1 //===-- WebAssemblyRegStackify.cpp - Register Stackification --------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 ///
9 /// \file
10 /// This file implements a register stacking pass.
11 ///
12 /// This pass reorders instructions to put register uses and defs in an order
13 /// such that they form single-use expression trees. Registers fitting this form
14 /// are then marked as "stackified", meaning references to them are replaced by
15 /// "push" and "pop" from the value stack.
16 ///
17 /// This is primarily a code size optimization, since temporary values on the
18 /// value stack don't need to be named.
19 ///
20 //===----------------------------------------------------------------------===//
21 
22 #include "MCTargetDesc/WebAssemblyMCTargetDesc.h" // for WebAssembly::ARGUMENT_*
23 #include "Utils/WebAssemblyUtilities.h"
24 #include "WebAssembly.h"
25 #include "WebAssemblyDebugValueManager.h"
26 #include "WebAssemblyMachineFunctionInfo.h"
27 #include "WebAssemblySubtarget.h"
28 #include "llvm/ADT/SmallPtrSet.h"
29 #include "llvm/Analysis/AliasAnalysis.h"
30 #include "llvm/CodeGen/LiveIntervals.h"
31 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h"
32 #include "llvm/CodeGen/MachineDominators.h"
33 #include "llvm/CodeGen/MachineInstrBuilder.h"
34 #include "llvm/CodeGen/MachineModuleInfoImpls.h"
35 #include "llvm/CodeGen/MachineRegisterInfo.h"
36 #include "llvm/CodeGen/Passes.h"
37 #include "llvm/Support/Debug.h"
38 #include "llvm/Support/raw_ostream.h"
39 #include <iterator>
40 using namespace llvm;
41 
42 #define DEBUG_TYPE "wasm-reg-stackify"
43 
44 namespace {
45 class WebAssemblyRegStackify final : public MachineFunctionPass {
46   StringRef getPassName() const override {
47     return "WebAssembly Register Stackify";
48   }
49 
50   void getAnalysisUsage(AnalysisUsage &AU) const override {
51     AU.setPreservesCFG();
52     AU.addRequired<MachineDominatorTree>();
53     AU.addRequired<LiveIntervals>();
54     AU.addPreserved<MachineBlockFrequencyInfo>();
55     AU.addPreserved<SlotIndexes>();
56     AU.addPreserved<LiveIntervals>();
57     AU.addPreservedID(LiveVariablesID);
58     AU.addPreserved<MachineDominatorTree>();
59     MachineFunctionPass::getAnalysisUsage(AU);
60   }
61 
62   bool runOnMachineFunction(MachineFunction &MF) override;
63 
64 public:
65   static char ID; // Pass identification, replacement for typeid
66   WebAssemblyRegStackify() : MachineFunctionPass(ID) {}
67 };
68 } // end anonymous namespace
69 
70 char WebAssemblyRegStackify::ID = 0;
71 INITIALIZE_PASS(WebAssemblyRegStackify, DEBUG_TYPE,
72                 "Reorder instructions to use the WebAssembly value stack",
73                 false, false)
74 
75 FunctionPass *llvm::createWebAssemblyRegStackify() {
76   return new WebAssemblyRegStackify();
77 }
78 
79 // Decorate the given instruction with implicit operands that enforce the
80 // expression stack ordering constraints for an instruction which is on
81 // the expression stack.
82 static void imposeStackOrdering(MachineInstr *MI) {
83   // Write the opaque VALUE_STACK register.
84   if (!MI->definesRegister(WebAssembly::VALUE_STACK))
85     MI->addOperand(MachineOperand::CreateReg(WebAssembly::VALUE_STACK,
86                                              /*isDef=*/true,
87                                              /*isImp=*/true));
88 
89   // Also read the opaque VALUE_STACK register.
90   if (!MI->readsRegister(WebAssembly::VALUE_STACK))
91     MI->addOperand(MachineOperand::CreateReg(WebAssembly::VALUE_STACK,
92                                              /*isDef=*/false,
93                                              /*isImp=*/true));
94 }
95 
96 // Convert an IMPLICIT_DEF instruction into an instruction which defines
97 // a constant zero value.
98 static void convertImplicitDefToConstZero(MachineInstr *MI,
99                                           MachineRegisterInfo &MRI,
100                                           const TargetInstrInfo *TII,
101                                           MachineFunction &MF,
102                                           LiveIntervals &LIS) {
103   assert(MI->getOpcode() == TargetOpcode::IMPLICIT_DEF);
104 
105   const auto *RegClass = MRI.getRegClass(MI->getOperand(0).getReg());
106   if (RegClass == &WebAssembly::I32RegClass) {
107     MI->setDesc(TII->get(WebAssembly::CONST_I32));
108     MI->addOperand(MachineOperand::CreateImm(0));
109   } else if (RegClass == &WebAssembly::I64RegClass) {
110     MI->setDesc(TII->get(WebAssembly::CONST_I64));
111     MI->addOperand(MachineOperand::CreateImm(0));
112   } else if (RegClass == &WebAssembly::F32RegClass) {
113     MI->setDesc(TII->get(WebAssembly::CONST_F32));
114     auto *Val = cast<ConstantFP>(Constant::getNullValue(
115         Type::getFloatTy(MF.getFunction().getContext())));
116     MI->addOperand(MachineOperand::CreateFPImm(Val));
117   } else if (RegClass == &WebAssembly::F64RegClass) {
118     MI->setDesc(TII->get(WebAssembly::CONST_F64));
119     auto *Val = cast<ConstantFP>(Constant::getNullValue(
120         Type::getDoubleTy(MF.getFunction().getContext())));
121     MI->addOperand(MachineOperand::CreateFPImm(Val));
122   } else if (RegClass == &WebAssembly::V128RegClass) {
123     MI->setDesc(TII->get(WebAssembly::CONST_V128_I64x2));
124     MI->addOperand(MachineOperand::CreateImm(0));
125     MI->addOperand(MachineOperand::CreateImm(0));
126   } else {
127     llvm_unreachable("Unexpected reg class");
128   }
129 }
130 
131 // Determine whether a call to the callee referenced by
132 // MI->getOperand(CalleeOpNo) reads memory, writes memory, and/or has side
133 // effects.
