1 //===-- X86BaseInfo.h - Top level definitions for X86 -------- --*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file contains small standalone helper functions and enum definitions for
10 // the X86 target useful for the compiler back-end and the MC libraries.
11 // As such, it deliberately does not include references to LLVM core
12 // code gen types, passes, etc..
13 //
14 //===----------------------------------------------------------------------===//
15 
16 #ifndef LLVM_LIB_TARGET_X86_MCTARGETDESC_X86BASEINFO_H
17 #define LLVM_LIB_TARGET_X86_MCTARGETDESC_X86BASEINFO_H
18 
19 #include "X86MCTargetDesc.h"
20 #include "llvm/MC/MCInstrDesc.h"
21 #include "llvm/Support/DataTypes.h"
22 #include "llvm/Support/ErrorHandling.h"
23 
24 namespace llvm {
25 
26 namespace X86 {
27   // Enums for memory operand decoding.  Each memory operand is represented with
28   // a 5 operand sequence in the form:
29   //   [BaseReg, ScaleAmt, IndexReg, Disp, Segment]
30   // These enums help decode this.
31   enum {
32     AddrBaseReg = 0,
33     AddrScaleAmt = 1,
34     AddrIndexReg = 2,
35     AddrDisp = 3,
36 
37     /// AddrSegmentReg - The operand # of the segment in the memory operand.
38     AddrSegmentReg = 4,
39 
40     /// AddrNumOperands - Total number of operands in a memory reference.
41     AddrNumOperands = 5
42   };
43 
44   /// AVX512 static rounding constants.  These need to match the values in
45   /// avx512fintrin.h.
46   enum STATIC_ROUNDING {
47     TO_NEAREST_INT = 0,
48     TO_NEG_INF = 1,
49     TO_POS_INF = 2,
50     TO_ZERO = 3,
51     CUR_DIRECTION = 4,
52     NO_EXC = 8
53   };
54 
55   /// The constants to describe instr prefixes if there are
56   enum IPREFIXES {
57     IP_NO_PREFIX = 0,
58     IP_HAS_OP_SIZE =   1U << 0,
59     IP_HAS_AD_SIZE =   1U << 1,
60     IP_HAS_REPEAT_NE = 1U << 2,
61     IP_HAS_REPEAT =    1U << 3,
62     IP_HAS_LOCK =      1U << 4,
63     IP_HAS_NOTRACK =   1U << 5,
64     IP_USE_VEX =       1U << 6,
65     IP_USE_VEX2 =      1U << 7,
66     IP_USE_VEX3 =      1U << 8,
67     IP_USE_EVEX =      1U << 9,
68     IP_USE_DISP8 =     1U << 10,
69     IP_USE_DISP32 =    1U << 11,
70   };
71 
72   enum OperandType : unsigned {
73     /// AVX512 embedded rounding control. This should only have values 0-3.
74     OPERAND_ROUNDING_CONTROL = MCOI::OPERAND_FIRST_TARGET,
75     OPERAND_COND_CODE,
76   };
77 
78   // X86 specific condition code. These correspond to X86_*_COND in
79   // X86InstrInfo.td. They must be kept in synch.
80   enum CondCode {
81     COND_O = 0,
82     COND_NO = 1,
83     COND_B = 2,
84     COND_AE = 3,
85     COND_E = 4,
86     COND_NE = 5,
87     COND_BE = 6,
88     COND_A = 7,
89     COND_S = 8,
90     COND_NS = 9,
91     COND_P = 10,
92     COND_NP = 11,
93     COND_L = 12,
94     COND_GE = 13,
95     COND_LE = 14,
96     COND_G = 15,
97     LAST_VALID_COND = COND_G,
98 
99     // Artificial condition codes. These are used by analyzeBranch
100     // to indicate a block terminated with two conditional branches that together
101     // form a compound condition. They occur in code using FCMP_OEQ or FCMP_UNE,
102     // which can't be represented on x86 with a single condition. These
103     // are never used in MachineInstrs and are inverses of one another.
104     COND_NE_OR_P,
105     COND_E_AND_NP,
106 
107     COND_INVALID
108   };
109 
110   // The classification for the first instruction in macro fusion.
111   enum class FirstMacroFusionInstKind {
112     // TEST
113     Test,
114     // CMP
115     Cmp,
116     // AND
117     And,
118     // FIXME: Zen 3 support branch fusion for OR/XOR.
119     // ADD, SUB
120     AddSub,
121     // INC, DEC
122     IncDec,
123     // Not valid as a first macro fusion instruction
124     Invalid
125   };
126 
127   enum class SecondMacroFusionInstKind {
128     // JA, JB and variants.
129     AB,
130     // JE, JL, JG and variants.
131     ELG,
132     // JS, JP, JO and variants
133     SPO,
134     // Not a fusible jump.
135     Invalid,
136   };
137 
138   /// \returns the type of the first instruction in macro-fusion.
139   inline FirstMacroFusionInstKind
140   classifyFirstOpcodeInMacroFusion(unsigned Opcode) {
141     switch (Opcode) {
142     default:
143       return FirstMacroFusionInstKind::Invalid;
144     // TEST
145     case X86::TEST16i16:
146     case X86::TEST16mr:
147     case X86::TEST16ri:
148     case X86::TEST16rr:
149     case X86::TEST32i32:
150     case X86::TEST32mr:
151     case X86::TEST32ri:
152     case X86::TEST32rr:
153     case X86::TEST64i32:
154     case X86::TEST64mr:
155     case X86::TEST64ri32:
156     case X86::TEST64rr:
157     case X86::TEST8i8:
158     case X86::TEST8mr:
159     case X86::TEST8ri:
160     case X86::TEST8rr:
161       return FirstMacroFusionInstKind::Test;
162     case X86::AND16i16:
163     case X86::AND16ri:
164     case X86::AND16ri8:
165     case X86::AND16rm:
166     case X86::AND16rr:
167     case X86::AND16rr_REV:
168     case X86::AND32i32:
169     case X86::AND32ri:
170     case X86::AND32ri8:
171     case X86::AND32rm:
172     case X86::AND32rr:
173     case X86::AND32rr_REV:
174     case X86::AND64i32:
175     case X86::AND64ri32:
176     case X86::AND64ri8:
177     case X86::AND64rm:
178     case X86::AND64rr:
179     case X86::AND64rr_REV:
180     case X86::AND8i8:
181     case X86::AND8ri:
182     case X86::AND8ri8:
183     case X86::AND8rm:
184     case X86::AND8rr:
185     case X86::AND8rr_REV:
186       return FirstMacroFusionInstKind::And;
187     // FIXME: Zen 3 support branch fusion for OR/XOR.
