case ISD::FP_EXTEND:
2476   case ISD::EXTRACT_SUBVECTOR:
2477     return performVectorConvertLowCombine(N, DCI);
2478   case ISD::FP_TO_SINT_SAT:
2479   case ISD::FP_TO_UINT_SAT:
2480   case ISD::FP_ROUND:
2481   case ISD::CONCAT_VECTORS:
2482     return performVectorTruncZeroCombine(N, DCI);
2483   }
2484 }
2485