134 static void queryCallee(const MachineInstr &MI, bool &Read, bool &Write,
135                         bool &Effects, bool &StackPointer) {
136   // All calls can use the stack pointer.
137   StackPointer = true;
138 
139   const MachineOperand &MO = WebAssembly::getCalleeOp(MI);
140   if (MO.isGlobal()) {
141     const Constant *GV = MO.getGlobal();
142     if (const auto *GA = dyn_cast<GlobalAlias>(GV))
143       if (!GA->isInterposable())
144         GV = GA->getAliasee();
145 
146     if (const auto *F = dyn_cast<Function>(GV)) {
147       if (!F->doesNotThrow())
148         Effects = true;
149       if (F->doesNotAccessMemory())
150         return;
151       if (F->onlyReadsMemory()) {
152         Read = true;
153         return;
154       }
155     }
156   }
157 
158   // Assume the worst.
159   Write = true;
160   Read = true;
161   Effects = true;
162 }
163 
164 // Determine whether MI reads memory, writes memory, has side effects,
165 // and/or uses the stack pointer value.
166 static void query(const MachineInstr &MI, bool &Read, bool &Write,
167                   bool &Effects, bool &StackPointer) {
168   assert(!MI.isTerminator());
169 
170   if (MI.isDebugInstr() || MI.isPosition())
171     return;
172 
173   // Check for loads.
174   if (MI.mayLoad() && !MI.isDereferenceableInvariantLoad())
175     Read = true;
176 
177   // Check for stores.
178   if (MI.mayStore()) {
179     Write = true;
180   } else if (MI.hasOrderedMemoryRef()) {
181     switch (MI.getOpcode()) {
182     case WebAssembly::DIV_S_I32:
183     case WebAssembly::DIV_S_I64:
184     case WebAssembly::REM_S_I32:
185     case WebAssembly::REM_S_I64:
186     case WebAssembly::DIV_U_I32:
187     case WebAssembly::DIV_U_I64:
188     case WebAssembly::REM_U_I32:
189     case WebAssembly::REM_U_I64:
190     case WebAssembly::I32_TRUNC_S_F32:
191     case WebAssembly::I64_TRUNC_S_F32:
192     case WebAssembly::I32_TRUNC_S_F64:
193     case WebAssembly::I64_TRUNC_S_F64:
194     case WebAssembly::I32_TRUNC_U_F32:
195     case WebAssembly::I64_TRUNC_U_F32:
196     case WebAssembly::I32_TRUNC_U_F64:
197     case WebAssembly::I64_TRUNC_U_F64:
198       // These instruction have hasUnmodeledSideEffects() returning true
199       // because they trap on overflow and invalid so they can't be arbitrarily
200       // moved, however hasOrderedMemoryRef() interprets this plus their lack
201       // of memoperands as having a potential unknown memory reference.
202       break;
203     default:
204       // Record volatile accesses, unless it's a call, as calls are handled
205       // specially below.
206       if (!MI.isCall()) {
207         Write = true;
208         Effects = true;
209       }
210       break;
211     }
212   }
213 
214   // Check for side effects.
215   if (MI.hasUnmodeledSideEffects()) {
216     switch (MI.getOpcode()) {
217     case WebAssembly::DIV_S_I32:
218     case WebAssembly::DIV_S_I64:
219     case WebAssembly::REM_S_I32:
220     case WebAssembly::REM_S_I64:
221     case WebAssembly::DIV_U_I32:
222     case WebAssembly::DIV_U_I64:
223     case WebAssembly::REM_U_I32:
224     case WebAssembly::REM_U_I64:
225     case WebAssembly::I32_TRUNC_S_F32:
226     case WebAssembly::I64_TRUNC_S_F32:
227     case WebAssembly::I32_TRUNC_S_F64:
228     case WebAssembly::I64_TRUNC_S_F64:
229     case WebAssembly::I32_TRUNC_U_F32:
230     case WebAssembly::I64_TRUNC_U_F32:
231     case WebAssembly::I32_TRUNC_U_F64:
232     case WebAssembly::I64_TRUNC_U_F64:
233       // These instructions have hasUnmodeledSideEffects() returning true
234       // because they trap on overflow and invalid so they can't be arbitrarily
235       // moved, however in the specific case of register stackifying, it is safe
236       // to move them because overflow and invalid are Undefined Behavior.
237       break;
238     default:
239       Effects = true;
240       break;
241     }
242   }
243 
244   // Check for writes to __stack_pointer global.
245   if ((MI.getOpcode() == WebAssembly::GLOBAL_SET_I32 ||
246        MI.getOpcode() == WebAssembly::GLOBAL_SET_I64) &&
247       strcmp(MI.getOperand(0).getSymbolName(), "__stack_pointer") == 0)
248     StackPointer = true;
249 
250   // Analyze calls.