188     // CMP
189     case X86::CMP16i16:
190     case X86::CMP16mr:
191     case X86::CMP16ri:
192     case X86::CMP16ri8:
193     case X86::CMP16rm:
194     case X86::CMP16rr:
195     case X86::CMP16rr_REV:
196     case X86::CMP32i32:
197     case X86::CMP32mr:
198     case X86::CMP32ri:
199     case X86::CMP32ri8:
200     case X86::CMP32rm:
201     case X86::CMP32rr:
202     case X86::CMP32rr_REV:
203     case X86::CMP64i32:
204     case X86::CMP64mr:
205     case X86::CMP64ri32:
206     case X86::CMP64ri8:
207     case X86::CMP64rm:
208     case X86::CMP64rr:
209     case X86::CMP64rr_REV:
210     case X86::CMP8i8:
211     case X86::CMP8mr:
212     case X86::CMP8ri:
213     case X86::CMP8ri8:
214     case X86::CMP8rm:
215     case X86::CMP8rr:
216     case X86::CMP8rr_REV:
217       return FirstMacroFusionInstKind::Cmp;
218     // ADD
219     case X86::ADD16i16:
220     case X86::ADD16ri:
221     case X86::ADD16ri8:
222     case X86::ADD16rm:
223     case X86::ADD16rr:
224     case X86::ADD16rr_REV:
225     case X86::ADD32i32:
226     case X86::ADD32ri:
227     case X86::ADD32ri8:
228     case X86::ADD32rm:
229     case X86::ADD32rr:
230     case X86::ADD32rr_REV:
231     case X86::ADD64i32:
232     case X86::ADD64ri32:
233     case X86::ADD64ri8:
234     case X86::ADD64rm:
235     case X86::ADD64rr:
236     case X86::ADD64rr_REV:
237     case X86::ADD8i8:
238     case X86::ADD8ri:
239     case X86::ADD8ri8:
240     case X86::ADD8rm:
241     case X86::ADD8rr:
242     case X86::ADD8rr_REV:
243     // SUB
244     case X86::SUB16i16:
245     case X86::SUB16ri:
246     case X86::SUB16ri8:
247     case X86::SUB16rm:
248     case X86::SUB16rr:
249     case X86::SUB16rr_REV:
250     case X86::SUB32i32:
251     case X86::SUB32ri:
252     case X86::SUB32ri8:
253     case X86::SUB32rm:
254     case X86::SUB32rr:
255     case X86::SUB32rr_REV:
256     case X86::SUB64i32:
257     case X86::SUB64ri32:
258     case X86::SUB64ri8:
259     case X86::SUB64rm:
260     case X86::SUB64rr:
261     case X86::SUB64rr_REV:
262     case X86::SUB8i8:
263     case X86::SUB8ri:
264     case X86::SUB8ri8:
265     case X86::SUB8rm:
266     case X86::SUB8rr:
267     case X86::SUB8rr_REV:
268       return FirstMacroFusionInstKind::AddSub;
269     // INC
270     case X86::INC16r:
271     case X86::INC16r_alt:
272     case X86::INC32r:
273     case X86::INC32r_alt:
274     case X86::INC64r:
275     case X86::INC8r:
276     // DEC
277     case X86::DEC16r:
278     case X86::DEC16r_alt:
279     case X86::DEC32r:
280     case X86::DEC32r_alt:
281     case X86::DEC64r:
282     case X86::DEC8r:
283       return FirstMacroFusionInstKind::IncDec;
284     }
285   }
286 
287   /// \returns the type of the second instruction in macro-fusion.
288   inline SecondMacroFusionInstKind
289   classifySecondCondCodeInMacroFusion(X86::CondCode CC) {
290     if (CC == X86::COND_INVALID)
291       return SecondMacroFusionInstKind::Invalid;
292 
293     switch (CC) {
294     default:
295       return SecondMacroFusionInstKind::Invalid;
296     // JE,JZ
297     case X86::COND_E:
298     // JNE,JNZ
299     case X86::COND_NE:
300     // JL,JNGE
301     case X86::COND_L:
302     // JLE,JNG
303     case X86::COND_LE:
304     // JG,JNLE
305     case X86::COND_G:
306     // JGE,JNL
307     case X86::COND_GE:
308       return SecondMacroFusionInstKind::ELG;
309     // JB,JC
310     case X86::COND_B:
311     // JNA,JBE
312     case X86::COND_BE:
313     // JA,JNBE
314     case X86::COND_A:
315     // JAE,JNC,JNB
316     case X86::COND_AE:
317       return SecondMacroFusionInstKind::AB;
318     // JS
319     case X86::COND_S:
320     // JNS
321     case X86::COND_NS:
322     // JP,JPE
323     case X86::COND_P:
324     // JNP,JPO
325     case X86::COND_NP:
326     // JO
327     case X86::COND_O:
328     // JNO
329     case X86::COND_NO:
330       return SecondMacroFusionInstKind::SPO;
331     }
332   }
333 
334   /// \param FirstKind kind of the first instruction in macro fusion.
335   /// \param SecondKind kind of the second instruction in macro fusion.
336   ///
337   /// \returns true if the two instruction can be macro fused.
338   inline bool isMacroFused(FirstMacroFusionInstKind FirstKind,
339                            SecondMacroFusionInstKind SecondKind) {
340     switch (FirstKind) {
341     case X86::FirstMacroFusionInstKind::Test:
342     case X86::FirstMacroFusionInstKind::And:
343       return true;
344     case X86::FirstMacroFusionInstKind::Cmp:
345     case X86::FirstMacroFusionInstKind::AddSub:
346       return SecondKind == X86::SecondMacroFusionInstKind::AB ||
347              SecondKind == X86::SecondMacroFusionInstKind::ELG;
348     case X86::FirstMacroFusionInstKind::IncDec:
349       return SecondKind == X86::SecondMacroFusionInstKind::ELG;
350     case X86::FirstMacroFusionInstKind::Invalid:
351       return false;
352     }
353     llvm_unreachable("unknown fusion type");
354   }
355 
356   /// Defines the possible values of the branch boundary alignment mask.
357   enum AlignBranchBoundaryKind : uint8_t {
358     AlignBranchNone = 0,
359     AlignBranchFused = 1U << 0,
360     AlignBranchJcc = 1U << 1,
361     AlignBranchJmp = 1U << 2,
362     AlignBranchCall = 1U << 3,
363     AlignBranchRet = 1U << 4,
364     AlignBranchIndirect = 1U << 5
365   };
366 
367   /// Defines the encoding values for segment override prefix.
368   enum EncodingOfSegmentOverridePrefix : uint8_t {
369     CS_Encoding = 0x2E,
370     DS_Encoding = 0x3E,
371     ES_Encoding = 0x26,
372     FS_Encoding = 0x64,
373     GS_Encoding = 0x65,
374     SS_Encoding = 0x36
375   };
376 
377   /// Given a segment register, return the encoding of the segment override
378   /// prefix for it.