251   if (MI.isCall()) {
252     queryCallee(MI, Read, Write, Effects, StackPointer);
253   }
254 }
255 
256 // Test whether Def is safe and profitable to rematerialize.
257 static bool shouldRematerialize(const MachineInstr &Def,
258                                 const WebAssemblyInstrInfo *TII) {
259   return Def.isAsCheapAsAMove() && TII->isTriviallyReMaterializable(Def);
260 }
261 
262 // Identify the definition for this register at this point. This is a
263 // generalization of MachineRegisterInfo::getUniqueVRegDef that uses
264 // LiveIntervals to handle complex cases.
265 static MachineInstr *getVRegDef(unsigned Reg, const MachineInstr *Insert,
266                                 const MachineRegisterInfo &MRI,
267                                 const LiveIntervals &LIS) {
268   // Most registers are in SSA form here so we try a quick MRI query first.
269   if (MachineInstr *Def = MRI.getUniqueVRegDef(Reg))
270     return Def;
271 
272   // MRI doesn't know what the Def is. Try asking LIS.
273   if (const VNInfo *ValNo = LIS.getInterval(Reg).getVNInfoBefore(
274           LIS.getInstructionIndex(*Insert)))
275     return LIS.getInstructionFromIndex(ValNo->def);
276 
277   return nullptr;
278 }
279 
280 // Test whether Reg, as defined at Def, has exactly one use. This is a
281 // generalization of MachineRegisterInfo::hasOneUse that uses LiveIntervals
282 // to handle complex cases.
283 static bool hasOneUse(unsigned Reg, MachineInstr *Def, MachineRegisterInfo &MRI,
284                       MachineDominatorTree &MDT, LiveIntervals &LIS) {
285   // Most registers are in SSA form here so we try a quick MRI query first.
286   if (MRI.hasOneUse(Reg))
287     return true;
288 
289   bool HasOne = false;
290   const LiveInterval &LI = LIS.getInterval(Reg);
291   const VNInfo *DefVNI =
292       LI.getVNInfoAt(LIS.getInstructionIndex(*Def).getRegSlot());
293   assert(DefVNI);
294   for (auto &I : MRI.use_nodbg_operands(Reg)) {
295     const auto &Result = LI.Query(LIS.getInstructionIndex(*I.getParent()));
296     if (Result.valueIn() == DefVNI) {
297       if (!Result.isKill())
298         return false;
299       if (HasOne)
300         return false;
301       HasOne = true;
302     }
303   }
304   return HasOne;
305 }
306 
307 // Test whether it's safe to move Def to just before Insert.
308 // TODO: Compute memory dependencies in a way that doesn't require always
309 // walking the block.
310 // TODO: Compute memory dependencies in a way that uses AliasAnalysis to be
311 // more precise.
312 static bool isSafeToMove(const MachineOperand *Def, const MachineOperand *Use,
313                          const MachineInstr *Insert,
314                          const WebAssemblyFunctionInfo &MFI,
315                          const MachineRegisterInfo &MRI) {
316   const MachineInstr *DefI = Def->getParent();
317   const MachineInstr *UseI = Use->getParent();
318   assert(DefI->getParent() == Insert->getParent());
319   assert(UseI->getParent() == Insert->getParent());
320 
321   // The first def of a multivalue instruction can be stackified by moving,
322   // since the later defs can always be placed into locals if necessary. Later
323   // defs can only be stackified if all previous defs are already stackified
324   // since ExplicitLocals will not know how to place a def in a local if a
325   // subsequent def is stackified. But only one def can be stackified by moving
326   // the instruction, so it must be the first one.
327   //
328   // TODO: This could be loosened to be the first *live* def, but care would
329   // have to be taken to ensure the drops of the initial dead defs can be
330   // placed. This would require checking that no previous defs are used in the
331   // same instruction as subsequent defs.
332   if (Def != DefI->defs().begin())
333     return false;
334 
335   // If any subsequent def is used prior to the current value by the same
336   // instruction in which the current value is used, we cannot
337   // stackify. Stackifying in this case would require that def moving below the
338   // current def in the stack, which cannot be achieved, even with locals.
339   // Also ensure we don't sink the def past any other prior uses.
340   for (const auto &SubsequentDef : drop_begin(DefI->defs())) {
341     auto I = std::next(MachineBasicBlock::const_iterator(DefI));
342     auto E = std::next(MachineBasicBlock::const_iterator(UseI));
343     for (; I != E; ++I) {
344       for (const auto &PriorUse : I->uses()) {
345         if (&PriorUse == Use)
346           break;
347         if (PriorUse.isReg() && SubsequentDef.getReg() == PriorUse.getReg())
348           return false;
349       }
350     }
351   }
352 
353   // If moving is a semantic nop, it is always allowed
354   const MachineBasicBlock *MBB = DefI->getParent();
355   auto NextI = std::next(MachineBasicBlock::const_iterator(DefI));
356   for (auto E = MBB->end(); NextI != E && NextI->isDebugInstr(); ++NextI)
357     ;
358   if (NextI == Insert)
359     return true;
360 
361   // 'catch' and 'catch_all' should be the first instruction of a BB and cannot
362   // move.
363   if (WebAssembly::isCatch(DefI->getOpcode()))
364     return false;
365 
366   // Check for register dependencies.
367   SmallVector<unsigned, 4> MutableRegisters;
368   for (const MachineOperand &MO : DefI->operands()) {
369     if (!MO.isReg() || MO.isUndef())
370       continue;
371     Register Reg = MO.getReg();
372 
373     // If the register is dead here and at Insert, ignore it.
374     if (MO.isDead() && Insert->definesRegister(Reg) &&
375         !Insert->readsRegister(Reg))
376       continue;
377 
378     if (Reg.isPhysical()) {
379       // Ignore ARGUMENTS; it's just used to keep the ARGUMENT_* instructions
380       // from moving down, and we've already checked for that.
381       if (Reg == WebAssembly::ARGUMENTS)
382         continue;
383       // If the physical register is never modified, ignore it.
384       if (!MRI.isPhysRegModified(Reg))
385         continue;
386       // Otherwise, it's a physical register with unknown liveness.
387       return false;
388     }
389 
390     // If one of the operands isn't in SSA form, it has different values at
391     // different times, and we need to make sure we don't move our use across
392     // a different def.
393     if (!MO.isDef() && !MRI.hasOneDef(Reg))
394       MutableRegisters.push_back(Reg);
395   }
396 
397   bool Read = false, Write = false, Effects = false, StackPointer = false;
398   query(*DefI, Read, Write, Effects, StackPointer);
399 
400   // If the instruction does not access memory and has no side effects, it has
401   // no additional dependencies.
402   bool HasMutableRegisters = !MutableRegisters.empty();
403   if (!Read && !Write && !Effects && !StackPointer && !HasMutableRegisters)
404     return true;
405 
406   // Scan through the intervening instructions between DefI and Insert.
407   MachineBasicBlock::const_iterator D(DefI), I(Insert);
408   for (--I; I != D; --I) {
409     bool InterveningRead = false;
410     bool InterveningWrite = false;
411     bool InterveningEffects = false;
412     bool InterveningStackPointer = false;
413     query(*I, InterveningRead, InterveningWrite, InterveningEffects,
414           InterveningStackPointer);
415     if (Effects && InterveningEffects)
416       return false;
417     if (Read && InterveningWrite)
418       return false;
419     if (Write && (InterveningRead || InterveningWrite))
420       return false;
421     if (StackPointer && InterveningStackPointer)
422       return false;
423 
424     for (unsigned Reg : MutableRegisters)
425       for (const MachineOperand &MO : I->operands())
426         if (MO.isReg() && MO.isDef() && MO.getReg() == Reg)
427           return false;
428   }
429 
430   return true;
431 }
432 
433 /// Test whether OneUse, a use of Reg, dominates all of Reg's other uses.
434 static bool oneUseDominatesOtherUses(unsigned Reg, const MachineOperand &OneUse,
435                                      const MachineBasicBlock &MBB,
436                                      const MachineRegisterInfo &MRI,
437                                      const MachineDominatorTree &MDT,
438                                      LiveIntervals &LIS,
439                                      WebAssemblyFunctionInfo &MFI) {
440   const LiveInterval &LI = LIS.getInterval(Reg);
441 
442   const MachineInstr *OneUseInst = OneUse.getParent();
443   VNInfo *OneUseVNI = LI.getVNInfoBefore(LIS.getInstructionIndex(*OneUseInst));
444 
445   for (const MachineOperand &Use : MRI.use_nodbg_operands(Reg)) {
446     if (&Use == &OneUse)
447       continue;
448 
449     const MachineInstr *UseInst = Use.getParent();
450     VNInfo *UseVNI = LI.getVNInfoBefore(LIS.getInstructionIndex(*UseInst));
451 
452     if (UseVNI != OneUseVNI)
453       continue;
454 
455     if (UseInst == OneUseInst) {
456       // Another use in the same instruction. We need to ensure that the one
457       // selected use happens "before" it.
458       if (&OneUse > &Use)
459         return false;
460     } else {
461       // Test that the use is dominated by the one selected use.
462       while (!MDT.dominates(OneUseInst, UseInst)) {
463         // Actually, dominating is over-conservative. Test that the use would
464         // happen after the one selected use in the stack evaluation order.
465         //
466         // This is needed as a consequence of using implicit local.gets for
467         // uses and implicit local.sets for defs.
468         if (UseInst->getDesc().getNumDefs() == 0)
469           return false;
470         const MachineOperand &MO = UseInst->getOperand(0);
471         if (!MO.isReg())
472           return false;
473         Register DefReg = MO.getReg();
474         if (!DefReg.isVirtual() || !MFI.isVRegStackified(DefReg))
475           return false;
476         assert(MRI.hasOneNonDBGUse(DefReg));
477         const MachineOperand &NewUse = *MRI.use_nodbg_begin(DefReg);
478         const MachineInstr *NewUseInst = NewUse.getParent();
479         if (NewUseInst == OneUseInst) {
480           if (&OneUse > &NewUse)
481             return false;
482           break;
483         }
484         UseInst = NewUseInst;
485       }
486     }
487   }
488   return true;
489 }
490 
491 /// Get the appropriate tee opcode for the given register class.
492 static unsigned getTeeOpcode(const TargetRegisterClass *RC) {
493   if (RC == &WebAssembly::I32RegClass)
494     return WebAssembly::TEE_I32;
495   if (RC == &WebAssembly::I64RegClass)
496     return WebAssembly::TEE_I64;
497   if (RC == &WebAssembly::F32RegClass)
498     return WebAssembly::TEE_F32;
499   if (RC == &WebAssembly::F64RegClass)
500     return WebAssembly::TEE_F64;
501   if (RC == &WebAssembly::V128RegClass)
502     return WebAssembly::TEE_V128;
503   if (RC == &WebAssembly::EXTERNREFRegClass)
504     return WebAssembly::TEE_EXTERNREF;
505   if (RC == &WebAssembly::FUNCREFRegClass)
506     return WebAssembly::TEE_FUNCREF;
507   llvm_unreachable("Unexpected register class");
508 }
509 
510 // Shrink LI to its uses, cleaning up LI.