379   inline EncodingOfSegmentOverridePrefix
380   getSegmentOverridePrefixForReg(unsigned Reg) {
381     switch (Reg) {
382     default:
383       llvm_unreachable("Unknown segment register!");
384     case X86::CS:
385       return CS_Encoding;
386     case X86::DS:
387       return DS_Encoding;
388     case X86::ES:
389       return ES_Encoding;
390     case X86::FS:
391       return FS_Encoding;
392     case X86::GS:
393       return GS_Encoding;
394     case X86::SS:
395       return SS_Encoding;
396     }
397   }
398 
399 } // end namespace X86;
400 
401 /// X86II - This namespace holds all of the target specific flags that
402 /// instruction info tracks.
403 ///
404 namespace X86II {
405   /// Target Operand Flag enum.
406   enum TOF {
407     //===------------------------------------------------------------------===//
408     // X86 Specific MachineOperand flags.
409 
410     MO_NO_FLAG,
411 
412     /// MO_GOT_ABSOLUTE_ADDRESS - On a symbol operand, this represents a
413     /// relocation of:
414     ///    SYMBOL_LABEL + [. - PICBASELABEL]
415     MO_GOT_ABSOLUTE_ADDRESS,
416 
417     /// MO_PIC_BASE_OFFSET - On a symbol operand this indicates that the
418     /// immediate should get the value of the symbol minus the PIC base label:
419     ///    SYMBOL_LABEL - PICBASELABEL
420     MO_PIC_BASE_OFFSET,
421 
422     /// MO_GOT - On a symbol operand this indicates that the immediate is the
423     /// offset to the GOT entry for the symbol name from the base of the GOT.
424     ///
425     /// See the X86-64 ELF ABI supplement for more details.
426     ///    SYMBOL_LABEL @GOT
427     MO_GOT,
428 
429     /// MO_GOTOFF - On a symbol operand this indicates that the immediate is
430     /// the offset to the location of the symbol name from the base of the GOT.
431     ///
432     /// See the X86-64 ELF ABI supplement for more details.
433     ///    SYMBOL_LABEL @GOTOFF
434     MO_GOTOFF,
435 
436     /// MO_GOTPCREL - On a symbol operand this indicates that the immediate is
437     /// offset to the GOT entry for the symbol name from the current code
438     /// location.
439     ///
440     /// See the X86-64 ELF ABI supplement for more details.
441     ///    SYMBOL_LABEL @GOTPCREL
442     MO_GOTPCREL,
443 
444     /// MO_GOTPCREL_NORELAX - Same as MO_GOTPCREL except that R_X86_64_GOTPCREL
445     /// relocations are guaranteed to be emitted by the integrated assembler
446     /// instead of the relaxable R_X86_64[_REX]_GOTPCRELX relocations.
447     MO_GOTPCREL_NORELAX,
448 
449     /// MO_PLT - On a symbol operand this indicates that the immediate is
450     /// offset to the PLT entry of symbol name from the current code location.
451     ///
452     /// See the X86-64 ELF ABI supplement for more details.
453     ///    SYMBOL_LABEL @PLT
454     MO_PLT,
455 
456     /// MO_TLSGD - On a symbol operand this indicates that the immediate is
457     /// the offset of the GOT entry with the TLS index structure that contains
458     /// the module number and variable offset for the symbol. Used in the
459     /// general dynamic TLS access model.
460     ///
461     /// See 'ELF Handling for Thread-Local Storage' for more details.
462     ///    SYMBOL_LABEL @TLSGD
463     MO_TLSGD,
464 
465     /// MO_TLSLD - On a symbol operand this indicates that the immediate is
466     /// the offset of the GOT entry with the TLS index for the module that
467     /// contains the symbol. When this index is passed to a call to
468     /// __tls_get_addr, the function will return the base address of the TLS
469     /// block for the symbol. Used in the x86-64 local dynamic TLS access model.
470     ///
471     /// See 'ELF Handling for Thread-Local Storage' for more details.
472     ///    SYMBOL_LABEL @TLSLD
473     MO_TLSLD,
474 
475     /// MO_TLSLDM - On a symbol operand this indicates that the immediate is
476     /// the offset of the GOT entry with the TLS index for the module that
477     /// contains the symbol. When this index is passed to a call to
478     /// ___tls_get_addr, the function will return the base address of the TLS
479     /// block for the symbol. Used in the IA32 local dynamic TLS access model.
480     ///
481     /// See 'ELF Handling for Thread-Local Storage' for more details.
482     ///    SYMBOL_LABEL @TLSLDM
483     MO_TLSLDM,
484 
485     /// MO_GOTTPOFF - On a symbol operand this indicates that the immediate is
486     /// the offset of the GOT entry with the thread-pointer offset for the
487     /// symbol. Used in the x86-64 initial exec TLS access model.
488     ///
489     /// See 'ELF Handling for Thread-Local Storage' for more details.
490     ///    SYMBOL_LABEL @GOTTPOFF
491     MO_GOTTPOFF,
492 
493     /// MO_INDNTPOFF - On a symbol operand this indicates that the immediate is
494     /// the absolute address of the GOT entry with the negative thread-pointer
495     /// offset for the symbol. Used in the non-PIC IA32 initial exec TLS access
496     /// model.
497     ///
498     /// See 'ELF Handling for Thread-Local Storage' for more details.
499     ///    SYMBOL_LABEL @INDNTPOFF
500     MO_INDNTPOFF,
501 
502     /// MO_TPOFF - On a symbol operand this indicates that the immediate is
503     /// the thread-pointer offset for the symbol. Used in the x86-64 local
504     /// exec TLS access model.
505     ///
506     /// See 'ELF Handling for Thread-Local Storage' for more details.
507     ///    SYMBOL_LABEL @TPOFF
508     MO_TPOFF,
509 
510     /// MO_DTPOFF - On a symbol operand this indicates that the immediate is
511     /// the offset of the GOT entry with the TLS offset of the symbol. Used
512     /// in the local dynamic TLS access model.
513     ///
514     /// See 'ELF Handling for Thread-Local Storage' for more details.
515     ///    SYMBOL_LABEL @DTPOFF
516     MO_DTPOFF,
517 
518     /// MO_NTPOFF - On a symbol operand this indicates that the immediate is
519     /// the negative thread-pointer offset for the symbol. Used in the IA32
520     /// local exec TLS access model.
521     ///
522     /// See 'ELF Handling for Thread-Local Storage' for more details.
523     ///    SYMBOL_LABEL @NTPOFF
524     MO_NTPOFF,
525 
526     /// MO_GOTNTPOFF - On a symbol operand this indicates that the immediate is
527     /// the offset of the GOT entry with the negative thread-pointer offset for
528     /// the symbol. Used in the PIC IA32 initial exec TLS access model.
529     ///
530     /// See 'ELF Handling for Thread-Local Storage' for more details.
531     ///    SYMBOL_LABEL @GOTNTPOFF
532     MO_GOTNTPOFF,
533 
534     /// MO_DLLIMPORT - On a symbol operand "FOO", this indicates that the
535     /// reference is actually to the "__imp_FOO" symbol.  This is used for
536     /// dllimport linkage on windows.
537     MO_DLLIMPORT,
538 
539     /// MO_DARWIN_NONLAZY - On a symbol operand "FOO", this indicates that the
540     /// reference is actually to the "FOO$non_lazy_ptr" symbol, which is a
541     /// non-PIC-base-relative reference to a non-hidden dyld lazy pointer stub.
542     MO_DARWIN_NONLAZY,
543 
544     /// MO_DARWIN_NONLAZY_PIC_BASE - On a symbol operand "FOO", this indicates
545     /// that the reference is actually to "FOO$non_lazy_ptr - PICBASE", which is
546     /// a PIC-base-relative reference to a non-hidden dyld lazy pointer stub.
547     MO_DARWIN_NONLAZY_PIC_BASE,
548 
549     /// MO_TLVP - On a symbol operand this indicates that the immediate is
550     /// some TLS offset.
551     ///
552     /// This is the TLS offset for the Darwin TLS mechanism.
553     MO_TLVP,
554 
555     /// MO_TLVP_PIC_BASE - On a symbol operand this indicates that the immediate
556     /// is some TLS offset from the picbase.
557     ///
558     /// This is the 32-bit TLS offset for Darwin TLS in PIC mode.
559     MO_TLVP_PIC_BASE,
560 
561     /// MO_SECREL - On a symbol operand this indicates that the immediate is
562     /// the offset from beginning of section.
563     ///
564     /// This is the TLS offset for the COFF/Windows TLS mechanism.
565     MO_SECREL,
566 
567     /// MO_ABS8 - On a symbol operand this indicates that the symbol is known
568     /// to be an absolute symbol in range [0,128), so we can use the @ABS8
569     /// symbol modifier.
570     MO_ABS8,
571 
572     /// MO_COFFSTUB - On a symbol operand "FOO", this indicates that the
573     /// reference is actually to the ".refptr.FOO" symbol.  This is used for
574     /// stub symbols on windows.
575     MO_COFFSTUB,
576   };
577 
578   enum : uint64_t {
579     //===------------------------------------------------------------------===//
580     // Instruction encodings.  These are the standard/most common forms for X86
581     // instructions.
582     //
583 
584     // PseudoFrm - This represents an instruction that is a pseudo instruction
585     // or one that has not been implemented yet.  It is illegal to code generate
586     // it, but tolerated for intermediate implementation stages.
587     Pseudo         = 0,
588 
589     /// Raw - This form is for instructions that don't have any operands, so
590     /// they are just a fixed opcode value, like 'leave'.
591     RawFrm         = 1,
592 
593     /// AddRegFrm - This form is used for instructions like 'push r32' that have
594     /// their one register operand added to their opcode.
595     AddRegFrm      = 2,
596 
597     /// RawFrmMemOffs - This form is for instructions that store an absolute
598     /// memory offset as an immediate with a possible segment override.
599     RawFrmMemOffs  = 3,
600 
601     /// RawFrmSrc - This form is for instructions that use the source index
602     /// register SI/ESI/RSI with a possible segment override.
603     RawFrmSrc      = 4,
604 
605     /// RawFrmDst - This form is for instructions that use the destination index
606     /// register DI/EDI/RDI.
607     RawFrmDst      = 5,
608 
609     /// RawFrmDstSrc - This form is for instructions that use the source index
610     /// register SI/ESI/RSI with a possible segment override, and also the
611     /// destination index register DI/EDI/RDI.
612     RawFrmDstSrc   = 6,
613 
614     /// RawFrmImm8 - This is used for the ENTER instruction, which has two
615     /// immediates, the first of which is a 16-bit immediate (specified by
616     /// the imm encoding) and the second is a 8-bit fixed value.
617     RawFrmImm8 = 7,
618 
619     /// RawFrmImm16 - This is used for CALL FAR instructions, which have two
620     /// immediates, the first of which is a 16 or 32-bit immediate (specified by
621     /// the imm encoding) and the second is a 16-bit fixed value.  In the AMD
622     /// manual, this operand is described as pntr16:32 and pntr16:16
623     RawFrmImm16 = 8,
624 
625     /// AddCCFrm - This form is used for Jcc that encode the condition code
626     /// in the lower 4 bits of the opcode.
627     AddCCFrm = 9,
628 
629     /// PrefixByte - This form is used for instructions that represent a prefix
630     /// byte like data16 or rep.
631     PrefixByte = 10,
632 
633     /// MRM[0-7][rm] - These forms are used to represent instructions that use
634     /// a Mod/RM byte, and use the middle field to hold extended opcode
635     /// information.  In the intel manual these are represented as /0, /1, ...
636     ///
637 
638     // Instructions operate on a register Reg/Opcode operand not the r/m field.
639     MRMr0 = 21,
640 
641     /// MRMSrcMem - But force to use the SIB field.
642     MRMSrcMemFSIB  = 22,
643 
644     /// MRMDestMem - But force to use the SIB field.
645     MRMDestMemFSIB = 23,
646 
647     /// MRMDestMem - This form is used for instructions that use the Mod/RM byte
648     /// to specify a destination, which in this case is memory.
649     ///
650     MRMDestMem     = 24,
651 
652     /// MRMSrcMem - This form is used for instructions that use the Mod/RM byte
653     /// to specify a source, which in this case is memory.
654     ///
655     MRMSrcMem      = 25,
656 
657     /// MRMSrcMem4VOp3 - This form is used for instructions that encode
658     /// operand 3 with VEX.VVVV and load from memory.
659     ///
660     MRMSrcMem4VOp3 = 26,
661 
662     /// MRMSrcMemOp4 - This form is used for instructions that use the Mod/RM
663     /// byte to specify the fourth source, which in this case is memory.
664     ///
665     MRMSrcMemOp4   = 27,
666 
667     /// MRMSrcMemCC - This form is used for instructions that use the Mod/RM
668     /// byte to specify the operands and also encodes a condition code.
669     ///
670     MRMSrcMemCC    = 28,
671 
672     /// MRMXm - This form is used for instructions that use the Mod/RM byte
673     /// to specify a memory source, but doesn't use the middle field. And has
674     /// a condition code.
675     ///
676     MRMXmCC = 30,
677 
678     /// MRMXm - This form is used for instructions that use the Mod/RM byte
679     /// to specify a memory source, but doesn't use the middle field.
680     ///
681     MRMXm = 31,
682 
683     // Next, instructions that operate on a memory r/m operand...
684     MRM0m = 32,  MRM1m = 33,  MRM2m = 34,  MRM3m = 35, // Format /0 /1 /2 /3
685     MRM4m = 36,  MRM5m = 37,  MRM6m = 38,  MRM7m = 39, // Format /4 /5 /6 /7
686 
687     /// MRMDestReg - This form is used for instructions that use the Mod/RM byte
688     /// to specify a destination, which in this case is a register.
689     ///
690     MRMDestReg     = 40,
691 
692     /// MRMSrcReg - This form is used for instructions that use the Mod/RM byte
693     /// to specify a source, which in this case is a register.
694     ///
695     MRMSrcReg      = 41,
696 
697     /// MRMSrcReg4VOp3 - This form is used for instructions that encode
698     /// operand 3 with VEX.VVVV and do not load from memory.