511 static void shrinkToUses(LiveInterval &LI, LiveIntervals &LIS) {
512   if (LIS.shrinkToUses(&LI)) {
513     SmallVector<LiveInterval *, 4> SplitLIs;
514     LIS.splitSeparateComponents(LI, SplitLIs);
515   }
516 }
517 
518 /// A single-use def in the same block with no intervening memory or register
519 /// dependencies; move the def down and nest it with the current instruction.
520 static MachineInstr *moveForSingleUse(unsigned Reg, MachineOperand &Op,
521                                       MachineInstr *Def, MachineBasicBlock &MBB,
522                                       MachineInstr *Insert, LiveIntervals &LIS,
523                                       WebAssemblyFunctionInfo &MFI,
524                                       MachineRegisterInfo &MRI) {
525   LLVM_DEBUG(dbgs() << "Move for single use: "; Def->dump());
526 
527   WebAssemblyDebugValueManager DefDIs(Def);
528   MBB.splice(Insert, &MBB, Def);
529   DefDIs.move(Insert);
530   LIS.handleMove(*Def);
531 
532   if (MRI.hasOneDef(Reg) && MRI.hasOneUse(Reg)) {
533     // No one else is using this register for anything so we can just stackify
534     // it in place.
535     MFI.stackifyVReg(MRI, Reg);
536   } else {
537     // The register may have unrelated uses or defs; create a new register for
538     // just our one def and use so that we can stackify it.
539     Register NewReg = MRI.createVirtualRegister(MRI.getRegClass(Reg));
540     Def->getOperand(0).setReg(NewReg);
541     Op.setReg(NewReg);
542 
543     // Tell LiveIntervals about the new register.
544     LIS.createAndComputeVirtRegInterval(NewReg);
545 
546     // Tell LiveIntervals about the changes to the old register.
547     LiveInterval &LI = LIS.getInterval(Reg);
548     LI.removeSegment(LIS.getInstructionIndex(*Def).getRegSlot(),
549                      LIS.getInstructionIndex(*Op.getParent()).getRegSlot(),
550                      /*RemoveDeadValNo=*/true);
551 
552     MFI.stackifyVReg(MRI, NewReg);
553 
554     DefDIs.updateReg(NewReg);
555 
556     LLVM_DEBUG(dbgs() << " - Replaced register: "; Def->dump());
557   }
558 
559   imposeStackOrdering(Def);
560   return Def;
561 }
562 
563 /// A trivially cloneable instruction; clone it and nest the new copy with the
564 /// current instruction.
565 static MachineInstr *rematerializeCheapDef(
566     unsigned Reg, MachineOperand &Op, MachineInstr &Def, MachineBasicBlock &MBB,
567     MachineBasicBlock::instr_iterator Insert, LiveIntervals &LIS,
568     WebAssemblyFunctionInfo &MFI, MachineRegisterInfo &MRI,
569     const WebAssemblyInstrInfo *TII, const WebAssemblyRegisterInfo *TRI) {
570   LLVM_DEBUG(dbgs() << "Rematerializing cheap def: "; Def.dump());
571   LLVM_DEBUG(dbgs() << " - for use in "; Op.getParent()->dump());
572 
573   WebAssemblyDebugValueManager DefDIs(&Def);
574 
575   Register NewReg = MRI.createVirtualRegister(MRI.getRegClass(Reg));
576   TII->reMaterialize(MBB, Insert, NewReg, 0, Def, *TRI);
577   Op.setReg(NewReg);
578   MachineInstr *Clone = &*std::prev(Insert);
579   LIS.InsertMachineInstrInMaps(*Clone);
580   LIS.createAndComputeVirtRegInterval(NewReg);
581   MFI.stackifyVReg(MRI, NewReg);
582   imposeStackOrdering(Clone);
583 
584   LLVM_DEBUG(dbgs() << " - Cloned to "; Clone->dump());
585 
586   // Shrink the interval.
587   bool IsDead = MRI.use_empty(Reg);
588   if (!IsDead) {
589     LiveInterval &LI = LIS.getInterval(Reg);
590     shrinkToUses(LI, LIS);
591     IsDead = !LI.liveAt(LIS.getInstructionIndex(Def).getDeadSlot());
592   }
593 
594   // If that was the last use of the original, delete the original.
595   // Move or clone corresponding DBG_VALUEs to the 'Insert' location.
596   if (IsDead) {
597     LLVM_DEBUG(dbgs() << " - Deleting original\n");
598     SlotIndex Idx = LIS.getInstructionIndex(Def).getRegSlot();
599     LIS.removePhysRegDefAt(MCRegister::from(WebAssembly::ARGUMENTS), Idx);
600     LIS.removeInterval(Reg);
601     LIS.RemoveMachineInstrFromMaps(Def);
602     Def.eraseFromParent();
603 
604     DefDIs.move(&*Insert);
605     DefDIs.updateReg(NewReg);
606   } else {
607     DefDIs.clone(&*Insert, NewReg);
608   }
609 
610   return Clone;
611 }
612 
613 /// A multiple-use def in the same block with no intervening memory or register
614 /// dependencies; move the def down, nest it with the current instruction, and
615 /// insert a tee to satisfy the rest of the uses. As an illustration, rewrite
616 /// this:
617 ///
618 ///    Reg = INST ...        // Def
619 ///    INST ..., Reg, ...    // Insert
620 ///    INST ..., Reg, ...
621 ///    INST ..., Reg, ...
622 ///
623 /// to this:
624 ///
625 ///    DefReg = INST ...     // Def (to become the new Insert)
626 ///    TeeReg, Reg = TEE_... DefReg
627 ///    INST ..., TeeReg, ... // Insert
628 ///    INST ..., Reg, ...
629 ///    INST ..., Reg, ...
630 ///
631 /// with DefReg and TeeReg stackified. This eliminates a local.get from the
632 /// resulting code.
633 static MachineInstr *moveAndTeeForMultiUse(
634     unsigned Reg, MachineOperand &Op, MachineInstr *Def, MachineBasicBlock &MBB,
635     MachineInstr *Insert, LiveIntervals &LIS, WebAssemblyFunctionInfo &MFI,
636     MachineRegisterInfo &MRI, const WebAssemblyInstrInfo *TII) {
637   LLVM_DEBUG(dbgs() << "Move and tee for multi-use:"; Def->dump());
638 
639   WebAssemblyDebugValueManager DefDIs(Def);
640 
641   // Move Def into place.
642   MBB.splice(Insert, &MBB, Def);
643   LIS.handleMove(*Def);
644 
645   // Create the Tee and attach the registers.
646   const auto *RegClass = MRI.getRegClass(Reg);
647   Register TeeReg = MRI.createVirtualRegister(RegClass);
648   Register DefReg = MRI.createVirtualRegister(RegClass);
649   MachineOperand &DefMO = Def->getOperand(0);
650   MachineInstr *Tee = BuildMI(MBB, Insert, Insert->getDebugLoc(),
651                               TII->get(getTeeOpcode(RegClass)), TeeReg)
652                           .addReg(Reg, RegState::Define)
653                           .addReg(DefReg, getUndefRegState(DefMO.isDead()));
654   Op.setReg(TeeReg);
655   DefMO.setReg(DefReg);
656   SlotIndex TeeIdx = LIS.InsertMachineInstrInMaps(*Tee).getRegSlot();
657   SlotIndex DefIdx = LIS.getInstructionIndex(*Def).getRegSlot();
658 
659   DefDIs.move(Insert);
660 
661   // Tell LiveIntervals we moved the original vreg def from Def to Tee.
662   LiveInterval &LI = LIS.getInterval(Reg);
663   LiveInterval::iterator I = LI.FindSegmentContaining(DefIdx);
664   VNInfo *ValNo = LI.getVNInfoAt(DefIdx);
665   I->start = TeeIdx;
666   ValNo->def = TeeIdx;
667   shrinkToUses(LI, LIS);
668 
669   // Finish stackifying the new regs.
670   LIS.createAndComputeVirtRegInterval(TeeReg);
671   LIS.createAndComputeVirtRegInterval(DefReg);
672   MFI.stackifyVReg(MRI, DefReg);
673   MFI.stackifyVReg(MRI, TeeReg);
674   imposeStackOrdering(Def);
675   imposeStackOrdering(Tee);
676 
677   DefDIs.clone(Tee, DefReg);
678   DefDIs.clone(Insert, TeeReg);
679 
680   LLVM_DEBUG(dbgs() << " - Replaced register: "; Def->dump());
681   LLVM_DEBUG(dbgs() << " - Tee instruction: "; Tee->dump());
682   return Def;
683 }
684 
685 namespace {
686 /// A stack for walking the tree of instructions being built, visiting the
687 /// MachineOperands in DFS order.
688 class TreeWalkerState {
689   using mop_iterator = MachineInstr::mop_iterator;
690   using mop_reverse_iterator = std::reverse_iterator<mop_iterator>;
691   using RangeTy = iterator_range<mop_reverse_iterator>;
692   SmallVector<RangeTy, 4> Worklist;
693 
694 public:
695   explicit TreeWalkerState(MachineInstr *Insert) {
696     const iterator_range<mop_iterator> &Range = Insert->explicit_uses();
697     if (!Range.empty())
698       Worklist.push_back(reverse(Range));
699   }
700 
701   bool done() const { return Worklist.empty(); }
702 
703   MachineOperand &pop() {
704     RangeTy &Range = Worklist.back();
705     MachineOperand &Op = *Range.begin();
706     Range = drop_begin(Range);
707     if (Range.empty())
708       Worklist.pop_back();
709     assert((Worklist.empty() || !Worklist.back().empty()) &&
710            "Empty ranges shouldn't remain in the worklist");
711     return Op;
712   }
713 
714   /// Push Instr's operands onto the stack to be visited.
715   void pushOperands(MachineInstr *Instr) {
716     const iterator_range<mop_iterator> &Range(Instr->explicit_uses());
717     if (!Range.empty())
718       Worklist.push_back(reverse(Range));
719   }
720 
721   /// Some of Instr's operands are on the top of the stack; remove them and
722   /// re-insert them starting from the beginning (because we've commuted them).
723   void resetTopOperands(MachineInstr *Instr) {
724     assert(hasRemainingOperands(Instr) &&
725            "Reseting operands should only be done when the instruction has "
726            "an operand still on the stack");
727     Worklist.back() = reverse(Instr->explicit_uses());
728   }
729 
730   /// Test whether Instr has operands remaining to be visited at the top of
731   /// the stack.