699     ///
700     MRMSrcReg4VOp3 = 42,
701 
702     /// MRMSrcRegOp4 - This form is used for instructions that use the Mod/RM
703     /// byte to specify the fourth source, which in this case is a register.
704     ///
705     MRMSrcRegOp4   = 43,
706 
707     /// MRMSrcRegCC - This form is used for instructions that use the Mod/RM
708     /// byte to specify the operands and also encodes a condition code
709     ///
710     MRMSrcRegCC    = 44,
711 
712     /// MRMXCCr - This form is used for instructions that use the Mod/RM byte
713     /// to specify a register source, but doesn't use the middle field. And has
714     /// a condition code.
715     ///
716     MRMXrCC = 46,
717 
718     /// MRMXr - This form is used for instructions that use the Mod/RM byte
719     /// to specify a register source, but doesn't use the middle field.
720     ///
721     MRMXr = 47,
722 
723     // Instructions that operate on a register r/m operand...
724     MRM0r = 48,  MRM1r = 49,  MRM2r = 50,  MRM3r = 51, // Format /0 /1 /2 /3
725     MRM4r = 52,  MRM5r = 53,  MRM6r = 54,  MRM7r = 55, // Format /4 /5 /6 /7
726 
727     // Instructions that operate that have mod=11 and an opcode but ignore r/m.
728     MRM0X = 56,  MRM1X = 57,  MRM2X = 58,  MRM3X = 59, // Format /0 /1 /2 /3
729     MRM4X = 60,  MRM5X = 61,  MRM6X = 62,  MRM7X = 63, // Format /4 /5 /6 /7
730 
731     /// MRM_XX - A mod/rm byte of exactly 0xXX.
732     MRM_C0 = 64,  MRM_C1 = 65,  MRM_C2 = 66,  MRM_C3 = 67,
733     MRM_C4 = 68,  MRM_C5 = 69,  MRM_C6 = 70,  MRM_C7 = 71,
734     MRM_C8 = 72,  MRM_C9 = 73,  MRM_CA = 74,  MRM_CB = 75,
735     MRM_CC = 76,  MRM_CD = 77,  MRM_CE = 78,  MRM_CF = 79,
736     MRM_D0 = 80,  MRM_D1 = 81,  MRM_D2 = 82,  MRM_D3 = 83,
737     MRM_D4 = 84,  MRM_D5 = 85,  MRM_D6 = 86,  MRM_D7 = 87,
738     MRM_D8 = 88,  MRM_D9 = 89,  MRM_DA = 90,  MRM_DB = 91,
739     MRM_DC = 92,  MRM_DD = 93,  MRM_DE = 94,  MRM_DF = 95,
740     MRM_E0 = 96,  MRM_E1 = 97,  MRM_E2 = 98,  MRM_E3 = 99,
741     MRM_E4 = 100, MRM_E5 = 101, MRM_E6 = 102, MRM_E7 = 103,
742     MRM_E8 = 104, MRM_E9 = 105, MRM_EA = 106, MRM_EB = 107,
743     MRM_EC = 108, MRM_ED = 109, MRM_EE = 110, MRM_EF = 111,
744     MRM_F0 = 112, MRM_F1 = 113, MRM_F2 = 114, MRM_F3 = 115,
745     MRM_F4 = 116, MRM_F5 = 117, MRM_F6 = 118, MRM_F7 = 119,
746     MRM_F8 = 120, MRM_F9 = 121, MRM_FA = 122, MRM_FB = 123,
747     MRM_FC = 124, MRM_FD = 125, MRM_FE = 126, MRM_FF = 127,
748 
749     FormMask       = 127,
750 
751     //===------------------------------------------------------------------===//
752     // Actual flags...
753 
754     // OpSize - OpSizeFixed implies instruction never needs a 0x66 prefix.
755     // OpSize16 means this is a 16-bit instruction and needs 0x66 prefix in
756     // 32-bit mode. OpSize32 means this is a 32-bit instruction needs a 0x66
757     // prefix in 16-bit mode.
758     OpSizeShift = 7,
759     OpSizeMask = 0x3 << OpSizeShift,
760 
761     OpSizeFixed  = 0 << OpSizeShift,
762     OpSize16     = 1 << OpSizeShift,
763     OpSize32     = 2 << OpSizeShift,
764 
765     // AsSize - AdSizeX implies this instruction determines its need of 0x67
766     // prefix from a normal ModRM memory operand. The other types indicate that
767     // an operand is encoded with a specific width and a prefix is needed if
768     // it differs from the current mode.
769     AdSizeShift = OpSizeShift + 2,
770     AdSizeMask  = 0x3 << AdSizeShift,
771 
772     AdSizeX  = 0 << AdSizeShift,
773     AdSize16 = 1 << AdSizeShift,
774     AdSize32 = 2 << AdSizeShift,
775     AdSize64 = 3 << AdSizeShift,
776 
777     //===------------------------------------------------------------------===//
778     // OpPrefix - There are several prefix bytes that are used as opcode
779     // extensions. These are 0x66, 0xF3, and 0xF2. If this field is 0 there is
780     // no prefix.
781     //
782     OpPrefixShift = AdSizeShift + 2,
783     OpPrefixMask  = 0x3 << OpPrefixShift,
784 
785     // PD - Prefix code for packed double precision vector floating point
786     // operations performed in the SSE registers.
787     PD = 1 << OpPrefixShift,
788 
789     // XS, XD - These prefix codes are for single and double precision scalar
790     // floating point operations performed in the SSE registers.
791     XS = 2 << OpPrefixShift,  XD = 3 << OpPrefixShift,
792 
793     //===------------------------------------------------------------------===//
794     // OpMap - This field determines which opcode map this instruction
795     // belongs to. i.e. one-byte, two-byte, 0x0f 0x38, 0x0f 0x3a, etc.
796     //
797     OpMapShift = OpPrefixShift + 2,
798     OpMapMask  = 0xF << OpMapShift,
799 
800     // OB - OneByte - Set if this instruction has a one byte opcode.
801     OB = 0 << OpMapShift,
802 
803     // TB - TwoByte - Set if this instruction has a two byte opcode, which
804     // starts with a 0x0F byte before the real opcode.
805     TB = 1 << OpMapShift,
806 
807     // T8, TA - Prefix after the 0x0F prefix.
808     T8 = 2 << OpMapShift,  TA = 3 << OpMapShift,
809 
810     // XOP8 - Prefix to include use of imm byte.
811     XOP8 = 4 << OpMapShift,
812 
813     // XOP9 - Prefix to exclude use of imm byte.
814     XOP9 = 5 << OpMapShift,
815 
816     // XOPA - Prefix to encode 0xA in VEX.MMMM of XOP instructions.