732   bool hasRemainingOperands(const MachineInstr *Instr) const {
733     if (Worklist.empty())
734       return false;
735     const RangeTy &Range = Worklist.back();
736     return !Range.empty() && Range.begin()->getParent() == Instr;
737   }
738 
739   /// Test whether the given register is present on the stack, indicating an
740   /// operand in the tree that we haven't visited yet. Moving a definition of
741   /// Reg to a point in the tree after that would change its value.
742   ///
743   /// This is needed as a consequence of using implicit local.gets for
744   /// uses and implicit local.sets for defs.
745   bool isOnStack(unsigned Reg) const {
746     for (const RangeTy &Range : Worklist)
747       for (const MachineOperand &MO : Range)
748         if (MO.isReg() && MO.getReg() == Reg)
749           return true;
750     return false;
751   }
752 };
753 
754 /// State to keep track of whether commuting is in flight or whether it's been
755 /// tried for the current instruction and didn't work.
756 class CommutingState {
757   /// There are effectively three states: the initial state where we haven't
758   /// started commuting anything and we don't know anything yet, the tentative
759   /// state where we've commuted the operands of the current instruction and are
760   /// revisiting it, and the declined state where we've reverted the operands
761   /// back to their original order and will no longer commute it further.
762   bool TentativelyCommuting = false;
763   bool Declined = false;
764 
765   /// During the tentative state, these hold the operand indices of the commuted
766   /// operands.
767   unsigned Operand0, Operand1;
768 
769 public:
770   /// Stackification for an operand was not successful due to ordering
771   /// constraints. If possible, and if we haven't already tried it and declined
772   /// it, commute Insert's operands and prepare to revisit it.
773   void maybeCommute(MachineInstr *Insert, TreeWalkerState &TreeWalker,
774                     const WebAssemblyInstrInfo *TII) {
775     if (TentativelyCommuting) {
776       assert(!Declined &&
777              "Don't decline commuting until you've finished trying it");
778       // Commuting didn't help. Revert it.
779       TII->commuteInstruction(*Insert, /*NewMI=*/false, Operand0, Operand1);
780       TentativelyCommuting = false;
781       Declined = true;
782     } else if (!Declined && TreeWalker.hasRemainingOperands(Insert)) {
783       Operand0 = TargetInstrInfo::CommuteAnyOperandIndex;
784       Operand1 = TargetInstrInfo::CommuteAnyOperandIndex;
785       if (TII->findCommutedOpIndices(*Insert, Operand0, Operand1)) {
786         // Tentatively commute the operands and try again.
787         TII->commuteInstruction(*Insert, /*NewMI=*/false, Operand0, Operand1);
788         TreeWalker.resetTopOperands(Insert);
789         TentativelyCommuting = true;
790         Declined = false;
791       }
792     }
793   }
794 
795   /// Stackification for some operand was successful. Reset to the default
796   /// state.
797   void reset() {
798     TentativelyCommuting = false;
799     Declined = false;
800   }
801 };
802 } // end anonymous namespace
803 
804 bool WebAssemblyRegStackify::runOnMachineFunction(MachineFunction &MF) {
805   LLVM_DEBUG(dbgs() << "********** Register Stackifying **********\n"
806                        "********** Function: "
807                     << MF.getName() << '\n');
808 
809   bool Changed = false;
810   MachineRegisterInfo &MRI = MF.getRegInfo();
811   WebAssemblyFunctionInfo &MFI = *MF.getInfo<WebAssemblyFunctionInfo>();
812   const auto *TII = MF.getSubtarget<WebAssemblySubtarget>().getInstrInfo();
813   const auto *TRI = MF.getSubtarget<WebAssemblySubtarget>().getRegisterInfo();
814   auto &MDT = getAnalysis<MachineDominatorTree>();
815   auto &LIS = getAnalysis<LiveIntervals>();
816 
817   // Walk the instructions from the bottom up. Currently we don't look past
818   // block boundaries, and the blocks aren't ordered so the block visitation
819   // order isn't significant, but we may want to change this in the future.
820   for (MachineBasicBlock &MBB : MF) {
821     // Don't use a range-based for loop, because we modify the list as we're
822     // iterating over it and the end iterator may change.
823     for (auto MII = MBB.rbegin(); MII != MBB.rend(); ++MII) {
824       MachineInstr *Insert = &*MII;
825       // Don't nest anything inside an inline asm, because we don't have
826       // constraints for $push inputs.
827       if (Insert->isInlineAsm())
828         continue;
829 
830       // Ignore debugging intrinsics.
831       if (Insert->isDebugValue())
832         continue;
833 
834       // Iterate through the inputs in reverse order, since we'll be pulling
835       // operands off the stack in LIFO order.
836       CommutingState Commuting;
837       TreeWalkerState TreeWalker(Insert);
838       while (!TreeWalker.done()) {
839         MachineOperand &Use = TreeWalker.pop();
840 
841         // We're only interested in explicit virtual register operands.
842         if (!Use.isReg())
843           continue;
844 
845         Register Reg = Use.getReg();
846         assert(Use.isUse() && "explicit_uses() should only iterate over uses");
847         assert(!Use.isImplicit() &&
848                "explicit_uses() should only iterate over explicit operands");
849         if (Reg.isPhysical())
850           continue;
851 
852         // Identify the definition for this register at this point.
853         MachineInstr *DefI = getVRegDef(Reg, Insert, MRI, LIS);
854         if (!DefI)
855           continue;
856 
857         // Don't nest an INLINE_ASM def into anything, because we don't have
858         // constraints for $pop outputs.
859         if (DefI->isInlineAsm())
860           continue;
861 
862         // Argument instructions represent live-in registers and not real
863         // instructions.