817     XOPA = 6 << OpMapShift,
818 
819     /// ThreeDNow - This indicates that the instruction uses the
820     /// wacky 0x0F 0x0F prefix for 3DNow! instructions.  The manual documents
821     /// this as having a 0x0F prefix with a 0x0F opcode, and each instruction
822     /// storing a classifier in the imm8 field.  To simplify our implementation,
823     /// we handle this by storeing the classifier in the opcode field and using
824     /// this flag to indicate that the encoder should do the wacky 3DNow! thing.
825     ThreeDNow = 7 << OpMapShift,
826 
827     // MAP5, MAP6 - Prefix after the 0x0F prefix.
828     T_MAP5 = 8 << OpMapShift,
829     T_MAP6 = 9 << OpMapShift,
830 
831     //===------------------------------------------------------------------===//
832     // REX_W - REX prefixes are instruction prefixes used in 64-bit mode.
833     // They are used to specify GPRs and SSE registers, 64-bit operand size,
834     // etc. We only cares about REX.W and REX.R bits and only the former is
835     // statically determined.
836     //
837     REXShift    = OpMapShift + 4,
838     REX_W       = 1 << REXShift,
839 
840     //===------------------------------------------------------------------===//
841     // This three-bit field describes the size of an immediate operand.  Zero is
842     // unused so that we can tell if we forgot to set a value.
843     ImmShift = REXShift + 1,
844     ImmMask    = 15 << ImmShift,
845     Imm8       = 1 << ImmShift,
846     Imm8PCRel  = 2 << ImmShift,
847     Imm8Reg    = 3 << ImmShift,
848     Imm16      = 4 << ImmShift,
849     Imm16PCRel = 5 << ImmShift,
850     Imm32      = 6 << ImmShift,
851     Imm32PCRel = 7 << ImmShift,
852     Imm32S     = 8 << ImmShift,
853     Imm64      = 9 << ImmShift,
854 
855     //===------------------------------------------------------------------===//
856     // FP Instruction Classification...  Zero is non-fp instruction.
857 
858     // FPTypeMask - Mask for all of the FP types...
859     FPTypeShift = ImmShift + 4,
860     FPTypeMask  = 7 << FPTypeShift,
861 
862     // NotFP - The default, set for instructions that do not use FP registers.
863     NotFP      = 0 << FPTypeShift,
864 
865     // ZeroArgFP - 0 arg FP instruction which implicitly pushes ST(0), f.e. fld0
866     ZeroArgFP  = 1 << FPTypeShift,
867 
868     // OneArgFP - 1 arg FP instructions which implicitly read ST(0), such as fst
869     OneArgFP   = 2 << FPTypeShift,
870 
871     // OneArgFPRW - 1 arg FP instruction which implicitly read ST(0) and write a
872     // result back to ST(0).  For example, fcos, fsqrt, etc.
873     //
874     OneArgFPRW = 3 << FPTypeShift,
875 
876     // TwoArgFP - 2 arg FP instructions which implicitly read ST(0), and an
877     // explicit argument, storing the result to either ST(0) or the implicit
878     // argument.  For example: fadd, fsub, fmul, etc...
879     TwoArgFP   = 4 << FPTypeShift,
880 
881     // CompareFP - 2 arg FP instructions which implicitly read ST(0) and an
882     // explicit argument, but have no destination.  Example: fucom, fucomi, ...
883     CompareFP  = 5 << FPTypeShift,
884 
885     // CondMovFP - "2 operand" floating point conditional move instructions.
886     CondMovFP  = 6 << FPTypeShift,
887 
888     // SpecialFP - Special instruction forms.  Dispatch by opcode explicitly.
889     SpecialFP  = 7 << FPTypeShift,
890 
891     // Lock prefix
892     LOCKShift = FPTypeShift + 3,
893     LOCK = 1 << LOCKShift,
894 
895     // REP prefix
896     REPShift = LOCKShift + 1,
897     REP = 1 << REPShift,
898 
899     // Execution domain for SSE instructions.
900     // 0 means normal, non-SSE instruction.
901     SSEDomainShift = REPShift + 1,
902 
903     // Encoding
904     EncodingShift = SSEDomainShift + 2,
905     EncodingMask = 0x3 << EncodingShift,
906 
907     // VEX - encoding using 0xC4/0xC5
908     VEX = 1 << EncodingShift,
909 
910     /// XOP - Opcode prefix used by XOP instructions.
911     XOP = 2 << EncodingShift,
912 
913     // VEX_EVEX - Specifies that this instruction use EVEX form which provides
914     // syntax support up to 32 512-bit register operands and up to 7 16-bit
915     // mask operands as well as source operand data swizzling/memory operand
916     // conversion, eviction hint, and rounding mode.
917     EVEX = 3 << EncodingShift,
918 
919     // Opcode
920     OpcodeShift   = EncodingShift + 2,
921 
922     /// VEX_W - Has a opcode specific functionality, but is used in the same
923     /// way as REX_W is for regular SSE instructions.
924     VEX_WShift  = OpcodeShift + 8,
925     VEX_W       = 1ULL << VEX_WShift,
926 
927     /// VEX_4V - Used to specify an additional AVX/SSE register. Several 2
928     /// address instructions in SSE are represented as 3 address ones in AVX
929     /// and the additional register is encoded in VEX_VVVV prefix.
930     VEX_4VShift = VEX_WShift + 1,
931     VEX_4V      = 1ULL << VEX_4VShift,
932 
933     /// VEX_L - Stands for a bit in the VEX opcode prefix meaning the current
934     /// instruction uses 256-bit wide registers. This is usually auto detected
935     /// if a VR256 register is used, but some AVX instructions also have this
936     /// field marked when using a f256 memory references.
937     VEX_LShift = VEX_4VShift + 1,
938     VEX_L       = 1ULL << VEX_LShift,
939 
940     // EVEX_K - Set if this instruction requires masking
941     EVEX_KShift = VEX_LShift + 1,
942     EVEX_K      = 1ULL << EVEX_KShift,
943 
944     // EVEX_Z - Set if this instruction has EVEX.Z field set.
945     EVEX_ZShift = EVEX_KShift + 1,
946     EVEX_Z      = 1ULL << EVEX_ZShift,
947 
948     // EVEX_L2 - Set if this instruction has EVEX.L' field set.
949     EVEX_L2Shift = EVEX_ZShift + 1,
950     EVEX_L2     = 1ULL << EVEX_L2Shift,
951 
952     // EVEX_B - Set if this instruction has EVEX.B field set.
953     EVEX_BShift = EVEX_L2Shift + 1,
954     EVEX_B      = 1ULL << EVEX_BShift,
955 
956     // The scaling factor for the AVX512's 8-bit compressed displacement.
957     CD8_Scale_Shift = EVEX_BShift + 1,
958     CD8_Scale_Mask = 127ULL << CD8_Scale_Shift,
959 
960     /// Explicitly specified rounding control
961     EVEX_RCShift = CD8_Scale_Shift + 7,
962     EVEX_RC = 1ULL << EVEX_RCShift,
963 
964     // NOTRACK prefix
965     NoTrackShift = EVEX_RCShift + 1,
966     NOTRACK = 1ULL << NoTrackShift,
967 
968     // Force VEX encoding
969     ExplicitVEXShift = NoTrackShift + 1,
970     ExplicitVEXPrefix = 1ULL << ExplicitVEXShift
971   };
972 
973   /// \returns true if the instruction with given opcode is a prefix.