864         if (WebAssembly::isArgument(DefI->getOpcode()))
865           continue;
866 
867         MachineOperand *Def = DefI->findRegisterDefOperand(Reg);
868         assert(Def != nullptr);
869 
870         // Decide which strategy to take. Prefer to move a single-use value
871         // over cloning it, and prefer cloning over introducing a tee.
872         // For moving, we require the def to be in the same block as the use;
873         // this makes things simpler (LiveIntervals' handleMove function only
874         // supports intra-block moves) and it's MachineSink's job to catch all
875         // the sinking opportunities anyway.
876         bool SameBlock = DefI->getParent() == &MBB;
877         bool CanMove = SameBlock && isSafeToMove(Def, &Use, Insert, MFI, MRI) &&
878                        !TreeWalker.isOnStack(Reg);
879         if (CanMove && hasOneUse(Reg, DefI, MRI, MDT, LIS)) {
880           Insert = moveForSingleUse(Reg, Use, DefI, MBB, Insert, LIS, MFI, MRI);
881 
882           // If we are removing the frame base reg completely, remove the debug
883           // info as well.
884           // TODO: Encode this properly as a stackified value.
885           if (MFI.isFrameBaseVirtual() && MFI.getFrameBaseVreg() == Reg)
886             MFI.clearFrameBaseVreg();
887         } else if (shouldRematerialize(*DefI, TII)) {
888           Insert =
889               rematerializeCheapDef(Reg, Use, *DefI, MBB, Insert->getIterator(),
890                                     LIS, MFI, MRI, TII, TRI);
891         } else if (CanMove && oneUseDominatesOtherUses(Reg, Use, MBB, MRI, MDT,
892                                                        LIS, MFI)) {
893           Insert = moveAndTeeForMultiUse(Reg, Use, DefI, MBB, Insert, LIS, MFI,
894                                          MRI, TII);
895         } else {
896           // We failed to stackify the operand. If the problem was ordering
897           // constraints, Commuting may be able to help.
898           if (!CanMove && SameBlock)
899             Commuting.maybeCommute(Insert, TreeWalker, TII);
900           // Proceed to the next operand.
901           continue;
902         }
903 
904         // Stackifying a multivalue def may unlock in-place stackification of
905         // subsequent defs. TODO: Handle the case where the consecutive uses are
906         // not all in the same instruction.
907         auto *SubsequentDef = Insert->defs().begin();
908         auto *SubsequentUse = &Use;
909         while (SubsequentDef != Insert->defs().end() &&
910                SubsequentUse != Use.getParent()->uses().end()) {
911           if (!SubsequentDef->isReg() || !SubsequentUse->isReg())
912             break;
913           Register DefReg = SubsequentDef->getReg();
914           Register UseReg = SubsequentUse->getReg();
915           // TODO: This single-use restriction could be relaxed by using tees
916           if (DefReg != UseReg || !MRI.hasOneUse(DefReg))
917             break;
918           MFI.stackifyVReg(MRI, DefReg);
919           ++SubsequentDef;
920           ++SubsequentUse;
921         }
922 
923         // If the instruction we just stackified is an IMPLICIT_DEF, convert it
924         // to a constant 0 so that the def is explicit, and the push/pop
925         // correspondence is maintained.
926         if (Insert->getOpcode() == TargetOpcode::IMPLICIT_DEF)
927           convertImplicitDefToConstZero(Insert, MRI, TII, MF, LIS);
928 
929         // We stackified an operand. Add the defining instruction's operands to
930         // the worklist stack now to continue to build an ever deeper tree.
931         Commuting.reset();
932         TreeWalker.pushOperands(Insert);
933       }
934 
935       // If we stackified any operands, skip over the tree to start looking for
936       // the next instruction we can build a tree on.
937       if (Insert != &*MII) {
938         imposeStackOrdering(&*MII);
939         MII = MachineBasicBlock::iterator(Insert).getReverse();
940         Changed = true;
941       }
942     }
943   }
944 
945   // If we used VALUE_STACK anywhere, add it to the live-in sets everywhere so
946   // that it never looks like a use-before-def.
947   if (Changed) {
948     MF.getRegInfo().addLiveIn(WebAssembly::VALUE_STACK);
949     for (MachineBasicBlock &MBB : MF)
950       MBB.addLiveIn(WebAssembly::VALUE_STACK);
951   }
952 
953 #ifndef NDEBUG
954   // Verify that pushes and pops are performed in LIFO order.
955   SmallVector<unsigned, 0> Stack;
956   for (MachineBasicBlock &MBB : MF) {
957     for (MachineInstr &MI : MBB) {
958       if (MI.isDebugInstr())
959         continue;
960       for (MachineOperand &MO : reverse(MI.explicit_uses())) {
961         if (!MO.isReg())
962           continue;
963         Register Reg = MO.getReg();
964         if (MFI.isVRegStackified(Reg))
965           assert(Stack.pop_back_val() == Reg &&
966                  "Register stack pop should be paired with a push");
967       }
968       for (MachineOperand &MO : MI.defs()) {
969         if (!MO.isReg())
970           continue;
971         Register Reg = MO.getReg();
972         if (MFI.isVRegStackified(Reg))
973           Stack.push_back(MO.getReg());
974       }
975     }
976     // TODO: Generalize this code to support keeping values on the stack across
977     // basic block boundaries.
978     assert(Stack.empty() &&
979            "Register stack pushes and pops should be balanced");
980   }
981 #endif
982 
983   return Changed;
984 }
985