974   inline bool isPrefix(uint64_t TSFlags) {
975     return (TSFlags & X86II::FormMask) == PrefixByte;
976   }
977 
978   /// \returns true if the instruction with given opcode is a pseudo.
979   inline bool isPseudo(uint64_t TSFlags) {
980     return (TSFlags & X86II::FormMask) == Pseudo;
981   }
982 
983   /// \returns the "base" X86 opcode for the specified machine
984   /// instruction.
985   inline uint8_t getBaseOpcodeFor(uint64_t TSFlags) {
986     return TSFlags >> X86II::OpcodeShift;
987   }
988 
989   inline bool hasImm(uint64_t TSFlags) {
990     return (TSFlags & X86II::ImmMask) != 0;
991   }
992 
993   /// Decode the "size of immediate" field from the TSFlags field of the
994   /// specified instruction.
995   inline unsigned getSizeOfImm(uint64_t TSFlags) {
996     switch (TSFlags & X86II::ImmMask) {
997     default: llvm_unreachable("Unknown immediate size");
998     case X86II::Imm8:
999     case X86II::Imm8PCRel:
1000     case X86II::Imm8Reg:    return 1;
1001     case X86II::Imm16:
1002     case X86II::Imm16PCRel: return 2;
1003     case X86II::Imm32:
1004     case X86II::Imm32S:
1005     case X86II::Imm32PCRel: return 4;
1006     case X86II::Imm64:      return 8;
1007     }
1008   }
1009 
1010   /// \returns true if the immediate of the specified instruction's TSFlags
1011   /// indicates that it is pc relative.
1012   inline bool isImmPCRel(uint64_t TSFlags) {
1013     switch (TSFlags & X86II::ImmMask) {
1014     default: llvm_unreachable("Unknown immediate size");
1015     case X86II::Imm8PCRel:
1016     case X86II::Imm16PCRel:
1017     case X86II::Imm32PCRel:
1018       return true;
1019     case X86II::Imm8:
1020     case X86II::Imm8Reg:
1021     case X86II::Imm16:
1022     case X86II::Imm32:
1023     case X86II::Imm32S:
1024     case X86II::Imm64:
1025       return false;
1026     }
1027   }
1028 
1029   /// \returns true if the immediate of the specified instruction's
1030   /// TSFlags indicates that it is signed.
1031   inline bool isImmSigned(uint64_t TSFlags) {
1032     switch (TSFlags & X86II::ImmMask) {
1033     default: llvm_unreachable("Unknown immediate signedness");
1034     case X86II::Imm32S:
1035       return true;
1036     case X86II::Imm8:
1037     case X86II::Imm8PCRel:
1038     case X86II::Imm8Reg:
1039     case X86II::Imm16:
1040     case X86II::Imm16PCRel:
1041     case X86II::Imm32:
1042     case X86II::Imm32PCRel:
1043     case X86II::Imm64:
1044       return false;
1045     }
1046   }
1047 
1048   /// Compute whether all of the def operands are repeated in the uses and
1049   /// therefore should be skipped.
1050   /// This determines the start of the unique operand list. We need to determine
1051   /// if all of the defs have a corresponding tied operand in the uses.
1052   /// Unfortunately, the tied operand information is encoded in the uses not
1053   /// the defs so we have to use some heuristics to find which operands to
1054   /// query.
1055   inline unsigned getOperandBias(const MCInstrDesc& Desc) {
1056     unsigned NumDefs = Desc.getNumDefs();
1057     unsigned NumOps = Desc.getNumOperands();
1058     switch (NumDefs) {
1059     default: llvm_unreachable("Unexpected number of defs");
1060     case 0:
1061       return 0;
1062     case 1:
1063       // Common two addr case.
1064       if (NumOps > 1 && Desc.getOperandConstraint(1, MCOI::TIED_TO) == 0)
1065         return 1;
1066       // Check for AVX-512 scatter which has a TIED_TO in the second to last
1067       // operand.
1068       if (NumOps == 8 &&
1069           Desc.getOperandConstraint(6, MCOI::TIED_TO) == 0)
1070         return 1;
1071       return 0;
1072     case 2:
1073       // XCHG/XADD have two destinations and two sources.
1074       if (NumOps >= 4 && Desc.getOperandConstraint(2, MCOI::TIED_TO) == 0 &&
1075           Desc.getOperandConstraint(3, MCOI::TIED_TO) == 1)
1076         return 2;
1077       // Check for gather. AVX-512 has the second tied operand early. AVX2
1078       // has it as the last op.
1079       if (NumOps == 9 && Desc.getOperandConstraint(2, MCOI::TIED_TO) == 0 &&
1080           (Desc.getOperandConstraint(3, MCOI::TIED_TO) == 1 ||
1081            Desc.getOperandConstraint(8, MCOI::TIED_TO) == 1))
1082         return 2;
1083       return 0;
1084     }
1085   }
1086 
1087   /// The function returns the MCInst operand # for the first field of the
1088   /// memory operand.  If the instruction doesn't have a
1089   /// memory operand, this returns -1.
1090   ///
1091   /// Note that this ignores tied operands.  If there is a tied register which
1092   /// is duplicated in the MCInst (e.g. "EAX = addl EAX, [mem]") it is only
1093   /// counted as one operand.
1094   ///
1095   inline int getMemoryOperandNo(uint64_t TSFlags) {
1096     bool HasVEX_4V = TSFlags & X86II::VEX_4V;
1097     bool HasEVEX_K = TSFlags & X86II::EVEX_K;
1098 
1099     switch (TSFlags & X86II::FormMask) {
1100     default: llvm_unreachable("Unknown FormMask value in getMemoryOperandNo!");
1101     case X86II::Pseudo:
1102     case X86II::RawFrm:
1103     case X86II::AddRegFrm:
1104     case X86II::RawFrmImm8:
1105     case X86II::RawFrmImm16:
1106     case X86II::RawFrmMemOffs:
1107     case X86II::RawFrmSrc:
1108     case X86II::RawFrmDst:
1109     case X86II::RawFrmDstSrc:
1110     case X86II::AddCCFrm:
1111     case X86II::PrefixByte:
1112       return -1;
1113     case X86II::MRMDestMem:
1114     case X86II::MRMDestMemFSIB:
1115       return 0;
1116     case X86II::MRMSrcMem:
1117     case X86II::MRMSrcMemFSIB:
1118       // Start from 1, skip any registers encoded in VEX_VVVV or I8IMM, or a
1119       // mask register.
1120       return 1 + HasVEX_4V + HasEVEX_K;
1121     case X86II::MRMSrcMem4VOp3:
1122       // Skip registers encoded in reg.
1123       return 1 + HasEVEX_K;
1124     case X86II::MRMSrcMemOp4:
1125       // Skip registers encoded in reg, VEX_VVVV, and I8IMM.
1126       return 3;
1127     case X86II::MRMSrcMemCC:
1128       // Start from 1, skip any registers encoded in VEX_VVVV or I8IMM, or a
1129       // mask register.
1130       return 1;
1131     case X86II::MRMDestReg:
1132     case X86II::MRMSrcReg:
1133     case X86II::MRMSrcReg4VOp3:
1134     case X86II::MRMSrcRegOp4:
1135     case X86II::MRMSrcRegCC:
1136     case X86II::MRMXrCC:
1137     case X86II::MRMr0:
1138     case X86II::MRMXr:
1139     case X86II::MRM0r: case X86II::MRM1r:
1140     case X86II::MRM2r: case X86II::MRM3r:
1141     case X86II::MRM4r: case X86II::MRM5r:
1142     case X86II::MRM6r: case X86II::MRM7r:
1143       return -1;
1144     case X86II::MRM0X: case X86II::MRM1X:
1145     case X86II::MRM2X: case X86II::MRM3X:
1146     case X86II::MRM4X: case X86II::MRM5X:
1147     case X86II::MRM6X: case X86II::MRM7X:
1148       return -1;
1149     case X86II::MRMXmCC:
1150     case X86II::MRMXm:
1151     case X86II::MRM0m: case X86II::MRM1m:
1152     case X86II::MRM2m: case X86II::MRM3m:
1153     case X86II::MRM4m: case X86II::MRM5m:
1154     case X86II::MRM6m: case X86II::MRM7m:
1155       // Start from 0, skip registers encoded in VEX_VVVV or a mask register.
1156       return 0 + HasVEX_4V + HasEVEX_K;
1157     case X86II::MRM_C0: case X86II::MRM_C1: case X86II::MRM_C2:
1158     case X86II::MRM_C3: case X86II::MRM_C4: case X86II::MRM_C5:
1159     case X86II::MRM_C6: case X86II::MRM_C7: case X86II::MRM_C8:
1160     case X86II::MRM_C9: case X86II::MRM_CA: case X86II::MRM_CB:
1161     case X86II::MRM_CC: case X86II::MRM_CD: case X86II::MRM_CE:
1162     case X86II::MRM_CF: case X86II::MRM_D0: case X86II::MRM_D1:
1163     case X86II::MRM_D2: case X86II::MRM_D3: case X86II::MRM_D4:
1164     case X86II::MRM_D5: case X86II::MRM_D6: case X86II::MRM_D7:
1165     case X86II::MRM_D8: case X86II::MRM_D9: case X86II::MRM_DA:
1166     case X86II::MRM_DB: case X86II::MRM_DC: case X86II::MRM_DD:
1167     case X86II::MRM_DE: case X86II::MRM_DF: case X86II::MRM_E0:
1168     case X86II::MRM_E1: case X86II::MRM_E2: case X86II::MRM_E3:
1169     case X86II::MRM_E4: case X86II::MRM_E5: case X86II::MRM_E6:
1170     case X86II::MRM_E7: case X86II::MRM_E8: case X86II::MRM_E9:
1171     case X86II::MRM_EA: case X86II::MRM_EB: case X86II::MRM_EC:
1172     case X86II::MRM_ED: case X86II::MRM_EE: case X86II::MRM_EF:
1173     case X86II::MRM_F0: case X86II::MRM_F1: case X86II::MRM_F2:
1174     case X86II::MRM_F3: case X86II::MRM_F4: case X86II::MRM_F5:
1175     case X86II::MRM_F6: case X86II::MRM_F7: case X86II::MRM_F8:
1176     case X86II::MRM_F9: case X86II::MRM_FA: case X86II::MRM_FB:
1177     case X86II::MRM_FC: case X86II::MRM_FD: case X86II::MRM_FE:
1178     case X86II::MRM_FF:
1179       return -1;
1180     }
1181   }
1182 
1183   /// \returns true if the MachineOperand is a x86-64 extended (r8 or
1184   /// higher) register,  e.g. r8, xmm8, xmm13, etc.
1185   inline bool isX86_64ExtendedReg(unsigned RegNo) {
1186     if ((RegNo >= X86::XMM8 && RegNo <= X86::XMM31) ||
1187         (RegNo >= X86::YMM8 && RegNo <= X86::YMM31) ||
1188         (RegNo >= X86::ZMM8 && RegNo <= X86::ZMM31))
1189       return true;
1190 
1191     switch (RegNo) {
1192     default: break;
1193     case X86::R8:    case X86::R9:    case X86::R10:   case X86::R11:
1194     case X86::R12:   case X86::R13:   case X86::R14:   case X86::R15:
1195     case X86::R8D:   case X86::R9D:   case X86::R10D:  case X86::R11D:
1196     case X86::R12D:  case X86::R13D:  case X86::R14D:  case X86::R15D:
1197     case X86::R8W:   case X86::R9W:   case X86::R10W:  case X86::R11W:
1198     case X86::R12W:  case X86::R13W:  case X86::R14W:  case X86::R15W:
1199     case X86::R8B:   case X86::R9B:   case X86::R10B:  case X86::R11B:
1200     case X86::R12B:  case X86::R13B:  case X86::R14B:  case X86::R15B:
1201     case X86::CR8:   case X86::CR9:   case X86::CR10:  case X86::CR11:
1202     case X86::CR12:  case X86::CR13:  case X86::CR14:  case X86::CR15:
1203     case X86::DR8:   case X86::DR9:   case X86::DR10:  case X86::DR11:
1204     case X86::DR12:  case X86::DR13:  case X86::DR14:  case X86::DR15:
1205       return true;
1206     }
1207     return false;
1208   }
1209 
1210   /// \returns true if the MemoryOperand is a 32 extended (zmm16 or higher)
1211   /// registers, e.g. zmm21, etc.
1212   static inline bool is32ExtendedReg(unsigned RegNo) {
1213     return ((RegNo >= X86::XMM16 && RegNo <= X86::XMM31) ||
1214             (RegNo >= X86::YMM16 && RegNo <= X86::YMM31) ||
1215             (RegNo >= X86::ZMM16 && RegNo <= X86::ZMM31));
1216   }
1217 
1218 
1219   inline bool isX86_64NonExtLowByteReg(unsigned reg) {
1220     return (reg == X86::SPL || reg == X86::BPL ||
1221             reg == X86::SIL || reg == X86::DIL);
1222   }
1223 
1224   /// \returns true if this is a masked instruction.
1225   inline bool isKMasked(uint64_t TSFlags) {
1226     return (TSFlags & X86II::EVEX_K) != 0;
1227   }
1228 
1229   /// \returns true if this is a merge masked instruction.
1230   inline bool isKMergeMasked(uint64_t TSFlags) {
1231     return isKMasked(TSFlags) && (TSFlags & X86II::EVEX_Z) == 0;
1232   }
1233 }
1234 
1235 } // end namespace llvm;
1236 
1237 #endif
1238